1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 132 "struct pf_krule *", "struct mbuf *", "int"); 133 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 134 "struct pf_sctp_source *"); 135 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 136 "struct pf_kstate *", "struct pf_sctp_source *"); 137 138 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 139 "struct mbuf *"); 140 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 141 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 142 "int", "struct pf_keth_rule *", "char *"); 143 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 145 "int", "struct pf_keth_rule *"); 146 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 147 148 /* 149 * Global variables 150 */ 151 152 /* state tables */ 153 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 154 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 157 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 158 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 159 VNET_DEFINE(struct pf_kstatus, pf_status); 160 161 VNET_DEFINE(u_int32_t, ticket_altqs_active); 162 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 163 VNET_DEFINE(int, altqs_inactive_open); 164 VNET_DEFINE(u_int32_t, ticket_pabuf); 165 166 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 167 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 168 VNET_DEFINE(u_char, pf_tcp_secret[16]); 169 #define V_pf_tcp_secret VNET(pf_tcp_secret) 170 VNET_DEFINE(int, pf_tcp_secret_init); 171 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 172 VNET_DEFINE(int, pf_tcp_iss_off); 173 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 174 VNET_DECLARE(int, pf_vnet_active); 175 #define V_pf_vnet_active VNET(pf_vnet_active) 176 177 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 178 #define V_pf_purge_idx VNET(pf_purge_idx) 179 180 #ifdef PF_WANT_32_TO_64_COUNTER 181 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 182 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 183 184 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 185 VNET_DEFINE(size_t, pf_allrulecount); 186 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 187 #endif 188 189 struct pf_sctp_endpoint; 190 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 191 struct pf_sctp_source { 192 sa_family_t af; 193 struct pf_addr addr; 194 TAILQ_ENTRY(pf_sctp_source) entry; 195 }; 196 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 197 struct pf_sctp_endpoint 198 { 199 uint32_t v_tag; 200 struct pf_sctp_sources sources; 201 RB_ENTRY(pf_sctp_endpoint) entry; 202 }; 203 static int 204 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 205 { 206 return (a->v_tag - b->v_tag); 207 } 208 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 209 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 210 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 211 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 212 static struct mtx_padalign pf_sctp_endpoints_mtx; 213 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 214 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 215 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 216 217 /* 218 * Queue for pf_intr() sends. 219 */ 220 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 221 struct pf_send_entry { 222 STAILQ_ENTRY(pf_send_entry) pfse_next; 223 struct mbuf *pfse_m; 224 enum { 225 PFSE_IP, 226 PFSE_IP6, 227 PFSE_ICMP, 228 PFSE_ICMP6, 229 } pfse_type; 230 struct { 231 int type; 232 int code; 233 int mtu; 234 } icmpopts; 235 }; 236 237 STAILQ_HEAD(pf_send_head, pf_send_entry); 238 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 239 #define V_pf_sendqueue VNET(pf_sendqueue) 240 241 static struct mtx_padalign pf_sendqueue_mtx; 242 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 243 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 244 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 245 246 /* 247 * Queue for pf_overload_task() tasks. 248 */ 249 struct pf_overload_entry { 250 SLIST_ENTRY(pf_overload_entry) next; 251 struct pf_addr addr; 252 sa_family_t af; 253 uint8_t dir; 254 struct pf_krule *rule; 255 }; 256 257 SLIST_HEAD(pf_overload_head, pf_overload_entry); 258 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 259 #define V_pf_overloadqueue VNET(pf_overloadqueue) 260 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 261 #define V_pf_overloadtask VNET(pf_overloadtask) 262 263 static struct mtx_padalign pf_overloadqueue_mtx; 264 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 265 "pf overload/flush queue", MTX_DEF); 266 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 267 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 268 269 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 270 struct mtx_padalign pf_unlnkdrules_mtx; 271 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 272 MTX_DEF); 273 274 struct sx pf_config_lock; 275 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 276 277 struct mtx_padalign pf_table_stats_lock; 278 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 279 MTX_DEF); 280 281 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 282 #define V_pf_sources_z VNET(pf_sources_z) 283 uma_zone_t pf_mtag_z; 284 VNET_DEFINE(uma_zone_t, pf_state_z); 285 VNET_DEFINE(uma_zone_t, pf_state_key_z); 286 287 VNET_DEFINE(struct unrhdr64, pf_stateid); 288 289 static void pf_src_tree_remove_state(struct pf_kstate *); 290 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 291 u_int32_t); 292 static void pf_add_threshold(struct pf_threshold *); 293 static int pf_check_threshold(struct pf_threshold *); 294 295 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 296 u_int16_t *, u_int16_t *, struct pf_addr *, 297 u_int16_t, u_int8_t, sa_family_t); 298 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 299 struct tcphdr *, struct pf_state_peer *); 300 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 301 int *, u_int16_t *, u_int16_t *); 302 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 303 struct pf_addr *, struct pf_addr *, u_int16_t, 304 u_int16_t *, u_int16_t *, u_int16_t *, 305 u_int16_t *, u_int8_t, sa_family_t); 306 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 307 sa_family_t, struct pf_krule *, int); 308 static void pf_detach_state(struct pf_kstate *); 309 static int pf_state_key_attach(struct pf_state_key *, 310 struct pf_state_key *, struct pf_kstate *); 311 static void pf_state_key_detach(struct pf_kstate *, int); 312 static int pf_state_key_ctor(void *, int, void *, int); 313 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 314 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 315 struct pf_mtag *pf_mtag); 316 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 317 struct pf_krule *, struct mbuf **); 318 static int pf_dummynet_route(struct pf_pdesc *, 319 struct pf_kstate *, struct pf_krule *, 320 struct ifnet *, struct sockaddr *, struct mbuf **); 321 static int pf_test_eth_rule(int, struct pfi_kkif *, 322 struct mbuf **); 323 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 324 struct pfi_kkif *, struct mbuf *, int, 325 struct pf_pdesc *, struct pf_krule **, 326 struct pf_kruleset **, struct inpcb *); 327 static int pf_create_state(struct pf_krule *, struct pf_krule *, 328 struct pf_krule *, struct pf_pdesc *, 329 struct pf_ksrc_node *, struct pf_state_key *, 330 struct pf_state_key *, struct mbuf *, int, 331 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 332 struct pf_kstate **, int, u_int16_t, u_int16_t, 333 int, struct pf_krule_slist *); 334 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 335 struct mbuf *, void *, struct pf_pdesc *, 336 struct pf_krule **, struct pf_kruleset **); 337 static int pf_tcp_track_full(struct pf_kstate **, 338 struct pfi_kkif *, struct mbuf *, int, 339 struct pf_pdesc *, u_short *, int *); 340 static int pf_tcp_track_sloppy(struct pf_kstate **, 341 struct pf_pdesc *, u_short *); 342 static int pf_test_state_tcp(struct pf_kstate **, 343 struct pfi_kkif *, struct mbuf *, int, 344 void *, struct pf_pdesc *, u_short *); 345 static int pf_test_state_udp(struct pf_kstate **, 346 struct pfi_kkif *, struct mbuf *, int, 347 void *, struct pf_pdesc *); 348 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 349 struct pf_pdesc *, struct pf_kstate **, struct mbuf *, 350 int, struct pfi_kkif *, u_int16_t, u_int16_t, 351 int, int *, int); 352 static int pf_test_state_icmp(struct pf_kstate **, 353 struct pfi_kkif *, struct mbuf *, int, 354 void *, struct pf_pdesc *, u_short *); 355 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 356 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 357 struct pfi_kkif *, struct pf_kstate *, int); 358 static int pf_test_state_sctp(struct pf_kstate **, 359 struct pfi_kkif *, struct mbuf *, int, 360 void *, struct pf_pdesc *, u_short *); 361 static int pf_test_state_other(struct pf_kstate **, 362 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 363 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 364 int, u_int16_t); 365 static int pf_check_proto_cksum(struct mbuf *, int, int, 366 u_int8_t, sa_family_t); 367 static void pf_print_state_parts(struct pf_kstate *, 368 struct pf_state_key *, struct pf_state_key *); 369 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 370 bool, u_int8_t); 371 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 372 const struct pf_state_key_cmp *, u_int); 373 static int pf_src_connlimit(struct pf_kstate **); 374 static void pf_overload_task(void *v, int pending); 375 static u_short pf_insert_src_node(struct pf_ksrc_node **, 376 struct pf_krule *, struct pf_addr *, sa_family_t); 377 static u_int pf_purge_expired_states(u_int, int); 378 static void pf_purge_unlinked_rules(void); 379 static int pf_mtag_uminit(void *, int, int); 380 static void pf_mtag_free(struct m_tag *); 381 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 382 int, struct pf_state_key *); 383 #ifdef INET 384 static void pf_route(struct mbuf **, struct pf_krule *, 385 struct ifnet *, struct pf_kstate *, 386 struct pf_pdesc *, struct inpcb *); 387 #endif /* INET */ 388 #ifdef INET6 389 static void pf_change_a6(struct pf_addr *, u_int16_t *, 390 struct pf_addr *, u_int8_t); 391 static void pf_route6(struct mbuf **, struct pf_krule *, 392 struct ifnet *, struct pf_kstate *, 393 struct pf_pdesc *, struct inpcb *); 394 #endif /* INET6 */ 395 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 396 397 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 398 399 extern int pf_end_threads; 400 extern struct proc *pf_purge_proc; 401 402 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 403 404 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_SOLICITED, PF_ICMP_MULTI_LINK }; 405 406 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 407 do { \ 408 struct pf_state_key *nk; \ 409 if ((pd->dir) == PF_OUT) \ 410 nk = (_s)->key[PF_SK_STACK]; \ 411 else \ 412 nk = (_s)->key[PF_SK_WIRE]; \ 413 pf_packet_rework_nat(_m, _pd, _off, nk); \ 414 } while (0) 415 416 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 417 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 418 419 #define STATE_LOOKUP(i, k, s, pd) \ 420 do { \ 421 (s) = pf_find_state((i), (k), (pd->dir)); \ 422 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 423 if ((s) == NULL) \ 424 return (PF_DROP); \ 425 if (PACKET_LOOPED(pd)) \ 426 return (PF_PASS); \ 427 } while (0) 428 429 static struct pfi_kkif * 430 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 431 { 432 SDT_PROBE2(pf, ip, , bound_iface, st, k); 433 434 /* Floating unless otherwise specified. */ 435 if (! (st->rule.ptr->rule_flag & PFRULE_IFBOUND)) 436 return (V_pfi_all); 437 438 /* 439 * Initially set to all, because we don't know what interface we'll be 440 * sending this out when we create the state. 441 */ 442 if (st->rule.ptr->rt == PF_REPLYTO) 443 return (V_pfi_all); 444 445 /* Don't overrule the interface for states created on incoming packets. */ 446 if (st->direction == PF_IN) 447 return (k); 448 449 /* No route-to, so don't overrule. */ 450 if (st->rt != PF_ROUTETO) 451 return (k); 452 453 /* Bind to the route-to interface. */ 454 return (st->rt_kif); 455 } 456 457 #define STATE_INC_COUNTERS(s) \ 458 do { \ 459 struct pf_krule_item *mrm; \ 460 counter_u64_add(s->rule.ptr->states_cur, 1); \ 461 counter_u64_add(s->rule.ptr->states_tot, 1); \ 462 if (s->anchor.ptr != NULL) { \ 463 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 464 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 465 } \ 466 if (s->nat_rule.ptr != NULL) { \ 467 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 468 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 469 } \ 470 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 471 counter_u64_add(mrm->r->states_cur, 1); \ 472 counter_u64_add(mrm->r->states_tot, 1); \ 473 } \ 474 } while (0) 475 476 #define STATE_DEC_COUNTERS(s) \ 477 do { \ 478 struct pf_krule_item *mrm; \ 479 if (s->nat_rule.ptr != NULL) \ 480 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 481 if (s->anchor.ptr != NULL) \ 482 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 483 counter_u64_add(s->rule.ptr->states_cur, -1); \ 484 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 485 counter_u64_add(mrm->r->states_cur, -1); \ 486 } while (0) 487 488 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 489 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 490 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 491 VNET_DEFINE(struct pf_idhash *, pf_idhash); 492 VNET_DEFINE(struct pf_srchash *, pf_srchash); 493 494 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 495 "pf(4)"); 496 497 VNET_DEFINE(u_long, pf_hashmask); 498 VNET_DEFINE(u_long, pf_srchashmask); 499 VNET_DEFINE_STATIC(u_long, pf_hashsize); 500 #define V_pf_hashsize VNET(pf_hashsize) 501 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 502 #define V_pf_srchashsize VNET(pf_srchashsize) 503 u_long pf_ioctl_maxcount = 65535; 504 505 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 506 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 507 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 508 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 509 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 510 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 511 512 VNET_DEFINE(void *, pf_swi_cookie); 513 VNET_DEFINE(struct intr_event *, pf_swi_ie); 514 515 VNET_DEFINE(uint32_t, pf_hashseed); 516 #define V_pf_hashseed VNET(pf_hashseed) 517 518 static void 519 pf_sctp_checksum(struct mbuf *m, int off) 520 { 521 uint32_t sum = 0; 522 523 /* Zero out the checksum, to enable recalculation. */ 524 m_copyback(m, off + offsetof(struct sctphdr, checksum), 525 sizeof(sum), (caddr_t)&sum); 526 527 sum = sctp_calculate_cksum(m, off); 528 529 m_copyback(m, off + offsetof(struct sctphdr, checksum), 530 sizeof(sum), (caddr_t)&sum); 531 } 532 533 int 534 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 535 { 536 537 switch (af) { 538 #ifdef INET 539 case AF_INET: 540 if (a->addr32[0] > b->addr32[0]) 541 return (1); 542 if (a->addr32[0] < b->addr32[0]) 543 return (-1); 544 break; 545 #endif /* INET */ 546 #ifdef INET6 547 case AF_INET6: 548 if (a->addr32[3] > b->addr32[3]) 549 return (1); 550 if (a->addr32[3] < b->addr32[3]) 551 return (-1); 552 if (a->addr32[2] > b->addr32[2]) 553 return (1); 554 if (a->addr32[2] < b->addr32[2]) 555 return (-1); 556 if (a->addr32[1] > b->addr32[1]) 557 return (1); 558 if (a->addr32[1] < b->addr32[1]) 559 return (-1); 560 if (a->addr32[0] > b->addr32[0]) 561 return (1); 562 if (a->addr32[0] < b->addr32[0]) 563 return (-1); 564 break; 565 #endif /* INET6 */ 566 default: 567 panic("%s: unknown address family %u", __func__, af); 568 } 569 return (0); 570 } 571 572 static void 573 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 574 struct pf_state_key *nk) 575 { 576 577 switch (pd->proto) { 578 case IPPROTO_TCP: { 579 struct tcphdr *th = &pd->hdr.tcp; 580 581 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 582 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 583 &th->th_sum, &nk->addr[pd->sidx], 584 nk->port[pd->sidx], 0, pd->af); 585 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 586 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 587 &th->th_sum, &nk->addr[pd->didx], 588 nk->port[pd->didx], 0, pd->af); 589 m_copyback(m, off, sizeof(*th), (caddr_t)th); 590 break; 591 } 592 case IPPROTO_UDP: { 593 struct udphdr *uh = &pd->hdr.udp; 594 595 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 596 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 597 &uh->uh_sum, &nk->addr[pd->sidx], 598 nk->port[pd->sidx], 1, pd->af); 599 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 600 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 601 &uh->uh_sum, &nk->addr[pd->didx], 602 nk->port[pd->didx], 1, pd->af); 603 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 604 break; 605 } 606 case IPPROTO_SCTP: { 607 struct sctphdr *sh = &pd->hdr.sctp; 608 uint16_t checksum = 0; 609 610 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 611 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 612 &checksum, &nk->addr[pd->sidx], 613 nk->port[pd->sidx], 1, pd->af); 614 } 615 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 616 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 617 &checksum, &nk->addr[pd->didx], 618 nk->port[pd->didx], 1, pd->af); 619 } 620 621 break; 622 } 623 case IPPROTO_ICMP: { 624 struct icmp *ih = &pd->hdr.icmp; 625 626 if (nk->port[pd->sidx] != ih->icmp_id) { 627 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 628 ih->icmp_cksum, ih->icmp_id, 629 nk->port[pd->sidx], 0); 630 ih->icmp_id = nk->port[pd->sidx]; 631 pd->sport = &ih->icmp_id; 632 633 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 634 } 635 /* FALLTHROUGH */ 636 } 637 default: 638 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 639 switch (pd->af) { 640 case AF_INET: 641 pf_change_a(&pd->src->v4.s_addr, 642 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 643 0); 644 break; 645 case AF_INET6: 646 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 647 break; 648 } 649 } 650 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 651 switch (pd->af) { 652 case AF_INET: 653 pf_change_a(&pd->dst->v4.s_addr, 654 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 655 0); 656 break; 657 case AF_INET6: 658 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 659 break; 660 } 661 } 662 break; 663 } 664 } 665 666 static __inline uint32_t 667 pf_hashkey(const struct pf_state_key *sk) 668 { 669 uint32_t h; 670 671 h = murmur3_32_hash32((const uint32_t *)sk, 672 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 673 V_pf_hashseed); 674 675 return (h & V_pf_hashmask); 676 } 677 678 static __inline uint32_t 679 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 680 { 681 uint32_t h; 682 683 switch (af) { 684 case AF_INET: 685 h = murmur3_32_hash32((uint32_t *)&addr->v4, 686 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 687 break; 688 case AF_INET6: 689 h = murmur3_32_hash32((uint32_t *)&addr->v6, 690 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 691 break; 692 default: 693 panic("%s: unknown address family %u", __func__, af); 694 } 695 696 return (h & V_pf_srchashmask); 697 } 698 699 #ifdef ALTQ 700 static int 701 pf_state_hash(struct pf_kstate *s) 702 { 703 u_int32_t hv = (intptr_t)s / sizeof(*s); 704 705 hv ^= crc32(&s->src, sizeof(s->src)); 706 hv ^= crc32(&s->dst, sizeof(s->dst)); 707 if (hv == 0) 708 hv = 1; 709 return (hv); 710 } 711 #endif 712 713 static __inline void 714 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 715 { 716 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 717 s->dst.state = newstate; 718 if (which == PF_PEER_DST) 719 return; 720 if (s->src.state == newstate) 721 return; 722 if (s->creatorid == V_pf_status.hostid && 723 s->key[PF_SK_STACK] != NULL && 724 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 725 !(TCPS_HAVEESTABLISHED(s->src.state) || 726 s->src.state == TCPS_CLOSED) && 727 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 728 atomic_add_32(&V_pf_status.states_halfopen, -1); 729 730 s->src.state = newstate; 731 } 732 733 #ifdef INET6 734 void 735 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 736 { 737 switch (af) { 738 #ifdef INET 739 case AF_INET: 740 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 741 break; 742 #endif /* INET */ 743 case AF_INET6: 744 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 745 break; 746 } 747 } 748 #endif /* INET6 */ 749 750 static void 751 pf_init_threshold(struct pf_threshold *threshold, 752 u_int32_t limit, u_int32_t seconds) 753 { 754 threshold->limit = limit * PF_THRESHOLD_MULT; 755 threshold->seconds = seconds; 756 threshold->count = 0; 757 threshold->last = time_uptime; 758 } 759 760 static void 761 pf_add_threshold(struct pf_threshold *threshold) 762 { 763 u_int32_t t = time_uptime, diff = t - threshold->last; 764 765 if (diff >= threshold->seconds) 766 threshold->count = 0; 767 else 768 threshold->count -= threshold->count * diff / 769 threshold->seconds; 770 threshold->count += PF_THRESHOLD_MULT; 771 threshold->last = t; 772 } 773 774 static int 775 pf_check_threshold(struct pf_threshold *threshold) 776 { 777 return (threshold->count > threshold->limit); 778 } 779 780 static int 781 pf_src_connlimit(struct pf_kstate **state) 782 { 783 struct pf_overload_entry *pfoe; 784 int bad = 0; 785 786 PF_STATE_LOCK_ASSERT(*state); 787 /* 788 * XXXKS: The src node is accessed unlocked! 789 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 790 */ 791 792 (*state)->src_node->conn++; 793 (*state)->src.tcp_est = 1; 794 pf_add_threshold(&(*state)->src_node->conn_rate); 795 796 if ((*state)->rule.ptr->max_src_conn && 797 (*state)->rule.ptr->max_src_conn < 798 (*state)->src_node->conn) { 799 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 800 bad++; 801 } 802 803 if ((*state)->rule.ptr->max_src_conn_rate.limit && 804 pf_check_threshold(&(*state)->src_node->conn_rate)) { 805 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 806 bad++; 807 } 808 809 if (!bad) 810 return (0); 811 812 /* Kill this state. */ 813 (*state)->timeout = PFTM_PURGE; 814 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 815 816 if ((*state)->rule.ptr->overload_tbl == NULL) 817 return (1); 818 819 /* Schedule overloading and flushing task. */ 820 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 821 if (pfoe == NULL) 822 return (1); /* too bad :( */ 823 824 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 825 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 826 pfoe->rule = (*state)->rule.ptr; 827 pfoe->dir = (*state)->direction; 828 PF_OVERLOADQ_LOCK(); 829 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 830 PF_OVERLOADQ_UNLOCK(); 831 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 832 833 return (1); 834 } 835 836 static void 837 pf_overload_task(void *v, int pending) 838 { 839 struct pf_overload_head queue; 840 struct pfr_addr p; 841 struct pf_overload_entry *pfoe, *pfoe1; 842 uint32_t killed = 0; 843 844 CURVNET_SET((struct vnet *)v); 845 846 PF_OVERLOADQ_LOCK(); 847 queue = V_pf_overloadqueue; 848 SLIST_INIT(&V_pf_overloadqueue); 849 PF_OVERLOADQ_UNLOCK(); 850 851 bzero(&p, sizeof(p)); 852 SLIST_FOREACH(pfoe, &queue, next) { 853 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 854 if (V_pf_status.debug >= PF_DEBUG_MISC) { 855 printf("%s: blocking address ", __func__); 856 pf_print_host(&pfoe->addr, 0, pfoe->af); 857 printf("\n"); 858 } 859 860 p.pfra_af = pfoe->af; 861 switch (pfoe->af) { 862 #ifdef INET 863 case AF_INET: 864 p.pfra_net = 32; 865 p.pfra_ip4addr = pfoe->addr.v4; 866 break; 867 #endif 868 #ifdef INET6 869 case AF_INET6: 870 p.pfra_net = 128; 871 p.pfra_ip6addr = pfoe->addr.v6; 872 break; 873 #endif 874 } 875 876 PF_RULES_WLOCK(); 877 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 878 PF_RULES_WUNLOCK(); 879 } 880 881 /* 882 * Remove those entries, that don't need flushing. 883 */ 884 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 885 if (pfoe->rule->flush == 0) { 886 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 887 free(pfoe, M_PFTEMP); 888 } else 889 counter_u64_add( 890 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 891 892 /* If nothing to flush, return. */ 893 if (SLIST_EMPTY(&queue)) { 894 CURVNET_RESTORE(); 895 return; 896 } 897 898 for (int i = 0; i <= V_pf_hashmask; i++) { 899 struct pf_idhash *ih = &V_pf_idhash[i]; 900 struct pf_state_key *sk; 901 struct pf_kstate *s; 902 903 PF_HASHROW_LOCK(ih); 904 LIST_FOREACH(s, &ih->states, entry) { 905 sk = s->key[PF_SK_WIRE]; 906 SLIST_FOREACH(pfoe, &queue, next) 907 if (sk->af == pfoe->af && 908 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 909 pfoe->rule == s->rule.ptr) && 910 ((pfoe->dir == PF_OUT && 911 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 912 (pfoe->dir == PF_IN && 913 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 914 s->timeout = PFTM_PURGE; 915 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 916 killed++; 917 } 918 } 919 PF_HASHROW_UNLOCK(ih); 920 } 921 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 922 free(pfoe, M_PFTEMP); 923 if (V_pf_status.debug >= PF_DEBUG_MISC) 924 printf("%s: %u states killed", __func__, killed); 925 926 CURVNET_RESTORE(); 927 } 928 929 /* 930 * Can return locked on failure, so that we can consistently 931 * allocate and insert a new one. 932 */ 933 struct pf_ksrc_node * 934 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 935 struct pf_srchash **sh, bool returnlocked) 936 { 937 struct pf_ksrc_node *n; 938 939 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 940 941 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 942 PF_HASHROW_LOCK(*sh); 943 LIST_FOREACH(n, &(*sh)->nodes, entry) 944 if (n->rule.ptr == rule && n->af == af && 945 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 946 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 947 break; 948 949 if (n != NULL) { 950 n->states++; 951 PF_HASHROW_UNLOCK(*sh); 952 } else if (returnlocked == false) 953 PF_HASHROW_UNLOCK(*sh); 954 955 return (n); 956 } 957 958 static void 959 pf_free_src_node(struct pf_ksrc_node *sn) 960 { 961 962 for (int i = 0; i < 2; i++) { 963 counter_u64_free(sn->bytes[i]); 964 counter_u64_free(sn->packets[i]); 965 } 966 uma_zfree(V_pf_sources_z, sn); 967 } 968 969 static u_short 970 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 971 struct pf_addr *src, sa_family_t af) 972 { 973 u_short reason = 0; 974 struct pf_srchash *sh = NULL; 975 976 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 977 rule->rpool.opts & PF_POOL_STICKYADDR), 978 ("%s for non-tracking rule %p", __func__, rule)); 979 980 if (*sn == NULL) 981 *sn = pf_find_src_node(src, rule, af, &sh, true); 982 983 if (*sn == NULL) { 984 PF_HASHROW_ASSERT(sh); 985 986 if (rule->max_src_nodes && 987 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 988 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 989 PF_HASHROW_UNLOCK(sh); 990 reason = PFRES_SRCLIMIT; 991 goto done; 992 } 993 994 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 995 if ((*sn) == NULL) { 996 PF_HASHROW_UNLOCK(sh); 997 reason = PFRES_MEMORY; 998 goto done; 999 } 1000 1001 for (int i = 0; i < 2; i++) { 1002 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1003 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1004 1005 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1006 pf_free_src_node(*sn); 1007 PF_HASHROW_UNLOCK(sh); 1008 reason = PFRES_MEMORY; 1009 goto done; 1010 } 1011 } 1012 1013 pf_init_threshold(&(*sn)->conn_rate, 1014 rule->max_src_conn_rate.limit, 1015 rule->max_src_conn_rate.seconds); 1016 1017 MPASS((*sn)->lock == NULL); 1018 (*sn)->lock = &sh->lock; 1019 1020 (*sn)->af = af; 1021 (*sn)->rule.ptr = rule; 1022 PF_ACPY(&(*sn)->addr, src, af); 1023 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1024 (*sn)->creation = time_uptime; 1025 (*sn)->ruletype = rule->action; 1026 (*sn)->states = 1; 1027 if ((*sn)->rule.ptr != NULL) 1028 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 1029 PF_HASHROW_UNLOCK(sh); 1030 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1031 } else { 1032 if (rule->max_src_states && 1033 (*sn)->states >= rule->max_src_states) { 1034 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1035 1); 1036 reason = PFRES_SRCLIMIT; 1037 goto done; 1038 } 1039 } 1040 done: 1041 return (reason); 1042 } 1043 1044 void 1045 pf_unlink_src_node(struct pf_ksrc_node *src) 1046 { 1047 PF_SRC_NODE_LOCK_ASSERT(src); 1048 1049 LIST_REMOVE(src, entry); 1050 if (src->rule.ptr) 1051 counter_u64_add(src->rule.ptr->src_nodes, -1); 1052 } 1053 1054 u_int 1055 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1056 { 1057 struct pf_ksrc_node *sn, *tmp; 1058 u_int count = 0; 1059 1060 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1061 pf_free_src_node(sn); 1062 count++; 1063 } 1064 1065 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1066 1067 return (count); 1068 } 1069 1070 void 1071 pf_mtag_initialize(void) 1072 { 1073 1074 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1075 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1076 UMA_ALIGN_PTR, 0); 1077 } 1078 1079 /* Per-vnet data storage structures initialization. */ 1080 void 1081 pf_initialize(void) 1082 { 1083 struct pf_keyhash *kh; 1084 struct pf_idhash *ih; 1085 struct pf_srchash *sh; 1086 u_int i; 1087 1088 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1089 V_pf_hashsize = PF_HASHSIZ; 1090 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1091 V_pf_srchashsize = PF_SRCHASHSIZ; 1092 1093 V_pf_hashseed = arc4random(); 1094 1095 /* States and state keys storage. */ 1096 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1097 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1098 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1099 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1100 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1101 1102 V_pf_state_key_z = uma_zcreate("pf state keys", 1103 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1104 UMA_ALIGN_PTR, 0); 1105 1106 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1107 M_PFHASH, M_NOWAIT | M_ZERO); 1108 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1109 M_PFHASH, M_NOWAIT | M_ZERO); 1110 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1111 printf("pf: Unable to allocate memory for " 1112 "state_hashsize %lu.\n", V_pf_hashsize); 1113 1114 free(V_pf_keyhash, M_PFHASH); 1115 free(V_pf_idhash, M_PFHASH); 1116 1117 V_pf_hashsize = PF_HASHSIZ; 1118 V_pf_keyhash = mallocarray(V_pf_hashsize, 1119 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1120 V_pf_idhash = mallocarray(V_pf_hashsize, 1121 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1122 } 1123 1124 V_pf_hashmask = V_pf_hashsize - 1; 1125 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1126 i++, kh++, ih++) { 1127 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1128 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1129 } 1130 1131 /* Source nodes. */ 1132 V_pf_sources_z = uma_zcreate("pf source nodes", 1133 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1134 0); 1135 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1136 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1137 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1138 1139 V_pf_srchash = mallocarray(V_pf_srchashsize, 1140 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1141 if (V_pf_srchash == NULL) { 1142 printf("pf: Unable to allocate memory for " 1143 "source_hashsize %lu.