1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_kstate *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_kstate *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_kstate *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 /* 158 * Queue for pf_intr() sends. 159 */ 160 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 161 struct pf_send_entry { 162 STAILQ_ENTRY(pf_send_entry) pfse_next; 163 struct mbuf *pfse_m; 164 enum { 165 PFSE_IP, 166 PFSE_IP6, 167 PFSE_ICMP, 168 PFSE_ICMP6, 169 } pfse_type; 170 struct { 171 int type; 172 int code; 173 int mtu; 174 } icmpopts; 175 }; 176 177 STAILQ_HEAD(pf_send_head, pf_send_entry); 178 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 179 #define V_pf_sendqueue VNET(pf_sendqueue) 180 181 static struct mtx_padalign pf_sendqueue_mtx; 182 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 183 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 184 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 185 186 /* 187 * Queue for pf_overload_task() tasks. 188 */ 189 struct pf_overload_entry { 190 SLIST_ENTRY(pf_overload_entry) next; 191 struct pf_addr addr; 192 sa_family_t af; 193 uint8_t dir; 194 struct pf_krule *rule; 195 }; 196 197 SLIST_HEAD(pf_overload_head, pf_overload_entry); 198 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 199 #define V_pf_overloadqueue VNET(pf_overloadqueue) 200 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 201 #define V_pf_overloadtask VNET(pf_overloadtask) 202 203 static struct mtx_padalign pf_overloadqueue_mtx; 204 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 205 "pf overload/flush queue", MTX_DEF); 206 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 207 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 208 209 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 210 struct mtx_padalign pf_unlnkdrules_mtx; 211 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 212 MTX_DEF); 213 214 struct mtx_padalign pf_table_stats_lock; 215 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 216 MTX_DEF); 217 218 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 219 #define V_pf_sources_z VNET(pf_sources_z) 220 uma_zone_t pf_mtag_z; 221 VNET_DEFINE(uma_zone_t, pf_state_z); 222 VNET_DEFINE(uma_zone_t, pf_state_key_z); 223 224 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 225 #define PFID_CPUBITS 8 226 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 227 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 228 #define PFID_MAXID (~PFID_CPUMASK) 229 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 230 231 static void pf_src_tree_remove_state(struct pf_kstate *); 232 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 233 u_int32_t); 234 static void pf_add_threshold(struct pf_threshold *); 235 static int pf_check_threshold(struct pf_threshold *); 236 237 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 238 u_int16_t *, u_int16_t *, struct pf_addr *, 239 u_int16_t, u_int8_t, sa_family_t); 240 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 241 struct tcphdr *, struct pf_state_peer *); 242 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 243 struct pf_addr *, struct pf_addr *, u_int16_t, 244 u_int16_t *, u_int16_t *, u_int16_t *, 245 u_int16_t *, u_int8_t, sa_family_t); 246 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 247 sa_family_t, struct pf_krule *); 248 static void pf_detach_state(struct pf_kstate *); 249 static int pf_state_key_attach(struct pf_state_key *, 250 struct pf_state_key *, struct pf_kstate *); 251 static void pf_state_key_detach(struct pf_kstate *, int); 252 static int pf_state_key_ctor(void *, int, void *, int); 253 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 254 void pf_rule_to_actions(struct pf_krule *, 255 struct pf_rule_actions *); 256 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 257 int, struct pfi_kkif *, struct mbuf *, int, 258 struct pf_pdesc *, struct pf_krule **, 259 struct pf_kruleset **, struct inpcb *); 260 static int pf_create_state(struct pf_krule *, struct pf_krule *, 261 struct pf_krule *, struct pf_pdesc *, 262 struct pf_ksrc_node *, struct pf_state_key *, 263 struct pf_state_key *, struct mbuf *, int, 264 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 265 struct pf_kstate **, int, u_int16_t, u_int16_t, 266 int); 267 static int pf_test_fragment(struct pf_krule **, int, 268 struct pfi_kkif *, struct mbuf *, void *, 269 struct pf_pdesc *, struct pf_krule **, 270 struct pf_kruleset **); 271 static int pf_tcp_track_full(struct pf_state_peer *, 272 struct pf_state_peer *, struct pf_kstate **, 273 struct pfi_kkif *, struct mbuf *, int, 274 struct pf_pdesc *, u_short *, int *); 275 static int pf_tcp_track_sloppy(struct pf_state_peer *, 276 struct pf_state_peer *, struct pf_kstate **, 277 struct pf_pdesc *, u_short *); 278 static int pf_test_state_tcp(struct pf_kstate **, int, 279 struct pfi_kkif *, struct mbuf *, int, 280 void *, struct pf_pdesc *, u_short *); 281 static int pf_test_state_udp(struct pf_kstate **, int, 282 struct pfi_kkif *, struct mbuf *, int, 283 void *, struct pf_pdesc *); 284 static int pf_test_state_icmp(struct pf_kstate **, int, 285 struct pfi_kkif *, struct mbuf *, int, 286 void *, struct pf_pdesc *, u_short *); 287 static int pf_test_state_other(struct pf_kstate **, int, 288 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 289 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 290 int, u_int16_t); 291 static int pf_check_proto_cksum(struct mbuf *, int, int, 292 u_int8_t, sa_family_t); 293 static void pf_print_state_parts(struct pf_kstate *, 294 struct pf_state_key *, struct pf_state_key *); 295 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 296 struct pf_addr_wrap *); 297 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 298 bool, u_int8_t); 299 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 300 struct pf_state_key_cmp *, u_int); 301 static int pf_src_connlimit(struct pf_kstate **); 302 static void pf_overload_task(void *v, int pending); 303 static int pf_insert_src_node(struct pf_ksrc_node **, 304 struct pf_krule *, struct pf_addr *, sa_family_t); 305 static u_int pf_purge_expired_states(u_int, int); 306 static void pf_purge_unlinked_rules(void); 307 static int pf_mtag_uminit(void *, int, int); 308 static void pf_mtag_free(struct m_tag *); 309 #ifdef INET 310 static void pf_route(struct mbuf **, struct pf_krule *, int, 311 struct ifnet *, struct pf_kstate *, 312 struct pf_pdesc *, struct inpcb *); 313 #endif /* INET */ 314 #ifdef INET6 315 static void pf_change_a6(struct pf_addr *, u_int16_t *, 316 struct pf_addr *, u_int8_t); 317 static void pf_route6(struct mbuf **, struct pf_krule *, int, 318 struct ifnet *, struct pf_kstate *, 319 struct pf_pdesc *, struct inpcb *); 320 #endif /* INET6 */ 321 322 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 323 324 extern int pf_end_threads; 325 extern struct proc *pf_purge_proc; 326 327 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 328 329 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 330 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 331 332 #define STATE_LOOKUP(i, k, d, s, pd) \ 333 do { \ 334 (s) = pf_find_state((i), (k), (d)); \ 335 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 336 if ((s) == NULL) \ 337 return (PF_DROP); \ 338 if (PACKET_LOOPED(pd)) \ 339 return (PF_PASS); \ 340 } while (0) 341 342 #define BOUND_IFACE(r, k) \ 343 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 344 345 #define STATE_INC_COUNTERS(s) \ 346 do { \ 347 counter_u64_add(s->rule.ptr->states_cur, 1); \ 348 counter_u64_add(s->rule.ptr->states_tot, 1); \ 349 if (s->anchor.ptr != NULL) { \ 350 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 351 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 352 } \ 353 if (s->nat_rule.ptr != NULL) { \ 354 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 355 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 356 } \ 357 } while (0) 358 359 #define STATE_DEC_COUNTERS(s) \ 360 do { \ 361 if (s->nat_rule.ptr != NULL) \ 362 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 363 if (s->anchor.ptr != NULL) \ 364 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 365 counter_u64_add(s->rule.ptr->states_cur, -1); \ 366 } while (0) 367 368 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 369 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 370 VNET_DEFINE(struct pf_idhash *, pf_idhash); 371 VNET_DEFINE(struct pf_srchash *, pf_srchash); 372 373 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 374 "pf(4)"); 375 376 u_long pf_hashmask; 377 u_long pf_srchashmask; 378 static u_long pf_hashsize; 379 static u_long pf_srchashsize; 380 u_long pf_ioctl_maxcount = 65535; 381 382 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 383 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 384 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 385 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 386 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 387 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 388 389 VNET_DEFINE(void *, pf_swi_cookie); 390 VNET_DEFINE(struct intr_event *, pf_swi_ie); 391 392 VNET_DEFINE(uint32_t, pf_hashseed); 393 #define V_pf_hashseed VNET(pf_hashseed) 394 395 int 396 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 397 { 398 399 switch (af) { 400 #ifdef INET 401 case AF_INET: 402 if (a->addr32[0] > b->addr32[0]) 403 return (1); 404 if (a->addr32[0] < b->addr32[0]) 405 return (-1); 406 break; 407 #endif /* INET */ 408 #ifdef INET6 409 case AF_INET6: 410 if (a->addr32[3] > b->addr32[3]) 411 return (1); 412 if (a->addr32[3] < b->addr32[3]) 413 return (-1); 414 if (a->addr32[2] > b->addr32[2]) 415 return (1); 416 if (a->addr32[2] < b->addr32[2]) 417 return (-1); 418 if (a->addr32[1] > b->addr32[1]) 419 return (1); 420 if (a->addr32[1] < b->addr32[1]) 421 return (-1); 422 if (a->addr32[0] > b->addr32[0]) 423 return (1); 424 if (a->addr32[0] < b->addr32[0]) 425 return (-1); 426 break; 427 #endif /* INET6 */ 428 default: 429 panic("%s: unknown address family %u", __func__, af); 430 } 431 return (0); 432 } 433 434 static __inline uint32_t 435 pf_hashkey(struct pf_state_key *sk) 436 { 437 uint32_t h; 438 439 h = murmur3_32_hash32((uint32_t *)sk, 440 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 441 V_pf_hashseed); 442 443 return (h & pf_hashmask); 444 } 445 446 static __inline uint32_t 447 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 448 { 449 uint32_t h; 450 451 switch (af) { 452 case AF_INET: 453 h = murmur3_32_hash32((uint32_t *)&addr->v4, 454 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 455 break; 456 case AF_INET6: 457 h = murmur3_32_hash32((uint32_t *)&addr->v6, 458 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 459 break; 460 default: 461 panic("%s: unknown address family %u", __func__, af); 462 } 463 464 return (h & pf_srchashmask); 465 } 466 467 #ifdef ALTQ 468 static int 469 pf_state_hash(struct pf_kstate *s) 470 { 471 u_int32_t hv = (intptr_t)s / sizeof(*s); 472 473 hv ^= crc32(&s->src, sizeof(s->src)); 474 hv ^= crc32(&s->dst, sizeof(s->dst)); 475 if (hv == 0) 476 hv = 1; 477 return (hv); 478 } 479 #endif 480 481 #ifdef INET6 482 void 483 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 484 { 485 switch (af) { 486 #ifdef INET 487 case AF_INET: 488 dst->addr32[0] = src->addr32[0]; 489 break; 490 #endif /* INET */ 491 case AF_INET6: 492 dst->addr32[0] = src->addr32[0]; 493 dst->addr32[1] = src->addr32[1]; 494 dst->addr32[2] = src->addr32[2]; 495 dst->addr32[3] = src->addr32[3]; 496 break; 497 } 498 } 499 #endif /* INET6 */ 500 501 static void 502 pf_init_threshold(struct pf_threshold *threshold, 503 u_int32_t limit, u_int32_t seconds) 504 { 505 threshold->limit = limit * PF_THRESHOLD_MULT; 506 threshold->seconds = seconds; 507 threshold->count = 0; 508 threshold->last = time_uptime; 509 } 510 511 static void 512 pf_add_threshold(struct pf_threshold *threshold) 513 { 514 u_int32_t t = time_uptime, diff = t - threshold->last; 515 516 if (diff >= threshold->seconds) 517 threshold->count = 0; 518 else 519 threshold->count -= threshold->count * diff / 520 threshold->seconds; 521 threshold->count += PF_THRESHOLD_MULT; 522 threshold->last = t; 523 } 524 525 static int 526 pf_check_threshold(struct pf_threshold *threshold) 527 { 528 return (threshold->count > threshold->limit); 529 } 530 531 static int 532 pf_src_connlimit(struct pf_kstate **state) 533 { 534 struct pf_overload_entry *pfoe; 535 int bad = 0; 536 537 PF_STATE_LOCK_ASSERT(*state); 538 539 (*state)->src_node->conn++; 540 (*state)->src.tcp_est = 1; 541 pf_add_threshold(&(*state)->src_node->conn_rate); 542 543 if ((*state)->rule.ptr->max_src_conn && 544 (*state)->rule.ptr->max_src_conn < 545 (*state)->src_node->conn) { 546 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 547 bad++; 548 } 549 550 if ((*state)->rule.ptr->max_src_conn_rate.limit && 551 pf_check_threshold(&(*state)->src_node->conn_rate)) { 552 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 553 bad++; 554 } 555 556 if (!bad) 557 return (0); 558 559 /* Kill this state. */ 560 (*state)->timeout = PFTM_PURGE; 561 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 562 563 if ((*state)->rule.ptr->overload_tbl == NULL) 564 return (1); 565 566 /* Schedule overloading and flushing task. */ 567 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 568 if (pfoe == NULL) 569 return (1); /* too bad :( */ 570 571 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 572 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 573 pfoe->rule = (*state)->rule.ptr; 574 pfoe->dir = (*state)->direction; 575 PF_OVERLOADQ_LOCK(); 576 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 577 PF_OVERLOADQ_UNLOCK(); 578 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 579 580 return (1); 581 } 582 583 static void 584 pf_overload_task(void *v, int pending) 585 { 586 struct pf_overload_head queue; 587 struct pfr_addr p; 588 struct pf_overload_entry *pfoe, *pfoe1; 589 uint32_t killed = 0; 590 591 CURVNET_SET((struct vnet *)v); 592 593 PF_OVERLOADQ_LOCK(); 594 queue = V_pf_overloadqueue; 595 SLIST_INIT(&V_pf_overloadqueue); 596 PF_OVERLOADQ_UNLOCK(); 597 598 bzero(&p, sizeof(p)); 599 SLIST_FOREACH(pfoe, &queue, next) { 600 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 601 if (V_pf_status.debug >= PF_DEBUG_MISC) { 602 printf("%s: blocking address ", __func__); 603 pf_print_host(&pfoe->addr, 0, pfoe->af); 604 printf("\n"); 605 } 606 607 p.pfra_af = pfoe->af; 608 switch (pfoe->af) { 609 #ifdef INET 610 case AF_INET: 611 p.pfra_net = 32; 612 p.pfra_ip4addr = pfoe->addr.v4; 613 break; 614 #endif 615 #ifdef INET6 616 case AF_INET6: 617 p.pfra_net = 128; 618 p.pfra_ip6addr = pfoe->addr.v6; 619 break; 620 #endif 621 } 622 623 PF_RULES_WLOCK(); 624 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 625 PF_RULES_WUNLOCK(); 626 } 627 628 /* 629 * Remove those entries, that don't need flushing. 630 */ 631 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 632 if (pfoe->rule->flush == 0) { 633 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 634 free(pfoe, M_PFTEMP); 635 } else 636 counter_u64_add( 637 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 638 639 /* If nothing to flush, return. */ 640 if (SLIST_EMPTY(&queue)) { 641 CURVNET_RESTORE(); 642 return; 643 } 644 645 for (int i = 0; i <= pf_hashmask; i++) { 646 struct pf_idhash *ih = &V_pf_idhash[i]; 647 struct pf_state_key *sk; 648 struct pf_kstate *s; 649 650 PF_HASHROW_LOCK(ih); 651 LIST_FOREACH(s, &ih->states, entry) { 652 sk = s->key[PF_SK_WIRE]; 653 SLIST_FOREACH(pfoe, &queue, next) 654 if (sk->af == pfoe->af && 655 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 656 pfoe->rule == s->rule.ptr) && 657 ((pfoe->dir == PF_OUT && 658 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 659 (pfoe->dir == PF_IN && 660 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 661 s->timeout = PFTM_PURGE; 662 s->src.state = s->dst.state = TCPS_CLOSED; 663 killed++; 664 } 665 } 666 PF_HASHROW_UNLOCK(ih); 667 } 668 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 669 free(pfoe, M_PFTEMP); 670 if (V_pf_status.debug >= PF_DEBUG_MISC) 671 printf("%s: %u states killed", __func__, killed); 672 673 CURVNET_RESTORE(); 674 } 675 676 /* 677 * Can return locked on failure, so that we can consistently 678 * allocate and insert a new one. 679 */ 680 struct pf_ksrc_node * 681 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 682 int returnlocked) 683 { 684 struct pf_srchash *sh; 685 struct pf_ksrc_node *n; 686 687 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 688 689 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 690 PF_HASHROW_LOCK(sh); 691 LIST_FOREACH(n, &sh->nodes, entry) 692 if (n->rule.ptr == rule && n->af == af && 693 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 694 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 695 break; 696 if (n != NULL) { 697 n->states++; 698 PF_HASHROW_UNLOCK(sh); 699 } else if (returnlocked == 0) 700 PF_HASHROW_UNLOCK(sh); 701 702 return (n); 703 } 704 705 static void 706 pf_free_src_node(struct pf_ksrc_node *sn) 707 { 708 709 for (int i = 0; i < 2; i++) { 710 counter_u64_free(sn->bytes[i]); 711 counter_u64_free(sn->packets[i]); 712 } 713 uma_zfree(V_pf_sources_z, sn); 714 } 715 716 static int 717 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 718 struct pf_addr *src, sa_family_t af) 719 { 720 721 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 722 rule->rpool.opts & PF_POOL_STICKYADDR), 723 ("%s for non-tracking rule %p", __func__, rule)); 724 725 if (*sn == NULL) 726 *sn = pf_find_src_node(src, rule, af, 1); 727 728 if (*sn == NULL) { 729 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 730 731 PF_HASHROW_ASSERT(sh); 732 733 if (!rule->max_src_nodes || 734 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 735 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 736 else 737 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 738 1); 739 if ((*sn) == NULL) { 740 PF_HASHROW_UNLOCK(sh); 741 return (-1); 742 } 743 744 for (int i = 0; i < 2; i++) { 745 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 746 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 747 748 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 749 pf_free_src_node(*sn); 750 PF_HASHROW_UNLOCK(sh); 751 return (-1); 752 } 753 } 754 755 pf_init_threshold(&(*sn)->conn_rate, 756 rule->max_src_conn_rate.limit, 757 rule->max_src_conn_rate.seconds); 758 759 (*sn)->af = af; 760 (*sn)->rule.ptr = rule; 761 PF_ACPY(&(*sn)->addr, src, af); 762 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 763 (*sn)->creation = time_uptime; 764 (*sn)->ruletype = rule->action; 765 (*sn)->states = 1; 766 if ((*sn)->rule.ptr != NULL) 767 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 768 PF_HASHROW_UNLOCK(sh); 769 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 770 } else { 771 if (rule->max_src_states && 772 (*sn)->states >= rule->max_src_states) { 773 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 774 1); 775 return (-1); 776 } 777 } 778 return (0); 779 } 780 781 void 782 pf_unlink_src_node(struct pf_ksrc_node *src) 783 { 784 785 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 786 LIST_REMOVE(src, entry); 787 if (src->rule.ptr) 788 counter_u64_add(src->rule.ptr->src_nodes, -1); 789 } 790 791 u_int 792 pf_free_src_nodes(struct pf_ksrc_node_list *head) 793 { 794 struct pf_ksrc_node *sn, *tmp; 795 u_int count = 0; 796 797 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 798 pf_free_src_node(sn); 799 count++; 800 } 801 802 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 803 804 return (count); 805 } 806 807 void 808 pf_mtag_initialize() 809 { 810 811 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 812 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 813 UMA_ALIGN_PTR, 0); 814 } 815 816 /* Per-vnet data storage structures initialization. */ 817 void 818 pf_initialize() 819 { 820 struct pf_keyhash *kh; 821 struct pf_idhash *ih; 822 struct pf_srchash *sh; 823 u_int i; 824 825 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 826 pf_hashsize = PF_HASHSIZ; 827 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 828 pf_srchashsize = PF_SRCHASHSIZ; 829 830 V_pf_hashseed = arc4random(); 831 832 /* States and state keys storage. */ 833 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 834 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 835 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 836 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 837 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 838 839 V_pf_state_key_z = uma_zcreate("pf state keys", 840 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 841 UMA_ALIGN_PTR, 0); 842 843 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 844 M_PFHASH, M_NOWAIT | M_ZERO); 845 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 846 M_PFHASH, M_NOWAIT | M_ZERO); 847 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 848 printf("pf: Unable to allocate memory for " 849 "state_hashsize %lu.\n", pf_hashsize); 850 851 free(V_pf_keyhash, M_PFHASH); 852 free(V_pf_idhash, M_PFHASH); 853 854 pf_hashsize = PF_HASHSIZ; 855 V_pf_keyhash = mallocarray(pf_hashsize, 856 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 857 V_pf_idhash = mallocarray(pf_hashsize, 858 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 859 } 860 861 pf_hashmask = pf_hashsize - 1; 862 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 863 i++, kh++, ih++) { 864 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 865 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 866 } 867 868 /* Source nodes. */ 869 V_pf_sources_z = uma_zcreate("pf source nodes", 870 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 871 0); 872 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 873 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 874 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 875 876 V_pf_srchash = mallocarray(pf_srchashsize, 877 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 878 if (V_pf_srchash == NULL) { 879 printf("pf: Unable to allocate memory for " 880 "source_hashsize %lu.