1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_kstatus, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 uma_zone_t pf_mtag_z; 191 VNET_DEFINE(uma_zone_t, pf_state_z); 192 VNET_DEFINE(uma_zone_t, pf_state_key_z); 193 194 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 195 #define PFID_CPUBITS 8 196 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 197 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 198 #define PFID_MAXID (~PFID_CPUMASK) 199 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 200 201 static void pf_src_tree_remove_state(struct pf_state *); 202 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 203 u_int32_t); 204 static void pf_add_threshold(struct pf_threshold *); 205 static int pf_check_threshold(struct pf_threshold *); 206 207 static void pf_change_ap(struct pf_addr *, u_int16_t *, 208 u_int16_t *, u_int16_t *, struct pf_addr *, 209 u_int16_t, u_int8_t, sa_family_t); 210 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 211 struct tcphdr *, struct pf_state_peer *); 212 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 213 struct pf_addr *, struct pf_addr *, u_int16_t, 214 u_int16_t *, u_int16_t *, u_int16_t *, 215 u_int16_t *, u_int8_t, sa_family_t); 216 static void pf_send_tcp(struct mbuf *, 217 const struct pf_rule *, sa_family_t, 218 const struct pf_addr *, const struct pf_addr *, 219 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 220 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 221 u_int16_t, struct ifnet *); 222 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 223 sa_family_t, struct pf_rule *); 224 static void pf_detach_state(struct pf_state *); 225 static int pf_state_key_attach(struct pf_state_key *, 226 struct pf_state_key *, struct pf_state *); 227 static void pf_state_key_detach(struct pf_state *, int); 228 static int pf_state_key_ctor(void *, int, void *, int); 229 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 230 static int pf_test_rule(struct pf_rule **, struct pf_state **, 231 int, struct pfi_kif *, struct mbuf *, int, 232 struct pf_pdesc *, struct pf_rule **, 233 struct pf_ruleset **, struct inpcb *); 234 static int pf_create_state(struct pf_rule *, struct pf_rule *, 235 struct pf_rule *, struct pf_pdesc *, 236 struct pf_src_node *, struct pf_state_key *, 237 struct pf_state_key *, struct mbuf *, int, 238 u_int16_t, u_int16_t, int *, struct pfi_kif *, 239 struct pf_state **, int, u_int16_t, u_int16_t, 240 int); 241 static int pf_test_fragment(struct pf_rule **, int, 242 struct pfi_kif *, struct mbuf *, void *, 243 struct pf_pdesc *, struct pf_rule **, 244 struct pf_ruleset **); 245 static int pf_tcp_track_full(struct pf_state_peer *, 246 struct pf_state_peer *, struct pf_state **, 247 struct pfi_kif *, struct mbuf *, int, 248 struct pf_pdesc *, u_short *, int *); 249 static int pf_tcp_track_sloppy(struct pf_state_peer *, 250 struct pf_state_peer *, struct pf_state **, 251 struct pf_pdesc *, u_short *); 252 static int pf_test_state_tcp(struct pf_state **, int, 253 struct pfi_kif *, struct mbuf *, int, 254 void *, struct pf_pdesc *, u_short *); 255 static int pf_test_state_udp(struct pf_state **, int, 256 struct pfi_kif *, struct mbuf *, int, 257 void *, struct pf_pdesc *); 258 static int pf_test_state_icmp(struct pf_state **, int, 259 struct pfi_kif *, struct mbuf *, int, 260 void *, struct pf_pdesc *, u_short *); 261 static int pf_test_state_other(struct pf_state **, int, 262 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 263 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 264 sa_family_t); 265 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 268 int, u_int16_t); 269 static int pf_check_proto_cksum(struct mbuf *, int, int, 270 u_int8_t, sa_family_t); 271 static void pf_print_state_parts(struct pf_state *, 272 struct pf_state_key *, struct pf_state_key *); 273 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 274 struct pf_addr_wrap *); 275 static struct pf_state *pf_find_state(struct pfi_kif *, 276 struct pf_state_key_cmp *, u_int); 277 static int pf_src_connlimit(struct pf_state **); 278 static void pf_overload_task(void *v, int pending); 279 static int pf_insert_src_node(struct pf_src_node **, 280 struct pf_rule *, struct pf_addr *, sa_family_t); 281 static u_int pf_purge_expired_states(u_int, int); 282 static void pf_purge_unlinked_rules(void); 283 static int pf_mtag_uminit(void *, int, int); 284 static void pf_mtag_free(struct m_tag *); 285 #ifdef INET 286 static void pf_route(struct mbuf **, struct pf_rule *, int, 287 struct ifnet *, struct pf_state *, 288 struct pf_pdesc *); 289 #endif /* INET */ 290 #ifdef INET6 291 static void pf_change_a6(struct pf_addr *, u_int16_t *, 292 struct pf_addr *, u_int8_t); 293 static void pf_route6(struct mbuf **, struct pf_rule *, int, 294 struct ifnet *, struct pf_state *, 295 struct pf_pdesc *); 296 #endif /* INET6 */ 297 298 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 299 300 VNET_DECLARE(int, pf_end_threads); 301 302 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 303 304 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 305 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 306 307 #define STATE_LOOKUP(i, k, d, s, pd) \ 308 do { \ 309 (s) = pf_find_state((i), (k), (d)); \ 310 if ((s) == NULL) \ 311 return (PF_DROP); \ 312 if (PACKET_LOOPED(pd)) \ 313 return (PF_PASS); \ 314 if ((d) == PF_OUT && \ 315 (((s)->rule.ptr->rt == PF_ROUTETO && \ 316 (s)->rule.ptr->direction == PF_OUT) || \ 317 ((s)->rule.ptr->rt == PF_REPLYTO && \ 318 (s)->rule.ptr->direction == PF_IN)) && \ 319 (s)->rt_kif != NULL && \ 320 (s)->rt_kif != (i)) \ 321 return (PF_PASS); \ 322 } while (0) 323 324 #define BOUND_IFACE(r, k) \ 325 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 326 327 #define STATE_INC_COUNTERS(s) \ 328 do { \ 329 counter_u64_add(s->rule.ptr->states_cur, 1); \ 330 counter_u64_add(s->rule.ptr->states_tot, 1); \ 331 if (s->anchor.ptr != NULL) { \ 332 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 333 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 334 } \ 335 if (s->nat_rule.ptr != NULL) { \ 336 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 337 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 338 } \ 339 } while (0) 340 341 #define STATE_DEC_COUNTERS(s) \ 342 do { \ 343 if (s->nat_rule.ptr != NULL) \ 344 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 345 if (s->anchor.ptr != NULL) \ 346 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 347 counter_u64_add(s->rule.ptr->states_cur, -1); \ 348 } while (0) 349 350 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 351 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 352 VNET_DEFINE(struct pf_idhash *, pf_idhash); 353 VNET_DEFINE(struct pf_srchash *, pf_srchash); 354 355 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 356 357 u_long pf_hashmask; 358 u_long pf_srchashmask; 359 static u_long pf_hashsize; 360 static u_long pf_srchashsize; 361 362 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 363 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 364 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 365 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 366 367 VNET_DEFINE(void *, pf_swi_cookie); 368 369 VNET_DEFINE(uint32_t, pf_hashseed); 370 #define V_pf_hashseed VNET(pf_hashseed) 371 372 static __inline uint32_t 373 pf_hashkey(struct pf_state_key *sk) 374 { 375 uint32_t h; 376 377 h = murmur3_32_hash32((uint32_t *)sk, 378 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 379 V_pf_hashseed); 380 381 return (h & pf_hashmask); 382 } 383 384 static __inline uint32_t 385 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 386 { 387 uint32_t h; 388 389 switch (af) { 390 case AF_INET: 391 h = murmur3_32_hash32((uint32_t *)&addr->v4, 392 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 393 break; 394 case AF_INET6: 395 h = murmur3_32_hash32((uint32_t *)&addr->v6, 396 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 397 break; 398 default: 399 panic("%s: unknown address family %u", __func__, af); 400 } 401 402 return (h & pf_srchashmask); 403 } 404 405 #ifdef INET6 406 void 407 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 408 { 409 switch (af) { 410 #ifdef INET 411 case AF_INET: 412 dst->addr32[0] = src->addr32[0]; 413 break; 414 #endif /* INET */ 415 case AF_INET6: 416 dst->addr32[0] = src->addr32[0]; 417 dst->addr32[1] = src->addr32[1]; 418 dst->addr32[2] = src->addr32[2]; 419 dst->addr32[3] = src->addr32[3]; 420 break; 421 } 422 } 423 #endif /* INET6 */ 424 425 static void 426 pf_init_threshold(struct pf_threshold *threshold, 427 u_int32_t limit, u_int32_t seconds) 428 { 429 threshold->limit = limit * PF_THRESHOLD_MULT; 430 threshold->seconds = seconds; 431 threshold->count = 0; 432 threshold->last = time_uptime; 433 } 434 435 static void 436 pf_add_threshold(struct pf_threshold *threshold) 437 { 438 u_int32_t t = time_uptime, diff = t - threshold->last; 439 440 if (diff >= threshold->seconds) 441 threshold->count = 0; 442 else 443 threshold->count -= threshold->count * diff / 444 threshold->seconds; 445 threshold->count += PF_THRESHOLD_MULT; 446 threshold->last = t; 447 } 448 449 static int 450 pf_check_threshold(struct pf_threshold *threshold) 451 { 452 return (threshold->count > threshold->limit); 453 } 454 455 static int 456 pf_src_connlimit(struct pf_state **state) 457 { 458 struct pf_overload_entry *pfoe; 459 int bad = 0; 460 461 PF_STATE_LOCK_ASSERT(*state); 462 463 (*state)->src_node->conn++; 464 (*state)->src.tcp_est = 1; 465 pf_add_threshold(&(*state)->src_node->conn_rate); 466 467 if ((*state)->rule.ptr->max_src_conn && 468 (*state)->rule.ptr->max_src_conn < 469 (*state)->src_node->conn) { 470 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 471 bad++; 472 } 473 474 if ((*state)->rule.ptr->max_src_conn_rate.limit && 475 pf_check_threshold(&(*state)->src_node->conn_rate)) { 476 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 477 bad++; 478 } 479 480 if (!bad) 481 return (0); 482 483 /* Kill this state. */ 484 (*state)->timeout = PFTM_PURGE; 485 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 486 487 if ((*state)->rule.ptr->overload_tbl == NULL) 488 return (1); 489 490 /* Schedule overloading and flushing task. */ 491 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 492 if (pfoe == NULL) 493 return (1); /* too bad :( */ 494 495 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 496 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 497 pfoe->rule = (*state)->rule.ptr; 498 pfoe->dir = (*state)->direction; 499 PF_OVERLOADQ_LOCK(); 500 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 501 PF_OVERLOADQ_UNLOCK(); 502 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 503 504 return (1); 505 } 506 507 static void 508 pf_overload_task(void *v, int pending) 509 { 510 struct pf_overload_head queue; 511 struct pfr_addr p; 512 struct pf_overload_entry *pfoe, *pfoe1; 513 uint32_t killed = 0; 514 515 CURVNET_SET((struct vnet *)v); 516 517 PF_OVERLOADQ_LOCK(); 518 queue = V_pf_overloadqueue; 519 SLIST_INIT(&V_pf_overloadqueue); 520 PF_OVERLOADQ_UNLOCK(); 521 522 bzero(&p, sizeof(p)); 523 SLIST_FOREACH(pfoe, &queue, next) { 524 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 525 if (V_pf_status.debug >= PF_DEBUG_MISC) { 526 printf("%s: blocking address ", __func__); 527 pf_print_host(&pfoe->addr, 0, pfoe->af); 528 printf("\n"); 529 } 530 531 p.pfra_af = pfoe->af; 532 switch (pfoe->af) { 533 #ifdef INET 534 case AF_INET: 535 p.pfra_net = 32; 536 p.pfra_ip4addr = pfoe->addr.v4; 537 break; 538 #endif 539 #ifdef INET6 540 case AF_INET6: 541 p.pfra_net = 128; 542 p.pfra_ip6addr = pfoe->addr.v6; 543 break; 544 #endif 545 } 546 547 PF_RULES_WLOCK(); 548 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 549 PF_RULES_WUNLOCK(); 550 } 551 552 /* 553 * Remove those entries, that don't need flushing. 554 */ 555 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 556 if (pfoe->rule->flush == 0) { 557 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 558 free(pfoe, M_PFTEMP); 559 } else 560 counter_u64_add( 561 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 562 563 /* If nothing to flush, return. */ 564 if (SLIST_EMPTY(&queue)) { 565 CURVNET_RESTORE(); 566 return; 567 } 568 569 for (int i = 0; i <= pf_hashmask; i++) { 570 struct pf_idhash *ih = &V_pf_idhash[i]; 571 struct pf_state_key *sk; 572 struct pf_state *s; 573 574 PF_HASHROW_LOCK(ih); 575 LIST_FOREACH(s, &ih->states, entry) { 576 sk = s->key[PF_SK_WIRE]; 577 SLIST_FOREACH(pfoe, &queue, next) 578 if (sk->af == pfoe->af && 579 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 580 pfoe->rule == s->rule.ptr) && 581 ((pfoe->dir == PF_OUT && 582 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 583 (pfoe->dir == PF_IN && 584 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 585 s->timeout = PFTM_PURGE; 586 s->src.state = s->dst.state = TCPS_CLOSED; 587 killed++; 588 } 589 } 590 PF_HASHROW_UNLOCK(ih); 591 } 592 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 593 free(pfoe, M_PFTEMP); 594 if (V_pf_status.debug >= PF_DEBUG_MISC) 595 printf("%s: %u states killed", __func__, killed); 596 597 CURVNET_RESTORE(); 598 } 599 600 /* 601 * Can return locked on failure, so that we can consistently 602 * allocate and insert a new one. 603 */ 604 struct pf_src_node * 605 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 606 int returnlocked) 607 { 608 struct pf_srchash *sh; 609 struct pf_src_node *n; 610 611 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 612 613 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 614 PF_HASHROW_LOCK(sh); 615 LIST_FOREACH(n, &sh->nodes, entry) 616 if (n->rule.ptr == rule && n->af == af && 617 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 618 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 619 break; 620 if (n != NULL || returnlocked == 0) 621 PF_HASHROW_UNLOCK(sh); 622 623 return (n); 624 } 625 626 static int 627 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 628 struct pf_addr *src, sa_family_t af) 629 { 630 631 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 632 rule->rpool.opts & PF_POOL_STICKYADDR), 633 ("%s for non-tracking rule %p", __func__, rule)); 634 635 if (*sn == NULL) 636 *sn = pf_find_src_node(src, rule, af, 1); 637 638 if (*sn == NULL) { 639 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 640 641 PF_HASHROW_ASSERT(sh); 642 643 if (!rule->max_src_nodes || 644 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 645 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 646 else 647 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 648 1); 649 if ((*sn) == NULL) { 650 PF_HASHROW_UNLOCK(sh); 651 return (-1); 652 } 653 654 pf_init_threshold(&(*sn)->conn_rate, 655 rule->max_src_conn_rate.limit, 656 rule->max_src_conn_rate.seconds); 657 658 (*sn)->af = af; 659 (*sn)->rule.ptr = rule; 660 PF_ACPY(&(*sn)->addr, src, af); 661 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 662 (*sn)->creation = time_uptime; 663 (*sn)->ruletype = rule->action; 664 if ((*sn)->rule.ptr != NULL) 665 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 666 PF_HASHROW_UNLOCK(sh); 667 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 668 } else { 669 if (rule->max_src_states && 670 (*sn)->states >= rule->max_src_states) { 671 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 672 1); 673 return (-1); 674 } 675 } 676 return (0); 677 } 678 679 void 680 pf_unlink_src_node_locked(struct pf_src_node *src) 681 { 682 #ifdef INVARIANTS 683 struct pf_srchash *sh; 684 685 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 686 PF_HASHROW_ASSERT(sh); 687 #endif 688 LIST_REMOVE(src, entry); 689 if (src->rule.ptr) 690 counter_u64_add(src->rule.ptr->src_nodes, -1); 691 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 692 } 693 694 void 695 pf_unlink_src_node(struct pf_src_node *src) 696 { 697 struct pf_srchash *sh; 698 699 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 700 PF_HASHROW_LOCK(sh); 701 pf_unlink_src_node_locked(src); 702 PF_HASHROW_UNLOCK(sh); 703 } 704 705 static void 706 pf_free_src_node(struct pf_src_node *sn) 707 { 708 709 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 710 uma_zfree(V_pf_sources_z, sn); 711 } 712 713 u_int 714 pf_free_src_nodes(struct pf_src_node_list *head) 715 { 716 struct pf_src_node *sn, *tmp; 717 u_int count = 0; 718 719 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 720 pf_free_src_node(sn); 721 count++; 722 } 723 724 return (count); 725 } 726 727 void 728 pf_mtag_initialize() 729 { 730 731 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 732 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 733 UMA_ALIGN_PTR, 0); 734 } 735 736 /* Per-vnet data storage structures initialization. */ 737 void 738 pf_initialize() 739 { 740 struct pf_keyhash *kh; 741 struct pf_idhash *ih; 742 struct pf_srchash *sh; 743 u_int i; 744 745 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 746 pf_hashsize = PF_HASHSIZ; 747 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 748 pf_srchashsize = PF_HASHSIZ / 4; 749 750 V_pf_hashseed = arc4random(); 751 752 /* States and state keys storage. */ 753 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 754 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 755 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 756 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 757 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 758 759 V_pf_state_key_z = uma_zcreate("pf state keys", 760 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 761 UMA_ALIGN_PTR, 0); 762 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 763 M_PFHASH, M_WAITOK | M_ZERO); 764 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 765 M_PFHASH, M_WAITOK | M_ZERO); 766 pf_hashmask = pf_hashsize - 1; 767 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 768 i++, kh++, ih++) { 769 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 770 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 771 } 772 773 /* Source nodes. */ 774 V_pf_sources_z = uma_zcreate("pf source nodes", 775 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 776 0); 777 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 778 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 779 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 780 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 781 M_PFHASH, M_WAITOK|M_ZERO); 782 pf_srchashmask = pf_srchashsize - 1; 783 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 784 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 785 786 /* ALTQ */ 787 TAILQ_INIT(&V_pf_altqs[0]); 788 TAILQ_INIT(&V_pf_altqs[1]); 789 TAILQ_INIT(&V_pf_pabuf); 790 V_pf_altqs_active = &V_pf_altqs[0]; 791 V_pf_altqs_inactive = &V_pf_altqs[1]; 792 793 794 /* Send & overload+flush queues. */ 795 STAILQ_INIT(&V_pf_sendqueue); 796 SLIST_INIT(&V_pf_overloadqueue); 797 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 798 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 799 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 800 MTX_DEF); 801 802 /* Unlinked, but may be referenced rules. */ 803 TAILQ_INIT(&V_pf_unlinked_rules); 804 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 805 } 806 807 void 808 pf_mtag_cleanup() 809 { 810 811 uma_zdestroy(pf_mtag_z); 812 } 813 814 void 815 pf_cleanup() 816 { 817 struct pf_keyhash *kh; 818 struct pf_idhash *ih; 819 struct pf_srchash *sh; 820 struct pf_send_entry *pfse, *next; 821 u_int i; 822 823 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 824 i++, kh++, ih++) { 825 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 826 __func__)); 827 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 828 __func__)); 829 mtx_destroy(&kh->lock); 830 mtx_destroy(&ih->lock); 831 } 832 free(V_pf_keyhash, M_PFHASH); 833 free(V_pf_idhash, M_PFHASH); 834 835 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 836 KASSERT(LIST_EMPTY(&sh->nodes), 837 ("%s: source node hash not empty", __func__)); 838 mtx_destroy(&sh->lock); 839 } 840 free(V_pf_srchash, M_PFHASH); 841 842 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 843 m_freem(pfse->pfse_m); 844 free(pfse, M_PFTEMP); 845 } 846 847 mtx_destroy(&pf_sendqueue_mtx); 848 mtx_destroy(&pf_overloadqueue_mtx); 849 mtx_destroy(&pf_unlnkdrules_mtx); 850 851 uma_zdestroy(V_pf_sources_z); 852 uma_zdestroy(V_pf_state_z); 853 uma_zdestroy(V_pf_state_key_z); 854 } 855 856 static int 857 pf_mtag_uminit(void *mem, int size, int how) 858 { 859 struct m_tag *t; 860 861 t = (struct m_tag *)mem; 862 t->m_tag_cookie = MTAG_ABI_COMPAT; 863 t->m_tag_id = PACKET_TAG_PF; 864 t->m_tag_len = sizeof(struct pf_mtag); 865 t->m_tag_free = pf_mtag_free; 866 867 return (0); 868 } 869 870 static void 871 pf_mtag_free(struct m_tag *t) 872 { 873 874 uma_zfree(pf_mtag_z, t); 875 } 876 877 struct pf_mtag * 878 pf_get_mtag(struct mbuf *m) 879 { 880 struct m_tag *mtag; 881 882 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 883 return ((struct pf_mtag *)(mtag + 1)); 884 885 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 886 if (mtag == NULL) 887 return (NULL); 888 bzero(mtag + 1, sizeof(struct pf_mtag)); 889 m_tag_prepend(m, mtag); 890 891 return ((struct pf_mtag *)(mtag + 1)); 892 } 893 894 static int 895 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 896 struct pf_state *s) 897 { 898 struct pf_keyhash *khs, *khw, *kh; 899 struct pf_state_key *sk, *cur; 900 struct pf_state *si, *olds = NULL; 901 int idx; 902 903 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 904 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 905 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 906 907 /* 908 * We need to lock hash slots of both keys. To avoid deadlock 909 * we always lock the slot with lower address first. Unlock order 910 * isn't important. 911 * 912 * We also need to lock ID hash slot before dropping key 913 * locks. On success we return with ID hash slot locked. 