1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 #include <net/route.h> 68 #include <net/radix_mpath.h> 69 #include <net/vnet.h> 70 71 #include <net/pfvar.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/ip.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/icmp_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 92 93 #ifdef INET6 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_fib.h> 100 #include <netinet6/scope6_var.h> 101 #endif /* INET6 */ 102 103 #include <machine/in_cksum.h> 104 #include <security/mac/mac_framework.h> 105 106 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 107 108 /* 109 * Global variables 110 */ 111 112 /* state tables */ 113 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 114 VNET_DEFINE(struct pf_palist, pf_pabuf); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 117 VNET_DEFINE(struct pf_kstatus, pf_status); 118 119 VNET_DEFINE(u_int32_t, ticket_altqs_active); 120 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 121 VNET_DEFINE(int, altqs_inactive_open); 122 VNET_DEFINE(u_int32_t, ticket_pabuf); 123 124 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 125 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 126 VNET_DEFINE(u_char, pf_tcp_secret[16]); 127 #define V_pf_tcp_secret VNET(pf_tcp_secret) 128 VNET_DEFINE(int, pf_tcp_secret_init); 129 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 130 VNET_DEFINE(int, pf_tcp_iss_off); 131 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 132 133 /* 134 * Queue for pf_intr() sends. 135 */ 136 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 137 struct pf_send_entry { 138 STAILQ_ENTRY(pf_send_entry) pfse_next; 139 struct mbuf *pfse_m; 140 enum { 141 PFSE_IP, 142 PFSE_IP6, 143 PFSE_ICMP, 144 PFSE_ICMP6, 145 } pfse_type; 146 struct { 147 int type; 148 int code; 149 int mtu; 150 } icmpopts; 151 }; 152 153 STAILQ_HEAD(pf_send_head, pf_send_entry); 154 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 155 #define V_pf_sendqueue VNET(pf_sendqueue) 156 157 static struct mtx pf_sendqueue_mtx; 158 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 159 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 160 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 161 162 /* 163 * Queue for pf_overload_task() tasks. 164 */ 165 struct pf_overload_entry { 166 SLIST_ENTRY(pf_overload_entry) next; 167 struct pf_addr addr; 168 sa_family_t af; 169 uint8_t dir; 170 struct pf_rule *rule; 171 }; 172 173 SLIST_HEAD(pf_overload_head, pf_overload_entry); 174 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 175 #define V_pf_overloadqueue VNET(pf_overloadqueue) 176 static VNET_DEFINE(struct task, pf_overloadtask); 177 #define V_pf_overloadtask VNET(pf_overloadtask) 178 179 static struct mtx pf_overloadqueue_mtx; 180 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 181 "pf overload/flush queue", MTX_DEF); 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 188 MTX_DEF); 189 190 static VNET_DEFINE(uma_zone_t, pf_sources_z); 191 #define V_pf_sources_z VNET(pf_sources_z) 192 uma_zone_t pf_mtag_z; 193 VNET_DEFINE(uma_zone_t, pf_state_z); 194 VNET_DEFINE(uma_zone_t, pf_state_key_z); 195 196 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 197 #define PFID_CPUBITS 8 198 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 199 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 200 #define PFID_MAXID (~PFID_CPUMASK) 201 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 202 203 static void pf_src_tree_remove_state(struct pf_state *); 204 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 205 u_int32_t); 206 static void pf_add_threshold(struct pf_threshold *); 207 static int pf_check_threshold(struct pf_threshold *); 208 209 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 210 u_int16_t *, u_int16_t *, struct pf_addr *, 211 u_int16_t, u_int8_t, sa_family_t); 212 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 213 struct tcphdr *, struct pf_state_peer *); 214 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 215 struct pf_addr *, struct pf_addr *, u_int16_t, 216 u_int16_t *, u_int16_t *, u_int16_t *, 217 u_int16_t *, u_int8_t, sa_family_t); 218 static void pf_send_tcp(struct mbuf *, 219 const struct pf_rule *, sa_family_t, 220 const struct pf_addr *, const struct pf_addr *, 221 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 222 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 223 u_int16_t, struct ifnet *); 224 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 225 sa_family_t, struct pf_rule *); 226 static void pf_detach_state(struct pf_state *); 227 static int pf_state_key_attach(struct pf_state_key *, 228 struct pf_state_key *, struct pf_state *); 229 static void pf_state_key_detach(struct pf_state *, int); 230 static int pf_state_key_ctor(void *, int, void *, int); 231 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 232 static int pf_test_rule(struct pf_rule **, struct pf_state **, 233 int, struct pfi_kif *, struct mbuf *, int, 234 struct pf_pdesc *, struct pf_rule **, 235 struct pf_ruleset **, struct inpcb *); 236 static int pf_create_state(struct pf_rule *, struct pf_rule *, 237 struct pf_rule *, struct pf_pdesc *, 238 struct pf_src_node *, struct pf_state_key *, 239 struct pf_state_key *, struct mbuf *, int, 240 u_int16_t, u_int16_t, int *, struct pfi_kif *, 241 struct pf_state **, int, u_int16_t, u_int16_t, 242 int); 243 static int pf_test_fragment(struct pf_rule **, int, 244 struct pfi_kif *, struct mbuf *, void *, 245 struct pf_pdesc *, struct pf_rule **, 246 struct pf_ruleset **); 247 static int pf_tcp_track_full(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pfi_kif *, struct mbuf *, int, 250 struct pf_pdesc *, u_short *, int *); 251 static int pf_tcp_track_sloppy(struct pf_state_peer *, 252 struct pf_state_peer *, struct pf_state **, 253 struct pf_pdesc *, u_short *); 254 static int pf_test_state_tcp(struct pf_state **, int, 255 struct pfi_kif *, struct mbuf *, int, 256 void *, struct pf_pdesc *, u_short *); 257 static int pf_test_state_udp(struct pf_state **, int, 258 struct pfi_kif *, struct mbuf *, int, 259 void *, struct pf_pdesc *); 260 static int pf_test_state_icmp(struct pf_state **, int, 261 struct pfi_kif *, struct mbuf *, int, 262 void *, struct pf_pdesc *, u_short *); 263 static int pf_test_state_other(struct pf_state **, int, 264 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 265 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 270 int, u_int16_t); 271 static int pf_check_proto_cksum(struct mbuf *, int, int, 272 u_int8_t, sa_family_t); 273 static void pf_print_state_parts(struct pf_state *, 274 struct pf_state_key *, struct pf_state_key *); 275 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 276 struct pf_addr_wrap *); 277 static struct pf_state *pf_find_state(struct pfi_kif *, 278 struct pf_state_key_cmp *, u_int); 279 static int pf_src_connlimit(struct pf_state **); 280 static void pf_overload_task(void *v, int pending); 281 static int pf_insert_src_node(struct pf_src_node **, 282 struct pf_rule *, struct pf_addr *, sa_family_t); 283 static u_int pf_purge_expired_states(u_int, int); 284 static void pf_purge_unlinked_rules(void); 285 static int pf_mtag_uminit(void *, int, int); 286 static void pf_mtag_free(struct m_tag *); 287 #ifdef INET 288 static void pf_route(struct mbuf **, struct pf_rule *, int, 289 struct ifnet *, struct pf_state *, 290 struct pf_pdesc *); 291 #endif /* INET */ 292 #ifdef INET6 293 static void pf_change_a6(struct pf_addr *, u_int16_t *, 294 struct pf_addr *, u_int8_t); 295 static void pf_route6(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET6 */ 299 300 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 301 302 extern int pf_end_threads; 303 304 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 305 306 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 307 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 308 309 #define STATE_LOOKUP(i, k, d, s, pd) \ 310 do { \ 311 (s) = pf_find_state((i), (k), (d)); \ 312 if ((s) == NULL) \ 313 return (PF_DROP); \ 314 if (PACKET_LOOPED(pd)) \ 315 return (PF_PASS); \ 316 if ((d) == PF_OUT && \ 317 (((s)->rule.ptr->rt == PF_ROUTETO && \ 318 (s)->rule.ptr->direction == PF_OUT) || \ 319 ((s)->rule.ptr->rt == PF_REPLYTO && \ 320 (s)->rule.ptr->direction == PF_IN)) && \ 321 (s)->rt_kif != NULL && \ 322 (s)->rt_kif != (i)) \ 323 return (PF_PASS); \ 324 } while (0) 325 326 #define BOUND_IFACE(r, k) \ 327 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 328 329 #define STATE_INC_COUNTERS(s) \ 330 do { \ 331 counter_u64_add(s->rule.ptr->states_cur, 1); \ 332 counter_u64_add(s->rule.ptr->states_tot, 1); \ 333 if (s->anchor.ptr != NULL) { \ 334 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 335 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 336 } \ 337 if (s->nat_rule.ptr != NULL) { \ 338 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 339 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 340 } \ 341 } while (0) 342 343 #define STATE_DEC_COUNTERS(s) \ 344 do { \ 345 if (s->nat_rule.ptr != NULL) \ 346 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 347 if (s->anchor.ptr != NULL) \ 348 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 349 counter_u64_add(s->rule.ptr->states_cur, -1); \ 350 } while (0) 351 352 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 353 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 354 VNET_DEFINE(struct pf_idhash *, pf_idhash); 355 VNET_DEFINE(struct pf_srchash *, pf_srchash); 356 357 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 358 359 u_long pf_hashmask; 360 u_long pf_srchashmask; 361 static u_long pf_hashsize; 362 static u_long pf_srchashsize; 363 364 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 365 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 366 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 367 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 368 369 VNET_DEFINE(void *, pf_swi_cookie); 370 371 VNET_DEFINE(uint32_t, pf_hashseed); 372 #define V_pf_hashseed VNET(pf_hashseed) 373 374 int 375 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 376 { 377 378 switch (af) { 379 #ifdef INET 380 case AF_INET: 381 if (a->addr32[0] > b->addr32[0]) 382 return (1); 383 if (a->addr32[0] < b->addr32[0]) 384 return (-1); 385 break; 386 #endif /* INET */ 387 #ifdef INET6 388 case AF_INET6: 389 if (a->addr32[3] > b->addr32[3]) 390 return (1); 391 if (a->addr32[3] < b->addr32[3]) 392 return (-1); 393 if (a->addr32[2] > b->addr32[2]) 394 return (1); 395 if (a->addr32[2] < b->addr32[2]) 396 return (-1); 397 if (a->addr32[1] > b->addr32[1]) 398 return (1); 399 if (a->addr32[1] < b->addr32[1]) 400 return (-1); 401 if (a->addr32[0] > b->addr32[0]) 402 return (1); 403 if (a->addr32[0] < b->addr32[0]) 404 return (-1); 405 break; 406 #endif /* INET6 */ 407 default: 408 panic("%s: unknown address family %u", __func__, af); 409 } 410 return (0); 411 } 412 413 static __inline uint32_t 414 pf_hashkey(struct pf_state_key *sk) 415 { 416 uint32_t h; 417 418 h = murmur3_32_hash32((uint32_t *)sk, 419 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 420 V_pf_hashseed); 421 422 return (h & pf_hashmask); 423 } 424 425 static __inline uint32_t 426 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 427 { 428 uint32_t h; 429 430 switch (af) { 431 case AF_INET: 432 h = murmur3_32_hash32((uint32_t *)&addr->v4, 433 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 434 break; 435 case AF_INET6: 436 h = murmur3_32_hash32((uint32_t *)&addr->v6, 437 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 438 break; 439 default: 440 panic("%s: unknown address family %u", __func__, af); 441 } 442 443 return (h & pf_srchashmask); 444 } 445 446 #ifdef ALTQ 447 static int 448 pf_state_hash(struct pf_state *s) 449 { 450 u_int32_t hv = (intptr_t)s / sizeof(*s); 451 452 hv ^= crc32(&s->src, sizeof(s->src)); 453 hv ^= crc32(&s->dst, sizeof(s->dst)); 454 if (hv == 0) 455 hv = 1; 456 return (hv); 457 } 458 #endif 459 460 #ifdef INET6 461 void 462 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 463 { 464 switch (af) { 465 #ifdef INET 466 case AF_INET: 467 dst->addr32[0] = src->addr32[0]; 468 break; 469 #endif /* INET */ 470 case AF_INET6: 471 dst->addr32[0] = src->addr32[0]; 472 dst->addr32[1] = src->addr32[1]; 473 dst->addr32[2] = src->addr32[2]; 474 dst->addr32[3] = src->addr32[3]; 475 break; 476 } 477 } 478 #endif /* INET6 */ 479 480 static void 481 pf_init_threshold(struct pf_threshold *threshold, 482 u_int32_t limit, u_int32_t seconds) 483 { 484 threshold->limit = limit * PF_THRESHOLD_MULT; 485 threshold->seconds = seconds; 486 threshold->count = 0; 487 threshold->last = time_uptime; 488 } 489 490 static void 491 pf_add_threshold(struct pf_threshold *threshold) 492 { 493 u_int32_t t = time_uptime, diff = t - threshold->last; 494 495 if (diff >= threshold->seconds) 496 threshold->count = 0; 497 else 498 threshold->count -= threshold->count * diff / 499 threshold->seconds; 500 threshold->count += PF_THRESHOLD_MULT; 501 threshold->last = t; 502 } 503 504 static int 505 pf_check_threshold(struct pf_threshold *threshold) 506 { 507 return (threshold->count > threshold->limit); 508 } 509 510 static int 511 pf_src_connlimit(struct pf_state **state) 512 { 513 struct pf_overload_entry *pfoe; 514 int bad = 0; 515 516 PF_STATE_LOCK_ASSERT(*state); 517 518 (*state)->src_node->conn++; 519 (*state)->src.tcp_est = 1; 520 pf_add_threshold(&(*state)->src_node->conn_rate); 521 522 if ((*state)->rule.ptr->max_src_conn && 523 (*state)->rule.ptr->max_src_conn < 524 (*state)->src_node->conn) { 525 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 526 bad++; 527 } 528 529 if ((*state)->rule.ptr->max_src_conn_rate.limit && 530 pf_check_threshold(&(*state)->src_node->conn_rate)) { 531 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 532 bad++; 533 } 534 535 if (!bad) 536 return (0); 537 538 /* Kill this state. */ 539 (*state)->timeout = PFTM_PURGE; 540 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 541 542 if ((*state)->rule.ptr->overload_tbl == NULL) 543 return (1); 544 545 /* Schedule overloading and flushing task. */ 546 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 547 if (pfoe == NULL) 548 return (1); /* too bad :( */ 549 550 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 551 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 552 pfoe->rule = (*state)->rule.ptr; 553 pfoe->dir = (*state)->direction; 554 PF_OVERLOADQ_LOCK(); 555 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 556 PF_OVERLOADQ_UNLOCK(); 557 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 558 559 return (1); 560 } 561 562 static void 563 pf_overload_task(void *v, int pending) 564 { 565 struct pf_overload_head queue; 566 struct pfr_addr p; 567 struct pf_overload_entry *pfoe, *pfoe1; 568 uint32_t killed = 0; 569 570 CURVNET_SET((struct vnet *)v); 571 572 PF_OVERLOADQ_LOCK(); 573 queue = V_pf_overloadqueue; 574 SLIST_INIT(&V_pf_overloadqueue); 575 PF_OVERLOADQ_UNLOCK(); 576 577 bzero(&p, sizeof(p)); 578 SLIST_FOREACH(pfoe, &queue, next) { 579 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 580 if (V_pf_status.debug >= PF_DEBUG_MISC) { 581 printf("%s: blocking address ", __func__); 582 pf_print_host(&pfoe->addr, 0, pfoe->af); 583 printf("\n"); 584 } 585 586 p.pfra_af = pfoe->af; 587 switch (pfoe->af) { 588 #ifdef INET 589 case AF_INET: 590 p.pfra_net = 32; 591 p.pfra_ip4addr = pfoe->addr.v4; 592 break; 593 #endif 594 #ifdef INET6 595 case AF_INET6: 596 p.pfra_net = 128; 597 p.pfra_ip6addr = pfoe->addr.v6; 598 break; 599 #endif 600 } 601 602 PF_RULES_WLOCK(); 603 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 604 PF_RULES_WUNLOCK(); 605 } 606 607 /* 608 * Remove those entries, that don't need flushing. 609 */ 610 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 611 if (pfoe->rule->flush == 0) { 612 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 613 free(pfoe, M_PFTEMP); 614 } else 615 counter_u64_add( 616 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 617 618 /* If nothing to flush, return. */ 619 if (SLIST_EMPTY(&queue)) { 620 CURVNET_RESTORE(); 621 return; 622 } 623 624 for (int i = 0; i <= pf_hashmask; i++) { 625 struct pf_idhash *ih = &V_pf_idhash[i]; 626 struct pf_state_key *sk; 627 struct pf_state *s; 628 629 PF_HASHROW_LOCK(ih); 630 LIST_FOREACH(s, &ih->states, entry) { 631 sk = s->key[PF_SK_WIRE]; 632 SLIST_FOREACH(pfoe, &queue, next) 633 if (sk->af == pfoe->af && 634 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 635 pfoe->rule == s->rule.ptr) && 636 ((pfoe->dir == PF_OUT && 637 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 638 (pfoe->dir == PF_IN && 639 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 640 s->timeout = PFTM_PURGE; 641 s->src.state = s->dst.state = TCPS_CLOSED; 642 killed++; 643 } 644 } 645 PF_HASHROW_UNLOCK(ih); 646 } 647 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 648 free(pfoe, M_PFTEMP); 649 if (V_pf_status.debug >= PF_DEBUG_MISC) 650 printf("%s: %u states killed", __func__, killed); 651 652 CURVNET_RESTORE(); 653 } 654 655 /* 656 * Can return locked on failure, so that we can consistently 657 * allocate and insert a new one. 658 */ 659 struct pf_src_node * 660 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 661 int returnlocked) 662 { 663 struct pf_srchash *sh; 664 struct pf_src_node *n; 665 666 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 667 668 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 669 PF_HASHROW_LOCK(sh); 670 LIST_FOREACH(n, &sh->nodes, entry) 671 if (n->rule.ptr == rule && n->af == af && 672 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 673 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 674 break; 675 if (n != NULL) { 676 n->states++; 677 PF_HASHROW_UNLOCK(sh); 678 } else if (returnlocked == 0) 679 PF_HASHROW_UNLOCK(sh); 680 681 return (n); 682 } 683 684 static int 685 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 686 struct pf_addr *src, sa_family_t af) 687 { 688 689 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 690 rule->rpool.opts & PF_POOL_STICKYADDR), 691 ("%s for non-tracking rule %p", __func__, rule)); 692 693 if (*sn == NULL) 694 *sn = pf_find_src_node(src, rule, af, 1); 695 696 if (*sn == NULL) { 697 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 698 699 PF_HASHROW_ASSERT(sh); 700 701 if (!rule->max_src_nodes || 702 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 703 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 704 else 705 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 706 1); 707 if ((*sn) == NULL) { 708 PF_HASHROW_UNLOCK(sh); 709 return (-1); 710 } 711 712 pf_init_threshold(&(*sn)->conn_rate, 713 rule->max_src_conn_rate.limit, 714 rule->max_src_conn_rate.seconds); 715 716 (*sn)->af = af; 717 (*sn)->rule.ptr = rule; 718 PF_ACPY(&(*sn)->addr, src, af); 719 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 720 (*sn)->creation = time_uptime; 721 (*sn)->ruletype = rule->action; 722 (*sn)->states = 1; 723 if ((*sn)->rule.ptr != NULL) 724 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 725 PF_HASHROW_UNLOCK(sh); 726 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 727 } else { 728 if (rule->max_src_states && 729 (*sn)->states >= rule->max_src_states) { 730 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 731 1); 732 return (-1); 733 } 734 } 735 return (0); 736 } 737 738 void 739 pf_unlink_src_node(struct pf_src_node *src) 740 { 741 742 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 743 LIST_REMOVE(src, entry); 744 if (src->rule.ptr) 745 counter_u64_add(src->rule.ptr->src_nodes, -1); 746 } 747 748 u_int 749 pf_free_src_nodes(struct pf_src_node_list *head) 750 { 751 struct pf_src_node *sn, *tmp; 752 u_int count = 0; 753 754 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 755 uma_zfree(V_pf_sources_z, sn); 756 count++; 757 } 758 759 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 760 761 return (count); 762 } 763 764 void 765 pf_mtag_initialize() 766 { 767 768 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 769 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 770 UMA_ALIGN_PTR, 0); 771 } 772 773 /* Per-vnet data storage structures initialization. */ 774 void 775 pf_initialize() 776 { 777 struct pf_keyhash *kh; 778 struct pf_idhash *ih; 779 struct pf_srchash *sh; 780 u_int i; 781 782 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 783 pf_hashsize = PF_HASHSIZ; 784 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 785 pf_srchashsize = PF_HASHSIZ / 4; 786 787 V_pf_hashseed = arc4random(); 788 789 /* States and state keys storage. */ 790 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 791 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 792 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 793 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 794 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 795 796 V_pf_state_key_z = uma_zcreate("pf state keys", 797 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 798 UMA_ALIGN_PTR, 0); 799 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 800 M_PFHASH, M_WAITOK | M_ZERO); 801 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 802 M_PFHASH, M_WAITOK | M_ZERO); 803 pf_hashmask = pf_hashsize - 1; 804 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 805 i++, kh++, ih++) { 806 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 807 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 808 } 809 810 /* Source nodes. */ 811 V_pf_sources_z = uma_zcreate("pf source nodes", 812 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 813 0); 814 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 815 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 816 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 817 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 818 M_PFHASH, M_WAITOK|M_ZERO); 819 pf_srchashmask = pf_srchashsize - 1; 820 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 821 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 822 823 /* ALTQ */ 824 TAILQ_INIT(&V_pf_altqs[0]); 825 TAILQ_INIT(&V_pf_altqs[1]); 826 TAILQ_INIT(&V_pf_pabuf); 827 V_pf_altqs_active = &V_pf_altqs[0]; 828 V_pf_altqs_inactive = &V_pf_altqs[1]; 829 830 /* Send & overload+flush queues. */ 831 STAILQ_INIT(&V_pf_sendqueue); 832 SLIST_INIT(&V_pf_overloadqueue); 833 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 834 835 /* Unlinked, but may be referenced rules. */ 836 TAILQ_INIT(&V_pf_unlinked_rules); 837 } 838 839 void 840 pf_mtag_cleanup() 841 { 842 843 uma_zdestroy(pf_mtag_z); 844 } 845 846 void 847 pf_cleanup() 848 { 849 struct pf_keyhash *kh; 850 struct pf_idhash *ih; 851 struct pf_srchash *sh; 852 struct pf_send_entry *pfse, *next; 853 u_int i; 854 855 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 856 i++, kh++, ih++) { 857 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 858 __func__)); 859 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 860 __func__)); 861 mtx_destroy(&kh->lock); 862 mtx_destroy(&ih->lock); 863 } 864 free(V_pf_keyhash, M_PFHASH); 865 free(V_pf_idhash, M_PFHASH); 866 867 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 868 KASSERT(LIST_EMPTY(&sh->nodes), 869 ("%s: source node hash not empty", __func__)); 870 mtx_destroy(&sh->lock); 871 } 872 free(V_pf_srchash, M_PFHASH); 873 874 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 875 m_freem(pfse->pfse_m); 876 free(pfse, M_PFTEMP); 877 } 878 879 uma_zdestroy(V_pf_sources_z); 880 uma_zdestroy(V_pf_state_z); 881 uma_zdestroy(V_pf_state_key_z); 882 } 883 884 static int 885 pf_mtag_uminit(void *mem, int size, int how) 886 { 887 struct m_tag *t; 888 889 t = (struct m_tag *)mem; 890 t->m_tag_cookie = MTAG_ABI_COMPAT; 891 t->m_tag_id = PACKET_TAG_PF; 892 t->m_tag_len = sizeof(struct pf_mtag); 893 t->m_tag_free = pf_mtag_free; 894 895 return (0); 896 } 897 898 static void 899 pf_mtag_free(struct m_tag *t) 900 { 901 902 uma_zfree(pf_mtag_z, t); 903 } 904 905 struct pf_mtag * 906 pf_get_mtag(struct mbuf *m) 907 { 908 struct m_tag *mtag; 909 910 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 911 return ((struct pf_mtag *)(mtag + 1)); 912 913 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 914 if (mtag == NULL) 915 return (NULL); 916 bzero(mtag + 1, sizeof(struct pf_mtag)); 917 m_tag_prepend(m, mtag); 918 919 return ((struct pf_mtag *)(mtag + 1)); 920 } 921 922 static int 923 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 924 struct pf_state *s) 925 { 926 struct pf_keyhash *khs, *khw, *kh; 927 struct pf_state_key *sk, *cur; 928 struct pf_state *si, *olds = NULL; 929 int idx; 930 931 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 932 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 933 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 934 935 /* 936 * We need to lock hash slots of both keys. To avoid deadlock 937 * we always lock the slot with lower address first. Unlock order 938 * isn't important. 