\n", pf_srchashsize); 881 882 pf_srchashsize = PF_SRCHASHSIZ; 883 V_pf_srchash = mallocarray(pf_srchashsize, 884 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 885 } 886 887 pf_srchashmask = pf_srchashsize - 1; 888 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 889 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 890 891 /* ALTQ */ 892 TAILQ_INIT(&V_pf_altqs[0]); 893 TAILQ_INIT(&V_pf_altqs[1]); 894 TAILQ_INIT(&V_pf_altqs[2]); 895 TAILQ_INIT(&V_pf_altqs[3]); 896 TAILQ_INIT(&V_pf_pabuf); 897 V_pf_altqs_active = &V_pf_altqs[0]; 898 V_pf_altq_ifs_active = &V_pf_altqs[1]; 899 V_pf_altqs_inactive = &V_pf_altqs[2]; 900 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 901 902 /* Send & overload+flush queues. */ 903 STAILQ_INIT(&V_pf_sendqueue); 904 SLIST_INIT(&V_pf_overloadqueue); 905 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 906 907 /* Unlinked, but may be referenced rules. */ 908 TAILQ_INIT(&V_pf_unlinked_rules); 909 } 910 911 void 912 pf_mtag_cleanup() 913 { 914 915 uma_zdestroy(pf_mtag_z); 916 } 917 918 void 919 pf_cleanup() 920 { 921 struct pf_keyhash *kh; 922 struct pf_idhash *ih; 923 struct pf_srchash *sh; 924 struct pf_send_entry *pfse, *next; 925 u_int i; 926 927 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 928 i++, kh++, ih++) { 929 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 930 __func__)); 931 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 932 __func__)); 933 mtx_destroy(&kh->lock); 934 mtx_destroy(&ih->lock); 935 } 936 free(V_pf_keyhash, M_PFHASH); 937 free(V_pf_idhash, M_PFHASH); 938 939 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 940 KASSERT(LIST_EMPTY(&sh->nodes), 941 ("%s: source node hash not empty", __func__)); 942 mtx_destroy(&sh->lock); 943 } 944 free(V_pf_srchash, M_PFHASH); 945 946 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 947 m_freem(pfse->pfse_m); 948 free(pfse, M_PFTEMP); 949 } 950 951 uma_zdestroy(V_pf_sources_z); 952 uma_zdestroy(V_pf_state_z); 953 uma_zdestroy(V_pf_state_key_z); 954 } 955 956 static int 957 pf_mtag_uminit(void *mem, int size, int how) 958 { 959 struct m_tag *t; 960 961 t = (struct m_tag *)mem; 962 t->m_tag_cookie = MTAG_ABI_COMPAT; 963 t->m_tag_id = PACKET_TAG_PF; 964 t->m_tag_len = sizeof(struct pf_mtag); 965 t->m_tag_free = pf_mtag_free; 966 967 return (0); 968 } 969 970 static void 971 pf_mtag_free(struct m_tag *t) 972 { 973 974 uma_zfree(pf_mtag_z, t); 975 } 976 977 struct pf_mtag * 978 pf_get_mtag(struct mbuf *m) 979 { 980 struct m_tag *mtag; 981 982 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 983 return ((struct pf_mtag *)(mtag + 1)); 984 985 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 986 if (mtag == NULL) 987 return (NULL); 988 bzero(mtag + 1, sizeof(struct pf_mtag)); 989 m_tag_prepend(m, mtag); 990 991 return ((struct pf_mtag *)(mtag + 1)); 992 } 993 994 static int 995 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 996 struct pf_kstate *s) 997 { 998 struct pf_keyhash *khs, *khw, *kh; 999 struct pf_state_key *sk, *cur; 1000 struct pf_kstate *si, *olds = NULL; 1001 int idx; 1002 1003 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1004 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1005 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1006 1007 /* 1008 * We need to lock hash slots of both keys. To avoid deadlock 1009 * we always lock the slot with lower address first. Unlock order 1010 * isn't important. 1011 * 1012 * We also need to lock ID hash slot before dropping key 1013 * locks. On success we return with ID hash slot locked. 1014 */ 1015 1016 if (skw == sks) { 1017 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1018 PF_HASHROW_LOCK(khs); 1019 } else { 1020 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1021 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1022 if (khs == khw) { 1023 PF_HASHROW_LOCK(khs); 1024 } else if (khs < khw) { 1025 PF_HASHROW_LOCK(khs); 1026 PF_HASHROW_LOCK(khw); 1027 } else { 1028 PF_HASHROW_LOCK(khw); 1029 PF_HASHROW_LOCK(khs); 1030 } 1031 } 1032 1033 #define KEYS_UNLOCK() do { \ 1034 if (khs != khw) { \ 1035 PF_HASHROW_UNLOCK(khs); \ 1036 PF_HASHROW_UNLOCK(khw); \ 1037 } else \ 1038 PF_HASHROW_UNLOCK(khs); \ 1039 } while (0) 1040 1041 /* 1042 * First run: start with wire key. 1043 */ 1044 sk = skw; 1045 kh = khw; 1046 idx = PF_SK_WIRE; 1047 1048 MPASS(s->lock == NULL); 1049 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1050 1051 keyattach: 1052 LIST_FOREACH(cur, &kh->keys, entry) 1053 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1054 break; 1055 1056 if (cur != NULL) { 1057 /* Key exists. Check for same kif, if none, add to key. */ 1058 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1059 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1060 1061 PF_HASHROW_LOCK(ih); 1062 if (si->kif == s->kif && 1063 si->direction == s->direction) { 1064 if (sk->proto == IPPROTO_TCP && 1065 si->src.state >= TCPS_FIN_WAIT_2 && 1066 si->dst.state >= TCPS_FIN_WAIT_2) { 1067 /* 1068 * New state matches an old >FIN_WAIT_2 1069 * state. We can't drop key hash locks, 1070 * thus we can't unlink it properly. 1071 * 1072 * As a workaround we drop it into 1073 * TCPS_CLOSED state, schedule purge 1074 * ASAP and push it into the very end 1075 * of the slot TAILQ, so that it won't 1076 * conflict with our new state. 1077 */ 1078 si->src.state = si->dst.state = 1079 TCPS_CLOSED; 1080 si->timeout = PFTM_PURGE; 1081 olds = si; 1082 } else { 1083 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1084 printf("pf: %s key attach " 1085 "failed on %s: ", 1086 (idx == PF_SK_WIRE) ? 1087 "wire" : "stack", 1088 s->kif->pfik_name); 1089 pf_print_state_parts(s, 1090 (idx == PF_SK_WIRE) ? 1091 sk : NULL, 1092 (idx == PF_SK_STACK) ? 1093 sk : NULL); 1094 printf(", existing: "); 1095 pf_print_state_parts(si, 1096 (idx == PF_SK_WIRE) ? 1097 sk : NULL, 1098 (idx == PF_SK_STACK) ? 1099 sk : NULL); 1100 printf("\n"); 1101 } 1102 PF_HASHROW_UNLOCK(ih); 1103 KEYS_UNLOCK(); 1104 uma_zfree(V_pf_state_key_z, sk); 1105 if (idx == PF_SK_STACK) 1106 pf_detach_state(s); 1107 return (EEXIST); /* collision! */ 1108 } 1109 } 1110 PF_HASHROW_UNLOCK(ih); 1111 } 1112 uma_zfree(V_pf_state_key_z, sk); 1113 s->key[idx] = cur; 1114 } else { 1115 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1116 s->key[idx] = sk; 1117 } 1118 1119 stateattach: 1120 /* List is sorted, if-bound states before floating. */ 1121 if (s->kif == V_pfi_all) 1122 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1123 else 1124 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1125 1126 if (olds) { 1127 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1128 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1129 key_list[idx]); 1130 olds = NULL; 1131 } 1132 1133 /* 1134 * Attach done. See how should we (or should not?) 1135 * attach a second key. 1136 */ 1137 if (sks == skw) { 1138 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1139 idx = PF_SK_STACK; 1140 sks = NULL; 1141 goto stateattach; 1142 } else if (sks != NULL) { 1143 /* 1144 * Continue attaching with stack key. 1145 */ 1146 sk = sks; 1147 kh = khs; 1148 idx = PF_SK_STACK; 1149 sks = NULL; 1150 goto keyattach; 1151 } 1152 1153 PF_STATE_LOCK(s); 1154 KEYS_UNLOCK(); 1155 1156 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1157 ("%s failure", __func__)); 1158 1159 return (0); 1160 #undef KEYS_UNLOCK 1161 } 1162 1163 static void 1164 pf_detach_state(struct pf_kstate *s) 1165 { 1166 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1167 struct pf_keyhash *kh; 1168 1169 if (sks != NULL) { 1170 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1171 PF_HASHROW_LOCK(kh); 1172 if (s->key[PF_SK_STACK] != NULL) 1173 pf_state_key_detach(s, PF_SK_STACK); 1174 /* 1175 * If both point to same key, then we are done. 1176 */ 1177 if (sks == s->key[PF_SK_WIRE]) { 1178 pf_state_key_detach(s, PF_SK_WIRE); 1179 PF_HASHROW_UNLOCK(kh); 1180 return; 1181 } 1182 PF_HASHROW_UNLOCK(kh); 1183 } 1184 1185 if (s->key[PF_SK_WIRE] != NULL) { 1186 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1187 PF_HASHROW_LOCK(kh); 1188 if (s->key[PF_SK_WIRE] != NULL) 1189 pf_state_key_detach(s, PF_SK_WIRE); 1190 PF_HASHROW_UNLOCK(kh); 1191 } 1192 } 1193 1194 static void 1195 pf_state_key_detach(struct pf_kstate *s, int idx) 1196 { 1197 struct pf_state_key *sk = s->key[idx]; 1198 #ifdef INVARIANTS 1199 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1200 1201 PF_HASHROW_ASSERT(kh); 1202 #endif 1203 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1204 s->key[idx] = NULL; 1205 1206 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1207 LIST_REMOVE(sk, entry); 1208 uma_zfree(V_pf_state_key_z, sk); 1209 } 1210 } 1211 1212 static int 1213 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1214 { 1215 struct pf_state_key *sk = mem; 1216 1217 bzero(sk, sizeof(struct pf_state_key_cmp)); 1218 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1219 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1220 1221 return (0); 1222 } 1223 1224 struct pf_state_key * 1225 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1226 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1227 { 1228 struct pf_state_key *sk; 1229 1230 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1231 if (sk == NULL) 1232 return (NULL); 1233 1234 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1235 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1236 sk->port[pd->sidx] = sport; 1237 sk->port[pd->didx] = dport; 1238 sk->proto = pd->proto; 1239 sk->af = pd->af; 1240 1241 return (sk); 1242 } 1243 1244 struct pf_state_key * 1245 pf_state_key_clone(struct pf_state_key *orig) 1246 { 1247 struct pf_state_key *sk; 1248 1249 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1250 if (sk == NULL) 1251 return (NULL); 1252 1253 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1254 1255 return (sk); 1256 } 1257 1258 int 1259 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1260 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1261 { 1262 struct pf_idhash *ih; 1263 struct pf_kstate *cur; 1264 int error; 1265 1266 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1267 ("%s: sks not pristine", __func__)); 1268 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1269 ("%s: skw not pristine", __func__)); 1270 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1271 1272 s->kif = kif; 1273 s->orig_kif = orig_kif; 1274 1275 if (s->id == 0 && s->creatorid == 0) { 1276 /* XXX: should be atomic, but probability of collision low */ 1277 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1278 V_pf_stateid[curcpu] = 1; 1279 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1280 s->id = htobe64(s->id); 1281 s->creatorid = V_pf_status.hostid; 1282 } 1283 1284 /* Returns with ID locked on success. */ 1285 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1286 return (error); 1287 1288 ih = &V_pf_idhash[PF_IDHASH(s)]; 1289 PF_HASHROW_ASSERT(ih); 1290 LIST_FOREACH(cur, &ih->states, entry) 1291 if (cur->id == s->id && cur->creatorid == s->creatorid) 1292 break; 1293 1294 if (cur != NULL) { 1295 PF_HASHROW_UNLOCK(ih); 1296 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1297 printf("pf: state ID collision: " 1298 "id: %016llx creatorid: %08x\n", 1299 (unsigned long long)be64toh(s->id), 1300 ntohl(s->creatorid)); 1301 } 1302 pf_detach_state(s); 1303 return (EEXIST); 1304 } 1305 LIST_INSERT_HEAD(&ih->states, s, entry); 1306 /* One for keys, one for ID hash. */ 1307 refcount_init(&s->refs, 2); 1308 1309 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1310 if (V_pfsync_insert_state_ptr != NULL) 1311 V_pfsync_insert_state_ptr(s); 1312 1313 /* Returns locked. */ 1314 return (0); 1315 } 1316 1317 /* 1318 * Find state by ID: returns with locked row on success. 1319 */ 1320 struct pf_kstate * 1321 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1322 { 1323 struct pf_idhash *ih; 1324 struct pf_kstate *s; 1325 1326 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1327 1328 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1329 1330 PF_HASHROW_LOCK(ih); 1331 LIST_FOREACH(s, &ih->states, entry) 1332 if (s->id == id && s->creatorid == creatorid) 1333 break; 1334 1335 if (s == NULL) 1336 PF_HASHROW_UNLOCK(ih); 1337 1338 return (s); 1339 } 1340 1341 /* 1342 * Find state by key. 1343 * Returns with ID hash slot locked on success. 1344 */ 1345 static struct pf_kstate * 1346 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1347 { 1348 struct pf_keyhash *kh; 1349 struct pf_state_key *sk; 1350 struct pf_kstate *s; 1351 int idx; 1352 1353 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1354 1355 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1356 1357 PF_HASHROW_LOCK(kh); 1358 LIST_FOREACH(sk, &kh->keys, entry) 1359 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1360 break; 1361 if (sk == NULL) { 1362 PF_HASHROW_UNLOCK(kh); 1363 return (NULL); 1364 } 1365 1366 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1367 1368 /* List is sorted, if-bound states before floating ones. */ 1369 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1370 if (s->kif == V_pfi_all || s->kif == kif) { 1371 PF_STATE_LOCK(s); 1372 PF_HASHROW_UNLOCK(kh); 1373 if (__predict_false(s->timeout >= PFTM_MAX)) { 1374 /* 1375 * State is either being processed by 1376 * pf_unlink_state() in an other thread, or 1377 * is scheduled for immediate expiry. 1378 */ 1379 PF_STATE_UNLOCK(s); 1380 return (NULL); 1381 } 1382 return (s); 1383 } 1384 PF_HASHROW_UNLOCK(kh); 1385 1386 return (NULL); 1387 } 1388 1389 struct pf_kstate * 1390 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1391 { 1392 struct pf_keyhash *kh; 1393 struct pf_state_key *sk; 1394 struct pf_kstate *s, *ret = NULL; 1395 int idx, inout = 0; 1396 1397 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1398 1399 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1400 1401 PF_HASHROW_LOCK(kh); 1402 LIST_FOREACH(sk, &kh->keys, entry) 1403 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1404 break; 1405 if (sk == NULL) { 1406 PF_HASHROW_UNLOCK(kh); 1407 return (NULL); 1408 } 1409 switch (dir) { 1410 case PF_IN: 1411 idx = PF_SK_WIRE; 1412 break; 1413 case PF_OUT: 1414 idx = PF_SK_STACK; 1415 break; 1416 case PF_INOUT: 1417 idx = PF_SK_WIRE; 1418 inout = 1; 1419 break; 1420 default: 1421 panic("%s: dir %u", __func__, dir); 1422 } 1423 second_run: 1424 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1425 if (more == NULL) { 1426 PF_HASHROW_UNLOCK(kh); 1427 return (s); 1428 } 1429 1430 if (ret) 1431 (*more)++; 1432 else 1433 ret = s; 1434 } 1435 if (inout == 1) { 1436 inout = 0; 1437 idx = PF_SK_STACK; 1438 goto second_run; 1439 } 1440 PF_HASHROW_UNLOCK(kh); 1441 1442 return (ret); 1443 } 1444 1445 bool 1446 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1447 { 1448 struct pf_kstate *s; 1449 1450 s = pf_find_state_all(key, dir, NULL); 1451 return (s != NULL); 1452 } 1453 1454 /* END state table stuff */ 1455 1456 static void 1457 pf_send(struct pf_send_entry *pfse) 1458 { 1459 1460 PF_SENDQ_LOCK(); 1461 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1462 PF_SENDQ_UNLOCK(); 1463 swi_sched(V_pf_swi_cookie, 0); 1464 } 1465 1466 void 1467 pf_intr(void *v) 1468 { 1469 struct epoch_tracker et; 1470 struct pf_send_head queue; 1471 struct pf_send_entry *pfse, *next; 1472 1473 CURVNET_SET((struct vnet *)v); 1474 1475 PF_SENDQ_LOCK(); 1476 queue = V_pf_sendqueue; 1477 STAILQ_INIT(&V_pf_sendqueue); 1478 PF_SENDQ_UNLOCK(); 1479 1480 NET_EPOCH_ENTER(et); 1481 1482 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1483 switch (pfse->pfse_type) { 1484 #ifdef INET 1485 case PFSE_IP: 1486 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1487 break; 1488 case PFSE_ICMP: 1489 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1490 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1491 break; 1492 #endif /* INET */ 1493 #ifdef INET6 1494 case PFSE_IP6: 1495 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1496 NULL); 1497 break; 1498 case PFSE_ICMP6: 1499 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1500 pfse->icmpopts.code, pfse->icmpopts.mtu); 1501 break; 1502 #endif /* INET6 */ 1503 default: 1504 panic("%s: unknown type", __func__); 1505 } 1506 free(pfse, M_PFTEMP); 1507 } 1508 NET_EPOCH_EXIT(et); 1509 CURVNET_RESTORE(); 1510 } 1511 1512 void 1513 pf_purge_thread(void *unused __unused) 1514 { 1515 VNET_ITERATOR_DECL(vnet_iter); 1516 1517 sx_xlock(&pf_end_lock); 1518 while (pf_end_threads == 0) { 1519 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1520 1521 VNET_LIST_RLOCK(); 1522 VNET_FOREACH(vnet_iter) { 1523 CURVNET_SET(vnet_iter); 1524 1525 /* Wait until V_pf_default_rule is initialized. */ 1526 if (V_pf_vnet_active == 0) { 1527 CURVNET_RESTORE(); 1528 continue; 1529 } 1530 1531 /* 1532 * Process 1/interval fraction of the state 1533 * table every run. 1534 */ 1535 V_pf_purge_idx = 1536 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1537 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1538 1539 /* 1540 * Purge other expired types every 1541 * PFTM_INTERVAL seconds. 1542 */ 1543 if (V_pf_purge_idx == 0) { 1544 /* 1545 * Order is important: 1546 * - states and src nodes reference rules 1547 * - states and rules reference kifs 1548 */ 1549 pf_purge_expired_fragments(); 1550 pf_purge_expired_src_nodes(); 1551 pf_purge_unlinked_rules(); 1552 pfi_kkif_purge(); 1553 } 1554 CURVNET_RESTORE(); 1555 } 1556 VNET_LIST_RUNLOCK(); 1557 } 1558 1559 pf_end_threads++; 1560 sx_xunlock(&pf_end_lock); 1561 kproc_exit(0); 1562 } 1563 1564 void 1565 pf_unload_vnet_purge(void) 1566 { 1567 1568 /* 1569 * To cleanse up all kifs and rules we need 1570 * two runs: first one clears reference flags, 1571 * then pf_purge_expired_states() doesn't 1572 * raise them, and then second run frees. 1573 */ 1574 pf_purge_unlinked_rules(); 1575 pfi_kkif_purge(); 1576 1577 /* 1578 * Now purge everything. 1579 */ 1580 pf_purge_expired_states(0, pf_hashmask); 1581 pf_purge_fragments(UINT_MAX); 1582 pf_purge_expired_src_nodes(); 1583 1584 /* 1585 * Now all kifs & rules should be unreferenced, 1586 * thus should be successfully freed. 1587 */ 1588 pf_purge_unlinked_rules(); 1589 pfi_kkif_purge(); 1590 } 1591 1592 u_int32_t 1593 pf_state_expires(const struct pf_kstate *state) 1594 { 1595 u_int32_t timeout; 1596 u_int32_t start; 1597 u_int32_t end; 1598 u_int32_t states; 1599 1600 /* handle all PFTM_* > PFTM_MAX here */ 1601 if (state->timeout == PFTM_PURGE) 1602 return (time_uptime); 1603 KASSERT(state->timeout != PFTM_UNLINKED, 1604 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1605 KASSERT((state->timeout < PFTM_MAX), 1606 ("pf_state_expires: timeout > PFTM_MAX")); 1607 timeout = state->rule.ptr->timeout[state->timeout]; 1608 if (!timeout) 1609 timeout = V_pf_default_rule.timeout[state->timeout]; 1610 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1611 if (start && state->rule.ptr != &V_pf_default_rule) { 1612 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1613 states = counter_u64_fetch(state->rule.ptr->states_cur); 1614 } else { 1615 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1616 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1617 states = V_pf_status.states; 1618 } 1619 if (end && states > start && start < end) { 1620 if (states < end) { 1621 timeout = (u_int64_t)timeout * (end - states) / 1622 (end - start); 1623 return (state->expire + timeout); 1624 } 1625 else 1626 return (time_uptime); 1627 } 1628 return (state->expire + timeout); 1629 } 1630 1631 void 1632 pf_purge_expired_src_nodes() 1633 { 1634 struct pf_ksrc_node_list freelist; 1635 struct pf_srchash *sh; 1636 struct pf_ksrc_node *cur, *next; 1637 int i; 1638 1639 LIST_INIT(&freelist); 1640 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1641 PF_HASHROW_LOCK(sh); 1642 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1643 if (cur->states == 0 && cur->expire <= time_uptime) { 1644 pf_unlink_src_node(cur); 1645 LIST_INSERT_HEAD(&freelist, cur, entry); 1646 } else if (cur->rule.ptr != NULL) 1647 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1648 PF_HASHROW_UNLOCK(sh); 1649 } 1650 1651 pf_free_src_nodes(&freelist); 1652 1653 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1654 } 1655 1656 static void 1657 pf_src_tree_remove_state(struct pf_kstate *s) 1658 { 1659 struct pf_ksrc_node *sn; 1660 struct pf_srchash *sh; 1661 uint32_t timeout; 1662 1663 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1664 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1665 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1666 1667 if (s->src_node != NULL) { 1668 sn = s->src_node; 1669 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1670 PF_HASHROW_LOCK(sh); 1671 if (s->src.tcp_est) 1672 --sn->conn; 1673 if (--sn->states == 0) 1674 sn->expire = time_uptime + timeout; 1675 PF_HASHROW_UNLOCK(sh); 1676 } 1677 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1678 sn = s->nat_src_node; 1679 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1680 PF_HASHROW_LOCK(sh); 1681 if (--sn->states == 0) 1682 sn->expire = time_uptime + timeout; 1683 PF_HASHROW_UNLOCK(sh); 1684 } 1685 s->src_node = s->nat_src_node = NULL; 1686 } 1687 1688 /* 1689 * Unlink and potentilly free a state. Function may be 1690 * called with ID hash row locked, but always returns 1691 * unlocked, since it needs to go through key hash locking. 1692 */ 1693 int 1694 pf_unlink_state(struct pf_kstate *s, u_int flags) 1695 { 1696 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1697 1698 if ((flags & PF_ENTER_LOCKED) == 0) 1699 PF_HASHROW_LOCK(ih); 1700 else 1701 PF_HASHROW_ASSERT(ih); 1702 1703 if (s->timeout == PFTM_UNLINKED) { 1704 /* 1705 * State is being processed 1706 * by pf_unlink_state() in 1707 * an other thread. 1708 */ 1709 PF_HASHROW_UNLOCK(ih); 1710 return (0); /* XXXGL: undefined actually */ 1711 } 1712 1713 if (s->src.state == PF_TCPS_PROXY_DST) { 1714 /* XXX wire key the right one? */ 1715 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 1716 &s->key[PF_SK_WIRE]->addr[1], 1717 &s->key[PF_SK_WIRE]->addr[0], 1718 s->key[PF_SK_WIRE]->port[1], 1719 s->key[PF_SK_WIRE]->port[0], 1720 s->src.seqhi, s->src.seqlo + 1, 1721 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 1722 } 1723 1724 LIST_REMOVE(s, entry); 1725 pf_src_tree_remove_state(s); 1726 1727 if (V_pfsync_delete_state_ptr != NULL) 1728 V_pfsync_delete_state_ptr(s); 1729 1730 STATE_DEC_COUNTERS(s); 1731 1732 s->timeout = PFTM_UNLINKED; 1733 1734 PF_HASHROW_UNLOCK(ih); 1735 1736 pf_detach_state(s); 1737 /* pf_state_insert() initialises refs to 2 */ 1738 return (pf_release_staten(s, 2)); 1739 } 1740 1741 struct pf_kstate * 1742 pf_alloc_state(int flags) 1743 { 1744 1745 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 1746 } 1747 1748 void 1749 pf_free_state(struct pf_kstate *cur) 1750 { 1751 1752 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1753 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1754 cur->timeout)); 1755 1756 pf_normalize_tcp_cleanup(cur); 1757 uma_zfree(V_pf_state_z, cur); 1758 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1759 } 1760 1761 /* 1762 * Called only from pf_purge_thread(), thus serialized. 1763 */ 1764 static u_int 1765 pf_purge_expired_states(u_int i, int maxcheck) 1766 { 1767 struct pf_idhash *ih; 1768 struct pf_kstate *s; 1769 1770 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1771 1772 /* 1773 * Go through hash and unlink states that expire now. 1774 */ 1775 while (maxcheck > 0) { 1776 ih = &V_pf_idhash[i]; 1777 1778 /* only take the lock if we expect to do work */ 1779 if (!LIST_EMPTY(&ih->states)) { 1780 relock: 1781 PF_HASHROW_LOCK(ih); 1782 LIST_FOREACH(s, &ih->states, entry) { 1783 if (pf_state_expires(s) <= time_uptime) { 1784 V_pf_status.states -= 1785 pf_unlink_state(s, PF_ENTER_LOCKED); 1786 goto relock; 1787 } 1788 s->rule.ptr->rule_ref |= PFRULE_REFS; 1789 if (s->nat_rule.ptr != NULL) 1790 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 1791 if (s->anchor.ptr != NULL) 1792 s->anchor.ptr->rule_ref |= PFRULE_REFS; 1793 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1794 if (s->rt_kif) 1795 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1796 } 1797 PF_HASHROW_UNLOCK(ih); 1798 } 1799 1800 /* Return when we hit end of hash. */ 1801 if (++i > pf_hashmask) { 1802 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1803 return (0); 1804 } 1805 1806 maxcheck--; 1807 } 1808 1809 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1810 1811 return (i); 1812 } 1813 1814 static void 1815 pf_purge_unlinked_rules() 1816 { 1817 struct pf_krulequeue tmpq; 1818 struct pf_krule *r, *r1; 1819 1820 /* 1821 * If we have overloading task pending, then we'd 1822 * better skip purging this time. There is a tiny 1823 * probability that overloading task references 1824 * an already unlinked rule. 1825 */ 1826 PF_OVERLOADQ_LOCK(); 1827 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1828 PF_OVERLOADQ_UNLOCK(); 1829 return; 1830 } 1831 PF_OVERLOADQ_UNLOCK(); 1832 1833 /* 1834 * Do naive mark-and-sweep garbage collecting of old rules. 1835 * Reference flag is raised by pf_purge_expired_states() 1836 * and pf_purge_expired_src_nodes(). 1837 * 1838 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1839 * use a temporary queue. 1840 */ 1841 TAILQ_INIT(&tmpq); 1842 PF_UNLNKDRULES_LOCK(); 1843 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1844 if (!