914 */ 915 916 if (skw == sks) { 917 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 918 PF_HASHROW_LOCK(khs); 919 } else { 920 khs = &V_pf_keyhash[pf_hashkey(sks)]; 921 khw = &V_pf_keyhash[pf_hashkey(skw)]; 922 if (khs == khw) { 923 PF_HASHROW_LOCK(khs); 924 } else if (khs < khw) { 925 PF_HASHROW_LOCK(khs); 926 PF_HASHROW_LOCK(khw); 927 } else { 928 PF_HASHROW_LOCK(khw); 929 PF_HASHROW_LOCK(khs); 930 } 931 } 932 933 #define KEYS_UNLOCK() do { \ 934 if (khs != khw) { \ 935 PF_HASHROW_UNLOCK(khs); \ 936 PF_HASHROW_UNLOCK(khw); \ 937 } else \ 938 PF_HASHROW_UNLOCK(khs); \ 939 } while (0) 940 941 /* 942 * First run: start with wire key. 943 */ 944 sk = skw; 945 kh = khw; 946 idx = PF_SK_WIRE; 947 948 keyattach: 949 LIST_FOREACH(cur, &kh->keys, entry) 950 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 951 break; 952 953 if (cur != NULL) { 954 /* Key exists. Check for same kif, if none, add to key. */ 955 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 956 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 957 958 PF_HASHROW_LOCK(ih); 959 if (si->kif == s->kif && 960 si->direction == s->direction) { 961 if (sk->proto == IPPROTO_TCP && 962 si->src.state >= TCPS_FIN_WAIT_2 && 963 si->dst.state >= TCPS_FIN_WAIT_2) { 964 /* 965 * New state matches an old >FIN_WAIT_2 966 * state. We can't drop key hash locks, 967 * thus we can't unlink it properly. 968 * 969 * As a workaround we drop it into 970 * TCPS_CLOSED state, schedule purge 971 * ASAP and push it into the very end 972 * of the slot TAILQ, so that it won't 973 * conflict with our new state. 974 */ 975 si->src.state = si->dst.state = 976 TCPS_CLOSED; 977 si->timeout = PFTM_PURGE; 978 olds = si; 979 } else { 980 if (V_pf_status.debug >= PF_DEBUG_MISC) { 981 printf("pf: %s key attach " 982 "failed on %s: ", 983 (idx == PF_SK_WIRE) ? 984 "wire" : "stack", 985 s->kif->pfik_name); 986 pf_print_state_parts(s, 987 (idx == PF_SK_WIRE) ? 988 sk : NULL, 989 (idx == PF_SK_STACK) ? 990 sk : NULL); 991 printf(", existing: "); 992 pf_print_state_parts(si, 993 (idx == PF_SK_WIRE) ? 994 sk : NULL, 995 (idx == PF_SK_STACK) ? 996 sk : NULL); 997 printf("\n"); 998 } 999 PF_HASHROW_UNLOCK(ih); 1000 KEYS_UNLOCK(); 1001 uma_zfree(V_pf_state_key_z, sk); 1002 if (idx == PF_SK_STACK) 1003 pf_detach_state(s); 1004 return (EEXIST); /* collision! */ 1005 } 1006 } 1007 PF_HASHROW_UNLOCK(ih); 1008 } 1009 uma_zfree(V_pf_state_key_z, sk); 1010 s->key[idx] = cur; 1011 } else { 1012 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1013 s->key[idx] = sk; 1014 } 1015 1016 stateattach: 1017 /* List is sorted, if-bound states before floating. */ 1018 if (s->kif == V_pfi_all) 1019 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1020 else 1021 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1022 1023 if (olds) { 1024 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1025 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1026 key_list[idx]); 1027 olds = NULL; 1028 } 1029 1030 /* 1031 * Attach done. See how should we (or should not?) 1032 * attach a second key. 1033 */ 1034 if (sks == skw) { 1035 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1036 idx = PF_SK_STACK; 1037 sks = NULL; 1038 goto stateattach; 1039 } else if (sks != NULL) { 1040 /* 1041 * Continue attaching with stack key. 1042 */ 1043 sk = sks; 1044 kh = khs; 1045 idx = PF_SK_STACK; 1046 sks = NULL; 1047 goto keyattach; 1048 } 1049 1050 PF_STATE_LOCK(s); 1051 KEYS_UNLOCK(); 1052 1053 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1054 ("%s failure", __func__)); 1055 1056 return (0); 1057 #undef KEYS_UNLOCK 1058 } 1059 1060 static void 1061 pf_detach_state(struct pf_state *s) 1062 { 1063 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1064 struct pf_keyhash *kh; 1065 1066 if (sks != NULL) { 1067 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1068 PF_HASHROW_LOCK(kh); 1069 if (s->key[PF_SK_STACK] != NULL) 1070 pf_state_key_detach(s, PF_SK_STACK); 1071 /* 1072 * If both point to same key, then we are done. 1073 */ 1074 if (sks == s->key[PF_SK_WIRE]) { 1075 pf_state_key_detach(s, PF_SK_WIRE); 1076 PF_HASHROW_UNLOCK(kh); 1077 return; 1078 } 1079 PF_HASHROW_UNLOCK(kh); 1080 } 1081 1082 if (s->key[PF_SK_WIRE] != NULL) { 1083 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1084 PF_HASHROW_LOCK(kh); 1085 if (s->key[PF_SK_WIRE] != NULL) 1086 pf_state_key_detach(s, PF_SK_WIRE); 1087 PF_HASHROW_UNLOCK(kh); 1088 } 1089 } 1090 1091 static void 1092 pf_state_key_detach(struct pf_state *s, int idx) 1093 { 1094 struct pf_state_key *sk = s->key[idx]; 1095 #ifdef INVARIANTS 1096 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1097 1098 PF_HASHROW_ASSERT(kh); 1099 #endif 1100 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1101 s->key[idx] = NULL; 1102 1103 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1104 LIST_REMOVE(sk, entry); 1105 uma_zfree(V_pf_state_key_z, sk); 1106 } 1107 } 1108 1109 static int 1110 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1111 { 1112 struct pf_state_key *sk = mem; 1113 1114 bzero(sk, sizeof(struct pf_state_key_cmp)); 1115 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1116 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1117 1118 return (0); 1119 } 1120 1121 struct pf_state_key * 1122 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1123 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1124 { 1125 struct pf_state_key *sk; 1126 1127 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1128 if (sk == NULL) 1129 return (NULL); 1130 1131 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1132 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1133 sk->port[pd->sidx] = sport; 1134 sk->port[pd->didx] = dport; 1135 sk->proto = pd->proto; 1136 sk->af = pd->af; 1137 1138 return (sk); 1139 } 1140 1141 struct pf_state_key * 1142 pf_state_key_clone(struct pf_state_key *orig) 1143 { 1144 struct pf_state_key *sk; 1145 1146 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1147 if (sk == NULL) 1148 return (NULL); 1149 1150 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1151 1152 return (sk); 1153 } 1154 1155 int 1156 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1157 struct pf_state_key *sks, struct pf_state *s) 1158 { 1159 struct pf_idhash *ih; 1160 struct pf_state *cur; 1161 int error; 1162 1163 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1164 ("%s: sks not pristine", __func__)); 1165 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1166 ("%s: skw not pristine", __func__)); 1167 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1168 1169 s->kif = kif; 1170 1171 if (s->id == 0 && s->creatorid == 0) { 1172 /* XXX: should be atomic, but probability of collision low */ 1173 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1174 V_pf_stateid[curcpu] = 1; 1175 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1176 s->id = htobe64(s->id); 1177 s->creatorid = V_pf_status.hostid; 1178 } 1179 1180 /* Returns with ID locked on success. */ 1181 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1182 return (error); 1183 1184 ih = &V_pf_idhash[PF_IDHASH(s)]; 1185 PF_HASHROW_ASSERT(ih); 1186 LIST_FOREACH(cur, &ih->states, entry) 1187 if (cur->id == s->id && cur->creatorid == s->creatorid) 1188 break; 1189 1190 if (cur != NULL) { 1191 PF_HASHROW_UNLOCK(ih); 1192 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1193 printf("pf: state ID collision: " 1194 "id: %016llx creatorid: %08x\n", 1195 (unsigned long long)be64toh(s->id), 1196 ntohl(s->creatorid)); 1197 } 1198 pf_detach_state(s); 1199 return (EEXIST); 1200 } 1201 LIST_INSERT_HEAD(&ih->states, s, entry); 1202 /* One for keys, one for ID hash. */ 1203 refcount_init(&s->refs, 2); 1204 1205 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1206 if (pfsync_insert_state_ptr != NULL) 1207 pfsync_insert_state_ptr(s); 1208 1209 /* Returns locked. */ 1210 return (0); 1211 } 1212 1213 /* 1214 * Find state by ID: returns with locked row on success. 1215 */ 1216 struct pf_state * 1217 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1218 { 1219 struct pf_idhash *ih; 1220 struct pf_state *s; 1221 1222 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1223 1224 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1225 1226 PF_HASHROW_LOCK(ih); 1227 LIST_FOREACH(s, &ih->states, entry) 1228 if (s->id == id && s->creatorid == creatorid) 1229 break; 1230 1231 if (s == NULL) 1232 PF_HASHROW_UNLOCK(ih); 1233 1234 return (s); 1235 } 1236 1237 /* 1238 * Find state by key. 1239 * Returns with ID hash slot locked on success. 1240 */ 1241 static struct pf_state * 1242 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1243 { 1244 struct pf_keyhash *kh; 1245 struct pf_state_key *sk; 1246 struct pf_state *s; 1247 int idx; 1248 1249 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1250 1251 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1252 1253 PF_HASHROW_LOCK(kh); 1254 LIST_FOREACH(sk, &kh->keys, entry) 1255 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1256 break; 1257 if (sk == NULL) { 1258 PF_HASHROW_UNLOCK(kh); 1259 return (NULL); 1260 } 1261 1262 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1263 1264 /* List is sorted, if-bound states before floating ones. */ 1265 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1266 if (s->kif == V_pfi_all || s->kif == kif) { 1267 PF_STATE_LOCK(s); 1268 PF_HASHROW_UNLOCK(kh); 1269 if (s->timeout >= PFTM_MAX) { 1270 /* 1271 * State is either being processed by 1272 * pf_unlink_state() in an other thread, or 1273 * is scheduled for immediate expiry. 1274 */ 1275 PF_STATE_UNLOCK(s); 1276 return (NULL); 1277 } 1278 return (s); 1279 } 1280 PF_HASHROW_UNLOCK(kh); 1281 1282 return (NULL); 1283 } 1284 1285 struct pf_state * 1286 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1287 { 1288 struct pf_keyhash *kh; 1289 struct pf_state_key *sk; 1290 struct pf_state *s, *ret = NULL; 1291 int idx, inout = 0; 1292 1293 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1294 1295 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1296 1297 PF_HASHROW_LOCK(kh); 1298 LIST_FOREACH(sk, &kh->keys, entry) 1299 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1300 break; 1301 if (sk == NULL) { 1302 PF_HASHROW_UNLOCK(kh); 1303 return (NULL); 1304 } 1305 switch (dir) { 1306 case PF_IN: 1307 idx = PF_SK_WIRE; 1308 break; 1309 case PF_OUT: 1310 idx = PF_SK_STACK; 1311 break; 1312 case PF_INOUT: 1313 idx = PF_SK_WIRE; 1314 inout = 1; 1315 break; 1316 default: 1317 panic("%s: dir %u", __func__, dir); 1318 } 1319 second_run: 1320 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1321 if (more == NULL) { 1322 PF_HASHROW_UNLOCK(kh); 1323 return (s); 1324 } 1325 1326 if (ret) 1327 (*more)++; 1328 else 1329 ret = s; 1330 } 1331 if (inout == 1) { 1332 inout = 0; 1333 idx = PF_SK_STACK; 1334 goto second_run; 1335 } 1336 PF_HASHROW_UNLOCK(kh); 1337 1338 return (ret); 1339 } 1340 1341 /* END state table stuff */ 1342 1343 static void 1344 pf_send(struct pf_send_entry *pfse) 1345 { 1346 1347 PF_SENDQ_LOCK(); 1348 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1349 PF_SENDQ_UNLOCK(); 1350 swi_sched(V_pf_swi_cookie, 0); 1351 } 1352 1353 void 1354 pf_intr(void *v) 1355 { 1356 struct pf_send_head queue; 1357 struct pf_send_entry *pfse, *next; 1358 1359 CURVNET_SET((struct vnet *)v); 1360 1361 PF_SENDQ_LOCK(); 1362 queue = V_pf_sendqueue; 1363 STAILQ_INIT(&V_pf_sendqueue); 1364 PF_SENDQ_UNLOCK(); 1365 1366 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1367 switch (pfse->pfse_type) { 1368 #ifdef INET 1369 case PFSE_IP: 1370 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1371 break; 1372 case PFSE_ICMP: 1373 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1374 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1375 break; 1376 #endif /* INET */ 1377 #ifdef INET6 1378 case PFSE_IP6: 1379 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1380 NULL); 1381 break; 1382 case PFSE_ICMP6: 1383 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1384 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1385 break; 1386 #endif /* INET6 */ 1387 default: 1388 panic("%s: unknown type", __func__); 1389 } 1390 free(pfse, M_PFTEMP); 1391 } 1392 CURVNET_RESTORE(); 1393 } 1394 1395 void 1396 pf_purge_thread(void *v) 1397 { 1398 u_int idx = 0; 1399 1400 CURVNET_SET((struct vnet *)v); 1401 1402 for (;;) { 1403 PF_RULES_RLOCK(); 1404 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1405 1406 if (V_pf_end_threads) { 1407 /* 1408 * To cleanse up all kifs and rules we need 1409 * two runs: first one clears reference flags, 1410 * then pf_purge_expired_states() doesn't 1411 * raise them, and then second run frees. 1412 */ 1413 PF_RULES_RUNLOCK(); 1414 pf_purge_unlinked_rules(); 1415 pfi_kif_purge(); 1416 1417 /* 1418 * Now purge everything. 1419 */ 1420 pf_purge_expired_states(0, pf_hashmask); 1421 pf_purge_expired_fragments(); 1422 pf_purge_expired_src_nodes(); 1423 1424 /* 1425 * Now all kifs & rules should be unreferenced, 1426 * thus should be successfully freed. 1427 */ 1428 pf_purge_unlinked_rules(); 1429 pfi_kif_purge(); 1430 1431 /* 1432 * Announce success and exit. 1433 */ 1434 PF_RULES_RLOCK(); 1435 V_pf_end_threads++; 1436 PF_RULES_RUNLOCK(); 1437 wakeup(pf_purge_thread); 1438 kproc_exit(0); 1439 } 1440 PF_RULES_RUNLOCK(); 1441 1442 /* Process 1/interval fraction of the state table every run. */ 1443 idx = pf_purge_expired_states(idx, pf_hashmask / 1444 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1445 1446 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1447 if (idx == 0) { 1448 /* 1449 * Order is important: 1450 * - states and src nodes reference rules 1451 * - states and rules reference kifs 1452 */ 1453 pf_purge_expired_fragments(); 1454 pf_purge_expired_src_nodes(); 1455 pf_purge_unlinked_rules(); 1456 pfi_kif_purge(); 1457 } 1458 } 1459 /* not reached */ 1460 CURVNET_RESTORE(); 1461 } 1462 1463 u_int32_t 1464 pf_state_expires(const struct pf_state *state) 1465 { 1466 u_int32_t timeout; 1467 u_int32_t start; 1468 u_int32_t end; 1469 u_int32_t states; 1470 1471 /* handle all PFTM_* > PFTM_MAX here */ 1472 if (state->timeout == PFTM_PURGE) 1473 return (time_uptime); 1474 KASSERT(state->timeout != PFTM_UNLINKED, 1475 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1476 KASSERT((state->timeout < PFTM_MAX), 1477 ("pf_state_expires: timeout > PFTM_MAX")); 1478 timeout = state->rule.ptr->timeout[state->timeout]; 1479 if (!timeout) 1480 timeout = V_pf_default_rule.timeout[state->timeout]; 1481 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1482 if (start) { 1483 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1484 states = counter_u64_fetch(state->rule.ptr->states_cur); 1485 } else { 1486 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1487 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1488 states = V_pf_status.states; 1489 } 1490 if (end && states > start && start < end) { 1491 if (states < end) 1492 return (state->expire + timeout * (end - states) / 1493 (end - start)); 1494 else 1495 return (time_uptime); 1496 } 1497 return (state->expire + timeout); 1498 } 1499 1500 void 1501 pf_purge_expired_src_nodes() 1502 { 1503 struct pf_src_node_list freelist; 1504 struct pf_srchash *sh; 1505 struct pf_src_node *cur, *next; 1506 int i; 1507 1508 LIST_INIT(&freelist); 1509 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1510 PF_HASHROW_LOCK(sh); 1511 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1512 if (cur->states == 0 && cur->expire <= time_uptime) { 1513 pf_unlink_src_node_locked(cur); 1514 LIST_INSERT_HEAD(&freelist, cur, entry); 1515 } else if (cur->rule.ptr != NULL) 1516 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1517 PF_HASHROW_UNLOCK(sh); 1518 } 1519 1520 pf_free_src_nodes(&freelist); 1521 1522 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1523 } 1524 1525 static void 1526 pf_src_tree_remove_state(struct pf_state *s) 1527 { 1528 u_int32_t timeout; 1529 1530 if (s->src_node != NULL) { 1531 if (s->src.tcp_est) 1532 --s->src_node->conn; 1533 if (--s->src_node->states == 0) { 1534 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1535 if (!timeout) 1536 timeout = 1537 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1538 s->src_node->expire = time_uptime + timeout; 1539 } 1540 } 1541 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1542 if (--s->nat_src_node->states == 0) { 1543 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1544 if (!timeout) 1545 timeout = 1546 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1547 s->nat_src_node->expire = time_uptime + timeout; 1548 } 1549 } 1550 s->src_node = s->nat_src_node = NULL; 1551 } 1552 1553 /* 1554 * Unlink and potentilly free a state. Function may be 1555 * called with ID hash row locked, but always returns 1556 * unlocked, since it needs to go through key hash locking. 1557 */ 1558 int 1559 pf_unlink_state(struct pf_state *s, u_int flags) 1560 { 1561 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1562 1563 if ((flags & PF_ENTER_LOCKED) == 0) 1564 PF_HASHROW_LOCK(ih); 1565 else 1566 PF_HASHROW_ASSERT(ih); 1567 1568 if (s->timeout == PFTM_UNLINKED) { 1569 /* 1570 * State is being processed 1571 * by pf_unlink_state() in 1572 * an other thread. 1573 */ 1574 PF_HASHROW_UNLOCK(ih); 1575 return (0); /* XXXGL: undefined actually */ 1576 } 1577 1578 if (s->src.state == PF_TCPS_PROXY_DST) { 1579 /* XXX wire key the right one? */ 1580 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1581 &s->key[PF_SK_WIRE]->addr[1], 1582 &s->key[PF_SK_WIRE]->addr[0], 1583 s->key[PF_SK_WIRE]->port[1], 1584 s->key[PF_SK_WIRE]->port[0], 1585 s->src.seqhi, s->src.seqlo + 1, 1586 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1587 } 1588 1589 LIST_REMOVE(s, entry); 1590 pf_src_tree_remove_state(s); 1591 1592 if (pfsync_delete_state_ptr != NULL) 1593 pfsync_delete_state_ptr(s); 1594 1595 STATE_DEC_COUNTERS(s); 1596 1597 s->timeout = PFTM_UNLINKED; 1598 1599 PF_HASHROW_UNLOCK(ih); 1600 1601 pf_detach_state(s); 1602 refcount_release(&s->refs); 1603 1604 return (pf_release_state(s)); 1605 } 1606 1607 void 1608 pf_free_state(struct pf_state *cur) 1609 { 1610 1611 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1612 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1613 cur->timeout)); 1614 1615 pf_normalize_tcp_cleanup(cur); 1616 uma_zfree(V_pf_state_z, cur); 1617 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1618 } 1619 1620 /* 1621 * Called only from pf_purge_thread(), thus serialized. 1622 */ 1623 static u_int 1624 pf_purge_expired_states(u_int i, int maxcheck) 1625 { 1626 struct pf_idhash *ih; 1627 struct pf_state *s; 1628 1629 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1630 1631 /* 1632 * Go through hash and unlink states that expire now. 1633 */ 1634 while (maxcheck > 0) { 1635 1636 ih = &V_pf_idhash[i]; 1637 relock: 1638 PF_HASHROW_LOCK(ih); 1639 LIST_FOREACH(s, &ih->states, entry) { 1640 if (pf_state_expires(s) <= time_uptime) { 1641 V_pf_status.states -= 1642 pf_unlink_state(s, PF_ENTER_LOCKED); 1643 goto relock; 1644 } 1645 s->rule.ptr->rule_flag |= PFRULE_REFS; 1646 if (s->nat_rule.ptr != NULL) 1647 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1648 if (s->anchor.ptr != NULL) 1649 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1650 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1651 if (s->rt_kif) 1652 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1653 } 1654 PF_HASHROW_UNLOCK(ih); 1655 1656 /* Return when we hit end of hash. */ 1657 if (++i > pf_hashmask) { 1658 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1659 return (0); 1660 } 1661 1662 maxcheck--; 1663 } 1664 1665 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1666 1667 return (i); 1668 } 1669 1670 static void 1671 pf_purge_unlinked_rules() 1672 { 1673 struct pf_rulequeue tmpq; 1674 struct pf_rule *r, *r1; 1675 1676 /* 1677 * If we have overloading task pending, then we'd 1678 * better skip purging this time. There is a tiny 1679 * probability that overloading task references 1680 * an already unlinked rule. 1681 */ 1682 PF_OVERLOADQ_LOCK(); 1683 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1684 PF_OVERLOADQ_UNLOCK(); 1685 return; 1686 } 1687 PF_OVERLOADQ_UNLOCK(); 1688 1689 /* 1690 * Do naive mark-and-sweep garbage collecting of old rules. 1691 * Reference flag is raised by pf_purge_expired_states() 1692 * and pf_purge_expired_src_nodes(). 1693 * 1694 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1695 * use a temporary queue. 1696 */ 1697 TAILQ_INIT(&tmpq); 1698 PF_UNLNKDRULES_LOCK(); 1699 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1700 if (!