\n", V_pf_srchashsize); 1144 1145 V_pf_srchashsize = PF_SRCHASHSIZ; 1146 V_pf_srchash = mallocarray(V_pf_srchashsize, 1147 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1148 } 1149 1150 V_pf_srchashmask = V_pf_srchashsize - 1; 1151 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1152 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1153 1154 /* ALTQ */ 1155 TAILQ_INIT(&V_pf_altqs[0]); 1156 TAILQ_INIT(&V_pf_altqs[1]); 1157 TAILQ_INIT(&V_pf_altqs[2]); 1158 TAILQ_INIT(&V_pf_altqs[3]); 1159 TAILQ_INIT(&V_pf_pabuf); 1160 V_pf_altqs_active = &V_pf_altqs[0]; 1161 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1162 V_pf_altqs_inactive = &V_pf_altqs[2]; 1163 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1164 1165 /* Send & overload+flush queues. */ 1166 STAILQ_INIT(&V_pf_sendqueue); 1167 SLIST_INIT(&V_pf_overloadqueue); 1168 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1169 1170 /* Unlinked, but may be referenced rules. */ 1171 TAILQ_INIT(&V_pf_unlinked_rules); 1172 } 1173 1174 void 1175 pf_mtag_cleanup(void) 1176 { 1177 1178 uma_zdestroy(pf_mtag_z); 1179 } 1180 1181 void 1182 pf_cleanup(void) 1183 { 1184 struct pf_keyhash *kh; 1185 struct pf_idhash *ih; 1186 struct pf_srchash *sh; 1187 struct pf_send_entry *pfse, *next; 1188 u_int i; 1189 1190 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1191 i++, kh++, ih++) { 1192 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1193 __func__)); 1194 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1195 __func__)); 1196 mtx_destroy(&kh->lock); 1197 mtx_destroy(&ih->lock); 1198 } 1199 free(V_pf_keyhash, M_PFHASH); 1200 free(V_pf_idhash, M_PFHASH); 1201 1202 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1203 KASSERT(LIST_EMPTY(&sh->nodes), 1204 ("%s: source node hash not empty", __func__)); 1205 mtx_destroy(&sh->lock); 1206 } 1207 free(V_pf_srchash, M_PFHASH); 1208 1209 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1210 m_freem(pfse->pfse_m); 1211 free(pfse, M_PFTEMP); 1212 } 1213 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1214 1215 uma_zdestroy(V_pf_sources_z); 1216 uma_zdestroy(V_pf_state_z); 1217 uma_zdestroy(V_pf_state_key_z); 1218 } 1219 1220 static int 1221 pf_mtag_uminit(void *mem, int size, int how) 1222 { 1223 struct m_tag *t; 1224 1225 t = (struct m_tag *)mem; 1226 t->m_tag_cookie = MTAG_ABI_COMPAT; 1227 t->m_tag_id = PACKET_TAG_PF; 1228 t->m_tag_len = sizeof(struct pf_mtag); 1229 t->m_tag_free = pf_mtag_free; 1230 1231 return (0); 1232 } 1233 1234 static void 1235 pf_mtag_free(struct m_tag *t) 1236 { 1237 1238 uma_zfree(pf_mtag_z, t); 1239 } 1240 1241 struct pf_mtag * 1242 pf_get_mtag(struct mbuf *m) 1243 { 1244 struct m_tag *mtag; 1245 1246 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1247 return ((struct pf_mtag *)(mtag + 1)); 1248 1249 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1250 if (mtag == NULL) 1251 return (NULL); 1252 bzero(mtag + 1, sizeof(struct pf_mtag)); 1253 m_tag_prepend(m, mtag); 1254 1255 return ((struct pf_mtag *)(mtag + 1)); 1256 } 1257 1258 static int 1259 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1260 struct pf_kstate *s) 1261 { 1262 struct pf_keyhash *khs, *khw, *kh; 1263 struct pf_state_key *sk, *cur; 1264 struct pf_kstate *si, *olds = NULL; 1265 int idx; 1266 1267 NET_EPOCH_ASSERT(); 1268 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1269 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1270 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1271 1272 /* 1273 * We need to lock hash slots of both keys. To avoid deadlock 1274 * we always lock the slot with lower address first. Unlock order 1275 * isn't important. 1276 * 1277 * We also need to lock ID hash slot before dropping key 1278 * locks. On success we return with ID hash slot locked. 1279 */ 1280 1281 if (skw == sks) { 1282 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1283 PF_HASHROW_LOCK(khs); 1284 } else { 1285 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1286 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1287 if (khs == khw) { 1288 PF_HASHROW_LOCK(khs); 1289 } else if (khs < khw) { 1290 PF_HASHROW_LOCK(khs); 1291 PF_HASHROW_LOCK(khw); 1292 } else { 1293 PF_HASHROW_LOCK(khw); 1294 PF_HASHROW_LOCK(khs); 1295 } 1296 } 1297 1298 #define KEYS_UNLOCK() do { \ 1299 if (khs != khw) { \ 1300 PF_HASHROW_UNLOCK(khs); \ 1301 PF_HASHROW_UNLOCK(khw); \ 1302 } else \ 1303 PF_HASHROW_UNLOCK(khs); \ 1304 } while (0) 1305 1306 /* 1307 * First run: start with wire key. 1308 */ 1309 sk = skw; 1310 kh = khw; 1311 idx = PF_SK_WIRE; 1312 1313 MPASS(s->lock == NULL); 1314 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1315 1316 keyattach: 1317 LIST_FOREACH(cur, &kh->keys, entry) 1318 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1319 break; 1320 1321 if (cur != NULL) { 1322 /* Key exists. Check for same kif, if none, add to key. */ 1323 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1324 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1325 1326 PF_HASHROW_LOCK(ih); 1327 if (si->kif == s->kif && 1328 si->direction == s->direction) { 1329 if (sk->proto == IPPROTO_TCP && 1330 si->src.state >= TCPS_FIN_WAIT_2 && 1331 si->dst.state >= TCPS_FIN_WAIT_2) { 1332 /* 1333 * New state matches an old >FIN_WAIT_2 1334 * state. We can't drop key hash locks, 1335 * thus we can't unlink it properly. 1336 * 1337 * As a workaround we drop it into 1338 * TCPS_CLOSED state, schedule purge 1339 * ASAP and push it into the very end 1340 * of the slot TAILQ, so that it won't 1341 * conflict with our new state. 1342 */ 1343 pf_set_protostate(si, PF_PEER_BOTH, 1344 TCPS_CLOSED); 1345 si->timeout = PFTM_PURGE; 1346 olds = si; 1347 } else { 1348 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1349 printf("pf: %s key attach " 1350 "failed on %s: ", 1351 (idx == PF_SK_WIRE) ? 1352 "wire" : "stack", 1353 s->kif->pfik_name); 1354 pf_print_state_parts(s, 1355 (idx == PF_SK_WIRE) ? 1356 sk : NULL, 1357 (idx == PF_SK_STACK) ? 1358 sk : NULL); 1359 printf(", existing: "); 1360 pf_print_state_parts(si, 1361 (idx == PF_SK_WIRE) ? 1362 sk : NULL, 1363 (idx == PF_SK_STACK) ? 1364 sk : NULL); 1365 printf("\n"); 1366 } 1367 s->timeout = PFTM_UNLINKED; 1368 PF_HASHROW_UNLOCK(ih); 1369 KEYS_UNLOCK(); 1370 uma_zfree(V_pf_state_key_z, sk); 1371 if (idx == PF_SK_STACK) 1372 pf_detach_state(s); 1373 return (EEXIST); /* collision! */ 1374 } 1375 } 1376 PF_HASHROW_UNLOCK(ih); 1377 } 1378 uma_zfree(V_pf_state_key_z, sk); 1379 s->key[idx] = cur; 1380 } else { 1381 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1382 s->key[idx] = sk; 1383 } 1384 1385 stateattach: 1386 /* List is sorted, if-bound states before floating. */ 1387 if (s->kif == V_pfi_all) 1388 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1389 else 1390 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1391 1392 if (olds) { 1393 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1394 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1395 key_list[idx]); 1396 olds = NULL; 1397 } 1398 1399 /* 1400 * Attach done. See how should we (or should not?) 1401 * attach a second key. 1402 */ 1403 if (sks == skw) { 1404 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1405 idx = PF_SK_STACK; 1406 sks = NULL; 1407 goto stateattach; 1408 } else if (sks != NULL) { 1409 /* 1410 * Continue attaching with stack key. 1411 */ 1412 sk = sks; 1413 kh = khs; 1414 idx = PF_SK_STACK; 1415 sks = NULL; 1416 goto keyattach; 1417 } 1418 1419 PF_STATE_LOCK(s); 1420 KEYS_UNLOCK(); 1421 1422 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1423 ("%s failure", __func__)); 1424 1425 return (0); 1426 #undef KEYS_UNLOCK 1427 } 1428 1429 static void 1430 pf_detach_state(struct pf_kstate *s) 1431 { 1432 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1433 struct pf_keyhash *kh; 1434 1435 NET_EPOCH_ASSERT(); 1436 MPASS(s->timeout >= PFTM_MAX); 1437 1438 pf_sctp_multihome_detach_addr(s); 1439 1440 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1441 V_pflow_export_state_ptr(s); 1442 1443 if (sks != NULL) { 1444 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1445 PF_HASHROW_LOCK(kh); 1446 if (s->key[PF_SK_STACK] != NULL) 1447 pf_state_key_detach(s, PF_SK_STACK); 1448 /* 1449 * If both point to same key, then we are done. 1450 */ 1451 if (sks == s->key[PF_SK_WIRE]) { 1452 pf_state_key_detach(s, PF_SK_WIRE); 1453 PF_HASHROW_UNLOCK(kh); 1454 return; 1455 } 1456 PF_HASHROW_UNLOCK(kh); 1457 } 1458 1459 if (s->key[PF_SK_WIRE] != NULL) { 1460 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1461 PF_HASHROW_LOCK(kh); 1462 if (s->key[PF_SK_WIRE] != NULL) 1463 pf_state_key_detach(s, PF_SK_WIRE); 1464 PF_HASHROW_UNLOCK(kh); 1465 } 1466 } 1467 1468 static void 1469 pf_state_key_detach(struct pf_kstate *s, int idx) 1470 { 1471 struct pf_state_key *sk = s->key[idx]; 1472 #ifdef INVARIANTS 1473 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1474 1475 PF_HASHROW_ASSERT(kh); 1476 #endif 1477 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1478 s->key[idx] = NULL; 1479 1480 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1481 LIST_REMOVE(sk, entry); 1482 uma_zfree(V_pf_state_key_z, sk); 1483 } 1484 } 1485 1486 static int 1487 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1488 { 1489 struct pf_state_key *sk = mem; 1490 1491 bzero(sk, sizeof(struct pf_state_key_cmp)); 1492 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1493 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1494 1495 return (0); 1496 } 1497 1498 struct pf_state_key * 1499 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1500 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1501 { 1502 struct pf_state_key *sk; 1503 1504 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1505 if (sk == NULL) 1506 return (NULL); 1507 1508 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1509 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1510 sk->port[pd->sidx] = sport; 1511 sk->port[pd->didx] = dport; 1512 sk->proto = pd->proto; 1513 sk->af = pd->af; 1514 1515 return (sk); 1516 } 1517 1518 struct pf_state_key * 1519 pf_state_key_clone(const struct pf_state_key *orig) 1520 { 1521 struct pf_state_key *sk; 1522 1523 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1524 if (sk == NULL) 1525 return (NULL); 1526 1527 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1528 1529 return (sk); 1530 } 1531 1532 int 1533 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1534 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1535 { 1536 struct pf_idhash *ih; 1537 struct pf_kstate *cur; 1538 int error; 1539 1540 NET_EPOCH_ASSERT(); 1541 1542 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1543 ("%s: sks not pristine", __func__)); 1544 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1545 ("%s: skw not pristine", __func__)); 1546 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1547 1548 s->kif = kif; 1549 s->orig_kif = orig_kif; 1550 1551 if (s->id == 0 && s->creatorid == 0) { 1552 s->id = alloc_unr64(&V_pf_stateid); 1553 s->id = htobe64(s->id); 1554 s->creatorid = V_pf_status.hostid; 1555 } 1556 1557 /* Returns with ID locked on success. */ 1558 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1559 return (error); 1560 1561 ih = &V_pf_idhash[PF_IDHASH(s)]; 1562 PF_HASHROW_ASSERT(ih); 1563 LIST_FOREACH(cur, &ih->states, entry) 1564 if (cur->id == s->id && cur->creatorid == s->creatorid) 1565 break; 1566 1567 if (cur != NULL) { 1568 s->timeout = PFTM_UNLINKED; 1569 PF_HASHROW_UNLOCK(ih); 1570 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1571 printf("pf: state ID collision: " 1572 "id: %016llx creatorid: %08x\n", 1573 (unsigned long long)be64toh(s->id), 1574 ntohl(s->creatorid)); 1575 } 1576 pf_detach_state(s); 1577 return (EEXIST); 1578 } 1579 LIST_INSERT_HEAD(&ih->states, s, entry); 1580 /* One for keys, one for ID hash. */ 1581 refcount_init(&s->refs, 2); 1582 1583 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1584 if (V_pfsync_insert_state_ptr != NULL) 1585 V_pfsync_insert_state_ptr(s); 1586 1587 /* Returns locked. */ 1588 return (0); 1589 } 1590 1591 /* 1592 * Find state by ID: returns with locked row on success. 1593 */ 1594 struct pf_kstate * 1595 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1596 { 1597 struct pf_idhash *ih; 1598 struct pf_kstate *s; 1599 1600 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1601 1602 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1603 1604 PF_HASHROW_LOCK(ih); 1605 LIST_FOREACH(s, &ih->states, entry) 1606 if (s->id == id && s->creatorid == creatorid) 1607 break; 1608 1609 if (s == NULL) 1610 PF_HASHROW_UNLOCK(ih); 1611 1612 return (s); 1613 } 1614 1615 /* 1616 * Find state by key. 1617 * Returns with ID hash slot locked on success. 1618 */ 1619 static struct pf_kstate * 1620 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1621 u_int dir) 1622 { 1623 struct pf_keyhash *kh; 1624 struct pf_state_key *sk; 1625 struct pf_kstate *s; 1626 int idx; 1627 1628 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1629 1630 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1631 1632 PF_HASHROW_LOCK(kh); 1633 LIST_FOREACH(sk, &kh->keys, entry) 1634 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1635 break; 1636 if (sk == NULL) { 1637 PF_HASHROW_UNLOCK(kh); 1638 return (NULL); 1639 } 1640 1641 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1642 1643 /* List is sorted, if-bound states before floating ones. */ 1644 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1645 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1646 PF_STATE_LOCK(s); 1647 PF_HASHROW_UNLOCK(kh); 1648 if (__predict_false(s->timeout >= PFTM_MAX)) { 1649 /* 1650 * State is either being processed by 1651 * pf_unlink_state() in an other thread, or 1652 * is scheduled for immediate expiry. 1653 */ 1654 PF_STATE_UNLOCK(s); 1655 return (NULL); 1656 } 1657 return (s); 1658 } 1659 PF_HASHROW_UNLOCK(kh); 1660 1661 return (NULL); 1662 } 1663 1664 /* 1665 * Returns with ID hash slot locked on success. 1666 */ 1667 struct pf_kstate * 1668 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1669 { 1670 struct pf_keyhash *kh; 1671 struct pf_state_key *sk; 1672 struct pf_kstate *s, *ret = NULL; 1673 int idx, inout = 0; 1674 1675 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1676 1677 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1678 1679 PF_HASHROW_LOCK(kh); 1680 LIST_FOREACH(sk, &kh->keys, entry) 1681 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1682 break; 1683 if (sk == NULL) { 1684 PF_HASHROW_UNLOCK(kh); 1685 return (NULL); 1686 } 1687 switch (dir) { 1688 case PF_IN: 1689 idx = PF_SK_WIRE; 1690 break; 1691 case PF_OUT: 1692 idx = PF_SK_STACK; 1693 break; 1694 case PF_INOUT: 1695 idx = PF_SK_WIRE; 1696 inout = 1; 1697 break; 1698 default: 1699 panic("%s: dir %u", __func__, dir); 1700 } 1701 second_run: 1702 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1703 if (more == NULL) { 1704 PF_STATE_LOCK(s); 1705 PF_HASHROW_UNLOCK(kh); 1706 return (s); 1707 } 1708 1709 if (ret) 1710 (*more)++; 1711 else { 1712 ret = s; 1713 PF_STATE_LOCK(s); 1714 } 1715 } 1716 if (inout == 1) { 1717 inout = 0; 1718 idx = PF_SK_STACK; 1719 goto second_run; 1720 } 1721 PF_HASHROW_UNLOCK(kh); 1722 1723 return (ret); 1724 } 1725 1726 /* 1727 * FIXME 1728 * This routine is inefficient -- locks the state only to unlock immediately on 1729 * return. 1730 * It is racy -- after the state is unlocked nothing stops other threads from 1731 * removing it. 1732 */ 1733 bool 1734 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1735 { 1736 struct pf_kstate *s; 1737 1738 s = pf_find_state_all(key, dir, NULL); 1739 if (s != NULL) { 1740 PF_STATE_UNLOCK(s); 1741 return (true); 1742 } 1743 return (false); 1744 } 1745 1746 /* END state table stuff */ 1747 1748 static void 1749 pf_send(struct pf_send_entry *pfse) 1750 { 1751 1752 PF_SENDQ_LOCK(); 1753 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1754 PF_SENDQ_UNLOCK(); 1755 swi_sched(V_pf_swi_cookie, 0); 1756 } 1757 1758 static bool 1759 pf_isforlocal(struct mbuf *m, int af) 1760 { 1761 switch (af) { 1762 #ifdef INET 1763 case AF_INET: { 1764 struct ip *ip = mtod(m, struct ip *); 1765 1766 return (in_localip(ip->ip_dst)); 1767 } 1768 #endif 1769 #ifdef INET6 1770 case AF_INET6: { 1771 struct ip6_hdr *ip6; 1772 struct in6_ifaddr *ia; 1773 ip6 = mtod(m, struct ip6_hdr *); 1774 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1775 if (ia == NULL) 1776 return (false); 1777 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1778 } 1779 #endif 1780 default: 1781 panic("Unsupported af %d", af); 1782 } 1783 1784 return (false); 1785 } 1786 1787 int 1788 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 1789 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 1790 { 1791 /* 1792 * ICMP types marked with PF_OUT are typically responses to 1793 * PF_IN, and will match states in the opposite direction. 1794 * PF_IN ICMP types need to match a state with that type. 1795 */ 1796 *icmp_dir = PF_OUT; 1797 *multi = PF_ICMP_MULTI_LINK; 1798 /* Queries (and responses) */ 1799 switch (pd->af) { 1800 #ifdef INET 1801 case AF_INET: 1802 switch (type) { 1803 case ICMP_ECHO: 1804 *icmp_dir = PF_IN; 1805 case ICMP_ECHOREPLY: 1806 *virtual_type = ICMP_ECHO; 1807 *virtual_id = pd->hdr.icmp.icmp_id; 1808 break; 1809 1810 case ICMP_TSTAMP: 1811 *icmp_dir = PF_IN; 1812 case ICMP_TSTAMPREPLY: 1813 *virtual_type = ICMP_TSTAMP; 1814 *virtual_id = pd->hdr.icmp.icmp_id; 1815 break; 1816 1817 case ICMP_IREQ: 1818 *icmp_dir = PF_IN; 1819 case ICMP_IREQREPLY: 1820 *virtual_type = ICMP_IREQ; 1821 *virtual_id = pd->hdr.icmp.icmp_id; 1822 break; 1823 1824 case ICMP_MASKREQ: 1825 *icmp_dir = PF_IN; 1826 case ICMP_MASKREPLY: 1827 *virtual_type = ICMP_MASKREQ; 1828 *virtual_id = pd->hdr.icmp.icmp_id; 1829 break; 1830 1831 case ICMP_IPV6_WHEREAREYOU: 1832 *icmp_dir = PF_IN; 1833 case ICMP_IPV6_IAMHERE: 1834 *virtual_type = ICMP_IPV6_WHEREAREYOU; 1835 *virtual_id = 0; /* Nothing sane to match on! */ 1836 break; 1837 1838 case ICMP_MOBILE_REGREQUEST: 1839 *icmp_dir = PF_IN; 1840 case ICMP_MOBILE_REGREPLY: 1841 *virtual_type = ICMP_MOBILE_REGREQUEST; 1842 *virtual_id = 0; /* Nothing sane to match on! */ 1843 break; 1844 1845 case ICMP_ROUTERSOLICIT: 1846 *icmp_dir = PF_IN; 1847 case ICMP_ROUTERADVERT: 1848 *virtual_type = ICMP_ROUTERSOLICIT; 1849 *virtual_id = 0; /* Nothing sane to match on! */ 1850 break; 1851 1852 /* These ICMP types map to other connections */ 1853 case ICMP_UNREACH: 1854 case ICMP_SOURCEQUENCH: 1855 case ICMP_REDIRECT: 1856 case ICMP_TIMXCEED: 1857 case ICMP_PARAMPROB: 1858 /* These will not be used, but set them anyway */ 1859 *icmp_dir = PF_IN; 1860 *virtual_type = type; 1861 *virtual_id = 0; 1862 HTONS(*virtual_type); 1863 return (1); /* These types match to another state */ 1864 1865 /* 1866 * All remaining ICMP types get their own states, 1867 * and will only match in one direction. 1868 */ 1869 default: 1870 *icmp_dir = PF_IN; 1871 *virtual_type = type; 1872 *virtual_id = 0; 1873 break; 1874 } 1875 break; 1876 #endif /* INET */ 1877 #ifdef INET6 1878 case AF_INET6: 1879 switch (type) { 1880 case ICMP6_ECHO_REQUEST: 1881 *icmp_dir = PF_IN; 1882 case ICMP6_ECHO_REPLY: 1883 *virtual_type = ICMP6_ECHO_REQUEST; 1884 *virtual_id = pd->hdr.icmp6.icmp6_id; 1885 break; 1886 1887 case MLD_LISTENER_QUERY: 1888 case MLD_LISTENER_REPORT: { 1889 /* 1890 * Listener Report can be sent by clients 1891 * without an associated Listener Query. 1892 * In addition to that, when Report is sent as a 1893 * reply to a Query its source and destination 1894 * address are different. 1895 */ 1896 *icmp_dir = PF_IN; 1897 *virtual_type = MLD_LISTENER_QUERY; 1898 *virtual_id = 0; 1899 break; 1900 } 1901 case MLD_MTRACE: 1902 *icmp_dir = PF_IN; 1903 case MLD_MTRACE_RESP: 1904 *virtual_type = MLD_MTRACE; 1905 *virtual_id = 0; /* Nothing sane to match on! */ 1906 break; 1907 1908 case ND_NEIGHBOR_SOLICIT: 1909 *icmp_dir = PF_IN; 1910 case ND_NEIGHBOR_ADVERT: { 1911 *virtual_type = ND_NEIGHBOR_SOLICIT; 1912 *virtual_id = 0; 1913 break; 1914 } 1915 1916 /* 1917 * These ICMP types map to other connections. 1918 * ND_REDIRECT can't be in this list because the triggering 1919 * packet header is optional. 1920 */ 1921 case ICMP6_DST_UNREACH: 1922 case ICMP6_PACKET_TOO_BIG: 1923 case ICMP6_TIME_EXCEEDED: 1924 case ICMP6_PARAM_PROB: 1925 /* These will not be used, but set them anyway */ 1926 *icmp_dir = PF_IN; 1927 *virtual_type = type; 1928 *virtual_id = 0; 1929 HTONS(*virtual_type); 1930 return (1); /* These types match to another state */ 1931 /* 1932 * All remaining ICMP6 types get their own states, 1933 * and will only match in one direction. 1934 */ 1935 default: 1936 *icmp_dir = PF_IN; 1937 *virtual_type = type; 1938 *virtual_id = 0; 1939 break; 1940 } 1941 break; 1942 #endif /* INET6 */ 1943 default: 1944 *icmp_dir = PF_IN; 1945 *virtual_type = type; 1946 *virtual_id = 0; 1947 break; 1948 } 1949 HTONS(*virtual_type); 1950 return (0); /* These types match to their own state */ 1951 } 1952 1953 void 1954 pf_intr(void *v) 1955 { 1956 struct epoch_tracker et; 1957 struct pf_send_head queue; 1958 struct pf_send_entry *pfse, *next; 1959 1960 CURVNET_SET((struct vnet *)v); 1961 1962 PF_SENDQ_LOCK(); 1963 queue = V_pf_sendqueue; 1964 STAILQ_INIT(&V_pf_sendqueue); 1965 PF_SENDQ_UNLOCK(); 1966 1967 NET_EPOCH_ENTER(et); 1968 1969 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1970 switch (pfse->pfse_type) { 1971 #ifdef INET 1972 case PFSE_IP: { 1973 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1974 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1975 pfse->pfse_m->m_pkthdr.csum_flags |= 1976 CSUM_IP_VALID | CSUM_IP_CHECKED; 1977 ip_input(pfse->pfse_m); 1978 } else { 1979 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1980 NULL); 1981 } 1982 break; 1983 } 1984 case PFSE_ICMP: 1985 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1986 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1987 break; 1988 #endif /* INET */ 1989 #ifdef INET6 1990 case PFSE_IP6: 1991 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1992 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1993 ip6_input(pfse->pfse_m); 1994 } else { 1995 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1996 NULL, NULL); 1997 } 1998 break; 1999 case PFSE_ICMP6: 2000 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2001 pfse->icmpopts.code, pfse->icmpopts.mtu); 2002 break; 2003 #endif /* INET6 */ 2004 default: 2005 panic("%s: unknown type", __func__); 2006 } 2007 free(pfse, M_PFTEMP); 2008 } 2009 NET_EPOCH_EXIT(et); 2010 CURVNET_RESTORE(); 2011 } 2012 2013 #define pf_purge_thread_period (hz / 10) 2014 2015 #ifdef PF_WANT_32_TO_64_COUNTER 2016 static void 2017 pf_status_counter_u64_periodic(void) 2018 { 2019 2020 PF_RULES_RASSERT(); 2021 2022 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2023 return; 2024 } 2025 2026 for (int i = 0; i < FCNT_MAX; i++) { 2027 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2028 } 2029 } 2030 2031 static void 2032 pf_kif_counter_u64_periodic(void) 2033 { 2034 struct pfi_kkif *kif; 2035 size_t r, run; 2036 2037 PF_RULES_RASSERT(); 2038 2039 if (__predict_false(V_pf_allkifcount == 0)) { 2040 return; 2041 } 2042 2043 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2044 return; 2045 } 2046 2047 run = V_pf_allkifcount / 10; 2048 if (run < 5) 2049 run = 5; 2050 2051 for (r = 0; r < run; r++) { 2052 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2053 if (kif == NULL) { 2054 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2055 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2056 break; 2057 } 2058 2059 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2060 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2061 2062 for (int i = 0; i < 2; i++) { 2063 for (int j = 0; j < 2; j++) { 2064 for (int k = 0; k < 2; k++) { 2065 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2066 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2067 } 2068 } 2069 } 2070 } 2071 } 2072 2073 static void 2074 pf_rule_counter_u64_periodic(void) 2075 { 2076 struct pf_krule *rule; 2077 size_t r, run; 2078 2079 PF_RULES_RASSERT(); 2080 2081 if (__predict_false(V_pf_allrulecount == 0)) { 2082 return; 2083 } 2084 2085 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2086 return; 2087 } 2088 2089 run = V_pf_allrulecount / 10; 2090 if (run < 5) 2091 run = 5; 2092 2093 for (r = 0; r < run; r++) { 2094 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2095 if (rule == NULL) { 2096 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2097 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2098 break; 2099 } 2100 2101 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2102 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2103 2104 pf_counter_u64_periodic(&rule->evaluations); 2105 for (int i = 0; i < 2; i++) { 2106 pf_counter_u64_periodic(&rule->packets[i]); 2107 pf_counter_u64_periodic(&rule->bytes[i]); 2108 } 2109 } 2110 } 2111 2112 static void 2113 pf_counter_u64_periodic_main(void) 2114 { 2115 PF_RULES_RLOCK_TRACKER; 2116 2117 V_pf_counter_periodic_iter++; 2118 2119 PF_RULES_RLOCK(); 2120 pf_counter_u64_critical_enter(); 2121 pf_status_counter_u64_periodic(); 2122 pf_kif_counter_u64_periodic(); 2123 pf_rule_counter_u64_periodic(); 2124 pf_counter_u64_critical_exit(); 2125 PF_RULES_RUNLOCK(); 2126 } 2127 #else 2128 #define pf_counter_u64_periodic_main() do { } while (0) 2129 #endif 2130 2131 void 2132 pf_purge_thread(void *unused __unused) 2133 { 2134 struct epoch_tracker et; 2135 2136 VNET_ITERATOR_DECL(vnet_iter); 2137 2138 sx_xlock(&pf_end_lock); 2139 while (pf_end_threads == 0) { 2140 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2141 2142 VNET_LIST_RLOCK(); 2143 NET_EPOCH_ENTER(et); 2144 VNET_FOREACH(vnet_iter) { 2145 CURVNET_SET(vnet_iter); 2146 2147 /* Wait until V_pf_default_rule is initialized. */ 2148 if (V_pf_vnet_active == 0) { 2149 CURVNET_RESTORE(); 2150 continue; 2151 } 2152 2153 pf_counter_u64_periodic_main(); 2154 2155 /* 2156 * Process 1/interval fraction of the state 2157 * table every run. 2158 */ 2159 V_pf_purge_idx = 2160 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2161 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2162 2163 /* 2164 * Purge other expired types every 2165 * PFTM_INTERVAL seconds. 2166 */ 2167 if (V_pf_purge_idx == 0) { 2168 /* 2169 * Order is important: 2170 * - states and src nodes reference rules 2171 * - states and rules reference kifs 2172 */ 2173 pf_purge_expired_fragments(); 2174 pf_purge_expired_src_nodes(); 2175 pf_purge_unlinked_rules(); 2176 pfi_kkif_purge(); 2177 } 2178 CURVNET_RESTORE(); 2179 } 2180 NET_EPOCH_EXIT(et); 2181 VNET_LIST_RUNLOCK(); 2182 } 2183 2184 pf_end_threads++; 2185 sx_xunlock(&pf_end_lock); 2186 kproc_exit(0); 2187 } 2188 2189 void 2190 pf_unload_vnet_purge(void) 2191 { 2192 2193 /* 2194 * To cleanse up all kifs and rules we need 2195 * two runs: first one clears reference flags, 2196 * then pf_purge_expired_states() doesn't 2197 * raise them, and then second run frees. 2198 */ 2199 pf_purge_unlinked_rules(); 2200 pfi_kkif_purge(); 2201 2202 /* 2203 * Now purge everything. 2204 */ 2205 pf_purge_expired_states(0, V_pf_hashmask); 2206 pf_purge_fragments(UINT_MAX); 2207 pf_purge_expired_src_nodes(); 2208 2209 /* 2210 * Now all kifs & rules should be unreferenced, 2211 * thus should be successfully freed. 2212 */ 2213 pf_purge_unlinked_rules(); 2214 pfi_kkif_purge(); 2215 } 2216 2217 u_int32_t 2218 pf_state_expires(const struct pf_kstate *state) 2219 { 2220 u_int32_t timeout; 2221 u_int32_t start; 2222 u_int32_t end; 2223 u_int32_t states; 2224 2225 /* handle all PFTM_* > PFTM_MAX here */ 2226 if (state->timeout == PFTM_PURGE) 2227 return (time_uptime); 2228 KASSERT(state->timeout != PFTM_UNLINKED, 2229 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2230 KASSERT((state->timeout < PFTM_MAX), 2231 ("pf_state_expires: timeout > PFTM_MAX")); 2232 timeout = state->rule.ptr->timeout[state->timeout]; 2233 if (!timeout) 2234 timeout = V_pf_default_rule.timeout[state->timeout]; 2235 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2236 if (start && state->rule.ptr != &V_pf_default_rule) { 2237 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2238 states = counter_u64_fetch(state->rule.ptr->states_cur); 2239 } else { 2240 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2241 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2242 states = V_pf_status.states; 2243 } 2244 if (end && states > start && start < end) { 2245 if (states < end) { 2246 timeout = (u_int64_t)timeout * (end - states) / 2247 (end - start); 2248 return ((state->expire / 1000) + timeout); 2249 } 2250 else 2251 return (time_uptime); 2252 } 2253 return ((state->expire / 1000) + timeout); 2254 } 2255 2256 void 2257 pf_purge_expired_src_nodes(void) 2258 { 2259 struct pf_ksrc_node_list freelist; 2260 struct pf_srchash *sh; 2261 struct pf_ksrc_node *cur, *next; 2262 int i; 2263 2264 LIST_INIT(&freelist); 2265 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2266 PF_HASHROW_LOCK(sh); 2267 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2268 if (cur->states == 0 && cur->expire <= time_uptime) { 2269 pf_unlink_src_node(cur); 2270 LIST_INSERT_HEAD(&freelist, cur, entry); 2271 } else if (cur->rule.ptr != NULL) 2272 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2273 PF_HASHROW_UNLOCK(sh); 2274 } 2275 2276 pf_free_src_nodes(&freelist); 2277 2278 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2279 } 2280 2281 static void 2282 pf_src_tree_remove_state(struct pf_kstate *s) 2283 { 2284 struct pf_ksrc_node *sn; 2285 uint32_t timeout; 2286 2287 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2288 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2289 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2290 2291 if (s->src_node != NULL) { 2292 sn = s->src_node; 2293 PF_SRC_NODE_LOCK(sn); 2294 if (s->src.tcp_est) 2295 --sn->conn; 2296 if (--sn->states == 0) 2297 sn->expire = time_uptime + timeout; 2298 PF_SRC_NODE_UNLOCK(sn); 2299 } 2300 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2301 sn = s->nat_src_node; 2302 PF_SRC_NODE_LOCK(sn); 2303 if (--sn->states == 0) 2304 sn->expire = time_uptime + timeout; 2305 PF_SRC_NODE_UNLOCK(sn); 2306 } 2307 s->src_node = s->nat_src_node = NULL; 2308 } 2309 2310 /* 2311 * Unlink and potentilly free a state. Function may be 2312 * called with ID hash row locked, but always returns 2313 * unlocked, since it needs to go through key hash locking. 2314 */ 2315 int 2316 pf_unlink_state(struct pf_kstate *s) 2317 { 2318 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2319 2320 NET_EPOCH_ASSERT(); 2321 PF_HASHROW_ASSERT(ih); 2322 2323 if (s->timeout == PFTM_UNLINKED) { 2324 /* 2325 * State is being processed 2326 * by pf_unlink_state() in 2327 * an other thread. 2328 */ 2329 PF_HASHROW_UNLOCK(ih); 2330 return (0); /* XXXGL: undefined actually */ 2331 } 2332 2333 if (s->src.state == PF_TCPS_PROXY_DST) { 2334 /* XXX wire key the right one? */ 2335 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2336 &s->key[PF_SK_WIRE]->addr[1], 2337 &s->key[PF_SK_WIRE]->addr[0], 2338 s->key[PF_SK_WIRE]->port[1], 2339 s->key[PF_SK_WIRE]->port[0], 2340 s->src.seqhi, s->src.seqlo + 1, 2341 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2342 } 2343 2344 LIST_REMOVE(s, entry); 2345 pf_src_tree_remove_state(s); 2346 2347 if (V_pfsync_delete_state_ptr != NULL) 2348 V_pfsync_delete_state_ptr(s); 2349 2350 STATE_DEC_COUNTERS(s); 2351 2352 s->timeout = PFTM_UNLINKED; 2353 2354 /* Ensure we remove it from the list of halfopen states, if needed. */ 2355 if (s->key[PF_SK_STACK] != NULL && 2356 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2357 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2358 2359 PF_HASHROW_UNLOCK(ih); 2360 2361 pf_detach_state(s); 2362 /* pf_state_insert() initialises refs to 2 */ 2363 return (pf_release_staten(s, 2)); 2364 } 2365 2366 struct pf_kstate * 2367 pf_alloc_state(int flags) 2368 { 2369 2370 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2371 } 2372 2373 void 2374 pf_free_state(struct pf_kstate *cur) 2375 { 2376 struct pf_krule_item *ri; 2377 2378 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2379 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2380 cur->timeout)); 2381 2382 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2383 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2384 free(ri, M_PF_RULE_ITEM); 2385 } 2386 2387 pf_normalize_tcp_cleanup(cur); 2388 uma_zfree(V_pf_state_z, cur); 2389 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2390 } 2391 2392 /* 2393 * Called only from pf_purge_thread(), thus serialized. 2394 */ 2395 static u_int 2396 pf_purge_expired_states(u_int i, int maxcheck) 2397 { 2398 struct pf_idhash *ih; 2399 struct pf_kstate *s; 2400 struct pf_krule_item *mrm; 2401 size_t count __unused; 2402 2403 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2404 2405 /* 2406 * Go through hash and unlink states that expire now. 2407 */ 2408 while (maxcheck > 0) { 2409 count = 0; 2410 ih = &V_pf_idhash[i]; 2411 2412 /* only take the lock if we expect to do work */ 2413 if (!LIST_EMPTY(&ih->states)) { 2414 relock: 2415 PF_HASHROW_LOCK(ih); 2416 LIST_FOREACH(s, &ih->states, entry) { 2417 if (pf_state_expires(s) <= time_uptime) { 2418 V_pf_status.states -= 2419 pf_unlink_state(s); 2420 goto relock; 2421 } 2422 s->rule.ptr->rule_ref |= PFRULE_REFS; 2423 if (s->nat_rule.ptr != NULL) 2424 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2425 if (s->anchor.ptr != NULL) 2426 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2427 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2428 SLIST_FOREACH(mrm, &s->match_rules, entry) 2429 mrm->r->rule_ref |= PFRULE_REFS; 2430 if (s->rt_kif) 2431 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2432 count++; 2433 } 2434 PF_HASHROW_UNLOCK(ih); 2435 } 2436 2437 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2438 2439 /* Return when we hit end of hash. */ 2440 if (++i > V_pf_hashmask) { 2441 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2442 return (0); 2443 } 2444 2445 maxcheck--; 2446 } 2447 2448 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2449 2450 return (i); 2451 } 2452 2453 static void 2454 pf_purge_unlinked_rules(void) 2455 { 2456 struct pf_krulequeue tmpq; 2457 struct pf_krule *r, *r1; 2458 2459 /* 2460 * If we have overloading task pending, then we'd 2461 * better skip purging this time. There is a tiny 2462 * probability that overloading task references 2463 * an already unlinked rule. 2464 */ 2465 PF_OVERLOADQ_LOCK(); 2466 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2467 PF_OVERLOADQ_UNLOCK(); 2468 return; 2469 } 2470 PF_OVERLOADQ_UNLOCK(); 2471 2472 /* 2473 * Do naive mark-and-sweep garbage collecting of old rules. 