939 * 940 * We also need to lock ID hash slot before dropping key 941 * locks. On success we return with ID hash slot locked. 942 */ 943 944 if (skw == sks) { 945 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 946 PF_HASHROW_LOCK(khs); 947 } else { 948 khs = &V_pf_keyhash[pf_hashkey(sks)]; 949 khw = &V_pf_keyhash[pf_hashkey(skw)]; 950 if (khs == khw) { 951 PF_HASHROW_LOCK(khs); 952 } else if (khs < khw) { 953 PF_HASHROW_LOCK(khs); 954 PF_HASHROW_LOCK(khw); 955 } else { 956 PF_HASHROW_LOCK(khw); 957 PF_HASHROW_LOCK(khs); 958 } 959 } 960 961 #define KEYS_UNLOCK() do { \ 962 if (khs != khw) { \ 963 PF_HASHROW_UNLOCK(khs); \ 964 PF_HASHROW_UNLOCK(khw); \ 965 } else \ 966 PF_HASHROW_UNLOCK(khs); \ 967 } while (0) 968 969 /* 970 * First run: start with wire key. 971 */ 972 sk = skw; 973 kh = khw; 974 idx = PF_SK_WIRE; 975 976 keyattach: 977 LIST_FOREACH(cur, &kh->keys, entry) 978 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 979 break; 980 981 if (cur != NULL) { 982 /* Key exists. Check for same kif, if none, add to key. */ 983 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 984 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 985 986 PF_HASHROW_LOCK(ih); 987 if (si->kif == s->kif && 988 si->direction == s->direction) { 989 if (sk->proto == IPPROTO_TCP && 990 si->src.state >= TCPS_FIN_WAIT_2 && 991 si->dst.state >= TCPS_FIN_WAIT_2) { 992 /* 993 * New state matches an old >FIN_WAIT_2 994 * state. We can't drop key hash locks, 995 * thus we can't unlink it properly. 996 * 997 * As a workaround we drop it into 998 * TCPS_CLOSED state, schedule purge 999 * ASAP and push it into the very end 1000 * of the slot TAILQ, so that it won't 1001 * conflict with our new state. 1002 */ 1003 si->src.state = si->dst.state = 1004 TCPS_CLOSED; 1005 si->timeout = PFTM_PURGE; 1006 olds = si; 1007 } else { 1008 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1009 printf("pf: %s key attach " 1010 "failed on %s: ", 1011 (idx == PF_SK_WIRE) ? 1012 "wire" : "stack", 1013 s->kif->pfik_name); 1014 pf_print_state_parts(s, 1015 (idx == PF_SK_WIRE) ? 1016 sk : NULL, 1017 (idx == PF_SK_STACK) ? 1018 sk : NULL); 1019 printf(", existing: "); 1020 pf_print_state_parts(si, 1021 (idx == PF_SK_WIRE) ? 1022 sk : NULL, 1023 (idx == PF_SK_STACK) ? 1024 sk : NULL); 1025 printf("\n"); 1026 } 1027 PF_HASHROW_UNLOCK(ih); 1028 KEYS_UNLOCK(); 1029 uma_zfree(V_pf_state_key_z, sk); 1030 if (idx == PF_SK_STACK) 1031 pf_detach_state(s); 1032 return (EEXIST); /* collision! */ 1033 } 1034 } 1035 PF_HASHROW_UNLOCK(ih); 1036 } 1037 uma_zfree(V_pf_state_key_z, sk); 1038 s->key[idx] = cur; 1039 } else { 1040 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1041 s->key[idx] = sk; 1042 } 1043 1044 stateattach: 1045 /* List is sorted, if-bound states before floating. */ 1046 if (s->kif == V_pfi_all) 1047 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1048 else 1049 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1050 1051 if (olds) { 1052 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1053 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1054 key_list[idx]); 1055 olds = NULL; 1056 } 1057 1058 /* 1059 * Attach done. See how should we (or should not?) 1060 * attach a second key. 1061 */ 1062 if (sks == skw) { 1063 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1064 idx = PF_SK_STACK; 1065 sks = NULL; 1066 goto stateattach; 1067 } else if (sks != NULL) { 1068 /* 1069 * Continue attaching with stack key. 1070 */ 1071 sk = sks; 1072 kh = khs; 1073 idx = PF_SK_STACK; 1074 sks = NULL; 1075 goto keyattach; 1076 } 1077 1078 PF_STATE_LOCK(s); 1079 KEYS_UNLOCK(); 1080 1081 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1082 ("%s failure", __func__)); 1083 1084 return (0); 1085 #undef KEYS_UNLOCK 1086 } 1087 1088 static void 1089 pf_detach_state(struct pf_state *s) 1090 { 1091 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1092 struct pf_keyhash *kh; 1093 1094 if (sks != NULL) { 1095 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1096 PF_HASHROW_LOCK(kh); 1097 if (s->key[PF_SK_STACK] != NULL) 1098 pf_state_key_detach(s, PF_SK_STACK); 1099 /* 1100 * If both point to same key, then we are done. 1101 */ 1102 if (sks == s->key[PF_SK_WIRE]) { 1103 pf_state_key_detach(s, PF_SK_WIRE); 1104 PF_HASHROW_UNLOCK(kh); 1105 return; 1106 } 1107 PF_HASHROW_UNLOCK(kh); 1108 } 1109 1110 if (s->key[PF_SK_WIRE] != NULL) { 1111 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1112 PF_HASHROW_LOCK(kh); 1113 if (s->key[PF_SK_WIRE] != NULL) 1114 pf_state_key_detach(s, PF_SK_WIRE); 1115 PF_HASHROW_UNLOCK(kh); 1116 } 1117 } 1118 1119 static void 1120 pf_state_key_detach(struct pf_state *s, int idx) 1121 { 1122 struct pf_state_key *sk = s->key[idx]; 1123 #ifdef INVARIANTS 1124 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1125 1126 PF_HASHROW_ASSERT(kh); 1127 #endif 1128 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1129 s->key[idx] = NULL; 1130 1131 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1132 LIST_REMOVE(sk, entry); 1133 uma_zfree(V_pf_state_key_z, sk); 1134 } 1135 } 1136 1137 static int 1138 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1139 { 1140 struct pf_state_key *sk = mem; 1141 1142 bzero(sk, sizeof(struct pf_state_key_cmp)); 1143 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1144 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1145 1146 return (0); 1147 } 1148 1149 struct pf_state_key * 1150 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1151 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1152 { 1153 struct pf_state_key *sk; 1154 1155 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1156 if (sk == NULL) 1157 return (NULL); 1158 1159 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1160 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1161 sk->port[pd->sidx] = sport; 1162 sk->port[pd->didx] = dport; 1163 sk->proto = pd->proto; 1164 sk->af = pd->af; 1165 1166 return (sk); 1167 } 1168 1169 struct pf_state_key * 1170 pf_state_key_clone(struct pf_state_key *orig) 1171 { 1172 struct pf_state_key *sk; 1173 1174 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1175 if (sk == NULL) 1176 return (NULL); 1177 1178 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1179 1180 return (sk); 1181 } 1182 1183 int 1184 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1185 struct pf_state_key *sks, struct pf_state *s) 1186 { 1187 struct pf_idhash *ih; 1188 struct pf_state *cur; 1189 int error; 1190 1191 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1192 ("%s: sks not pristine", __func__)); 1193 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1194 ("%s: skw not pristine", __func__)); 1195 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1196 1197 s->kif = kif; 1198 1199 if (s->id == 0 && s->creatorid == 0) { 1200 /* XXX: should be atomic, but probability of collision low */ 1201 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1202 V_pf_stateid[curcpu] = 1; 1203 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1204 s->id = htobe64(s->id); 1205 s->creatorid = V_pf_status.hostid; 1206 } 1207 1208 /* Returns with ID locked on success. */ 1209 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1210 return (error); 1211 1212 ih = &V_pf_idhash[PF_IDHASH(s)]; 1213 PF_HASHROW_ASSERT(ih); 1214 LIST_FOREACH(cur, &ih->states, entry) 1215 if (cur->id == s->id && cur->creatorid == s->creatorid) 1216 break; 1217 1218 if (cur != NULL) { 1219 PF_HASHROW_UNLOCK(ih); 1220 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1221 printf("pf: state ID collision: " 1222 "id: %016llx creatorid: %08x\n", 1223 (unsigned long long)be64toh(s->id), 1224 ntohl(s->creatorid)); 1225 } 1226 pf_detach_state(s); 1227 return (EEXIST); 1228 } 1229 LIST_INSERT_HEAD(&ih->states, s, entry); 1230 /* One for keys, one for ID hash. */ 1231 refcount_init(&s->refs, 2); 1232 1233 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1234 if (pfsync_insert_state_ptr != NULL) 1235 pfsync_insert_state_ptr(s); 1236 1237 /* Returns locked. */ 1238 return (0); 1239 } 1240 1241 /* 1242 * Find state by ID: returns with locked row on success. 1243 */ 1244 struct pf_state * 1245 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1246 { 1247 struct pf_idhash *ih; 1248 struct pf_state *s; 1249 1250 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1251 1252 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1253 1254 PF_HASHROW_LOCK(ih); 1255 LIST_FOREACH(s, &ih->states, entry) 1256 if (s->id == id && s->creatorid == creatorid) 1257 break; 1258 1259 if (s == NULL) 1260 PF_HASHROW_UNLOCK(ih); 1261 1262 return (s); 1263 } 1264 1265 /* 1266 * Find state by key. 1267 * Returns with ID hash slot locked on success. 1268 */ 1269 static struct pf_state * 1270 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1271 { 1272 struct pf_keyhash *kh; 1273 struct pf_state_key *sk; 1274 struct pf_state *s; 1275 int idx; 1276 1277 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1278 1279 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1280 1281 PF_HASHROW_LOCK(kh); 1282 LIST_FOREACH(sk, &kh->keys, entry) 1283 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1284 break; 1285 if (sk == NULL) { 1286 PF_HASHROW_UNLOCK(kh); 1287 return (NULL); 1288 } 1289 1290 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1291 1292 /* List is sorted, if-bound states before floating ones. */ 1293 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1294 if (s->kif == V_pfi_all || s->kif == kif) { 1295 PF_STATE_LOCK(s); 1296 PF_HASHROW_UNLOCK(kh); 1297 if (s->timeout >= PFTM_MAX) { 1298 /* 1299 * State is either being processed by 1300 * pf_unlink_state() in an other thread, or 1301 * is scheduled for immediate expiry. 1302 */ 1303 PF_STATE_UNLOCK(s); 1304 return (NULL); 1305 } 1306 return (s); 1307 } 1308 PF_HASHROW_UNLOCK(kh); 1309 1310 return (NULL); 1311 } 1312 1313 struct pf_state * 1314 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1315 { 1316 struct pf_keyhash *kh; 1317 struct pf_state_key *sk; 1318 struct pf_state *s, *ret = NULL; 1319 int idx, inout = 0; 1320 1321 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1322 1323 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1324 1325 PF_HASHROW_LOCK(kh); 1326 LIST_FOREACH(sk, &kh->keys, entry) 1327 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1328 break; 1329 if (sk == NULL) { 1330 PF_HASHROW_UNLOCK(kh); 1331 return (NULL); 1332 } 1333 switch (dir) { 1334 case PF_IN: 1335 idx = PF_SK_WIRE; 1336 break; 1337 case PF_OUT: 1338 idx = PF_SK_STACK; 1339 break; 1340 case PF_INOUT: 1341 idx = PF_SK_WIRE; 1342 inout = 1; 1343 break; 1344 default: 1345 panic("%s: dir %u", __func__, dir); 1346 } 1347 second_run: 1348 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1349 if (more == NULL) { 1350 PF_HASHROW_UNLOCK(kh); 1351 return (s); 1352 } 1353 1354 if (ret) 1355 (*more)++; 1356 else 1357 ret = s; 1358 } 1359 if (inout == 1) { 1360 inout = 0; 1361 idx = PF_SK_STACK; 1362 goto second_run; 1363 } 1364 PF_HASHROW_UNLOCK(kh); 1365 1366 return (ret); 1367 } 1368 1369 /* END state table stuff */ 1370 1371 static void 1372 pf_send(struct pf_send_entry *pfse) 1373 { 1374 1375 PF_SENDQ_LOCK(); 1376 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1377 PF_SENDQ_UNLOCK(); 1378 swi_sched(V_pf_swi_cookie, 0); 1379 } 1380 1381 void 1382 pf_intr(void *v) 1383 { 1384 struct pf_send_head queue; 1385 struct pf_send_entry *pfse, *next; 1386 1387 CURVNET_SET((struct vnet *)v); 1388 1389 PF_SENDQ_LOCK(); 1390 queue = V_pf_sendqueue; 1391 STAILQ_INIT(&V_pf_sendqueue); 1392 PF_SENDQ_UNLOCK(); 1393 1394 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1395 switch (pfse->pfse_type) { 1396 #ifdef INET 1397 case PFSE_IP: 1398 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1399 break; 1400 case PFSE_ICMP: 1401 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1402 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1403 break; 1404 #endif /* INET */ 1405 #ifdef INET6 1406 case PFSE_IP6: 1407 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1408 NULL); 1409 break; 1410 case PFSE_ICMP6: 1411 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1412 pfse->icmpopts.code, pfse->icmpopts.mtu); 1413 break; 1414 #endif /* INET6 */ 1415 default: 1416 panic("%s: unknown type", __func__); 1417 } 1418 free(pfse, M_PFTEMP); 1419 } 1420 CURVNET_RESTORE(); 1421 } 1422 1423 void 1424 pf_purge_thread(void *unused __unused) 1425 { 1426 VNET_ITERATOR_DECL(vnet_iter); 1427 u_int idx = 0; 1428 1429 for (;;) { 1430 PF_RULES_RLOCK(); 1431 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1432 PF_RULES_RUNLOCK(); 1433 1434 VNET_LIST_RLOCK(); 1435 VNET_FOREACH(vnet_iter) { 1436 CURVNET_SET(vnet_iter); 1437 1438 if (pf_end_threads) { 1439 pf_end_threads++; 1440 wakeup(pf_purge_thread); 1441 kproc_exit(0); 1442 } 1443 1444 /* Process 1/interval fraction of the state table every run. */ 1445 idx = pf_purge_expired_states(idx, pf_hashmask / 1446 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1447 1448 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1449 if (idx == 0) { 1450 /* 1451 * Order is important: 1452 * - states and src nodes reference rules 1453 * - states and rules reference kifs 1454 */ 1455 pf_purge_expired_fragments(); 1456 pf_purge_expired_src_nodes(); 1457 pf_purge_unlinked_rules(); 1458 pfi_kif_purge(); 1459 } 1460 CURVNET_RESTORE(); 1461 } 1462 VNET_LIST_RUNLOCK(); 1463 } 1464 /* not reached */ 1465 } 1466 1467 void 1468 pf_unload_vnet_purge(void) 1469 { 1470 1471 /* 1472 * To cleanse up all kifs and rules we need 1473 * two runs: first one clears reference flags, 1474 * then pf_purge_expired_states() doesn't 1475 * raise them, and then second run frees. 1476 */ 1477 pf_purge_unlinked_rules(); 1478 pfi_kif_purge(); 1479 1480 /* 1481 * Now purge everything. 1482 */ 1483 pf_purge_expired_states(0, pf_hashmask); 1484 pf_purge_expired_fragments(); 1485 pf_purge_expired_src_nodes(); 1486 1487 /* 1488 * Now all kifs & rules should be unreferenced, 1489 * thus should be successfully freed. 1490 */ 1491 pf_purge_unlinked_rules(); 1492 pfi_kif_purge(); 1493 } 1494 1495 1496 u_int32_t 1497 pf_state_expires(const struct pf_state *state) 1498 { 1499 u_int32_t timeout; 1500 u_int32_t start; 1501 u_int32_t end; 1502 u_int32_t states; 1503 1504 /* handle all PFTM_* > PFTM_MAX here */ 1505 if (state->timeout == PFTM_PURGE) 1506 return (time_uptime); 1507 KASSERT(state->timeout != PFTM_UNLINKED, 1508 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1509 KASSERT((state->timeout < PFTM_MAX), 1510 ("pf_state_expires: timeout > PFTM_MAX")); 1511 timeout = state->rule.ptr->timeout[state->timeout]; 1512 if (!timeout) 1513 timeout = V_pf_default_rule.timeout[state->timeout]; 1514 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1515 if (start) { 1516 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1517 states = counter_u64_fetch(state->rule.ptr->states_cur); 1518 } else { 1519 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1520 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1521 states = V_pf_status.states; 1522 } 1523 if (end && states > start && start < end) { 1524 if (states < end) 1525 return (state->expire + timeout * (end - states) / 1526 (end - start)); 1527 else 1528 return (time_uptime); 1529 } 1530 return (state->expire + timeout); 1531 } 1532 1533 void 1534 pf_purge_expired_src_nodes() 1535 { 1536 struct pf_src_node_list freelist; 1537 struct pf_srchash *sh; 1538 struct pf_src_node *cur, *next; 1539 int i; 1540 1541 LIST_INIT(&freelist); 1542 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1543 PF_HASHROW_LOCK(sh); 1544 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1545 if (cur->states == 0 && cur->expire <= time_uptime) { 1546 pf_unlink_src_node(cur); 1547 LIST_INSERT_HEAD(&freelist, cur, entry); 1548 } else if (cur->rule.ptr != NULL) 1549 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1550 PF_HASHROW_UNLOCK(sh); 1551 } 1552 1553 pf_free_src_nodes(&freelist); 1554 1555 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1556 } 1557 1558 static void 1559 pf_src_tree_remove_state(struct pf_state *s) 1560 { 1561 struct pf_src_node *sn; 1562 struct pf_srchash *sh; 1563 uint32_t timeout; 1564 1565 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1566 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1567 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1568 1569 if (s->src_node != NULL) { 1570 sn = s->src_node; 1571 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1572 PF_HASHROW_LOCK(sh); 1573 if (s->src.tcp_est) 1574 --sn->conn; 1575 if (--sn->states == 0) 1576 sn->expire = time_uptime + timeout; 1577 PF_HASHROW_UNLOCK(sh); 1578 } 1579 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1580 sn = s->nat_src_node; 1581 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1582 PF_HASHROW_LOCK(sh); 1583 if (--sn->states == 0) 1584 sn->expire = time_uptime + timeout; 1585 PF_HASHROW_UNLOCK(sh); 1586 } 1587 s->src_node = s->nat_src_node = NULL; 1588 } 1589 1590 /* 1591 * Unlink and potentilly free a state. Function may be 1592 * called with ID hash row locked, but always returns 1593 * unlocked, since it needs to go through key hash locking. 1594 */ 1595 int 1596 pf_unlink_state(struct pf_state *s, u_int flags) 1597 { 1598 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1599 1600 if ((flags & PF_ENTER_LOCKED) == 0) 1601 PF_HASHROW_LOCK(ih); 1602 else 1603 PF_HASHROW_ASSERT(ih); 1604 1605 if (s->timeout == PFTM_UNLINKED) { 1606 /* 1607 * State is being processed 1608 * by pf_unlink_state() in 1609 * an other thread. 1610 */ 1611 PF_HASHROW_UNLOCK(ih); 1612 return (0); /* XXXGL: undefined actually */ 1613 } 1614 1615 if (s->src.state == PF_TCPS_PROXY_DST) { 1616 /* XXX wire key the right one? */ 1617 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1618 &s->key[PF_SK_WIRE]->addr[1], 1619 &s->key[PF_SK_WIRE]->addr[0], 1620 s->key[PF_SK_WIRE]->port[1], 1621 s->key[PF_SK_WIRE]->port[0], 1622 s->src.seqhi, s->src.seqlo + 1, 1623 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1624 } 1625 1626 LIST_REMOVE(s, entry); 1627 pf_src_tree_remove_state(s); 1628 1629 if (pfsync_delete_state_ptr != NULL) 1630 pfsync_delete_state_ptr(s); 1631 1632 STATE_DEC_COUNTERS(s); 1633 1634 s->timeout = PFTM_UNLINKED; 1635 1636 PF_HASHROW_UNLOCK(ih); 1637 1638 pf_detach_state(s); 1639 refcount_release(&s->refs); 1640 1641 return (pf_release_state(s)); 1642 } 1643 1644 void 1645 pf_free_state(struct pf_state *cur) 1646 { 1647 1648 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1649 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1650 cur->timeout)); 1651 1652 pf_normalize_tcp_cleanup(cur); 1653 uma_zfree(V_pf_state_z, cur); 1654 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1655 } 1656 1657 /* 1658 * Called only from pf_purge_thread(), thus serialized. 1659 */ 1660 static u_int 1661 pf_purge_expired_states(u_int i, int maxcheck) 1662 { 1663 struct pf_idhash *ih; 1664 struct pf_state *s; 1665 1666 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1667 1668 /* 1669 * Go through hash and unlink states that expire now. 1670 */ 1671 while (maxcheck > 0) { 1672 1673 ih = &V_pf_idhash[i]; 1674 relock: 1675 PF_HASHROW_LOCK(ih); 1676 LIST_FOREACH(s, &ih->states, entry) { 1677 if (pf_state_expires(s) <= time_uptime) { 1678 V_pf_status.states -= 1679 pf_unlink_state(s, PF_ENTER_LOCKED); 1680 goto relock; 1681 } 1682 s->rule.ptr->rule_flag |= PFRULE_REFS; 1683 if (s->nat_rule.ptr != NULL) 1684 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1685 if (s->anchor.ptr != NULL) 1686 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1687 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1688 if (s->rt_kif) 1689 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1690 } 1691 PF_HASHROW_UNLOCK(ih); 1692 1693 /* Return when we hit end of hash. */ 1694 if (++i > pf_hashmask) { 1695 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1696 return (0); 1697 } 1698 1699 maxcheck--; 1700 } 1701 1702 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1703 1704 return (i); 1705 } 1706 1707 static void 1708 pf_purge_unlinked_rules() 1709 { 1710 struct pf_rulequeue tmpq; 1711 struct pf_rule *r, *r1; 1712 1713 /* 1714 * If we have overloading task pending, then we'd 1715 * better skip purging this time. There is a tiny 1716 * probability that overloading task references 1717 * an already unlinked rule. 1718 */ 1719 PF_OVERLOADQ_LOCK(); 1720 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1721 PF_OVERLOADQ_UNLOCK(); 1722 return; 1723 } 1724 PF_OVERLOADQ_UNLOCK(); 1725 1726 /* 1727 * Do naive mark-and-sweep garbage collecting of old rules. 1728 * Reference flag is raised by pf_purge_expired_states() 1729 * and pf_purge_expired_src_nodes(). 1730 * 1731 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1732 * use a temporary queue. 1733 */ 1734 TAILQ_INIT(&tmpq); 1735 PF_UNLNKDRULES_LOCK(); 1736 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1737 if (!