1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_kstatus, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 struct { 143 int type; 144 int code; 145 int mtu; 146 } icmpopts; 147 }; 148 149 STAILQ_HEAD(pf_send_head, pf_send_entry); 150 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 151 #define V_pf_sendqueue VNET(pf_sendqueue) 152 153 static struct mtx pf_sendqueue_mtx; 154 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 155 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 156 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 157 158 /* 159 * Queue for pf_overload_task() tasks. 160 */ 161 struct pf_overload_entry { 162 SLIST_ENTRY(pf_overload_entry) next; 163 struct pf_addr addr; 164 sa_family_t af; 165 uint8_t dir; 166 struct pf_rule *rule; 167 }; 168 169 SLIST_HEAD(pf_overload_head, pf_overload_entry); 170 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 171 #define V_pf_overloadqueue VNET(pf_overloadqueue) 172 static VNET_DEFINE(struct task, pf_overloadtask); 173 #define V_pf_overloadtask VNET(pf_overloadtask) 174 175 static struct mtx pf_overloadqueue_mtx; 176 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 177 "pf overload/flush queue", MTX_DEF); 178 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 179 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 180 181 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 182 struct mtx pf_unlnkdrules_mtx; 183 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 184 MTX_DEF); 185 186 static VNET_DEFINE(uma_zone_t, pf_sources_z); 187 #define V_pf_sources_z VNET(pf_sources_z) 188 uma_zone_t pf_mtag_z; 189 VNET_DEFINE(uma_zone_t, pf_state_z); 190 VNET_DEFINE(uma_zone_t, pf_state_key_z); 191 192 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 193 #define PFID_CPUBITS 8 194 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 195 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 196 #define PFID_MAXID (~PFID_CPUMASK) 197 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 198 199 static void pf_src_tree_remove_state(struct pf_state *); 200 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 201 u_int32_t); 202 static void pf_add_threshold(struct pf_threshold *); 203 static int pf_check_threshold(struct pf_threshold *); 204 205 static void pf_change_ap(struct pf_addr *, u_int16_t *, 206 u_int16_t *, u_int16_t *, struct pf_addr *, 207 u_int16_t, u_int8_t, sa_family_t); 208 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 209 struct tcphdr *, struct pf_state_peer *); 210 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 211 struct pf_addr *, struct pf_addr *, u_int16_t, 212 u_int16_t *, u_int16_t *, u_int16_t *, 213 u_int16_t *, u_int8_t, sa_family_t); 214 static void pf_send_tcp(struct mbuf *, 215 const struct pf_rule *, sa_family_t, 216 const struct pf_addr *, const struct pf_addr *, 217 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 218 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 219 u_int16_t, struct ifnet *); 220 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 221 sa_family_t, struct pf_rule *); 222 static void pf_detach_state(struct pf_state *); 223 static int pf_state_key_attach(struct pf_state_key *, 224 struct pf_state_key *, struct pf_state *); 225 static void pf_state_key_detach(struct pf_state *, int); 226 static int pf_state_key_ctor(void *, int, void *, int); 227 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 228 static int pf_test_rule(struct pf_rule **, struct pf_state **, 229 int, struct pfi_kif *, struct mbuf *, int, 230 struct pf_pdesc *, struct pf_rule **, 231 struct pf_ruleset **, struct inpcb *); 232 static int pf_create_state(struct pf_rule *, struct pf_rule *, 233 struct pf_rule *, struct pf_pdesc *, 234 struct pf_src_node *, struct pf_state_key *, 235 struct pf_state_key *, struct mbuf *, int, 236 u_int16_t, u_int16_t, int *, struct pfi_kif *, 237 struct pf_state **, int, u_int16_t, u_int16_t, 238 int); 239 static int pf_test_fragment(struct pf_rule **, int, 240 struct pfi_kif *, struct mbuf *, void *, 241 struct pf_pdesc *, struct pf_rule **, 242 struct pf_ruleset **); 243 static int pf_tcp_track_full(struct pf_state_peer *, 244 struct pf_state_peer *, struct pf_state **, 245 struct pfi_kif *, struct mbuf *, int, 246 struct pf_pdesc *, u_short *, int *); 247 static int pf_tcp_track_sloppy(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pf_pdesc *, u_short *); 250 static int pf_test_state_tcp(struct pf_state **, int, 251 struct pfi_kif *, struct mbuf *, int, 252 void *, struct pf_pdesc *, u_short *); 253 static int pf_test_state_udp(struct pf_state **, int, 254 struct pfi_kif *, struct mbuf *, int, 255 void *, struct pf_pdesc *); 256 static int pf_test_state_icmp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *, u_short *); 259 static int pf_test_state_other(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 261 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 262 sa_family_t); 263 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 264 sa_family_t); 265 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 266 int, u_int16_t); 267 static int pf_check_proto_cksum(struct mbuf *, int, int, 268 u_int8_t, sa_family_t); 269 static void pf_print_state_parts(struct pf_state *, 270 struct pf_state_key *, struct pf_state_key *); 271 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 272 struct pf_addr_wrap *); 273 static struct pf_state *pf_find_state(struct pfi_kif *, 274 struct pf_state_key_cmp *, u_int); 275 static int pf_src_connlimit(struct pf_state **); 276 static void pf_overload_task(void *v, int pending); 277 static int pf_insert_src_node(struct pf_src_node **, 278 struct pf_rule *, struct pf_addr *, sa_family_t); 279 static u_int pf_purge_expired_states(u_int, int); 280 static void pf_purge_unlinked_rules(void); 281 static int pf_mtag_uminit(void *, int, int); 282 static void pf_mtag_free(struct m_tag *); 283 #ifdef INET 284 static void pf_route(struct mbuf **, struct pf_rule *, int, 285 struct ifnet *, struct pf_state *, 286 struct pf_pdesc *); 287 #endif /* INET */ 288 #ifdef INET6 289 static void pf_change_a6(struct pf_addr *, u_int16_t *, 290 struct pf_addr *, u_int8_t); 291 static void pf_route6(struct mbuf **, struct pf_rule *, int, 292 struct ifnet *, struct pf_state *, 293 struct pf_pdesc *); 294 #endif /* INET6 */ 295 296 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 297 298 VNET_DECLARE(int, pf_end_threads); 299 300 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 301 302 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 303 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 304 305 #define STATE_LOOKUP(i, k, d, s, pd) \ 306 do { \ 307 (s) = pf_find_state((i), (k), (d)); \ 308 if ((s) == NULL) \ 309 return (PF_DROP); \ 310 if (PACKET_LOOPED(pd)) \ 311 return (PF_PASS); \ 312 if ((d) == PF_OUT && \ 313 (((s)->rule.ptr->rt == PF_ROUTETO && \ 314 (s)->rule.ptr->direction == PF_OUT) || \ 315 ((s)->rule.ptr->rt == PF_REPLYTO && \ 316 (s)->rule.ptr->direction == PF_IN)) && \ 317 (s)->rt_kif != NULL && \ 318 (s)->rt_kif != (i)) \ 319 return (PF_PASS); \ 320 } while (0) 321 322 #define BOUND_IFACE(r, k) \ 323 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 324 325 #define STATE_INC_COUNTERS(s) \ 326 do { \ 327 counter_u64_add(s->rule.ptr->states_cur, 1); \ 328 counter_u64_add(s->rule.ptr->states_tot, 1); \ 329 if (s->anchor.ptr != NULL) { \ 330 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 331 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 332 } \ 333 if (s->nat_rule.ptr != NULL) { \ 334 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 335 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 336 } \ 337 } while (0) 338 339 #define STATE_DEC_COUNTERS(s) \ 340 do { \ 341 if (s->nat_rule.ptr != NULL) \ 342 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 343 if (s->anchor.ptr != NULL) \ 344 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 345 counter_u64_add(s->rule.ptr->states_cur, -1); \ 346 } while (0) 347 348 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 349 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 350 VNET_DEFINE(struct pf_idhash *, pf_idhash); 351 VNET_DEFINE(struct pf_srchash *, pf_srchash); 352 353 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 354 355 u_long pf_hashmask; 356 u_long pf_srchashmask; 357 static u_long pf_hashsize; 358 static u_long pf_srchashsize; 359 360 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 361 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 362 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 363 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 364 365 VNET_DEFINE(void *, pf_swi_cookie); 366 367 VNET_DEFINE(uint32_t, pf_hashseed); 368 #define V_pf_hashseed VNET(pf_hashseed) 369 370 int 371 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 372 { 373 374 switch (af) { 375 #ifdef INET 376 case AF_INET: 377 if (a->addr32[0] > b->addr32[0]) 378 return (1); 379 if (a->addr32[0] < b->addr32[0]) 380 return (-1); 381 break; 382 #endif /* INET */ 383 #ifdef INET6 384 case AF_INET6: 385 if (a->addr32[3] > b->addr32[3]) 386 return (1); 387 if (a->addr32[3] < b->addr32[3]) 388 return (-1); 389 if (a->addr32[2] > b->addr32[2]) 390 return (1); 391 if (a->addr32[2] < b->addr32[2]) 392 return (-1); 393 if (a->addr32[1] > b->addr32[1]) 394 return (1); 395 if (a->addr32[1] < b->addr32[1]) 396 return (-1); 397 if (a->addr32[0] > b->addr32[0]) 398 return (1); 399 if (a->addr32[0] < b->addr32[0]) 400 return (-1); 401 break; 402 #endif /* INET6 */ 403 default: 404 panic("%s: unknown address family %u", __func__, af); 405 } 406 return (0); 407 } 408 409 static __inline uint32_t 410 pf_hashkey(struct pf_state_key *sk) 411 { 412 uint32_t h; 413 414 h = murmur3_32_hash32((uint32_t *)sk, 415 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 416 V_pf_hashseed); 417 418 return (h & pf_hashmask); 419 } 420 421 static __inline uint32_t 422 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 423 { 424 uint32_t h; 425 426 switch (af) { 427 case AF_INET: 428 h = murmur3_32_hash32((uint32_t *)&addr->v4, 429 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 430 break; 431 case AF_INET6: 432 h = murmur3_32_hash32((uint32_t *)&addr->v6, 433 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 434 break; 435 default: 436 panic("%s: unknown address family %u", __func__, af); 437 } 438 439 return (h & pf_srchashmask); 440 } 441 442 #ifdef INET6 443 void 444 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 445 { 446 switch (af) { 447 #ifdef INET 448 case AF_INET: 449 dst->addr32[0] = src->addr32[0]; 450 break; 451 #endif /* INET */ 452 case AF_INET6: 453 dst->addr32[0] = src->addr32[0]; 454 dst->addr32[1] = src->addr32[1]; 455 dst->addr32[2] = src->addr32[2]; 456 dst->addr32[3] = src->addr32[3]; 457 break; 458 } 459 } 460 #endif /* INET6 */ 461 462 static void 463 pf_init_threshold(struct pf_threshold *threshold, 464 u_int32_t limit, u_int32_t seconds) 465 { 466 threshold->limit = limit * PF_THRESHOLD_MULT; 467 threshold->seconds = seconds; 468 threshold->count = 0; 469 threshold->last = time_uptime; 470 } 471 472 static void 473 pf_add_threshold(struct pf_threshold *threshold) 474 { 475 u_int32_t t = time_uptime, diff = t - threshold->last; 476 477 if (diff >= threshold->seconds) 478 threshold->count = 0; 479 else 480 threshold->count -= threshold->count * diff / 481 threshold->seconds; 482 threshold->count += PF_THRESHOLD_MULT; 483 threshold->last = t; 484 } 485 486 static int 487 pf_check_threshold(struct pf_threshold *threshold) 488 { 489 return (threshold->count > threshold->limit); 490 } 491 492 static int 493 pf_src_connlimit(struct pf_state **state) 494 { 495 struct pf_overload_entry *pfoe; 496 int bad = 0; 497 498 PF_STATE_LOCK_ASSERT(*state); 499 500 (*state)->src_node->conn++; 501 (*state)->src.tcp_est = 1; 502 pf_add_threshold(&(*state)->src_node->conn_rate); 503 504 if ((*state)->rule.ptr->max_src_conn && 505 (*state)->rule.ptr->max_src_conn < 506 (*state)->src_node->conn) { 507 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 508 bad++; 509 } 510 511 if ((*state)->rule.ptr->max_src_conn_rate.limit && 512 pf_check_threshold(&(*state)->src_node->conn_rate)) { 513 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 514 bad++; 515 } 516 517 if (!bad) 518 return (0); 519 520 /* Kill this state. */ 521 (*state)->timeout = PFTM_PURGE; 522 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 523 524 if ((*state)->rule.ptr->overload_tbl == NULL) 525 return (1); 526 527 /* Schedule overloading and flushing task. */ 528 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 529 if (pfoe == NULL) 530 return (1); /* too bad :( */ 531 532 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 533 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 534 pfoe->rule = (*state)->rule.ptr; 535 pfoe->dir = (*state)->direction; 536 PF_OVERLOADQ_LOCK(); 537 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 538 PF_OVERLOADQ_UNLOCK(); 539 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 540 541 return (1); 542 } 543 544 static void 545 pf_overload_task(void *v, int pending) 546 { 547 struct pf_overload_head queue; 548 struct pfr_addr p; 549 struct pf_overload_entry *pfoe, *pfoe1; 550 uint32_t killed = 0; 551 552 CURVNET_SET((struct vnet *)v); 553 554 PF_OVERLOADQ_LOCK(); 555 queue = V_pf_overloadqueue; 556 SLIST_INIT(&V_pf_overloadqueue); 557 PF_OVERLOADQ_UNLOCK(); 558 559 bzero(&p, sizeof(p)); 560 SLIST_FOREACH(pfoe, &queue, next) { 561 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 562 if (V_pf_status.debug >= PF_DEBUG_MISC) { 563 printf("%s: blocking address ", __func__); 564 pf_print_host(&pfoe->addr, 0, pfoe->af); 565 printf("\n"); 566 } 567 568 p.pfra_af = pfoe->af; 569 switch (pfoe->af) { 570 #ifdef INET 571 case AF_INET: 572 p.pfra_net = 32; 573 p.pfra_ip4addr = pfoe->addr.v4; 574 break; 575 #endif 576 #ifdef INET6 577 case AF_INET6: 578 p.pfra_net = 128; 579 p.pfra_ip6addr = pfoe->addr.v6; 580 break; 581 #endif 582 } 583 584 PF_RULES_WLOCK(); 585 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 586 PF_RULES_WUNLOCK(); 587 } 588 589 /* 590 * Remove those entries, that don't need flushing. 591 */ 592 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 593 if (pfoe->rule->flush == 0) { 594 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 595 free(pfoe, M_PFTEMP); 596 } else 597 counter_u64_add( 598 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 599 600 /* If nothing to flush, return. */ 601 if (SLIST_EMPTY(&queue)) { 602 CURVNET_RESTORE(); 603 return; 604 } 605 606 for (int i = 0; i <= pf_hashmask; i++) { 607 struct pf_idhash *ih = &V_pf_idhash[i]; 608 struct pf_state_key *sk; 609 struct pf_state *s; 610 611 PF_HASHROW_LOCK(ih); 612 LIST_FOREACH(s, &ih->states, entry) { 613 sk = s->key[PF_SK_WIRE]; 614 SLIST_FOREACH(pfoe, &queue, next) 615 if (sk->af == pfoe->af && 616 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 617 pfoe->rule == s->rule.ptr) && 618 ((pfoe->dir == PF_OUT && 619 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 620 (pfoe->dir == PF_IN && 621 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 622 s->timeout = PFTM_PURGE; 623 s->src.state = s->dst.state = TCPS_CLOSED; 624 killed++; 625 } 626 } 627 PF_HASHROW_UNLOCK(ih); 628 } 629 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 630 free(pfoe, M_PFTEMP); 631 if (V_pf_status.debug >= PF_DEBUG_MISC) 632 printf("%s: %u states killed", __func__, killed); 633 634 CURVNET_RESTORE(); 635 } 636 637 /* 638 * Can return locked on failure, so that we can consistently 639 * allocate and insert a new one. 640 */ 641 struct pf_src_node * 642 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 643 int returnlocked) 644 { 645 struct pf_srchash *sh; 646 struct pf_src_node *n; 647 648 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 649 650 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 651 PF_HASHROW_LOCK(sh); 652 LIST_FOREACH(n, &sh->nodes, entry) 653 if (n->rule.ptr == rule && n->af == af && 654 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 655 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 656 break; 657 if (n != NULL) { 658 n->states++; 659 PF_HASHROW_UNLOCK(sh); 660 } else if (returnlocked == 0) 661 PF_HASHROW_UNLOCK(sh); 662 663 return (n); 664 } 665 666 static int 667 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 668 struct pf_addr *src, sa_family_t af) 669 { 670 671 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 672 rule->rpool.opts & PF_POOL_STICKYADDR), 673 ("%s for non-tracking rule %p", __func__, rule)); 674 675 if (*sn == NULL) 676 *sn = pf_find_src_node(src, rule, af, 1); 677 678 if (*sn == NULL) { 679 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 680 681 PF_HASHROW_ASSERT(sh); 682 683 if (!rule->max_src_nodes || 684 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 685 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 686 else 687 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 688 1); 689 if ((*sn) == NULL) { 690 PF_HASHROW_UNLOCK(sh); 691 return (-1); 692 } 693 694 pf_init_threshold(&(*sn)->conn_rate, 695 rule->max_src_conn_rate.limit, 696 rule->max_src_conn_rate.seconds); 697 698 (*sn)->af = af; 699 (*sn)->rule.ptr = rule; 700 PF_ACPY(&(*sn)->addr, src, af); 701 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 702 (*sn)->creation = time_uptime; 703 (*sn)->ruletype = rule->action; 704 (*sn)->states = 1; 705 if ((*sn)->rule.ptr != NULL) 706 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 707 PF_HASHROW_UNLOCK(sh); 708 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 709 } else { 710 if (rule->max_src_states && 711 (*sn)->states >= rule->max_src_states) { 712 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 713 1); 714 return (-1); 715 } 716 } 717 return (0); 718 } 719 720 void 721 pf_unlink_src_node(struct pf_src_node *src) 722 { 723 724 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 725 LIST_REMOVE(src, entry); 726 if (src->rule.ptr) 727 counter_u64_add(src->rule.ptr->src_nodes, -1); 728 } 729 730 u_int 731 pf_free_src_nodes(struct pf_src_node_list *head) 732 { 733 struct pf_src_node *sn, *tmp; 734 u_int count = 0; 735 736 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 737 uma_zfree(V_pf_sources_z, sn); 738 count++; 739 } 740 741 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 742 743 return (count); 744 } 745 746 void 747 pf_mtag_initialize() 748 { 749 750 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 751 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 752 UMA_ALIGN_PTR, 0); 753 } 754 755 /* Per-vnet data storage structures initialization. */ 756 void 757 pf_initialize() 758 { 759 struct pf_keyhash *kh; 760 struct pf_idhash *ih; 761 struct pf_srchash *sh; 762 u_int i; 763 764 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 765 pf_hashsize = PF_HASHSIZ; 766 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 767 pf_srchashsize = PF_HASHSIZ / 4; 768 769 V_pf_hashseed = arc4random(); 770 771 /* States and state keys storage. */ 772 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 773 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 774 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 775 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 776 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 777 778 V_pf_state_key_z = uma_zcreate("pf state keys", 779 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 780 UMA_ALIGN_PTR, 0); 781 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 782 M_PFHASH, M_WAITOK | M_ZERO); 783 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 784 M_PFHASH, M_WAITOK | M_ZERO); 785 pf_hashmask = pf_hashsize - 1; 786 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 787 i++, kh++, ih++) { 788 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 789 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 790 } 791 792 /* Source nodes. */ 793 V_pf_sources_z = uma_zcreate("pf source nodes", 794 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 795 0); 796 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 797 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 798 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 799 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 800 M_PFHASH, M_WAITOK|M_ZERO); 801 pf_srchashmask = pf_srchashsize - 1; 802 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 803 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 804 805 /* ALTQ */ 806 TAILQ_INIT(&V_pf_altqs[0]); 807 TAILQ_INIT(&V_pf_altqs[1]); 808 TAILQ_INIT(&V_pf_pabuf); 809 V_pf_altqs_active = &V_pf_altqs[0]; 810 V_pf_altqs_inactive = &V_pf_altqs[1]; 811 812 /* Send & overload+flush queues. */ 813 STAILQ_INIT(&V_pf_sendqueue); 814 SLIST_INIT(&V_pf_overloadqueue); 815 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 816 817 /* Unlinked, but may be referenced rules. */ 818 TAILQ_INIT(&V_pf_unlinked_rules); 819 } 820 821 void 822 pf_mtag_cleanup() 823 { 824 825 uma_zdestroy(pf_mtag_z); 826 } 827 828 void 829 pf_cleanup() 830 { 831 struct pf_keyhash *kh; 832 struct pf_idhash *ih; 833 struct pf_srchash *sh; 834 struct pf_send_entry *pfse, *next; 835 u_int i; 836 837 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 838 i++, kh++, ih++) { 839 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 840 __func__)); 841 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 842 __func__)); 843 mtx_destroy(&kh->lock); 844 mtx_destroy(&ih->lock); 845 } 846 free(V_pf_keyhash, M_PFHASH); 847 free(V_pf_idhash, M_PFHASH); 848 849 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 850 KASSERT(LIST_EMPTY(&sh->nodes), 851 ("%s: source node hash not empty", __func__)); 852 mtx_destroy(&sh->lock); 853 } 854 free(V_pf_srchash, M_PFHASH); 855 856 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 857 m_freem(pfse->pfse_m); 858 free(pfse, M_PFTEMP); 859 } 860 861 uma_zdestroy(V_pf_sources_z); 862 uma_zdestroy(V_pf_state_z); 863 uma_zdestroy(V_pf_state_key_z); 864 } 865 866 static int 867 pf_mtag_uminit(void *mem, int size, int how) 868 { 869 struct m_tag *t; 870 871 t = (struct m_tag *)mem; 872 t->m_tag_cookie = MTAG_ABI_COMPAT; 873 t->m_tag_id = PACKET_TAG_PF; 874 t->m_tag_len = sizeof(struct pf_mtag); 875 t->m_tag_free = pf_mtag_free; 876 877 return (0); 878 } 879 880 static void 881 pf_mtag_free(struct m_tag *t) 882 { 883 884 uma_zfree(pf_mtag_z, t); 885 } 886 887 struct pf_mtag * 888 pf_get_mtag(struct mbuf *m) 889 { 890 struct m_tag *mtag; 891 892 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 893 return ((struct pf_mtag *)(mtag + 1)); 894 895 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 896 if (mtag == NULL) 897 return (NULL); 898 bzero(mtag + 1, sizeof(struct pf_mtag)); 899 m_tag_prepend(m, mtag); 900 901 return ((struct pf_mtag *)(mtag + 1)); 902 } 903 904 static int 905 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 906 struct pf_state *s) 907 { 908 struct pf_keyhash *khs, *khw, *kh; 909 struct pf_state_key *sk, *cur; 910 struct pf_state *si, *olds = NULL; 911 int idx; 912 913 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 914 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 915 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 916 917 /* 918 * We need to lock hash slots of both keys. To avoid deadlock 919 * we always lock the slot with lower address first. Unlock order 920 * isn't important. 