1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #if defined(SCTP) || defined(SCTP_SUPPORT) 115 #include <netinet/sctp_crc32.h> 116 #endif 117 118 #include <machine/in_cksum.h> 119 #include <security/mac/mac_framework.h> 120 121 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 122 123 SDT_PROVIDER_DEFINE(pf); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 127 "struct pf_kstate *"); 128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 130 "struct pf_kstate *"); 131 132 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 133 "struct mbuf *"); 134 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 135 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 136 "int", "struct pf_keth_rule *", "char *"); 137 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 139 "int", "struct pf_keth_rule *"); 140 141 /* 142 * Global variables 143 */ 144 145 /* state tables */ 146 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 147 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 148 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 152 VNET_DEFINE(struct pf_kstatus, pf_status); 153 154 VNET_DEFINE(u_int32_t, ticket_altqs_active); 155 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 156 VNET_DEFINE(int, altqs_inactive_open); 157 VNET_DEFINE(u_int32_t, ticket_pabuf); 158 159 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 160 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 161 VNET_DEFINE(u_char, pf_tcp_secret[16]); 162 #define V_pf_tcp_secret VNET(pf_tcp_secret) 163 VNET_DEFINE(int, pf_tcp_secret_init); 164 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 165 VNET_DEFINE(int, pf_tcp_iss_off); 166 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 167 VNET_DECLARE(int, pf_vnet_active); 168 #define V_pf_vnet_active VNET(pf_vnet_active) 169 170 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 171 #define V_pf_purge_idx VNET(pf_purge_idx) 172 173 #ifdef PF_WANT_32_TO_64_COUNTER 174 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 175 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 176 177 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 178 VNET_DEFINE(size_t, pf_allrulecount); 179 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 180 #endif 181 182 /* 183 * Queue for pf_intr() sends. 184 */ 185 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 186 struct pf_send_entry { 187 STAILQ_ENTRY(pf_send_entry) pfse_next; 188 struct mbuf *pfse_m; 189 enum { 190 PFSE_IP, 191 PFSE_IP6, 192 PFSE_ICMP, 193 PFSE_ICMP6, 194 } pfse_type; 195 struct { 196 int type; 197 int code; 198 int mtu; 199 } icmpopts; 200 }; 201 202 STAILQ_HEAD(pf_send_head, pf_send_entry); 203 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 204 #define V_pf_sendqueue VNET(pf_sendqueue) 205 206 static struct mtx_padalign pf_sendqueue_mtx; 207 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 208 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 209 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 210 211 /* 212 * Queue for pf_overload_task() tasks. 213 */ 214 struct pf_overload_entry { 215 SLIST_ENTRY(pf_overload_entry) next; 216 struct pf_addr addr; 217 sa_family_t af; 218 uint8_t dir; 219 struct pf_krule *rule; 220 }; 221 222 SLIST_HEAD(pf_overload_head, pf_overload_entry); 223 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 224 #define V_pf_overloadqueue VNET(pf_overloadqueue) 225 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 226 #define V_pf_overloadtask VNET(pf_overloadtask) 227 228 static struct mtx_padalign pf_overloadqueue_mtx; 229 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 230 "pf overload/flush queue", MTX_DEF); 231 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 232 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 233 234 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 235 struct mtx_padalign pf_unlnkdrules_mtx; 236 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 237 MTX_DEF); 238 239 struct sx pf_config_lock; 240 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 241 242 struct mtx_padalign pf_table_stats_lock; 243 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 244 MTX_DEF); 245 246 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 247 #define V_pf_sources_z VNET(pf_sources_z) 248 uma_zone_t pf_mtag_z; 249 VNET_DEFINE(uma_zone_t, pf_state_z); 250 VNET_DEFINE(uma_zone_t, pf_state_key_z); 251 252 VNET_DEFINE(struct unrhdr64, pf_stateid); 253 254 static void pf_src_tree_remove_state(struct