(r->rule_flag & PFRULE_REFS)) { 1738 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1739 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1740 } else 1741 r->rule_flag &= ~PFRULE_REFS; 1742 } 1743 PF_UNLNKDRULES_UNLOCK(); 1744 1745 if (!TAILQ_EMPTY(&tmpq)) { 1746 PF_RULES_WLOCK(); 1747 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1748 TAILQ_REMOVE(&tmpq, r, entries); 1749 pf_free_rule(r); 1750 } 1751 PF_RULES_WUNLOCK(); 1752 } 1753 } 1754 1755 void 1756 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1757 { 1758 switch (af) { 1759 #ifdef INET 1760 case AF_INET: { 1761 u_int32_t a = ntohl(addr->addr32[0]); 1762 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1763 (a>>8)&255, a&255); 1764 if (p) { 1765 p = ntohs(p); 1766 printf(":%u", p); 1767 } 1768 break; 1769 } 1770 #endif /* INET */ 1771 #ifdef INET6 1772 case AF_INET6: { 1773 u_int16_t b; 1774 u_int8_t i, curstart, curend, maxstart, maxend; 1775 curstart = curend = maxstart = maxend = 255; 1776 for (i = 0; i < 8; i++) { 1777 if (!addr->addr16[i]) { 1778 if (curstart == 255) 1779 curstart = i; 1780 curend = i; 1781 } else { 1782 if ((curend - curstart) > 1783 (maxend - maxstart)) { 1784 maxstart = curstart; 1785 maxend = curend; 1786 } 1787 curstart = curend = 255; 1788 } 1789 } 1790 if ((curend - curstart) > 1791 (maxend - maxstart)) { 1792 maxstart = curstart; 1793 maxend = curend; 1794 } 1795 for (i = 0; i < 8; i++) { 1796 if (i >= maxstart && i <= maxend) { 1797 if (i == 0) 1798 printf(":"); 1799 if (i == maxend) 1800 printf(":"); 1801 } else { 1802 b = ntohs(addr->addr16[i]); 1803 printf("%x", b); 1804 if (i < 7) 1805 printf(":"); 1806 } 1807 } 1808 if (p) { 1809 p = ntohs(p); 1810 printf("[%u]", p); 1811 } 1812 break; 1813 } 1814 #endif /* INET6 */ 1815 } 1816 } 1817 1818 void 1819 pf_print_state(struct pf_state *s) 1820 { 1821 pf_print_state_parts(s, NULL, NULL); 1822 } 1823 1824 static void 1825 pf_print_state_parts(struct pf_state *s, 1826 struct pf_state_key *skwp, struct pf_state_key *sksp) 1827 { 1828 struct pf_state_key *skw, *sks; 1829 u_int8_t proto, dir; 1830 1831 /* Do our best to fill these, but they're skipped if NULL */ 1832 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1833 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1834 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1835 dir = s ? s->direction : 0; 1836 1837 switch (proto) { 1838 case IPPROTO_IPV4: 1839 printf("IPv4"); 1840 break; 1841 case IPPROTO_IPV6: 1842 printf("IPv6"); 1843 break; 1844 case IPPROTO_TCP: 1845 printf("TCP"); 1846 break; 1847 case IPPROTO_UDP: 1848 printf("UDP"); 1849 break; 1850 case IPPROTO_ICMP: 1851 printf("ICMP"); 1852 break; 1853 case IPPROTO_ICMPV6: 1854 printf("ICMPv6"); 1855 break; 1856 default: 1857 printf("%u", proto); 1858 break; 1859 } 1860 switch (dir) { 1861 case PF_IN: 1862 printf(" in"); 1863 break; 1864 case PF_OUT: 1865 printf(" out"); 1866 break; 1867 } 1868 if (skw) { 1869 printf(" wire: "); 1870 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1871 printf(" "); 1872 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1873 } 1874 if (sks) { 1875 printf(" stack: "); 1876 if (sks != skw) { 1877 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1878 printf(" "); 1879 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1880 } else 1881 printf("-"); 1882 } 1883 if (s) { 1884 if (proto == IPPROTO_TCP) { 1885 printf(" [lo=%u high=%u win=%u modulator=%u", 1886 s->src.seqlo, s->src.seqhi, 1887 s->src.max_win, s->src.seqdiff); 1888 if (s->src.wscale && s->dst.wscale) 1889 printf(" wscale=%u", 1890 s->src.wscale & PF_WSCALE_MASK); 1891 printf("]"); 1892 printf(" [lo=%u high=%u win=%u modulator=%u", 1893 s->dst.seqlo, s->dst.seqhi, 1894 s->dst.max_win, s->dst.seqdiff); 1895 if (s->src.wscale && s->dst.wscale) 1896 printf(" wscale=%u", 1897 s->dst.wscale & PF_WSCALE_MASK); 1898 printf("]"); 1899 } 1900 printf(" %u:%u", s->src.state, s->dst.state); 1901 } 1902 } 1903 1904 void 1905 pf_print_flags(u_int8_t f) 1906 { 1907 if (f) 1908 printf(" "); 1909 if (f & TH_FIN) 1910 printf("F"); 1911 if (f & TH_SYN) 1912 printf("S"); 1913 if (f & TH_RST) 1914 printf("R"); 1915 if (f & TH_PUSH) 1916 printf("P"); 1917 if (f & TH_ACK) 1918 printf("A"); 1919 if (f & TH_URG) 1920 printf("U"); 1921 if (f & TH_ECE) 1922 printf("E"); 1923 if (f & TH_CWR) 1924 printf("W"); 1925 } 1926 1927 #define PF_SET_SKIP_STEPS(i) \ 1928 do { \ 1929 while (head[i] != cur) { \ 1930 head[i]->skip[i].ptr = cur; \ 1931 head[i] = TAILQ_NEXT(head[i], entries); \ 1932 } \ 1933 } while (0) 1934 1935 void 1936 pf_calc_skip_steps(struct pf_rulequeue *rules) 1937 { 1938 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1939 int i; 1940 1941 cur = TAILQ_FIRST(rules); 1942 prev = cur; 1943 for (i = 0; i < PF_SKIP_COUNT; ++i) 1944 head[i] = cur; 1945 while (cur != NULL) { 1946 1947 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1948 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1949 if (cur->direction != prev->direction) 1950 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1951 if (cur->af != prev->af) 1952 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1953 if (cur->proto != prev->proto) 1954 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1955 if (cur->src.neg != prev->src.neg || 1956 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1957 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1958 if (cur->src.port[0] != prev->src.port[0] || 1959 cur->src.port[1] != prev->src.port[1] || 1960 cur->src.port_op != prev->src.port_op) 1961 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1962 if (cur->dst.neg != prev->dst.neg || 1963 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1964 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1965 if (cur->dst.port[0] != prev->dst.port[0] || 1966 cur->dst.port[1] != prev->dst.port[1] || 1967 cur->dst.port_op != prev->dst.port_op) 1968 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1969 1970 prev = cur; 1971 cur = TAILQ_NEXT(cur, entries); 1972 } 1973 for (i = 0; i < PF_SKIP_COUNT; ++i) 1974 PF_SET_SKIP_STEPS(i); 1975 } 1976 1977 static int 1978 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1979 { 1980 if (aw1->type != aw2->type) 1981 return (1); 1982 switch (aw1->type) { 1983 case PF_ADDR_ADDRMASK: 1984 case PF_ADDR_RANGE: 1985 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 1986 return (1); 1987 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 1988 return (1); 1989 return (0); 1990 case PF_ADDR_DYNIFTL: 1991 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1992 case PF_ADDR_NOROUTE: 1993 case PF_ADDR_URPFFAILED: 1994 return (0); 1995 case PF_ADDR_TABLE: 1996 return (aw1->p.tbl != aw2->p.tbl); 1997 default: 1998 printf("invalid address type: %d\n", aw1->type); 1999 return (1); 2000 } 2001 } 2002 2003 /** 2004 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2005 * header isn't always a full checksum. In some cases (i.e. output) it's a 2006 * pseudo-header checksum, which is a partial checksum over src/dst IP 2007 * addresses, protocol number and length. 2008 * 2009 * That means we have the following cases: 2010 * * Input or forwarding: we don't have TSO, the checksum fields are full 2011 * checksums, we need to update the checksum whenever we change anything. 2012 * * Output (i.e. the checksum is a pseudo-header checksum): 2013 * x The field being updated is src/dst address or affects the length of 2014 * the packet. We need to update the pseudo-header checksum (note that this 2015 * checksum is not ones' complement). 2016 * x Some other field is being modified (e.g. src/dst port numbers): We 2017 * don't have to update anything. 2018 **/ 2019 u_int16_t 2020 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2021 { 2022 u_int32_t l; 2023 2024 if (udp && !cksum) 2025 return (0x0000); 2026 l = cksum + old - new; 2027 l = (l >> 16) + (l & 65535); 2028 l = l & 65535; 2029 if (udp && !l) 2030 return (0xFFFF); 2031 return (l); 2032 } 2033 2034 u_int16_t 2035 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2036 u_int16_t new, u_int8_t udp) 2037 { 2038 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2039 return (cksum); 2040 2041 return (pf_cksum_fixup(cksum, old, new, udp)); 2042 } 2043 2044 static void 2045 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2046 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2047 sa_family_t af) 2048 { 2049 struct pf_addr ao; 2050 u_int16_t po = *p; 2051 2052 PF_ACPY(&ao, a, af); 2053 PF_ACPY(a, an, af); 2054 2055 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2056 *pc = ~*pc; 2057 2058 *p = pn; 2059 2060 switch (af) { 2061 #ifdef INET 2062 case AF_INET: 2063 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2064 ao.addr16[0], an->addr16[0], 0), 2065 ao.addr16[1], an->addr16[1], 0); 2066 *p = pn; 2067 2068 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2069 ao.addr16[0], an->addr16[0], u), 2070 ao.addr16[1], an->addr16[1], u); 2071 2072 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2073 break; 2074 #endif /* INET */ 2075 #ifdef INET6 2076 case AF_INET6: 2077 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2078 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2079 pf_cksum_fixup(pf_cksum_fixup(*pc, 2080 ao.addr16[0], an->addr16[0], u), 2081 ao.addr16[1], an->addr16[1], u), 2082 ao.addr16[2], an->addr16[2], u), 2083 ao.addr16[3], an->addr16[3], u), 2084 ao.addr16[4], an->addr16[4], u), 2085 ao.addr16[5], an->addr16[5], u), 2086 ao.addr16[6], an->addr16[6], u), 2087 ao.addr16[7], an->addr16[7], u); 2088 2089 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2090 break; 2091 #endif /* INET6 */ 2092 } 2093 2094 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2095 CSUM_DELAY_DATA_IPV6)) { 2096 *pc = ~*pc; 2097 if (! *pc) 2098 *pc = 0xffff; 2099 } 2100 } 2101 2102 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2103 void 2104 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2105 { 2106 u_int32_t ao; 2107 2108 memcpy(&ao, a, sizeof(ao)); 2109 memcpy(a, &an, sizeof(u_int32_t)); 2110 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2111 ao % 65536, an % 65536, u); 2112 } 2113 2114 void 2115 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2116 { 2117 u_int32_t ao; 2118 2119 memcpy(&ao, a, sizeof(ao)); 2120 memcpy(a, &an, sizeof(u_int32_t)); 2121 2122 *c = pf_proto_cksum_fixup(m, 2123 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2124 ao % 65536, an % 65536, udp); 2125 } 2126 2127 #ifdef INET6 2128 static void 2129 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2130 { 2131 struct pf_addr ao; 2132 2133 PF_ACPY(&ao, a, AF_INET6); 2134 PF_ACPY(a, an, AF_INET6); 2135 2136 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2137 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2138 pf_cksum_fixup(pf_cksum_fixup(*c, 2139 ao.addr16[0], an->addr16[0], u), 2140 ao.addr16[1], an->addr16[1], u), 2141 ao.addr16[2], an->addr16[2], u), 2142 ao.addr16[3], an->addr16[3], u), 2143 ao.addr16[4], an->addr16[4], u), 2144 ao.addr16[5], an->addr16[5], u), 2145 ao.addr16[6], an->addr16[6], u), 2146 ao.addr16[7], an->addr16[7], u); 2147 } 2148 #endif /* INET6 */ 2149 2150 static void 2151 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2152 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2153 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2154 { 2155 struct pf_addr oia, ooa; 2156 2157 PF_ACPY(&oia, ia, af); 2158 if (oa) 2159 PF_ACPY(&ooa, oa, af); 2160 2161 /* Change inner protocol port, fix inner protocol checksum. */ 2162 if (ip != NULL) { 2163 u_int16_t oip = *ip; 2164 u_int32_t opc; 2165 2166 if (pc != NULL) 2167 opc = *pc; 2168 *ip = np; 2169 if (pc != NULL) 2170 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2171 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2172 if (pc != NULL) 2173 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2174 } 2175 /* Change inner ip address, fix inner ip and icmp checksums. */ 2176 PF_ACPY(ia, na, af); 2177 switch (af) { 2178 #ifdef INET 2179 case AF_INET: { 2180 u_int32_t oh2c = *h2c; 2181 2182 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2183 oia.addr16[0], ia->addr16[0], 0), 2184 oia.addr16[1], ia->addr16[1], 0); 2185 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2186 oia.addr16[0], ia->addr16[0], 0), 2187 oia.addr16[1], ia->addr16[1], 0); 2188 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2189 break; 2190 } 2191 #endif /* INET */ 2192 #ifdef INET6 2193 case AF_INET6: 2194 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2195 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2196 pf_cksum_fixup(pf_cksum_fixup(*ic, 2197 oia.addr16[0], ia->addr16[0], u), 2198 oia.addr16[1], ia->addr16[1], u), 2199 oia.addr16[2], ia->addr16[2], u), 2200 oia.addr16[3], ia->addr16[3], u), 2201 oia.addr16[4], ia->addr16[4], u), 2202 oia.addr16[5], ia->addr16[5], u), 2203 oia.addr16[6], ia->addr16[6], u), 2204 oia.addr16[7], ia->addr16[7], u); 2205 break; 2206 #endif /* INET6 */ 2207 } 2208 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2209 if (oa) { 2210 PF_ACPY(oa, na, af); 2211 switch (af) { 2212 #ifdef INET 2213 case AF_INET: 2214 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2215 ooa.addr16[0], oa->addr16[0], 0), 2216 ooa.addr16[1], oa->addr16[1], 0); 2217 break; 2218 #endif /* INET */ 2219 #ifdef INET6 2220 case AF_INET6: 2221 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2222 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2223 pf_cksum_fixup(pf_cksum_fixup(*ic, 2224 ooa.addr16[0], oa->addr16[0], u), 2225 ooa.addr16[1], oa->addr16[1], u), 2226 ooa.addr16[2], oa->addr16[2], u), 2227 ooa.addr16[3], oa->addr16[3], u), 2228 ooa.addr16[4], oa->addr16[4], u), 2229 ooa.addr16[5], oa->addr16[5], u), 2230 ooa.addr16[6], oa->addr16[6], u), 2231 ooa.addr16[7], oa->addr16[7], u); 2232 break; 2233 #endif /* INET6 */ 2234 } 2235 } 2236 } 2237 2238 2239 /* 2240 * Need to modulate the sequence numbers in the TCP SACK option 2241 * (credits to Krzysztof Pfaff for report and patch) 2242 */ 2243 static int 2244 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2245 struct tcphdr *th, struct pf_state_peer *dst) 2246 { 2247 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2248 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2249 int copyback = 0, i, olen; 2250 struct sackblk sack; 2251 2252 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2253 if (hlen < TCPOLEN_SACKLEN || 2254 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2255 return 0; 2256 2257 while (hlen >= TCPOLEN_SACKLEN) { 2258 olen = opt[1]; 2259 switch (*opt) { 2260 case TCPOPT_EOL: /* FALLTHROUGH */ 2261 case TCPOPT_NOP: 2262 opt++; 2263 hlen--; 2264 break; 2265 case TCPOPT_SACK: 2266 if (olen > hlen) 2267 olen = hlen; 2268 if (olen >= TCPOLEN_SACKLEN) { 2269 for (i = 2; i + TCPOLEN_SACK <= olen; 2270 i += TCPOLEN_SACK) { 2271 memcpy(&sack, &opt[i], sizeof(sack)); 2272 pf_change_proto_a(m, &sack.start, &th->th_sum, 2273 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2274 pf_change_proto_a(m, &sack.end, &th->th_sum, 2275 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2276 memcpy(&opt[i], &sack, sizeof(sack)); 2277 } 2278 copyback = 1; 2279 } 2280 /* FALLTHROUGH */ 2281 default: 2282 if (olen < 2) 2283 olen = 2; 2284 hlen -= olen; 2285 opt += olen; 2286 } 2287 } 2288 2289 if (copyback) 2290 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2291 return (copyback); 2292 } 2293 2294 static void 2295 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2296 const struct pf_addr *saddr, const struct pf_addr *daddr, 2297 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2298 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2299 u_int16_t rtag, struct ifnet *ifp) 2300 { 2301 struct pf_send_entry *pfse; 2302 struct mbuf *m; 2303 int len, tlen; 2304 #ifdef INET 2305 struct ip *h = NULL; 2306 #endif /* INET */ 2307 #ifdef INET6 2308 struct ip6_hdr *h6 = NULL; 2309 #endif /* INET6 */ 2310 struct tcphdr *th; 2311 char *opt; 2312 struct pf_mtag *pf_mtag; 2313 2314 len = 0; 2315 th = NULL; 2316 2317 /* maximum segment size tcp option */ 2318 tlen = sizeof(struct tcphdr); 2319 if (mss) 2320 tlen += 4; 2321 2322 switch (af) { 2323 #ifdef INET 2324 case AF_INET: 2325 len = sizeof(struct ip) + tlen; 2326 break; 2327 #endif /* INET */ 2328 #ifdef INET6 2329 case AF_INET6: 2330 len = sizeof(struct ip6_hdr) + tlen; 2331 break; 2332 #endif /* INET6 */ 2333 default: 2334 panic("%s: unsupported af %d", __func__, af); 2335 } 2336 2337 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2338 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2339 if (pfse == NULL) 2340 return; 2341 m = m_gethdr(M_NOWAIT, MT_DATA); 2342 if (m == NULL) { 2343 free(pfse, M_PFTEMP); 2344 return; 2345 } 2346 #ifdef MAC 2347 mac_netinet_firewall_send(m); 2348 #endif 2349 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2350 free(pfse, M_PFTEMP); 2351 m_freem(m); 2352 return; 2353 } 2354 if (tag) 2355 m->m_flags |= M_SKIP_FIREWALL; 2356 pf_mtag->tag = rtag; 2357 2358 if (r != NULL && r->rtableid >= 0) 2359 M_SETFIB(m, r->rtableid); 2360 2361 #ifdef ALTQ 2362 if (r != NULL && r->qid) { 2363 pf_mtag->qid = r->qid; 2364 2365 /* add hints for ecn */ 2366 pf_mtag->hdr = mtod(m, struct ip *); 2367 } 2368 #endif /* ALTQ */ 2369 m->m_data += max_linkhdr; 2370 m->m_pkthdr.len = m->m_len = len; 2371 m->m_pkthdr.rcvif = NULL; 2372 bzero(m->m_data, len); 2373 switch (af) { 2374 #ifdef INET 2375 case AF_INET: 2376 h = mtod(m, struct ip *); 2377 2378 /* IP header fields included in the TCP checksum */ 2379 h->ip_p = IPPROTO_TCP; 2380 h->ip_len = htons(tlen); 2381 h->ip_src.s_addr = saddr->v4.s_addr; 2382 h->ip_dst.s_addr = daddr->v4.s_addr; 2383 2384 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2385 break; 2386 #endif /* INET */ 2387 #ifdef INET6 2388 case AF_INET6: 2389 h6 = mtod(m, struct ip6_hdr *); 2390 2391 /* IP header fields included in the TCP checksum */ 2392 h6->ip6_nxt = IPPROTO_TCP; 2393 h6->ip6_plen = htons(tlen); 2394 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2395 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2396 2397 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2398 break; 2399 #endif /* INET6 */ 2400 } 2401 2402 /* TCP header */ 2403 th->th_sport = sport; 2404 th->th_dport = dport; 2405 th->th_seq = htonl(seq); 2406 th->th_ack = htonl(ack); 2407 th->th_off = tlen >> 2; 2408 th->th_flags = flags; 2409 th->th_win = htons(win); 2410 2411 if (mss) { 2412 opt = (char *)(th + 1); 2413 opt[0] = TCPOPT_MAXSEG; 2414 opt[1] = 4; 2415 HTONS(mss); 2416 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2417 } 2418 2419 switch (af) { 2420 #ifdef INET 2421 case AF_INET: 2422 /* TCP checksum */ 2423 th->th_sum = in_cksum(m, len); 2424 2425 /* Finish the IP header */ 2426 h->ip_v = 4; 2427 h->ip_hl = sizeof(*h) >> 2; 2428 h->ip_tos = IPTOS_LOWDELAY; 2429 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2430 h->ip_len = htons(len); 2431 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2432 h->ip_sum = 0; 2433 2434 pfse->pfse_type = PFSE_IP; 2435 break; 2436 #endif /* INET */ 2437 #ifdef INET6 2438 case AF_INET6: 2439 /* TCP checksum */ 2440 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2441 sizeof(struct ip6_hdr), tlen); 2442 2443 h6->ip6_vfc |= IPV6_VERSION; 2444 h6->ip6_hlim = IPV6_DEFHLIM; 2445 2446 pfse->pfse_type = PFSE_IP6; 2447 break; 2448 #endif /* INET6 */ 2449 } 2450 pfse->pfse_m = m; 2451 pf_send(pfse); 2452 } 2453 2454 static int 2455 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2456 { 2457 struct m_tag *mtag; 2458 2459 KASSERT(prio <= PF_PRIO_MAX, 2460 ("%s with invalid pcp", __func__)); 2461 2462 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2463 if (mtag == NULL) { 2464 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2465 sizeof(uint8_t), M_NOWAIT); 2466 if (mtag == NULL) 2467 return (ENOMEM); 2468 m_tag_prepend(m, mtag); 2469 } 2470 2471 *(uint8_t *)(mtag + 1) = prio; 2472 return (0); 2473 } 2474 2475 static int 2476 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2477 { 2478 struct m_tag *mtag; 2479 u_int8_t mpcp; 2480 2481 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2482 if (mtag == NULL) 2483 return (0); 2484 2485 if (prio == PF_PRIO_ZERO) 2486 prio = 0; 2487 2488 mpcp = *(uint8_t *)(mtag + 1); 2489 2490 return (mpcp == prio); 2491 } 2492 2493 static void 2494 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2495 struct pf_rule *r) 2496 { 2497 struct pf_send_entry *pfse; 2498 struct mbuf *m0; 2499 struct pf_mtag *pf_mtag; 2500 2501 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2502 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2503 if (pfse == NULL) 2504 return; 2505 2506 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2507 free(pfse, M_PFTEMP); 2508 return; 2509 } 2510 2511 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2512 free(pfse, M_PFTEMP); 2513 return; 2514 } 2515 /* XXX: revisit */ 2516 m0->m_flags |= M_SKIP_FIREWALL; 2517 2518 if (r->rtableid >= 0) 2519 M_SETFIB(m0, r->rtableid); 2520 2521 #ifdef ALTQ 2522 if (r->qid) { 2523 pf_mtag->qid = r->qid; 2524 /* add hints for ecn */ 2525 pf_mtag->hdr = mtod(m0, struct ip *); 2526 } 2527 #endif /* ALTQ */ 2528 2529 switch (af) { 2530 #ifdef INET 2531 case AF_INET: 2532 pfse->pfse_type = PFSE_ICMP; 2533 break; 2534 #endif /* INET */ 2535 #ifdef INET6 2536 case AF_INET6: 2537 pfse->pfse_type = PFSE_ICMP6; 2538 break; 2539 #endif /* INET6 */ 2540 } 2541 pfse->pfse_m = m0; 2542 pfse->icmpopts.type = type; 2543 pfse->icmpopts.code = code; 2544 pf_send(pfse); 2545 } 2546 2547 /* 2548 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2549 * If n is 0, they match if they are equal. If n is != 0, they match if they 2550 * are different. 2551 */ 2552 int 2553 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2554 struct pf_addr *b, sa_family_t af) 2555 { 2556 int match = 0; 2557 2558 switch (af) { 2559 #ifdef INET 2560 case AF_INET: 2561 if ((a->addr32[0] & m->addr32[0]) == 2562 (b->addr32[0] & m->addr32[0])) 2563 match++; 2564 break; 2565 #endif /* INET */ 2566 #ifdef INET6 2567 case AF_INET6: 2568 if (((a->addr32[0] & m->addr32[0]) == 2569 (b->addr32[0] & m->addr32[0])) && 2570 ((a->addr32[1] & m->addr32[1]) == 2571 (b->addr32[1] & m->addr32[1])) && 2572 ((a->addr32[2] & m->addr32[2]) == 2573 (b->addr32[2] & m->addr32[2])) && 2574 ((a->addr32[3] & m->addr32[3]) == 2575 (b->addr32[3] & m->addr32[3]))) 2576 match++; 2577 break; 2578 #endif /* INET6 */ 2579 } 2580 if (match) { 2581 if (n) 2582 return (0); 2583 else 2584 return (1); 2585 } else { 2586 if (n) 2587 return (1); 2588 else 2589 return (0); 2590 } 2591 } 2592 2593 /* 2594 * Return 1 if b <= a <= e, otherwise return 0. 