2474 * Reference flag is raised by pf_purge_expired_states() 2475 * and pf_purge_expired_src_nodes(). 2476 * 2477 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2478 * use a temporary queue. 2479 */ 2480 TAILQ_INIT(&tmpq); 2481 PF_UNLNKDRULES_LOCK(); 2482 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2483 if (!(r->rule_ref & PFRULE_REFS)) { 2484 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2485 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2486 } else 2487 r->rule_ref &= ~PFRULE_REFS; 2488 } 2489 PF_UNLNKDRULES_UNLOCK(); 2490 2491 if (!TAILQ_EMPTY(&tmpq)) { 2492 PF_CONFIG_LOCK(); 2493 PF_RULES_WLOCK(); 2494 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2495 TAILQ_REMOVE(&tmpq, r, entries); 2496 pf_free_rule(r); 2497 } 2498 PF_RULES_WUNLOCK(); 2499 PF_CONFIG_UNLOCK(); 2500 } 2501 } 2502 2503 void 2504 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2505 { 2506 switch (af) { 2507 #ifdef INET 2508 case AF_INET: { 2509 u_int32_t a = ntohl(addr->addr32[0]); 2510 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2511 (a>>8)&255, a&255); 2512 if (p) { 2513 p = ntohs(p); 2514 printf(":%u", p); 2515 } 2516 break; 2517 } 2518 #endif /* INET */ 2519 #ifdef INET6 2520 case AF_INET6: { 2521 u_int16_t b; 2522 u_int8_t i, curstart, curend, maxstart, maxend; 2523 curstart = curend = maxstart = maxend = 255; 2524 for (i = 0; i < 8; i++) { 2525 if (!addr->addr16[i]) { 2526 if (curstart == 255) 2527 curstart = i; 2528 curend = i; 2529 } else { 2530 if ((curend - curstart) > 2531 (maxend - maxstart)) { 2532 maxstart = curstart; 2533 maxend = curend; 2534 } 2535 curstart = curend = 255; 2536 } 2537 } 2538 if ((curend - curstart) > 2539 (maxend - maxstart)) { 2540 maxstart = curstart; 2541 maxend = curend; 2542 } 2543 for (i = 0; i < 8; i++) { 2544 if (i >= maxstart && i <= maxend) { 2545 if (i == 0) 2546 printf(":"); 2547 if (i == maxend) 2548 printf(":"); 2549 } else { 2550 b = ntohs(addr->addr16[i]); 2551 printf("%x", b); 2552 if (i < 7) 2553 printf(":"); 2554 } 2555 } 2556 if (p) { 2557 p = ntohs(p); 2558 printf("[%u]", p); 2559 } 2560 break; 2561 } 2562 #endif /* INET6 */ 2563 } 2564 } 2565 2566 void 2567 pf_print_state(struct pf_kstate *s) 2568 { 2569 pf_print_state_parts(s, NULL, NULL); 2570 } 2571 2572 static void 2573 pf_print_state_parts(struct pf_kstate *s, 2574 struct pf_state_key *skwp, struct pf_state_key *sksp) 2575 { 2576 struct pf_state_key *skw, *sks; 2577 u_int8_t proto, dir; 2578 2579 /* Do our best to fill these, but they're skipped if NULL */ 2580 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2581 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2582 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2583 dir = s ? s->direction : 0; 2584 2585 switch (proto) { 2586 case IPPROTO_IPV4: 2587 printf("IPv4"); 2588 break; 2589 case IPPROTO_IPV6: 2590 printf("IPv6"); 2591 break; 2592 case IPPROTO_TCP: 2593 printf("TCP"); 2594 break; 2595 case IPPROTO_UDP: 2596 printf("UDP"); 2597 break; 2598 case IPPROTO_ICMP: 2599 printf("ICMP"); 2600 break; 2601 case IPPROTO_ICMPV6: 2602 printf("ICMPv6"); 2603 break; 2604 default: 2605 printf("%u", proto); 2606 break; 2607 } 2608 switch (dir) { 2609 case PF_IN: 2610 printf(" in"); 2611 break; 2612 case PF_OUT: 2613 printf(" out"); 2614 break; 2615 } 2616 if (skw) { 2617 printf(" wire: "); 2618 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2619 printf(" "); 2620 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2621 } 2622 if (sks) { 2623 printf(" stack: "); 2624 if (sks != skw) { 2625 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2626 printf(" "); 2627 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2628 } else 2629 printf("-"); 2630 } 2631 if (s) { 2632 if (proto == IPPROTO_TCP) { 2633 printf(" [lo=%u high=%u win=%u modulator=%u", 2634 s->src.seqlo, s->src.seqhi, 2635 s->src.max_win, s->src.seqdiff); 2636 if (s->src.wscale && s->dst.wscale) 2637 printf(" wscale=%u", 2638 s->src.wscale & PF_WSCALE_MASK); 2639 printf("]"); 2640 printf(" [lo=%u high=%u win=%u modulator=%u", 2641 s->dst.seqlo, s->dst.seqhi, 2642 s->dst.max_win, s->dst.seqdiff); 2643 if (s->src.wscale && s->dst.wscale) 2644 printf(" wscale=%u", 2645 s->dst.wscale & PF_WSCALE_MASK); 2646 printf("]"); 2647 } 2648 printf(" %u:%u", s->src.state, s->dst.state); 2649 } 2650 } 2651 2652 void 2653 pf_print_flags(u_int8_t f) 2654 { 2655 if (f) 2656 printf(" "); 2657 if (f & TH_FIN) 2658 printf("F"); 2659 if (f & TH_SYN) 2660 printf("S"); 2661 if (f & TH_RST) 2662 printf("R"); 2663 if (f & TH_PUSH) 2664 printf("P"); 2665 if (f & TH_ACK) 2666 printf("A"); 2667 if (f & TH_URG) 2668 printf("U"); 2669 if (f & TH_ECE) 2670 printf("E"); 2671 if (f & TH_CWR) 2672 printf("W"); 2673 } 2674 2675 #define PF_SET_SKIP_STEPS(i) \ 2676 do { \ 2677 while (head[i] != cur) { \ 2678 head[i]->skip[i].ptr = cur; \ 2679 head[i] = TAILQ_NEXT(head[i], entries); \ 2680 } \ 2681 } while (0) 2682 2683 void 2684 pf_calc_skip_steps(struct pf_krulequeue *rules) 2685 { 2686 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2687 int i; 2688 2689 cur = TAILQ_FIRST(rules); 2690 prev = cur; 2691 for (i = 0; i < PF_SKIP_COUNT; ++i) 2692 head[i] = cur; 2693 while (cur != NULL) { 2694 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2695 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2696 if (cur->direction != prev->direction) 2697 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2698 if (cur->af != prev->af) 2699 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2700 if (cur->proto != prev->proto) 2701 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2702 if (cur->src.neg != prev->src.neg || 2703 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2704 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2705 if (cur->src.port[0] != prev->src.port[0] || 2706 cur->src.port[1] != prev->src.port[1] || 2707 cur->src.port_op != prev->src.port_op) 2708 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2709 if (cur->dst.neg != prev->dst.neg || 2710 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2711 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2712 if (cur->dst.port[0] != prev->dst.port[0] || 2713 cur->dst.port[1] != prev->dst.port[1] || 2714 cur->dst.port_op != prev->dst.port_op) 2715 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2716 2717 prev = cur; 2718 cur = TAILQ_NEXT(cur, entries); 2719 } 2720 for (i = 0; i < PF_SKIP_COUNT; ++i) 2721 PF_SET_SKIP_STEPS(i); 2722 } 2723 2724 int 2725 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2726 { 2727 if (aw1->type != aw2->type) 2728 return (1); 2729 switch (aw1->type) { 2730 case PF_ADDR_ADDRMASK: 2731 case PF_ADDR_RANGE: 2732 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2733 return (1); 2734 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2735 return (1); 2736 return (0); 2737 case PF_ADDR_DYNIFTL: 2738 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2739 case PF_ADDR_NOROUTE: 2740 case PF_ADDR_URPFFAILED: 2741 return (0); 2742 case PF_ADDR_TABLE: 2743 return (aw1->p.tbl != aw2->p.tbl); 2744 default: 2745 printf("invalid address type: %d\n", aw1->type); 2746 return (1); 2747 } 2748 } 2749 2750 /** 2751 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2752 * header isn't always a full checksum. In some cases (i.e. output) it's a 2753 * pseudo-header checksum, which is a partial checksum over src/dst IP 2754 * addresses, protocol number and length. 2755 * 2756 * That means we have the following cases: 2757 * * Input or forwarding: we don't have TSO, the checksum fields are full 2758 * checksums, we need to update the checksum whenever we change anything. 2759 * * Output (i.e. the checksum is a pseudo-header checksum): 2760 * x The field being updated is src/dst address or affects the length of 2761 * the packet. We need to update the pseudo-header checksum (note that this 2762 * checksum is not ones' complement). 2763 * x Some other field is being modified (e.g. src/dst port numbers): We 2764 * don't have to update anything. 2765 **/ 2766 u_int16_t 2767 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2768 { 2769 u_int32_t x; 2770 2771 x = cksum + old - new; 2772 x = (x + (x >> 16)) & 0xffff; 2773 2774 /* optimise: eliminate a branch when not udp */ 2775 if (udp && cksum == 0x0000) 2776 return cksum; 2777 if (udp && x == 0x0000) 2778 x = 0xffff; 2779 2780 return (u_int16_t)(x); 2781 } 2782 2783 static void 2784 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2785 u_int8_t udp) 2786 { 2787 u_int16_t old = htons(hi ? (*f << 8) : *f); 2788 u_int16_t new = htons(hi ? ( v << 8) : v); 2789 2790 if (*f == v) 2791 return; 2792 2793 *f = v; 2794 2795 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2796 return; 2797 2798 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2799 } 2800 2801 void 2802 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2803 bool hi, u_int8_t udp) 2804 { 2805 u_int8_t *fb = (u_int8_t *)f; 2806 u_int8_t *vb = (u_int8_t *)&v; 2807 2808 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2809 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2810 } 2811 2812 void 2813 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2814 bool hi, u_int8_t udp) 2815 { 2816 u_int8_t *fb = (u_int8_t *)f; 2817 u_int8_t *vb = (u_int8_t *)&v; 2818 2819 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2820 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2821 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2822 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2823 } 2824 2825 u_int16_t 2826 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2827 u_int16_t new, u_int8_t udp) 2828 { 2829 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2830 return (cksum); 2831 2832 return (pf_cksum_fixup(cksum, old, new, udp)); 2833 } 2834 2835 static void 2836 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2837 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2838 sa_family_t af) 2839 { 2840 struct pf_addr ao; 2841 u_int16_t po = *p; 2842 2843 PF_ACPY(&ao, a, af); 2844 PF_ACPY(a, an, af); 2845 2846 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2847 *pc = ~*pc; 2848 2849 *p = pn; 2850 2851 switch (af) { 2852 #ifdef INET 2853 case AF_INET: 2854 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2855 ao.addr16[0], an->addr16[0], 0), 2856 ao.addr16[1], an->addr16[1], 0); 2857 *p = pn; 2858 2859 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2860 ao.addr16[0], an->addr16[0], u), 2861 ao.addr16[1], an->addr16[1], u); 2862 2863 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2864 break; 2865 #endif /* INET */ 2866 #ifdef INET6 2867 case AF_INET6: 2868 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2869 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2870 pf_cksum_fixup(pf_cksum_fixup(*pc, 2871 ao.addr16[0], an->addr16[0], u), 2872 ao.addr16[1], an->addr16[1], u), 2873 ao.addr16[2], an->addr16[2], u), 2874 ao.addr16[3], an->addr16[3], u), 2875 ao.addr16[4], an->addr16[4], u), 2876 ao.addr16[5], an->addr16[5], u), 2877 ao.addr16[6], an->addr16[6], u), 2878 ao.addr16[7], an->addr16[7], u); 2879 2880 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2881 break; 2882 #endif /* INET6 */ 2883 } 2884 2885 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2886 CSUM_DELAY_DATA_IPV6)) { 2887 *pc = ~*pc; 2888 if (! *pc) 2889 *pc = 0xffff; 2890 } 2891 } 2892 2893 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2894 void 2895 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2896 { 2897 u_int32_t ao; 2898 2899 memcpy(&ao, a, sizeof(ao)); 2900 memcpy(a, &an, sizeof(u_int32_t)); 2901 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2902 ao % 65536, an % 65536, u); 2903 } 2904 2905 void 2906 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2907 { 2908 u_int32_t ao; 2909 2910 memcpy(&ao, a, sizeof(ao)); 2911 memcpy(a, &an, sizeof(u_int32_t)); 2912 2913 *c = pf_proto_cksum_fixup(m, 2914 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2915 ao % 65536, an % 65536, udp); 2916 } 2917 2918 #ifdef INET6 2919 static void 2920 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2921 { 2922 struct pf_addr ao; 2923 2924 PF_ACPY(&ao, a, AF_INET6); 2925 PF_ACPY(a, an, AF_INET6); 2926 2927 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2928 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2929 pf_cksum_fixup(pf_cksum_fixup(*c, 2930 ao.addr16[0], an->addr16[0], u), 2931 ao.addr16[1], an->addr16[1], u), 2932 ao.addr16[2], an->addr16[2], u), 2933 ao.addr16[3], an->addr16[3], u), 2934 ao.addr16[4], an->addr16[4], u), 2935 ao.addr16[5], an->addr16[5], u), 2936 ao.addr16[6], an->addr16[6], u), 2937 ao.addr16[7], an->addr16[7], u); 2938 } 2939 #endif /* INET6 */ 2940 2941 static void 2942 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2943 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2944 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2945 { 2946 struct pf_addr oia, ooa; 2947 2948 PF_ACPY(&oia, ia, af); 2949 if (oa) 2950 PF_ACPY(&ooa, oa, af); 2951 2952 /* Change inner protocol port, fix inner protocol checksum. */ 2953 if (ip != NULL) { 2954 u_int16_t oip = *ip; 2955 u_int32_t opc; 2956 2957 if (pc != NULL) 2958 opc = *pc; 2959 *ip = np; 2960 if (pc != NULL) 2961 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2962 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2963 if (pc != NULL) 2964 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2965 } 2966 /* Change inner ip address, fix inner ip and icmp checksums. */ 2967 PF_ACPY(ia, na, af); 2968 switch (af) { 2969 #ifdef INET 2970 case AF_INET: { 2971 u_int32_t oh2c = *h2c; 2972 2973 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2974 oia.addr16[0], ia->addr16[0], 0), 2975 oia.addr16[1], ia->addr16[1], 0); 2976 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2977 oia.addr16[0], ia->addr16[0], 0), 2978 oia.addr16[1], ia->addr16[1], 0); 2979 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2980 break; 2981 } 2982 #endif /* INET */ 2983 #ifdef INET6 2984 case AF_INET6: 2985 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2986 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2987 pf_cksum_fixup(pf_cksum_fixup(*ic, 2988 oia.addr16[0], ia->addr16[0], u), 2989 oia.addr16[1], ia->addr16[1], u), 2990 oia.addr16[2], ia->addr16[2], u), 2991 oia.addr16[3], ia->addr16[3], u), 2992 oia.addr16[4], ia->addr16[4], u), 2993 oia.addr16[5], ia->addr16[5], u), 2994 oia.addr16[6], ia->addr16[6], u), 2995 oia.addr16[7], ia->addr16[7], u); 2996 break; 2997 #endif /* INET6 */ 2998 } 2999 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3000 if (oa) { 3001 PF_ACPY(oa, na, af); 3002 switch (af) { 3003 #ifdef INET 3004 case AF_INET: 3005 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3006 ooa.addr16[0], oa->addr16[0], 0), 3007 ooa.addr16[1], oa->addr16[1], 0); 3008 break; 3009 #endif /* INET */ 3010 #ifdef INET6 3011 case AF_INET6: 3012 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3013 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3014 pf_cksum_fixup(pf_cksum_fixup(*ic, 3015 ooa.addr16[0], oa->addr16[0], u), 3016 ooa.addr16[1], oa->addr16[1], u), 3017 ooa.addr16[2], oa->addr16[2], u), 3018 ooa.addr16[3], oa->addr16[3], u), 3019 ooa.addr16[4], oa->addr16[4], u), 3020 ooa.addr16[5], oa->addr16[5], u), 3021 ooa.addr16[6], oa->addr16[6], u), 3022 ooa.addr16[7], oa->addr16[7], u); 3023 break; 3024 #endif /* INET6 */ 3025 } 3026 } 3027 } 3028 3029 /* 3030 * Need to modulate the sequence numbers in the TCP SACK option 3031 * (credits to Krzysztof Pfaff for report and patch) 3032 */ 3033 static int 3034 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 3035 struct tcphdr *th, struct pf_state_peer *dst) 3036 { 3037 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3038 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3039 int copyback = 0, i, olen; 3040 struct sackblk sack; 3041 3042 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3043 if (hlen < TCPOLEN_SACKLEN || 3044 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3045 return 0; 3046 3047 while (hlen >= TCPOLEN_SACKLEN) { 3048 size_t startoff = opt - opts; 3049 olen = opt[1]; 3050 switch (*opt) { 3051 case TCPOPT_EOL: /* FALLTHROUGH */ 3052 case TCPOPT_NOP: 3053 opt++; 3054 hlen--; 3055 break; 3056 case TCPOPT_SACK: 3057 if (olen > hlen) 3058 olen = hlen; 3059 if (olen >= TCPOLEN_SACKLEN) { 3060 for (i = 2; i + TCPOLEN_SACK <= olen; 3061 i += TCPOLEN_SACK) { 3062 memcpy(&sack, &opt[i], sizeof(sack)); 3063 pf_patch_32_unaligned(m, 3064 &th->th_sum, &sack.start, 3065 htonl(ntohl(sack.start) - dst->seqdiff), 3066 PF_ALGNMNT(startoff), 3067 0); 3068 pf_patch_32_unaligned(m, &th->th_sum, 3069 &sack.end, 3070 htonl(ntohl(sack.end) - dst->seqdiff), 3071 PF_ALGNMNT(startoff), 3072 0); 3073 memcpy(&opt[i], &sack, sizeof(sack)); 3074 } 3075 copyback = 1; 3076 } 3077 /* FALLTHROUGH */ 3078 default: 3079 if (olen < 2) 3080 olen = 2; 3081 hlen -= olen; 3082 opt += olen; 3083 } 3084 } 3085 3086 if (copyback) 3087 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 3088 return (copyback); 3089 } 3090 3091 struct mbuf * 3092 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3093 const struct pf_addr *saddr, const struct pf_addr *daddr, 3094 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3095 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3096 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3097 { 3098 struct mbuf *m; 3099 int len, tlen; 3100 #ifdef INET 3101 struct ip *h = NULL; 3102 #endif /* INET */ 3103 #ifdef INET6 3104 struct ip6_hdr *h6 = NULL; 3105 #endif /* INET6 */ 3106 struct tcphdr *th; 3107 char *opt; 3108 struct pf_mtag *pf_mtag; 3109 3110 len = 0; 3111 th = NULL; 3112 3113 /* maximum segment size tcp option */ 3114 tlen = sizeof(struct tcphdr); 3115 if (mss) 3116 tlen += 4; 3117 3118 switch (af) { 3119 #ifdef INET 3120 case AF_INET: 3121 len = sizeof(struct ip) + tlen; 3122 break; 3123 #endif /* INET */ 3124 #ifdef INET6 3125 case AF_INET6: 3126 len = sizeof(struct ip6_hdr) + tlen; 3127 break; 3128 #endif /* INET6 */ 3129 default: 3130 panic("%s: unsupported af %d", __func__, af); 3131 } 3132 3133 m = m_gethdr(M_NOWAIT, MT_DATA); 3134 if (m == NULL) 3135 return (NULL); 3136 3137 #ifdef MAC 3138 mac_netinet_firewall_send(m); 3139 #endif 3140 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3141 m_freem(m); 3142 return (NULL); 3143 } 3144 if (skip_firewall) 3145 m->m_flags |= M_SKIP_FIREWALL; 3146 pf_mtag->tag = mtag_tag; 3147 pf_mtag->flags = mtag_flags; 3148 3149 if (rtableid >= 0) 3150 M_SETFIB(m, rtableid); 3151 3152 #ifdef ALTQ 3153 if (r != NULL && r->qid) { 3154 pf_mtag->qid = r->qid; 3155 3156 /* add hints for ecn */ 3157 pf_mtag->hdr = mtod(m, struct ip *); 3158 } 3159 #endif /* ALTQ */ 3160 m->m_data += max_linkhdr; 3161 m->m_pkthdr.len = m->m_len = len; 3162 /* The rest of the stack assumes a rcvif, so provide one. 3163 * This is a locally generated packet, so .. close enough. */ 3164 m->m_pkthdr.rcvif = V_loif; 3165 bzero(m->m_data, len); 3166 switch (af) { 3167 #ifdef INET 3168 case AF_INET: 3169 h = mtod(m, struct ip *); 3170 3171 /* IP header fields included in the TCP checksum */ 3172 h->ip_p = IPPROTO_TCP; 3173 h->ip_len = htons(tlen); 3174 h->ip_src.s_addr = saddr->v4.s_addr; 3175 h->ip_dst.s_addr = daddr->v4.s_addr; 3176 3177 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3178 break; 3179 #endif /* INET */ 3180 #ifdef INET6 3181 case AF_INET6: 3182 h6 = mtod(m, struct ip6_hdr *); 3183 3184 /* IP header fields included in the TCP checksum */ 3185 h6->ip6_nxt = IPPROTO_TCP; 3186 h6->ip6_plen = htons(tlen); 3187 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3188 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3189 3190 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3191 break; 3192 #endif /* INET6 */ 3193 } 3194 3195 /* TCP header */ 3196 th->th_sport = sport; 3197 th->th_dport = dport; 3198 th->th_seq = htonl(seq); 3199 th->th_ack = htonl(ack); 3200 th->th_off = tlen >> 2; 3201 th->th_flags = tcp_flags; 3202 th->th_win = htons(win); 3203 3204 if (mss) { 3205 opt = (char *)(th + 1); 3206 opt[0] = TCPOPT_MAXSEG; 3207 opt[1] = 4; 3208 HTONS(mss); 3209 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3210 } 3211 3212 switch (af) { 3213 #ifdef INET 3214 case AF_INET: 3215 /* TCP checksum */ 3216 th->th_sum = in_cksum(m, len); 3217 3218 /* Finish the IP header */ 3219 h->ip_v = 4; 3220 h->ip_hl = sizeof(*h) >> 2; 3221 h->ip_tos = IPTOS_LOWDELAY; 3222 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3223 h->ip_len = htons(len); 3224 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3225 h->ip_sum = 0; 3226 break; 3227 #endif /* INET */ 3228 #ifdef INET6 3229 case AF_INET6: 3230 /* TCP checksum */ 3231 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3232 sizeof(struct ip6_hdr), tlen); 3233 3234 h6->ip6_vfc |= IPV6_VERSION; 3235 h6->ip6_hlim = IPV6_DEFHLIM; 3236 break; 3237 #endif /* INET6 */ 3238 } 3239 3240 return (m); 3241 } 3242 3243 static void 3244 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3245 uint8_t ttl, int rtableid) 3246 { 3247 struct mbuf *m; 3248 #ifdef INET 3249 struct ip *h = NULL; 3250 #endif /* INET */ 3251 #ifdef INET6 3252 struct ip6_hdr *h6 = NULL; 3253 #endif /* INET6 */ 3254 struct sctphdr *hdr; 3255 struct sctp_chunkhdr *chunk; 3256 struct pf_send_entry *pfse; 3257 int off = 0; 3258 3259 MPASS(af == pd->af); 3260 3261 m = m_gethdr(M_NOWAIT, MT_DATA); 3262 if (m == NULL) 3263 return; 3264 3265 m->m_data += max_linkhdr; 3266 m->m_flags |= M_SKIP_FIREWALL; 3267 /* The rest of the stack assumes a rcvif, so provide one. 3268 * This is a locally generated packet, so .. close enough. */ 3269 m->m_pkthdr.rcvif = V_loif; 3270 3271 /* IPv4|6 header */ 3272 switch (af) { 3273 #ifdef INET 3274 case AF_INET: 3275 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3276 3277 h = mtod(m, struct ip *); 3278 3279 /* IP header fields included in the TCP checksum */ 3280 3281 h->ip_p = IPPROTO_SCTP; 3282 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3283 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3284 h->ip_src = pd->dst->v4; 3285 h->ip_dst = pd->src->v4; 3286 3287 off += sizeof(struct ip); 3288 break; 3289 #endif /* INET */ 3290 #ifdef INET6 3291 case AF_INET6: 3292 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3293 3294 h6 = mtod(m, struct ip6_hdr *); 3295 3296 /* IP header fields included in the TCP checksum */ 3297 h6->ip6_vfc |= IPV6_VERSION; 3298 h6->ip6_nxt = IPPROTO_SCTP; 3299 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3300 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3301 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3302 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3303 3304 off += sizeof(struct ip6_hdr); 3305 break; 3306 #endif /* INET6 */ 3307 } 3308 3309 /* SCTP header */ 3310 hdr = mtodo(m, off); 3311 3312 hdr->src_port = pd->hdr.sctp.dest_port; 3313 hdr->dest_port = pd->hdr.sctp.src_port; 3314 hdr->v_tag = pd->sctp_initiate_tag; 3315 hdr->checksum = 0; 3316 3317 /* Abort chunk. */ 3318 off += sizeof(struct sctphdr); 3319 chunk = mtodo(m, off); 3320 3321 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3322 chunk->chunk_length = htons(sizeof(*chunk)); 3323 3324 /* SCTP checksum */ 3325 off += sizeof(*chunk); 3326 m->m_pkthdr.len = m->m_len = off; 3327 3328 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3329 3330 if (rtableid >= 0) 3331 M_SETFIB(m, rtableid); 3332 3333 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3334 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3335 if (pfse == NULL) { 3336 m_freem(m); 3337 return; 3338 } 3339 3340 switch (af) { 3341 #ifdef INET 3342 case AF_INET: 3343 pfse->pfse_type = PFSE_IP; 3344 break; 3345 #endif /* INET */ 3346 #ifdef INET6 3347 case AF_INET6: 3348 pfse->pfse_type = PFSE_IP6; 3349 break; 3350 #endif /* INET6 */ 3351 } 3352 3353 pfse->pfse_m = m; 3354 pf_send(pfse); 3355 } 3356 3357 void 3358 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3359 const struct pf_addr *saddr, const struct pf_addr *daddr, 3360 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3361 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3362 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3363 { 3364 struct pf_send_entry *pfse; 3365 struct mbuf *m; 3366 3367 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3368 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3369 if (m == NULL) 3370 return; 3371 3372 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3373 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3374 if (pfse == NULL) { 3375 m_freem(m); 3376 return; 3377 } 3378 3379 switch (af) { 3380 #ifdef INET 3381 case AF_INET: 3382 pfse->pfse_type = PFSE_IP; 3383 break; 3384 #endif /* INET */ 3385 #ifdef INET6 3386 case AF_INET6: 3387 pfse->pfse_type = PFSE_IP6; 3388 break; 3389 #endif /* INET6 */ 3390 } 3391 3392 pfse->pfse_m = m; 3393 pf_send(pfse); 3394 } 3395 3396 static void 3397 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3398 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3399 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3400 u_short *reason, int rtableid) 3401 { 3402 struct pf_addr * const saddr = pd->src; 3403 struct pf_addr * const daddr = pd->dst; 3404 sa_family_t af = pd->af; 3405 3406 /* undo NAT changes, if they have taken place */ 3407 if (nr != NULL) { 3408 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3409 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3410 if (pd->sport) 3411 *pd->sport = sk->port[pd->sidx]; 3412 if (pd->dport) 3413 *pd->dport = sk->port[pd->didx]; 3414 if (pd->proto_sum) 3415 *pd->proto_sum = bproto_sum; 3416 if (pd->ip_sum) 3417 *pd->ip_sum = bip_sum; 3418 m_copyback(m, off, hdrlen, pd->hdr.any); 3419 } 3420 if (pd->proto == IPPROTO_TCP && 3421 ((r->rule_flag & PFRULE_RETURNRST) || 3422 (r->rule_flag & PFRULE_RETURN)) && 3423 !(th->th_flags & TH_RST)) { 3424 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3425 int len = 0; 3426 #ifdef INET 3427 struct ip *h4; 3428 #endif 3429 #ifdef INET6 3430 struct ip6_hdr *h6; 3431 #endif 3432 3433 switch (af) { 3434 #ifdef INET 3435 case AF_INET: 3436 h4 = mtod(m, struct ip *); 3437 len = ntohs(h4->ip_len) - off; 3438 break; 3439 #endif 3440 #ifdef INET6 3441 case AF_INET6: 3442 h6 = mtod(m, struct ip6_hdr *); 3443 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3444 break; 3445 #endif 3446 } 3447 3448 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3449 REASON_SET(reason, PFRES_PROTCKSUM); 3450 else { 3451 if (th->th_flags & TH_SYN) 3452 ack++; 3453 if (th->th_flags & TH_FIN) 3454 ack++; 3455 pf_send_tcp(r, af, pd->dst, 3456 pd->src, th->th_dport, th->th_sport, 3457 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3458 r->return_ttl, true, 0, 0, rtableid); 3459 } 3460 } else if (pd->proto == IPPROTO_SCTP && 3461 (r->rule_flag & PFRULE_RETURN)) { 3462 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3463 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3464 r->return_icmp) 3465 pf_send_icmp(m, r->return_icmp >> 8, 3466 r->return_icmp & 255, af, r, rtableid); 3467 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3468 r->return_icmp6) 3469 pf_send_icmp(m, r->return_icmp6 >> 8, 3470 r->return_icmp6 & 255, af, r, rtableid); 3471 } 3472 3473 static int 3474 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3475 { 3476 struct m_tag *mtag; 3477 u_int8_t mpcp; 3478 3479 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3480 if (mtag == NULL) 3481 return (0); 3482 3483 if (prio == PF_PRIO_ZERO) 3484 prio = 0; 3485 3486 mpcp = *(uint8_t *)(mtag + 1); 3487 3488 return (mpcp == prio); 3489 } 3490 3491 static int 3492 pf_icmp_to_bandlim(uint8_t type) 3493 { 3494 switch (type) { 3495 case ICMP_ECHO: 3496 case ICMP_ECHOREPLY: 3497 return (BANDLIM_ICMP_ECHO); 3498 case ICMP_TSTAMP: 3499 case ICMP_TSTAMPREPLY: 3500 return (BANDLIM_ICMP_TSTAMP); 3501 case ICMP_UNREACH: 3502 default: 3503 return (BANDLIM_ICMP_UNREACH); 3504 } 3505 } 3506 3507 static void 3508 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3509 struct pf_krule *r, int rtableid) 3510 { 3511 struct pf_send_entry *pfse; 3512 struct mbuf *m0; 3513 struct pf_mtag *pf_mtag; 3514 3515 /* ICMP packet rate limitation. */ 3516 #ifdef INET6 3517 if (af == AF_INET6) { 3518 if (icmp6_ratelimit(NULL, type, code)) 3519 return; 3520 } 3521 #endif 3522 #ifdef INET 3523 if (af == AF_INET) { 3524 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3525 return; 3526 } 3527 #endif 3528 3529 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3530 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3531 if (pfse == NULL) 3532 return; 3533 3534 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3535 free(pfse, M_PFTEMP); 3536 return; 3537 } 3538 3539 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3540 free(pfse, M_PFTEMP); 3541 return; 3542 } 3543 /* XXX: revisit */ 3544 m0->m_flags |= M_SKIP_FIREWALL; 3545 3546 if (rtableid >= 0) 3547 M_SETFIB(m0, rtableid); 3548 3549 #ifdef ALTQ 3550 if (r->qid) { 3551 pf_mtag->qid = r->qid; 3552 /* add hints for ecn */ 3553 pf_mtag->hdr = mtod(m0, struct ip *); 3554 } 3555 #endif /* ALTQ */ 3556 3557 switch (af) { 3558 #ifdef INET 3559 case AF_INET: 3560 pfse->pfse_type = PFSE_ICMP; 3561 break; 3562 #endif /* INET */ 3563 #ifdef INET6 3564 case AF_INET6: 3565 pfse->pfse_type = PFSE_ICMP6; 3566 break; 3567 #endif /* INET6 */ 3568 } 3569 pfse->pfse_m = m0; 3570 pfse->icmpopts.type = type; 3571 pfse->icmpopts.code = code; 3572 pf_send(pfse); 3573 } 3574 3575 /* 3576 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3577 * If n is 0, they match if they are equal. If n is != 0, they match if they 3578 * are different. 3579 */ 3580 int 3581 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3582 struct pf_addr *b, sa_family_t af) 3583 { 3584 int match = 0; 3585 3586 switch (af) { 3587 #ifdef INET 3588 case AF_INET: 3589 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3590 match++; 3591 break; 3592 #endif /* INET */ 3593 #ifdef INET6 3594 case AF_INET6: 3595 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3596 match++; 3597 break; 3598 #endif /* INET6 */ 3599 } 3600 if (match) { 3601 if (n) 3602 return (0); 3603 else 3604 return (1); 3605 } else { 3606 if (n) 3607 return (1); 3608 else 3609 return (0); 3610 } 3611 } 3612 3613 /* 3614 * Return 1 if b <= a <= e, otherwise return 0. 3615 */ 3616 int 3617 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3618 struct pf_addr *a, sa_family_t af) 3619 { 3620 switch (af) { 3621 #ifdef INET 3622 case AF_INET: 3623 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3624 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3625 return (0); 3626 break; 3627 #endif /* INET */ 3628 #ifdef INET6 3629 case AF_INET6: { 3630 int i; 3631 3632 /* check a >= b */ 3633 for (i = 0; i < 4; ++i) 3634 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3635 break; 3636 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3637 return (0); 3638 /* check a <= e */ 3639 for (i = 0; i < 4; ++i) 3640 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3641 break; 3642 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3643 return (0); 3644 break; 3645 } 3646 #endif /* INET6 */ 3647 } 3648 return (1); 3649 } 3650 3651 static int 3652 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3653 { 3654 switch (op) { 3655 case PF_OP_IRG: 3656 return ((p > a1) && (p < a2)); 3657 case PF_OP_XRG: 3658 return ((p < a1) || (p > a2)); 3659 case PF_OP_RRG: 3660 return ((p >= a1) && (p <= a2)); 3661 case PF_OP_EQ: 3662 return (p == a1); 3663 case PF_OP_NE: 3664 return (p != a1); 3665 case PF_OP_LT: 3666 return (p < a1); 3667 case PF_OP_LE: 3668 return (p <= a1); 3669 case PF_OP_GT: 3670 return (p > a1); 3671 case PF_OP_GE: 3672 return (p >= a1); 3673 } 3674 return (0); /* never reached */ 3675 } 3676 3677 int 3678 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3679 { 3680 NTOHS(a1); 3681 NTOHS(a2); 3682 NTOHS(p); 3683 return (pf_match(op, a1, a2, p)); 3684 } 3685 3686 static int 3687 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3688 { 3689 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3690 return (0); 3691 return (pf_match(op, a1, a2, u)); 3692 } 3693 3694 static int 3695 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3696 { 3697 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3698 return (0); 3699 return (pf_match(op, a1, a2, g)); 3700 } 3701 3702 int 3703 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3704 { 3705 if (*tag == -1) 3706 *tag = mtag; 3707 3708 return ((!r->match_tag_not && r->match_tag == *tag) || 3709 (r->match_tag_not && r->match_tag != *tag)); 3710 } 3711 3712 int 3713 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3714 { 3715 3716 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3717 3718 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3719 return (ENOMEM); 3720 3721 pd->pf_mtag->tag = tag; 3722 3723 return (0); 3724 } 3725 3726 #define PF_ANCHOR_STACKSIZE 32 3727 struct pf_kanchor_stackframe { 3728 struct pf_kruleset *rs; 3729 struct pf_krule *r; /* XXX: + match bit */ 3730 struct pf_kanchor *child; 3731 }; 3732 3733 /* 3734 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3735 */ 3736 #define PF_ANCHORSTACK_MATCH 0x00000001 3737 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3738 3739 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3740 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3741 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3742 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3743 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3744 } while (0) 3745 3746 void 3747 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3748 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3749 int *match) 3750 { 3751 struct pf_kanchor_stackframe *f; 3752 3753 PF_RULES_RASSERT(); 3754 3755 if (match) 3756 *match = 0; 3757 if (*depth >= PF_ANCHOR_STACKSIZE) { 3758 printf("%s: anchor stack overflow on %s\n", 3759 __func__, (*r)->anchor->name); 3760 *r = TAILQ_NEXT(*r, entries); 3761 return; 3762 } else if (*depth == 0 && a != NULL) 3763 *a = *r; 3764 f = stack + (*depth)++; 3765 f->rs = *rs; 3766 f->r = *r; 3767 if ((*r)->anchor_wildcard) { 3768 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3769 3770 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3771 *r = NULL; 3772 return; 3773 } 3774 *rs = &f->child->ruleset; 3775 } else { 3776 f->child = NULL; 3777 *rs = &(*r)->anchor->ruleset; 3778 } 3779 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3780 } 3781 3782 int 3783 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3784 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3785 int *match) 3786 { 3787 struct pf_kanchor_stackframe *f; 3788 struct pf_krule *fr; 3789 int quick = 0; 3790 3791 PF_RULES_RASSERT(); 3792 3793 do { 3794 if (*depth <= 0) 3795 break; 3796 f = stack + *depth - 1; 3797 fr = PF_ANCHOR_RULE(f); 3798 if (f->child != NULL) { 3799 /* 3800 * This block traverses through 3801 * a wildcard anchor. 