921 * 922 * We also need to lock ID hash slot before dropping key 923 * locks. On success we return with ID hash slot locked. 924 */ 925 926 if (skw == sks) { 927 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 928 PF_HASHROW_LOCK(khs); 929 } else { 930 khs = &V_pf_keyhash[pf_hashkey(sks)]; 931 khw = &V_pf_keyhash[pf_hashkey(skw)]; 932 if (khs == khw) { 933 PF_HASHROW_LOCK(khs); 934 } else if (khs < khw) { 935 PF_HASHROW_LOCK(khs); 936 PF_HASHROW_LOCK(khw); 937 } else { 938 PF_HASHROW_LOCK(khw); 939 PF_HASHROW_LOCK(khs); 940 } 941 } 942 943 #define KEYS_UNLOCK() do { \ 944 if (khs != khw) { \ 945 PF_HASHROW_UNLOCK(khs); \ 946 PF_HASHROW_UNLOCK(khw); \ 947 } else \ 948 PF_HASHROW_UNLOCK(khs); \ 949 } while (0) 950 951 /* 952 * First run: start with wire key. 953 */ 954 sk = skw; 955 kh = khw; 956 idx = PF_SK_WIRE; 957 958 keyattach: 959 LIST_FOREACH(cur, &kh->keys, entry) 960 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 961 break; 962 963 if (cur != NULL) { 964 /* Key exists. Check for same kif, if none, add to key. */ 965 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 966 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 967 968 PF_HASHROW_LOCK(ih); 969 if (si->kif == s->kif && 970 si->direction == s->direction) { 971 if (sk->proto == IPPROTO_TCP && 972 si->src.state >= TCPS_FIN_WAIT_2 && 973 si->dst.state >= TCPS_FIN_WAIT_2) { 974 /* 975 * New state matches an old >FIN_WAIT_2 976 * state. We can't drop key hash locks, 977 * thus we can't unlink it properly. 978 * 979 * As a workaround we drop it into 980 * TCPS_CLOSED state, schedule purge 981 * ASAP and push it into the very end 982 * of the slot TAILQ, so that it won't 983 * conflict with our new state. 984 */ 985 si->src.state = si->dst.state = 986 TCPS_CLOSED; 987 si->timeout = PFTM_PURGE; 988 olds = si; 989 } else { 990 if (V_pf_status.debug >= PF_DEBUG_MISC) { 991 printf("pf: %s key attach " 992 "failed on %s: ", 993 (idx == PF_SK_WIRE) ? 994 "wire" : "stack", 995 s->kif->pfik_name); 996 pf_print_state_parts(s, 997 (idx == PF_SK_WIRE) ? 998 sk : NULL, 999 (idx == PF_SK_STACK) ? 1000 sk : NULL); 1001 printf(", existing: "); 1002 pf_print_state_parts(si, 1003 (idx == PF_SK_WIRE) ? 1004 sk : NULL, 1005 (idx == PF_SK_STACK) ? 1006 sk : NULL); 1007 printf("\n"); 1008 } 1009 PF_HASHROW_UNLOCK(ih); 1010 KEYS_UNLOCK(); 1011 uma_zfree(V_pf_state_key_z, sk); 1012 if (idx == PF_SK_STACK) 1013 pf_detach_state(s); 1014 return (EEXIST); /* collision! */ 1015 } 1016 } 1017 PF_HASHROW_UNLOCK(ih); 1018 } 1019 uma_zfree(V_pf_state_key_z, sk); 1020 s->key[idx] = cur; 1021 } else { 1022 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1023 s->key[idx] = sk; 1024 } 1025 1026 stateattach: 1027 /* List is sorted, if-bound states before floating. */ 1028 if (s->kif == V_pfi_all) 1029 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1030 else 1031 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1032 1033 if (olds) { 1034 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1035 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1036 key_list[idx]); 1037 olds = NULL; 1038 } 1039 1040 /* 1041 * Attach done. See how should we (or should not?) 1042 * attach a second key. 1043 */ 1044 if (sks == skw) { 1045 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1046 idx = PF_SK_STACK; 1047 sks = NULL; 1048 goto stateattach; 1049 } else if (sks != NULL) { 1050 /* 1051 * Continue attaching with stack key. 1052 */ 1053 sk = sks; 1054 kh = khs; 1055 idx = PF_SK_STACK; 1056 sks = NULL; 1057 goto keyattach; 1058 } 1059 1060 PF_STATE_LOCK(s); 1061 KEYS_UNLOCK(); 1062 1063 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1064 ("%s failure", __func__)); 1065 1066 return (0); 1067 #undef KEYS_UNLOCK 1068 } 1069 1070 static void 1071 pf_detach_state(struct pf_state *s) 1072 { 1073 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1074 struct pf_keyhash *kh; 1075 1076 if (sks != NULL) { 1077 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1078 PF_HASHROW_LOCK(kh); 1079 if (s->key[PF_SK_STACK] != NULL) 1080 pf_state_key_detach(s, PF_SK_STACK); 1081 /* 1082 * If both point to same key, then we are done. 1083 */ 1084 if (sks == s->key[PF_SK_WIRE]) { 1085 pf_state_key_detach(s, PF_SK_WIRE); 1086 PF_HASHROW_UNLOCK(kh); 1087 return; 1088 } 1089 PF_HASHROW_UNLOCK(kh); 1090 } 1091 1092 if (s->key[PF_SK_WIRE] != NULL) { 1093 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1094 PF_HASHROW_LOCK(kh); 1095 if (s->key[PF_SK_WIRE] != NULL) 1096 pf_state_key_detach(s, PF_SK_WIRE); 1097 PF_HASHROW_UNLOCK(kh); 1098 } 1099 } 1100 1101 static void 1102 pf_state_key_detach(struct pf_state *s, int idx) 1103 { 1104 struct pf_state_key *sk = s->key[idx]; 1105 #ifdef INVARIANTS 1106 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1107 1108 PF_HASHROW_ASSERT(kh); 1109 #endif 1110 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1111 s->key[idx] = NULL; 1112 1113 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1114 LIST_REMOVE(sk, entry); 1115 uma_zfree(V_pf_state_key_z, sk); 1116 } 1117 } 1118 1119 static int 1120 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1121 { 1122 struct pf_state_key *sk = mem; 1123 1124 bzero(sk, sizeof(struct pf_state_key_cmp)); 1125 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1126 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1127 1128 return (0); 1129 } 1130 1131 struct pf_state_key * 1132 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1133 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1134 { 1135 struct pf_state_key *sk; 1136 1137 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1138 if (sk == NULL) 1139 return (NULL); 1140 1141 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1142 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1143 sk->port[pd->sidx] = sport; 1144 sk->port[pd->didx] = dport; 1145 sk->proto = pd->proto; 1146 sk->af = pd->af; 1147 1148 return (sk); 1149 } 1150 1151 struct pf_state_key * 1152 pf_state_key_clone(struct pf_state_key *orig) 1153 { 1154 struct pf_state_key *sk; 1155 1156 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1157 if (sk == NULL) 1158 return (NULL); 1159 1160 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1161 1162 return (sk); 1163 } 1164 1165 int 1166 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1167 struct pf_state_key *sks, struct pf_state *s) 1168 { 1169 struct pf_idhash *ih; 1170 struct pf_state *cur; 1171 int error; 1172 1173 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1174 ("%s: sks not pristine", __func__)); 1175 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1176 ("%s: skw not pristine", __func__)); 1177 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1178 1179 s->kif = kif; 1180 1181 if (s->id == 0 && s->creatorid == 0) { 1182 /* XXX: should be atomic, but probability of collision low */ 1183 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1184 V_pf_stateid[curcpu] = 1; 1185 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1186 s->id = htobe64(s->id); 1187 s->creatorid = V_pf_status.hostid; 1188 } 1189 1190 /* Returns with ID locked on success. */ 1191 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1192 return (error); 1193 1194 ih = &V_pf_idhash[PF_IDHASH(s)]; 1195 PF_HASHROW_ASSERT(ih); 1196 LIST_FOREACH(cur, &ih->states, entry) 1197 if (cur->id == s->id && cur->creatorid == s->creatorid) 1198 break; 1199 1200 if (cur != NULL) { 1201 PF_HASHROW_UNLOCK(ih); 1202 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1203 printf("pf: state ID collision: " 1204 "id: %016llx creatorid: %08x\n", 1205 (unsigned long long)be64toh(s->id), 1206 ntohl(s->creatorid)); 1207 } 1208 pf_detach_state(s); 1209 return (EEXIST); 1210 } 1211 LIST_INSERT_HEAD(&ih->states, s, entry); 1212 /* One for keys, one for ID hash. */ 1213 refcount_init(&s->refs, 2); 1214 1215 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1216 if (pfsync_insert_state_ptr != NULL) 1217 pfsync_insert_state_ptr(s); 1218 1219 /* Returns locked. */ 1220 return (0); 1221 } 1222 1223 /* 1224 * Find state by ID: returns with locked row on success. 1225 */ 1226 struct pf_state * 1227 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1228 { 1229 struct pf_idhash *ih; 1230 struct pf_state *s; 1231 1232 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1233 1234 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1235 1236 PF_HASHROW_LOCK(ih); 1237 LIST_FOREACH(s, &ih->states, entry) 1238 if (s->id == id && s->creatorid == creatorid) 1239 break; 1240 1241 if (s == NULL) 1242 PF_HASHROW_UNLOCK(ih); 1243 1244 return (s); 1245 } 1246 1247 /* 1248 * Find state by key. 1249 * Returns with ID hash slot locked on success. 1250 */ 1251 static struct pf_state * 1252 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1253 { 1254 struct pf_keyhash *kh; 1255 struct pf_state_key *sk; 1256 struct pf_state *s; 1257 int idx; 1258 1259 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1260 1261 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1262 1263 PF_HASHROW_LOCK(kh); 1264 LIST_FOREACH(sk, &kh->keys, entry) 1265 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1266 break; 1267 if (sk == NULL) { 1268 PF_HASHROW_UNLOCK(kh); 1269 return (NULL); 1270 } 1271 1272 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1273 1274 /* List is sorted, if-bound states before floating ones. */ 1275 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1276 if (s->kif == V_pfi_all || s->kif == kif) { 1277 PF_STATE_LOCK(s); 1278 PF_HASHROW_UNLOCK(kh); 1279 if (s->timeout >= PFTM_MAX) { 1280 /* 1281 * State is either being processed by 1282 * pf_unlink_state() in an other thread, or 1283 * is scheduled for immediate expiry. 1284 */ 1285 PF_STATE_UNLOCK(s); 1286 return (NULL); 1287 } 1288 return (s); 1289 } 1290 PF_HASHROW_UNLOCK(kh); 1291 1292 return (NULL); 1293 } 1294 1295 struct pf_state * 1296 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1297 { 1298 struct pf_keyhash *kh; 1299 struct pf_state_key *sk; 1300 struct pf_state *s, *ret = NULL; 1301 int idx, inout = 0; 1302 1303 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1304 1305 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1306 1307 PF_HASHROW_LOCK(kh); 1308 LIST_FOREACH(sk, &kh->keys, entry) 1309 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1310 break; 1311 if (sk == NULL) { 1312 PF_HASHROW_UNLOCK(kh); 1313 return (NULL); 1314 } 1315 switch (dir) { 1316 case PF_IN: 1317 idx = PF_SK_WIRE; 1318 break; 1319 case PF_OUT: 1320 idx = PF_SK_STACK; 1321 break; 1322 case PF_INOUT: 1323 idx = PF_SK_WIRE; 1324 inout = 1; 1325 break; 1326 default: 1327 panic("%s: dir %u", __func__, dir); 1328 } 1329 second_run: 1330 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1331 if (more == NULL) { 1332 PF_HASHROW_UNLOCK(kh); 1333 return (s); 1334 } 1335 1336 if (ret) 1337 (*more)++; 1338 else 1339 ret = s; 1340 } 1341 if (inout == 1) { 1342 inout = 0; 1343 idx = PF_SK_STACK; 1344 goto second_run; 1345 } 1346 PF_HASHROW_UNLOCK(kh); 1347 1348 return (ret); 1349 } 1350 1351 /* END state table stuff */ 1352 1353 static void 1354 pf_send(struct pf_send_entry *pfse) 1355 { 1356 1357 PF_SENDQ_LOCK(); 1358 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1359 PF_SENDQ_UNLOCK(); 1360 swi_sched(V_pf_swi_cookie, 0); 1361 } 1362 1363 void 1364 pf_intr(void *v) 1365 { 1366 struct pf_send_head queue; 1367 struct pf_send_entry *pfse, *next; 1368 1369 CURVNET_SET((struct vnet *)v); 1370 1371 PF_SENDQ_LOCK(); 1372 queue = V_pf_sendqueue; 1373 STAILQ_INIT(&V_pf_sendqueue); 1374 PF_SENDQ_UNLOCK(); 1375 1376 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1377 switch (pfse->pfse_type) { 1378 #ifdef INET 1379 case PFSE_IP: 1380 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1381 break; 1382 case PFSE_ICMP: 1383 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1384 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1385 break; 1386 #endif /* INET */ 1387 #ifdef INET6 1388 case PFSE_IP6: 1389 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1390 NULL); 1391 break; 1392 case PFSE_ICMP6: 1393 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1394 pfse->icmpopts.code, pfse->icmpopts.mtu); 1395 break; 1396 #endif /* INET6 */ 1397 default: 1398 panic("%s: unknown type", __func__); 1399 } 1400 free(pfse, M_PFTEMP); 1401 } 1402 CURVNET_RESTORE(); 1403 } 1404 1405 void 1406 pf_purge_thread(void *v) 1407 { 1408 u_int idx = 0; 1409 1410 CURVNET_SET((struct vnet *)v); 1411 1412 for (;;) { 1413 PF_RULES_RLOCK(); 1414 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1415 1416 if (V_pf_end_threads) { 1417 /* 1418 * To cleanse up all kifs and rules we need 1419 * two runs: first one clears reference flags, 1420 * then pf_purge_expired_states() doesn't 1421 * raise them, and then second run frees. 1422 */ 1423 PF_RULES_RUNLOCK(); 1424 pf_purge_unlinked_rules(); 1425 pfi_kif_purge(); 1426 1427 /* 1428 * Now purge everything. 1429 */ 1430 pf_purge_expired_states(0, pf_hashmask); 1431 pf_purge_expired_fragments(); 1432 pf_purge_expired_src_nodes(); 1433 1434 /* 1435 * Now all kifs & rules should be unreferenced, 1436 * thus should be successfully freed. 1437 */ 1438 pf_purge_unlinked_rules(); 1439 pfi_kif_purge(); 1440 1441 /* 1442 * Announce success and exit. 1443 */ 1444 PF_RULES_RLOCK(); 1445 V_pf_end_threads++; 1446 PF_RULES_RUNLOCK(); 1447 wakeup(pf_purge_thread); 1448 kproc_exit(0); 1449 } 1450 PF_RULES_RUNLOCK(); 1451 1452 /* Process 1/interval fraction of the state table every run. */ 1453 idx = pf_purge_expired_states(idx, pf_hashmask / 1454 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1455 1456 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1457 if (idx == 0) { 1458 /* 1459 * Order is important: 1460 * - states and src nodes reference rules 1461 * - states and rules reference kifs 1462 */ 1463 pf_purge_expired_fragments(); 1464 pf_purge_expired_src_nodes(); 1465 pf_purge_unlinked_rules(); 1466 pfi_kif_purge(); 1467 } 1468 } 1469 /* not reached */ 1470 CURVNET_RESTORE(); 1471 } 1472 1473 u_int32_t 1474 pf_state_expires(const struct pf_state *state) 1475 { 1476 u_int32_t timeout; 1477 u_int32_t start; 1478 u_int32_t end; 1479 u_int32_t states; 1480 1481 /* handle all PFTM_* > PFTM_MAX here */ 1482 if (state->timeout == PFTM_PURGE) 1483 return (time_uptime); 1484 KASSERT(state->timeout != PFTM_UNLINKED, 1485 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1486 KASSERT((state->timeout < PFTM_MAX), 1487 ("pf_state_expires: timeout > PFTM_MAX")); 1488 timeout = state->rule.ptr->timeout[state->timeout]; 1489 if (!timeout) 1490 timeout = V_pf_default_rule.timeout[state->timeout]; 1491 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1492 if (start) { 1493 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1494 states = counter_u64_fetch(state->rule.ptr->states_cur); 1495 } else { 1496 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1497 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1498 states = V_pf_status.states; 1499 } 1500 if (end && states > start && start < end) { 1501 if (states < end) 1502 return (state->expire + timeout * (end - states) / 1503 (end - start)); 1504 else 1505 return (time_uptime); 1506 } 1507 return (state->expire + timeout); 1508 } 1509 1510 void 1511 pf_purge_expired_src_nodes() 1512 { 1513 struct pf_src_node_list freelist; 1514 struct pf_srchash *sh; 1515 struct pf_src_node *cur, *next; 1516 int i; 1517 1518 LIST_INIT(&freelist); 1519 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1520 PF_HASHROW_LOCK(sh); 1521 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1522 if (cur->states == 0 && cur->expire <= time_uptime) { 1523 pf_unlink_src_node(cur); 1524 LIST_INSERT_HEAD(&freelist, cur, entry); 1525 } else if (cur->rule.ptr != NULL) 1526 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1527 PF_HASHROW_UNLOCK(sh); 1528 } 1529 1530 pf_free_src_nodes(&freelist); 1531 1532 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1533 } 1534 1535 static void 1536 pf_src_tree_remove_state(struct pf_state *s) 1537 { 1538 struct pf_src_node *sn; 1539 struct pf_srchash *sh; 1540 uint32_t timeout; 1541 1542 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1543 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1544 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1545 1546 if (s->src_node != NULL) { 1547 sn = s->src_node; 1548 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1549 PF_HASHROW_LOCK(sh); 1550 if (s->src.tcp_est) 1551 --sn->conn; 1552 if (--sn->states == 0) 1553 sn->expire = time_uptime + timeout; 1554 PF_HASHROW_UNLOCK(sh); 1555 } 1556 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1557 sn = s->nat_src_node; 1558 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1559 PF_HASHROW_LOCK(sh); 1560 if (--sn->states == 0) 1561 sn->expire = time_uptime + timeout; 1562 PF_HASHROW_UNLOCK(sh); 1563 } 1564 s->src_node = s->nat_src_node = NULL; 1565 } 1566 1567 /* 1568 * Unlink and potentilly free a state. Function may be 1569 * called with ID hash row locked, but always returns 1570 * unlocked, since it needs to go through key hash locking. 1571 */ 1572 int 1573 pf_unlink_state(struct pf_state *s, u_int flags) 1574 { 1575 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1576 1577 if ((flags & PF_ENTER_LOCKED) == 0) 1578 PF_HASHROW_LOCK(ih); 1579 else 1580 PF_HASHROW_ASSERT(ih); 1581 1582 if (s->timeout == PFTM_UNLINKED) { 1583 /* 1584 * State is being processed 1585 * by pf_unlink_state() in 1586 * an other thread. 1587 */ 1588 PF_HASHROW_UNLOCK(ih); 1589 return (0); /* XXXGL: undefined actually */ 1590 } 1591 1592 if (s->src.state == PF_TCPS_PROXY_DST) { 1593 /* XXX wire key the right one? */ 1594 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1595 &s->key[PF_SK_WIRE]->addr[1], 1596 &s->key[PF_SK_WIRE]->addr[0], 1597 s->key[PF_SK_WIRE]->port[1], 1598 s->key[PF_SK_WIRE]->port[0], 1599 s->src.seqhi, s->src.seqlo + 1, 1600 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1601 } 1602 1603 LIST_REMOVE(s, entry); 1604 pf_src_tree_remove_state(s); 1605 1606 if (pfsync_delete_state_ptr != NULL) 1607 pfsync_delete_state_ptr(s); 1608 1609 STATE_DEC_COUNTERS(s); 1610 1611 s->timeout = PFTM_UNLINKED; 1612 1613 PF_HASHROW_UNLOCK(ih); 1614 1615 pf_detach_state(s); 1616 refcount_release(&s->refs); 1617 1618 return (pf_release_state(s)); 1619 } 1620 1621 void 1622 pf_free_state(struct pf_state *cur) 1623 { 1624 1625 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1626 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1627 cur->timeout)); 1628 1629 pf_normalize_tcp_cleanup(cur); 1630 uma_zfree(V_pf_state_z, cur); 1631 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1632 } 1633 1634 /* 1635 * Called only from pf_purge_thread(), thus serialized. 1636 */ 1637 static u_int 1638 pf_purge_expired_states(u_int i, int maxcheck) 1639 { 1640 struct pf_idhash *ih; 1641 struct pf_state *s; 1642 1643 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1644 1645 /* 1646 * Go through hash and unlink states that expire now. 1647 */ 1648 while (maxcheck > 0) { 1649 1650 ih = &V_pf_idhash[i]; 1651 relock: 1652 PF_HASHROW_LOCK(ih); 1653 LIST_FOREACH(s, &ih->states, entry) { 1654 if (pf_state_expires(s) <= time_uptime) { 1655 V_pf_status.states -= 1656 pf_unlink_state(s, PF_ENTER_LOCKED); 1657 goto relock; 1658 } 1659 s->rule.ptr->rule_flag |= PFRULE_REFS; 1660 if (s->nat_rule.ptr != NULL) 1661 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1662 if (s->anchor.ptr != NULL) 1663 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1664 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1665 if (s->rt_kif) 1666 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1667 } 1668 PF_HASHROW_UNLOCK(ih); 1669 1670 /* Return when we hit end of hash. */ 1671 if (++i > pf_hashmask) { 1672 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1673 return (0); 1674 } 1675 1676 maxcheck--; 1677 } 1678 1679 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1680 1681 return (i); 1682 } 1683 1684 static void 1685 pf_purge_unlinked_rules() 1686 { 1687 struct pf_rulequeue tmpq; 1688 struct pf_rule *r, *r1; 1689 1690 /* 1691 * If we have overloading task pending, then we'd 1692 * better skip purging this time. There is a tiny 1693 * probability that overloading task references 1694 * an already unlinked rule. 1695 */ 1696 PF_OVERLOADQ_LOCK(); 1697 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1698 PF_OVERLOADQ_UNLOCK(); 1699 return; 1700 } 1701 PF_OVERLOADQ_UNLOCK(); 1702 1703 /* 1704 * Do naive mark-and-sweep garbage collecting of old rules. 1705 * Reference flag is raised by pf_purge_expired_states() 1706 * and pf_purge_expired_src_nodes(). 1707 * 1708 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1709 * use a temporary queue. 1710 */ 1711 TAILQ_INIT(&tmpq); 1712 PF_UNLNKDRULES_LOCK(); 1713 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1714 if (!