2595 */ 2596 int 2597 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2598 struct pf_addr *a, sa_family_t af) 2599 { 2600 switch (af) { 2601 #ifdef INET 2602 case AF_INET: 2603 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2604 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2605 return (0); 2606 break; 2607 #endif /* INET */ 2608 #ifdef INET6 2609 case AF_INET6: { 2610 int i; 2611 2612 /* check a >= b */ 2613 for (i = 0; i < 4; ++i) 2614 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2615 break; 2616 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2617 return (0); 2618 /* check a <= e */ 2619 for (i = 0; i < 4; ++i) 2620 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2621 break; 2622 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2623 return (0); 2624 break; 2625 } 2626 #endif /* INET6 */ 2627 } 2628 return (1); 2629 } 2630 2631 static int 2632 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2633 { 2634 switch (op) { 2635 case PF_OP_IRG: 2636 return ((p > a1) && (p < a2)); 2637 case PF_OP_XRG: 2638 return ((p < a1) || (p > a2)); 2639 case PF_OP_RRG: 2640 return ((p >= a1) && (p <= a2)); 2641 case PF_OP_EQ: 2642 return (p == a1); 2643 case PF_OP_NE: 2644 return (p != a1); 2645 case PF_OP_LT: 2646 return (p < a1); 2647 case PF_OP_LE: 2648 return (p <= a1); 2649 case PF_OP_GT: 2650 return (p > a1); 2651 case PF_OP_GE: 2652 return (p >= a1); 2653 } 2654 return (0); /* never reached */ 2655 } 2656 2657 int 2658 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2659 { 2660 NTOHS(a1); 2661 NTOHS(a2); 2662 NTOHS(p); 2663 return (pf_match(op, a1, a2, p)); 2664 } 2665 2666 static int 2667 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2668 { 2669 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2670 return (0); 2671 return (pf_match(op, a1, a2, u)); 2672 } 2673 2674 static int 2675 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2676 { 2677 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2678 return (0); 2679 return (pf_match(op, a1, a2, g)); 2680 } 2681 2682 int 2683 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2684 { 2685 if (*tag == -1) 2686 *tag = mtag; 2687 2688 return ((!r->match_tag_not && r->match_tag == *tag) || 2689 (r->match_tag_not && r->match_tag != *tag)); 2690 } 2691 2692 int 2693 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2694 { 2695 2696 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2697 2698 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2699 return (ENOMEM); 2700 2701 pd->pf_mtag->tag = tag; 2702 2703 return (0); 2704 } 2705 2706 #define PF_ANCHOR_STACKSIZE 32 2707 struct pf_anchor_stackframe { 2708 struct pf_ruleset *rs; 2709 struct pf_rule *r; /* XXX: + match bit */ 2710 struct pf_anchor *child; 2711 }; 2712 2713 /* 2714 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2715 */ 2716 #define PF_ANCHORSTACK_MATCH 0x00000001 2717 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2718 2719 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2720 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2721 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2722 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2723 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2724 } while (0) 2725 2726 void 2727 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2728 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2729 int *match) 2730 { 2731 struct pf_anchor_stackframe *f; 2732 2733 PF_RULES_RASSERT(); 2734 2735 if (match) 2736 *match = 0; 2737 if (*depth >= PF_ANCHOR_STACKSIZE) { 2738 printf("%s: anchor stack overflow on %s\n", 2739 __func__, (*r)->anchor->name); 2740 *r = TAILQ_NEXT(*r, entries); 2741 return; 2742 } else if (*depth == 0 && a != NULL) 2743 *a = *r; 2744 f = stack + (*depth)++; 2745 f->rs = *rs; 2746 f->r = *r; 2747 if ((*r)->anchor_wildcard) { 2748 struct pf_anchor_node *parent = &(*r)->anchor->children; 2749 2750 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2751 *r = NULL; 2752 return; 2753 } 2754 *rs = &f->child->ruleset; 2755 } else { 2756 f->child = NULL; 2757 *rs = &(*r)->anchor->ruleset; 2758 } 2759 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2760 } 2761 2762 int 2763 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2764 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2765 int *match) 2766 { 2767 struct pf_anchor_stackframe *f; 2768 struct pf_rule *fr; 2769 int quick = 0; 2770 2771 PF_RULES_RASSERT(); 2772 2773 do { 2774 if (*depth <= 0) 2775 break; 2776 f = stack + *depth - 1; 2777 fr = PF_ANCHOR_RULE(f); 2778 if (f->child != NULL) { 2779 struct pf_anchor_node *parent; 2780 2781 /* 2782 * This block traverses through 2783 * a wildcard anchor. 2784 */ 2785 parent = &fr->anchor->children; 2786 if (match != NULL && *match) { 2787 /* 2788 * If any of "*" matched, then 2789 * "foo/ *" matched, mark frame 2790 * appropriately. 2791 */ 2792 PF_ANCHOR_SET_MATCH(f); 2793 *match = 0; 2794 } 2795 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2796 if (f->child != NULL) { 2797 *rs = &f->child->ruleset; 2798 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2799 if (*r == NULL) 2800 continue; 2801 else 2802 break; 2803 } 2804 } 2805 (*depth)--; 2806 if (*depth == 0 && a != NULL) 2807 *a = NULL; 2808 *rs = f->rs; 2809 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2810 quick = fr->quick; 2811 *r = TAILQ_NEXT(fr, entries); 2812 } while (*r == NULL); 2813 2814 return (quick); 2815 } 2816 2817 #ifdef INET6 2818 void 2819 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2820 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2821 { 2822 switch (af) { 2823 #ifdef INET 2824 case AF_INET: 2825 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2826 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2827 break; 2828 #endif /* INET */ 2829 case AF_INET6: 2830 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2831 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2832 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2833 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2834 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2835 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2836 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2837 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2838 break; 2839 } 2840 } 2841 2842 void 2843 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2844 { 2845 switch (af) { 2846 #ifdef INET 2847 case AF_INET: 2848 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2849 break; 2850 #endif /* INET */ 2851 case AF_INET6: 2852 if (addr->addr32[3] == 0xffffffff) { 2853 addr->addr32[3] = 0; 2854 if (addr->addr32[2] == 0xffffffff) { 2855 addr->addr32[2] = 0; 2856 if (addr->addr32[1] == 0xffffffff) { 2857 addr->addr32[1] = 0; 2858 addr->addr32[0] = 2859 htonl(ntohl(addr->addr32[0]) + 1); 2860 } else 2861 addr->addr32[1] = 2862 htonl(ntohl(addr->addr32[1]) + 1); 2863 } else 2864 addr->addr32[2] = 2865 htonl(ntohl(addr->addr32[2]) + 1); 2866 } else 2867 addr->addr32[3] = 2868 htonl(ntohl(addr->addr32[3]) + 1); 2869 break; 2870 } 2871 } 2872 #endif /* INET6 */ 2873 2874 int 2875 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2876 { 2877 struct pf_addr *saddr, *daddr; 2878 u_int16_t sport, dport; 2879 struct inpcbinfo *pi; 2880 struct inpcb *inp; 2881 2882 pd->lookup.uid = UID_MAX; 2883 pd->lookup.gid = GID_MAX; 2884 2885 switch (pd->proto) { 2886 case IPPROTO_TCP: 2887 if (pd->hdr.tcp == NULL) 2888 return (-1); 2889 sport = pd->hdr.tcp->th_sport; 2890 dport = pd->hdr.tcp->th_dport; 2891 pi = &V_tcbinfo; 2892 break; 2893 case IPPROTO_UDP: 2894 if (pd->hdr.udp == NULL) 2895 return (-1); 2896 sport = pd->hdr.udp->uh_sport; 2897 dport = pd->hdr.udp->uh_dport; 2898 pi = &V_udbinfo; 2899 break; 2900 default: 2901 return (-1); 2902 } 2903 if (direction == PF_IN) { 2904 saddr = pd->src; 2905 daddr = pd->dst; 2906 } else { 2907 u_int16_t p; 2908 2909 p = sport; 2910 sport = dport; 2911 dport = p; 2912 saddr = pd->dst; 2913 daddr = pd->src; 2914 } 2915 switch (pd->af) { 2916 #ifdef INET 2917 case AF_INET: 2918 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2919 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2920 if (inp == NULL) { 2921 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2922 daddr->v4, dport, INPLOOKUP_WILDCARD | 2923 INPLOOKUP_RLOCKPCB, NULL, m); 2924 if (inp == NULL) 2925 return (-1); 2926 } 2927 break; 2928 #endif /* INET */ 2929 #ifdef INET6 2930 case AF_INET6: 2931 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2932 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2933 if (inp == NULL) { 2934 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2935 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2936 INPLOOKUP_RLOCKPCB, NULL, m); 2937 if (inp == NULL) 2938 return (-1); 2939 } 2940 break; 2941 #endif /* INET6 */ 2942 2943 default: 2944 return (-1); 2945 } 2946 INP_RLOCK_ASSERT(inp); 2947 pd->lookup.uid = inp->inp_cred->cr_uid; 2948 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2949 INP_RUNLOCK(inp); 2950 2951 return (1); 2952 } 2953 2954 static u_int8_t 2955 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2956 { 2957 int hlen; 2958 u_int8_t hdr[60]; 2959 u_int8_t *opt, optlen; 2960 u_int8_t wscale = 0; 2961 2962 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2963 if (hlen <= sizeof(struct tcphdr)) 2964 return (0); 2965 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2966 return (0); 2967 opt = hdr + sizeof(struct tcphdr); 2968 hlen -= sizeof(struct tcphdr); 2969 while (hlen >= 3) { 2970 switch (*opt) { 2971 case TCPOPT_EOL: 2972 case TCPOPT_NOP: 2973 ++opt; 2974 --hlen; 2975 break; 2976 case TCPOPT_WINDOW: 2977 wscale = opt[2]; 2978 if (wscale > TCP_MAX_WINSHIFT) 2979 wscale = TCP_MAX_WINSHIFT; 2980 wscale |= PF_WSCALE_FLAG; 2981 /* FALLTHROUGH */ 2982 default: 2983 optlen = opt[1]; 2984 if (optlen < 2) 2985 optlen = 2; 2986 hlen -= optlen; 2987 opt += optlen; 2988 break; 2989 } 2990 } 2991 return (wscale); 2992 } 2993 2994 static u_int16_t 2995 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2996 { 2997 int hlen; 2998 u_int8_t hdr[60]; 2999 u_int8_t *opt, optlen; 3000 u_int16_t mss = V_tcp_mssdflt; 3001 3002 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3003 if (hlen <= sizeof(struct tcphdr)) 3004 return (0); 3005 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3006 return (0); 3007 opt = hdr + sizeof(struct tcphdr); 3008 hlen -= sizeof(struct tcphdr); 3009 while (hlen >= TCPOLEN_MAXSEG) { 3010 switch (*opt) { 3011 case TCPOPT_EOL: 3012 case TCPOPT_NOP: 3013 ++opt; 3014 --hlen; 3015 break; 3016 case TCPOPT_MAXSEG: 3017 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3018 NTOHS(mss); 3019 /* FALLTHROUGH */ 3020 default: 3021 optlen = opt[1]; 3022 if (optlen < 2) 3023 optlen = 2; 3024 hlen -= optlen; 3025 opt += optlen; 3026 break; 3027 } 3028 } 3029 return (mss); 3030 } 3031 3032 static u_int16_t 3033 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3034 { 3035 #ifdef INET 3036 struct nhop4_basic nh4; 3037 #endif /* INET */ 3038 #ifdef INET6 3039 struct nhop6_basic nh6; 3040 struct in6_addr dst6; 3041 uint32_t scopeid; 3042 #endif /* INET6 */ 3043 int hlen = 0; 3044 uint16_t mss = 0; 3045 3046 switch (af) { 3047 #ifdef INET 3048 case AF_INET: 3049 hlen = sizeof(struct ip); 3050 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3051 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3052 break; 3053 #endif /* INET */ 3054 #ifdef INET6 3055 case AF_INET6: 3056 hlen = sizeof(struct ip6_hdr); 3057 in6_splitscope(&addr->v6, &dst6, &scopeid); 3058 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3059 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3060 break; 3061 #endif /* INET6 */ 3062 } 3063 3064 mss = max(V_tcp_mssdflt, mss); 3065 mss = min(mss, offer); 3066 mss = max(mss, 64); /* sanity - at least max opt space */ 3067 return (mss); 3068 } 3069 3070 static u_int32_t 3071 pf_tcp_iss(struct pf_pdesc *pd) 3072 { 3073 MD5_CTX ctx; 3074 u_int32_t digest[4]; 3075 3076 if (V_pf_tcp_secret_init == 0) { 3077 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3078 MD5Init(&V_pf_tcp_secret_ctx); 3079 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3080 sizeof(V_pf_tcp_secret)); 3081 V_pf_tcp_secret_init = 1; 3082 } 3083 3084 ctx = V_pf_tcp_secret_ctx; 3085 3086 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3087 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3088 if (pd->af == AF_INET6) { 3089 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3090 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3091 } else { 3092 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3093 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3094 } 3095 MD5Final((u_char *)digest, &ctx); 3096 V_pf_tcp_iss_off += 4096; 3097 #define ISN_RANDOM_INCREMENT (4096 - 1) 3098 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3099 V_pf_tcp_iss_off); 3100 #undef ISN_RANDOM_INCREMENT 3101 } 3102 3103 static int 3104 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3105 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3106 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3107 { 3108 struct pf_rule *nr = NULL; 3109 struct pf_addr * const saddr = pd->src; 3110 struct pf_addr * const daddr = pd->dst; 3111 sa_family_t af = pd->af; 3112 struct pf_rule *r, *a = NULL; 3113 struct pf_ruleset *ruleset = NULL; 3114 struct pf_src_node *nsn = NULL; 3115 struct tcphdr *th = pd->hdr.tcp; 3116 struct pf_state_key *sk = NULL, *nk = NULL; 3117 u_short reason; 3118 int rewrite = 0, hdrlen = 0; 3119 int tag = -1, rtableid = -1; 3120 int asd = 0; 3121 int match = 0; 3122 int state_icmp = 0; 3123 u_int16_t sport = 0, dport = 0; 3124 u_int16_t bproto_sum = 0, bip_sum = 0; 3125 u_int8_t icmptype = 0, icmpcode = 0; 3126 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3127 3128 PF_RULES_RASSERT(); 3129 3130 if (inp != NULL) { 3131 INP_LOCK_ASSERT(inp); 3132 pd->lookup.uid = inp->inp_cred->cr_uid; 3133 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3134 pd->lookup.done = 1; 3135 } 3136 3137 switch (pd->proto) { 3138 case IPPROTO_TCP: 3139 sport = th->th_sport; 3140 dport = th->th_dport; 3141 hdrlen = sizeof(*th); 3142 break; 3143 case IPPROTO_UDP: 3144 sport = pd->hdr.udp->uh_sport; 3145 dport = pd->hdr.udp->uh_dport; 3146 hdrlen = sizeof(*pd->hdr.udp); 3147 break; 3148 #ifdef INET 3149 case IPPROTO_ICMP: 3150 if (pd->af != AF_INET) 3151 break; 3152 sport = dport = pd->hdr.icmp->icmp_id; 3153 hdrlen = sizeof(*pd->hdr.icmp); 3154 icmptype = pd->hdr.icmp->icmp_type; 3155 icmpcode = pd->hdr.icmp->icmp_code; 3156 3157 if (icmptype == ICMP_UNREACH || 3158 icmptype == ICMP_SOURCEQUENCH || 3159 icmptype == ICMP_REDIRECT || 3160 icmptype == ICMP_TIMXCEED || 3161 icmptype == ICMP_PARAMPROB) 3162 state_icmp++; 3163 break; 3164 #endif /* INET */ 3165 #ifdef INET6 3166 case IPPROTO_ICMPV6: 3167 if (af != AF_INET6) 3168 break; 3169 sport = dport = pd->hdr.icmp6->icmp6_id; 3170 hdrlen = sizeof(*pd->hdr.icmp6); 3171 icmptype = pd->hdr.icmp6->icmp6_type; 3172 icmpcode = pd->hdr.icmp6->icmp6_code; 3173 3174 if (icmptype == ICMP6_DST_UNREACH || 3175 icmptype == ICMP6_PACKET_TOO_BIG || 3176 icmptype == ICMP6_TIME_EXCEEDED || 3177 icmptype == ICMP6_PARAM_PROB) 3178 state_icmp++; 3179 break; 3180 #endif /* INET6 */ 3181 default: 3182 sport = dport = hdrlen = 0; 3183 break; 3184 } 3185 3186 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3187 3188 /* check packet for BINAT/NAT/RDR */ 3189 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3190 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3191 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3192 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3193 3194 if (pd->ip_sum) 3195 bip_sum = *pd->ip_sum; 3196 3197 switch (pd->proto) { 3198 case IPPROTO_TCP: 3199 bproto_sum = th->th_sum; 3200 pd->proto_sum = &th->th_sum; 3201 3202 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3203 nk->port[pd->sidx] != sport) { 3204 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3205 &th->th_sum, &nk->addr[pd->sidx], 3206 nk->port[pd->sidx], 0, af); 3207 pd->sport = &th->th_sport; 3208 sport = th->th_sport; 3209 } 3210 3211 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3212 nk->port[pd->didx] != dport) { 3213 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3214 &th->th_sum, &nk->addr[pd->didx], 3215 nk->port[pd->didx], 0, af); 3216 dport = th->th_dport; 3217 pd->dport = &th->th_dport; 3218 } 3219 rewrite++; 3220 break; 3221 case IPPROTO_UDP: 3222 bproto_sum = pd->hdr.udp->uh_sum; 3223 pd->proto_sum = &pd->hdr.udp->uh_sum; 3224 3225 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3226 nk->port[pd->sidx] != sport) { 3227 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3228 pd->ip_sum, &pd->hdr.udp->uh_sum, 3229 &nk->addr[pd->sidx], 3230 nk->port[pd->sidx], 1, af); 3231 sport = pd->hdr.udp->uh_sport; 3232 pd->sport = &pd->hdr.udp->uh_sport; 3233 } 3234 3235 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3236 nk->port[pd->didx] != dport) { 3237 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3238 pd->ip_sum, &pd->hdr.udp->uh_sum, 3239 &nk->addr[pd->didx], 3240 nk->port[pd->didx], 1, af); 3241 dport = pd->hdr.udp->uh_dport; 3242 pd->dport = &pd->hdr.udp->uh_dport; 3243 } 3244 rewrite++; 3245 break; 3246 #ifdef INET 3247 case IPPROTO_ICMP: 3248 nk->port[0] = nk->port[1]; 3249 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3250 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3251 nk->addr[pd->sidx].v4.s_addr, 0); 3252 3253 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3254 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3255 nk->addr[pd->didx].v4.s_addr, 0); 3256 3257 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3258 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3259 pd->hdr.icmp->icmp_cksum, sport, 3260 nk->port[1], 0); 3261 pd->hdr.icmp->icmp_id = nk->port[1]; 3262 pd->sport = &pd->hdr.icmp->icmp_id; 3263 } 3264 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3265 break; 3266 #endif /* INET */ 3267 #ifdef INET6 3268 case IPPROTO_ICMPV6: 3269 nk->port[0] = nk->port[1]; 3270 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3271 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3272 &nk->addr[pd->sidx], 0); 3273 3274 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3275 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3276 &nk->addr[pd->didx], 0); 3277 rewrite++; 3278 break; 3279 #endif /* INET */ 3280 default: 3281 switch (af) { 3282 #ifdef INET 3283 case AF_INET: 3284 if (PF_ANEQ(saddr, 3285 &nk->addr[pd->sidx], AF_INET)) 3286 pf_change_a(&saddr->v4.s_addr, 3287 pd->ip_sum, 3288 nk->addr[pd->sidx].v4.s_addr, 0); 3289 3290 if (PF_ANEQ(daddr, 3291 &nk->addr[pd->didx], AF_INET)) 3292 pf_change_a(&daddr->v4.s_addr, 3293 pd->ip_sum, 3294 nk->addr[pd->didx].v4.s_addr, 0); 3295 break; 3296 #endif /* INET */ 3297 #ifdef INET6 3298 case AF_INET6: 3299 if (PF_ANEQ(saddr, 3300 &nk->addr[pd->sidx], AF_INET6)) 3301 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3302 3303 if (PF_ANEQ(daddr, 3304 &nk->addr[pd->didx], AF_INET6)) 3305 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3306 break; 3307 #endif /* INET */ 3308 } 3309 break; 3310 } 3311 if (nr->natpass) 3312 r = NULL; 3313 pd->nat_rule = nr; 3314 } 3315 3316 while (r != NULL) { 3317 r->evaluations++; 3318 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3319 r = r->skip[PF_SKIP_IFP].ptr; 3320 else if (r->direction && r->direction != direction) 3321 r = r->skip[PF_SKIP_DIR].ptr; 3322 else if (r->af && r->af != af) 3323 r = r->skip[PF_SKIP_AF].ptr; 3324 else if (r->proto && r->proto != pd->proto) 3325 r = r->skip[PF_SKIP_PROTO].ptr; 3326 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3327 r->src.neg, kif, M_GETFIB(m))) 3328 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3329 /* tcp/udp only. port_op always 0 in other cases */ 3330 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3331 r->src.port[0], r->src.port[1], sport)) 3332 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3333 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3334 r->dst.neg, NULL, M_GETFIB(m))) 3335 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3336 /* tcp/udp only. port_op always 0 in other cases */ 3337 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3338 r->dst.port[0], r->dst.port[1], dport)) 3339 r = r->skip[PF_SKIP_DST_PORT].ptr; 3340 /* icmp only. type always 0 in other cases */ 3341 else if (r->type && r->type != icmptype + 1) 3342 r = TAILQ_NEXT(r, entries); 3343 /* icmp only. type always 0 in other cases */ 3344 else if (r->code && r->code != icmpcode + 1) 3345 r = TAILQ_NEXT(r, entries); 3346 else if (r->tos && !(r->tos == pd->tos)) 3347 r = TAILQ_NEXT(r, entries); 3348 else if (r->rule_flag & PFRULE_FRAGMENT) 3349 r = TAILQ_NEXT(r, entries); 3350 else if (pd->proto == IPPROTO_TCP && 3351 (r->flagset & th->th_flags) != r->flags) 3352 r = TAILQ_NEXT(r, entries); 3353 /* tcp/udp only. uid.op always 0 in other cases */ 3354 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3355 pf_socket_lookup(direction, pd, m), 1)) && 3356 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3357 pd->lookup.uid)) 3358 r = TAILQ_NEXT(r, entries); 3359 /* tcp/udp only. gid.op always 0 in other cases */ 3360 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3361 pf_socket_lookup(direction, pd, m), 1)) && 3362 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3363 pd->lookup.gid)) 3364 r = TAILQ_NEXT(r, entries); 3365 else if (r->prio && 3366 !pf_match_ieee8021q_pcp(r->prio, m)) 3367 r = TAILQ_NEXT(r, entries); 3368 else if (r->prob && 3369 r->prob <= arc4random()) 3370 r = TAILQ_NEXT(r, entries); 3371 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3372 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3373 r = TAILQ_NEXT(r, entries); 3374 else if (r->os_fingerprint != PF_OSFP_ANY && 3375 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3376 pf_osfp_fingerprint(pd, m, off, th), 3377 r->os_fingerprint))) 3378 r = TAILQ_NEXT(r, entries); 3379 else { 3380 if (r->tag) 3381 tag = r->tag; 3382 if (r->rtableid >= 0) 3383 rtableid = r->rtableid; 3384 if (r->anchor == NULL) { 3385 match = 1; 3386 *rm = r; 3387 *am = a; 3388 *rsm = ruleset; 3389 if ((*rm)->quick) 3390 break; 3391 r = TAILQ_NEXT(r, entries); 3392 } else 3393 pf_step_into_anchor(anchor_stack, &asd, 3394 &ruleset, PF_RULESET_FILTER, &r, &a, 3395 &match); 3396 } 3397 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3398 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3399 break; 3400 } 3401 r = *rm; 3402 a = *am; 3403 ruleset = *rsm; 3404 3405 REASON_SET(&reason, PFRES_MATCH); 3406 3407 if (r->log || (nr != NULL && nr->log)) { 3408 if (rewrite) 3409 m_copyback(m, off, hdrlen, pd->hdr.any); 3410 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3411 ruleset, pd, 1); 3412 } 3413 3414 if ((r->action == PF_DROP) && 3415 ((r->rule_flag & PFRULE_RETURNRST) || 3416 (r->rule_flag & PFRULE_RETURNICMP) || 3417 (r->rule_flag & PFRULE_RETURN))) { 3418 /* undo NAT changes, if they have taken place */ 3419 if (nr != NULL) { 3420 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3421 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3422 if (pd->sport) 3423 *pd->sport = sk->port[pd->sidx]; 3424 if (pd->dport) 3425 *pd->dport = sk->port[pd->didx]; 3426 if (pd->proto_sum) 3427 *pd->proto_sum = bproto_sum; 3428 if (pd->ip_sum) 3429 *pd->ip_sum = bip_sum; 3430 m_copyback(m, off, hdrlen, pd->hdr.any); 3431 } 3432 if (pd->proto == IPPROTO_TCP && 3433 ((r->rule_flag & PFRULE_RETURNRST) || 3434 (r->rule_flag & PFRULE_RETURN)) && 3435 !