1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 191 #define V_pf_mtag_z VNET(pf_mtag_z) 192 VNET_DEFINE(uma_zone_t, pf_state_z); 193 VNET_DEFINE(uma_zone_t, pf_state_key_z); 194 195 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 196 #define PFID_CPUBITS 8 197 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 198 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 199 #define PFID_MAXID (~PFID_CPUMASK) 200 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 201 202 static void pf_src_tree_remove_state(struct pf_state *); 203 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 204 u_int32_t); 205 static void pf_add_threshold(struct pf_threshold *); 206 static int pf_check_threshold(struct pf_threshold *); 207 208 static void pf_change_ap(struct pf_addr *, u_int16_t *, 209 u_int16_t *, u_int16_t *, struct pf_addr *, 210 u_int16_t, u_int8_t, sa_family_t); 211 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 212 struct tcphdr *, struct pf_state_peer *); 213 static int pf_icmp_mapping(struct pf_pdesc *, uint8_t, int *, 214 int *, uint16_t *, uint16_t *); 215 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 216 struct pf_addr *, struct pf_addr *, u_int16_t, 217 u_int16_t *, u_int16_t *, u_int16_t *, 218 u_int16_t *, u_int8_t, sa_family_t); 219 static void pf_send_tcp(struct mbuf *, 220 const struct pf_rule *, sa_family_t, 221 const struct pf_addr *, const struct pf_addr *, 222 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 223 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 224 u_int16_t, struct ifnet *); 225 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 226 sa_family_t, struct pf_rule *); 227 static void pf_detach_state(struct pf_state *); 228 static int pf_state_key_attach(struct pf_state_key *, 229 struct pf_state_key *, struct pf_state *); 230 static void pf_state_key_detach(struct pf_state *, int); 231 static int pf_state_key_ctor(void *, int, void *, int); 232 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 233 static int pf_test_rule(struct pf_rule **, struct pf_state **, 234 int, struct pfi_kif *, struct mbuf *, int, 235 struct pf_pdesc *, struct pf_rule **, 236 struct pf_ruleset **, struct inpcb *); 237 static int pf_create_state(struct pf_rule *, struct pf_rule *, 238 struct pf_rule *, struct pf_pdesc *, 239 struct pf_src_node *, struct pf_state_key *, 240 struct pf_state_key *, struct mbuf *, int, 241 u_int16_t, u_int16_t, int *, struct pfi_kif *, 242 struct pf_state **, int, u_int16_t, u_int16_t, 243 int); 244 static int pf_test_fragment(struct pf_rule **, int, 245 struct pfi_kif *, struct mbuf *, void *, 246 struct pf_pdesc *, struct pf_rule **, 247 struct pf_ruleset **); 248 static int pf_tcp_track_full(struct pf_state_peer *, 249 struct pf_state_peer *, struct pf_state **, 250 struct pfi_kif *, struct mbuf *, int, 251 struct pf_pdesc *, u_short *, int *); 252 static int pf_tcp_track_sloppy(struct pf_state_peer *, 253 struct pf_state_peer *, struct pf_state **, 254 struct pf_pdesc *, u_short *); 255 static int pf_test_state_tcp(struct pf_state **, int, 256 struct pfi_kif *, struct mbuf *, int, 257 void *, struct pf_pdesc *, u_short *); 258 static int pf_test_state_udp(struct pf_state **, int, 259 struct pfi_kif *, struct mbuf *, int, 260 void *, struct pf_pdesc *); 261 static int pf_icmp_state_lookup(struct pf_state_key_cmp *, 262 struct pf_pdesc *, struct pf_state **, struct mbuf *, 263 int, struct pfi_kif *, uint16_t, uint16_t, 264 int, int *, int); 265 static int pf_test_state_icmp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *, u_short *); 268 static int pf_test_state_other(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 270 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 271 sa_family_t); 272 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 273 sa_family_t); 274 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 275 int, u_int16_t); 276 static void pf_set_rt_ifp(struct pf_state *, 277 struct pf_addr *); 278 static int pf_check_proto_cksum(struct mbuf *, int, int, 279 u_int8_t, sa_family_t); 280 static void pf_print_state_parts(struct pf_state *, 281 struct pf_state_key *, struct pf_state_key *); 282 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 283 struct pf_addr_wrap *); 284 static struct pf_state *pf_find_state(struct pfi_kif *, 285 struct pf_state_key_cmp *, u_int); 286 static int pf_src_connlimit(struct pf_state **); 287 static void pf_overload_task(void *v, int pending); 288 static int pf_insert_src_node(struct pf_src_node **, 289 struct pf_rule *, struct pf_addr *, sa_family_t); 290 static u_int pf_purge_expired_states(u_int, int); 291 static void pf_purge_unlinked_rules(void); 292 static int pf_mtag_init(void *, int, int); 293 static void pf_mtag_free(struct m_tag *); 294 #ifdef INET 295 static void pf_route(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET */ 299 #ifdef INET6 300 static void pf_change_a6(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, u_int8_t); 302 static void pf_route6(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *); 305 #endif /* INET6 */ 306 307 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 308 309 VNET_DECLARE(int, pf_end_threads); 310 311 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 312 313 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_SOLICITED, PF_ICMP_MULTI_LINK }; 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 counter_u64_add(s->rule.ptr->states_cur, 1); \ 341 counter_u64_add(s->rule.ptr->states_tot, 1); \ 342 if (s->anchor.ptr != NULL) { \ 343 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 344 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 348 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 356 if (s->anchor.ptr != NULL) \ 357 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 358 counter_u64_add(s->rule.ptr->states_cur, -1); \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(struct pf_srchash *, pf_srchash); 365 366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 367 368 u_long pf_hashmask; 369 u_long pf_srchashmask; 370 static u_long pf_hashsize; 371 static u_long pf_srchashsize; 372 373 SYSCTL_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 374 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 375 SYSCTL_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 376 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 377 378 VNET_DEFINE(void *, pf_swi_cookie); 379 380 VNET_DEFINE(uint32_t, pf_hashseed); 381 #define V_pf_hashseed VNET(pf_hashseed) 382 383 static __inline uint32_t 384 pf_hashkey(struct pf_state_key *sk) 385 { 386 uint32_t h; 387 388 h = jenkins_hash32((uint32_t *)sk, 389 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 390 V_pf_hashseed); 391 392 return (h & pf_hashmask); 393 } 394 395 static __inline uint32_t 396 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 397 { 398 uint32_t h; 399 400 switch (af) { 401 case AF_INET: 402 h = jenkins_hash32((uint32_t *)&addr->v4, 403 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 404 break; 405 case AF_INET6: 406 h = jenkins_hash32((uint32_t *)&addr->v6, 407 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 408 break; 409 default: 410 panic("%s: unknown address family %u", __func__, af); 411 } 412 413 return (h & pf_srchashmask); 414 } 415 416 #ifdef INET6 417 void 418 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 419 { 420 switch (af) { 421 #ifdef INET 422 case AF_INET: 423 dst->addr32[0] = src->addr32[0]; 424 break; 425 #endif /* INET */ 426 case AF_INET6: 427 dst->addr32[0] = src->addr32[0]; 428 dst->addr32[1] = src->addr32[1]; 429 dst->addr32[2] = src->addr32[2]; 430 dst->addr32[3] = src->addr32[3]; 431 break; 432 } 433 } 434 #endif /* INET6 */ 435 436 static void 437 pf_init_threshold(struct pf_threshold *threshold, 438 u_int32_t limit, u_int32_t seconds) 439 { 440 threshold->limit = limit * PF_THRESHOLD_MULT; 441 threshold->seconds = seconds; 442 threshold->count = 0; 443 threshold->last = time_uptime; 444 } 445 446 static void 447 pf_add_threshold(struct pf_threshold *threshold) 448 { 449 u_int32_t t = time_uptime, diff = t - threshold->last; 450 451 if (diff >= threshold->seconds) 452 threshold->count = 0; 453 else 454 threshold->count -= threshold->count * diff / 455 threshold->seconds; 456 threshold->count += PF_THRESHOLD_MULT; 457 threshold->last = t; 458 } 459 460 static int 461 pf_check_threshold(struct pf_threshold *threshold) 462 { 463 return (threshold->count > threshold->limit); 464 } 465 466 static int 467 pf_src_connlimit(struct pf_state **state) 468 { 469 struct pf_overload_entry *pfoe; 470 int bad = 0; 471 472 PF_STATE_LOCK_ASSERT(*state); 473 474 (*state)->src_node->conn++; 475 (*state)->src.tcp_est = 1; 476 pf_add_threshold(&(*state)->src_node->conn_rate); 477 478 if ((*state)->rule.ptr->max_src_conn && 479 (*state)->rule.ptr->max_src_conn < 480 (*state)->src_node->conn) { 481 V_pf_status.lcounters[LCNT_SRCCONN]++; 482 bad++; 483 } 484 485 if ((*state)->rule.ptr->max_src_conn_rate.limit && 486 pf_check_threshold(&(*state)->src_node->conn_rate)) { 487 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 488 bad++; 489 } 490 491 if (!bad) 492 return (0); 493 494 /* Kill this state. */ 495 (*state)->timeout = PFTM_PURGE; 496 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 497 498 if ((*state)->rule.ptr->overload_tbl == NULL) 499 return (1); 500 501 /* Schedule overloading and flushing task. */ 502 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 503 if (pfoe == NULL) 504 return (1); /* too bad :( */ 505 506 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 507 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 508 pfoe->rule = (*state)->rule.ptr; 509 pfoe->dir = (*state)->direction; 510 PF_OVERLOADQ_LOCK(); 511 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 512 PF_OVERLOADQ_UNLOCK(); 513 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 514 515 return (1); 516 } 517 518 static void 519 pf_overload_task(void *v, int pending) 520 { 521 struct pf_overload_head queue; 522 struct pfr_addr p; 523 struct pf_overload_entry *pfoe, *pfoe1; 524 uint32_t killed = 0; 525 526 CURVNET_SET((struct vnet *)v); 527 528 PF_OVERLOADQ_LOCK(); 529 queue = V_pf_overloadqueue; 530 SLIST_INIT(&V_pf_overloadqueue); 531 PF_OVERLOADQ_UNLOCK(); 532 533 bzero(&p, sizeof(p)); 534 SLIST_FOREACH(pfoe, &queue, next) { 535 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 536 if (V_pf_status.debug >= PF_DEBUG_MISC) { 537 printf("%s: blocking address ", __func__); 538 pf_print_host(&pfoe->addr, 0, pfoe->af); 539 printf("\n"); 540 } 541 542 p.pfra_af = pfoe->af; 543 switch (pfoe->af) { 544 #ifdef INET 545 case AF_INET: 546 p.pfra_net = 32; 547 p.pfra_ip4addr = pfoe->addr.v4; 548 break; 549 #endif 550 #ifdef INET6 551 case AF_INET6: 552 p.pfra_net = 128; 553 p.pfra_ip6addr = pfoe->addr.v6; 554 break; 555 #endif 556 } 557 558 PF_RULES_WLOCK(); 559 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 560 PF_RULES_WUNLOCK(); 561 } 562 563 /* 564 * Remove those entries, that don't need flushing. 565 */ 566 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 567 if (pfoe->rule->flush == 0) { 568 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 569 free(pfoe, M_PFTEMP); 570 } else 571 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 572 573 /* If nothing to flush, return. */ 574 if (SLIST_EMPTY(&queue)) { 575 CURVNET_RESTORE(); 576 return; 577 } 578 579 for (int i = 0; i <= pf_hashmask; i++) { 580 struct pf_idhash *ih = &V_pf_idhash[i]; 581 struct pf_state_key *sk; 582 struct pf_state *s; 583 584 PF_HASHROW_LOCK(ih); 585 LIST_FOREACH(s, &ih->states, entry) { 586 sk = s->key[PF_SK_WIRE]; 587 SLIST_FOREACH(pfoe, &queue, next) 588 if (sk->af == pfoe->af && 589 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 590 pfoe->rule == s->rule.ptr) && 591 ((pfoe->dir == PF_OUT && 592 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 593 (pfoe->dir == PF_IN && 594 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 595 s->timeout = PFTM_PURGE; 596 s->src.state = s->dst.state = TCPS_CLOSED; 597 killed++; 598 } 599 } 600 PF_HASHROW_UNLOCK(ih); 601 } 602 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 603 free(pfoe, M_PFTEMP); 604 if (V_pf_status.debug >= PF_DEBUG_MISC) 605 printf("%s: %u states killed", __func__, killed); 606 607 CURVNET_RESTORE(); 608 } 609 610 /* 611 * Can return locked on failure, so that we can consistently 612 * allocate and insert a new one. 613 */ 614 struct pf_src_node * 615 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 616 int returnlocked) 617 { 618 struct pf_srchash *sh; 619 struct pf_src_node *n; 620 621 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 622 623 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 624 PF_HASHROW_LOCK(sh); 625 LIST_FOREACH(n, &sh->nodes, entry) 626 if (n->rule.ptr == rule && n->af == af && 627 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 628 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 629 break; 630 if (n != NULL || returnlocked == 0) 631 PF_HASHROW_UNLOCK(sh); 632 633 return (n); 634 } 635 636 static int 637 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 638 struct pf_addr *src, sa_family_t af) 639 { 640 641 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 642 rule->rpool.opts & PF_POOL_STICKYADDR), 643 ("%s for non-tracking rule %p", __func__, rule)); 644 645 if (*sn == NULL) 646 *sn = pf_find_src_node(src, rule, af, 1); 647 648 if (*sn == NULL) { 649 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 650 651 PF_HASHROW_ASSERT(sh); 652 653 if (!rule->max_src_nodes || 654 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 655 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 656 else 657 V_pf_status.lcounters[LCNT_SRCNODES]++; 658 if ((*sn) == NULL) { 659 PF_HASHROW_UNLOCK(sh); 660 return (-1); 661 } 662 663 pf_init_threshold(&(*sn)->conn_rate, 664 rule->max_src_conn_rate.limit, 665 rule->max_src_conn_rate.seconds); 666 667 (*sn)->af = af; 668 (*sn)->rule.ptr = rule; 669 PF_ACPY(&(*sn)->addr, src, af); 670 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 671 (*sn)->creation = time_uptime; 672 (*sn)->ruletype = rule->action; 673 if ((*sn)->rule.ptr != NULL) 674 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 675 PF_HASHROW_UNLOCK(sh); 676 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 677 V_pf_status.src_nodes++; 678 } else { 679 if (rule->max_src_states && 680 (*sn)->states >= rule->max_src_states) { 681 V_pf_status.lcounters[LCNT_SRCSTATES]++; 682 return (-1); 683 } 684 } 685 return (0); 686 } 687 688 void 689 pf_unlink_src_node_locked(struct pf_src_node *src) 690 { 691 #ifdef INVARIANTS 692 struct pf_srchash *sh; 693 694 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 695 PF_HASHROW_ASSERT(sh); 696 #endif 697 LIST_REMOVE(src, entry); 698 if (src->rule.ptr) 699 counter_u64_add(src->rule.ptr->src_nodes, -1); 700 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 701 V_pf_status.src_nodes--; 702 } 703 704 void 705 pf_unlink_src_node(struct pf_src_node *src) 706 { 707 struct pf_srchash *sh; 708 709 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 710 PF_HASHROW_LOCK(sh); 711 pf_unlink_src_node_locked(src); 712 PF_HASHROW_UNLOCK(sh); 713 } 714 715 static void 716 pf_free_src_node(struct pf_src_node *sn) 717 { 718 719 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 720 uma_zfree(V_pf_sources_z, sn); 721 } 722 723 u_int 724 pf_free_src_nodes(struct pf_src_node_list *head) 725 { 726 struct pf_src_node *sn, *tmp; 727 u_int count = 0; 728 729 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 730 pf_free_src_node(sn); 731 count++; 732 } 733 734 return (count); 735 } 736 737 /* Data storage structures initialization. */ 738 void 739 pf_initialize() 740 { 741 struct pf_keyhash *kh; 742 struct pf_idhash *ih; 743 struct pf_srchash *sh; 744 u_int i; 745 746 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &pf_hashsize); 747 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 748 pf_hashsize = PF_HASHSIZ; 749 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &pf_srchashsize); 750 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 751 pf_srchashsize = PF_HASHSIZ / 4; 752 753 V_pf_hashseed = arc4random(); 754 755 /* States and state keys storage. */ 756 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 757 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 758 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 759 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 760 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 761 762 V_pf_state_key_z = uma_zcreate("pf state keys", 763 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 764 UMA_ALIGN_PTR, 0); 765 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 766 M_PFHASH, M_WAITOK | M_ZERO); 767 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 768 M_PFHASH, M_WAITOK | M_ZERO); 769 pf_hashmask = pf_hashsize - 1; 770 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 771 i++, kh++, ih++) { 772 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 773 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 774 } 775 776 /* Source nodes. */ 777 V_pf_sources_z = uma_zcreate("pf source nodes", 778 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 779 0); 780 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 781 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 782 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 783 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 784 M_PFHASH, M_WAITOK|M_ZERO); 785 pf_srchashmask = pf_srchashsize - 1; 786 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 787 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 788 789 /* ALTQ */ 790 TAILQ_INIT(&V_pf_altqs[0]); 791 TAILQ_INIT(&V_pf_altqs[1]); 792 TAILQ_INIT(&V_pf_pabuf); 793 V_pf_altqs_active = &V_pf_altqs[0]; 794 V_pf_altqs_inactive = &V_pf_altqs[1]; 795 796 /* Mbuf tags */ 797 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 798 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 799 UMA_ALIGN_PTR, 0); 800 801 /* Send & overload+flush queues. */ 802 STAILQ_INIT(&V_pf_sendqueue); 803 SLIST_INIT(&V_pf_overloadqueue); 804 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 805 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 806 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 807 MTX_DEF); 808 809 /* Unlinked, but may be referenced rules. */ 810 TAILQ_INIT(&V_pf_unlinked_rules); 811 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 812 } 813 814 void 815 pf_cleanup() 816 { 817 struct pf_keyhash *kh; 818 struct pf_idhash *ih; 819 struct pf_srchash *sh; 820 struct pf_send_entry *pfse, *next; 821 u_int i; 822 823 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 824 i++, kh++, ih++) { 825 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 826 __func__)); 827 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 828 __func__)); 829 mtx_destroy(&kh->lock); 830 mtx_destroy(&ih->lock); 831 } 832 free(V_pf_keyhash, M_PFHASH); 833 free(V_pf_idhash, M_PFHASH); 834 835 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 836 KASSERT(LIST_EMPTY(&sh->nodes), 837 ("%s: source node hash not empty", __func__)); 838 mtx_destroy(&sh->lock); 839 } 840 free(V_pf_srchash, M_PFHASH); 841 842 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 843 m_freem(pfse->pfse_m); 844 free(pfse, M_PFTEMP); 845 } 846 847 mtx_destroy(&pf_sendqueue_mtx); 848 mtx_destroy(&pf_overloadqueue_mtx); 849 mtx_destroy(&pf_unlnkdrules_mtx); 850 851 uma_zdestroy(V_pf_mtag_z); 852 uma_zdestroy(V_pf_sources_z); 853 uma_zdestroy(V_pf_state_z); 854 uma_zdestroy(V_pf_state_key_z); 855 } 856 857 static int 858 pf_mtag_init(void *mem, int size, int how) 859 { 860 struct m_tag *t; 861 862 t = (struct m_tag *)mem; 863 t->m_tag_cookie = MTAG_ABI_COMPAT; 864 t->m_tag_id = PACKET_TAG_PF; 865 t->m_tag_len = sizeof(struct pf_mtag); 866 t->m_tag_free = pf_mtag_free; 867 868 return (0); 869 } 870 871 static void 872 pf_mtag_free(struct m_tag *t) 873 { 874 875 uma_zfree(V_pf_mtag_z, t); 876 } 877 878 struct pf_mtag * 879 pf_get_mtag(struct mbuf *m) 880 { 881 struct m_tag *mtag; 882 883 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 884 return ((struct pf_mtag *)(mtag + 1)); 885 886 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 887 if (mtag == NULL) 888 return (NULL); 889 bzero(mtag + 1, sizeof(struct pf_mtag)); 890 m_tag_prepend(m, mtag); 891 892 return ((struct pf_mtag *)(mtag + 1)); 893 } 894 895 static int 896 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 897 struct pf_state *s) 898 { 899 struct pf_keyhash *khs, *khw, *kh; 900 struct pf_state_key *sk, *cur; 901 struct pf_state *si, *olds = NULL; 902 int idx; 903 904 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 905 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 906 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 907 908 /* 909 * We need to lock hash slots of both keys. To avoid deadlock 910 * we always lock the slot with lower address first. Unlock order 911 * isn't important. 912 * 913 * We also need to lock ID hash slot before dropping key 914 * locks. On success we return with ID hash slot locked. 915 */ 916 917 if (skw == sks) { 918 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 919 PF_HASHROW_LOCK(khs); 920 } else { 921 khs = &V_pf_keyhash[pf_hashkey(sks)]; 922 khw = &V_pf_keyhash[pf_hashkey(skw)]; 923 if (khs == khw) { 924 PF_HASHROW_LOCK(khs); 925 } else if (khs < khw) { 926 PF_HASHROW_LOCK(khs); 927 PF_HASHROW_LOCK(khw); 928 } else { 929 PF_HASHROW_LOCK(khw); 930 PF_HASHROW_LOCK(khs); 931 } 932 } 933 934 #define KEYS_UNLOCK() do { \ 935 if (khs != khw) { \ 936 PF_HASHROW_UNLOCK(khs); \ 937 PF_HASHROW_UNLOCK(khw); \ 938 } else \ 939 PF_HASHROW_UNLOCK(khs); \ 940 } while (0) 941 942 /* 943 * First run: start with wire key. 944 */ 945 sk = skw; 946 kh = khw; 947 idx = PF_SK_WIRE; 948 949 keyattach: 950 LIST_FOREACH(cur, &kh->keys, entry) 951 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 952 break; 953 954 if (cur != NULL) { 955 /* Key exists. Check for same kif, if none, add to key. */ 956 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 957 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 958 959 PF_HASHROW_LOCK(ih); 960 if (si->kif == s->kif && 961 si->direction == s->direction) { 962 if (sk->proto == IPPROTO_TCP && 963 si->src.state >= TCPS_FIN_WAIT_2 && 964 si->dst.state >= TCPS_FIN_WAIT_2) { 965 /* 966 * New state matches an old >FIN_WAIT_2 967 * state. We can't drop key hash locks, 968 * thus we can't unlink it properly. 969 * 970 * As a workaround we drop it into 971 * TCPS_CLOSED state, schedule purge 972 * ASAP and push it into the very end 973 * of the slot TAILQ, so that it won't 974 * conflict with our new state. 