(r->rule_ref & PFRULE_REFS)) { 1845 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1846 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1847 } else 1848 r->rule_ref &= ~PFRULE_REFS; 1849 } 1850 PF_UNLNKDRULES_UNLOCK(); 1851 1852 if (!TAILQ_EMPTY(&tmpq)) { 1853 PF_RULES_WLOCK(); 1854 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1855 TAILQ_REMOVE(&tmpq, r, entries); 1856 pf_free_rule(r); 1857 } 1858 PF_RULES_WUNLOCK(); 1859 } 1860 } 1861 1862 void 1863 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1864 { 1865 switch (af) { 1866 #ifdef INET 1867 case AF_INET: { 1868 u_int32_t a = ntohl(addr->addr32[0]); 1869 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1870 (a>>8)&255, a&255); 1871 if (p) { 1872 p = ntohs(p); 1873 printf(":%u", p); 1874 } 1875 break; 1876 } 1877 #endif /* INET */ 1878 #ifdef INET6 1879 case AF_INET6: { 1880 u_int16_t b; 1881 u_int8_t i, curstart, curend, maxstart, maxend; 1882 curstart = curend = maxstart = maxend = 255; 1883 for (i = 0; i < 8; i++) { 1884 if (!addr->addr16[i]) { 1885 if (curstart == 255) 1886 curstart = i; 1887 curend = i; 1888 } else { 1889 if ((curend - curstart) > 1890 (maxend - maxstart)) { 1891 maxstart = curstart; 1892 maxend = curend; 1893 } 1894 curstart = curend = 255; 1895 } 1896 } 1897 if ((curend - curstart) > 1898 (maxend - maxstart)) { 1899 maxstart = curstart; 1900 maxend = curend; 1901 } 1902 for (i = 0; i < 8; i++) { 1903 if (i >= maxstart && i <= maxend) { 1904 if (i == 0) 1905 printf(":"); 1906 if (i == maxend) 1907 printf(":"); 1908 } else { 1909 b = ntohs(addr->addr16[i]); 1910 printf("%x", b); 1911 if (i < 7) 1912 printf(":"); 1913 } 1914 } 1915 if (p) { 1916 p = ntohs(p); 1917 printf("[%u]", p); 1918 } 1919 break; 1920 } 1921 #endif /* INET6 */ 1922 } 1923 } 1924 1925 void 1926 pf_print_state(struct pf_kstate *s) 1927 { 1928 pf_print_state_parts(s, NULL, NULL); 1929 } 1930 1931 static void 1932 pf_print_state_parts(struct pf_kstate *s, 1933 struct pf_state_key *skwp, struct pf_state_key *sksp) 1934 { 1935 struct pf_state_key *skw, *sks; 1936 u_int8_t proto, dir; 1937 1938 /* Do our best to fill these, but they're skipped if NULL */ 1939 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1940 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1941 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1942 dir = s ? s->direction : 0; 1943 1944 switch (proto) { 1945 case IPPROTO_IPV4: 1946 printf("IPv4"); 1947 break; 1948 case IPPROTO_IPV6: 1949 printf("IPv6"); 1950 break; 1951 case IPPROTO_TCP: 1952 printf("TCP"); 1953 break; 1954 case IPPROTO_UDP: 1955 printf("UDP"); 1956 break; 1957 case IPPROTO_ICMP: 1958 printf("ICMP"); 1959 break; 1960 case IPPROTO_ICMPV6: 1961 printf("ICMPv6"); 1962 break; 1963 default: 1964 printf("%u", proto); 1965 break; 1966 } 1967 switch (dir) { 1968 case PF_IN: 1969 printf(" in"); 1970 break; 1971 case PF_OUT: 1972 printf(" out"); 1973 break; 1974 } 1975 if (skw) { 1976 printf(" wire: "); 1977 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1978 printf(" "); 1979 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1980 } 1981 if (sks) { 1982 printf(" stack: "); 1983 if (sks != skw) { 1984 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1985 printf(" "); 1986 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1987 } else 1988 printf("-"); 1989 } 1990 if (s) { 1991 if (proto == IPPROTO_TCP) { 1992 printf(" [lo=%u high=%u win=%u modulator=%u", 1993 s->src.seqlo, s->src.seqhi, 1994 s->src.max_win, s->src.seqdiff); 1995 if (s->src.wscale && s->dst.wscale) 1996 printf(" wscale=%u", 1997 s->src.wscale & PF_WSCALE_MASK); 1998 printf("]"); 1999 printf(" [lo=%u high=%u win=%u modulator=%u", 2000 s->dst.seqlo, s->dst.seqhi, 2001 s->dst.max_win, s->dst.seqdiff); 2002 if (s->src.wscale && s->dst.wscale) 2003 printf(" wscale=%u", 2004 s->dst.wscale & PF_WSCALE_MASK); 2005 printf("]"); 2006 } 2007 printf(" %u:%u", s->src.state, s->dst.state); 2008 } 2009 } 2010 2011 void 2012 pf_print_flags(u_int8_t f) 2013 { 2014 if (f) 2015 printf(" "); 2016 if (f & TH_FIN) 2017 printf("F"); 2018 if (f & TH_SYN) 2019 printf("S"); 2020 if (f & TH_RST) 2021 printf("R"); 2022 if (f & TH_PUSH) 2023 printf("P"); 2024 if (f & TH_ACK) 2025 printf("A"); 2026 if (f & TH_URG) 2027 printf("U"); 2028 if (f & TH_ECE) 2029 printf("E"); 2030 if (f & TH_CWR) 2031 printf("W"); 2032 } 2033 2034 #define PF_SET_SKIP_STEPS(i) \ 2035 do { \ 2036 while (head[i] != cur) { \ 2037 head[i]->skip[i].ptr = cur; \ 2038 head[i] = TAILQ_NEXT(head[i], entries); \ 2039 } \ 2040 } while (0) 2041 2042 void 2043 pf_calc_skip_steps(struct pf_krulequeue *rules) 2044 { 2045 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2046 int i; 2047 2048 cur = TAILQ_FIRST(rules); 2049 prev = cur; 2050 for (i = 0; i < PF_SKIP_COUNT; ++i) 2051 head[i] = cur; 2052 while (cur != NULL) { 2053 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2054 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2055 if (cur->direction != prev->direction) 2056 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2057 if (cur->af != prev->af) 2058 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2059 if (cur->proto != prev->proto) 2060 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2061 if (cur->src.neg != prev->src.neg || 2062 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2063 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2064 if (cur->src.port[0] != prev->src.port[0] || 2065 cur->src.port[1] != prev->src.port[1] || 2066 cur->src.port_op != prev->src.port_op) 2067 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2068 if (cur->dst.neg != prev->dst.neg || 2069 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2070 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2071 if (cur->dst.port[0] != prev->dst.port[0] || 2072 cur->dst.port[1] != prev->dst.port[1] || 2073 cur->dst.port_op != prev->dst.port_op) 2074 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2075 2076 prev = cur; 2077 cur = TAILQ_NEXT(cur, entries); 2078 } 2079 for (i = 0; i < PF_SKIP_COUNT; ++i) 2080 PF_SET_SKIP_STEPS(i); 2081 } 2082 2083 static int 2084 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2085 { 2086 if (aw1->type != aw2->type) 2087 return (1); 2088 switch (aw1->type) { 2089 case PF_ADDR_ADDRMASK: 2090 case PF_ADDR_RANGE: 2091 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2092 return (1); 2093 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2094 return (1); 2095 return (0); 2096 case PF_ADDR_DYNIFTL: 2097 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2098 case PF_ADDR_NOROUTE: 2099 case PF_ADDR_URPFFAILED: 2100 return (0); 2101 case PF_ADDR_TABLE: 2102 return (aw1->p.tbl != aw2->p.tbl); 2103 default: 2104 printf("invalid address type: %d\n", aw1->type); 2105 return (1); 2106 } 2107 } 2108 2109 /** 2110 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2111 * header isn't always a full checksum. In some cases (i.e. output) it's a 2112 * pseudo-header checksum, which is a partial checksum over src/dst IP 2113 * addresses, protocol number and length. 2114 * 2115 * That means we have the following cases: 2116 * * Input or forwarding: we don't have TSO, the checksum fields are full 2117 * checksums, we need to update the checksum whenever we change anything. 2118 * * Output (i.e. the checksum is a pseudo-header checksum): 2119 * x The field being updated is src/dst address or affects the length of 2120 * the packet. We need to update the pseudo-header checksum (note that this 2121 * checksum is not ones' complement). 2122 * x Some other field is being modified (e.g. src/dst port numbers): We 2123 * don't have to update anything. 2124 **/ 2125 u_int16_t 2126 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2127 { 2128 u_int32_t x; 2129 2130 x = cksum + old - new; 2131 x = (x + (x >> 16)) & 0xffff; 2132 2133 /* optimise: eliminate a branch when not udp */ 2134 if (udp && cksum == 0x0000) 2135 return cksum; 2136 if (udp && x == 0x0000) 2137 x = 0xffff; 2138 2139 return (u_int16_t)(x); 2140 } 2141 2142 static void 2143 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2144 u_int8_t udp) 2145 { 2146 u_int16_t old = htons(hi ? (*f << 8) : *f); 2147 u_int16_t new = htons(hi ? ( v << 8) : v); 2148 2149 if (*f == v) 2150 return; 2151 2152 *f = v; 2153 2154 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2155 return; 2156 2157 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2158 } 2159 2160 void 2161 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2162 bool hi, u_int8_t udp) 2163 { 2164 u_int8_t *fb = (u_int8_t *)f; 2165 u_int8_t *vb = (u_int8_t *)&v; 2166 2167 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2168 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2169 } 2170 2171 void 2172 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2173 bool hi, u_int8_t udp) 2174 { 2175 u_int8_t *fb = (u_int8_t *)f; 2176 u_int8_t *vb = (u_int8_t *)&v; 2177 2178 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2179 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2180 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2181 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2182 } 2183 2184 u_int16_t 2185 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2186 u_int16_t new, u_int8_t udp) 2187 { 2188 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2189 return (cksum); 2190 2191 return (pf_cksum_fixup(cksum, old, new, udp)); 2192 } 2193 2194 static void 2195 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2196 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2197 sa_family_t af) 2198 { 2199 struct pf_addr ao; 2200 u_int16_t po = *p; 2201 2202 PF_ACPY(&ao, a, af); 2203 PF_ACPY(a, an, af); 2204 2205 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2206 *pc = ~*pc; 2207 2208 *p = pn; 2209 2210 switch (af) { 2211 #ifdef INET 2212 case AF_INET: 2213 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2214 ao.addr16[0], an->addr16[0], 0), 2215 ao.addr16[1], an->addr16[1], 0); 2216 *p = pn; 2217 2218 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2219 ao.addr16[0], an->addr16[0], u), 2220 ao.addr16[1], an->addr16[1], u); 2221 2222 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2223 break; 2224 #endif /* INET */ 2225 #ifdef INET6 2226 case AF_INET6: 2227 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2228 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2229 pf_cksum_fixup(pf_cksum_fixup(*pc, 2230 ao.addr16[0], an->addr16[0], u), 2231 ao.addr16[1], an->addr16[1], u), 2232 ao.addr16[2], an->addr16[2], u), 2233 ao.addr16[3], an->addr16[3], u), 2234 ao.addr16[4], an->addr16[4], u), 2235 ao.addr16[5], an->addr16[5], u), 2236 ao.addr16[6], an->addr16[6], u), 2237 ao.addr16[7], an->addr16[7], u); 2238 2239 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2240 break; 2241 #endif /* INET6 */ 2242 } 2243 2244 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2245 CSUM_DELAY_DATA_IPV6)) { 2246 *pc = ~*pc; 2247 if (! *pc) 2248 *pc = 0xffff; 2249 } 2250 } 2251 2252 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2253 void 2254 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2255 { 2256 u_int32_t ao; 2257 2258 memcpy(&ao, a, sizeof(ao)); 2259 memcpy(a, &an, sizeof(u_int32_t)); 2260 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2261 ao % 65536, an % 65536, u); 2262 } 2263 2264 void 2265 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2266 { 2267 u_int32_t ao; 2268 2269 memcpy(&ao, a, sizeof(ao)); 2270 memcpy(a, &an, sizeof(u_int32_t)); 2271 2272 *c = pf_proto_cksum_fixup(m, 2273 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2274 ao % 65536, an % 65536, udp); 2275 } 2276 2277 #ifdef INET6 2278 static void 2279 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2280 { 2281 struct pf_addr ao; 2282 2283 PF_ACPY(&ao, a, AF_INET6); 2284 PF_ACPY(a, an, AF_INET6); 2285 2286 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2287 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2288 pf_cksum_fixup(pf_cksum_fixup(*c, 2289 ao.addr16[0], an->addr16[0], u), 2290 ao.addr16[1], an->addr16[1], u), 2291 ao.addr16[2], an->addr16[2], u), 2292 ao.addr16[3], an->addr16[3], u), 2293 ao.addr16[4], an->addr16[4], u), 2294 ao.addr16[5], an->addr16[5], u), 2295 ao.addr16[6], an->addr16[6], u), 2296 ao.addr16[7], an->addr16[7], u); 2297 } 2298 #endif /* INET6 */ 2299 2300 static void 2301 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2302 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2303 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2304 { 2305 struct pf_addr oia, ooa; 2306 2307 PF_ACPY(&oia, ia, af); 2308 if (oa) 2309 PF_ACPY(&ooa, oa, af); 2310 2311 /* Change inner protocol port, fix inner protocol checksum. */ 2312 if (ip != NULL) { 2313 u_int16_t oip = *ip; 2314 u_int32_t opc; 2315 2316 if (pc != NULL) 2317 opc = *pc; 2318 *ip = np; 2319 if (pc != NULL) 2320 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2321 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2322 if (pc != NULL) 2323 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2324 } 2325 /* Change inner ip address, fix inner ip and icmp checksums. */ 2326 PF_ACPY(ia, na, af); 2327 switch (af) { 2328 #ifdef INET 2329 case AF_INET: { 2330 u_int32_t oh2c = *h2c; 2331 2332 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2333 oia.addr16[0], ia->addr16[0], 0), 2334 oia.addr16[1], ia->addr16[1], 0); 2335 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2336 oia.addr16[0], ia->addr16[0], 0), 2337 oia.addr16[1], ia->addr16[1], 0); 2338 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2339 break; 2340 } 2341 #endif /* INET */ 2342 #ifdef INET6 2343 case AF_INET6: 2344 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2345 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2346 pf_cksum_fixup(pf_cksum_fixup(*ic, 2347 oia.addr16[0], ia->addr16[0], u), 2348 oia.addr16[1], ia->addr16[1], u), 2349 oia.addr16[2], ia->addr16[2], u), 2350 oia.addr16[3], ia->addr16[3], u), 2351 oia.addr16[4], ia->addr16[4], u), 2352 oia.addr16[5], ia->addr16[5], u), 2353 oia.addr16[6], ia->addr16[6], u), 2354 oia.addr16[7], ia->addr16[7], u); 2355 break; 2356 #endif /* INET6 */ 2357 } 2358 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2359 if (oa) { 2360 PF_ACPY(oa, na, af); 2361 switch (af) { 2362 #ifdef INET 2363 case AF_INET: 2364 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2365 ooa.addr16[0], oa->addr16[0], 0), 2366 ooa.addr16[1], oa->addr16[1], 0); 2367 break; 2368 #endif /* INET */ 2369 #ifdef INET6 2370 case AF_INET6: 2371 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2372 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2373 pf_cksum_fixup(pf_cksum_fixup(*ic, 2374 ooa.addr16[0], oa->addr16[0], u), 2375 ooa.addr16[1], oa->addr16[1], u), 2376 ooa.addr16[2], oa->addr16[2], u), 2377 ooa.addr16[3], oa->addr16[3], u), 2378 ooa.addr16[4], oa->addr16[4], u), 2379 ooa.addr16[5], oa->addr16[5], u), 2380 ooa.addr16[6], oa->addr16[6], u), 2381 ooa.addr16[7], oa->addr16[7], u); 2382 break; 2383 #endif /* INET6 */ 2384 } 2385 } 2386 } 2387 2388 /* 2389 * Need to modulate the sequence numbers in the TCP SACK option 2390 * (credits to Krzysztof Pfaff for report and patch) 2391 */ 2392 static int 2393 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2394 struct tcphdr *th, struct pf_state_peer *dst) 2395 { 2396 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2397 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2398 int copyback = 0, i, olen; 2399 struct sackblk sack; 2400 2401 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2402 if (hlen < TCPOLEN_SACKLEN || 2403 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2404 return 0; 2405 2406 while (hlen >= TCPOLEN_SACKLEN) { 2407 size_t startoff = opt - opts; 2408 olen = opt[1]; 2409 switch (*opt) { 2410 case TCPOPT_EOL: /* FALLTHROUGH */ 2411 case TCPOPT_NOP: 2412 opt++; 2413 hlen--; 2414 break; 2415 case TCPOPT_SACK: 2416 if (olen > hlen) 2417 olen = hlen; 2418 if (olen >= TCPOLEN_SACKLEN) { 2419 for (i = 2; i + TCPOLEN_SACK <= olen; 2420 i += TCPOLEN_SACK) { 2421 memcpy(&sack, &opt[i], sizeof(sack)); 2422 pf_patch_32_unaligned(m, 2423 &th->th_sum, &sack.start, 2424 htonl(ntohl(sack.start) - dst->seqdiff), 2425 PF_ALGNMNT(startoff), 2426 0); 2427 pf_patch_32_unaligned(m, &th->th_sum, 2428 &sack.end, 2429 htonl(ntohl(sack.end) - dst->seqdiff), 2430 PF_ALGNMNT(startoff), 2431 0); 2432 memcpy(&opt[i], &sack, sizeof(sack)); 2433 } 2434 copyback = 1; 2435 } 2436 /* FALLTHROUGH */ 2437 default: 2438 if (olen < 2) 2439 olen = 2; 2440 hlen -= olen; 2441 opt += olen; 2442 } 2443 } 2444 2445 if (copyback) 2446 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2447 return (copyback); 2448 } 2449 2450 struct mbuf * 2451 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2452 const struct pf_addr *saddr, const struct pf_addr *daddr, 2453 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2454 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2455 u_int16_t rtag) 2456 { 2457 struct mbuf *m; 2458 int len, tlen; 2459 #ifdef INET 2460 struct ip *h = NULL; 2461 #endif /* INET */ 2462 #ifdef INET6 2463 struct ip6_hdr *h6 = NULL; 2464 #endif /* INET6 */ 2465 struct tcphdr *th; 2466 char *opt; 2467 struct pf_mtag *pf_mtag; 2468 2469 len = 0; 2470 th = NULL; 2471 2472 /* maximum segment size tcp option */ 2473 tlen = sizeof(struct tcphdr); 2474 if (mss) 2475 tlen += 4; 2476 2477 switch (af) { 2478 #ifdef INET 2479 case AF_INET: 2480 len = sizeof(struct ip) + tlen; 2481 break; 2482 #endif /* INET */ 2483 #ifdef INET6 2484 case AF_INET6: 2485 len = sizeof(struct ip6_hdr) + tlen; 2486 break; 2487 #endif /* INET6 */ 2488 default: 2489 panic("%s: unsupported af %d", __func__, af); 2490 } 2491 2492 m = m_gethdr(M_NOWAIT, MT_DATA); 2493 if (m == NULL) 2494 return (NULL); 2495 2496 #ifdef MAC 2497 mac_netinet_firewall_send(m); 2498 #endif 2499 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2500 m_freem(m); 2501 return (NULL); 2502 } 2503 if (tag) 2504 m->m_flags |= M_SKIP_FIREWALL; 2505 pf_mtag->tag = rtag; 2506 2507 if (r != NULL && r->rtableid >= 0) 2508 M_SETFIB(m, r->rtableid); 2509 2510 #ifdef ALTQ 2511 if (r != NULL && r->qid) { 2512 pf_mtag->qid = r->qid; 2513 2514 /* add hints for ecn */ 2515 pf_mtag->hdr = mtod(m, struct ip *); 2516 } 2517 #endif /* ALTQ */ 2518 m->m_data += max_linkhdr; 2519 m->m_pkthdr.len = m->m_len = len; 2520 m->m_pkthdr.rcvif = NULL; 2521 bzero(m->m_data, len); 2522 switch (af) { 2523 #ifdef INET 2524 case AF_INET: 2525 h = mtod(m, struct ip *); 2526 2527 /* IP header fields included in the TCP checksum */ 2528 h->ip_p = IPPROTO_TCP; 2529 h->ip_len = htons(tlen); 2530 h->ip_src.s_addr = saddr->v4.s_addr; 2531 h->ip_dst.s_addr = daddr->v4.s_addr; 2532 2533 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2534 break; 2535 #endif /* INET */ 2536 #ifdef INET6 2537 case AF_INET6: 2538 h6 = mtod(m, struct ip6_hdr *); 2539 2540 /* IP header fields included in the TCP checksum */ 2541 h6->ip6_nxt = IPPROTO_TCP; 2542 h6->ip6_plen = htons(tlen); 2543 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2544 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2545 2546 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2547 break; 2548 #endif /* INET6 */ 2549 } 2550 2551 /* TCP header */ 2552 th->th_sport = sport; 2553 th->th_dport = dport; 2554 th->th_seq = htonl(seq); 2555 th->th_ack = htonl(ack); 2556 th->th_off = tlen >> 2; 2557 th->th_flags = flags; 2558 th->th_win = htons(win); 2559 2560 if (mss) { 2561 opt = (char *)(th + 1); 2562 opt[0] = TCPOPT_MAXSEG; 2563 opt[1] = 4; 2564 HTONS(mss); 2565 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2566 } 2567 2568 switch (af) { 2569 #ifdef INET 2570 case AF_INET: 2571 /* TCP checksum */ 2572 th->th_sum = in_cksum(m, len); 2573 2574 /* Finish the IP header */ 2575 h->ip_v = 4; 2576 h->ip_hl = sizeof(*h) >> 2; 2577 h->ip_tos = IPTOS_LOWDELAY; 2578 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2579 h->ip_len = htons(len); 2580 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2581 h->ip_sum = 0; 2582 break; 2583 #endif /* INET */ 2584 #ifdef INET6 2585 case AF_INET6: 2586 /* TCP checksum */ 2587 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2588 sizeof(struct ip6_hdr), tlen); 2589 2590 h6->ip6_vfc |= IPV6_VERSION; 2591 h6->ip6_hlim = IPV6_DEFHLIM; 2592 break; 2593 #endif /* INET6 */ 2594 } 2595 2596 return (m); 2597 } 2598 2599 void 2600 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2601 const struct pf_addr *saddr, const struct pf_addr *daddr, 2602 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2603 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2604 u_int16_t rtag) 2605 { 2606 struct pf_send_entry *pfse; 2607 struct mbuf *m; 2608 2609 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2610 win, mss, ttl, tag, rtag); 2611 if (m == NULL) 2612 return; 2613 2614 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2615 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2616 if (pfse == NULL) { 2617 m_freem(m); 2618 return; 2619 } 2620 2621 switch (af) { 2622 #ifdef INET 2623 case AF_INET: 2624 pfse->pfse_type = PFSE_IP; 2625 break; 2626 #endif /* INET */ 2627 #ifdef INET6 2628 case AF_INET6: 2629 pfse->pfse_type = PFSE_IP6; 2630 break; 2631 #endif /* INET6 */ 2632 } 2633 2634 pfse->pfse_m = m; 2635 pf_send(pfse); 2636 } 2637 2638 static void 2639 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2640 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2641 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2642 u_short *reason) 2643 { 2644 struct pf_addr * const saddr = pd->src; 2645 struct pf_addr * const daddr = pd->dst; 2646 sa_family_t af = pd->af; 2647 2648 /* undo NAT changes, if they have taken place */ 2649 if (nr != NULL) { 2650 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2651 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2652 if (pd->sport) 2653 *pd->sport = sk->port[pd->sidx]; 2654 if (pd->dport) 2655 *pd->dport = sk->port[pd->didx]; 2656 if (pd->proto_sum) 2657 *pd->proto_sum = bproto_sum; 2658 if (pd->ip_sum) 2659 *pd->ip_sum = bip_sum; 2660 m_copyback(m, off, hdrlen, pd->hdr.any); 2661 } 2662 if (pd->proto == IPPROTO_TCP && 2663 ((r->rule_flag & PFRULE_RETURNRST) || 2664 (r->rule_flag & PFRULE_RETURN)) && 2665 !