pf_kstate *); 255 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 256 u_int32_t); 257 static void pf_add_threshold(struct pf_threshold *); 258 static int pf_check_threshold(struct pf_threshold *); 259 260 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 261 u_int16_t *, u_int16_t *, struct pf_addr *, 262 u_int16_t, u_int8_t, sa_family_t); 263 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 264 struct tcphdr *, struct pf_state_peer *); 265 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 266 struct pf_addr *, struct pf_addr *, u_int16_t, 267 u_int16_t *, u_int16_t *, u_int16_t *, 268 u_int16_t *, u_int8_t, sa_family_t); 269 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 270 sa_family_t, struct pf_krule *); 271 static void pf_detach_state(struct pf_kstate *); 272 static int pf_state_key_attach(struct pf_state_key *, 273 struct pf_state_key *, struct pf_kstate *); 274 static void pf_state_key_detach(struct pf_kstate *, int); 275 static int pf_state_key_ctor(void *, int, void *, int); 276 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 277 void pf_rule_to_actions(struct pf_krule *, 278 struct pf_rule_actions *); 279 static int pf_dummynet(struct pf_pdesc *, int, struct pf_kstate *, 280 struct pf_krule *, struct mbuf **); 281 static int pf_dummynet_route(struct pf_pdesc *, int, 282 struct pf_kstate *, struct pf_krule *, 283 struct ifnet *, struct sockaddr *, struct mbuf **); 284 static int pf_test_eth_rule(int, struct pfi_kkif *, 285 struct mbuf **); 286 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 287 int, struct pfi_kkif *, struct mbuf *, int, 288 struct pf_pdesc *, struct pf_krule **, 289 struct pf_kruleset **, struct inpcb *); 290 static int pf_create_state(struct pf_krule *, struct pf_krule *, 291 struct pf_krule *, struct pf_pdesc *, 292 struct pf_ksrc_node *, struct pf_state_key *, 293 struct pf_state_key *, struct mbuf *, int, 294 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 295 struct pf_kstate **, int, u_int16_t, u_int16_t, 296 int); 297 static int pf_test_fragment(struct pf_krule **, int, 298 struct pfi_kkif *, struct mbuf *, void *, 299 struct pf_pdesc *, struct pf_krule **, 300 struct pf_kruleset **); 301 static int pf_tcp_track_full(struct pf_kstate **, 302 struct pfi_kkif *, struct mbuf *, int, 303 struct pf_pdesc *, u_short *, int *); 304 static int pf_tcp_track_sloppy(struct pf_kstate **, 305 struct pf_pdesc *, u_short *); 306 static int pf_test_state_tcp(struct pf_kstate **, int, 307 struct pfi_kkif *, struct mbuf *, int, 308 void *, struct pf_pdesc *, u_short *); 309 static int pf_test_state_udp(struct pf_kstate **, int, 310 struct pfi_kkif *, struct mbuf *, int, 311 void *, struct pf_pdesc *); 312 static int pf_test_state_icmp(struct pf_kstate **, int, 313 struct pfi_kkif *, struct mbuf *, int, 314 void *, struct pf_pdesc *, u_short *); 315 static int pf_test_state_other(struct pf_kstate **, int, 316 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 317 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 318 int, u_int16_t); 319 static int pf_check_proto_cksum(struct mbuf *, int, int, 320 u_int8_t, sa_family_t); 321 static void pf_print_state_parts(struct pf_kstate *, 322 struct pf_state_key *, struct pf_state_key *); 323 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 324 struct pf_addr_wrap *); 325 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 326 bool, u_int8_t); 327 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 328 struct pf_state_key_cmp *, u_int); 329 static int pf_src_connlimit(struct pf_kstate **); 330 static void pf_overload_task(void *v, int pending); 331 static int pf_insert_src_node(struct pf_ksrc_node **, 332 struct pf_krule *, struct pf_addr *, sa_family_t); 333 static u_int pf_purge_expired_states(u_int, int); 334 static void pf_purge_unlinked_rules(void); 335 static int pf_mtag_uminit(void *, int, int); 336 static void pf_mtag_free(struct m_tag *); 337 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 338 int, struct pf_state_key *); 339 #ifdef INET 340 static void pf_route(struct mbuf **, struct pf_krule *, int, 341 struct ifnet *, struct pf_kstate *, 342 struct pf_pdesc *, struct inpcb *); 343 #endif /* INET */ 344 #ifdef INET6 345 static void pf_change_a6(struct pf_addr *, u_int16_t *, 346 struct pf_addr *, u_int8_t); 347 static void pf_route6(struct mbuf **, struct pf_krule *, int, 348 struct ifnet *, struct pf_kstate *, 349 struct pf_pdesc *, struct inpcb *); 350 #endif /* INET6 */ 351 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 352 353 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 354 355 extern int pf_end_threads; 356 extern struct proc *pf_purge_proc; 357 358 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 359 360 #define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \ 361 do { \ 362 struct pf_state_key *nk; \ 363 if ((_dir) == PF_OUT) \ 364 nk = (_s)->key[PF_SK_STACK]; \ 365 else \ 366 nk = (_s)->key[PF_SK_WIRE]; \ 367 pf_packet_rework_nat(_m, _pd, _off, nk); \ 368 } while (0) 369 370 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 371 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 372 373 #define STATE_LOOKUP(i, k, d, s, pd) \ 374 do { \ 375 (s) = pf_find_state((i), (k), (d)); \ 376 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 377 if ((s) == NULL) \ 378 return (PF_DROP); \ 379 if (PACKET_LOOPED(pd)) \ 380 return (PF_PASS); \ 381 } while (0) 382 383 #define BOUND_IFACE(r, k) \ 384 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 385 386 #define STATE_INC_COUNTERS(s) \ 387 do { \ 388 counter_u64_add(s->rule.ptr->states_cur, 1); \ 389 counter_u64_add(s->rule.ptr->states_tot, 1); \ 390 if (s->anchor.ptr != NULL) { \ 391 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 392 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 393 } \ 394 if (s->nat_rule.ptr != NULL) { \ 395 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 396 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 397 } \ 398 } while (0) 399 400 #define STATE_DEC_COUNTERS(s) \ 401 do { \ 402 if (s->nat_rule.ptr != NULL) \ 403 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 404 if (s->anchor.ptr != NULL) \ 405 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 406 counter_u64_add(s->rule.ptr->states_cur, -1); \ 407 } while (0) 408 409 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 410 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 411 VNET_DEFINE(struct pf_idhash *, pf_idhash); 412 VNET_DEFINE(struct pf_srchash *, pf_srchash); 413 414 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 415 "pf(4)"); 416 417 u_long pf_hashmask; 418 u_long pf_srchashmask; 419 static u_long pf_hashsize; 420 static u_long pf_srchashsize; 421 u_long pf_ioctl_maxcount = 65535; 422 423 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 424 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 425 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 426 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 427 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 428 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 429 430 VNET_DEFINE(void *, pf_swi_cookie); 431 VNET_DEFINE(struct intr_event *, pf_swi_ie); 432 433 VNET_DEFINE(uint32_t, pf_hashseed); 434 #define V_pf_hashseed VNET(pf_hashseed) 435 436 int 437 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 438 { 439 440 switch (af) { 441 #ifdef INET 442 case AF_INET: 443 if (a->addr32[0] > b->addr32[0]) 444 return (1); 445 if (a->addr32[0] < b->addr32[0]) 446 return (-1); 447 break; 448 #endif /* INET */ 449 #ifdef INET6 450 case AF_INET6: 451 if (a->addr32[3] > b->addr32[3]) 452 return (1); 453 if (a->addr32[3] < b->addr32[3]) 454 return (-1); 455 if (a->addr32[2] > b->addr32[2]) 456 return (1); 457 if (a->addr32[2] < b->addr32[2]) 458 return (-1); 459 if (a->addr32[1] > b->addr32[1]) 460 return (1); 461 if (a->addr32[1] < b->addr32[1]) 462 return (-1); 463 if (a->addr32[0] > b->addr32[0]) 464 return (1); 465 if (a->addr32[0] < b->addr32[0]) 466 return (-1); 467 break; 468 #endif /* INET6 */ 469 default: 470 panic("%s: unknown address family %u", __func__, af); 471 } 472 return (0); 473 } 474 475 static void 476 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 477 struct pf_state_key *nk) 478 { 479 480 switch (pd->proto) { 481 case IPPROTO_TCP: { 482 struct tcphdr *th = &pd->hdr.tcp; 483 484 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 485 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 486 &th->th_sum, &nk->addr[pd->sidx], 487 nk->port[pd->sidx], 0, pd->af); 488 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 489 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 490 &th->th_sum, &nk->addr[pd->didx], 491 nk->port[pd->didx], 0, pd->af); 492 m_copyback(m, off, sizeof(*th), (caddr_t)th); 493 break; 494 } 495 case IPPROTO_UDP: { 496 struct udphdr *uh = &pd->hdr.udp; 497 498 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 499 