3802 */ 3803 if (match != NULL && *match) { 3804 /* 3805 * If any of "*" matched, then 3806 * "foo/ *" matched, mark frame 3807 * appropriately. 3808 */ 3809 PF_ANCHOR_SET_MATCH(f); 3810 *match = 0; 3811 } 3812 f->child = RB_NEXT(pf_kanchor_node, 3813 &fr->anchor->children, f->child); 3814 if (f->child != NULL) { 3815 *rs = &f->child->ruleset; 3816 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3817 if (*r == NULL) 3818 continue; 3819 else 3820 break; 3821 } 3822 } 3823 (*depth)--; 3824 if (*depth == 0 && a != NULL) 3825 *a = NULL; 3826 *rs = f->rs; 3827 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3828 quick = fr->quick; 3829 *r = TAILQ_NEXT(fr, entries); 3830 } while (*r == NULL); 3831 3832 return (quick); 3833 } 3834 3835 struct pf_keth_anchor_stackframe { 3836 struct pf_keth_ruleset *rs; 3837 struct pf_keth_rule *r; /* XXX: + match bit */ 3838 struct pf_keth_anchor *child; 3839 }; 3840 3841 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3842 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3843 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3844 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3845 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3846 } while (0) 3847 3848 void 3849 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3850 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3851 struct pf_keth_rule **a, int *match) 3852 { 3853 struct pf_keth_anchor_stackframe *f; 3854 3855 NET_EPOCH_ASSERT(); 3856 3857 if (match) 3858 *match = 0; 3859 if (*depth >= PF_ANCHOR_STACKSIZE) { 3860 printf("%s: anchor stack overflow on %s\n", 3861 __func__, (*r)->anchor->name); 3862 *r = TAILQ_NEXT(*r, entries); 3863 return; 3864 } else if (*depth == 0 && a != NULL) 3865 *a = *r; 3866 f = stack + (*depth)++; 3867 f->rs = *rs; 3868 f->r = *r; 3869 if ((*r)->anchor_wildcard) { 3870 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3871 3872 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3873 *r = NULL; 3874 return; 3875 } 3876 *rs = &f->child->ruleset; 3877 } else { 3878 f->child = NULL; 3879 *rs = &(*r)->anchor->ruleset; 3880 } 3881 *r = TAILQ_FIRST((*rs)->active.rules); 3882 } 3883 3884 int 3885 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3886 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3887 struct pf_keth_rule **a, int *match) 3888 { 3889 struct pf_keth_anchor_stackframe *f; 3890 struct pf_keth_rule *fr; 3891 int quick = 0; 3892 3893 NET_EPOCH_ASSERT(); 3894 3895 do { 3896 if (*depth <= 0) 3897 break; 3898 f = stack + *depth - 1; 3899 fr = PF_ETH_ANCHOR_RULE(f); 3900 if (f->child != NULL) { 3901 /* 3902 * This block traverses through 3903 * a wildcard anchor. 3904 */ 3905 if (match != NULL && *match) { 3906 /* 3907 * If any of "*" matched, then 3908 * "foo/ *" matched, mark frame 3909 * appropriately. 3910 */ 3911 PF_ETH_ANCHOR_SET_MATCH(f); 3912 *match = 0; 3913 } 3914 f->child = RB_NEXT(pf_keth_anchor_node, 3915 &fr->anchor->children, f->child); 3916 if (f->child != NULL) { 3917 *rs = &f->child->ruleset; 3918 *r = TAILQ_FIRST((*rs)->active.rules); 3919 if (*r == NULL) 3920 continue; 3921 else 3922 break; 3923 } 3924 } 3925 (*depth)--; 3926 if (*depth == 0 && a != NULL) 3927 *a = NULL; 3928 *rs = f->rs; 3929 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3930 quick = fr->quick; 3931 *r = TAILQ_NEXT(fr, entries); 3932 } while (*r == NULL); 3933 3934 return (quick); 3935 } 3936 3937 #ifdef INET6 3938 void 3939 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3940 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3941 { 3942 switch (af) { 3943 #ifdef INET 3944 case AF_INET: 3945 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3946 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3947 break; 3948 #endif /* INET */ 3949 case AF_INET6: 3950 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3951 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3952 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3953 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3954 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3955 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3956 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3957 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3958 break; 3959 } 3960 } 3961 3962 void 3963 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3964 { 3965 switch (af) { 3966 #ifdef INET 3967 case AF_INET: 3968 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3969 break; 3970 #endif /* INET */ 3971 case AF_INET6: 3972 if (addr->addr32[3] == 0xffffffff) { 3973 addr->addr32[3] = 0; 3974 if (addr->addr32[2] == 0xffffffff) { 3975 addr->addr32[2] = 0; 3976 if (addr->addr32[1] == 0xffffffff) { 3977 addr->addr32[1] = 0; 3978 addr->addr32[0] = 3979 htonl(ntohl(addr->addr32[0]) + 1); 3980 } else 3981 addr->addr32[1] = 3982 htonl(ntohl(addr->addr32[1]) + 1); 3983 } else 3984 addr->addr32[2] = 3985 htonl(ntohl(addr->addr32[2]) + 1); 3986 } else 3987 addr->addr32[3] = 3988 htonl(ntohl(addr->addr32[3]) + 1); 3989 break; 3990 } 3991 } 3992 #endif /* INET6 */ 3993 3994 void 3995 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3996 { 3997 /* 3998 * Modern rules use the same flags in rules as they do in states. 3999 */ 4000 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4001 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4002 4003 /* 4004 * Old-style scrub rules have different flags which need to be translated. 4005 */ 4006 if (r->rule_flag & PFRULE_RANDOMID) 4007 a->flags |= PFSTATE_RANDOMID; 4008 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4009 a->flags |= PFSTATE_SETTOS; 4010 a->set_tos = r->set_tos; 4011 } 4012 4013 if (r->qid) 4014 a->qid = r->qid; 4015 if (r->pqid) 4016 a->pqid = r->pqid; 4017 if (r->rtableid >= 0) 4018 a->rtableid = r->rtableid; 4019 a->log |= r->log; 4020 if (r->min_ttl) 4021 a->min_ttl = r->min_ttl; 4022 if (r->max_mss) 4023 a->max_mss = r->max_mss; 4024 if (r->dnpipe) 4025 a->dnpipe = r->dnpipe; 4026 if (r->dnrpipe) 4027 a->dnrpipe = r->dnrpipe; 4028 if (r->dnpipe || r->dnrpipe) { 4029 if (r->free_flags & PFRULE_DN_IS_PIPE) 4030 a->flags |= PFSTATE_DN_IS_PIPE; 4031 else 4032 a->flags &= ~PFSTATE_DN_IS_PIPE; 4033 } 4034 if (r->scrub_flags & PFSTATE_SETPRIO) { 4035 a->set_prio[0] = r->set_prio[0]; 4036 a->set_prio[1] = r->set_prio[1]; 4037 } 4038 } 4039 4040 int 4041 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 4042 { 4043 struct pf_addr *saddr, *daddr; 4044 u_int16_t sport, dport; 4045 struct inpcbinfo *pi; 4046 struct inpcb *inp; 4047 4048 pd->lookup.uid = UID_MAX; 4049 pd->lookup.gid = GID_MAX; 4050 4051 switch (pd->proto) { 4052 case IPPROTO_TCP: 4053 sport = pd->hdr.tcp.th_sport; 4054 dport = pd->hdr.tcp.th_dport; 4055 pi = &V_tcbinfo; 4056 break; 4057 case IPPROTO_UDP: 4058 sport = pd->hdr.udp.uh_sport; 4059 dport = pd->hdr.udp.uh_dport; 4060 pi = &V_udbinfo; 4061 break; 4062 default: 4063 return (-1); 4064 } 4065 if (pd->dir == PF_IN) { 4066 saddr = pd->src; 4067 daddr = pd->dst; 4068 } else { 4069 u_int16_t p; 4070 4071 p = sport; 4072 sport = dport; 4073 dport = p; 4074 saddr = pd->dst; 4075 daddr = pd->src; 4076 } 4077 switch (pd->af) { 4078 #ifdef INET 4079 case AF_INET: 4080 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4081 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4082 if (inp == NULL) { 4083 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4084 daddr->v4, dport, INPLOOKUP_WILDCARD | 4085 INPLOOKUP_RLOCKPCB, NULL, m); 4086 if (inp == NULL) 4087 return (-1); 4088 } 4089 break; 4090 #endif /* INET */ 4091 #ifdef INET6 4092 case AF_INET6: 4093 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4094 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4095 if (inp == NULL) { 4096 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4097 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4098 INPLOOKUP_RLOCKPCB, NULL, m); 4099 if (inp == NULL) 4100 return (-1); 4101 } 4102 break; 4103 #endif /* INET6 */ 4104 4105 default: 4106 return (-1); 4107 } 4108 INP_RLOCK_ASSERT(inp); 4109 pd->lookup.uid = inp->inp_cred->cr_uid; 4110 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4111 INP_RUNLOCK(inp); 4112 4113 return (1); 4114 } 4115 4116 u_int8_t 4117 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4118 { 4119 int hlen; 4120 u_int8_t hdr[60]; 4121 u_int8_t *opt, optlen; 4122 u_int8_t wscale = 0; 4123 4124 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4125 if (hlen <= sizeof(struct tcphdr)) 4126 return (0); 4127 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4128 return (0); 4129 opt = hdr + sizeof(struct tcphdr); 4130 hlen -= sizeof(struct tcphdr); 4131 while (hlen >= 3) { 4132 switch (*opt) { 4133 case TCPOPT_EOL: 4134 case TCPOPT_NOP: 4135 ++opt; 4136 --hlen; 4137 break; 4138 case TCPOPT_WINDOW: 4139 wscale = opt[2]; 4140 if (wscale > TCP_MAX_WINSHIFT) 4141 wscale = TCP_MAX_WINSHIFT; 4142 wscale |= PF_WSCALE_FLAG; 4143 /* FALLTHROUGH */ 4144 default: 4145 optlen = opt[1]; 4146 if (optlen < 2) 4147 optlen = 2; 4148 hlen -= optlen; 4149 opt += optlen; 4150 break; 4151 } 4152 } 4153 return (wscale); 4154 } 4155 4156 u_int16_t 4157 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4158 { 4159 int hlen; 4160 u_int8_t hdr[60]; 4161 u_int8_t *opt, optlen; 4162 u_int16_t mss = V_tcp_mssdflt; 4163 4164 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4165 if (hlen <= sizeof(struct tcphdr)) 4166 return (0); 4167 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4168 return (0); 4169 opt = hdr + sizeof(struct tcphdr); 4170 hlen -= sizeof(struct tcphdr); 4171 while (hlen >= TCPOLEN_MAXSEG) { 4172 switch (*opt) { 4173 case TCPOPT_EOL: 4174 case TCPOPT_NOP: 4175 ++opt; 4176 --hlen; 4177 break; 4178 case TCPOPT_MAXSEG: 4179 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4180 NTOHS(mss); 4181 /* FALLTHROUGH */ 4182 default: 4183 optlen = opt[1]; 4184 if (optlen < 2) 4185 optlen = 2; 4186 hlen -= optlen; 4187 opt += optlen; 4188 break; 4189 } 4190 } 4191 return (mss); 4192 } 4193 4194 static u_int16_t 4195 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4196 { 4197 struct nhop_object *nh; 4198 #ifdef INET6 4199 struct in6_addr dst6; 4200 uint32_t scopeid; 4201 #endif /* INET6 */ 4202 int hlen = 0; 4203 uint16_t mss = 0; 4204 4205 NET_EPOCH_ASSERT(); 4206 4207 switch (af) { 4208 #ifdef INET 4209 case AF_INET: 4210 hlen = sizeof(struct ip); 4211 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4212 if (nh != NULL) 4213 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4214 break; 4215 #endif /* INET */ 4216 #ifdef INET6 4217 case AF_INET6: 4218 hlen = sizeof(struct ip6_hdr); 4219 in6_splitscope(&addr->v6, &dst6, &scopeid); 4220 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4221 if (nh != NULL) 4222 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4223 break; 4224 #endif /* INET6 */ 4225 } 4226 4227 mss = max(V_tcp_mssdflt, mss); 4228 mss = min(mss, offer); 4229 mss = max(mss, 64); /* sanity - at least max opt space */ 4230 return (mss); 4231 } 4232 4233 static u_int32_t 4234 pf_tcp_iss(struct pf_pdesc *pd) 4235 { 4236 MD5_CTX ctx; 4237 u_int32_t digest[4]; 4238 4239 if (V_pf_tcp_secret_init == 0) { 4240 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4241 MD5Init(&V_pf_tcp_secret_ctx); 4242 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4243 sizeof(V_pf_tcp_secret)); 4244 V_pf_tcp_secret_init = 1; 4245 } 4246 4247 ctx = V_pf_tcp_secret_ctx; 4248 4249 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4250 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4251 if (pd->af == AF_INET6) { 4252 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4253 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4254 } else { 4255 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4256 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4257 } 4258 MD5Final((u_char *)digest, &ctx); 4259 V_pf_tcp_iss_off += 4096; 4260 #define ISN_RANDOM_INCREMENT (4096 - 1) 4261 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4262 V_pf_tcp_iss_off); 4263 #undef ISN_RANDOM_INCREMENT 4264 } 4265 4266 static bool 4267 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4268 { 4269 bool match = true; 4270 4271 /* Always matches if not set */ 4272 if (! r->isset) 4273 return (!r->neg); 4274 4275 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4276 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4277 match = false; 4278 break; 4279 } 4280 } 4281 4282 return (match ^ r->neg); 4283 } 4284 4285 static int 4286 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4287 { 4288 if (*tag == -1) 4289 *tag = mtag; 4290 4291 return ((!r->match_tag_not && r->match_tag == *tag) || 4292 (r->match_tag_not && r->match_tag != *tag)); 4293 } 4294 4295 static void 4296 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4297 { 4298 /* If we don't have the interface drop the packet. */ 4299 if (ifp == NULL) { 4300 m_freem(m); 4301 return; 4302 } 4303 4304 switch (ifp->if_type) { 4305 case IFT_ETHER: 4306 case IFT_XETHER: 4307 case IFT_L2VLAN: 4308 case IFT_BRIDGE: 4309 case IFT_IEEE8023ADLAG: 4310 break; 4311 default: 4312 m_freem(m); 4313 return; 4314 } 4315 4316 ifp->if_transmit(ifp, m); 4317 } 4318 4319 static int 4320 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4321 { 4322 #ifdef INET 4323 struct ip ip; 4324 #endif 4325 #ifdef INET6 4326 struct ip6_hdr ip6; 4327 #endif 4328 struct mbuf *m = *m0; 4329 struct ether_header *e; 4330 struct pf_keth_rule *r, *rm, *a = NULL; 4331 struct pf_keth_ruleset *ruleset = NULL; 4332 struct pf_mtag *mtag; 4333 struct pf_keth_ruleq *rules; 4334 struct pf_addr *src = NULL, *dst = NULL; 4335 struct pfi_kkif *bridge_to; 4336 sa_family_t af = 0; 4337 uint16_t proto; 4338 int asd = 0, match = 0; 4339 int tag = -1; 4340 uint8_t action; 4341 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4342 4343 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4344 NET_EPOCH_ASSERT(); 4345 4346 PF_RULES_RLOCK_TRACKER; 4347 4348 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4349 4350 mtag = pf_find_mtag(m); 4351 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4352 /* Dummynet re-injects packets after they've 4353 * completed their delay. We've already 4354 * processed them, so pass unconditionally. */ 4355 4356 /* But only once. We may see the packet multiple times (e.g. 4357 * PFIL_IN/PFIL_OUT). */ 4358 pf_dummynet_flag_remove(m, mtag); 4359 4360 return (PF_PASS); 4361 } 4362 4363 ruleset = V_pf_keth; 4364 rules = ck_pr_load_ptr(&ruleset->active.rules); 4365 r = TAILQ_FIRST(rules); 4366 rm = NULL; 4367 4368 e = mtod(m, struct ether_header *); 4369 proto = ntohs(e->ether_type); 4370 4371 switch (proto) { 4372 #ifdef INET 4373 case ETHERTYPE_IP: { 4374 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4375 sizeof(ip))) 4376 return (PF_DROP); 4377 4378 af = AF_INET; 4379 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4380 (caddr_t)&ip); 4381 src = (struct pf_addr *)&ip.ip_src; 4382 dst = (struct pf_addr *)&ip.ip_dst; 4383 break; 4384 } 4385 #endif /* INET */ 4386 #ifdef INET6 4387 case ETHERTYPE_IPV6: { 4388 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4389 sizeof(ip6))) 4390 return (PF_DROP); 4391 4392 af = AF_INET6; 4393 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4394 (caddr_t)&ip6); 4395 src = (struct pf_addr *)&ip6.ip6_src; 4396 dst = (struct pf_addr *)&ip6.ip6_dst; 4397 break; 4398 } 4399 #endif /* INET6 */ 4400 } 4401 4402 PF_RULES_RLOCK(); 4403 4404 while (r != NULL) { 4405 counter_u64_add(r->evaluations, 1); 4406 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4407 4408 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4409 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4410 "kif"); 4411 r = r->skip[PFE_SKIP_IFP].ptr; 4412 } 4413 else if (r->direction && r->direction != dir) { 4414 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4415 "dir"); 4416 r = r->skip[PFE_SKIP_DIR].ptr; 4417 } 4418 else if (r->proto && r->proto != proto) { 4419 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4420 "proto"); 4421 r = r->skip[PFE_SKIP_PROTO].ptr; 4422 } 4423 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4424 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4425 "src"); 4426 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4427 } 4428 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4429 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4430 "dst"); 4431 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4432 } 4433 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4434 r->ipsrc.neg, kif, M_GETFIB(m))) { 4435 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4436 "ip_src"); 4437 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4438 } 4439 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4440 r->ipdst.neg, kif, M_GETFIB(m))) { 4441 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4442 "ip_dst"); 4443 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4444 } 4445 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4446 mtag ? mtag->tag : 0)) { 4447 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4448 "match_tag"); 4449 r = TAILQ_NEXT(r, entries); 4450 } 4451 else { 4452 if (r->tag) 4453 tag = r->tag; 4454 if (r->anchor == NULL) { 4455 /* Rule matches */ 4456 rm = r; 4457 4458 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4459 4460 if (r->quick) 4461 break; 4462 4463 r = TAILQ_NEXT(r, entries); 4464 } else { 4465 pf_step_into_keth_anchor(anchor_stack, &asd, 4466 &ruleset, &r, &a, &match); 4467 } 4468 } 4469 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4470 &ruleset, &r, &a, &match)) 4471 break; 4472 } 4473 4474 r = rm; 4475 4476 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4477 4478 /* Default to pass. */ 4479 if (r == NULL) { 4480 PF_RULES_RUNLOCK(); 4481 return (PF_PASS); 4482 } 4483 4484 /* Execute action. */ 4485 counter_u64_add(r->packets[dir == PF_OUT], 1); 4486 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4487 pf_update_timestamp(r); 4488 4489 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4490 if (r->action == PF_DROP) { 4491 PF_RULES_RUNLOCK(); 4492 return (PF_DROP); 4493 } 4494 4495 if (tag > 0) { 4496 if (mtag == NULL) 4497 mtag = pf_get_mtag(m); 4498 if (mtag == NULL) { 4499 PF_RULES_RUNLOCK(); 4500 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4501 return (PF_DROP); 4502 } 4503 mtag->tag = tag; 4504 } 4505 4506 if (r->qid != 0) { 4507 if (mtag == NULL) 4508 mtag = pf_get_mtag(m); 4509 if (mtag == NULL) { 4510 PF_RULES_RUNLOCK(); 4511 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4512 return (PF_DROP); 4513 } 4514 mtag->qid = r->qid; 4515 } 4516 4517 action = r->action; 4518 bridge_to = r->bridge_to; 4519 4520 /* Dummynet */ 4521 if (r->dnpipe) { 4522 struct ip_fw_args dnflow; 4523 4524 /* Drop packet if dummynet is not loaded. */ 4525 if (ip_dn_io_ptr == NULL) { 4526 PF_RULES_RUNLOCK(); 4527 m_freem(m); 4528 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4529 return (PF_DROP); 4530 } 4531 if (mtag == NULL) 4532 mtag = pf_get_mtag(m); 4533 if (mtag == NULL) { 4534 PF_RULES_RUNLOCK(); 4535 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4536 return (PF_DROP); 4537 } 4538 4539 bzero(&dnflow, sizeof(dnflow)); 4540 4541 /* We don't have port numbers here, so we set 0. That means 4542 * that we'll be somewhat limited in distinguishing flows (i.e. 4543 * only based on IP addresses, not based on port numbers), but 4544 * it's better than nothing. */ 4545 dnflow.f_id.dst_port = 0; 4546 dnflow.f_id.src_port = 0; 4547 dnflow.f_id.proto = 0; 4548 4549 dnflow.rule.info = r->dnpipe; 4550 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4551 if (r->dnflags & PFRULE_DN_IS_PIPE) 4552 dnflow.rule.info |= IPFW_IS_PIPE; 4553 4554 dnflow.f_id.extra = dnflow.rule.info; 4555 4556 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4557 dnflow.flags |= IPFW_ARGS_ETHER; 4558 dnflow.ifp = kif->pfik_ifp; 4559 4560 switch (af) { 4561 case AF_INET: 4562 dnflow.f_id.addr_type = 4; 4563 dnflow.f_id.src_ip = src->v4.s_addr; 4564 dnflow.f_id.dst_ip = dst->v4.s_addr; 4565 break; 4566 case AF_INET6: 4567 dnflow.flags |= IPFW_ARGS_IP6; 4568 dnflow.f_id.addr_type = 6; 4569 dnflow.f_id.src_ip6 = src->v6; 4570 dnflow.f_id.dst_ip6 = dst->v6; 4571 break; 4572 } 4573 4574 PF_RULES_RUNLOCK(); 4575 4576 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4577 ip_dn_io_ptr(m0, &dnflow); 4578 if (*m0 != NULL) 4579 pf_dummynet_flag_remove(m, mtag); 4580 } else { 4581 PF_RULES_RUNLOCK(); 4582 } 4583 4584 if (action == PF_PASS && bridge_to) { 4585 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4586 *m0 = NULL; /* We've eaten the packet. */ 4587 } 4588 4589 return (action); 4590 } 4591 4592 static int 4593 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4594 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4595 struct pf_kruleset **rsm, struct inpcb *inp) 4596 { 4597 struct pf_krule *nr = NULL; 4598 struct pf_addr * const saddr = pd->src; 4599 struct pf_addr * const daddr = pd->dst; 4600 sa_family_t af = pd->af; 4601 struct pf_krule *r, *a = NULL; 4602 struct pf_kruleset *ruleset = NULL; 4603 struct pf_krule_slist match_rules; 4604 struct pf_krule_item *ri; 4605 struct pf_ksrc_node *nsn = NULL; 4606 struct tcphdr *th = &pd->hdr.tcp; 4607 struct pf_state_key *sk = NULL, *nk = NULL; 4608 u_short reason; 4609 int rewrite = 0, hdrlen = 0; 4610 int tag = -1; 4611 int asd = 0; 4612 int match = 0; 4613 int state_icmp = 0, icmp_dir, multi; 4614 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4615 u_int16_t bproto_sum = 0, bip_sum = 0; 4616 u_int8_t icmptype = 0, icmpcode = 0; 4617 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4618 4619 PF_RULES_RASSERT(); 4620 4621 if (inp != NULL) { 4622 INP_LOCK_ASSERT(inp); 4623 pd->lookup.uid = inp->inp_cred->cr_uid; 4624 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4625 pd->lookup.done = 1; 4626 } 4627 4628 switch (pd->proto) { 4629 case IPPROTO_TCP: 4630 sport = th->th_sport; 4631 dport = th->th_dport; 4632 hdrlen = sizeof(*th); 4633 break; 4634 case IPPROTO_UDP: 4635 sport = pd->hdr.udp.uh_sport; 4636 dport = pd->hdr.udp.uh_dport; 4637 hdrlen = sizeof(pd->hdr.udp); 4638 break; 4639 case IPPROTO_SCTP: 4640 sport = pd->hdr.sctp.src_port; 4641 dport = pd->hdr.sctp.dest_port; 4642 hdrlen = sizeof(pd->hdr.sctp); 4643 break; 4644 #ifdef INET 4645 case IPPROTO_ICMP: 4646 if (pd->af != AF_INET) 4647 break; 4648 hdrlen = sizeof(pd->hdr.icmp); 4649 icmptype = pd->hdr.icmp.icmp_type; 4650 icmpcode = pd->hdr.icmp.icmp_code; 4651 state_icmp = pf_icmp_mapping(pd, icmptype, 4652 &icmp_dir, &multi, &virtual_id, &virtual_type); 4653 if (icmp_dir == PF_IN) { 4654 sport = virtual_id; 4655 dport = virtual_type; 4656 } else { 4657 sport = virtual_type; 4658 dport = virtual_id; 4659 } 4660 break; 4661 #endif /* INET */ 4662 #ifdef INET6 4663 case IPPROTO_ICMPV6: 4664 if (af != AF_INET6) 4665 break; 4666 hdrlen = sizeof(pd->hdr.icmp6); 4667 icmptype = pd->hdr.icmp6.icmp6_type; 4668 icmpcode = pd->hdr.icmp6.icmp6_code; 4669 state_icmp = pf_icmp_mapping(pd, icmptype, 4670 &icmp_dir, &multi, &virtual_id, &virtual_type); 4671 if (icmp_dir == PF_IN) { 4672 sport = virtual_id; 4673 dport = virtual_type; 4674 } else { 4675 sport = virtual_type; 4676 dport = virtual_id; 4677 } 4678 4679 break; 4680 #endif /* INET6 */ 4681 default: 4682 sport = dport = hdrlen = 0; 4683 break; 4684 } 4685 4686 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4687 4688 /* check packet for BINAT/NAT/RDR */ 4689 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4690 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4691 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4692 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4693 4694 if (nr->log) { 4695 PFLOG_PACKET(kif, m, af, PF_PASS, PFRES_MATCH, nr, a, 4696 ruleset, pd, 1); 4697 } 4698 4699 if (pd->ip_sum) 4700 bip_sum = *pd->ip_sum; 4701 4702 switch (pd->proto) { 4703 case IPPROTO_TCP: 4704 bproto_sum = th->th_sum; 4705 pd->proto_sum = &th->th_sum; 4706 4707 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4708 nk->port[pd->sidx] != sport) { 4709 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4710 &th->th_sum, &nk->addr[pd->sidx], 4711 nk->port[pd->sidx], 0, af); 4712 pd->sport = &th->th_sport; 4713 sport = th->th_sport; 4714 } 4715 4716 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4717 nk->port[pd->didx] != dport) { 4718 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4719 &th->th_sum, &nk->addr[pd->didx], 4720 nk->port[pd->didx], 0, af); 4721 dport = th->th_dport; 4722 pd->dport = &th->th_dport; 4723 } 4724 rewrite++; 4725 break; 4726 case IPPROTO_UDP: 4727 bproto_sum = pd->hdr.udp.uh_sum; 4728 pd->proto_sum = &pd->hdr.udp.uh_sum; 4729 4730 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4731 nk->port[pd->sidx] != sport) { 4732 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4733 pd->ip_sum, &pd->hdr.udp.uh_sum, 4734 &nk->addr[pd->sidx], 4735 nk->port[pd->sidx], 1, af); 4736 sport = pd->hdr.udp.uh_sport; 4737 pd->sport = &pd->hdr.udp.uh_sport; 4738 } 4739 4740 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4741 nk->port[pd->didx] != dport) { 4742 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4743 pd->ip_sum, &pd->hdr.udp.uh_sum, 4744 &nk->addr[pd->didx], 4745 nk->port[pd->didx], 1, af); 4746 dport = pd->hdr.udp.uh_dport; 4747 pd->dport = &pd->hdr.udp.uh_dport; 4748 } 4749 rewrite++; 4750 break; 4751 case IPPROTO_SCTP: { 4752 uint16_t checksum = 0; 4753 4754 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4755 nk->port[pd->sidx] != sport) { 4756 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 4757 pd->ip_sum, &checksum, 4758 &nk->addr[pd->sidx], 4759 nk->port[pd->sidx], 1, af); 4760 } 4761 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4762 nk->port[pd->didx] != dport) { 4763 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 4764 pd->ip_sum, &checksum, 4765 &nk->addr[pd->didx], 4766 nk->port[pd->didx], 1, af); 4767 } 4768 break; 4769 } 4770 #ifdef INET 4771 case IPPROTO_ICMP: 4772 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4773 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4774 nk->addr[pd->sidx].v4.s_addr, 0); 4775 4776 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4777 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4778 nk->addr[pd->didx].v4.s_addr, 0); 4779 4780 if (virtual_type == htons(ICMP_ECHO) && 4781 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 4782 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4783 pd->hdr.icmp.icmp_cksum, sport, 4784 nk->port[pd->sidx], 0); 4785 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 4786 pd->sport = &pd->hdr.icmp.icmp_id; 4787 } 4788 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4789 break; 4790 #endif /* INET */ 4791 #ifdef INET6 4792 case IPPROTO_ICMPV6: 4793 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4794 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4795 &nk->addr[pd->sidx], 0); 4796 4797 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4798 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4799 &nk->addr[pd->didx], 0); 4800 rewrite++; 4801 break; 4802 #endif /* INET */ 4803 default: 4804 switch (af) { 4805 #ifdef INET 4806 case AF_INET: 4807 if (PF_ANEQ(saddr, 4808 &nk->addr[pd->sidx], AF_INET)) 4809 pf_change_a(&saddr->v4.s_addr, 4810 pd->ip_sum, 4811 nk->addr[pd->sidx].v4.s_addr, 0); 4812 4813 if (PF_ANEQ(daddr, 4814 &nk->addr[pd->didx], AF_INET)) 4815 pf_change_a(&daddr->v4.s_addr, 4816 pd->ip_sum, 4817 nk->addr[pd->didx].v4.s_addr, 0); 4818 break; 4819 #endif /* INET */ 4820 #ifdef INET6 4821 case AF_INET6: 4822 if (PF_ANEQ(saddr, 4823 &nk->addr[pd->sidx], AF_INET6)) 4824 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4825 4826 if (PF_ANEQ(daddr, 4827 &nk->addr[pd->didx], AF_INET6)) 4828 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4829 break; 4830 #endif /* INET */ 4831 } 4832 break; 4833 } 4834 if (nr->natpass) 4835 r = NULL; 4836 pd->nat_rule = nr; 4837 } 4838 4839 SLIST_INIT(&match_rules); 4840 while (r != NULL) { 4841 pf_counter_u64_add(&r->evaluations, 1); 4842 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4843 r = r->skip[PF_SKIP_IFP].ptr; 4844 else if (r->direction && r->direction != pd->dir) 4845 r = r->skip[PF_SKIP_DIR].ptr; 4846 else if (r->af && r->af != af) 4847 r = r->skip[PF_SKIP_AF].ptr; 4848 else if (r->proto && r->proto != pd->proto) 4849 r = r->skip[PF_SKIP_PROTO].ptr; 4850 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4851 r->src.neg, kif, M_GETFIB(m))) 4852 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4853 /* tcp/udp only. port_op always 0 in other cases */ 4854 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4855 r->src.port[0], r->src.port[1], sport)) 4856 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4857 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4858 r->dst.neg, NULL, M_GETFIB(m))) 4859 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4860 /* tcp/udp only. port_op always 0 in other cases */ 4861 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4862 r->dst.port[0], r->dst.port[1], dport)) 4863 r = r->skip[PF_SKIP_DST_PORT].ptr; 4864 /* icmp only. type always 0 in other cases */ 4865 else if (r->type && r->type != icmptype + 1) 4866 r = TAILQ_NEXT(r, entries); 4867 /* icmp only. type always 0 in other cases */ 4868 else if (r->code && r->code != icmpcode + 1) 4869 r = TAILQ_NEXT(r, entries); 4870 else if (r->tos && !