(r->rule_flag & PFRULE_REFS)) { 1715 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1716 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1717 } else 1718 r->rule_flag &= ~PFRULE_REFS; 1719 } 1720 PF_UNLNKDRULES_UNLOCK(); 1721 1722 if (!TAILQ_EMPTY(&tmpq)) { 1723 PF_RULES_WLOCK(); 1724 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1725 TAILQ_REMOVE(&tmpq, r, entries); 1726 pf_free_rule(r); 1727 } 1728 PF_RULES_WUNLOCK(); 1729 } 1730 } 1731 1732 void 1733 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1734 { 1735 switch (af) { 1736 #ifdef INET 1737 case AF_INET: { 1738 u_int32_t a = ntohl(addr->addr32[0]); 1739 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1740 (a>>8)&255, a&255); 1741 if (p) { 1742 p = ntohs(p); 1743 printf(":%u", p); 1744 } 1745 break; 1746 } 1747 #endif /* INET */ 1748 #ifdef INET6 1749 case AF_INET6: { 1750 u_int16_t b; 1751 u_int8_t i, curstart, curend, maxstart, maxend; 1752 curstart = curend = maxstart = maxend = 255; 1753 for (i = 0; i < 8; i++) { 1754 if (!addr->addr16[i]) { 1755 if (curstart == 255) 1756 curstart = i; 1757 curend = i; 1758 } else { 1759 if ((curend - curstart) > 1760 (maxend - maxstart)) { 1761 maxstart = curstart; 1762 maxend = curend; 1763 } 1764 curstart = curend = 255; 1765 } 1766 } 1767 if ((curend - curstart) > 1768 (maxend - maxstart)) { 1769 maxstart = curstart; 1770 maxend = curend; 1771 } 1772 for (i = 0; i < 8; i++) { 1773 if (i >= maxstart && i <= maxend) { 1774 if (i == 0) 1775 printf(":"); 1776 if (i == maxend) 1777 printf(":"); 1778 } else { 1779 b = ntohs(addr->addr16[i]); 1780 printf("%x", b); 1781 if (i < 7) 1782 printf(":"); 1783 } 1784 } 1785 if (p) { 1786 p = ntohs(p); 1787 printf("[%u]", p); 1788 } 1789 break; 1790 } 1791 #endif /* INET6 */ 1792 } 1793 } 1794 1795 void 1796 pf_print_state(struct pf_state *s) 1797 { 1798 pf_print_state_parts(s, NULL, NULL); 1799 } 1800 1801 static void 1802 pf_print_state_parts(struct pf_state *s, 1803 struct pf_state_key *skwp, struct pf_state_key *sksp) 1804 { 1805 struct pf_state_key *skw, *sks; 1806 u_int8_t proto, dir; 1807 1808 /* Do our best to fill these, but they're skipped if NULL */ 1809 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1810 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1811 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1812 dir = s ? s->direction : 0; 1813 1814 switch (proto) { 1815 case IPPROTO_IPV4: 1816 printf("IPv4"); 1817 break; 1818 case IPPROTO_IPV6: 1819 printf("IPv6"); 1820 break; 1821 case IPPROTO_TCP: 1822 printf("TCP"); 1823 break; 1824 case IPPROTO_UDP: 1825 printf("UDP"); 1826 break; 1827 case IPPROTO_ICMP: 1828 printf("ICMP"); 1829 break; 1830 case IPPROTO_ICMPV6: 1831 printf("ICMPv6"); 1832 break; 1833 default: 1834 printf("%u", skw->proto); 1835 break; 1836 } 1837 switch (dir) { 1838 case PF_IN: 1839 printf(" in"); 1840 break; 1841 case PF_OUT: 1842 printf(" out"); 1843 break; 1844 } 1845 if (skw) { 1846 printf(" wire: "); 1847 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1848 printf(" "); 1849 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1850 } 1851 if (sks) { 1852 printf(" stack: "); 1853 if (sks != skw) { 1854 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1855 printf(" "); 1856 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1857 } else 1858 printf("-"); 1859 } 1860 if (s) { 1861 if (proto == IPPROTO_TCP) { 1862 printf(" [lo=%u high=%u win=%u modulator=%u", 1863 s->src.seqlo, s->src.seqhi, 1864 s->src.max_win, s->src.seqdiff); 1865 if (s->src.wscale && s->dst.wscale) 1866 printf(" wscale=%u", 1867 s->src.wscale & PF_WSCALE_MASK); 1868 printf("]"); 1869 printf(" [lo=%u high=%u win=%u modulator=%u", 1870 s->dst.seqlo, s->dst.seqhi, 1871 s->dst.max_win, s->dst.seqdiff); 1872 if (s->src.wscale && s->dst.wscale) 1873 printf(" wscale=%u", 1874 s->dst.wscale & PF_WSCALE_MASK); 1875 printf("]"); 1876 } 1877 printf(" %u:%u", s->src.state, s->dst.state); 1878 } 1879 } 1880 1881 void 1882 pf_print_flags(u_int8_t f) 1883 { 1884 if (f) 1885 printf(" "); 1886 if (f & TH_FIN) 1887 printf("F"); 1888 if (f & TH_SYN) 1889 printf("S"); 1890 if (f & TH_RST) 1891 printf("R"); 1892 if (f & TH_PUSH) 1893 printf("P"); 1894 if (f & TH_ACK) 1895 printf("A"); 1896 if (f & TH_URG) 1897 printf("U"); 1898 if (f & TH_ECE) 1899 printf("E"); 1900 if (f & TH_CWR) 1901 printf("W"); 1902 } 1903 1904 #define PF_SET_SKIP_STEPS(i) \ 1905 do { \ 1906 while (head[i] != cur) { \ 1907 head[i]->skip[i].ptr = cur; \ 1908 head[i] = TAILQ_NEXT(head[i], entries); \ 1909 } \ 1910 } while (0) 1911 1912 void 1913 pf_calc_skip_steps(struct pf_rulequeue *rules) 1914 { 1915 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1916 int i; 1917 1918 cur = TAILQ_FIRST(rules); 1919 prev = cur; 1920 for (i = 0; i < PF_SKIP_COUNT; ++i) 1921 head[i] = cur; 1922 while (cur != NULL) { 1923 1924 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1925 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1926 if (cur->direction != prev->direction) 1927 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1928 if (cur->af != prev->af) 1929 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1930 if (cur->proto != prev->proto) 1931 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1932 if (cur->src.neg != prev->src.neg || 1933 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1934 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1935 if (cur->src.port[0] != prev->src.port[0] || 1936 cur->src.port[1] != prev->src.port[1] || 1937 cur->src.port_op != prev->src.port_op) 1938 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1939 if (cur->dst.neg != prev->dst.neg || 1940 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1941 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1942 if (cur->dst.port[0] != prev->dst.port[0] || 1943 cur->dst.port[1] != prev->dst.port[1] || 1944 cur->dst.port_op != prev->dst.port_op) 1945 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1946 1947 prev = cur; 1948 cur = TAILQ_NEXT(cur, entries); 1949 } 1950 for (i = 0; i < PF_SKIP_COUNT; ++i) 1951 PF_SET_SKIP_STEPS(i); 1952 } 1953 1954 static int 1955 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1956 { 1957 if (aw1->type != aw2->type) 1958 return (1); 1959 switch (aw1->type) { 1960 case PF_ADDR_ADDRMASK: 1961 case PF_ADDR_RANGE: 1962 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1963 return (1); 1964 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1965 return (1); 1966 return (0); 1967 case PF_ADDR_DYNIFTL: 1968 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1969 case PF_ADDR_NOROUTE: 1970 case PF_ADDR_URPFFAILED: 1971 return (0); 1972 case PF_ADDR_TABLE: 1973 return (aw1->p.tbl != aw2->p.tbl); 1974 default: 1975 printf("invalid address type: %d\n", aw1->type); 1976 return (1); 1977 } 1978 } 1979 1980 u_int16_t 1981 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1982 { 1983 u_int32_t l; 1984 1985 if (udp && !cksum) 1986 return (0x0000); 1987 l = cksum + old - new; 1988 l = (l >> 16) + (l & 65535); 1989 l = l & 65535; 1990 if (udp && !l) 1991 return (0xFFFF); 1992 return (l); 1993 } 1994 1995 static void 1996 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1997 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1998 { 1999 struct pf_addr ao; 2000 u_int16_t po = *p; 2001 2002 PF_ACPY(&ao, a, af); 2003 PF_ACPY(a, an, af); 2004 2005 *p = pn; 2006 2007 switch (af) { 2008 #ifdef INET 2009 case AF_INET: 2010 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2011 ao.addr16[0], an->addr16[0], 0), 2012 ao.addr16[1], an->addr16[1], 0); 2013 *p = pn; 2014 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2015 ao.addr16[0], an->addr16[0], u), 2016 ao.addr16[1], an->addr16[1], u), 2017 po, pn, u); 2018 break; 2019 #endif /* INET */ 2020 #ifdef INET6 2021 case AF_INET6: 2022 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2023 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2024 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2025 ao.addr16[0], an->addr16[0], u), 2026 ao.addr16[1], an->addr16[1], u), 2027 ao.addr16[2], an->addr16[2], u), 2028 ao.addr16[3], an->addr16[3], u), 2029 ao.addr16[4], an->addr16[4], u), 2030 ao.addr16[5], an->addr16[5], u), 2031 ao.addr16[6], an->addr16[6], u), 2032 ao.addr16[7], an->addr16[7], u), 2033 po, pn, u); 2034 break; 2035 #endif /* INET6 */ 2036 } 2037 } 2038 2039 2040 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2041 void 2042 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2043 { 2044 u_int32_t ao; 2045 2046 memcpy(&ao, a, sizeof(ao)); 2047 memcpy(a, &an, sizeof(u_int32_t)); 2048 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2049 ao % 65536, an % 65536, u); 2050 } 2051 2052 #ifdef INET6 2053 static void 2054 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2055 { 2056 struct pf_addr ao; 2057 2058 PF_ACPY(&ao, a, AF_INET6); 2059 PF_ACPY(a, an, AF_INET6); 2060 2061 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2062 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2063 pf_cksum_fixup(pf_cksum_fixup(*c, 2064 ao.addr16[0], an->addr16[0], u), 2065 ao.addr16[1], an->addr16[1], u), 2066 ao.addr16[2], an->addr16[2], u), 2067 ao.addr16[3], an->addr16[3], u), 2068 ao.addr16[4], an->addr16[4], u), 2069 ao.addr16[5], an->addr16[5], u), 2070 ao.addr16[6], an->addr16[6], u), 2071 ao.addr16[7], an->addr16[7], u); 2072 } 2073 #endif /* INET6 */ 2074 2075 static void 2076 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2077 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2078 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2079 { 2080 struct pf_addr oia, ooa; 2081 2082 PF_ACPY(&oia, ia, af); 2083 if (oa) 2084 PF_ACPY(&ooa, oa, af); 2085 2086 /* Change inner protocol port, fix inner protocol checksum. */ 2087 if (ip != NULL) { 2088 u_int16_t oip = *ip; 2089 u_int32_t opc; 2090 2091 if (pc != NULL) 2092 opc = *pc; 2093 *ip = np; 2094 if (pc != NULL) 2095 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2096 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2097 if (pc != NULL) 2098 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2099 } 2100 /* Change inner ip address, fix inner ip and icmp checksums. */ 2101 PF_ACPY(ia, na, af); 2102 switch (af) { 2103 #ifdef INET 2104 case AF_INET: { 2105 u_int32_t oh2c = *h2c; 2106 2107 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2108 oia.addr16[0], ia->addr16[0], 0), 2109 oia.addr16[1], ia->addr16[1], 0); 2110 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2111 oia.addr16[0], ia->addr16[0], 0), 2112 oia.addr16[1], ia->addr16[1], 0); 2113 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2114 break; 2115 } 2116 #endif /* INET */ 2117 #ifdef INET6 2118 case AF_INET6: 2119 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2120 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2121 pf_cksum_fixup(pf_cksum_fixup(*ic, 2122 oia.addr16[0], ia->addr16[0], u), 2123 oia.addr16[1], ia->addr16[1], u), 2124 oia.addr16[2], ia->addr16[2], u), 2125 oia.addr16[3], ia->addr16[3], u), 2126 oia.addr16[4], ia->addr16[4], u), 2127 oia.addr16[5], ia->addr16[5], u), 2128 oia.addr16[6], ia->addr16[6], u), 2129 oia.addr16[7], ia->addr16[7], u); 2130 break; 2131 #endif /* INET6 */ 2132 } 2133 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2134 if (oa) { 2135 PF_ACPY(oa, na, af); 2136 switch (af) { 2137 #ifdef INET 2138 case AF_INET: 2139 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2140 ooa.addr16[0], oa->addr16[0], 0), 2141 ooa.addr16[1], oa->addr16[1], 0); 2142 break; 2143 #endif /* INET */ 2144 #ifdef INET6 2145 case AF_INET6: 2146 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2147 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2148 pf_cksum_fixup(pf_cksum_fixup(*ic, 2149 ooa.addr16[0], oa->addr16[0], u), 2150 ooa.addr16[1], oa->addr16[1], u), 2151 ooa.addr16[2], oa->addr16[2], u), 2152 ooa.addr16[3], oa->addr16[3], u), 2153 ooa.addr16[4], oa->addr16[4], u), 2154 ooa.addr16[5], oa->addr16[5], u), 2155 ooa.addr16[6], oa->addr16[6], u), 2156 ooa.addr16[7], oa->addr16[7], u); 2157 break; 2158 #endif /* INET6 */ 2159 } 2160 } 2161 } 2162 2163 2164 /* 2165 * Need to modulate the sequence numbers in the TCP SACK option 2166 * (credits to Krzysztof Pfaff for report and patch) 2167 */ 2168 static int 2169 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2170 struct tcphdr *th, struct pf_state_peer *dst) 2171 { 2172 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2173 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2174 int copyback = 0, i, olen; 2175 struct sackblk sack; 2176 2177 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2178 if (hlen < TCPOLEN_SACKLEN || 2179 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2180 return 0; 2181 2182 while (hlen >= TCPOLEN_SACKLEN) { 2183 olen = opt[1]; 2184 switch (*opt) { 2185 case TCPOPT_EOL: /* FALLTHROUGH */ 2186 case TCPOPT_NOP: 2187 opt++; 2188 hlen--; 2189 break; 2190 case TCPOPT_SACK: 2191 if (olen > hlen) 2192 olen = hlen; 2193 if (olen >= TCPOLEN_SACKLEN) { 2194 for (i = 2; i + TCPOLEN_SACK <= olen; 2195 i += TCPOLEN_SACK) { 2196 memcpy(&sack, &opt[i], sizeof(sack)); 2197 pf_change_a(&sack.start, &th->th_sum, 2198 htonl(ntohl(sack.start) - 2199 dst->seqdiff), 0); 2200 pf_change_a(&sack.end, &th->th_sum, 2201 htonl(ntohl(sack.end) - 2202 dst->seqdiff), 0); 2203 memcpy(&opt[i], &sack, sizeof(sack)); 2204 } 2205 copyback = 1; 2206 } 2207 /* FALLTHROUGH */ 2208 default: 2209 if (olen < 2) 2210 olen = 2; 2211 hlen -= olen; 2212 opt += olen; 2213 } 2214 } 2215 2216 if (copyback) 2217 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2218 return (copyback); 2219 } 2220 2221 static void 2222 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2223 const struct pf_addr *saddr, const struct pf_addr *daddr, 2224 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2225 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2226 u_int16_t rtag, struct ifnet *ifp) 2227 { 2228 struct pf_send_entry *pfse; 2229 struct mbuf *m; 2230 int len, tlen; 2231 #ifdef INET 2232 struct ip *h = NULL; 2233 #endif /* INET */ 2234 #ifdef INET6 2235 struct ip6_hdr *h6 = NULL; 2236 #endif /* INET6 */ 2237 struct tcphdr *th; 2238 char *opt; 2239 struct pf_mtag *pf_mtag; 2240 2241 len = 0; 2242 th = NULL; 2243 2244 /* maximum segment size tcp option */ 2245 tlen = sizeof(struct tcphdr); 2246 if (mss) 2247 tlen += 4; 2248 2249 switch (af) { 2250 #ifdef INET 2251 case AF_INET: 2252 len = sizeof(struct ip) + tlen; 2253 break; 2254 #endif /* INET */ 2255 #ifdef INET6 2256 case AF_INET6: 2257 len = sizeof(struct ip6_hdr) + tlen; 2258 break; 2259 #endif /* INET6 */ 2260 default: 2261 panic("%s: unsupported af %d", __func__, af); 2262 } 2263 2264 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2265 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2266 if (pfse == NULL) 2267 return; 2268 m = m_gethdr(M_NOWAIT, MT_DATA); 2269 if (m == NULL) { 2270 free(pfse, M_PFTEMP); 2271 return; 2272 } 2273 #ifdef MAC 2274 mac_netinet_firewall_send(m); 2275 #endif 2276 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2277 free(pfse, M_PFTEMP); 2278 m_freem(m); 2279 return; 2280 } 2281 if (tag) 2282 m->m_flags |= M_SKIP_FIREWALL; 2283 pf_mtag->tag = rtag; 2284 2285 if (r != NULL && r->rtableid >= 0) 2286 M_SETFIB(m, r->rtableid); 2287 2288 #ifdef ALTQ 2289 if (r != NULL && r->qid) { 2290 pf_mtag->qid = r->qid; 2291 2292 /* add hints for ecn */ 2293 pf_mtag->hdr = mtod(m, struct ip *); 2294 } 2295 #endif /* ALTQ */ 2296 m->m_data += max_linkhdr; 2297 m->m_pkthdr.len = m->m_len = len; 2298 m->m_pkthdr.rcvif = NULL; 2299 bzero(m->m_data, len); 2300 switch (af) { 2301 #ifdef INET 2302 case AF_INET: 2303 h = mtod(m, struct ip *); 2304 2305 /* IP header fields included in the TCP checksum */ 2306 h->ip_p = IPPROTO_TCP; 2307 h->ip_len = htons(tlen); 2308 h->ip_src.s_addr = saddr->v4.s_addr; 2309 h->ip_dst.s_addr = daddr->v4.s_addr; 2310 2311 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2312 break; 2313 #endif /* INET */ 2314 #ifdef INET6 2315 case AF_INET6: 2316 h6 = mtod(m, struct ip6_hdr *); 2317 2318 /* IP header fields included in the TCP checksum */ 2319 h6->ip6_nxt = IPPROTO_TCP; 2320 h6->ip6_plen = htons(tlen); 2321 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2322 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2323 2324 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2325 break; 2326 #endif /* INET6 */ 2327 } 2328 2329 /* TCP header */ 2330 th->th_sport = sport; 2331 th->th_dport = dport; 2332 th->th_seq = htonl(seq); 2333 th->th_ack = htonl(ack); 2334 th->th_off = tlen >> 2; 2335 th->th_flags = flags; 2336 th->th_win = htons(win); 2337 2338 if (mss) { 2339 opt = (char *)(th + 1); 2340 opt[0] = TCPOPT_MAXSEG; 2341 opt[1] = 4; 2342 HTONS(mss); 2343 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2344 } 2345 2346 switch (af) { 2347 #ifdef INET 2348 case AF_INET: 2349 /* TCP checksum */ 2350 th->th_sum = in_cksum(m, len); 2351 2352 /* Finish the IP header */ 2353 h->ip_v = 4; 2354 h->ip_hl = sizeof(*h) >> 2; 2355 h->ip_tos = IPTOS_LOWDELAY; 2356 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2357 h->ip_len = htons(len); 2358 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2359 h->ip_sum = 0; 2360 2361 pfse->pfse_type = PFSE_IP; 2362 break; 2363 #endif /* INET */ 2364 #ifdef INET6 2365 case AF_INET6: 2366 /* TCP checksum */ 2367 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2368 sizeof(struct ip6_hdr), tlen); 2369 2370 h6->ip6_vfc |= IPV6_VERSION; 2371 h6->ip6_hlim = IPV6_DEFHLIM; 2372 2373 pfse->pfse_type = PFSE_IP6; 2374 break; 2375 #endif /* INET6 */ 2376 } 2377 pfse->pfse_m = m; 2378 pf_send(pfse); 2379 } 2380 2381 static void 2382 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2383 struct pf_rule *r) 2384 { 2385 struct pf_send_entry *pfse; 2386 struct mbuf *m0; 2387 struct pf_mtag *pf_mtag; 2388 2389 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2390 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2391 if (pfse == NULL) 2392 return; 2393 2394 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2395 free(pfse, M_PFTEMP); 2396 return; 2397 } 2398 2399 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2400 free(pfse, M_PFTEMP); 2401 return; 2402 } 2403 /* XXX: revisit */ 2404 m0->m_flags |= M_SKIP_FIREWALL; 2405 2406 if (r->rtableid >= 0) 2407 M_SETFIB(m0, r->rtableid); 2408 2409 #ifdef ALTQ 2410 if (r->qid) { 2411 pf_mtag->qid = r->qid; 2412 /* add hints for ecn */ 2413 pf_mtag->hdr = mtod(m0, struct ip *); 2414 } 2415 #endif /* ALTQ */ 2416 2417 switch (af) { 2418 #ifdef INET 2419 case AF_INET: 2420 pfse->pfse_type = PFSE_ICMP; 2421 break; 2422 #endif /* INET */ 2423 #ifdef INET6 2424 case AF_INET6: 2425 pfse->pfse_type = PFSE_ICMP6; 2426 break; 2427 #endif /* INET6 */ 2428 } 2429 pfse->pfse_m = m0; 2430 pfse->icmpopts.type = type; 2431 pfse->icmpopts.code = code; 2432 pf_send(pfse); 2433 } 2434 2435 /* 2436 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2437 * If n is 0, they match if they are equal. If n is != 0, they match if they 2438 * are different. 2439 */ 2440 int 2441 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2442 struct pf_addr *b, sa_family_t af) 2443 { 2444 int match = 0; 2445 2446 switch (af) { 2447 #ifdef INET 2448 case AF_INET: 2449 if ((a->addr32[0] & m->addr32[0]) == 2450 (b->addr32[0] & m->addr32[0])) 2451 match++; 2452 break; 2453 #endif /* INET */ 2454 #ifdef INET6 2455 case AF_INET6: 2456 if (((a->addr32[0] & m->addr32[0]) == 2457 (b->addr32[0] & m->addr32[0])) && 2458 ((a->addr32[1] & m->addr32[1]) == 2459 (b->addr32[1] & m->addr32[1])) && 2460 ((a->addr32[2] & m->addr32[2]) == 2461 (b->addr32[2] & m->addr32[2])) && 2462 ((a->addr32[3] & m->addr32[3]) == 2463 (b->addr32[3] & m->addr32[3]))) 2464 match++; 2465 break; 2466 #endif /* INET6 */ 2467 } 2468 if (match) { 2469 if (n) 2470 return (0); 2471 else 2472 return (1); 2473 } else { 2474 if (n) 2475 return (1); 2476 else 2477 return (0); 2478 } 2479 } 2480 2481 /* 2482 * Return 1 if b <= a <= e, otherwise return 0. 2483 */ 2484 int 2485 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2486 struct pf_addr *a, sa_family_t af) 2487 { 2488 switch (af) { 2489 #ifdef INET 2490 case AF_INET: 2491 if ((a->addr32[0] < b->addr32[0]) || 2492 (a->addr32[0] > e->addr32[0])) 2493 return (0); 2494 break; 2495 #endif /* INET */ 2496 #ifdef INET6 2497 case AF_INET6: { 2498 int i; 2499 2500 /* check a >= b */ 2501 for (i = 0; i < 4; ++i) 2502 if (a->addr32[i] > b->addr32[i]) 2503 break; 2504 else if (a->addr32[i] < b->addr32[i]) 2505 return (0); 2506 /* check a <= e */ 2507 for (i = 0; i < 4; ++i) 2508 if (a->addr32[i] < e->addr32[i]) 2509 break; 2510 else if (a->addr32[i] > e->addr32[i]) 2511 return (0); 2512 break; 2513 } 2514 #endif /* INET6 */ 2515 } 2516 return (1); 2517 } 2518 2519 static int 2520 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2521 { 2522 switch (op) { 2523 case PF_OP_IRG: 2524 return ((p > a1) && (p < a2)); 2525 case PF_OP_XRG: 2526 return ((p < a1) || (p > a2)); 2527 case PF_OP_RRG: 2528 return ((p >= a1) && (p <= a2)); 2529 case PF_OP_EQ: 2530 return (p == a1); 2531 case PF_OP_NE: 2532 return (p != a1); 2533 case PF_OP_LT: 2534 return (p < a1); 2535 case PF_OP_LE: 2536 return (p <= a1); 2537 case PF_OP_GT: 2538 return (p > a1); 2539 case PF_OP_GE: 2540 return (p >= a1); 2541 } 2542 return (0); /* never reached */ 2543 } 2544 2545 int 2546 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2547 { 2548 NTOHS(a1); 2549 NTOHS(a2); 2550 NTOHS(p); 2551 return (pf_match(op, a1, a2, p)); 2552 } 2553 2554 static int 2555 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2556 { 2557 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2558 return (0); 2559 return (pf_match(op, a1, a2, u)); 2560 } 2561 2562 static int 2563 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2564 { 2565 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2566 return (0); 2567 return (pf_match(op, a1, a2, g)); 2568 } 2569 2570 int 2571 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2572 { 2573 if (*tag == -1) 2574 *tag = mtag; 2575 2576 return ((!r->match_tag_not && r->match_tag == *tag) || 2577 (r->match_tag_not && r->match_tag != *tag)); 2578 } 2579 2580 int 2581 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2582 { 2583 2584 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2585 2586 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2587 return (ENOMEM); 2588 2589 pd->pf_mtag->tag = tag; 2590 2591 return (0); 2592 } 2593 2594 #define PF_ANCHOR_STACKSIZE 32 2595 struct pf_anchor_stackframe { 2596 struct pf_ruleset *rs; 2597 struct pf_rule *r; /* XXX: + match bit */ 2598 struct pf_anchor *child; 2599 }; 2600 2601 /* 2602 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2603 */ 2604 #define PF_ANCHORSTACK_MATCH 0x00000001 2605 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2606 2607 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2608 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2609 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2610 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2611 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2612 } while (0) 2613 2614 void 2615 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2616 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2617 int *match) 2618 { 2619 struct pf_anchor_stackframe *f; 2620 2621 PF_RULES_RASSERT(); 2622 2623 if (match) 2624 *match = 0; 2625 if (*depth >= PF_ANCHOR_STACKSIZE) { 2626 printf("%s: anchor stack overflow on %s\n", 2627 __func__, (*r)->anchor->name); 2628 *r = TAILQ_NEXT(*r, entries); 2629 return; 2630 } else if (*depth == 0 && a != NULL) 2631 *a = *r; 2632 f = stack + (*depth)++; 2633 f->rs = *rs; 2634 f->r = *r; 2635 if ((*r)->anchor_wildcard) { 2636 struct pf_anchor_node *parent = &(*r)->anchor->children; 2637 2638 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2639 *r = NULL; 2640 return; 2641 } 2642 *rs = &f->child->ruleset; 2643 } else { 2644 f->child = NULL; 2645 *rs = &(*r)->anchor->ruleset; 2646 } 2647 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2648 } 2649 2650 int 2651 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2652 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2653 int *match) 2654 { 2655 struct pf_anchor_stackframe *f; 2656 struct pf_rule *fr; 2657 int quick = 0; 2658 2659 PF_RULES_RASSERT(); 2660 2661 do { 2662 if (*depth <= 0) 2663 break; 2664 f = stack + *depth - 1; 2665 fr = PF_ANCHOR_RULE(f); 2666 if (f->child != NULL) { 2667 struct pf_anchor_node *parent; 2668 2669 /* 2670 * This block traverses through 2671 * a wildcard anchor. 