(th->th_flags & TH_RST)) { 2666 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2667 int len = 0; 2668 #ifdef INET 2669 struct ip *h4; 2670 #endif 2671 #ifdef INET6 2672 struct ip6_hdr *h6; 2673 #endif 2674 2675 switch (af) { 2676 #ifdef INET 2677 case AF_INET: 2678 h4 = mtod(m, struct ip *); 2679 len = ntohs(h4->ip_len) - off; 2680 break; 2681 #endif 2682 #ifdef INET6 2683 case AF_INET6: 2684 h6 = mtod(m, struct ip6_hdr *); 2685 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2686 break; 2687 #endif 2688 } 2689 2690 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2691 REASON_SET(reason, PFRES_PROTCKSUM); 2692 else { 2693 if (th->th_flags & TH_SYN) 2694 ack++; 2695 if (th->th_flags & TH_FIN) 2696 ack++; 2697 pf_send_tcp(r, af, pd->dst, 2698 pd->src, th->th_dport, th->th_sport, 2699 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2700 r->return_ttl, 1, 0); 2701 } 2702 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2703 r->return_icmp) 2704 pf_send_icmp(m, r->return_icmp >> 8, 2705 r->return_icmp & 255, af, r); 2706 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2707 r->return_icmp6) 2708 pf_send_icmp(m, r->return_icmp6 >> 8, 2709 r->return_icmp6 & 255, af, r); 2710 } 2711 2712 static int 2713 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2714 { 2715 struct m_tag *mtag; 2716 2717 KASSERT(prio <= PF_PRIO_MAX, 2718 ("%s with invalid pcp", __func__)); 2719 2720 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2721 if (mtag == NULL) { 2722 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2723 sizeof(uint8_t), M_NOWAIT); 2724 if (mtag == NULL) 2725 return (ENOMEM); 2726 m_tag_prepend(m, mtag); 2727 } 2728 2729 *(uint8_t *)(mtag + 1) = prio; 2730 return (0); 2731 } 2732 2733 static int 2734 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2735 { 2736 struct m_tag *mtag; 2737 u_int8_t mpcp; 2738 2739 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2740 if (mtag == NULL) 2741 return (0); 2742 2743 if (prio == PF_PRIO_ZERO) 2744 prio = 0; 2745 2746 mpcp = *(uint8_t *)(mtag + 1); 2747 2748 return (mpcp == prio); 2749 } 2750 2751 static void 2752 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2753 struct pf_krule *r) 2754 { 2755 struct pf_send_entry *pfse; 2756 struct mbuf *m0; 2757 struct pf_mtag *pf_mtag; 2758 2759 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2760 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2761 if (pfse == NULL) 2762 return; 2763 2764 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2765 free(pfse, M_PFTEMP); 2766 return; 2767 } 2768 2769 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2770 free(pfse, M_PFTEMP); 2771 return; 2772 } 2773 /* XXX: revisit */ 2774 m0->m_flags |= M_SKIP_FIREWALL; 2775 2776 if (r->rtableid >= 0) 2777 M_SETFIB(m0, r->rtableid); 2778 2779 #ifdef ALTQ 2780 if (r->qid) { 2781 pf_mtag->qid = r->qid; 2782 /* add hints for ecn */ 2783 pf_mtag->hdr = mtod(m0, struct ip *); 2784 } 2785 #endif /* ALTQ */ 2786 2787 switch (af) { 2788 #ifdef INET 2789 case AF_INET: 2790 pfse->pfse_type = PFSE_ICMP; 2791 break; 2792 #endif /* INET */ 2793 #ifdef INET6 2794 case AF_INET6: 2795 pfse->pfse_type = PFSE_ICMP6; 2796 break; 2797 #endif /* INET6 */ 2798 } 2799 pfse->pfse_m = m0; 2800 pfse->icmpopts.type = type; 2801 pfse->icmpopts.code = code; 2802 pf_send(pfse); 2803 } 2804 2805 /* 2806 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2807 * If n is 0, they match if they are equal. If n is != 0, they match if they 2808 * are different. 2809 */ 2810 int 2811 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2812 struct pf_addr *b, sa_family_t af) 2813 { 2814 int match = 0; 2815 2816 switch (af) { 2817 #ifdef INET 2818 case AF_INET: 2819 if ((a->addr32[0] & m->addr32[0]) == 2820 (b->addr32[0] & m->addr32[0])) 2821 match++; 2822 break; 2823 #endif /* INET */ 2824 #ifdef INET6 2825 case AF_INET6: 2826 if (((a->addr32[0] & m->addr32[0]) == 2827 (b->addr32[0] & m->addr32[0])) && 2828 ((a->addr32[1] & m->addr32[1]) == 2829 (b->addr32[1] & m->addr32[1])) && 2830 ((a->addr32[2] & m->addr32[2]) == 2831 (b->addr32[2] & m->addr32[2])) && 2832 ((a->addr32[3] & m->addr32[3]) == 2833 (b->addr32[3] & m->addr32[3]))) 2834 match++; 2835 break; 2836 #endif /* INET6 */ 2837 } 2838 if (match) { 2839 if (n) 2840 return (0); 2841 else 2842 return (1); 2843 } else { 2844 if (n) 2845 return (1); 2846 else 2847 return (0); 2848 } 2849 } 2850 2851 /* 2852 * Return 1 if b <= a <= e, otherwise return 0. 2853 */ 2854 int 2855 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2856 struct pf_addr *a, sa_family_t af) 2857 { 2858 switch (af) { 2859 #ifdef INET 2860 case AF_INET: 2861 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2862 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2863 return (0); 2864 break; 2865 #endif /* INET */ 2866 #ifdef INET6 2867 case AF_INET6: { 2868 int i; 2869 2870 /* check a >= b */ 2871 for (i = 0; i < 4; ++i) 2872 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2873 break; 2874 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2875 return (0); 2876 /* check a <= e */ 2877 for (i = 0; i < 4; ++i) 2878 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2879 break; 2880 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2881 return (0); 2882 break; 2883 } 2884 #endif /* INET6 */ 2885 } 2886 return (1); 2887 } 2888 2889 static int 2890 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2891 { 2892 switch (op) { 2893 case PF_OP_IRG: 2894 return ((p > a1) && (p < a2)); 2895 case PF_OP_XRG: 2896 return ((p < a1) || (p > a2)); 2897 case PF_OP_RRG: 2898 return ((p >= a1) && (p <= a2)); 2899 case PF_OP_EQ: 2900 return (p == a1); 2901 case PF_OP_NE: 2902 return (p != a1); 2903 case PF_OP_LT: 2904 return (p < a1); 2905 case PF_OP_LE: 2906 return (p <= a1); 2907 case PF_OP_GT: 2908 return (p > a1); 2909 case PF_OP_GE: 2910 return (p >= a1); 2911 } 2912 return (0); /* never reached */ 2913 } 2914 2915 int 2916 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2917 { 2918 NTOHS(a1); 2919 NTOHS(a2); 2920 NTOHS(p); 2921 return (pf_match(op, a1, a2, p)); 2922 } 2923 2924 static int 2925 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2926 { 2927 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2928 return (0); 2929 return (pf_match(op, a1, a2, u)); 2930 } 2931 2932 static int 2933 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2934 { 2935 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2936 return (0); 2937 return (pf_match(op, a1, a2, g)); 2938 } 2939 2940 int 2941 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 2942 { 2943 if (*tag == -1) 2944 *tag = mtag; 2945 2946 return ((!r->match_tag_not && r->match_tag == *tag) || 2947 (r->match_tag_not && r->match_tag != *tag)); 2948 } 2949 2950 int 2951 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2952 { 2953 2954 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2955 2956 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2957 return (ENOMEM); 2958 2959 pd->pf_mtag->tag = tag; 2960 2961 return (0); 2962 } 2963 2964 #define PF_ANCHOR_STACKSIZE 32 2965 struct pf_kanchor_stackframe { 2966 struct pf_kruleset *rs; 2967 struct pf_krule *r; /* XXX: + match bit */ 2968 struct pf_kanchor *child; 2969 }; 2970 2971 /* 2972 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2973 */ 2974 #define PF_ANCHORSTACK_MATCH 0x00000001 2975 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2976 2977 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2978 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 2979 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2980 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2981 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2982 } while (0) 2983 2984 void 2985 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2986 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2987 int *match) 2988 { 2989 struct pf_kanchor_stackframe *f; 2990 2991 PF_RULES_RASSERT(); 2992 2993 if (match) 2994 *match = 0; 2995 if (*depth >= PF_ANCHOR_STACKSIZE) { 2996 printf("%s: anchor stack overflow on %s\n", 2997 __func__, (*r)->anchor->name); 2998 *r = TAILQ_NEXT(*r, entries); 2999 return; 3000 } else if (*depth == 0 && a != NULL) 3001 *a = *r; 3002 f = stack + (*depth)++; 3003 f->rs = *rs; 3004 f->r = *r; 3005 if ((*r)->anchor_wildcard) { 3006 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3007 3008 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3009 *r = NULL; 3010 return; 3011 } 3012 *rs = &f->child->ruleset; 3013 } else { 3014 f->child = NULL; 3015 *rs = &(*r)->anchor->ruleset; 3016 } 3017 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3018 } 3019 3020 int 3021 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3022 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3023 int *match) 3024 { 3025 struct pf_kanchor_stackframe *f; 3026 struct pf_krule *fr; 3027 int quick = 0; 3028 3029 PF_RULES_RASSERT(); 3030 3031 do { 3032 if (*depth <= 0) 3033 break; 3034 f = stack + *depth - 1; 3035 fr = PF_ANCHOR_RULE(f); 3036 if (f->child != NULL) { 3037 struct pf_kanchor_node *parent; 3038 3039 /* 3040 * This block traverses through 3041 * a wildcard anchor. 3042 */ 3043 parent = &fr->anchor->children; 3044 if (match != NULL && *match) { 3045 /* 3046 * If any of "*" matched, then 3047 * "foo/ *" matched, mark frame 3048 * appropriately. 3049 */ 3050 PF_ANCHOR_SET_MATCH(f); 3051 *match = 0; 3052 } 3053 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3054 if (f->child != NULL) { 3055 *rs = &f->child->ruleset; 3056 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3057 if (*r == NULL) 3058 continue; 3059 else 3060 break; 3061 } 3062 } 3063 (*depth)--; 3064 if (*depth == 0 && a != NULL) 3065 *a = NULL; 3066 *rs = f->rs; 3067 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3068 quick = fr->quick; 3069 *r = TAILQ_NEXT(fr, entries); 3070 } while (*r == NULL); 3071 3072 return (quick); 3073 } 3074 3075 #ifdef INET6 3076 void 3077 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3078 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3079 { 3080 switch (af) { 3081 #ifdef INET 3082 case AF_INET: 3083 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3084 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3085 break; 3086 #endif /* INET */ 3087 case AF_INET6: 3088 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3089 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3090 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3091 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3092 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3093 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3094 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3095 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3096 break; 3097 } 3098 } 3099 3100 void 3101 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3102 { 3103 switch (af) { 3104 #ifdef INET 3105 case AF_INET: 3106 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3107 break; 3108 #endif /* INET */ 3109 case AF_INET6: 3110 if (addr->addr32[3] == 0xffffffff) { 3111 addr->addr32[3] = 0; 3112 if (addr->addr32[2] == 0xffffffff) { 3113 addr->addr32[2] = 0; 3114 if (addr->addr32[1] == 0xffffffff) { 3115 addr->addr32[1] = 0; 3116 addr->addr32[0] = 3117 htonl(ntohl(addr->addr32[0]) + 1); 3118 } else 3119 addr->addr32[1] = 3120 htonl(ntohl(addr->addr32[1]) + 1); 3121 } else 3122 addr->addr32[2] = 3123 htonl(ntohl(addr->addr32[2]) + 1); 3124 } else 3125 addr->addr32[3] = 3126 htonl(ntohl(addr->addr32[3]) + 1); 3127 break; 3128 } 3129 } 3130 #endif /* INET6 */ 3131 3132 void 3133 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3134 { 3135 if (r->qid) 3136 a->qid = r->qid; 3137 if (r->pqid) 3138 a->pqid = r->pqid; 3139 } 3140 3141 int 3142 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3143 { 3144 struct pf_addr *saddr, *daddr; 3145 u_int16_t sport, dport; 3146 struct inpcbinfo *pi; 3147 struct inpcb *inp; 3148 3149 pd->lookup.uid = UID_MAX; 3150 pd->lookup.gid = GID_MAX; 3151 3152 switch (pd->proto) { 3153 case IPPROTO_TCP: 3154 sport = pd->hdr.tcp.th_sport; 3155 dport = pd->hdr.tcp.th_dport; 3156 pi = &V_tcbinfo; 3157 break; 3158 case IPPROTO_UDP: 3159 sport = pd->hdr.udp.uh_sport; 3160 dport = pd->hdr.udp.uh_dport; 3161 pi = &V_udbinfo; 3162 break; 3163 default: 3164 return (-1); 3165 } 3166 if (direction == PF_IN) { 3167 saddr = pd->src; 3168 daddr = pd->dst; 3169 } else { 3170 u_int16_t p; 3171 3172 p = sport; 3173 sport = dport; 3174 dport = p; 3175 saddr = pd->dst; 3176 daddr = pd->src; 3177 } 3178 switch (pd->af) { 3179 #ifdef INET 3180 case AF_INET: 3181 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3182 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3183 if (inp == NULL) { 3184 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3185 daddr->v4, dport, INPLOOKUP_WILDCARD | 3186 INPLOOKUP_RLOCKPCB, NULL, m); 3187 if (inp == NULL) 3188 return (-1); 3189 } 3190 break; 3191 #endif /* INET */ 3192 #ifdef INET6 3193 case AF_INET6: 3194 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3195 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3196 if (inp == NULL) { 3197 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3198 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3199 INPLOOKUP_RLOCKPCB, NULL, m); 3200 if (inp == NULL) 3201 return (-1); 3202 } 3203 break; 3204 #endif /* INET6 */ 3205 3206 default: 3207 return (-1); 3208 } 3209 INP_RLOCK_ASSERT(inp); 3210 pd->lookup.uid = inp->inp_cred->cr_uid; 3211 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3212 INP_RUNLOCK(inp); 3213 3214 return (1); 3215 } 3216 3217 u_int8_t 3218 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3219 { 3220 int hlen; 3221 u_int8_t hdr[60]; 3222 u_int8_t *opt, optlen; 3223 u_int8_t wscale = 0; 3224 3225 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3226 if (hlen <= sizeof(struct tcphdr)) 3227 return (0); 3228 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3229 return (0); 3230 opt = hdr + sizeof(struct tcphdr); 3231 hlen -= sizeof(struct tcphdr); 3232 while (hlen >= 3) { 3233 switch (*opt) { 3234 case TCPOPT_EOL: 3235 case TCPOPT_NOP: 3236 ++opt; 3237 --hlen; 3238 break; 3239 case TCPOPT_WINDOW: 3240 wscale = opt[2]; 3241 if (wscale > TCP_MAX_WINSHIFT) 3242 wscale = TCP_MAX_WINSHIFT; 3243 wscale |= PF_WSCALE_FLAG; 3244 /* FALLTHROUGH */ 3245 default: 3246 optlen = opt[1]; 3247 if (optlen < 2) 3248 optlen = 2; 3249 hlen -= optlen; 3250 opt += optlen; 3251 break; 3252 } 3253 } 3254 return (wscale); 3255 } 3256 3257 u_int16_t 3258 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3259 { 3260 int hlen; 3261 u_int8_t hdr[60]; 3262 u_int8_t *opt, optlen; 3263 u_int16_t mss = V_tcp_mssdflt; 3264 3265 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3266 if (hlen <= sizeof(struct tcphdr)) 3267 return (0); 3268 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3269 return (0); 3270 opt = hdr + sizeof(struct tcphdr); 3271 hlen -= sizeof(struct tcphdr); 3272 while (hlen >= TCPOLEN_MAXSEG) { 3273 switch (*opt) { 3274 case TCPOPT_EOL: 3275 case TCPOPT_NOP: 3276 ++opt; 3277 --hlen; 3278 break; 3279 case TCPOPT_MAXSEG: 3280 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3281 NTOHS(mss); 3282 /* FALLTHROUGH */ 3283 default: 3284 optlen = opt[1]; 3285 if (optlen < 2) 3286 optlen = 2; 3287 hlen -= optlen; 3288 opt += optlen; 3289 break; 3290 } 3291 } 3292 return (mss); 3293 } 3294 3295 static u_int16_t 3296 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3297 { 3298 struct nhop_object *nh; 3299 #ifdef INET6 3300 struct in6_addr dst6; 3301 uint32_t scopeid; 3302 #endif /* INET6 */ 3303 int hlen = 0; 3304 uint16_t mss = 0; 3305 3306 NET_EPOCH_ASSERT(); 3307 3308 switch (af) { 3309 #ifdef INET 3310 case AF_INET: 3311 hlen = sizeof(struct ip); 3312 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3313 if (nh != NULL) 3314 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3315 break; 3316 #endif /* INET */ 3317 #ifdef INET6 3318 case AF_INET6: 3319 hlen = sizeof(struct ip6_hdr); 3320 in6_splitscope(&addr->v6, &dst6, &scopeid); 3321 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3322 if (nh != NULL) 3323 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3324 break; 3325 #endif /* INET6 */ 3326 } 3327 3328 mss = max(V_tcp_mssdflt, mss); 3329 mss = min(mss, offer); 3330 mss = max(mss, 64); /* sanity - at least max opt space */ 3331 return (mss); 3332 } 3333 3334 static u_int32_t 3335 pf_tcp_iss(struct pf_pdesc *pd) 3336 { 3337 MD5_CTX ctx; 3338 u_int32_t digest[4]; 3339 3340 if (V_pf_tcp_secret_init == 0) { 3341 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3342 MD5Init(&V_pf_tcp_secret_ctx); 3343 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3344 sizeof(V_pf_tcp_secret)); 3345 V_pf_tcp_secret_init = 1; 3346 } 3347 3348 ctx = V_pf_tcp_secret_ctx; 3349 3350 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3351 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3352 if (pd->af == AF_INET6) { 3353 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3354 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3355 } else { 3356 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3357 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3358 } 3359 MD5Final((u_char *)digest, &ctx); 3360 V_pf_tcp_iss_off += 4096; 3361 #define ISN_RANDOM_INCREMENT (4096 - 1) 3362 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3363 V_pf_tcp_iss_off); 3364 #undef ISN_RANDOM_INCREMENT 3365 } 3366 3367 static int 3368 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3369 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3370 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3371 { 3372 struct pf_krule *nr = NULL; 3373 struct pf_addr * const saddr = pd->src; 3374 struct pf_addr * const daddr = pd->dst; 3375 sa_family_t af = pd->af; 3376 struct pf_krule *r, *a = NULL; 3377 struct pf_kruleset *ruleset = NULL; 3378 struct pf_ksrc_node *nsn = NULL; 3379 struct tcphdr *th = &pd->hdr.tcp; 3380 struct pf_state_key *sk = NULL, *nk = NULL; 3381 u_short reason; 3382 int rewrite = 0, hdrlen = 0; 3383 int tag = -1, rtableid = -1; 3384 int asd = 0; 3385 int match = 0; 3386 int state_icmp = 0; 3387 u_int16_t sport = 0, dport = 0; 3388 u_int16_t bproto_sum = 0, bip_sum = 0; 3389 u_int8_t icmptype = 0, icmpcode = 0; 3390 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3391 3392 PF_RULES_RASSERT(); 3393 3394 if (inp != NULL) { 3395 INP_LOCK_ASSERT(inp); 3396 pd->lookup.uid = inp->inp_cred->cr_uid; 3397 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3398 pd->lookup.done = 1; 3399 } 3400 3401 switch (pd->proto) { 3402 case IPPROTO_TCP: 3403 sport = th->th_sport; 3404 dport = th->th_dport; 3405 hdrlen = sizeof(*th); 3406 break; 3407 case IPPROTO_UDP: 3408 sport = pd->hdr.udp.uh_sport; 3409 dport = pd->hdr.udp.uh_dport; 3410 hdrlen = sizeof(pd->hdr.udp); 3411 break; 3412 #ifdef INET 3413 case IPPROTO_ICMP: 3414 if (pd->af != AF_INET) 3415 break; 3416 sport = dport = pd->hdr.icmp.icmp_id; 3417 hdrlen = sizeof(pd->hdr.icmp); 3418 icmptype = pd->hdr.icmp.icmp_type; 3419 icmpcode = pd->hdr.icmp.icmp_code; 3420 3421 if (icmptype == ICMP_UNREACH || 3422 icmptype == ICMP_SOURCEQUENCH || 3423 icmptype == ICMP_REDIRECT || 3424 icmptype == ICMP_TIMXCEED || 3425 icmptype == ICMP_PARAMPROB) 3426 state_icmp++; 3427 break; 3428 #endif /* INET */ 3429 #ifdef INET6 3430 case IPPROTO_ICMPV6: 3431 if (af != AF_INET6) 3432 break; 3433 sport = dport = pd->hdr.icmp6.icmp6_id; 3434 hdrlen = sizeof(pd->hdr.icmp6); 3435 icmptype = pd->hdr.icmp6.icmp6_type; 3436 icmpcode = pd->hdr.icmp6.icmp6_code; 3437 3438 if (icmptype == ICMP6_DST_UNREACH || 3439 icmptype == ICMP6_PACKET_TOO_BIG || 3440 icmptype == ICMP6_TIME_EXCEEDED || 3441 icmptype == ICMP6_PARAM_PROB) 3442 state_icmp++; 3443 break; 3444 #endif /* INET6 */ 3445 default: 3446 sport = dport = hdrlen = 0; 3447 break; 3448 } 3449 3450 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3451 3452 /* check packet for BINAT/NAT/RDR */ 3453 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3454 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3455 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3456 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3457 3458 if (pd->ip_sum) 3459 bip_sum = *pd->ip_sum; 3460 3461 switch (pd->proto) { 3462 case IPPROTO_TCP: 3463 bproto_sum = th->th_sum; 3464 pd->proto_sum = &th->th_sum; 3465 3466 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3467 nk->port[pd->sidx] != sport) { 3468 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3469 &th->th_sum, &nk->addr[pd->sidx], 3470 nk->port[pd->sidx], 0, af); 3471 pd->sport = &th->th_sport; 3472 sport = th->th_sport; 3473 } 3474 3475 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3476 nk->port[pd->didx] != dport) { 3477 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3478 &th->th_sum, &nk->addr[pd->didx], 3479 nk->port[pd->didx], 0, af); 3480 dport = th->th_dport; 3481 pd->dport = &th->th_dport; 3482 } 3483 rewrite++; 3484 break; 3485 case IPPROTO_UDP: 3486 bproto_sum = pd->hdr.udp.uh_sum; 3487 pd->proto_sum = &pd->hdr.udp.uh_sum; 3488 3489 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3490 nk->port[pd->sidx] != sport) { 3491 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3492 pd->ip_sum, &pd->hdr.udp.uh_sum, 3493 &nk->addr[pd->sidx], 3494 nk->port[pd->sidx], 1, af); 3495 sport = pd->hdr.udp.uh_sport; 3496 pd->sport = &pd->hdr.udp.uh_sport; 3497 } 3498 3499 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3500 nk->port[pd->didx] != dport) { 3501 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3502 pd->ip_sum, &pd->hdr.udp.uh_sum, 3503 &nk->addr[pd->didx], 3504 nk->port[pd->didx], 1, af); 3505 dport = pd->hdr.udp.uh_dport; 3506 pd->dport = &pd->hdr.udp.uh_dport; 3507 } 3508 rewrite++; 3509 break; 3510 #ifdef INET 3511 case IPPROTO_ICMP: 3512 nk->port[0] = nk->port[1]; 3513 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3514 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3515 nk->addr[pd->sidx].v4.s_addr, 0); 3516 3517 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3518 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3519 nk->addr[pd->didx].v4.s_addr, 0); 3520 3521 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3522 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3523 pd->hdr.icmp.icmp_cksum, sport, 3524 nk->port[1], 0); 3525 pd->hdr.icmp.icmp_id = nk->port[1]; 3526 pd->sport = &pd->hdr.icmp.icmp_id; 3527 } 3528 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3529 break; 3530 #endif /* INET */ 3531 #ifdef INET6 3532 case IPPROTO_ICMPV6: 3533 nk->port[0] = nk->port[1]; 3534 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3535 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3536 &nk->addr[pd->sidx], 0); 3537 3538 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3539 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3540 &nk->addr[pd->didx], 0); 3541 rewrite++; 3542 break; 3543 #endif /* INET */ 3544 default: 3545 switch (af) { 3546 #ifdef INET 3547 case AF_INET: 3548 if (PF_ANEQ(saddr, 3549 &nk->addr[pd->sidx], AF_INET)) 3550 pf_change_a(&saddr->v4.s_addr, 3551 pd->ip_sum, 3552 nk->addr[pd->sidx].v4.s_addr, 0); 3553 3554 if (PF_ANEQ(daddr, 3555 &nk->addr[pd->didx], AF_INET)) 3556 pf_change_a(&daddr->v4.s_addr, 3557 pd->ip_sum, 3558 nk->addr[pd->didx].v4.s_addr, 0); 3559 break; 3560 #endif /* INET */ 3561 #ifdef INET6 3562 case AF_INET6: 3563 if (PF_ANEQ(saddr, 3564 &nk->addr[pd->sidx], AF_INET6)) 3565 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3566 3567 if (PF_ANEQ(daddr, 3568 &nk->addr[pd->didx], AF_INET6)) 3569 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3570 break; 3571 #endif /* INET */ 3572 } 3573 break; 3574 } 3575 if (nr->natpass) 3576 r = NULL; 3577 pd->nat_rule = nr; 3578 } 3579 3580 while (r != NULL) { 3581 counter_u64_add(r->evaluations, 1); 3582 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3583 r = r->skip[PF_SKIP_IFP].ptr; 3584 else if (r->direction && r->direction != direction) 3585 r = r->skip[PF_SKIP_DIR].ptr; 3586 else if (r->af && r->af != af) 3587 r = r->skip[PF_SKIP_AF].ptr; 3588 else if (r->proto && r->proto != pd->proto) 3589 r = r->skip[PF_SKIP_PROTO].ptr; 3590 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3591 r->src.neg, kif, M_GETFIB(m))) 3592 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3593 /* tcp/udp only. port_op always 0 in other cases */ 3594 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3595 r->src.port[0], r->src.port[1], sport)) 3596 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3597 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3598 r->dst.neg, NULL, M_GETFIB(m))) 3599 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3600 /* tcp/udp only. port_op always 0 in other cases */ 3601 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3602 r->dst.port[0], r->dst.port[1], dport)) 3603 r = r->skip[PF_SKIP_DST_PORT].ptr; 3604 /* icmp only. type always 0 in other cases */ 3605 else if (r->type && r->type != icmptype + 1) 3606 r = TAILQ_NEXT(r, entries); 3607 /* icmp only. type always 0 in other cases */ 3608 else if (r->code && r->code != icmpcode + 1) 3609 r = TAILQ_NEXT(r, entries); 3610 else if (r->tos && !