(r->rule_flag & PFRULE_REFS)) { 1701 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1702 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1703 } else 1704 r->rule_flag &= ~PFRULE_REFS; 1705 } 1706 PF_UNLNKDRULES_UNLOCK(); 1707 1708 if (!TAILQ_EMPTY(&tmpq)) { 1709 PF_RULES_WLOCK(); 1710 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1711 TAILQ_REMOVE(&tmpq, r, entries); 1712 pf_free_rule(r); 1713 } 1714 PF_RULES_WUNLOCK(); 1715 } 1716 } 1717 1718 void 1719 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1720 { 1721 switch (af) { 1722 #ifdef INET 1723 case AF_INET: { 1724 u_int32_t a = ntohl(addr->addr32[0]); 1725 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1726 (a>>8)&255, a&255); 1727 if (p) { 1728 p = ntohs(p); 1729 printf(":%u", p); 1730 } 1731 break; 1732 } 1733 #endif /* INET */ 1734 #ifdef INET6 1735 case AF_INET6: { 1736 u_int16_t b; 1737 u_int8_t i, curstart, curend, maxstart, maxend; 1738 curstart = curend = maxstart = maxend = 255; 1739 for (i = 0; i < 8; i++) { 1740 if (!addr->addr16[i]) { 1741 if (curstart == 255) 1742 curstart = i; 1743 curend = i; 1744 } else { 1745 if ((curend - curstart) > 1746 (maxend - maxstart)) { 1747 maxstart = curstart; 1748 maxend = curend; 1749 } 1750 curstart = curend = 255; 1751 } 1752 } 1753 if ((curend - curstart) > 1754 (maxend - maxstart)) { 1755 maxstart = curstart; 1756 maxend = curend; 1757 } 1758 for (i = 0; i < 8; i++) { 1759 if (i >= maxstart && i <= maxend) { 1760 if (i == 0) 1761 printf(":"); 1762 if (i == maxend) 1763 printf(":"); 1764 } else { 1765 b = ntohs(addr->addr16[i]); 1766 printf("%x", b); 1767 if (i < 7) 1768 printf(":"); 1769 } 1770 } 1771 if (p) { 1772 p = ntohs(p); 1773 printf("[%u]", p); 1774 } 1775 break; 1776 } 1777 #endif /* INET6 */ 1778 } 1779 } 1780 1781 void 1782 pf_print_state(struct pf_state *s) 1783 { 1784 pf_print_state_parts(s, NULL, NULL); 1785 } 1786 1787 static void 1788 pf_print_state_parts(struct pf_state *s, 1789 struct pf_state_key *skwp, struct pf_state_key *sksp) 1790 { 1791 struct pf_state_key *skw, *sks; 1792 u_int8_t proto, dir; 1793 1794 /* Do our best to fill these, but they're skipped if NULL */ 1795 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1796 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1797 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1798 dir = s ? s->direction : 0; 1799 1800 switch (proto) { 1801 case IPPROTO_IPV4: 1802 printf("IPv4"); 1803 break; 1804 case IPPROTO_IPV6: 1805 printf("IPv6"); 1806 break; 1807 case IPPROTO_TCP: 1808 printf("TCP"); 1809 break; 1810 case IPPROTO_UDP: 1811 printf("UDP"); 1812 break; 1813 case IPPROTO_ICMP: 1814 printf("ICMP"); 1815 break; 1816 case IPPROTO_ICMPV6: 1817 printf("ICMPv6"); 1818 break; 1819 default: 1820 printf("%u", skw->proto); 1821 break; 1822 } 1823 switch (dir) { 1824 case PF_IN: 1825 printf(" in"); 1826 break; 1827 case PF_OUT: 1828 printf(" out"); 1829 break; 1830 } 1831 if (skw) { 1832 printf(" wire: "); 1833 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1834 printf(" "); 1835 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1836 } 1837 if (sks) { 1838 printf(" stack: "); 1839 if (sks != skw) { 1840 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1841 printf(" "); 1842 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1843 } else 1844 printf("-"); 1845 } 1846 if (s) { 1847 if (proto == IPPROTO_TCP) { 1848 printf(" [lo=%u high=%u win=%u modulator=%u", 1849 s->src.seqlo, s->src.seqhi, 1850 s->src.max_win, s->src.seqdiff); 1851 if (s->src.wscale && s->dst.wscale) 1852 printf(" wscale=%u", 1853 s->src.wscale & PF_WSCALE_MASK); 1854 printf("]"); 1855 printf(" [lo=%u high=%u win=%u modulator=%u", 1856 s->dst.seqlo, s->dst.seqhi, 1857 s->dst.max_win, s->dst.seqdiff); 1858 if (s->src.wscale && s->dst.wscale) 1859 printf(" wscale=%u", 1860 s->dst.wscale & PF_WSCALE_MASK); 1861 printf("]"); 1862 } 1863 printf(" %u:%u", s->src.state, s->dst.state); 1864 } 1865 } 1866 1867 void 1868 pf_print_flags(u_int8_t f) 1869 { 1870 if (f) 1871 printf(" "); 1872 if (f & TH_FIN) 1873 printf("F"); 1874 if (f & TH_SYN) 1875 printf("S"); 1876 if (f & TH_RST) 1877 printf("R"); 1878 if (f & TH_PUSH) 1879 printf("P"); 1880 if (f & TH_ACK) 1881 printf("A"); 1882 if (f & TH_URG) 1883 printf("U"); 1884 if (f & TH_ECE) 1885 printf("E"); 1886 if (f & TH_CWR) 1887 printf("W"); 1888 } 1889 1890 #define PF_SET_SKIP_STEPS(i) \ 1891 do { \ 1892 while (head[i] != cur) { \ 1893 head[i]->skip[i].ptr = cur; \ 1894 head[i] = TAILQ_NEXT(head[i], entries); \ 1895 } \ 1896 } while (0) 1897 1898 void 1899 pf_calc_skip_steps(struct pf_rulequeue *rules) 1900 { 1901 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1902 int i; 1903 1904 cur = TAILQ_FIRST(rules); 1905 prev = cur; 1906 for (i = 0; i < PF_SKIP_COUNT; ++i) 1907 head[i] = cur; 1908 while (cur != NULL) { 1909 1910 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1911 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1912 if (cur->direction != prev->direction) 1913 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1914 if (cur->af != prev->af) 1915 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1916 if (cur->proto != prev->proto) 1917 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1918 if (cur->src.neg != prev->src.neg || 1919 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1920 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1921 if (cur->src.port[0] != prev->src.port[0] || 1922 cur->src.port[1] != prev->src.port[1] || 1923 cur->src.port_op != prev->src.port_op) 1924 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1925 if (cur->dst.neg != prev->dst.neg || 1926 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1927 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1928 if (cur->dst.port[0] != prev->dst.port[0] || 1929 cur->dst.port[1] != prev->dst.port[1] || 1930 cur->dst.port_op != prev->dst.port_op) 1931 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1932 1933 prev = cur; 1934 cur = TAILQ_NEXT(cur, entries); 1935 } 1936 for (i = 0; i < PF_SKIP_COUNT; ++i) 1937 PF_SET_SKIP_STEPS(i); 1938 } 1939 1940 static int 1941 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1942 { 1943 if (aw1->type != aw2->type) 1944 return (1); 1945 switch (aw1->type) { 1946 case PF_ADDR_ADDRMASK: 1947 case PF_ADDR_RANGE: 1948 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1949 return (1); 1950 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1951 return (1); 1952 return (0); 1953 case PF_ADDR_DYNIFTL: 1954 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1955 case PF_ADDR_NOROUTE: 1956 case PF_ADDR_URPFFAILED: 1957 return (0); 1958 case PF_ADDR_TABLE: 1959 return (aw1->p.tbl != aw2->p.tbl); 1960 default: 1961 printf("invalid address type: %d\n", aw1->type); 1962 return (1); 1963 } 1964 } 1965 1966 u_int16_t 1967 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1968 { 1969 u_int32_t l; 1970 1971 if (udp && !cksum) 1972 return (0x0000); 1973 l = cksum + old - new; 1974 l = (l >> 16) + (l & 65535); 1975 l = l & 65535; 1976 if (udp && !l) 1977 return (0xFFFF); 1978 return (l); 1979 } 1980 1981 static void 1982 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1983 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1984 { 1985 struct pf_addr ao; 1986 u_int16_t po = *p; 1987 1988 PF_ACPY(&ao, a, af); 1989 PF_ACPY(a, an, af); 1990 1991 *p = pn; 1992 1993 switch (af) { 1994 #ifdef INET 1995 case AF_INET: 1996 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1997 ao.addr16[0], an->addr16[0], 0), 1998 ao.addr16[1], an->addr16[1], 0); 1999 *p = pn; 2000 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2001 ao.addr16[0], an->addr16[0], u), 2002 ao.addr16[1], an->addr16[1], u), 2003 po, pn, u); 2004 break; 2005 #endif /* INET */ 2006 #ifdef INET6 2007 case AF_INET6: 2008 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2009 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2010 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2011 ao.addr16[0], an->addr16[0], u), 2012 ao.addr16[1], an->addr16[1], u), 2013 ao.addr16[2], an->addr16[2], u), 2014 ao.addr16[3], an->addr16[3], u), 2015 ao.addr16[4], an->addr16[4], u), 2016 ao.addr16[5], an->addr16[5], u), 2017 ao.addr16[6], an->addr16[6], u), 2018 ao.addr16[7], an->addr16[7], u), 2019 po, pn, u); 2020 break; 2021 #endif /* INET6 */ 2022 } 2023 } 2024 2025 2026 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2027 void 2028 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2029 { 2030 u_int32_t ao; 2031 2032 memcpy(&ao, a, sizeof(ao)); 2033 memcpy(a, &an, sizeof(u_int32_t)); 2034 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2035 ao % 65536, an % 65536, u); 2036 } 2037 2038 #ifdef INET6 2039 static void 2040 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2041 { 2042 struct pf_addr ao; 2043 2044 PF_ACPY(&ao, a, AF_INET6); 2045 PF_ACPY(a, an, AF_INET6); 2046 2047 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2048 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2049 pf_cksum_fixup(pf_cksum_fixup(*c, 2050 ao.addr16[0], an->addr16[0], u), 2051 ao.addr16[1], an->addr16[1], u), 2052 ao.addr16[2], an->addr16[2], u), 2053 ao.addr16[3], an->addr16[3], u), 2054 ao.addr16[4], an->addr16[4], u), 2055 ao.addr16[5], an->addr16[5], u), 2056 ao.addr16[6], an->addr16[6], u), 2057 ao.addr16[7], an->addr16[7], u); 2058 } 2059 #endif /* INET6 */ 2060 2061 static void 2062 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2063 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2064 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2065 { 2066 struct pf_addr oia, ooa; 2067 2068 PF_ACPY(&oia, ia, af); 2069 if (oa) 2070 PF_ACPY(&ooa, oa, af); 2071 2072 /* Change inner protocol port, fix inner protocol checksum. */ 2073 if (ip != NULL) { 2074 u_int16_t oip = *ip; 2075 u_int32_t opc; 2076 2077 if (pc != NULL) 2078 opc = *pc; 2079 *ip = np; 2080 if (pc != NULL) 2081 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2082 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2083 if (pc != NULL) 2084 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2085 } 2086 /* Change inner ip address, fix inner ip and icmp checksums. */ 2087 PF_ACPY(ia, na, af); 2088 switch (af) { 2089 #ifdef INET 2090 case AF_INET: { 2091 u_int32_t oh2c = *h2c; 2092 2093 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2094 oia.addr16[0], ia->addr16[0], 0), 2095 oia.addr16[1], ia->addr16[1], 0); 2096 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2097 oia.addr16[0], ia->addr16[0], 0), 2098 oia.addr16[1], ia->addr16[1], 0); 2099 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2100 break; 2101 } 2102 #endif /* INET */ 2103 #ifdef INET6 2104 case AF_INET6: 2105 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2106 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2107 pf_cksum_fixup(pf_cksum_fixup(*ic, 2108 oia.addr16[0], ia->addr16[0], u), 2109 oia.addr16[1], ia->addr16[1], u), 2110 oia.addr16[2], ia->addr16[2], u), 2111 oia.addr16[3], ia->addr16[3], u), 2112 oia.addr16[4], ia->addr16[4], u), 2113 oia.addr16[5], ia->addr16[5], u), 2114 oia.addr16[6], ia->addr16[6], u), 2115 oia.addr16[7], ia->addr16[7], u); 2116 break; 2117 #endif /* INET6 */ 2118 } 2119 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2120 if (oa) { 2121 PF_ACPY(oa, na, af); 2122 switch (af) { 2123 #ifdef INET 2124 case AF_INET: 2125 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2126 ooa.addr16[0], oa->addr16[0], 0), 2127 ooa.addr16[1], oa->addr16[1], 0); 2128 break; 2129 #endif /* INET */ 2130 #ifdef INET6 2131 case AF_INET6: 2132 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2133 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2134 pf_cksum_fixup(pf_cksum_fixup(*ic, 2135 ooa.addr16[0], oa->addr16[0], u), 2136 ooa.addr16[1], oa->addr16[1], u), 2137 ooa.addr16[2], oa->addr16[2], u), 2138 ooa.addr16[3], oa->addr16[3], u), 2139 ooa.addr16[4], oa->addr16[4], u), 2140 ooa.addr16[5], oa->addr16[5], u), 2141 ooa.addr16[6], oa->addr16[6], u), 2142 ooa.addr16[7], oa->addr16[7], u); 2143 break; 2144 #endif /* INET6 */ 2145 } 2146 } 2147 } 2148 2149 2150 /* 2151 * Need to modulate the sequence numbers in the TCP SACK option 2152 * (credits to Krzysztof Pfaff for report and patch) 2153 */ 2154 static int 2155 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2156 struct tcphdr *th, struct pf_state_peer *dst) 2157 { 2158 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2159 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2160 int copyback = 0, i, olen; 2161 struct sackblk sack; 2162 2163 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2164 if (hlen < TCPOLEN_SACKLEN || 2165 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2166 return 0; 2167 2168 while (hlen >= TCPOLEN_SACKLEN) { 2169 olen = opt[1]; 2170 switch (*opt) { 2171 case TCPOPT_EOL: /* FALLTHROUGH */ 2172 case TCPOPT_NOP: 2173 opt++; 2174 hlen--; 2175 break; 2176 case TCPOPT_SACK: 2177 if (olen > hlen) 2178 olen = hlen; 2179 if (olen >= TCPOLEN_SACKLEN) { 2180 for (i = 2; i + TCPOLEN_SACK <= olen; 2181 i += TCPOLEN_SACK) { 2182 memcpy(&sack, &opt[i], sizeof(sack)); 2183 pf_change_a(&sack.start, &th->th_sum, 2184 htonl(ntohl(sack.start) - 2185 dst->seqdiff), 0); 2186 pf_change_a(&sack.end, &th->th_sum, 2187 htonl(ntohl(sack.end) - 2188 dst->seqdiff), 0); 2189 memcpy(&opt[i], &sack, sizeof(sack)); 2190 } 2191 copyback = 1; 2192 } 2193 /* FALLTHROUGH */ 2194 default: 2195 if (olen < 2) 2196 olen = 2; 2197 hlen -= olen; 2198 opt += olen; 2199 } 2200 } 2201 2202 if (copyback) 2203 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2204 return (copyback); 2205 } 2206 2207 static void 2208 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2209 const struct pf_addr *saddr, const struct pf_addr *daddr, 2210 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2211 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2212 u_int16_t rtag, struct ifnet *ifp) 2213 { 2214 struct pf_send_entry *pfse; 2215 struct mbuf *m; 2216 int len, tlen; 2217 #ifdef INET 2218 struct ip *h = NULL; 2219 #endif /* INET */ 2220 #ifdef INET6 2221 struct ip6_hdr *h6 = NULL; 2222 #endif /* INET6 */ 2223 struct tcphdr *th; 2224 char *opt; 2225 struct pf_mtag *pf_mtag; 2226 2227 len = 0; 2228 th = NULL; 2229 2230 /* maximum segment size tcp option */ 2231 tlen = sizeof(struct tcphdr); 2232 if (mss) 2233 tlen += 4; 2234 2235 switch (af) { 2236 #ifdef INET 2237 case AF_INET: 2238 len = sizeof(struct ip) + tlen; 2239 break; 2240 #endif /* INET */ 2241 #ifdef INET6 2242 case AF_INET6: 2243 len = sizeof(struct ip6_hdr) + tlen; 2244 break; 2245 #endif /* INET6 */ 2246 default: 2247 panic("%s: unsupported af %d", __func__, af); 2248 } 2249 2250 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2251 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2252 if (pfse == NULL) 2253 return; 2254 m = m_gethdr(M_NOWAIT, MT_DATA); 2255 if (m == NULL) { 2256 free(pfse, M_PFTEMP); 2257 return; 2258 } 2259 #ifdef MAC 2260 mac_netinet_firewall_send(m); 2261 #endif 2262 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2263 free(pfse, M_PFTEMP); 2264 m_freem(m); 2265 return; 2266 } 2267 if (tag) 2268 m->m_flags |= M_SKIP_FIREWALL; 2269 pf_mtag->tag = rtag; 2270 2271 if (r != NULL && r->rtableid >= 0) 2272 M_SETFIB(m, r->rtableid); 2273 2274 #ifdef ALTQ 2275 if (r != NULL && r->qid) { 2276 pf_mtag->qid = r->qid; 2277 2278 /* add hints for ecn */ 2279 pf_mtag->hdr = mtod(m, struct ip *); 2280 } 2281 #endif /* ALTQ */ 2282 m->m_data += max_linkhdr; 2283 m->m_pkthdr.len = m->m_len = len; 2284 m->m_pkthdr.rcvif = NULL; 2285 bzero(m->m_data, len); 2286 switch (af) { 2287 #ifdef INET 2288 case AF_INET: 2289 h = mtod(m, struct ip *); 2290 2291 /* IP header fields included in the TCP checksum */ 2292 h->ip_p = IPPROTO_TCP; 2293 h->ip_len = htons(tlen); 2294 h->ip_src.s_addr = saddr->v4.s_addr; 2295 h->ip_dst.s_addr = daddr->v4.s_addr; 2296 2297 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2298 break; 2299 #endif /* INET */ 2300 #ifdef INET6 2301 case AF_INET6: 2302 h6 = mtod(m, struct ip6_hdr *); 2303 2304 /* IP header fields included in the TCP checksum */ 2305 h6->ip6_nxt = IPPROTO_TCP; 2306 h6->ip6_plen = htons(tlen); 2307 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2308 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2309 2310 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2311 break; 2312 #endif /* INET6 */ 2313 } 2314 2315 /* TCP header */ 2316 th->th_sport = sport; 2317 th->th_dport = dport; 2318 th->th_seq = htonl(seq); 2319 th->th_ack = htonl(ack); 2320 th->th_off = tlen >> 2; 2321 th->th_flags = flags; 2322 th->th_win = htons(win); 2323 2324 if (mss) { 2325 opt = (char *)(th + 1); 2326 opt[0] = TCPOPT_MAXSEG; 2327 opt[1] = 4; 2328 HTONS(mss); 2329 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2330 } 2331 2332 switch (af) { 2333 #ifdef INET 2334 case AF_INET: 2335 /* TCP checksum */ 2336 th->th_sum = in_cksum(m, len); 2337 2338 /* Finish the IP header */ 2339 h->ip_v = 4; 2340 h->ip_hl = sizeof(*h) >> 2; 2341 h->ip_tos = IPTOS_LOWDELAY; 2342 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2343 h->ip_len = htons(len); 2344 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2345 h->ip_sum = 0; 2346 2347 pfse->pfse_type = PFSE_IP; 2348 break; 2349 #endif /* INET */ 2350 #ifdef INET6 2351 case AF_INET6: 2352 /* TCP checksum */ 2353 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2354 sizeof(struct ip6_hdr), tlen); 2355 2356 h6->ip6_vfc |= IPV6_VERSION; 2357 h6->ip6_hlim = IPV6_DEFHLIM; 2358 2359 pfse->pfse_type = PFSE_IP6; 2360 break; 2361 #endif /* INET6 */ 2362 } 2363 pfse->pfse_m = m; 2364 pf_send(pfse); 2365 } 2366 2367 static void 2368 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2369 struct pf_rule *r) 2370 { 2371 struct pf_send_entry *pfse; 2372 struct mbuf *m0; 2373 struct pf_mtag *pf_mtag; 2374 2375 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2376 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2377 if (pfse == NULL) 2378 return; 2379 2380 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2381 free(pfse, M_PFTEMP); 2382 return; 2383 } 2384 2385 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2386 free(pfse, M_PFTEMP); 2387 return; 2388 } 2389 /* XXX: revisit */ 2390 m0->m_flags |= M_SKIP_FIREWALL; 2391 2392 if (r->rtableid >= 0) 2393 M_SETFIB(m0, r->rtableid); 2394 2395 #ifdef ALTQ 2396 if (r->qid) { 2397 pf_mtag->qid = r->qid; 2398 /* add hints for ecn */ 2399 pf_mtag->hdr = mtod(m0, struct ip *); 2400 } 2401 #endif /* ALTQ */ 2402 2403 switch (af) { 2404 #ifdef INET 2405 case AF_INET: 2406 pfse->pfse_type = PFSE_ICMP; 2407 break; 2408 #endif /* INET */ 2409 #ifdef INET6 2410 case AF_INET6: 2411 pfse->pfse_type = PFSE_ICMP6; 2412 break; 2413 #endif /* INET6 */ 2414 } 2415 pfse->pfse_m = m0; 2416 pfse->pfse_icmp_type = type; 2417 pfse->pfse_icmp_code = code; 2418 pf_send(pfse); 2419 } 2420 2421 /* 2422 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2423 * If n is 0, they match if they are equal. If n is != 0, they match if they 2424 * are different. 2425 */ 2426 int 2427 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2428 struct pf_addr *b, sa_family_t af) 2429 { 2430 int match = 0; 2431 2432 switch (af) { 2433 #ifdef INET 2434 case AF_INET: 2435 if ((a->addr32[0] & m->addr32[0]) == 2436 (b->addr32[0] & m->addr32[0])) 2437 match++; 2438 break; 2439 #endif /* INET */ 2440 #ifdef INET6 2441 case AF_INET6: 2442 if (((a->addr32[0] & m->addr32[0]) == 2443 (b->addr32[0] & m->addr32[0])) && 2444 ((a->addr32[1] & m->addr32[1]) == 2445 (b->addr32[1] & m->addr32[1])) && 2446 ((a->addr32[2] & m->addr32[2]) == 2447 (b->addr32[2] & m->addr32[2])) && 2448 ((a->addr32[3] & m->addr32[3]) == 2449 (b->addr32[3] & m->addr32[3]))) 2450 match++; 2451 break; 2452 #endif /* INET6 */ 2453 } 2454 if (match) { 2455 if (n) 2456 return (0); 2457 else 2458 return (1); 2459 } else { 2460 if (n) 2461 return (1); 2462 else 2463 return (0); 2464 } 2465 } 2466 2467 /* 2468 * Return 1 if b <= a <= e, otherwise return 0. 2469 */ 2470 int 2471 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2472 struct pf_addr *a, sa_family_t af) 2473 { 2474 switch (af) { 2475 #ifdef INET 2476 case AF_INET: 2477 if ((a->addr32[0] < b->addr32[0]) || 2478 (a->addr32[0] > e->addr32[0])) 2479 return (0); 2480 break; 2481 #endif /* INET */ 2482 #ifdef INET6 2483 case AF_INET6: { 2484 int i; 2485 2486 /* check a >= b */ 2487 for (i = 0; i < 4; ++i) 2488 if (a->addr32[i] > b->addr32[i]) 2489 break; 2490 else if (a->addr32[i] < b->addr32[i]) 2491 return (0); 2492 /* check a <= e */ 2493 for (i = 0; i < 4; ++i) 2494 if (a->addr32[i] < e->addr32[i]) 2495 break; 2496 else if (a->addr32[i] > e->addr32[i]) 2497 return (0); 2498 break; 2499 } 2500 #endif /* INET6 */ 2501 } 2502 return (1); 2503 } 2504 2505 static int 2506 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2507 { 2508 switch (op) { 2509 case PF_OP_IRG: 2510 return ((p > a1) && (p < a2)); 2511 case PF_OP_XRG: 2512 return ((p < a1) || (p > a2)); 2513 case PF_OP_RRG: 2514 return ((p >= a1) && (p <= a2)); 2515 case PF_OP_EQ: 2516 return (p == a1); 2517 case PF_OP_NE: 2518 return (p != a1); 2519 case PF_OP_LT: 2520 return (p < a1); 2521 case PF_OP_LE: 2522 return (p <= a1); 2523 case PF_OP_GT: 2524 return (p > a1); 2525 case PF_OP_GE: 2526 return (p >= a1); 2527 } 2528 return (0); /* never reached */ 2529 } 2530 2531 int 2532 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2533 { 2534 NTOHS(a1); 2535 NTOHS(a2); 2536 NTOHS(p); 2537 return (pf_match(op, a1, a2, p)); 2538 } 2539 2540 static int 2541 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2542 { 2543 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2544 return (0); 2545 return (pf_match(op, a1, a2, u)); 2546 } 2547 2548 static int 2549 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2550 { 2551 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2552 return (0); 2553 return (pf_match(op, a1, a2, g)); 2554 } 2555 2556 int 2557 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2558 { 2559 if (*tag == -1) 2560 *tag = mtag; 2561 2562 return ((!r->match_tag_not && r->match_tag == *tag) || 2563 (r->match_tag_not && r->match_tag != *tag)); 2564 } 2565 2566 int 2567 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2568 { 2569 2570 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2571 2572 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2573 return (ENOMEM); 2574 2575 pd->pf_mtag->tag = tag; 2576 2577 return (0); 2578 } 2579 2580 #define PF_ANCHOR_STACKSIZE 32 2581 struct pf_anchor_stackframe { 2582 struct pf_ruleset *rs; 2583 struct pf_rule *r; /* XXX: + match bit */ 2584 struct pf_anchor *child; 2585 }; 2586 2587 /* 2588 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2589 */ 2590 #define PF_ANCHORSTACK_MATCH 0x00000001 2591 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2592 2593 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2594 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2595 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2596 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2597 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2598 } while (0) 2599 2600 void 2601 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2602 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2603 int *match) 2604 { 2605 struct pf_anchor_stackframe *f; 2606 2607 PF_RULES_RASSERT(); 2608 2609 if (match) 2610 *match = 0; 2611 if (*depth >= PF_ANCHOR_STACKSIZE) { 2612 printf("%s: anchor stack overflow on %s\n", 2613 __func__, (*r)->anchor->name); 2614 *r = TAILQ_NEXT(*r, entries); 2615 return; 2616 } else if (*depth == 0 && a != NULL) 2617 *a = *r; 2618 f = stack + (*depth)++; 2619 f->rs = *rs; 2620 f->r = *r; 2621 if ((*r)->anchor_wildcard) { 2622 struct pf_anchor_node *parent = &(*r)->anchor->children; 2623 2624 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2625 *r = NULL; 2626 return; 2627 } 2628 *rs = &f->child->ruleset; 2629 } else { 2630 f->child = NULL; 2631 *rs = &(*r)->anchor->ruleset; 2632 } 2633 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2634 } 2635 2636 int 2637 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2638 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2639 int *match) 2640 { 2641 struct pf_anchor_stackframe *f; 2642 struct pf_rule *fr; 2643 int quick = 0; 2644 2645 PF_RULES_RASSERT(); 2646 2647 do { 2648 if (*depth <= 0) 2649 break; 2650 f = stack + *depth - 1; 2651 fr = PF_ANCHOR_RULE(f); 2652 if (f->child != NULL) { 2653 struct pf_anchor_node *parent; 2654 2655 /* 2656 * This block traverses through 2657 * a wildcard anchor. 