(th->th_flags & TH_RST)) { 3436 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3437 int len = 0; 3438 #ifdef INET 3439 struct ip *h4; 3440 #endif 3441 #ifdef INET6 3442 struct ip6_hdr *h6; 3443 #endif 3444 3445 switch (af) { 3446 #ifdef INET 3447 case AF_INET: 3448 h4 = mtod(m, struct ip *); 3449 len = ntohs(h4->ip_len) - off; 3450 break; 3451 #endif 3452 #ifdef INET6 3453 case AF_INET6: 3454 h6 = mtod(m, struct ip6_hdr *); 3455 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3456 break; 3457 #endif 3458 } 3459 3460 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3461 REASON_SET(&reason, PFRES_PROTCKSUM); 3462 else { 3463 if (th->th_flags & TH_SYN) 3464 ack++; 3465 if (th->th_flags & TH_FIN) 3466 ack++; 3467 pf_send_tcp(m, r, af, pd->dst, 3468 pd->src, th->th_dport, th->th_sport, 3469 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3470 r->return_ttl, 1, 0, kif->pfik_ifp); 3471 } 3472 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3473 r->return_icmp) 3474 pf_send_icmp(m, r->return_icmp >> 8, 3475 r->return_icmp & 255, af, r); 3476 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3477 r->return_icmp6) 3478 pf_send_icmp(m, r->return_icmp6 >> 8, 3479 r->return_icmp6 & 255, af, r); 3480 } 3481 3482 if (r->action == PF_DROP) 3483 goto cleanup; 3484 3485 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3486 REASON_SET(&reason, PFRES_MEMORY); 3487 goto cleanup; 3488 } 3489 if (rtableid >= 0) 3490 M_SETFIB(m, rtableid); 3491 3492 if (!state_icmp && (r->keep_state || nr != NULL || 3493 (pd->flags & PFDESC_TCP_NORM))) { 3494 int action; 3495 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3496 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3497 hdrlen); 3498 if (action != PF_PASS) 3499 return (action); 3500 } else { 3501 if (sk != NULL) 3502 uma_zfree(V_pf_state_key_z, sk); 3503 if (nk != NULL) 3504 uma_zfree(V_pf_state_key_z, nk); 3505 } 3506 3507 /* copy back packet headers if we performed NAT operations */ 3508 if (rewrite) 3509 m_copyback(m, off, hdrlen, pd->hdr.any); 3510 3511 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3512 direction == PF_OUT && 3513 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3514 /* 3515 * We want the state created, but we dont 3516 * want to send this in case a partner 3517 * firewall has to know about it to allow 3518 * replies through it. 3519 */ 3520 return (PF_DEFER); 3521 3522 return (PF_PASS); 3523 3524 cleanup: 3525 if (sk != NULL) 3526 uma_zfree(V_pf_state_key_z, sk); 3527 if (nk != NULL) 3528 uma_zfree(V_pf_state_key_z, nk); 3529 return (PF_DROP); 3530 } 3531 3532 static int 3533 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3534 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3535 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3536 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3537 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3538 { 3539 struct pf_state *s = NULL; 3540 struct pf_src_node *sn = NULL; 3541 struct tcphdr *th = pd->hdr.tcp; 3542 u_int16_t mss = V_tcp_mssdflt; 3543 u_short reason; 3544 3545 /* check maximums */ 3546 if (r->max_states && 3547 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3548 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3549 REASON_SET(&reason, PFRES_MAXSTATES); 3550 return (PF_DROP); 3551 } 3552 /* src node for filter rule */ 3553 if ((r->rule_flag & PFRULE_SRCTRACK || 3554 r->rpool.opts & PF_POOL_STICKYADDR) && 3555 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3556 REASON_SET(&reason, PFRES_SRCLIMIT); 3557 goto csfailed; 3558 } 3559 /* src node for translation rule */ 3560 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3561 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3562 REASON_SET(&reason, PFRES_SRCLIMIT); 3563 goto csfailed; 3564 } 3565 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3566 if (s == NULL) { 3567 REASON_SET(&reason, PFRES_MEMORY); 3568 goto csfailed; 3569 } 3570 s->rule.ptr = r; 3571 s->nat_rule.ptr = nr; 3572 s->anchor.ptr = a; 3573 STATE_INC_COUNTERS(s); 3574 if (r->allow_opts) 3575 s->state_flags |= PFSTATE_ALLOWOPTS; 3576 if (r->rule_flag & PFRULE_STATESLOPPY) 3577 s->state_flags |= PFSTATE_SLOPPY; 3578 s->log = r->log & PF_LOG_ALL; 3579 s->sync_state = PFSYNC_S_NONE; 3580 if (nr != NULL) 3581 s->log |= nr->log & PF_LOG_ALL; 3582 switch (pd->proto) { 3583 case IPPROTO_TCP: 3584 s->src.seqlo = ntohl(th->th_seq); 3585 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3586 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3587 r->keep_state == PF_STATE_MODULATE) { 3588 /* Generate sequence number modulator */ 3589 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3590 0) 3591 s->src.seqdiff = 1; 3592 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3593 htonl(s->src.seqlo + s->src.seqdiff), 0); 3594 *rewrite = 1; 3595 } else 3596 s->src.seqdiff = 0; 3597 if (th->th_flags & TH_SYN) { 3598 s->src.seqhi++; 3599 s->src.wscale = pf_get_wscale(m, off, 3600 th->th_off, pd->af); 3601 } 3602 s->src.max_win = MAX(ntohs(th->th_win), 1); 3603 if (s->src.wscale & PF_WSCALE_MASK) { 3604 /* Remove scale factor from initial window */ 3605 int win = s->src.max_win; 3606 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3607 s->src.max_win = (win - 1) >> 3608 (s->src.wscale & PF_WSCALE_MASK); 3609 } 3610 if (th->th_flags & TH_FIN) 3611 s->src.seqhi++; 3612 s->dst.seqhi = 1; 3613 s->dst.max_win = 1; 3614 s->src.state = TCPS_SYN_SENT; 3615 s->dst.state = TCPS_CLOSED; 3616 s->timeout = PFTM_TCP_FIRST_PACKET; 3617 break; 3618 case IPPROTO_UDP: 3619 s->src.state = PFUDPS_SINGLE; 3620 s->dst.state = PFUDPS_NO_TRAFFIC; 3621 s->timeout = PFTM_UDP_FIRST_PACKET; 3622 break; 3623 case IPPROTO_ICMP: 3624 #ifdef INET6 3625 case IPPROTO_ICMPV6: 3626 #endif 3627 s->timeout = PFTM_ICMP_FIRST_PACKET; 3628 break; 3629 default: 3630 s->src.state = PFOTHERS_SINGLE; 3631 s->dst.state = PFOTHERS_NO_TRAFFIC; 3632 s->timeout = PFTM_OTHER_FIRST_PACKET; 3633 } 3634 3635 if (r->rt && r->rt != PF_FASTROUTE) { 3636 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3637 REASON_SET(&reason, PFRES_MAPFAILED); 3638 pf_src_tree_remove_state(s); 3639 STATE_DEC_COUNTERS(s); 3640 uma_zfree(V_pf_state_z, s); 3641 goto csfailed; 3642 } 3643 s->rt_kif = r->rpool.cur->kif; 3644 } 3645 3646 s->creation = time_uptime; 3647 s->expire = time_uptime; 3648 3649 if (sn != NULL) 3650 s->src_node = sn; 3651 if (nsn != NULL) { 3652 /* XXX We only modify one side for now. */ 3653 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3654 s->nat_src_node = nsn; 3655 } 3656 if (pd->proto == IPPROTO_TCP) { 3657 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3658 off, pd, th, &s->src, &s->dst)) { 3659 REASON_SET(&reason, PFRES_MEMORY); 3660 pf_src_tree_remove_state(s); 3661 STATE_DEC_COUNTERS(s); 3662 uma_zfree(V_pf_state_z, s); 3663 return (PF_DROP); 3664 } 3665 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3666 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3667 &s->src, &s->dst, rewrite)) { 3668 /* This really shouldn't happen!!! */ 3669 DPFPRINTF(PF_DEBUG_URGENT, 3670 ("pf_normalize_tcp_stateful failed on first pkt")); 3671 pf_normalize_tcp_cleanup(s); 3672 pf_src_tree_remove_state(s); 3673 STATE_DEC_COUNTERS(s); 3674 uma_zfree(V_pf_state_z, s); 3675 return (PF_DROP); 3676 } 3677 } 3678 s->direction = pd->dir; 3679 3680 /* 3681 * sk/nk could already been setup by pf_get_translation(). 3682 */ 3683 if (nr == NULL) { 3684 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3685 __func__, nr, sk, nk)); 3686 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3687 if (sk == NULL) 3688 goto csfailed; 3689 nk = sk; 3690 } else 3691 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3692 __func__, nr, sk, nk)); 3693 3694 /* Swap sk/nk for PF_OUT. */ 3695 if (pf_state_insert(BOUND_IFACE(r, kif), 3696 (pd->dir == PF_IN) ? sk : nk, 3697 (pd->dir == PF_IN) ? nk : sk, s)) { 3698 if (pd->proto == IPPROTO_TCP) 3699 pf_normalize_tcp_cleanup(s); 3700 REASON_SET(&reason, PFRES_STATEINS); 3701 pf_src_tree_remove_state(s); 3702 STATE_DEC_COUNTERS(s); 3703 uma_zfree(V_pf_state_z, s); 3704 return (PF_DROP); 3705 } else 3706 *sm = s; 3707 3708 if (tag > 0) 3709 s->tag = tag; 3710 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3711 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3712 s->src.state = PF_TCPS_PROXY_SRC; 3713 /* undo NAT changes, if they have taken place */ 3714 if (nr != NULL) { 3715 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3716 if (pd->dir == PF_OUT) 3717 skt = s->key[PF_SK_STACK]; 3718 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3719 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3720 if (pd->sport) 3721 *pd->sport = skt->port[pd->sidx]; 3722 if (pd->dport) 3723 *pd->dport = skt->port[pd->didx]; 3724 if (pd->proto_sum) 3725 *pd->proto_sum = bproto_sum; 3726 if (pd->ip_sum) 3727 *pd->ip_sum = bip_sum; 3728 m_copyback(m, off, hdrlen, pd->hdr.any); 3729 } 3730 s->src.seqhi = htonl(arc4random()); 3731 /* Find mss option */ 3732 int rtid = M_GETFIB(m); 3733 mss = pf_get_mss(m, off, th->th_off, pd->af); 3734 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3735 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3736 s->src.mss = mss; 3737 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3738 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3739 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3740 REASON_SET(&reason, PFRES_SYNPROXY); 3741 return (PF_SYNPROXY_DROP); 3742 } 3743 3744 return (PF_PASS); 3745 3746 csfailed: 3747 if (sk != NULL) 3748 uma_zfree(V_pf_state_key_z, sk); 3749 if (nk != NULL) 3750 uma_zfree(V_pf_state_key_z, nk); 3751 3752 if (sn != NULL) { 3753 struct pf_srchash *sh; 3754 3755 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3756 PF_HASHROW_LOCK(sh); 3757 if (--sn->states == 0 && sn->expire == 0) { 3758 pf_unlink_src_node(sn); 3759 uma_zfree(V_pf_sources_z, sn); 3760 counter_u64_add( 3761 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3762 } 3763 PF_HASHROW_UNLOCK(sh); 3764 } 3765 3766 if (nsn != sn && nsn != NULL) { 3767 struct pf_srchash *sh; 3768 3769 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3770 PF_HASHROW_LOCK(sh); 3771 if (--nsn->states == 0 && nsn->expire == 0) { 3772 pf_unlink_src_node(nsn); 3773 uma_zfree(V_pf_sources_z, nsn); 3774 counter_u64_add( 3775 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3776 } 3777 PF_HASHROW_UNLOCK(sh); 3778 } 3779 3780 return (PF_DROP); 3781 } 3782 3783 static int 3784 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3785 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3786 struct pf_ruleset **rsm) 3787 { 3788 struct pf_rule *r, *a = NULL; 3789 struct pf_ruleset *ruleset = NULL; 3790 sa_family_t af = pd->af; 3791 u_short reason; 3792 int tag = -1; 3793 int asd = 0; 3794 int match = 0; 3795 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3796 3797 PF_RULES_RASSERT(); 3798 3799 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3800 while (r != NULL) { 3801 r->evaluations++; 3802 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3803 r = r->skip[PF_SKIP_IFP].ptr; 3804 else if (r->direction && r->direction != direction) 3805 r = r->skip[PF_SKIP_DIR].ptr; 3806 else if (r->af && r->af != af) 3807 r = r->skip[PF_SKIP_AF].ptr; 3808 else if (r->proto && r->proto != pd->proto) 3809 r = r->skip[PF_SKIP_PROTO].ptr; 3810 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3811 r->src.neg, kif, M_GETFIB(m))) 3812 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3813 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3814 r->dst.neg, NULL, M_GETFIB(m))) 3815 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3816 else if (r->tos && !(r->tos == pd->tos)) 3817 r = TAILQ_NEXT(r, entries); 3818 else if (r->os_fingerprint != PF_OSFP_ANY) 3819 r = TAILQ_NEXT(r, entries); 3820 else if (pd->proto == IPPROTO_UDP && 3821 (r->src.port_op || r->dst.port_op)) 3822 r = TAILQ_NEXT(r, entries); 3823 else if (pd->proto == IPPROTO_TCP && 3824 (r->src.port_op || r->dst.port_op || r->flagset)) 3825 r = TAILQ_NEXT(r, entries); 3826 else if ((pd->proto == IPPROTO_ICMP || 3827 pd->proto == IPPROTO_ICMPV6) && 3828 (r->type || r->code)) 3829 r = TAILQ_NEXT(r, entries); 3830 else if (r->prio && 3831 !pf_match_ieee8021q_pcp(r->prio, m)) 3832 r = TAILQ_NEXT(r, entries); 3833 else if (r->prob && r->prob <= 3834 (arc4random() % (UINT_MAX - 1) + 1)) 3835 r = TAILQ_NEXT(r, entries); 3836 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3837 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3838 r = TAILQ_NEXT(r, entries); 3839 else { 3840 if (r->anchor == NULL) { 3841 match = 1; 3842 *rm = r; 3843 *am = a; 3844 *rsm = ruleset; 3845 if ((*rm)->quick) 3846 break; 3847 r = TAILQ_NEXT(r, entries); 3848 } else 3849 pf_step_into_anchor(anchor_stack, &asd, 3850 &ruleset, PF_RULESET_FILTER, &r, &a, 3851 &match); 3852 } 3853 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3854 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3855 break; 3856 } 3857 r = *rm; 3858 a = *am; 3859 ruleset = *rsm; 3860 3861 REASON_SET(&reason, PFRES_MATCH); 3862 3863 if (r->log) 3864 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3865 1); 3866 3867 if (r->action != PF_PASS) 3868 return (PF_DROP); 3869 3870 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3871 REASON_SET(&reason, PFRES_MEMORY); 3872 return (PF_DROP); 3873 } 3874 3875 return (PF_PASS); 3876 } 3877 3878 static int 3879 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3880 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3881 struct pf_pdesc *pd, u_short *reason, int *copyback) 3882 { 3883 struct tcphdr *th = pd->hdr.tcp; 3884 u_int16_t win = ntohs(th->th_win); 3885 u_int32_t ack, end, seq, orig_seq; 3886 u_int8_t sws, dws; 3887 int ackskew; 3888 3889 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3890 sws = src->wscale & PF_WSCALE_MASK; 3891 dws = dst->wscale & PF_WSCALE_MASK; 3892 } else 3893 sws = dws = 0; 3894 3895 /* 3896 * Sequence tracking algorithm from Guido van Rooij's paper: 3897 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3898 * tcp_filtering.ps 3899 */ 3900 3901 orig_seq = seq = ntohl(th->th_seq); 3902 if (src->seqlo == 0) { 3903 /* First packet from this end. Set its state */ 3904 3905 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3906 src->scrub == NULL) { 3907 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3908 REASON_SET(reason, PFRES_MEMORY); 3909 return (PF_DROP); 3910 } 3911 } 3912 3913 /* Deferred generation of sequence number modulator */ 3914 if (dst->seqdiff && !src->seqdiff) { 3915 /* use random iss for the TCP server */ 3916 while ((src->seqdiff = arc4random() - seq) == 0) 3917 ; 3918 ack = ntohl(th->th_ack) - dst->seqdiff; 3919 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3920 src->seqdiff), 0); 3921 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3922 *copyback = 1; 3923 } else { 3924 ack = ntohl(th->th_ack); 3925 } 3926 3927 end = seq + pd->p_len; 3928 if (th->th_flags & TH_SYN) { 3929 end++; 3930 if (dst->wscale & PF_WSCALE_FLAG) { 3931 src->wscale = pf_get_wscale(m, off, th->th_off, 3932 pd->af); 3933 if (src->wscale & PF_WSCALE_FLAG) { 3934 /* Remove scale factor from initial 3935 * window */ 3936 sws = src->wscale & PF_WSCALE_MASK; 3937 win = ((u_int32_t)win + (1 << sws) - 1) 3938 >> sws; 3939 dws = dst->wscale & PF_WSCALE_MASK; 3940 } else { 3941 /* fixup other window */ 3942 dst->max_win <<= dst->wscale & 3943 PF_WSCALE_MASK; 3944 /* in case of a retrans SYN|ACK */ 3945 dst->wscale = 0; 3946 } 3947 } 3948 } 3949 if (th->th_flags & TH_FIN) 3950 end++; 3951 3952 src->seqlo = seq; 3953 if (src->state < TCPS_SYN_SENT) 3954 src->state = TCPS_SYN_SENT; 3955 3956 /* 3957 * May need to slide the window (seqhi may have been set by 3958 * the crappy stack check or if we picked up the connection 3959 * after establishment) 3960 */ 3961 if (src->seqhi == 1 || 3962 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3963 src->seqhi = end + MAX(1, dst->max_win << dws); 3964 if (win > src->max_win) 3965 src->max_win = win; 3966 3967 } else { 3968 ack = ntohl(th->th_ack) - dst->seqdiff; 3969 if (src->seqdiff) { 3970 /* Modulate sequence numbers */ 3971 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3972 src->seqdiff), 0); 3973 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3974 *copyback = 1; 3975 } 3976 end = seq + pd->p_len; 3977 if (th->th_flags & TH_SYN) 3978 end++; 3979 if (th->th_flags & TH_FIN) 3980 end++; 3981 } 3982 3983 if ((th->th_flags & TH_ACK) == 0) { 3984 /* Let it pass through the ack skew check */ 3985 ack = dst->seqlo; 3986 } else if ((ack == 0 && 3987 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3988 /* broken tcp stacks do not set ack */ 3989 (dst->state < TCPS_SYN_SENT)) { 3990 /* 3991 * Many stacks (ours included) will set the ACK number in an 3992 * FIN|ACK if the SYN times out -- no sequence to ACK. 3993 */ 3994 ack = dst->seqlo; 3995 } 3996 3997 if (seq == end) { 3998 /* Ease sequencing restrictions on no data packets */ 3999 seq = src->seqlo; 4000 end = seq; 4001 } 4002 4003 ackskew = dst->seqlo - ack; 4004 4005 4006 /* 4007 * Need to demodulate the sequence numbers in any TCP SACK options 4008 * (Selective ACK). We could optionally validate the SACK values 4009 * against the current ACK window, either forwards or backwards, but 4010 * I'm not confident that SACK has been implemented properly 4011 * everywhere. It wouldn't surprise me if several stacks accidentally 4012 * SACK too far backwards of previously ACKed data. There really aren't 4013 * any security implications of bad SACKing unless the target stack 4014 * doesn't validate the option length correctly. Someone trying to 4015 * spoof into a TCP connection won't bother blindly sending SACK 4016 * options anyway. 4017 */ 4018 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4019 if (pf_modulate_sack(m, off, pd, th, dst)) 4020 *copyback = 1; 4021 } 4022 4023 4024 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4025 if (SEQ_GEQ(src->seqhi, end) && 4026 /* Last octet inside other's window space */ 4027 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4028 /* Retrans: not more than one window back */ 4029 (ackskew >= -MAXACKWINDOW) && 4030 /* Acking not more than one reassembled fragment backwards */ 4031 (ackskew <= (MAXACKWINDOW << sws)) && 4032 /* Acking not more than one window forward */ 4033 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4034 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4035 (pd->flags & PFDESC_IP_REAS) == 0)) { 4036 /* Require an exact/+1 sequence match on resets when possible */ 4037 4038 if (dst->scrub || src->scrub) { 4039 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4040 *state, src, dst, copyback)) 4041 return (PF_DROP); 4042 } 4043 4044 /* update max window */ 4045 if (src->max_win < win) 4046 src->max_win = win; 4047 /* synchronize sequencing */ 4048 if (SEQ_GT(end, src->seqlo)) 4049 src->seqlo = end; 4050 /* slide the window of what the other end can send */ 4051 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4052 dst->seqhi = ack + MAX((win << sws), 1); 4053 4054 4055 /* update states */ 4056 if (th->th_flags & TH_SYN) 4057 if (src->state < TCPS_SYN_SENT) 4058 src->state = TCPS_SYN_SENT; 4059 if (th->th_flags & TH_FIN) 4060 if (src->state < TCPS_CLOSING) 4061 src->state = TCPS_CLOSING; 4062 if (th->th_flags & TH_ACK) { 4063 if (dst->state == TCPS_SYN_SENT) { 4064 dst->state = TCPS_ESTABLISHED; 4065 if (src->state == TCPS_ESTABLISHED && 4066 (*state)->src_node != NULL && 4067 pf_src_connlimit(state)) { 4068 REASON_SET(reason, PFRES_SRCLIMIT); 4069 return (PF_DROP); 4070 } 4071 } else if (dst->state == TCPS_CLOSING) 4072 dst->state = TCPS_FIN_WAIT_2; 4073 } 4074 if (th->th_flags & TH_RST) 4075 src->state = dst->state = TCPS_TIME_WAIT; 4076 4077 /* update expire time */ 4078 (*state)->expire = time_uptime; 4079 if (src->state >= TCPS_FIN_WAIT_2 && 4080 dst->state >= TCPS_FIN_WAIT_2) 4081 (*state)->timeout = PFTM_TCP_CLOSED; 4082 else if (src->state >= TCPS_CLOSING && 4083 dst->state >= TCPS_CLOSING) 4084 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4085 else if (src->state < TCPS_ESTABLISHED || 4086 dst->state < TCPS_ESTABLISHED) 4087 (*state)->timeout = PFTM_TCP_OPENING; 4088 else if (src->state >= TCPS_CLOSING || 4089 dst->state >= TCPS_CLOSING) 4090 (*state)->timeout = PFTM_TCP_CLOSING; 4091 else 4092 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4093 4094 /* Fall through to PASS packet */ 4095 4096 } else if ((dst->state < TCPS_SYN_SENT || 4097 dst->state >= TCPS_FIN_WAIT_2 || 4098 src->state >= TCPS_FIN_WAIT_2) && 4099 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4100 /* Within a window forward of the originating packet */ 4101 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4102 /* Within a window backward of the originating packet */ 4103 4104 /* 4105 * This currently handles three situations: 4106 * 1) Stupid stacks will shotgun SYNs before their peer 4107 * replies. 4108 * 2) When PF catches an already established stream (the 4109 * firewall rebooted, the state table was flushed, routes 4110 * changed...) 4111 * 3) Packets get funky immediately after the connection 4112 * closes (this should catch Solaris spurious ACK|FINs 4113 * that web servers like to spew after a close) 4114 * 4115 * This must be a little more careful than the above code 4116 * since packet floods will also be caught here. We don't 4117 * update the TTL here to mitigate the damage of a packet 4118 * flood and so the same code can handle awkward establishment 4119 * and a loosened connection close. 4120 * In the establishment case, a correct peer response will 4121 * validate the connection, go through the normal state code 4122 * and keep updating the state TTL. 4123 */ 4124 4125 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4126 printf("pf: loose state match: "); 4127 pf_print_state(*state); 4128 pf_print_flags(th->th_flags); 4129 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4130 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4131 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4132 (unsigned long long)(*state)->packets[1], 4133 pd->dir == PF_IN ? "in" : "out", 4134 pd->dir == (*state)->direction ? "fwd" : "rev"); 4135 } 4136 4137 if (dst->scrub || src->scrub) { 4138 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4139 *state, src, dst, copyback)) 4140 return (PF_DROP); 4141 } 4142 4143 /* update max window */ 4144 if (src->max_win < win) 4145 src->max_win = win; 4146 /* synchronize sequencing */ 4147 if (SEQ_GT(end, src->seqlo)) 4148 src->seqlo = end; 4149 /* slide the window of what the other end can send */ 4150 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4151 dst->seqhi = ack + MAX((win << sws), 1); 4152 4153 /* 4154 * Cannot set dst->seqhi here since this could be a shotgunned 4155 * SYN and not an already established connection. 4156 */ 4157 4158 if (th->th_flags & TH_FIN) 4159 if (src->state < TCPS_CLOSING) 4160 src->state = TCPS_CLOSING; 4161 if (th->th_flags & TH_RST) 4162 src->state = dst->state = TCPS_TIME_WAIT; 4163 4164 /* Fall through to PASS packet */ 4165 4166 } else { 4167 if ((*state)->dst.state == TCPS_SYN_SENT && 4168 (*state)->src.state == TCPS_SYN_SENT) { 4169 /* Send RST for state mismatches during handshake */ 4170 if (!