(r->tos == pd->tos)) 3611 r = TAILQ_NEXT(r, entries); 3612 else if (r->rule_flag & PFRULE_FRAGMENT) 3613 r = TAILQ_NEXT(r, entries); 3614 else if (pd->proto == IPPROTO_TCP && 3615 (r->flagset & th->th_flags) != r->flags) 3616 r = TAILQ_NEXT(r, entries); 3617 /* tcp/udp only. uid.op always 0 in other cases */ 3618 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3619 pf_socket_lookup(direction, pd, m), 1)) && 3620 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3621 pd->lookup.uid)) 3622 r = TAILQ_NEXT(r, entries); 3623 /* tcp/udp only. gid.op always 0 in other cases */ 3624 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3625 pf_socket_lookup(direction, pd, m), 1)) && 3626 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3627 pd->lookup.gid)) 3628 r = TAILQ_NEXT(r, entries); 3629 else if (r->prio && 3630 !pf_match_ieee8021q_pcp(r->prio, m)) 3631 r = TAILQ_NEXT(r, entries); 3632 else if (r->prob && 3633 r->prob <= arc4random()) 3634 r = TAILQ_NEXT(r, entries); 3635 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3636 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3637 r = TAILQ_NEXT(r, entries); 3638 else if (r->os_fingerprint != PF_OSFP_ANY && 3639 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3640 pf_osfp_fingerprint(pd, m, off, th), 3641 r->os_fingerprint))) 3642 r = TAILQ_NEXT(r, entries); 3643 else { 3644 if (r->tag) 3645 tag = r->tag; 3646 if (r->rtableid >= 0) 3647 rtableid = r->rtableid; 3648 if (r->anchor == NULL) { 3649 if (r->action == PF_MATCH) { 3650 counter_u64_add(r->packets[direction == PF_OUT], 1); 3651 counter_u64_add(r->bytes[direction == PF_OUT], pd->tot_len); 3652 pf_rule_to_actions(r, &pd->act); 3653 if (r->log) 3654 PFLOG_PACKET(kif, m, af, 3655 direction, PFRES_MATCH, r, 3656 a, ruleset, pd, 1); 3657 } else { 3658 match = 1; 3659 *rm = r; 3660 *am = a; 3661 *rsm = ruleset; 3662 } 3663 if ((*rm)->quick) 3664 break; 3665 r = TAILQ_NEXT(r, entries); 3666 } else 3667 pf_step_into_anchor(anchor_stack, &asd, 3668 &ruleset, PF_RULESET_FILTER, &r, &a, 3669 &match); 3670 } 3671 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3672 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3673 break; 3674 } 3675 r = *rm; 3676 a = *am; 3677 ruleset = *rsm; 3678 3679 REASON_SET(&reason, PFRES_MATCH); 3680 3681 /* apply actions for last matching pass/block rule */ 3682 pf_rule_to_actions(r, &pd->act); 3683 3684 if (r->log || (nr != NULL && nr->log)) { 3685 if (rewrite) 3686 m_copyback(m, off, hdrlen, pd->hdr.any); 3687 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3688 ruleset, pd, 1); 3689 } 3690 3691 if ((r->action == PF_DROP) && 3692 ((r->rule_flag & PFRULE_RETURNRST) || 3693 (r->rule_flag & PFRULE_RETURNICMP) || 3694 (r->rule_flag & PFRULE_RETURN))) { 3695 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3696 bip_sum, hdrlen, &reason); 3697 } 3698 3699 if (r->action == PF_DROP) 3700 goto cleanup; 3701 3702 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3703 REASON_SET(&reason, PFRES_MEMORY); 3704 goto cleanup; 3705 } 3706 if (rtableid >= 0) 3707 M_SETFIB(m, rtableid); 3708 3709 if (!state_icmp && (r->keep_state || nr != NULL || 3710 (pd->flags & PFDESC_TCP_NORM))) { 3711 int action; 3712 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3713 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3714 hdrlen); 3715 if (action != PF_PASS) { 3716 if (action == PF_DROP && 3717 (r->rule_flag & PFRULE_RETURN)) 3718 pf_return(r, nr, pd, sk, off, m, th, kif, 3719 bproto_sum, bip_sum, hdrlen, &reason); 3720 return (action); 3721 } 3722 } else { 3723 if (sk != NULL) 3724 uma_zfree(V_pf_state_key_z, sk); 3725 if (nk != NULL) 3726 uma_zfree(V_pf_state_key_z, nk); 3727 } 3728 3729 /* copy back packet headers if we performed NAT operations */ 3730 if (rewrite) 3731 m_copyback(m, off, hdrlen, pd->hdr.any); 3732 3733 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3734 direction == PF_OUT && 3735 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3736 /* 3737 * We want the state created, but we dont 3738 * want to send this in case a partner 3739 * firewall has to know about it to allow 3740 * replies through it. 3741 */ 3742 return (PF_DEFER); 3743 3744 return (PF_PASS); 3745 3746 cleanup: 3747 if (sk != NULL) 3748 uma_zfree(V_pf_state_key_z, sk); 3749 if (nk != NULL) 3750 uma_zfree(V_pf_state_key_z, nk); 3751 return (PF_DROP); 3752 } 3753 3754 static int 3755 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3756 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3757 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3758 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 3759 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3760 { 3761 struct pf_kstate *s = NULL; 3762 struct pf_ksrc_node *sn = NULL; 3763 struct tcphdr *th = &pd->hdr.tcp; 3764 u_int16_t mss = V_tcp_mssdflt; 3765 u_short reason; 3766 3767 /* check maximums */ 3768 if (r->max_states && 3769 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3770 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3771 REASON_SET(&reason, PFRES_MAXSTATES); 3772 goto csfailed; 3773 } 3774 /* src node for filter rule */ 3775 if ((r->rule_flag & PFRULE_SRCTRACK || 3776 r->rpool.opts & PF_POOL_STICKYADDR) && 3777 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3778 REASON_SET(&reason, PFRES_SRCLIMIT); 3779 goto csfailed; 3780 } 3781 /* src node for translation rule */ 3782 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3783 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3784 REASON_SET(&reason, PFRES_SRCLIMIT); 3785 goto csfailed; 3786 } 3787 s = pf_alloc_state(M_NOWAIT); 3788 if (s == NULL) { 3789 REASON_SET(&reason, PFRES_MEMORY); 3790 goto csfailed; 3791 } 3792 s->rule.ptr = r; 3793 s->nat_rule.ptr = nr; 3794 s->anchor.ptr = a; 3795 STATE_INC_COUNTERS(s); 3796 if (r->allow_opts) 3797 s->state_flags |= PFSTATE_ALLOWOPTS; 3798 if (r->rule_flag & PFRULE_STATESLOPPY) 3799 s->state_flags |= PFSTATE_SLOPPY; 3800 s->log = r->log & PF_LOG_ALL; 3801 s->sync_state = PFSYNC_S_NONE; 3802 s->qid = pd->act.qid; 3803 s->pqid = pd->act.pqid; 3804 if (nr != NULL) 3805 s->log |= nr->log & PF_LOG_ALL; 3806 switch (pd->proto) { 3807 case IPPROTO_TCP: 3808 s->src.seqlo = ntohl(th->th_seq); 3809 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3810 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3811 r->keep_state == PF_STATE_MODULATE) { 3812 /* Generate sequence number modulator */ 3813 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3814 0) 3815 s->src.seqdiff = 1; 3816 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3817 htonl(s->src.seqlo + s->src.seqdiff), 0); 3818 *rewrite = 1; 3819 } else 3820 s->src.seqdiff = 0; 3821 if (th->th_flags & TH_SYN) { 3822 s->src.seqhi++; 3823 s->src.wscale = pf_get_wscale(m, off, 3824 th->th_off, pd->af); 3825 } 3826 s->src.max_win = MAX(ntohs(th->th_win), 1); 3827 if (s->src.wscale & PF_WSCALE_MASK) { 3828 /* Remove scale factor from initial window */ 3829 int win = s->src.max_win; 3830 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3831 s->src.max_win = (win - 1) >> 3832 (s->src.wscale & PF_WSCALE_MASK); 3833 } 3834 if (th->th_flags & TH_FIN) 3835 s->src.seqhi++; 3836 s->dst.seqhi = 1; 3837 s->dst.max_win = 1; 3838 s->src.state = TCPS_SYN_SENT; 3839 s->dst.state = TCPS_CLOSED; 3840 s->timeout = PFTM_TCP_FIRST_PACKET; 3841 break; 3842 case IPPROTO_UDP: 3843 s->src.state = PFUDPS_SINGLE; 3844 s->dst.state = PFUDPS_NO_TRAFFIC; 3845 s->timeout = PFTM_UDP_FIRST_PACKET; 3846 break; 3847 case IPPROTO_ICMP: 3848 #ifdef INET6 3849 case IPPROTO_ICMPV6: 3850 #endif 3851 s->timeout = PFTM_ICMP_FIRST_PACKET; 3852 break; 3853 default: 3854 s->src.state = PFOTHERS_SINGLE; 3855 s->dst.state = PFOTHERS_NO_TRAFFIC; 3856 s->timeout = PFTM_OTHER_FIRST_PACKET; 3857 } 3858 3859 if (r->rt) { 3860 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3861 REASON_SET(&reason, PFRES_MAPFAILED); 3862 pf_src_tree_remove_state(s); 3863 STATE_DEC_COUNTERS(s); 3864 pf_free_state(s); 3865 goto csfailed; 3866 } 3867 s->rt_kif = r->rpool.cur->kif; 3868 } 3869 3870 s->creation = time_uptime; 3871 s->expire = time_uptime; 3872 3873 if (sn != NULL) 3874 s->src_node = sn; 3875 if (nsn != NULL) { 3876 /* XXX We only modify one side for now. */ 3877 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3878 s->nat_src_node = nsn; 3879 } 3880 if (pd->proto == IPPROTO_TCP) { 3881 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3882 off, pd, th, &s->src, &s->dst)) { 3883 REASON_SET(&reason, PFRES_MEMORY); 3884 pf_src_tree_remove_state(s); 3885 STATE_DEC_COUNTERS(s); 3886 pf_free_state(s); 3887 return (PF_DROP); 3888 } 3889 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3890 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3891 &s->src, &s->dst, rewrite)) { 3892 /* This really shouldn't happen!!! */ 3893 DPFPRINTF(PF_DEBUG_URGENT, 3894 ("pf_normalize_tcp_stateful failed on first " 3895 "pkt\n")); 3896 pf_src_tree_remove_state(s); 3897 STATE_DEC_COUNTERS(s); 3898 pf_free_state(s); 3899 return (PF_DROP); 3900 } 3901 } 3902 s->direction = pd->dir; 3903 3904 /* 3905 * sk/nk could already been setup by pf_get_translation(). 3906 */ 3907 if (nr == NULL) { 3908 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3909 __func__, nr, sk, nk)); 3910 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3911 if (sk == NULL) 3912 goto csfailed; 3913 nk = sk; 3914 } else 3915 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3916 __func__, nr, sk, nk)); 3917 3918 /* Swap sk/nk for PF_OUT. */ 3919 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 3920 (pd->dir == PF_IN) ? sk : nk, 3921 (pd->dir == PF_IN) ? nk : sk, s)) { 3922 REASON_SET(&reason, PFRES_STATEINS); 3923 pf_src_tree_remove_state(s); 3924 STATE_DEC_COUNTERS(s); 3925 pf_free_state(s); 3926 return (PF_DROP); 3927 } else 3928 *sm = s; 3929 3930 if (tag > 0) 3931 s->tag = tag; 3932 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3933 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3934 s->src.state = PF_TCPS_PROXY_SRC; 3935 /* undo NAT changes, if they have taken place */ 3936 if (nr != NULL) { 3937 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3938 if (pd->dir == PF_OUT) 3939 skt = s->key[PF_SK_STACK]; 3940 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3941 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3942 if (pd->sport) 3943 *pd->sport = skt->port[pd->sidx]; 3944 if (pd->dport) 3945 *pd->dport = skt->port[pd->didx]; 3946 if (pd->proto_sum) 3947 *pd->proto_sum = bproto_sum; 3948 if (pd->ip_sum) 3949 *pd->ip_sum = bip_sum; 3950 m_copyback(m, off, hdrlen, pd->hdr.any); 3951 } 3952 s->src.seqhi = htonl(arc4random()); 3953 /* Find mss option */ 3954 int rtid = M_GETFIB(m); 3955 mss = pf_get_mss(m, off, th->th_off, pd->af); 3956 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3957 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3958 s->src.mss = mss; 3959 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 3960 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3961 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 3962 REASON_SET(&reason, PFRES_SYNPROXY); 3963 return (PF_SYNPROXY_DROP); 3964 } 3965 3966 return (PF_PASS); 3967 3968 csfailed: 3969 if (sk != NULL) 3970 uma_zfree(V_pf_state_key_z, sk); 3971 if (nk != NULL) 3972 uma_zfree(V_pf_state_key_z, nk); 3973 3974 if (sn != NULL) { 3975 struct pf_srchash *sh; 3976 3977 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3978 PF_HASHROW_LOCK(sh); 3979 if (--sn->states == 0 && sn->expire == 0) { 3980 pf_unlink_src_node(sn); 3981 uma_zfree(V_pf_sources_z, sn); 3982 counter_u64_add( 3983 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3984 } 3985 PF_HASHROW_UNLOCK(sh); 3986 } 3987 3988 if (nsn != sn && nsn != NULL) { 3989 struct pf_srchash *sh; 3990 3991 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3992 PF_HASHROW_LOCK(sh); 3993 if (--nsn->states == 0 && nsn->expire == 0) { 3994 pf_unlink_src_node(nsn); 3995 uma_zfree(V_pf_sources_z, nsn); 3996 counter_u64_add( 3997 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3998 } 3999 PF_HASHROW_UNLOCK(sh); 4000 } 4001 4002 return (PF_DROP); 4003 } 4004 4005 static int 4006 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4007 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4008 struct pf_kruleset **rsm) 4009 { 4010 struct pf_krule *r, *a = NULL; 4011 struct pf_kruleset *ruleset = NULL; 4012 sa_family_t af = pd->af; 4013 u_short reason; 4014 int tag = -1; 4015 int asd = 0; 4016 int match = 0; 4017 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4018 4019 PF_RULES_RASSERT(); 4020 4021 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4022 while (r != NULL) { 4023 counter_u64_add(r->evaluations, 1); 4024 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4025 r = r->skip[PF_SKIP_IFP].ptr; 4026 else if (r->direction && r->direction != direction) 4027 r = r->skip[PF_SKIP_DIR].ptr; 4028 else if (r->af && r->af != af) 4029 r = r->skip[PF_SKIP_AF].ptr; 4030 else if (r->proto && r->proto != pd->proto) 4031 r = r->skip[PF_SKIP_PROTO].ptr; 4032 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4033 r->src.neg, kif, M_GETFIB(m))) 4034 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4035 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4036 r->dst.neg, NULL, M_GETFIB(m))) 4037 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4038 else if (r->tos && !(r->tos == pd->tos)) 4039 r = TAILQ_NEXT(r, entries); 4040 else if (r->os_fingerprint != PF_OSFP_ANY) 4041 r = TAILQ_NEXT(r, entries); 4042 else if (pd->proto == IPPROTO_UDP && 4043 (r->src.port_op || r->dst.port_op)) 4044 r = TAILQ_NEXT(r, entries); 4045 else if (pd->proto == IPPROTO_TCP && 4046 (r->src.port_op || r->dst.port_op || r->flagset)) 4047 r = TAILQ_NEXT(r, entries); 4048 else if ((pd->proto == IPPROTO_ICMP || 4049 pd->proto == IPPROTO_ICMPV6) && 4050 (r->type || r->code)) 4051 r = TAILQ_NEXT(r, entries); 4052 else if (r->prio && 4053 !pf_match_ieee8021q_pcp(r->prio, m)) 4054 r = TAILQ_NEXT(r, entries); 4055 else if (r->prob && r->prob <= 4056 (arc4random() % (UINT_MAX - 1) + 1)) 4057 r = TAILQ_NEXT(r, entries); 4058 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4059 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4060 r = TAILQ_NEXT(r, entries); 4061 else { 4062 if (r->anchor == NULL) { 4063 if (r->action == PF_MATCH) { 4064 counter_u64_add(r->packets[direction == PF_OUT], 1); 4065 counter_u64_add(r->bytes[direction == PF_OUT], pd->tot_len); 4066 pf_rule_to_actions(r, &pd->act); 4067 if (r->log) 4068 PFLOG_PACKET(kif, m, af, 4069 direction, PFRES_MATCH, r, 4070 a, ruleset, pd, 1); 4071 } else { 4072 match = 1; 4073 *rm = r; 4074 *am = a; 4075 *rsm = ruleset; 4076 } 4077 if ((*rm)->quick) 4078 break; 4079 r = TAILQ_NEXT(r, entries); 4080 } else 4081 pf_step_into_anchor(anchor_stack, &asd, 4082 &ruleset, PF_RULESET_FILTER, &r, &a, 4083 &match); 4084 } 4085 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4086 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4087 break; 4088 } 4089 r = *rm; 4090 a = *am; 4091 ruleset = *rsm; 4092 4093 REASON_SET(&reason, PFRES_MATCH); 4094 4095 /* apply actions for last matching pass/block rule */ 4096 pf_rule_to_actions(r, &pd->act); 4097 4098 if (r->log) 4099 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4100 1); 4101 4102 if (r->action != PF_PASS) 4103 return (PF_DROP); 4104 4105 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4106 REASON_SET(&reason, PFRES_MEMORY); 4107 return (PF_DROP); 4108 } 4109 4110 return (PF_PASS); 4111 } 4112 4113 static int 4114 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 4115 struct pf_kstate **state, struct pfi_kkif *kif, struct mbuf *m, int off, 4116 struct pf_pdesc *pd, u_short *reason, int *copyback) 4117 { 4118 struct tcphdr *th = &pd->hdr.tcp; 4119 u_int16_t win = ntohs(th->th_win); 4120 u_int32_t ack, end, seq, orig_seq; 4121 u_int8_t sws, dws; 4122 int ackskew; 4123 4124 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4125 sws = src->wscale & PF_WSCALE_MASK; 4126 dws = dst->wscale & PF_WSCALE_MASK; 4127 } else 4128 sws = dws = 0; 4129 4130 /* 4131 * Sequence tracking algorithm from Guido van Rooij's paper: 4132 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4133 * tcp_filtering.ps 4134 */ 4135 4136 orig_seq = seq = ntohl(th->th_seq); 4137 if (src->seqlo == 0) { 4138 /* First packet from this end. Set its state */ 4139 4140 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4141 src->scrub == NULL) { 4142 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4143 REASON_SET(reason, PFRES_MEMORY); 4144 return (PF_DROP); 4145 } 4146 } 4147 4148 /* Deferred generation of sequence number modulator */ 4149 if (dst->seqdiff && !src->seqdiff) { 4150 /* use random iss for the TCP server */ 4151 while ((src->seqdiff = arc4random() - seq) == 0) 4152 ; 4153 ack = ntohl(th->th_ack) - dst->seqdiff; 4154 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4155 src->seqdiff), 0); 4156 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4157 *copyback = 1; 4158 } else { 4159 ack = ntohl(th->th_ack); 4160 } 4161 4162 end = seq + pd->p_len; 4163 if (th->th_flags & TH_SYN) { 4164 end++; 4165 if (dst->wscale & PF_WSCALE_FLAG) { 4166 src->wscale = pf_get_wscale(m, off, th->th_off, 4167 pd->af); 4168 if (src->wscale & PF_WSCALE_FLAG) { 4169 /* Remove scale factor from initial 4170 * window */ 4171 sws = src->wscale & PF_WSCALE_MASK; 4172 win = ((u_int32_t)win + (1 << sws) - 1) 4173 >> sws; 4174 dws = dst->wscale & PF_WSCALE_MASK; 4175 } else { 4176 /* fixup other window */ 4177 dst->max_win <<= dst->wscale & 4178 PF_WSCALE_MASK; 4179 /* in case of a retrans SYN|ACK */ 4180 dst->wscale = 0; 4181 } 4182 } 4183 } 4184 if (th->th_flags & TH_FIN) 4185 end++; 4186 4187 src->seqlo = seq; 4188 if (src->state < TCPS_SYN_SENT) 4189 src->state = TCPS_SYN_SENT; 4190 4191 /* 4192 * May need to slide the window (seqhi may have been set by 4193 * the crappy stack check or if we picked up the connection 4194 * after establishment) 4195 */ 4196 if (src->seqhi == 1 || 4197 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4198 src->seqhi = end + MAX(1, dst->max_win << dws); 4199 if (win > src->max_win) 4200 src->max_win = win; 4201 4202 } else { 4203 ack = ntohl(th->th_ack) - dst->seqdiff; 4204 if (src->seqdiff) { 4205 /* Modulate sequence numbers */ 4206 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4207 src->seqdiff), 0); 4208 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4209 *copyback = 1; 4210 } 4211 end = seq + pd->p_len; 4212 if (th->th_flags & TH_SYN) 4213 end++; 4214 if (th->th_flags & TH_FIN) 4215 end++; 4216 } 4217 4218 if ((th->th_flags & TH_ACK) == 0) { 4219 /* Let it pass through the ack skew check */ 4220 ack = dst->seqlo; 4221 } else if ((ack == 0 && 4222 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4223 /* broken tcp stacks do not set ack */ 4224 (dst->state < TCPS_SYN_SENT)) { 4225 /* 4226 * Many stacks (ours included) will set the ACK number in an 4227 * FIN|ACK if the SYN times out -- no sequence to ACK. 4228 */ 4229 ack = dst->seqlo; 4230 } 4231 4232 if (seq == end) { 4233 /* Ease sequencing restrictions on no data packets */ 4234 seq = src->seqlo; 4235 end = seq; 4236 } 4237 4238 ackskew = dst->seqlo - ack; 4239 4240 /* 4241 * Need to demodulate the sequence numbers in any TCP SACK options 4242 * (Selective ACK). We could optionally validate the SACK values 4243 * against the current ACK window, either forwards or backwards, but 4244 * I'm not confident that SACK has been implemented properly 4245 * everywhere. It wouldn't surprise me if several stacks accidentally 4246 * SACK too far backwards of previously ACKed data. There really aren't 4247 * any security implications of bad SACKing unless the target stack 4248 * doesn't validate the option length correctly. Someone trying to 4249 * spoof into a TCP connection won't bother blindly sending SACK 4250 * options anyway. 4251 */ 4252 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4253 if (pf_modulate_sack(m, off, pd, th, dst)) 4254 *copyback = 1; 4255 } 4256 4257 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4258 if (SEQ_GEQ(src->seqhi, end) && 4259 /* Last octet inside other's window space */ 4260 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4261 /* Retrans: not more than one window back */ 4262 (ackskew >= -MAXACKWINDOW) && 4263 /* Acking not more than one reassembled fragment backwards */ 4264 (ackskew <= (MAXACKWINDOW << sws)) && 4265 /* Acking not more than one window forward */ 4266 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4267 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4268 (pd->flags & PFDESC_IP_REAS) == 0)) { 4269 /* Require an exact/+1 sequence match on resets when possible */ 4270 4271 if (dst->scrub || src->scrub) { 4272 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4273 *state, src, dst, copyback)) 4274 return (PF_DROP); 4275 } 4276 4277 /* update max window */ 4278 if (src->max_win < win) 4279 src->max_win = win; 4280 /* synchronize sequencing */ 4281 if (SEQ_GT(end, src->seqlo)) 4282 src->seqlo = end; 4283 /* slide the window of what the other end can send */ 4284 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4285 dst->seqhi = ack + MAX((win << sws), 1); 4286 4287 /* update states */ 4288 if (th->th_flags & TH_SYN) 4289 if (src->state < TCPS_SYN_SENT) 4290 src->state = TCPS_SYN_SENT; 4291 if (th->th_flags & TH_FIN) 4292 if (src->state < TCPS_CLOSING) 4293 src->state = TCPS_CLOSING; 4294 if (th->th_flags & TH_ACK) { 4295 if (dst->state == TCPS_SYN_SENT) { 4296 dst->state = TCPS_ESTABLISHED; 4297 if (src->state == TCPS_ESTABLISHED && 4298 (*state)->src_node != NULL && 4299 pf_src_connlimit(state)) { 4300 REASON_SET(reason, PFRES_SRCLIMIT); 4301 return (PF_DROP); 4302 } 4303 } else if (dst->state == TCPS_CLOSING) 4304 dst->state = TCPS_FIN_WAIT_2; 4305 } 4306 if (th->th_flags & TH_RST) 4307 src->state = dst->state = TCPS_TIME_WAIT; 4308 4309 /* update expire time */ 4310 (*state)->expire = time_uptime; 4311 if (src->state >= TCPS_FIN_WAIT_2 && 4312 dst->state >= TCPS_FIN_WAIT_2) 4313 (*state)->timeout = PFTM_TCP_CLOSED; 4314 else if (src->state >= TCPS_CLOSING && 4315 dst->state >= TCPS_CLOSING) 4316 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4317 else if (src->state < TCPS_ESTABLISHED || 4318 dst->state < TCPS_ESTABLISHED) 4319 (*state)->timeout = PFTM_TCP_OPENING; 4320 else if (src->state >= TCPS_CLOSING || 4321 dst->state >= TCPS_CLOSING) 4322 (*state)->timeout = PFTM_TCP_CLOSING; 4323 else 4324 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4325 4326 /* Fall through to PASS packet */ 4327 4328 } else if ((dst->state < TCPS_SYN_SENT || 4329 dst->state >= TCPS_FIN_WAIT_2 || 4330 src->state >= TCPS_FIN_WAIT_2) && 4331 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4332 /* Within a window forward of the originating packet */ 4333 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4334 /* Within a window backward of the originating packet */ 4335 4336 /* 4337 * This currently handles three situations: 4338 * 1) Stupid stacks will shotgun SYNs before their peer 4339 * replies. 4340 * 2) When PF catches an already established stream (the 4341 * firewall rebooted, the state table was flushed, routes 4342 * changed...) 4343 * 3) Packets get funky immediately after the connection 4344 * closes (this should catch Solaris spurious ACK|FINs 4345 * that web servers like to spew after a close) 4346 * 4347 * This must be a little more careful than the above code 4348 * since packet floods will also be caught here. We don't 4349 * update the TTL here to mitigate the damage of a packet 4350 * flood and so the same code can handle awkward establishment 4351 * and a loosened connection close. 