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 500 &uh->uh_sum, &nk->addr[pd->sidx], 501 nk->port[pd->sidx], 1, pd->af); 502 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 503 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 504 &uh->uh_sum, &nk->addr[pd->didx], 505 nk->port[pd->didx], 1, pd->af); 506 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 507 break; 508 } 509 case IPPROTO_ICMP: { 510 struct icmp *ih = &pd->hdr.icmp; 511 512 if (nk->port[pd->sidx] != ih->icmp_id) { 513 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 514 ih->icmp_cksum, ih->icmp_id, 515 nk->port[pd->sidx], 0); 516 ih->icmp_id = nk->port[pd->sidx]; 517 pd->sport = &ih->icmp_id; 518 519 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 520 } 521 /* FALLTHROUGH */ 522 } 523 default: 524 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 525 switch (pd->af) { 526 case AF_INET: 527 pf_change_a(&pd->src->v4.s_addr, 528 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 529 0); 530 break; 531 case AF_INET6: 532 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 533 break; 534 } 535 } 536 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 537 switch (pd->af) { 538 case AF_INET: 539 pf_change_a(&pd->dst->v4.s_addr, 540 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 541 0); 542 break; 543 case AF_INET6: 544 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 545 break; 546 } 547 } 548 break; 549 } 550 } 551 552 static __inline uint32_t 553 pf_hashkey(struct pf_state_key *sk) 554 { 555 uint32_t h; 556 557 h = murmur3_32_hash32((uint32_t *)sk, 558 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 559 V_pf_hashseed); 560 561 return (h & pf_hashmask); 562 } 563 564 static __inline uint32_t 565 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 566 { 567 uint32_t h; 568 569 switch (af) { 570 case AF_INET: 571 h = murmur3_32_hash32((uint32_t *)&addr->v4, 572 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 573 break; 574 case AF_INET6: 575 h = murmur3_32_hash32((uint32_t *)&addr->v6, 576 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 577 break; 578 default: 579 panic("%s: unknown address family %u", __func__, af); 580 } 581 582 return (h & pf_srchashmask); 583 } 584 585 #ifdef ALTQ 586 static int 587 pf_state_hash(struct pf_kstate *s) 588 { 589 u_int32_t hv = (intptr_t)s / sizeof(*s); 590 591 hv ^= crc32(&s->src, sizeof(s->src)); 592 hv ^= crc32(&s->dst, sizeof(s->dst)); 593 if (hv == 0) 594 hv = 1; 595 return (hv); 596 } 597 #endif 598 599 static __inline void 600 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 601 { 602 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 603 s->dst.state = newstate; 604 if (which == PF_PEER_DST) 605 return; 606 if (s->src.state == newstate) 607 return; 608 if (s->creatorid == V_pf_status.hostid && 609 s->key[PF_SK_STACK] != NULL && 610 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 611 !(TCPS_HAVEESTABLISHED(s->src.state) || 612 s->src.state == TCPS_CLOSED) && 613 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 614 atomic_add_32(&V_pf_status.states_halfopen, -1); 615 616 s->src.state = newstate; 617 } 618 619 #ifdef INET6 620 void 621 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 622 { 623 switch (af) { 624 #ifdef INET 625 case AF_INET: 626 dst->addr32[0] = src->addr32[0]; 627 break; 628 #endif /* INET */ 629 case AF_INET6: 630 dst->addr32[0] = src->addr32[0]; 631 dst->addr32[1] = src->addr32[1]; 632 dst->addr32[2] = src->addr32[2]; 633 dst->addr32[3] = src->addr32[3]; 634 break; 635 } 636 } 637 #endif /* INET6 */ 638 639 static void 640 pf_init_threshold(struct pf_threshold *threshold, 641 u_int32_t limit, u_int32_t seconds) 642 { 643 threshold->limit = limit * PF_THRESHOLD_MULT; 644 threshold->seconds = seconds; 645 threshold->count = 0; 646 threshold->last = time_uptime; 647 } 648 649 static void 650 pf_add_threshold(struct pf_threshold *threshold) 651 { 652 u_int32_t t = time_uptime, diff = t - threshold->last; 653 654 if (diff >= threshold->seconds) 655 threshold->count = 0; 656 else 657 threshold->count -= threshold->count * diff / 658 threshold->seconds; 659 threshold->count += PF_THRESHOLD_MULT; 660 threshold->last = t; 661 } 662 663 static int 664 pf_check_threshold(struct pf_threshold *threshold) 665 { 666 return (threshold->count > threshold->limit); 667 } 668 669 static int 670 pf_src_connlimit(struct pf_kstate **state) 671 { 672 struct pf_overload_entry *pfoe; 673 int bad = 0; 674 675 