(th->th_flags & TH_RST)) 4171 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4172 pd->dst, pd->src, th->th_dport, 4173 th->th_sport, ntohl(th->th_ack), 0, 4174 TH_RST, 0, 0, 4175 (*state)->rule.ptr->return_ttl, 1, 0, 4176 kif->pfik_ifp); 4177 src->seqlo = 0; 4178 src->seqhi = 1; 4179 src->max_win = 1; 4180 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4181 printf("pf: BAD state: "); 4182 pf_print_state(*state); 4183 pf_print_flags(th->th_flags); 4184 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4185 "pkts=%llu:%llu dir=%s,%s\n", 4186 seq, orig_seq, ack, pd->p_len, ackskew, 4187 (unsigned long long)(*state)->packets[0], 4188 (unsigned long long)(*state)->packets[1], 4189 pd->dir == PF_IN ? "in" : "out", 4190 pd->dir == (*state)->direction ? "fwd" : "rev"); 4191 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4192 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4193 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4194 ' ': '2', 4195 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4196 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4197 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4198 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4199 } 4200 REASON_SET(reason, PFRES_BADSTATE); 4201 return (PF_DROP); 4202 } 4203 4204 return (PF_PASS); 4205 } 4206 4207 static int 4208 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4209 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4210 { 4211 struct tcphdr *th = pd->hdr.tcp; 4212 4213 if (th->th_flags & TH_SYN) 4214 if (src->state < TCPS_SYN_SENT) 4215 src->state = TCPS_SYN_SENT; 4216 if (th->th_flags & TH_FIN) 4217 if (src->state < TCPS_CLOSING) 4218 src->state = TCPS_CLOSING; 4219 if (th->th_flags & TH_ACK) { 4220 if (dst->state == TCPS_SYN_SENT) { 4221 dst->state = TCPS_ESTABLISHED; 4222 if (src->state == TCPS_ESTABLISHED && 4223 (*state)->src_node != NULL && 4224 pf_src_connlimit(state)) { 4225 REASON_SET(reason, PFRES_SRCLIMIT); 4226 return (PF_DROP); 4227 } 4228 } else if (dst->state == TCPS_CLOSING) { 4229 dst->state = TCPS_FIN_WAIT_2; 4230 } else if (src->state == TCPS_SYN_SENT && 4231 dst->state < TCPS_SYN_SENT) { 4232 /* 4233 * Handle a special sloppy case where we only see one 4234 * half of the connection. If there is a ACK after 4235 * the initial SYN without ever seeing a packet from 4236 * the destination, set the connection to established. 4237 */ 4238 dst->state = src->state = TCPS_ESTABLISHED; 4239 if ((*state)->src_node != NULL && 4240 pf_src_connlimit(state)) { 4241 REASON_SET(reason, PFRES_SRCLIMIT); 4242 return (PF_DROP); 4243 } 4244 } else if (src->state == TCPS_CLOSING && 4245 dst->state == TCPS_ESTABLISHED && 4246 dst->seqlo == 0) { 4247 /* 4248 * Handle the closing of half connections where we 4249 * don't see the full bidirectional FIN/ACK+ACK 4250 * handshake. 4251 */ 4252 dst->state = TCPS_CLOSING; 4253 } 4254 } 4255 if (th->th_flags & TH_RST) 4256 src->state = dst->state = TCPS_TIME_WAIT; 4257 4258 /* update expire time */ 4259 (*state)->expire = time_uptime; 4260 if (src->state >= TCPS_FIN_WAIT_2 && 4261 dst->state >= TCPS_FIN_WAIT_2) 4262 (*state)->timeout = PFTM_TCP_CLOSED; 4263 else if (src->state >= TCPS_CLOSING && 4264 dst->state >= TCPS_CLOSING) 4265 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4266 else if (src->state < TCPS_ESTABLISHED || 4267 dst->state < TCPS_ESTABLISHED) 4268 (*state)->timeout = PFTM_TCP_OPENING; 4269 else if (src->state >= TCPS_CLOSING || 4270 dst->state >= TCPS_CLOSING) 4271 (*state)->timeout = PFTM_TCP_CLOSING; 4272 else 4273 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4274 4275 return (PF_PASS); 4276 } 4277 4278 static int 4279 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4280 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4281 u_short *reason) 4282 { 4283 struct pf_state_key_cmp key; 4284 struct tcphdr *th = pd->hdr.tcp; 4285 int copyback = 0; 4286 struct pf_state_peer *src, *dst; 4287 struct pf_state_key *sk; 4288 4289 bzero(&key, sizeof(key)); 4290 key.af = pd->af; 4291 key.proto = IPPROTO_TCP; 4292 if (direction == PF_IN) { /* wire side, straight */ 4293 PF_ACPY(&key.addr[0], pd->src, key.af); 4294 PF_ACPY(&key.addr[1], pd->dst, key.af); 4295 key.port[0] = th->th_sport; 4296 key.port[1] = th->th_dport; 4297 } else { /* stack side, reverse */ 4298 PF_ACPY(&key.addr[1], pd->src, key.af); 4299 PF_ACPY(&key.addr[0], pd->dst, key.af); 4300 key.port[1] = th->th_sport; 4301 key.port[0] = th->th_dport; 4302 } 4303 4304 STATE_LOOKUP(kif, &key, direction, *state, pd); 4305 4306 if (direction == (*state)->direction) { 4307 src = &(*state)->src; 4308 dst = &(*state)->dst; 4309 } else { 4310 src = &(*state)->dst; 4311 dst = &(*state)->src; 4312 } 4313 4314 sk = (*state)->key[pd->didx]; 4315 4316 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4317 if (direction != (*state)->direction) { 4318 REASON_SET(reason, PFRES_SYNPROXY); 4319 return (PF_SYNPROXY_DROP); 4320 } 4321 if (th->th_flags & TH_SYN) { 4322 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4323 REASON_SET(reason, PFRES_SYNPROXY); 4324 return (PF_DROP); 4325 } 4326 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4327 pd->src, th->th_dport, th->th_sport, 4328 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4329 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4330 REASON_SET(reason, PFRES_SYNPROXY); 4331 return (PF_SYNPROXY_DROP); 4332 } else if (!(th->th_flags & TH_ACK) || 4333 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4334 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4335 REASON_SET(reason, PFRES_SYNPROXY); 4336 return (PF_DROP); 4337 } else if ((*state)->src_node != NULL && 4338 pf_src_connlimit(state)) { 4339 REASON_SET(reason, PFRES_SRCLIMIT); 4340 return (PF_DROP); 4341 } else 4342 (*state)->src.state = PF_TCPS_PROXY_DST; 4343 } 4344 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4345 if (direction == (*state)->direction) { 4346 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4347 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4348 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4349 REASON_SET(reason, PFRES_SYNPROXY); 4350 return (PF_DROP); 4351 } 4352 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4353 if ((*state)->dst.seqhi == 1) 4354 (*state)->dst.seqhi = htonl(arc4random()); 4355 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4356 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4357 sk->port[pd->sidx], sk->port[pd->didx], 4358 (*state)->dst.seqhi, 0, TH_SYN, 0, 4359 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4360 REASON_SET(reason, PFRES_SYNPROXY); 4361 return (PF_SYNPROXY_DROP); 4362 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4363 (TH_SYN|TH_ACK)) || 4364 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4365 REASON_SET(reason, PFRES_SYNPROXY); 4366 return (PF_DROP); 4367 } else { 4368 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4369 (*state)->dst.seqlo = ntohl(th->th_seq); 4370 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4371 pd->src, th->th_dport, th->th_sport, 4372 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4373 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4374 (*state)->tag, NULL); 4375 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4376 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4377 sk->port[pd->sidx], sk->port[pd->didx], 4378 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4379 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4380 (*state)->src.seqdiff = (*state)->dst.seqhi - 4381 (*state)->src.seqlo; 4382 (*state)->dst.seqdiff = (*state)->src.seqhi - 4383 (*state)->dst.seqlo; 4384 (*state)->src.seqhi = (*state)->src.seqlo + 4385 (*state)->dst.max_win; 4386 (*state)->dst.seqhi = (*state)->dst.seqlo + 4387 (*state)->src.max_win; 4388 (*state)->src.wscale = (*state)->dst.wscale = 0; 4389 (*state)->src.state = (*state)->dst.state = 4390 TCPS_ESTABLISHED; 4391 REASON_SET(reason, PFRES_SYNPROXY); 4392 return (PF_SYNPROXY_DROP); 4393 } 4394 } 4395 4396 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4397 dst->state >= TCPS_FIN_WAIT_2 && 4398 src->state >= TCPS_FIN_WAIT_2) { 4399 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4400 printf("pf: state reuse "); 4401 pf_print_state(*state); 4402 pf_print_flags(th->th_flags); 4403 printf("\n"); 4404 } 4405 /* XXX make sure it's the same direction ?? */ 4406 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4407 pf_unlink_state(*state, PF_ENTER_LOCKED); 4408 *state = NULL; 4409 return (PF_DROP); 4410 } 4411 4412 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4413 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4414 return (PF_DROP); 4415 } else { 4416 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4417 ©back) == PF_DROP) 4418 return (PF_DROP); 4419 } 4420 4421 /* translate source/destination address, if necessary */ 4422 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4423 struct pf_state_key *nk = (*state)->key[pd->didx]; 4424 4425 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4426 nk->port[pd->sidx] != th->th_sport) 4427 pf_change_ap(m, pd->src, &th->th_sport, 4428 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4429 nk->port[pd->sidx], 0, pd->af); 4430 4431 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4432 nk->port[pd->didx] != th->th_dport) 4433 pf_change_ap(m, pd->dst, &th->th_dport, 4434 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4435 nk->port[pd->didx], 0, pd->af); 4436 copyback = 1; 4437 } 4438 4439 /* Copyback sequence modulation or stateful scrub changes if needed */ 4440 if (copyback) 4441 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4442 4443 return (PF_PASS); 4444 } 4445 4446 static int 4447 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4448 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4449 { 4450 struct pf_state_peer *src, *dst; 4451 struct pf_state_key_cmp key; 4452 struct udphdr *uh = pd->hdr.udp; 4453 4454 bzero(&key, sizeof(key)); 4455 key.af = pd->af; 4456 key.proto = IPPROTO_UDP; 4457 if (direction == PF_IN) { /* wire side, straight */ 4458 PF_ACPY(&key.addr[0], pd->src, key.af); 4459 PF_ACPY(&key.addr[1], pd->dst, key.af); 4460 key.port[0] = uh->uh_sport; 4461 key.port[1] = uh->uh_dport; 4462 } else { /* stack side, reverse */ 4463 PF_ACPY(&key.addr[1], pd->src, key.af); 4464 PF_ACPY(&key.addr[0], pd->dst, key.af); 4465 key.port[1] = uh->uh_sport; 4466 key.port[0] = uh->uh_dport; 4467 } 4468 4469 STATE_LOOKUP(kif, &key, direction, *state, pd); 4470 4471 if (direction == (*state)->direction) { 4472 src = &(*state)->src; 4473 dst = &(*state)->dst; 4474 } else { 4475 src = &(*state)->dst; 4476 dst = &(*state)->src; 4477 } 4478 4479 /* update states */ 4480 if (src->state < PFUDPS_SINGLE) 4481 src->state = PFUDPS_SINGLE; 4482 if (dst->state == PFUDPS_SINGLE) 4483 dst->state = PFUDPS_MULTIPLE; 4484 4485 /* update expire time */ 4486 (*state)->expire = time_uptime; 4487 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4488 (*state)->timeout = PFTM_UDP_MULTIPLE; 4489 else 4490 (*state)->timeout = PFTM_UDP_SINGLE; 4491 4492 /* translate source/destination address, if necessary */ 4493 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4494 struct pf_state_key *nk = (*state)->key[pd->didx]; 4495 4496 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4497 nk->port[pd->sidx] != uh->uh_sport) 4498 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4499 &uh->uh_sum, &nk->addr[pd->sidx], 4500 nk->port[pd->sidx], 1, pd->af); 4501 4502 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4503 nk->port[pd->didx] != uh->uh_dport) 4504 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4505 &uh->uh_sum, &nk->addr[pd->didx], 4506 nk->port[pd->didx], 1, pd->af); 4507 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4508 } 4509 4510 return (PF_PASS); 4511 } 4512 4513 static int 4514 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4515 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4516 { 4517 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4518 u_int16_t icmpid = 0, *icmpsum; 4519 u_int8_t icmptype; 4520 int state_icmp = 0; 4521 struct pf_state_key_cmp key; 4522 4523 bzero(&key, sizeof(key)); 4524 switch (pd->proto) { 4525 #ifdef INET 4526 case IPPROTO_ICMP: 4527 icmptype = pd->hdr.icmp->icmp_type; 4528 icmpid = pd->hdr.icmp->icmp_id; 4529 icmpsum = &pd->hdr.icmp->icmp_cksum; 4530 4531 if (icmptype == ICMP_UNREACH || 4532 icmptype == ICMP_SOURCEQUENCH || 4533 icmptype == ICMP_REDIRECT || 4534 icmptype == ICMP_TIMXCEED || 4535 icmptype == ICMP_PARAMPROB) 4536 state_icmp++; 4537 break; 4538 #endif /* INET */ 4539 #ifdef INET6 4540 case IPPROTO_ICMPV6: 4541 icmptype = pd->hdr.icmp6->icmp6_type; 4542 icmpid = pd->hdr.icmp6->icmp6_id; 4543 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4544 4545 if (icmptype == ICMP6_DST_UNREACH || 4546 icmptype == ICMP6_PACKET_TOO_BIG || 4547 icmptype == ICMP6_TIME_EXCEEDED || 4548 icmptype == ICMP6_PARAM_PROB) 4549 state_icmp++; 4550 break; 4551 #endif /* INET6 */ 4552 } 4553 4554 if (!state_icmp) { 4555 4556 /* 4557 * ICMP query/reply message not related to a TCP/UDP packet. 4558 * Search for an ICMP state. 4559 */ 4560 key.af = pd->af; 4561 key.proto = pd->proto; 4562 key.port[0] = key.port[1] = icmpid; 4563 if (direction == PF_IN) { /* wire side, straight */ 4564 PF_ACPY(&key.addr[0], pd->src, key.af); 4565 PF_ACPY(&key.addr[1], pd->dst, key.af); 4566 } else { /* stack side, reverse */ 4567 PF_ACPY(&key.addr[1], pd->src, key.af); 4568 PF_ACPY(&key.addr[0], pd->dst, key.af); 4569 } 4570 4571 STATE_LOOKUP(kif, &key, direction, *state, pd); 4572 4573 (*state)->expire = time_uptime; 4574 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4575 4576 /* translate source/destination address, if necessary */ 4577 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4578 struct pf_state_key *nk = (*state)->key[pd->didx]; 4579 4580 switch (pd->af) { 4581 #ifdef INET 4582 case AF_INET: 4583 if (PF_ANEQ(pd->src, 4584 &nk->addr[pd->sidx], AF_INET)) 4585 pf_change_a(&saddr->v4.s_addr, 4586 pd->ip_sum, 4587 nk->addr[pd->sidx].v4.s_addr, 0); 4588 4589 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4590 AF_INET)) 4591 pf_change_a(&daddr->v4.s_addr, 4592 pd->ip_sum, 4593 nk->addr[pd->didx].v4.s_addr, 0); 4594 4595 if (nk->port[0] != 4596 pd->hdr.icmp->icmp_id) { 4597 pd->hdr.icmp->icmp_cksum = 4598 pf_cksum_fixup( 4599 pd->hdr.icmp->icmp_cksum, icmpid, 4600 nk->port[pd->sidx], 0); 4601 pd->hdr.icmp->icmp_id = 4602 nk->port[pd->sidx]; 4603 } 4604 4605 m_copyback(m, off, ICMP_MINLEN, 4606 (caddr_t )pd->hdr.icmp); 4607 break; 4608 #endif /* INET */ 4609 #ifdef INET6 4610 case AF_INET6: 4611 if (PF_ANEQ(pd->src, 4612 &nk->addr[pd->sidx], AF_INET6)) 4613 pf_change_a6(saddr, 4614 &pd->hdr.icmp6->icmp6_cksum, 4615 &nk->addr[pd->sidx], 0); 4616 4617 if (PF_ANEQ(pd->dst, 4618 &nk->addr[pd->didx], AF_INET6)) 4619 pf_change_a6(daddr, 4620 &pd->hdr.icmp6->icmp6_cksum, 4621 &nk->addr[pd->didx], 0); 4622 4623 m_copyback(m, off, sizeof(struct icmp6_hdr), 4624 (caddr_t )pd->hdr.icmp6); 4625 break; 4626 #endif /* INET6 */ 4627 } 4628 } 4629 return (PF_PASS); 4630 4631 } else { 4632 /* 4633 * ICMP error message in response to a TCP/UDP packet. 4634 * Extract the inner TCP/UDP header and search for that state. 4635 */ 4636 4637 struct pf_pdesc pd2; 4638 bzero(&pd2, sizeof pd2); 4639 #ifdef INET 4640 struct ip h2; 4641 #endif /* INET */ 4642 #ifdef INET6 4643 struct ip6_hdr h2_6; 4644 int terminal = 0; 4645 #endif /* INET6 */ 4646 int ipoff2 = 0; 4647 int off2 = 0; 4648 4649 pd2.af = pd->af; 4650 /* Payload packet is from the opposite direction. */ 4651 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4652 pd2.didx = (direction == PF_IN) ? 0 : 1; 4653 switch (pd->af) { 4654 #ifdef INET 4655 case AF_INET: 4656 /* offset of h2 in mbuf chain */ 4657 ipoff2 = off + ICMP_MINLEN; 4658 4659 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4660 NULL, reason, pd2.af)) { 4661 DPFPRINTF(PF_DEBUG_MISC, 4662 ("pf: ICMP error message too short " 4663 "(ip)\n")); 4664 return (PF_DROP); 4665 } 4666 /* 4667 * ICMP error messages don't refer to non-first 4668 * fragments 4669 */ 4670 if (h2.ip_off & htons(IP_OFFMASK)) { 4671 REASON_SET(reason, PFRES_FRAG); 4672 return (PF_DROP); 4673 } 4674 4675 /* offset of protocol header that follows h2 */ 4676 off2 = ipoff2 + (h2.ip_hl << 2); 4677 4678 pd2.proto = h2.ip_p; 4679 pd2.src = (struct pf_addr *)&h2.ip_src; 4680 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4681 pd2.ip_sum = &h2.ip_sum; 4682 break; 4683 #endif /* INET */ 4684 #ifdef INET6 4685 case AF_INET6: 4686 ipoff2 = off + sizeof(struct icmp6_hdr); 4687 4688 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4689 NULL, reason, pd2.af)) { 4690 DPFPRINTF(PF_DEBUG_MISC, 4691 ("pf: ICMP error message too short " 4692 "(ip6)\n")); 4693 return (PF_DROP); 4694 } 4695 pd2.proto = h2_6.ip6_nxt; 4696 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4697 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4698 pd2.ip_sum = NULL; 4699 off2 = ipoff2 + sizeof(h2_6); 4700 do { 4701 switch (pd2.proto) { 4702 case IPPROTO_FRAGMENT: 4703 /* 4704 * ICMPv6 error messages for 4705 * non-first fragments 4706 */ 4707 REASON_SET(reason, PFRES_FRAG); 4708 return (PF_DROP); 4709 case IPPROTO_AH: 4710 case IPPROTO_HOPOPTS: 4711 case IPPROTO_ROUTING: 4712 case IPPROTO_DSTOPTS: { 4713 /* get next header and header length */ 4714 struct ip6_ext opt6; 4715 4716 if (!pf_pull_hdr(m, off2, &opt6, 4717 sizeof(opt6), NULL, reason, 4718 pd2.af)) { 4719 DPFPRINTF(PF_DEBUG_MISC, 4720 ("pf: ICMPv6 short opt\n")); 4721 return (PF_DROP); 4722 } 4723 if (pd2.proto == IPPROTO_AH) 4724 off2 += (opt6.ip6e_len + 2) * 4; 4725 else 4726 off2 += (opt6.ip6e_len + 1) * 8; 4727 pd2.proto = opt6.ip6e_nxt; 4728 /* goto the next header */ 4729 break; 4730 } 4731 default: 4732 terminal++; 4733 break; 4734 } 4735 } while (!terminal); 4736 break; 4737 #endif /* INET6 */ 4738 } 4739 4740 switch (pd2.proto) { 4741 case IPPROTO_TCP: { 4742 struct tcphdr th; 4743 u_int32_t seq; 4744 struct pf_state_peer *src, *dst; 4745 u_int8_t dws; 4746 int copyback = 0; 4747 4748 /* 4749 * Only the first 8 bytes of the TCP header can be 4750 * expected. Don't access any TCP header fields after 4751 * th_seq, an ackskew test is not possible. 4752 */ 4753 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4754 pd2.af)) { 4755 DPFPRINTF(PF_DEBUG_MISC, 4756 ("pf: ICMP error message too short " 4757 "(tcp)\n")); 4758 return (PF_DROP); 4759 } 4760 4761 key.af = pd2.af; 4762 key.proto = IPPROTO_TCP; 4763 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4764 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4765 key.port[pd2.sidx] = th.th_sport; 4766 key.port[pd2.didx] = th.th_dport; 4767 4768 STATE_LOOKUP(kif, &key, direction, *state, pd); 4769 4770 if (direction == (*state)->direction) { 4771 src = &(*state)->dst; 4772 dst = &(*state)->src; 4773 } else { 4774 src = &(*state)->src; 4775 dst = &(*state)->dst; 4776 } 4777 4778 if (src->wscale && dst->wscale) 4779 dws = dst->wscale & PF_WSCALE_MASK; 4780 else 4781 dws = 0; 4782 4783 /* Demodulate sequence number */ 4784 seq = ntohl(th.th_seq) - src->seqdiff; 4785 if (src->seqdiff) { 4786 pf_change_a(&th.th_seq, icmpsum, 4787 htonl(seq), 0); 4788 copyback = 1; 4789 } 4790 4791 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4792 (!SEQ_GEQ(src->seqhi, seq) || 4793 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4794 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4795 printf("pf: BAD ICMP %d:%d ", 4796 icmptype, pd->hdr.icmp->icmp_code); 4797 pf_print_host(pd->src, 0, pd->af); 4798 printf(" -> "); 4799 pf_print_host(pd->dst, 0, pd->af); 4800 printf(" state: "); 4801 pf_print_state(*state); 4802 printf(" seq=%u\n", seq); 4803 } 4804 REASON_SET(reason, PFRES_BADSTATE); 4805 return (PF_DROP); 4806 } else { 4807 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4808 printf("pf: OK ICMP %d:%d ", 4809 icmptype, pd->hdr.icmp->icmp_code); 4810 pf_print_host(pd->src, 0, pd->af); 4811 printf(" -> "); 4812 pf_print_host(pd->dst, 0, pd->af); 4813 printf(" state: "); 4814 pf_print_state(*state); 4815 printf(" seq=%u\n", seq); 4816 } 4817 } 4818 4819 /* translate source/destination address, if necessary */ 4820 if ((*state)->key[PF_SK_WIRE] != 4821 (*state)->key[PF_SK_STACK]) { 4822 struct pf_state_key *nk = 4823 (*state)->key[pd->didx]; 4824 4825 if (PF_ANEQ(pd2.src, 4826 &nk->addr[pd2.sidx], pd2.af) || 4827 nk->port[pd2.sidx] != th.th_sport) 4828 pf_change_icmp(pd2.src, &th.th_sport, 4829 daddr, &nk->addr[pd2.sidx], 4830 nk->port[pd2.sidx], NULL, 4831 pd2.ip_sum, icmpsum, 4832 pd->ip_sum, 0, pd2.af); 4833 4834 if (PF_ANEQ(pd2.dst, 4835 &nk->addr[pd2.didx], pd2.af) || 4836 nk->port[pd2.didx] != th.th_dport) 4837 pf_change_icmp(pd2.dst, &th.th_dport, 4838 saddr, &nk->addr[pd2.didx], 4839 nk->port[pd2.didx], NULL, 4840 pd2.ip_sum, icmpsum, 4841 pd->ip_sum, 0, pd2.af); 4842 copyback = 1; 4843 } 4844 4845 if (copyback) { 4846 switch (pd2.af) { 4847 #ifdef INET 4848 case AF_INET: 4849 m_copyback(m, off, ICMP_MINLEN, 4850 (caddr_t )pd->hdr.icmp); 4851 m_copyback(m, ipoff2, sizeof(h2), 4852 (caddr_t )&h2); 4853 break; 4854 #endif /* INET */ 4855 #ifdef INET6 4856 case AF_INET6: 4857 m_copyback(m, off, 4858 sizeof(struct icmp6_hdr), 4859 (caddr_t )pd->hdr.icmp6); 4860 m_copyback(m, ipoff2, sizeof(h2_6), 4861 (caddr_t )&h2_6); 4862 break; 4863 #endif /* INET6 */ 4864 } 4865 m_copyback(m, off2, 8, (caddr_t)&th); 4866 } 4867 4868 return (PF_PASS); 4869 break; 4870 } 4871 case IPPROTO_UDP: { 4872 struct udphdr uh; 4873 4874 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4875 NULL, reason, pd2.af)) { 4876 DPFPRINTF(PF_DEBUG_MISC, 4877 ("pf: ICMP error message too short " 4878 "(udp)\n")); 4879 return (PF_DROP); 4880 } 4881 4882 key.af = pd2.af; 4883 key.proto = IPPROTO_UDP; 4884 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4885 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4886 key.port[pd2.sidx] = uh.uh_sport; 4887 key.port[pd2.didx] = uh.uh_dport; 4888 4889 STATE_LOOKUP(kif, &key, direction, *state, pd); 4890 4891 /* translate source/destination address, if necessary */ 4892 if ((*state)->key[PF_SK_WIRE] != 4893 (*state)->key[PF_SK_STACK]) { 4894 struct pf_state_key *nk = 4895 (*state)->key[pd->didx]; 4896 4897 if (PF_ANEQ(pd2.src, 4898 &nk->addr[pd2.sidx], pd2.af) || 4899 nk->port[pd2.sidx] != uh.uh_sport) 4900 pf_change_icmp(pd2.src, &uh.uh_sport, 4901 daddr, &nk->addr[pd2.sidx], 4902 nk->port[pd2.sidx], &uh.uh_sum, 4903 pd2.ip_sum, icmpsum, 4904 pd->ip_sum, 1, pd2.af); 4905 4906 if (PF_ANEQ(pd2.dst, 4907 &nk->addr[pd2.didx], pd2.af) || 4908 nk->port[pd2.didx] != uh.uh_dport) 4909 pf_change_icmp(pd2.dst, &uh.uh_dport, 4910 saddr, &nk->addr[pd2.didx], 4911 nk->port[pd2.didx], &uh.uh_sum, 4912 pd2.ip_sum, icmpsum, 4913 pd->ip_sum, 1, pd2.af); 4914 4915 switch (pd2.af) { 4916 #ifdef INET 4917 case AF_INET: 4918 m_copyback(m, off, ICMP_MINLEN, 4919 (caddr_t )pd->hdr.icmp); 4920 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4921 break; 4922 #endif /* INET */ 4923 #ifdef INET6 4924 case AF_INET6: 4925 m_copyback(m, off, 4926 sizeof(struct icmp6_hdr), 4927 (caddr_t )pd->hdr.icmp6); 4928 m_copyback(m, ipoff2, sizeof(h2_6), 4929 (caddr_t )&h2_6); 4930 break; 4931 #endif /* INET6 */ 4932 } 4933 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4934 } 4935 return (PF_PASS); 4936 break; 4937 } 4938 #ifdef INET 4939 case IPPROTO_ICMP: { 4940 struct icmp