4352 * In the establishment case, a correct peer response will 4353 * validate the connection, go through the normal state code 4354 * and keep updating the state TTL. 4355 */ 4356 4357 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4358 printf("pf: loose state match: "); 4359 pf_print_state(*state); 4360 pf_print_flags(th->th_flags); 4361 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4362 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4363 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4364 (unsigned long long)(*state)->packets[1], 4365 pd->dir == PF_IN ? "in" : "out", 4366 pd->dir == (*state)->direction ? "fwd" : "rev"); 4367 } 4368 4369 if (dst->scrub || src->scrub) { 4370 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4371 *state, src, dst, copyback)) 4372 return (PF_DROP); 4373 } 4374 4375 /* update max window */ 4376 if (src->max_win < win) 4377 src->max_win = win; 4378 /* synchronize sequencing */ 4379 if (SEQ_GT(end, src->seqlo)) 4380 src->seqlo = end; 4381 /* slide the window of what the other end can send */ 4382 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4383 dst->seqhi = ack + MAX((win << sws), 1); 4384 4385 /* 4386 * Cannot set dst->seqhi here since this could be a shotgunned 4387 * SYN and not an already established connection. 4388 */ 4389 4390 if (th->th_flags & TH_FIN) 4391 if (src->state < TCPS_CLOSING) 4392 src->state = TCPS_CLOSING; 4393 if (th->th_flags & TH_RST) 4394 src->state = dst->state = TCPS_TIME_WAIT; 4395 4396 /* Fall through to PASS packet */ 4397 4398 } else { 4399 if ((*state)->dst.state == TCPS_SYN_SENT && 4400 (*state)->src.state == TCPS_SYN_SENT) { 4401 /* Send RST for state mismatches during handshake */ 4402 if (!(th->th_flags & TH_RST)) 4403 pf_send_tcp((*state)->rule.ptr, pd->af, 4404 pd->dst, pd->src, th->th_dport, 4405 th->th_sport, ntohl(th->th_ack), 0, 4406 TH_RST, 0, 0, 4407 (*state)->rule.ptr->return_ttl, 1, 0); 4408 src->seqlo = 0; 4409 src->seqhi = 1; 4410 src->max_win = 1; 4411 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4412 printf("pf: BAD state: "); 4413 pf_print_state(*state); 4414 pf_print_flags(th->th_flags); 4415 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4416 "pkts=%llu:%llu dir=%s,%s\n", 4417 seq, orig_seq, ack, pd->p_len, ackskew, 4418 (unsigned long long)(*state)->packets[0], 4419 (unsigned long long)(*state)->packets[1], 4420 pd->dir == PF_IN ? "in" : "out", 4421 pd->dir == (*state)->direction ? "fwd" : "rev"); 4422 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4423 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4424 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4425 ' ': '2', 4426 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4427 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4428 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4429 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4430 } 4431 REASON_SET(reason, PFRES_BADSTATE); 4432 return (PF_DROP); 4433 } 4434 4435 return (PF_PASS); 4436 } 4437 4438 static int 4439 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4440 struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4441 { 4442 struct tcphdr *th = &pd->hdr.tcp; 4443 4444 if (th->th_flags & TH_SYN) 4445 if (src->state < TCPS_SYN_SENT) 4446 src->state = TCPS_SYN_SENT; 4447 if (th->th_flags & TH_FIN) 4448 if (src->state < TCPS_CLOSING) 4449 src->state = TCPS_CLOSING; 4450 if (th->th_flags & TH_ACK) { 4451 if (dst->state == TCPS_SYN_SENT) { 4452 dst->state = TCPS_ESTABLISHED; 4453 if (src->state == TCPS_ESTABLISHED && 4454 (*state)->src_node != NULL && 4455 pf_src_connlimit(state)) { 4456 REASON_SET(reason, PFRES_SRCLIMIT); 4457 return (PF_DROP); 4458 } 4459 } else if (dst->state == TCPS_CLOSING) { 4460 dst->state = TCPS_FIN_WAIT_2; 4461 } else if (src->state == TCPS_SYN_SENT && 4462 dst->state < TCPS_SYN_SENT) { 4463 /* 4464 * Handle a special sloppy case where we only see one 4465 * half of the connection. If there is a ACK after 4466 * the initial SYN without ever seeing a packet from 4467 * the destination, set the connection to established. 4468 */ 4469 dst->state = src->state = TCPS_ESTABLISHED; 4470 if ((*state)->src_node != NULL && 4471 pf_src_connlimit(state)) { 4472 REASON_SET(reason, PFRES_SRCLIMIT); 4473 return (PF_DROP); 4474 } 4475 } else if (src->state == TCPS_CLOSING && 4476 dst->state == TCPS_ESTABLISHED && 4477 dst->seqlo == 0) { 4478 /* 4479 * Handle the closing of half connections where we 4480 * don't see the full bidirectional FIN/ACK+ACK 4481 * handshake. 4482 */ 4483 dst->state = TCPS_CLOSING; 4484 } 4485 } 4486 if (th->th_flags & TH_RST) 4487 src->state = dst->state = TCPS_TIME_WAIT; 4488 4489 /* update expire time */ 4490 (*state)->expire = time_uptime; 4491 if (src->state >= TCPS_FIN_WAIT_2 && 4492 dst->state >= TCPS_FIN_WAIT_2) 4493 (*state)->timeout = PFTM_TCP_CLOSED; 4494 else if (src->state >= TCPS_CLOSING && 4495 dst->state >= TCPS_CLOSING) 4496 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4497 else if (src->state < TCPS_ESTABLISHED || 4498 dst->state < TCPS_ESTABLISHED) 4499 (*state)->timeout = PFTM_TCP_OPENING; 4500 else if (src->state >= TCPS_CLOSING || 4501 dst->state >= TCPS_CLOSING) 4502 (*state)->timeout = PFTM_TCP_CLOSING; 4503 else 4504 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4505 4506 return (PF_PASS); 4507 } 4508 4509 static int 4510 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 4511 { 4512 struct pf_state_key *sk = (*state)->key[pd->didx]; 4513 struct tcphdr *th = &pd->hdr.tcp; 4514 4515 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4516 if (pd->dir != (*state)->direction) { 4517 REASON_SET(reason, PFRES_SYNPROXY); 4518 return (PF_SYNPROXY_DROP); 4519 } 4520 if (th->th_flags & TH_SYN) { 4521 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4522 REASON_SET(reason, PFRES_SYNPROXY); 4523 return (PF_DROP); 4524 } 4525 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4526 pd->src, th->th_dport, th->th_sport, 4527 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4528 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 4529 REASON_SET(reason, PFRES_SYNPROXY); 4530 return (PF_SYNPROXY_DROP); 4531 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4532 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4533 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4534 REASON_SET(reason, PFRES_SYNPROXY); 4535 return (PF_DROP); 4536 } else if ((*state)->src_node != NULL && 4537 pf_src_connlimit(state)) { 4538 REASON_SET(reason, PFRES_SRCLIMIT); 4539 return (PF_DROP); 4540 } else 4541 (*state)->src.state = PF_TCPS_PROXY_DST; 4542 } 4543 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4544 if (pd->dir == (*state)->direction) { 4545 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4546 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4547 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4548 REASON_SET(reason, PFRES_SYNPROXY); 4549 return (PF_DROP); 4550 } 4551 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4552 if ((*state)->dst.seqhi == 1) 4553 (*state)->dst.seqhi = htonl(arc4random()); 4554 pf_send_tcp((*state)->rule.ptr, pd->af, 4555 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4556 sk->port[pd->sidx], sk->port[pd->didx], 4557 (*state)->dst.seqhi, 0, TH_SYN, 0, 4558 (*state)->src.mss, 0, 0, (*state)->tag); 4559 REASON_SET(reason, PFRES_SYNPROXY); 4560 return (PF_SYNPROXY_DROP); 4561 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4562 (TH_SYN|TH_ACK)) || 4563 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4564 REASON_SET(reason, PFRES_SYNPROXY); 4565 return (PF_DROP); 4566 } else { 4567 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4568 (*state)->dst.seqlo = ntohl(th->th_seq); 4569 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4570 pd->src, th->th_dport, th->th_sport, 4571 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4572 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4573 (*state)->tag); 4574 pf_send_tcp((*state)->rule.ptr, pd->af, 4575 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4576 sk->port[pd->sidx], sk->port[pd->didx], 4577 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4578 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 4579 (*state)->src.seqdiff = (*state)->dst.seqhi - 4580 (*state)->src.seqlo; 4581 (*state)->dst.seqdiff = (*state)->src.seqhi - 4582 (*state)->dst.seqlo; 4583 (*state)->src.seqhi = (*state)->src.seqlo + 4584 (*state)->dst.max_win; 4585 (*state)->dst.seqhi = (*state)->dst.seqlo + 4586 (*state)->src.max_win; 4587 (*state)->src.wscale = (*state)->dst.wscale = 0; 4588 (*state)->src.state = (*state)->dst.state = 4589 TCPS_ESTABLISHED; 4590 REASON_SET(reason, PFRES_SYNPROXY); 4591 return (PF_SYNPROXY_DROP); 4592 } 4593 } 4594 4595 return (PF_PASS); 4596 } 4597 4598 static int 4599 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4600 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4601 u_short *reason) 4602 { 4603 struct pf_state_key_cmp key; 4604 struct tcphdr *th = &pd->hdr.tcp; 4605 int copyback = 0; 4606 int action; 4607 struct pf_state_peer *src, *dst; 4608 struct pf_state_key *sk; 4609 4610 bzero(&key, sizeof(key)); 4611 key.af = pd->af; 4612 key.proto = IPPROTO_TCP; 4613 if (direction == PF_IN) { /* wire side, straight */ 4614 PF_ACPY(&key.addr[0], pd->src, key.af); 4615 PF_ACPY(&key.addr[1], pd->dst, key.af); 4616 key.port[0] = th->th_sport; 4617 key.port[1] = th->th_dport; 4618 } else { /* stack side, reverse */ 4619 PF_ACPY(&key.addr[1], pd->src, key.af); 4620 PF_ACPY(&key.addr[0], pd->dst, key.af); 4621 key.port[1] = th->th_sport; 4622 key.port[0] = th->th_dport; 4623 } 4624 4625 STATE_LOOKUP(kif, &key, direction, *state, pd); 4626 4627 if (direction == (*state)->direction) { 4628 src = &(*state)->src; 4629 dst = &(*state)->dst; 4630 } else { 4631 src = &(*state)->dst; 4632 dst = &(*state)->src; 4633 } 4634 4635 sk = (*state)->key[pd->didx]; 4636 4637 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 4638 return (action); 4639 4640 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4641 dst->state >= TCPS_FIN_WAIT_2 && 4642 src->state >= TCPS_FIN_WAIT_2) { 4643 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4644 printf("pf: state reuse "); 4645 pf_print_state(*state); 4646 pf_print_flags(th->th_flags); 4647 printf("\n"); 4648 } 4649 /* XXX make sure it's the same direction ?? */ 4650 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4651 pf_unlink_state(*state, PF_ENTER_LOCKED); 4652 *state = NULL; 4653 return (PF_DROP); 4654 } 4655 4656 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4657 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4658 return (PF_DROP); 4659 } else { 4660 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4661 ©back) == PF_DROP) 4662 return (PF_DROP); 4663 } 4664 4665 /* translate source/destination address, if necessary */ 4666 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4667 struct pf_state_key *nk = (*state)->key[pd->didx]; 4668 4669 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4670 nk->port[pd->sidx] != th->th_sport) 4671 pf_change_ap(m, pd->src, &th->th_sport, 4672 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4673 nk->port[pd->sidx], 0, pd->af); 4674 4675 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4676 nk->port[pd->didx] != th->th_dport) 4677 pf_change_ap(m, pd->dst, &th->th_dport, 4678 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4679 nk->port[pd->didx], 0, pd->af); 4680 copyback = 1; 4681 } 4682 4683 /* Copyback sequence modulation or stateful scrub changes if needed */ 4684 if (copyback) 4685 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4686 4687 return (PF_PASS); 4688 } 4689 4690 static int 4691 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4692 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4693 { 4694 struct pf_state_peer *src, *dst; 4695 struct pf_state_key_cmp key; 4696 struct udphdr *uh = &pd->hdr.udp; 4697 4698 bzero(&key, sizeof(key)); 4699 key.af = pd->af; 4700 key.proto = IPPROTO_UDP; 4701 if (direction == PF_IN) { /* wire side, straight */ 4702 PF_ACPY(&key.addr[0], pd->src, key.af); 4703 PF_ACPY(&key.addr[1], pd->dst, key.af); 4704 key.port[0] = uh->uh_sport; 4705 key.port[1] = uh->uh_dport; 4706 } else { /* stack side, reverse */ 4707 PF_ACPY(&key.addr[1], pd->src, key.af); 4708 PF_ACPY(&key.addr[0], pd->dst, key.af); 4709 key.port[1] = uh->uh_sport; 4710 key.port[0] = uh->uh_dport; 4711 } 4712 4713 STATE_LOOKUP(kif, &key, direction, *state, pd); 4714 4715 if (direction == (*state)->direction) { 4716 src = &(*state)->src; 4717 dst = &(*state)->dst; 4718 } else { 4719 src = &(*state)->dst; 4720 dst = &(*state)->src; 4721 } 4722 4723 /* update states */ 4724 if (src->state < PFUDPS_SINGLE) 4725 src->state = PFUDPS_SINGLE; 4726 if (dst->state == PFUDPS_SINGLE) 4727 dst->state = PFUDPS_MULTIPLE; 4728 4729 /* update expire time */ 4730 (*state)->expire = time_uptime; 4731 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4732 (*state)->timeout = PFTM_UDP_MULTIPLE; 4733 else 4734 (*state)->timeout = PFTM_UDP_SINGLE; 4735 4736 /* translate source/destination address, if necessary */ 4737 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4738 struct pf_state_key *nk = (*state)->key[pd->didx]; 4739 4740 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4741 nk->port[pd->sidx] != uh->uh_sport) 4742 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4743 &uh->uh_sum, &nk->addr[pd->sidx], 4744 nk->port[pd->sidx], 1, pd->af); 4745 4746 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4747 nk->port[pd->didx] != uh->uh_dport) 4748 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4749 &uh->uh_sum, &nk->addr[pd->didx], 4750 nk->port[pd->didx], 1, pd->af); 4751 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4752 } 4753 4754 return (PF_PASS); 4755 } 4756 4757 static int 4758 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4759 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4760 { 4761 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4762 u_int16_t icmpid = 0, *icmpsum; 4763 u_int8_t icmptype, icmpcode; 4764 int state_icmp = 0; 4765 struct pf_state_key_cmp key; 4766 4767 bzero(&key, sizeof(key)); 4768 switch (pd->proto) { 4769 #ifdef INET 4770 case IPPROTO_ICMP: 4771 icmptype = pd->hdr.icmp.icmp_type; 4772 icmpcode = pd->hdr.icmp.icmp_code; 4773 icmpid = pd->hdr.icmp.icmp_id; 4774 icmpsum = &pd->hdr.icmp.icmp_cksum; 4775 4776 if (icmptype == ICMP_UNREACH || 4777 icmptype == ICMP_SOURCEQUENCH || 4778 icmptype == ICMP_REDIRECT || 4779 icmptype == ICMP_TIMXCEED || 4780 icmptype == ICMP_PARAMPROB) 4781 state_icmp++; 4782 break; 4783 #endif /* INET */ 4784 #ifdef INET6 4785 case IPPROTO_ICMPV6: 4786 icmptype = pd->hdr.icmp6.icmp6_type; 4787 icmpcode = pd->hdr.icmp6.icmp6_code; 4788 icmpid = pd->hdr.icmp6.icmp6_id; 4789 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 4790 4791 if (icmptype == ICMP6_DST_UNREACH || 4792 icmptype == ICMP6_PACKET_TOO_BIG || 4793 icmptype == ICMP6_TIME_EXCEEDED || 4794 icmptype == ICMP6_PARAM_PROB) 4795 state_icmp++; 4796 break; 4797 #endif /* INET6 */ 4798 } 4799 4800 if (!state_icmp) { 4801 /* 4802 * ICMP query/reply message not related to a TCP/UDP packet. 4803 * Search for an ICMP state. 4804 */ 4805 key.af = pd->af; 4806 key.proto = pd->proto; 4807 key.port[0] = key.port[1] = icmpid; 4808 if (direction == PF_IN) { /* wire side, straight */ 4809 PF_ACPY(&key.addr[0], pd->src, key.af); 4810 PF_ACPY(&key.addr[1], pd->dst, key.af); 4811 } else { /* stack side, reverse */ 4812 PF_ACPY(&key.addr[1], pd->src, key.af); 4813 PF_ACPY(&key.addr[0], pd->dst, key.af); 4814 } 4815 4816 STATE_LOOKUP(kif, &key, direction, *state, pd); 4817 4818 (*state)->expire = time_uptime; 4819 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4820 4821 /* translate source/destination address, if necessary */ 4822 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4823 struct pf_state_key *nk = (*state)->key[pd->didx]; 4824 4825 switch (pd->af) { 4826 #ifdef INET 4827 case AF_INET: 4828 if (PF_ANEQ(pd->src, 4829 &nk->addr[pd->sidx], AF_INET)) 4830 pf_change_a(&saddr->v4.s_addr, 4831 pd->ip_sum, 4832 nk->addr[pd->sidx].v4.s_addr, 0); 4833 4834 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4835 AF_INET)) 4836 pf_change_a(&daddr->v4.s_addr, 4837 pd->ip_sum, 4838 nk->addr[pd->didx].v4.s_addr, 0); 4839 4840 if (nk->port[0] != 4841 pd->hdr.icmp.icmp_id) { 4842 pd->hdr.icmp.icmp_cksum = 4843 pf_cksum_fixup( 4844 pd->hdr.icmp.icmp_cksum, icmpid, 4845 nk->port[pd->sidx], 0); 4846 pd->hdr.icmp.icmp_id = 4847 nk->port[pd->sidx]; 4848 } 4849 4850 m_copyback(m, off, ICMP_MINLEN, 4851 (caddr_t )&pd->hdr.icmp); 4852 break; 4853 #endif /* INET */ 4854 #ifdef INET6 4855 case AF_INET6: 4856 if (PF_ANEQ(pd->src, 4857 &nk->addr[pd->sidx], AF_INET6)) 4858 pf_change_a6(saddr, 4859 &pd->hdr.icmp6.icmp6_cksum, 4860 &nk->addr[pd->sidx], 0); 4861 4862 if (PF_ANEQ(pd->dst, 4863 &nk->addr[pd->didx], AF_INET6)) 4864 pf_change_a6(daddr, 4865 &pd->hdr.icmp6.icmp6_cksum, 4866 &nk->addr[pd->didx], 0); 4867 4868 m_copyback(m, off, sizeof(struct icmp6_hdr), 4869 (caddr_t )&pd->hdr.icmp6); 4870 break; 4871 #endif /* INET6 */ 4872 } 4873 } 4874 return (PF_PASS); 4875 4876 } else { 4877 /* 4878 * ICMP error message in response to a TCP/UDP packet. 4879 * Extract the inner TCP/UDP header and search for that state. 4880 */ 4881 4882 struct pf_pdesc pd2; 4883 bzero(&pd2, sizeof pd2); 4884 #ifdef INET 4885 struct ip h2; 4886 #endif /* INET */ 4887 #ifdef INET6 4888 struct ip6_hdr h2_6; 4889 int terminal = 0; 4890 #endif /* INET6 */ 4891 int ipoff2 = 0; 4892 int off2 = 0; 4893 4894 pd2.af = pd->af; 4895 /* Payload packet is from the opposite direction. */ 4896 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4897 pd2.didx = (direction == PF_IN) ? 0 : 1; 4898 switch (pd->af) { 4899 #ifdef INET 4900 case AF_INET: 4901 /* offset of h2 in mbuf chain */ 4902 ipoff2 = off + ICMP_MINLEN; 4903 4904 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4905 NULL, reason, pd2.af)) { 4906 DPFPRINTF(PF_DEBUG_MISC, 4907 ("pf: ICMP error message too short " 4908 "(ip)\n")); 4909 return (PF_DROP); 4910 } 4911 /* 4912 * ICMP error messages don't refer to non-first 4913 * fragments 4914 */ 4915 if (h2.ip_off & htons(IP_OFFMASK)) { 4916 REASON_SET(reason, PFRES_FRAG); 4917 return (PF_DROP); 4918 } 4919 4920 /* offset of protocol header that follows h2 */ 4921 off2 = ipoff2 + (h2.ip_hl << 2); 4922 4923 pd2.proto = h2.ip_p; 4924 pd2.src = (struct pf_addr *)&h2.ip_src; 4925 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4926 pd2.ip_sum = &h2.ip_sum; 4927 break; 4928 #endif /* INET */ 4929 #ifdef INET6 4930 case AF_INET6: 4931 ipoff2 = off + sizeof(struct icmp6_hdr); 4932 4933 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4934 NULL, reason, pd2.af)) { 4935 DPFPRINTF(PF_DEBUG_MISC, 4936 ("pf: ICMP error message too short " 4937 "(ip6)\n")); 4938 return (PF_DROP); 4939 } 4940 pd2.proto = h2_6.ip6_nxt; 4941 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4942 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4943 pd2.ip_sum = NULL; 4944 off2 = ipoff2 + sizeof(h2_6); 4945 do { 4946 switch (pd2.proto) { 4947 case IPPROTO_FRAGMENT: 4948 /* 4949 * ICMPv6 error messages for 4950 * non-first fragments 4951 */ 4952 REASON_SET(reason, PFRES_FRAG); 4953 return (PF_DROP); 4954 case IPPROTO_AH: 4955 case IPPROTO_HOPOPTS: 4956 case IPPROTO_ROUTING: 4957 case IPPROTO_DSTOPTS: { 4958 /* get next header and header length */ 4959 struct ip6_ext opt6; 4960 4961 if (!pf_pull_hdr(m, off2, &opt6, 4962 sizeof(opt6), NULL, reason, 4963 pd2.af)) { 4964 DPFPRINTF(PF_DEBUG_MISC, 4965 ("pf: ICMPv6 short opt\n")); 4966 return (PF_DROP); 4967 } 4968 if (pd2.proto == IPPROTO_AH) 4969 off2 += (opt6.ip6e_len + 2) * 4; 4970 else 4971 off2 += (opt6.ip6e_len + 1) * 8; 4972 pd2.proto = opt6.ip6e_nxt; 4973 /* goto the next header */ 4974 break; 4975 } 4976 default: 4977 terminal++; 4978 break; 4979 } 4980 } while (!terminal); 4981 break; 4982 #endif /* INET6 */ 4983 } 4984 4985 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4986 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4987 printf("pf: BAD ICMP %d:%d outer dst: ", 4988 icmptype, icmpcode); 4989 pf_print_host(pd->src, 0, pd->af); 4990 printf(" -> "); 4991 pf_print_host(pd->dst, 0, pd->af); 4992 printf(" inner src: "); 4993 pf_print_host(pd2.src, 0, pd2.af); 4994 printf(" -> "); 4995 pf_print_host(pd2.dst, 0, pd2.af); 4996 printf("\n"); 4997 } 4998 REASON_SET(reason, PFRES_BADSTATE); 4999 return (PF_DROP); 5000 } 5001 5002 switch (pd2.proto) { 5003 case IPPROTO_TCP: { 5004 struct tcphdr th; 5005 u_int32_t seq; 5006 struct pf_state_peer *src, *dst; 5007 u_int8_t dws; 5008 int copyback = 0; 5009 5010 /* 5011 * Only the first 8 bytes of the TCP header can be 5012 * expected. Don't access any TCP header fields after 5013 * th_seq, an ackskew test is not possible. 