PF_STATE_LOCK_ASSERT(*state); 676 677 (*state)->src_node->conn++; 678 (*state)->src.tcp_est = 1; 679 pf_add_threshold(&(*state)->src_node->conn_rate); 680 681 if ((*state)->rule.ptr->max_src_conn && 682 (*state)->rule.ptr->max_src_conn < 683 (*state)->src_node->conn) { 684 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 685 bad++; 686 } 687 688 if ((*state)->rule.ptr->max_src_conn_rate.limit && 689 pf_check_threshold(&(*state)->src_node->conn_rate)) { 690 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 691 bad++; 692 } 693 694 if (!bad) 695 return (0); 696 697 /* Kill this state. */ 698 (*state)->timeout = PFTM_PURGE; 699 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 700 701 if ((*state)->rule.ptr->overload_tbl == NULL) 702 return (1); 703 704 /* Schedule overloading and flushing task. */ 705 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 706 if (pfoe == NULL) 707 return (1); /* too bad :( */ 708 709 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 710 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 711 pfoe->rule = (*state)->rule.ptr; 712 pfoe->dir = (*state)->direction; 713 PF_OVERLOADQ_LOCK(); 714 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 715 PF_OVERLOADQ_UNLOCK(); 716 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 717 718 return (1); 719 } 720 721 static void 722 pf_overload_task(void *v, int pending) 723 { 724 struct pf_overload_head queue; 725 struct pfr_addr p; 726 struct pf_overload_entry *pfoe, *pfoe1; 727 uint32_t killed = 0; 728 729 CURVNET_SET((struct vnet *)v); 730 731 PF_OVERLOADQ_LOCK(); 732 queue = V_pf_overloadqueue; 733 SLIST_INIT(&V_pf_overloadqueue); 734 PF_OVERLOADQ_UNLOCK(); 735 736 bzero(&p, sizeof(p)); 737 SLIST_FOREACH(pfoe, &queue, next) { 738 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 739 if (V_pf_status.debug >= PF_DEBUG_MISC) { 740 printf("%s: blocking address ", __func__); 741 pf_print_host(&pfoe->addr, 0, pfoe->af); 742 printf("\n"); 743 } 744 745 p.pfra_af = pfoe->af; 746 switch (pfoe->af) { 747 #ifdef INET 748 case AF_INET: 749 p.pfra_net = 32; 750 p.pfra_ip4addr = pfoe->addr.v4; 751 break; 752 #endif 753 #ifdef INET6 754 case AF_INET6: 755 p.pfra_net = 128; 756 p.pfra_ip6addr = pfoe->addr.v6; 757 break; 758 #endif 759 } 760 761 PF_RULES_WLOCK(); 762 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 763 PF_RULES_WUNLOCK(); 764 } 765 766 /* 767 * Remove those entries, that don't need flushing. 768 */ 769 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 770 if (pfoe->rule->flush == 0) { 771 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 772 free(pfoe, M_PFTEMP); 773 } else 774 counter_u64_add( 775 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 776 777 /* If nothing to flush, return. */ 778 if (SLIST_EMPTY(&queue)) { 779 CURVNET_RESTORE(); 780 return; 781 } 782 783 for (int i = 0; i <= pf_hashmask; i++) { 784 struct pf_idhash *ih = &V_pf_idhash[i]; 785 struct pf_state_key *sk; 786 struct pf_kstate *s; 787 788 PF_HASHROW_LOCK(ih); 789 LIST_FOREACH(s, &ih->states, entry) { 790 sk = s->key[PF_SK_WIRE]; 791 SLIST_FOREACH(pfoe, &queue, next) 792 if (sk->af == pfoe->af && 793 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 794 pfoe->rule == s->rule.ptr) && 795 ((pfoe->dir == PF_OUT && 796 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 797 (pfoe->dir == PF_IN && 798 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 799 s->timeout = PFTM_PURGE; 800 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 801 killed++; 802 } 803 } 804 PF_HASHROW_UNLOCK(ih); 805 } 806 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 807 free(pfoe, M_PFTEMP); 808 if (V_pf_status.debug >= PF_DEBUG_MISC) 809 printf("%s: %u states killed", __func__, killed); 810 811 CURVNET_RESTORE(); 812 } 813 814 /* 815 * Can return locked on failure, so that we can consistently 816 * allocate and insert a new one. 817 */ 818 struct pf_ksrc_node * 819 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 820 int returnlocked) 821 { 822 struct pf_srchash *sh; 823 struct pf_ksrc_node *n; 824 825 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 826 827 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 828 PF_HASHROW_LOCK(sh); 829 LIST_FOREACH(n, &sh->nodes, entry) 830 if (n->rule.ptr == rule && n->af == af && 831 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 832 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 833 break; 834 if (n != NULL) { 835 n->states++; 836 PF_HASHROW_UNLOCK(sh); 