2672 */ 2673 parent = &fr->anchor->children; 2674 if (match != NULL && *match) { 2675 /* 2676 * If any of "*" matched, then 2677 * "foo/ *" matched, mark frame 2678 * appropriately. 2679 */ 2680 PF_ANCHOR_SET_MATCH(f); 2681 *match = 0; 2682 } 2683 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2684 if (f->child != NULL) { 2685 *rs = &f->child->ruleset; 2686 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2687 if (*r == NULL) 2688 continue; 2689 else 2690 break; 2691 } 2692 } 2693 (*depth)--; 2694 if (*depth == 0 && a != NULL) 2695 *a = NULL; 2696 *rs = f->rs; 2697 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2698 quick = fr->quick; 2699 *r = TAILQ_NEXT(fr, entries); 2700 } while (*r == NULL); 2701 2702 return (quick); 2703 } 2704 2705 #ifdef INET6 2706 void 2707 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2708 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2709 { 2710 switch (af) { 2711 #ifdef INET 2712 case AF_INET: 2713 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2714 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2715 break; 2716 #endif /* INET */ 2717 case AF_INET6: 2718 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2719 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2720 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2721 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2722 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2723 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2724 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2725 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2726 break; 2727 } 2728 } 2729 2730 void 2731 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2732 { 2733 switch (af) { 2734 #ifdef INET 2735 case AF_INET: 2736 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2737 break; 2738 #endif /* INET */ 2739 case AF_INET6: 2740 if (addr->addr32[3] == 0xffffffff) { 2741 addr->addr32[3] = 0; 2742 if (addr->addr32[2] == 0xffffffff) { 2743 addr->addr32[2] = 0; 2744 if (addr->addr32[1] == 0xffffffff) { 2745 addr->addr32[1] = 0; 2746 addr->addr32[0] = 2747 htonl(ntohl(addr->addr32[0]) + 1); 2748 } else 2749 addr->addr32[1] = 2750 htonl(ntohl(addr->addr32[1]) + 1); 2751 } else 2752 addr->addr32[2] = 2753 htonl(ntohl(addr->addr32[2]) + 1); 2754 } else 2755 addr->addr32[3] = 2756 htonl(ntohl(addr->addr32[3]) + 1); 2757 break; 2758 } 2759 } 2760 #endif /* INET6 */ 2761 2762 int 2763 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2764 { 2765 struct pf_addr *saddr, *daddr; 2766 u_int16_t sport, dport; 2767 struct inpcbinfo *pi; 2768 struct inpcb *inp; 2769 2770 pd->lookup.uid = UID_MAX; 2771 pd->lookup.gid = GID_MAX; 2772 2773 switch (pd->proto) { 2774 case IPPROTO_TCP: 2775 if (pd->hdr.tcp == NULL) 2776 return (-1); 2777 sport = pd->hdr.tcp->th_sport; 2778 dport = pd->hdr.tcp->th_dport; 2779 pi = &V_tcbinfo; 2780 break; 2781 case IPPROTO_UDP: 2782 if (pd->hdr.udp == NULL) 2783 return (-1); 2784 sport = pd->hdr.udp->uh_sport; 2785 dport = pd->hdr.udp->uh_dport; 2786 pi = &V_udbinfo; 2787 break; 2788 default: 2789 return (-1); 2790 } 2791 if (direction == PF_IN) { 2792 saddr = pd->src; 2793 daddr = pd->dst; 2794 } else { 2795 u_int16_t p; 2796 2797 p = sport; 2798 sport = dport; 2799 dport = p; 2800 saddr = pd->dst; 2801 daddr = pd->src; 2802 } 2803 switch (pd->af) { 2804 #ifdef INET 2805 case AF_INET: 2806 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2807 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2808 if (inp == NULL) { 2809 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2810 daddr->v4, dport, INPLOOKUP_WILDCARD | 2811 INPLOOKUP_RLOCKPCB, NULL, m); 2812 if (inp == NULL) 2813 return (-1); 2814 } 2815 break; 2816 #endif /* INET */ 2817 #ifdef INET6 2818 case AF_INET6: 2819 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2820 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2821 if (inp == NULL) { 2822 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2823 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2824 INPLOOKUP_RLOCKPCB, NULL, m); 2825 if (inp == NULL) 2826 return (-1); 2827 } 2828 break; 2829 #endif /* INET6 */ 2830 2831 default: 2832 return (-1); 2833 } 2834 INP_RLOCK_ASSERT(inp); 2835 pd->lookup.uid = inp->inp_cred->cr_uid; 2836 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2837 INP_RUNLOCK(inp); 2838 2839 return (1); 2840 } 2841 2842 static u_int8_t 2843 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2844 { 2845 int hlen; 2846 u_int8_t hdr[60]; 2847 u_int8_t *opt, optlen; 2848 u_int8_t wscale = 0; 2849 2850 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2851 if (hlen <= sizeof(struct tcphdr)) 2852 return (0); 2853 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2854 return (0); 2855 opt = hdr + sizeof(struct tcphdr); 2856 hlen -= sizeof(struct tcphdr); 2857 while (hlen >= 3) { 2858 switch (*opt) { 2859 case TCPOPT_EOL: 2860 case TCPOPT_NOP: 2861 ++opt; 2862 --hlen; 2863 break; 2864 case TCPOPT_WINDOW: 2865 wscale = opt[2]; 2866 if (wscale > TCP_MAX_WINSHIFT) 2867 wscale = TCP_MAX_WINSHIFT; 2868 wscale |= PF_WSCALE_FLAG; 2869 /* FALLTHROUGH */ 2870 default: 2871 optlen = opt[1]; 2872 if (optlen < 2) 2873 optlen = 2; 2874 hlen -= optlen; 2875 opt += optlen; 2876 break; 2877 } 2878 } 2879 return (wscale); 2880 } 2881 2882 static u_int16_t 2883 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2884 { 2885 int hlen; 2886 u_int8_t hdr[60]; 2887 u_int8_t *opt, optlen; 2888 u_int16_t mss = V_tcp_mssdflt; 2889 2890 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2891 if (hlen <= sizeof(struct tcphdr)) 2892 return (0); 2893 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2894 return (0); 2895 opt = hdr + sizeof(struct tcphdr); 2896 hlen -= sizeof(struct tcphdr); 2897 while (hlen >= TCPOLEN_MAXSEG) { 2898 switch (*opt) { 2899 case TCPOPT_EOL: 2900 case TCPOPT_NOP: 2901 ++opt; 2902 --hlen; 2903 break; 2904 case TCPOPT_MAXSEG: 2905 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2906 NTOHS(mss); 2907 /* FALLTHROUGH */ 2908 default: 2909 optlen = opt[1]; 2910 if (optlen < 2) 2911 optlen = 2; 2912 hlen -= optlen; 2913 opt += optlen; 2914 break; 2915 } 2916 } 2917 return (mss); 2918 } 2919 2920 static u_int16_t 2921 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2922 { 2923 #ifdef INET 2924 struct sockaddr_in *dst; 2925 struct route ro; 2926 #endif /* INET */ 2927 #ifdef INET6 2928 struct sockaddr_in6 *dst6; 2929 struct route_in6 ro6; 2930 #endif /* INET6 */ 2931 struct rtentry *rt = NULL; 2932 int hlen = 0; 2933 u_int16_t mss = V_tcp_mssdflt; 2934 2935 switch (af) { 2936 #ifdef INET 2937 case AF_INET: 2938 hlen = sizeof(struct ip); 2939 bzero(&ro, sizeof(ro)); 2940 dst = (struct sockaddr_in *)&ro.ro_dst; 2941 dst->sin_family = AF_INET; 2942 dst->sin_len = sizeof(*dst); 2943 dst->sin_addr = addr->v4; 2944 in_rtalloc_ign(&ro, 0, rtableid); 2945 rt = ro.ro_rt; 2946 break; 2947 #endif /* INET */ 2948 #ifdef INET6 2949 case AF_INET6: 2950 hlen = sizeof(struct ip6_hdr); 2951 bzero(&ro6, sizeof(ro6)); 2952 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2953 dst6->sin6_family = AF_INET6; 2954 dst6->sin6_len = sizeof(*dst6); 2955 dst6->sin6_addr = addr->v6; 2956 in6_rtalloc_ign(&ro6, 0, rtableid); 2957 rt = ro6.ro_rt; 2958 break; 2959 #endif /* INET6 */ 2960 } 2961 2962 if (rt && rt->rt_ifp) { 2963 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2964 mss = max(V_tcp_mssdflt, mss); 2965 RTFREE(rt); 2966 } 2967 mss = min(mss, offer); 2968 mss = max(mss, 64); /* sanity - at least max opt space */ 2969 return (mss); 2970 } 2971 2972 static u_int32_t 2973 pf_tcp_iss(struct pf_pdesc *pd) 2974 { 2975 MD5_CTX ctx; 2976 u_int32_t digest[4]; 2977 2978 if (V_pf_tcp_secret_init == 0) { 2979 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2980 MD5Init(&V_pf_tcp_secret_ctx); 2981 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2982 sizeof(V_pf_tcp_secret)); 2983 V_pf_tcp_secret_init = 1; 2984 } 2985 2986 ctx = V_pf_tcp_secret_ctx; 2987 2988 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2989 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2990 if (pd->af == AF_INET6) { 2991 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2992 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2993 } else { 2994 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2995 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2996 } 2997 MD5Final((u_char *)digest, &ctx); 2998 V_pf_tcp_iss_off += 4096; 2999 #define ISN_RANDOM_INCREMENT (4096 - 1) 3000 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3001 V_pf_tcp_iss_off); 3002 #undef ISN_RANDOM_INCREMENT 3003 } 3004 3005 static int 3006 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3007 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3008 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3009 { 3010 struct pf_rule *nr = NULL; 3011 struct pf_addr * const saddr = pd->src; 3012 struct pf_addr * const daddr = pd->dst; 3013 sa_family_t af = pd->af; 3014 struct pf_rule *r, *a = NULL; 3015 struct pf_ruleset *ruleset = NULL; 3016 struct pf_src_node *nsn = NULL; 3017 struct tcphdr *th = pd->hdr.tcp; 3018 struct pf_state_key *sk = NULL, *nk = NULL; 3019 u_short reason; 3020 int rewrite = 0, hdrlen = 0; 3021 int tag = -1, rtableid = -1; 3022 int asd = 0; 3023 int match = 0; 3024 int state_icmp = 0; 3025 u_int16_t sport = 0, dport = 0; 3026 u_int16_t bproto_sum = 0, bip_sum = 0; 3027 u_int8_t icmptype = 0, icmpcode = 0; 3028 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3029 3030 PF_RULES_RASSERT(); 3031 3032 if (inp != NULL) { 3033 INP_LOCK_ASSERT(inp); 3034 pd->lookup.uid = inp->inp_cred->cr_uid; 3035 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3036 pd->lookup.done = 1; 3037 } 3038 3039 switch (pd->proto) { 3040 case IPPROTO_TCP: 3041 sport = th->th_sport; 3042 dport = th->th_dport; 3043 hdrlen = sizeof(*th); 3044 break; 3045 case IPPROTO_UDP: 3046 sport = pd->hdr.udp->uh_sport; 3047 dport = pd->hdr.udp->uh_dport; 3048 hdrlen = sizeof(*pd->hdr.udp); 3049 break; 3050 #ifdef INET 3051 case IPPROTO_ICMP: 3052 if (pd->af != AF_INET) 3053 break; 3054 sport = dport = pd->hdr.icmp->icmp_id; 3055 hdrlen = sizeof(*pd->hdr.icmp); 3056 icmptype = pd->hdr.icmp->icmp_type; 3057 icmpcode = pd->hdr.icmp->icmp_code; 3058 3059 if (icmptype == ICMP_UNREACH || 3060 icmptype == ICMP_SOURCEQUENCH || 3061 icmptype == ICMP_REDIRECT || 3062 icmptype == ICMP_TIMXCEED || 3063 icmptype == ICMP_PARAMPROB) 3064 state_icmp++; 3065 break; 3066 #endif /* INET */ 3067 #ifdef INET6 3068 case IPPROTO_ICMPV6: 3069 if (af != AF_INET6) 3070 break; 3071 sport = dport = pd->hdr.icmp6->icmp6_id; 3072 hdrlen = sizeof(*pd->hdr.icmp6); 3073 icmptype = pd->hdr.icmp6->icmp6_type; 3074 icmpcode = pd->hdr.icmp6->icmp6_code; 3075 3076 if (icmptype == ICMP6_DST_UNREACH || 3077 icmptype == ICMP6_PACKET_TOO_BIG || 3078 icmptype == ICMP6_TIME_EXCEEDED || 3079 icmptype == ICMP6_PARAM_PROB) 3080 state_icmp++; 3081 break; 3082 #endif /* INET6 */ 3083 default: 3084 sport = dport = hdrlen = 0; 3085 break; 3086 } 3087 3088 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3089 3090 /* check packet for BINAT/NAT/RDR */ 3091 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3092 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3093 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3094 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3095 3096 if (pd->ip_sum) 3097 bip_sum = *pd->ip_sum; 3098 3099 switch (pd->proto) { 3100 case IPPROTO_TCP: 3101 bproto_sum = th->th_sum; 3102 pd->proto_sum = &th->th_sum; 3103 3104 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3105 nk->port[pd->sidx] != sport) { 3106 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3107 &th->th_sum, &nk->addr[pd->sidx], 3108 nk->port[pd->sidx], 0, af); 3109 pd->sport = &th->th_sport; 3110 sport = th->th_sport; 3111 } 3112 3113 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3114 nk->port[pd->didx] != dport) { 3115 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3116 &th->th_sum, &nk->addr[pd->didx], 3117 nk->port[pd->didx], 0, af); 3118 dport = th->th_dport; 3119 pd->dport = &th->th_dport; 3120 } 3121 rewrite++; 3122 break; 3123 case IPPROTO_UDP: 3124 bproto_sum = pd->hdr.udp->uh_sum; 3125 pd->proto_sum = &pd->hdr.udp->uh_sum; 3126 3127 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3128 nk->port[pd->sidx] != sport) { 3129 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3130 pd->ip_sum, &pd->hdr.udp->uh_sum, 3131 &nk->addr[pd->sidx], 3132 nk->port[pd->sidx], 1, af); 3133 sport = pd->hdr.udp->uh_sport; 3134 pd->sport = &pd->hdr.udp->uh_sport; 3135 } 3136 3137 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3138 nk->port[pd->didx] != dport) { 3139 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3140 pd->ip_sum, &pd->hdr.udp->uh_sum, 3141 &nk->addr[pd->didx], 3142 nk->port[pd->didx], 1, af); 3143 dport = pd->hdr.udp->uh_dport; 3144 pd->dport = &pd->hdr.udp->uh_dport; 3145 } 3146 rewrite++; 3147 break; 3148 #ifdef INET 3149 case IPPROTO_ICMP: 3150 nk->port[0] = nk->port[1]; 3151 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3152 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3153 nk->addr[pd->sidx].v4.s_addr, 0); 3154 3155 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3156 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3157 nk->addr[pd->didx].v4.s_addr, 0); 3158 3159 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3160 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3161 pd->hdr.icmp->icmp_cksum, sport, 3162 nk->port[1], 0); 3163 pd->hdr.icmp->icmp_id = nk->port[1]; 3164 pd->sport = &pd->hdr.icmp->icmp_id; 3165 } 3166 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3167 break; 3168 #endif /* INET */ 3169 #ifdef INET6 3170 case IPPROTO_ICMPV6: 3171 nk->port[0] = nk->port[1]; 3172 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3173 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3174 &nk->addr[pd->sidx], 0); 3175 3176 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3177 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3178 &nk->addr[pd->didx], 0); 3179 rewrite++; 3180 break; 3181 #endif /* INET */ 3182 default: 3183 switch (af) { 3184 #ifdef INET 3185 case AF_INET: 3186 if (PF_ANEQ(saddr, 3187 &nk->addr[pd->sidx], AF_INET)) 3188 pf_change_a(&saddr->v4.s_addr, 3189 pd->ip_sum, 3190 nk->addr[pd->sidx].v4.s_addr, 0); 3191 3192 if (PF_ANEQ(daddr, 3193 &nk->addr[pd->didx], AF_INET)) 3194 pf_change_a(&daddr->v4.s_addr, 3195 pd->ip_sum, 3196 nk->addr[pd->didx].v4.s_addr, 0); 3197 break; 3198 #endif /* INET */ 3199 #ifdef INET6 3200 case AF_INET6: 3201 if (PF_ANEQ(saddr, 3202 &nk->addr[pd->sidx], AF_INET6)) 3203 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3204 3205 if (PF_ANEQ(daddr, 3206 &nk->addr[pd->didx], AF_INET6)) 3207 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3208 break; 3209 #endif /* INET */ 3210 } 3211 break; 3212 } 3213 if (nr->natpass) 3214 r = NULL; 3215 pd->nat_rule = nr; 3216 } 3217 3218 while (r != NULL) { 3219 r->evaluations++; 3220 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3221 r = r->skip[PF_SKIP_IFP].ptr; 3222 else if (r->direction && r->direction != direction) 3223 r = r->skip[PF_SKIP_DIR].ptr; 3224 else if (r->af && r->af != af) 3225 r = r->skip[PF_SKIP_AF].ptr; 3226 else if (r->proto && r->proto != pd->proto) 3227 r = r->skip[PF_SKIP_PROTO].ptr; 3228 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3229 r->src.neg, kif, M_GETFIB(m))) 3230 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3231 /* tcp/udp only. port_op always 0 in other cases */ 3232 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3233 r->src.port[0], r->src.port[1], sport)) 3234 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3235 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3236 r->dst.neg, NULL, M_GETFIB(m))) 3237 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3238 /* tcp/udp only. port_op always 0 in other cases */ 3239 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3240 r->dst.port[0], r->dst.port[1], dport)) 3241 r = r->skip[PF_SKIP_DST_PORT].ptr; 3242 /* icmp only. type always 0 in other cases */ 3243 else if (r->type && r->type != icmptype + 1) 3244 r = TAILQ_NEXT(r, entries); 3245 /* icmp only. type always 0 in other cases */ 3246 else if (r->code && r->code != icmpcode + 1) 3247 r = TAILQ_NEXT(r, entries); 3248 else if (r->tos && !(r->tos == pd->tos)) 3249 r = TAILQ_NEXT(r, entries); 3250 else if (r->rule_flag & PFRULE_FRAGMENT) 3251 r = TAILQ_NEXT(r, entries); 3252 else if (pd->proto == IPPROTO_TCP && 3253 (r->flagset & th->th_flags) != r->flags) 3254 r = TAILQ_NEXT(r, entries); 3255 /* tcp/udp only. uid.op always 0 in other cases */ 3256 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3257 pf_socket_lookup(direction, pd, m), 1)) && 3258 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3259 pd->lookup.uid)) 3260 r = TAILQ_NEXT(r, entries); 3261 /* tcp/udp only. gid.op always 0 in other cases */ 3262 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3263 pf_socket_lookup(direction, pd, m), 1)) && 3264 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3265 pd->lookup.gid)) 3266 r = TAILQ_NEXT(r, entries); 3267 else if (r->prob && 3268 r->prob <= arc4random()) 3269 r = TAILQ_NEXT(r, entries); 3270 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3271 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3272 r = TAILQ_NEXT(r, entries); 3273 else if (r->os_fingerprint != PF_OSFP_ANY && 3274 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3275 pf_osfp_fingerprint(pd, m, off, th), 3276 r->os_fingerprint))) 3277 r = TAILQ_NEXT(r, entries); 3278 else { 3279 if (r->tag) 3280 tag = r->tag; 3281 if (r->rtableid >= 0) 3282 rtableid = r->rtableid; 3283 if (r->anchor == NULL) { 3284 match = 1; 3285 *rm = r; 3286 *am = a; 3287 *rsm = ruleset; 3288 if ((*rm)->quick) 3289 break; 3290 r = TAILQ_NEXT(r, entries); 3291 } else 3292 pf_step_into_anchor(anchor_stack, &asd, 3293 &ruleset, PF_RULESET_FILTER, &r, &a, 3294 &match); 3295 } 3296 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3297 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3298 break; 3299 } 3300 r = *rm; 3301 a = *am; 3302 ruleset = *rsm; 3303 3304 REASON_SET(&reason, PFRES_MATCH); 3305 3306 if (r->log || (nr != NULL && nr->log)) { 3307 if (rewrite) 3308 m_copyback(m, off, hdrlen, pd->hdr.any); 3309 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3310 ruleset, pd, 1); 3311 } 3312 3313 if ((r->action == PF_DROP) && 3314 ((r->rule_flag & PFRULE_RETURNRST) || 3315 (r->rule_flag & PFRULE_RETURNICMP) || 3316 (r->rule_flag & PFRULE_RETURN))) { 3317 /* undo NAT changes, if they have taken place */ 3318 if (nr != NULL) { 3319 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3320 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3321 if (pd->sport) 3322 *pd->sport = sk->port[pd->sidx]; 3323 if (pd->dport) 3324 *pd->dport = sk->port[pd->didx]; 3325 if (pd->proto_sum) 3326 *pd->proto_sum = bproto_sum; 3327 if (pd->ip_sum) 3328 *pd->ip_sum = bip_sum; 3329 m_copyback(m, off, hdrlen, pd->hdr.any); 3330 } 3331 if (pd->proto == IPPROTO_TCP && 3332 ((r->rule_flag & PFRULE_RETURNRST) || 3333 (r->rule_flag & PFRULE_RETURN)) && 3334 !