(r->tos == pd->tos)) 4871 r = TAILQ_NEXT(r, entries); 4872 else if (r->rule_flag & PFRULE_FRAGMENT) 4873 r = TAILQ_NEXT(r, entries); 4874 else if (pd->proto == IPPROTO_TCP && 4875 (r->flagset & th->th_flags) != r->flags) 4876 r = TAILQ_NEXT(r, entries); 4877 /* tcp/udp only. uid.op always 0 in other cases */ 4878 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4879 pf_socket_lookup(pd, m), 1)) && 4880 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4881 pd->lookup.uid)) 4882 r = TAILQ_NEXT(r, entries); 4883 /* tcp/udp only. gid.op always 0 in other cases */ 4884 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4885 pf_socket_lookup(pd, m), 1)) && 4886 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4887 pd->lookup.gid)) 4888 r = TAILQ_NEXT(r, entries); 4889 else if (r->prio && 4890 !pf_match_ieee8021q_pcp(r->prio, m)) 4891 r = TAILQ_NEXT(r, entries); 4892 else if (r->prob && 4893 r->prob <= arc4random()) 4894 r = TAILQ_NEXT(r, entries); 4895 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4896 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4897 r = TAILQ_NEXT(r, entries); 4898 else if (r->os_fingerprint != PF_OSFP_ANY && 4899 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4900 pf_osfp_fingerprint(pd, m, off, th), 4901 r->os_fingerprint))) 4902 r = TAILQ_NEXT(r, entries); 4903 else { 4904 if (r->tag) 4905 tag = r->tag; 4906 if (r->anchor == NULL) { 4907 if (r->action == PF_MATCH) { 4908 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4909 if (ri == NULL) { 4910 REASON_SET(&reason, PFRES_MEMORY); 4911 goto cleanup; 4912 } 4913 ri->r = r; 4914 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4915 pf_counter_u64_critical_enter(); 4916 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4917 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4918 pf_counter_u64_critical_exit(); 4919 pf_rule_to_actions(r, &pd->act); 4920 if (r->log) 4921 PFLOG_PACKET(kif, m, af, 4922 r->action, PFRES_MATCH, r, 4923 a, ruleset, pd, 1); 4924 } else { 4925 match = 1; 4926 *rm = r; 4927 *am = a; 4928 *rsm = ruleset; 4929 } 4930 if ((*rm)->quick) 4931 break; 4932 r = TAILQ_NEXT(r, entries); 4933 } else 4934 pf_step_into_anchor(anchor_stack, &asd, 4935 &ruleset, PF_RULESET_FILTER, &r, &a, 4936 &match); 4937 } 4938 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4939 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4940 break; 4941 } 4942 r = *rm; 4943 a = *am; 4944 ruleset = *rsm; 4945 4946 REASON_SET(&reason, PFRES_MATCH); 4947 4948 /* apply actions for last matching pass/block rule */ 4949 pf_rule_to_actions(r, &pd->act); 4950 4951 if (r->log) { 4952 if (rewrite) 4953 m_copyback(m, off, hdrlen, pd->hdr.any); 4954 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 4955 } 4956 4957 if ((r->action == PF_DROP) && 4958 ((r->rule_flag & PFRULE_RETURNRST) || 4959 (r->rule_flag & PFRULE_RETURNICMP) || 4960 (r->rule_flag & PFRULE_RETURN))) { 4961 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4962 bip_sum, hdrlen, &reason, r->rtableid); 4963 } 4964 4965 if (r->action == PF_DROP) 4966 goto cleanup; 4967 4968 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4969 REASON_SET(&reason, PFRES_MEMORY); 4970 goto cleanup; 4971 } 4972 if (pd->act.rtableid >= 0) 4973 M_SETFIB(m, pd->act.rtableid); 4974 4975 if (!state_icmp && (r->keep_state || nr != NULL || 4976 (pd->flags & PFDESC_TCP_NORM))) { 4977 int action; 4978 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4979 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4980 hdrlen, &match_rules); 4981 if (action != PF_PASS) { 4982 if (action == PF_DROP && 4983 (r->rule_flag & PFRULE_RETURN)) 4984 pf_return(r, nr, pd, sk, off, m, th, kif, 4985 bproto_sum, bip_sum, hdrlen, &reason, 4986 pd->act.rtableid); 4987 return (action); 4988 } 4989 } else { 4990 while ((ri = SLIST_FIRST(&match_rules))) { 4991 SLIST_REMOVE_HEAD(&match_rules, entry); 4992 free(ri, M_PF_RULE_ITEM); 4993 } 4994 4995 uma_zfree(V_pf_state_key_z, sk); 4996 uma_zfree(V_pf_state_key_z, nk); 4997 } 4998 4999 /* copy back packet headers if we performed NAT operations */ 5000 if (rewrite) 5001 m_copyback(m, off, hdrlen, pd->hdr.any); 5002 5003 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5004 pd->dir == PF_OUT && 5005 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 5006 /* 5007 * We want the state created, but we dont 5008 * want to send this in case a partner 5009 * firewall has to know about it to allow 5010 * replies through it. 5011 */ 5012 return (PF_DEFER); 5013 5014 return (PF_PASS); 5015 5016 cleanup: 5017 while ((ri = SLIST_FIRST(&match_rules))) { 5018 SLIST_REMOVE_HEAD(&match_rules, entry); 5019 free(ri, M_PF_RULE_ITEM); 5020 } 5021 5022 uma_zfree(V_pf_state_key_z, sk); 5023 uma_zfree(V_pf_state_key_z, nk); 5024 return (PF_DROP); 5025 } 5026 5027 static int 5028 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5029 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5030 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 5031 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 5032 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 5033 struct pf_krule_slist *match_rules) 5034 { 5035 struct pf_kstate *s = NULL; 5036 struct pf_ksrc_node *sn = NULL; 5037 struct tcphdr *th = &pd->hdr.tcp; 5038 u_int16_t mss = V_tcp_mssdflt; 5039 u_short reason, sn_reason; 5040 struct pf_krule_item *ri; 5041 5042 /* check maximums */ 5043 if (r->max_states && 5044 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5045 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5046 REASON_SET(&reason, PFRES_MAXSTATES); 5047 goto csfailed; 5048 } 5049 /* src node for filter rule */ 5050 if ((r->rule_flag & PFRULE_SRCTRACK || 5051 r->rpool.opts & PF_POOL_STICKYADDR) && 5052 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5053 REASON_SET(&reason, sn_reason); 5054 goto csfailed; 5055 } 5056 /* src node for translation rule */ 5057 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5058 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5059 pd->af)) != 0 ) { 5060 REASON_SET(&reason, sn_reason); 5061 goto csfailed; 5062 } 5063 s = pf_alloc_state(M_NOWAIT); 5064 if (s == NULL) { 5065 REASON_SET(&reason, PFRES_MEMORY); 5066 goto csfailed; 5067 } 5068 s->rule.ptr = r; 5069 s->nat_rule.ptr = nr; 5070 s->anchor.ptr = a; 5071 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5072 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5073 5074 STATE_INC_COUNTERS(s); 5075 if (r->allow_opts) 5076 s->state_flags |= PFSTATE_ALLOWOPTS; 5077 if (r->rule_flag & PFRULE_STATESLOPPY) 5078 s->state_flags |= PFSTATE_SLOPPY; 5079 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5080 s->state_flags |= PFSTATE_SCRUB_TCP; 5081 if ((r->rule_flag & PFRULE_PFLOW) || 5082 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5083 s->state_flags |= PFSTATE_PFLOW; 5084 5085 s->act.log = pd->act.log & PF_LOG_ALL; 5086 s->sync_state = PFSYNC_S_NONE; 5087 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5088 5089 if (nr != NULL) 5090 s->act.log |= nr->log & PF_LOG_ALL; 5091 switch (pd->proto) { 5092 case IPPROTO_TCP: 5093 s->src.seqlo = ntohl(th->th_seq); 5094 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5095 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5096 r->keep_state == PF_STATE_MODULATE) { 5097 /* Generate sequence number modulator */ 5098 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5099 0) 5100 s->src.seqdiff = 1; 5101 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 5102 htonl(s->src.seqlo + s->src.seqdiff), 0); 5103 *rewrite = 1; 5104 } else 5105 s->src.seqdiff = 0; 5106 if (th->th_flags & TH_SYN) { 5107 s->src.seqhi++; 5108 s->src.wscale = pf_get_wscale(m, off, 5109 th->th_off, pd->af); 5110 } 5111 s->src.max_win = MAX(ntohs(th->th_win), 1); 5112 if (s->src.wscale & PF_WSCALE_MASK) { 5113 /* Remove scale factor from initial window */ 5114 int win = s->src.max_win; 5115 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5116 s->src.max_win = (win - 1) >> 5117 (s->src.wscale & PF_WSCALE_MASK); 5118 } 5119 if (th->th_flags & TH_FIN) 5120 s->src.seqhi++; 5121 s->dst.seqhi = 1; 5122 s->dst.max_win = 1; 5123 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5124 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5125 s->timeout = PFTM_TCP_FIRST_PACKET; 5126 atomic_add_32(&V_pf_status.states_halfopen, 1); 5127 break; 5128 case IPPROTO_UDP: 5129 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5130 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5131 s->timeout = PFTM_UDP_FIRST_PACKET; 5132 break; 5133 case IPPROTO_SCTP: 5134 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5135 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5136 s->timeout = PFTM_SCTP_FIRST_PACKET; 5137 break; 5138 case IPPROTO_ICMP: 5139 #ifdef INET6 5140 case IPPROTO_ICMPV6: 5141 #endif 5142 s->timeout = PFTM_ICMP_FIRST_PACKET; 5143 break; 5144 default: 5145 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5146 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5147 s->timeout = PFTM_OTHER_FIRST_PACKET; 5148 } 5149 5150 if (r->rt) { 5151 /* pf_map_addr increases the reason counters */ 5152 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 5153 &s->rt_kif, NULL, &sn)) != 0) 5154 goto csfailed; 5155 s->rt = r->rt; 5156 } 5157 5158 s->creation = s->expire = pf_get_uptime(); 5159 5160 if (sn != NULL) 5161 s->src_node = sn; 5162 if (nsn != NULL) { 5163 /* XXX We only modify one side for now. */ 5164 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5165 s->nat_src_node = nsn; 5166 } 5167 if (pd->proto == IPPROTO_TCP) { 5168 if (s->state_flags & PFSTATE_SCRUB_TCP && 5169 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 5170 REASON_SET(&reason, PFRES_MEMORY); 5171 goto drop; 5172 } 5173 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5174 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 5175 &s->src, &s->dst, rewrite)) { 5176 /* This really shouldn't happen!!! */ 5177 DPFPRINTF(PF_DEBUG_URGENT, 5178 ("pf_normalize_tcp_stateful failed on first " 5179 "pkt\n")); 5180 goto drop; 5181 } 5182 } else if (pd->proto == IPPROTO_SCTP) { 5183 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 5184 goto drop; 5185 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5186 goto drop; 5187 } 5188 s->direction = pd->dir; 5189 5190 /* 5191 * sk/nk could already been setup by pf_get_translation(). 5192 */ 5193 if (nr == NULL) { 5194 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5195 __func__, nr, sk, nk)); 5196 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5197 if (sk == NULL) 5198 goto csfailed; 5199 nk = sk; 5200 } else 5201 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5202 __func__, nr, sk, nk)); 5203 5204 /* Swap sk/nk for PF_OUT. */ 5205 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5206 (pd->dir == PF_IN) ? sk : nk, 5207 (pd->dir == PF_IN) ? nk : sk, s)) { 5208 REASON_SET(&reason, PFRES_STATEINS); 5209 goto drop; 5210 } else 5211 *sm = s; 5212 5213 if (tag > 0) 5214 s->tag = tag; 5215 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5216 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5217 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5218 /* undo NAT changes, if they have taken place */ 5219 if (nr != NULL) { 5220 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5221 if (pd->dir == PF_OUT) 5222 skt = s->key[PF_SK_STACK]; 5223 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5224 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5225 if (pd->sport) 5226 *pd->sport = skt->port[pd->sidx]; 5227 if (pd->dport) 5228 *pd->dport = skt->port[pd->didx]; 5229 if (pd->proto_sum) 5230 *pd->proto_sum = bproto_sum; 5231 if (pd->ip_sum) 5232 *pd->ip_sum = bip_sum; 5233 m_copyback(m, off, hdrlen, pd->hdr.any); 5234 } 5235 s->src.seqhi = htonl(arc4random()); 5236 /* Find mss option */ 5237 int rtid = M_GETFIB(m); 5238 mss = pf_get_mss(m, off, th->th_off, pd->af); 5239 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5240 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5241 s->src.mss = mss; 5242 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5243 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5244 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5245 pd->act.rtableid); 5246 REASON_SET(&reason, PFRES_SYNPROXY); 5247 return (PF_SYNPROXY_DROP); 5248 } 5249 5250 return (PF_PASS); 5251 5252 csfailed: 5253 while ((ri = SLIST_FIRST(match_rules))) { 5254 SLIST_REMOVE_HEAD(match_rules, entry); 5255 free(ri, M_PF_RULE_ITEM); 5256 } 5257 5258 uma_zfree(V_pf_state_key_z, sk); 5259 uma_zfree(V_pf_state_key_z, nk); 5260 5261 if (sn != NULL) { 5262 PF_SRC_NODE_LOCK(sn); 5263 if (--sn->states == 0 && sn->expire == 0) { 5264 pf_unlink_src_node(sn); 5265 uma_zfree(V_pf_sources_z, sn); 5266 counter_u64_add( 5267 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5268 } 5269 PF_SRC_NODE_UNLOCK(sn); 5270 } 5271 5272 if (nsn != sn && nsn != NULL) { 5273 PF_SRC_NODE_LOCK(nsn); 5274 if (--nsn->states == 0 && nsn->expire == 0) { 5275 pf_unlink_src_node(nsn); 5276 uma_zfree(V_pf_sources_z, nsn); 5277 counter_u64_add( 5278 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5279 } 5280 PF_SRC_NODE_UNLOCK(nsn); 5281 } 5282 5283 drop: 5284 if (s != NULL) { 5285 pf_src_tree_remove_state(s); 5286 s->timeout = PFTM_UNLINKED; 5287 STATE_DEC_COUNTERS(s); 5288 pf_free_state(s); 5289 } 5290 5291 return (PF_DROP); 5292 } 5293 5294 static int 5295 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5296 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5297 struct pf_kruleset **rsm) 5298 { 5299 struct pf_krule *r, *a = NULL; 5300 struct pf_kruleset *ruleset = NULL; 5301 struct pf_krule_slist match_rules; 5302 struct pf_krule_item *ri; 5303 sa_family_t af = pd->af; 5304 u_short reason; 5305 int tag = -1; 5306 int asd = 0; 5307 int match = 0; 5308 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5309 5310 PF_RULES_RASSERT(); 5311 5312 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5313 SLIST_INIT(&match_rules); 5314 while (r != NULL) { 5315 pf_counter_u64_add(&r->evaluations, 1); 5316 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5317 r = r->skip[PF_SKIP_IFP].ptr; 5318 else if (r->direction && r->direction != pd->dir) 5319 r = r->skip[PF_SKIP_DIR].ptr; 5320 else if (r->af && r->af != af) 5321 r = r->skip[PF_SKIP_AF].ptr; 5322 else if (r->proto && r->proto != pd->proto) 5323 r = r->skip[PF_SKIP_PROTO].ptr; 5324 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5325 r->src.neg, kif, M_GETFIB(m))) 5326 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5327 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5328 r->dst.neg, NULL, M_GETFIB(m))) 5329 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5330 else if (r->tos && !(r->tos == pd->tos)) 5331 r = TAILQ_NEXT(r, entries); 5332 else if (r->os_fingerprint != PF_OSFP_ANY) 5333 r = TAILQ_NEXT(r, entries); 5334 else if (pd->proto == IPPROTO_UDP && 5335 (r->src.port_op || r->dst.port_op)) 5336 r = TAILQ_NEXT(r, entries); 5337 else if (pd->proto == IPPROTO_TCP && 5338 (r->src.port_op || r->dst.port_op || r->flagset)) 5339 r = TAILQ_NEXT(r, entries); 5340 else if ((pd->proto == IPPROTO_ICMP || 5341 pd->proto == IPPROTO_ICMPV6) && 5342 (r->type || r->code)) 5343 r = TAILQ_NEXT(r, entries); 5344 else if (r->prio && 5345 !pf_match_ieee8021q_pcp(r->prio, m)) 5346 r = TAILQ_NEXT(r, entries); 5347 else if (r->prob && r->prob <= 5348 (arc4random() % (UINT_MAX - 1) + 1)) 5349 r = TAILQ_NEXT(r, entries); 5350 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5351 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5352 r = TAILQ_NEXT(r, entries); 5353 else { 5354 if (r->anchor == NULL) { 5355 if (r->action == PF_MATCH) { 5356 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5357 if (ri == NULL) { 5358 REASON_SET(&reason, PFRES_MEMORY); 5359 goto cleanup; 5360 } 5361 ri->r = r; 5362 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5363 pf_counter_u64_critical_enter(); 5364 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5365 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5366 pf_counter_u64_critical_exit(); 5367 pf_rule_to_actions(r, &pd->act); 5368 if (r->log) 5369 PFLOG_PACKET(kif, m, af, 5370 r->action, PFRES_MATCH, r, 5371 a, ruleset, pd, 1); 5372 } else { 5373 match = 1; 5374 *rm = r; 5375 *am = a; 5376 *rsm = ruleset; 5377 } 5378 if ((*rm)->quick) 5379 break; 5380 r = TAILQ_NEXT(r, entries); 5381 } else 5382 pf_step_into_anchor(anchor_stack, &asd, 5383 &ruleset, PF_RULESET_FILTER, &r, &a, 5384 &match); 5385 } 5386 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5387 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5388 break; 5389 } 5390 r = *rm; 5391 a = *am; 5392 ruleset = *rsm; 5393 5394 REASON_SET(&reason, PFRES_MATCH); 5395 5396 /* apply actions for last matching pass/block rule */ 5397 pf_rule_to_actions(r, &pd->act); 5398 5399 if (r->log) 5400 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5401 5402 if (r->action != PF_PASS) 5403 return (PF_DROP); 5404 5405 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5406 REASON_SET(&reason, PFRES_MEMORY); 5407 goto cleanup; 5408 } 5409 5410 return (PF_PASS); 5411 5412 cleanup: 5413 while ((ri = SLIST_FIRST(&match_rules))) { 5414 SLIST_REMOVE_HEAD(&match_rules, entry); 5415 free(ri, M_PF_RULE_ITEM); 5416 } 5417 5418 return (PF_DROP); 5419 } 5420 5421 static int 5422 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5423 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5424 int *copyback) 5425 { 5426 struct tcphdr *th = &pd->hdr.tcp; 5427 struct pf_state_peer *src, *dst; 5428 u_int16_t win = ntohs(th->th_win); 5429 u_int32_t ack, end, data_end, seq, orig_seq; 5430 u_int8_t sws, dws, psrc, pdst; 5431 int ackskew; 5432 5433 if (pd->dir == (*state)->direction) { 5434 src = &(*state)->src; 5435 dst = &(*state)->dst; 5436 psrc = PF_PEER_SRC; 5437 pdst = PF_PEER_DST; 5438 } else { 5439 src = &(*state)->dst; 5440 dst = &(*state)->src; 5441 psrc = PF_PEER_DST; 5442 pdst = PF_PEER_SRC; 5443 } 5444 5445 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5446 sws = src->wscale & PF_WSCALE_MASK; 5447 dws = dst->wscale & PF_WSCALE_MASK; 5448 } else 5449 sws = dws = 0; 5450 5451 /* 5452 * Sequence tracking algorithm from Guido van Rooij's paper: 5453 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5454 * tcp_filtering.ps 5455 */ 5456 5457 orig_seq = seq = ntohl(th->th_seq); 5458 if (src->seqlo == 0) { 5459 /* First packet from this end. Set its state */ 5460 5461 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5462 src->scrub == NULL) { 5463 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5464 REASON_SET(reason, PFRES_MEMORY); 5465 return (PF_DROP); 5466 } 5467 } 5468 5469 /* Deferred generation of sequence number modulator */ 5470 if (dst->seqdiff && !src->seqdiff) { 5471 /* use random iss for the TCP server */ 5472 while ((src->seqdiff = arc4random() - seq) == 0) 5473 ; 5474 ack = ntohl(th->th_ack) - dst->seqdiff; 5475 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5476 src->seqdiff), 0); 5477 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5478 *copyback = 1; 5479 } else { 5480 ack = ntohl(th->th_ack); 5481 } 5482 5483 end = seq + pd->p_len; 5484 if (th->th_flags & TH_SYN) { 5485 end++; 5486 if (dst->wscale & PF_WSCALE_FLAG) { 5487 src->wscale = pf_get_wscale(m, off, th->th_off, 5488 pd->af); 5489 if (src->wscale & PF_WSCALE_FLAG) { 5490 /* Remove scale factor from initial 5491 * window */ 5492 sws = src->wscale & PF_WSCALE_MASK; 5493 win = ((u_int32_t)win + (1 << sws) - 1) 5494 >> sws; 5495 dws = dst->wscale & PF_WSCALE_MASK; 5496 } else { 5497 /* fixup other window */ 5498 dst->max_win = MIN(TCP_MAXWIN, 5499 (u_int32_t)dst->max_win << 5500 (dst->wscale & PF_WSCALE_MASK)); 5501 /* in case of a retrans SYN|ACK */ 5502 dst->wscale = 0; 5503 } 5504 } 5505 } 5506 data_end = end; 5507 if (th->th_flags & TH_FIN) 5508 end++; 5509 5510 src->seqlo = seq; 5511 if (src->state < TCPS_SYN_SENT) 5512 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5513 5514 /* 5515 * May need to slide the window (seqhi may have been set by 5516 * the crappy stack check or if we picked up the connection 5517 * after establishment) 5518 */ 5519 if (src->seqhi == 1 || 5520 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5521 src->seqhi = end + MAX(1, dst->max_win << dws); 5522 if (win > src->max_win) 5523 src->max_win = win; 5524 5525 } else { 5526 ack = ntohl(th->th_ack) - dst->seqdiff; 5527 if (src->seqdiff) { 5528 /* Modulate sequence numbers */ 5529 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5530 src->seqdiff), 0); 5531 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5532 *copyback = 1; 5533 } 5534 end = seq + pd->p_len; 5535 if (th->th_flags & TH_SYN) 5536 end++; 5537 data_end = end; 5538 if (th->th_flags & TH_FIN) 5539 end++; 5540 } 5541 5542 if ((th->th_flags & TH_ACK) == 0) { 5543 /* Let it pass through the ack skew check */ 5544 ack = dst->seqlo; 5545 } else if ((ack == 0 && 5546 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5547 /* broken tcp stacks do not set ack */ 5548 (dst->state < TCPS_SYN_SENT)) { 5549 /* 5550 * Many stacks (ours included) will set the ACK number in an 5551 * FIN|ACK if the SYN times out -- no sequence to ACK. 5552 */ 5553 ack = dst->seqlo; 5554 } 5555 5556 if (seq == end) { 5557 /* Ease sequencing restrictions on no data packets */ 5558 seq = src->seqlo; 5559 data_end = end = seq; 5560 } 5561 5562 ackskew = dst->seqlo - ack; 5563 5564 /* 5565 * Need to demodulate the sequence numbers in any TCP SACK options 5566 * (Selective ACK). We could optionally validate the SACK values 5567 * against the current ACK window, either forwards or backwards, but 5568 * I'm not confident that SACK has been implemented properly 5569 * everywhere. It wouldn't surprise me if several stacks accidentally 5570 * SACK too far backwards of previously ACKed data. There really aren't 5571 * any security implications of bad SACKing unless the target stack 5572 * doesn't validate the option length correctly. Someone trying to 5573 * spoof into a TCP connection won't bother blindly sending SACK 5574 * options anyway. 5575 */ 5576 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5577 if (pf_modulate_sack(m, off, pd, th, dst)) 5578 *copyback = 1; 5579 } 5580 5581 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5582 if (SEQ_GEQ(src->seqhi, data_end) && 5583 /* Last octet inside other's window space */ 5584 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5585 /* Retrans: not more than one window back */ 5586 (ackskew >= -MAXACKWINDOW) && 5587 /* Acking not more than one reassembled fragment backwards */ 5588 (ackskew <= (MAXACKWINDOW << sws)) && 5589 /* Acking not more than one window forward */ 5590 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5591 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5592 /* Require an exact/+1 sequence match on resets when possible */ 5593 5594 if (dst->scrub || src->scrub) { 5595 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5596 *state, src, dst, copyback)) 5597 return (PF_DROP); 5598 } 5599 5600 /* update max window */ 5601 if (src->max_win < win) 5602 src->max_win = win; 5603 /* synchronize sequencing */ 5604 if (SEQ_GT(end, src->seqlo)) 5605 src->seqlo = end; 5606 /* slide the window of what the other end can send */ 5607 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5608 dst->seqhi = ack + MAX((win << sws), 1); 5609 5610 /* update states */ 5611 if (th->th_flags & TH_SYN) 5612 if (src->state < TCPS_SYN_SENT) 5613 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5614 if (th->th_flags & TH_FIN) 5615 if (src->state < TCPS_CLOSING) 5616 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5617 if (th->th_flags & TH_ACK) { 5618 if (dst->state == TCPS_SYN_SENT) { 5619 pf_set_protostate(*state, pdst, 5620 TCPS_ESTABLISHED); 5621 if (src->state == TCPS_ESTABLISHED && 5622 (*state)->src_node != NULL && 5623 pf_src_connlimit(state)) { 5624 REASON_SET(reason, PFRES_SRCLIMIT); 5625 return (PF_DROP); 5626 } 5627 } else if (dst->state == TCPS_CLOSING) 5628 pf_set_protostate(*state, pdst, 5629 TCPS_FIN_WAIT_2); 5630 } 5631 if (th->th_flags & TH_RST) 5632 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5633 5634 /* update expire time */ 5635 (*state)->expire = pf_get_uptime(); 5636 if (src->state >= TCPS_FIN_WAIT_2 && 5637 dst->state >= TCPS_FIN_WAIT_2) 5638 (*state)->timeout = PFTM_TCP_CLOSED; 5639 else if (src->state >= TCPS_CLOSING && 5640 dst->state >= TCPS_CLOSING) 5641 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5642 else if (src->state < TCPS_ESTABLISHED || 5643 dst->state < TCPS_ESTABLISHED) 5644 (*state)->timeout = PFTM_TCP_OPENING; 5645 else if (src->state >= TCPS_CLOSING || 5646 dst->state >= TCPS_CLOSING) 5647 (*state)->timeout = PFTM_TCP_CLOSING; 5648 else 5649 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5650 5651 /* Fall through to PASS packet */ 5652 5653 } else if ((dst->state < TCPS_SYN_SENT || 5654 dst->state >= TCPS_FIN_WAIT_2 || 5655 src->state >= TCPS_FIN_WAIT_2) && 5656 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5657 /* Within a window forward of the originating packet */ 5658 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5659 /* Within a window backward of the originating packet */ 5660 5661 /* 5662 * This currently handles three situations: 5663 * 1) Stupid stacks will shotgun SYNs before their peer 5664 * replies. 5665 * 2) When PF catches an already established stream (the 5666 * firewall rebooted, the state table was flushed, routes 5667 * changed...) 5668 * 3) Packets get funky immediately after the connection 5669 * closes (this should catch Solaris spurious ACK|FINs 5670 * that web servers like to spew after a close) 5671 * 5672 * This must be a little more careful than the above code 5673 * since packet floods will also be caught here. We don't 5674 * update the TTL here to mitigate the damage of a packet 5675 * flood and so the same code can handle awkward establishment 5676 * and a loosened connection close. 5677 * In the establishment case, a correct peer response will 5678 * validate the connection, go through the normal state code 5679 * and keep updating the state TTL. 5680 */ 5681 5682 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5683 printf("pf: loose state match: "); 5684 pf_print_state(*state); 5685 pf_print_flags(th->th_flags); 5686 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5687 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5688 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5689 (unsigned long long)(*state)->packets[1], 5690 pd->dir == PF_IN ? "in" : "out", 5691 pd->dir == (*state)->direction ? "fwd" : "rev"); 5692 } 5693 5694 if (dst->scrub || src->scrub) { 5695 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5696 *state, src, dst, copyback)) 5697 return (PF_DROP); 5698 } 5699 5700 /* update max window */ 5701 if (src->max_win < win) 5702 src->max_win = win; 5703 /* synchronize sequencing */ 5704 if (SEQ_GT(end, src->seqlo)) 5705 src->seqlo = end; 5706 /* slide the window of what the other end can send */ 5707 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5708 dst->seqhi = ack + MAX((win << sws), 1); 5709 5710 /* 5711 * Cannot set dst->seqhi here since this could be a shotgunned 5712 * SYN and not an already established connection. 5713 */ 5714 5715 if (th->th_flags & TH_FIN) 5716 if (src->state < TCPS_CLOSING) 5717 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5718 if (th->th_flags & TH_RST) 5719 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5720 5721 /* Fall through to PASS packet */ 5722 5723 } else { 5724 if ((*state)->dst.state == TCPS_SYN_SENT && 5725 (*state)->src.state == TCPS_SYN_SENT) { 5726 /* Send RST for state mismatches during handshake */ 5727 if (!(th->th_flags & TH_RST)) 5728 pf_send_tcp((*state)->rule.ptr, pd->af, 5729 pd->dst, pd->src, th->th_dport, 5730 th->th_sport, ntohl(th->th_ack), 0, 5731 TH_RST, 0, 0, 5732 (*state)->rule.ptr->return_ttl, true, 0, 0, 5733 (*state)->act.rtableid); 5734 src->seqlo = 0; 5735 src->seqhi = 1; 5736 src->max_win = 1; 5737 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5738 printf("pf: BAD state: "); 5739 pf_print_state(*state); 5740 pf_print_flags(th->th_flags); 5741 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5742 "pkts=%llu:%llu dir=%s,%s\n", 5743 seq, orig_seq, ack, pd->p_len, ackskew, 5744 (unsigned long long)(*state)->packets[0], 5745 (unsigned long long)(*state)->packets[1], 5746 pd->dir == PF_IN ? "in" : "out", 5747 pd->dir == (*state)->direction ? "fwd" : "rev"); 5748 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5749 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5750 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5751 ' ': '2', 5752 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5753 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5754 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5755 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5756 } 5757 REASON_SET(reason, PFRES_BADSTATE); 5758 return (PF_DROP); 5759 } 5760 5761 return (PF_PASS); 5762 } 5763 5764 static int 5765 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5766 { 5767 struct tcphdr *th = &pd->hdr.tcp; 5768 struct pf_state_peer *src, *dst; 5769 u_int8_t psrc, pdst; 5770 5771 if (pd->dir == (*state)->direction) { 5772 src = &(*state)->src; 5773 dst = &(*state)->dst; 5774 psrc = PF_PEER_SRC; 5775 pdst = PF_PEER_DST; 5776 } else { 5777 src = &(*state)->dst; 5778 dst = &(*state)->src; 5779 psrc = PF_PEER_DST; 5780 pdst = PF_PEER_SRC; 5781 } 5782 5783 if (th->th_flags & TH_SYN) 5784 if (src->state < TCPS_SYN_SENT) 5785 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5786 if (th->th_flags & TH_FIN) 5787 if (src->state < TCPS_CLOSING) 5788 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5789 if (th->th_flags & TH_ACK) { 5790 if (dst->state == TCPS_SYN_SENT) { 5791 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5792 if (src->state == TCPS_ESTABLISHED && 5793 (*state)->src_node != NULL && 5794 pf_src_connlimit(state)) { 5795 REASON_SET(reason, PFRES_SRCLIMIT); 5796 return (PF_DROP); 5797 } 5798 } else if (dst->state == TCPS_CLOSING) { 5799 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5800 } else if (src->state == TCPS_SYN_SENT && 5801 dst->state < TCPS_SYN_SENT) { 5802 /* 5803 * Handle a special sloppy case where we only see one 5804 * half of the connection. If there is a ACK after 5805 * the initial SYN without ever seeing a packet from 5806 * the destination, set the connection to established. 5807 */ 5808 pf_set_protostate(*state, PF_PEER_BOTH, 5809 TCPS_ESTABLISHED); 5810 dst->state = src->state = TCPS_ESTABLISHED; 5811 if ((*state)->src_node != NULL && 5812 pf_src_connlimit(state)) { 5813 REASON_SET(reason, PFRES_SRCLIMIT); 5814 return (PF_DROP); 5815 } 5816 } else if (src->state == TCPS_CLOSING && 5817 dst->state == TCPS_ESTABLISHED && 5818 dst->seqlo == 0) { 5819 /* 5820 * Handle the closing of half connections where we 5821 * don't see the full bidirectional FIN/ACK+ACK 5822 * handshake. 