2658 */ 2659 parent = &fr->anchor->children; 2660 if (match != NULL && *match) { 2661 /* 2662 * If any of "*" matched, then 2663 * "foo/ *" matched, mark frame 2664 * appropriately. 2665 */ 2666 PF_ANCHOR_SET_MATCH(f); 2667 *match = 0; 2668 } 2669 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2670 if (f->child != NULL) { 2671 *rs = &f->child->ruleset; 2672 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2673 if (*r == NULL) 2674 continue; 2675 else 2676 break; 2677 } 2678 } 2679 (*depth)--; 2680 if (*depth == 0 && a != NULL) 2681 *a = NULL; 2682 *rs = f->rs; 2683 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2684 quick = fr->quick; 2685 *r = TAILQ_NEXT(fr, entries); 2686 } while (*r == NULL); 2687 2688 return (quick); 2689 } 2690 2691 #ifdef INET6 2692 void 2693 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2694 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2695 { 2696 switch (af) { 2697 #ifdef INET 2698 case AF_INET: 2699 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2700 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2701 break; 2702 #endif /* INET */ 2703 case AF_INET6: 2704 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2705 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2706 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2707 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2708 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2709 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2710 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2711 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2712 break; 2713 } 2714 } 2715 2716 void 2717 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2718 { 2719 switch (af) { 2720 #ifdef INET 2721 case AF_INET: 2722 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2723 break; 2724 #endif /* INET */ 2725 case AF_INET6: 2726 if (addr->addr32[3] == 0xffffffff) { 2727 addr->addr32[3] = 0; 2728 if (addr->addr32[2] == 0xffffffff) { 2729 addr->addr32[2] = 0; 2730 if (addr->addr32[1] == 0xffffffff) { 2731 addr->addr32[1] = 0; 2732 addr->addr32[0] = 2733 htonl(ntohl(addr->addr32[0]) + 1); 2734 } else 2735 addr->addr32[1] = 2736 htonl(ntohl(addr->addr32[1]) + 1); 2737 } else 2738 addr->addr32[2] = 2739 htonl(ntohl(addr->addr32[2]) + 1); 2740 } else 2741 addr->addr32[3] = 2742 htonl(ntohl(addr->addr32[3]) + 1); 2743 break; 2744 } 2745 } 2746 #endif /* INET6 */ 2747 2748 int 2749 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2750 { 2751 struct pf_addr *saddr, *daddr; 2752 u_int16_t sport, dport; 2753 struct inpcbinfo *pi; 2754 struct inpcb *inp; 2755 2756 pd->lookup.uid = UID_MAX; 2757 pd->lookup.gid = GID_MAX; 2758 2759 switch (pd->proto) { 2760 case IPPROTO_TCP: 2761 if (pd->hdr.tcp == NULL) 2762 return (-1); 2763 sport = pd->hdr.tcp->th_sport; 2764 dport = pd->hdr.tcp->th_dport; 2765 pi = &V_tcbinfo; 2766 break; 2767 case IPPROTO_UDP: 2768 if (pd->hdr.udp == NULL) 2769 return (-1); 2770 sport = pd->hdr.udp->uh_sport; 2771 dport = pd->hdr.udp->uh_dport; 2772 pi = &V_udbinfo; 2773 break; 2774 default: 2775 return (-1); 2776 } 2777 if (direction == PF_IN) { 2778 saddr = pd->src; 2779 daddr = pd->dst; 2780 } else { 2781 u_int16_t p; 2782 2783 p = sport; 2784 sport = dport; 2785 dport = p; 2786 saddr = pd->dst; 2787 daddr = pd->src; 2788 } 2789 switch (pd->af) { 2790 #ifdef INET 2791 case AF_INET: 2792 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2793 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2794 if (inp == NULL) { 2795 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2796 daddr->v4, dport, INPLOOKUP_WILDCARD | 2797 INPLOOKUP_RLOCKPCB, NULL, m); 2798 if (inp == NULL) 2799 return (-1); 2800 } 2801 break; 2802 #endif /* INET */ 2803 #ifdef INET6 2804 case AF_INET6: 2805 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2806 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2807 if (inp == NULL) { 2808 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2809 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2810 INPLOOKUP_RLOCKPCB, NULL, m); 2811 if (inp == NULL) 2812 return (-1); 2813 } 2814 break; 2815 #endif /* INET6 */ 2816 2817 default: 2818 return (-1); 2819 } 2820 INP_RLOCK_ASSERT(inp); 2821 pd->lookup.uid = inp->inp_cred->cr_uid; 2822 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2823 INP_RUNLOCK(inp); 2824 2825 return (1); 2826 } 2827 2828 static u_int8_t 2829 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2830 { 2831 int hlen; 2832 u_int8_t hdr[60]; 2833 u_int8_t *opt, optlen; 2834 u_int8_t wscale = 0; 2835 2836 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2837 if (hlen <= sizeof(struct tcphdr)) 2838 return (0); 2839 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2840 return (0); 2841 opt = hdr + sizeof(struct tcphdr); 2842 hlen -= sizeof(struct tcphdr); 2843 while (hlen >= 3) { 2844 switch (*opt) { 2845 case TCPOPT_EOL: 2846 case TCPOPT_NOP: 2847 ++opt; 2848 --hlen; 2849 break; 2850 case TCPOPT_WINDOW: 2851 wscale = opt[2]; 2852 if (wscale > TCP_MAX_WINSHIFT) 2853 wscale = TCP_MAX_WINSHIFT; 2854 wscale |= PF_WSCALE_FLAG; 2855 /* FALLTHROUGH */ 2856 default: 2857 optlen = opt[1]; 2858 if (optlen < 2) 2859 optlen = 2; 2860 hlen -= optlen; 2861 opt += optlen; 2862 break; 2863 } 2864 } 2865 return (wscale); 2866 } 2867 2868 static u_int16_t 2869 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2870 { 2871 int hlen; 2872 u_int8_t hdr[60]; 2873 u_int8_t *opt, optlen; 2874 u_int16_t mss = V_tcp_mssdflt; 2875 2876 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2877 if (hlen <= sizeof(struct tcphdr)) 2878 return (0); 2879 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2880 return (0); 2881 opt = hdr + sizeof(struct tcphdr); 2882 hlen -= sizeof(struct tcphdr); 2883 while (hlen >= TCPOLEN_MAXSEG) { 2884 switch (*opt) { 2885 case TCPOPT_EOL: 2886 case TCPOPT_NOP: 2887 ++opt; 2888 --hlen; 2889 break; 2890 case TCPOPT_MAXSEG: 2891 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2892 NTOHS(mss); 2893 /* FALLTHROUGH */ 2894 default: 2895 optlen = opt[1]; 2896 if (optlen < 2) 2897 optlen = 2; 2898 hlen -= optlen; 2899 opt += optlen; 2900 break; 2901 } 2902 } 2903 return (mss); 2904 } 2905 2906 static u_int16_t 2907 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2908 { 2909 #ifdef INET 2910 struct sockaddr_in *dst; 2911 struct route ro; 2912 #endif /* INET */ 2913 #ifdef INET6 2914 struct sockaddr_in6 *dst6; 2915 struct route_in6 ro6; 2916 #endif /* INET6 */ 2917 struct rtentry *rt = NULL; 2918 int hlen = 0; 2919 u_int16_t mss = V_tcp_mssdflt; 2920 2921 switch (af) { 2922 #ifdef INET 2923 case AF_INET: 2924 hlen = sizeof(struct ip); 2925 bzero(&ro, sizeof(ro)); 2926 dst = (struct sockaddr_in *)&ro.ro_dst; 2927 dst->sin_family = AF_INET; 2928 dst->sin_len = sizeof(*dst); 2929 dst->sin_addr = addr->v4; 2930 in_rtalloc_ign(&ro, 0, rtableid); 2931 rt = ro.ro_rt; 2932 break; 2933 #endif /* INET */ 2934 #ifdef INET6 2935 case AF_INET6: 2936 hlen = sizeof(struct ip6_hdr); 2937 bzero(&ro6, sizeof(ro6)); 2938 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2939 dst6->sin6_family = AF_INET6; 2940 dst6->sin6_len = sizeof(*dst6); 2941 dst6->sin6_addr = addr->v6; 2942 in6_rtalloc_ign(&ro6, 0, rtableid); 2943 rt = ro6.ro_rt; 2944 break; 2945 #endif /* INET6 */ 2946 } 2947 2948 if (rt && rt->rt_ifp) { 2949 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2950 mss = max(V_tcp_mssdflt, mss); 2951 RTFREE(rt); 2952 } 2953 mss = min(mss, offer); 2954 mss = max(mss, 64); /* sanity - at least max opt space */ 2955 return (mss); 2956 } 2957 2958 static u_int32_t 2959 pf_tcp_iss(struct pf_pdesc *pd) 2960 { 2961 MD5_CTX ctx; 2962 u_int32_t digest[4]; 2963 2964 if (V_pf_tcp_secret_init == 0) { 2965 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2966 MD5Init(&V_pf_tcp_secret_ctx); 2967 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2968 sizeof(V_pf_tcp_secret)); 2969 V_pf_tcp_secret_init = 1; 2970 } 2971 2972 ctx = V_pf_tcp_secret_ctx; 2973 2974 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2975 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2976 if (pd->af == AF_INET6) { 2977 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2978 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2979 } else { 2980 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2981 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2982 } 2983 MD5Final((u_char *)digest, &ctx); 2984 V_pf_tcp_iss_off += 4096; 2985 #define ISN_RANDOM_INCREMENT (4096 - 1) 2986 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2987 V_pf_tcp_iss_off); 2988 #undef ISN_RANDOM_INCREMENT 2989 } 2990 2991 static int 2992 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2993 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2994 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2995 { 2996 struct pf_rule *nr = NULL; 2997 struct pf_addr * const saddr = pd->src; 2998 struct pf_addr * const daddr = pd->dst; 2999 sa_family_t af = pd->af; 3000 struct pf_rule *r, *a = NULL; 3001 struct pf_ruleset *ruleset = NULL; 3002 struct pf_src_node *nsn = NULL; 3003 struct tcphdr *th = pd->hdr.tcp; 3004 struct pf_state_key *sk = NULL, *nk = NULL; 3005 u_short reason; 3006 int rewrite = 0, hdrlen = 0; 3007 int tag = -1, rtableid = -1; 3008 int asd = 0; 3009 int match = 0; 3010 int state_icmp = 0; 3011 u_int16_t sport = 0, dport = 0; 3012 u_int16_t bproto_sum = 0, bip_sum = 0; 3013 u_int8_t icmptype = 0, icmpcode = 0; 3014 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3015 3016 PF_RULES_RASSERT(); 3017 3018 if (inp != NULL) { 3019 INP_LOCK_ASSERT(inp); 3020 pd->lookup.uid = inp->inp_cred->cr_uid; 3021 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3022 pd->lookup.done = 1; 3023 } 3024 3025 switch (pd->proto) { 3026 case IPPROTO_TCP: 3027 sport = th->th_sport; 3028 dport = th->th_dport; 3029 hdrlen = sizeof(*th); 3030 break; 3031 case IPPROTO_UDP: 3032 sport = pd->hdr.udp->uh_sport; 3033 dport = pd->hdr.udp->uh_dport; 3034 hdrlen = sizeof(*pd->hdr.udp); 3035 break; 3036 #ifdef INET 3037 case IPPROTO_ICMP: 3038 if (pd->af != AF_INET) 3039 break; 3040 sport = dport = pd->hdr.icmp->icmp_id; 3041 hdrlen = sizeof(*pd->hdr.icmp); 3042 icmptype = pd->hdr.icmp->icmp_type; 3043 icmpcode = pd->hdr.icmp->icmp_code; 3044 3045 if (icmptype == ICMP_UNREACH || 3046 icmptype == ICMP_SOURCEQUENCH || 3047 icmptype == ICMP_REDIRECT || 3048 icmptype == ICMP_TIMXCEED || 3049 icmptype == ICMP_PARAMPROB) 3050 state_icmp++; 3051 break; 3052 #endif /* INET */ 3053 #ifdef INET6 3054 case IPPROTO_ICMPV6: 3055 if (af != AF_INET6) 3056 break; 3057 sport = dport = pd->hdr.icmp6->icmp6_id; 3058 hdrlen = sizeof(*pd->hdr.icmp6); 3059 icmptype = pd->hdr.icmp6->icmp6_type; 3060 icmpcode = pd->hdr.icmp6->icmp6_code; 3061 3062 if (icmptype == ICMP6_DST_UNREACH || 3063 icmptype == ICMP6_PACKET_TOO_BIG || 3064 icmptype == ICMP6_TIME_EXCEEDED || 3065 icmptype == ICMP6_PARAM_PROB) 3066 state_icmp++; 3067 break; 3068 #endif /* INET6 */ 3069 default: 3070 sport = dport = hdrlen = 0; 3071 break; 3072 } 3073 3074 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3075 3076 /* check packet for BINAT/NAT/RDR */ 3077 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3078 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3079 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3080 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3081 3082 if (pd->ip_sum) 3083 bip_sum = *pd->ip_sum; 3084 3085 switch (pd->proto) { 3086 case IPPROTO_TCP: 3087 bproto_sum = th->th_sum; 3088 pd->proto_sum = &th->th_sum; 3089 3090 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3091 nk->port[pd->sidx] != sport) { 3092 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3093 &th->th_sum, &nk->addr[pd->sidx], 3094 nk->port[pd->sidx], 0, af); 3095 pd->sport = &th->th_sport; 3096 sport = th->th_sport; 3097 } 3098 3099 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3100 nk->port[pd->didx] != dport) { 3101 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3102 &th->th_sum, &nk->addr[pd->didx], 3103 nk->port[pd->didx], 0, af); 3104 dport = th->th_dport; 3105 pd->dport = &th->th_dport; 3106 } 3107 rewrite++; 3108 break; 3109 case IPPROTO_UDP: 3110 bproto_sum = pd->hdr.udp->uh_sum; 3111 pd->proto_sum = &pd->hdr.udp->uh_sum; 3112 3113 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3114 nk->port[pd->sidx] != sport) { 3115 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3116 pd->ip_sum, &pd->hdr.udp->uh_sum, 3117 &nk->addr[pd->sidx], 3118 nk->port[pd->sidx], 1, af); 3119 sport = pd->hdr.udp->uh_sport; 3120 pd->sport = &pd->hdr.udp->uh_sport; 3121 } 3122 3123 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3124 nk->port[pd->didx] != dport) { 3125 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3126 pd->ip_sum, &pd->hdr.udp->uh_sum, 3127 &nk->addr[pd->didx], 3128 nk->port[pd->didx], 1, af); 3129 dport = pd->hdr.udp->uh_dport; 3130 pd->dport = &pd->hdr.udp->uh_dport; 3131 } 3132 rewrite++; 3133 break; 3134 #ifdef INET 3135 case IPPROTO_ICMP: 3136 nk->port[0] = nk->port[1]; 3137 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3138 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3139 nk->addr[pd->sidx].v4.s_addr, 0); 3140 3141 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3142 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3143 nk->addr[pd->didx].v4.s_addr, 0); 3144 3145 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3146 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3147 pd->hdr.icmp->icmp_cksum, sport, 3148 nk->port[1], 0); 3149 pd->hdr.icmp->icmp_id = nk->port[1]; 3150 pd->sport = &pd->hdr.icmp->icmp_id; 3151 } 3152 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3153 break; 3154 #endif /* INET */ 3155 #ifdef INET6 3156 case IPPROTO_ICMPV6: 3157 nk->port[0] = nk->port[1]; 3158 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3159 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3160 &nk->addr[pd->sidx], 0); 3161 3162 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3163 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3164 &nk->addr[pd->didx], 0); 3165 rewrite++; 3166 break; 3167 #endif /* INET */ 3168 default: 3169 switch (af) { 3170 #ifdef INET 3171 case AF_INET: 3172 if (PF_ANEQ(saddr, 3173 &nk->addr[pd->sidx], AF_INET)) 3174 pf_change_a(&saddr->v4.s_addr, 3175 pd->ip_sum, 3176 nk->addr[pd->sidx].v4.s_addr, 0); 3177 3178 if (PF_ANEQ(daddr, 3179 &nk->addr[pd->didx], AF_INET)) 3180 pf_change_a(&daddr->v4.s_addr, 3181 pd->ip_sum, 3182 nk->addr[pd->didx].v4.s_addr, 0); 3183 break; 3184 #endif /* INET */ 3185 #ifdef INET6 3186 case AF_INET6: 3187 if (PF_ANEQ(saddr, 3188 &nk->addr[pd->sidx], AF_INET6)) 3189 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3190 3191 if (PF_ANEQ(daddr, 3192 &nk->addr[pd->didx], AF_INET6)) 3193 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3194 break; 3195 #endif /* INET */ 3196 } 3197 break; 3198 } 3199 if (nr->natpass) 3200 r = NULL; 3201 pd->nat_rule = nr; 3202 } 3203 3204 while (r != NULL) { 3205 r->evaluations++; 3206 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3207 r = r->skip[PF_SKIP_IFP].ptr; 3208 else if (r->direction && r->direction != direction) 3209 r = r->skip[PF_SKIP_DIR].ptr; 3210 else if (r->af && r->af != af) 3211 r = r->skip[PF_SKIP_AF].ptr; 3212 else if (r->proto && r->proto != pd->proto) 3213 r = r->skip[PF_SKIP_PROTO].ptr; 3214 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3215 r->src.neg, kif, M_GETFIB(m))) 3216 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3217 /* tcp/udp only. port_op always 0 in other cases */ 3218 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3219 r->src.port[0], r->src.port[1], sport)) 3220 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3221 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3222 r->dst.neg, NULL, M_GETFIB(m))) 3223 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3224 /* tcp/udp only. port_op always 0 in other cases */ 3225 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3226 r->dst.port[0], r->dst.port[1], dport)) 3227 r = r->skip[PF_SKIP_DST_PORT].ptr; 3228 /* icmp only. type always 0 in other cases */ 3229 else if (r->type && r->type != icmptype + 1) 3230 r = TAILQ_NEXT(r, entries); 3231 /* icmp only. type always 0 in other cases */ 3232 else if (r->code && r->code != icmpcode + 1) 3233 r = TAILQ_NEXT(r, entries); 3234 else if (r->tos && !(r->tos == pd->tos)) 3235 r = TAILQ_NEXT(r, entries); 3236 else if (r->rule_flag & PFRULE_FRAGMENT) 3237 r = TAILQ_NEXT(r, entries); 3238 else if (pd->proto == IPPROTO_TCP && 3239 (r->flagset & th->th_flags) != r->flags) 3240 r = TAILQ_NEXT(r, entries); 3241 /* tcp/udp only. uid.op always 0 in other cases */ 3242 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3243 pf_socket_lookup(direction, pd, m), 1)) && 3244 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3245 pd->lookup.uid)) 3246 r = TAILQ_NEXT(r, entries); 3247 /* tcp/udp only. gid.op always 0 in other cases */ 3248 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3249 pf_socket_lookup(direction, pd, m), 1)) && 3250 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3251 pd->lookup.gid)) 3252 r = TAILQ_NEXT(r, entries); 3253 else if (r->prob && 3254 r->prob <= arc4random()) 3255 r = TAILQ_NEXT(r, entries); 3256 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3257 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3258 r = TAILQ_NEXT(r, entries); 3259 else if (r->os_fingerprint != PF_OSFP_ANY && 3260 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3261 pf_osfp_fingerprint(pd, m, off, th), 3262 r->os_fingerprint))) 3263 r = TAILQ_NEXT(r, entries); 3264 else { 3265 if (r->tag) 3266 tag = r->tag; 3267 if (r->rtableid >= 0) 3268 rtableid = r->rtableid; 3269 if (r->anchor == NULL) { 3270 match = 1; 3271 *rm = r; 3272 *am = a; 3273 *rsm = ruleset; 3274 if ((*rm)->quick) 3275 break; 3276 r = TAILQ_NEXT(r, entries); 3277 } else 3278 pf_step_into_anchor(anchor_stack, &asd, 3279 &ruleset, PF_RULESET_FILTER, &r, &a, 3280 &match); 3281 } 3282 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3283 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3284 break; 3285 } 3286 r = *rm; 3287 a = *am; 3288 ruleset = *rsm; 3289 3290 REASON_SET(&reason, PFRES_MATCH); 3291 3292 if (r->log || (nr != NULL && nr->log)) { 3293 if (rewrite) 3294 m_copyback(m, off, hdrlen, pd->hdr.any); 3295 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3296 ruleset, pd, 1); 3297 } 3298 3299 if ((r->action == PF_DROP) && 3300 ((r->rule_flag & PFRULE_RETURNRST) || 3301 (r->rule_flag & PFRULE_RETURNICMP) || 3302 (r->rule_flag & PFRULE_RETURN))) { 3303 /* undo NAT changes, if they have taken place */ 3304 if (nr != NULL) { 3305 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3306 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3307 if (pd->sport) 3308 *pd->sport = sk->port[pd->sidx]; 3309 if (pd->dport) 3310 *pd->dport = sk->port[pd->didx]; 3311 if (pd->proto_sum) 3312 *pd->proto_sum = bproto_sum; 3313 if (pd->ip_sum) 3314 *pd->ip_sum = bip_sum; 3315 m_copyback(m, off, hdrlen, pd->hdr.any); 3316 } 3317 if (pd->proto == IPPROTO_TCP && 3318 ((r->rule_flag & PFRULE_RETURNRST) || 3319 (r->rule_flag & PFRULE_RETURN)) && 3320 !