975 */ 976 si->src.state = si->dst.state = 977 TCPS_CLOSED; 978 si->timeout = PFTM_PURGE; 979 olds = si; 980 } else { 981 if (V_pf_status.debug >= PF_DEBUG_MISC) { 982 printf("pf: %s key attach " 983 "failed on %s: ", 984 (idx == PF_SK_WIRE) ? 985 "wire" : "stack", 986 s->kif->pfik_name); 987 pf_print_state_parts(s, 988 (idx == PF_SK_WIRE) ? 989 sk : NULL, 990 (idx == PF_SK_STACK) ? 991 sk : NULL); 992 printf(", existing: "); 993 pf_print_state_parts(si, 994 (idx == PF_SK_WIRE) ? 995 sk : NULL, 996 (idx == PF_SK_STACK) ? 997 sk : NULL); 998 printf("\n"); 999 } 1000 PF_HASHROW_UNLOCK(ih); 1001 KEYS_UNLOCK(); 1002 uma_zfree(V_pf_state_key_z, sk); 1003 if (idx == PF_SK_STACK) 1004 pf_detach_state(s); 1005 return (EEXIST); /* collision! */ 1006 } 1007 } 1008 PF_HASHROW_UNLOCK(ih); 1009 } 1010 uma_zfree(V_pf_state_key_z, sk); 1011 s->key[idx] = cur; 1012 } else { 1013 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1014 s->key[idx] = sk; 1015 } 1016 1017 stateattach: 1018 /* List is sorted, if-bound states before floating. */ 1019 if (s->kif == V_pfi_all) 1020 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1021 else 1022 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1023 1024 if (olds) { 1025 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1026 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1027 key_list[idx]); 1028 olds = NULL; 1029 } 1030 1031 /* 1032 * Attach done. See how should we (or should not?) 1033 * attach a second key. 1034 */ 1035 if (sks == skw) { 1036 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1037 idx = PF_SK_STACK; 1038 sks = NULL; 1039 goto stateattach; 1040 } else if (sks != NULL) { 1041 /* 1042 * Continue attaching with stack key. 1043 */ 1044 sk = sks; 1045 kh = khs; 1046 idx = PF_SK_STACK; 1047 sks = NULL; 1048 goto keyattach; 1049 } 1050 1051 PF_STATE_LOCK(s); 1052 KEYS_UNLOCK(); 1053 1054 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1055 ("%s failure", __func__)); 1056 1057 return (0); 1058 #undef KEYS_UNLOCK 1059 } 1060 1061 static void 1062 pf_detach_state(struct pf_state *s) 1063 { 1064 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1065 struct pf_keyhash *kh; 1066 1067 if (sks != NULL) { 1068 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1069 PF_HASHROW_LOCK(kh); 1070 if (s->key[PF_SK_STACK] != NULL) 1071 pf_state_key_detach(s, PF_SK_STACK); 1072 /* 1073 * If both point to same key, then we are done. 1074 */ 1075 if (sks == s->key[PF_SK_WIRE]) { 1076 pf_state_key_detach(s, PF_SK_WIRE); 1077 PF_HASHROW_UNLOCK(kh); 1078 return; 1079 } 1080 PF_HASHROW_UNLOCK(kh); 1081 } 1082 1083 if (s->key[PF_SK_WIRE] != NULL) { 1084 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1085 PF_HASHROW_LOCK(kh); 1086 if (s->key[PF_SK_WIRE] != NULL) 1087 pf_state_key_detach(s, PF_SK_WIRE); 1088 PF_HASHROW_UNLOCK(kh); 1089 } 1090 } 1091 1092 static void 1093 pf_state_key_detach(struct pf_state *s, int idx) 1094 { 1095 struct pf_state_key *sk = s->key[idx]; 1096 #ifdef INVARIANTS 1097 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1098 1099 PF_HASHROW_ASSERT(kh); 1100 #endif 1101 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1102 s->key[idx] = NULL; 1103 1104 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1105 LIST_REMOVE(sk, entry); 1106 uma_zfree(V_pf_state_key_z, sk); 1107 } 1108 } 1109 1110 static int 1111 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1112 { 1113 struct pf_state_key *sk = mem; 1114 1115 bzero(sk, sizeof(struct pf_state_key_cmp)); 1116 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1117 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1118 1119 return (0); 1120 } 1121 1122 struct pf_state_key * 1123 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1124 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1125 { 1126 struct pf_state_key *sk; 1127 1128 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1129 if (sk == NULL) 1130 return (NULL); 1131 1132 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1133 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1134 sk->port[pd->sidx] = sport; 1135 sk->port[pd->didx] = dport; 1136 sk->proto = pd->proto; 1137 sk->af = pd->af; 1138 1139 return (sk); 1140 } 1141 1142 struct pf_state_key * 1143 pf_state_key_clone(struct pf_state_key *orig) 1144 { 1145 struct pf_state_key *sk; 1146 1147 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1148 if (sk == NULL) 1149 return (NULL); 1150 1151 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1152 1153 return (sk); 1154 } 1155 1156 int 1157 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1158 struct pf_state_key *sks, struct pf_state *s) 1159 { 1160 struct pf_idhash *ih; 1161 struct pf_state *cur; 1162 int error; 1163 1164 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1165 ("%s: sks not pristine", __func__)); 1166 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1167 ("%s: skw not pristine", __func__)); 1168 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1169 1170 s->kif = kif; 1171 1172 if (s->id == 0 && s->creatorid == 0) { 1173 /* XXX: should be atomic, but probability of collision low */ 1174 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1175 V_pf_stateid[curcpu] = 1; 1176 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1177 s->id = htobe64(s->id); 1178 s->creatorid = V_pf_status.hostid; 1179 } 1180 1181 /* Returns with ID locked on success. */ 1182 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1183 return (error); 1184 1185 ih = &V_pf_idhash[PF_IDHASH(s)]; 1186 PF_HASHROW_ASSERT(ih); 1187 LIST_FOREACH(cur, &ih->states, entry) 1188 if (cur->id == s->id && cur->creatorid == s->creatorid) 1189 break; 1190 1191 if (cur != NULL) { 1192 PF_HASHROW_UNLOCK(ih); 1193 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1194 printf("pf: state ID collision: " 1195 "id: %016llx creatorid: %08x\n", 1196 (unsigned long long)be64toh(s->id), 1197 ntohl(s->creatorid)); 1198 } 1199 pf_detach_state(s); 1200 return (EEXIST); 1201 } 1202 LIST_INSERT_HEAD(&ih->states, s, entry); 1203 /* One for keys, one for ID hash. */ 1204 refcount_init(&s->refs, 2); 1205 1206 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1207 if (pfsync_insert_state_ptr != NULL) 1208 pfsync_insert_state_ptr(s); 1209 1210 /* Returns locked. */ 1211 return (0); 1212 } 1213 1214 /* 1215 * Find state by ID: returns with locked row on success. 1216 */ 1217 struct pf_state * 1218 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1219 { 1220 struct pf_idhash *ih; 1221 struct pf_state *s; 1222 1223 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1224 1225 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1226 1227 PF_HASHROW_LOCK(ih); 1228 LIST_FOREACH(s, &ih->states, entry) 1229 if (s->id == id && s->creatorid == creatorid) 1230 break; 1231 1232 if (s == NULL) 1233 PF_HASHROW_UNLOCK(ih); 1234 1235 return (s); 1236 } 1237 1238 /* 1239 * Find state by key. 1240 * Returns with ID hash slot locked on success. 1241 */ 1242 static struct pf_state * 1243 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1244 { 1245 struct pf_keyhash *kh; 1246 struct pf_state_key *sk; 1247 struct pf_state *s; 1248 int idx; 1249 1250 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1251 1252 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1253 1254 PF_HASHROW_LOCK(kh); 1255 LIST_FOREACH(sk, &kh->keys, entry) 1256 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1257 break; 1258 if (sk == NULL) { 1259 PF_HASHROW_UNLOCK(kh); 1260 return (NULL); 1261 } 1262 1263 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1264 1265 /* List is sorted, if-bound states before floating ones. */ 1266 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1267 if (s->kif == V_pfi_all || s->kif == kif) { 1268 PF_STATE_LOCK(s); 1269 PF_HASHROW_UNLOCK(kh); 1270 if (s->timeout >= PFTM_MAX) { 1271 /* 1272 * State is either being processed by 1273 * pf_unlink_state() in an other thread, or 1274 * is scheduled for immediate expiry. 1275 */ 1276 PF_STATE_UNLOCK(s); 1277 return (NULL); 1278 } 1279 return (s); 1280 } 1281 PF_HASHROW_UNLOCK(kh); 1282 1283 return (NULL); 1284 } 1285 1286 struct pf_state * 1287 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1288 { 1289 struct pf_keyhash *kh; 1290 struct pf_state_key *sk; 1291 struct pf_state *s, *ret = NULL; 1292 int idx, inout = 0; 1293 1294 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1295 1296 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1297 1298 PF_HASHROW_LOCK(kh); 1299 LIST_FOREACH(sk, &kh->keys, entry) 1300 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1301 break; 1302 if (sk == NULL) { 1303 PF_HASHROW_UNLOCK(kh); 1304 return (NULL); 1305 } 1306 switch (dir) { 1307 case PF_IN: 1308 idx = PF_SK_WIRE; 1309 break; 1310 case PF_OUT: 1311 idx = PF_SK_STACK; 1312 break; 1313 case PF_INOUT: 1314 idx = PF_SK_WIRE; 1315 inout = 1; 1316 break; 1317 default: 1318 panic("%s: dir %u", __func__, dir); 1319 } 1320 second_run: 1321 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1322 if (more == NULL) { 1323 PF_HASHROW_UNLOCK(kh); 1324 return (s); 1325 } 1326 1327 if (ret) 1328 (*more)++; 1329 else 1330 ret = s; 1331 } 1332 if (inout == 1) { 1333 inout = 0; 1334 idx = PF_SK_STACK; 1335 goto second_run; 1336 } 1337 PF_HASHROW_UNLOCK(kh); 1338 1339 return (ret); 1340 } 1341 1342 /* END state table stuff */ 1343 1344 static void 1345 pf_send(struct pf_send_entry *pfse) 1346 { 1347 1348 PF_SENDQ_LOCK(); 1349 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1350 PF_SENDQ_UNLOCK(); 1351 swi_sched(V_pf_swi_cookie, 0); 1352 } 1353 1354 void 1355 pf_intr(void *v) 1356 { 1357 struct pf_send_head queue; 1358 struct pf_send_entry *pfse, *next; 1359 1360 CURVNET_SET((struct vnet *)v); 1361 1362 PF_SENDQ_LOCK(); 1363 queue = V_pf_sendqueue; 1364 STAILQ_INIT(&V_pf_sendqueue); 1365 PF_SENDQ_UNLOCK(); 1366 1367 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1368 switch (pfse->pfse_type) { 1369 #ifdef INET 1370 case PFSE_IP: 1371 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1372 break; 1373 case PFSE_ICMP: 1374 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1375 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1376 break; 1377 #endif /* INET */ 1378 #ifdef INET6 1379 case PFSE_IP6: 1380 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1381 NULL); 1382 break; 1383 case PFSE_ICMP6: 1384 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1385 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1386 break; 1387 #endif /* INET6 */ 1388 default: 1389 panic("%s: unknown type", __func__); 1390 } 1391 free(pfse, M_PFTEMP); 1392 } 1393 CURVNET_RESTORE(); 1394 } 1395 1396 void 1397 pf_purge_thread(void *v) 1398 { 1399 u_int idx = 0; 1400 1401 CURVNET_SET((struct vnet *)v); 1402 1403 for (;;) { 1404 PF_RULES_RLOCK(); 1405 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1406 1407 if (V_pf_end_threads) { 1408 /* 1409 * To cleanse up all kifs and rules we need 1410 * two runs: first one clears reference flags, 1411 * then pf_purge_expired_states() doesn't 1412 * raise them, and then second run frees. 1413 */ 1414 PF_RULES_RUNLOCK(); 1415 pf_purge_unlinked_rules(); 1416 pfi_kif_purge(); 1417 1418 /* 1419 * Now purge everything. 1420 */ 1421 pf_purge_expired_states(0, pf_hashmask); 1422 pf_purge_expired_fragments(); 1423 pf_purge_expired_src_nodes(); 1424 1425 /* 1426 * Now all kifs & rules should be unreferenced, 1427 * thus should be successfully freed. 1428 */ 1429 pf_purge_unlinked_rules(); 1430 pfi_kif_purge(); 1431 1432 /* 1433 * Announce success and exit. 1434 */ 1435 PF_RULES_RLOCK(); 1436 V_pf_end_threads++; 1437 PF_RULES_RUNLOCK(); 1438 wakeup(pf_purge_thread); 1439 kproc_exit(0); 1440 } 1441 PF_RULES_RUNLOCK(); 1442 1443 /* Process 1/interval fraction of the state table every run. */ 1444 idx = pf_purge_expired_states(idx, pf_hashmask / 1445 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1446 1447 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1448 if (idx == 0) { 1449 /* 1450 * Order is important: 1451 * - states and src nodes reference rules 1452 * - states and rules reference kifs 1453 */ 1454 pf_purge_expired_fragments(); 1455 pf_purge_expired_src_nodes(); 1456 pf_purge_unlinked_rules(); 1457 pfi_kif_purge(); 1458 } 1459 } 1460 /* not reached */ 1461 CURVNET_RESTORE(); 1462 } 1463 1464 u_int32_t 1465 pf_state_expires(const struct pf_state *state) 1466 { 1467 u_int32_t timeout; 1468 u_int32_t start; 1469 u_int32_t end; 1470 u_int32_t states; 1471 1472 /* handle all PFTM_* > PFTM_MAX here */ 1473 if (state->timeout == PFTM_PURGE) 1474 return (time_uptime); 1475 KASSERT(state->timeout != PFTM_UNLINKED, 1476 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1477 KASSERT((state->timeout < PFTM_MAX), 1478 ("pf_state_expires: timeout > PFTM_MAX")); 1479 timeout = state->rule.ptr->timeout[state->timeout]; 1480 if (!timeout) 1481 timeout = V_pf_default_rule.timeout[state->timeout]; 1482 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1483 if (start) { 1484 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1485 states = counter_u64_fetch(state->rule.ptr->states_cur); 1486 } else { 1487 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1488 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1489 states = V_pf_status.states; 1490 } 1491 if (end && states > start && start < end) { 1492 if (states < end) 1493 return (state->expire + timeout * (end - states) / 1494 (end - start)); 1495 else 1496 return (time_uptime); 1497 } 1498 return (state->expire + timeout); 1499 } 1500 1501 void 1502 pf_purge_expired_src_nodes() 1503 { 1504 struct pf_src_node_list freelist; 1505 struct pf_srchash *sh; 1506 struct pf_src_node *cur, *next; 1507 int i; 1508 1509 LIST_INIT(&freelist); 1510 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1511 PF_HASHROW_LOCK(sh); 1512 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1513 if (cur->states == 0 && cur->expire <= time_uptime) { 1514 pf_unlink_src_node_locked(cur); 1515 LIST_INSERT_HEAD(&freelist, cur, entry); 1516 } else if (cur->rule.ptr != NULL) 1517 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1518 PF_HASHROW_UNLOCK(sh); 1519 } 1520 1521 pf_free_src_nodes(&freelist); 1522 } 1523 1524 static void 1525 pf_src_tree_remove_state(struct pf_state *s) 1526 { 1527 u_int32_t timeout; 1528 1529 if (s->src_node != NULL) { 1530 if (s->src.tcp_est) 1531 --s->src_node->conn; 1532 if (--s->src_node->states == 0) { 1533 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1534 if (!timeout) 1535 timeout = 1536 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1537 s->src_node->expire = time_uptime + timeout; 1538 } 1539 } 1540 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1541 if (--s->nat_src_node->states == 0) { 1542 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1543 if (!timeout) 1544 timeout = 1545 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1546 s->nat_src_node->expire = time_uptime + timeout; 1547 } 1548 } 1549 s->src_node = s->nat_src_node = NULL; 1550 } 1551 1552 /* 1553 * Unlink and potentilly free a state. Function may be 1554 * called with ID hash row locked, but always returns 1555 * unlocked, since it needs to go through key hash locking. 1556 */ 1557 int 1558 pf_unlink_state(struct pf_state *s, u_int flags) 1559 { 1560 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1561 1562 if ((flags & PF_ENTER_LOCKED) == 0) 1563 PF_HASHROW_LOCK(ih); 1564 else 1565 PF_HASHROW_ASSERT(ih); 1566 1567 if (s->timeout == PFTM_UNLINKED) { 1568 /* 1569 * State is being processed 1570 * by pf_unlink_state() in 1571 * an other thread. 1572 */ 1573 PF_HASHROW_UNLOCK(ih); 1574 return (0); /* XXXGL: undefined actually */ 1575 } 1576 1577 if (s->src.state == PF_TCPS_PROXY_DST) { 1578 /* XXX wire key the right one? */ 1579 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1580 &s->key[PF_SK_WIRE]->addr[1], 1581 &s->key[PF_SK_WIRE]->addr[0], 1582 s->key[PF_SK_WIRE]->port[1], 1583 s->key[PF_SK_WIRE]->port[0], 1584 s->src.seqhi, s->src.seqlo + 1, 1585 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1586 } 1587 1588 LIST_REMOVE(s, entry); 1589 pf_src_tree_remove_state(s); 1590 1591 if (pfsync_delete_state_ptr != NULL) 1592 pfsync_delete_state_ptr(s); 1593 1594 STATE_DEC_COUNTERS(s); 1595 1596 s->timeout = PFTM_UNLINKED; 1597 1598 PF_HASHROW_UNLOCK(ih); 1599 1600 pf_detach_state(s); 1601 refcount_release(&s->refs); 1602 1603 return (pf_release_state(s)); 1604 } 1605 1606 void 1607 pf_free_state(struct pf_state *cur) 1608 { 1609 1610 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1611 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1612 cur->timeout)); 1613 1614 pf_normalize_tcp_cleanup(cur); 1615 uma_zfree(V_pf_state_z, cur); 1616 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1617 } 1618 1619 /* 1620 * Called only from pf_purge_thread(), thus serialized. 1621 */ 1622 static u_int 1623 pf_purge_expired_states(u_int i, int maxcheck) 1624 { 1625 struct pf_idhash *ih; 1626 struct pf_state *s; 1627 1628 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1629 1630 /* 1631 * Go through hash and unlink states that expire now. 1632 */ 1633 while (maxcheck > 0) { 1634 1635 ih = &V_pf_idhash[i]; 1636 relock: 1637 PF_HASHROW_LOCK(ih); 1638 LIST_FOREACH(s, &ih->states, entry) { 1639 if (pf_state_expires(s) <= time_uptime) { 1640 V_pf_status.states -= 1641 pf_unlink_state(s, PF_ENTER_LOCKED); 1642 goto relock; 1643 } 1644 s->rule.ptr->rule_flag |= PFRULE_REFS; 1645 if (s->nat_rule.ptr != NULL) 1646 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1647 if (s->anchor.ptr != NULL) 1648 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1649 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1650 if (s->rt_kif) 1651 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1652 } 1653 PF_HASHROW_UNLOCK(ih); 1654 1655 /* Return when we hit end of hash. */ 1656 if (++i > pf_hashmask) { 1657 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1658 return (0); 1659 } 1660 1661 maxcheck--; 1662 } 1663 1664 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1665 1666 return (i); 1667 } 1668 1669 static void 1670 pf_purge_unlinked_rules() 1671 { 1672 struct pf_rulequeue tmpq; 1673 struct pf_rule *r, *r1; 1674 1675 /* 1676 * If we have overloading task pending, then we'd 1677 * better skip purging this time. There is a tiny 1678 * probability that overloading task references 1679 * an already unlinked rule. 1680 */ 1681 PF_OVERLOADQ_LOCK(); 1682 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1683 PF_OVERLOADQ_UNLOCK(); 1684 return; 1685 } 1686 PF_OVERLOADQ_UNLOCK(); 1687 1688 /* 1689 * Do naive mark-and-sweep garbage collecting of old rules. 1690 * Reference flag is raised by pf_purge_expired_states() 1691 * and pf_purge_expired_src_nodes(). 1692 * 1693 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1694 * use a temporary queue. 1695 */ 1696 TAILQ_INIT(&tmpq); 1697 PF_UNLNKDRULES_LOCK(); 1698 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1699 if (!(r->rule_flag & PFRULE_REFS)) { 1700 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1701 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1702 } else 1703 r->rule_flag &= ~PFRULE_REFS; 1704 } 1705 PF_UNLNKDRULES_UNLOCK(); 1706 1707 if (!TAILQ_EMPTY(&tmpq)) { 1708 PF_RULES_WLOCK(); 1709 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1710 TAILQ_REMOVE(&tmpq, r, entries); 1711 pf_free_rule(r); 1712 } 1713 PF_RULES_WUNLOCK(); 1714 } 1715 } 1716 1717 void 1718 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1719 { 1720 switch (af) { 1721 #ifdef INET 1722 case AF_INET: { 1723 u_int32_t a = ntohl(addr->addr32[0]); 1724 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1725 (a>>8)&255, a&255); 1726 if (p) { 1727 p = ntohs(p); 1728 printf(":%u", p); 1729 } 1730 break; 1731 } 1732 #endif /* INET */ 1733 #ifdef INET6 1734 case AF_INET6: { 1735 u_int16_t b; 1736 u_int8_t i, curstart, curend, maxstart, maxend; 1737 curstart = curend = maxstart = maxend = 255; 1738 for (i = 0; i < 8; i++) { 1739 if (!addr->addr16[i]) { 1740 if (curstart == 255) 1741 curstart = i; 1742 curend = i; 1743 } else { 1744 if ((curend - curstart) > 1745 (maxend - maxstart)) { 1746 maxstart = curstart; 1747 maxend = curend; 1748 } 1749 curstart = curend = 255; 1750 } 1751 } 1752 if ((curend - curstart) > 1753 (maxend - maxstart)) { 1754 maxstart = curstart; 1755 maxend = curend; 1756 } 1757 for (i = 0; i < 8; i++) { 1758 if (i >= maxstart && i <= maxend) { 1759 if (i == 0) 1760 printf(":"); 1761 if (i == maxend) 1762 printf(":"); 1763 } else { 1764 b = ntohs(addr->addr16[i]); 1765 printf("%x", b); 1766 if (i < 7) 1767 printf(":"); 1768 } 1769 } 1770 if (p) { 1771 p = ntohs(p); 1772 printf("[%u]", p); 1773 } 1774 break; 1775 } 1776 #endif /* INET6 */ 1777 } 1778 } 1779 1780 void 1781 pf_print_state(struct pf_state *s) 1782 { 1783 pf_print_state_parts(s, NULL, NULL); 1784 } 1785 1786 static void 1787 pf_print_state_parts(struct pf_state *s, 1788 struct pf_state_key *skwp, struct pf_state_key *sksp) 1789 { 1790 struct pf_state_key *skw, *sks; 1791 u_int8_t proto, dir; 1792 1793 /* Do our best to fill these, but they're skipped if NULL */ 1794 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1795 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1796 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1797 dir = s ? s->direction : 0; 1798 1799 switch (proto) { 1800 case IPPROTO_IPV4: 1801 printf("IPv4"); 1802 break; 1803 case IPPROTO_IPV6: 1804 printf("IPv6"); 1805 break; 1806 case IPPROTO_TCP: 1807 printf("TCP"); 1808 break; 1809 case IPPROTO_UDP: 1810 printf("UDP"); 1811 break; 1812 case IPPROTO_ICMP: 1813 printf("ICMP"); 1814 break; 1815 case IPPROTO_ICMPV6: 1816 printf("ICMPv6"); 1817 break; 1818 default: 1819 printf("%u", skw->proto); 1820 break; 1821 } 1822 switch (dir) { 1823 case PF_IN: 1824 printf(" in"); 1825 break; 1826 case PF_OUT: 1827 printf(" out"); 1828 break; 1829 } 1830 if (skw) { 1831 printf(" wire: "); 1832 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1833 printf(" "); 1834 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1835 } 1836 if (sks) { 1837 printf(" stack: "); 1838 if (sks != skw) { 1839 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1840 printf(" "); 1841 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1842 } else 1843 printf("-"); 1844 } 1845 if (s) { 1846 if (proto == IPPROTO_TCP) { 1847 printf(" [lo=%u high=%u win=%u modulator=%u", 1848 s->src.seqlo, s->src.seqhi, 1849 s->src.max_win, s->src.seqdiff); 1850 if (s->src.wscale && s->dst.wscale) 1851 printf(" wscale=%u", 1852 s->src.wscale & PF_WSCALE_MASK); 1853 printf("]"); 1854 printf(" [lo=%u high=%u win=%u modulator=%u", 1855 s->dst.seqlo, s->dst.seqhi, 1856 s->dst.max_win, s->dst.seqdiff); 1857 if (s->src.wscale && s->dst.wscale) 1858 printf(" wscale=%u", 