5823 */ 5824 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5825 } 5826 } 5827 if (th->th_flags & TH_RST) 5828 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5829 5830 /* update expire time */ 5831 (*state)->expire = pf_get_uptime(); 5832 if (src->state >= TCPS_FIN_WAIT_2 && 5833 dst->state >= TCPS_FIN_WAIT_2) 5834 (*state)->timeout = PFTM_TCP_CLOSED; 5835 else if (src->state >= TCPS_CLOSING && 5836 dst->state >= TCPS_CLOSING) 5837 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5838 else if (src->state < TCPS_ESTABLISHED || 5839 dst->state < TCPS_ESTABLISHED) 5840 (*state)->timeout = PFTM_TCP_OPENING; 5841 else if (src->state >= TCPS_CLOSING || 5842 dst->state >= TCPS_CLOSING) 5843 (*state)->timeout = PFTM_TCP_CLOSING; 5844 else 5845 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5846 5847 return (PF_PASS); 5848 } 5849 5850 static int 5851 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5852 { 5853 struct pf_state_key *sk = (*state)->key[pd->didx]; 5854 struct tcphdr *th = &pd->hdr.tcp; 5855 5856 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5857 if (pd->dir != (*state)->direction) { 5858 REASON_SET(reason, PFRES_SYNPROXY); 5859 return (PF_SYNPROXY_DROP); 5860 } 5861 if (th->th_flags & TH_SYN) { 5862 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5863 REASON_SET(reason, PFRES_SYNPROXY); 5864 return (PF_DROP); 5865 } 5866 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5867 pd->src, th->th_dport, th->th_sport, 5868 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5869 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5870 (*state)->act.rtableid); 5871 REASON_SET(reason, PFRES_SYNPROXY); 5872 return (PF_SYNPROXY_DROP); 5873 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5874 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5875 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5876 REASON_SET(reason, PFRES_SYNPROXY); 5877 return (PF_DROP); 5878 } else if ((*state)->src_node != NULL && 5879 pf_src_connlimit(state)) { 5880 REASON_SET(reason, PFRES_SRCLIMIT); 5881 return (PF_DROP); 5882 } else 5883 pf_set_protostate(*state, PF_PEER_SRC, 5884 PF_TCPS_PROXY_DST); 5885 } 5886 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5887 if (pd->dir == (*state)->direction) { 5888 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5889 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5890 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5891 REASON_SET(reason, PFRES_SYNPROXY); 5892 return (PF_DROP); 5893 } 5894 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5895 if ((*state)->dst.seqhi == 1) 5896 (*state)->dst.seqhi = htonl(arc4random()); 5897 pf_send_tcp((*state)->rule.ptr, pd->af, 5898 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5899 sk->port[pd->sidx], sk->port[pd->didx], 5900 (*state)->dst.seqhi, 0, TH_SYN, 0, 5901 (*state)->src.mss, 0, false, (*state)->tag, 0, 5902 (*state)->act.rtableid); 5903 REASON_SET(reason, PFRES_SYNPROXY); 5904 return (PF_SYNPROXY_DROP); 5905 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5906 (TH_SYN|TH_ACK)) || 5907 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5908 REASON_SET(reason, PFRES_SYNPROXY); 5909 return (PF_DROP); 5910 } else { 5911 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5912 (*state)->dst.seqlo = ntohl(th->th_seq); 5913 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5914 pd->src, th->th_dport, th->th_sport, 5915 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5916 TH_ACK, (*state)->src.max_win, 0, 0, false, 5917 (*state)->tag, 0, (*state)->act.rtableid); 5918 pf_send_tcp((*state)->rule.ptr, pd->af, 5919 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5920 sk->port[pd->sidx], sk->port[pd->didx], 5921 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5922 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5923 (*state)->act.rtableid); 5924 (*state)->src.seqdiff = (*state)->dst.seqhi - 5925 (*state)->src.seqlo; 5926 (*state)->dst.seqdiff = (*state)->src.seqhi - 5927 (*state)->dst.seqlo; 5928 (*state)->src.seqhi = (*state)->src.seqlo + 5929 (*state)->dst.max_win; 5930 (*state)->dst.seqhi = (*state)->dst.seqlo + 5931 (*state)->src.max_win; 5932 (*state)->src.wscale = (*state)->dst.wscale = 0; 5933 pf_set_protostate(*state, PF_PEER_BOTH, 5934 TCPS_ESTABLISHED); 5935 REASON_SET(reason, PFRES_SYNPROXY); 5936 return (PF_SYNPROXY_DROP); 5937 } 5938 } 5939 5940 return (PF_PASS); 5941 } 5942 5943 static int 5944 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5945 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5946 u_short *reason) 5947 { 5948 struct pf_state_key_cmp key; 5949 struct tcphdr *th = &pd->hdr.tcp; 5950 int copyback = 0; 5951 int action; 5952 struct pf_state_peer *src, *dst; 5953 5954 bzero(&key, sizeof(key)); 5955 key.af = pd->af; 5956 key.proto = IPPROTO_TCP; 5957 if (pd->dir == PF_IN) { /* wire side, straight */ 5958 PF_ACPY(&key.addr[0], pd->src, key.af); 5959 PF_ACPY(&key.addr[1], pd->dst, key.af); 5960 key.port[0] = th->th_sport; 5961 key.port[1] = th->th_dport; 5962 } else { /* stack side, reverse */ 5963 PF_ACPY(&key.addr[1], pd->src, key.af); 5964 PF_ACPY(&key.addr[0], pd->dst, key.af); 5965 key.port[1] = th->th_sport; 5966 key.port[0] = th->th_dport; 5967 } 5968 5969 STATE_LOOKUP(kif, &key, *state, pd); 5970 5971 if (pd->dir == (*state)->direction) { 5972 src = &(*state)->src; 5973 dst = &(*state)->dst; 5974 } else { 5975 src = &(*state)->dst; 5976 dst = &(*state)->src; 5977 } 5978 5979 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5980 return (action); 5981 5982 if (dst->state >= TCPS_FIN_WAIT_2 && 5983 src->state >= TCPS_FIN_WAIT_2 && 5984 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5985 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5986 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5987 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5988 printf("pf: state reuse "); 5989 pf_print_state(*state); 5990 pf_print_flags(th->th_flags); 5991 printf("\n"); 5992 } 5993 /* XXX make sure it's the same direction ?? */ 5994 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5995 pf_unlink_state(*state); 5996 *state = NULL; 5997 return (PF_DROP); 5998 } 5999 6000 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6001 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6002 return (PF_DROP); 6003 } else { 6004 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 6005 ©back) == PF_DROP) 6006 return (PF_DROP); 6007 } 6008 6009 /* translate source/destination address, if necessary */ 6010 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6011 struct pf_state_key *nk = (*state)->key[pd->didx]; 6012 6013 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6014 nk->port[pd->sidx] != th->th_sport) 6015 pf_change_ap(m, pd->src, &th->th_sport, 6016 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6017 nk->port[pd->sidx], 0, pd->af); 6018 6019 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6020 nk->port[pd->didx] != th->th_dport) 6021 pf_change_ap(m, pd->dst, &th->th_dport, 6022 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6023 nk->port[pd->didx], 0, pd->af); 6024 copyback = 1; 6025 } 6026 6027 /* Copyback sequence modulation or stateful scrub changes if needed */ 6028 if (copyback) 6029 m_copyback(m, off, sizeof(*th), (caddr_t)th); 6030 6031 return (PF_PASS); 6032 } 6033 6034 static int 6035 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 6036 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 6037 { 6038 struct pf_state_peer *src, *dst; 6039 struct pf_state_key_cmp key; 6040 struct udphdr *uh = &pd->hdr.udp; 6041 uint8_t psrc, pdst; 6042 6043 bzero(&key, sizeof(key)); 6044 key.af = pd->af; 6045 key.proto = IPPROTO_UDP; 6046 if (pd->dir == PF_IN) { /* wire side, straight */ 6047 PF_ACPY(&key.addr[0], pd->src, key.af); 6048 PF_ACPY(&key.addr[1], pd->dst, key.af); 6049 key.port[0] = uh->uh_sport; 6050 key.port[1] = uh->uh_dport; 6051 } else { /* stack side, reverse */ 6052 PF_ACPY(&key.addr[1], pd->src, key.af); 6053 PF_ACPY(&key.addr[0], pd->dst, key.af); 6054 key.port[1] = uh->uh_sport; 6055 key.port[0] = uh->uh_dport; 6056 } 6057 6058 STATE_LOOKUP(kif, &key, *state, pd); 6059 6060 if (pd->dir == (*state)->direction) { 6061 src = &(*state)->src; 6062 dst = &(*state)->dst; 6063 psrc = PF_PEER_SRC; 6064 pdst = PF_PEER_DST; 6065 } else { 6066 src = &(*state)->dst; 6067 dst = &(*state)->src; 6068 psrc = PF_PEER_DST; 6069 pdst = PF_PEER_SRC; 6070 } 6071 6072 /* update states */ 6073 if (src->state < PFUDPS_SINGLE) 6074 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6075 if (dst->state == PFUDPS_SINGLE) 6076 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6077 6078 /* update expire time */ 6079 (*state)->expire = pf_get_uptime(); 6080 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6081 (*state)->timeout = PFTM_UDP_MULTIPLE; 6082 else 6083 (*state)->timeout = PFTM_UDP_SINGLE; 6084 6085 /* translate source/destination address, if necessary */ 6086 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6087 struct pf_state_key *nk = (*state)->key[pd->didx]; 6088 6089 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6090 nk->port[pd->sidx] != uh->uh_sport) 6091 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 6092 &uh->uh_sum, &nk->addr[pd->sidx], 6093 nk->port[pd->sidx], 1, pd->af); 6094 6095 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6096 nk->port[pd->didx] != uh->uh_dport) 6097 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 6098 &uh->uh_sum, &nk->addr[pd->didx], 6099 nk->port[pd->didx], 1, pd->af); 6100 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 6101 } 6102 6103 return (PF_PASS); 6104 } 6105 6106 static int 6107 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 6108 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6109 { 6110 struct pf_state_key_cmp key; 6111 struct pf_state_peer *src, *dst; 6112 struct sctphdr *sh = &pd->hdr.sctp; 6113 u_int8_t psrc; //, pdst; 6114 6115 bzero(&key, sizeof(key)); 6116 key.af = pd->af; 6117 key.proto = IPPROTO_SCTP; 6118 if (pd->dir == PF_IN) { /* wire side, straight */ 6119 PF_ACPY(&key.addr[0], pd->src, key.af); 6120 PF_ACPY(&key.addr[1], pd->dst, key.af); 6121 key.port[0] = sh->src_port; 6122 key.port[1] = sh->dest_port; 6123 } else { /* stack side, reverse */ 6124 PF_ACPY(&key.addr[1], pd->src, key.af); 6125 PF_ACPY(&key.addr[0], pd->dst, key.af); 6126 key.port[1] = sh->src_port; 6127 key.port[0] = sh->dest_port; 6128 } 6129 6130 STATE_LOOKUP(kif, &key, *state, pd); 6131 6132 if (pd->dir == (*state)->direction) { 6133 src = &(*state)->src; 6134 dst = &(*state)->dst; 6135 psrc = PF_PEER_SRC; 6136 } else { 6137 src = &(*state)->dst; 6138 dst = &(*state)->src; 6139 psrc = PF_PEER_DST; 6140 } 6141 6142 /* Track state. */ 6143 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6144 if (src->state < SCTP_COOKIE_WAIT) { 6145 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6146 (*state)->timeout = PFTM_SCTP_OPENING; 6147 } 6148 } 6149 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6150 MPASS(dst->scrub != NULL); 6151 if (dst->scrub->pfss_v_tag == 0) 6152 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6153 } 6154 6155 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6156 if (src->state < SCTP_ESTABLISHED) { 6157 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6158 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6159 } 6160 } 6161 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6162 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6163 if (src->state < SCTP_SHUTDOWN_PENDING) { 6164 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6165 (*state)->timeout = PFTM_SCTP_CLOSING; 6166 } 6167 } 6168 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6169 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6170 (*state)->timeout = PFTM_SCTP_CLOSED; 6171 } 6172 6173 if (src->scrub != NULL) { 6174 if (src->scrub->pfss_v_tag == 0) { 6175 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6176 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6177 return (PF_DROP); 6178 } 6179 6180 (*state)->expire = pf_get_uptime(); 6181 6182 /* translate source/destination address, if necessary */ 6183 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6184 uint16_t checksum = 0; 6185 struct pf_state_key *nk = (*state)->key[pd->didx]; 6186 6187 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6188 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6189 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6190 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6191 nk->port[pd->sidx], 1, pd->af); 6192 } 6193 6194 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6195 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6196 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6197 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6198 nk->port[pd->didx], 1, pd->af); 6199 } 6200 } 6201 6202 return (PF_PASS); 6203 } 6204 6205 static void 6206 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6207 { 6208 struct pf_sctp_endpoint key; 6209 struct pf_sctp_endpoint *ep; 6210 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6211 struct pf_sctp_source *i, *tmp; 6212 6213 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6214 return; 6215 6216 PF_SCTP_ENDPOINTS_LOCK(); 6217 6218 key.v_tag = s->dst.scrub->pfss_v_tag; 6219 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6220 if (ep != NULL) { 6221 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6222 if (pf_addr_cmp(&i->addr, 6223 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6224 s->key[PF_SK_WIRE]->af) == 0) { 6225 SDT_PROBE3(pf, sctp, multihome, remove, 6226 key.v_tag, s, i); 6227 TAILQ_REMOVE(&ep->sources, i, entry); 6228 free(i, M_PFTEMP); 6229 break; 6230 } 6231 } 6232 6233 if (TAILQ_EMPTY(&ep->sources)) { 6234 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6235 free(ep, M_PFTEMP); 6236 } 6237 } 6238 6239 /* Other direction. */ 6240 key.v_tag = s->src.scrub->pfss_v_tag; 6241 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6242 if (ep != NULL) { 6243 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6244 if (pf_addr_cmp(&i->addr, 6245 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6246 s->key[PF_SK_WIRE]->af) == 0) { 6247 SDT_PROBE3(pf, sctp, multihome, remove, 6248 key.v_tag, s, i); 6249 TAILQ_REMOVE(&ep->sources, i, entry); 6250 free(i, M_PFTEMP); 6251 break; 6252 } 6253 } 6254 6255 if (TAILQ_EMPTY(&ep->sources)) { 6256 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6257 free(ep, M_PFTEMP); 6258 } 6259 } 6260 6261 PF_SCTP_ENDPOINTS_UNLOCK(); 6262 } 6263 6264 static void 6265 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6266 { 6267 struct pf_sctp_endpoint key = { 6268 .v_tag = v_tag, 6269 }; 6270 struct pf_sctp_source *i; 6271 struct pf_sctp_endpoint *ep; 6272 6273 PF_SCTP_ENDPOINTS_LOCK(); 6274 6275 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6276 if (ep == NULL) { 6277 ep = malloc(sizeof(struct pf_sctp_endpoint), 6278 M_PFTEMP, M_NOWAIT); 6279 if (ep == NULL) { 6280 PF_SCTP_ENDPOINTS_UNLOCK(); 6281 return; 6282 } 6283 6284 ep->v_tag = v_tag; 6285 TAILQ_INIT(&ep->sources); 6286 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6287 } 6288 6289 /* Avoid inserting duplicates. */ 6290 TAILQ_FOREACH(i, &ep->sources, entry) { 6291 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6292 PF_SCTP_ENDPOINTS_UNLOCK(); 6293 return; 6294 } 6295 } 6296 6297 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6298 if (i == NULL) { 6299 PF_SCTP_ENDPOINTS_UNLOCK(); 6300 return; 6301 } 6302 6303 i->af = pd->af; 6304 memcpy(&i->addr, a, sizeof(*a)); 6305 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6306 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6307 6308 PF_SCTP_ENDPOINTS_UNLOCK(); 6309 } 6310 6311 static void 6312 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6313 struct pf_kstate *s, int action) 6314 { 6315 struct pf_sctp_multihome_job *j, *tmp; 6316 struct pf_sctp_source *i; 6317 int ret __unused; 6318 struct pf_kstate *sm = NULL; 6319 struct pf_krule *ra = NULL; 6320 struct pf_krule *r = &V_pf_default_rule; 6321 struct pf_kruleset *rs = NULL; 6322 bool do_extra = true; 6323 6324 PF_RULES_RLOCK_TRACKER; 6325 6326 again: 6327 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6328 if (s == NULL || action != PF_PASS) 6329 goto free; 6330 6331 /* Confirm we don't recurse here. */ 6332 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6333 6334 switch (j->op) { 6335 case SCTP_ADD_IP_ADDRESS: { 6336 uint32_t v_tag = pd->sctp_initiate_tag; 6337 6338 if (v_tag == 0) { 6339 if (s->direction == pd->dir) 6340 v_tag = s->src.scrub->pfss_v_tag; 6341 else 6342 v_tag = s->dst.scrub->pfss_v_tag; 6343 } 6344 6345 /* 6346 * Avoid duplicating states. We'll already have 6347 * created a state based on the source address of 6348 * the packet, but SCTP endpoints may also list this 6349 * address again in the INIT(_ACK) parameters. 6350 */ 6351 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6352 break; 6353 } 6354 6355 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6356 PF_RULES_RLOCK(); 6357 sm = NULL; 6358 /* 6359 * New connections need to be floating, because 6360 * we cannot know what interfaces it will use. 6361 * That's why we pass V_pfi_all rather than kif. 6362 */ 6363 ret = pf_test_rule(&r, &sm, V_pfi_all, 6364 j->m, off, &j->pd, &ra, &rs, NULL); 6365 PF_RULES_RUNLOCK(); 6366 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6367 if (ret != PF_DROP && sm != NULL) { 6368 /* Inherit v_tag values. */ 6369 if (sm->direction == s->direction) { 6370 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6371 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6372 } else { 6373 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6374 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6375 } 6376 PF_STATE_UNLOCK(sm); 6377 } else { 6378 /* If we try duplicate inserts? */ 6379 break; 6380 } 6381 6382 /* Only add the address if we've actually allowed the state. */ 6383 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6384 6385 if (! do_extra) { 6386 break; 6387 } 6388 /* 6389 * We need to do this for each of our source addresses. 6390 * Find those based on the verification tag. 6391 */ 6392 struct pf_sctp_endpoint key = { 6393 .v_tag = pd->hdr.sctp.v_tag, 6394 }; 6395 struct pf_sctp_endpoint *ep; 6396 6397 PF_SCTP_ENDPOINTS_LOCK(); 6398 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6399 if (ep == NULL) { 6400 PF_SCTP_ENDPOINTS_UNLOCK(); 6401 break; 6402 } 6403 MPASS(ep != NULL); 6404 6405 TAILQ_FOREACH(i, &ep->sources, entry) { 6406 struct pf_sctp_multihome_job *nj; 6407 6408 /* SCTP can intermingle IPv4 and IPv6. */ 6409 if (i->af != pd->af) 6410 continue; 6411 6412 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6413 if (! nj) { 6414 continue; 6415 } 6416 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6417 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6418 nj->pd.src = &nj->src; 6419 // New destination address! 6420 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6421 nj->pd.dst = &nj->dst; 6422 nj->m = j->m; 6423 nj->op = j->op; 6424 6425 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6426 } 6427 PF_SCTP_ENDPOINTS_UNLOCK(); 6428 6429 break; 6430 } 6431 case SCTP_DEL_IP_ADDRESS: { 6432 struct pf_state_key_cmp key; 6433 uint8_t psrc; 6434 6435 bzero(&key, sizeof(key)); 6436 key.af = j->pd.af; 6437 key.proto = IPPROTO_SCTP; 6438 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6439 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6440 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6441 key.port[0] = j->pd.hdr.sctp.src_port; 6442 key.port[1] = j->pd.hdr.sctp.dest_port; 6443 } else { /* stack side, reverse */ 6444 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6445 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6446 key.port[1] = j->pd.hdr.sctp.src_port; 6447 key.port[0] = j->pd.hdr.sctp.dest_port; 6448 } 6449 6450 sm = pf_find_state(kif, &key, j->pd.dir); 6451 if (sm != NULL) { 6452 PF_STATE_LOCK_ASSERT(sm); 6453 if (j->pd.dir == sm->direction) { 6454 psrc = PF_PEER_SRC; 6455 } else { 6456 psrc = PF_PEER_DST; 6457 } 6458 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6459 sm->timeout = PFTM_SCTP_CLOSING; 6460 PF_STATE_UNLOCK(sm); 6461 } 6462 break; 6463 default: 6464 panic("Unknown op %#x", j->op); 6465 } 6466 } 6467 6468 free: 6469 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6470 free(j, M_PFTEMP); 6471 } 6472 6473 /* We may have inserted extra work while processing the list. */ 6474 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6475 do_extra = false; 6476 goto again; 6477 } 6478 } 6479 6480 static int 6481 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6482 struct pfi_kkif *kif, int op) 6483 { 6484 int off = 0; 6485 struct pf_sctp_multihome_job *job; 6486 6487 while (off < len) { 6488 struct sctp_paramhdr h; 6489 6490 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6491 pd->af)) 6492 return (PF_DROP); 6493 6494 /* Parameters are at least 4 bytes. */ 6495 if (ntohs(h.param_length) < 4) 6496 return (PF_DROP); 6497 6498 switch (ntohs(h.param_type)) { 6499 case SCTP_IPV4_ADDRESS: { 6500 struct in_addr t; 6501 6502 if (ntohs(h.param_length) != 6503 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6504 return (PF_DROP); 6505 6506 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6507 NULL, NULL, pd->af)) 6508 return (PF_DROP); 6509 6510 if (in_nullhost(t)) 6511 t.s_addr = pd->src->v4.s_addr; 6512 6513 /* 6514 * We hold the state lock (idhash) here, which means 6515 * that we can't acquire the keyhash, or we'll get a 6516 * LOR (and potentially double-lock things too). We also 6517 * can't release the state lock here, so instead we'll 6518 * enqueue this for async handling. 6519 * There's a relatively small race here, in that a 6520 * packet using the new addresses could arrive already, 6521 * but that's just though luck for it. 6522 */ 6523 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6524 if (! job) 6525 return (PF_DROP); 6526 6527 memcpy(&job->pd, pd, sizeof(*pd)); 6528 6529 // New source address! 6530 memcpy(&job->src, &t, sizeof(t)); 6531 job->pd.src = &job->src; 6532 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6533 job->pd.dst = &job->dst; 6534 job->m = m; 6535 job->op = op; 6536 6537 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6538 break; 6539 } 6540 #ifdef INET6 6541 case SCTP_IPV6_ADDRESS: { 6542 struct in6_addr t; 6543 6544 if (ntohs(h.param_length) != 6545 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6546 return (PF_DROP); 6547 6548 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6549 NULL, NULL, pd->af)) 6550 return (PF_DROP); 6551 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6552 break; 6553 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6554 memcpy(&t, &pd->src->v6, sizeof(t)); 6555 6556 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6557 if (! job) 6558 return (PF_DROP); 6559 6560 memcpy(&job->pd, pd, sizeof(*pd)); 6561 memcpy(&job->src, &t, sizeof(t)); 6562 job->pd.src = &job->src; 6563 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6564 job->pd.dst = &job->dst; 6565 job->m = m; 6566 job->op = op; 6567 6568 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6569 break; 6570 } 6571 #endif 6572 case SCTP_ADD_IP_ADDRESS: { 6573 int ret; 6574 struct sctp_asconf_paramhdr ah; 6575 6576 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6577 NULL, NULL, pd->af)) 6578 return (PF_DROP); 6579 6580 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6581 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6582 SCTP_ADD_IP_ADDRESS); 6583 if (ret != PF_PASS) 6584 return (ret); 6585 break; 6586 } 6587 case SCTP_DEL_IP_ADDRESS: { 6588 int ret; 6589 struct sctp_asconf_paramhdr ah; 6590 6591 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6592 NULL, NULL, pd->af)) 6593 return (PF_DROP); 6594 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6595 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6596 SCTP_DEL_IP_ADDRESS); 6597 if (ret != PF_PASS) 6598 return (ret); 6599 break; 6600 } 6601 default: 6602 break; 6603 } 6604 6605 off += roundup(ntohs(h.param_length), 4); 6606 } 6607 6608 return (PF_PASS); 6609 } 6610 int 6611 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6612 struct pfi_kkif *kif) 6613 { 6614 start += sizeof(struct sctp_init_chunk); 6615 len -= sizeof(struct sctp_init_chunk); 6616 6617 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6618 } 6619 6620 int 6621 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6622 struct pf_pdesc *pd, struct pfi_kkif *kif) 6623 { 6624 start += sizeof(struct sctp_asconf_chunk); 6625 len -= sizeof(struct sctp_asconf_chunk); 6626 6627 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6628 } 6629 6630 int 6631 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6632 struct pf_kstate **state, struct mbuf *m, int direction, struct pfi_kkif *kif, 6633 u_int16_t icmpid, u_int16_t type, int icmp_dir, int *iidx, int multi) 6634 { 6635 key->af = pd->af; 6636 key->proto = pd->proto; 6637 if (icmp_dir == PF_IN) { 6638 *iidx = pd->sidx; 6639 key->port[pd->sidx] = icmpid; 6640 key->port[pd->didx] = type; 6641 } else { 6642 *iidx = pd->didx; 6643 key->port[pd->sidx] = type; 6644 key->port[pd->didx] = icmpid; 6645 } 6646 if (pd->af == AF_INET6 && multi != PF_ICMP_MULTI_NONE) { 6647 switch (multi) { 6648 case PF_ICMP_MULTI_SOLICITED: 6649 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 6650 key->addr[pd->sidx].addr32[1] = 0; 6651 key->addr[pd->sidx].addr32[2] = IPV6_ADDR_INT32_ONE; 6652 key->addr[pd->sidx].addr32[3] = pd->src->addr32[3]; 6653 key->addr[pd->sidx].addr8[12] = 0xff; 6654 break; 6655 case PF_ICMP_MULTI_LINK: 6656 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 6657 key->addr[pd->sidx].addr32[1] = 0; 6658 key->addr[pd->sidx].addr32[2] = 0; 6659 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 6660 break; 6661 } 6662 } else 6663 PF_ACPY(&key->addr[pd->sidx], pd->src, key->af); 6664 PF_ACPY(&key->addr[pd->didx], pd->dst, key->af); 6665 6666 STATE_LOOKUP(kif, key, *state, pd); 6667 6668 /* Is this ICMP message flowing in right direction? */ 6669 if ((*state)->rule.ptr->type && 6670 (((*state)->direction == direction) ? 6671 PF_IN : PF_OUT) != icmp_dir) { 6672 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6673 printf("pf: icmp type %d in wrong direction (%d): ", 6674 icmp_dir, pd->dir); 6675 pf_print_state(*state); 6676 printf("\n"); 6677 } 6678 return (PF_DROP); 6679 } 6680 return (-1); 6681 } 6682 6683 static int 6684 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6685 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6686 { 6687 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6688 u_int16_t *icmpsum, virtual_id, virtual_type; 6689 u_int8_t icmptype, icmpcode; 6690 int icmp_dir, iidx, ret, multi; 6691 struct pf_state_key_cmp key; 6692 #ifdef INET 6693 u_int16_t icmpid; 6694 #endif 6695 6696 MPASS(*state == NULL); 6697 6698 bzero(&key, sizeof(key)); 6699 switch (pd->proto) { 6700 #ifdef INET 6701 case IPPROTO_ICMP: 6702 icmptype = pd->hdr.icmp.icmp_type; 6703 icmpcode = pd->hdr.icmp.icmp_code; 6704 icmpid = pd->hdr.icmp.icmp_id; 6705 icmpsum = &pd->hdr.icmp.icmp_cksum; 6706 break; 6707 #endif /* INET */ 6708 #ifdef INET6 6709 case IPPROTO_ICMPV6: 6710 icmptype = pd->hdr.icmp6.icmp6_type; 6711 icmpcode = pd->hdr.icmp6.icmp6_code; 6712 #ifdef INET 6713 icmpid = pd->hdr.icmp6.icmp6_id; 6714 #endif 6715 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6716 break; 6717 #endif /* INET6 */ 6718 } 6719 6720 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6721 &virtual_id, &virtual_type) == 0) { 6722 /* 6723 * ICMP query/reply message not related to a TCP/UDP packet. 6724 * Search for an ICMP state. 6725 */ 6726 ret = pf_icmp_state_lookup(&key, pd, state, m, pd->dir, 6727 kif, virtual_id, virtual_type, icmp_dir, &iidx, 6728 PF_ICMP_MULTI_NONE); 6729 if (ret >= 0) { 6730 if (ret == PF_DROP && pd->af == AF_INET6 && 6731 icmp_dir == PF_OUT) { 6732 if (*state != NULL) 6733 PF_STATE_UNLOCK((*state)); 6734 ret = pf_icmp_state_lookup(&key, pd, state, m, 6735 pd->dir, kif, virtual_id, virtual_type, 6736 icmp_dir, &iidx, multi); 6737 if (ret >= 0) 6738 return (ret); 6739 } else 6740 return (ret); 6741 } 6742 6743 (*state)->expire = pf_get_uptime(); 6744 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6745 6746 /* translate source/destination address, if necessary */ 6747 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6748 struct pf_state_key *nk = (*state)->key[pd->didx]; 6749 6750 switch (pd->af) { 6751 #ifdef INET 6752 case AF_INET: 6753 if (PF_ANEQ(pd->src, 6754 &nk->addr[pd->sidx], AF_INET)) 6755 pf_change_a(&saddr->v4.s_addr, 6756 pd->ip_sum, 6757 nk->addr[pd->sidx].v4.s_addr, 0); 6758 6759 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6760 AF_INET)) 6761 pf_change_a(&daddr->v4.s_addr, 6762 pd->ip_sum, 6763 nk->addr[pd->didx].v4.s_addr, 0); 6764 6765 if (nk->port[iidx] != 6766 pd->hdr.icmp.icmp_id) { 6767 pd->hdr.icmp.icmp_cksum = 6768 pf_cksum_fixup( 6769 pd->hdr.icmp.icmp_cksum, icmpid, 6770 nk->port[iidx], 0); 6771 pd->hdr.icmp.icmp_id = 6772 nk->port[iidx]; 6773 } 6774 6775 m_copyback(m, off, ICMP_MINLEN, 6776 (caddr_t )&pd->hdr.icmp); 6777 break; 6778 #endif /* INET */ 6779 #ifdef INET6 6780 case AF_INET6: 6781 if (PF_ANEQ(pd->src, 6782 &nk->addr[pd->sidx], AF_INET6)) 6783 pf_change_a6(saddr, 6784 &pd->hdr.icmp6.icmp6_cksum, 6785 &nk->addr[pd->sidx], 0); 6786 6787 if (PF_ANEQ(pd->dst, 6788 &nk->addr[pd->didx], AF_INET6)) 6789 pf_change_a6(daddr, 6790 &pd->hdr.icmp6.icmp6_cksum, 6791 &nk->addr[pd->didx], 0); 6792 6793 m_copyback(m, off, sizeof(struct icmp6_hdr), 6794 (caddr_t )&pd->hdr.icmp6); 6795 break; 6796 #endif /* INET6 */ 6797 } 6798 } 6799 return (PF_PASS); 6800 6801 } else { 6802 /* 6803 * ICMP error message in response to a TCP/UDP packet. 6804 * Extract the inner TCP/UDP header and search for that state. 6805 */ 6806 6807 struct pf_pdesc pd2; 6808 bzero(&pd2, sizeof pd2); 6809 #ifdef INET 6810 struct ip h2; 6811 #endif /* INET */ 6812 #ifdef INET6 6813 struct ip6_hdr h2_6; 6814 int terminal = 0; 6815 #endif /* INET6 */ 6816 int ipoff2 = 0; 6817 int off2 = 0; 6818 6819 pd2.af = pd->af; 6820 /* Payload packet is from the opposite direction. */ 6821 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6822 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6823 switch (pd->af) { 6824 #ifdef INET 6825 case AF_INET: 6826 /* offset of h2 in mbuf chain */ 6827 ipoff2 = off + ICMP_MINLEN; 6828 6829 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 6830 NULL, reason, pd2.af)) { 6831 DPFPRINTF(PF_DEBUG_MISC, 6832 ("pf: ICMP error message too short " 6833 "(ip)\n")); 6834 return (PF_DROP); 6835 } 6836 /* 6837 * ICMP error messages don't refer to non-first 6838 * fragments 6839 */ 6840 if (h2.ip_off & htons(IP_OFFMASK)) { 6841 REASON_SET(reason, PFRES_FRAG); 6842 return (PF_DROP); 6843 } 6844 6845 /* offset of protocol header that follows h2 */ 6846 off2 = ipoff2 + (h2.ip_hl << 2); 6847 6848 pd2.proto = h2.ip_p; 6849 pd2.src = (struct pf_addr *)&h2.ip_src; 6850 pd2.dst = (struct pf_addr *)&h2.ip_dst; 6851 pd2.ip_sum = &h2.ip_sum; 6852 break; 6853 #endif /* INET */ 6854 #ifdef INET6 6855 case AF_INET6: 6856 ipoff2 = off + sizeof(struct icmp6_hdr); 6857 6858 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 6859 NULL, reason, pd2.af)) { 6860 DPFPRINTF(PF_DEBUG_MISC, 6861 ("pf: ICMP error message too short " 6862 "(ip6)\n")); 6863 return (PF_DROP); 6864 } 6865 pd2.proto = h2_6.ip6_nxt; 6866 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 6867 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 6868 pd2.ip_sum = NULL; 6869 off2 = ipoff2 + sizeof(h2_6); 6870 do { 6871 switch (pd2.proto) { 6872 case IPPROTO_FRAGMENT: 6873 /* 6874 * ICMPv6 error messages for 6875 * non-first fragments 6876 */ 6877 REASON_SET(reason, PFRES_FRAG); 6878 return (PF_DROP); 6879 case IPPROTO_AH: 6880 case IPPROTO_HOPOPTS: 6881 case IPPROTO_ROUTING: 6882 case IPPROTO_DSTOPTS: { 6883 /* get next header and header length */ 6884 struct ip6_ext opt6; 6885 6886 if (!pf_pull_hdr(m, off2, &opt6, 6887 sizeof(opt6), NULL, reason, 6888 pd2.af)) { 6889 DPFPRINTF(PF_DEBUG_MISC, 6890 ("pf: ICMPv6 short opt\n")); 6891 return (PF_DROP); 6892 } 6893 if (pd2.proto == IPPROTO_AH) 6894 off2 += (opt6.ip6e_len + 2) * 4; 6895 else 6896 off2 += (opt6.ip6e_len + 1) * 8; 6897 pd2.proto = opt6.ip6e_nxt; 6898 /* goto the next header */ 6899 break; 6900 } 6901 default: 6902 terminal++; 6903 break; 6904 } 6905 } while (!terminal); 6906 break; 6907 #endif /* INET6 */ 6908 } 6909 6910 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 6911 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6912 printf("pf: BAD ICMP %d:%d outer dst: ", 6913 icmptype, icmpcode); 6914 pf_print_host(pd->src, 0, pd->af); 6915 printf(" -> "); 6916 pf_print_host(pd->dst, 0, pd->af); 6917 printf(" inner src: "); 6918 pf_print_host(pd2.src, 0, pd2.af); 6919 printf(" -> "); 6920 pf_print_host(pd2.dst, 0, pd2.af); 6921 printf("\n"); 6922 } 6923 REASON_SET(reason, PFRES_BADSTATE); 6924 return (PF_DROP); 6925 } 6926 6927 switch (pd2.proto) { 6928 case IPPROTO_TCP: { 6929 struct tcphdr th; 6930 u_int32_t seq; 6931 struct pf_state_peer *src, *dst; 6932 u_int8_t dws; 6933 int copyback = 0; 6934 6935 /* 6936 * Only the first 8 bytes of the TCP header can be 6937 * expected. Don't access any TCP header fields after 6938 * th_seq, an ackskew test is not possible. 