5014 */ 5015 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5016 pd2.af)) { 5017 DPFPRINTF(PF_DEBUG_MISC, 5018 ("pf: ICMP error message too short " 5019 "(tcp)\n")); 5020 return (PF_DROP); 5021 } 5022 5023 key.af = pd2.af; 5024 key.proto = IPPROTO_TCP; 5025 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5026 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5027 key.port[pd2.sidx] = th.th_sport; 5028 key.port[pd2.didx] = th.th_dport; 5029 5030 STATE_LOOKUP(kif, &key, direction, *state, pd); 5031 5032 if (direction == (*state)->direction) { 5033 src = &(*state)->dst; 5034 dst = &(*state)->src; 5035 } else { 5036 src = &(*state)->src; 5037 dst = &(*state)->dst; 5038 } 5039 5040 if (src->wscale && dst->wscale) 5041 dws = dst->wscale & PF_WSCALE_MASK; 5042 else 5043 dws = 0; 5044 5045 /* Demodulate sequence number */ 5046 seq = ntohl(th.th_seq) - src->seqdiff; 5047 if (src->seqdiff) { 5048 pf_change_a(&th.th_seq, icmpsum, 5049 htonl(seq), 0); 5050 copyback = 1; 5051 } 5052 5053 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5054 (!SEQ_GEQ(src->seqhi, seq) || 5055 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5056 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5057 printf("pf: BAD ICMP %d:%d ", 5058 icmptype, icmpcode); 5059 pf_print_host(pd->src, 0, pd->af); 5060 printf(" -> "); 5061 pf_print_host(pd->dst, 0, pd->af); 5062 printf(" state: "); 5063 pf_print_state(*state); 5064 printf(" seq=%u\n", seq); 5065 } 5066 REASON_SET(reason, PFRES_BADSTATE); 5067 return (PF_DROP); 5068 } else { 5069 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5070 printf("pf: OK ICMP %d:%d ", 5071 icmptype, icmpcode); 5072 pf_print_host(pd->src, 0, pd->af); 5073 printf(" -> "); 5074 pf_print_host(pd->dst, 0, pd->af); 5075 printf(" state: "); 5076 pf_print_state(*state); 5077 printf(" seq=%u\n", seq); 5078 } 5079 } 5080 5081 /* translate source/destination address, if necessary */ 5082 if ((*state)->key[PF_SK_WIRE] != 5083 (*state)->key[PF_SK_STACK]) { 5084 struct pf_state_key *nk = 5085 (*state)->key[pd->didx]; 5086 5087 if (PF_ANEQ(pd2.src, 5088 &nk->addr[pd2.sidx], pd2.af) || 5089 nk->port[pd2.sidx] != th.th_sport) 5090 pf_change_icmp(pd2.src, &th.th_sport, 5091 daddr, &nk->addr[pd2.sidx], 5092 nk->port[pd2.sidx], NULL, 5093 pd2.ip_sum, icmpsum, 5094 pd->ip_sum, 0, pd2.af); 5095 5096 if (PF_ANEQ(pd2.dst, 5097 &nk->addr[pd2.didx], pd2.af) || 5098 nk->port[pd2.didx] != th.th_dport) 5099 pf_change_icmp(pd2.dst, &th.th_dport, 5100 saddr, &nk->addr[pd2.didx], 5101 nk->port[pd2.didx], NULL, 5102 pd2.ip_sum, icmpsum, 5103 pd->ip_sum, 0, pd2.af); 5104 copyback = 1; 5105 } 5106 5107 if (copyback) { 5108 switch (pd2.af) { 5109 #ifdef INET 5110 case AF_INET: 5111 m_copyback(m, off, ICMP_MINLEN, 5112 (caddr_t )&pd->hdr.icmp); 5113 m_copyback(m, ipoff2, sizeof(h2), 5114 (caddr_t )&h2); 5115 break; 5116 #endif /* INET */ 5117 #ifdef INET6 5118 case AF_INET6: 5119 m_copyback(m, off, 5120 sizeof(struct icmp6_hdr), 5121 (caddr_t )&pd->hdr.icmp6); 5122 m_copyback(m, ipoff2, sizeof(h2_6), 5123 (caddr_t )&h2_6); 5124 break; 5125 #endif /* INET6 */ 5126 } 5127 m_copyback(m, off2, 8, (caddr_t)&th); 5128 } 5129 5130 return (PF_PASS); 5131 break; 5132 } 5133 case IPPROTO_UDP: { 5134 struct udphdr uh; 5135 5136 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5137 NULL, reason, pd2.af)) { 5138 DPFPRINTF(PF_DEBUG_MISC, 5139 ("pf: ICMP error message too short " 5140 "(udp)\n")); 5141 return (PF_DROP); 5142 } 5143 5144 key.af = pd2.af; 5145 key.proto = IPPROTO_UDP; 5146 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5147 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5148 key.port[pd2.sidx] = uh.uh_sport; 5149 key.port[pd2.didx] = uh.uh_dport; 5150 5151 STATE_LOOKUP(kif, &key, direction, *state, pd); 5152 5153 /* translate source/destination address, if necessary */ 5154 if ((*state)->key[PF_SK_WIRE] != 5155 (*state)->key[PF_SK_STACK]) { 5156 struct pf_state_key *nk = 5157 (*state)->key[pd->didx]; 5158 5159 if (PF_ANEQ(pd2.src, 5160 &nk->addr[pd2.sidx], pd2.af) || 5161 nk->port[pd2.sidx] != uh.uh_sport) 5162 pf_change_icmp(pd2.src, &uh.uh_sport, 5163 daddr, &nk->addr[pd2.sidx], 5164 nk->port[pd2.sidx], &uh.uh_sum, 5165 pd2.ip_sum, icmpsum, 5166 pd->ip_sum, 1, pd2.af); 5167 5168 if (PF_ANEQ(pd2.dst, 5169 &nk->addr[pd2.didx], pd2.af) || 5170 nk->port[pd2.didx] != uh.uh_dport) 5171 pf_change_icmp(pd2.dst, &uh.uh_dport, 5172 saddr, &nk->addr[pd2.didx], 5173 nk->port[pd2.didx], &uh.uh_sum, 5174 pd2.ip_sum, icmpsum, 5175 pd->ip_sum, 1, pd2.af); 5176 5177 switch (pd2.af) { 5178 #ifdef INET 5179 case AF_INET: 5180 m_copyback(m, off, ICMP_MINLEN, 5181 (caddr_t )&pd->hdr.icmp); 5182 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5183 break; 5184 #endif /* INET */ 5185 #ifdef INET6 5186 case AF_INET6: 5187 m_copyback(m, off, 5188 sizeof(struct icmp6_hdr), 5189 (caddr_t )&pd->hdr.icmp6); 5190 m_copyback(m, ipoff2, sizeof(h2_6), 5191 (caddr_t )&h2_6); 5192 break; 5193 #endif /* INET6 */ 5194 } 5195 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5196 } 5197 return (PF_PASS); 5198 break; 5199 } 5200 #ifdef INET 5201 case IPPROTO_ICMP: { 5202 struct icmp iih; 5203 5204 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5205 NULL, reason, pd2.af)) { 5206 DPFPRINTF(PF_DEBUG_MISC, 5207 ("pf: ICMP error message too short i" 5208 "(icmp)\n")); 5209 return (PF_DROP); 5210 } 5211 5212 key.af = pd2.af; 5213 key.proto = IPPROTO_ICMP; 5214 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5215 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5216 key.port[0] = key.port[1] = iih.icmp_id; 5217 5218 STATE_LOOKUP(kif, &key, direction, *state, pd); 5219 5220 /* translate source/destination address, if necessary */ 5221 if ((*state)->key[PF_SK_WIRE] != 5222 (*state)->key[PF_SK_STACK]) { 5223 struct pf_state_key *nk = 5224 (*state)->key[pd->didx]; 5225 5226 if (PF_ANEQ(pd2.src, 5227 &nk->addr[pd2.sidx], pd2.af) || 5228 nk->port[pd2.sidx] != iih.icmp_id) 5229 pf_change_icmp(pd2.src, &iih.icmp_id, 5230 daddr, &nk->addr[pd2.sidx], 5231 nk->port[pd2.sidx], NULL, 5232 pd2.ip_sum, icmpsum, 5233 pd->ip_sum, 0, AF_INET); 5234 5235 if (PF_ANEQ(pd2.dst, 5236 &nk->addr[pd2.didx], pd2.af) || 5237 nk->port[pd2.didx] != iih.icmp_id) 5238 pf_change_icmp(pd2.dst, &iih.icmp_id, 5239 saddr, &nk->addr[pd2.didx], 5240 nk->port[pd2.didx], NULL, 5241 pd2.ip_sum, icmpsum, 5242 pd->ip_sum, 0, AF_INET); 5243 5244 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5245 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5246 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5247 } 5248 return (PF_PASS); 5249 break; 5250 } 5251 #endif /* INET */ 5252 #ifdef INET6 5253 case IPPROTO_ICMPV6: { 5254 struct icmp6_hdr iih; 5255 5256 if (!pf_pull_hdr(m, off2, &iih, 5257 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5258 DPFPRINTF(PF_DEBUG_MISC, 5259 ("pf: ICMP error message too short " 5260 "(icmp6)\n")); 5261 return (PF_DROP); 5262 } 5263 5264 key.af = pd2.af; 5265 key.proto = IPPROTO_ICMPV6; 5266 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5267 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5268 key.port[0] = key.port[1] = iih.icmp6_id; 5269 5270 STATE_LOOKUP(kif, &key, direction, *state, pd); 5271 5272 /* translate source/destination address, if necessary */ 5273 if ((*state)->key[PF_SK_WIRE] != 5274 (*state)->key[PF_SK_STACK]) { 5275 struct pf_state_key *nk = 5276 (*state)->key[pd->didx]; 5277 5278 if (PF_ANEQ(pd2.src, 5279 &nk->addr[pd2.sidx], pd2.af) || 5280 nk->port[pd2.sidx] != iih.icmp6_id) 5281 pf_change_icmp(pd2.src, &iih.icmp6_id, 5282 daddr, &nk->addr[pd2.sidx], 5283 nk->port[pd2.sidx], NULL, 5284 pd2.ip_sum, icmpsum, 5285 pd->ip_sum, 0, AF_INET6); 5286 5287 if (PF_ANEQ(pd2.dst, 5288 &nk->addr[pd2.didx], pd2.af) || 5289 nk->port[pd2.didx] != iih.icmp6_id) 5290 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5291 saddr, &nk->addr[pd2.didx], 5292 nk->port[pd2.didx], NULL, 5293 pd2.ip_sum, icmpsum, 5294 pd->ip_sum, 0, AF_INET6); 5295 5296 m_copyback(m, off, sizeof(struct icmp6_hdr), 5297 (caddr_t)&pd->hdr.icmp6); 5298 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5299 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5300 (caddr_t)&iih); 5301 } 5302 return (PF_PASS); 5303 break; 5304 } 5305 #endif /* INET6 */ 5306 default: { 5307 key.af = pd2.af; 5308 key.proto = pd2.proto; 5309 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5310 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5311 key.port[0] = key.port[1] = 0; 5312 5313 STATE_LOOKUP(kif, &key, direction, *state, pd); 5314 5315 /* translate source/destination address, if necessary */ 5316 if ((*state)->key[PF_SK_WIRE] != 5317 (*state)->key[PF_SK_STACK]) { 5318 struct pf_state_key *nk = 5319 (*state)->key[pd->didx]; 5320 5321 if (PF_ANEQ(pd2.src, 5322 &nk->addr[pd2.sidx], pd2.af)) 5323 pf_change_icmp(pd2.src, NULL, daddr, 5324 &nk->addr[pd2.sidx], 0, NULL, 5325 pd2.ip_sum, icmpsum, 5326 pd->ip_sum, 0, pd2.af); 5327 5328 if (PF_ANEQ(pd2.dst, 5329 &nk->addr[pd2.didx], pd2.af)) 5330 pf_change_icmp(pd2.dst, NULL, saddr, 5331 &nk->addr[pd2.didx], 0, NULL, 5332 pd2.ip_sum, icmpsum, 5333 pd->ip_sum, 0, pd2.af); 5334 5335 switch (pd2.af) { 5336 #ifdef INET 5337 case AF_INET: 5338 m_copyback(m, off, ICMP_MINLEN, 5339 (caddr_t)&pd->hdr.icmp); 5340 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5341 break; 5342 #endif /* INET */ 5343 #ifdef INET6 5344 case AF_INET6: 5345 m_copyback(m, off, 5346 sizeof(struct icmp6_hdr), 5347 (caddr_t )&pd->hdr.icmp6); 5348 m_copyback(m, ipoff2, sizeof(h2_6), 5349 (caddr_t )&h2_6); 5350 break; 5351 #endif /* INET6 */ 5352 } 5353 } 5354 return (PF_PASS); 5355 break; 5356 } 5357 } 5358 } 5359 } 5360 5361 static int 5362 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5363 struct mbuf *m, struct pf_pdesc *pd) 5364 { 5365 struct pf_state_peer *src, *dst; 5366 struct pf_state_key_cmp key; 5367 5368 bzero(&key, sizeof(key)); 5369 key.af = pd->af; 5370 key.proto = pd->proto; 5371 if (direction == PF_IN) { 5372 PF_ACPY(&key.addr[0], pd->src, key.af); 5373 PF_ACPY(&key.addr[1], pd->dst, key.af); 5374 key.port[0] = key.port[1] = 0; 5375 } else { 5376 PF_ACPY(&key.addr[1], pd->src, key.af); 5377 PF_ACPY(&key.addr[0], pd->dst, key.af); 5378 key.port[1] = key.port[0] = 0; 5379 } 5380 5381 STATE_LOOKUP(kif, &key, direction, *state, pd); 5382 5383 if (direction == (*state)->direction) { 5384 src = &(*state)->src; 5385 dst = &(*state)->dst; 5386 } else { 5387 src = &(*state)->dst; 5388 dst = &(*state)->src; 5389 } 5390 5391 /* update states */ 5392 if (src->state < PFOTHERS_SINGLE) 5393 src->state = PFOTHERS_SINGLE; 5394 if (dst->state == PFOTHERS_SINGLE) 5395 dst->state = PFOTHERS_MULTIPLE; 5396 5397 /* update expire time */ 5398 (*state)->expire = time_uptime; 5399 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5400 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5401 else 5402 (*state)->timeout = PFTM_OTHER_SINGLE; 5403 5404 /* translate source/destination address, if necessary */ 5405 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5406 struct pf_state_key *nk = (*state)->key[pd->didx]; 5407 5408 KASSERT(nk, ("%s: nk is null", __func__)); 5409 KASSERT(pd, ("%s: pd is null", __func__)); 5410 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5411 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5412 switch (pd->af) { 5413 #ifdef INET 5414 case AF_INET: 5415 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5416 pf_change_a(&pd->src->v4.s_addr, 5417 pd->ip_sum, 5418 nk->addr[pd->sidx].v4.s_addr, 5419 0); 5420 5421 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5422 pf_change_a(&pd->dst->v4.s_addr, 5423 pd->ip_sum, 5424 nk->addr[pd->didx].v4.s_addr, 5425 0); 5426 5427 break; 5428 #endif /* INET */ 5429 #ifdef INET6 5430 case AF_INET6: 5431 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5432 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5433 5434 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5435 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5436 #endif /* INET6 */ 5437 } 5438 } 5439 return (PF_PASS); 5440 } 5441 5442 /* 5443 * ipoff and off are measured from the start of the mbuf chain. 5444 * h must be at "ipoff" on the mbuf chain. 5445 */ 5446 void * 5447 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5448 u_short *actionp, u_short *reasonp, sa_family_t af) 5449 { 5450 switch (af) { 5451 #ifdef INET 5452 case AF_INET: { 5453 struct ip *h = mtod(m, struct ip *); 5454 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5455 5456 if (fragoff) { 5457 if (fragoff >= len) 5458 ACTION_SET(actionp, PF_PASS); 5459 else { 5460 ACTION_SET(actionp, PF_DROP); 5461 REASON_SET(reasonp, PFRES_FRAG); 5462 } 5463 return (NULL); 5464 } 5465 if (m->m_pkthdr.len < off + len || 5466 ntohs(h->ip_len) < off + len) { 5467 ACTION_SET(actionp, PF_DROP); 5468 REASON_SET(reasonp, PFRES_SHORT); 5469 return (NULL); 5470 } 5471 break; 5472 } 5473 #endif /* INET */ 5474 #ifdef INET6 5475 case AF_INET6: { 5476 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5477 5478 if (m->m_pkthdr.len < off + len || 5479 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5480 (unsigned)(off + len)) { 5481 ACTION_SET(actionp, PF_DROP); 5482 REASON_SET(reasonp, PFRES_SHORT); 5483 return (NULL); 5484 } 5485 break; 5486 } 5487 #endif /* INET6 */ 5488 } 5489 m_copydata(m, off, len, p); 5490 return (p); 5491 } 5492 5493 int 5494 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5495 int rtableid) 5496 { 5497 struct ifnet *ifp; 5498 5499 /* 5500 * Skip check for addresses with embedded interface scope, 5501 * as they would always match anyway. 5502 */ 5503 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5504 return (1); 5505 5506 if (af != AF_INET && af != AF_INET6) 5507 return (0); 5508 5509 /* Skip checks for ipsec interfaces */ 5510 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5511 return (1); 5512 5513 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5514 5515 switch (af) { 5516 #ifdef INET6 5517 case AF_INET6: 5518 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5519 ifp)); 5520 #endif 5521 #ifdef INET 5522 case AF_INET: 5523 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5524 ifp)); 5525 #endif 5526 } 5527 5528 return (0); 5529 } 5530 5531 #ifdef INET 5532 static void 5533 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5534 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5535 { 5536 struct mbuf *m0, *m1; 5537 struct sockaddr_in dst; 5538 struct ip *ip; 5539 struct ifnet *ifp = NULL; 5540 struct pf_addr naddr; 5541 struct pf_ksrc_node *sn = NULL; 5542 int error = 0; 5543 uint16_t ip_len, ip_off; 5544 5545 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5546 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5547 __func__)); 5548 5549 if ((pd->pf_mtag == NULL && 5550 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5551 pd->pf_mtag->routed++ > 3) { 5552 m0 = *m; 5553 *m = NULL; 5554 goto bad_locked; 5555 } 5556 5557 if (r->rt == PF_DUPTO) { 5558 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5559 if (s == NULL) { 5560 ifp = r->rpool.cur->kif ? 5561 r->rpool.cur->kif->pfik_ifp : NULL; 5562 } else { 5563 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5564 PF_STATE_UNLOCK(s); 5565 } 5566 if (ifp == oifp) { 5567 /* When the 2nd interface is not skipped */ 5568 return; 5569 } else { 5570 m0 = *m; 5571 *m = NULL; 5572 goto bad; 5573 } 5574 } else { 5575 pd->pf_mtag->flags |= PF_DUPLICATED; 5576 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5577 if (s) 5578 PF_STATE_UNLOCK(s); 5579 return; 5580 } 5581 } 5582 } else { 5583 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5584 if (s) 5585 PF_STATE_UNLOCK(s); 5586 return; 5587 } 5588 m0 = *m; 5589 } 5590 5591 ip = mtod(m0, struct ip *); 5592 5593 bzero(&dst, sizeof(dst)); 5594 dst.sin_family = AF_INET; 5595 dst.sin_len = sizeof(dst); 5596 dst.sin_addr = ip->ip_dst; 5597 5598 bzero(&naddr, sizeof(naddr)); 5599 5600 if (TAILQ_EMPTY(&r->rpool.list)) { 5601 DPFPRINTF(PF_DEBUG_URGENT, 5602 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5603 goto bad_locked; 5604 } 5605 if (s == NULL) { 5606 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5607 &naddr, NULL, &sn); 5608 if (!PF_AZERO(&naddr, AF_INET)) 5609 dst.sin_addr.s_addr = naddr.v4.s_addr; 5610 ifp = r->rpool.cur->kif ? 5611 r->rpool.cur->kif->pfik_ifp : NULL; 5612 } else { 5613 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5614 dst.sin_addr.s_addr = 5615 s->rt_addr.v4.s_addr; 5616 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5617 PF_STATE_UNLOCK(s); 5618 } 5619 if (ifp == NULL) 5620 goto bad; 5621 5622 if (dir == PF_IN) { 5623 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5624 goto bad; 5625 else if (m0 == NULL) 5626 goto done; 5627 if (m0->m_len < sizeof(struct ip)) { 5628 DPFPRINTF(PF_DEBUG_URGENT, 5629 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5630 goto bad; 5631 } 5632 ip = mtod(m0, struct ip *); 5633 } 5634 5635 if (ifp->if_flags & IFF_LOOPBACK) 5636 m0->m_flags |= M_SKIP_FIREWALL; 5637 5638 ip_len = ntohs(ip->ip_len); 5639 ip_off = ntohs(ip->ip_off); 5640 5641 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5642 m0->m_pkthdr.csum_flags |= CSUM_IP; 5643 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5644 m0 = mb_unmapped_to_ext(m0); 5645 if (m0 == NULL) 5646 goto done; 5647 in_delayed_cksum(m0); 5648 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5649 } 5650 #if defined(SCTP) || defined(SCTP_SUPPORT) 5651 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5652 m0 = mb_unmapped_to_ext(m0); 5653 if (m0 == NULL) 5654 goto done; 5655 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5656 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5657 } 5658 #endif 5659 5660 /* 5661 * If small enough for interface, or the interface will take 5662 * care of the fragmentation for us, we can just send directly. 5663 */ 5664 if (ip_len <= ifp->if_mtu || 5665 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5666 ip->ip_sum = 0; 5667 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5668 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5669 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5670 } 5671 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5672 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5673 goto done; 5674 } 5675 5676 /* Balk when DF bit is set or the interface didn't support TSO. */ 5677 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5678 error = EMSGSIZE; 5679 KMOD_IPSTAT_INC(ips_cantfrag); 5680 if (r->rt != PF_DUPTO) { 5681 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5682 ifp->if_mtu); 5683 goto done; 5684 } else 5685 goto bad; 5686 } 5687 5688 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5689 if (error) 5690 goto bad; 5691 5692 for (; m0; m0 = m1) { 5693 m1 = m0->m_nextpkt; 5694 m0->m_nextpkt = NULL; 5695 if (error == 0) { 5696 m_clrprotoflags(m0); 5697 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5698 } else 5699 m_freem(m0); 5700 } 5701 5702 if (error == 0) 5703 KMOD_IPSTAT_INC(ips_fragmented); 5704 5705 done: 5706 if (r->rt != PF_DUPTO) 5707 *m = NULL; 5708 return; 5709 5710 bad_locked: 5711 if (s) 5712 PF_STATE_UNLOCK(s); 5713 bad: 5714 m_freem(m0); 5715 goto done; 5716 } 5717 #endif /* INET */ 5718 5719 #ifdef INET6 5720 static void 5721 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5722 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5723 { 5724 struct mbuf *m0; 5725 struct sockaddr_in6 dst; 5726 struct ip6_hdr *ip6; 5727 struct ifnet *ifp = NULL; 5728 struct pf_addr naddr; 5729 struct pf_ksrc_node *sn = NULL; 5730 5731 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5732 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5733 __func__)); 5734 5735 if ((pd->pf_mtag == NULL && 5736 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5737 pd->pf_mtag->routed++ > 3) { 5738 m0 = *m; 5739 *m = NULL; 5740 goto bad_locked; 5741 } 5742 5743 if (r->rt == PF_DUPTO) { 5744 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5745 if (s == NULL) { 5746 ifp = r->rpool.cur->kif ? 5747 r->rpool.cur->kif->pfik_ifp : NULL; 5748 } else { 5749 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5750 PF_STATE_UNLOCK(s); 5751 } 5752 if (ifp == oifp) { 5753 /* When the 2nd interface is not skipped */ 5754 return; 5755 } else { 5756 m0 = *m; 5757 *m = NULL; 5758 goto bad; 5759 } 5760 } else { 5761 pd->pf_mtag->flags |= PF_DUPLICATED; 5762 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5763 if (s) 5764 PF_STATE_UNLOCK(s); 5765 return; 5766 } 5767 } 5768 } else { 5769 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5770 if (s) 5771 PF_STATE_UNLOCK(s); 5772 return; 5773 } 5774 m0 = *m; 5775 } 5776 5777 ip6 = mtod(m0, struct ip6_hdr *); 5778 5779 bzero(&dst, sizeof(dst)); 5780 dst.sin6_family = AF_INET6; 5781 dst.sin6_len = sizeof(dst); 5782 dst.sin6_addr = ip6->ip6_dst; 5783 5784 bzero(&naddr, sizeof(naddr)); 5785 5786 if (TAILQ_EMPTY(&r->rpool.list)) { 5787 DPFPRINTF(PF_DEBUG_URGENT, 5788 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5789 goto bad_locked; 5790 } 5791 if (s == NULL) { 5792 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5793 &naddr, NULL, &sn); 5794 if (!PF_AZERO(&naddr, AF_INET6)) 5795 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5796 &naddr, AF_INET6); 5797 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5798 } else { 5799 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5800 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5801 &s->rt_addr, AF_INET6); 5802 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5803 } 5804 5805 if (s) 5806 PF_STATE_UNLOCK(s); 5807 5808 if (ifp == NULL) 5809 goto bad; 5810 5811 if (dir == PF_IN) { 5812 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5813 goto bad; 5814 else if (m0 == NULL) 5815 goto done; 5816 if (m0->m_len < sizeof(struct ip6_hdr)) { 5817 DPFPRINTF(PF_DEBUG_URGENT, 5818 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5819 __func__)); 5820 goto bad; 5821 } 5822 ip6 = mtod(m0, struct ip6_hdr *); 5823 } 5824 5825 if (ifp->if_flags & IFF_LOOPBACK) 5826 m0->m_flags |= M_SKIP_FIREWALL; 5827 5828 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5829 ~ifp->if_hwassist) { 5830 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5831 m0 = mb_unmapped_to_ext(m0); 5832 if (m0 == NULL) 5833 goto done; 5834 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5835 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5836 } 5837 5838 /* 5839 * If the packet is too large for the outgoing interface, 5840 * send back an icmp6 error. 5841 */ 5842 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5843 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5844 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5845 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5846 else { 5847 in6_ifstat_inc(ifp, ifs6_in_toobig); 5848 if (r->rt != PF_DUPTO) 5849 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5850 else 5851 goto bad; 5852 } 5853 5854 done: 5855 if (r->rt != PF_DUPTO) 5856 *m = NULL; 5857 return; 5858 5859 bad_locked: 5860 if (s) 5861 PF_STATE_UNLOCK(s); 5862 bad: 5863 m_freem(m0); 5864 goto done; 5865 } 5866 #endif /* INET6 */ 5867 5868 /* 5869 * FreeBSD supports cksum offloads for the following drivers. 5870 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 5871 * 5872 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5873 * network driver performed cksum including pseudo header, need to verify 5874 * csum_data 5875 * CSUM_DATA_VALID : 5876 * network driver performed cksum, needs to additional pseudo header 5877 * cksum computation with partial csum_data(i.e. lack of H/W support for 5878 * pseudo header, for instance sk(4) and possibly gem(4)) 5879 * 5880 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5881 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5882 * TCP/UDP layer. 5883 * Also, set csum_data to 0xffff to force cksum validation. 5884 */ 5885 static int 5886 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5887 { 5888 u_int16_t sum = 0; 5889 int hw_assist = 0; 5890 struct ip *ip; 5891 5892 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5893 return (1); 5894 if (m->m_pkthdr.len < off + len) 5895 return (1); 5896 5897 switch (p) { 5898 case IPPROTO_TCP: 5899 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5900 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5901 sum = m->m_pkthdr.csum_data; 5902 } else { 5903 ip = mtod(m, struct ip *); 5904 sum = in_pseudo(ip->ip_src.s_addr, 5905 ip->ip_dst.s_addr, htonl((u_short)len + 5906 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5907 } 5908 sum ^= 0xffff; 5909 ++hw_assist; 5910 } 5911 break; 5912 case IPPROTO_UDP: 5913 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5914 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5915 sum = m->m_pkthdr.csum_data; 5916 } else { 5917 ip = mtod(m, struct ip *); 5918 sum = in_pseudo(ip->ip_src.s_addr, 5919 ip->ip_dst.s_addr, htonl((u_short)len + 5920 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5921 } 5922 sum ^= 0xffff; 5923 ++hw_assist; 5924 } 5925 break; 5926 case IPPROTO_ICMP: 5927 #ifdef INET6 5928 case IPPROTO_ICMPV6: 5929 #endif /* INET6 */ 5930 break; 5931 default: 5932 return (1); 5933 } 5934 5935 if (!hw_assist) { 5936 switch (af) { 5937 case AF_INET: 5938 if (p == IPPROTO_ICMP) { 5939 if (m->m_len < off) 5940 return (1); 5941 m->m_data += off; 5942 m->m_len -= off; 5943 sum = in_cksum(m, len); 5944 m->m_data -= off; 5945 m->m_len += off; 5946 } else { 5947 if (m->m_len < sizeof(struct ip)) 5948 return (1); 5949 sum = in4_cksum(m, p, off, len); 5950 } 5951 break; 5952 #ifdef INET6 5953 case AF_INET6: 5954 if (m->m_len < sizeof(struct ip6_hdr)) 5955 return (1); 5956 sum = in6_cksum(m, p, off, len); 5957 break; 5958 #endif /* INET6 */ 5959 default: 5960 return (1); 5961 } 5962 } 5963 if (sum) { 5964 switch (p) { 5965 case IPPROTO_TCP: 5966 { 5967 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5968 break; 5969 } 5970 case IPPROTO_UDP: 5971 { 5972 KMOD_UDPSTAT_INC(udps_badsum); 5973 break; 5974 } 5975 #ifdef INET 5976 case IPPROTO_ICMP: 5977 { 5978 KMOD_ICMPSTAT_INC(icps_checksum); 5979 break; 5980 } 5981 #endif 5982 #ifdef INET6 5983 case IPPROTO_ICMPV6: 5984 { 5985 KMOD_ICMP6STAT_INC(icp6s_checksum); 5986 break; 5987 } 5988 #endif /* INET6 */ 5989 } 5990 return (1); 5991 } else { 5992 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5993 m->m_pkthdr.csum_flags |= 5994 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5995 m->m_pkthdr.csum_data = 0xffff; 5996 } 5997 } 5998 return (0); 5999 } 6000 6001 #ifdef INET 6002 int 6003 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6004 { 6005 struct pfi_kkif *kif; 6006 u_short action, reason = 0, log = 0; 6007 struct mbuf *m = *m0; 6008 struct ip *h = NULL; 6009 struct m_tag *ipfwtag; 6010 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6011 struct pf_kstate *s = NULL; 6012 struct pf_kruleset *ruleset = NULL; 6013 struct pf_pdesc pd; 6014 int off, dirndx, pqid = 0; 6015 6016 PF_RULES_RLOCK_TRACKER; 6017 6018 M_ASSERTPKTHDR(m); 6019 6020 if (!V_pf_status.running) 6021 return (PF_PASS); 6022 6023 memset(&pd, 0, sizeof(pd)); 6024 6025 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6026 6027 if (kif == NULL) { 6028 DPFPRINTF(PF_DEBUG_URGENT, 6029 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6030 return (PF_DROP); 6031 } 6032 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6033 return (PF_PASS); 6034 6035 if (m->m_flags & M_SKIP_FIREWALL) 6036 return (PF_PASS); 6037 6038 pd.pf_mtag = pf_find_mtag(m); 6039 6040 PF_RULES_RLOCK(); 6041 6042 if (ip_divert_ptr != NULL && 6043 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6044 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6045 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 6046 if (pd.pf_mtag == NULL && 6047 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6048 action = PF_DROP; 6049 goto done; 6050 } 6051 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6052 m_tag_delete(m, ipfwtag); 6053 } 6054 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6055 m->m_flags |= M_FASTFWD_OURS; 6056 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6057 } 6058 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6059 /* We do IP header normalization and packet reassembly here */ 6060 action = PF_DROP; 6061 goto done; 6062 } 6063 m = *m0; /* pf_normalize messes with m0 */ 6064 h = mtod(m, struct ip *); 6065 6066 off = h->ip_hl << 2; 6067 if (off < (int)sizeof(struct ip)) { 6068 action = PF_DROP; 6069 REASON_SET(&reason, PFRES_SHORT); 6070 log = 1; 6071 goto done; 6072 } 6073 6074 pd.src = (struct pf_addr *)&h->ip_src; 6075 pd.dst = (struct pf_addr *)&h->ip_dst; 6076 pd.sport = pd.dport = NULL; 6077 pd.ip_sum = &h->ip_sum; 6078 pd.proto_sum = NULL; 6079 pd.proto = h->ip_p; 6080 pd.dir = dir; 6081 pd.sidx = (dir == PF_IN) ? 