1859 s->dst.wscale & PF_WSCALE_MASK); 1860 printf("]"); 1861 } 1862 printf(" %u:%u", s->src.state, s->dst.state); 1863 } 1864 } 1865 1866 void 1867 pf_print_flags(u_int8_t f) 1868 { 1869 if (f) 1870 printf(" "); 1871 if (f & TH_FIN) 1872 printf("F"); 1873 if (f & TH_SYN) 1874 printf("S"); 1875 if (f & TH_RST) 1876 printf("R"); 1877 if (f & TH_PUSH) 1878 printf("P"); 1879 if (f & TH_ACK) 1880 printf("A"); 1881 if (f & TH_URG) 1882 printf("U"); 1883 if (f & TH_ECE) 1884 printf("E"); 1885 if (f & TH_CWR) 1886 printf("W"); 1887 } 1888 1889 #define PF_SET_SKIP_STEPS(i) \ 1890 do { \ 1891 while (head[i] != cur) { \ 1892 head[i]->skip[i].ptr = cur; \ 1893 head[i] = TAILQ_NEXT(head[i], entries); \ 1894 } \ 1895 } while (0) 1896 1897 void 1898 pf_calc_skip_steps(struct pf_rulequeue *rules) 1899 { 1900 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1901 int i; 1902 1903 cur = TAILQ_FIRST(rules); 1904 prev = cur; 1905 for (i = 0; i < PF_SKIP_COUNT; ++i) 1906 head[i] = cur; 1907 while (cur != NULL) { 1908 1909 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1910 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1911 if (cur->direction != prev->direction) 1912 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1913 if (cur->af != prev->af) 1914 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1915 if (cur->proto != prev->proto) 1916 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1917 if (cur->src.neg != prev->src.neg || 1918 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1919 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1920 if (cur->src.port[0] != prev->src.port[0] || 1921 cur->src.port[1] != prev->src.port[1] || 1922 cur->src.port_op != prev->src.port_op) 1923 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1924 if (cur->dst.neg != prev->dst.neg || 1925 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1926 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1927 if (cur->dst.port[0] != prev->dst.port[0] || 1928 cur->dst.port[1] != prev->dst.port[1] || 1929 cur->dst.port_op != prev->dst.port_op) 1930 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1931 1932 prev = cur; 1933 cur = TAILQ_NEXT(cur, entries); 1934 } 1935 for (i = 0; i < PF_SKIP_COUNT; ++i) 1936 PF_SET_SKIP_STEPS(i); 1937 } 1938 1939 static int 1940 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1941 { 1942 if (aw1->type != aw2->type) 1943 return (1); 1944 switch (aw1->type) { 1945 case PF_ADDR_ADDRMASK: 1946 case PF_ADDR_RANGE: 1947 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1948 return (1); 1949 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1950 return (1); 1951 return (0); 1952 case PF_ADDR_DYNIFTL: 1953 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1954 case PF_ADDR_NOROUTE: 1955 case PF_ADDR_URPFFAILED: 1956 return (0); 1957 case PF_ADDR_TABLE: 1958 return (aw1->p.tbl != aw2->p.tbl); 1959 default: 1960 printf("invalid address type: %d\n", aw1->type); 1961 return (1); 1962 } 1963 } 1964 1965 u_int16_t 1966 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1967 { 1968 u_int32_t l; 1969 1970 if (udp && !cksum) 1971 return (0x0000); 1972 l = cksum + old - new; 1973 l = (l >> 16) + (l & 65535); 1974 l = l & 65535; 1975 if (udp && !l) 1976 return (0xFFFF); 1977 return (l); 1978 } 1979 1980 static void 1981 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1982 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1983 { 1984 struct pf_addr ao; 1985 u_int16_t po = *p; 1986 1987 PF_ACPY(&ao, a, af); 1988 PF_ACPY(a, an, af); 1989 1990 *p = pn; 1991 1992 switch (af) { 1993 #ifdef INET 1994 case AF_INET: 1995 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1996 ao.addr16[0], an->addr16[0], 0), 1997 ao.addr16[1], an->addr16[1], 0); 1998 *p = pn; 1999 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2000 ao.addr16[0], an->addr16[0], u), 2001 ao.addr16[1], an->addr16[1], u), 2002 po, pn, u); 2003 break; 2004 #endif /* INET */ 2005 #ifdef INET6 2006 case AF_INET6: 2007 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2008 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2009 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2010 ao.addr16[0], an->addr16[0], u), 2011 ao.addr16[1], an->addr16[1], u), 2012 ao.addr16[2], an->addr16[2], u), 2013 ao.addr16[3], an->addr16[3], u), 2014 ao.addr16[4], an->addr16[4], u), 2015 ao.addr16[5], an->addr16[5], u), 2016 ao.addr16[6], an->addr16[6], u), 2017 ao.addr16[7], an->addr16[7], u), 2018 po, pn, u); 2019 break; 2020 #endif /* INET6 */ 2021 } 2022 } 2023 2024 2025 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2026 void 2027 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2028 { 2029 u_int32_t ao; 2030 2031 memcpy(&ao, a, sizeof(ao)); 2032 memcpy(a, &an, sizeof(u_int32_t)); 2033 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2034 ao % 65536, an % 65536, u); 2035 } 2036 2037 #ifdef INET6 2038 static void 2039 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2040 { 2041 struct pf_addr ao; 2042 2043 PF_ACPY(&ao, a, AF_INET6); 2044 PF_ACPY(a, an, AF_INET6); 2045 2046 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2047 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2048 pf_cksum_fixup(pf_cksum_fixup(*c, 2049 ao.addr16[0], an->addr16[0], u), 2050 ao.addr16[1], an->addr16[1], u), 2051 ao.addr16[2], an->addr16[2], u), 2052 ao.addr16[3], an->addr16[3], u), 2053 ao.addr16[4], an->addr16[4], u), 2054 ao.addr16[5], an->addr16[5], u), 2055 ao.addr16[6], an->addr16[6], u), 2056 ao.addr16[7], an->addr16[7], u); 2057 } 2058 #endif /* INET6 */ 2059 2060 static int 2061 pf_icmp_mapping(struct pf_pdesc *pd, uint8_t type, 2062 int *icmp_dir, int *multi, uint16_t *icmpid, uint16_t *icmptype) 2063 { 2064 /* 2065 * ICMP types marked with PF_OUT are typically responses to 2066 * PF_IN, and will match states in the opposite direction. 2067 * PF_IN ICMP types need to match a state with that type. 2068 */ 2069 *icmp_dir = PF_OUT; 2070 *multi = PF_ICMP_MULTI_LINK; 2071 /* Queries (and responses) */ 2072 switch (type) { 2073 case ICMP_ECHO: 2074 *icmp_dir = PF_IN; 2075 case ICMP_ECHOREPLY: 2076 *icmptype = ICMP_ECHO; 2077 *icmpid = pd->hdr.icmp->icmp_id; 2078 break; 2079 2080 case ICMP_TSTAMP: 2081 *icmp_dir = PF_IN; 2082 case ICMP_TSTAMPREPLY: 2083 *icmptype = ICMP_TSTAMP; 2084 *icmpid = pd->hdr.icmp->icmp_id; 2085 break; 2086 2087 case ICMP_IREQ: 2088 *icmp_dir = PF_IN; 2089 case ICMP_IREQREPLY: 2090 *icmptype = ICMP_IREQ; 2091 *icmpid = pd->hdr.icmp->icmp_id; 2092 break; 2093 2094 case ICMP_MASKREQ: 2095 *icmp_dir = PF_IN; 2096 case ICMP_MASKREPLY: 2097 *icmptype = ICMP_MASKREQ; 2098 *icmpid = pd->hdr.icmp->icmp_id; 2099 break; 2100 2101 case ICMP_IPV6_WHEREAREYOU: 2102 *icmp_dir = PF_IN; 2103 case ICMP_IPV6_IAMHERE: 2104 *icmptype = ICMP_IPV6_WHEREAREYOU; 2105 *icmpid = 0; /* Nothing sane to match on! */ 2106 break; 2107 2108 case ICMP_MOBILE_REGREQUEST: 2109 *icmp_dir = PF_IN; 2110 case ICMP_MOBILE_REGREPLY: 2111 *icmptype = ICMP_MOBILE_REGREQUEST; 2112 *icmpid = 0; /* Nothing sane to match on! */ 2113 break; 2114 2115 case ICMP_ROUTERSOLICIT: 2116 *icmp_dir = PF_IN; 2117 case ICMP_ROUTERADVERT: 2118 *icmptype = ICMP_MOBILE_REGREQUEST; 2119 *icmpid = 0; /* Nothing sane to match on! */ 2120 break; 2121 2122 #ifdef INET6 2123 case ICMP6_ECHO_REQUEST: 2124 *icmp_dir = PF_IN; 2125 case ICMP6_ECHO_REPLY: 2126 *icmptype = ICMP6_ECHO_REPLY; 2127 *icmpid = 0; /* Nothing sane to match on! */ 2128 break; 2129 2130 case MLD_LISTENER_QUERY: 2131 *icmp_dir = PF_IN; 2132 case MLD_LISTENER_REPORT: { 2133 struct mld_hdr *mld = (void *)pd->hdr.icmp6; 2134 2135 *icmptype = MLD_LISTENER_QUERY; 2136 /* generate fake id for these messages */ 2137 *icmpid = (mld->mld_addr.s6_addr32[0] ^ 2138 mld->mld_addr.s6_addr32[1] ^ 2139 mld->mld_addr.s6_addr32[2] ^ 2140 mld->mld_addr.s6_addr32[3]) & 0xffff; 2141 break; 2142 } 2143 2144 /* ICMP6_FQDN and ICMP6_NI query/reply are the same type as ICMP6_WRU */ 2145 case ICMP6_WRUREQUEST: 2146 *icmp_dir = PF_IN; 2147 case ICMP6_WRUREPLY: 2148 *icmptype = ICMP6_WRUREQUEST; 2149 *icmpid = 0; /* Nothing sane to match on! */ 2150 break; 2151 2152 case MLD_MTRACE: 2153 *icmp_dir = PF_IN; 2154 case MLD_MTRACE_RESP: 2155 *icmptype = MLD_MTRACE; 2156 *icmpid = 0; /* Nothing sane to match on! */ 2157 break; 2158 2159 case ND_NEIGHBOR_SOLICIT: 2160 *icmp_dir = PF_IN; 2161 case ND_NEIGHBOR_ADVERT: { 2162 struct nd_neighbor_solicit *nd = (void *)pd->hdr.icmp6; 2163 2164 *icmptype = ND_NEIGHBOR_SOLICIT; 2165 *multi = PF_ICMP_MULTI_SOLICITED; 2166 /* generate fake id for these messages */ 2167 *icmpid = (nd->nd_ns_target.s6_addr32[0] ^ 2168 nd->nd_ns_target.s6_addr32[1] ^ 2169 nd->nd_ns_target.s6_addr32[2] ^ 2170 nd->nd_ns_target.s6_addr32[3]) & 0xffff; 2171 break; 2172 } 2173 2174 #endif /* INET6 */ 2175 /* These ICMP types map to other connections */ 2176 case ICMP_UNREACH: 2177 case ICMP_SOURCEQUENCH: 2178 case ICMP_REDIRECT: 2179 case ICMP_TIMXCEED: 2180 case ICMP_PARAMPROB: 2181 #ifdef INET6 2182 /* 2183 * ICMP6_TIME_EXCEEDED is the same type as ICMP_UNREACH 2184 * ND_REDIRECT can't be in this list because the triggering packet 2185 * header is optional. 2186 */ 2187 case ICMP6_PACKET_TOO_BIG: 2188 #endif /* INET6 */ 2189 /* These will not be used, but set them anyways */ 2190 *icmp_dir = PF_IN; 2191 *icmptype = htons(type); 2192 *icmpid = 0; 2193 return (1); /* These types are matched to other state */ 2194 /* 2195 * All remaining ICMP types get their own states, 2196 * and will only match in one direction. 2197 */ 2198 default: 2199 *icmp_dir = PF_IN; 2200 *icmptype = type; 2201 *icmpid = 0; 2202 break; 2203 } 2204 *icmptype = htons(*icmptype); 2205 2206 return (0); 2207 } 2208 2209 static void 2210 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2211 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2212 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2213 { 2214 struct pf_addr oia, ooa; 2215 2216 PF_ACPY(&oia, ia, af); 2217 if (oa) 2218 PF_ACPY(&ooa, oa, af); 2219 2220 /* Change inner protocol port, fix inner protocol checksum. */ 2221 if (ip != NULL) { 2222 u_int16_t oip = *ip; 2223 u_int32_t opc; 2224 2225 if (pc != NULL) 2226 opc = *pc; 2227 *ip = np; 2228 if (pc != NULL) 2229 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2230 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2231 if (pc != NULL) 2232 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2233 } 2234 /* Change inner ip address, fix inner ip and icmp checksums. */ 2235 PF_ACPY(ia, na, af); 2236 switch (af) { 2237 #ifdef INET 2238 case AF_INET: { 2239 u_int32_t oh2c = *h2c; 2240 2241 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2242 oia.addr16[0], ia->addr16[0], 0), 2243 oia.addr16[1], ia->addr16[1], 0); 2244 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2245 oia.addr16[0], ia->addr16[0], 0), 2246 oia.addr16[1], ia->addr16[1], 0); 2247 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2248 break; 2249 } 2250 #endif /* INET */ 2251 #ifdef INET6 2252 case AF_INET6: 2253 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2254 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2255 pf_cksum_fixup(pf_cksum_fixup(*ic, 2256 oia.addr16[0], ia->addr16[0], u), 2257 oia.addr16[1], ia->addr16[1], u), 2258 oia.addr16[2], ia->addr16[2], u), 2259 oia.addr16[3], ia->addr16[3], u), 2260 oia.addr16[4], ia->addr16[4], u), 2261 oia.addr16[5], ia->addr16[5], u), 2262 oia.addr16[6], ia->addr16[6], u), 2263 oia.addr16[7], ia->addr16[7], u); 2264 break; 2265 #endif /* INET6 */ 2266 } 2267 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2268 if (oa) { 2269 PF_ACPY(oa, na, af); 2270 switch (af) { 2271 #ifdef INET 2272 case AF_INET: 2273 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2274 ooa.addr16[0], oa->addr16[0], 0), 2275 ooa.addr16[1], oa->addr16[1], 0); 2276 break; 2277 #endif /* INET */ 2278 #ifdef INET6 2279 case AF_INET6: 2280 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2281 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2282 pf_cksum_fixup(pf_cksum_fixup(*ic, 2283 ooa.addr16[0], oa->addr16[0], u), 2284 ooa.addr16[1], oa->addr16[1], u), 2285 ooa.addr16[2], oa->addr16[2], u), 2286 ooa.addr16[3], oa->addr16[3], u), 2287 ooa.addr16[4], oa->addr16[4], u), 2288 ooa.addr16[5], oa->addr16[5], u), 2289 ooa.addr16[6], oa->addr16[6], u), 2290 ooa.addr16[7], oa->addr16[7], u); 2291 break; 2292 #endif /* INET6 */ 2293 } 2294 } 2295 } 2296 2297 2298 /* 2299 * Need to modulate the sequence numbers in the TCP SACK option 2300 * (credits to Krzysztof Pfaff for report and patch) 2301 */ 2302 static int 2303 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2304 struct tcphdr *th, struct pf_state_peer *dst) 2305 { 2306 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2307 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2308 int copyback = 0, i, olen; 2309 struct sackblk sack; 2310 2311 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2312 if (hlen < TCPOLEN_SACKLEN || 2313 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2314 return 0; 2315 2316 while (hlen >= TCPOLEN_SACKLEN) { 2317 olen = opt[1]; 2318 switch (*opt) { 2319 case TCPOPT_EOL: /* FALLTHROUGH */ 2320 case TCPOPT_NOP: 2321 opt++; 2322 hlen--; 2323 break; 2324 case TCPOPT_SACK: 2325 if (olen > hlen) 2326 olen = hlen; 2327 if (olen >= TCPOLEN_SACKLEN) { 2328 for (i = 2; i + TCPOLEN_SACK <= olen; 2329 i += TCPOLEN_SACK) { 2330 memcpy(&sack, &opt[i], sizeof(sack)); 2331 pf_change_a(&sack.start, &th->th_sum, 2332 htonl(ntohl(sack.start) - 2333 dst->seqdiff), 0); 2334 pf_change_a(&sack.end, &th->th_sum, 2335 htonl(ntohl(sack.end) - 2336 dst->seqdiff), 0); 2337 memcpy(&opt[i], &sack, sizeof(sack)); 2338 } 2339 copyback = 1; 2340 } 2341 /* FALLTHROUGH */ 2342 default: 2343 if (olen < 2) 2344 olen = 2; 2345 hlen -= olen; 2346 opt += olen; 2347 } 2348 } 2349 2350 if (copyback) 2351 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2352 return (copyback); 2353 } 2354 2355 static void 2356 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2357 const struct pf_addr *saddr, const struct pf_addr *daddr, 2358 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2359 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2360 u_int16_t rtag, struct ifnet *ifp) 2361 { 2362 struct pf_send_entry *pfse; 2363 struct mbuf *m; 2364 int len, tlen; 2365 #ifdef INET 2366 struct ip *h = NULL; 2367 #endif /* INET */ 2368 #ifdef INET6 2369 struct ip6_hdr *h6 = NULL; 2370 #endif /* INET6 */ 2371 struct tcphdr *th; 2372 char *opt; 2373 struct pf_mtag *pf_mtag; 2374 2375 len = 0; 2376 th = NULL; 2377 2378 /* maximum segment size tcp option */ 2379 tlen = sizeof(struct tcphdr); 2380 if (mss) 2381 tlen += 4; 2382 2383 switch (af) { 2384 #ifdef INET 2385 case AF_INET: 2386 len = sizeof(struct ip) + tlen; 2387 break; 2388 #endif /* INET */ 2389 #ifdef INET6 2390 case AF_INET6: 2391 len = sizeof(struct ip6_hdr) + tlen; 2392 break; 2393 #endif /* INET6 */ 2394 default: 2395 panic("%s: unsupported af %d", __func__, af); 2396 } 2397 2398 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2399 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2400 if (pfse == NULL) 2401 return; 2402 m = m_gethdr(M_NOWAIT, MT_DATA); 2403 if (m == NULL) { 2404 free(pfse, M_PFTEMP); 2405 return; 2406 } 2407 #ifdef MAC 2408 mac_netinet_firewall_send(m); 2409 #endif 2410 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2411 free(pfse, M_PFTEMP); 2412 m_freem(m); 2413 return; 2414 } 2415 if (tag) 2416 m->m_flags |= M_SKIP_FIREWALL; 2417 pf_mtag->tag = rtag; 2418 2419 if (r != NULL && r->rtableid >= 0) 2420 M_SETFIB(m, r->rtableid); 2421 2422 #ifdef ALTQ 2423 if (r != NULL && r->qid) { 2424 pf_mtag->qid = r->qid; 2425 2426 /* add hints for ecn */ 2427 pf_mtag->hdr = mtod(m, struct ip *); 2428 } 2429 #endif /* ALTQ */ 2430 m->m_data += max_linkhdr; 2431 m->m_pkthdr.len = m->m_len = len; 2432 m->m_pkthdr.rcvif = NULL; 2433 bzero(m->m_data, len); 2434 switch (af) { 2435 #ifdef INET 2436 case AF_INET: 2437 h = mtod(m, struct ip *); 2438 2439 /* IP header fields included in the TCP checksum */ 2440 h->ip_p = IPPROTO_TCP; 2441 h->ip_len = htons(tlen); 2442 h->ip_src.s_addr = saddr->v4.s_addr; 2443 h->ip_dst.s_addr = daddr->v4.s_addr; 2444 2445 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2446 break; 2447 #endif /* INET */ 2448 #ifdef INET6 2449 case AF_INET6: 2450 h6 = mtod(m, struct ip6_hdr *); 2451 2452 /* IP header fields included in the TCP checksum */ 2453 h6->ip6_nxt = IPPROTO_TCP; 2454 h6->ip6_plen = htons(tlen); 2455 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2456 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2457 2458 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2459 break; 2460 #endif /* INET6 */ 2461 } 2462 2463 /* TCP header */ 2464 th->th_sport = sport; 2465 th->th_dport = dport; 2466 th->th_seq = htonl(seq); 2467 th->th_ack = htonl(ack); 2468 th->th_off = tlen >> 2; 2469 th->th_flags = flags; 2470 th->th_win = htons(win); 2471 2472 if (mss) { 2473 opt = (char *)(th + 1); 2474 opt[0] = TCPOPT_MAXSEG; 2475 opt[1] = 4; 2476 HTONS(mss); 2477 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2478 } 2479 2480 switch (af) { 2481 #ifdef INET 2482 case AF_INET: 2483 /* TCP checksum */ 2484 th->th_sum = in_cksum(m, len); 2485 2486 /* Finish the IP header */ 2487 h->ip_v = 4; 2488 h->ip_hl = sizeof(*h) >> 2; 2489 h->ip_tos = IPTOS_LOWDELAY; 2490 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2491 h->ip_len = htons(len); 2492 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2493 h->ip_sum = 0; 2494 2495 pfse->pfse_type = PFSE_IP; 2496 break; 2497 #endif /* INET */ 2498 #ifdef INET6 2499 case AF_INET6: 2500 /* TCP checksum */ 2501 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2502 sizeof(struct ip6_hdr), tlen); 2503 2504 h6->ip6_vfc |= IPV6_VERSION; 2505 h6->ip6_hlim = IPV6_DEFHLIM; 2506 2507 pfse->pfse_type = PFSE_IP6; 2508 break; 2509 #endif /* INET6 */ 2510 } 2511 pfse->pfse_m = m; 2512 pf_send(pfse); 2513 } 2514 2515 static void 2516 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2517 struct pf_rule *r) 2518 { 2519 struct pf_send_entry *pfse; 2520 struct mbuf *m0; 2521 struct pf_mtag *pf_mtag; 2522 2523 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2524 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2525 if (pfse == NULL) 2526 return; 2527 2528 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2529 free(pfse, M_PFTEMP); 2530 return; 2531 } 2532 2533 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2534 free(pfse, M_PFTEMP); 2535 return; 2536 } 2537 /* XXX: revisit */ 2538 m0->m_flags |= M_SKIP_FIREWALL; 2539 2540 if (r->rtableid >= 0) 2541 M_SETFIB(m0, r->rtableid); 2542 2543 #ifdef ALTQ 2544 if (r->qid) { 2545 pf_mtag->qid = r->qid; 2546 /* add hints for ecn */ 2547 pf_mtag->hdr = mtod(m0, struct ip *); 2548 } 2549 #endif /* ALTQ */ 2550 2551 switch (af) { 2552 #ifdef INET 2553 case AF_INET: 2554 pfse->pfse_type = PFSE_ICMP; 2555 break; 2556 #endif /* INET */ 2557 #ifdef INET6 2558 case AF_INET6: 2559 pfse->pfse_type = PFSE_ICMP6; 2560 break; 2561 #endif /* INET6 */ 2562 } 2563 pfse->pfse_m = m0; 2564 pfse->pfse_icmp_type = type; 2565 pfse->pfse_icmp_code = code; 2566 pf_send(pfse); 2567 } 2568 2569 /* 2570 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2571 * If n is 0, they match if they are equal. If n is != 0, they match if they 2572 * are different. 2573 */ 2574 int 2575 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2576 struct pf_addr *b, sa_family_t af) 2577 { 2578 int match = 0; 2579 2580 switch (af) { 2581 #ifdef INET 2582 case AF_INET: 2583 if ((a->addr32[0] & m->addr32[0]) == 2584 (b->addr32[0] & m->addr32[0])) 2585 match++; 2586 break; 2587 #endif /* INET */ 2588 #ifdef INET6 2589 case AF_INET6: 2590 if (((a->addr32[0] & m->addr32[0]) == 2591 (b->addr32[0] & m->addr32[0])) && 2592 ((a->addr32[1] & m->addr32[1]) == 2593 (b->addr32[1] & m->addr32[1])) && 2594 ((a->addr32[2] & m->addr32[2]) == 2595 (b->addr32[2] & m->addr32[2])) && 2596 ((a->addr32[3] & m->addr32[3]) == 2597 (b->addr32[3] & m->addr32[3]))) 2598 match++; 2599 break; 2600 #endif /* INET6 */ 2601 } 2602 if (match) { 2603 if (n) 2604 return (0); 2605 else 2606 return (1); 2607 } else { 2608 if (n) 2609 return (1); 2610 else 2611 return (0); 2612 } 2613 } 2614 2615 /* 2616 * Return 1 if b <= a <= e, otherwise return 0. 2617 */ 2618 int 2619 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2620 struct pf_addr *a, sa_family_t af) 2621 { 2622 switch (af) { 2623 #ifdef INET 2624 case AF_INET: 2625 if ((a->addr32[0] < b->addr32[0]) || 2626 (a->addr32[0] > e->addr32[0])) 2627 return (0); 2628 break; 2629 #endif /* INET */ 2630 #ifdef INET6 2631 case AF_INET6: { 2632 int i; 2633 2634 /* check a >= b */ 2635 for (i = 0; i < 4; ++i) 2636 if (a->addr32[i] > b->addr32[i]) 2637 break; 2638 else if (a->addr32[i] < b->addr32[i]) 2639 return (0); 2640 /* check a <= e */ 2641 for (i = 0; i < 4; ++i) 2642 if (a->addr32[i] < e->addr32[i]) 2643 break; 2644 else if (a->addr32[i] > e->addr32[i]) 2645 return (0); 2646 break; 2647 } 2648 #endif /* INET6 */ 2649 } 2650 return (1); 2651 } 2652 2653 static int 2654 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2655 { 2656 switch (op) { 2657 case PF_OP_IRG: 2658 return ((p > a1) && (p < a2)); 2659 case PF_OP_XRG: 2660 return ((p < a1) || (p > a2)); 2661 case PF_OP_RRG: 2662 return ((p >= a1) && (p <= a2)); 2663 case PF_OP_EQ: 2664 return (p == a1); 2665 case PF_OP_NE: 2666 return (p != a1); 2667 case PF_OP_LT: 2668 return (p < a1); 2669 case PF_OP_LE: 2670 return (p <= a1); 2671 case PF_OP_GT: 2672 return (p > a1); 2673 case PF_OP_GE: 2674 return (p >= a1); 2675 } 2676 return (0); /* never reached */ 2677 } 2678 2679 int 2680 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2681 { 2682 NTOHS(a1); 2683 NTOHS(a2); 2684 NTOHS(p); 2685 return (pf_match(op, a1, a2, p)); 2686 } 2687 2688 static int 2689 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2690 { 2691 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2692 return (0); 2693 return (pf_match(op, a1, a2, u)); 2694 } 2695 2696 static int 2697 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2698 { 2699 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2700 return (0); 2701 return (pf_match(op, a1, a2, g)); 2702 } 2703 2704 int 2705 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2706 { 2707 if (*tag == -1) 2708 *tag = mtag; 2709 2710 return ((!r->match_tag_not && r->match_tag == *tag) || 2711 (r->match_tag_not && r->match_tag != *tag)); 2712 } 2713 2714 int 2715 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2716 { 2717 2718 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2719 2720 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2721 return (ENOMEM); 2722 2723 pd->pf_mtag->tag = tag; 2724 2725 return (0); 2726 } 2727 2728 #define PF_ANCHOR_STACKSIZE 32 2729 struct pf_anchor_stackframe { 2730 struct pf_ruleset *rs; 2731 struct pf_rule *r; /* XXX: + match bit */ 2732 struct pf_anchor *child; 2733 }; 2734 2735 /* 2736 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2737 */ 2738 #define PF_ANCHORSTACK_MATCH 0x00000001 2739 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2740 2741 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2742 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2743 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2744 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2745 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2746 } while (0) 2747 2748 void 2749 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2750 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2751 int *match) 2752 { 2753 struct pf_anchor_stackframe *f; 2754 2755 PF_RULES_RASSERT(); 2756 2757 if (match) 2758 *match = 0; 2759 if (*depth >= PF_ANCHOR_STACKSIZE) { 2760 printf("%s: anchor stack overflow on %s\n", 2761 __func__, (*r)->anchor->name); 2762 *r = TAILQ_NEXT(*r, entries); 2763 return; 2764 } else if (*depth == 0 && a != NULL) 2765 *a = *r; 2766 f = stack + (*depth)++; 2767 f->rs = *rs; 2768 f->r = *r; 2769 if ((*r)->anchor_wildcard) { 2770 struct pf_anchor_node *parent = &(*r)->anchor->children; 2771 2772 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2773 *r = NULL; 2774 return; 2775 } 2776 *rs = &f->child->ruleset; 2777 } else { 2778 f->child = NULL; 2779 *rs = &(*r)->anchor->ruleset; 2780 } 2781 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2782 } 2783 2784 int 2785 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2786 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2787 int *match) 2788 { 2789 struct pf_anchor_stackframe *f; 2790 struct pf_rule *fr; 2791 int quick = 0; 2792 2793 PF_RULES_RASSERT(); 2794 2795 do { 2796 if (*depth <= 0) 2797 break; 2798 f = stack + *depth - 1; 2799 fr = PF_ANCHOR_RULE(f); 2800 if (f->child != NULL) { 2801 struct pf_anchor_node *parent; 2802 2803 /* 2804 * This block traverses through 2805 * a wildcard anchor. 