(th->th_flags & TH_RST)) { 3321 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3322 int len = 0; 3323 #ifdef INET 3324 struct ip *h4; 3325 #endif 3326 #ifdef INET6 3327 struct ip6_hdr *h6; 3328 #endif 3329 3330 switch (af) { 3331 #ifdef INET 3332 case AF_INET: 3333 h4 = mtod(m, struct ip *); 3334 len = ntohs(h4->ip_len) - off; 3335 break; 3336 #endif 3337 #ifdef INET6 3338 case AF_INET6: 3339 h6 = mtod(m, struct ip6_hdr *); 3340 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3341 break; 3342 #endif 3343 } 3344 3345 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3346 REASON_SET(&reason, PFRES_PROTCKSUM); 3347 else { 3348 if (th->th_flags & TH_SYN) 3349 ack++; 3350 if (th->th_flags & TH_FIN) 3351 ack++; 3352 pf_send_tcp(m, r, af, pd->dst, 3353 pd->src, th->th_dport, th->th_sport, 3354 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3355 r->return_ttl, 1, 0, kif->pfik_ifp); 3356 } 3357 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3358 r->return_icmp) 3359 pf_send_icmp(m, r->return_icmp >> 8, 3360 r->return_icmp & 255, af, r); 3361 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3362 r->return_icmp6) 3363 pf_send_icmp(m, r->return_icmp6 >> 8, 3364 r->return_icmp6 & 255, af, r); 3365 } 3366 3367 if (r->action == PF_DROP) 3368 goto cleanup; 3369 3370 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3371 REASON_SET(&reason, PFRES_MEMORY); 3372 goto cleanup; 3373 } 3374 if (rtableid >= 0) 3375 M_SETFIB(m, rtableid); 3376 3377 if (!state_icmp && (r->keep_state || nr != NULL || 3378 (pd->flags & PFDESC_TCP_NORM))) { 3379 int action; 3380 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3381 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3382 hdrlen); 3383 if (action != PF_PASS) 3384 return (action); 3385 } else { 3386 if (sk != NULL) 3387 uma_zfree(V_pf_state_key_z, sk); 3388 if (nk != NULL) 3389 uma_zfree(V_pf_state_key_z, nk); 3390 } 3391 3392 /* copy back packet headers if we performed NAT operations */ 3393 if (rewrite) 3394 m_copyback(m, off, hdrlen, pd->hdr.any); 3395 3396 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3397 direction == PF_OUT && 3398 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3399 /* 3400 * We want the state created, but we dont 3401 * want to send this in case a partner 3402 * firewall has to know about it to allow 3403 * replies through it. 3404 */ 3405 return (PF_DEFER); 3406 3407 return (PF_PASS); 3408 3409 cleanup: 3410 if (sk != NULL) 3411 uma_zfree(V_pf_state_key_z, sk); 3412 if (nk != NULL) 3413 uma_zfree(V_pf_state_key_z, nk); 3414 return (PF_DROP); 3415 } 3416 3417 static int 3418 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3419 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3420 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3421 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3422 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3423 { 3424 struct pf_state *s = NULL; 3425 struct pf_src_node *sn = NULL; 3426 struct tcphdr *th = pd->hdr.tcp; 3427 u_int16_t mss = V_tcp_mssdflt; 3428 u_short reason; 3429 3430 /* check maximums */ 3431 if (r->max_states && 3432 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3433 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3434 REASON_SET(&reason, PFRES_MAXSTATES); 3435 return (PF_DROP); 3436 } 3437 /* src node for filter rule */ 3438 if ((r->rule_flag & PFRULE_SRCTRACK || 3439 r->rpool.opts & PF_POOL_STICKYADDR) && 3440 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3441 REASON_SET(&reason, PFRES_SRCLIMIT); 3442 goto csfailed; 3443 } 3444 /* src node for translation rule */ 3445 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3446 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3447 REASON_SET(&reason, PFRES_SRCLIMIT); 3448 goto csfailed; 3449 } 3450 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3451 if (s == NULL) { 3452 REASON_SET(&reason, PFRES_MEMORY); 3453 goto csfailed; 3454 } 3455 s->rule.ptr = r; 3456 s->nat_rule.ptr = nr; 3457 s->anchor.ptr = a; 3458 STATE_INC_COUNTERS(s); 3459 if (r->allow_opts) 3460 s->state_flags |= PFSTATE_ALLOWOPTS; 3461 if (r->rule_flag & PFRULE_STATESLOPPY) 3462 s->state_flags |= PFSTATE_SLOPPY; 3463 s->log = r->log & PF_LOG_ALL; 3464 s->sync_state = PFSYNC_S_NONE; 3465 if (nr != NULL) 3466 s->log |= nr->log & PF_LOG_ALL; 3467 switch (pd->proto) { 3468 case IPPROTO_TCP: 3469 s->src.seqlo = ntohl(th->th_seq); 3470 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3471 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3472 r->keep_state == PF_STATE_MODULATE) { 3473 /* Generate sequence number modulator */ 3474 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3475 0) 3476 s->src.seqdiff = 1; 3477 pf_change_a(&th->th_seq, &th->th_sum, 3478 htonl(s->src.seqlo + s->src.seqdiff), 0); 3479 *rewrite = 1; 3480 } else 3481 s->src.seqdiff = 0; 3482 if (th->th_flags & TH_SYN) { 3483 s->src.seqhi++; 3484 s->src.wscale = pf_get_wscale(m, off, 3485 th->th_off, pd->af); 3486 } 3487 s->src.max_win = MAX(ntohs(th->th_win), 1); 3488 if (s->src.wscale & PF_WSCALE_MASK) { 3489 /* Remove scale factor from initial window */ 3490 int win = s->src.max_win; 3491 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3492 s->src.max_win = (win - 1) >> 3493 (s->src.wscale & PF_WSCALE_MASK); 3494 } 3495 if (th->th_flags & TH_FIN) 3496 s->src.seqhi++; 3497 s->dst.seqhi = 1; 3498 s->dst.max_win = 1; 3499 s->src.state = TCPS_SYN_SENT; 3500 s->dst.state = TCPS_CLOSED; 3501 s->timeout = PFTM_TCP_FIRST_PACKET; 3502 break; 3503 case IPPROTO_UDP: 3504 s->src.state = PFUDPS_SINGLE; 3505 s->dst.state = PFUDPS_NO_TRAFFIC; 3506 s->timeout = PFTM_UDP_FIRST_PACKET; 3507 break; 3508 case IPPROTO_ICMP: 3509 #ifdef INET6 3510 case IPPROTO_ICMPV6: 3511 #endif 3512 s->timeout = PFTM_ICMP_FIRST_PACKET; 3513 break; 3514 default: 3515 s->src.state = PFOTHERS_SINGLE; 3516 s->dst.state = PFOTHERS_NO_TRAFFIC; 3517 s->timeout = PFTM_OTHER_FIRST_PACKET; 3518 } 3519 3520 if (r->rt && r->rt != PF_FASTROUTE) { 3521 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3522 REASON_SET(&reason, PFRES_MAPFAILED); 3523 pf_src_tree_remove_state(s); 3524 STATE_DEC_COUNTERS(s); 3525 uma_zfree(V_pf_state_z, s); 3526 goto csfailed; 3527 } 3528 s->rt_kif = r->rpool.cur->kif; 3529 } 3530 3531 s->creation = time_uptime; 3532 s->expire = time_uptime; 3533 3534 if (sn != NULL) { 3535 s->src_node = sn; 3536 s->src_node->states++; 3537 } 3538 if (nsn != NULL) { 3539 /* XXX We only modify one side for now. */ 3540 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3541 s->nat_src_node = nsn; 3542 s->nat_src_node->states++; 3543 } 3544 if (pd->proto == IPPROTO_TCP) { 3545 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3546 off, pd, th, &s->src, &s->dst)) { 3547 REASON_SET(&reason, PFRES_MEMORY); 3548 pf_src_tree_remove_state(s); 3549 STATE_DEC_COUNTERS(s); 3550 uma_zfree(V_pf_state_z, s); 3551 return (PF_DROP); 3552 } 3553 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3554 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3555 &s->src, &s->dst, rewrite)) { 3556 /* This really shouldn't happen!!! */ 3557 DPFPRINTF(PF_DEBUG_URGENT, 3558 ("pf_normalize_tcp_stateful failed on first pkt")); 3559 pf_normalize_tcp_cleanup(s); 3560 pf_src_tree_remove_state(s); 3561 STATE_DEC_COUNTERS(s); 3562 uma_zfree(V_pf_state_z, s); 3563 return (PF_DROP); 3564 } 3565 } 3566 s->direction = pd->dir; 3567 3568 /* 3569 * sk/nk could already been setup by pf_get_translation(). 3570 */ 3571 if (nr == NULL) { 3572 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3573 __func__, nr, sk, nk)); 3574 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3575 if (sk == NULL) 3576 goto csfailed; 3577 nk = sk; 3578 } else 3579 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3580 __func__, nr, sk, nk)); 3581 3582 /* Swap sk/nk for PF_OUT. */ 3583 if (pf_state_insert(BOUND_IFACE(r, kif), 3584 (pd->dir == PF_IN) ? sk : nk, 3585 (pd->dir == PF_IN) ? nk : sk, s)) { 3586 if (pd->proto == IPPROTO_TCP) 3587 pf_normalize_tcp_cleanup(s); 3588 REASON_SET(&reason, PFRES_STATEINS); 3589 pf_src_tree_remove_state(s); 3590 STATE_DEC_COUNTERS(s); 3591 uma_zfree(V_pf_state_z, s); 3592 return (PF_DROP); 3593 } else 3594 *sm = s; 3595 3596 if (tag > 0) 3597 s->tag = tag; 3598 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3599 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3600 s->src.state = PF_TCPS_PROXY_SRC; 3601 /* undo NAT changes, if they have taken place */ 3602 if (nr != NULL) { 3603 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3604 if (pd->dir == PF_OUT) 3605 skt = s->key[PF_SK_STACK]; 3606 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3607 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3608 if (pd->sport) 3609 *pd->sport = skt->port[pd->sidx]; 3610 if (pd->dport) 3611 *pd->dport = skt->port[pd->didx]; 3612 if (pd->proto_sum) 3613 *pd->proto_sum = bproto_sum; 3614 if (pd->ip_sum) 3615 *pd->ip_sum = bip_sum; 3616 m_copyback(m, off, hdrlen, pd->hdr.any); 3617 } 3618 s->src.seqhi = htonl(arc4random()); 3619 /* Find mss option */ 3620 int rtid = M_GETFIB(m); 3621 mss = pf_get_mss(m, off, th->th_off, pd->af); 3622 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3623 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3624 s->src.mss = mss; 3625 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3626 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3627 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3628 REASON_SET(&reason, PFRES_SYNPROXY); 3629 return (PF_SYNPROXY_DROP); 3630 } 3631 3632 return (PF_PASS); 3633 3634 csfailed: 3635 if (sk != NULL) 3636 uma_zfree(V_pf_state_key_z, sk); 3637 if (nk != NULL) 3638 uma_zfree(V_pf_state_key_z, nk); 3639 3640 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3641 pf_unlink_src_node(sn); 3642 pf_free_src_node(sn); 3643 } 3644 3645 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3646 pf_unlink_src_node(nsn); 3647 pf_free_src_node(nsn); 3648 } 3649 3650 return (PF_DROP); 3651 } 3652 3653 static int 3654 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3655 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3656 struct pf_ruleset **rsm) 3657 { 3658 struct pf_rule *r, *a = NULL; 3659 struct pf_ruleset *ruleset = NULL; 3660 sa_family_t af = pd->af; 3661 u_short reason; 3662 int tag = -1; 3663 int asd = 0; 3664 int match = 0; 3665 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3666 3667 PF_RULES_RASSERT(); 3668 3669 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3670 while (r != NULL) { 3671 r->evaluations++; 3672 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3673 r = r->skip[PF_SKIP_IFP].ptr; 3674 else if (r->direction && r->direction != direction) 3675 r = r->skip[PF_SKIP_DIR].ptr; 3676 else if (r->af && r->af != af) 3677 r = r->skip[PF_SKIP_AF].ptr; 3678 else if (r->proto && r->proto != pd->proto) 3679 r = r->skip[PF_SKIP_PROTO].ptr; 3680 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3681 r->src.neg, kif, M_GETFIB(m))) 3682 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3683 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3684 r->dst.neg, NULL, M_GETFIB(m))) 3685 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3686 else if (r->tos && !(r->tos == pd->tos)) 3687 r = TAILQ_NEXT(r, entries); 3688 else if (r->os_fingerprint != PF_OSFP_ANY) 3689 r = TAILQ_NEXT(r, entries); 3690 else if (pd->proto == IPPROTO_UDP && 3691 (r->src.port_op || r->dst.port_op)) 3692 r = TAILQ_NEXT(r, entries); 3693 else if (pd->proto == IPPROTO_TCP && 3694 (r->src.port_op || r->dst.port_op || r->flagset)) 3695 r = TAILQ_NEXT(r, entries); 3696 else if ((pd->proto == IPPROTO_ICMP || 3697 pd->proto == IPPROTO_ICMPV6) && 3698 (r->type || r->code)) 3699 r = TAILQ_NEXT(r, entries); 3700 else if (r->prob && r->prob <= 3701 (arc4random() % (UINT_MAX - 1) + 1)) 3702 r = TAILQ_NEXT(r, entries); 3703 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3704 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3705 r = TAILQ_NEXT(r, entries); 3706 else { 3707 if (r->anchor == NULL) { 3708 match = 1; 3709 *rm = r; 3710 *am = a; 3711 *rsm = ruleset; 3712 if ((*rm)->quick) 3713 break; 3714 r = TAILQ_NEXT(r, entries); 3715 } else 3716 pf_step_into_anchor(anchor_stack, &asd, 3717 &ruleset, PF_RULESET_FILTER, &r, &a, 3718 &match); 3719 } 3720 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3721 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3722 break; 3723 } 3724 r = *rm; 3725 a = *am; 3726 ruleset = *rsm; 3727 3728 REASON_SET(&reason, PFRES_MATCH); 3729 3730 if (r->log) 3731 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3732 1); 3733 3734 if (r->action != PF_PASS) 3735 return (PF_DROP); 3736 3737 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3738 REASON_SET(&reason, PFRES_MEMORY); 3739 return (PF_DROP); 3740 } 3741 3742 return (PF_PASS); 3743 } 3744 3745 static int 3746 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3747 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3748 struct pf_pdesc *pd, u_short *reason, int *copyback) 3749 { 3750 struct tcphdr *th = pd->hdr.tcp; 3751 u_int16_t win = ntohs(th->th_win); 3752 u_int32_t ack, end, seq, orig_seq; 3753 u_int8_t sws, dws; 3754 int ackskew; 3755 3756 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3757 sws = src->wscale & PF_WSCALE_MASK; 3758 dws = dst->wscale & PF_WSCALE_MASK; 3759 } else 3760 sws = dws = 0; 3761 3762 /* 3763 * Sequence tracking algorithm from Guido van Rooij's paper: 3764 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3765 * tcp_filtering.ps 3766 */ 3767 3768 orig_seq = seq = ntohl(th->th_seq); 3769 if (src->seqlo == 0) { 3770 /* First packet from this end. Set its state */ 3771 3772 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3773 src->scrub == NULL) { 3774 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3775 REASON_SET(reason, PFRES_MEMORY); 3776 return (PF_DROP); 3777 } 3778 } 3779 3780 /* Deferred generation of sequence number modulator */ 3781 if (dst->seqdiff && !src->seqdiff) { 3782 /* use random iss for the TCP server */ 3783 while ((src->seqdiff = arc4random() - seq) == 0) 3784 ; 3785 ack = ntohl(th->th_ack) - dst->seqdiff; 3786 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3787 src->seqdiff), 0); 3788 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3789 *copyback = 1; 3790 } else { 3791 ack = ntohl(th->th_ack); 3792 } 3793 3794 end = seq + pd->p_len; 3795 if (th->th_flags & TH_SYN) { 3796 end++; 3797 if (dst->wscale & PF_WSCALE_FLAG) { 3798 src->wscale = pf_get_wscale(m, off, th->th_off, 3799 pd->af); 3800 if (src->wscale & PF_WSCALE_FLAG) { 3801 /* Remove scale factor from initial 3802 * window */ 3803 sws = src->wscale & PF_WSCALE_MASK; 3804 win = ((u_int32_t)win + (1 << sws) - 1) 3805 >> sws; 3806 dws = dst->wscale & PF_WSCALE_MASK; 3807 } else { 3808 /* fixup other window */ 3809 dst->max_win <<= dst->wscale & 3810 PF_WSCALE_MASK; 3811 /* in case of a retrans SYN|ACK */ 3812 dst->wscale = 0; 3813 } 3814 } 3815 } 3816 if (th->th_flags & TH_FIN) 3817 end++; 3818 3819 src->seqlo = seq; 3820 if (src->state < TCPS_SYN_SENT) 3821 src->state = TCPS_SYN_SENT; 3822 3823 /* 3824 * May need to slide the window (seqhi may have been set by 3825 * the crappy stack check or if we picked up the connection 3826 * after establishment) 3827 */ 3828 if (src->seqhi == 1 || 3829 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3830 src->seqhi = end + MAX(1, dst->max_win << dws); 3831 if (win > src->max_win) 3832 src->max_win = win; 3833 3834 } else { 3835 ack = ntohl(th->th_ack) - dst->seqdiff; 3836 if (src->seqdiff) { 3837 /* Modulate sequence numbers */ 3838 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3839 src->seqdiff), 0); 3840 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3841 *copyback = 1; 3842 } 3843 end = seq + pd->p_len; 3844 if (th->th_flags & TH_SYN) 3845 end++; 3846 if (th->th_flags & TH_FIN) 3847 end++; 3848 } 3849 3850 if ((th->th_flags & TH_ACK) == 0) { 3851 /* Let it pass through the ack skew check */ 3852 ack = dst->seqlo; 3853 } else if ((ack == 0 && 3854 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3855 /* broken tcp stacks do not set ack */ 3856 (dst->state < TCPS_SYN_SENT)) { 3857 /* 3858 * Many stacks (ours included) will set the ACK number in an 3859 * FIN|ACK if the SYN times out -- no sequence to ACK. 3860 */ 3861 ack = dst->seqlo; 3862 } 3863 3864 if (seq == end) { 3865 /* Ease sequencing restrictions on no data packets */ 3866 seq = src->seqlo; 3867 end = seq; 3868 } 3869 3870 ackskew = dst->seqlo - ack; 3871 3872 3873 /* 3874 * Need to demodulate the sequence numbers in any TCP SACK options 3875 * (Selective ACK). We could optionally validate the SACK values 3876 * against the current ACK window, either forwards or backwards, but 3877 * I'm not confident that SACK has been implemented properly 3878 * everywhere. It wouldn't surprise me if several stacks accidently 3879 * SACK too far backwards of previously ACKed data. There really aren't 3880 * any security implications of bad SACKing unless the target stack 3881 * doesn't validate the option length correctly. Someone trying to 3882 * spoof into a TCP connection won't bother blindly sending SACK 3883 * options anyway. 3884 */ 3885 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3886 if (pf_modulate_sack(m, off, pd, th, dst)) 3887 *copyback = 1; 3888 } 3889 3890 3891 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3892 if (SEQ_GEQ(src->seqhi, end) && 3893 /* Last octet inside other's window space */ 3894 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3895 /* Retrans: not more than one window back */ 3896 (ackskew >= -MAXACKWINDOW) && 3897 /* Acking not more than one reassembled fragment backwards */ 3898 (ackskew <= (MAXACKWINDOW << sws)) && 3899 /* Acking not more than one window forward */ 3900 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3901 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3902 (pd->flags & PFDESC_IP_REAS) == 0)) { 3903 /* Require an exact/+1 sequence match on resets when possible */ 3904 3905 if (dst->scrub || src->scrub) { 3906 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3907 *state, src, dst, copyback)) 3908 return (PF_DROP); 3909 } 3910 3911 /* update max window */ 3912 if (src->max_win < win) 3913 src->max_win = win; 3914 /* synchronize sequencing */ 3915 if (SEQ_GT(end, src->seqlo)) 3916 src->seqlo = end; 3917 /* slide the window of what the other end can send */ 3918 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3919 dst->seqhi = ack + MAX((win << sws), 1); 3920 3921 3922 /* update states */ 3923 if (th->th_flags & TH_SYN) 3924 if (src->state < TCPS_SYN_SENT) 3925 src->state = TCPS_SYN_SENT; 3926 if (th->th_flags & TH_FIN) 3927 if (src->state < TCPS_CLOSING) 3928 src->state = TCPS_CLOSING; 3929 if (th->th_flags & TH_ACK) { 3930 if (dst->state == TCPS_SYN_SENT) { 3931 dst->state = TCPS_ESTABLISHED; 3932 if (src->state == TCPS_ESTABLISHED && 3933 (*state)->src_node != NULL && 3934 pf_src_connlimit(state)) { 3935 REASON_SET(reason, PFRES_SRCLIMIT); 3936 return (PF_DROP); 3937 } 3938 } else if (dst->state == TCPS_CLOSING) 3939 dst->state = TCPS_FIN_WAIT_2; 3940 } 3941 if (th->th_flags & TH_RST) 3942 src->state = dst->state = TCPS_TIME_WAIT; 3943 3944 /* update expire time */ 3945 (*state)->expire = time_uptime; 3946 if (src->state >= TCPS_FIN_WAIT_2 && 3947 dst->state >= TCPS_FIN_WAIT_2) 3948 (*state)->timeout = PFTM_TCP_CLOSED; 3949 else if (src->state >= TCPS_CLOSING && 3950 dst->state >= TCPS_CLOSING) 3951 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3952 else if (src->state < TCPS_ESTABLISHED || 3953 dst->state < TCPS_ESTABLISHED) 3954 (*state)->timeout = PFTM_TCP_OPENING; 3955 else if (src->state >= TCPS_CLOSING || 3956 dst->state >= TCPS_CLOSING) 3957 (*state)->timeout = PFTM_TCP_CLOSING; 3958 else 3959 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3960 3961 /* Fall through to PASS packet */ 3962 3963 } else if ((dst->state < TCPS_SYN_SENT || 3964 dst->state >= TCPS_FIN_WAIT_2 || 3965 src->state >= TCPS_FIN_WAIT_2) && 3966 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3967 /* Within a window forward of the originating packet */ 3968 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3969 /* Within a window backward of the originating packet */ 3970 3971 /* 3972 * This currently handles three situations: 3973 * 1) Stupid stacks will shotgun SYNs before their peer 3974 * replies. 3975 * 2) When PF catches an already established stream (the 3976 * firewall rebooted, the state table was flushed, routes 3977 * changed...) 3978 * 3) Packets get funky immediately after the connection 3979 * closes (this should catch Solaris spurious ACK|FINs 3980 * that web servers like to spew after a close) 3981 * 3982 * This must be a little more careful than the above code 3983 * since packet floods will also be caught here. We don't 3984 * update the TTL here to mitigate the damage of a packet 3985 * flood and so the same code can handle awkward establishment 3986 * and a loosened connection close. 3987 * In the establishment case, a correct peer response will 3988 * validate the connection, go through the normal state code 3989 * and keep updating the state TTL. 3990 */ 3991 3992 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3993 printf("pf: loose state match: "); 3994 pf_print_state(*state); 3995 pf_print_flags(th->th_flags); 3996 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3997 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3998 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3999 (unsigned long long)(*state)->packets[1], 4000 pd->dir == PF_IN ? "in" : "out", 4001 pd->dir == (*state)->direction ? "fwd" : "rev"); 4002 } 4003 4004 if (dst->scrub || src->scrub) { 4005 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4006 *state, src, dst, copyback)) 4007 return (PF_DROP); 4008 } 4009 4010 /* update max window */ 4011 if (src->max_win < win) 4012 src->max_win = win; 4013 /* synchronize sequencing */ 4014 if (SEQ_GT(end, src->seqlo)) 4015 src->seqlo = end; 4016 /* slide the window of what the other end can send */ 4017 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4018 dst->seqhi = ack + MAX((win << sws), 1); 4019 4020 /* 4021 * Cannot set dst->seqhi here since this could be a shotgunned 4022 * SYN and not an already established connection. 4023 */ 4024 4025 if (th->th_flags & TH_FIN) 4026 if (src->state < TCPS_CLOSING) 4027 src->state = TCPS_CLOSING; 4028 if (th->th_flags & TH_RST) 4029 src->state = dst->state = TCPS_TIME_WAIT; 4030 4031 /* Fall through to PASS packet */ 4032 4033 } else { 4034 if ((*state)->dst.state == TCPS_SYN_SENT && 4035 (*state)->src.state == TCPS_SYN_SENT) { 4036 /* Send RST for state mismatches during handshake */ 4037 if (!