(th->th_flags & TH_RST)) { 3335 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3336 int len = 0; 3337 #ifdef INET 3338 struct ip *h4; 3339 #endif 3340 #ifdef INET6 3341 struct ip6_hdr *h6; 3342 #endif 3343 3344 switch (af) { 3345 #ifdef INET 3346 case AF_INET: 3347 h4 = mtod(m, struct ip *); 3348 len = ntohs(h4->ip_len) - off; 3349 break; 3350 #endif 3351 #ifdef INET6 3352 case AF_INET6: 3353 h6 = mtod(m, struct ip6_hdr *); 3354 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3355 break; 3356 #endif 3357 } 3358 3359 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3360 REASON_SET(&reason, PFRES_PROTCKSUM); 3361 else { 3362 if (th->th_flags & TH_SYN) 3363 ack++; 3364 if (th->th_flags & TH_FIN) 3365 ack++; 3366 pf_send_tcp(m, r, af, pd->dst, 3367 pd->src, th->th_dport, th->th_sport, 3368 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3369 r->return_ttl, 1, 0, kif->pfik_ifp); 3370 } 3371 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3372 r->return_icmp) 3373 pf_send_icmp(m, r->return_icmp >> 8, 3374 r->return_icmp & 255, af, r); 3375 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3376 r->return_icmp6) 3377 pf_send_icmp(m, r->return_icmp6 >> 8, 3378 r->return_icmp6 & 255, af, r); 3379 } 3380 3381 if (r->action == PF_DROP) 3382 goto cleanup; 3383 3384 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3385 REASON_SET(&reason, PFRES_MEMORY); 3386 goto cleanup; 3387 } 3388 if (rtableid >= 0) 3389 M_SETFIB(m, rtableid); 3390 3391 if (!state_icmp && (r->keep_state || nr != NULL || 3392 (pd->flags & PFDESC_TCP_NORM))) { 3393 int action; 3394 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3395 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3396 hdrlen); 3397 if (action != PF_PASS) 3398 return (action); 3399 } else { 3400 if (sk != NULL) 3401 uma_zfree(V_pf_state_key_z, sk); 3402 if (nk != NULL) 3403 uma_zfree(V_pf_state_key_z, nk); 3404 } 3405 3406 /* copy back packet headers if we performed NAT operations */ 3407 if (rewrite) 3408 m_copyback(m, off, hdrlen, pd->hdr.any); 3409 3410 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3411 direction == PF_OUT && 3412 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3413 /* 3414 * We want the state created, but we dont 3415 * want to send this in case a partner 3416 * firewall has to know about it to allow 3417 * replies through it. 3418 */ 3419 return (PF_DEFER); 3420 3421 return (PF_PASS); 3422 3423 cleanup: 3424 if (sk != NULL) 3425 uma_zfree(V_pf_state_key_z, sk); 3426 if (nk != NULL) 3427 uma_zfree(V_pf_state_key_z, nk); 3428 return (PF_DROP); 3429 } 3430 3431 static int 3432 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3433 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3434 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3435 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3436 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3437 { 3438 struct pf_state *s = NULL; 3439 struct pf_src_node *sn = NULL; 3440 struct tcphdr *th = pd->hdr.tcp; 3441 u_int16_t mss = V_tcp_mssdflt; 3442 u_short reason; 3443 3444 /* check maximums */ 3445 if (r->max_states && 3446 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3447 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3448 REASON_SET(&reason, PFRES_MAXSTATES); 3449 return (PF_DROP); 3450 } 3451 /* src node for filter rule */ 3452 if ((r->rule_flag & PFRULE_SRCTRACK || 3453 r->rpool.opts & PF_POOL_STICKYADDR) && 3454 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3455 REASON_SET(&reason, PFRES_SRCLIMIT); 3456 goto csfailed; 3457 } 3458 /* src node for translation rule */ 3459 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3460 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3461 REASON_SET(&reason, PFRES_SRCLIMIT); 3462 goto csfailed; 3463 } 3464 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3465 if (s == NULL) { 3466 REASON_SET(&reason, PFRES_MEMORY); 3467 goto csfailed; 3468 } 3469 s->rule.ptr = r; 3470 s->nat_rule.ptr = nr; 3471 s->anchor.ptr = a; 3472 STATE_INC_COUNTERS(s); 3473 if (r->allow_opts) 3474 s->state_flags |= PFSTATE_ALLOWOPTS; 3475 if (r->rule_flag & PFRULE_STATESLOPPY) 3476 s->state_flags |= PFSTATE_SLOPPY; 3477 s->log = r->log & PF_LOG_ALL; 3478 s->sync_state = PFSYNC_S_NONE; 3479 if (nr != NULL) 3480 s->log |= nr->log & PF_LOG_ALL; 3481 switch (pd->proto) { 3482 case IPPROTO_TCP: 3483 s->src.seqlo = ntohl(th->th_seq); 3484 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3485 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3486 r->keep_state == PF_STATE_MODULATE) { 3487 /* Generate sequence number modulator */ 3488 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3489 0) 3490 s->src.seqdiff = 1; 3491 pf_change_a(&th->th_seq, &th->th_sum, 3492 htonl(s->src.seqlo + s->src.seqdiff), 0); 3493 *rewrite = 1; 3494 } else 3495 s->src.seqdiff = 0; 3496 if (th->th_flags & TH_SYN) { 3497 s->src.seqhi++; 3498 s->src.wscale = pf_get_wscale(m, off, 3499 th->th_off, pd->af); 3500 } 3501 s->src.max_win = MAX(ntohs(th->th_win), 1); 3502 if (s->src.wscale & PF_WSCALE_MASK) { 3503 /* Remove scale factor from initial window */ 3504 int win = s->src.max_win; 3505 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3506 s->src.max_win = (win - 1) >> 3507 (s->src.wscale & PF_WSCALE_MASK); 3508 } 3509 if (th->th_flags & TH_FIN) 3510 s->src.seqhi++; 3511 s->dst.seqhi = 1; 3512 s->dst.max_win = 1; 3513 s->src.state = TCPS_SYN_SENT; 3514 s->dst.state = TCPS_CLOSED; 3515 s->timeout = PFTM_TCP_FIRST_PACKET; 3516 break; 3517 case IPPROTO_UDP: 3518 s->src.state = PFUDPS_SINGLE; 3519 s->dst.state = PFUDPS_NO_TRAFFIC; 3520 s->timeout = PFTM_UDP_FIRST_PACKET; 3521 break; 3522 case IPPROTO_ICMP: 3523 #ifdef INET6 3524 case IPPROTO_ICMPV6: 3525 #endif 3526 s->timeout = PFTM_ICMP_FIRST_PACKET; 3527 break; 3528 default: 3529 s->src.state = PFOTHERS_SINGLE; 3530 s->dst.state = PFOTHERS_NO_TRAFFIC; 3531 s->timeout = PFTM_OTHER_FIRST_PACKET; 3532 } 3533 3534 if (r->rt && r->rt != PF_FASTROUTE) { 3535 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3536 REASON_SET(&reason, PFRES_MAPFAILED); 3537 pf_src_tree_remove_state(s); 3538 STATE_DEC_COUNTERS(s); 3539 uma_zfree(V_pf_state_z, s); 3540 goto csfailed; 3541 } 3542 s->rt_kif = r->rpool.cur->kif; 3543 } 3544 3545 s->creation = time_uptime; 3546 s->expire = time_uptime; 3547 3548 if (sn != NULL) 3549 s->src_node = sn; 3550 if (nsn != NULL) { 3551 /* XXX We only modify one side for now. */ 3552 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3553 s->nat_src_node = nsn; 3554 } 3555 if (pd->proto == IPPROTO_TCP) { 3556 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3557 off, pd, th, &s->src, &s->dst)) { 3558 REASON_SET(&reason, PFRES_MEMORY); 3559 pf_src_tree_remove_state(s); 3560 STATE_DEC_COUNTERS(s); 3561 uma_zfree(V_pf_state_z, s); 3562 return (PF_DROP); 3563 } 3564 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3565 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3566 &s->src, &s->dst, rewrite)) { 3567 /* This really shouldn't happen!!! */ 3568 DPFPRINTF(PF_DEBUG_URGENT, 3569 ("pf_normalize_tcp_stateful failed on first pkt")); 3570 pf_normalize_tcp_cleanup(s); 3571 pf_src_tree_remove_state(s); 3572 STATE_DEC_COUNTERS(s); 3573 uma_zfree(V_pf_state_z, s); 3574 return (PF_DROP); 3575 } 3576 } 3577 s->direction = pd->dir; 3578 3579 /* 3580 * sk/nk could already been setup by pf_get_translation(). 3581 */ 3582 if (nr == NULL) { 3583 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3584 __func__, nr, sk, nk)); 3585 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3586 if (sk == NULL) 3587 goto csfailed; 3588 nk = sk; 3589 } else 3590 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3591 __func__, nr, sk, nk)); 3592 3593 /* Swap sk/nk for PF_OUT. */ 3594 if (pf_state_insert(BOUND_IFACE(r, kif), 3595 (pd->dir == PF_IN) ? sk : nk, 3596 (pd->dir == PF_IN) ? nk : sk, s)) { 3597 if (pd->proto == IPPROTO_TCP) 3598 pf_normalize_tcp_cleanup(s); 3599 REASON_SET(&reason, PFRES_STATEINS); 3600 pf_src_tree_remove_state(s); 3601 STATE_DEC_COUNTERS(s); 3602 uma_zfree(V_pf_state_z, s); 3603 return (PF_DROP); 3604 } else 3605 *sm = s; 3606 3607 if (tag > 0) 3608 s->tag = tag; 3609 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3610 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3611 s->src.state = PF_TCPS_PROXY_SRC; 3612 /* undo NAT changes, if they have taken place */ 3613 if (nr != NULL) { 3614 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3615 if (pd->dir == PF_OUT) 3616 skt = s->key[PF_SK_STACK]; 3617 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3618 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3619 if (pd->sport) 3620 *pd->sport = skt->port[pd->sidx]; 3621 if (pd->dport) 3622 *pd->dport = skt->port[pd->didx]; 3623 if (pd->proto_sum) 3624 *pd->proto_sum = bproto_sum; 3625 if (pd->ip_sum) 3626 *pd->ip_sum = bip_sum; 3627 m_copyback(m, off, hdrlen, pd->hdr.any); 3628 } 3629 s->src.seqhi = htonl(arc4random()); 3630 /* Find mss option */ 3631 int rtid = M_GETFIB(m); 3632 mss = pf_get_mss(m, off, th->th_off, pd->af); 3633 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3634 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3635 s->src.mss = mss; 3636 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3637 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3638 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3639 REASON_SET(&reason, PFRES_SYNPROXY); 3640 return (PF_SYNPROXY_DROP); 3641 } 3642 3643 return (PF_PASS); 3644 3645 csfailed: 3646 if (sk != NULL) 3647 uma_zfree(V_pf_state_key_z, sk); 3648 if (nk != NULL) 3649 uma_zfree(V_pf_state_key_z, nk); 3650 3651 if (sn != NULL) { 3652 struct pf_srchash *sh; 3653 3654 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3655 PF_HASHROW_LOCK(sh); 3656 if (--sn->states == 0 && sn->expire == 0) { 3657 pf_unlink_src_node(sn); 3658 uma_zfree(V_pf_sources_z, sn); 3659 counter_u64_add( 3660 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3661 } 3662 PF_HASHROW_UNLOCK(sh); 3663 } 3664 3665 if (nsn != sn && nsn != NULL) { 3666 struct pf_srchash *sh; 3667 3668 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3669 PF_HASHROW_LOCK(sh); 3670 if (--nsn->states == 1 && nsn->expire == 0) { 3671 pf_unlink_src_node(nsn); 3672 uma_zfree(V_pf_sources_z, nsn); 3673 counter_u64_add( 3674 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3675 } 3676 PF_HASHROW_UNLOCK(sh); 3677 } 3678 3679 return (PF_DROP); 3680 } 3681 3682 static int 3683 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3684 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3685 struct pf_ruleset **rsm) 3686 { 3687 struct pf_rule *r, *a = NULL; 3688 struct pf_ruleset *ruleset = NULL; 3689 sa_family_t af = pd->af; 3690 u_short reason; 3691 int tag = -1; 3692 int asd = 0; 3693 int match = 0; 3694 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3695 3696 PF_RULES_RASSERT(); 3697 3698 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3699 while (r != NULL) { 3700 r->evaluations++; 3701 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3702 r = r->skip[PF_SKIP_IFP].ptr; 3703 else if (r->direction && r->direction != direction) 3704 r = r->skip[PF_SKIP_DIR].ptr; 3705 else if (r->af && r->af != af) 3706 r = r->skip[PF_SKIP_AF].ptr; 3707 else if (r->proto && r->proto != pd->proto) 3708 r = r->skip[PF_SKIP_PROTO].ptr; 3709 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3710 r->src.neg, kif, M_GETFIB(m))) 3711 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3712 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3713 r->dst.neg, NULL, M_GETFIB(m))) 3714 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3715 else if (r->tos && !(r->tos == pd->tos)) 3716 r = TAILQ_NEXT(r, entries); 3717 else if (r->os_fingerprint != PF_OSFP_ANY) 3718 r = TAILQ_NEXT(r, entries); 3719 else if (pd->proto == IPPROTO_UDP && 3720 (r->src.port_op || r->dst.port_op)) 3721 r = TAILQ_NEXT(r, entries); 3722 else if (pd->proto == IPPROTO_TCP && 3723 (r->src.port_op || r->dst.port_op || r->flagset)) 3724 r = TAILQ_NEXT(r, entries); 3725 else if ((pd->proto == IPPROTO_ICMP || 3726 pd->proto == IPPROTO_ICMPV6) && 3727 (r->type || r->code)) 3728 r = TAILQ_NEXT(r, entries); 3729 else if (r->prob && r->prob <= 3730 (arc4random() % (UINT_MAX - 1) + 1)) 3731 r = TAILQ_NEXT(r, entries); 3732 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3733 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3734 r = TAILQ_NEXT(r, entries); 3735 else { 3736 if (r->anchor == NULL) { 3737 match = 1; 3738 *rm = r; 3739 *am = a; 3740 *rsm = ruleset; 3741 if ((*rm)->quick) 3742 break; 3743 r = TAILQ_NEXT(r, entries); 3744 } else 3745 pf_step_into_anchor(anchor_stack, &asd, 3746 &ruleset, PF_RULESET_FILTER, &r, &a, 3747 &match); 3748 } 3749 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3750 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3751 break; 3752 } 3753 r = *rm; 3754 a = *am; 3755 ruleset = *rsm; 3756 3757 REASON_SET(&reason, PFRES_MATCH); 3758 3759 if (r->log) 3760 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3761 1); 3762 3763 if (r->action != PF_PASS) 3764 return (PF_DROP); 3765 3766 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3767 REASON_SET(&reason, PFRES_MEMORY); 3768 return (PF_DROP); 3769 } 3770 3771 return (PF_PASS); 3772 } 3773 3774 static int 3775 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3776 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3777 struct pf_pdesc *pd, u_short *reason, int *copyback) 3778 { 3779 struct tcphdr *th = pd->hdr.tcp; 3780 u_int16_t win = ntohs(th->th_win); 3781 u_int32_t ack, end, seq, orig_seq; 3782 u_int8_t sws, dws; 3783 int ackskew; 3784 3785 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3786 sws = src->wscale & PF_WSCALE_MASK; 3787 dws = dst->wscale & PF_WSCALE_MASK; 3788 } else 3789 sws = dws = 0; 3790 3791 /* 3792 * Sequence tracking algorithm from Guido van Rooij's paper: 3793 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3794 * tcp_filtering.ps 3795 */ 3796 3797 orig_seq = seq = ntohl(th->th_seq); 3798 if (src->seqlo == 0) { 3799 /* First packet from this end. Set its state */ 3800 3801 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3802 src->scrub == NULL) { 3803 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3804 REASON_SET(reason, PFRES_MEMORY); 3805 return (PF_DROP); 3806 } 3807 } 3808 3809 /* Deferred generation of sequence number modulator */ 3810 if (dst->seqdiff && !src->seqdiff) { 3811 /* use random iss for the TCP server */ 3812 while ((src->seqdiff = arc4random() - seq) == 0) 3813 ; 3814 ack = ntohl(th->th_ack) - dst->seqdiff; 3815 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3816 src->seqdiff), 0); 3817 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3818 *copyback = 1; 3819 } else { 3820 ack = ntohl(th->th_ack); 3821 } 3822 3823 end = seq + pd->p_len; 3824 if (th->th_flags & TH_SYN) { 3825 end++; 3826 if (dst->wscale & PF_WSCALE_FLAG) { 3827 src->wscale = pf_get_wscale(m, off, th->th_off, 3828 pd->af); 3829 if (src->wscale & PF_WSCALE_FLAG) { 3830 /* Remove scale factor from initial 3831 * window */ 3832 sws = src->wscale & PF_WSCALE_MASK; 3833 win = ((u_int32_t)win + (1 << sws) - 1) 3834 >> sws; 3835 dws = dst->wscale & PF_WSCALE_MASK; 3836 } else { 3837 /* fixup other window */ 3838 dst->max_win <<= dst->wscale & 3839 PF_WSCALE_MASK; 3840 /* in case of a retrans SYN|ACK */ 3841 dst->wscale = 0; 3842 } 3843 } 3844 } 3845 if (th->th_flags & TH_FIN) 3846 end++; 3847 3848 src->seqlo = seq; 3849 if (src->state < TCPS_SYN_SENT) 3850 src->state = TCPS_SYN_SENT; 3851 3852 /* 3853 * May need to slide the window (seqhi may have been set by 3854 * the crappy stack check or if we picked up the connection 3855 * after establishment) 3856 */ 3857 if (src->seqhi == 1 || 3858 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3859 src->seqhi = end + MAX(1, dst->max_win << dws); 3860 if (win > src->max_win) 3861 src->max_win = win; 3862 3863 } else { 3864 ack = ntohl(th->th_ack) - dst->seqdiff; 3865 if (src->seqdiff) { 3866 /* Modulate sequence numbers */ 3867 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3868 src->seqdiff), 0); 3869 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3870 *copyback = 1; 3871 } 3872 end = seq + pd->p_len; 3873 if (th->th_flags & TH_SYN) 3874 end++; 3875 if (th->th_flags & TH_FIN) 3876 end++; 3877 } 3878 3879 if ((th->th_flags & TH_ACK) == 0) { 3880 /* Let it pass through the ack skew check */ 3881 ack = dst->seqlo; 3882 } else if ((ack == 0 && 3883 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3884 /* broken tcp stacks do not set ack */ 3885 (dst->state < TCPS_SYN_SENT)) { 3886 /* 3887 * Many stacks (ours included) will set the ACK number in an 3888 * FIN|ACK if the SYN times out -- no sequence to ACK. 3889 */ 3890 ack = dst->seqlo; 3891 } 3892 3893 if (seq == end) { 3894 /* Ease sequencing restrictions on no data packets */ 3895 seq = src->seqlo; 3896 end = seq; 3897 } 3898 3899 ackskew = dst->seqlo - ack; 3900 3901 3902 /* 3903 * Need to demodulate the sequence numbers in any TCP SACK options 3904 * (Selective ACK). We could optionally validate the SACK values 3905 * against the current ACK window, either forwards or backwards, but 3906 * I'm not confident that SACK has been implemented properly 3907 * everywhere. It wouldn't surprise me if several stacks accidently 3908 * SACK too far backwards of previously ACKed data. There really aren't 3909 * any security implications of bad SACKing unless the target stack 3910 * doesn't validate the option length correctly. Someone trying to 3911 * spoof into a TCP connection won't bother blindly sending SACK 3912 * options anyway. 3913 */ 3914 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3915 if (pf_modulate_sack(m, off, pd, th, dst)) 3916 *copyback = 1; 3917 } 3918 3919 3920 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3921 if (SEQ_GEQ(src->seqhi, end) && 3922 /* Last octet inside other's window space */ 3923 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3924 /* Retrans: not more than one window back */ 3925 (ackskew >= -MAXACKWINDOW) && 3926 /* Acking not more than one reassembled fragment backwards */ 3927 (ackskew <= (MAXACKWINDOW << sws)) && 3928 /* Acking not more than one window forward */ 3929 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3930 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3931 (pd->flags & PFDESC_IP_REAS) == 0)) { 3932 /* Require an exact/+1 sequence match on resets when possible */ 3933 3934 if (dst->scrub || src->scrub) { 3935 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3936 *state, src, dst, copyback)) 3937 return (PF_DROP); 3938 } 3939 3940 /* update max window */ 3941 if (src->max_win < win) 3942 src->max_win = win; 3943 /* synchronize sequencing */ 3944 if (SEQ_GT(end, src->seqlo)) 3945 src->seqlo = end; 3946 /* slide the window of what the other end can send */ 3947 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3948 dst->seqhi = ack + MAX((win << sws), 1); 3949 3950 3951 /* update states */ 3952 if (th->th_flags & TH_SYN) 3953 if (src->state < TCPS_SYN_SENT) 3954 src->state = TCPS_SYN_SENT; 3955 if (th->th_flags & TH_FIN) 3956 if (src->state < TCPS_CLOSING) 3957 src->state = TCPS_CLOSING; 3958 if (th->th_flags & TH_ACK) { 3959 if (dst->state == TCPS_SYN_SENT) { 3960 dst->state = TCPS_ESTABLISHED; 3961 if (src->state == TCPS_ESTABLISHED && 3962 (*state)->src_node != NULL && 3963 pf_src_connlimit(state)) { 3964 REASON_SET(reason, PFRES_SRCLIMIT); 3965 return (PF_DROP); 3966 } 3967 } else if (dst->state == TCPS_CLOSING) 3968 dst->state = TCPS_FIN_WAIT_2; 3969 } 3970 if (th->th_flags & TH_RST) 3971 src->state = dst->state = TCPS_TIME_WAIT; 3972 3973 /* update expire time */ 3974 (*state)->expire = time_uptime; 3975 if (src->state >= TCPS_FIN_WAIT_2 && 3976 dst->state >= TCPS_FIN_WAIT_2) 3977 (*state)->timeout = PFTM_TCP_CLOSED; 3978 else if (src->state >= TCPS_CLOSING && 3979 dst->state >= TCPS_CLOSING) 3980 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3981 else if (src->state < TCPS_ESTABLISHED || 3982 dst->state < TCPS_ESTABLISHED) 3983 (*state)->timeout = PFTM_TCP_OPENING; 3984 else if (src->state >= TCPS_CLOSING || 3985 dst->state >= TCPS_CLOSING) 3986 (*state)->timeout = PFTM_TCP_CLOSING; 3987 else 3988 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3989 3990 /* Fall through to PASS packet */ 3991 3992 } else if ((dst->state < TCPS_SYN_SENT || 3993 dst->state >= TCPS_FIN_WAIT_2 || 3994 src->state >= TCPS_FIN_WAIT_2) && 3995 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3996 /* Within a window forward of the originating packet */ 3997 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3998 /* Within a window backward of the originating packet */ 3999 4000 /* 4001 * This currently handles three situations: 4002 * 1) Stupid stacks will shotgun SYNs before their peer 4003 * replies. 4004 * 2) When PF catches an already established stream (the 4005 * firewall rebooted, the state table was flushed, routes 4006 * changed...) 4007 * 3) Packets get funky immediately after the connection 4008 * closes (this should catch Solaris spurious ACK|FINs 4009 * that web servers like to spew after a close) 4010 * 4011 * This must be a little more careful than the above code 4012 * since packet floods will also be caught here. We don't 4013 * update the TTL here to mitigate the damage of a packet 4014 * flood and so the same code can handle awkward establishment 4015 * and a loosened connection close. 4016 * In the establishment case, a correct peer response will 4017 * validate the connection, go through the normal state code 4018 * and keep updating the state TTL. 4019 */ 4020 4021 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4022 printf("pf: loose state match: "); 4023 pf_print_state(*state); 4024 pf_print_flags(th->th_flags); 4025 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4026 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4027 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4028 (unsigned long long)(*state)->packets[1], 4029 pd->dir == PF_IN ? "in" : "out", 4030 pd->dir == (*state)->direction ? "fwd" : "rev"); 4031 } 4032 4033 if (dst->scrub || src->scrub) { 4034 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4035 *state, src, dst, copyback)) 4036 return (PF_DROP); 4037 } 4038 4039 /* update max window */ 4040 if (src->max_win < win) 4041 src->max_win = win; 4042 /* synchronize sequencing */ 4043 if (SEQ_GT(end, src->seqlo)) 4044 src->seqlo = end; 4045 /* slide the window of what the other end can send */ 4046 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4047 dst->seqhi = ack + MAX((win << sws), 1); 4048 4049 /* 4050 * Cannot set dst->seqhi here since this could be a shotgunned 4051 * SYN and not an already established connection. 4052 */ 4053 4054 if (th->th_flags & TH_FIN) 4055 if (src->state < TCPS_CLOSING) 4056 src->state = TCPS_CLOSING; 4057 if (th->th_flags & TH_RST) 4058 src->state = dst->state = TCPS_TIME_WAIT; 4059 4060 /* Fall through to PASS packet */ 4061 4062 } else { 4063 if ((*state)->dst.state == TCPS_SYN_SENT && 4064 (*state)->src.state == TCPS_SYN_SENT) { 4065 /* Send RST for state mismatches during handshake */ 4066 if (!