2806 */ 2807 parent = &fr->anchor->children; 2808 if (match != NULL && *match) { 2809 /* 2810 * If any of "*" matched, then 2811 * "foo/ *" matched, mark frame 2812 * appropriately. 2813 */ 2814 PF_ANCHOR_SET_MATCH(f); 2815 *match = 0; 2816 } 2817 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2818 if (f->child != NULL) { 2819 *rs = &f->child->ruleset; 2820 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2821 if (*r == NULL) 2822 continue; 2823 else 2824 break; 2825 } 2826 } 2827 (*depth)--; 2828 if (*depth == 0 && a != NULL) 2829 *a = NULL; 2830 *rs = f->rs; 2831 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2832 quick = fr->quick; 2833 *r = TAILQ_NEXT(fr, entries); 2834 } while (*r == NULL); 2835 2836 return (quick); 2837 } 2838 2839 #ifdef INET6 2840 void 2841 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2842 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2843 { 2844 switch (af) { 2845 #ifdef INET 2846 case AF_INET: 2847 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2848 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2849 break; 2850 #endif /* INET */ 2851 case AF_INET6: 2852 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2853 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2854 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2855 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2856 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2857 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2858 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2859 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2860 break; 2861 } 2862 } 2863 2864 void 2865 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2866 { 2867 switch (af) { 2868 #ifdef INET 2869 case AF_INET: 2870 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2871 break; 2872 #endif /* INET */ 2873 case AF_INET6: 2874 if (addr->addr32[3] == 0xffffffff) { 2875 addr->addr32[3] = 0; 2876 if (addr->addr32[2] == 0xffffffff) { 2877 addr->addr32[2] = 0; 2878 if (addr->addr32[1] == 0xffffffff) { 2879 addr->addr32[1] = 0; 2880 addr->addr32[0] = 2881 htonl(ntohl(addr->addr32[0]) + 1); 2882 } else 2883 addr->addr32[1] = 2884 htonl(ntohl(addr->addr32[1]) + 1); 2885 } else 2886 addr->addr32[2] = 2887 htonl(ntohl(addr->addr32[2]) + 1); 2888 } else 2889 addr->addr32[3] = 2890 htonl(ntohl(addr->addr32[3]) + 1); 2891 break; 2892 } 2893 } 2894 #endif /* INET6 */ 2895 2896 int 2897 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2898 { 2899 struct pf_addr *saddr, *daddr; 2900 u_int16_t sport, dport; 2901 struct inpcbinfo *pi; 2902 struct inpcb *inp; 2903 2904 pd->lookup.uid = UID_MAX; 2905 pd->lookup.gid = GID_MAX; 2906 2907 switch (pd->proto) { 2908 case IPPROTO_TCP: 2909 if (pd->hdr.tcp == NULL) 2910 return (-1); 2911 sport = pd->hdr.tcp->th_sport; 2912 dport = pd->hdr.tcp->th_dport; 2913 pi = &V_tcbinfo; 2914 break; 2915 case IPPROTO_UDP: 2916 if (pd->hdr.udp == NULL) 2917 return (-1); 2918 sport = pd->hdr.udp->uh_sport; 2919 dport = pd->hdr.udp->uh_dport; 2920 pi = &V_udbinfo; 2921 break; 2922 default: 2923 return (-1); 2924 } 2925 if (direction == PF_IN) { 2926 saddr = pd->src; 2927 daddr = pd->dst; 2928 } else { 2929 u_int16_t p; 2930 2931 p = sport; 2932 sport = dport; 2933 dport = p; 2934 saddr = pd->dst; 2935 daddr = pd->src; 2936 } 2937 switch (pd->af) { 2938 #ifdef INET 2939 case AF_INET: 2940 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2941 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2942 if (inp == NULL) { 2943 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2944 daddr->v4, dport, INPLOOKUP_WILDCARD | 2945 INPLOOKUP_RLOCKPCB, NULL, m); 2946 if (inp == NULL) 2947 return (-1); 2948 } 2949 break; 2950 #endif /* INET */ 2951 #ifdef INET6 2952 case AF_INET6: 2953 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2954 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2955 if (inp == NULL) { 2956 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2957 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2958 INPLOOKUP_RLOCKPCB, NULL, m); 2959 if (inp == NULL) 2960 return (-1); 2961 } 2962 break; 2963 #endif /* INET6 */ 2964 2965 default: 2966 return (-1); 2967 } 2968 INP_RLOCK_ASSERT(inp); 2969 pd->lookup.uid = inp->inp_cred->cr_uid; 2970 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2971 INP_RUNLOCK(inp); 2972 2973 return (1); 2974 } 2975 2976 static u_int8_t 2977 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2978 { 2979 int hlen; 2980 u_int8_t hdr[60]; 2981 u_int8_t *opt, optlen; 2982 u_int8_t wscale = 0; 2983 2984 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2985 if (hlen <= sizeof(struct tcphdr)) 2986 return (0); 2987 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2988 return (0); 2989 opt = hdr + sizeof(struct tcphdr); 2990 hlen -= sizeof(struct tcphdr); 2991 while (hlen >= 3) { 2992 switch (*opt) { 2993 case TCPOPT_EOL: 2994 case TCPOPT_NOP: 2995 ++opt; 2996 --hlen; 2997 break; 2998 case TCPOPT_WINDOW: 2999 wscale = opt[2]; 3000 if (wscale > TCP_MAX_WINSHIFT) 3001 wscale = TCP_MAX_WINSHIFT; 3002 wscale |= PF_WSCALE_FLAG; 3003 /* FALLTHROUGH */ 3004 default: 3005 optlen = opt[1]; 3006 if (optlen < 2) 3007 optlen = 2; 3008 hlen -= optlen; 3009 opt += optlen; 3010 break; 3011 } 3012 } 3013 return (wscale); 3014 } 3015 3016 static u_int16_t 3017 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3018 { 3019 int hlen; 3020 u_int8_t hdr[60]; 3021 u_int8_t *opt, optlen; 3022 u_int16_t mss = V_tcp_mssdflt; 3023 3024 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3025 if (hlen <= sizeof(struct tcphdr)) 3026 return (0); 3027 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3028 return (0); 3029 opt = hdr + sizeof(struct tcphdr); 3030 hlen -= sizeof(struct tcphdr); 3031 while (hlen >= TCPOLEN_MAXSEG) { 3032 switch (*opt) { 3033 case TCPOPT_EOL: 3034 case TCPOPT_NOP: 3035 ++opt; 3036 --hlen; 3037 break; 3038 case TCPOPT_MAXSEG: 3039 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3040 NTOHS(mss); 3041 /* FALLTHROUGH */ 3042 default: 3043 optlen = opt[1]; 3044 if (optlen < 2) 3045 optlen = 2; 3046 hlen -= optlen; 3047 opt += optlen; 3048 break; 3049 } 3050 } 3051 return (mss); 3052 } 3053 3054 static u_int16_t 3055 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3056 { 3057 #ifdef INET 3058 struct sockaddr_in *dst; 3059 struct route ro; 3060 #endif /* INET */ 3061 #ifdef INET6 3062 struct sockaddr_in6 *dst6; 3063 struct route_in6 ro6; 3064 #endif /* INET6 */ 3065 struct rtentry *rt = NULL; 3066 int hlen = 0; 3067 u_int16_t mss = V_tcp_mssdflt; 3068 3069 switch (af) { 3070 #ifdef INET 3071 case AF_INET: 3072 hlen = sizeof(struct ip); 3073 bzero(&ro, sizeof(ro)); 3074 dst = (struct sockaddr_in *)&ro.ro_dst; 3075 dst->sin_family = AF_INET; 3076 dst->sin_len = sizeof(*dst); 3077 dst->sin_addr = addr->v4; 3078 in_rtalloc_ign(&ro, 0, rtableid); 3079 rt = ro.ro_rt; 3080 break; 3081 #endif /* INET */ 3082 #ifdef INET6 3083 case AF_INET6: 3084 hlen = sizeof(struct ip6_hdr); 3085 bzero(&ro6, sizeof(ro6)); 3086 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 3087 dst6->sin6_family = AF_INET6; 3088 dst6->sin6_len = sizeof(*dst6); 3089 dst6->sin6_addr = addr->v6; 3090 in6_rtalloc_ign(&ro6, 0, rtableid); 3091 rt = ro6.ro_rt; 3092 break; 3093 #endif /* INET6 */ 3094 } 3095 3096 if (rt && rt->rt_ifp) { 3097 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 3098 mss = max(V_tcp_mssdflt, mss); 3099 RTFREE(rt); 3100 } 3101 mss = min(mss, offer); 3102 mss = max(mss, 64); /* sanity - at least max opt space */ 3103 return (mss); 3104 } 3105 3106 static void 3107 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 3108 { 3109 struct pf_rule *r = s->rule.ptr; 3110 struct pf_src_node *sn = NULL; 3111 3112 s->rt_kif = NULL; 3113 if (!r->rt || r->rt == PF_FASTROUTE) 3114 return; 3115 switch (s->key[PF_SK_WIRE]->af) { 3116 #ifdef INET 3117 case AF_INET: 3118 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 3119 s->rt_kif = r->rpool.cur->kif; 3120 break; 3121 #endif /* INET */ 3122 #ifdef INET6 3123 case AF_INET6: 3124 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 3125 s->rt_kif = r->rpool.cur->kif; 3126 break; 3127 #endif /* INET6 */ 3128 } 3129 } 3130 3131 static u_int32_t 3132 pf_tcp_iss(struct pf_pdesc *pd) 3133 { 3134 MD5_CTX ctx; 3135 u_int32_t digest[4]; 3136 3137 if (V_pf_tcp_secret_init == 0) { 3138 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3139 MD5Init(&V_pf_tcp_secret_ctx); 3140 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3141 sizeof(V_pf_tcp_secret)); 3142 V_pf_tcp_secret_init = 1; 3143 } 3144 3145 ctx = V_pf_tcp_secret_ctx; 3146 3147 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3148 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3149 if (pd->af == AF_INET6) { 3150 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3151 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3152 } else { 3153 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3154 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3155 } 3156 MD5Final((u_char *)digest, &ctx); 3157 V_pf_tcp_iss_off += 4096; 3158 #define ISN_RANDOM_INCREMENT (4096 - 1) 3159 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3160 V_pf_tcp_iss_off); 3161 #undef ISN_RANDOM_INCREMENT 3162 } 3163 3164 static int 3165 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3166 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3167 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3168 { 3169 struct pf_rule *nr = NULL; 3170 struct pf_addr * const saddr = pd->src; 3171 struct pf_addr * const daddr = pd->dst; 3172 sa_family_t af = pd->af; 3173 struct pf_rule *r, *a = NULL; 3174 struct pf_ruleset *ruleset = NULL; 3175 struct pf_src_node *nsn = NULL; 3176 struct tcphdr *th = pd->hdr.tcp; 3177 struct pf_state_key *sk = NULL, *nk = NULL; 3178 u_short reason; 3179 int rewrite = 0, hdrlen = 0; 3180 int tag = -1, rtableid = -1; 3181 int asd = 0; 3182 int match = 0; 3183 int state_icmp = 0, icmp_dir, multi; 3184 uint16_t sport = 0 , dport = 0, virtual_type = 0, virtual_id = 0; 3185 u_int16_t bproto_sum = 0, bip_sum = 0; 3186 u_int8_t icmptype = 0, icmpcode = 0; 3187 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3188 3189 PF_RULES_RASSERT(); 3190 3191 if (inp != NULL) { 3192 INP_LOCK_ASSERT(inp); 3193 pd->lookup.uid = inp->inp_cred->cr_uid; 3194 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3195 pd->lookup.done = 1; 3196 } 3197 3198 switch (pd->proto) { 3199 case IPPROTO_TCP: 3200 sport = th->th_sport; 3201 dport = th->th_dport; 3202 hdrlen = sizeof(*th); 3203 break; 3204 case IPPROTO_UDP: 3205 sport = pd->hdr.udp->uh_sport; 3206 dport = pd->hdr.udp->uh_dport; 3207 hdrlen = sizeof(*pd->hdr.udp); 3208 break; 3209 #ifdef INET 3210 case IPPROTO_ICMP: 3211 if (pd->af != AF_INET) 3212 break; 3213 hdrlen = sizeof(*pd->hdr.icmp); 3214 icmptype = pd->hdr.icmp->icmp_type; 3215 icmpcode = pd->hdr.icmp->icmp_code; 3216 3217 state_icmp = pf_icmp_mapping(pd, icmptype, 3218 &icmp_dir, &multi, &virtual_id, &virtual_type); 3219 if (icmp_dir == PF_IN) { 3220 sport = virtual_id; 3221 dport = virtual_type; 3222 } else { 3223 sport = virtual_type; 3224 dport = virtual_id; 3225 } 3226 break; 3227 #endif /* INET */ 3228 #ifdef INET6 3229 case IPPROTO_ICMPV6: 3230 if (af != AF_INET6) 3231 break; 3232 hdrlen = sizeof(*pd->hdr.icmp6); 3233 icmptype = pd->hdr.icmp6->icmp6_type; 3234 icmpcode = pd->hdr.icmp6->icmp6_code; 3235 3236 state_icmp = pf_icmp_mapping(pd, icmptype, 3237 &icmp_dir, &multi, &virtual_id, &virtual_type); 3238 if (icmp_dir == PF_IN) { 3239 sport = virtual_id; 3240 dport = virtual_type; 3241 } else { 3242 sport = virtual_type; 3243 dport = virtual_id; 3244 } 3245 break; 3246 #endif /* INET6 */ 3247 default: 3248 sport = dport = hdrlen = 0; 3249 break; 3250 } 3251 3252 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3253 3254 /* check packet for BINAT/NAT/RDR */ 3255 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3256 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3257 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3258 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3259 3260 if (pd->ip_sum) 3261 bip_sum = *pd->ip_sum; 3262 3263 switch (pd->proto) { 3264 case IPPROTO_TCP: 3265 bproto_sum = th->th_sum; 3266 pd->proto_sum = &th->th_sum; 3267 3268 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3269 nk->port[pd->sidx] != sport) { 3270 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3271 &th->th_sum, &nk->addr[pd->sidx], 3272 nk->port[pd->sidx], 0, af); 3273 pd->sport = &th->th_sport; 3274 sport = th->th_sport; 3275 } 3276 3277 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3278 nk->port[pd->didx] != dport) { 3279 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3280 &th->th_sum, &nk->addr[pd->didx], 3281 nk->port[pd->didx], 0, af); 3282 dport = th->th_dport; 3283 pd->dport = &th->th_dport; 3284 } 3285 rewrite++; 3286 break; 3287 case IPPROTO_UDP: 3288 bproto_sum = pd->hdr.udp->uh_sum; 3289 pd->proto_sum = &pd->hdr.udp->uh_sum; 3290 3291 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3292 nk->port[pd->sidx] != sport) { 3293 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3294 pd->ip_sum, &pd->hdr.udp->uh_sum, 3295 &nk->addr[pd->sidx], 3296 nk->port[pd->sidx], 1, af); 3297 sport = pd->hdr.udp->uh_sport; 3298 pd->sport = &pd->hdr.udp->uh_sport; 3299 } 3300 3301 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3302 nk->port[pd->didx] != dport) { 3303 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3304 pd->ip_sum, &pd->hdr.udp->uh_sum, 3305 &nk->addr[pd->didx], 3306 nk->port[pd->didx], 1, af); 3307 dport = pd->hdr.udp->uh_dport; 3308 pd->dport = &pd->hdr.udp->uh_dport; 3309 } 3310 rewrite++; 3311 break; 3312 #ifdef INET 3313 case IPPROTO_ICMP: 3314 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3315 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3316 nk->addr[pd->sidx].v4.s_addr, 0); 3317 3318 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3319 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3320 nk->addr[pd->didx].v4.s_addr, 0); 3321 3322 if (virtual_type == ICMP_ECHO && 3323 nk->port[pd->sidx] != pd->hdr.icmp->icmp_id) { 3324 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3325 pd->hdr.icmp->icmp_cksum, sport, 3326 nk->port[pd->sidx], 0); 3327 pd->hdr.icmp->icmp_id = nk->port[pd->sidx]; 3328 pd->sport = &pd->hdr.icmp->icmp_id; 3329 } 3330 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3331 break; 3332 #endif /* INET */ 3333 #ifdef INET6 3334 case IPPROTO_ICMPV6: 3335 nk->port[0] = nk->port[1]; 3336 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3337 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3338 &nk->addr[pd->sidx], 0); 3339 3340 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3341 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3342 &nk->addr[pd->didx], 0); 3343 rewrite++; 3344 break; 3345 #endif /* INET */ 3346 default: 3347 switch (af) { 3348 #ifdef INET 3349 case AF_INET: 3350 if (PF_ANEQ(saddr, 3351 &nk->addr[pd->sidx], AF_INET)) 3352 pf_change_a(&saddr->v4.s_addr, 3353 pd->ip_sum, 3354 nk->addr[pd->sidx].v4.s_addr, 0); 3355 3356 if (PF_ANEQ(daddr, 3357 &nk->addr[pd->didx], AF_INET)) 3358 pf_change_a(&daddr->v4.s_addr, 3359 pd->ip_sum, 3360 nk->addr[pd->didx].v4.s_addr, 0); 3361 break; 3362 #endif /* INET */ 3363 #ifdef INET6 3364 case AF_INET6: 3365 if (PF_ANEQ(saddr, 3366 &nk->addr[pd->sidx], AF_INET6)) 3367 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3368 3369 if (PF_ANEQ(daddr, 3370 &nk->addr[pd->didx], AF_INET6)) 3371 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3372 break; 3373 #endif /* INET */ 3374 } 3375 break; 3376 } 3377 if (nr->natpass) 3378 r = NULL; 3379 pd->nat_rule = nr; 3380 } 3381 3382 while (r != NULL) { 3383 r->evaluations++; 3384 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3385 r = r->skip[PF_SKIP_IFP].ptr; 3386 else if (r->direction && r->direction != direction) 3387 r = r->skip[PF_SKIP_DIR].ptr; 3388 else if (r->af && r->af != af) 3389 r = r->skip[PF_SKIP_AF].ptr; 3390 else if (r->proto && r->proto != pd->proto) 3391 r = r->skip[PF_SKIP_PROTO].ptr; 3392 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3393 r->src.neg, kif, M_GETFIB(m))) 3394 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3395 /* tcp/udp only. port_op always 0 in other cases */ 3396 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3397 r->src.port[0], r->src.port[1], sport)) 3398 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3399 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3400 r->dst.neg, NULL, M_GETFIB(m))) 3401 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3402 /* tcp/udp only. port_op always 0 in other cases */ 3403 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3404 r->dst.port[0], r->dst.port[1], dport)) 3405 r = r->skip[PF_SKIP_DST_PORT].ptr; 3406 /* icmp only. type always 0 in other cases */ 3407 else if (r->type && r->type != icmptype + 1) 3408 r = TAILQ_NEXT(r, entries); 3409 /* icmp only. type always 0 in other cases */ 3410 else if (r->code && r->code != icmpcode + 1) 3411 r = TAILQ_NEXT(r, entries); 3412 else if (r->tos && !(r->tos == pd->tos)) 3413 r = TAILQ_NEXT(r, entries); 3414 else if (r->rule_flag & PFRULE_FRAGMENT) 3415 r = TAILQ_NEXT(r, entries); 3416 else if (pd->proto == IPPROTO_TCP && 3417 (r->flagset & th->th_flags) != r->flags) 3418 r = TAILQ_NEXT(r, entries); 3419 /* tcp/udp only. uid.op always 0 in other cases */ 3420 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3421 pf_socket_lookup(direction, pd, m), 1)) && 3422 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3423 pd->lookup.uid)) 3424 r = TAILQ_NEXT(r, entries); 3425 /* tcp/udp only. gid.op always 0 in other cases */ 3426 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3427 pf_socket_lookup(direction, pd, m), 1)) && 3428 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3429 pd->lookup.gid)) 3430 r = TAILQ_NEXT(r, entries); 3431 else if (r->prob && 3432 r->prob <= arc4random()) 3433 r = TAILQ_NEXT(r, entries); 3434 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3435 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3436 r = TAILQ_NEXT(r, entries); 3437 else if (r->os_fingerprint != PF_OSFP_ANY && 3438 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3439 pf_osfp_fingerprint(pd, m, off, th), 3440 r->os_fingerprint))) 3441 r = TAILQ_NEXT(r, entries); 3442 else { 3443 if (r->tag) 3444 tag = r->tag; 3445 if (r->rtableid >= 0) 3446 rtableid = r->rtableid; 3447 if (r->anchor == NULL) { 3448 match = 1; 3449 *rm = r; 3450 *am = a; 3451 *rsm = ruleset; 3452 if ((*rm)->quick) 3453 break; 3454 r = TAILQ_NEXT(r, entries); 3455 } else 3456 pf_step_into_anchor(anchor_stack, &asd, 3457 &ruleset, PF_RULESET_FILTER, &r, &a, 3458 &match); 3459 } 3460 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3461 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3462 break; 3463 } 3464 r = *rm; 3465 a = *am; 3466 ruleset = *rsm; 3467 3468 REASON_SET(&reason, PFRES_MATCH); 3469 3470 if (r->log || (nr != NULL && nr->log)) { 3471 if (rewrite) 3472 m_copyback(m, off, hdrlen, pd->hdr.any); 3473 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3474 ruleset, pd, 1); 3475 } 3476 3477 if ((r->action == PF_DROP) && 3478 ((r->rule_flag & PFRULE_RETURNRST) || 3479 (r->rule_flag & PFRULE_RETURNICMP) || 3480 (r->rule_flag & PFRULE_RETURN))) { 3481 /* undo NAT changes, if they have taken place */ 3482 if (nr != NULL) { 3483 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3484 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3485 if (pd->sport) 3486 *pd->sport = sk->port[pd->sidx]; 3487 if (pd->dport) 3488 *pd->dport = sk->port[pd->didx]; 3489 if (pd->proto_sum) 3490 *pd->proto_sum = bproto_sum; 3491 if (pd->ip_sum) 3492 *pd->ip_sum = bip_sum; 3493 m_copyback(m, off, hdrlen, pd->hdr.any); 3494 } 3495 if (pd->proto == IPPROTO_TCP && 3496 ((r->rule_flag & PFRULE_RETURNRST) || 3497 (r->rule_flag & PFRULE_RETURN)) && 3498 !