iih; 4941 4942 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4943 NULL, reason, pd2.af)) { 4944 DPFPRINTF(PF_DEBUG_MISC, 4945 ("pf: ICMP error message too short i" 4946 "(icmp)\n")); 4947 return (PF_DROP); 4948 } 4949 4950 key.af = pd2.af; 4951 key.proto = IPPROTO_ICMP; 4952 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4953 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4954 key.port[0] = key.port[1] = iih.icmp_id; 4955 4956 STATE_LOOKUP(kif, &key, direction, *state, pd); 4957 4958 /* translate source/destination address, if necessary */ 4959 if ((*state)->key[PF_SK_WIRE] != 4960 (*state)->key[PF_SK_STACK]) { 4961 struct pf_state_key *nk = 4962 (*state)->key[pd->didx]; 4963 4964 if (PF_ANEQ(pd2.src, 4965 &nk->addr[pd2.sidx], pd2.af) || 4966 nk->port[pd2.sidx] != iih.icmp_id) 4967 pf_change_icmp(pd2.src, &iih.icmp_id, 4968 daddr, &nk->addr[pd2.sidx], 4969 nk->port[pd2.sidx], NULL, 4970 pd2.ip_sum, icmpsum, 4971 pd->ip_sum, 0, AF_INET); 4972 4973 if (PF_ANEQ(pd2.dst, 4974 &nk->addr[pd2.didx], pd2.af) || 4975 nk->port[pd2.didx] != iih.icmp_id) 4976 pf_change_icmp(pd2.dst, &iih.icmp_id, 4977 saddr, &nk->addr[pd2.didx], 4978 nk->port[pd2.didx], NULL, 4979 pd2.ip_sum, icmpsum, 4980 pd->ip_sum, 0, AF_INET); 4981 4982 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4983 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4984 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4985 } 4986 return (PF_PASS); 4987 break; 4988 } 4989 #endif /* INET */ 4990 #ifdef INET6 4991 case IPPROTO_ICMPV6: { 4992 struct icmp6_hdr iih; 4993 4994 if (!pf_pull_hdr(m, off2, &iih, 4995 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4996 DPFPRINTF(PF_DEBUG_MISC, 4997 ("pf: ICMP error message too short " 4998 "(icmp6)\n")); 4999 return (PF_DROP); 5000 } 5001 5002 key.af = pd2.af; 5003 key.proto = IPPROTO_ICMPV6; 5004 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5005 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5006 key.port[0] = key.port[1] = iih.icmp6_id; 5007 5008 STATE_LOOKUP(kif, &key, direction, *state, pd); 5009 5010 /* translate source/destination address, if necessary */ 5011 if ((*state)->key[PF_SK_WIRE] != 5012 (*state)->key[PF_SK_STACK]) { 5013 struct pf_state_key *nk = 5014 (*state)->key[pd->didx]; 5015 5016 if (PF_ANEQ(pd2.src, 5017 &nk->addr[pd2.sidx], pd2.af) || 5018 nk->port[pd2.sidx] != iih.icmp6_id) 5019 pf_change_icmp(pd2.src, &iih.icmp6_id, 5020 daddr, &nk->addr[pd2.sidx], 5021 nk->port[pd2.sidx], NULL, 5022 pd2.ip_sum, icmpsum, 5023 pd->ip_sum, 0, AF_INET6); 5024 5025 if (PF_ANEQ(pd2.dst, 5026 &nk->addr[pd2.didx], pd2.af) || 5027 nk->port[pd2.didx] != iih.icmp6_id) 5028 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5029 saddr, &nk->addr[pd2.didx], 5030 nk->port[pd2.didx], NULL, 5031 pd2.ip_sum, icmpsum, 5032 pd->ip_sum, 0, AF_INET6); 5033 5034 m_copyback(m, off, sizeof(struct icmp6_hdr), 5035 (caddr_t)pd->hdr.icmp6); 5036 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5037 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5038 (caddr_t)&iih); 5039 } 5040 return (PF_PASS); 5041 break; 5042 } 5043 #endif /* INET6 */ 5044 default: { 5045 key.af = pd2.af; 5046 key.proto = pd2.proto; 5047 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5048 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5049 key.port[0] = key.port[1] = 0; 5050 5051 STATE_LOOKUP(kif, &key, direction, *state, pd); 5052 5053 /* translate source/destination address, if necessary */ 5054 if ((*state)->key[PF_SK_WIRE] != 5055 (*state)->key[PF_SK_STACK]) { 5056 struct pf_state_key *nk = 5057 (*state)->key[pd->didx]; 5058 5059 if (PF_ANEQ(pd2.src, 5060 &nk->addr[pd2.sidx], pd2.af)) 5061 pf_change_icmp(pd2.src, NULL, daddr, 5062 &nk->addr[pd2.sidx], 0, NULL, 5063 pd2.ip_sum, icmpsum, 5064 pd->ip_sum, 0, pd2.af); 5065 5066 if (PF_ANEQ(pd2.dst, 5067 &nk->addr[pd2.didx], pd2.af)) 5068 pf_change_icmp(pd2.dst, NULL, saddr, 5069 &nk->addr[pd2.didx], 0, NULL, 5070 pd2.ip_sum, icmpsum, 5071 pd->ip_sum, 0, pd2.af); 5072 5073 switch (pd2.af) { 5074 #ifdef INET 5075 case AF_INET: 5076 m_copyback(m, off, ICMP_MINLEN, 5077 (caddr_t)pd->hdr.icmp); 5078 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5079 break; 5080 #endif /* INET */ 5081 #ifdef INET6 5082 case AF_INET6: 5083 m_copyback(m, off, 5084 sizeof(struct icmp6_hdr), 5085 (caddr_t )pd->hdr.icmp6); 5086 m_copyback(m, ipoff2, sizeof(h2_6), 5087 (caddr_t )&h2_6); 5088 break; 5089 #endif /* INET6 */ 5090 } 5091 } 5092 return (PF_PASS); 5093 break; 5094 } 5095 } 5096 } 5097 } 5098 5099 static int 5100 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5101 struct mbuf *m, struct pf_pdesc *pd) 5102 { 5103 struct pf_state_peer *src, *dst; 5104 struct pf_state_key_cmp key; 5105 5106 bzero(&key, sizeof(key)); 5107 key.af = pd->af; 5108 key.proto = pd->proto; 5109 if (direction == PF_IN) { 5110 PF_ACPY(&key.addr[0], pd->src, key.af); 5111 PF_ACPY(&key.addr[1], pd->dst, key.af); 5112 key.port[0] = key.port[1] = 0; 5113 } else { 5114 PF_ACPY(&key.addr[1], pd->src, key.af); 5115 PF_ACPY(&key.addr[0], pd->dst, key.af); 5116 key.port[1] = key.port[0] = 0; 5117 } 5118 5119 STATE_LOOKUP(kif, &key, direction, *state, pd); 5120 5121 if (direction == (*state)->direction) { 5122 src = &(*state)->src; 5123 dst = &(*state)->dst; 5124 } else { 5125 src = &(*state)->dst; 5126 dst = &(*state)->src; 5127 } 5128 5129 /* update states */ 5130 if (src->state < PFOTHERS_SINGLE) 5131 src->state = PFOTHERS_SINGLE; 5132 if (dst->state == PFOTHERS_SINGLE) 5133 dst->state = PFOTHERS_MULTIPLE; 5134 5135 /* update expire time */ 5136 (*state)->expire = time_uptime; 5137 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5138 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5139 else 5140 (*state)->timeout = PFTM_OTHER_SINGLE; 5141 5142 /* translate source/destination address, if necessary */ 5143 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5144 struct pf_state_key *nk = (*state)->key[pd->didx]; 5145 5146 KASSERT(nk, ("%s: nk is null", __func__)); 5147 KASSERT(pd, ("%s: pd is null", __func__)); 5148 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5149 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5150 switch (pd->af) { 5151 #ifdef INET 5152 case AF_INET: 5153 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5154 pf_change_a(&pd->src->v4.s_addr, 5155 pd->ip_sum, 5156 nk->addr[pd->sidx].v4.s_addr, 5157 0); 5158 5159 5160 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5161 pf_change_a(&pd->dst->v4.s_addr, 5162 pd->ip_sum, 5163 nk->addr[pd->didx].v4.s_addr, 5164 0); 5165 5166 break; 5167 #endif /* INET */ 5168 #ifdef INET6 5169 case AF_INET6: 5170 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5171 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5172 5173 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5174 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5175 #endif /* INET6 */ 5176 } 5177 } 5178 return (PF_PASS); 5179 } 5180 5181 /* 5182 * ipoff and off are measured from the start of the mbuf chain. 5183 * h must be at "ipoff" on the mbuf chain. 5184 */ 5185 void * 5186 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5187 u_short *actionp, u_short *reasonp, sa_family_t af) 5188 { 5189 switch (af) { 5190 #ifdef INET 5191 case AF_INET: { 5192 struct ip *h = mtod(m, struct ip *); 5193 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5194 5195 if (fragoff) { 5196 if (fragoff >= len) 5197 ACTION_SET(actionp, PF_PASS); 5198 else { 5199 ACTION_SET(actionp, PF_DROP); 5200 REASON_SET(reasonp, PFRES_FRAG); 5201 } 5202 return (NULL); 5203 } 5204 if (m->m_pkthdr.len < off + len || 5205 ntohs(h->ip_len) < off + len) { 5206 ACTION_SET(actionp, PF_DROP); 5207 REASON_SET(reasonp, PFRES_SHORT); 5208 return (NULL); 5209 } 5210 break; 5211 } 5212 #endif /* INET */ 5213 #ifdef INET6 5214 case AF_INET6: { 5215 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5216 5217 if (m->m_pkthdr.len < off + len || 5218 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5219 (unsigned)(off + len)) { 5220 ACTION_SET(actionp, PF_DROP); 5221 REASON_SET(reasonp, PFRES_SHORT); 5222 return (NULL); 5223 } 5224 break; 5225 } 5226 #endif /* INET6 */ 5227 } 5228 m_copydata(m, off, len, p); 5229 return (p); 5230 } 5231 5232 #ifdef RADIX_MPATH 5233 static int 5234 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5235 int rtableid) 5236 { 5237 struct radix_node_head *rnh; 5238 struct sockaddr_in *dst; 5239 int ret = 1; 5240 int check_mpath; 5241 #ifdef INET6 5242 struct sockaddr_in6 *dst6; 5243 struct route_in6 ro; 5244 #else 5245 struct route ro; 5246 #endif 5247 struct radix_node *rn; 5248 struct rtentry *rt; 5249 struct ifnet *ifp; 5250 5251 check_mpath = 0; 5252 /* XXX: stick to table 0 for now */ 5253 rnh = rt_tables_get_rnh(0, af); 5254 if (rnh != NULL && rn_mpath_capable(rnh)) 5255 check_mpath = 1; 5256 bzero(&ro, sizeof(ro)); 5257 switch (af) { 5258 case AF_INET: 5259 dst = satosin(&ro.ro_dst); 5260 dst->sin_family = AF_INET; 5261 dst->sin_len = sizeof(*dst); 5262 dst->sin_addr = addr->v4; 5263 break; 5264 #ifdef INET6 5265 case AF_INET6: 5266 /* 5267 * Skip check for addresses with embedded interface scope, 5268 * as they would always match anyway. 5269 */ 5270 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5271 goto out; 5272 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5273 dst6->sin6_family = AF_INET6; 5274 dst6->sin6_len = sizeof(*dst6); 5275 dst6->sin6_addr = addr->v6; 5276 break; 5277 #endif /* INET6 */ 5278 default: 5279 return (0); 5280 } 5281 5282 /* Skip checks for ipsec interfaces */ 5283 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5284 goto out; 5285 5286 switch (af) { 5287 #ifdef INET6 5288 case AF_INET6: 5289 in6_rtalloc_ign(&ro, 0, rtableid); 5290 break; 5291 #endif 5292 #ifdef INET 5293 case AF_INET: 5294 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5295 break; 5296 #endif 5297 } 5298 5299 if (ro.ro_rt != NULL) { 5300 /* No interface given, this is a no-route check */ 5301 if (kif == NULL) 5302 goto out; 5303 5304 if (kif->pfik_ifp == NULL) { 5305 ret = 0; 5306 goto out; 5307 } 5308 5309 /* Perform uRPF check if passed input interface */ 5310 ret = 0; 5311 rn = (struct radix_node *)ro.ro_rt; 5312 do { 5313 rt = (struct rtentry *)rn; 5314 ifp = rt->rt_ifp; 5315 5316 if (kif->pfik_ifp == ifp) 5317 ret = 1; 5318 rn = rn_mpath_next(rn); 5319 } while (check_mpath == 1 && rn != NULL && ret == 0); 5320 } else 5321 ret = 0; 5322 out: 5323 if (ro.ro_rt != NULL) 5324 RTFREE(ro.ro_rt); 5325 return (ret); 5326 } 5327 #endif 5328 5329 int 5330 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5331 int rtableid) 5332 { 5333 #ifdef INET 5334 struct nhop4_basic nh4; 5335 #endif 5336 #ifdef INET6 5337 struct nhop6_basic nh6; 5338 #endif 5339 struct ifnet *ifp; 5340 #ifdef RADIX_MPATH 5341 struct radix_node_head *rnh; 5342 5343 /* XXX: stick to table 0 for now */ 5344 rnh = rt_tables_get_rnh(0, af); 5345 if (rnh != NULL && rn_mpath_capable(rnh)) 5346 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5347 #endif 5348 /* 5349 * Skip check for addresses with embedded interface scope, 5350 * as they would always match anyway. 5351 */ 5352 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5353 return (1); 5354 5355 if (af != AF_INET && af != AF_INET6) 5356 return (0); 5357 5358 /* Skip checks for ipsec interfaces */ 5359 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5360 return (1); 5361 5362 ifp = NULL; 5363 5364 switch (af) { 5365 #ifdef INET6 5366 case AF_INET6: 5367 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5368 return (0); 5369 ifp = nh6.nh_ifp; 5370 break; 5371 #endif 5372 #ifdef INET 5373 case AF_INET: 5374 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5375 return (0); 5376 ifp = nh4.nh_ifp; 5377 break; 5378 #endif 5379 } 5380 5381 /* No interface given, this is a no-route check */ 5382 if (kif == NULL) 5383 return (1); 5384 5385 if (kif->pfik_ifp == NULL) 5386 return (0); 5387 5388 /* Perform uRPF check if passed input interface */ 5389 if (kif->pfik_ifp == ifp) 5390 return (1); 5391 return (0); 5392 } 5393 5394 #ifdef INET 5395 static void 5396 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5397 struct pf_state *s, struct pf_pdesc *pd) 5398 { 5399 struct mbuf *m0, *m1; 5400 struct sockaddr_in dst; 5401 struct ip *ip; 5402 struct ifnet *ifp = NULL; 5403 struct pf_addr naddr; 5404 struct pf_src_node *sn = NULL; 5405 int error = 0; 5406 uint16_t ip_len, ip_off; 5407 5408 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5409 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5410 __func__)); 5411 5412 if ((pd->pf_mtag == NULL && 5413 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5414 pd->pf_mtag->routed++ > 3) { 5415 m0 = *m; 5416 *m = NULL; 5417 goto bad_locked; 5418 } 5419 5420 if (r->rt == PF_DUPTO) { 5421 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5422 if (s) 5423 PF_STATE_UNLOCK(s); 5424 return; 5425 } 5426 } else { 5427 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5428 if (s) 5429 PF_STATE_UNLOCK(s); 5430 return; 5431 } 5432 m0 = *m; 5433 } 5434 5435 ip = mtod(m0, struct ip *); 5436 5437 bzero(&dst, sizeof(dst)); 5438 dst.sin_family = AF_INET; 5439 dst.sin_len = sizeof(dst); 5440 dst.sin_addr = ip->ip_dst; 5441 5442 if (r->rt == PF_FASTROUTE) { 5443 struct nhop4_basic nh4; 5444 5445 if (s) 5446 PF_STATE_UNLOCK(s); 5447 5448 if (fib4_lookup_nh_basic(M_GETFIB(m0), ip->ip_dst, 0, 5449 m0->m_pkthdr.flowid, &nh4) != 0) { 5450 KMOD_IPSTAT_INC(ips_noroute); 5451 error = EHOSTUNREACH; 5452 goto bad; 5453 } 5454 5455 ifp = nh4.nh_ifp; 5456 dst.sin_addr = nh4.nh_addr; 5457 } else { 5458 if (TAILQ_EMPTY(&r->rpool.list)) { 5459 DPFPRINTF(PF_DEBUG_URGENT, 5460 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5461 goto bad_locked; 5462 } 5463 if (s == NULL) { 5464 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5465 &naddr, NULL, &sn); 5466 if (!PF_AZERO(&naddr, AF_INET)) 5467 dst.sin_addr.s_addr = naddr.v4.s_addr; 5468 ifp = r->rpool.cur->kif ? 5469 r->rpool.cur->kif->pfik_ifp : NULL; 5470 } else { 5471 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5472 dst.sin_addr.s_addr = 5473 s->rt_addr.v4.s_addr; 5474 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5475 PF_STATE_UNLOCK(s); 5476 } 5477 } 5478 if (ifp == NULL) 5479 goto bad; 5480 5481 if (oifp != ifp) { 5482 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5483 goto bad; 5484 else if (m0 == NULL) 5485 goto done; 5486 if (m0->m_len < sizeof(struct ip)) { 5487 DPFPRINTF(PF_DEBUG_URGENT, 5488 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5489 goto bad; 5490 } 5491 ip = mtod(m0, struct ip *); 5492 } 5493 5494 if (ifp->if_flags & IFF_LOOPBACK) 5495 m0->m_flags |= M_SKIP_FIREWALL; 5496 5497 ip_len = ntohs(ip->ip_len); 5498 ip_off = ntohs(ip->ip_off); 5499 5500 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5501 m0->m_pkthdr.csum_flags |= CSUM_IP; 5502 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5503 in_delayed_cksum(m0); 5504 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5505 } 5506 #ifdef SCTP 5507 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5508 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5509 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5510 } 5511 #endif 5512 5513 /* 5514 * If small enough for interface, or the interface will take 5515 * care of the fragmentation for us, we can just send directly. 5516 */ 5517 if (ip_len <= ifp->if_mtu || 5518 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5519 ip->ip_sum = 0; 5520 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5521 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5522 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5523 } 5524 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5525 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5526 goto done; 5527 } 5528 5529 /* Balk when DF bit is set or the interface didn't support TSO. */ 5530 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5531 error = EMSGSIZE; 5532 KMOD_IPSTAT_INC(ips_cantfrag); 5533 if (r->rt != PF_DUPTO) { 5534 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5535 ifp->if_mtu); 5536 goto done; 5537 } else 5538 goto bad; 5539 } 5540 5541 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5542 if (error) 5543 goto bad; 5544 5545 for (; m0; m0 = m1) { 5546 m1 = m0->m_nextpkt; 5547 m0->m_nextpkt = NULL; 5548 if (error == 0) { 5549 m_clrprotoflags(m0); 5550 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5551 } else 5552 m_freem(m0); 5553 } 5554 5555 if (error == 0) 5556 KMOD_IPSTAT_INC(ips_fragmented); 5557 5558 done: 5559 if (r->rt != PF_DUPTO) 5560 *m = NULL; 5561 return; 5562 5563 bad_locked: 5564 if (s) 5565 PF_STATE_UNLOCK(s); 5566 bad: 5567 m_freem(m0); 5568 goto done; 5569 } 5570 #endif /* INET */ 5571 5572 #ifdef INET6 5573 static void 5574 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5575 struct pf_state *s, struct pf_pdesc *pd) 5576 { 5577 struct mbuf *m0; 5578 struct sockaddr_in6 dst; 5579 struct ip6_hdr *ip6; 5580 struct ifnet *ifp = NULL; 5581 struct pf_addr naddr; 5582 struct pf_src_node *sn = NULL; 5583 5584 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5585 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5586 __func__)); 5587 5588 if ((pd->pf_mtag == NULL && 5589 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5590 pd->pf_mtag->routed++ > 3) { 5591 m0 = *m; 5592 *m = NULL; 5593 goto bad_locked; 5594 } 5595 5596 if (r->rt == PF_DUPTO) { 5597 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5598 if (s) 5599 PF_STATE_UNLOCK(s); 5600 return; 5601 } 5602 } else { 5603 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5604 if (s) 5605 PF_STATE_UNLOCK(s); 5606 return; 5607 } 5608 m0 = *m; 5609 } 5610 5611 ip6 = mtod(m0, struct ip6_hdr *); 5612 5613 bzero(&dst, sizeof(dst)); 5614 dst.sin6_family = AF_INET6; 5615 dst.sin6_len = sizeof(dst); 5616 dst.sin6_addr = ip6->ip6_dst; 5617 5618 /* Cheat. XXX why only in the v6 case??? */ 5619 if (r->rt == PF_FASTROUTE) { 5620 if (s) 5621 PF_STATE_UNLOCK(s); 5622 m0->m_flags |= M_SKIP_FIREWALL; 5623 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5624 *m = NULL; 5625 return; 5626 } 5627 5628 if (TAILQ_EMPTY(&r->rpool.list)) { 5629 DPFPRINTF(PF_DEBUG_URGENT, 5630 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5631 goto bad_locked; 5632 } 5633 if (s == NULL) { 5634 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5635 &naddr, NULL, &sn); 5636 if (!PF_AZERO(&naddr, AF_INET6)) 5637 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5638 &naddr, AF_INET6); 5639 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5640 } else { 5641 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5642 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5643 &s->rt_addr, AF_INET6); 5644 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5645 } 5646 5647 if (s) 5648 PF_STATE_UNLOCK(s); 5649 5650 if (ifp == NULL) 5651 goto bad; 5652 5653 if (oifp != ifp) { 5654 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5655 goto bad; 5656 else if (m0 == NULL) 5657 goto done; 5658 if (m0->m_len < sizeof(struct ip6_hdr)) { 5659 DPFPRINTF(PF_DEBUG_URGENT, 5660 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5661 __func__)); 5662 goto bad; 5663 } 5664 ip6 = mtod(m0, struct ip6_hdr *); 5665 } 5666 5667 if (ifp->if_flags & IFF_LOOPBACK) 5668 m0->m_flags |= M_SKIP_FIREWALL; 5669 5670 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5671 ~ifp->if_hwassist) { 5672 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5673 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5674 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5675 } 5676 5677 /* 5678 * If the packet is too large for the outgoing interface, 5679 * send back an icmp6 error. 5680 */ 5681 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5682 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5683 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5684 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5685 else { 5686 in6_ifstat_inc(ifp, ifs6_in_toobig); 5687 if (r->rt != PF_DUPTO) 5688 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5689 else 5690 goto bad; 5691 } 5692 5693 done: 5694 if (r->rt != PF_DUPTO) 5695 *m = NULL; 5696 return; 5697 5698 bad_locked: 5699 if (s) 5700 PF_STATE_UNLOCK(s); 5701 bad: 5702 m_freem(m0); 5703 goto done; 5704 } 5705 #endif /* INET6 */ 5706 5707 /* 5708 * FreeBSD supports cksum offloads for the following drivers. 5709 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5710 * ti(4), txp(4), xl(4) 5711 * 5712 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5713 * network driver performed cksum including pseudo header, need to verify 5714 * csum_data 5715 * CSUM_DATA_VALID : 5716 * network driver performed cksum, needs to additional pseudo header 5717 * cksum computation with partial csum_data(i.e. lack of H/W support for 5718 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5719 * 5720 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5721 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5722 * TCP/UDP layer. 5723 * Also, set csum_data to 0xffff to force cksum validation. 