(th->th_flags & TH_RST)) 4067 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4068 pd->dst, pd->src, th->th_dport, 4069 th->th_sport, ntohl(th->th_ack), 0, 4070 TH_RST, 0, 0, 4071 (*state)->rule.ptr->return_ttl, 1, 0, 4072 kif->pfik_ifp); 4073 src->seqlo = 0; 4074 src->seqhi = 1; 4075 src->max_win = 1; 4076 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4077 printf("pf: BAD state: "); 4078 pf_print_state(*state); 4079 pf_print_flags(th->th_flags); 4080 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4081 "pkts=%llu:%llu dir=%s,%s\n", 4082 seq, orig_seq, ack, pd->p_len, ackskew, 4083 (unsigned long long)(*state)->packets[0], 4084 (unsigned long long)(*state)->packets[1], 4085 pd->dir == PF_IN ? "in" : "out", 4086 pd->dir == (*state)->direction ? "fwd" : "rev"); 4087 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4088 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4089 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4090 ' ': '2', 4091 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4092 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4093 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4094 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4095 } 4096 REASON_SET(reason, PFRES_BADSTATE); 4097 return (PF_DROP); 4098 } 4099 4100 return (PF_PASS); 4101 } 4102 4103 static int 4104 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4105 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4106 { 4107 struct tcphdr *th = pd->hdr.tcp; 4108 4109 if (th->th_flags & TH_SYN) 4110 if (src->state < TCPS_SYN_SENT) 4111 src->state = TCPS_SYN_SENT; 4112 if (th->th_flags & TH_FIN) 4113 if (src->state < TCPS_CLOSING) 4114 src->state = TCPS_CLOSING; 4115 if (th->th_flags & TH_ACK) { 4116 if (dst->state == TCPS_SYN_SENT) { 4117 dst->state = TCPS_ESTABLISHED; 4118 if (src->state == TCPS_ESTABLISHED && 4119 (*state)->src_node != NULL && 4120 pf_src_connlimit(state)) { 4121 REASON_SET(reason, PFRES_SRCLIMIT); 4122 return (PF_DROP); 4123 } 4124 } else if (dst->state == TCPS_CLOSING) { 4125 dst->state = TCPS_FIN_WAIT_2; 4126 } else if (src->state == TCPS_SYN_SENT && 4127 dst->state < TCPS_SYN_SENT) { 4128 /* 4129 * Handle a special sloppy case where we only see one 4130 * half of the connection. If there is a ACK after 4131 * the initial SYN without ever seeing a packet from 4132 * the destination, set the connection to established. 4133 */ 4134 dst->state = src->state = TCPS_ESTABLISHED; 4135 if ((*state)->src_node != NULL && 4136 pf_src_connlimit(state)) { 4137 REASON_SET(reason, PFRES_SRCLIMIT); 4138 return (PF_DROP); 4139 } 4140 } else if (src->state == TCPS_CLOSING && 4141 dst->state == TCPS_ESTABLISHED && 4142 dst->seqlo == 0) { 4143 /* 4144 * Handle the closing of half connections where we 4145 * don't see the full bidirectional FIN/ACK+ACK 4146 * handshake. 4147 */ 4148 dst->state = TCPS_CLOSING; 4149 } 4150 } 4151 if (th->th_flags & TH_RST) 4152 src->state = dst->state = TCPS_TIME_WAIT; 4153 4154 /* update expire time */ 4155 (*state)->expire = time_uptime; 4156 if (src->state >= TCPS_FIN_WAIT_2 && 4157 dst->state >= TCPS_FIN_WAIT_2) 4158 (*state)->timeout = PFTM_TCP_CLOSED; 4159 else if (src->state >= TCPS_CLOSING && 4160 dst->state >= TCPS_CLOSING) 4161 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4162 else if (src->state < TCPS_ESTABLISHED || 4163 dst->state < TCPS_ESTABLISHED) 4164 (*state)->timeout = PFTM_TCP_OPENING; 4165 else if (src->state >= TCPS_CLOSING || 4166 dst->state >= TCPS_CLOSING) 4167 (*state)->timeout = PFTM_TCP_CLOSING; 4168 else 4169 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4170 4171 return (PF_PASS); 4172 } 4173 4174 static int 4175 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4176 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4177 u_short *reason) 4178 { 4179 struct pf_state_key_cmp key; 4180 struct tcphdr *th = pd->hdr.tcp; 4181 int copyback = 0; 4182 struct pf_state_peer *src, *dst; 4183 struct pf_state_key *sk; 4184 4185 bzero(&key, sizeof(key)); 4186 key.af = pd->af; 4187 key.proto = IPPROTO_TCP; 4188 if (direction == PF_IN) { /* wire side, straight */ 4189 PF_ACPY(&key.addr[0], pd->src, key.af); 4190 PF_ACPY(&key.addr[1], pd->dst, key.af); 4191 key.port[0] = th->th_sport; 4192 key.port[1] = th->th_dport; 4193 } else { /* stack side, reverse */ 4194 PF_ACPY(&key.addr[1], pd->src, key.af); 4195 PF_ACPY(&key.addr[0], pd->dst, key.af); 4196 key.port[1] = th->th_sport; 4197 key.port[0] = th->th_dport; 4198 } 4199 4200 STATE_LOOKUP(kif, &key, direction, *state, pd); 4201 4202 if (direction == (*state)->direction) { 4203 src = &(*state)->src; 4204 dst = &(*state)->dst; 4205 } else { 4206 src = &(*state)->dst; 4207 dst = &(*state)->src; 4208 } 4209 4210 sk = (*state)->key[pd->didx]; 4211 4212 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4213 if (direction != (*state)->direction) { 4214 REASON_SET(reason, PFRES_SYNPROXY); 4215 return (PF_SYNPROXY_DROP); 4216 } 4217 if (th->th_flags & TH_SYN) { 4218 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4219 REASON_SET(reason, PFRES_SYNPROXY); 4220 return (PF_DROP); 4221 } 4222 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4223 pd->src, th->th_dport, th->th_sport, 4224 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4225 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4226 REASON_SET(reason, PFRES_SYNPROXY); 4227 return (PF_SYNPROXY_DROP); 4228 } else if (!(th->th_flags & TH_ACK) || 4229 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4230 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4231 REASON_SET(reason, PFRES_SYNPROXY); 4232 return (PF_DROP); 4233 } else if ((*state)->src_node != NULL && 4234 pf_src_connlimit(state)) { 4235 REASON_SET(reason, PFRES_SRCLIMIT); 4236 return (PF_DROP); 4237 } else 4238 (*state)->src.state = PF_TCPS_PROXY_DST; 4239 } 4240 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4241 if (direction == (*state)->direction) { 4242 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4243 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4244 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4245 REASON_SET(reason, PFRES_SYNPROXY); 4246 return (PF_DROP); 4247 } 4248 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4249 if ((*state)->dst.seqhi == 1) 4250 (*state)->dst.seqhi = htonl(arc4random()); 4251 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4252 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4253 sk->port[pd->sidx], sk->port[pd->didx], 4254 (*state)->dst.seqhi, 0, TH_SYN, 0, 4255 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4256 REASON_SET(reason, PFRES_SYNPROXY); 4257 return (PF_SYNPROXY_DROP); 4258 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4259 (TH_SYN|TH_ACK)) || 4260 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4261 REASON_SET(reason, PFRES_SYNPROXY); 4262 return (PF_DROP); 4263 } else { 4264 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4265 (*state)->dst.seqlo = ntohl(th->th_seq); 4266 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4267 pd->src, th->th_dport, th->th_sport, 4268 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4269 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4270 (*state)->tag, NULL); 4271 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4272 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4273 sk->port[pd->sidx], sk->port[pd->didx], 4274 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4275 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4276 (*state)->src.seqdiff = (*state)->dst.seqhi - 4277 (*state)->src.seqlo; 4278 (*state)->dst.seqdiff = (*state)->src.seqhi - 4279 (*state)->dst.seqlo; 4280 (*state)->src.seqhi = (*state)->src.seqlo + 4281 (*state)->dst.max_win; 4282 (*state)->dst.seqhi = (*state)->dst.seqlo + 4283 (*state)->src.max_win; 4284 (*state)->src.wscale = (*state)->dst.wscale = 0; 4285 (*state)->src.state = (*state)->dst.state = 4286 TCPS_ESTABLISHED; 4287 REASON_SET(reason, PFRES_SYNPROXY); 4288 return (PF_SYNPROXY_DROP); 4289 } 4290 } 4291 4292 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4293 dst->state >= TCPS_FIN_WAIT_2 && 4294 src->state >= TCPS_FIN_WAIT_2) { 4295 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4296 printf("pf: state reuse "); 4297 pf_print_state(*state); 4298 pf_print_flags(th->th_flags); 4299 printf("\n"); 4300 } 4301 /* XXX make sure it's the same direction ?? */ 4302 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4303 pf_unlink_state(*state, PF_ENTER_LOCKED); 4304 *state = NULL; 4305 return (PF_DROP); 4306 } 4307 4308 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4309 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4310 return (PF_DROP); 4311 } else { 4312 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4313 ©back) == PF_DROP) 4314 return (PF_DROP); 4315 } 4316 4317 /* translate source/destination address, if necessary */ 4318 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4319 struct pf_state_key *nk = (*state)->key[pd->didx]; 4320 4321 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4322 nk->port[pd->sidx] != th->th_sport) 4323 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4324 &th->th_sum, &nk->addr[pd->sidx], 4325 nk->port[pd->sidx], 0, pd->af); 4326 4327 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4328 nk->port[pd->didx] != th->th_dport) 4329 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4330 &th->th_sum, &nk->addr[pd->didx], 4331 nk->port[pd->didx], 0, pd->af); 4332 copyback = 1; 4333 } 4334 4335 /* Copyback sequence modulation or stateful scrub changes if needed */ 4336 if (copyback) 4337 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4338 4339 return (PF_PASS); 4340 } 4341 4342 static int 4343 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4344 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4345 { 4346 struct pf_state_peer *src, *dst; 4347 struct pf_state_key_cmp key; 4348 struct udphdr *uh = pd->hdr.udp; 4349 4350 bzero(&key, sizeof(key)); 4351 key.af = pd->af; 4352 key.proto = IPPROTO_UDP; 4353 if (direction == PF_IN) { /* wire side, straight */ 4354 PF_ACPY(&key.addr[0], pd->src, key.af); 4355 PF_ACPY(&key.addr[1], pd->dst, key.af); 4356 key.port[0] = uh->uh_sport; 4357 key.port[1] = uh->uh_dport; 4358 } else { /* stack side, reverse */ 4359 PF_ACPY(&key.addr[1], pd->src, key.af); 4360 PF_ACPY(&key.addr[0], pd->dst, key.af); 4361 key.port[1] = uh->uh_sport; 4362 key.port[0] = uh->uh_dport; 4363 } 4364 4365 STATE_LOOKUP(kif, &key, direction, *state, pd); 4366 4367 if (direction == (*state)->direction) { 4368 src = &(*state)->src; 4369 dst = &(*state)->dst; 4370 } else { 4371 src = &(*state)->dst; 4372 dst = &(*state)->src; 4373 } 4374 4375 /* update states */ 4376 if (src->state < PFUDPS_SINGLE) 4377 src->state = PFUDPS_SINGLE; 4378 if (dst->state == PFUDPS_SINGLE) 4379 dst->state = PFUDPS_MULTIPLE; 4380 4381 /* update expire time */ 4382 (*state)->expire = time_uptime; 4383 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4384 (*state)->timeout = PFTM_UDP_MULTIPLE; 4385 else 4386 (*state)->timeout = PFTM_UDP_SINGLE; 4387 4388 /* translate source/destination address, if necessary */ 4389 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4390 struct pf_state_key *nk = (*state)->key[pd->didx]; 4391 4392 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4393 nk->port[pd->sidx] != uh->uh_sport) 4394 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4395 &uh->uh_sum, &nk->addr[pd->sidx], 4396 nk->port[pd->sidx], 1, pd->af); 4397 4398 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4399 nk->port[pd->didx] != uh->uh_dport) 4400 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4401 &uh->uh_sum, &nk->addr[pd->didx], 4402 nk->port[pd->didx], 1, pd->af); 4403 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4404 } 4405 4406 return (PF_PASS); 4407 } 4408 4409 static int 4410 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4411 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4412 { 4413 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4414 u_int16_t icmpid = 0, *icmpsum; 4415 u_int8_t icmptype; 4416 int state_icmp = 0; 4417 struct pf_state_key_cmp key; 4418 4419 bzero(&key, sizeof(key)); 4420 switch (pd->proto) { 4421 #ifdef INET 4422 case IPPROTO_ICMP: 4423 icmptype = pd->hdr.icmp->icmp_type; 4424 icmpid = pd->hdr.icmp->icmp_id; 4425 icmpsum = &pd->hdr.icmp->icmp_cksum; 4426 4427 if (icmptype == ICMP_UNREACH || 4428 icmptype == ICMP_SOURCEQUENCH || 4429 icmptype == ICMP_REDIRECT || 4430 icmptype == ICMP_TIMXCEED || 4431 icmptype == ICMP_PARAMPROB) 4432 state_icmp++; 4433 break; 4434 #endif /* INET */ 4435 #ifdef INET6 4436 case IPPROTO_ICMPV6: 4437 icmptype = pd->hdr.icmp6->icmp6_type; 4438 icmpid = pd->hdr.icmp6->icmp6_id; 4439 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4440 4441 if (icmptype == ICMP6_DST_UNREACH || 4442 icmptype == ICMP6_PACKET_TOO_BIG || 4443 icmptype == ICMP6_TIME_EXCEEDED || 4444 icmptype == ICMP6_PARAM_PROB) 4445 state_icmp++; 4446 break; 4447 #endif /* INET6 */ 4448 } 4449 4450 if (!state_icmp) { 4451 4452 /* 4453 * ICMP query/reply message not related to a TCP/UDP packet. 4454 * Search for an ICMP state. 4455 */ 4456 key.af = pd->af; 4457 key.proto = pd->proto; 4458 key.port[0] = key.port[1] = icmpid; 4459 if (direction == PF_IN) { /* wire side, straight */ 4460 PF_ACPY(&key.addr[0], pd->src, key.af); 4461 PF_ACPY(&key.addr[1], pd->dst, key.af); 4462 } else { /* stack side, reverse */ 4463 PF_ACPY(&key.addr[1], pd->src, key.af); 4464 PF_ACPY(&key.addr[0], pd->dst, key.af); 4465 } 4466 4467 STATE_LOOKUP(kif, &key, direction, *state, pd); 4468 4469 (*state)->expire = time_uptime; 4470 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4471 4472 /* translate source/destination address, if necessary */ 4473 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4474 struct pf_state_key *nk = (*state)->key[pd->didx]; 4475 4476 switch (pd->af) { 4477 #ifdef INET 4478 case AF_INET: 4479 if (PF_ANEQ(pd->src, 4480 &nk->addr[pd->sidx], AF_INET)) 4481 pf_change_a(&saddr->v4.s_addr, 4482 pd->ip_sum, 4483 nk->addr[pd->sidx].v4.s_addr, 0); 4484 4485 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4486 AF_INET)) 4487 pf_change_a(&daddr->v4.s_addr, 4488 pd->ip_sum, 4489 nk->addr[pd->didx].v4.s_addr, 0); 4490 4491 if (nk->port[0] != 4492 pd->hdr.icmp->icmp_id) { 4493 pd->hdr.icmp->icmp_cksum = 4494 pf_cksum_fixup( 4495 pd->hdr.icmp->icmp_cksum, icmpid, 4496 nk->port[pd->sidx], 0); 4497 pd->hdr.icmp->icmp_id = 4498 nk->port[pd->sidx]; 4499 } 4500 4501 m_copyback(m, off, ICMP_MINLEN, 4502 (caddr_t )pd->hdr.icmp); 4503 break; 4504 #endif /* INET */ 4505 #ifdef INET6 4506 case AF_INET6: 4507 if (PF_ANEQ(pd->src, 4508 &nk->addr[pd->sidx], AF_INET6)) 4509 pf_change_a6(saddr, 4510 &pd->hdr.icmp6->icmp6_cksum, 4511 &nk->addr[pd->sidx], 0); 4512 4513 if (PF_ANEQ(pd->dst, 4514 &nk->addr[pd->didx], AF_INET6)) 4515 pf_change_a6(daddr, 4516 &pd->hdr.icmp6->icmp6_cksum, 4517 &nk->addr[pd->didx], 0); 4518 4519 m_copyback(m, off, sizeof(struct icmp6_hdr), 4520 (caddr_t )pd->hdr.icmp6); 4521 break; 4522 #endif /* INET6 */ 4523 } 4524 } 4525 return (PF_PASS); 4526 4527 } else { 4528 /* 4529 * ICMP error message in response to a TCP/UDP packet. 4530 * Extract the inner TCP/UDP header and search for that state. 4531 */ 4532 4533 struct pf_pdesc pd2; 4534 bzero(&pd2, sizeof pd2); 4535 #ifdef INET 4536 struct ip h2; 4537 #endif /* INET */ 4538 #ifdef INET6 4539 struct ip6_hdr h2_6; 4540 int terminal = 0; 4541 #endif /* INET6 */ 4542 int ipoff2 = 0; 4543 int off2 = 0; 4544 4545 pd2.af = pd->af; 4546 /* Payload packet is from the opposite direction. */ 4547 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4548 pd2.didx = (direction == PF_IN) ? 0 : 1; 4549 switch (pd->af) { 4550 #ifdef INET 4551 case AF_INET: 4552 /* offset of h2 in mbuf chain */ 4553 ipoff2 = off + ICMP_MINLEN; 4554 4555 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4556 NULL, reason, pd2.af)) { 4557 DPFPRINTF(PF_DEBUG_MISC, 4558 ("pf: ICMP error message too short " 4559 "(ip)\n")); 4560 return (PF_DROP); 4561 } 4562 /* 4563 * ICMP error messages don't refer to non-first 4564 * fragments 4565 */ 4566 if (h2.ip_off & htons(IP_OFFMASK)) { 4567 REASON_SET(reason, PFRES_FRAG); 4568 return (PF_DROP); 4569 } 4570 4571 /* offset of protocol header that follows h2 */ 4572 off2 = ipoff2 + (h2.ip_hl << 2); 4573 4574 pd2.proto = h2.ip_p; 4575 pd2.src = (struct pf_addr *)&h2.ip_src; 4576 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4577 pd2.ip_sum = &h2.ip_sum; 4578 break; 4579 #endif /* INET */ 4580 #ifdef INET6 4581 case AF_INET6: 4582 ipoff2 = off + sizeof(struct icmp6_hdr); 4583 4584 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4585 NULL, reason, pd2.af)) { 4586 DPFPRINTF(PF_DEBUG_MISC, 4587 ("pf: ICMP error message too short " 4588 "(ip6)\n")); 4589 return (PF_DROP); 4590 } 4591 pd2.proto = h2_6.ip6_nxt; 4592 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4593 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4594 pd2.ip_sum = NULL; 4595 off2 = ipoff2 + sizeof(h2_6); 4596 do { 4597 switch (pd2.proto) { 4598 case IPPROTO_FRAGMENT: 4599 /* 4600 * ICMPv6 error messages for 4601 * non-first fragments 4602 */ 4603 REASON_SET(reason, PFRES_FRAG); 4604 return (PF_DROP); 4605 case IPPROTO_AH: 4606 case IPPROTO_HOPOPTS: 4607 case IPPROTO_ROUTING: 4608 case IPPROTO_DSTOPTS: { 4609 /* get next header and header length */ 4610 struct ip6_ext opt6; 4611 4612 if (!pf_pull_hdr(m, off2, &opt6, 4613 sizeof(opt6), NULL, reason, 4614 pd2.af)) { 4615 DPFPRINTF(PF_DEBUG_MISC, 4616 ("pf: ICMPv6 short opt\n")); 4617 return (PF_DROP); 4618 } 4619 if (pd2.proto == IPPROTO_AH) 4620 off2 += (opt6.ip6e_len + 2) * 4; 4621 else 4622 off2 += (opt6.ip6e_len + 1) * 8; 4623 pd2.proto = opt6.ip6e_nxt; 4624 /* goto the next header */ 4625 break; 4626 } 4627 default: 4628 terminal++; 4629 break; 4630 } 4631 } while (!terminal); 4632 break; 4633 #endif /* INET6 */ 4634 } 4635 4636 switch (pd2.proto) { 4637 case IPPROTO_TCP: { 4638 struct tcphdr th; 4639 u_int32_t seq; 4640 struct pf_state_peer *src, *dst; 4641 u_int8_t dws; 4642 int copyback = 0; 4643 4644 /* 4645 * Only the first 8 bytes of the TCP header can be 4646 * expected. Don't access any TCP header fields after 4647 * th_seq, an ackskew test is not possible. 4648 */ 4649 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4650 pd2.af)) { 4651 DPFPRINTF(PF_DEBUG_MISC, 4652 ("pf: ICMP error message too short " 4653 "(tcp)\n")); 4654 return (PF_DROP); 4655 } 4656 4657 key.af = pd2.af; 4658 key.proto = IPPROTO_TCP; 4659 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4660 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4661 key.port[pd2.sidx] = th.th_sport; 4662 key.port[pd2.didx] = th.th_dport; 4663 4664 STATE_LOOKUP(kif, &key, direction, *state, pd); 4665 4666 if (direction == (*state)->direction) { 4667 src = &(*state)->dst; 4668 dst = &(*state)->src; 4669 } else { 4670 src = &(*state)->src; 4671 dst = &(*state)->dst; 4672 } 4673 4674 if (src->wscale && dst->wscale) 4675 dws = dst->wscale & PF_WSCALE_MASK; 4676 else 4677 dws = 0; 4678 4679 /* Demodulate sequence number */ 4680 seq = ntohl(th.th_seq) - src->seqdiff; 4681 if (src->seqdiff) { 4682 pf_change_a(&th.th_seq, icmpsum, 4683 htonl(seq), 0); 4684 copyback = 1; 4685 } 4686 4687 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4688 (!SEQ_GEQ(src->seqhi, seq) || 4689 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4690 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4691 printf("pf: BAD ICMP %d:%d ", 4692 icmptype, pd->hdr.icmp->icmp_code); 4693 pf_print_host(pd->src, 0, pd->af); 4694 printf(" -> "); 4695 pf_print_host(pd->dst, 0, pd->af); 4696 printf(" state: "); 4697 pf_print_state(*state); 4698 printf(" seq=%u\n", seq); 4699 } 4700 REASON_SET(reason, PFRES_BADSTATE); 4701 return (PF_DROP); 4702 } else { 4703 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4704 printf("pf: OK ICMP %d:%d ", 4705 icmptype, pd->hdr.icmp->icmp_code); 4706 pf_print_host(pd->src, 0, pd->af); 4707 printf(" -> "); 4708 pf_print_host(pd->dst, 0, pd->af); 4709 printf(" state: "); 4710 pf_print_state(*state); 4711 printf(" seq=%u\n", seq); 4712 } 4713 } 4714 4715 /* translate source/destination address, if necessary */ 4716 if ((*state)->key[PF_SK_WIRE] != 4717 (*state)->key[PF_SK_STACK]) { 4718 struct pf_state_key *nk = 4719 (*state)->key[pd->didx]; 4720 4721 if (PF_ANEQ(pd2.src, 4722 &nk->addr[pd2.sidx], pd2.af) || 4723 nk->port[pd2.sidx] != th.th_sport) 4724 pf_change_icmp(pd2.src, &th.th_sport, 4725 daddr, &nk->addr[pd2.sidx], 4726 nk->port[pd2.sidx], NULL, 4727 pd2.ip_sum, icmpsum, 4728 pd->ip_sum, 0, pd2.af); 4729 4730 if (PF_ANEQ(pd2.dst, 4731 &nk->addr[pd2.didx], pd2.af) || 4732 nk->port[pd2.didx] != th.th_dport) 4733 pf_change_icmp(pd2.dst, &th.th_dport, 4734 NULL, /* XXX Inbound NAT? */ 4735 &nk->addr[pd2.didx], 4736 nk->port[pd2.didx], NULL, 4737 pd2.ip_sum, icmpsum, 4738 pd->ip_sum, 0, pd2.af); 4739 copyback = 1; 4740 } 4741 4742 if (copyback) { 4743 switch (pd2.af) { 4744 #ifdef INET 4745 case AF_INET: 4746 m_copyback(m, off, ICMP_MINLEN, 4747 (caddr_t )pd->hdr.icmp); 4748 m_copyback(m, ipoff2, sizeof(h2), 4749 (caddr_t )&h2); 4750 break; 4751 #endif /* INET */ 4752 #ifdef INET6 4753 case AF_INET6: 4754 m_copyback(m, off, 4755 sizeof(struct icmp6_hdr), 4756 (caddr_t )pd->hdr.icmp6); 4757 m_copyback(m, ipoff2, sizeof(h2_6), 4758 (caddr_t )&h2_6); 4759 break; 4760 #endif /* INET6 */ 4761 } 4762 m_copyback(m, off2, 8, (caddr_t)&th); 4763 } 4764 4765 return (PF_PASS); 4766 break; 4767 } 4768 case IPPROTO_UDP: { 4769 struct udphdr uh; 4770 4771 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4772 NULL, reason, pd2.af)) { 4773 DPFPRINTF(PF_DEBUG_MISC, 4774 ("pf: ICMP error message too short " 4775 "(udp)\n")); 4776 return (PF_DROP); 4777 } 4778 4779 key.af = pd2.af; 4780 key.proto = IPPROTO_UDP; 4781 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4782 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4783 key.port[pd2.sidx] = uh.uh_sport; 4784 key.port[pd2.didx] = uh.uh_dport; 4785 4786 STATE_LOOKUP(kif, &key, direction, *state, pd); 4787 4788 /* translate source/destination address, if necessary */ 4789 if ((*state)->key[PF_SK_WIRE] != 4790 (*state)->key[PF_SK_STACK]) { 4791 struct pf_state_key *nk = 4792 (*state)->key[pd->didx]; 4793 4794 if (PF_ANEQ(pd2.src, 4795 &nk->addr[pd2.sidx], pd2.af) || 4796 nk->port[pd2.sidx] != uh.uh_sport) 