(th->th_flags & TH_RST)) { 3499 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3500 int len = 0; 3501 #ifdef INET 3502 struct ip *h4; 3503 #endif 3504 #ifdef INET6 3505 struct ip6_hdr *h6; 3506 #endif 3507 3508 switch (af) { 3509 #ifdef INET 3510 case AF_INET: 3511 h4 = mtod(m, struct ip *); 3512 len = ntohs(h4->ip_len) - off; 3513 break; 3514 #endif 3515 #ifdef INET6 3516 case AF_INET6: 3517 h6 = mtod(m, struct ip6_hdr *); 3518 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3519 break; 3520 #endif 3521 } 3522 3523 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3524 REASON_SET(&reason, PFRES_PROTCKSUM); 3525 else { 3526 if (th->th_flags & TH_SYN) 3527 ack++; 3528 if (th->th_flags & TH_FIN) 3529 ack++; 3530 pf_send_tcp(m, r, af, pd->dst, 3531 pd->src, th->th_dport, th->th_sport, 3532 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3533 r->return_ttl, 1, 0, kif->pfik_ifp); 3534 } 3535 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3536 r->return_icmp) 3537 pf_send_icmp(m, r->return_icmp >> 8, 3538 r->return_icmp & 255, af, r); 3539 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3540 r->return_icmp6) 3541 pf_send_icmp(m, r->return_icmp6 >> 8, 3542 r->return_icmp6 & 255, af, r); 3543 } 3544 3545 if (r->action == PF_DROP) 3546 goto cleanup; 3547 3548 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3549 REASON_SET(&reason, PFRES_MEMORY); 3550 goto cleanup; 3551 } 3552 if (rtableid >= 0) 3553 M_SETFIB(m, rtableid); 3554 3555 if (!state_icmp && (r->keep_state || nr != NULL || 3556 (pd->flags & PFDESC_TCP_NORM))) { 3557 int action; 3558 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3559 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3560 hdrlen); 3561 if (action != PF_PASS) 3562 return (action); 3563 } else { 3564 if (sk != NULL) 3565 uma_zfree(V_pf_state_key_z, sk); 3566 if (nk != NULL) 3567 uma_zfree(V_pf_state_key_z, nk); 3568 } 3569 3570 /* copy back packet headers if we performed NAT operations */ 3571 if (rewrite) 3572 m_copyback(m, off, hdrlen, pd->hdr.any); 3573 3574 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3575 direction == PF_OUT && 3576 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3577 /* 3578 * We want the state created, but we dont 3579 * want to send this in case a partner 3580 * firewall has to know about it to allow 3581 * replies through it. 3582 */ 3583 return (PF_DEFER); 3584 3585 return (PF_PASS); 3586 3587 cleanup: 3588 if (sk != NULL) 3589 uma_zfree(V_pf_state_key_z, sk); 3590 if (nk != NULL) 3591 uma_zfree(V_pf_state_key_z, nk); 3592 return (PF_DROP); 3593 } 3594 3595 static int 3596 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3597 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3598 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3599 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3600 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3601 { 3602 struct pf_state *s = NULL; 3603 struct pf_src_node *sn = NULL; 3604 struct tcphdr *th = pd->hdr.tcp; 3605 u_int16_t mss = V_tcp_mssdflt; 3606 u_short reason; 3607 3608 /* check maximums */ 3609 if (r->max_states && 3610 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3611 V_pf_status.lcounters[LCNT_STATES]++; 3612 REASON_SET(&reason, PFRES_MAXSTATES); 3613 return (PF_DROP); 3614 } 3615 /* src node for filter rule */ 3616 if ((r->rule_flag & PFRULE_SRCTRACK || 3617 r->rpool.opts & PF_POOL_STICKYADDR) && 3618 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3619 REASON_SET(&reason, PFRES_SRCLIMIT); 3620 goto csfailed; 3621 } 3622 /* src node for translation rule */ 3623 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3624 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3625 REASON_SET(&reason, PFRES_SRCLIMIT); 3626 goto csfailed; 3627 } 3628 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3629 if (s == NULL) { 3630 REASON_SET(&reason, PFRES_MEMORY); 3631 goto csfailed; 3632 } 3633 s->rule.ptr = r; 3634 s->nat_rule.ptr = nr; 3635 s->anchor.ptr = a; 3636 STATE_INC_COUNTERS(s); 3637 if (r->allow_opts) 3638 s->state_flags |= PFSTATE_ALLOWOPTS; 3639 if (r->rule_flag & PFRULE_STATESLOPPY) 3640 s->state_flags |= PFSTATE_SLOPPY; 3641 s->log = r->log & PF_LOG_ALL; 3642 s->sync_state = PFSYNC_S_NONE; 3643 if (nr != NULL) 3644 s->log |= nr->log & PF_LOG_ALL; 3645 switch (pd->proto) { 3646 case IPPROTO_TCP: 3647 s->src.seqlo = ntohl(th->th_seq); 3648 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3649 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3650 r->keep_state == PF_STATE_MODULATE) { 3651 /* Generate sequence number modulator */ 3652 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3653 0) 3654 s->src.seqdiff = 1; 3655 pf_change_a(&th->th_seq, &th->th_sum, 3656 htonl(s->src.seqlo + s->src.seqdiff), 0); 3657 *rewrite = 1; 3658 } else 3659 s->src.seqdiff = 0; 3660 if (th->th_flags & TH_SYN) { 3661 s->src.seqhi++; 3662 s->src.wscale = pf_get_wscale(m, off, 3663 th->th_off, pd->af); 3664 } 3665 s->src.max_win = MAX(ntohs(th->th_win), 1); 3666 if (s->src.wscale & PF_WSCALE_MASK) { 3667 /* Remove scale factor from initial window */ 3668 int win = s->src.max_win; 3669 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3670 s->src.max_win = (win - 1) >> 3671 (s->src.wscale & PF_WSCALE_MASK); 3672 } 3673 if (th->th_flags & TH_FIN) 3674 s->src.seqhi++; 3675 s->dst.seqhi = 1; 3676 s->dst.max_win = 1; 3677 s->src.state = TCPS_SYN_SENT; 3678 s->dst.state = TCPS_CLOSED; 3679 s->timeout = PFTM_TCP_FIRST_PACKET; 3680 break; 3681 case IPPROTO_UDP: 3682 s->src.state = PFUDPS_SINGLE; 3683 s->dst.state = PFUDPS_NO_TRAFFIC; 3684 s->timeout = PFTM_UDP_FIRST_PACKET; 3685 break; 3686 case IPPROTO_ICMP: 3687 #ifdef INET6 3688 case IPPROTO_ICMPV6: 3689 #endif 3690 s->timeout = PFTM_ICMP_FIRST_PACKET; 3691 break; 3692 default: 3693 s->src.state = PFOTHERS_SINGLE; 3694 s->dst.state = PFOTHERS_NO_TRAFFIC; 3695 s->timeout = PFTM_OTHER_FIRST_PACKET; 3696 } 3697 3698 s->creation = time_uptime; 3699 s->expire = time_uptime; 3700 3701 if (sn != NULL) { 3702 s->src_node = sn; 3703 s->src_node->states++; 3704 } 3705 if (nsn != NULL) { 3706 /* XXX We only modify one side for now. */ 3707 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3708 s->nat_src_node = nsn; 3709 s->nat_src_node->states++; 3710 } 3711 if (pd->proto == IPPROTO_TCP) { 3712 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3713 off, pd, th, &s->src, &s->dst)) { 3714 REASON_SET(&reason, PFRES_MEMORY); 3715 pf_src_tree_remove_state(s); 3716 STATE_DEC_COUNTERS(s); 3717 uma_zfree(V_pf_state_z, s); 3718 return (PF_DROP); 3719 } 3720 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3721 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3722 &s->src, &s->dst, rewrite)) { 3723 /* This really shouldn't happen!!! */ 3724 DPFPRINTF(PF_DEBUG_URGENT, 3725 ("pf_normalize_tcp_stateful failed on first pkt")); 3726 pf_normalize_tcp_cleanup(s); 3727 pf_src_tree_remove_state(s); 3728 STATE_DEC_COUNTERS(s); 3729 uma_zfree(V_pf_state_z, s); 3730 return (PF_DROP); 3731 } 3732 } 3733 s->direction = pd->dir; 3734 3735 /* 3736 * sk/nk could already been setup by pf_get_translation(). 3737 */ 3738 if (nr == NULL) { 3739 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3740 __func__, nr, sk, nk)); 3741 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3742 if (sk == NULL) 3743 goto csfailed; 3744 nk = sk; 3745 } else 3746 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3747 __func__, nr, sk, nk)); 3748 3749 /* Swap sk/nk for PF_OUT. */ 3750 if (pf_state_insert(BOUND_IFACE(r, kif), 3751 (pd->dir == PF_IN) ? sk : nk, 3752 (pd->dir == PF_IN) ? nk : sk, s)) { 3753 if (pd->proto == IPPROTO_TCP) 3754 pf_normalize_tcp_cleanup(s); 3755 REASON_SET(&reason, PFRES_STATEINS); 3756 pf_src_tree_remove_state(s); 3757 STATE_DEC_COUNTERS(s); 3758 uma_zfree(V_pf_state_z, s); 3759 return (PF_DROP); 3760 } else 3761 *sm = s; 3762 3763 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3764 if (tag > 0) 3765 s->tag = tag; 3766 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3767 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3768 s->src.state = PF_TCPS_PROXY_SRC; 3769 /* undo NAT changes, if they have taken place */ 3770 if (nr != NULL) { 3771 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3772 if (pd->dir == PF_OUT) 3773 skt = s->key[PF_SK_STACK]; 3774 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3775 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3776 if (pd->sport) 3777 *pd->sport = skt->port[pd->sidx]; 3778 if (pd->dport) 3779 *pd->dport = skt->port[pd->didx]; 3780 if (pd->proto_sum) 3781 *pd->proto_sum = bproto_sum; 3782 if (pd->ip_sum) 3783 *pd->ip_sum = bip_sum; 3784 m_copyback(m, off, hdrlen, pd->hdr.any); 3785 } 3786 s->src.seqhi = htonl(arc4random()); 3787 /* Find mss option */ 3788 int rtid = M_GETFIB(m); 3789 mss = pf_get_mss(m, off, th->th_off, pd->af); 3790 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3791 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3792 s->src.mss = mss; 3793 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3794 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3795 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3796 REASON_SET(&reason, PFRES_SYNPROXY); 3797 return (PF_SYNPROXY_DROP); 3798 } 3799 3800 return (PF_PASS); 3801 3802 csfailed: 3803 if (sk != NULL) 3804 uma_zfree(V_pf_state_key_z, sk); 3805 if (nk != NULL) 3806 uma_zfree(V_pf_state_key_z, nk); 3807 3808 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3809 pf_unlink_src_node(sn); 3810 pf_free_src_node(sn); 3811 } 3812 3813 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3814 pf_unlink_src_node(nsn); 3815 pf_free_src_node(nsn); 3816 } 3817 3818 return (PF_DROP); 3819 } 3820 3821 static int 3822 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3823 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3824 struct pf_ruleset **rsm) 3825 { 3826 struct pf_rule *r, *a = NULL; 3827 struct pf_ruleset *ruleset = NULL; 3828 sa_family_t af = pd->af; 3829 u_short reason; 3830 int tag = -1; 3831 int asd = 0; 3832 int match = 0; 3833 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3834 3835 PF_RULES_RASSERT(); 3836 3837 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3838 while (r != NULL) { 3839 r->evaluations++; 3840 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3841 r = r->skip[PF_SKIP_IFP].ptr; 3842 else if (r->direction && r->direction != direction) 3843 r = r->skip[PF_SKIP_DIR].ptr; 3844 else if (r->af && r->af != af) 3845 r = r->skip[PF_SKIP_AF].ptr; 3846 else if (r->proto && r->proto != pd->proto) 3847 r = r->skip[PF_SKIP_PROTO].ptr; 3848 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3849 r->src.neg, kif, M_GETFIB(m))) 3850 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3851 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3852 r->dst.neg, NULL, M_GETFIB(m))) 3853 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3854 else if (r->tos && !(r->tos == pd->tos)) 3855 r = TAILQ_NEXT(r, entries); 3856 else if (r->os_fingerprint != PF_OSFP_ANY) 3857 r = TAILQ_NEXT(r, entries); 3858 else if (pd->proto == IPPROTO_UDP && 3859 (r->src.port_op || r->dst.port_op)) 3860 r = TAILQ_NEXT(r, entries); 3861 else if (pd->proto == IPPROTO_TCP && 3862 (r->src.port_op || r->dst.port_op || r->flagset)) 3863 r = TAILQ_NEXT(r, entries); 3864 else if ((pd->proto == IPPROTO_ICMP || 3865 pd->proto == IPPROTO_ICMPV6) && 3866 (r->type || r->code)) 3867 r = TAILQ_NEXT(r, entries); 3868 else if (r->prob && r->prob <= 3869 (arc4random() % (UINT_MAX - 1) + 1)) 3870 r = TAILQ_NEXT(r, entries); 3871 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3872 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3873 r = TAILQ_NEXT(r, entries); 3874 else { 3875 if (r->anchor == NULL) { 3876 match = 1; 3877 *rm = r; 3878 *am = a; 3879 *rsm = ruleset; 3880 if ((*rm)->quick) 3881 break; 3882 r = TAILQ_NEXT(r, entries); 3883 } else 3884 pf_step_into_anchor(anchor_stack, &asd, 3885 &ruleset, PF_RULESET_FILTER, &r, &a, 3886 &match); 3887 } 3888 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3889 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3890 break; 3891 } 3892 r = *rm; 3893 a = *am; 3894 ruleset = *rsm; 3895 3896 REASON_SET(&reason, PFRES_MATCH); 3897 3898 if (r->log) 3899 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3900 1); 3901 3902 if (r->action != PF_PASS) 3903 return (PF_DROP); 3904 3905 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3906 REASON_SET(&reason, PFRES_MEMORY); 3907 return (PF_DROP); 3908 } 3909 3910 return (PF_PASS); 3911 } 3912 3913 static int 3914 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3915 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3916 struct pf_pdesc *pd, u_short *reason, int *copyback) 3917 { 3918 struct tcphdr *th = pd->hdr.tcp; 3919 u_int16_t win = ntohs(th->th_win); 3920 u_int32_t ack, end, seq, orig_seq; 3921 u_int8_t sws, dws; 3922 int ackskew; 3923 3924 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3925 sws = src->wscale & PF_WSCALE_MASK; 3926 dws = dst->wscale & PF_WSCALE_MASK; 3927 } else 3928 sws = dws = 0; 3929 3930 /* 3931 * Sequence tracking algorithm from Guido van Rooij's paper: 3932 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3933 * tcp_filtering.ps 3934 */ 3935 3936 orig_seq = seq = ntohl(th->th_seq); 3937 if (src->seqlo == 0) { 3938 /* First packet from this end. Set its state */ 3939 3940 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3941 src->scrub == NULL) { 3942 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3943 REASON_SET(reason, PFRES_MEMORY); 3944 return (PF_DROP); 3945 } 3946 } 3947 3948 /* Deferred generation of sequence number modulator */ 3949 if (dst->seqdiff && !src->seqdiff) { 3950 /* use random iss for the TCP server */ 3951 while ((src->seqdiff = arc4random() - seq) == 0) 3952 ; 3953 ack = ntohl(th->th_ack) - dst->seqdiff; 3954 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3955 src->seqdiff), 0); 3956 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3957 *copyback = 1; 3958 } else { 3959 ack = ntohl(th->th_ack); 3960 } 3961 3962 end = seq + pd->p_len; 3963 if (th->th_flags & TH_SYN) { 3964 end++; 3965 if (dst->wscale & PF_WSCALE_FLAG) { 3966 src->wscale = pf_get_wscale(m, off, th->th_off, 3967 pd->af); 3968 if (src->wscale & PF_WSCALE_FLAG) { 3969 /* Remove scale factor from initial 3970 * window */ 3971 sws = src->wscale & PF_WSCALE_MASK; 3972 win = ((u_int32_t)win + (1 << sws) - 1) 3973 >> sws; 3974 dws = dst->wscale & PF_WSCALE_MASK; 3975 } else { 3976 /* fixup other window */ 3977 dst->max_win <<= dst->wscale & 3978 PF_WSCALE_MASK; 3979 /* in case of a retrans SYN|ACK */ 3980 dst->wscale = 0; 3981 } 3982 } 3983 } 3984 if (th->th_flags & TH_FIN) 3985 end++; 3986 3987 src->seqlo = seq; 3988 if (src->state < TCPS_SYN_SENT) 3989 src->state = TCPS_SYN_SENT; 3990 3991 /* 3992 * May need to slide the window (seqhi may have been set by 3993 * the crappy stack check or if we picked up the connection 3994 * after establishment) 3995 */ 3996 if (src->seqhi == 1 || 3997 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3998 src->seqhi = end + MAX(1, dst->max_win << dws); 3999 if (win > src->max_win) 4000 src->max_win = win; 4001 4002 } else { 4003 ack = ntohl(th->th_ack) - dst->seqdiff; 4004 if (src->seqdiff) { 4005 /* Modulate sequence numbers */ 4006 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 4007 src->seqdiff), 0); 4008 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 4009 *copyback = 1; 4010 } 4011 end = seq + pd->p_len; 4012 if (th->th_flags & TH_SYN) 4013 end++; 4014 if (th->th_flags & TH_FIN) 4015 end++; 4016 } 4017 4018 if ((th->th_flags & TH_ACK) == 0) { 4019 /* Let it pass through the ack skew check */ 4020 ack = dst->seqlo; 4021 } else if ((ack == 0 && 4022 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4023 /* broken tcp stacks do not set ack */ 4024 (dst->state < TCPS_SYN_SENT)) { 4025 /* 4026 * Many stacks (ours included) will set the ACK number in an 4027 * FIN|ACK if the SYN times out -- no sequence to ACK. 4028 */ 4029 ack = dst->seqlo; 4030 } 4031 4032 if (seq == end) { 4033 /* Ease sequencing restrictions on no data packets */ 4034 seq = src->seqlo; 4035 end = seq; 4036 } 4037 4038 ackskew = dst->seqlo - ack; 4039 4040 4041 /* 4042 * Need to demodulate the sequence numbers in any TCP SACK options 4043 * (Selective ACK). We could optionally validate the SACK values 4044 * against the current ACK window, either forwards or backwards, but 4045 * I'm not confident that SACK has been implemented properly 4046 * everywhere. It wouldn't surprise me if several stacks accidently 4047 * SACK too far backwards of previously ACKed data. There really aren't 4048 * any security implications of bad SACKing unless the target stack 4049 * doesn't validate the option length correctly. Someone trying to 4050 * spoof into a TCP connection won't bother blindly sending SACK 4051 * options anyway. 4052 */ 4053 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4054 if (pf_modulate_sack(m, off, pd, th, dst)) 4055 *copyback = 1; 4056 } 4057 4058 4059 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4060 if (SEQ_GEQ(src->seqhi, end) && 4061 /* Last octet inside other's window space */ 4062 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4063 /* Retrans: not more than one window back */ 4064 (ackskew >= -MAXACKWINDOW) && 4065 /* Acking not more than one reassembled fragment backwards */ 4066 (ackskew <= (MAXACKWINDOW << sws)) && 4067 /* Acking not more than one window forward */ 4068 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4069 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4070 (pd->flags & PFDESC_IP_REAS) == 0)) { 4071 /* Require an exact/+1 sequence match on resets when possible */ 4072 4073 if (dst->scrub || src->scrub) { 4074 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4075 *state, src, dst, copyback)) 4076 return (PF_DROP); 4077 } 4078 4079 /* update max window */ 4080 if (src->max_win < win) 4081 src->max_win = win; 4082 /* synchronize sequencing */ 4083 if (SEQ_GT(end, src->seqlo)) 4084 src->seqlo = end; 4085 /* slide the window of what the other end can send */ 4086 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4087 dst->seqhi = ack + MAX((win << sws), 1); 4088 4089 4090 /* update states */ 4091 if (th->th_flags & TH_SYN) 4092 if (src->state < TCPS_SYN_SENT) 4093 src->state = TCPS_SYN_SENT; 4094 if (th->th_flags & TH_FIN) 4095 if (src->state < TCPS_CLOSING) 4096 src->state = TCPS_CLOSING; 4097 if (th->th_flags & TH_ACK) { 4098 if (dst->state == TCPS_SYN_SENT) { 4099 dst->state = TCPS_ESTABLISHED; 4100 if (src->state == TCPS_ESTABLISHED && 4101 (*state)->src_node != NULL && 4102 pf_src_connlimit(state)) { 4103 REASON_SET(reason, PFRES_SRCLIMIT); 4104 return (PF_DROP); 4105 } 4106 } else if (dst->state == TCPS_CLOSING) 4107 dst->state = TCPS_FIN_WAIT_2; 4108 } 4109 if (th->th_flags & TH_RST) 4110 src->state = dst->state = TCPS_TIME_WAIT; 4111 4112 /* update expire time */ 4113 (*state)->expire = time_uptime; 4114 if (src->state >= TCPS_FIN_WAIT_2 && 4115 dst->state >= TCPS_FIN_WAIT_2) 4116 (*state)->timeout = PFTM_TCP_CLOSED; 4117 else if (src->state >= TCPS_CLOSING && 4118 dst->state >= TCPS_CLOSING) 4119 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4120 else if (src->state < TCPS_ESTABLISHED || 4121 dst->state < TCPS_ESTABLISHED) 4122 (*state)->timeout = PFTM_TCP_OPENING; 4123 else if (src->state >= TCPS_CLOSING || 4124 dst->state >= TCPS_CLOSING) 4125 (*state)->timeout = PFTM_TCP_CLOSING; 4126 else 4127 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4128 4129 /* Fall through to PASS packet */ 4130 4131 } else if ((dst->state < TCPS_SYN_SENT || 4132 dst->state >= TCPS_FIN_WAIT_2 || 4133 src->state >= TCPS_FIN_WAIT_2) && 4134 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4135 /* Within a window forward of the originating packet */ 4136 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4137 /* Within a window backward of the originating packet */ 4138 4139 /* 4140 * This currently handles three situations: 4141 * 1) Stupid stacks will shotgun SYNs before their peer 4142 * replies. 4143 * 2) When PF catches an already established stream (the 4144 * firewall rebooted, the state table was flushed, routes 4145 * changed...) 4146 * 3) Packets get funky immediately after the connection 4147 * closes (this should catch Solaris spurious ACK|FINs 4148 * that web servers like to spew after a close) 4149 * 4150 * This must be a little more careful than the above code 4151 * since packet floods will also be caught here. We don't 4152 * update the TTL here to mitigate the damage of a packet 4153 * flood and so the same code can handle awkward establishment 4154 * and a loosened connection close. 4155 * In the establishment case, a correct peer response will 4156 * validate the connection, go through the normal state code 4157 * and keep updating the state TTL. 4158 */ 4159 4160 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4161 printf("pf: loose state match: "); 4162 pf_print_state(*state); 4163 pf_print_flags(th->th_flags); 4164 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4165 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4166 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4167 (unsigned long long)(*state)->packets[1], 4168 pd->dir == PF_IN ? "in" : "out", 4169 pd->dir == (*state)->direction ? "fwd" : "rev"); 4170 } 4171 4172 if (dst->scrub || src->scrub) { 4173 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4174 *state, src, dst, copyback)) 4175 return (PF_DROP); 4176 } 4177 4178 /* update max window */ 4179 if (src->max_win < win) 4180 src->max_win = win; 4181 /* synchronize sequencing */ 4182 if (SEQ_GT(end, src->seqlo)) 4183 src->seqlo = end; 4184 /* slide the window of what the other end can send */ 4185 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4186 dst->seqhi = ack + MAX((win << sws), 1); 4187 4188 /* 4189 * Cannot set dst->seqhi here since this could be a shotgunned 4190 * SYN and not an already established connection. 4191 */ 4192 4193 if (th->th_flags & TH_FIN) 4194 if (src->state < TCPS_CLOSING) 4195 src->state = TCPS_CLOSING; 4196 if (th->th_flags & TH_RST) 4197 src->state = dst->state = TCPS_TIME_WAIT; 4198 4199 /* Fall through to PASS packet */ 4200 4201 } else { 4202 if ((*state)->dst.state == TCPS_SYN_SENT && 4203 (*state)->src.state == TCPS_SYN_SENT) { 4204 /* Send RST for state mismatches during handshake */ 4205 if (!