6939 */ 6940 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 6941 pd2.af)) { 6942 DPFPRINTF(PF_DEBUG_MISC, 6943 ("pf: ICMP error message too short " 6944 "(tcp)\n")); 6945 return (PF_DROP); 6946 } 6947 6948 key.af = pd2.af; 6949 key.proto = IPPROTO_TCP; 6950 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6951 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6952 key.port[pd2.sidx] = th.th_sport; 6953 key.port[pd2.didx] = th.th_dport; 6954 6955 STATE_LOOKUP(kif, &key, *state, pd); 6956 6957 if (pd->dir == (*state)->direction) { 6958 src = &(*state)->dst; 6959 dst = &(*state)->src; 6960 } else { 6961 src = &(*state)->src; 6962 dst = &(*state)->dst; 6963 } 6964 6965 if (src->wscale && dst->wscale) 6966 dws = dst->wscale & PF_WSCALE_MASK; 6967 else 6968 dws = 0; 6969 6970 /* Demodulate sequence number */ 6971 seq = ntohl(th.th_seq) - src->seqdiff; 6972 if (src->seqdiff) { 6973 pf_change_a(&th.th_seq, icmpsum, 6974 htonl(seq), 0); 6975 copyback = 1; 6976 } 6977 6978 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 6979 (!SEQ_GEQ(src->seqhi, seq) || 6980 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 6981 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6982 printf("pf: BAD ICMP %d:%d ", 6983 icmptype, icmpcode); 6984 pf_print_host(pd->src, 0, pd->af); 6985 printf(" -> "); 6986 pf_print_host(pd->dst, 0, pd->af); 6987 printf(" state: "); 6988 pf_print_state(*state); 6989 printf(" seq=%u\n", seq); 6990 } 6991 REASON_SET(reason, PFRES_BADSTATE); 6992 return (PF_DROP); 6993 } else { 6994 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6995 printf("pf: OK ICMP %d:%d ", 6996 icmptype, icmpcode); 6997 pf_print_host(pd->src, 0, pd->af); 6998 printf(" -> "); 6999 pf_print_host(pd->dst, 0, pd->af); 7000 printf(" state: "); 7001 pf_print_state(*state); 7002 printf(" seq=%u\n", seq); 7003 } 7004 } 7005 7006 /* translate source/destination address, if necessary */ 7007 if ((*state)->key[PF_SK_WIRE] != 7008 (*state)->key[PF_SK_STACK]) { 7009 struct pf_state_key *nk = 7010 (*state)->key[pd->didx]; 7011 7012 if (PF_ANEQ(pd2.src, 7013 &nk->addr[pd2.sidx], pd2.af) || 7014 nk->port[pd2.sidx] != th.th_sport) 7015 pf_change_icmp(pd2.src, &th.th_sport, 7016 daddr, &nk->addr[pd2.sidx], 7017 nk->port[pd2.sidx], NULL, 7018 pd2.ip_sum, icmpsum, 7019 pd->ip_sum, 0, pd2.af); 7020 7021 if (PF_ANEQ(pd2.dst, 7022 &nk->addr[pd2.didx], pd2.af) || 7023 nk->port[pd2.didx] != th.th_dport) 7024 pf_change_icmp(pd2.dst, &th.th_dport, 7025 saddr, &nk->addr[pd2.didx], 7026 nk->port[pd2.didx], NULL, 7027 pd2.ip_sum, icmpsum, 7028 pd->ip_sum, 0, pd2.af); 7029 copyback = 1; 7030 } 7031 7032 if (copyback) { 7033 switch (pd2.af) { 7034 #ifdef INET 7035 case AF_INET: 7036 m_copyback(m, off, ICMP_MINLEN, 7037 (caddr_t )&pd->hdr.icmp); 7038 m_copyback(m, ipoff2, sizeof(h2), 7039 (caddr_t )&h2); 7040 break; 7041 #endif /* INET */ 7042 #ifdef INET6 7043 case AF_INET6: 7044 m_copyback(m, off, 7045 sizeof(struct icmp6_hdr), 7046 (caddr_t )&pd->hdr.icmp6); 7047 m_copyback(m, ipoff2, sizeof(h2_6), 7048 (caddr_t )&h2_6); 7049 break; 7050 #endif /* INET6 */ 7051 } 7052 m_copyback(m, off2, 8, (caddr_t)&th); 7053 } 7054 7055 return (PF_PASS); 7056 break; 7057 } 7058 case IPPROTO_UDP: { 7059 struct udphdr uh; 7060 7061 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 7062 NULL, reason, pd2.af)) { 7063 DPFPRINTF(PF_DEBUG_MISC, 7064 ("pf: ICMP error message too short " 7065 "(udp)\n")); 7066 return (PF_DROP); 7067 } 7068 7069 key.af = pd2.af; 7070 key.proto = IPPROTO_UDP; 7071 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7072 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7073 key.port[pd2.sidx] = uh.uh_sport; 7074 key.port[pd2.didx] = uh.uh_dport; 7075 7076 STATE_LOOKUP(kif, &key, *state, pd); 7077 7078 /* translate source/destination address, if necessary */ 7079 if ((*state)->key[PF_SK_WIRE] != 7080 (*state)->key[PF_SK_STACK]) { 7081 struct pf_state_key *nk = 7082 (*state)->key[pd->didx]; 7083 7084 if (PF_ANEQ(pd2.src, 7085 &nk->addr[pd2.sidx], pd2.af) || 7086 nk->port[pd2.sidx] != uh.uh_sport) 7087 pf_change_icmp(pd2.src, &uh.uh_sport, 7088 daddr, &nk->addr[pd2.sidx], 7089 nk->port[pd2.sidx], &uh.uh_sum, 7090 pd2.ip_sum, icmpsum, 7091 pd->ip_sum, 1, pd2.af); 7092 7093 if (PF_ANEQ(pd2.dst, 7094 &nk->addr[pd2.didx], pd2.af) || 7095 nk->port[pd2.didx] != uh.uh_dport) 7096 pf_change_icmp(pd2.dst, &uh.uh_dport, 7097 saddr, &nk->addr[pd2.didx], 7098 nk->port[pd2.didx], &uh.uh_sum, 7099 pd2.ip_sum, icmpsum, 7100 pd->ip_sum, 1, pd2.af); 7101 7102 switch (pd2.af) { 7103 #ifdef INET 7104 case AF_INET: 7105 m_copyback(m, off, ICMP_MINLEN, 7106 (caddr_t )&pd->hdr.icmp); 7107 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7108 break; 7109 #endif /* INET */ 7110 #ifdef INET6 7111 case AF_INET6: 7112 m_copyback(m, off, 7113 sizeof(struct icmp6_hdr), 7114 (caddr_t )&pd->hdr.icmp6); 7115 m_copyback(m, ipoff2, sizeof(h2_6), 7116 (caddr_t )&h2_6); 7117 break; 7118 #endif /* INET6 */ 7119 } 7120 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 7121 } 7122 return (PF_PASS); 7123 break; 7124 } 7125 #ifdef INET 7126 case IPPROTO_ICMP: { 7127 struct icmp iih; 7128 7129 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 7130 NULL, reason, pd2.af)) { 7131 DPFPRINTF(PF_DEBUG_MISC, 7132 ("pf: ICMP error message too short i" 7133 "(icmp)\n")); 7134 return (PF_DROP); 7135 } 7136 7137 icmpid = iih.icmp_id; 7138 pf_icmp_mapping(&pd2, iih.icmp_type, 7139 &icmp_dir, &multi, &virtual_id, &virtual_type); 7140 7141 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 7142 pd->dir, kif, virtual_id, virtual_type, 7143 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 7144 if (ret >= 0) 7145 return (ret); 7146 7147 /* translate source/destination address, if necessary */ 7148 if ((*state)->key[PF_SK_WIRE] != 7149 (*state)->key[PF_SK_STACK]) { 7150 struct pf_state_key *nk = 7151 (*state)->key[pd->didx]; 7152 7153 if (PF_ANEQ(pd2.src, 7154 &nk->addr[pd2.sidx], pd2.af) || 7155 (virtual_type == htons(ICMP_ECHO) && 7156 nk->port[iidx] != iih.icmp_id)) 7157 pf_change_icmp(pd2.src, 7158 (virtual_type == htons(ICMP_ECHO)) ? 7159 &iih.icmp_id : NULL, 7160 daddr, &nk->addr[pd2.sidx], 7161 (virtual_type == htons(ICMP_ECHO)) ? 7162 nk->port[iidx] : 0, NULL, 7163 pd2.ip_sum, icmpsum, 7164 pd->ip_sum, 0, AF_INET); 7165 7166 if (PF_ANEQ(pd2.dst, 7167 &nk->addr[pd2.didx], pd2.af)) 7168 pf_change_icmp(pd2.dst, NULL, NULL, 7169 &nk->addr[pd2.didx], 0, NULL, 7170 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7171 AF_INET); 7172 7173 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7174 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7175 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 7176 } 7177 return (PF_PASS); 7178 break; 7179 } 7180 #endif /* INET */ 7181 #ifdef INET6 7182 case IPPROTO_ICMPV6: { 7183 struct icmp6_hdr iih; 7184 7185 if (!pf_pull_hdr(m, off2, &iih, 7186 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7187 DPFPRINTF(PF_DEBUG_MISC, 7188 ("pf: ICMP error message too short " 7189 "(icmp6)\n")); 7190 return (PF_DROP); 7191 } 7192 7193 pf_icmp_mapping(&pd2, iih.icmp6_type, 7194 &icmp_dir, &multi, &virtual_id, &virtual_type); 7195 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 7196 pd->dir, kif, virtual_id, virtual_type, 7197 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 7198 if (ret >= 0) { 7199 if (ret == PF_DROP && pd->af == AF_INET6 && 7200 icmp_dir == PF_OUT) { 7201 if (*state != NULL) 7202 PF_STATE_UNLOCK((*state)); 7203 ret = pf_icmp_state_lookup(&key, pd, 7204 state, m, pd->dir, kif, 7205 virtual_id, virtual_type, 7206 icmp_dir, &iidx, multi); 7207 if (ret >= 0) 7208 return (ret); 7209 } else 7210 return (ret); 7211 } 7212 7213 /* translate source/destination address, if necessary */ 7214 if ((*state)->key[PF_SK_WIRE] != 7215 (*state)->key[PF_SK_STACK]) { 7216 struct pf_state_key *nk = 7217 (*state)->key[pd->didx]; 7218 7219 if (PF_ANEQ(pd2.src, 7220 &nk->addr[pd2.sidx], pd2.af) || 7221 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7222 nk->port[pd2.sidx] != iih.icmp6_id)) 7223 pf_change_icmp(pd2.src, 7224 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7225 ? &iih.icmp6_id : NULL, 7226 daddr, &nk->addr[pd2.sidx], 7227 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7228 ? nk->port[iidx] : 0, NULL, 7229 pd2.ip_sum, icmpsum, 7230 pd->ip_sum, 0, AF_INET6); 7231 7232 if (PF_ANEQ(pd2.dst, 7233 &nk->addr[pd2.didx], pd2.af)) 7234 pf_change_icmp(pd2.dst, NULL, NULL, 7235 &nk->addr[pd2.didx], 0, NULL, 7236 pd2.ip_sum, icmpsum, 7237 pd->ip_sum, 0, AF_INET6); 7238 7239 m_copyback(m, off, sizeof(struct icmp6_hdr), 7240 (caddr_t)&pd->hdr.icmp6); 7241 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7242 m_copyback(m, off2, sizeof(struct icmp6_hdr), 7243 (caddr_t)&iih); 7244 } 7245 return (PF_PASS); 7246 break; 7247 } 7248 #endif /* INET6 */ 7249 default: { 7250 key.af = pd2.af; 7251 key.proto = pd2.proto; 7252 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7253 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7254 key.port[0] = key.port[1] = 0; 7255 7256 STATE_LOOKUP(kif, &key, *state, pd); 7257 7258 /* translate source/destination address, if necessary */ 7259 if ((*state)->key[PF_SK_WIRE] != 7260 (*state)->key[PF_SK_STACK]) { 7261 struct pf_state_key *nk = 7262 (*state)->key[pd->didx]; 7263 7264 if (PF_ANEQ(pd2.src, 7265 &nk->addr[pd2.sidx], pd2.af)) 7266 pf_change_icmp(pd2.src, NULL, daddr, 7267 &nk->addr[pd2.sidx], 0, NULL, 7268 pd2.ip_sum, icmpsum, 7269 pd->ip_sum, 0, pd2.af); 7270 7271 if (PF_ANEQ(pd2.dst, 7272 &nk->addr[pd2.didx], pd2.af)) 7273 pf_change_icmp(pd2.dst, NULL, saddr, 7274 &nk->addr[pd2.didx], 0, NULL, 7275 pd2.ip_sum, icmpsum, 7276 pd->ip_sum, 0, pd2.af); 7277 7278 switch (pd2.af) { 7279 #ifdef INET 7280 case AF_INET: 7281 m_copyback(m, off, ICMP_MINLEN, 7282 (caddr_t)&pd->hdr.icmp); 7283 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7284 break; 7285 #endif /* INET */ 7286 #ifdef INET6 7287 case AF_INET6: 7288 m_copyback(m, off, 7289 sizeof(struct icmp6_hdr), 7290 (caddr_t )&pd->hdr.icmp6); 7291 m_copyback(m, ipoff2, sizeof(h2_6), 7292 (caddr_t )&h2_6); 7293 break; 7294 #endif /* INET6 */ 7295 } 7296 } 7297 return (PF_PASS); 7298 break; 7299 } 7300 } 7301 } 7302 } 7303 7304 static int 7305 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7306 struct mbuf *m, struct pf_pdesc *pd) 7307 { 7308 struct pf_state_peer *src, *dst; 7309 struct pf_state_key_cmp key; 7310 uint8_t psrc, pdst; 7311 7312 bzero(&key, sizeof(key)); 7313 key.af = pd->af; 7314 key.proto = pd->proto; 7315 if (pd->dir == PF_IN) { 7316 PF_ACPY(&key.addr[0], pd->src, key.af); 7317 PF_ACPY(&key.addr[1], pd->dst, key.af); 7318 key.port[0] = key.port[1] = 0; 7319 } else { 7320 PF_ACPY(&key.addr[1], pd->src, key.af); 7321 PF_ACPY(&key.addr[0], pd->dst, key.af); 7322 key.port[1] = key.port[0] = 0; 7323 } 7324 7325 STATE_LOOKUP(kif, &key, *state, pd); 7326 7327 if (pd->dir == (*state)->direction) { 7328 src = &(*state)->src; 7329 dst = &(*state)->dst; 7330 psrc = PF_PEER_SRC; 7331 pdst = PF_PEER_DST; 7332 } else { 7333 src = &(*state)->dst; 7334 dst = &(*state)->src; 7335 psrc = PF_PEER_DST; 7336 pdst = PF_PEER_SRC; 7337 } 7338 7339 /* update states */ 7340 if (src->state < PFOTHERS_SINGLE) 7341 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7342 if (dst->state == PFOTHERS_SINGLE) 7343 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7344 7345 /* update expire time */ 7346 (*state)->expire = pf_get_uptime(); 7347 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7348 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7349 else 7350 (*state)->timeout = PFTM_OTHER_SINGLE; 7351 7352 /* translate source/destination address, if necessary */ 7353 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7354 struct pf_state_key *nk = (*state)->key[pd->didx]; 7355 7356 KASSERT(nk, ("%s: nk is null", __func__)); 7357 KASSERT(pd, ("%s: pd is null", __func__)); 7358 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7359 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7360 switch (pd->af) { 7361 #ifdef INET 7362 case AF_INET: 7363 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7364 pf_change_a(&pd->src->v4.s_addr, 7365 pd->ip_sum, 7366 nk->addr[pd->sidx].v4.s_addr, 7367 0); 7368 7369 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7370 pf_change_a(&pd->dst->v4.s_addr, 7371 pd->ip_sum, 7372 nk->addr[pd->didx].v4.s_addr, 7373 0); 7374 7375 break; 7376 #endif /* INET */ 7377 #ifdef INET6 7378 case AF_INET6: 7379 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7380 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7381 7382 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7383 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7384 #endif /* INET6 */ 7385 } 7386 } 7387 return (PF_PASS); 7388 } 7389 7390 /* 7391 * ipoff and off are measured from the start of the mbuf chain. 7392 * h must be at "ipoff" on the mbuf chain. 7393 */ 7394 void * 7395 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 7396 u_short *actionp, u_short *reasonp, sa_family_t af) 7397 { 7398 switch (af) { 7399 #ifdef INET 7400 case AF_INET: { 7401 struct ip *h = mtod(m, struct ip *); 7402 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7403 7404 if (fragoff) { 7405 if (fragoff >= len) 7406 ACTION_SET(actionp, PF_PASS); 7407 else { 7408 ACTION_SET(actionp, PF_DROP); 7409 REASON_SET(reasonp, PFRES_FRAG); 7410 } 7411 return (NULL); 7412 } 7413 if (m->m_pkthdr.len < off + len || 7414 ntohs(h->ip_len) < off + len) { 7415 ACTION_SET(actionp, PF_DROP); 7416 REASON_SET(reasonp, PFRES_SHORT); 7417 return (NULL); 7418 } 7419 break; 7420 } 7421 #endif /* INET */ 7422 #ifdef INET6 7423 case AF_INET6: { 7424 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7425 7426 if (m->m_pkthdr.len < off + len || 7427 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7428 (unsigned)(off + len)) { 7429 ACTION_SET(actionp, PF_DROP); 7430 REASON_SET(reasonp, PFRES_SHORT); 7431 return (NULL); 7432 } 7433 break; 7434 } 7435 #endif /* INET6 */ 7436 } 7437 m_copydata(m, off, len, p); 7438 return (p); 7439 } 7440 7441 int 7442 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7443 int rtableid) 7444 { 7445 struct ifnet *ifp; 7446 7447 /* 7448 * Skip check for addresses with embedded interface scope, 7449 * as they would always match anyway. 7450 */ 7451 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7452 return (1); 7453 7454 if (af != AF_INET && af != AF_INET6) 7455 return (0); 7456 7457 if (kif == V_pfi_all) 7458 return (1); 7459 7460 /* Skip checks for ipsec interfaces */ 7461 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7462 return (1); 7463 7464 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7465 7466 switch (af) { 7467 #ifdef INET6 7468 case AF_INET6: 7469 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7470 ifp)); 7471 #endif 7472 #ifdef INET 7473 case AF_INET: 7474 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7475 ifp)); 7476 #endif 7477 } 7478 7479 return (0); 7480 } 7481 7482 #ifdef INET 7483 static void 7484 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7485 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7486 { 7487 struct mbuf *m0, *m1, *md; 7488 struct sockaddr_in dst; 7489 struct ip *ip; 7490 struct pfi_kkif *nkif = NULL; 7491 struct ifnet *ifp = NULL; 7492 struct pf_addr naddr; 7493 struct pf_ksrc_node *sn = NULL; 7494 int error = 0; 7495 uint16_t ip_len, ip_off; 7496 uint16_t tmp; 7497 int r_rt, r_dir; 7498 7499 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7500 7501 if (s) { 7502 r_rt = s->rt; 7503 r_dir = s->direction; 7504 } else { 7505 r_rt = r->rt; 7506 r_dir = r->direction; 7507 } 7508 7509 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7510 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7511 __func__)); 7512 7513 if ((pd->pf_mtag == NULL && 7514 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7515 pd->pf_mtag->routed++ > 3) { 7516 m0 = *m; 7517 *m = NULL; 7518 goto bad_locked; 7519 } 7520 7521 if (r_rt == PF_DUPTO) { 7522 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7523 if (s == NULL) { 7524 ifp = r->rpool.cur->kif ? 7525 r->rpool.cur->kif->pfik_ifp : NULL; 7526 } else { 7527 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7528 /* If pfsync'd */ 7529 if (ifp == NULL && r->rpool.cur != NULL) 7530 ifp = r->rpool.cur->kif ? 7531 r->rpool.cur->kif->pfik_ifp : NULL; 7532 PF_STATE_UNLOCK(s); 7533 } 7534 if (ifp == oifp) { 7535 /* When the 2nd interface is not skipped */ 7536 return; 7537 } else { 7538 m0 = *m; 7539 *m = NULL; 7540 goto bad; 7541 } 7542 } else { 7543 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7544 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7545 if (s) 7546 PF_STATE_UNLOCK(s); 7547 return; 7548 } 7549 } 7550 } else { 7551 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7552 pf_dummynet(pd, s, r, m); 7553 if (s) 7554 PF_STATE_UNLOCK(s); 7555 return; 7556 } 7557 m0 = *m; 7558 } 7559 7560 ip = mtod(m0, struct ip *); 7561 7562 bzero(&dst, sizeof(dst)); 7563 dst.sin_family = AF_INET; 7564 dst.sin_len = sizeof(dst); 7565 dst.sin_addr = ip->ip_dst; 7566 7567 bzero(&naddr, sizeof(naddr)); 7568 7569 if (s == NULL) { 7570 if (TAILQ_EMPTY(&r->rpool.list)) { 7571 DPFPRINTF(PF_DEBUG_URGENT, 7572 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7573 goto bad_locked; 7574 } 7575 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7576 &naddr, &nkif, NULL, &sn); 7577 if (!PF_AZERO(&naddr, AF_INET)) 7578 dst.sin_addr.s_addr = naddr.v4.s_addr; 7579 ifp = nkif ? nkif->pfik_ifp : NULL; 7580 } else { 7581 struct pfi_kkif *kif; 7582 7583 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7584 dst.sin_addr.s_addr = 7585 s->rt_addr.v4.s_addr; 7586 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7587 kif = s->rt_kif; 7588 /* If pfsync'd */ 7589 if (ifp == NULL && r->rpool.cur != NULL) { 7590 ifp = r->rpool.cur->kif ? 7591 r->rpool.cur->kif->pfik_ifp : NULL; 7592 kif = r->rpool.cur->kif; 7593 } 7594 if (ifp != NULL && kif != NULL && 7595 r->rule_flag & PFRULE_IFBOUND && 7596 r->rt == PF_REPLYTO && 7597 s->kif == V_pfi_all) { 7598 s->kif = kif; 7599 s->orig_kif = oifp->if_pf_kif; 7600 } 7601 7602 PF_STATE_UNLOCK(s); 7603 } 7604 7605 if (ifp == NULL) 7606 goto bad; 7607 7608 if (pd->dir == PF_IN) { 7609 if (pf_test(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7610 goto bad; 7611 else if (m0 == NULL) 7612 goto done; 7613 if (m0->m_len < sizeof(struct ip)) { 7614 DPFPRINTF(PF_DEBUG_URGENT, 7615 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7616 goto bad; 7617 } 7618 ip = mtod(m0, struct ip *); 7619 } 7620 7621 if (ifp->if_flags & IFF_LOOPBACK) 7622 m0->m_flags |= M_SKIP_FIREWALL; 7623 7624 ip_len = ntohs(ip->ip_len); 7625 ip_off = ntohs(ip->ip_off); 7626 7627 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7628 m0->m_pkthdr.csum_flags |= CSUM_IP; 7629 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7630 in_delayed_cksum(m0); 7631 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7632 } 7633 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7634 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7635 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7636 } 7637 7638 if (pd->dir == PF_IN) { 7639 /* 7640 * Make sure dummynet gets the correct direction, in case it needs to 7641 * re-inject later. 7642 */ 7643 pd->dir = PF_OUT; 7644 7645 /* 7646 * The following processing is actually the rest of the inbound processing, even 7647 * though we've marked it as outbound (so we don't look through dummynet) and it 7648 * happens after the outbound processing (pf_test(PF_OUT) above). 7649 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7650 * conclusion about what direction it's processing, and we can't fix it or it 7651 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7652 * decision will pick the right pipe, and everything will mostly work as expected. 7653 */ 7654 tmp = pd->act.dnrpipe; 7655 pd->act.dnrpipe = pd->act.dnpipe; 7656 pd->act.dnpipe = tmp; 7657 } 7658 7659 /* 7660 * If small enough for interface, or the interface will take 7661 * care of the fragmentation for us, we can just send directly. 7662 */ 7663 if (ip_len <= ifp->if_mtu || 7664 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7665 ip->ip_sum = 0; 7666 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7667 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7668 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7669 } 7670 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7671 7672 md = m0; 7673 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7674 if (md != NULL) 7675 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7676 goto done; 7677 } 7678 7679 /* Balk when DF bit is set or the interface didn't support TSO. */ 7680 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7681 error = EMSGSIZE; 7682 KMOD_IPSTAT_INC(ips_cantfrag); 7683 if (r_rt != PF_DUPTO) { 7684 if (s && pd->nat_rule != NULL) 7685 PACKET_UNDO_NAT(m0, pd, 7686 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7687 s); 7688 7689 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7690 ifp->if_mtu); 7691 goto done; 7692 } else 7693 goto bad; 7694 } 7695 7696 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7697 if (error) 7698 goto bad; 7699 7700 for (; m0; m0 = m1) { 7701 m1 = m0->m_nextpkt; 7702 m0->m_nextpkt = NULL; 7703 if (error == 0) { 7704 m_clrprotoflags(m0); 7705 md = m0; 7706 pd->pf_mtag = pf_find_mtag(md); 7707 error = pf_dummynet_route(pd, s, r, ifp, 7708 sintosa(&dst), &md); 7709 if (md != NULL) 7710 error = (*ifp->if_output)(ifp, md, 7711 sintosa(&dst), NULL); 7712 } else 7713 m_freem(m0); 7714 } 7715 7716 if (error == 0) 7717 KMOD_IPSTAT_INC(ips_fragmented); 7718 7719 done: 7720 if (r_rt != PF_DUPTO) 7721 *m = NULL; 7722 return; 7723 7724 bad_locked: 7725 if (s) 7726 PF_STATE_UNLOCK(s); 7727 bad: 7728 m_freem(m0); 7729 goto done; 7730 } 7731 #endif /* INET */ 7732 7733 #ifdef INET6 7734 static void 7735 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7736 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7737 { 7738 struct mbuf *m0, *md; 7739 struct sockaddr_in6 dst; 7740 struct ip6_hdr *ip6; 7741 struct pfi_kkif *nkif = NULL; 7742 struct ifnet *ifp = NULL; 7743 struct pf_addr naddr; 7744 struct pf_ksrc_node *sn = NULL; 7745 int r_rt, r_dir; 7746 7747 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7748 7749 if (s) { 7750 r_rt = s->rt; 7751 r_dir = s->direction; 7752 } else { 7753 r_rt = r->rt; 7754 r_dir = r->direction; 7755 } 7756 7757 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7758 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7759 __func__)); 7760 7761 if ((pd->pf_mtag == NULL && 7762 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7763 pd->pf_mtag->routed++ > 3) { 7764 m0 = *m; 7765 *m = NULL; 7766 goto bad_locked; 7767 } 7768 7769 if (r_rt == PF_DUPTO) { 7770 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7771 if (s == NULL) { 7772 ifp = r->rpool.cur->kif ? 7773 r->rpool.cur->kif->pfik_ifp : NULL; 7774 } else { 7775 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7776 /* If pfsync'd */ 7777 if (ifp == NULL && r->rpool.cur != NULL) 7778 ifp = r->rpool.cur->kif ? 7779 r->rpool.cur->kif->pfik_ifp : NULL; 7780 PF_STATE_UNLOCK(s); 7781 } 7782 if (ifp == oifp) { 7783 /* When the 2nd interface is not skipped */ 7784 return; 7785 } else { 7786 m0 = *m; 7787 *m = NULL; 7788 goto bad; 7789 } 7790 } else { 7791 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7792 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7793 if (s) 7794 PF_STATE_UNLOCK(s); 7795 return; 7796 } 7797 } 7798 } else { 7799 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7800 pf_dummynet(pd, s, r, m); 7801 if (s) 7802 PF_STATE_UNLOCK(s); 7803 return; 7804 } 7805 m0 = *m; 7806 } 7807 7808 ip6 = mtod(m0, struct ip6_hdr *); 7809 7810 bzero(&dst, sizeof(dst)); 7811 dst.sin6_family = AF_INET6; 7812 dst.sin6_len = sizeof(dst); 7813 dst.sin6_addr = ip6->ip6_dst; 7814 7815 bzero(&naddr, sizeof(naddr)); 7816 7817 if (s == NULL) { 7818 if (TAILQ_EMPTY(&r->rpool.list)) { 7819 DPFPRINTF(PF_DEBUG_URGENT, 7820 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7821 goto bad_locked; 7822 } 7823 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7824 &naddr, &nkif, NULL, &sn); 7825 if (!PF_AZERO(&naddr, AF_INET6)) 7826 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7827 &naddr, AF_INET6); 7828 ifp = nkif ? nkif->pfik_ifp : NULL; 7829 } else { 7830 struct pfi_kkif *kif; 7831 7832 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7833 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7834 &s->rt_addr, AF_INET6); 7835 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7836 kif = s->rt_kif; 7837 /* If pfsync'd */ 7838 if (ifp == NULL && r->rpool.cur != NULL) { 7839 ifp = r->rpool.cur->kif ? 7840 r->rpool.cur->kif->pfik_ifp : NULL; 7841 kif = r->rpool.cur->kif; 7842 } 7843 if (ifp != NULL && kif != NULL && 7844 r->rule_flag & PFRULE_IFBOUND && 7845 r->rt == PF_REPLYTO && 7846 s->kif == V_pfi_all) { 7847 s->kif = kif; 7848 s->orig_kif = oifp->if_pf_kif; 7849 } 7850 } 7851 7852 if (s) 7853 PF_STATE_UNLOCK(s); 7854 7855 if (ifp == NULL) 7856 goto bad; 7857 7858 if (pd->dir == PF_IN) { 7859 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7860 goto bad; 7861 else if (m0 == NULL) 7862 goto done; 7863 if (m0->m_len < sizeof(struct ip6_hdr)) { 7864 DPFPRINTF(PF_DEBUG_URGENT, 7865 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 7866 __func__)); 7867 goto bad; 7868 } 7869 ip6 = mtod(m0, struct ip6_hdr *); 7870 } 7871 7872 if (ifp->if_flags & IFF_LOOPBACK) 7873 m0->m_flags |= M_SKIP_FIREWALL; 7874 7875 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 7876 ~ifp->if_hwassist) { 7877 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 7878 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 7879 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 7880 } 7881 7882 /* 7883 * If the packet is too large for the outgoing interface, 7884 * send back an icmp6 error. 7885 */ 7886 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 7887 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 7888 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 7889 md = m0; 7890 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7891 if (md != NULL) 7892 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 7893 } 7894 else { 7895 in6_ifstat_inc(ifp, ifs6_in_toobig); 7896 if (r_rt != PF_DUPTO) { 7897 if (s && pd->nat_rule != NULL) 7898 PACKET_UNDO_NAT(m0, pd, 7899 ((caddr_t)ip6 - m0->m_data) + 7900 sizeof(struct ip6_hdr), s); 7901 7902 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 7903 } else 7904 goto bad; 7905 } 7906 7907 done: 7908 if (r_rt != PF_DUPTO) 7909 *m = NULL; 7910 return; 7911 7912 bad_locked: 7913 if (s) 7914 PF_STATE_UNLOCK(s); 7915 bad: 7916 m_freem(m0); 7917 goto done; 7918 } 7919 #endif /* INET6 */ 7920 7921 /* 7922 * FreeBSD supports cksum offloads for the following drivers. 7923 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 7924 * 7925 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 7926 * network driver performed cksum including pseudo header, need to verify 7927 * csum_data 7928 * CSUM_DATA_VALID : 7929 * network driver performed cksum, needs to additional pseudo header 7930 * cksum computation with partial csum_data(i.e. lack of H/W support for 7931 * pseudo header, for instance sk(4) and possibly gem(4)) 7932 * 7933 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 7934 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 7935 * TCP/UDP layer. 7936 * Also, set csum_data to 0xffff to force cksum validation. 7937 */ 7938 static int 7939 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 7940 { 7941 u_int16_t sum = 0; 7942 int hw_assist = 0; 7943 struct ip *ip; 7944 7945 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 7946 return (1); 7947 if (m->m_pkthdr.len < off + len) 7948 return (1); 7949 7950 switch (p) { 7951 case IPPROTO_TCP: 7952 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7953 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7954 sum = m->m_pkthdr.csum_data; 7955 } else { 7956 ip = mtod(m, struct ip *); 7957 sum = in_pseudo(ip->ip_src.s_addr, 7958 ip->ip_dst.s_addr, htonl((u_short)len + 7959 m->m_pkthdr.csum_data + IPPROTO_TCP)); 7960 } 7961 sum ^= 0xffff; 7962 ++hw_assist; 7963 } 7964 break; 7965 case IPPROTO_UDP: 7966 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7967 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7968 sum = m->m_pkthdr.csum_data; 7969 } else { 7970 ip = mtod(m, struct ip *); 7971 sum = in_pseudo(ip->ip_src.s_addr, 7972 ip->ip_dst.s_addr, htonl((u_short)len + 7973 m->m_pkthdr.csum_data + IPPROTO_UDP)); 7974 } 7975 sum ^= 0xffff; 7976 ++hw_assist; 7977 } 7978 break; 7979 case IPPROTO_ICMP: 7980 #ifdef INET6 7981 case IPPROTO_ICMPV6: 7982 #endif /* INET6 */ 7983 break; 7984 default: 7985 return (1); 7986 } 7987 7988 if (!hw_assist) { 7989 switch (af) { 7990 case AF_INET: 7991 if (p == IPPROTO_ICMP) { 7992 if (m->m_len < off) 7993 return (1); 7994 m->m_data += off; 7995 m->m_len -= off; 7996 sum = in_cksum(m, len); 7997 m->m_data -= off; 7998 m->m_len += off; 7999 } else { 8000 if (m->m_len < sizeof(struct ip)) 8001 return (1); 8002 sum = in4_cksum(m, p, off, len); 8003 } 8004 break; 8005 #ifdef INET6 8006 case AF_INET6: 8007 if (m->m_len < sizeof(struct ip6_hdr)) 8008 return (1); 8009 sum = in6_cksum(m, p, off, len); 8010 break; 8011 #endif /* INET6 */ 8012 default: 8013 return (1); 8014 } 8015 } 8016 if (sum) { 8017 switch (p) { 8018 case IPPROTO_TCP: 8019 { 8020 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8021 break; 8022 } 8023 case IPPROTO_UDP: 8024 { 8025 KMOD_UDPSTAT_INC(udps_badsum); 8026 break; 8027 } 8028 #ifdef INET 8029 case IPPROTO_ICMP: 8030 { 8031 KMOD_ICMPSTAT_INC(icps_checksum); 8032 break; 8033 } 8034 #endif 8035 #ifdef INET6 8036 case IPPROTO_ICMPV6: 8037 { 8038 KMOD_ICMP6STAT_INC(icp6s_checksum); 8039 break; 8040 } 8041 #endif /* INET6 */ 8042 } 8043 return (1); 8044 } else { 8045 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8046 m->m_pkthdr.csum_flags |= 8047 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8048 m->m_pkthdr.csum_data = 0xffff; 8049 } 8050 } 8051 return (0); 8052 } 8053 8054 static bool 8055 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8056 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8057 { 8058 int dndir = r->direction; 8059 8060 if (s && dndir == PF_INOUT) { 8061 dndir = s->direction; 8062 } else if (dndir == PF_INOUT) { 8063 /* Assume primary direction. Happens when we've set dnpipe in 8064 * the ethernet level code. */ 8065 dndir = pd->dir; 8066 } 8067 8068 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8069 return (false); 8070 8071 memset(dnflow, 0, sizeof(*dnflow)); 8072 8073 if (pd->dport != NULL) 8074 dnflow->f_id.dst_port = ntohs(*pd->dport); 8075 if (pd->sport != NULL) 8076 dnflow->f_id.src_port = ntohs(*pd->sport); 8077 8078 if (pd->dir == PF_IN) 8079 dnflow->flags |= IPFW_ARGS_IN; 8080 else 8081 dnflow->flags |= IPFW_ARGS_OUT; 8082 8083 if (pd->dir != dndir && pd->act.dnrpipe) { 8084 dnflow->rule.info = pd->act.dnrpipe; 8085 } 8086 else if (pd->dir == dndir && pd->act.dnpipe) { 8087 dnflow->rule.info = pd->act.dnpipe; 8088 } 8089 else { 8090 return (false); 8091 } 8092 8093 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8094 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8095 dnflow->rule.info |= IPFW_IS_PIPE; 8096 8097 dnflow->f_id.proto = pd->proto; 8098 dnflow->f_id.extra = dnflow->rule.info; 8099 switch (pd->af) { 8100 case AF_INET: 8101 dnflow->f_id.addr_type = 4; 8102 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8103 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8104 break; 8105 case AF_INET6: 8106 dnflow->flags |= IPFW_ARGS_IP6; 8107 dnflow->f_id.addr_type = 6; 8108 dnflow->f_id.src_ip6 = pd->src->v6; 8109 dnflow->f_id.dst_ip6 = pd->dst->v6; 8110 break; 8111 default: 8112 panic("Invalid AF"); 8113 break; 8114 } 8115 8116 return (true); 8117 } 8118 8119 int 8120 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8121 struct inpcb *inp) 8122 { 8123 struct pfi_kkif *kif; 8124 struct mbuf *m = *m0; 8125 8126 M_ASSERTPKTHDR(m); 8127 MPASS(ifp->if_vnet == curvnet); 8128 NET_EPOCH_ASSERT(); 8129 8130 if (!V_pf_status.running) 8131 return (PF_PASS); 8132 8133 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8134 8135 if (kif == NULL) { 8136 DPFPRINTF(PF_DEBUG_URGENT, 8137 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8138 return (PF_DROP); 8139 } 8140 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8141 return (PF_PASS); 8142 8143 if (m->m_flags & M_SKIP_FIREWALL) 8144 return (PF_PASS); 8145 8146 /* Stateless! */ 8147 return (pf_test_eth_rule(dir, kif, m0)); 8148 } 8149 8150 static __inline void 8151 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8152 { 8153 struct m_tag *mtag; 8154 8155 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8156 8157 /* dummynet adds this tag, but pf does not need it, 8158 * and keeping it creates unexpected behavior, 8159 * e.g. in case of divert(4) usage right after dummynet. */ 8160 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8161 if (mtag != NULL) 8162 m_tag_delete(m, mtag); 8163 } 8164 8165 static int 8166 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8167 struct pf_krule *r, struct mbuf **m0) 8168 { 8169 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8170 } 8171 8172 static int 8173 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8174 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8175 struct mbuf **m0) 8176 { 8177 NET_EPOCH_ASSERT(); 8178 8179 if (pd->act.dnpipe || pd->act.dnrpipe) { 8180 struct ip_fw_args dnflow; 8181 if (ip_dn_io_ptr == NULL) { 8182 m_freem(*m0); 8183 *m0 = NULL; 8184 return (ENOMEM); 8185 } 8186 8187 if (pd->pf_mtag == NULL && 8188 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8189 m_freem(*m0); 8190 *m0 = NULL; 8191 return (ENOMEM); 8192 } 8193 8194 if (ifp != NULL) { 8195 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8196 8197 pd->pf_mtag->if_index = ifp->if_index; 8198 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8199 8200 MPASS(sa != NULL); 8201 8202 if (pd->af == AF_INET) 8203 memcpy(&pd->pf_mtag->dst, sa, 8204 sizeof(struct sockaddr_in)); 8205 else 8206 memcpy(&pd->pf_mtag->dst, sa, 8207 sizeof(struct sockaddr_in6)); 8208 } 8209 8210 if (s != NULL && s->nat_rule.ptr != NULL && 8211 s->nat_rule.ptr->action == PF_RDR && 8212 ( 8213 #ifdef INET 8214 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8215 #endif 8216 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8217 /* 8218 * If we're redirecting to loopback mark this packet 8219 * as being local. Otherwise it might get dropped 8220 * if dummynet re-injects. 