(th->th_flags & TH_RST)) 4038 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4039 pd->dst, pd->src, th->th_dport, 4040 th->th_sport, ntohl(th->th_ack), 0, 4041 TH_RST, 0, 0, 4042 (*state)->rule.ptr->return_ttl, 1, 0, 4043 kif->pfik_ifp); 4044 src->seqlo = 0; 4045 src->seqhi = 1; 4046 src->max_win = 1; 4047 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4048 printf("pf: BAD state: "); 4049 pf_print_state(*state); 4050 pf_print_flags(th->th_flags); 4051 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4052 "pkts=%llu:%llu dir=%s,%s\n", 4053 seq, orig_seq, ack, pd->p_len, ackskew, 4054 (unsigned long long)(*state)->packets[0], 4055 (unsigned long long)(*state)->packets[1], 4056 pd->dir == PF_IN ? "in" : "out", 4057 pd->dir == (*state)->direction ? "fwd" : "rev"); 4058 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4059 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4060 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4061 ' ': '2', 4062 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4063 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4064 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4065 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4066 } 4067 REASON_SET(reason, PFRES_BADSTATE); 4068 return (PF_DROP); 4069 } 4070 4071 return (PF_PASS); 4072 } 4073 4074 static int 4075 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4076 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4077 { 4078 struct tcphdr *th = pd->hdr.tcp; 4079 4080 if (th->th_flags & TH_SYN) 4081 if (src->state < TCPS_SYN_SENT) 4082 src->state = TCPS_SYN_SENT; 4083 if (th->th_flags & TH_FIN) 4084 if (src->state < TCPS_CLOSING) 4085 src->state = TCPS_CLOSING; 4086 if (th->th_flags & TH_ACK) { 4087 if (dst->state == TCPS_SYN_SENT) { 4088 dst->state = TCPS_ESTABLISHED; 4089 if (src->state == TCPS_ESTABLISHED && 4090 (*state)->src_node != NULL && 4091 pf_src_connlimit(state)) { 4092 REASON_SET(reason, PFRES_SRCLIMIT); 4093 return (PF_DROP); 4094 } 4095 } else if (dst->state == TCPS_CLOSING) { 4096 dst->state = TCPS_FIN_WAIT_2; 4097 } else if (src->state == TCPS_SYN_SENT && 4098 dst->state < TCPS_SYN_SENT) { 4099 /* 4100 * Handle a special sloppy case where we only see one 4101 * half of the connection. If there is a ACK after 4102 * the initial SYN without ever seeing a packet from 4103 * the destination, set the connection to established. 4104 */ 4105 dst->state = src->state = TCPS_ESTABLISHED; 4106 if ((*state)->src_node != NULL && 4107 pf_src_connlimit(state)) { 4108 REASON_SET(reason, PFRES_SRCLIMIT); 4109 return (PF_DROP); 4110 } 4111 } else if (src->state == TCPS_CLOSING && 4112 dst->state == TCPS_ESTABLISHED && 4113 dst->seqlo == 0) { 4114 /* 4115 * Handle the closing of half connections where we 4116 * don't see the full bidirectional FIN/ACK+ACK 4117 * handshake. 4118 */ 4119 dst->state = TCPS_CLOSING; 4120 } 4121 } 4122 if (th->th_flags & TH_RST) 4123 src->state = dst->state = TCPS_TIME_WAIT; 4124 4125 /* update expire time */ 4126 (*state)->expire = time_uptime; 4127 if (src->state >= TCPS_FIN_WAIT_2 && 4128 dst->state >= TCPS_FIN_WAIT_2) 4129 (*state)->timeout = PFTM_TCP_CLOSED; 4130 else if (src->state >= TCPS_CLOSING && 4131 dst->state >= TCPS_CLOSING) 4132 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4133 else if (src->state < TCPS_ESTABLISHED || 4134 dst->state < TCPS_ESTABLISHED) 4135 (*state)->timeout = PFTM_TCP_OPENING; 4136 else if (src->state >= TCPS_CLOSING || 4137 dst->state >= TCPS_CLOSING) 4138 (*state)->timeout = PFTM_TCP_CLOSING; 4139 else 4140 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4141 4142 return (PF_PASS); 4143 } 4144 4145 static int 4146 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4147 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4148 u_short *reason) 4149 { 4150 struct pf_state_key_cmp key; 4151 struct tcphdr *th = pd->hdr.tcp; 4152 int copyback = 0; 4153 struct pf_state_peer *src, *dst; 4154 struct pf_state_key *sk; 4155 4156 bzero(&key, sizeof(key)); 4157 key.af = pd->af; 4158 key.proto = IPPROTO_TCP; 4159 if (direction == PF_IN) { /* wire side, straight */ 4160 PF_ACPY(&key.addr[0], pd->src, key.af); 4161 PF_ACPY(&key.addr[1], pd->dst, key.af); 4162 key.port[0] = th->th_sport; 4163 key.port[1] = th->th_dport; 4164 } else { /* stack side, reverse */ 4165 PF_ACPY(&key.addr[1], pd->src, key.af); 4166 PF_ACPY(&key.addr[0], pd->dst, key.af); 4167 key.port[1] = th->th_sport; 4168 key.port[0] = th->th_dport; 4169 } 4170 4171 STATE_LOOKUP(kif, &key, direction, *state, pd); 4172 4173 if (direction == (*state)->direction) { 4174 src = &(*state)->src; 4175 dst = &(*state)->dst; 4176 } else { 4177 src = &(*state)->dst; 4178 dst = &(*state)->src; 4179 } 4180 4181 sk = (*state)->key[pd->didx]; 4182 4183 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4184 if (direction != (*state)->direction) { 4185 REASON_SET(reason, PFRES_SYNPROXY); 4186 return (PF_SYNPROXY_DROP); 4187 } 4188 if (th->th_flags & TH_SYN) { 4189 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4190 REASON_SET(reason, PFRES_SYNPROXY); 4191 return (PF_DROP); 4192 } 4193 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4194 pd->src, th->th_dport, th->th_sport, 4195 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4196 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4197 REASON_SET(reason, PFRES_SYNPROXY); 4198 return (PF_SYNPROXY_DROP); 4199 } else if (!(th->th_flags & TH_ACK) || 4200 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4201 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4202 REASON_SET(reason, PFRES_SYNPROXY); 4203 return (PF_DROP); 4204 } else if ((*state)->src_node != NULL && 4205 pf_src_connlimit(state)) { 4206 REASON_SET(reason, PFRES_SRCLIMIT); 4207 return (PF_DROP); 4208 } else 4209 (*state)->src.state = PF_TCPS_PROXY_DST; 4210 } 4211 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4212 if (direction == (*state)->direction) { 4213 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4214 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4215 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4216 REASON_SET(reason, PFRES_SYNPROXY); 4217 return (PF_DROP); 4218 } 4219 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4220 if ((*state)->dst.seqhi == 1) 4221 (*state)->dst.seqhi = htonl(arc4random()); 4222 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4223 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4224 sk->port[pd->sidx], sk->port[pd->didx], 4225 (*state)->dst.seqhi, 0, TH_SYN, 0, 4226 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4227 REASON_SET(reason, PFRES_SYNPROXY); 4228 return (PF_SYNPROXY_DROP); 4229 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4230 (TH_SYN|TH_ACK)) || 4231 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4232 REASON_SET(reason, PFRES_SYNPROXY); 4233 return (PF_DROP); 4234 } else { 4235 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4236 (*state)->dst.seqlo = ntohl(th->th_seq); 4237 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4238 pd->src, th->th_dport, th->th_sport, 4239 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4240 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4241 (*state)->tag, NULL); 4242 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4243 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4244 sk->port[pd->sidx], sk->port[pd->didx], 4245 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4246 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4247 (*state)->src.seqdiff = (*state)->dst.seqhi - 4248 (*state)->src.seqlo; 4249 (*state)->dst.seqdiff = (*state)->src.seqhi - 4250 (*state)->dst.seqlo; 4251 (*state)->src.seqhi = (*state)->src.seqlo + 4252 (*state)->dst.max_win; 4253 (*state)->dst.seqhi = (*state)->dst.seqlo + 4254 (*state)->src.max_win; 4255 (*state)->src.wscale = (*state)->dst.wscale = 0; 4256 (*state)->src.state = (*state)->dst.state = 4257 TCPS_ESTABLISHED; 4258 REASON_SET(reason, PFRES_SYNPROXY); 4259 return (PF_SYNPROXY_DROP); 4260 } 4261 } 4262 4263 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4264 dst->state >= TCPS_FIN_WAIT_2 && 4265 src->state >= TCPS_FIN_WAIT_2) { 4266 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4267 printf("pf: state reuse "); 4268 pf_print_state(*state); 4269 pf_print_flags(th->th_flags); 4270 printf("\n"); 4271 } 4272 /* XXX make sure it's the same direction ?? */ 4273 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4274 pf_unlink_state(*state, PF_ENTER_LOCKED); 4275 *state = NULL; 4276 return (PF_DROP); 4277 } 4278 4279 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4280 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4281 return (PF_DROP); 4282 } else { 4283 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4284 ©back) == PF_DROP) 4285 return (PF_DROP); 4286 } 4287 4288 /* translate source/destination address, if necessary */ 4289 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4290 struct pf_state_key *nk = (*state)->key[pd->didx]; 4291 4292 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4293 nk->port[pd->sidx] != th->th_sport) 4294 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4295 &th->th_sum, &nk->addr[pd->sidx], 4296 nk->port[pd->sidx], 0, pd->af); 4297 4298 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4299 nk->port[pd->didx] != th->th_dport) 4300 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4301 &th->th_sum, &nk->addr[pd->didx], 4302 nk->port[pd->didx], 0, pd->af); 4303 copyback = 1; 4304 } 4305 4306 /* Copyback sequence modulation or stateful scrub changes if needed */ 4307 if (copyback) 4308 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4309 4310 return (PF_PASS); 4311 } 4312 4313 static int 4314 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4315 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4316 { 4317 struct pf_state_peer *src, *dst; 4318 struct pf_state_key_cmp key; 4319 struct udphdr *uh = pd->hdr.udp; 4320 4321 bzero(&key, sizeof(key)); 4322 key.af = pd->af; 4323 key.proto = IPPROTO_UDP; 4324 if (direction == PF_IN) { /* wire side, straight */ 4325 PF_ACPY(&key.addr[0], pd->src, key.af); 4326 PF_ACPY(&key.addr[1], pd->dst, key.af); 4327 key.port[0] = uh->uh_sport; 4328 key.port[1] = uh->uh_dport; 4329 } else { /* stack side, reverse */ 4330 PF_ACPY(&key.addr[1], pd->src, key.af); 4331 PF_ACPY(&key.addr[0], pd->dst, key.af); 4332 key.port[1] = uh->uh_sport; 4333 key.port[0] = uh->uh_dport; 4334 } 4335 4336 STATE_LOOKUP(kif, &key, direction, *state, pd); 4337 4338 if (direction == (*state)->direction) { 4339 src = &(*state)->src; 4340 dst = &(*state)->dst; 4341 } else { 4342 src = &(*state)->dst; 4343 dst = &(*state)->src; 4344 } 4345 4346 /* update states */ 4347 if (src->state < PFUDPS_SINGLE) 4348 src->state = PFUDPS_SINGLE; 4349 if (dst->state == PFUDPS_SINGLE) 4350 dst->state = PFUDPS_MULTIPLE; 4351 4352 /* update expire time */ 4353 (*state)->expire = time_uptime; 4354 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4355 (*state)->timeout = PFTM_UDP_MULTIPLE; 4356 else 4357 (*state)->timeout = PFTM_UDP_SINGLE; 4358 4359 /* translate source/destination address, if necessary */ 4360 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4361 struct pf_state_key *nk = (*state)->key[pd->didx]; 4362 4363 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4364 nk->port[pd->sidx] != uh->uh_sport) 4365 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4366 &uh->uh_sum, &nk->addr[pd->sidx], 4367 nk->port[pd->sidx], 1, pd->af); 4368 4369 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4370 nk->port[pd->didx] != uh->uh_dport) 4371 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4372 &uh->uh_sum, &nk->addr[pd->didx], 4373 nk->port[pd->didx], 1, pd->af); 4374 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4375 } 4376 4377 return (PF_PASS); 4378 } 4379 4380 static int 4381 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4382 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4383 { 4384 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4385 u_int16_t icmpid = 0, *icmpsum; 4386 u_int8_t icmptype; 4387 int state_icmp = 0; 4388 struct pf_state_key_cmp key; 4389 4390 bzero(&key, sizeof(key)); 4391 switch (pd->proto) { 4392 #ifdef INET 4393 case IPPROTO_ICMP: 4394 icmptype = pd->hdr.icmp->icmp_type; 4395 icmpid = pd->hdr.icmp->icmp_id; 4396 icmpsum = &pd->hdr.icmp->icmp_cksum; 4397 4398 if (icmptype == ICMP_UNREACH || 4399 icmptype == ICMP_SOURCEQUENCH || 4400 icmptype == ICMP_REDIRECT || 4401 icmptype == ICMP_TIMXCEED || 4402 icmptype == ICMP_PARAMPROB) 4403 state_icmp++; 4404 break; 4405 #endif /* INET */ 4406 #ifdef INET6 4407 case IPPROTO_ICMPV6: 4408 icmptype = pd->hdr.icmp6->icmp6_type; 4409 icmpid = pd->hdr.icmp6->icmp6_id; 4410 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4411 4412 if (icmptype == ICMP6_DST_UNREACH || 4413 icmptype == ICMP6_PACKET_TOO_BIG || 4414 icmptype == ICMP6_TIME_EXCEEDED || 4415 icmptype == ICMP6_PARAM_PROB) 4416 state_icmp++; 4417 break; 4418 #endif /* INET6 */ 4419 } 4420 4421 if (!state_icmp) { 4422 4423 /* 4424 * ICMP query/reply message not related to a TCP/UDP packet. 4425 * Search for an ICMP state. 4426 */ 4427 key.af = pd->af; 4428 key.proto = pd->proto; 4429 key.port[0] = key.port[1] = icmpid; 4430 if (direction == PF_IN) { /* wire side, straight */ 4431 PF_ACPY(&key.addr[0], pd->src, key.af); 4432 PF_ACPY(&key.addr[1], pd->dst, key.af); 4433 } else { /* stack side, reverse */ 4434 PF_ACPY(&key.addr[1], pd->src, key.af); 4435 PF_ACPY(&key.addr[0], pd->dst, key.af); 4436 } 4437 4438 STATE_LOOKUP(kif, &key, direction, *state, pd); 4439 4440 (*state)->expire = time_uptime; 4441 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4442 4443 /* translate source/destination address, if necessary */ 4444 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4445 struct pf_state_key *nk = (*state)->key[pd->didx]; 4446 4447 switch (pd->af) { 4448 #ifdef INET 4449 case AF_INET: 4450 if (PF_ANEQ(pd->src, 4451 &nk->addr[pd->sidx], AF_INET)) 4452 pf_change_a(&saddr->v4.s_addr, 4453 pd->ip_sum, 4454 nk->addr[pd->sidx].v4.s_addr, 0); 4455 4456 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4457 AF_INET)) 4458 pf_change_a(&daddr->v4.s_addr, 4459 pd->ip_sum, 4460 nk->addr[pd->didx].v4.s_addr, 0); 4461 4462 if (nk->port[0] != 4463 pd->hdr.icmp->icmp_id) { 4464 pd->hdr.icmp->icmp_cksum = 4465 pf_cksum_fixup( 4466 pd->hdr.icmp->icmp_cksum, icmpid, 4467 nk->port[pd->sidx], 0); 4468 pd->hdr.icmp->icmp_id = 4469 nk->port[pd->sidx]; 4470 } 4471 4472 m_copyback(m, off, ICMP_MINLEN, 4473 (caddr_t )pd->hdr.icmp); 4474 break; 4475 #endif /* INET */ 4476 #ifdef INET6 4477 case AF_INET6: 4478 if (PF_ANEQ(pd->src, 4479 &nk->addr[pd->sidx], AF_INET6)) 4480 pf_change_a6(saddr, 4481 &pd->hdr.icmp6->icmp6_cksum, 4482 &nk->addr[pd->sidx], 0); 4483 4484 if (PF_ANEQ(pd->dst, 4485 &nk->addr[pd->didx], AF_INET6)) 4486 pf_change_a6(daddr, 4487 &pd->hdr.icmp6->icmp6_cksum, 4488 &nk->addr[pd->didx], 0); 4489 4490 m_copyback(m, off, sizeof(struct icmp6_hdr), 4491 (caddr_t )pd->hdr.icmp6); 4492 break; 4493 #endif /* INET6 */ 4494 } 4495 } 4496 return (PF_PASS); 4497 4498 } else { 4499 /* 4500 * ICMP error message in response to a TCP/UDP packet. 4501 * Extract the inner TCP/UDP header and search for that state. 4502 */ 4503 4504 struct pf_pdesc pd2; 4505 bzero(&pd2, sizeof pd2); 4506 #ifdef INET 4507 struct ip h2; 4508 #endif /* INET */ 4509 #ifdef INET6 4510 struct ip6_hdr h2_6; 4511 int terminal = 0; 4512 #endif /* INET6 */ 4513 int ipoff2 = 0; 4514 int off2 = 0; 4515 4516 pd2.af = pd->af; 4517 /* Payload packet is from the opposite direction. */ 4518 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4519 pd2.didx = (direction == PF_IN) ? 0 : 1; 4520 switch (pd->af) { 4521 #ifdef INET 4522 case AF_INET: 4523 /* offset of h2 in mbuf chain */ 4524 ipoff2 = off + ICMP_MINLEN; 4525 4526 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4527 NULL, reason, pd2.af)) { 4528 DPFPRINTF(PF_DEBUG_MISC, 4529 ("pf: ICMP error message too short " 4530 "(ip)\n")); 4531 return (PF_DROP); 4532 } 4533 /* 4534 * ICMP error messages don't refer to non-first 4535 * fragments 4536 */ 4537 if (h2.ip_off & htons(IP_OFFMASK)) { 4538 REASON_SET(reason, PFRES_FRAG); 4539 return (PF_DROP); 4540 } 4541 4542 /* offset of protocol header that follows h2 */ 4543 off2 = ipoff2 + (h2.ip_hl << 2); 4544 4545 pd2.proto = h2.ip_p; 4546 pd2.src = (struct pf_addr *)&h2.ip_src; 4547 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4548 pd2.ip_sum = &h2.ip_sum; 4549 break; 4550 #endif /* INET */ 4551 #ifdef INET6 4552 case AF_INET6: 4553 ipoff2 = off + sizeof(struct icmp6_hdr); 4554 4555 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4556 NULL, reason, pd2.af)) { 4557 DPFPRINTF(PF_DEBUG_MISC, 4558 ("pf: ICMP error message too short " 4559 "(ip6)\n")); 4560 return (PF_DROP); 4561 } 4562 pd2.proto = h2_6.ip6_nxt; 4563 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4564 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4565 pd2.ip_sum = NULL; 4566 off2 = ipoff2 + sizeof(h2_6); 4567 do { 4568 switch (pd2.proto) { 4569 case IPPROTO_FRAGMENT: 4570 /* 4571 * ICMPv6 error messages for 4572 * non-first fragments 4573 */ 4574 REASON_SET(reason, PFRES_FRAG); 4575 return (PF_DROP); 4576 case IPPROTO_AH: 4577 case IPPROTO_HOPOPTS: 4578 case IPPROTO_ROUTING: 4579 case IPPROTO_DSTOPTS: { 4580 /* get next header and header length */ 4581 struct ip6_ext opt6; 4582 4583 if (!pf_pull_hdr(m, off2, &opt6, 4584 sizeof(opt6), NULL, reason, 4585 pd2.af)) { 4586 DPFPRINTF(PF_DEBUG_MISC, 4587 ("pf: ICMPv6 short opt\n")); 4588 return (PF_DROP); 4589 } 4590 if (pd2.proto == IPPROTO_AH) 4591 off2 += (opt6.ip6e_len + 2) * 4; 4592 else 4593 off2 += (opt6.ip6e_len + 1) * 8; 4594 pd2.proto = opt6.ip6e_nxt; 4595 /* goto the next header */ 4596 break; 4597 } 4598 default: 4599 terminal++; 4600 break; 4601 } 4602 } while (!terminal); 4603 break; 4604 #endif /* INET6 */ 4605 } 4606 4607 switch (pd2.proto) { 4608 case IPPROTO_TCP: { 4609 struct tcphdr th; 4610 u_int32_t seq; 4611 struct pf_state_peer *src, *dst; 4612 u_int8_t dws; 4613 int copyback = 0; 4614 4615 /* 4616 * Only the first 8 bytes of the TCP header can be 4617 * expected. Don't access any TCP header fields after 4618 * th_seq, an ackskew test is not possible. 4619 */ 4620 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4621 pd2.af)) { 4622 DPFPRINTF(PF_DEBUG_MISC, 4623 ("pf: ICMP error message too short " 4624 "(tcp)\n")); 4625 return (PF_DROP); 4626 } 4627 4628 key.af = pd2.af; 4629 key.proto = IPPROTO_TCP; 4630 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4631 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4632 key.port[pd2.sidx] = th.th_sport; 4633 key.port[pd2.didx] = th.th_dport; 4634 4635 STATE_LOOKUP(kif, &key, direction, *state, pd); 4636 4637 if (direction == (*state)->direction) { 4638 src = &(*state)->dst; 4639 dst = &(*state)->src; 4640 } else { 4641 src = &(*state)->src; 4642 dst = &(*state)->dst; 4643 } 4644 4645 if (src->wscale && dst->wscale) 4646 dws = dst->wscale & PF_WSCALE_MASK; 4647 else 4648 dws = 0; 4649 4650 /* Demodulate sequence number */ 4651 seq = ntohl(th.th_seq) - src->seqdiff; 4652 if (src->seqdiff) { 4653 pf_change_a(&th.th_seq, icmpsum, 4654 htonl(seq), 0); 4655 copyback = 1; 4656 } 4657 4658 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4659 (!SEQ_GEQ(src->seqhi, seq) || 4660 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4661 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4662 printf("pf: BAD ICMP %d:%d ", 4663 icmptype, pd->hdr.icmp->icmp_code); 4664 pf_print_host(pd->src, 0, pd->af); 4665 printf(" -> "); 4666 pf_print_host(pd->dst, 0, pd->af); 4667 printf(" state: "); 4668 pf_print_state(*state); 4669 printf(" seq=%u\n", seq); 4670 } 4671 REASON_SET(reason, PFRES_BADSTATE); 4672 return (PF_DROP); 4673 } else { 4674 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4675 printf("pf: OK ICMP %d:%d ", 4676 icmptype, pd->hdr.icmp->icmp_code); 4677 pf_print_host(pd->src, 0, pd->af); 4678 printf(" -> "); 4679 pf_print_host(pd->dst, 0, pd->af); 4680 printf(" state: "); 4681 pf_print_state(*state); 4682 printf(" seq=%u\n", seq); 4683 } 4684 } 4685 4686 /* translate source/destination address, if necessary */ 4687 if ((*state)->key[PF_SK_WIRE] != 4688 (*state)->key[PF_SK_STACK]) { 4689 struct pf_state_key *nk = 4690 (*state)->key[pd->didx]; 4691 4692 if (PF_ANEQ(pd2.src, 4693 &nk->addr[pd2.sidx], pd2.af) || 4694 nk->port[pd2.sidx] != th.th_sport) 4695 pf_change_icmp(pd2.src, &th.th_sport, 4696 daddr, &nk->addr[pd2.sidx], 4697 nk->port[pd2.sidx], NULL, 4698 pd2.ip_sum, icmpsum, 4699 pd->ip_sum, 0, pd2.af); 4700 4701 if (PF_ANEQ(pd2.dst, 4702 &nk->addr[pd2.didx], pd2.af) || 4703 nk->port[pd2.didx] != th.th_dport) 4704 pf_change_icmp(pd2.dst, &th.th_dport, 4705 NULL, /* XXX Inbound NAT? */ 4706 &nk->addr[pd2.didx], 4707 nk->port[pd2.didx], NULL, 4708 pd2.ip_sum, icmpsum, 4709 pd->ip_sum, 0, pd2.af); 4710 copyback = 1; 4711 } 4712 4713 if (copyback) { 4714 switch (pd2.af) { 4715 #ifdef INET 4716 case AF_INET: 4717 m_copyback(m, off, ICMP_MINLEN, 4718 (caddr_t )pd->hdr.icmp); 4719 m_copyback(m, ipoff2, sizeof(h2), 4720 (caddr_t )&h2); 4721 break; 4722 #endif /* INET */ 4723 #ifdef INET6 4724 case AF_INET6: 4725 m_copyback(m, off, 4726 sizeof(struct icmp6_hdr), 4727 (caddr_t )pd->hdr.icmp6); 4728 m_copyback(m, ipoff2, sizeof(h2_6), 4729 (caddr_t )&h2_6); 4730 break; 4731 #endif /* INET6 */ 4732 } 4733 m_copyback(m, off2, 8, (caddr_t)&th); 4734 } 4735 4736 return (PF_PASS); 4737 break; 4738 } 4739 case IPPROTO_UDP: { 4740 struct udphdr uh; 4741 4742 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4743 NULL, reason, pd2.af)) { 4744 DPFPRINTF(PF_DEBUG_MISC, 4745 ("pf: ICMP error message too short " 4746 "(udp)\n")); 4747 return (PF_DROP); 4748 } 4749 4750 key.af = pd2.af; 4751 key.proto = IPPROTO_UDP; 4752 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4753 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4754 key.port[pd2.sidx] = uh.uh_sport; 4755 key.port[pd2.didx] = uh.uh_dport; 4756 4757 STATE_LOOKUP(kif, &key, direction, *state, pd); 4758 4759 /* translate source/destination address, if necessary */ 4760 if ((*state)->key[PF_SK_WIRE] != 4761 (*state)->key[PF_SK_STACK]) { 4762 struct pf_state_key *nk = 4763 (*state)->key[pd->didx]; 4764 4765 if (PF_ANEQ(pd2.src, 4766 &nk->addr[pd2.sidx], pd2.af) || 4767 nk->port[pd2.sidx] != uh.uh_sport) 4768 pf_change_icmp(pd2.src, &uh.uh_sport, 4769 daddr, &nk->addr[pd2.sidx], 4770 nk->port[pd2.sidx], &uh.uh_sum, 4771 pd2.ip_sum, icmpsum, 4772 pd->ip_sum, 1, pd2.af); 4773 4774 if (PF_ANEQ(pd2.dst, 4775 &nk->addr[pd2.didx], pd2.af) || 4776 nk->port[pd2.didx] != uh.uh_dport) 4777 pf_change_icmp(pd2.dst, &uh.uh_dport, 4778 NULL, /* XXX Inbound NAT? */ 4779 &nk->addr[pd2.didx], 4780 nk->port[pd2.didx], &uh.uh_sum, 4781 pd2.ip_sum, icmpsum, 4782 pd->ip_sum, 1, pd2.af); 4783 4784 switch (pd2.af) { 4785 #ifdef INET 4786 case AF_INET: 4787 m_copyback(m, off, ICMP_MINLEN, 4788 (caddr_t )pd->hdr.icmp); 4789 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4790 break; 4791 #endif /* INET */ 4792 #ifdef INET6 4793 case AF_INET6: 4794 m_copyback(m, off, 4795 sizeof(struct icmp6_hdr), 4796 (caddr_t )pd->hdr.icmp6); 4797 m_copyback(m, ipoff2, sizeof(h2_6), 4798 (caddr_t )&h2_6); 4799 break; 4800 #endif /* INET6 */ 4801 } 4802 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4803 } 4804 return (PF_PASS); 4805 break; 4806 } 4807 #ifdef INET 4808 case IPPROTO_ICMP: { 4809 struct icmp iih; 4810 4811 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4812 NULL, reason, pd2.af)) { 4813 DPFPRINTF(PF_DEBUG_MISC, 4814 ("pf: ICMP error message too short i" 4815 "(icmp)\n")); 4816 return (PF_DROP); 4817 } 4818 4819 key.af = pd2.af; 4820 key.proto = IPPROTO_ICMP; 4821 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4822 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4823 key.port[0] = key.port[1] = iih.icmp_id; 4824 4825 STATE_LOOKUP(kif, &key, direction, *state, pd); 4826 4827 /* translate source/destination address, if necessary */ 4828 if ((*state)->key[PF_SK_WIRE] != 4829 (*state)->key[PF_SK_STACK]) { 4830 struct pf_state_key *nk = 4831 (*state)->key[pd->didx]; 4832 4833 if (PF_ANEQ(pd2.src, 4834 &nk->addr[pd2.sidx], pd2.af) || 4835 nk->port[pd2.sidx] != iih.icmp_id) 4836 pf_change_icmp(pd2.src, &iih.icmp_id, 4837 daddr, &nk->addr[pd2.sidx], 4838 nk->port[pd2.sidx], NULL, 4839 pd2.ip_sum, icmpsum, 4840 pd->ip_sum, 0, AF_INET); 4841 4842 if (PF_ANEQ(pd2.dst, 4843 &nk->addr[pd2.didx], pd2.af) || 4844 nk->port[pd2.didx] != iih.icmp_id) 4845 pf_change_icmp(pd2.dst, &iih.icmp_id, 4846 NULL, /* XXX Inbound NAT? */ 4847 &nk->addr[pd2.didx], 4848 nk->port[pd2.didx], NULL, 4849 pd2.ip_sum, icmpsum, 4850 pd->ip_sum, 0, AF_INET); 4851 4852 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4853 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4854 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4855 } 4856 return (PF_PASS); 4857 break; 4858 } 4859 #endif /* INET */ 4860 #ifdef INET6 4861 case IPPROTO_ICMPV6: { 4862 struct icmp6_hdr iih; 4863 4864 if (!pf_pull_hdr(m, off2, &iih, 4865 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4866 DPFPRINTF(PF_DEBUG_MISC, 4867 ("pf: ICMP error message too short " 4868 "(icmp6)\n")); 4869 return (PF_DROP); 4870 } 4871 4872 key.af = pd2.af; 4873 key.proto = IPPROTO_ICMPV6; 4874 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4875 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4876 key.port[0] = key.port[1] = iih.icmp6_id; 4877 4878 STATE_LOOKUP(kif, &key, direction, *state, pd); 4879 4880 /* translate source/destination address, if necessary */ 4881 if ((*state)->key[PF_SK_WIRE] != 4882 (*state)->key[PF_SK_STACK]) { 4883 struct pf_state_key *nk = 4884 (*state)->key[pd->didx]; 4885 4886 if (PF_ANEQ(pd2.src, 4887 &nk->addr[pd2.sidx], pd2.af) || 4888 nk->port[pd2.sidx] != iih.icmp6_id) 4889 pf_change_icmp(pd2.src, &iih.icmp6_id, 4890 daddr, &nk->addr[pd2.sidx], 4891 nk->port[pd2.sidx], NULL, 4892 pd2.ip_sum, icmpsum, 4893 pd->ip_sum, 0, AF_INET6); 4894 4895 if (PF_ANEQ(pd2.dst, 4896 &nk->addr[pd2.didx], pd2.af) || 4897 nk->port[pd2.didx] != iih.icmp6_id) 4898 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4899 NULL, /* XXX Inbound NAT? */ 4900 &nk->addr[pd2.didx], 4901 nk->port[pd2.didx], NULL, 4902 pd2.ip_sum, icmpsum, 4903 pd->ip_sum, 0, AF_INET6); 4904 4905 m_copyback(m, off, sizeof(struct icmp6_hdr), 4906 (caddr_t)pd->hdr.icmp6); 4907 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4908 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4909 (caddr_t)&iih); 4910 } 4911 return (PF_PASS); 4912 break; 4913 } 4914 #endif /* INET6 */ 4915 default: { 4916 key.af = pd2.af; 4917 key.proto = pd2.proto; 4918 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4919 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4920 key.port[0] = key.port[1] = 0; 4921 4922 STATE_LOOKUP(kif, &key, direction, *state, pd); 4923 4924 /* translate source/destination address, if necessary */ 4925 if ((*state)->key[PF_SK_WIRE] != 4926 (*state)->key[PF_SK_STACK]) { 4927 struct pf_state_key *nk = 4928 (*state)->key[pd->didx]; 4929 4930 if (PF_ANEQ(pd2.src, 4931 &nk->addr[pd2.sidx], pd2.af)) 4932 pf_change_icmp(pd2.src, NULL, daddr, 4933 &nk->addr[pd2.sidx], 0, NULL, 4934 pd2.ip_sum, icmpsum, 4935 pd->ip_sum, 0, pd2.af); 4936 4937 if (PF_ANEQ(pd2.dst, 4938 &nk->addr[pd2.didx], pd2.af)) 4939 pf_change_icmp(pd2.src, NULL, 4940 NULL, /* XXX Inbound NAT? */ 4941 &nk->addr[pd2.didx], 0, NULL, 4942 pd2.ip_sum, icmpsum, 4943 pd->ip_sum, 0, pd2.af); 4944 4945 switch (pd2.af) { 4946 #ifdef INET 4947 case AF_INET: 4948 m_copyback(m, off, ICMP_MINLEN, 4949 (caddr_t)pd->hdr.icmp); 4950 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4951 break; 4952 #endif /* INET */ 4953 #ifdef INET6 4954 case AF_INET6: 4955 m_copyback(m, off, 4956 sizeof(struct icmp6_hdr), 4957 (caddr_t )pd->hdr.icmp6); 4958 m_copyback(m, ipoff2, sizeof(h2_6), 4959 (caddr_t )&h2_6); 4960 break; 4961 #endif /* INET6 */ 4962 } 4963 } 4964 return (PF_PASS); 4965 break; 4966 } 4967 } 4968 } 4969 } 4970 4971 static int 4972 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4973 struct mbuf *m, struct pf_pdesc *pd) 4974 { 4975 struct pf_state_peer *src, *dst; 4976 struct pf_state_key_cmp key; 4977 4978 bzero(&key, sizeof(key)); 4979 key.af = pd->af; 4980 key.proto = pd->proto; 4981 if (direction == PF_IN) { 4982 PF_ACPY(&key.addr[0], pd->src, key.af); 4983 PF_ACPY(&key.addr[1], pd->dst, key.af); 4984 key.port[0] = key.port[1] = 0; 4985 } else { 4986 PF_ACPY(&key.addr[1], pd->src, key.af); 4987 PF_ACPY(&key.addr[0], pd->dst, key.af); 4988 key.port[1] = key.port[0] = 0; 4989 } 4990 4991 STATE_LOOKUP(kif, &key, direction, *state, pd); 4992 4993 if (direction == (*state)->direction) { 4994 src = &(*state)->src; 4995 dst = &(*state)->dst; 4996 } else { 4997 src = &(*state)->dst; 4998 dst = &(*state)->src; 4999 } 5000 5001 /* update states */ 5002 if (src->state < PFOTHERS_SINGLE) 5003 src->state = PFOTHERS_SINGLE; 5004 if (dst->state == PFOTHERS_SINGLE) 5005 dst->state = PFOTHERS_MULTIPLE; 5006 5007 /* update expire time */ 5008 (*state)->expire = time_uptime; 5009 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5010 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5011 else 5012 (*state)->timeout = PFTM_OTHER_SINGLE; 5013 5014 /* translate source/destination address, if necessary */ 5015 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5016 struct pf_state_key *nk = (*state)->key[pd->didx]; 5017 5018 KASSERT(nk, ("%s: nk is null", __func__)); 5019 KASSERT(pd, ("%s: pd is null", __func__)); 5020 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5021 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5022 switch (pd->af) { 5023 #ifdef INET 5024 case AF_INET: 5025 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5026 pf_change_a(&pd->src->v4.s_addr, 5027 pd->ip_sum, 5028 nk->addr[pd->sidx].v4.s_addr, 5029 0); 5030 5031 5032 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5033 pf_change_a(&pd->dst->v4.s_addr, 5034 pd->ip_sum, 5035 nk->addr[pd->didx].v4.s_addr, 5036 0); 5037 5038 break; 5039 #endif /* INET */ 5040 #ifdef INET6 5041 case AF_INET6: 5042 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5043 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5044 5045 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5046 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5047 #endif /* INET6 */ 5048 } 5049 } 5050 return (PF_PASS); 5051 } 5052 5053 /* 5054 * ipoff and off are measured from the start of the mbuf chain. 5055 * h must be at "ipoff" on the mbuf chain. 5056 */ 5057 void * 5058 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5059 u_short *actionp, u_short *reasonp, sa_family_t af) 5060 { 5061 switch (af) { 5062 #ifdef INET 5063 case AF_INET: { 5064 struct ip *h = mtod(m, struct ip *); 5065 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5066 5067 if (fragoff) { 5068 if (fragoff >= len) 5069 ACTION_SET(actionp, PF_PASS); 5070 else { 5071 ACTION_SET(actionp, PF_DROP); 5072 REASON_SET(reasonp, PFRES_FRAG); 5073 } 5074 return (NULL); 5075 } 5076 if (m->m_pkthdr.len < off + len || 5077 ntohs(h->ip_len) < off + len) { 5078 ACTION_SET(actionp, PF_DROP); 5079 REASON_SET(reasonp, PFRES_SHORT); 5080 return (NULL); 5081 } 5082 break; 5083 } 5084 #endif /* INET */ 5085 #ifdef INET6 5086 case AF_INET6: { 5087 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5088 5089 if (m->m_pkthdr.len < off + len || 5090 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5091 (unsigned)(off + len)) { 5092 ACTION_SET(actionp, PF_DROP); 5093 REASON_SET(reasonp, PFRES_SHORT); 5094 return (NULL); 5095 } 5096 break; 5097 } 5098 #endif /* INET6 */ 5099 } 5100 m_copydata(m, off, len, p); 5101 return (p); 5102 } 5103 5104 int 5105 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5106 int rtableid) 5107 { 5108 #ifdef RADIX_MPATH 5109 struct radix_node_head *rnh; 5110 #endif 5111 struct sockaddr_in *dst; 5112 int ret = 1; 5113 int check_mpath; 5114 #ifdef INET6 5115 struct sockaddr_in6 *dst6; 5116 struct route_in6 ro; 5117 #else 5118 struct route ro; 5119 #endif 5120 struct radix_node *rn; 5121 struct rtentry *rt; 5122 struct ifnet *ifp; 5123 5124 check_mpath = 0; 5125 #ifdef RADIX_MPATH 5126 /* XXX: stick to table 0 for now */ 5127 rnh = rt_tables_get_rnh(0, af); 5128 if (rnh != NULL && rn_mpath_capable(rnh)) 5129 check_mpath = 1; 5130 #endif 5131 bzero(&ro, sizeof(ro)); 5132 switch (af) { 5133 case AF_INET: 5134 dst = satosin(&ro.ro_dst); 5135 dst->sin_family = AF_INET; 5136 dst->sin_len = sizeof(*dst); 5137 dst->sin_addr = addr->v4; 5138 break; 5139 #ifdef INET6 5140 case AF_INET6: 5141 /* 5142 * Skip check for addresses with embedded interface scope, 5143 * as they would always match anyway. 5144 */ 5145 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5146 goto out; 5147 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5148 dst6->sin6_family = AF_INET6; 5149 dst6->sin6_len = sizeof(*dst6); 5150 dst6->sin6_addr = addr->v6; 5151 break; 5152 #endif /* INET6 */ 5153 default: 5154 return (0); 5155 } 5156 5157 /* Skip checks for ipsec interfaces */ 5158 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5159 goto out; 5160 5161 switch (af) { 5162 #ifdef INET6 5163 case AF_INET6: 5164 in6_rtalloc_ign(&ro, 0, rtableid); 5165 break; 5166 #endif 5167 #ifdef INET 5168 case AF_INET: 5169 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5170 break; 5171 #endif 5172 default: 5173 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5174 break; 5175 } 5176 5177 if (ro.ro_rt != NULL) { 5178 /* No interface given, this is a no-route check */ 5179 if (kif == NULL) 5180 goto out; 5181 5182 if (kif->pfik_ifp == NULL) { 5183 ret = 0; 5184 goto out; 5185 } 5186 5187 /* Perform uRPF check if passed input interface */ 5188 ret = 0; 5189 rn = (struct radix_node *)ro.ro_rt; 5190 do { 5191 rt = (struct rtentry *)rn; 5192 ifp = rt->rt_ifp; 5193 5194 if (kif->pfik_ifp == ifp) 5195 ret = 1; 5196 #ifdef RADIX_MPATH 5197 rn = rn_mpath_next(rn); 5198 #endif 5199 } while (check_mpath == 1 && rn != NULL && ret == 0); 5200 } else 5201 ret = 0; 5202 out: 5203 if (ro.ro_rt != NULL) 5204 RTFREE(ro.ro_rt); 5205 return (ret); 5206 } 5207 5208 #ifdef INET 5209 static void 5210 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5211 struct pf_state *s, struct pf_pdesc *pd) 5212 { 5213 struct mbuf *m0, *m1; 5214 struct sockaddr_in dst; 5215 struct ip *ip; 5216 struct ifnet *ifp = NULL; 5217 struct pf_addr naddr; 5218 struct pf_src_node *sn = NULL; 5219 int error = 0; 5220 uint16_t ip_len, ip_off; 5221 5222 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5223 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5224 __func__)); 5225 5226 if ((pd->pf_mtag == NULL && 5227 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5228 pd->pf_mtag->routed++ > 3) { 5229 m0 = *m; 5230 *m = NULL; 5231 goto bad_locked; 5232 } 5233 5234 if (r->rt == PF_DUPTO) { 5235 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5236 if (s) 5237 PF_STATE_UNLOCK(s); 5238 return; 5239 } 5240 } else { 5241 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5242 if (s) 5243 PF_STATE_UNLOCK(s); 5244 return; 5245 } 5246 m0 = *m; 5247 } 5248 5249 ip = mtod(m0, struct ip *); 5250 5251 bzero(&dst, sizeof(dst)); 5252 dst.sin_family = AF_INET; 5253 dst.sin_len = sizeof(dst); 5254 dst.sin_addr = ip->ip_dst; 5255 5256 if (r->rt == PF_FASTROUTE) { 5257 struct rtentry *rt; 5258 5259 if (s) 5260 PF_STATE_UNLOCK(s); 5261 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5262 if (rt == NULL) { 5263 KMOD_IPSTAT_INC(ips_noroute); 5264 error = EHOSTUNREACH; 5265 goto bad; 5266 } 5267 5268 ifp = rt->rt_ifp; 5269 counter_u64_add(rt->rt_pksent, 1); 5270 5271 if (rt->rt_flags & RTF_GATEWAY) 5272 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5273 RTFREE_LOCKED(rt); 5274 } else { 5275 if (TAILQ_EMPTY(&r->rpool.list)) { 5276 DPFPRINTF(PF_DEBUG_URGENT, 5277 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5278 goto bad_locked; 5279 } 5280 if (s == NULL) { 5281 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5282 &naddr, NULL, &sn); 5283 if (!PF_AZERO(&naddr, AF_INET)) 5284 dst.sin_addr.s_addr = naddr.v4.s_addr; 5285 ifp = r->rpool.cur->kif ? 5286 r->rpool.cur->kif->pfik_ifp : NULL; 5287 } else { 5288 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5289 dst.sin_addr.s_addr = 5290 s->rt_addr.v4.s_addr; 5291 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5292 PF_STATE_UNLOCK(s); 5293 } 5294 } 5295 if (ifp == NULL) 5296 goto bad; 5297 5298 if (oifp != ifp) { 5299 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5300 goto bad; 5301 else if (m0 == NULL) 5302 goto done; 5303 if (m0->m_len < sizeof(struct ip)) { 5304 DPFPRINTF(PF_DEBUG_URGENT, 5305 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5306 goto bad; 5307 } 5308 ip = mtod(m0, struct ip *); 5309 } 5310 5311 if (ifp->if_flags & IFF_LOOPBACK) 5312 m0->m_flags |= M_SKIP_FIREWALL; 5313 5314 ip_len = ntohs(ip->ip_len); 5315 ip_off = ntohs(ip->ip_off); 5316 5317 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5318 m0->m_pkthdr.csum_flags |= CSUM_IP; 5319 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5320 in_delayed_cksum(m0); 5321 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5322 } 5323 #ifdef SCTP 5324 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5325 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5326 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5327 } 5328 #endif 5329 5330 /* 5331 * If small enough for interface, or the interface will take 5332 * care of the fragmentation for us, we can just send directly. 5333 */ 5334 if (ip_len <= ifp->if_mtu || 5335 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5336 ip->ip_sum = 0; 5337 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5338 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5339 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5340 } 5341 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5342 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5343 goto done; 5344 } 5345 5346 /* Balk when DF bit is set or the interface didn't support TSO. */ 5347 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5348 error = EMSGSIZE; 5349 KMOD_IPSTAT_INC(ips_cantfrag); 5350 if (r->rt != PF_DUPTO) { 5351 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5352 ifp->if_mtu); 5353 goto done; 5354 } else 5355 goto bad; 5356 } 5357 5358 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5359 if (error) 5360 goto bad; 5361 5362 for (; m0; m0 = m1) { 5363 m1 = m0->m_nextpkt; 5364 m0->m_nextpkt = NULL; 5365 if (error == 0) { 5366 m_clrprotoflags(m0); 5367 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5368 } else 5369 m_freem(m0); 5370 } 5371 5372 if (error == 0) 5373 KMOD_IPSTAT_INC(ips_fragmented); 5374 5375 done: 5376 if (r->rt != PF_DUPTO) 5377 *m = NULL; 5378 return; 5379 5380 bad_locked: 5381 if (s) 5382 PF_STATE_UNLOCK(s); 5383 bad: 5384 m_freem(m0); 5385 goto done; 5386 } 5387 #endif /* INET */ 5388 5389 #ifdef INET6 5390 static void 5391 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5392 struct pf_state *s, struct pf_pdesc *pd) 5393 { 5394 struct mbuf *m0; 5395 struct sockaddr_in6 dst; 5396 struct ip6_hdr *ip6; 5397 struct ifnet *ifp = NULL; 5398 struct pf_addr naddr; 5399 struct pf_src_node *sn = NULL; 5400 5401 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5402 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5403 __func__)); 5404 5405 if ((pd->pf_mtag == NULL && 5406 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5407 pd->pf_mtag->routed++ > 3) { 5408 m0 = *m; 5409 *m = NULL; 5410 goto bad_locked; 5411 } 5412 5413 if (r->rt == PF_DUPTO) { 5414 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5415 if (s) 5416 PF_STATE_UNLOCK(s); 5417 return; 5418 } 5419 } else { 5420 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5421 if (s) 5422 PF_STATE_UNLOCK(s); 5423 return; 5424 } 5425 m0 = *m; 5426 } 5427 5428 ip6 = mtod(m0, struct ip6_hdr *); 5429 5430 bzero(&dst, sizeof(dst)); 5431 dst.sin6_family = AF_INET6; 5432 dst.sin6_len = sizeof(dst); 5433 dst.sin6_addr = ip6->ip6_dst; 5434 5435 /* Cheat. XXX why only in the v6 case??? */ 5436 if (r->rt == PF_FASTROUTE) { 5437 if (s) 5438 PF_STATE_UNLOCK(s); 5439 m0->m_flags |= M_SKIP_FIREWALL; 5440 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5441 return; 5442 } 5443 5444 if (TAILQ_EMPTY(&r->rpool.list)) { 5445 DPFPRINTF(PF_DEBUG_URGENT, 5446 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5447 goto bad_locked; 5448 } 5449 if (s == NULL) { 5450 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5451 &naddr, NULL, &sn); 5452 if (!PF_AZERO(&naddr, AF_INET6)) 5453 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5454 &naddr, AF_INET6); 5455 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5456 } else { 5457 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5458 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5459 &s->rt_addr, AF_INET6); 5460 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5461 } 5462 5463 if (s) 5464 PF_STATE_UNLOCK(s); 5465 5466 if (ifp == NULL) 5467 goto bad; 5468 5469 if (oifp != ifp) { 5470 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5471 goto bad; 5472 else if (m0 == NULL) 5473 goto done; 5474 if (m0->m_len < sizeof(struct ip6_hdr)) { 5475 DPFPRINTF(PF_DEBUG_URGENT, 5476 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5477 __func__)); 5478 goto bad; 5479 } 5480 ip6 = mtod(m0, struct ip6_hdr *); 5481 } 5482 5483 if (ifp->if_flags & IFF_LOOPBACK) 5484 m0->m_flags |= M_SKIP_FIREWALL; 5485 5486 /* 5487 * If the packet is too large for the outgoing interface, 5488 * send back an icmp6 error. 5489 */ 5490 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5491 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5492 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5493 nd6_output(ifp, ifp, m0, &dst, NULL); 5494 else { 5495 in6_ifstat_inc(ifp, ifs6_in_toobig); 5496 if (r->rt != PF_DUPTO) 5497 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5498 else 5499 goto bad; 5500 } 5501 5502 done: 5503 if (r->rt != PF_DUPTO) 5504 *m = NULL; 5505 return; 5506 5507 bad_locked: 5508 if (s) 5509 PF_STATE_UNLOCK(s); 5510 bad: 5511 m_freem(m0); 5512 goto done; 5513 } 5514 #endif /* INET6 */ 5515 5516 /* 5517 * FreeBSD supports cksum offloads for the following drivers. 5518 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5519 * ti(4), txp(4), xl(4) 5520 * 5521 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5522 * network driver performed cksum including pseudo header, need to verify 5523 * csum_data 5524 * CSUM_DATA_VALID : 5525 * network driver performed cksum, needs to additional pseudo header 5526 * cksum computation with partial csum_data(i.e. lack of H/W support for 5527 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5528 * 5529 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5530 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5531 * TCP/UDP layer. 5532 * Also, set csum_data to 0xffff to force cksum validation. 