(th->th_flags & TH_RST)) 4206 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4207 pd->dst, pd->src, th->th_dport, 4208 th->th_sport, ntohl(th->th_ack), 0, 4209 TH_RST, 0, 0, 4210 (*state)->rule.ptr->return_ttl, 1, 0, 4211 kif->pfik_ifp); 4212 src->seqlo = 0; 4213 src->seqhi = 1; 4214 src->max_win = 1; 4215 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4216 printf("pf: BAD state: "); 4217 pf_print_state(*state); 4218 pf_print_flags(th->th_flags); 4219 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4220 "pkts=%llu:%llu dir=%s,%s\n", 4221 seq, orig_seq, ack, pd->p_len, ackskew, 4222 (unsigned long long)(*state)->packets[0], 4223 (unsigned long long)(*state)->packets[1], 4224 pd->dir == PF_IN ? "in" : "out", 4225 pd->dir == (*state)->direction ? "fwd" : "rev"); 4226 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4227 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4228 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4229 ' ': '2', 4230 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4231 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4232 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4233 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4234 } 4235 REASON_SET(reason, PFRES_BADSTATE); 4236 return (PF_DROP); 4237 } 4238 4239 return (PF_PASS); 4240 } 4241 4242 static int 4243 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4244 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4245 { 4246 struct tcphdr *th = pd->hdr.tcp; 4247 4248 if (th->th_flags & TH_SYN) 4249 if (src->state < TCPS_SYN_SENT) 4250 src->state = TCPS_SYN_SENT; 4251 if (th->th_flags & TH_FIN) 4252 if (src->state < TCPS_CLOSING) 4253 src->state = TCPS_CLOSING; 4254 if (th->th_flags & TH_ACK) { 4255 if (dst->state == TCPS_SYN_SENT) { 4256 dst->state = TCPS_ESTABLISHED; 4257 if (src->state == TCPS_ESTABLISHED && 4258 (*state)->src_node != NULL && 4259 pf_src_connlimit(state)) { 4260 REASON_SET(reason, PFRES_SRCLIMIT); 4261 return (PF_DROP); 4262 } 4263 } else if (dst->state == TCPS_CLOSING) { 4264 dst->state = TCPS_FIN_WAIT_2; 4265 } else if (src->state == TCPS_SYN_SENT && 4266 dst->state < TCPS_SYN_SENT) { 4267 /* 4268 * Handle a special sloppy case where we only see one 4269 * half of the connection. If there is a ACK after 4270 * the initial SYN without ever seeing a packet from 4271 * the destination, set the connection to established. 4272 */ 4273 dst->state = src->state = TCPS_ESTABLISHED; 4274 if ((*state)->src_node != NULL && 4275 pf_src_connlimit(state)) { 4276 REASON_SET(reason, PFRES_SRCLIMIT); 4277 return (PF_DROP); 4278 } 4279 } else if (src->state == TCPS_CLOSING && 4280 dst->state == TCPS_ESTABLISHED && 4281 dst->seqlo == 0) { 4282 /* 4283 * Handle the closing of half connections where we 4284 * don't see the full bidirectional FIN/ACK+ACK 4285 * handshake. 4286 */ 4287 dst->state = TCPS_CLOSING; 4288 } 4289 } 4290 if (th->th_flags & TH_RST) 4291 src->state = dst->state = TCPS_TIME_WAIT; 4292 4293 /* update expire time */ 4294 (*state)->expire = time_uptime; 4295 if (src->state >= TCPS_FIN_WAIT_2 && 4296 dst->state >= TCPS_FIN_WAIT_2) 4297 (*state)->timeout = PFTM_TCP_CLOSED; 4298 else if (src->state >= TCPS_CLOSING && 4299 dst->state >= TCPS_CLOSING) 4300 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4301 else if (src->state < TCPS_ESTABLISHED || 4302 dst->state < TCPS_ESTABLISHED) 4303 (*state)->timeout = PFTM_TCP_OPENING; 4304 else if (src->state >= TCPS_CLOSING || 4305 dst->state >= TCPS_CLOSING) 4306 (*state)->timeout = PFTM_TCP_CLOSING; 4307 else 4308 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4309 4310 return (PF_PASS); 4311 } 4312 4313 static int 4314 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4315 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4316 u_short *reason) 4317 { 4318 struct pf_state_key_cmp key; 4319 struct tcphdr *th = pd->hdr.tcp; 4320 int copyback = 0; 4321 struct pf_state_peer *src, *dst; 4322 struct pf_state_key *sk; 4323 4324 bzero(&key, sizeof(key)); 4325 key.af = pd->af; 4326 key.proto = IPPROTO_TCP; 4327 if (direction == PF_IN) { /* wire side, straight */ 4328 PF_ACPY(&key.addr[0], pd->src, key.af); 4329 PF_ACPY(&key.addr[1], pd->dst, key.af); 4330 key.port[0] = th->th_sport; 4331 key.port[1] = th->th_dport; 4332 } else { /* stack side, reverse */ 4333 PF_ACPY(&key.addr[1], pd->src, key.af); 4334 PF_ACPY(&key.addr[0], pd->dst, key.af); 4335 key.port[1] = th->th_sport; 4336 key.port[0] = th->th_dport; 4337 } 4338 4339 STATE_LOOKUP(kif, &key, direction, *state, pd); 4340 4341 if (direction == (*state)->direction) { 4342 src = &(*state)->src; 4343 dst = &(*state)->dst; 4344 } else { 4345 src = &(*state)->dst; 4346 dst = &(*state)->src; 4347 } 4348 4349 sk = (*state)->key[pd->didx]; 4350 4351 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4352 if (direction != (*state)->direction) { 4353 REASON_SET(reason, PFRES_SYNPROXY); 4354 return (PF_SYNPROXY_DROP); 4355 } 4356 if (th->th_flags & TH_SYN) { 4357 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4358 REASON_SET(reason, PFRES_SYNPROXY); 4359 return (PF_DROP); 4360 } 4361 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4362 pd->src, th->th_dport, th->th_sport, 4363 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4364 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4365 REASON_SET(reason, PFRES_SYNPROXY); 4366 return (PF_SYNPROXY_DROP); 4367 } else if (!(th->th_flags & TH_ACK) || 4368 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4369 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4370 REASON_SET(reason, PFRES_SYNPROXY); 4371 return (PF_DROP); 4372 } else if ((*state)->src_node != NULL && 4373 pf_src_connlimit(state)) { 4374 REASON_SET(reason, PFRES_SRCLIMIT); 4375 return (PF_DROP); 4376 } else 4377 (*state)->src.state = PF_TCPS_PROXY_DST; 4378 } 4379 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4380 if (direction == (*state)->direction) { 4381 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4382 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4383 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4384 REASON_SET(reason, PFRES_SYNPROXY); 4385 return (PF_DROP); 4386 } 4387 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4388 if ((*state)->dst.seqhi == 1) 4389 (*state)->dst.seqhi = htonl(arc4random()); 4390 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4391 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4392 sk->port[pd->sidx], sk->port[pd->didx], 4393 (*state)->dst.seqhi, 0, TH_SYN, 0, 4394 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4395 REASON_SET(reason, PFRES_SYNPROXY); 4396 return (PF_SYNPROXY_DROP); 4397 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4398 (TH_SYN|TH_ACK)) || 4399 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4400 REASON_SET(reason, PFRES_SYNPROXY); 4401 return (PF_DROP); 4402 } else { 4403 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4404 (*state)->dst.seqlo = ntohl(th->th_seq); 4405 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4406 pd->src, th->th_dport, th->th_sport, 4407 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4408 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4409 (*state)->tag, NULL); 4410 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4411 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4412 sk->port[pd->sidx], sk->port[pd->didx], 4413 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4414 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4415 (*state)->src.seqdiff = (*state)->dst.seqhi - 4416 (*state)->src.seqlo; 4417 (*state)->dst.seqdiff = (*state)->src.seqhi - 4418 (*state)->dst.seqlo; 4419 (*state)->src.seqhi = (*state)->src.seqlo + 4420 (*state)->dst.max_win; 4421 (*state)->dst.seqhi = (*state)->dst.seqlo + 4422 (*state)->src.max_win; 4423 (*state)->src.wscale = (*state)->dst.wscale = 0; 4424 (*state)->src.state = (*state)->dst.state = 4425 TCPS_ESTABLISHED; 4426 REASON_SET(reason, PFRES_SYNPROXY); 4427 return (PF_SYNPROXY_DROP); 4428 } 4429 } 4430 4431 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4432 dst->state >= TCPS_FIN_WAIT_2 && 4433 src->state >= TCPS_FIN_WAIT_2) { 4434 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4435 printf("pf: state reuse "); 4436 pf_print_state(*state); 4437 pf_print_flags(th->th_flags); 4438 printf("\n"); 4439 } 4440 /* XXX make sure it's the same direction ?? */ 4441 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4442 pf_unlink_state(*state, PF_ENTER_LOCKED); 4443 *state = NULL; 4444 return (PF_DROP); 4445 } 4446 4447 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4448 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4449 return (PF_DROP); 4450 } else { 4451 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4452 ©back) == PF_DROP) 4453 return (PF_DROP); 4454 } 4455 4456 /* translate source/destination address, if necessary */ 4457 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4458 struct pf_state_key *nk = (*state)->key[pd->didx]; 4459 4460 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4461 nk->port[pd->sidx] != th->th_sport) 4462 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4463 &th->th_sum, &nk->addr[pd->sidx], 4464 nk->port[pd->sidx], 0, pd->af); 4465 4466 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4467 nk->port[pd->didx] != th->th_dport) 4468 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4469 &th->th_sum, &nk->addr[pd->didx], 4470 nk->port[pd->didx], 0, pd->af); 4471 copyback = 1; 4472 } 4473 4474 /* Copyback sequence modulation or stateful scrub changes if needed */ 4475 if (copyback) 4476 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4477 4478 return (PF_PASS); 4479 } 4480 4481 static int 4482 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4483 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4484 { 4485 struct pf_state_peer *src, *dst; 4486 struct pf_state_key_cmp key; 4487 struct udphdr *uh = pd->hdr.udp; 4488 4489 bzero(&key, sizeof(key)); 4490 key.af = pd->af; 4491 key.proto = IPPROTO_UDP; 4492 if (direction == PF_IN) { /* wire side, straight */ 4493 PF_ACPY(&key.addr[0], pd->src, key.af); 4494 PF_ACPY(&key.addr[1], pd->dst, key.af); 4495 key.port[0] = uh->uh_sport; 4496 key.port[1] = uh->uh_dport; 4497 } else { /* stack side, reverse */ 4498 PF_ACPY(&key.addr[1], pd->src, key.af); 4499 PF_ACPY(&key.addr[0], pd->dst, key.af); 4500 key.port[1] = uh->uh_sport; 4501 key.port[0] = uh->uh_dport; 4502 } 4503 4504 STATE_LOOKUP(kif, &key, direction, *state, pd); 4505 4506 if (direction == (*state)->direction) { 4507 src = &(*state)->src; 4508 dst = &(*state)->dst; 4509 } else { 4510 src = &(*state)->dst; 4511 dst = &(*state)->src; 4512 } 4513 4514 /* update states */ 4515 if (src->state < PFUDPS_SINGLE) 4516 src->state = PFUDPS_SINGLE; 4517 if (dst->state == PFUDPS_SINGLE) 4518 dst->state = PFUDPS_MULTIPLE; 4519 4520 /* update expire time */ 4521 (*state)->expire = time_uptime; 4522 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4523 (*state)->timeout = PFTM_UDP_MULTIPLE; 4524 else 4525 (*state)->timeout = PFTM_UDP_SINGLE; 4526 4527 /* translate source/destination address, if necessary */ 4528 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4529 struct pf_state_key *nk = (*state)->key[pd->didx]; 4530 4531 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4532 nk->port[pd->sidx] != uh->uh_sport) 4533 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4534 &uh->uh_sum, &nk->addr[pd->sidx], 4535 nk->port[pd->sidx], 1, pd->af); 4536 4537 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4538 nk->port[pd->didx] != uh->uh_dport) 4539 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4540 &uh->uh_sum, &nk->addr[pd->didx], 4541 nk->port[pd->didx], 1, pd->af); 4542 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4543 } 4544 4545 return (PF_PASS); 4546 } 4547 4548 static int 4549 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 4550 struct pf_state **state, struct mbuf *m, int direction, struct pfi_kif *kif, 4551 uint16_t icmpid, uint16_t type, int icmp_dir, int *iidx, int multi) 4552 { 4553 4554 key->af = pd->af; 4555 key->proto = pd->proto; 4556 if (icmp_dir == PF_IN) { 4557 *iidx = pd->sidx; 4558 key->port[pd->sidx] = icmpid; 4559 key->port[pd->didx] = type; 4560 } else { 4561 *iidx = pd->didx; 4562 key->port[pd->sidx] = type; 4563 key->port[pd->didx] = icmpid; 4564 } 4565 #ifdef INET6 4566 if (pd->af == AF_INET6 && multi != PF_ICMP_MULTI_NONE) { 4567 switch (multi) { 4568 case PF_ICMP_MULTI_SOLICITED: 4569 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 4570 key->addr[pd->sidx].addr32[1] = 0; 4571 key->addr[pd->sidx].addr32[2] = IPV6_ADDR_INT32_ONE; 4572 key->addr[pd->sidx].addr32[3] = pd->src->addr32[3]; 4573 key->addr[pd->sidx].addr8[12] = 0xff; 4574 break; 4575 case PF_ICMP_MULTI_LINK: 4576 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 4577 key->addr[pd->sidx].addr32[1] = 0; 4578 key->addr[pd->sidx].addr32[2] = 0; 4579 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 4580 break; 4581 } 4582 } else 4583 #endif 4584 PF_ACPY(&key->addr[pd->sidx], pd->src, key->af); 4585 PF_ACPY(&key->addr[pd->didx], pd->dst, key->af); 4586 4587 STATE_LOOKUP(kif, key, direction, *state, pd); 4588 4589 /* Is this ICMP message flowing in right direction? */ 4590 if ((*state)->rule.ptr->type && 4591 (((*state)->direction == direction) ? 4592 PF_IN : PF_OUT) != icmp_dir) { 4593 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4594 printf("pf: icmp type %d in wrong direction (%d): ", 4595 icmp_dir, direction); 4596 pf_print_state(*state); 4597 printf("\n"); 4598 } 4599 return (PF_DROP); 4600 } 4601 return (-1); 4602 } 4603 4604 static int 4605 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4606 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4607 { 4608 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4609 u_int16_t icmpid = 0, *icmpsum, virtual_id, virtual_type; 4610 u_int8_t icmptype; 4611 int icmp_dir, iidx, ret, multi; 4612 struct pf_state_key_cmp key; 4613 4614 bzero(&key, sizeof(key)); 4615 switch (pd->proto) { 4616 #ifdef INET 4617 case IPPROTO_ICMP: 4618 icmptype = pd->hdr.icmp->icmp_type; 4619 icmpid = pd->hdr.icmp->icmp_id; 4620 icmpsum = &pd->hdr.icmp->icmp_cksum; 4621 4622 break; 4623 #endif /* INET */ 4624 #ifdef INET6 4625 case IPPROTO_ICMPV6: 4626 icmptype = pd->hdr.icmp6->icmp6_type; 4627 icmpid = pd->hdr.icmp6->icmp6_id; 4628 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4629 4630 break; 4631 #endif /* INET6 */ 4632 default: 4633 panic("%s: proto %d\n", __func__, pd->proto); 4634 } 4635 4636 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 4637 &virtual_id, &virtual_type) == 0) { 4638 /* 4639 * ICMP query/reply message not related to a TCP/UDP packet. 4640 * Search for an ICMP state. 4641 */ 4642 ret = pf_icmp_state_lookup(&key, pd, state, m, direction, 4643 kif, virtual_id, virtual_type, icmp_dir, &iidx, 4644 PF_ICMP_MULTI_NONE); 4645 if (ret >= 0) { 4646 if (ret == PF_DROP && pd->af == AF_INET6 && 4647 icmp_dir == PF_OUT) { 4648 if (*state) 4649 PF_STATE_UNLOCK(*state); 4650 ret = pf_icmp_state_lookup(&key, pd, state, m, 4651 direction, kif, virtual_id, virtual_type, 4652 icmp_dir, &iidx, multi); 4653 if (ret >= 0) 4654 return (ret); 4655 } else 4656 return (ret); 4657 } 4658 4659 (*state)->expire = time_uptime; 4660 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4661 4662 /* translate source/destination address, if necessary */ 4663 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4664 struct pf_state_key *nk = (*state)->key[pd->didx]; 4665 4666 switch (pd->af) { 4667 #ifdef INET 4668 case AF_INET: 4669 if (PF_ANEQ(pd->src, 4670 &nk->addr[pd->sidx], AF_INET)) 4671 pf_change_a(&saddr->v4.s_addr, 4672 pd->ip_sum, 4673 nk->addr[pd->sidx].v4.s_addr, 0); 4674 4675 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4676 AF_INET)) 4677 pf_change_a(&daddr->v4.s_addr, 4678 pd->ip_sum, 4679 nk->addr[pd->didx].v4.s_addr, 0); 4680 4681 if (nk->port[iidx] != 4682 pd->hdr.icmp->icmp_id) { 4683 pd->hdr.icmp->icmp_cksum = 4684 pf_cksum_fixup( 4685 pd->hdr.icmp->icmp_cksum, icmpid, 4686 nk->port[iidx], 0); 4687 pd->hdr.icmp->icmp_id = nk->port[iidx]; 4688 } 4689 4690 m_copyback(m, off, ICMP_MINLEN, 4691 (caddr_t )pd->hdr.icmp); 4692 break; 4693 #endif /* INET */ 4694 #ifdef INET6 4695 case AF_INET6: 4696 if (PF_ANEQ(pd->src, 4697 &nk->addr[pd->sidx], AF_INET6)) 4698 pf_change_a6(saddr, 4699 &pd->hdr.icmp6->icmp6_cksum, 4700 &nk->addr[pd->sidx], 0); 4701 4702 if (PF_ANEQ(pd->dst, 4703 &nk->addr[pd->didx], AF_INET6)) 4704 pf_change_a6(daddr, 4705 &pd->hdr.icmp6->icmp6_cksum, 4706 &nk->addr[pd->didx], 0); 4707 4708 m_copyback(m, off, sizeof(struct icmp6_hdr), 4709 (caddr_t )pd->hdr.icmp6); 4710 break; 4711 #endif /* INET6 */ 4712 } 4713 } 4714 return (PF_PASS); 4715 4716 } else { 4717 /* 4718 * ICMP error message in response to a TCP/UDP packet. 4719 * Extract the inner TCP/UDP header and search for that state. 4720 */ 4721 4722 struct pf_pdesc pd2; 4723 bzero(&pd2, sizeof pd2); 4724 #ifdef INET 4725 struct ip h2; 4726 #endif /* INET */ 4727 #ifdef INET6 4728 struct ip6_hdr h2_6; 4729 int terminal = 0; 4730 #endif /* INET6 */ 4731 int ipoff2 = 0; 4732 int off2 = 0; 4733 4734 pd2.af = pd->af; 4735 /* Payload packet is from the opposite direction. */ 4736 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4737 pd2.didx = (direction == PF_IN) ? 0 : 1; 4738 switch (pd->af) { 4739 #ifdef INET 4740 case AF_INET: 4741 /* offset of h2 in mbuf chain */ 4742 ipoff2 = off + ICMP_MINLEN; 4743 4744 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4745 NULL, reason, pd2.af)) { 4746 DPFPRINTF(PF_DEBUG_MISC, 4747 ("pf: ICMP error message too short " 4748 "(ip)\n")); 4749 return (PF_DROP); 4750 } 4751 /* 4752 * ICMP error messages don't refer to non-first 4753 * fragments 4754 */ 4755 if (h2.ip_off & htons(IP_OFFMASK)) { 4756 REASON_SET(reason, PFRES_FRAG); 4757 return (PF_DROP); 4758 } 4759 4760 /* offset of protocol header that follows h2 */ 4761 off2 = ipoff2 + (h2.ip_hl << 2); 4762 4763 pd2.proto = h2.ip_p; 4764 pd2.src = (struct pf_addr *)&h2.ip_src; 4765 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4766 pd2.ip_sum = &h2.ip_sum; 4767 break; 4768 #endif /* INET */ 4769 #ifdef INET6 4770 case AF_INET6: 4771 ipoff2 = off + sizeof(struct icmp6_hdr); 4772 4773 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4774 NULL, reason, pd2.af)) { 4775 DPFPRINTF(PF_DEBUG_MISC, 4776 ("pf: ICMP error message too short " 4777 "(ip6)\n")); 4778 return (PF_DROP); 4779 } 4780 pd2.proto = h2_6.ip6_nxt; 4781 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4782 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4783 pd2.ip_sum = NULL; 4784 off2 = ipoff2 + sizeof(h2_6); 4785 do { 4786 switch (pd2.proto) { 4787 case IPPROTO_FRAGMENT: 4788 /* 4789 * ICMPv6 error messages for 4790 * non-first fragments 4791 */ 4792 REASON_SET(reason, PFRES_FRAG); 4793 return (PF_DROP); 4794 case IPPROTO_AH: 4795 case IPPROTO_HOPOPTS: 4796 case IPPROTO_ROUTING: 4797 case IPPROTO_DSTOPTS: { 4798 /* get next header and header length */ 4799 struct ip6_ext opt6; 4800 4801 if (!pf_pull_hdr(m, off2, &opt6, 4802 sizeof(opt6), NULL, reason, 4803 pd2.af)) { 4804 DPFPRINTF(PF_DEBUG_MISC, 4805 ("pf: ICMPv6 short opt\n")); 4806 return (PF_DROP); 4807 } 4808 if (pd2.proto == IPPROTO_AH) 4809 off2 += (opt6.ip6e_len + 2) * 4; 4810 else 4811 off2 += (opt6.ip6e_len + 1) * 8; 4812 pd2.proto = opt6.ip6e_nxt; 4813 /* goto the next header */ 4814 break; 4815 } 4816 default: 4817 terminal++; 4818 break; 4819 } 4820 } while (!terminal); 4821 break; 4822 #endif /* INET6 */ 4823 } 4824 4825 switch (pd2.proto) { 4826 case IPPROTO_TCP: { 4827 struct tcphdr th; 4828 u_int32_t seq; 4829 struct pf_state_peer *src, *dst; 4830 u_int8_t dws; 4831 int copyback = 0; 4832 4833 /* 4834 * Only the first 8 bytes of the TCP header can be 4835 * expected. Don't access any TCP header fields after 4836 * th_seq, an ackskew test is not possible. 4837 */ 4838 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4839 pd2.af)) { 4840 DPFPRINTF(PF_DEBUG_MISC, 4841 ("pf: ICMP error message too short " 4842 "(tcp)\n")); 4843 return (PF_DROP); 4844 } 4845 4846 key.af = pd2.af; 4847 key.proto = IPPROTO_TCP; 4848 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4849 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4850 key.port[pd2.sidx] = th.th_sport; 4851 key.port[pd2.didx] = th.th_dport; 4852 4853 STATE_LOOKUP(kif, &key, direction, *state, pd); 4854 4855 if (direction == (*state)->direction) { 4856 src = &(*state)->dst; 4857 dst = &(*state)->src; 4858 } else { 4859 src = &(*state)->src; 4860 dst = &(*state)->dst; 4861 } 4862 4863 if (src->wscale && dst->wscale) 4864 dws = dst->wscale & PF_WSCALE_MASK; 4865 else 4866 dws = 0; 4867 4868 /* Demodulate sequence number */ 4869 seq = ntohl(th.th_seq) - src->seqdiff; 4870 if (src->seqdiff) { 4871 pf_change_a(&th.th_seq, icmpsum, 4872 htonl(seq), 0); 4873 copyback = 1; 4874 } 4875 4876 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4877 (!SEQ_GEQ(src->seqhi, seq) || 4878 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4879 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4880 printf("pf: BAD ICMP %d:%d ", 4881 icmptype, pd->hdr.icmp->icmp_code); 4882 pf_print_host(pd->src, 0, pd->af); 4883 printf(" -> "); 4884 pf_print_host(pd->dst, 0, pd->af); 4885 printf(" state: "); 4886 pf_print_state(*state); 4887 printf(" seq=%u\n", seq); 4888 } 4889 REASON_SET(reason, PFRES_BADSTATE); 4890 return (PF_DROP); 4891 } else { 4892 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4893 printf("pf: OK ICMP %d:%d ", 4894 icmptype, pd->hdr.icmp->icmp_code); 4895 pf_print_host(pd->src, 0, pd->af); 4896 printf(" -> "); 4897 pf_print_host(pd->dst, 0, pd->af); 4898 printf(" state: "); 4899 pf_print_state(*state); 4900 printf(" seq=%u\n", seq); 4901 } 4902 } 4903 4904 /* translate source/destination address, if necessary */ 4905 if ((*state)->key[PF_SK_WIRE] != 4906 (*state)->key[PF_SK_STACK]) { 4907 struct pf_state_key *nk = 4908 (*state)->key[pd->didx]; 4909 4910 if (PF_ANEQ(pd2.src, 4911 &nk->addr[pd2.sidx], pd2.af) || 4912 nk->port[pd2.sidx] != th.th_sport) 4913 pf_change_icmp(pd2.src, &th.th_sport, 4914 daddr, &nk->addr[pd2.sidx], 4915 nk->port[pd2.sidx], NULL, 4916 pd2.ip_sum, icmpsum, 4917 pd->ip_sum, 0, pd2.af); 4918 4919 if (PF_ANEQ(pd2.dst, 4920 &nk->addr[pd2.didx], pd2.af) || 4921 nk->port[pd2.didx] != th.th_dport) 4922 pf_change_icmp(pd2.dst, &th.th_dport, 4923 NULL, /* XXX Inbound NAT? */ 4924 &nk->addr[pd2.didx], 4925 nk->port[pd2.didx], NULL, 4926 pd2.ip_sum, icmpsum, 4927 pd->ip_sum, 0, pd2.af); 4928 copyback = 1; 4929 } 4930 4931 if (copyback) { 4932 switch (pd2.af) { 4933 #ifdef INET 4934 case AF_INET: 4935 m_copyback(m, off, ICMP_MINLEN, 4936 (caddr_t )pd->hdr.icmp); 4937 m_copyback(m, ipoff2, sizeof(h2), 4938 (caddr_t )&h2); 4939 break; 4940 #endif /* INET */ 4941 #ifdef INET6 4942 case AF_INET6: 4943 m_copyback(m, off, 4944 sizeof(struct icmp6_hdr), 4945 (caddr_t )pd->hdr.icmp6); 4946 m_copyback(m, ipoff2, sizeof(h2_6), 4947 (caddr_t )&h2_6); 4948 break; 4949 #endif /* INET6 */ 4950 } 4951 m_copyback(m, off2, 8, (caddr_t)&th); 4952 } 4953 4954 return (PF_PASS); 4955 break; 4956 } 4957 case IPPROTO_UDP: { 4958 struct udphdr uh; 4959 4960 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4961 NULL, reason, pd2.af)) { 4962 DPFPRINTF(PF_DEBUG_MISC, 4963 ("pf: ICMP error message too short " 4964 "(udp)\n")); 4965 return (PF_DROP); 4966 } 4967 4968 key.af = pd2.af; 4969 key.proto = IPPROTO_UDP; 4970 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4971 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4972 key.port[pd2.sidx] = uh.uh_sport; 4973 key.port[pd2.didx] = uh.uh_dport; 4974 4975 STATE_LOOKUP(kif, &key, direction, *state, pd); 4976 4977 /* translate source/destination address, if necessary */ 4978 if ((*state)->key[PF_SK_WIRE] != 4979 (*state)->key[PF_SK_STACK]) { 4980 struct pf_state_key *nk = 4981 (*state)->key[pd->didx]; 4982 4983 if (PF_ANEQ(pd2.src, 4984 &nk->addr[pd2.sidx], pd2.af) || 4985 nk->port[pd2.sidx] != uh.uh_sport) 4986 pf_change_icmp(pd2.src, &uh.uh_sport, 4987 daddr, &nk->addr[pd2.sidx], 4988 nk->port[pd2.sidx], &uh.uh_sum, 4989 pd2.ip_sum, icmpsum, 4990 pd->ip_sum, 1, pd2.af); 4991 4992 if (PF_ANEQ(pd2.dst, 4993 &nk->addr[pd2.didx], pd2.af) || 4994 nk->port[pd2.didx] != uh.uh_dport) 4995 pf_change_icmp(pd2.dst, &uh.uh_dport, 4996 NULL, /* XXX Inbound NAT? */ 4997 &nk->addr[pd2.didx], 4998 nk->port[pd2.didx], &uh.uh_sum, 4999 pd2.ip_sum, icmpsum, 5000 pd->ip_sum, 1, pd2.af); 5001 5002 switch (pd2.af) { 5003 #ifdef INET 5004 case AF_INET: 5005 m_copyback(m, off, ICMP_MINLEN, 5006 (caddr_t )pd->hdr.icmp); 5007 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5008 break; 5009 #endif /* INET */ 5010 #ifdef INET6 5011 case AF_INET6: 5012 m_copyback(m, off, 5013 sizeof(struct icmp6_hdr), 5014 (caddr_t )pd->hdr.icmp6); 5015 m_copyback(m, ipoff2, sizeof(h2_6), 5016 (caddr_t )&h2_6); 5017 break; 5018 #endif /* INET6 */ 5019 } 5020 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5021 } 5022 return (PF_PASS); 5023 break; 5024 } 5025 #ifdef INET 5026 case IPPROTO_ICMP: { 5027 struct icmp iih; 5028 5029 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5030 NULL, reason, pd2.af)) { 5031 DPFPRINTF(PF_DEBUG_MISC, 5032 ("pf: ICMP error message too short i" 5033 "(icmp)\n")); 5034 return (PF_DROP); 5035 } 5036 5037 pd2.hdr.icmp = &iih; 5038 pf_icmp_mapping(&pd2, iih.icmp_type, 5039 &icmp_dir, &multi, &virtual_id, &virtual_type); 5040 5041 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 5042 direction, kif, virtual_id, virtual_type, 5043 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 5044 if (ret >= 0) 5045 return (ret); 5046 5047 /* translate source/destination address, if necessary */ 5048 if ((*state)->key[PF_SK_WIRE] != 5049 (*state)->key[PF_SK_STACK]) { 5050 struct pf_state_key *nk = 5051 (*state)->key[pd->didx]; 5052 5053 if (PF_ANEQ(pd2.src, 5054 &nk->addr[pd2.sidx], pd2.af) || 5055 (virtual_type == ICMP_ECHO && 5056 nk->port[iidx] != iih.icmp_id)) 5057 pf_change_icmp(pd2.src, 5058 (virtual_type == ICMP_ECHO) ? 