8221 */ 8222 (*m0)->m_pkthdr.rcvif = V_loif; 8223 } 8224 8225 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8226 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8227 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8228 ip_dn_io_ptr(m0, &dnflow); 8229 if (*m0 != NULL) { 8230 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8231 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8232 } 8233 } 8234 } 8235 8236 return (0); 8237 } 8238 8239 #ifdef INET 8240 int 8241 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8242 struct inpcb *inp, struct pf_rule_actions *default_actions) 8243 { 8244 struct pfi_kkif *kif; 8245 u_short action, reason = 0; 8246 struct mbuf *m = *m0; 8247 struct ip *h = NULL; 8248 struct m_tag *mtag; 8249 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8250 struct pf_kstate *s = NULL; 8251 struct pf_kruleset *ruleset = NULL; 8252 struct pf_pdesc pd; 8253 int off, dirndx, use_2nd_queue = 0; 8254 uint16_t tag; 8255 uint8_t rt; 8256 8257 PF_RULES_RLOCK_TRACKER; 8258 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8259 M_ASSERTPKTHDR(m); 8260 8261 if (!V_pf_status.running) 8262 return (PF_PASS); 8263 8264 PF_RULES_RLOCK(); 8265 8266 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8267 8268 if (__predict_false(kif == NULL)) { 8269 DPFPRINTF(PF_DEBUG_URGENT, 8270 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8271 PF_RULES_RUNLOCK(); 8272 return (PF_DROP); 8273 } 8274 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8275 PF_RULES_RUNLOCK(); 8276 return (PF_PASS); 8277 } 8278 8279 if (m->m_flags & M_SKIP_FIREWALL) { 8280 PF_RULES_RUNLOCK(); 8281 return (PF_PASS); 8282 } 8283 8284 memset(&pd, 0, sizeof(pd)); 8285 TAILQ_INIT(&pd.sctp_multihome_jobs); 8286 if (default_actions != NULL) 8287 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8288 pd.pf_mtag = pf_find_mtag(m); 8289 8290 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8291 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8292 8293 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8294 pd.pf_mtag->if_idxgen); 8295 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8296 PF_RULES_RUNLOCK(); 8297 m_freem(*m0); 8298 *m0 = NULL; 8299 return (PF_PASS); 8300 } 8301 PF_RULES_RUNLOCK(); 8302 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 8303 *m0 = NULL; 8304 return (PF_PASS); 8305 } 8306 8307 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8308 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8309 pd.act.flags = pd.pf_mtag->dnflags; 8310 } 8311 8312 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8313 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8314 /* Dummynet re-injects packets after they've 8315 * completed their delay. We've already 8316 * processed them, so pass unconditionally. */ 8317 8318 /* But only once. We may see the packet multiple times (e.g. 8319 * PFIL_IN/PFIL_OUT). */ 8320 pf_dummynet_flag_remove(m, pd.pf_mtag); 8321 PF_RULES_RUNLOCK(); 8322 8323 return (PF_PASS); 8324 } 8325 8326 pd.sport = pd.dport = NULL; 8327 pd.proto_sum = NULL; 8328 pd.dir = dir; 8329 pd.sidx = (dir == PF_IN) ? 0 : 1; 8330 pd.didx = (dir == PF_IN) ? 1 : 0; 8331 pd.af = AF_INET; 8332 pd.act.rtableid = -1; 8333 8334 if (m->m_len < sizeof(struct ip) && 8335 (m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8336 DPFPRINTF(PF_DEBUG_URGENT, 8337 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8338 PF_RULES_RUNLOCK(); 8339 return (PF_DROP); 8340 } 8341 h = mtod(m, struct ip *); 8342 off = h->ip_hl << 2; 8343 8344 if (__predict_false(ip_divert_ptr != NULL) && 8345 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 8346 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 8347 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 8348 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 8349 if (pd.pf_mtag == NULL && 8350 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8351 action = PF_DROP; 8352 goto done; 8353 } 8354 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 8355 } 8356 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 8357 m->m_flags |= M_FASTFWD_OURS; 8358 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8359 } 8360 m_tag_delete(m, mtag); 8361 8362 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8363 if (mtag != NULL) 8364 m_tag_delete(m, mtag); 8365 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 8366 /* We do IP header normalization and packet reassembly here */ 8367 action = PF_DROP; 8368 goto done; 8369 } 8370 m = *m0; /* pf_normalize messes with m0 */ 8371 h = mtod(m, struct ip *); 8372 8373 off = h->ip_hl << 2; 8374 if (off < (int)sizeof(struct ip)) { 8375 action = PF_DROP; 8376 REASON_SET(&reason, PFRES_SHORT); 8377 pd.act.log = PF_LOG_FORCE; 8378 goto done; 8379 } 8380 8381 pd.src = (struct pf_addr *)&h->ip_src; 8382 pd.dst = (struct pf_addr *)&h->ip_dst; 8383 pd.ip_sum = &h->ip_sum; 8384 pd.proto = h->ip_p; 8385 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 8386 pd.tot_len = ntohs(h->ip_len); 8387 8388 /* handle fragments that didn't get reassembled by normalization */ 8389 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 8390 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 8391 goto done; 8392 } 8393 8394 switch (h->ip_p) { 8395 case IPPROTO_TCP: { 8396 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8397 &action, &reason, AF_INET)) { 8398 if (action != PF_PASS) 8399 pd.act.log = PF_LOG_FORCE; 8400 goto done; 8401 } 8402 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8403 8404 pd.sport = &pd.hdr.tcp.th_sport; 8405 pd.dport = &pd.hdr.tcp.th_dport; 8406 8407 /* Respond to SYN with a syncookie. */ 8408 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8409 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8410 pf_syncookie_send(m, off, &pd); 8411 action = PF_DROP; 8412 break; 8413 } 8414 8415 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 8416 use_2nd_queue = 1; 8417 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8418 if (action == PF_DROP) 8419 goto done; 8420 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8421 if (action == PF_PASS) { 8422 if (V_pfsync_update_state_ptr != NULL) 8423 V_pfsync_update_state_ptr(s); 8424 r = s->rule.ptr; 8425 a = s->anchor.ptr; 8426 } else if (s == NULL) { 8427 /* Validate remote SYN|ACK, re-create original SYN if 8428 * valid. */ 8429 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8430 TH_ACK && pf_syncookie_validate(&pd) && 8431 pd.dir == PF_IN) { 8432 struct mbuf *msyn; 8433 8434 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 8435 &pd); 8436 if (msyn == NULL) { 8437 action = PF_DROP; 8438 break; 8439 } 8440 8441 action = pf_test(dir, pflags, ifp, &msyn, inp, 8442 &pd.act); 8443 m_freem(msyn); 8444 if (action != PF_PASS) 8445 break; 8446 8447 action = pf_test_state_tcp(&s, kif, m, off, h, 8448 &pd, &reason); 8449 if (action != PF_PASS || s == NULL) { 8450 action = PF_DROP; 8451 break; 8452 } 8453 8454 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8455 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8456 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8457 action = pf_synproxy(&pd, &s, &reason); 8458 break; 8459 } else { 8460 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8461 &a, &ruleset, inp); 8462 } 8463 } 8464 break; 8465 } 8466 8467 case IPPROTO_UDP: { 8468 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8469 &action, &reason, AF_INET)) { 8470 if (action != PF_PASS) 8471 pd.act.log = PF_LOG_FORCE; 8472 goto done; 8473 } 8474 pd.sport = &pd.hdr.udp.uh_sport; 8475 pd.dport = &pd.hdr.udp.uh_dport; 8476 if (pd.hdr.udp.uh_dport == 0 || 8477 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8478 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8479 action = PF_DROP; 8480 REASON_SET(&reason, PFRES_SHORT); 8481 goto done; 8482 } 8483 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8484 if (action == PF_PASS) { 8485 if (V_pfsync_update_state_ptr != NULL) 8486 V_pfsync_update_state_ptr(s); 8487 r = s->rule.ptr; 8488 a = s->anchor.ptr; 8489 } else if (s == NULL) 8490 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8491 &a, &ruleset, inp); 8492 break; 8493 } 8494 8495 case IPPROTO_SCTP: { 8496 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8497 &action, &reason, AF_INET)) { 8498 if (action != PF_PASS) 8499 pd.act.log |= PF_LOG_FORCE; 8500 goto done; 8501 } 8502 pd.p_len = pd.tot_len - off; 8503 8504 pd.sport = &pd.hdr.sctp.src_port; 8505 pd.dport = &pd.hdr.sctp.dest_port; 8506 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8507 action = PF_DROP; 8508 REASON_SET(&reason, PFRES_SHORT); 8509 goto done; 8510 } 8511 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8512 if (action == PF_DROP) 8513 goto done; 8514 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8515 &reason); 8516 if (action == PF_PASS) { 8517 if (V_pfsync_update_state_ptr != NULL) 8518 V_pfsync_update_state_ptr(s); 8519 r = s->rule.ptr; 8520 a = s->anchor.ptr; 8521 } else if (s == NULL) { 8522 action = pf_test_rule(&r, &s, kif, m, off, 8523 &pd, &a, &ruleset, inp); 8524 } 8525 break; 8526 } 8527 8528 case IPPROTO_ICMP: { 8529 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 8530 &action, &reason, AF_INET)) { 8531 if (action != PF_PASS) 8532 pd.act.log = PF_LOG_FORCE; 8533 goto done; 8534 } 8535 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8536 if (action == PF_PASS) { 8537 if (V_pfsync_update_state_ptr != NULL) 8538 V_pfsync_update_state_ptr(s); 8539 r = s->rule.ptr; 8540 a = s->anchor.ptr; 8541 } else if (s == NULL) 8542 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8543 &a, &ruleset, inp); 8544 break; 8545 } 8546 8547 #ifdef INET6 8548 case IPPROTO_ICMPV6: { 8549 action = PF_DROP; 8550 DPFPRINTF(PF_DEBUG_MISC, 8551 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 8552 goto done; 8553 } 8554 #endif 8555 8556 default: 8557 action = pf_test_state_other(&s, kif, m, &pd); 8558 if (action == PF_PASS) { 8559 if (V_pfsync_update_state_ptr != NULL) 8560 V_pfsync_update_state_ptr(s); 8561 r = s->rule.ptr; 8562 a = s->anchor.ptr; 8563 } else if (s == NULL) 8564 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8565 &a, &ruleset, inp); 8566 break; 8567 } 8568 8569 done: 8570 PF_RULES_RUNLOCK(); 8571 if (action == PF_PASS && h->ip_hl > 5 && 8572 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8573 action = PF_DROP; 8574 REASON_SET(&reason, PFRES_IPOPTIONS); 8575 pd.act.log = PF_LOG_FORCE; 8576 DPFPRINTF(PF_DEBUG_MISC, 8577 ("pf: dropping packet with ip options\n")); 8578 } 8579 8580 if (s) { 8581 uint8_t log = pd.act.log; 8582 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8583 pd.act.log |= log; 8584 tag = s->tag; 8585 rt = s->rt; 8586 } else { 8587 tag = r->tag; 8588 rt = r->rt; 8589 } 8590 8591 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8592 action = PF_DROP; 8593 REASON_SET(&reason, PFRES_MEMORY); 8594 } 8595 8596 pf_scrub_ip(&m, &pd); 8597 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8598 pf_normalize_mss(m, off, &pd); 8599 8600 if (pd.act.rtableid >= 0) 8601 M_SETFIB(m, pd.act.rtableid); 8602 8603 if (pd.act.flags & PFSTATE_SETPRIO) { 8604 if (pd.tos & IPTOS_LOWDELAY) 8605 use_2nd_queue = 1; 8606 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8607 action = PF_DROP; 8608 REASON_SET(&reason, PFRES_MEMORY); 8609 pd.act.log = PF_LOG_FORCE; 8610 DPFPRINTF(PF_DEBUG_MISC, 8611 ("pf: failed to allocate 802.1q mtag\n")); 8612 } 8613 } 8614 8615 #ifdef ALTQ 8616 if (action == PF_PASS && pd.act.qid) { 8617 if (pd.pf_mtag == NULL && 8618 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8619 action = PF_DROP; 8620 REASON_SET(&reason, PFRES_MEMORY); 8621 } else { 8622 if (s != NULL) 8623 pd.pf_mtag->qid_hash = pf_state_hash(s); 8624 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 8625 pd.pf_mtag->qid = pd.act.pqid; 8626 else 8627 pd.pf_mtag->qid = pd.act.qid; 8628 /* Add hints for ecn. */ 8629 pd.pf_mtag->hdr = h; 8630 } 8631 } 8632 #endif /* ALTQ */ 8633 8634 /* 8635 * connections redirected to loopback should not match sockets 8636 * bound specifically to loopback due to security implications, 8637 * see tcp_input() and in_pcblookup_listen(). 8638 */ 8639 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8640 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8641 (s->nat_rule.ptr->action == PF_RDR || 8642 s->nat_rule.ptr->action == PF_BINAT) && 8643 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 8644 m->m_flags |= M_SKIP_FIREWALL; 8645 8646 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 8647 r->divert.port && !PACKET_LOOPED(&pd)) { 8648 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 8649 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 8650 if (mtag != NULL) { 8651 ((struct pf_divert_mtag *)(mtag+1))->port = 8652 ntohs(r->divert.port); 8653 ((struct pf_divert_mtag *)(mtag+1))->idir = 8654 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 8655 PF_DIVERT_MTAG_DIR_OUT; 8656 8657 if (s) 8658 PF_STATE_UNLOCK(s); 8659 8660 m_tag_prepend(m, mtag); 8661 if (m->m_flags & M_FASTFWD_OURS) { 8662 if (pd.pf_mtag == NULL && 8663 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8664 action = PF_DROP; 8665 REASON_SET(&reason, PFRES_MEMORY); 8666 pd.act.log = PF_LOG_FORCE; 8667 DPFPRINTF(PF_DEBUG_MISC, 8668 ("pf: failed to allocate tag\n")); 8669 } else { 8670 pd.pf_mtag->flags |= 8671 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8672 m->m_flags &= ~M_FASTFWD_OURS; 8673 } 8674 } 8675 ip_divert_ptr(*m0, dir == PF_IN); 8676 *m0 = NULL; 8677 8678 return (action); 8679 } else { 8680 /* XXX: ipfw has the same behaviour! */ 8681 action = PF_DROP; 8682 REASON_SET(&reason, PFRES_MEMORY); 8683 pd.act.log = PF_LOG_FORCE; 8684 DPFPRINTF(PF_DEBUG_MISC, 8685 ("pf: failed to allocate divert tag\n")); 8686 } 8687 } 8688 /* this flag will need revising if the pkt is forwarded */ 8689 if (pd.pf_mtag) 8690 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 8691 8692 if (pd.act.log) { 8693 struct pf_krule *lr; 8694 struct pf_krule_item *ri; 8695 8696 if (s != NULL && s->nat_rule.ptr != NULL && 8697 s->nat_rule.ptr->log & PF_LOG_ALL) 8698 lr = s->nat_rule.ptr; 8699 else 8700 lr = r; 8701 8702 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8703 PFLOG_PACKET(kif, m, AF_INET, action, reason, lr, a, 8704 ruleset, &pd, (s == NULL)); 8705 if (s) { 8706 SLIST_FOREACH(ri, &s->match_rules, entry) 8707 if (ri->r->log & PF_LOG_ALL) 8708 PFLOG_PACKET(kif, m, AF_INET, action, 8709 reason, ri->r, a, ruleset, &pd, 0); 8710 } 8711 } 8712 8713 pf_counter_u64_critical_enter(); 8714 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 8715 pd.tot_len); 8716 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 8717 1); 8718 8719 if (action == PF_PASS || r->action == PF_DROP) { 8720 dirndx = (dir == PF_OUT); 8721 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8722 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8723 pf_update_timestamp(r); 8724 8725 if (a != NULL) { 8726 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8727 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8728 } 8729 if (s != NULL) { 8730 struct pf_krule_item *ri; 8731 8732 if (s->nat_rule.ptr != NULL) { 8733 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8734 1); 8735 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8736 pd.tot_len); 8737 } 8738 if (s->src_node != NULL) { 8739 counter_u64_add(s->src_node->packets[dirndx], 8740 1); 8741 counter_u64_add(s->src_node->bytes[dirndx], 8742 pd.tot_len); 8743 } 8744 if (s->nat_src_node != NULL) { 8745 counter_u64_add(s->nat_src_node->packets[dirndx], 8746 1); 8747 counter_u64_add(s->nat_src_node->bytes[dirndx], 8748 pd.tot_len); 8749 } 8750 dirndx = (dir == s->direction) ? 0 : 1; 8751 s->packets[dirndx]++; 8752 s->bytes[dirndx] += pd.tot_len; 8753 SLIST_FOREACH(ri, &s->match_rules, entry) { 8754 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8755 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 8756 } 8757 } 8758 tr = r; 8759 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8760 if (nr != NULL && r == &V_pf_default_rule) 8761 tr = nr; 8762 if (tr->src.addr.type == PF_ADDR_TABLE) 8763 pfr_update_stats(tr->src.addr.p.tbl, 8764 (s == NULL) ? pd.src : 8765 &s->key[(s->direction == PF_IN)]-> 8766 addr[(s->direction == PF_OUT)], 8767 pd.af, pd.tot_len, dir == PF_OUT, 8768 r->action == PF_PASS, tr->src.neg); 8769 if (tr->dst.addr.type == PF_ADDR_TABLE) 8770 pfr_update_stats(tr->dst.addr.p.tbl, 8771 (s == NULL) ? pd.dst : 8772 &s->key[(s->direction == PF_IN)]-> 8773 addr[(s->direction == PF_IN)], 8774 pd.af, pd.tot_len, dir == PF_OUT, 8775 r->action == PF_PASS, tr->dst.neg); 8776 } 8777 pf_counter_u64_critical_exit(); 8778 8779 switch (action) { 8780 case PF_SYNPROXY_DROP: 8781 m_freem(*m0); 8782 case PF_DEFER: 8783 *m0 = NULL; 8784 action = PF_PASS; 8785 break; 8786 case PF_DROP: 8787 m_freem(*m0); 8788 *m0 = NULL; 8789 break; 8790 default: 8791 /* pf_route() returns unlocked. */ 8792 if (rt) { 8793 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 8794 goto out; 8795 } 8796 if (pf_dummynet(&pd, s, r, m0) != 0) { 8797 action = PF_DROP; 8798 REASON_SET(&reason, PFRES_MEMORY); 8799 } 8800 break; 8801 } 8802 8803 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 8804 8805 if (s && action != PF_DROP) { 8806 if (!s->if_index_in && dir == PF_IN) 8807 s->if_index_in = ifp->if_index; 8808 else if (!s->if_index_out && dir == PF_OUT) 8809 s->if_index_out = ifp->if_index; 8810 } 8811 8812 if (s) 8813 PF_STATE_UNLOCK(s); 8814 8815 out: 8816 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 8817 8818 return (action); 8819 } 8820 #endif /* INET */ 8821 8822 #ifdef INET6 8823 int 8824 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 8825 struct pf_rule_actions *default_actions) 8826 { 8827 struct pfi_kkif *kif; 8828 u_short action, reason = 0; 8829 struct mbuf *m = *m0, *n = NULL; 8830 struct m_tag *mtag; 8831 struct ip6_hdr *h = NULL; 8832 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8833 struct pf_kstate *s = NULL; 8834 struct pf_kruleset *ruleset = NULL; 8835 struct pf_pdesc pd; 8836 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 8837 uint16_t tag; 8838 uint8_t rt; 8839 8840 PF_RULES_RLOCK_TRACKER; 8841 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8842 M_ASSERTPKTHDR(m); 8843 8844 if (!V_pf_status.running) 8845 return (PF_PASS); 8846 8847 PF_RULES_RLOCK(); 8848 8849 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8850 if (__predict_false(kif == NULL)) { 8851 DPFPRINTF(PF_DEBUG_URGENT, 8852 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 8853 PF_RULES_RUNLOCK(); 8854 return (PF_DROP); 8855 } 8856 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8857 PF_RULES_RUNLOCK(); 8858 return (PF_PASS); 8859 } 8860 8861 if (m->m_flags & M_SKIP_FIREWALL) { 8862 PF_RULES_RUNLOCK(); 8863 return (PF_PASS); 8864 } 8865 8866 /* 8867 * If we end up changing IP addresses (e.g. binat) the stack may get 8868 * confused and fail to send the icmp6 packet too big error. Just send 8869 * it here, before we do any NAT. 8870 */ 8871 if (dir == PF_OUT && pflags & PFIL_FWD && IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 8872 PF_RULES_RUNLOCK(); 8873 *m0 = NULL; 8874 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8875 return (PF_DROP); 8876 } 8877 8878 memset(&pd, 0, sizeof(pd)); 8879 TAILQ_INIT(&pd.sctp_multihome_jobs); 8880 if (default_actions != NULL) 8881 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8882 pd.pf_mtag = pf_find_mtag(m); 8883 8884 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8885 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8886 8887 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8888 pd.pf_mtag->if_idxgen); 8889 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8890 PF_RULES_RUNLOCK(); 8891 m_freem(*m0); 8892 *m0 = NULL; 8893 return (PF_PASS); 8894 } 8895 PF_RULES_RUNLOCK(); 8896 nd6_output_ifp(ifp, ifp, m, 8897 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 8898 *m0 = NULL; 8899 return (PF_PASS); 8900 } 8901 8902 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8903 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8904 pd.act.flags = pd.pf_mtag->dnflags; 8905 } 8906 8907 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8908 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8909 pf_dummynet_flag_remove(m, pd.pf_mtag); 8910 /* Dummynet re-injects packets after they've 8911 * completed their delay. We've already 8912 * processed them, so pass unconditionally. */ 8913 PF_RULES_RUNLOCK(); 8914 return (PF_PASS); 8915 } 8916 8917 pd.sport = pd.dport = NULL; 8918 pd.ip_sum = NULL; 8919 pd.proto_sum = NULL; 8920 pd.dir = dir; 8921 pd.sidx = (dir == PF_IN) ? 0 : 1; 8922 pd.didx = (dir == PF_IN) ? 1 : 0; 8923 pd.af = AF_INET6; 8924 pd.act.rtableid = -1; 8925 8926 h = mtod(m, struct ip6_hdr *); 8927 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8928 8929 /* We do IP header normalization and packet reassembly here */ 8930 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8931 action = PF_DROP; 8932 goto done; 8933 } 8934 m = *m0; /* pf_normalize messes with m0 */ 8935 h = mtod(m, struct ip6_hdr *); 8936 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8937 8938 /* 8939 * we do not support jumbogram. if we keep going, zero ip6_plen 8940 * will do something bad, so drop the packet for now. 8941 */ 8942 if (htons(h->ip6_plen) == 0) { 8943 action = PF_DROP; 8944 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 8945 goto done; 8946 } 8947 8948 pd.src = (struct pf_addr *)&h->ip6_src; 8949 pd.dst = (struct pf_addr *)&h->ip6_dst; 8950 pd.tos = IPV6_DSCP(h); 8951 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8952 8953 pd.proto = h->ip6_nxt; 8954 do { 8955 switch (pd.proto) { 8956 case IPPROTO_FRAGMENT: 8957 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 8958 &ruleset); 8959 if (action == PF_DROP) 8960 REASON_SET(&reason, PFRES_FRAG); 8961 goto done; 8962 case IPPROTO_ROUTING: { 8963 struct ip6_rthdr rthdr; 8964 8965 if (rh_cnt++) { 8966 DPFPRINTF(PF_DEBUG_MISC, 8967 ("pf: IPv6 more than one rthdr\n")); 8968 action = PF_DROP; 8969 REASON_SET(&reason, PFRES_IPOPTIONS); 8970 pd.act.log = PF_LOG_FORCE; 8971 goto done; 8972 } 8973 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 8974 &reason, pd.af)) { 8975 DPFPRINTF(PF_DEBUG_MISC, 8976 ("pf: IPv6 short rthdr\n")); 8977 action = PF_DROP; 8978 REASON_SET(&reason, PFRES_SHORT); 8979 pd.act.log = PF_LOG_FORCE; 8980 goto done; 8981 } 8982 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8983 DPFPRINTF(PF_DEBUG_MISC, 8984 ("pf: IPv6 rthdr0\n")); 8985 action = PF_DROP; 8986 REASON_SET(&reason, PFRES_IPOPTIONS); 8987 pd.act.log = PF_LOG_FORCE; 8988 goto done; 8989 } 8990 /* FALLTHROUGH */ 8991 } 8992 case IPPROTO_AH: 8993 case IPPROTO_HOPOPTS: 8994 case IPPROTO_DSTOPTS: { 8995 /* get next header and header length */ 8996 struct ip6_ext opt6; 8997 8998 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 8999 NULL, &reason, pd.af)) { 9000 DPFPRINTF(PF_DEBUG_MISC, 9001 ("pf: IPv6 short opt\n")); 9002 action = PF_DROP; 9003 pd.act.log = PF_LOG_FORCE; 9004 goto done; 9005 } 9006 if (pd.proto == IPPROTO_AH) 9007 off += (opt6.ip6e_len + 2) * 4; 9008 else 9009 off += (opt6.ip6e_len + 1) * 8; 9010 pd.proto = opt6.ip6e_nxt; 9011 /* goto the next header */ 9012 break; 9013 } 9014 default: 9015 terminal++; 9016 break; 9017 } 9018 } while (!terminal); 9019 9020 /* if there's no routing header, use unmodified mbuf for checksumming */ 9021 if (!n) 9022 n = m; 9023 9024 switch (pd.proto) { 9025 case IPPROTO_TCP: { 9026 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 9027 &action, &reason, AF_INET6)) { 9028 if (action != PF_PASS) 9029 pd.act.log |= PF_LOG_FORCE; 9030 goto done; 9031 } 9032 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 9033 pd.sport = &pd.hdr.tcp.th_sport; 9034 pd.dport = &pd.hdr.tcp.th_dport; 9035 9036 /* Respond to SYN with a syncookie. */ 9037 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9038 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9039 pf_syncookie_send(m, off, &pd); 9040 action = PF_DROP; 9041 break; 9042 } 9043 9044 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 9045 if (action == PF_DROP) 9046 goto done; 9047 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 9048 if (action == PF_PASS) { 9049 if (V_pfsync_update_state_ptr != NULL) 9050 V_pfsync_update_state_ptr(s); 9051 r = s->rule.ptr; 9052 a = s->anchor.ptr; 9053 } else if (s == NULL) { 9054 /* Validate remote SYN|ACK, re-create original SYN if 9055 * valid. */ 9056 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9057 TH_ACK && pf_syncookie_validate(&pd) && 9058 pd.dir == PF_IN) { 9059 struct mbuf *msyn; 9060 9061 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 9062 off, &pd); 9063 if (msyn == NULL) { 9064 action = PF_DROP; 9065 break; 9066 } 9067 9068 action = pf_test6(dir, pflags, ifp, &msyn, inp, 9069 &pd.act); 9070 m_freem(msyn); 9071 if (action != PF_PASS) 9072 break; 9073 9074 action = pf_test_state_tcp(&s, kif, m, off, h, 9075 &pd, &reason); 9076 if (action != PF_PASS || s == NULL) { 9077 action = PF_DROP; 9078 break; 9079 } 9080 9081 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9082 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9083 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9084 9085 action = pf_synproxy(&pd, &s, &reason); 9086 break; 9087 } else { 9088 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9089 &a, &ruleset, inp); 9090 } 9091 } 9092 break; 9093 } 9094 9095 case IPPROTO_UDP: { 9096 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 9097 &action, &reason, AF_INET6)) { 9098 if (action != PF_PASS) 9099 pd.act.log |= PF_LOG_FORCE; 9100 goto done; 9101 } 9102 pd.sport = &pd.hdr.udp.uh_sport; 9103 pd.dport = &pd.hdr.udp.uh_dport; 9104 if (pd.hdr.udp.uh_dport == 0 || 9105 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 9106 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 9107 action = PF_DROP; 9108 REASON_SET(&reason, PFRES_SHORT); 9109 goto done; 9110 } 9111 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 9112 if (action == PF_PASS) { 9113 if (V_pfsync_update_state_ptr != NULL) 9114 V_pfsync_update_state_ptr(s); 9115 r = s->rule.ptr; 9116 a = s->anchor.ptr; 9117 } else if (s == NULL) 9118 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9119 &a, &ruleset, inp); 9120 break; 9121 } 9122 9123 case IPPROTO_SCTP: { 9124 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 9125 &action, &reason, AF_INET6)) { 9126 if (action != PF_PASS) 9127 pd.act.log |= PF_LOG_FORCE; 9128 goto done; 9129 } 9130 pd.sport = &pd.hdr.sctp.src_port; 9131 pd.dport = &pd.hdr.sctp.dest_port; 9132 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 9133 action = PF_DROP; 9134 REASON_SET(&reason, PFRES_SHORT); 9135 goto done; 9136 } 9137 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 9138 if (action == PF_DROP) 9139 goto done; 9140 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 9141 &reason); 9142 if (action == PF_PASS) { 9143 if (V_pfsync_update_state_ptr != NULL) 9144 V_pfsync_update_state_ptr(s); 9145 r = s->rule.ptr; 9146 a = s->anchor.ptr; 9147 } else if (s == NULL) { 9148 action = pf_test_rule(&r, &s, kif, m, off, 9149 &pd, &a, &ruleset, inp); 9150 } 9151 break; 9152 } 9153 9154 case IPPROTO_ICMP: { 9155 action = PF_DROP; 9156 DPFPRINTF(PF_DEBUG_MISC, 9157 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 9158 goto done; 9159 } 9160 9161 case IPPROTO_ICMPV6: { 9162 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 9163 &action, &reason, AF_INET6)) { 9164 if (action != PF_PASS) 9165 pd.act.log |= PF_LOG_FORCE; 9166 goto done; 9167 } 9168 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 9169 if (action == PF_PASS) { 9170 if (V_pfsync_update_state_ptr != NULL) 9171 V_pfsync_update_state_ptr(s); 9172 r = s->rule.ptr; 9173 a = s->anchor.ptr; 9174 } else if (s == NULL) 9175 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9176 &a, &ruleset, inp); 9177 break; 9178 } 9179 9180 default: 9181 action = pf_test_state_other(&s, kif, m, &pd); 9182 if (action == PF_PASS) { 9183 if (V_pfsync_update_state_ptr != NULL) 9184 V_pfsync_update_state_ptr(s); 9185 r = s->rule.ptr; 9186 a = s->anchor.ptr; 9187 } else if (s == NULL) 9188 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9189 &a, &ruleset, inp); 9190 break; 9191 } 9192 9193 done: 9194 PF_RULES_RUNLOCK(); 9195 if (n != m) { 9196 m_freem(n); 9197 n = NULL; 9198 } 9199 9200 /* handle dangerous IPv6 extension headers. */ 9201 if (action == PF_PASS && rh_cnt && 9202 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9203 action = PF_DROP; 9204 REASON_SET(&reason, PFRES_IPOPTIONS); 9205 pd.act.log = r->log; 9206 DPFPRINTF(PF_DEBUG_MISC, 9207 ("pf: dropping packet with dangerous v6 headers\n")); 9208 } 9209 9210 if (s) { 9211 uint8_t log = pd.act.log; 9212 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9213 pd.act.log |= log; 9214 tag = s->tag; 9215 rt = s->rt; 9216 } else { 9217 tag = r->tag; 9218 rt = r->rt; 9219 } 9220 9221 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 9222 action = PF_DROP; 9223 REASON_SET(&reason, PFRES_MEMORY); 9224 } 9225 9226 pf_scrub_ip6(&m, &pd); 9227 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9228 pf_normalize_mss(m, off, &pd); 9229 9230 if (pd.act.rtableid >= 0) 9231 M_SETFIB(m, pd.act.rtableid); 9232 9233 if (pd.act.flags & PFSTATE_SETPRIO) { 9234 if (pd.tos & IPTOS_LOWDELAY) 9235 use_2nd_queue = 1; 9236 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 9237 action = PF_DROP; 9238 REASON_SET(&reason, PFRES_MEMORY); 9239 pd.act.log = PF_LOG_FORCE; 9240 DPFPRINTF(PF_DEBUG_MISC, 9241 ("pf: failed to allocate 802.1q mtag\n")); 9242 } 9243 } 9244 9245 #ifdef ALTQ 9246 if (action == PF_PASS && pd.act.qid) { 9247 if (pd.pf_mtag == NULL && 9248 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9249 action = PF_DROP; 9250 REASON_SET(&reason, PFRES_MEMORY); 9251 } else { 9252 if (s != NULL) 9253 pd.pf_mtag->qid_hash = pf_state_hash(s); 9254 if (pd.tos & IPTOS_LOWDELAY) 9255 pd.pf_mtag->qid = pd.act.pqid; 9256 else 9257 pd.pf_mtag->qid = pd.act.qid; 9258 /* Add hints for ecn. */ 9259 pd.pf_mtag->hdr = h; 9260 } 9261 } 9262 #endif /* ALTQ */ 9263 9264 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9265 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 9266 (s->nat_rule.ptr->action == PF_RDR || 9267 s->nat_rule.ptr->action == PF_BINAT) && 9268 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 9269 m->m_flags |= M_SKIP_FIREWALL; 9270 9271 /* XXX: Anybody working on it?! */ 9272 if (r->divert.port) 9273 printf("pf: divert(9) is not supported for IPv6\n"); 9274 9275 if (pd.act.log) { 9276 struct pf_krule *lr; 9277 struct pf_krule_item *ri; 9278 9279 if (s != NULL && s->nat_rule.ptr != NULL && 9280 s->nat_rule.ptr->log & PF_LOG_ALL) 9281 lr = s->nat_rule.ptr; 9282 else 9283 lr = r; 9284 9285 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9286 PFLOG_PACKET(kif, m, AF_INET6, action, reason, lr, a, ruleset, 9287 &pd, (s == NULL)); 9288 if (s) { 9289 SLIST_FOREACH(ri, &s->match_rules, entry) 9290 if (ri->r->log & PF_LOG_ALL) 9291 PFLOG_PACKET(kif, m, AF_INET6, action, reason, 9292 ri->r, a, ruleset, &pd, 0); 9293 } 9294 } 9295 9296 pf_counter_u64_critical_enter(); 9297 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 9298 pd.tot_len); 9299 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 9300 1); 9301 9302 if (action == PF_PASS || r->action == PF_DROP) { 9303 dirndx = (dir == PF_OUT); 9304 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9305 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 9306 if (a != NULL) { 9307 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9308 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 9309 } 9310 if (s != NULL) { 9311 if (s->nat_rule.ptr != NULL) { 9312 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 9313 1); 9314 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 9315 pd.tot_len); 9316 } 9317 if (s->src_node != NULL) { 9318 counter_u64_add(s->src_node->packets[dirndx], 9319 1); 9320 counter_u64_add(s->src_node->bytes[dirndx], 9321 pd.tot_len); 9322 } 9323 if (s->nat_src_node != NULL) { 9324 counter_u64_add(s->nat_src_node->packets[dirndx], 9325 1); 9326 counter_u64_add(s->nat_src_node->bytes[dirndx], 9327 pd.tot_len); 9328 } 9329 dirndx = (dir == s->direction) ? 0 : 1; 9330 s->packets[dirndx]++; 9331 s->bytes[dirndx] += pd.tot_len; 9332 } 9333 tr = r; 9334 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 9335 if (nr != NULL && r == &V_pf_default_rule) 9336 tr = nr; 9337 if (tr->src.addr.type == PF_ADDR_TABLE) 9338 pfr_update_stats(tr->src.addr.p.tbl, 9339 (s == NULL) ? pd.src : 9340 &s->key[(s->direction == PF_IN)]->addr[0], 9341 pd.af, pd.tot_len, dir == PF_OUT, 9342 r->action == PF_PASS, tr->src.neg); 9343 if (tr->dst.addr.type == PF_ADDR_TABLE) 9344 pfr_update_stats(tr->dst.addr.p.tbl, 9345 (s == NULL) ? pd.dst : 9346 &s->key[(s->direction == PF_IN)]->addr[1], 9347 pd.af, pd.tot_len, dir == PF_OUT, 9348 r->action == PF_PASS, tr->dst.neg); 9349 } 9350 pf_counter_u64_critical_exit(); 9351 9352 switch (action) { 9353 case PF_SYNPROXY_DROP: 9354 m_freem(*m0); 9355 case PF_DEFER: 9356 *m0 = NULL; 9357 action = PF_PASS; 9358 break; 9359 case PF_DROP: 9360 m_freem(*m0); 9361 *m0 = NULL; 9362 break; 9363 default: 9364 /* pf_route6() returns unlocked. */ 9365 if (rt) { 9366 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9367 goto out; 9368 } 9369 if (pf_dummynet(&pd, s, r, m0) != 0) { 9370 action = PF_DROP; 9371 REASON_SET(&reason, PFRES_MEMORY); 9372 } 9373 break; 9374 } 9375 9376 if (s && action != PF_DROP) { 9377 if (!s->if_index_in && dir == PF_IN) 9378 s->if_index_in = ifp->if_index; 9379 else if (!s->if_index_out && dir == PF_OUT) 9380 s->if_index_out = ifp->if_index; 9381 } 9382 9383 if (s) 9384 PF_STATE_UNLOCK(s); 9385 9386 /* If reassembled packet passed, create new fragments. */ 9387 if (action == PF_PASS && *m0 && dir == PF_OUT && 9388 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9389 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9390 9391 out: 9392 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 9393 9394 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9395 9396 return (action); 9397 } 9398 #endif /* INET6 */ 9399