0 : 1; 6082 pd.didx = (dir == PF_IN) ? 1 : 0; 6083 pd.af = AF_INET; 6084 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6085 pd.tot_len = ntohs(h->ip_len); 6086 6087 /* handle fragments that didn't get reassembled by normalization */ 6088 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6089 action = pf_test_fragment(&r, dir, kif, m, h, 6090 &pd, &a, &ruleset); 6091 goto done; 6092 } 6093 6094 switch (h->ip_p) { 6095 case IPPROTO_TCP: { 6096 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6097 &action, &reason, AF_INET)) { 6098 log = action != PF_PASS; 6099 goto done; 6100 } 6101 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6102 6103 pd.sport = &pd.hdr.tcp.th_sport; 6104 pd.dport = &pd.hdr.tcp.th_dport; 6105 6106 /* Respond to SYN with a syncookie. */ 6107 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 6108 pd.dir == PF_IN && pf_synflood_check(&pd)) { 6109 pf_syncookie_send(m, off, &pd); 6110 action = PF_DROP; 6111 break; 6112 } 6113 6114 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6115 pqid = 1; 6116 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6117 if (action == PF_DROP) 6118 goto done; 6119 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6120 &reason); 6121 if (action == PF_PASS) { 6122 if (V_pfsync_update_state_ptr != NULL) 6123 V_pfsync_update_state_ptr(s); 6124 r = s->rule.ptr; 6125 a = s->anchor.ptr; 6126 log = s->log; 6127 } else if (s == NULL) { 6128 /* Validate remote SYN|ACK, re-create original SYN if 6129 * valid. */ 6130 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 6131 TH_ACK && pf_syncookie_validate(&pd) && 6132 pd.dir == PF_IN) { 6133 struct mbuf *msyn; 6134 6135 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 6136 off,&pd); 6137 if (msyn == NULL) { 6138 action = PF_DROP; 6139 break; 6140 } 6141 6142 action = pf_test(dir, pflags, ifp, &msyn, inp); 6143 m_freem(msyn); 6144 6145 if (action == PF_PASS) { 6146 action = pf_test_state_tcp(&s, dir, 6147 kif, m, off, h, &pd, &reason); 6148 if (action != PF_PASS || s == NULL) { 6149 action = PF_DROP; 6150 break; 6151 } 6152 6153 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 6154 - 1; 6155 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 6156 - 1; 6157 s->src.state = PF_TCPS_PROXY_DST; 6158 6159 action = pf_synproxy(&pd, &s, &reason); 6160 if (action != PF_PASS) 6161 break; 6162 } 6163 break; 6164 } 6165 else { 6166 action = pf_test_rule(&r, &s, dir, kif, m, off, 6167 &pd, &a, &ruleset, inp); 6168 } 6169 } 6170 break; 6171 } 6172 6173 case IPPROTO_UDP: { 6174 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6175 &action, &reason, AF_INET)) { 6176 log = action != PF_PASS; 6177 goto done; 6178 } 6179 if (pd.hdr.udp.uh_dport == 0 || 6180 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6181 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6182 action = PF_DROP; 6183 REASON_SET(&reason, PFRES_SHORT); 6184 goto done; 6185 } 6186 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6187 if (action == PF_PASS) { 6188 if (V_pfsync_update_state_ptr != NULL) 6189 V_pfsync_update_state_ptr(s); 6190 r = s->rule.ptr; 6191 a = s->anchor.ptr; 6192 log = s->log; 6193 } else if (s == NULL) 6194 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6195 &a, &ruleset, inp); 6196 break; 6197 } 6198 6199 case IPPROTO_ICMP: { 6200 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6201 &action, &reason, AF_INET)) { 6202 log = action != PF_PASS; 6203 goto done; 6204 } 6205 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6206 &reason); 6207 if (action == PF_PASS) { 6208 if (V_pfsync_update_state_ptr != NULL) 6209 V_pfsync_update_state_ptr(s); 6210 r = s->rule.ptr; 6211 a = s->anchor.ptr; 6212 log = s->log; 6213 } else if (s == NULL) 6214 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6215 &a, &ruleset, inp); 6216 break; 6217 } 6218 6219 #ifdef INET6 6220 case IPPROTO_ICMPV6: { 6221 action = PF_DROP; 6222 DPFPRINTF(PF_DEBUG_MISC, 6223 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6224 goto done; 6225 } 6226 #endif 6227 6228 default: 6229 action = pf_test_state_other(&s, dir, kif, m, &pd); 6230 if (action == PF_PASS) { 6231 if (V_pfsync_update_state_ptr != NULL) 6232 V_pfsync_update_state_ptr(s); 6233 r = s->rule.ptr; 6234 a = s->anchor.ptr; 6235 log = s->log; 6236 } else if (s == NULL) 6237 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6238 &a, &ruleset, inp); 6239 break; 6240 } 6241 6242 done: 6243 PF_RULES_RUNLOCK(); 6244 if (action == PF_PASS && h->ip_hl > 5 && 6245 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6246 action = PF_DROP; 6247 REASON_SET(&reason, PFRES_IPOPTIONS); 6248 log = r->log; 6249 DPFPRINTF(PF_DEBUG_MISC, 6250 ("pf: dropping packet with ip options\n")); 6251 } 6252 6253 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6254 action = PF_DROP; 6255 REASON_SET(&reason, PFRES_MEMORY); 6256 } 6257 if (r->rtableid >= 0) 6258 M_SETFIB(m, r->rtableid); 6259 6260 if (r->scrub_flags & PFSTATE_SETPRIO) { 6261 if (pd.tos & IPTOS_LOWDELAY) 6262 pqid = 1; 6263 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6264 action = PF_DROP; 6265 REASON_SET(&reason, PFRES_MEMORY); 6266 log = 1; 6267 DPFPRINTF(PF_DEBUG_MISC, 6268 ("pf: failed to allocate 802.1q mtag\n")); 6269 } 6270 } 6271 6272 #ifdef ALTQ 6273 if (s && s->qid) { 6274 pd.act.pqid = s->pqid; 6275 pd.act.qid = s->qid; 6276 } else if (r->qid) { 6277 pd.act.pqid = r->pqid; 6278 pd.act.qid = r->qid; 6279 } 6280 if (action == PF_PASS && pd.act.qid) { 6281 if (pd.pf_mtag == NULL && 6282 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6283 action = PF_DROP; 6284 REASON_SET(&reason, PFRES_MEMORY); 6285 } else { 6286 if (s != NULL) 6287 pd.pf_mtag->qid_hash = pf_state_hash(s); 6288 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6289 pd.pf_mtag->qid = pd.act.pqid; 6290 else 6291 pd.pf_mtag->qid = pd.act.qid; 6292 /* Add hints for ecn. */ 6293 pd.pf_mtag->hdr = h; 6294 } 6295 } 6296 #endif /* ALTQ */ 6297 6298 /* 6299 * connections redirected to loopback should not match sockets 6300 * bound specifically to loopback due to security implications, 6301 * see tcp_input() and in_pcblookup_listen(). 6302 */ 6303 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6304 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6305 (s->nat_rule.ptr->action == PF_RDR || 6306 s->nat_rule.ptr->action == PF_BINAT) && 6307 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6308 m->m_flags |= M_SKIP_FIREWALL; 6309 6310 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6311 !PACKET_LOOPED(&pd)) { 6312 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6313 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6314 if (ipfwtag != NULL) { 6315 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6316 ntohs(r->divert.port); 6317 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6318 6319 if (s) 6320 PF_STATE_UNLOCK(s); 6321 6322 m_tag_prepend(m, ipfwtag); 6323 if (m->m_flags & M_FASTFWD_OURS) { 6324 if (pd.pf_mtag == NULL && 6325 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6326 action = PF_DROP; 6327 REASON_SET(&reason, PFRES_MEMORY); 6328 log = 1; 6329 DPFPRINTF(PF_DEBUG_MISC, 6330 ("pf: failed to allocate tag\n")); 6331 } else { 6332 pd.pf_mtag->flags |= 6333 PF_FASTFWD_OURS_PRESENT; 6334 m->m_flags &= ~M_FASTFWD_OURS; 6335 } 6336 } 6337 ip_divert_ptr(*m0, dir == PF_IN); 6338 *m0 = NULL; 6339 6340 return (action); 6341 } else { 6342 /* XXX: ipfw has the same behaviour! */ 6343 action = PF_DROP; 6344 REASON_SET(&reason, PFRES_MEMORY); 6345 log = 1; 6346 DPFPRINTF(PF_DEBUG_MISC, 6347 ("pf: failed to allocate divert tag\n")); 6348 } 6349 } 6350 6351 if (log) { 6352 struct pf_krule *lr; 6353 6354 if (s != NULL && s->nat_rule.ptr != NULL && 6355 s->nat_rule.ptr->log & PF_LOG_ALL) 6356 lr = s->nat_rule.ptr; 6357 else 6358 lr = r; 6359 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6360 (s == NULL)); 6361 } 6362 6363 counter_u64_add(kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6364 pd.tot_len); 6365 counter_u64_add(kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6366 1); 6367 6368 if (action == PF_PASS || r->action == PF_DROP) { 6369 dirndx = (dir == PF_OUT); 6370 counter_u64_add(r->packets[dirndx], 1); 6371 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6372 if (a != NULL) { 6373 counter_u64_add(a->packets[dirndx], 1); 6374 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6375 } 6376 if (s != NULL) { 6377 if (s->nat_rule.ptr != NULL) { 6378 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6379 1); 6380 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6381 pd.tot_len); 6382 } 6383 if (s->src_node != NULL) { 6384 counter_u64_add(s->src_node->packets[dirndx], 6385 1); 6386 counter_u64_add(s->src_node->bytes[dirndx], 6387 pd.tot_len); 6388 } 6389 if (s->nat_src_node != NULL) { 6390 counter_u64_add(s->nat_src_node->packets[dirndx], 6391 1); 6392 counter_u64_add(s->nat_src_node->bytes[dirndx], 6393 pd.tot_len); 6394 } 6395 dirndx = (dir == s->direction) ? 0 : 1; 6396 s->packets[dirndx]++; 6397 s->bytes[dirndx] += pd.tot_len; 6398 } 6399 tr = r; 6400 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6401 if (nr != NULL && r == &V_pf_default_rule) 6402 tr = nr; 6403 if (tr->src.addr.type == PF_ADDR_TABLE) 6404 pfr_update_stats(tr->src.addr.p.tbl, 6405 (s == NULL) ? pd.src : 6406 &s->key[(s->direction == PF_IN)]-> 6407 addr[(s->direction == PF_OUT)], 6408 pd.af, pd.tot_len, dir == PF_OUT, 6409 r->action == PF_PASS, tr->src.neg); 6410 if (tr->dst.addr.type == PF_ADDR_TABLE) 6411 pfr_update_stats(tr->dst.addr.p.tbl, 6412 (s == NULL) ? pd.dst : 6413 &s->key[(s->direction == PF_IN)]-> 6414 addr[(s->direction == PF_IN)], 6415 pd.af, pd.tot_len, dir == PF_OUT, 6416 r->action == PF_PASS, tr->dst.neg); 6417 } 6418 6419 switch (action) { 6420 case PF_SYNPROXY_DROP: 6421 m_freem(*m0); 6422 case PF_DEFER: 6423 *m0 = NULL; 6424 action = PF_PASS; 6425 break; 6426 case PF_DROP: 6427 m_freem(*m0); 6428 *m0 = NULL; 6429 break; 6430 default: 6431 /* pf_route() returns unlocked. */ 6432 if (r->rt) { 6433 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6434 return (action); 6435 } 6436 break; 6437 } 6438 6439 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6440 6441 if (s) 6442 PF_STATE_UNLOCK(s); 6443 6444 return (action); 6445 } 6446 #endif /* INET */ 6447 6448 #ifdef INET6 6449 int 6450 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6451 { 6452 struct pfi_kkif *kif; 6453 u_short action, reason = 0, log = 0; 6454 struct mbuf *m = *m0, *n = NULL; 6455 struct m_tag *mtag; 6456 struct ip6_hdr *h = NULL; 6457 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6458 struct pf_kstate *s = NULL; 6459 struct pf_kruleset *ruleset = NULL; 6460 struct pf_pdesc pd; 6461 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6462 6463 PF_RULES_RLOCK_TRACKER; 6464 M_ASSERTPKTHDR(m); 6465 6466 if (!V_pf_status.running) 6467 return (PF_PASS); 6468 6469 memset(&pd, 0, sizeof(pd)); 6470 pd.pf_mtag = pf_find_mtag(m); 6471 6472 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6473 return (PF_PASS); 6474 6475 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6476 if (kif == NULL) { 6477 DPFPRINTF(PF_DEBUG_URGENT, 6478 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6479 return (PF_DROP); 6480 } 6481 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6482 return (PF_PASS); 6483 6484 if (m->m_flags & M_SKIP_FIREWALL) 6485 return (PF_PASS); 6486 6487 PF_RULES_RLOCK(); 6488 6489 /* We do IP header normalization and packet reassembly here */ 6490 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6491 action = PF_DROP; 6492 goto done; 6493 } 6494 m = *m0; /* pf_normalize messes with m0 */ 6495 h = mtod(m, struct ip6_hdr *); 6496 6497 /* 6498 * we do not support jumbogram. if we keep going, zero ip6_plen 6499 * will do something bad, so drop the packet for now. 6500 */ 6501 if (htons(h->ip6_plen) == 0) { 6502 action = PF_DROP; 6503 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6504 goto done; 6505 } 6506 6507 pd.src = (struct pf_addr *)&h->ip6_src; 6508 pd.dst = (struct pf_addr *)&h->ip6_dst; 6509 pd.sport = pd.dport = NULL; 6510 pd.ip_sum = NULL; 6511 pd.proto_sum = NULL; 6512 pd.dir = dir; 6513 pd.sidx = (dir == PF_IN) ? 0 : 1; 6514 pd.didx = (dir == PF_IN) ? 1 : 0; 6515 pd.af = AF_INET6; 6516 pd.tos = IPV6_DSCP(h); 6517 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6518 6519 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6520 pd.proto = h->ip6_nxt; 6521 do { 6522 switch (pd.proto) { 6523 case IPPROTO_FRAGMENT: 6524 action = pf_test_fragment(&r, dir, kif, m, h, 6525 &pd, &a, &ruleset); 6526 if (action == PF_DROP) 6527 REASON_SET(&reason, PFRES_FRAG); 6528 goto done; 6529 case IPPROTO_ROUTING: { 6530 struct ip6_rthdr rthdr; 6531 6532 if (rh_cnt++) { 6533 DPFPRINTF(PF_DEBUG_MISC, 6534 ("pf: IPv6 more than one rthdr\n")); 6535 action = PF_DROP; 6536 REASON_SET(&reason, PFRES_IPOPTIONS); 6537 log = 1; 6538 goto done; 6539 } 6540 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6541 &reason, pd.af)) { 6542 DPFPRINTF(PF_DEBUG_MISC, 6543 ("pf: IPv6 short rthdr\n")); 6544 action = PF_DROP; 6545 REASON_SET(&reason, PFRES_SHORT); 6546 log = 1; 6547 goto done; 6548 } 6549 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6550 DPFPRINTF(PF_DEBUG_MISC, 6551 ("pf: IPv6 rthdr0\n")); 6552 action = PF_DROP; 6553 REASON_SET(&reason, PFRES_IPOPTIONS); 6554 log = 1; 6555 goto done; 6556 } 6557 /* FALLTHROUGH */ 6558 } 6559 case IPPROTO_AH: 6560 case IPPROTO_HOPOPTS: 6561 case IPPROTO_DSTOPTS: { 6562 /* get next header and header length */ 6563 struct ip6_ext opt6; 6564 6565 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6566 NULL, &reason, pd.af)) { 6567 DPFPRINTF(PF_DEBUG_MISC, 6568 ("pf: IPv6 short opt\n")); 6569 action = PF_DROP; 6570 log = 1; 6571 goto done; 6572 } 6573 if (pd.proto == IPPROTO_AH) 6574 off += (opt6.ip6e_len + 2) * 4; 6575 else 6576 off += (opt6.ip6e_len + 1) * 8; 6577 pd.proto = opt6.ip6e_nxt; 6578 /* goto the next header */ 6579 break; 6580 } 6581 default: 6582 terminal++; 6583 break; 6584 } 6585 } while (!terminal); 6586 6587 /* if there's no routing header, use unmodified mbuf for checksumming */ 6588 if (!n) 6589 n = m; 6590 6591 switch (pd.proto) { 6592 case IPPROTO_TCP: { 6593 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6594 &action, &reason, AF_INET6)) { 6595 log = action != PF_PASS; 6596 goto done; 6597 } 6598 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6599 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6600 if (action == PF_DROP) 6601 goto done; 6602 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6603 &reason); 6604 if (action == PF_PASS) { 6605 if (V_pfsync_update_state_ptr != NULL) 6606 V_pfsync_update_state_ptr(s); 6607 r = s->rule.ptr; 6608 a = s->anchor.ptr; 6609 log = s->log; 6610 } else if (s == NULL) 6611 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6612 &a, &ruleset, inp); 6613 break; 6614 } 6615 6616 case IPPROTO_UDP: { 6617 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6618 &action, &reason, AF_INET6)) { 6619 log = action != PF_PASS; 6620 goto done; 6621 } 6622 if (pd.hdr.udp.uh_dport == 0 || 6623 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6624 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6625 action = PF_DROP; 6626 REASON_SET(&reason, PFRES_SHORT); 6627 goto done; 6628 } 6629 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6630 if (action == PF_PASS) { 6631 if (V_pfsync_update_state_ptr != NULL) 6632 V_pfsync_update_state_ptr(s); 6633 r = s->rule.ptr; 6634 a = s->anchor.ptr; 6635 log = s->log; 6636 } else if (s == NULL) 6637 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6638 &a, &ruleset, inp); 6639 break; 6640 } 6641 6642 case IPPROTO_ICMP: { 6643 action = PF_DROP; 6644 DPFPRINTF(PF_DEBUG_MISC, 6645 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6646 goto done; 6647 } 6648 6649 case IPPROTO_ICMPV6: { 6650 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 6651 &action, &reason, AF_INET6)) { 6652 log = action != PF_PASS; 6653 goto done; 6654 } 6655 action = pf_test_state_icmp(&s, dir, kif, 6656 m, off, h, &pd, &reason); 6657 if (action == PF_PASS) { 6658 if (V_pfsync_update_state_ptr != NULL) 6659 V_pfsync_update_state_ptr(s); 6660 r = s->rule.ptr; 6661 a = s->anchor.ptr; 6662 log = s->log; 6663 } else if (s == NULL) 6664 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6665 &a, &ruleset, inp); 6666 break; 6667 } 6668 6669 default: 6670 action = pf_test_state_other(&s, dir, kif, m, &pd); 6671 if (action == PF_PASS) { 6672 if (V_pfsync_update_state_ptr != NULL) 6673 V_pfsync_update_state_ptr(s); 6674 r = s->rule.ptr; 6675 a = s->anchor.ptr; 6676 log = s->log; 6677 } else if (s == NULL) 6678 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6679 &a, &ruleset, inp); 6680 break; 6681 } 6682 6683 done: 6684 PF_RULES_RUNLOCK(); 6685 if (n != m) { 6686 m_freem(n); 6687 n = NULL; 6688 } 6689 6690 /* handle dangerous IPv6 extension headers. */ 6691 if (action == PF_PASS && rh_cnt && 6692 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6693 action = PF_DROP; 6694 REASON_SET(&reason, PFRES_IPOPTIONS); 6695 log = r->log; 6696 DPFPRINTF(PF_DEBUG_MISC, 6697 ("pf: dropping packet with dangerous v6 headers\n")); 6698 } 6699 6700 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6701 action = PF_DROP; 6702 REASON_SET(&reason, PFRES_MEMORY); 6703 } 6704 if (r->rtableid >= 0) 6705 M_SETFIB(m, r->rtableid); 6706 6707 if (r->scrub_flags & PFSTATE_SETPRIO) { 6708 if (pd.tos & IPTOS_LOWDELAY) 6709 pqid = 1; 6710 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6711 action = PF_DROP; 6712 REASON_SET(&reason, PFRES_MEMORY); 6713 log = 1; 6714 DPFPRINTF(PF_DEBUG_MISC, 6715 ("pf: failed to allocate 802.1q mtag\n")); 6716 } 6717 } 6718 6719 #ifdef ALTQ 6720 if (s && s->qid) { 6721 pd.act.pqid = s->pqid; 6722 pd.act.qid = s->qid; 6723 } else if (r->qid) { 6724 pd.act.pqid = r->pqid; 6725 pd.act.qid = r->qid; 6726 } 6727 if (action == PF_PASS && pd.act.qid) { 6728 if (pd.pf_mtag == NULL && 6729 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6730 action = PF_DROP; 6731 REASON_SET(&reason, PFRES_MEMORY); 6732 } else { 6733 if (s != NULL) 6734 pd.pf_mtag->qid_hash = pf_state_hash(s); 6735 if (pd.tos & IPTOS_LOWDELAY) 6736 pd.pf_mtag->qid = pd.act.pqid; 6737 else 6738 pd.pf_mtag->qid = pd.act.qid; 6739 /* Add hints for ecn. */ 6740 pd.pf_mtag->hdr = h; 6741 } 6742 } 6743 #endif /* ALTQ */ 6744 6745 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6746 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6747 (s->nat_rule.ptr->action == PF_RDR || 6748 s->nat_rule.ptr->action == PF_BINAT) && 6749 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6750 m->m_flags |= M_SKIP_FIREWALL; 6751 6752 /* XXX: Anybody working on it?! */ 6753 if (r->divert.port) 6754 printf("pf: divert(9) is not supported for IPv6\n"); 6755 6756 if (log) { 6757 struct pf_krule *lr; 6758 6759 if (s != NULL && s->nat_rule.ptr != NULL && 6760 s->nat_rule.ptr->log & PF_LOG_ALL) 6761 lr = s->nat_rule.ptr; 6762 else 6763 lr = r; 6764 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6765 &pd, (s == NULL)); 6766 } 6767 6768 counter_u64_add(kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6769 pd.tot_len); 6770 counter_u64_add(kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6771 1); 6772 6773 if (action == PF_PASS || r->action == PF_DROP) { 6774 dirndx = (dir == PF_OUT); 6775 counter_u64_add(r->packets[dirndx], 1); 6776 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6777 if (a != NULL) { 6778 counter_u64_add(a->packets[dirndx], 1); 6779 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6780 } 6781 if (s != NULL) { 6782 if (s->nat_rule.ptr != NULL) { 6783 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6784 1); 6785 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6786 pd.tot_len); 6787 } 6788 if (s->src_node != NULL) { 6789 counter_u64_add(s->src_node->packets[dirndx], 6790 1); 6791 counter_u64_add(s->src_node->bytes[dirndx], 6792 pd.tot_len); 6793 } 6794 if (s->nat_src_node != NULL) { 6795 counter_u64_add(s->nat_src_node->packets[dirndx], 6796 1); 6797 counter_u64_add(s->nat_src_node->bytes[dirndx], 6798 pd.tot_len); 6799 } 6800 dirndx = (dir == s->direction) ? 0 : 1; 6801 s->packets[dirndx]++; 6802 s->bytes[dirndx] += pd.tot_len; 6803 } 6804 tr = r; 6805 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6806 if (nr != NULL && r == &V_pf_default_rule) 6807 tr = nr; 6808 if (tr->src.addr.type == PF_ADDR_TABLE) 6809 pfr_update_stats(tr->src.addr.p.tbl, 6810 (s == NULL) ? pd.src : 6811 &s->key[(s->direction == PF_IN)]->addr[0], 6812 pd.af, pd.tot_len, dir == PF_OUT, 6813 r->action == PF_PASS, tr->src.neg); 6814 if (tr->dst.addr.type == PF_ADDR_TABLE) 6815 pfr_update_stats(tr->dst.addr.p.tbl, 6816 (s == NULL) ? pd.dst : 6817 &s->key[(s->direction == PF_IN)]->addr[1], 6818 pd.af, pd.tot_len, dir == PF_OUT, 6819 r->action == PF_PASS, tr->dst.neg); 6820 } 6821 6822 switch (action) { 6823 case PF_SYNPROXY_DROP: 6824 m_freem(*m0); 6825 case PF_DEFER: 6826 *m0 = NULL; 6827 action = PF_PASS; 6828 break; 6829 case PF_DROP: 6830 m_freem(*m0); 6831 *m0 = NULL; 6832 break; 6833 default: 6834 /* pf_route6() returns unlocked. */ 6835 if (r->rt) { 6836 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6837 return (action); 6838 } 6839 break; 6840 } 6841 6842 if (s) 6843 PF_STATE_UNLOCK(s); 6844 6845 /* If reassembled packet passed, create new fragments. */ 6846 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6847 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6848 action = pf_refragment6(ifp, m0, mtag); 6849 6850 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 6851 6852 return (action); 6853 } 6854 #endif /* INET6 */ 6855