4797 pf_change_icmp(pd2.src, &uh.uh_sport, 4798 daddr, &nk->addr[pd2.sidx], 4799 nk->port[pd2.sidx], &uh.uh_sum, 4800 pd2.ip_sum, icmpsum, 4801 pd->ip_sum, 1, pd2.af); 4802 4803 if (PF_ANEQ(pd2.dst, 4804 &nk->addr[pd2.didx], pd2.af) || 4805 nk->port[pd2.didx] != uh.uh_dport) 4806 pf_change_icmp(pd2.dst, &uh.uh_dport, 4807 NULL, /* XXX Inbound NAT? */ 4808 &nk->addr[pd2.didx], 4809 nk->port[pd2.didx], &uh.uh_sum, 4810 pd2.ip_sum, icmpsum, 4811 pd->ip_sum, 1, pd2.af); 4812 4813 switch (pd2.af) { 4814 #ifdef INET 4815 case AF_INET: 4816 m_copyback(m, off, ICMP_MINLEN, 4817 (caddr_t )pd->hdr.icmp); 4818 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4819 break; 4820 #endif /* INET */ 4821 #ifdef INET6 4822 case AF_INET6: 4823 m_copyback(m, off, 4824 sizeof(struct icmp6_hdr), 4825 (caddr_t )pd->hdr.icmp6); 4826 m_copyback(m, ipoff2, sizeof(h2_6), 4827 (caddr_t )&h2_6); 4828 break; 4829 #endif /* INET6 */ 4830 } 4831 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4832 } 4833 return (PF_PASS); 4834 break; 4835 } 4836 #ifdef INET 4837 case IPPROTO_ICMP: { 4838 struct icmp iih; 4839 4840 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4841 NULL, reason, pd2.af)) { 4842 DPFPRINTF(PF_DEBUG_MISC, 4843 ("pf: ICMP error message too short i" 4844 "(icmp)\n")); 4845 return (PF_DROP); 4846 } 4847 4848 key.af = pd2.af; 4849 key.proto = IPPROTO_ICMP; 4850 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4851 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4852 key.port[0] = key.port[1] = iih.icmp_id; 4853 4854 STATE_LOOKUP(kif, &key, direction, *state, pd); 4855 4856 /* translate source/destination address, if necessary */ 4857 if ((*state)->key[PF_SK_WIRE] != 4858 (*state)->key[PF_SK_STACK]) { 4859 struct pf_state_key *nk = 4860 (*state)->key[pd->didx]; 4861 4862 if (PF_ANEQ(pd2.src, 4863 &nk->addr[pd2.sidx], pd2.af) || 4864 nk->port[pd2.sidx] != iih.icmp_id) 4865 pf_change_icmp(pd2.src, &iih.icmp_id, 4866 daddr, &nk->addr[pd2.sidx], 4867 nk->port[pd2.sidx], NULL, 4868 pd2.ip_sum, icmpsum, 4869 pd->ip_sum, 0, AF_INET); 4870 4871 if (PF_ANEQ(pd2.dst, 4872 &nk->addr[pd2.didx], pd2.af) || 4873 nk->port[pd2.didx] != iih.icmp_id) 4874 pf_change_icmp(pd2.dst, &iih.icmp_id, 4875 NULL, /* XXX Inbound NAT? */ 4876 &nk->addr[pd2.didx], 4877 nk->port[pd2.didx], NULL, 4878 pd2.ip_sum, icmpsum, 4879 pd->ip_sum, 0, AF_INET); 4880 4881 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4882 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4883 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4884 } 4885 return (PF_PASS); 4886 break; 4887 } 4888 #endif /* INET */ 4889 #ifdef INET6 4890 case IPPROTO_ICMPV6: { 4891 struct icmp6_hdr iih; 4892 4893 if (!pf_pull_hdr(m, off2, &iih, 4894 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4895 DPFPRINTF(PF_DEBUG_MISC, 4896 ("pf: ICMP error message too short " 4897 "(icmp6)\n")); 4898 return (PF_DROP); 4899 } 4900 4901 key.af = pd2.af; 4902 key.proto = IPPROTO_ICMPV6; 4903 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4904 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4905 key.port[0] = key.port[1] = iih.icmp6_id; 4906 4907 STATE_LOOKUP(kif, &key, direction, *state, pd); 4908 4909 /* translate source/destination address, if necessary */ 4910 if ((*state)->key[PF_SK_WIRE] != 4911 (*state)->key[PF_SK_STACK]) { 4912 struct pf_state_key *nk = 4913 (*state)->key[pd->didx]; 4914 4915 if (PF_ANEQ(pd2.src, 4916 &nk->addr[pd2.sidx], pd2.af) || 4917 nk->port[pd2.sidx] != iih.icmp6_id) 4918 pf_change_icmp(pd2.src, &iih.icmp6_id, 4919 daddr, &nk->addr[pd2.sidx], 4920 nk->port[pd2.sidx], NULL, 4921 pd2.ip_sum, icmpsum, 4922 pd->ip_sum, 0, AF_INET6); 4923 4924 if (PF_ANEQ(pd2.dst, 4925 &nk->addr[pd2.didx], pd2.af) || 4926 nk->port[pd2.didx] != iih.icmp6_id) 4927 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4928 NULL, /* XXX Inbound NAT? */ 4929 &nk->addr[pd2.didx], 4930 nk->port[pd2.didx], NULL, 4931 pd2.ip_sum, icmpsum, 4932 pd->ip_sum, 0, AF_INET6); 4933 4934 m_copyback(m, off, sizeof(struct icmp6_hdr), 4935 (caddr_t)pd->hdr.icmp6); 4936 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4937 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4938 (caddr_t)&iih); 4939 } 4940 return (PF_PASS); 4941 break; 4942 } 4943 #endif /* INET6 */ 4944 default: { 4945 key.af = pd2.af; 4946 key.proto = pd2.proto; 4947 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4948 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4949 key.port[0] = key.port[1] = 0; 4950 4951 STATE_LOOKUP(kif, &key, direction, *state, pd); 4952 4953 /* translate source/destination address, if necessary */ 4954 if ((*state)->key[PF_SK_WIRE] != 4955 (*state)->key[PF_SK_STACK]) { 4956 struct pf_state_key *nk = 4957 (*state)->key[pd->didx]; 4958 4959 if (PF_ANEQ(pd2.src, 4960 &nk->addr[pd2.sidx], pd2.af)) 4961 pf_change_icmp(pd2.src, NULL, daddr, 4962 &nk->addr[pd2.sidx], 0, NULL, 4963 pd2.ip_sum, icmpsum, 4964 pd->ip_sum, 0, pd2.af); 4965 4966 if (PF_ANEQ(pd2.dst, 4967 &nk->addr[pd2.didx], pd2.af)) 4968 pf_change_icmp(pd2.src, NULL, 4969 NULL, /* XXX Inbound NAT? */ 4970 &nk->addr[pd2.didx], 0, NULL, 4971 pd2.ip_sum, icmpsum, 4972 pd->ip_sum, 0, pd2.af); 4973 4974 switch (pd2.af) { 4975 #ifdef INET 4976 case AF_INET: 4977 m_copyback(m, off, ICMP_MINLEN, 4978 (caddr_t)pd->hdr.icmp); 4979 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4980 break; 4981 #endif /* INET */ 4982 #ifdef INET6 4983 case AF_INET6: 4984 m_copyback(m, off, 4985 sizeof(struct icmp6_hdr), 4986 (caddr_t )pd->hdr.icmp6); 4987 m_copyback(m, ipoff2, sizeof(h2_6), 4988 (caddr_t )&h2_6); 4989 break; 4990 #endif /* INET6 */ 4991 } 4992 } 4993 return (PF_PASS); 4994 break; 4995 } 4996 } 4997 } 4998 } 4999 5000 static int 5001 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5002 struct mbuf *m, struct pf_pdesc *pd) 5003 { 5004 struct pf_state_peer *src, *dst; 5005 struct pf_state_key_cmp key; 5006 5007 bzero(&key, sizeof(key)); 5008 key.af = pd->af; 5009 key.proto = pd->proto; 5010 if (direction == PF_IN) { 5011 PF_ACPY(&key.addr[0], pd->src, key.af); 5012 PF_ACPY(&key.addr[1], pd->dst, key.af); 5013 key.port[0] = key.port[1] = 0; 5014 } else { 5015 PF_ACPY(&key.addr[1], pd->src, key.af); 5016 PF_ACPY(&key.addr[0], pd->dst, key.af); 5017 key.port[1] = key.port[0] = 0; 5018 } 5019 5020 STATE_LOOKUP(kif, &key, direction, *state, pd); 5021 5022 if (direction == (*state)->direction) { 5023 src = &(*state)->src; 5024 dst = &(*state)->dst; 5025 } else { 5026 src = &(*state)->dst; 5027 dst = &(*state)->src; 5028 } 5029 5030 /* update states */ 5031 if (src->state < PFOTHERS_SINGLE) 5032 src->state = PFOTHERS_SINGLE; 5033 if (dst->state == PFOTHERS_SINGLE) 5034 dst->state = PFOTHERS_MULTIPLE; 5035 5036 /* update expire time */ 5037 (*state)->expire = time_uptime; 5038 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5039 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5040 else 5041 (*state)->timeout = PFTM_OTHER_SINGLE; 5042 5043 /* translate source/destination address, if necessary */ 5044 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5045 struct pf_state_key *nk = (*state)->key[pd->didx]; 5046 5047 KASSERT(nk, ("%s: nk is null", __func__)); 5048 KASSERT(pd, ("%s: pd is null", __func__)); 5049 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5050 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5051 switch (pd->af) { 5052 #ifdef INET 5053 case AF_INET: 5054 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5055 pf_change_a(&pd->src->v4.s_addr, 5056 pd->ip_sum, 5057 nk->addr[pd->sidx].v4.s_addr, 5058 0); 5059 5060 5061 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5062 pf_change_a(&pd->dst->v4.s_addr, 5063 pd->ip_sum, 5064 nk->addr[pd->didx].v4.s_addr, 5065 0); 5066 5067 break; 5068 #endif /* INET */ 5069 #ifdef INET6 5070 case AF_INET6: 5071 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5072 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5073 5074 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5075 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5076 #endif /* INET6 */ 5077 } 5078 } 5079 return (PF_PASS); 5080 } 5081 5082 /* 5083 * ipoff and off are measured from the start of the mbuf chain. 5084 * h must be at "ipoff" on the mbuf chain. 5085 */ 5086 void * 5087 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5088 u_short *actionp, u_short *reasonp, sa_family_t af) 5089 { 5090 switch (af) { 5091 #ifdef INET 5092 case AF_INET: { 5093 struct ip *h = mtod(m, struct ip *); 5094 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5095 5096 if (fragoff) { 5097 if (fragoff >= len) 5098 ACTION_SET(actionp, PF_PASS); 5099 else { 5100 ACTION_SET(actionp, PF_DROP); 5101 REASON_SET(reasonp, PFRES_FRAG); 5102 } 5103 return (NULL); 5104 } 5105 if (m->m_pkthdr.len < off + len || 5106 ntohs(h->ip_len) < off + len) { 5107 ACTION_SET(actionp, PF_DROP); 5108 REASON_SET(reasonp, PFRES_SHORT); 5109 return (NULL); 5110 } 5111 break; 5112 } 5113 #endif /* INET */ 5114 #ifdef INET6 5115 case AF_INET6: { 5116 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5117 5118 if (m->m_pkthdr.len < off + len || 5119 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5120 (unsigned)(off + len)) { 5121 ACTION_SET(actionp, PF_DROP); 5122 REASON_SET(reasonp, PFRES_SHORT); 5123 return (NULL); 5124 } 5125 break; 5126 } 5127 #endif /* INET6 */ 5128 } 5129 m_copydata(m, off, len, p); 5130 return (p); 5131 } 5132 5133 int 5134 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5135 int rtableid) 5136 { 5137 #ifdef RADIX_MPATH 5138 struct radix_node_head *rnh; 5139 #endif 5140 struct sockaddr_in *dst; 5141 int ret = 1; 5142 int check_mpath; 5143 #ifdef INET6 5144 struct sockaddr_in6 *dst6; 5145 struct route_in6 ro; 5146 #else 5147 struct route ro; 5148 #endif 5149 struct radix_node *rn; 5150 struct rtentry *rt; 5151 struct ifnet *ifp; 5152 5153 check_mpath = 0; 5154 #ifdef RADIX_MPATH 5155 /* XXX: stick to table 0 for now */ 5156 rnh = rt_tables_get_rnh(0, af); 5157 if (rnh != NULL && rn_mpath_capable(rnh)) 5158 check_mpath = 1; 5159 #endif 5160 bzero(&ro, sizeof(ro)); 5161 switch (af) { 5162 case AF_INET: 5163 dst = satosin(&ro.ro_dst); 5164 dst->sin_family = AF_INET; 5165 dst->sin_len = sizeof(*dst); 5166 dst->sin_addr = addr->v4; 5167 break; 5168 #ifdef INET6 5169 case AF_INET6: 5170 /* 5171 * Skip check for addresses with embedded interface scope, 5172 * as they would always match anyway. 5173 */ 5174 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5175 goto out; 5176 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5177 dst6->sin6_family = AF_INET6; 5178 dst6->sin6_len = sizeof(*dst6); 5179 dst6->sin6_addr = addr->v6; 5180 break; 5181 #endif /* INET6 */ 5182 default: 5183 return (0); 5184 } 5185 5186 /* Skip checks for ipsec interfaces */ 5187 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5188 goto out; 5189 5190 switch (af) { 5191 #ifdef INET6 5192 case AF_INET6: 5193 in6_rtalloc_ign(&ro, 0, rtableid); 5194 break; 5195 #endif 5196 #ifdef INET 5197 case AF_INET: 5198 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5199 break; 5200 #endif 5201 default: 5202 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5203 break; 5204 } 5205 5206 if (ro.ro_rt != NULL) { 5207 /* No interface given, this is a no-route check */ 5208 if (kif == NULL) 5209 goto out; 5210 5211 if (kif->pfik_ifp == NULL) { 5212 ret = 0; 5213 goto out; 5214 } 5215 5216 /* Perform uRPF check if passed input interface */ 5217 ret = 0; 5218 rn = (struct radix_node *)ro.ro_rt; 5219 do { 5220 rt = (struct rtentry *)rn; 5221 ifp = rt->rt_ifp; 5222 5223 if (kif->pfik_ifp == ifp) 5224 ret = 1; 5225 #ifdef RADIX_MPATH 5226 rn = rn_mpath_next(rn); 5227 #endif 5228 } while (check_mpath == 1 && rn != NULL && ret == 0); 5229 } else 5230 ret = 0; 5231 out: 5232 if (ro.ro_rt != NULL) 5233 RTFREE(ro.ro_rt); 5234 return (ret); 5235 } 5236 5237 #ifdef INET 5238 static void 5239 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5240 struct pf_state *s, struct pf_pdesc *pd) 5241 { 5242 struct mbuf *m0, *m1; 5243 struct sockaddr_in dst; 5244 struct ip *ip; 5245 struct ifnet *ifp = NULL; 5246 struct pf_addr naddr; 5247 struct pf_src_node *sn = NULL; 5248 int error = 0; 5249 uint16_t ip_len, ip_off; 5250 5251 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5252 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5253 __func__)); 5254 5255 if ((pd->pf_mtag == NULL && 5256 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5257 pd->pf_mtag->routed++ > 3) { 5258 m0 = *m; 5259 *m = NULL; 5260 goto bad_locked; 5261 } 5262 5263 if (r->rt == PF_DUPTO) { 5264 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5265 if (s) 5266 PF_STATE_UNLOCK(s); 5267 return; 5268 } 5269 } else { 5270 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5271 if (s) 5272 PF_STATE_UNLOCK(s); 5273 return; 5274 } 5275 m0 = *m; 5276 } 5277 5278 ip = mtod(m0, struct ip *); 5279 5280 bzero(&dst, sizeof(dst)); 5281 dst.sin_family = AF_INET; 5282 dst.sin_len = sizeof(dst); 5283 dst.sin_addr = ip->ip_dst; 5284 5285 if (r->rt == PF_FASTROUTE) { 5286 struct rtentry *rt; 5287 5288 if (s) 5289 PF_STATE_UNLOCK(s); 5290 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5291 if (rt == NULL) { 5292 KMOD_IPSTAT_INC(ips_noroute); 5293 error = EHOSTUNREACH; 5294 goto bad; 5295 } 5296 5297 ifp = rt->rt_ifp; 5298 counter_u64_add(rt->rt_pksent, 1); 5299 5300 if (rt->rt_flags & RTF_GATEWAY) 5301 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5302 RTFREE_LOCKED(rt); 5303 } else { 5304 if (TAILQ_EMPTY(&r->rpool.list)) { 5305 DPFPRINTF(PF_DEBUG_URGENT, 5306 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5307 goto bad_locked; 5308 } 5309 if (s == NULL) { 5310 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5311 &naddr, NULL, &sn); 5312 if (!PF_AZERO(&naddr, AF_INET)) 5313 dst.sin_addr.s_addr = naddr.v4.s_addr; 5314 ifp = r->rpool.cur->kif ? 5315 r->rpool.cur->kif->pfik_ifp : NULL; 5316 } else { 5317 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5318 dst.sin_addr.s_addr = 5319 s->rt_addr.v4.s_addr; 5320 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5321 PF_STATE_UNLOCK(s); 5322 } 5323 } 5324 if (ifp == NULL) 5325 goto bad; 5326 5327 if (oifp != ifp) { 5328 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5329 goto bad; 5330 else if (m0 == NULL) 5331 goto done; 5332 if (m0->m_len < sizeof(struct ip)) { 5333 DPFPRINTF(PF_DEBUG_URGENT, 5334 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5335 goto bad; 5336 } 5337 ip = mtod(m0, struct ip *); 5338 } 5339 5340 if (ifp->if_flags & IFF_LOOPBACK) 5341 m0->m_flags |= M_SKIP_FIREWALL; 5342 5343 ip_len = ntohs(ip->ip_len); 5344 ip_off = ntohs(ip->ip_off); 5345 5346 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5347 m0->m_pkthdr.csum_flags |= CSUM_IP; 5348 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5349 in_delayed_cksum(m0); 5350 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5351 } 5352 #ifdef SCTP 5353 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5354 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5355 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5356 } 5357 #endif 5358 5359 /* 5360 * If small enough for interface, or the interface will take 5361 * care of the fragmentation for us, we can just send directly. 5362 */ 5363 if (ip_len <= ifp->if_mtu || 5364 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5365 ip->ip_sum = 0; 5366 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5367 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5368 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5369 } 5370 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5371 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5372 goto done; 5373 } 5374 5375 /* Balk when DF bit is set or the interface didn't support TSO. */ 5376 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5377 error = EMSGSIZE; 5378 KMOD_IPSTAT_INC(ips_cantfrag); 5379 if (r->rt != PF_DUPTO) { 5380 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5381 ifp->if_mtu); 5382 goto done; 5383 } else 5384 goto bad; 5385 } 5386 5387 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5388 if (error) 5389 goto bad; 5390 5391 for (; m0; m0 = m1) { 5392 m1 = m0->m_nextpkt; 5393 m0->m_nextpkt = NULL; 5394 if (error == 0) { 5395 m_clrprotoflags(m0); 5396 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5397 } else 5398 m_freem(m0); 5399 } 5400 5401 if (error == 0) 5402 KMOD_IPSTAT_INC(ips_fragmented); 5403 5404 done: 5405 if (r->rt != PF_DUPTO) 5406 *m = NULL; 5407 return; 5408 5409 bad_locked: 5410 if (s) 5411 PF_STATE_UNLOCK(s); 5412 bad: 5413 m_freem(m0); 5414 goto done; 5415 } 5416 #endif /* INET */ 5417 5418 #ifdef INET6 5419 static void 5420 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5421 struct pf_state *s, struct pf_pdesc *pd) 5422 { 5423 struct mbuf *m0; 5424 struct sockaddr_in6 dst; 5425 struct ip6_hdr *ip6; 5426 struct ifnet *ifp = NULL; 5427 struct pf_addr naddr; 5428 struct pf_src_node *sn = NULL; 5429 5430 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5431 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5432 __func__)); 5433 5434 if ((pd->pf_mtag == NULL && 5435 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5436 pd->pf_mtag->routed++ > 3) { 5437 m0 = *m; 5438 *m = NULL; 5439 goto bad_locked; 5440 } 5441 5442 if (r->rt == PF_DUPTO) { 5443 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5444 if (s) 5445 PF_STATE_UNLOCK(s); 5446 return; 5447 } 5448 } else { 5449 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5450 if (s) 5451 PF_STATE_UNLOCK(s); 5452 return; 5453 } 5454 m0 = *m; 5455 } 5456 5457 ip6 = mtod(m0, struct ip6_hdr *); 5458 5459 bzero(&dst, sizeof(dst)); 5460 dst.sin6_family = AF_INET6; 5461 dst.sin6_len = sizeof(dst); 5462 dst.sin6_addr = ip6->ip6_dst; 5463 5464 /* Cheat. XXX why only in the v6 case??? */ 5465 if (r->rt == PF_FASTROUTE) { 5466 if (s) 5467 PF_STATE_UNLOCK(s); 5468 m0->m_flags |= M_SKIP_FIREWALL; 5469 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5470 *m = NULL; 5471 return; 5472 } 5473 5474 if (TAILQ_EMPTY(&r->rpool.list)) { 5475 DPFPRINTF(PF_DEBUG_URGENT, 5476 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5477 goto bad_locked; 5478 } 5479 if (s == NULL) { 5480 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5481 &naddr, NULL, &sn); 5482 if (!PF_AZERO(&naddr, AF_INET6)) 5483 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5484 &naddr, AF_INET6); 5485 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5486 } else { 5487 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5488 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5489 &s->rt_addr, AF_INET6); 5490 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5491 } 5492 5493 if (s) 5494 PF_STATE_UNLOCK(s); 5495 5496 if (ifp == NULL) 5497 goto bad; 5498 5499 if (oifp != ifp) { 5500 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5501 goto bad; 5502 else if (m0 == NULL) 5503 goto done; 5504 if (m0->m_len < sizeof(struct ip6_hdr)) { 5505 DPFPRINTF(PF_DEBUG_URGENT, 5506 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5507 __func__)); 5508 goto bad; 5509 } 5510 ip6 = mtod(m0, struct ip6_hdr *); 5511 } 5512 5513 if (ifp->if_flags & IFF_LOOPBACK) 5514 m0->m_flags |= M_SKIP_FIREWALL; 5515 5516 /* 5517 * If the packet is too large for the outgoing interface, 5518 * send back an icmp6 error. 5519 */ 5520 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5521 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5522 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5523 nd6_output(ifp, ifp, m0, &dst, NULL); 5524 else { 5525 in6_ifstat_inc(ifp, ifs6_in_toobig); 5526 if (r->rt != PF_DUPTO) 5527 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5528 else 5529 goto bad; 5530 } 5531 5532 done: 5533 if (r->rt != PF_DUPTO) 5534 *m = NULL; 5535 return; 5536 5537 bad_locked: 5538 if (s) 5539 PF_STATE_UNLOCK(s); 5540 bad: 5541 m_freem(m0); 5542 goto done; 5543 } 5544 #endif /* INET6 */ 5545 5546 /* 5547 * FreeBSD supports cksum offloads for the following drivers. 5548 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5549 * ti(4), txp(4), xl(4) 5550 * 5551 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5552 * network driver performed cksum including pseudo header, need to verify 5553 * csum_data 5554 * CSUM_DATA_VALID : 5555 * network driver performed cksum, needs to additional pseudo header 5556 * cksum computation with partial csum_data(i.e. lack of H/W support for 5557 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5558 * 5559 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5560 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5561 * TCP/UDP layer. 5562 * Also, set csum_data to 0xffff to force cksum validation. 