5059 &iih.icmp_id : NULL, 5060 daddr, &nk->addr[pd2.sidx], 5061 nk->port[pd2.sidx], NULL, 5062 pd2.ip_sum, icmpsum, 5063 pd->ip_sum, 0, AF_INET); 5064 5065 if (PF_ANEQ(pd2.dst, 5066 &nk->addr[pd2.didx], pd2.af)) 5067 pf_change_icmp(pd2.dst, NULL, NULL, 5068 &nk->addr[pd2.didx], 0, NULL, 5069 pd2.ip_sum, icmpsum, 5070 pd->ip_sum, 0, AF_INET); 5071 5072 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5073 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5074 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5075 } 5076 return (PF_PASS); 5077 break; 5078 } 5079 #endif /* INET */ 5080 #ifdef INET6 5081 case IPPROTO_ICMPV6: { 5082 struct icmp6_hdr iih; 5083 5084 if (!pf_pull_hdr(m, off2, &iih, 5085 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5086 DPFPRINTF(PF_DEBUG_MISC, 5087 ("pf: ICMP error message too short " 5088 "(icmp6)\n")); 5089 return (PF_DROP); 5090 } 5091 5092 pd2.hdr.icmp6 = &iih; 5093 pf_icmp_mapping(&pd2, iih.icmp6_type, 5094 &icmp_dir, &multi, &virtual_id, &virtual_type); 5095 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 5096 direction, kif, virtual_id, virtual_type, 5097 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 5098 if (ret >= 0) { 5099 if (ret == PF_DROP && pd->af == AF_INET6 && 5100 icmp_dir == PF_OUT) { 5101 if (*state) 5102 PF_STATE_UNLOCK(*state); 5103 ret = pf_icmp_state_lookup(&key, pd, 5104 state, m, direction, kif, 5105 virtual_id, virtual_type, 5106 icmp_dir, &iidx, multi); 5107 if (ret >= 0) 5108 return (ret); 5109 } else 5110 return (ret); 5111 } 5112 5113 /* translate source/destination address, if necessary */ 5114 if ((*state)->key[PF_SK_WIRE] != 5115 (*state)->key[PF_SK_STACK]) { 5116 struct pf_state_key *nk = 5117 (*state)->key[pd->didx]; 5118 5119 if (PF_ANEQ(pd2.src, 5120 &nk->addr[pd2.sidx], pd2.af) || 5121 ((virtual_type == ICMP6_ECHO_REQUEST) && 5122 nk->port[pd2.sidx] != iih.icmp6_id)) 5123 pf_change_icmp(pd2.src, 5124 (virtual_type == ICMP6_ECHO_REQUEST) 5125 ? &iih.icmp6_id : NULL, 5126 daddr, &nk->addr[pd2.sidx], 5127 (virtual_type == ICMP6_ECHO_REQUEST) 5128 ? nk->port[iidx] : 0, NULL, 5129 pd2.ip_sum, icmpsum, 5130 pd->ip_sum, 0, AF_INET6); 5131 5132 if (PF_ANEQ(pd2.dst, 5133 &nk->addr[pd2.didx], pd2.af)) 5134 pf_change_icmp(pd2.dst, NULL, NULL, 5135 &nk->addr[pd2.didx], 0, NULL, 5136 pd2.ip_sum, icmpsum, 5137 pd->ip_sum, 0, AF_INET6); 5138 5139 m_copyback(m, off, sizeof(struct icmp6_hdr), 5140 (caddr_t)pd->hdr.icmp6); 5141 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5142 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5143 (caddr_t)&iih); 5144 } 5145 return (PF_PASS); 5146 break; 5147 } 5148 #endif /* INET6 */ 5149 default: { 5150 key.af = pd2.af; 5151 key.proto = pd2.proto; 5152 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5153 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5154 key.port[0] = key.port[1] = 0; 5155 5156 STATE_LOOKUP(kif, &key, direction, *state, pd); 5157 5158 /* translate source/destination address, if necessary */ 5159 if ((*state)->key[PF_SK_WIRE] != 5160 (*state)->key[PF_SK_STACK]) { 5161 struct pf_state_key *nk = 5162 (*state)->key[pd->didx]; 5163 5164 if (PF_ANEQ(pd2.src, 5165 &nk->addr[pd2.sidx], pd2.af)) 5166 pf_change_icmp(pd2.src, NULL, daddr, 5167 &nk->addr[pd2.sidx], 0, NULL, 5168 pd2.ip_sum, icmpsum, 5169 pd->ip_sum, 0, pd2.af); 5170 5171 if (PF_ANEQ(pd2.dst, 5172 &nk->addr[pd2.didx], pd2.af)) 5173 pf_change_icmp(pd2.src, NULL, 5174 NULL, /* XXX Inbound NAT? */ 5175 &nk->addr[pd2.didx], 0, NULL, 5176 pd2.ip_sum, icmpsum, 5177 pd->ip_sum, 0, pd2.af); 5178 5179 switch (pd2.af) { 5180 #ifdef INET 5181 case AF_INET: 5182 m_copyback(m, off, ICMP_MINLEN, 5183 (caddr_t)pd->hdr.icmp); 5184 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5185 break; 5186 #endif /* INET */ 5187 #ifdef INET6 5188 case AF_INET6: 5189 m_copyback(m, off, 5190 sizeof(struct icmp6_hdr), 5191 (caddr_t )pd->hdr.icmp6); 5192 m_copyback(m, ipoff2, sizeof(h2_6), 5193 (caddr_t )&h2_6); 5194 break; 5195 #endif /* INET6 */ 5196 } 5197 } 5198 return (PF_PASS); 5199 break; 5200 } 5201 } 5202 } 5203 } 5204 5205 static int 5206 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5207 struct mbuf *m, struct pf_pdesc *pd) 5208 { 5209 struct pf_state_peer *src, *dst; 5210 struct pf_state_key_cmp key; 5211 5212 bzero(&key, sizeof(key)); 5213 key.af = pd->af; 5214 key.proto = pd->proto; 5215 if (direction == PF_IN) { 5216 PF_ACPY(&key.addr[0], pd->src, key.af); 5217 PF_ACPY(&key.addr[1], pd->dst, key.af); 5218 key.port[0] = key.port[1] = 0; 5219 } else { 5220 PF_ACPY(&key.addr[1], pd->src, key.af); 5221 PF_ACPY(&key.addr[0], pd->dst, key.af); 5222 key.port[1] = key.port[0] = 0; 5223 } 5224 5225 STATE_LOOKUP(kif, &key, direction, *state, pd); 5226 5227 if (direction == (*state)->direction) { 5228 src = &(*state)->src; 5229 dst = &(*state)->dst; 5230 } else { 5231 src = &(*state)->dst; 5232 dst = &(*state)->src; 5233 } 5234 5235 /* update states */ 5236 if (src->state < PFOTHERS_SINGLE) 5237 src->state = PFOTHERS_SINGLE; 5238 if (dst->state == PFOTHERS_SINGLE) 5239 dst->state = PFOTHERS_MULTIPLE; 5240 5241 /* update expire time */ 5242 (*state)->expire = time_uptime; 5243 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5244 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5245 else 5246 (*state)->timeout = PFTM_OTHER_SINGLE; 5247 5248 /* translate source/destination address, if necessary */ 5249 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5250 struct pf_state_key *nk = (*state)->key[pd->didx]; 5251 5252 KASSERT(nk, ("%s: nk is null", __func__)); 5253 KASSERT(pd, ("%s: pd is null", __func__)); 5254 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5255 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5256 switch (pd->af) { 5257 #ifdef INET 5258 case AF_INET: 5259 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5260 pf_change_a(&pd->src->v4.s_addr, 5261 pd->ip_sum, 5262 nk->addr[pd->sidx].v4.s_addr, 5263 0); 5264 5265 5266 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5267 pf_change_a(&pd->dst->v4.s_addr, 5268 pd->ip_sum, 5269 nk->addr[pd->didx].v4.s_addr, 5270 0); 5271 5272 break; 5273 #endif /* INET */ 5274 #ifdef INET6 5275 case AF_INET6: 5276 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5277 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5278 5279 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5280 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5281 #endif /* INET6 */ 5282 } 5283 } 5284 return (PF_PASS); 5285 } 5286 5287 /* 5288 * ipoff and off are measured from the start of the mbuf chain. 5289 * h must be at "ipoff" on the mbuf chain. 5290 */ 5291 void * 5292 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5293 u_short *actionp, u_short *reasonp, sa_family_t af) 5294 { 5295 switch (af) { 5296 #ifdef INET 5297 case AF_INET: { 5298 struct ip *h = mtod(m, struct ip *); 5299 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5300 5301 if (fragoff) { 5302 if (fragoff >= len) 5303 ACTION_SET(actionp, PF_PASS); 5304 else { 5305 ACTION_SET(actionp, PF_DROP); 5306 REASON_SET(reasonp, PFRES_FRAG); 5307 } 5308 return (NULL); 5309 } 5310 if (m->m_pkthdr.len < off + len || 5311 ntohs(h->ip_len) < off + len) { 5312 ACTION_SET(actionp, PF_DROP); 5313 REASON_SET(reasonp, PFRES_SHORT); 5314 return (NULL); 5315 } 5316 break; 5317 } 5318 #endif /* INET */ 5319 #ifdef INET6 5320 case AF_INET6: { 5321 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5322 5323 if (m->m_pkthdr.len < off + len || 5324 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5325 (unsigned)(off + len)) { 5326 ACTION_SET(actionp, PF_DROP); 5327 REASON_SET(reasonp, PFRES_SHORT); 5328 return (NULL); 5329 } 5330 break; 5331 } 5332 #endif /* INET6 */ 5333 } 5334 m_copydata(m, off, len, p); 5335 return (p); 5336 } 5337 5338 int 5339 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5340 int rtableid) 5341 { 5342 #ifdef RADIX_MPATH 5343 struct radix_node_head *rnh; 5344 #endif 5345 struct sockaddr_in *dst; 5346 int ret = 1; 5347 int check_mpath; 5348 #ifdef INET6 5349 struct sockaddr_in6 *dst6; 5350 struct route_in6 ro; 5351 #else 5352 struct route ro; 5353 #endif 5354 struct radix_node *rn; 5355 struct rtentry *rt; 5356 struct ifnet *ifp; 5357 5358 check_mpath = 0; 5359 #ifdef RADIX_MPATH 5360 /* XXX: stick to table 0 for now */ 5361 rnh = rt_tables_get_rnh(0, af); 5362 if (rnh != NULL && rn_mpath_capable(rnh)) 5363 check_mpath = 1; 5364 #endif 5365 bzero(&ro, sizeof(ro)); 5366 switch (af) { 5367 case AF_INET: 5368 dst = satosin(&ro.ro_dst); 5369 dst->sin_family = AF_INET; 5370 dst->sin_len = sizeof(*dst); 5371 dst->sin_addr = addr->v4; 5372 break; 5373 #ifdef INET6 5374 case AF_INET6: 5375 /* 5376 * Skip check for addresses with embedded interface scope, 5377 * as they would always match anyway. 5378 */ 5379 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5380 goto out; 5381 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5382 dst6->sin6_family = AF_INET6; 5383 dst6->sin6_len = sizeof(*dst6); 5384 dst6->sin6_addr = addr->v6; 5385 break; 5386 #endif /* INET6 */ 5387 default: 5388 return (0); 5389 } 5390 5391 /* Skip checks for ipsec interfaces */ 5392 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5393 goto out; 5394 5395 switch (af) { 5396 #ifdef INET6 5397 case AF_INET6: 5398 in6_rtalloc_ign(&ro, 0, rtableid); 5399 break; 5400 #endif 5401 #ifdef INET 5402 case AF_INET: 5403 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5404 break; 5405 #endif 5406 default: 5407 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5408 break; 5409 } 5410 5411 if (ro.ro_rt != NULL) { 5412 /* No interface given, this is a no-route check */ 5413 if (kif == NULL) 5414 goto out; 5415 5416 if (kif->pfik_ifp == NULL) { 5417 ret = 0; 5418 goto out; 5419 } 5420 5421 /* Perform uRPF check if passed input interface */ 5422 ret = 0; 5423 rn = (struct radix_node *)ro.ro_rt; 5424 do { 5425 rt = (struct rtentry *)rn; 5426 ifp = rt->rt_ifp; 5427 5428 if (kif->pfik_ifp == ifp) 5429 ret = 1; 5430 #ifdef RADIX_MPATH 5431 rn = rn_mpath_next(rn); 5432 #endif 5433 } while (check_mpath == 1 && rn != NULL && ret == 0); 5434 } else 5435 ret = 0; 5436 out: 5437 if (ro.ro_rt != NULL) 5438 RTFREE(ro.ro_rt); 5439 return (ret); 5440 } 5441 5442 #ifdef INET 5443 static void 5444 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5445 struct pf_state *s, struct pf_pdesc *pd) 5446 { 5447 struct mbuf *m0, *m1; 5448 struct sockaddr_in dst; 5449 struct ip *ip; 5450 struct ifnet *ifp = NULL; 5451 struct pf_addr naddr; 5452 struct pf_src_node *sn = NULL; 5453 int error = 0; 5454 uint16_t ip_len, ip_off; 5455 5456 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5457 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5458 __func__)); 5459 5460 if ((pd->pf_mtag == NULL && 5461 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5462 pd->pf_mtag->routed++ > 3) { 5463 m0 = *m; 5464 *m = NULL; 5465 goto bad_locked; 5466 } 5467 5468 if (r->rt == PF_DUPTO) { 5469 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5470 if (s) 5471 PF_STATE_UNLOCK(s); 5472 return; 5473 } 5474 } else { 5475 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5476 if (s) 5477 PF_STATE_UNLOCK(s); 5478 return; 5479 } 5480 m0 = *m; 5481 } 5482 5483 ip = mtod(m0, struct ip *); 5484 5485 bzero(&dst, sizeof(dst)); 5486 dst.sin_family = AF_INET; 5487 dst.sin_len = sizeof(dst); 5488 dst.sin_addr = ip->ip_dst; 5489 5490 if (r->rt == PF_FASTROUTE) { 5491 struct rtentry *rt; 5492 5493 if (s) 5494 PF_STATE_UNLOCK(s); 5495 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5496 if (rt == NULL) { 5497 KMOD_IPSTAT_INC(ips_noroute); 5498 error = EHOSTUNREACH; 5499 goto bad; 5500 } 5501 5502 ifp = rt->rt_ifp; 5503 counter_u64_add(rt->rt_pksent, 1); 5504 5505 if (rt->rt_flags & RTF_GATEWAY) 5506 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5507 RTFREE_LOCKED(rt); 5508 } else { 5509 if (TAILQ_EMPTY(&r->rpool.list)) { 5510 DPFPRINTF(PF_DEBUG_URGENT, 5511 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5512 goto bad_locked; 5513 } 5514 if (s == NULL) { 5515 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5516 &naddr, NULL, &sn); 5517 if (!PF_AZERO(&naddr, AF_INET)) 5518 dst.sin_addr.s_addr = naddr.v4.s_addr; 5519 ifp = r->rpool.cur->kif ? 5520 r->rpool.cur->kif->pfik_ifp : NULL; 5521 } else { 5522 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5523 dst.sin_addr.s_addr = 5524 s->rt_addr.v4.s_addr; 5525 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5526 PF_STATE_UNLOCK(s); 5527 } 5528 } 5529 if (ifp == NULL) 5530 goto bad; 5531 5532 if (oifp != ifp) { 5533 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5534 goto bad; 5535 else if (m0 == NULL) 5536 goto done; 5537 if (m0->m_len < sizeof(struct ip)) { 5538 DPFPRINTF(PF_DEBUG_URGENT, 5539 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5540 goto bad; 5541 } 5542 ip = mtod(m0, struct ip *); 5543 } 5544 5545 if (ifp->if_flags & IFF_LOOPBACK) 5546 m0->m_flags |= M_SKIP_FIREWALL; 5547 5548 ip_len = ntohs(ip->ip_len); 5549 ip_off = ntohs(ip->ip_off); 5550 5551 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5552 m0->m_pkthdr.csum_flags |= CSUM_IP; 5553 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5554 in_delayed_cksum(m0); 5555 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5556 } 5557 #ifdef SCTP 5558 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5559 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5560 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5561 } 5562 #endif 5563 5564 /* 5565 * If small enough for interface, or the interface will take 5566 * care of the fragmentation for us, we can just send directly. 5567 */ 5568 if (ip_len <= ifp->if_mtu || 5569 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5570 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5571 ip->ip_sum = 0; 5572 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5573 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5574 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5575 } 5576 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5577 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5578 goto done; 5579 } 5580 5581 /* Balk when DF bit is set or the interface didn't support TSO. */ 5582 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5583 error = EMSGSIZE; 5584 KMOD_IPSTAT_INC(ips_cantfrag); 5585 if (r->rt != PF_DUPTO) { 5586 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5587 ifp->if_mtu); 5588 goto done; 5589 } else 5590 goto bad; 5591 } 5592 5593 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5594 if (error) 5595 goto bad; 5596 5597 for (; m0; m0 = m1) { 5598 m1 = m0->m_nextpkt; 5599 m0->m_nextpkt = NULL; 5600 if (error == 0) { 5601 m_clrprotoflags(m0); 5602 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5603 } else 5604 m_freem(m0); 5605 } 5606 5607 if (error == 0) 5608 KMOD_IPSTAT_INC(ips_fragmented); 5609 5610 done: 5611 if (r->rt != PF_DUPTO) 5612 *m = NULL; 5613 return; 5614 5615 bad_locked: 5616 if (s) 5617 PF_STATE_UNLOCK(s); 5618 bad: 5619 m_freem(m0); 5620 goto done; 5621 } 5622 #endif /* INET */ 5623 5624 #ifdef INET6 5625 static void 5626 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5627 struct pf_state *s, struct pf_pdesc *pd) 5628 { 5629 struct mbuf *m0; 5630 struct sockaddr_in6 dst; 5631 struct ip6_hdr *ip6; 5632 struct ifnet *ifp = NULL; 5633 struct pf_addr naddr; 5634 struct pf_src_node *sn = NULL; 5635 5636 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5637 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5638 __func__)); 5639 5640 if ((pd->pf_mtag == NULL && 5641 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5642 pd->pf_mtag->routed++ > 3) { 5643 m0 = *m; 5644 *m = NULL; 5645 goto bad_locked; 5646 } 5647 5648 if (r->rt == PF_DUPTO) { 5649 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5650 if (s) 5651 PF_STATE_UNLOCK(s); 5652 return; 5653 } 5654 } else { 5655 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5656 if (s) 5657 PF_STATE_UNLOCK(s); 5658 return; 5659 } 5660 m0 = *m; 5661 } 5662 5663 ip6 = mtod(m0, struct ip6_hdr *); 5664 5665 bzero(&dst, sizeof(dst)); 5666 dst.sin6_family = AF_INET6; 5667 dst.sin6_len = sizeof(dst); 5668 dst.sin6_addr = ip6->ip6_dst; 5669 5670 /* Cheat. XXX why only in the v6 case??? */ 5671 if (r->rt == PF_FASTROUTE) { 5672 if (s) 5673 PF_STATE_UNLOCK(s); 5674 m0->m_flags |= M_SKIP_FIREWALL; 5675 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5676 return; 5677 } 5678 5679 if (TAILQ_EMPTY(&r->rpool.list)) { 5680 DPFPRINTF(PF_DEBUG_URGENT, 5681 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5682 goto bad_locked; 5683 } 5684 if (s == NULL) { 5685 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5686 &naddr, NULL, &sn); 5687 if (!PF_AZERO(&naddr, AF_INET6)) 5688 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5689 &naddr, AF_INET6); 5690 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5691 } else { 5692 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5693 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5694 &s->rt_addr, AF_INET6); 5695 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5696 } 5697 5698 if (s) 5699 PF_STATE_UNLOCK(s); 5700 5701 if (ifp == NULL) 5702 goto bad; 5703 5704 if (oifp != ifp) { 5705 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5706 goto bad; 5707 else if (m0 == NULL) 5708 goto done; 5709 if (m0->m_len < sizeof(struct ip6_hdr)) { 5710 DPFPRINTF(PF_DEBUG_URGENT, 5711 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5712 __func__)); 5713 goto bad; 5714 } 5715 ip6 = mtod(m0, struct ip6_hdr *); 5716 } 5717 5718 if (ifp->if_flags & IFF_LOOPBACK) 5719 m0->m_flags |= M_SKIP_FIREWALL; 5720 5721 /* 5722 * If the packet is too large for the outgoing interface, 5723 * send back an icmp6 error. 5724 */ 5725 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5726 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5727 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5728 nd6_output(ifp, ifp, m0, &dst, NULL); 5729 else { 5730 in6_ifstat_inc(ifp, ifs6_in_toobig); 5731 if (r->rt != PF_DUPTO) 5732 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5733 else 5734 goto bad; 5735 } 5736 5737 done: 5738 if (r->rt != PF_DUPTO) 5739 *m = NULL; 5740 return; 5741 5742 bad_locked: 5743 if (s) 5744 PF_STATE_UNLOCK(s); 5745 bad: 5746 m_freem(m0); 5747 goto done; 5748 } 5749 #endif /* INET6 */ 5750 5751 /* 5752 * FreeBSD supports cksum offloads for the following drivers. 5753 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5754 * ti(4), txp(4), xl(4) 5755 * 5756 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5757 * network driver performed cksum including pseudo header, need to verify 5758 * csum_data 5759 * CSUM_DATA_VALID : 5760 * network driver performed cksum, needs to additional pseudo header 5761 * cksum computation with partial csum_data(i.e. lack of H/W support for 5762 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5763 * 5764 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5765 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5766 * TCP/UDP layer. 5767 * Also, set csum_data to 0xffff to force cksum validation. 