5724 */ 5725 static int 5726 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5727 { 5728 u_int16_t sum = 0; 5729 int hw_assist = 0; 5730 struct ip *ip; 5731 5732 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5733 return (1); 5734 if (m->m_pkthdr.len < off + len) 5735 return (1); 5736 5737 switch (p) { 5738 case IPPROTO_TCP: 5739 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5740 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5741 sum = m->m_pkthdr.csum_data; 5742 } else { 5743 ip = mtod(m, struct ip *); 5744 sum = in_pseudo(ip->ip_src.s_addr, 5745 ip->ip_dst.s_addr, htonl((u_short)len + 5746 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5747 } 5748 sum ^= 0xffff; 5749 ++hw_assist; 5750 } 5751 break; 5752 case IPPROTO_UDP: 5753 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5754 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5755 sum = m->m_pkthdr.csum_data; 5756 } else { 5757 ip = mtod(m, struct ip *); 5758 sum = in_pseudo(ip->ip_src.s_addr, 5759 ip->ip_dst.s_addr, htonl((u_short)len + 5760 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5761 } 5762 sum ^= 0xffff; 5763 ++hw_assist; 5764 } 5765 break; 5766 case IPPROTO_ICMP: 5767 #ifdef INET6 5768 case IPPROTO_ICMPV6: 5769 #endif /* INET6 */ 5770 break; 5771 default: 5772 return (1); 5773 } 5774 5775 if (!hw_assist) { 5776 switch (af) { 5777 case AF_INET: 5778 if (p == IPPROTO_ICMP) { 5779 if (m->m_len < off) 5780 return (1); 5781 m->m_data += off; 5782 m->m_len -= off; 5783 sum = in_cksum(m, len); 5784 m->m_data -= off; 5785 m->m_len += off; 5786 } else { 5787 if (m->m_len < sizeof(struct ip)) 5788 return (1); 5789 sum = in4_cksum(m, p, off, len); 5790 } 5791 break; 5792 #ifdef INET6 5793 case AF_INET6: 5794 if (m->m_len < sizeof(struct ip6_hdr)) 5795 return (1); 5796 sum = in6_cksum(m, p, off, len); 5797 break; 5798 #endif /* INET6 */ 5799 default: 5800 return (1); 5801 } 5802 } 5803 if (sum) { 5804 switch (p) { 5805 case IPPROTO_TCP: 5806 { 5807 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5808 break; 5809 } 5810 case IPPROTO_UDP: 5811 { 5812 KMOD_UDPSTAT_INC(udps_badsum); 5813 break; 5814 } 5815 #ifdef INET 5816 case IPPROTO_ICMP: 5817 { 5818 KMOD_ICMPSTAT_INC(icps_checksum); 5819 break; 5820 } 5821 #endif 5822 #ifdef INET6 5823 case IPPROTO_ICMPV6: 5824 { 5825 KMOD_ICMP6STAT_INC(icp6s_checksum); 5826 break; 5827 } 5828 #endif /* INET6 */ 5829 } 5830 return (1); 5831 } else { 5832 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5833 m->m_pkthdr.csum_flags |= 5834 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5835 m->m_pkthdr.csum_data = 0xffff; 5836 } 5837 } 5838 return (0); 5839 } 5840 5841 5842 #ifdef INET 5843 int 5844 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5845 { 5846 struct pfi_kif *kif; 5847 u_short action, reason = 0, log = 0; 5848 struct mbuf *m = *m0; 5849 struct ip *h = NULL; 5850 struct m_tag *ipfwtag; 5851 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5852 struct pf_state *s = NULL; 5853 struct pf_ruleset *ruleset = NULL; 5854 struct pf_pdesc pd; 5855 int off, dirndx, pqid = 0; 5856 5857 M_ASSERTPKTHDR(m); 5858 5859 if (!V_pf_status.running) 5860 return (PF_PASS); 5861 5862 memset(&pd, 0, sizeof(pd)); 5863 5864 kif = (struct pfi_kif *)ifp->if_pf_kif; 5865 5866 if (kif == NULL) { 5867 DPFPRINTF(PF_DEBUG_URGENT, 5868 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5869 return (PF_DROP); 5870 } 5871 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5872 return (PF_PASS); 5873 5874 if (m->m_flags & M_SKIP_FIREWALL) 5875 return (PF_PASS); 5876 5877 pd.pf_mtag = pf_find_mtag(m); 5878 5879 PF_RULES_RLOCK(); 5880 5881 if (ip_divert_ptr != NULL && 5882 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5883 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5884 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5885 if (pd.pf_mtag == NULL && 5886 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5887 action = PF_DROP; 5888 goto done; 5889 } 5890 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5891 m_tag_delete(m, ipfwtag); 5892 } 5893 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5894 m->m_flags |= M_FASTFWD_OURS; 5895 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5896 } 5897 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5898 /* We do IP header normalization and packet reassembly here */ 5899 action = PF_DROP; 5900 goto done; 5901 } 5902 m = *m0; /* pf_normalize messes with m0 */ 5903 h = mtod(m, struct ip *); 5904 5905 off = h->ip_hl << 2; 5906 if (off < (int)sizeof(struct ip)) { 5907 action = PF_DROP; 5908 REASON_SET(&reason, PFRES_SHORT); 5909 log = 1; 5910 goto done; 5911 } 5912 5913 pd.src = (struct pf_addr *)&h->ip_src; 5914 pd.dst = (struct pf_addr *)&h->ip_dst; 5915 pd.sport = pd.dport = NULL; 5916 pd.ip_sum = &h->ip_sum; 5917 pd.proto_sum = NULL; 5918 pd.proto = h->ip_p; 5919 pd.dir = dir; 5920 pd.sidx = (dir == PF_IN) ? 0 : 1; 5921 pd.didx = (dir == PF_IN) ? 1 : 0; 5922 pd.af = AF_INET; 5923 pd.tos = h->ip_tos; 5924 pd.tot_len = ntohs(h->ip_len); 5925 5926 /* handle fragments that didn't get reassembled by normalization */ 5927 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5928 action = pf_test_fragment(&r, dir, kif, m, h, 5929 &pd, &a, &ruleset); 5930 goto done; 5931 } 5932 5933 switch (h->ip_p) { 5934 5935 case IPPROTO_TCP: { 5936 struct tcphdr th; 5937 5938 pd.hdr.tcp = &th; 5939 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5940 &action, &reason, AF_INET)) { 5941 log = action != PF_PASS; 5942 goto done; 5943 } 5944 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5945 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5946 pqid = 1; 5947 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5948 if (action == PF_DROP) 5949 goto done; 5950 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5951 &reason); 5952 if (action == PF_PASS) { 5953 if (pfsync_update_state_ptr != NULL) 5954 pfsync_update_state_ptr(s); 5955 r = s->rule.ptr; 5956 a = s->anchor.ptr; 5957 log = s->log; 5958 } else if (s == NULL) 5959 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5960 &a, &ruleset, inp); 5961 break; 5962 } 5963 5964 case IPPROTO_UDP: { 5965 struct udphdr uh; 5966 5967 pd.hdr.udp = &uh; 5968 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5969 &action, &reason, AF_INET)) { 5970 log = action != PF_PASS; 5971 goto done; 5972 } 5973 if (uh.uh_dport == 0 || 5974 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5975 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5976 action = PF_DROP; 5977 REASON_SET(&reason, PFRES_SHORT); 5978 goto done; 5979 } 5980 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5981 if (action == PF_PASS) { 5982 if (pfsync_update_state_ptr != NULL) 5983 pfsync_update_state_ptr(s); 5984 r = s->rule.ptr; 5985 a = s->anchor.ptr; 5986 log = s->log; 5987 } else if (s == NULL) 5988 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5989 &a, &ruleset, inp); 5990 break; 5991 } 5992 5993 case IPPROTO_ICMP: { 5994 struct icmp ih; 5995 5996 pd.hdr.icmp = &ih; 5997 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5998 &action, &reason, AF_INET)) { 5999 log = action != PF_PASS; 6000 goto done; 6001 } 6002 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6003 &reason); 6004 if (action == PF_PASS) { 6005 if (pfsync_update_state_ptr != NULL) 6006 pfsync_update_state_ptr(s); 6007 r = s->rule.ptr; 6008 a = s->anchor.ptr; 6009 log = s->log; 6010 } else if (s == NULL) 6011 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6012 &a, &ruleset, inp); 6013 break; 6014 } 6015 6016 #ifdef INET6 6017 case IPPROTO_ICMPV6: { 6018 action = PF_DROP; 6019 DPFPRINTF(PF_DEBUG_MISC, 6020 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6021 goto done; 6022 } 6023 #endif 6024 6025 default: 6026 action = pf_test_state_other(&s, dir, kif, m, &pd); 6027 if (action == PF_PASS) { 6028 if (pfsync_update_state_ptr != NULL) 6029 pfsync_update_state_ptr(s); 6030 r = s->rule.ptr; 6031 a = s->anchor.ptr; 6032 log = s->log; 6033 } else if (s == NULL) 6034 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6035 &a, &ruleset, inp); 6036 break; 6037 } 6038 6039 done: 6040 PF_RULES_RUNLOCK(); 6041 if (action == PF_PASS && h->ip_hl > 5 && 6042 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6043 action = PF_DROP; 6044 REASON_SET(&reason, PFRES_IPOPTIONS); 6045 log = r->log; 6046 DPFPRINTF(PF_DEBUG_MISC, 6047 ("pf: dropping packet with ip options\n")); 6048 } 6049 6050 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6051 action = PF_DROP; 6052 REASON_SET(&reason, PFRES_MEMORY); 6053 } 6054 if (r->rtableid >= 0) 6055 M_SETFIB(m, r->rtableid); 6056 6057 if (r->scrub_flags & PFSTATE_SETPRIO) { 6058 if (pd.tos & IPTOS_LOWDELAY) 6059 pqid = 1; 6060 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6061 action = PF_DROP; 6062 REASON_SET(&reason, PFRES_MEMORY); 6063 log = 1; 6064 DPFPRINTF(PF_DEBUG_MISC, 6065 ("pf: failed to allocate 802.1q mtag\n")); 6066 } 6067 } 6068 6069 #ifdef ALTQ 6070 if (action == PF_PASS && r->qid) { 6071 if (pd.pf_mtag == NULL && 6072 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6073 action = PF_DROP; 6074 REASON_SET(&reason, PFRES_MEMORY); 6075 } else { 6076 if (s != NULL) 6077 pd.pf_mtag->qid_hash = pf_state_hash(s); 6078 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6079 pd.pf_mtag->qid = r->pqid; 6080 else 6081 pd.pf_mtag->qid = r->qid; 6082 /* Add hints for ecn. */ 6083 pd.pf_mtag->hdr = h; 6084 } 6085 6086 } 6087 #endif /* ALTQ */ 6088 6089 /* 6090 * connections redirected to loopback should not match sockets 6091 * bound specifically to loopback due to security implications, 6092 * see tcp_input() and in_pcblookup_listen(). 6093 */ 6094 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6095 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6096 (s->nat_rule.ptr->action == PF_RDR || 6097 s->nat_rule.ptr->action == PF_BINAT) && 6098 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6099 m->m_flags |= M_SKIP_FIREWALL; 6100 6101 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6102 !PACKET_LOOPED(&pd)) { 6103 6104 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6105 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6106 if (ipfwtag != NULL) { 6107 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6108 ntohs(r->divert.port); 6109 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6110 6111 if (s) 6112 PF_STATE_UNLOCK(s); 6113 6114 m_tag_prepend(m, ipfwtag); 6115 if (m->m_flags & M_FASTFWD_OURS) { 6116 if (pd.pf_mtag == NULL && 6117 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6118 action = PF_DROP; 6119 REASON_SET(&reason, PFRES_MEMORY); 6120 log = 1; 6121 DPFPRINTF(PF_DEBUG_MISC, 6122 ("pf: failed to allocate tag\n")); 6123 } else { 6124 pd.pf_mtag->flags |= 6125 PF_FASTFWD_OURS_PRESENT; 6126 m->m_flags &= ~M_FASTFWD_OURS; 6127 } 6128 } 6129 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6130 *m0 = NULL; 6131 6132 return (action); 6133 } else { 6134 /* XXX: ipfw has the same behaviour! */ 6135 action = PF_DROP; 6136 REASON_SET(&reason, PFRES_MEMORY); 6137 log = 1; 6138 DPFPRINTF(PF_DEBUG_MISC, 6139 ("pf: failed to allocate divert tag\n")); 6140 } 6141 } 6142 6143 if (log) { 6144 struct pf_rule *lr; 6145 6146 if (s != NULL && s->nat_rule.ptr != NULL && 6147 s->nat_rule.ptr->log & PF_LOG_ALL) 6148 lr = s->nat_rule.ptr; 6149 else 6150 lr = r; 6151 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6152 (s == NULL)); 6153 } 6154 6155 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6156 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6157 6158 if (action == PF_PASS || r->action == PF_DROP) { 6159 dirndx = (dir == PF_OUT); 6160 r->packets[dirndx]++; 6161 r->bytes[dirndx] += pd.tot_len; 6162 if (a != NULL) { 6163 a->packets[dirndx]++; 6164 a->bytes[dirndx] += pd.tot_len; 6165 } 6166 if (s != NULL) { 6167 if (s->nat_rule.ptr != NULL) { 6168 s->nat_rule.ptr->packets[dirndx]++; 6169 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6170 } 6171 if (s->src_node != NULL) { 6172 s->src_node->packets[dirndx]++; 6173 s->src_node->bytes[dirndx] += pd.tot_len; 6174 } 6175 if (s->nat_src_node != NULL) { 6176 s->nat_src_node->packets[dirndx]++; 6177 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6178 } 6179 dirndx = (dir == s->direction) ? 0 : 1; 6180 s->packets[dirndx]++; 6181 s->bytes[dirndx] += pd.tot_len; 6182 } 6183 tr = r; 6184 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6185 if (nr != NULL && r == &V_pf_default_rule) 6186 tr = nr; 6187 if (tr->src.addr.type == PF_ADDR_TABLE) 6188 pfr_update_stats(tr->src.addr.p.tbl, 6189 (s == NULL) ? pd.src : 6190 &s->key[(s->direction == PF_IN)]-> 6191 addr[(s->direction == PF_OUT)], 6192 pd.af, pd.tot_len, dir == PF_OUT, 6193 r->action == PF_PASS, tr->src.neg); 6194 if (tr->dst.addr.type == PF_ADDR_TABLE) 6195 pfr_update_stats(tr->dst.addr.p.tbl, 6196 (s == NULL) ? pd.dst : 6197 &s->key[(s->direction == PF_IN)]-> 6198 addr[(s->direction == PF_IN)], 6199 pd.af, pd.tot_len, dir == PF_OUT, 6200 r->action == PF_PASS, tr->dst.neg); 6201 } 6202 6203 switch (action) { 6204 case PF_SYNPROXY_DROP: 6205 m_freem(*m0); 6206 case PF_DEFER: 6207 *m0 = NULL; 6208 action = PF_PASS; 6209 break; 6210 case PF_DROP: 6211 m_freem(*m0); 6212 *m0 = NULL; 6213 break; 6214 default: 6215 /* pf_route() returns unlocked. */ 6216 if (r->rt) { 6217 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6218 return (action); 6219 } 6220 break; 6221 } 6222 if (s) 6223 PF_STATE_UNLOCK(s); 6224 6225 return (action); 6226 } 6227 #endif /* INET */ 6228 6229 #ifdef INET6 6230 int 6231 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6232 { 6233 struct pfi_kif *kif; 6234 u_short action, reason = 0, log = 0; 6235 struct mbuf *m = *m0, *n = NULL; 6236 struct m_tag *mtag; 6237 struct ip6_hdr *h = NULL; 6238 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6239 struct pf_state *s = NULL; 6240 struct pf_ruleset *ruleset = NULL; 6241 struct pf_pdesc pd; 6242 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6243 int fwdir = dir; 6244 6245 M_ASSERTPKTHDR(m); 6246 6247 /* Detect packet forwarding. 6248 * If the input interface is different from the output interface we're 6249 * forwarding. 6250 * We do need to be careful about bridges. If the 6251 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6252 * bridge, so if the input interface is a bridge member and the output 6253 * interface is its bridge or a member of the same bridge we're not 6254 * actually forwarding but bridging. 6255 */ 6256 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6257 (m->m_pkthdr.rcvif->if_bridge == NULL || 6258 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6259 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6260 fwdir = PF_FWD; 6261 6262 if (!V_pf_status.running) 6263 return (PF_PASS); 6264 6265 memset(&pd, 0, sizeof(pd)); 6266 pd.pf_mtag = pf_find_mtag(m); 6267 6268 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6269 return (PF_PASS); 6270 6271 kif = (struct pfi_kif *)ifp->if_pf_kif; 6272 if (kif == NULL) { 6273 DPFPRINTF(PF_DEBUG_URGENT, 6274 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6275 return (PF_DROP); 6276 } 6277 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6278 return (PF_PASS); 6279 6280 if (m->m_flags & M_SKIP_FIREWALL) 6281 return (PF_PASS); 6282 6283 PF_RULES_RLOCK(); 6284 6285 /* We do IP header normalization and packet reassembly here */ 6286 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6287 action = PF_DROP; 6288 goto done; 6289 } 6290 m = *m0; /* pf_normalize messes with m0 */ 6291 h = mtod(m, struct ip6_hdr *); 6292 6293 #if 1 6294 /* 6295 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6296 * will do something bad, so drop the packet for now. 6297 */ 6298 if (htons(h->ip6_plen) == 0) { 6299 action = PF_DROP; 6300 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6301 goto done; 6302 } 6303 #endif 6304 6305 pd.src = (struct pf_addr *)&h->ip6_src; 6306 pd.dst = (struct pf_addr *)&h->ip6_dst; 6307 pd.sport = pd.dport = NULL; 6308 pd.ip_sum = NULL; 6309 pd.proto_sum = NULL; 6310 pd.dir = dir; 6311 pd.sidx = (dir == PF_IN) ? 0 : 1; 6312 pd.didx = (dir == PF_IN) ? 1 : 0; 6313 pd.af = AF_INET6; 6314 pd.tos = 0; 6315 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6316 6317 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6318 pd.proto = h->ip6_nxt; 6319 do { 6320 switch (pd.proto) { 6321 case IPPROTO_FRAGMENT: 6322 action = pf_test_fragment(&r, dir, kif, m, h, 6323 &pd, &a, &ruleset); 6324 if (action == PF_DROP) 6325 REASON_SET(&reason, PFRES_FRAG); 6326 goto done; 6327 case IPPROTO_ROUTING: { 6328 struct ip6_rthdr rthdr; 6329 6330 if (rh_cnt++) { 6331 DPFPRINTF(PF_DEBUG_MISC, 6332 ("pf: IPv6 more than one rthdr\n")); 6333 action = PF_DROP; 6334 REASON_SET(&reason, PFRES_IPOPTIONS); 6335 log = 1; 6336 goto done; 6337 } 6338 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6339 &reason, pd.af)) { 6340 DPFPRINTF(PF_DEBUG_MISC, 6341 ("pf: IPv6 short rthdr\n")); 6342 action = PF_DROP; 6343 REASON_SET(&reason, PFRES_SHORT); 6344 log = 1; 6345 goto done; 6346 } 6347 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6348 DPFPRINTF(PF_DEBUG_MISC, 6349 ("pf: IPv6 rthdr0\n")); 6350 action = PF_DROP; 6351 REASON_SET(&reason, PFRES_IPOPTIONS); 6352 log = 1; 6353 goto done; 6354 } 6355 /* FALLTHROUGH */ 6356 } 6357 case IPPROTO_AH: 6358 case IPPROTO_HOPOPTS: 6359 case IPPROTO_DSTOPTS: { 6360 /* get next header and header length */ 6361 struct ip6_ext opt6; 6362 6363 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6364 NULL, &reason, pd.af)) { 6365 DPFPRINTF(PF_DEBUG_MISC, 6366 ("pf: IPv6 short opt\n")); 6367 action = PF_DROP; 6368 log = 1; 6369 goto done; 6370 } 6371 if (pd.proto == IPPROTO_AH) 6372 off += (opt6.ip6e_len + 2) * 4; 6373 else 6374 off += (opt6.ip6e_len + 1) * 8; 6375 pd.proto = opt6.ip6e_nxt; 6376 /* goto the next header */ 6377 break; 6378 } 6379 default: 6380 terminal++; 6381 break; 6382 } 6383 } while (!terminal); 6384 6385 /* if there's no routing header, use unmodified mbuf for checksumming */ 6386 if (!n) 6387 n = m; 6388 6389 switch (pd.proto) { 6390 6391 case IPPROTO_TCP: { 6392 struct tcphdr th; 6393 6394 pd.hdr.tcp = &th; 6395 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6396 &action, &reason, AF_INET6)) { 6397 log = action != PF_PASS; 6398 goto done; 6399 } 6400 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6401 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6402 if (action == PF_DROP) 6403 goto done; 6404 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6405 &reason); 6406 if (action == PF_PASS) { 6407 if (pfsync_update_state_ptr != NULL) 6408 pfsync_update_state_ptr(s); 6409 r = s->rule.ptr; 6410 a = s->anchor.ptr; 6411 log = s->log; 6412 } else if (s == NULL) 6413 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6414 &a, &ruleset, inp); 6415 break; 6416 } 6417 6418 case IPPROTO_UDP: { 6419 struct udphdr uh; 6420 6421 pd.hdr.udp = &uh; 6422 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6423 &action, &reason, AF_INET6)) { 6424 log = action != PF_PASS; 6425 goto done; 6426 } 6427 if (uh.uh_dport == 0 || 6428 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6429 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6430 action = PF_DROP; 6431 REASON_SET(&reason, PFRES_SHORT); 6432 goto done; 6433 } 6434 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6435 if (action == PF_PASS) { 6436 if (pfsync_update_state_ptr != NULL) 6437 pfsync_update_state_ptr(s); 6438 r = s->rule.ptr; 6439 a = s->anchor.ptr; 6440 log = s->log; 6441 } else if (s == NULL) 6442 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6443 &a, &ruleset, inp); 6444 break; 6445 } 6446 6447 case IPPROTO_ICMP: { 6448 action = PF_DROP; 6449 DPFPRINTF(PF_DEBUG_MISC, 6450 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6451 goto done; 6452 } 6453 6454 case IPPROTO_ICMPV6: { 6455 struct icmp6_hdr ih; 6456 6457 pd.hdr.icmp6 = &ih; 6458 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6459 &action, &reason, AF_INET6)) { 6460 log = action != PF_PASS; 6461 goto done; 6462 } 6463 action = pf_test_state_icmp(&s, dir, kif, 6464 m, off, h, &pd, &reason); 6465 if (action == PF_PASS) { 6466 if (pfsync_update_state_ptr != NULL) 6467 pfsync_update_state_ptr(s); 6468 r = s->rule.ptr; 6469 a = s->anchor.ptr; 6470 log = s->log; 6471 } else if (s == NULL) 6472 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6473 &a, &ruleset, inp); 6474 break; 6475 } 6476 6477 default: 6478 action = pf_test_state_other(&s, dir, kif, m, &pd); 6479 if (action == PF_PASS) { 6480 if (pfsync_update_state_ptr != NULL) 6481 pfsync_update_state_ptr(s); 6482 r = s->rule.ptr; 6483 a = s->anchor.ptr; 6484 log = s->log; 6485 } else if (s == NULL) 6486 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6487 &a, &ruleset, inp); 6488 break; 6489 } 6490 6491 done: 6492 PF_RULES_RUNLOCK(); 6493 if (n != m) { 6494 m_freem(n); 6495 n = NULL; 6496 } 6497 6498 /* handle dangerous IPv6 extension headers. */ 6499 if (action == PF_PASS && rh_cnt && 6500 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6501 action = PF_DROP; 6502 REASON_SET(&reason, PFRES_IPOPTIONS); 6503 log = r->log; 6504 DPFPRINTF(PF_DEBUG_MISC, 6505 ("pf: dropping packet with dangerous v6 headers\n")); 6506 } 6507 6508 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6509 action = PF_DROP; 6510 REASON_SET(&reason, PFRES_MEMORY); 6511 } 6512 if (r->rtableid >= 0) 6513 M_SETFIB(m, r->rtableid); 6514 6515 if (r->scrub_flags & PFSTATE_SETPRIO) { 6516 if (pd.tos & IPTOS_LOWDELAY) 6517 pqid = 1; 6518 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6519 action = PF_DROP; 6520 REASON_SET(&reason, PFRES_MEMORY); 6521 log = 1; 6522 DPFPRINTF(PF_DEBUG_MISC, 6523 ("pf: failed to allocate 802.1q mtag\n")); 6524 } 6525 } 6526 6527 #ifdef ALTQ 6528 if (action == PF_PASS && r->qid) { 6529 if (pd.pf_mtag == NULL && 6530 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6531 action = PF_DROP; 6532 REASON_SET(&reason, PFRES_MEMORY); 6533 } else { 6534 if (s != NULL) 6535 pd.pf_mtag->qid_hash = pf_state_hash(s); 6536 if (pd.tos & IPTOS_LOWDELAY) 6537 pd.pf_mtag->qid = r->pqid; 6538 else 6539 pd.pf_mtag->qid = r->qid; 6540 /* Add hints for ecn. */ 6541 pd.pf_mtag->hdr = h; 6542 } 6543 } 6544 #endif /* ALTQ */ 6545 6546 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6547 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6548 (s->nat_rule.ptr->action == PF_RDR || 6549 s->nat_rule.ptr->action == PF_BINAT) && 6550 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6551 m->m_flags |= M_SKIP_FIREWALL; 6552 6553 /* XXX: Anybody working on it?! */ 6554 if (r->divert.port) 6555 printf("pf: divert(9) is not supported for IPv6\n"); 6556 6557 if (log) { 6558 struct pf_rule *lr; 6559 6560 if (s != NULL && s->nat_rule.ptr != NULL && 6561 s->nat_rule.ptr->log & PF_LOG_ALL) 6562 lr = s->nat_rule.ptr; 6563 else 6564 lr = r; 6565 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6566 &pd, (s == NULL)); 6567 } 6568 6569 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6570 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6571 6572 if (action == PF_PASS || r->action == PF_DROP) { 6573 dirndx = (dir == PF_OUT); 6574 r->packets[dirndx]++; 6575 r->bytes[dirndx] += pd.tot_len; 6576 if (a != NULL) { 6577 a->packets[dirndx]++; 6578 a->bytes[dirndx] += pd.tot_len; 6579 } 6580 if (s != NULL) { 6581 if (s->nat_rule.ptr != NULL) { 6582 s->nat_rule.ptr->packets[dirndx]++; 6583 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6584 } 6585 if (s->src_node != NULL) { 6586 s->src_node->packets[dirndx]++; 6587 s->src_node->bytes[dirndx] += pd.tot_len; 6588 } 6589 if (s->nat_src_node != NULL) { 6590 s->nat_src_node->packets[dirndx]++; 6591 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6592 } 6593 dirndx = (dir == s->direction) ? 0 : 1; 6594 s->packets[dirndx]++; 6595 s->bytes[dirndx] += pd.tot_len; 6596 } 6597 tr = r; 6598 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6599 if (nr != NULL && r == &V_pf_default_rule) 6600 tr = nr; 6601 if (tr->src.addr.type == PF_ADDR_TABLE) 6602 pfr_update_stats(tr->src.addr.p.tbl, 6603 (s == NULL) ? pd.src : 6604 &s->key[(s->direction == PF_IN)]->addr[0], 6605 pd.af, pd.tot_len, dir == PF_OUT, 6606 r->action == PF_PASS, tr->src.neg); 6607 if (tr->dst.addr.type == PF_ADDR_TABLE) 6608 pfr_update_stats(tr->dst.addr.p.tbl, 6609 (s == NULL) ? pd.dst : 6610 &s->key[(s->direction == PF_IN)]->addr[1], 6611 pd.af, pd.tot_len, dir == PF_OUT, 6612 r->action == PF_PASS, tr->dst.neg); 6613 } 6614 6615 switch (action) { 6616 case PF_SYNPROXY_DROP: 6617 m_freem(*m0); 6618 case PF_DEFER: 6619 *m0 = NULL; 6620 action = PF_PASS; 6621 break; 6622 case PF_DROP: 6623 m_freem(*m0); 6624 *m0 = NULL; 6625 break; 6626 default: 6627 /* pf_route6() returns unlocked. */ 6628 if (r->rt) { 6629 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6630 return (action); 6631 } 6632 break; 6633 } 6634 6635 if (s) 6636 PF_STATE_UNLOCK(s); 6637 6638 /* If reassembled packet passed, create new fragments. */ 6639 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6640 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6641 action = pf_refragment6(ifp, m0, mtag); 6642 6643 return (action); 6644 } 6645 #endif /* INET6 */ 6646