5563 */ 5564 static int 5565 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5566 { 5567 u_int16_t sum = 0; 5568 int hw_assist = 0; 5569 struct ip *ip; 5570 5571 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5572 return (1); 5573 if (m->m_pkthdr.len < off + len) 5574 return (1); 5575 5576 switch (p) { 5577 case IPPROTO_TCP: 5578 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5579 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5580 sum = m->m_pkthdr.csum_data; 5581 } else { 5582 ip = mtod(m, struct ip *); 5583 sum = in_pseudo(ip->ip_src.s_addr, 5584 ip->ip_dst.s_addr, htonl((u_short)len + 5585 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5586 } 5587 sum ^= 0xffff; 5588 ++hw_assist; 5589 } 5590 break; 5591 case IPPROTO_UDP: 5592 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5593 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5594 sum = m->m_pkthdr.csum_data; 5595 } else { 5596 ip = mtod(m, struct ip *); 5597 sum = in_pseudo(ip->ip_src.s_addr, 5598 ip->ip_dst.s_addr, htonl((u_short)len + 5599 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5600 } 5601 sum ^= 0xffff; 5602 ++hw_assist; 5603 } 5604 break; 5605 case IPPROTO_ICMP: 5606 #ifdef INET6 5607 case IPPROTO_ICMPV6: 5608 #endif /* INET6 */ 5609 break; 5610 default: 5611 return (1); 5612 } 5613 5614 if (!hw_assist) { 5615 switch (af) { 5616 case AF_INET: 5617 if (p == IPPROTO_ICMP) { 5618 if (m->m_len < off) 5619 return (1); 5620 m->m_data += off; 5621 m->m_len -= off; 5622 sum = in_cksum(m, len); 5623 m->m_data -= off; 5624 m->m_len += off; 5625 } else { 5626 if (m->m_len < sizeof(struct ip)) 5627 return (1); 5628 sum = in4_cksum(m, p, off, len); 5629 } 5630 break; 5631 #ifdef INET6 5632 case AF_INET6: 5633 if (m->m_len < sizeof(struct ip6_hdr)) 5634 return (1); 5635 sum = in6_cksum(m, p, off, len); 5636 break; 5637 #endif /* INET6 */ 5638 default: 5639 return (1); 5640 } 5641 } 5642 if (sum) { 5643 switch (p) { 5644 case IPPROTO_TCP: 5645 { 5646 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5647 break; 5648 } 5649 case IPPROTO_UDP: 5650 { 5651 KMOD_UDPSTAT_INC(udps_badsum); 5652 break; 5653 } 5654 #ifdef INET 5655 case IPPROTO_ICMP: 5656 { 5657 KMOD_ICMPSTAT_INC(icps_checksum); 5658 break; 5659 } 5660 #endif 5661 #ifdef INET6 5662 case IPPROTO_ICMPV6: 5663 { 5664 KMOD_ICMP6STAT_INC(icp6s_checksum); 5665 break; 5666 } 5667 #endif /* INET6 */ 5668 } 5669 return (1); 5670 } else { 5671 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5672 m->m_pkthdr.csum_flags |= 5673 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5674 m->m_pkthdr.csum_data = 0xffff; 5675 } 5676 } 5677 return (0); 5678 } 5679 5680 5681 #ifdef INET 5682 int 5683 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5684 { 5685 struct pfi_kif *kif; 5686 u_short action, reason = 0, log = 0; 5687 struct mbuf *m = *m0; 5688 struct ip *h = NULL; 5689 struct m_tag *ipfwtag; 5690 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5691 struct pf_state *s = NULL; 5692 struct pf_ruleset *ruleset = NULL; 5693 struct pf_pdesc pd; 5694 int off, dirndx, pqid = 0; 5695 5696 M_ASSERTPKTHDR(m); 5697 5698 if (!V_pf_status.running) 5699 return (PF_PASS); 5700 5701 memset(&pd, 0, sizeof(pd)); 5702 5703 kif = (struct pfi_kif *)ifp->if_pf_kif; 5704 5705 if (kif == NULL) { 5706 DPFPRINTF(PF_DEBUG_URGENT, 5707 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5708 return (PF_DROP); 5709 } 5710 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5711 return (PF_PASS); 5712 5713 if (m->m_flags & M_SKIP_FIREWALL) 5714 return (PF_PASS); 5715 5716 pd.pf_mtag = pf_find_mtag(m); 5717 5718 PF_RULES_RLOCK(); 5719 5720 if (ip_divert_ptr != NULL && 5721 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5722 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5723 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5724 if (pd.pf_mtag == NULL && 5725 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5726 action = PF_DROP; 5727 goto done; 5728 } 5729 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5730 m_tag_delete(m, ipfwtag); 5731 } 5732 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5733 m->m_flags |= M_FASTFWD_OURS; 5734 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5735 } 5736 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5737 /* We do IP header normalization and packet reassembly here */ 5738 action = PF_DROP; 5739 goto done; 5740 } 5741 m = *m0; /* pf_normalize messes with m0 */ 5742 h = mtod(m, struct ip *); 5743 5744 off = h->ip_hl << 2; 5745 if (off < (int)sizeof(struct ip)) { 5746 action = PF_DROP; 5747 REASON_SET(&reason, PFRES_SHORT); 5748 log = 1; 5749 goto done; 5750 } 5751 5752 pd.src = (struct pf_addr *)&h->ip_src; 5753 pd.dst = (struct pf_addr *)&h->ip_dst; 5754 pd.sport = pd.dport = NULL; 5755 pd.ip_sum = &h->ip_sum; 5756 pd.proto_sum = NULL; 5757 pd.proto = h->ip_p; 5758 pd.dir = dir; 5759 pd.sidx = (dir == PF_IN) ? 0 : 1; 5760 pd.didx = (dir == PF_IN) ? 1 : 0; 5761 pd.af = AF_INET; 5762 pd.tos = h->ip_tos; 5763 pd.tot_len = ntohs(h->ip_len); 5764 5765 /* handle fragments that didn't get reassembled by normalization */ 5766 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5767 action = pf_test_fragment(&r, dir, kif, m, h, 5768 &pd, &a, &ruleset); 5769 goto done; 5770 } 5771 5772 switch (h->ip_p) { 5773 5774 case IPPROTO_TCP: { 5775 struct tcphdr th; 5776 5777 pd.hdr.tcp = &th; 5778 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5779 &action, &reason, AF_INET)) { 5780 log = action != PF_PASS; 5781 goto done; 5782 } 5783 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5784 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5785 pqid = 1; 5786 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5787 if (action == PF_DROP) 5788 goto done; 5789 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5790 &reason); 5791 if (action == PF_PASS) { 5792 if (pfsync_update_state_ptr != NULL) 5793 pfsync_update_state_ptr(s); 5794 r = s->rule.ptr; 5795 a = s->anchor.ptr; 5796 log = s->log; 5797 } else if (s == NULL) 5798 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5799 &a, &ruleset, inp); 5800 break; 5801 } 5802 5803 case IPPROTO_UDP: { 5804 struct udphdr uh; 5805 5806 pd.hdr.udp = &uh; 5807 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5808 &action, &reason, AF_INET)) { 5809 log = action != PF_PASS; 5810 goto done; 5811 } 5812 if (uh.uh_dport == 0 || 5813 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5814 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5815 action = PF_DROP; 5816 REASON_SET(&reason, PFRES_SHORT); 5817 goto done; 5818 } 5819 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5820 if (action == PF_PASS) { 5821 if (pfsync_update_state_ptr != NULL) 5822 pfsync_update_state_ptr(s); 5823 r = s->rule.ptr; 5824 a = s->anchor.ptr; 5825 log = s->log; 5826 } else if (s == NULL) 5827 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5828 &a, &ruleset, inp); 5829 break; 5830 } 5831 5832 case IPPROTO_ICMP: { 5833 struct icmp ih; 5834 5835 pd.hdr.icmp = &ih; 5836 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5837 &action, &reason, AF_INET)) { 5838 log = action != PF_PASS; 5839 goto done; 5840 } 5841 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5842 &reason); 5843 if (action == PF_PASS) { 5844 if (pfsync_update_state_ptr != NULL) 5845 pfsync_update_state_ptr(s); 5846 r = s->rule.ptr; 5847 a = s->anchor.ptr; 5848 log = s->log; 5849 } else if (s == NULL) 5850 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5851 &a, &ruleset, inp); 5852 break; 5853 } 5854 5855 #ifdef INET6 5856 case IPPROTO_ICMPV6: { 5857 action = PF_DROP; 5858 DPFPRINTF(PF_DEBUG_MISC, 5859 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5860 goto done; 5861 } 5862 #endif 5863 5864 default: 5865 action = pf_test_state_other(&s, dir, kif, m, &pd); 5866 if (action == PF_PASS) { 5867 if (pfsync_update_state_ptr != NULL) 5868 pfsync_update_state_ptr(s); 5869 r = s->rule.ptr; 5870 a = s->anchor.ptr; 5871 log = s->log; 5872 } else if (s == NULL) 5873 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5874 &a, &ruleset, inp); 5875 break; 5876 } 5877 5878 done: 5879 PF_RULES_RUNLOCK(); 5880 if (action == PF_PASS && h->ip_hl > 5 && 5881 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5882 action = PF_DROP; 5883 REASON_SET(&reason, PFRES_IPOPTIONS); 5884 log = 1; 5885 DPFPRINTF(PF_DEBUG_MISC, 5886 ("pf: dropping packet with ip options\n")); 5887 } 5888 5889 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5890 action = PF_DROP; 5891 REASON_SET(&reason, PFRES_MEMORY); 5892 } 5893 if (r->rtableid >= 0) 5894 M_SETFIB(m, r->rtableid); 5895 5896 #ifdef ALTQ 5897 if (action == PF_PASS && r->qid) { 5898 if (pd.pf_mtag == NULL && 5899 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5900 action = PF_DROP; 5901 REASON_SET(&reason, PFRES_MEMORY); 5902 } else { 5903 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5904 pd.pf_mtag->qid = r->pqid; 5905 else 5906 pd.pf_mtag->qid = r->qid; 5907 /* Add hints for ecn. */ 5908 pd.pf_mtag->hdr = h; 5909 } 5910 5911 } 5912 #endif /* ALTQ */ 5913 5914 /* 5915 * connections redirected to loopback should not match sockets 5916 * bound specifically to loopback due to security implications, 5917 * see tcp_input() and in_pcblookup_listen(). 5918 */ 5919 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5920 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5921 (s->nat_rule.ptr->action == PF_RDR || 5922 s->nat_rule.ptr->action == PF_BINAT) && 5923 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5924 m->m_flags |= M_SKIP_FIREWALL; 5925 5926 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5927 !PACKET_LOOPED(&pd)) { 5928 5929 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5930 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5931 if (ipfwtag != NULL) { 5932 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5933 ntohs(r->divert.port); 5934 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5935 5936 if (s) 5937 PF_STATE_UNLOCK(s); 5938 5939 m_tag_prepend(m, ipfwtag); 5940 if (m->m_flags & M_FASTFWD_OURS) { 5941 if (pd.pf_mtag == NULL && 5942 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5943 action = PF_DROP; 5944 REASON_SET(&reason, PFRES_MEMORY); 5945 log = 1; 5946 DPFPRINTF(PF_DEBUG_MISC, 5947 ("pf: failed to allocate tag\n")); 5948 } else { 5949 pd.pf_mtag->flags |= 5950 PF_FASTFWD_OURS_PRESENT; 5951 m->m_flags &= ~M_FASTFWD_OURS; 5952 } 5953 } 5954 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5955 *m0 = NULL; 5956 5957 return (action); 5958 } else { 5959 /* XXX: ipfw has the same behaviour! */ 5960 action = PF_DROP; 5961 REASON_SET(&reason, PFRES_MEMORY); 5962 log = 1; 5963 DPFPRINTF(PF_DEBUG_MISC, 5964 ("pf: failed to allocate divert tag\n")); 5965 } 5966 } 5967 5968 if (log) { 5969 struct pf_rule *lr; 5970 5971 if (s != NULL && s->nat_rule.ptr != NULL && 5972 s->nat_rule.ptr->log & PF_LOG_ALL) 5973 lr = s->nat_rule.ptr; 5974 else 5975 lr = r; 5976 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5977 (s == NULL)); 5978 } 5979 5980 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5981 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5982 5983 if (action == PF_PASS || r->action == PF_DROP) { 5984 dirndx = (dir == PF_OUT); 5985 r->packets[dirndx]++; 5986 r->bytes[dirndx] += pd.tot_len; 5987 if (a != NULL) { 5988 a->packets[dirndx]++; 5989 a->bytes[dirndx] += pd.tot_len; 5990 } 5991 if (s != NULL) { 5992 if (s->nat_rule.ptr != NULL) { 5993 s->nat_rule.ptr->packets[dirndx]++; 5994 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5995 } 5996 if (s->src_node != NULL) { 5997 s->src_node->packets[dirndx]++; 5998 s->src_node->bytes[dirndx] += pd.tot_len; 5999 } 6000 if (s->nat_src_node != NULL) { 6001 s->nat_src_node->packets[dirndx]++; 6002 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6003 } 6004 dirndx = (dir == s->direction) ? 0 : 1; 6005 s->packets[dirndx]++; 6006 s->bytes[dirndx] += pd.tot_len; 6007 } 6008 tr = r; 6009 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6010 if (nr != NULL && r == &V_pf_default_rule) 6011 tr = nr; 6012 if (tr->src.addr.type == PF_ADDR_TABLE) 6013 pfr_update_stats(tr->src.addr.p.tbl, 6014 (s == NULL) ? pd.src : 6015 &s->key[(s->direction == PF_IN)]-> 6016 addr[(s->direction == PF_OUT)], 6017 pd.af, pd.tot_len, dir == PF_OUT, 6018 r->action == PF_PASS, tr->src.neg); 6019 if (tr->dst.addr.type == PF_ADDR_TABLE) 6020 pfr_update_stats(tr->dst.addr.p.tbl, 6021 (s == NULL) ? pd.dst : 6022 &s->key[(s->direction == PF_IN)]-> 6023 addr[(s->direction == PF_IN)], 6024 pd.af, pd.tot_len, dir == PF_OUT, 6025 r->action == PF_PASS, tr->dst.neg); 6026 } 6027 6028 switch (action) { 6029 case PF_SYNPROXY_DROP: 6030 m_freem(*m0); 6031 case PF_DEFER: 6032 *m0 = NULL; 6033 action = PF_PASS; 6034 break; 6035 case PF_DROP: 6036 m_freem(*m0); 6037 *m0 = NULL; 6038 break; 6039 default: 6040 /* pf_route() returns unlocked. */ 6041 if (r->rt) { 6042 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6043 return (action); 6044 } 6045 break; 6046 } 6047 if (s) 6048 PF_STATE_UNLOCK(s); 6049 6050 return (action); 6051 } 6052 #endif /* INET */ 6053 6054 #ifdef INET6 6055 int 6056 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6057 { 6058 struct pfi_kif *kif; 6059 u_short action, reason = 0, log = 0; 6060 struct mbuf *m = *m0, *n = NULL; 6061 struct m_tag *mtag; 6062 struct ip6_hdr *h = NULL; 6063 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6064 struct pf_state *s = NULL; 6065 struct pf_ruleset *ruleset = NULL; 6066 struct pf_pdesc pd; 6067 int off, terminal = 0, dirndx, rh_cnt = 0; 6068 int fwdir = dir; 6069 6070 M_ASSERTPKTHDR(m); 6071 6072 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif) 6073 fwdir = PF_FWD; 6074 6075 if (!V_pf_status.running) 6076 return (PF_PASS); 6077 6078 memset(&pd, 0, sizeof(pd)); 6079 pd.pf_mtag = pf_find_mtag(m); 6080 6081 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6082 return (PF_PASS); 6083 6084 kif = (struct pfi_kif *)ifp->if_pf_kif; 6085 if (kif == NULL) { 6086 DPFPRINTF(PF_DEBUG_URGENT, 6087 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6088 return (PF_DROP); 6089 } 6090 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6091 return (PF_PASS); 6092 6093 if (m->m_flags & M_SKIP_FIREWALL) 6094 return (PF_PASS); 6095 6096 PF_RULES_RLOCK(); 6097 6098 /* We do IP header normalization and packet reassembly here */ 6099 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6100 action = PF_DROP; 6101 goto done; 6102 } 6103 m = *m0; /* pf_normalize messes with m0 */ 6104 h = mtod(m, struct ip6_hdr *); 6105 6106 #if 1 6107 /* 6108 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6109 * will do something bad, so drop the packet for now. 6110 */ 6111 if (htons(h->ip6_plen) == 0) { 6112 action = PF_DROP; 6113 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6114 goto done; 6115 } 6116 #endif 6117 6118 pd.src = (struct pf_addr *)&h->ip6_src; 6119 pd.dst = (struct pf_addr *)&h->ip6_dst; 6120 pd.sport = pd.dport = NULL; 6121 pd.ip_sum = NULL; 6122 pd.proto_sum = NULL; 6123 pd.dir = dir; 6124 pd.sidx = (dir == PF_IN) ? 0 : 1; 6125 pd.didx = (dir == PF_IN) ? 1 : 0; 6126 pd.af = AF_INET6; 6127 pd.tos = 0; 6128 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6129 6130 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6131 pd.proto = h->ip6_nxt; 6132 do { 6133 switch (pd.proto) { 6134 case IPPROTO_FRAGMENT: 6135 action = pf_test_fragment(&r, dir, kif, m, h, 6136 &pd, &a, &ruleset); 6137 if (action == PF_DROP) 6138 REASON_SET(&reason, PFRES_FRAG); 6139 goto done; 6140 case IPPROTO_ROUTING: { 6141 struct ip6_rthdr rthdr; 6142 6143 if (rh_cnt++) { 6144 DPFPRINTF(PF_DEBUG_MISC, 6145 ("pf: IPv6 more than one rthdr\n")); 6146 action = PF_DROP; 6147 REASON_SET(&reason, PFRES_IPOPTIONS); 6148 log = 1; 6149 goto done; 6150 } 6151 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6152 &reason, pd.af)) { 6153 DPFPRINTF(PF_DEBUG_MISC, 6154 ("pf: IPv6 short rthdr\n")); 6155 action = PF_DROP; 6156 REASON_SET(&reason, PFRES_SHORT); 6157 log = 1; 6158 goto done; 6159 } 6160 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6161 DPFPRINTF(PF_DEBUG_MISC, 6162 ("pf: IPv6 rthdr0\n")); 6163 action = PF_DROP; 6164 REASON_SET(&reason, PFRES_IPOPTIONS); 6165 log = 1; 6166 goto done; 6167 } 6168 /* FALLTHROUGH */ 6169 } 6170 case IPPROTO_AH: 6171 case IPPROTO_HOPOPTS: 6172 case IPPROTO_DSTOPTS: { 6173 /* get next header and header length */ 6174 struct ip6_ext opt6; 6175 6176 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6177 NULL, &reason, pd.af)) { 6178 DPFPRINTF(PF_DEBUG_MISC, 6179 ("pf: IPv6 short opt\n")); 6180 action = PF_DROP; 6181 log = 1; 6182 goto done; 6183 } 6184 if (pd.proto == IPPROTO_AH) 6185 off += (opt6.ip6e_len + 2) * 4; 6186 else 6187 off += (opt6.ip6e_len + 1) * 8; 6188 pd.proto = opt6.ip6e_nxt; 6189 /* goto the next header */ 6190 break; 6191 } 6192 default: 6193 terminal++; 6194 break; 6195 } 6196 } while (!terminal); 6197 6198 /* if there's no routing header, use unmodified mbuf for checksumming */ 6199 if (!n) 6200 n = m; 6201 6202 switch (pd.proto) { 6203 6204 case IPPROTO_TCP: { 6205 struct tcphdr th; 6206 6207 pd.hdr.tcp = &th; 6208 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6209 &action, &reason, AF_INET6)) { 6210 log = action != PF_PASS; 6211 goto done; 6212 } 6213 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6214 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6215 if (action == PF_DROP) 6216 goto done; 6217 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6218 &reason); 6219 if (action == PF_PASS) { 6220 if (pfsync_update_state_ptr != NULL) 6221 pfsync_update_state_ptr(s); 6222 r = s->rule.ptr; 6223 a = s->anchor.ptr; 6224 log = s->log; 6225 } else if (s == NULL) 6226 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6227 &a, &ruleset, inp); 6228 break; 6229 } 6230 6231 case IPPROTO_UDP: { 6232 struct udphdr uh; 6233 6234 pd.hdr.udp = &uh; 6235 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6236 &action, &reason, AF_INET6)) { 6237 log = action != PF_PASS; 6238 goto done; 6239 } 6240 if (uh.uh_dport == 0 || 6241 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6242 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6243 action = PF_DROP; 6244 REASON_SET(&reason, PFRES_SHORT); 6245 goto done; 6246 } 6247 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6248 if (action == PF_PASS) { 6249 if (pfsync_update_state_ptr != NULL) 6250 pfsync_update_state_ptr(s); 6251 r = s->rule.ptr; 6252 a = s->anchor.ptr; 6253 log = s->log; 6254 } else if (s == NULL) 6255 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6256 &a, &ruleset, inp); 6257 break; 6258 } 6259 6260 case IPPROTO_ICMP: { 6261 action = PF_DROP; 6262 DPFPRINTF(PF_DEBUG_MISC, 6263 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6264 goto done; 6265 } 6266 6267 case IPPROTO_ICMPV6: { 6268 struct icmp6_hdr ih; 6269 6270 pd.hdr.icmp6 = &ih; 6271 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6272 &action, &reason, AF_INET6)) { 6273 log = action != PF_PASS; 6274 goto done; 6275 } 6276 action = pf_test_state_icmp(&s, dir, kif, 6277 m, off, h, &pd, &reason); 6278 if (action == PF_PASS) { 6279 if (pfsync_update_state_ptr != NULL) 6280 pfsync_update_state_ptr(s); 6281 r = s->rule.ptr; 6282 a = s->anchor.ptr; 6283 log = s->log; 6284 } else if (s == NULL) 6285 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6286 &a, &ruleset, inp); 6287 break; 6288 } 6289 6290 default: 6291 action = pf_test_state_other(&s, dir, kif, m, &pd); 6292 if (action == PF_PASS) { 6293 if (pfsync_update_state_ptr != NULL) 6294 pfsync_update_state_ptr(s); 6295 r = s->rule.ptr; 6296 a = s->anchor.ptr; 6297 log = s->log; 6298 } else if (s == NULL) 6299 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6300 &a, &ruleset, inp); 6301 break; 6302 } 6303 6304 done: 6305 PF_RULES_RUNLOCK(); 6306 if (n != m) { 6307 m_freem(n); 6308 n = NULL; 6309 } 6310 6311 /* handle dangerous IPv6 extension headers. */ 6312 if (action == PF_PASS && rh_cnt && 6313 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6314 action = PF_DROP; 6315 REASON_SET(&reason, PFRES_IPOPTIONS); 6316 log = 1; 6317 DPFPRINTF(PF_DEBUG_MISC, 6318 ("pf: dropping packet with dangerous v6 headers\n")); 6319 } 6320 6321 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6322 action = PF_DROP; 6323 REASON_SET(&reason, PFRES_MEMORY); 6324 } 6325 if (r->rtableid >= 0) 6326 M_SETFIB(m, r->rtableid); 6327 6328 #ifdef ALTQ 6329 if (action == PF_PASS && r->qid) { 6330 if (pd.pf_mtag == NULL && 6331 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6332 action = PF_DROP; 6333 REASON_SET(&reason, PFRES_MEMORY); 6334 } else { 6335 if (pd.tos & IPTOS_LOWDELAY) 6336 pd.pf_mtag->qid = r->pqid; 6337 else 6338 pd.pf_mtag->qid = r->qid; 6339 /* Add hints for ecn. */ 6340 pd.pf_mtag->hdr = h; 6341 } 6342 } 6343 #endif /* ALTQ */ 6344 6345 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6346 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6347 (s->nat_rule.ptr->action == PF_RDR || 6348 s->nat_rule.ptr->action == PF_BINAT) && 6349 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6350 m->m_flags |= M_SKIP_FIREWALL; 6351 6352 /* XXX: Anybody working on it?! */ 6353 if (r->divert.port) 6354 printf("pf: divert(9) is not supported for IPv6\n"); 6355 6356 if (log) { 6357 struct pf_rule *lr; 6358 6359 if (s != NULL && s->nat_rule.ptr != NULL && 6360 s->nat_rule.ptr->log & PF_LOG_ALL) 6361 lr = s->nat_rule.ptr; 6362 else 6363 lr = r; 6364 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6365 &pd, (s == NULL)); 6366 } 6367 6368 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6369 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6370 6371 if (action == PF_PASS || r->action == PF_DROP) { 6372 dirndx = (dir == PF_OUT); 6373 r->packets[dirndx]++; 6374 r->bytes[dirndx] += pd.tot_len; 6375 if (a != NULL) { 6376 a->packets[dirndx]++; 6377 a->bytes[dirndx] += pd.tot_len; 6378 } 6379 if (s != NULL) { 6380 if (s->nat_rule.ptr != NULL) { 6381 s->nat_rule.ptr->packets[dirndx]++; 6382 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6383 } 6384 if (s->src_node != NULL) { 6385 s->src_node->packets[dirndx]++; 6386 s->src_node->bytes[dirndx] += pd.tot_len; 6387 } 6388 if (s->nat_src_node != NULL) { 6389 s->nat_src_node->packets[dirndx]++; 6390 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6391 } 6392 dirndx = (dir == s->direction) ? 0 : 1; 6393 s->packets[dirndx]++; 6394 s->bytes[dirndx] += pd.tot_len; 6395 } 6396 tr = r; 6397 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6398 if (nr != NULL && r == &V_pf_default_rule) 6399 tr = nr; 6400 if (tr->src.addr.type == PF_ADDR_TABLE) 6401 pfr_update_stats(tr->src.addr.p.tbl, 6402 (s == NULL) ? pd.src : 6403 &s->key[(s->direction == PF_IN)]->addr[0], 6404 pd.af, pd.tot_len, dir == PF_OUT, 6405 r->action == PF_PASS, tr->src.neg); 6406 if (tr->dst.addr.type == PF_ADDR_TABLE) 6407 pfr_update_stats(tr->dst.addr.p.tbl, 6408 (s == NULL) ? pd.dst : 6409 &s->key[(s->direction == PF_IN)]->addr[1], 6410 pd.af, pd.tot_len, dir == PF_OUT, 6411 r->action == PF_PASS, tr->dst.neg); 6412 } 6413 6414 switch (action) { 6415 case PF_SYNPROXY_DROP: 6416 m_freem(*m0); 6417 case PF_DEFER: 6418 *m0 = NULL; 6419 action = PF_PASS; 6420 break; 6421 case PF_DROP: 6422 m_freem(*m0); 6423 *m0 = NULL; 6424 break; 6425 default: 6426 /* pf_route6() returns unlocked. */ 6427 if (r->rt) { 6428 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6429 return (action); 6430 } 6431 break; 6432 } 6433 6434 if (s) 6435 PF_STATE_UNLOCK(s); 6436 6437 /* If reassembled packet passed, create new fragments. */ 6438 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6439 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6440 action = pf_refragment6(ifp, m0, mtag); 6441 6442 return (action); 6443 } 6444 #endif /* INET6 */ 6445