5768 */ 5769 static int 5770 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5771 { 5772 u_int16_t sum = 0; 5773 int hw_assist = 0; 5774 struct ip *ip; 5775 5776 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5777 return (1); 5778 if (m->m_pkthdr.len < off + len) 5779 return (1); 5780 5781 switch (p) { 5782 case IPPROTO_TCP: 5783 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5784 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5785 sum = m->m_pkthdr.csum_data; 5786 } else { 5787 ip = mtod(m, struct ip *); 5788 sum = in_pseudo(ip->ip_src.s_addr, 5789 ip->ip_dst.s_addr, htonl((u_short)len + 5790 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5791 } 5792 sum ^= 0xffff; 5793 ++hw_assist; 5794 } 5795 break; 5796 case IPPROTO_UDP: 5797 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5798 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5799 sum = m->m_pkthdr.csum_data; 5800 } else { 5801 ip = mtod(m, struct ip *); 5802 sum = in_pseudo(ip->ip_src.s_addr, 5803 ip->ip_dst.s_addr, htonl((u_short)len + 5804 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5805 } 5806 sum ^= 0xffff; 5807 ++hw_assist; 5808 } 5809 break; 5810 case IPPROTO_ICMP: 5811 #ifdef INET6 5812 case IPPROTO_ICMPV6: 5813 #endif /* INET6 */ 5814 break; 5815 default: 5816 return (1); 5817 } 5818 5819 if (!hw_assist) { 5820 switch (af) { 5821 case AF_INET: 5822 if (p == IPPROTO_ICMP) { 5823 if (m->m_len < off) 5824 return (1); 5825 m->m_data += off; 5826 m->m_len -= off; 5827 sum = in_cksum(m, len); 5828 m->m_data -= off; 5829 m->m_len += off; 5830 } else { 5831 if (m->m_len < sizeof(struct ip)) 5832 return (1); 5833 sum = in4_cksum(m, p, off, len); 5834 } 5835 break; 5836 #ifdef INET6 5837 case AF_INET6: 5838 if (m->m_len < sizeof(struct ip6_hdr)) 5839 return (1); 5840 sum = in6_cksum(m, p, off, len); 5841 break; 5842 #endif /* INET6 */ 5843 default: 5844 return (1); 5845 } 5846 } 5847 if (sum) { 5848 switch (p) { 5849 case IPPROTO_TCP: 5850 { 5851 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5852 break; 5853 } 5854 case IPPROTO_UDP: 5855 { 5856 KMOD_UDPSTAT_INC(udps_badsum); 5857 break; 5858 } 5859 #ifdef INET 5860 case IPPROTO_ICMP: 5861 { 5862 KMOD_ICMPSTAT_INC(icps_checksum); 5863 break; 5864 } 5865 #endif 5866 #ifdef INET6 5867 case IPPROTO_ICMPV6: 5868 { 5869 KMOD_ICMP6STAT_INC(icp6s_checksum); 5870 break; 5871 } 5872 #endif /* INET6 */ 5873 } 5874 return (1); 5875 } else { 5876 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5877 m->m_pkthdr.csum_flags |= 5878 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5879 m->m_pkthdr.csum_data = 0xffff; 5880 } 5881 } 5882 return (0); 5883 } 5884 5885 5886 #ifdef INET 5887 int 5888 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5889 { 5890 struct pfi_kif *kif; 5891 u_short action, reason = 0, log = 0; 5892 struct mbuf *m = *m0; 5893 struct ip *h = NULL; 5894 struct m_tag *ipfwtag; 5895 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5896 struct pf_state *s = NULL; 5897 struct pf_ruleset *ruleset = NULL; 5898 struct pf_pdesc pd; 5899 int off, dirndx, pqid = 0; 5900 5901 M_ASSERTPKTHDR(m); 5902 5903 if (!V_pf_status.running) 5904 return (PF_PASS); 5905 5906 memset(&pd, 0, sizeof(pd)); 5907 5908 kif = (struct pfi_kif *)ifp->if_pf_kif; 5909 5910 if (kif == NULL) { 5911 DPFPRINTF(PF_DEBUG_URGENT, 5912 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5913 return (PF_DROP); 5914 } 5915 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5916 return (PF_PASS); 5917 5918 if (m->m_flags & M_SKIP_FIREWALL) 5919 return (PF_PASS); 5920 5921 pd.pf_mtag = pf_find_mtag(m); 5922 5923 PF_RULES_RLOCK(); 5924 5925 if (ip_divert_ptr != NULL && 5926 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5927 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5928 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5929 if (pd.pf_mtag == NULL && 5930 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5931 action = PF_DROP; 5932 goto done; 5933 } 5934 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5935 m_tag_delete(m, ipfwtag); 5936 } 5937 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5938 m->m_flags |= M_FASTFWD_OURS; 5939 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5940 } 5941 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5942 /* We do IP header normalization and packet reassembly here */ 5943 action = PF_DROP; 5944 goto done; 5945 } 5946 m = *m0; /* pf_normalize messes with m0 */ 5947 h = mtod(m, struct ip *); 5948 5949 off = h->ip_hl << 2; 5950 if (off < (int)sizeof(struct ip)) { 5951 action = PF_DROP; 5952 REASON_SET(&reason, PFRES_SHORT); 5953 log = 1; 5954 goto done; 5955 } 5956 5957 pd.src = (struct pf_addr *)&h->ip_src; 5958 pd.dst = (struct pf_addr *)&h->ip_dst; 5959 pd.sport = pd.dport = NULL; 5960 pd.ip_sum = &h->ip_sum; 5961 pd.proto_sum = NULL; 5962 pd.proto = h->ip_p; 5963 pd.dir = dir; 5964 pd.sidx = (dir == PF_IN) ? 0 : 1; 5965 pd.didx = (dir == PF_IN) ? 1 : 0; 5966 pd.af = AF_INET; 5967 pd.tos = h->ip_tos; 5968 pd.tot_len = ntohs(h->ip_len); 5969 5970 /* handle fragments that didn't get reassembled by normalization */ 5971 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5972 action = pf_test_fragment(&r, dir, kif, m, h, 5973 &pd, &a, &ruleset); 5974 goto done; 5975 } 5976 5977 switch (h->ip_p) { 5978 5979 case IPPROTO_TCP: { 5980 struct tcphdr th; 5981 5982 pd.hdr.tcp = &th; 5983 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5984 &action, &reason, AF_INET)) { 5985 log = action != PF_PASS; 5986 goto done; 5987 } 5988 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5989 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5990 pqid = 1; 5991 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5992 if (action == PF_DROP) 5993 goto done; 5994 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5995 &reason); 5996 if (action == PF_PASS) { 5997 if (pfsync_update_state_ptr != NULL) 5998 pfsync_update_state_ptr(s); 5999 r = s->rule.ptr; 6000 a = s->anchor.ptr; 6001 log = s->log; 6002 } else if (s == NULL) 6003 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6004 &a, &ruleset, inp); 6005 break; 6006 } 6007 6008 case IPPROTO_UDP: { 6009 struct udphdr uh; 6010 6011 pd.hdr.udp = &uh; 6012 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6013 &action, &reason, AF_INET)) { 6014 log = action != PF_PASS; 6015 goto done; 6016 } 6017 if (uh.uh_dport == 0 || 6018 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6019 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6020 action = PF_DROP; 6021 REASON_SET(&reason, PFRES_SHORT); 6022 goto done; 6023 } 6024 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6025 if (action == PF_PASS) { 6026 if (pfsync_update_state_ptr != NULL) 6027 pfsync_update_state_ptr(s); 6028 r = s->rule.ptr; 6029 a = s->anchor.ptr; 6030 log = s->log; 6031 } else if (s == NULL) 6032 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6033 &a, &ruleset, inp); 6034 break; 6035 } 6036 6037 case IPPROTO_ICMP: { 6038 struct icmp ih; 6039 6040 pd.hdr.icmp = &ih; 6041 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6042 &action, &reason, AF_INET)) { 6043 log = action != PF_PASS; 6044 goto done; 6045 } 6046 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6047 &reason); 6048 if (action == PF_PASS) { 6049 if (pfsync_update_state_ptr != NULL) 6050 pfsync_update_state_ptr(s); 6051 r = s->rule.ptr; 6052 a = s->anchor.ptr; 6053 log = s->log; 6054 } else if (s == NULL) 6055 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6056 &a, &ruleset, inp); 6057 break; 6058 } 6059 6060 #ifdef INET6 6061 case IPPROTO_ICMPV6: { 6062 action = PF_DROP; 6063 DPFPRINTF(PF_DEBUG_MISC, 6064 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6065 goto done; 6066 } 6067 #endif 6068 6069 default: 6070 action = pf_test_state_other(&s, dir, kif, m, &pd); 6071 if (action == PF_PASS) { 6072 if (pfsync_update_state_ptr != NULL) 6073 pfsync_update_state_ptr(s); 6074 r = s->rule.ptr; 6075 a = s->anchor.ptr; 6076 log = s->log; 6077 } else if (s == NULL) 6078 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6079 &a, &ruleset, inp); 6080 break; 6081 } 6082 6083 done: 6084 PF_RULES_RUNLOCK(); 6085 if (action == PF_PASS && h->ip_hl > 5 && 6086 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6087 action = PF_DROP; 6088 REASON_SET(&reason, PFRES_IPOPTIONS); 6089 log = 1; 6090 DPFPRINTF(PF_DEBUG_MISC, 6091 ("pf: dropping packet with ip options\n")); 6092 } 6093 6094 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6095 action = PF_DROP; 6096 REASON_SET(&reason, PFRES_MEMORY); 6097 } 6098 if (r->rtableid >= 0) 6099 M_SETFIB(m, r->rtableid); 6100 6101 #ifdef ALTQ 6102 if (action == PF_PASS && r->qid) { 6103 if (pd.pf_mtag == NULL && 6104 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6105 action = PF_DROP; 6106 REASON_SET(&reason, PFRES_MEMORY); 6107 } 6108 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6109 pd.pf_mtag->qid = r->pqid; 6110 else 6111 pd.pf_mtag->qid = r->qid; 6112 /* add hints for ecn */ 6113 pd.pf_mtag->hdr = h; 6114 6115 } 6116 #endif /* ALTQ */ 6117 6118 /* 6119 * connections redirected to loopback should not match sockets 6120 * bound specifically to loopback due to security implications, 6121 * see tcp_input() and in_pcblookup_listen(). 6122 */ 6123 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6124 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6125 (s->nat_rule.ptr->action == PF_RDR || 6126 s->nat_rule.ptr->action == PF_BINAT) && 6127 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6128 m->m_flags |= M_SKIP_FIREWALL; 6129 6130 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6131 !PACKET_LOOPED(&pd)) { 6132 6133 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6134 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6135 if (ipfwtag != NULL) { 6136 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6137 ntohs(r->divert.port); 6138 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6139 6140 if (s) 6141 PF_STATE_UNLOCK(s); 6142 6143 m_tag_prepend(m, ipfwtag); 6144 if (m->m_flags & M_FASTFWD_OURS) { 6145 if (pd.pf_mtag == NULL && 6146 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6147 action = PF_DROP; 6148 REASON_SET(&reason, PFRES_MEMORY); 6149 log = 1; 6150 DPFPRINTF(PF_DEBUG_MISC, 6151 ("pf: failed to allocate tag\n")); 6152 } 6153 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 6154 m->m_flags &= ~M_FASTFWD_OURS; 6155 } 6156 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6157 *m0 = NULL; 6158 6159 return (action); 6160 } else { 6161 /* XXX: ipfw has the same behaviour! */ 6162 action = PF_DROP; 6163 REASON_SET(&reason, PFRES_MEMORY); 6164 log = 1; 6165 DPFPRINTF(PF_DEBUG_MISC, 6166 ("pf: failed to allocate divert tag\n")); 6167 } 6168 } 6169 6170 if (log) { 6171 struct pf_rule *lr; 6172 6173 if (s != NULL && s->nat_rule.ptr != NULL && 6174 s->nat_rule.ptr->log & PF_LOG_ALL) 6175 lr = s->nat_rule.ptr; 6176 else 6177 lr = r; 6178 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6179 (s == NULL)); 6180 } 6181 6182 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6183 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6184 6185 if (action == PF_PASS || r->action == PF_DROP) { 6186 dirndx = (dir == PF_OUT); 6187 r->packets[dirndx]++; 6188 r->bytes[dirndx] += pd.tot_len; 6189 if (a != NULL) { 6190 a->packets[dirndx]++; 6191 a->bytes[dirndx] += pd.tot_len; 6192 } 6193 if (s != NULL) { 6194 if (s->nat_rule.ptr != NULL) { 6195 s->nat_rule.ptr->packets[dirndx]++; 6196 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6197 } 6198 if (s->src_node != NULL) { 6199 s->src_node->packets[dirndx]++; 6200 s->src_node->bytes[dirndx] += pd.tot_len; 6201 } 6202 if (s->nat_src_node != NULL) { 6203 s->nat_src_node->packets[dirndx]++; 6204 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6205 } 6206 dirndx = (dir == s->direction) ? 0 : 1; 6207 s->packets[dirndx]++; 6208 s->bytes[dirndx] += pd.tot_len; 6209 } 6210 tr = r; 6211 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6212 if (nr != NULL && r == &V_pf_default_rule) 6213 tr = nr; 6214 if (tr->src.addr.type == PF_ADDR_TABLE) 6215 pfr_update_stats(tr->src.addr.p.tbl, 6216 (s == NULL) ? pd.src : 6217 &s->key[(s->direction == PF_IN)]-> 6218 addr[(s->direction == PF_OUT)], 6219 pd.af, pd.tot_len, dir == PF_OUT, 6220 r->action == PF_PASS, tr->src.neg); 6221 if (tr->dst.addr.type == PF_ADDR_TABLE) 6222 pfr_update_stats(tr->dst.addr.p.tbl, 6223 (s == NULL) ? pd.dst : 6224 &s->key[(s->direction == PF_IN)]-> 6225 addr[(s->direction == PF_IN)], 6226 pd.af, pd.tot_len, dir == PF_OUT, 6227 r->action == PF_PASS, tr->dst.neg); 6228 } 6229 6230 switch (action) { 6231 case PF_SYNPROXY_DROP: 6232 m_freem(*m0); 6233 case PF_DEFER: 6234 *m0 = NULL; 6235 action = PF_PASS; 6236 break; 6237 default: 6238 /* pf_route() returns unlocked. */ 6239 if (r->rt) { 6240 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6241 return (action); 6242 } 6243 break; 6244 } 6245 if (s) 6246 PF_STATE_UNLOCK(s); 6247 6248 return (action); 6249 } 6250 #endif /* INET */ 6251 6252 #ifdef INET6 6253 int 6254 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6255 { 6256 struct pfi_kif *kif; 6257 u_short action, reason = 0, log = 0; 6258 struct mbuf *m = *m0, *n = NULL; 6259 struct ip6_hdr *h = NULL; 6260 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6261 struct pf_state *s = NULL; 6262 struct pf_ruleset *ruleset = NULL; 6263 struct pf_pdesc pd; 6264 int off, terminal = 0, dirndx, rh_cnt = 0; 6265 6266 M_ASSERTPKTHDR(m); 6267 6268 if (!V_pf_status.running) 6269 return (PF_PASS); 6270 6271 memset(&pd, 0, sizeof(pd)); 6272 pd.pf_mtag = pf_find_mtag(m); 6273 6274 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6275 return (PF_PASS); 6276 6277 kif = (struct pfi_kif *)ifp->if_pf_kif; 6278 if (kif == NULL) { 6279 DPFPRINTF(PF_DEBUG_URGENT, 6280 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6281 return (PF_DROP); 6282 } 6283 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6284 return (PF_PASS); 6285 6286 PF_RULES_RLOCK(); 6287 6288 /* We do IP header normalization and packet reassembly here */ 6289 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6290 action = PF_DROP; 6291 goto done; 6292 } 6293 m = *m0; /* pf_normalize messes with m0 */ 6294 h = mtod(m, struct ip6_hdr *); 6295 6296 #if 1 6297 /* 6298 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6299 * will do something bad, so drop the packet for now. 6300 */ 6301 if (htons(h->ip6_plen) == 0) { 6302 action = PF_DROP; 6303 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6304 goto done; 6305 } 6306 #endif 6307 6308 pd.src = (struct pf_addr *)&h->ip6_src; 6309 pd.dst = (struct pf_addr *)&h->ip6_dst; 6310 pd.sport = pd.dport = NULL; 6311 pd.ip_sum = NULL; 6312 pd.proto_sum = NULL; 6313 pd.dir = dir; 6314 pd.sidx = (dir == PF_IN) ? 0 : 1; 6315 pd.didx = (dir == PF_IN) ? 1 : 0; 6316 pd.af = AF_INET6; 6317 pd.tos = 0; 6318 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6319 6320 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6321 pd.proto = h->ip6_nxt; 6322 do { 6323 switch (pd.proto) { 6324 case IPPROTO_FRAGMENT: 6325 action = pf_test_fragment(&r, dir, kif, m, h, 6326 &pd, &a, &ruleset); 6327 if (action == PF_DROP) 6328 REASON_SET(&reason, PFRES_FRAG); 6329 goto done; 6330 case IPPROTO_ROUTING: { 6331 struct ip6_rthdr rthdr; 6332 6333 if (rh_cnt++) { 6334 DPFPRINTF(PF_DEBUG_MISC, 6335 ("pf: IPv6 more than one rthdr\n")); 6336 action = PF_DROP; 6337 REASON_SET(&reason, PFRES_IPOPTIONS); 6338 log = 1; 6339 goto done; 6340 } 6341 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6342 &reason, pd.af)) { 6343 DPFPRINTF(PF_DEBUG_MISC, 6344 ("pf: IPv6 short rthdr\n")); 6345 action = PF_DROP; 6346 REASON_SET(&reason, PFRES_SHORT); 6347 log = 1; 6348 goto done; 6349 } 6350 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6351 DPFPRINTF(PF_DEBUG_MISC, 6352 ("pf: IPv6 rthdr0\n")); 6353 action = PF_DROP; 6354 REASON_SET(&reason, PFRES_IPOPTIONS); 6355 log = 1; 6356 goto done; 6357 } 6358 /* FALLTHROUGH */ 6359 } 6360 case IPPROTO_AH: 6361 case IPPROTO_HOPOPTS: 6362 case IPPROTO_DSTOPTS: { 6363 /* get next header and header length */ 6364 struct ip6_ext opt6; 6365 6366 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6367 NULL, &reason, pd.af)) { 6368 DPFPRINTF(PF_DEBUG_MISC, 6369 ("pf: IPv6 short opt\n")); 6370 action = PF_DROP; 6371 log = 1; 6372 goto done; 6373 } 6374 if (pd.proto == IPPROTO_AH) 6375 off += (opt6.ip6e_len + 2) * 4; 6376 else 6377 off += (opt6.ip6e_len + 1) * 8; 6378 pd.proto = opt6.ip6e_nxt; 6379 /* goto the next header */ 6380 break; 6381 } 6382 default: 6383 terminal++; 6384 break; 6385 } 6386 } while (!terminal); 6387 6388 /* if there's no routing header, use unmodified mbuf for checksumming */ 6389 if (!n) 6390 n = m; 6391 6392 switch (pd.proto) { 6393 6394 case IPPROTO_TCP: { 6395 struct tcphdr th; 6396 6397 pd.hdr.tcp = &th; 6398 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6399 &action, &reason, AF_INET6)) { 6400 log = action != PF_PASS; 6401 goto done; 6402 } 6403 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6404 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6405 if (action == PF_DROP) 6406 goto done; 6407 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6408 &reason); 6409 if (action == PF_PASS) { 6410 if (pfsync_update_state_ptr != NULL) 6411 pfsync_update_state_ptr(s); 6412 r = s->rule.ptr; 6413 a = s->anchor.ptr; 6414 log = s->log; 6415 } else if (s == NULL) 6416 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6417 &a, &ruleset, inp); 6418 break; 6419 } 6420 6421 case IPPROTO_UDP: { 6422 struct udphdr uh; 6423 6424 pd.hdr.udp = &uh; 6425 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6426 &action, &reason, AF_INET6)) { 6427 log = action != PF_PASS; 6428 goto done; 6429 } 6430 if (uh.uh_dport == 0 || 6431 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6432 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6433 action = PF_DROP; 6434 REASON_SET(&reason, PFRES_SHORT); 6435 goto done; 6436 } 6437 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6438 if (action == PF_PASS) { 6439 if (pfsync_update_state_ptr != NULL) 6440 pfsync_update_state_ptr(s); 6441 r = s->rule.ptr; 6442 a = s->anchor.ptr; 6443 log = s->log; 6444 } else if (s == NULL) 6445 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6446 &a, &ruleset, inp); 6447 break; 6448 } 6449 6450 case IPPROTO_ICMP: { 6451 action = PF_DROP; 6452 DPFPRINTF(PF_DEBUG_MISC, 6453 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6454 goto done; 6455 } 6456 6457 case IPPROTO_ICMPV6: { 6458 union { 6459 struct icmp6_hdr icmp6; 6460 struct mld_hdr mld; 6461 struct nd_neighbor_solicit nd; 6462 } ih; 6463 size_t icmp_hlen = sizeof(struct icmp6_hdr); 6464 6465 pd.hdr.icmp6 = &ih.icmp6; 6466 if (!pf_pull_hdr(m, off, &ih, icmp_hlen, 6467 &action, &reason, AF_INET6)) { 6468 log = action != PF_PASS; 6469 goto done; 6470 } 6471 /* ICMP headers we look further into to match state */ 6472 switch (ih.icmp6.icmp6_type) { 6473 case MLD_LISTENER_QUERY: 6474 case MLD_LISTENER_REPORT: 6475 icmp_hlen = sizeof(struct mld_hdr); 6476 break; 6477 case ND_NEIGHBOR_SOLICIT: 6478 case ND_NEIGHBOR_ADVERT: 6479 icmp_hlen = sizeof(struct nd_neighbor_solicit); 6480 break; 6481 } 6482 if (icmp_hlen > sizeof(struct icmp6_hdr) && 6483 !pf_pull_hdr(m, off, &ih, icmp_hlen, 6484 &action, &reason, AF_INET6)) { 6485 log = action != PF_PASS; 6486 goto done; 6487 } 6488 action = pf_test_state_icmp(&s, dir, kif, 6489 m, off, h, &pd, &reason); 6490 if (action == PF_PASS) { 6491 if (pfsync_update_state_ptr != NULL) 6492 pfsync_update_state_ptr(s); 6493 r = s->rule.ptr; 6494 a = s->anchor.ptr; 6495 log = s->log; 6496 } else if (s == NULL) 6497 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6498 &a, &ruleset, inp); 6499 break; 6500 } 6501 6502 default: 6503 action = pf_test_state_other(&s, dir, kif, m, &pd); 6504 if (action == PF_PASS) { 6505 if (pfsync_update_state_ptr != NULL) 6506 pfsync_update_state_ptr(s); 6507 r = s->rule.ptr; 6508 a = s->anchor.ptr; 6509 log = s->log; 6510 } else if (s == NULL) 6511 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6512 &a, &ruleset, inp); 6513 break; 6514 } 6515 6516 done: 6517 PF_RULES_RUNLOCK(); 6518 if (n != m) { 6519 m_freem(n); 6520 n = NULL; 6521 } 6522 6523 /* handle dangerous IPv6 extension headers. */ 6524 if (action == PF_PASS && rh_cnt && 6525 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6526 action = PF_DROP; 6527 REASON_SET(&reason, PFRES_IPOPTIONS); 6528 log = 1; 6529 DPFPRINTF(PF_DEBUG_MISC, 6530 ("pf: dropping packet with dangerous v6 headers\n")); 6531 } 6532 6533 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6534 action = PF_DROP; 6535 REASON_SET(&reason, PFRES_MEMORY); 6536 } 6537 if (r->rtableid >= 0) 6538 M_SETFIB(m, r->rtableid); 6539 6540 #ifdef ALTQ 6541 if (action == PF_PASS && r->qid) { 6542 if (pd.pf_mtag == NULL && 6543 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6544 action = PF_DROP; 6545 REASON_SET(&reason, PFRES_MEMORY); 6546 } 6547 if (pd.tos & IPTOS_LOWDELAY) 6548 pd.pf_mtag->qid = r->pqid; 6549 else 6550 pd.pf_mtag->qid = r->qid; 6551 /* add hints for ecn */ 6552 pd.pf_mtag->hdr = h; 6553 } 6554 #endif /* ALTQ */ 6555 6556 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6557 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6558 (s->nat_rule.ptr->action == PF_RDR || 6559 s->nat_rule.ptr->action == PF_BINAT) && 6560 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6561 m->m_flags |= M_SKIP_FIREWALL; 6562 6563 /* XXX: Anybody working on it?! */ 6564 if (r->divert.port) 6565 printf("pf: divert(9) is not supported for IPv6\n"); 6566 6567 if (log) { 6568 struct pf_rule *lr; 6569 6570 if (s != NULL && s->nat_rule.ptr != NULL && 6571 s->nat_rule.ptr->log & PF_LOG_ALL) 6572 lr = s->nat_rule.ptr; 6573 else 6574 lr = r; 6575 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6576 &pd, (s == NULL)); 6577 } 6578 6579 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6580 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6581 6582 if (action == PF_PASS || r->action == PF_DROP) { 6583 dirndx = (dir == PF_OUT); 6584 r->packets[dirndx]++; 6585 r->bytes[dirndx] += pd.tot_len; 6586 if (a != NULL) { 6587 a->packets[dirndx]++; 6588 a->bytes[dirndx] += pd.tot_len; 6589 } 6590 if (s != NULL) { 6591 if (s->nat_rule.ptr != NULL) { 6592 s->nat_rule.ptr->packets[dirndx]++; 6593 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6594 } 6595 if (s->src_node != NULL) { 6596 s->src_node->packets[dirndx]++; 6597 s->src_node->bytes[dirndx] += pd.tot_len; 6598 } 6599 if (s->nat_src_node != NULL) { 6600 s->nat_src_node->packets[dirndx]++; 6601 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6602 } 6603 dirndx = (dir == s->direction) ? 0 : 1; 6604 s->packets[dirndx]++; 6605 s->bytes[dirndx] += pd.tot_len; 6606 } 6607 tr = r; 6608 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6609 if (nr != NULL && r == &V_pf_default_rule) 6610 tr = nr; 6611 if (tr->src.addr.type == PF_ADDR_TABLE) 6612 pfr_update_stats(tr->src.addr.p.tbl, 6613 (s == NULL) ? pd.src : 6614 &s->key[(s->direction == PF_IN)]->addr[0], 6615 pd.af, pd.tot_len, dir == PF_OUT, 6616 r->action == PF_PASS, tr->src.neg); 6617 if (tr->dst.addr.type == PF_ADDR_TABLE) 6618 pfr_update_stats(tr->dst.addr.p.tbl, 6619 (s == NULL) ? pd.dst : 6620 &s->key[(s->direction == PF_IN)]->addr[1], 6621 pd.af, pd.tot_len, dir == PF_OUT, 6622 r->action == PF_PASS, tr->dst.neg); 6623 } 6624 6625 switch (action) { 6626 case PF_SYNPROXY_DROP: 6627 m_freem(*m0); 6628 case PF_DEFER: 6629 *m0 = NULL; 6630 action = PF_PASS; 6631 break; 6632 default: 6633 /* pf_route6() returns unlocked. */ 6634 if (r->rt) { 6635 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6636 return (action); 6637 } 6638 break; 6639 } 6640 6641 if (s) 6642 PF_STATE_UNLOCK(s); 6643 6644 return (action); 6645 } 6646 #endif /* INET6 */ 6647