5533 */ 5534 static int 5535 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5536 { 5537 u_int16_t sum = 0; 5538 int hw_assist = 0; 5539 struct ip *ip; 5540 5541 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5542 return (1); 5543 if (m->m_pkthdr.len < off + len) 5544 return (1); 5545 5546 switch (p) { 5547 case IPPROTO_TCP: 5548 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5549 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5550 sum = m->m_pkthdr.csum_data; 5551 } else { 5552 ip = mtod(m, struct ip *); 5553 sum = in_pseudo(ip->ip_src.s_addr, 5554 ip->ip_dst.s_addr, htonl((u_short)len + 5555 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5556 } 5557 sum ^= 0xffff; 5558 ++hw_assist; 5559 } 5560 break; 5561 case IPPROTO_UDP: 5562 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5563 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5564 sum = m->m_pkthdr.csum_data; 5565 } else { 5566 ip = mtod(m, struct ip *); 5567 sum = in_pseudo(ip->ip_src.s_addr, 5568 ip->ip_dst.s_addr, htonl((u_short)len + 5569 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5570 } 5571 sum ^= 0xffff; 5572 ++hw_assist; 5573 } 5574 break; 5575 case IPPROTO_ICMP: 5576 #ifdef INET6 5577 case IPPROTO_ICMPV6: 5578 #endif /* INET6 */ 5579 break; 5580 default: 5581 return (1); 5582 } 5583 5584 if (!hw_assist) { 5585 switch (af) { 5586 case AF_INET: 5587 if (p == IPPROTO_ICMP) { 5588 if (m->m_len < off) 5589 return (1); 5590 m->m_data += off; 5591 m->m_len -= off; 5592 sum = in_cksum(m, len); 5593 m->m_data -= off; 5594 m->m_len += off; 5595 } else { 5596 if (m->m_len < sizeof(struct ip)) 5597 return (1); 5598 sum = in4_cksum(m, p, off, len); 5599 } 5600 break; 5601 #ifdef INET6 5602 case AF_INET6: 5603 if (m->m_len < sizeof(struct ip6_hdr)) 5604 return (1); 5605 sum = in6_cksum(m, p, off, len); 5606 break; 5607 #endif /* INET6 */ 5608 default: 5609 return (1); 5610 } 5611 } 5612 if (sum) { 5613 switch (p) { 5614 case IPPROTO_TCP: 5615 { 5616 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5617 break; 5618 } 5619 case IPPROTO_UDP: 5620 { 5621 KMOD_UDPSTAT_INC(udps_badsum); 5622 break; 5623 } 5624 #ifdef INET 5625 case IPPROTO_ICMP: 5626 { 5627 KMOD_ICMPSTAT_INC(icps_checksum); 5628 break; 5629 } 5630 #endif 5631 #ifdef INET6 5632 case IPPROTO_ICMPV6: 5633 { 5634 KMOD_ICMP6STAT_INC(icp6s_checksum); 5635 break; 5636 } 5637 #endif /* INET6 */ 5638 } 5639 return (1); 5640 } else { 5641 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5642 m->m_pkthdr.csum_flags |= 5643 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5644 m->m_pkthdr.csum_data = 0xffff; 5645 } 5646 } 5647 return (0); 5648 } 5649 5650 5651 #ifdef INET 5652 int 5653 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5654 { 5655 struct pfi_kif *kif; 5656 u_short action, reason = 0, log = 0; 5657 struct mbuf *m = *m0; 5658 struct ip *h = NULL; 5659 struct m_tag *ipfwtag; 5660 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5661 struct pf_state *s = NULL; 5662 struct pf_ruleset *ruleset = NULL; 5663 struct pf_pdesc pd; 5664 int off, dirndx, pqid = 0; 5665 5666 M_ASSERTPKTHDR(m); 5667 5668 if (!V_pf_status.running) 5669 return (PF_PASS); 5670 5671 memset(&pd, 0, sizeof(pd)); 5672 5673 kif = (struct pfi_kif *)ifp->if_pf_kif; 5674 5675 if (kif == NULL) { 5676 DPFPRINTF(PF_DEBUG_URGENT, 5677 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5678 return (PF_DROP); 5679 } 5680 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5681 return (PF_PASS); 5682 5683 if (m->m_flags & M_SKIP_FIREWALL) 5684 return (PF_PASS); 5685 5686 pd.pf_mtag = pf_find_mtag(m); 5687 5688 PF_RULES_RLOCK(); 5689 5690 if (ip_divert_ptr != NULL && 5691 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5692 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5693 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5694 if (pd.pf_mtag == NULL && 5695 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5696 action = PF_DROP; 5697 goto done; 5698 } 5699 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5700 m_tag_delete(m, ipfwtag); 5701 } 5702 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5703 m->m_flags |= M_FASTFWD_OURS; 5704 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5705 } 5706 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5707 /* We do IP header normalization and packet reassembly here */ 5708 action = PF_DROP; 5709 goto done; 5710 } 5711 m = *m0; /* pf_normalize messes with m0 */ 5712 h = mtod(m, struct ip *); 5713 5714 off = h->ip_hl << 2; 5715 if (off < (int)sizeof(struct ip)) { 5716 action = PF_DROP; 5717 REASON_SET(&reason, PFRES_SHORT); 5718 log = 1; 5719 goto done; 5720 } 5721 5722 pd.src = (struct pf_addr *)&h->ip_src; 5723 pd.dst = (struct pf_addr *)&h->ip_dst; 5724 pd.sport = pd.dport = NULL; 5725 pd.ip_sum = &h->ip_sum; 5726 pd.proto_sum = NULL; 5727 pd.proto = h->ip_p; 5728 pd.dir = dir; 5729 pd.sidx = (dir == PF_IN) ? 0 : 1; 5730 pd.didx = (dir == PF_IN) ? 1 : 0; 5731 pd.af = AF_INET; 5732 pd.tos = h->ip_tos; 5733 pd.tot_len = ntohs(h->ip_len); 5734 5735 /* handle fragments that didn't get reassembled by normalization */ 5736 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5737 action = pf_test_fragment(&r, dir, kif, m, h, 5738 &pd, &a, &ruleset); 5739 goto done; 5740 } 5741 5742 switch (h->ip_p) { 5743 5744 case IPPROTO_TCP: { 5745 struct tcphdr th; 5746 5747 pd.hdr.tcp = &th; 5748 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5749 &action, &reason, AF_INET)) { 5750 log = action != PF_PASS; 5751 goto done; 5752 } 5753 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5754 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5755 pqid = 1; 5756 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5757 if (action == PF_DROP) 5758 goto done; 5759 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5760 &reason); 5761 if (action == PF_PASS) { 5762 if (pfsync_update_state_ptr != NULL) 5763 pfsync_update_state_ptr(s); 5764 r = s->rule.ptr; 5765 a = s->anchor.ptr; 5766 log = s->log; 5767 } else if (s == NULL) 5768 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5769 &a, &ruleset, inp); 5770 break; 5771 } 5772 5773 case IPPROTO_UDP: { 5774 struct udphdr uh; 5775 5776 pd.hdr.udp = &uh; 5777 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5778 &action, &reason, AF_INET)) { 5779 log = action != PF_PASS; 5780 goto done; 5781 } 5782 if (uh.uh_dport == 0 || 5783 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5784 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5785 action = PF_DROP; 5786 REASON_SET(&reason, PFRES_SHORT); 5787 goto done; 5788 } 5789 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5790 if (action == PF_PASS) { 5791 if (pfsync_update_state_ptr != NULL) 5792 pfsync_update_state_ptr(s); 5793 r = s->rule.ptr; 5794 a = s->anchor.ptr; 5795 log = s->log; 5796 } else if (s == NULL) 5797 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5798 &a, &ruleset, inp); 5799 break; 5800 } 5801 5802 case IPPROTO_ICMP: { 5803 struct icmp ih; 5804 5805 pd.hdr.icmp = &ih; 5806 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5807 &action, &reason, AF_INET)) { 5808 log = action != PF_PASS; 5809 goto done; 5810 } 5811 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5812 &reason); 5813 if (action == PF_PASS) { 5814 if (pfsync_update_state_ptr != NULL) 5815 pfsync_update_state_ptr(s); 5816 r = s->rule.ptr; 5817 a = s->anchor.ptr; 5818 log = s->log; 5819 } else if (s == NULL) 5820 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5821 &a, &ruleset, inp); 5822 break; 5823 } 5824 5825 #ifdef INET6 5826 case IPPROTO_ICMPV6: { 5827 action = PF_DROP; 5828 DPFPRINTF(PF_DEBUG_MISC, 5829 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5830 goto done; 5831 } 5832 #endif 5833 5834 default: 5835 action = pf_test_state_other(&s, dir, kif, m, &pd); 5836 if (action == PF_PASS) { 5837 if (pfsync_update_state_ptr != NULL) 5838 pfsync_update_state_ptr(s); 5839 r = s->rule.ptr; 5840 a = s->anchor.ptr; 5841 log = s->log; 5842 } else if (s == NULL) 5843 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5844 &a, &ruleset, inp); 5845 break; 5846 } 5847 5848 done: 5849 PF_RULES_RUNLOCK(); 5850 if (action == PF_PASS && h->ip_hl > 5 && 5851 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5852 action = PF_DROP; 5853 REASON_SET(&reason, PFRES_IPOPTIONS); 5854 log = 1; 5855 DPFPRINTF(PF_DEBUG_MISC, 5856 ("pf: dropping packet with ip options\n")); 5857 } 5858 5859 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5860 action = PF_DROP; 5861 REASON_SET(&reason, PFRES_MEMORY); 5862 } 5863 if (r->rtableid >= 0) 5864 M_SETFIB(m, r->rtableid); 5865 5866 #ifdef ALTQ 5867 if (action == PF_PASS && r->qid) { 5868 if (pd.pf_mtag == NULL && 5869 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5870 action = PF_DROP; 5871 REASON_SET(&reason, PFRES_MEMORY); 5872 } 5873 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5874 pd.pf_mtag->qid = r->pqid; 5875 else 5876 pd.pf_mtag->qid = r->qid; 5877 /* add hints for ecn */ 5878 pd.pf_mtag->hdr = h; 5879 5880 } 5881 #endif /* ALTQ */ 5882 5883 /* 5884 * connections redirected to loopback should not match sockets 5885 * bound specifically to loopback due to security implications, 5886 * see tcp_input() and in_pcblookup_listen(). 5887 */ 5888 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5889 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5890 (s->nat_rule.ptr->action == PF_RDR || 5891 s->nat_rule.ptr->action == PF_BINAT) && 5892 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5893 m->m_flags |= M_SKIP_FIREWALL; 5894 5895 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5896 !PACKET_LOOPED(&pd)) { 5897 5898 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5899 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5900 if (ipfwtag != NULL) { 5901 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5902 ntohs(r->divert.port); 5903 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5904 5905 if (s) 5906 PF_STATE_UNLOCK(s); 5907 5908 m_tag_prepend(m, ipfwtag); 5909 if (m->m_flags & M_FASTFWD_OURS) { 5910 if (pd.pf_mtag == NULL && 5911 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5912 action = PF_DROP; 5913 REASON_SET(&reason, PFRES_MEMORY); 5914 log = 1; 5915 DPFPRINTF(PF_DEBUG_MISC, 5916 ("pf: failed to allocate tag\n")); 5917 } 5918 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5919 m->m_flags &= ~M_FASTFWD_OURS; 5920 } 5921 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5922 *m0 = NULL; 5923 5924 return (action); 5925 } else { 5926 /* XXX: ipfw has the same behaviour! */ 5927 action = PF_DROP; 5928 REASON_SET(&reason, PFRES_MEMORY); 5929 log = 1; 5930 DPFPRINTF(PF_DEBUG_MISC, 5931 ("pf: failed to allocate divert tag\n")); 5932 } 5933 } 5934 5935 if (log) { 5936 struct pf_rule *lr; 5937 5938 if (s != NULL && s->nat_rule.ptr != NULL && 5939 s->nat_rule.ptr->log & PF_LOG_ALL) 5940 lr = s->nat_rule.ptr; 5941 else 5942 lr = r; 5943 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5944 (s == NULL)); 5945 } 5946 5947 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5948 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5949 5950 if (action == PF_PASS || r->action == PF_DROP) { 5951 dirndx = (dir == PF_OUT); 5952 r->packets[dirndx]++; 5953 r->bytes[dirndx] += pd.tot_len; 5954 if (a != NULL) { 5955 a->packets[dirndx]++; 5956 a->bytes[dirndx] += pd.tot_len; 5957 } 5958 if (s != NULL) { 5959 if (s->nat_rule.ptr != NULL) { 5960 s->nat_rule.ptr->packets[dirndx]++; 5961 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5962 } 5963 if (s->src_node != NULL) { 5964 s->src_node->packets[dirndx]++; 5965 s->src_node->bytes[dirndx] += pd.tot_len; 5966 } 5967 if (s->nat_src_node != NULL) { 5968 s->nat_src_node->packets[dirndx]++; 5969 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5970 } 5971 dirndx = (dir == s->direction) ? 0 : 1; 5972 s->packets[dirndx]++; 5973 s->bytes[dirndx] += pd.tot_len; 5974 } 5975 tr = r; 5976 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5977 if (nr != NULL && r == &V_pf_default_rule) 5978 tr = nr; 5979 if (tr->src.addr.type == PF_ADDR_TABLE) 5980 pfr_update_stats(tr->src.addr.p.tbl, 5981 (s == NULL) ? pd.src : 5982 &s->key[(s->direction == PF_IN)]-> 5983 addr[(s->direction == PF_OUT)], 5984 pd.af, pd.tot_len, dir == PF_OUT, 5985 r->action == PF_PASS, tr->src.neg); 5986 if (tr->dst.addr.type == PF_ADDR_TABLE) 5987 pfr_update_stats(tr->dst.addr.p.tbl, 5988 (s == NULL) ? pd.dst : 5989 &s->key[(s->direction == PF_IN)]-> 5990 addr[(s->direction == PF_IN)], 5991 pd.af, pd.tot_len, dir == PF_OUT, 5992 r->action == PF_PASS, tr->dst.neg); 5993 } 5994 5995 switch (action) { 5996 case PF_SYNPROXY_DROP: 5997 m_freem(*m0); 5998 case PF_DEFER: 5999 *m0 = NULL; 6000 action = PF_PASS; 6001 break; 6002 case PF_DROP: 6003 m_freem(*m0); 6004 *m0 = NULL; 6005 break; 6006 default: 6007 /* pf_route() returns unlocked. */ 6008 if (r->rt) { 6009 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6010 return (action); 6011 } 6012 break; 6013 } 6014 if (s) 6015 PF_STATE_UNLOCK(s); 6016 6017 return (action); 6018 } 6019 #endif /* INET */ 6020 6021 #ifdef INET6 6022 int 6023 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6024 { 6025 struct pfi_kif *kif; 6026 u_short action, reason = 0, log = 0; 6027 struct mbuf *m = *m0, *n = NULL; 6028 struct ip6_hdr *h = NULL; 6029 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6030 struct pf_state *s = NULL; 6031 struct pf_ruleset *ruleset = NULL; 6032 struct pf_pdesc pd; 6033 int off, terminal = 0, dirndx, rh_cnt = 0; 6034 6035 M_ASSERTPKTHDR(m); 6036 6037 if (!V_pf_status.running) 6038 return (PF_PASS); 6039 6040 memset(&pd, 0, sizeof(pd)); 6041 pd.pf_mtag = pf_find_mtag(m); 6042 6043 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6044 return (PF_PASS); 6045 6046 kif = (struct pfi_kif *)ifp->if_pf_kif; 6047 if (kif == NULL) { 6048 DPFPRINTF(PF_DEBUG_URGENT, 6049 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6050 return (PF_DROP); 6051 } 6052 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6053 return (PF_PASS); 6054 6055 if (m->m_flags & M_SKIP_FIREWALL) 6056 return (PF_PASS); 6057 6058 PF_RULES_RLOCK(); 6059 6060 /* We do IP header normalization and packet reassembly here */ 6061 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6062 action = PF_DROP; 6063 goto done; 6064 } 6065 m = *m0; /* pf_normalize messes with m0 */ 6066 h = mtod(m, struct ip6_hdr *); 6067 6068 #if 1 6069 /* 6070 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6071 * will do something bad, so drop the packet for now. 6072 */ 6073 if (htons(h->ip6_plen) == 0) { 6074 action = PF_DROP; 6075 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6076 goto done; 6077 } 6078 #endif 6079 6080 pd.src = (struct pf_addr *)&h->ip6_src; 6081 pd.dst = (struct pf_addr *)&h->ip6_dst; 6082 pd.sport = pd.dport = NULL; 6083 pd.ip_sum = NULL; 6084 pd.proto_sum = NULL; 6085 pd.dir = dir; 6086 pd.sidx = (dir == PF_IN) ? 0 : 1; 6087 pd.didx = (dir == PF_IN) ? 1 : 0; 6088 pd.af = AF_INET6; 6089 pd.tos = 0; 6090 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6091 6092 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6093 pd.proto = h->ip6_nxt; 6094 do { 6095 switch (pd.proto) { 6096 case IPPROTO_FRAGMENT: 6097 action = pf_test_fragment(&r, dir, kif, m, h, 6098 &pd, &a, &ruleset); 6099 if (action == PF_DROP) 6100 REASON_SET(&reason, PFRES_FRAG); 6101 goto done; 6102 case IPPROTO_ROUTING: { 6103 struct ip6_rthdr rthdr; 6104 6105 if (rh_cnt++) { 6106 DPFPRINTF(PF_DEBUG_MISC, 6107 ("pf: IPv6 more than one rthdr\n")); 6108 action = PF_DROP; 6109 REASON_SET(&reason, PFRES_IPOPTIONS); 6110 log = 1; 6111 goto done; 6112 } 6113 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6114 &reason, pd.af)) { 6115 DPFPRINTF(PF_DEBUG_MISC, 6116 ("pf: IPv6 short rthdr\n")); 6117 action = PF_DROP; 6118 REASON_SET(&reason, PFRES_SHORT); 6119 log = 1; 6120 goto done; 6121 } 6122 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6123 DPFPRINTF(PF_DEBUG_MISC, 6124 ("pf: IPv6 rthdr0\n")); 6125 action = PF_DROP; 6126 REASON_SET(&reason, PFRES_IPOPTIONS); 6127 log = 1; 6128 goto done; 6129 } 6130 /* FALLTHROUGH */ 6131 } 6132 case IPPROTO_AH: 6133 case IPPROTO_HOPOPTS: 6134 case IPPROTO_DSTOPTS: { 6135 /* get next header and header length */ 6136 struct ip6_ext opt6; 6137 6138 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6139 NULL, &reason, pd.af)) { 6140 DPFPRINTF(PF_DEBUG_MISC, 6141 ("pf: IPv6 short opt\n")); 6142 action = PF_DROP; 6143 log = 1; 6144 goto done; 6145 } 6146 if (pd.proto == IPPROTO_AH) 6147 off += (opt6.ip6e_len + 2) * 4; 6148 else 6149 off += (opt6.ip6e_len + 1) * 8; 6150 pd.proto = opt6.ip6e_nxt; 6151 /* goto the next header */ 6152 break; 6153 } 6154 default: 6155 terminal++; 6156 break; 6157 } 6158 } while (!terminal); 6159 6160 /* if there's no routing header, use unmodified mbuf for checksumming */ 6161 if (!n) 6162 n = m; 6163 6164 switch (pd.proto) { 6165 6166 case IPPROTO_TCP: { 6167 struct tcphdr th; 6168 6169 pd.hdr.tcp = &th; 6170 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6171 &action, &reason, AF_INET6)) { 6172 log = action != PF_PASS; 6173 goto done; 6174 } 6175 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6176 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6177 if (action == PF_DROP) 6178 goto done; 6179 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6180 &reason); 6181 if (action == PF_PASS) { 6182 if (pfsync_update_state_ptr != NULL) 6183 pfsync_update_state_ptr(s); 6184 r = s->rule.ptr; 6185 a = s->anchor.ptr; 6186 log = s->log; 6187 } else if (s == NULL) 6188 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6189 &a, &ruleset, inp); 6190 break; 6191 } 6192 6193 case IPPROTO_UDP: { 6194 struct udphdr uh; 6195 6196 pd.hdr.udp = &uh; 6197 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6198 &action, &reason, AF_INET6)) { 6199 log = action != PF_PASS; 6200 goto done; 6201 } 6202 if (uh.uh_dport == 0 || 6203 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6204 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6205 action = PF_DROP; 6206 REASON_SET(&reason, PFRES_SHORT); 6207 goto done; 6208 } 6209 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6210 if (action == PF_PASS) { 6211 if (pfsync_update_state_ptr != NULL) 6212 pfsync_update_state_ptr(s); 6213 r = s->rule.ptr; 6214 a = s->anchor.ptr; 6215 log = s->log; 6216 } else if (s == NULL) 6217 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6218 &a, &ruleset, inp); 6219 break; 6220 } 6221 6222 case IPPROTO_ICMP: { 6223 action = PF_DROP; 6224 DPFPRINTF(PF_DEBUG_MISC, 6225 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6226 goto done; 6227 } 6228 6229 case IPPROTO_ICMPV6: { 6230 struct icmp6_hdr ih; 6231 6232 pd.hdr.icmp6 = &ih; 6233 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6234 &action, &reason, AF_INET6)) { 6235 log = action != PF_PASS; 6236 goto done; 6237 } 6238 action = pf_test_state_icmp(&s, dir, kif, 6239 m, off, h, &pd, &reason); 6240 if (action == PF_PASS) { 6241 if (pfsync_update_state_ptr != NULL) 6242 pfsync_update_state_ptr(s); 6243 r = s->rule.ptr; 6244 a = s->anchor.ptr; 6245 log = s->log; 6246 } else if (s == NULL) 6247 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6248 &a, &ruleset, inp); 6249 break; 6250 } 6251 6252 default: 6253 action = pf_test_state_other(&s, dir, kif, m, &pd); 6254 if (action == PF_PASS) { 6255 if (pfsync_update_state_ptr != NULL) 6256 pfsync_update_state_ptr(s); 6257 r = s->rule.ptr; 6258 a = s->anchor.ptr; 6259 log = s->log; 6260 } else if (s == NULL) 6261 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6262 &a, &ruleset, inp); 6263 break; 6264 } 6265 6266 done: 6267 PF_RULES_RUNLOCK(); 6268 if (n != m) { 6269 m_freem(n); 6270 n = NULL; 6271 } 6272 6273 /* handle dangerous IPv6 extension headers. */ 6274 if (action == PF_PASS && rh_cnt && 6275 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6276 action = PF_DROP; 6277 REASON_SET(&reason, PFRES_IPOPTIONS); 6278 log = 1; 6279 DPFPRINTF(PF_DEBUG_MISC, 6280 ("pf: dropping packet with dangerous v6 headers\n")); 6281 } 6282 6283 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6284 action = PF_DROP; 6285 REASON_SET(&reason, PFRES_MEMORY); 6286 } 6287 if (r->rtableid >= 0) 6288 M_SETFIB(m, r->rtableid); 6289 6290 #ifdef ALTQ 6291 if (action == PF_PASS && r->qid) { 6292 if (pd.pf_mtag == NULL && 6293 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6294 action = PF_DROP; 6295 REASON_SET(&reason, PFRES_MEMORY); 6296 } 6297 if (pd.tos & IPTOS_LOWDELAY) 6298 pd.pf_mtag->qid = r->pqid; 6299 else 6300 pd.pf_mtag->qid = r->qid; 6301 /* add hints for ecn */ 6302 pd.pf_mtag->hdr = h; 6303 } 6304 #endif /* ALTQ */ 6305 6306 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6307 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6308 (s->nat_rule.ptr->action == PF_RDR || 6309 s->nat_rule.ptr->action == PF_BINAT) && 6310 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6311 m->m_flags |= M_SKIP_FIREWALL; 6312 6313 /* XXX: Anybody working on it?! */ 6314 if (r->divert.port) 6315 printf("pf: divert(9) is not supported for IPv6\n"); 6316 6317 if (log) { 6318 struct pf_rule *lr; 6319 6320 if (s != NULL && s->nat_rule.ptr != NULL && 6321 s->nat_rule.ptr->log & PF_LOG_ALL) 6322 lr = s->nat_rule.ptr; 6323 else 6324 lr = r; 6325 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6326 &pd, (s == NULL)); 6327 } 6328 6329 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6330 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6331 6332 if (action == PF_PASS || r->action == PF_DROP) { 6333 dirndx = (dir == PF_OUT); 6334 r->packets[dirndx]++; 6335 r->bytes[dirndx] += pd.tot_len; 6336 if (a != NULL) { 6337 a->packets[dirndx]++; 6338 a->bytes[dirndx] += pd.tot_len; 6339 } 6340 if (s != NULL) { 6341 if (s->nat_rule.ptr != NULL) { 6342 s->nat_rule.ptr->packets[dirndx]++; 6343 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6344 } 6345 if (s->src_node != NULL) { 6346 s->src_node->packets[dirndx]++; 6347 s->src_node->bytes[dirndx] += pd.tot_len; 6348 } 6349 if (s->nat_src_node != NULL) { 6350 s->nat_src_node->packets[dirndx]++; 6351 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6352 } 6353 dirndx = (dir == s->direction) ? 0 : 1; 6354 s->packets[dirndx]++; 6355 s->bytes[dirndx] += pd.tot_len; 6356 } 6357 tr = r; 6358 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6359 if (nr != NULL && r == &V_pf_default_rule) 6360 tr = nr; 6361 if (tr->src.addr.type == PF_ADDR_TABLE) 6362 pfr_update_stats(tr->src.addr.p.tbl, 6363 (s == NULL) ? pd.src : 6364 &s->key[(s->direction == PF_IN)]->addr[0], 6365 pd.af, pd.tot_len, dir == PF_OUT, 6366 r->action == PF_PASS, tr->src.neg); 6367 if (tr->dst.addr.type == PF_ADDR_TABLE) 6368 pfr_update_stats(tr->dst.addr.p.tbl, 6369 (s == NULL) ? pd.dst : 6370 &s->key[(s->direction == PF_IN)]->addr[1], 6371 pd.af, pd.tot_len, dir == PF_OUT, 6372 r->action == PF_PASS, tr->dst.neg); 6373 } 6374 6375 switch (action) { 6376 case PF_SYNPROXY_DROP: 6377 m_freem(*m0); 6378 case PF_DEFER: 6379 *m0 = NULL; 6380 action = PF_PASS; 6381 break; 6382 case PF_DROP: 6383 m_freem(*m0); 6384 *m0 = NULL; 6385 break; 6386 default: 6387 /* pf_route6() returns unlocked. */ 6388 if (r->rt) { 6389 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6390 return (action); 6391 } 6392 break; 6393 } 6394 6395 if (s) 6396 PF_STATE_UNLOCK(s); 6397 6398 return (action); 6399 } 6400 #endif /* INET6 */ 6401