837 } else if (returnlocked == 0) 838 PF_HASHROW_UNLOCK(sh); 839 840 return (n); 841 } 842 843 static void 844 pf_free_src_node(struct pf_ksrc_node *sn) 845 { 846 847 for (int i = 0; i < 2; i++) { 848 counter_u64_free(sn->bytes[i]); 849 counter_u64_free(sn->packets[i]); 850 } 851 uma_zfree(V_pf_sources_z, sn); 852 } 853 854 static int 855 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 856 struct pf_addr *src, sa_family_t af) 857 { 858 859 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 860 rule->rpool.opts & PF_POOL_STICKYADDR), 861 ("%s for non-tracking rule %p", __func__, rule)); 862 863 if (*sn == NULL) 864 *sn = pf_find_src_node(src, rule, af, 1); 865 866 if (*sn == NULL) { 867 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 868 869 PF_HASHROW_ASSERT(sh); 870 871 if (!rule->max_src_nodes || 872 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 873 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 874 else 875 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 876 1); 877 if ((*sn) == NULL) { 878 PF_HASHROW_UNLOCK(sh); 879 return (-1); 880 } 881 882 for (int i = 0; i < 2; i++) { 883 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 884 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 885 886 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 887 pf_free_src_node(*sn); 888 PF_HASHROW_UNLOCK(sh); 889 return (-1); 890 } 891 } 892 893 pf_init_threshold(&(*sn)->conn_rate, 894 rule->max_src_conn_rate.limit, 895 rule->max_src_conn_rate.seconds); 896 897 (*sn)->af = af; 898 (*sn)->rule.ptr = rule; 899 PF_ACPY(&(*sn)->addr, src, af); 900 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 901 (*sn)->creation = time_uptime; 902 (*sn)->ruletype = rule->action; 903 (*sn)->states = 1; 904 if ((*sn)->rule.ptr != NULL) 905 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 906 PF_HASHROW_UNLOCK(sh); 907 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 908 } else { 909 if (rule->max_src_states && 910 (*sn)->states >= rule->max_src_states) { 911 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 912 1); 913 return (-1); 914 } 915 } 916 return (0); 917 } 918 919 void 920 pf_unlink_src_node(struct pf_ksrc_node *src) 921 { 922 923 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 924 LIST_REMOVE(src, entry); 925 if (src->rule.ptr) 926 counter_u64_add(src->rule.ptr->src_nodes, -1); 927 } 928 929 u_int 930 pf_free_src_nodes(struct pf_ksrc_node_list *head) 931 { 932 struct pf_ksrc_node *sn, *tmp; 933 u_int count = 0; 934 935 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 936 pf_free_src_node(sn); 937 count++; 938 } 939 940 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 941 942 return (count); 943 } 944 945 void 946 pf_mtag_initialize(void) 947 { 948 949 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 950 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 951 UMA_ALIGN_PTR, 0); 952 } 953 954 /* Per-vnet data storage structures initialization. */ 955 void 956 pf_initialize(void) 957 { 958 struct pf_keyhash *kh; 959 struct pf_idhash *ih; 960 struct pf_srchash *sh; 961 u_int i; 962 963 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 964 pf_hashsize = PF_HASHSIZ; 965 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 966 pf_srchashsize = PF_SRCHASHSIZ; 967 968 V_pf_hashseed = arc4random(); 969 970 /* States and state keys storage. */ 971 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 972 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 973 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 974 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 975 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 976 977 V_pf_state_key_z = uma_zcreate("pf state keys", 978 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 979 UMA_ALIGN_PTR, 0); 980 981 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 982 M_PFHASH, M_NOWAIT | M_ZERO); 983 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 984 M_PFHASH, M_NOWAIT | M_ZERO); 985 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 986 printf("pf: Unable to allocate memory for " 987 "state_hashsize %lu.\n", pf_hashsize); 988 989 free(V_pf_keyhash, M_PFHASH); 990 free(V_pf_idhash, M_PFHASH); 991 992 pf_hashsize = PF_HASHSIZ; 993 V_pf_keyhash = mallocarray(pf_hashsize, 994 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 995 V_pf_idhash = mallocarray(pf_hashsize, 996 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 997 } 998 999 pf_hashmask = pf_hashsize - 1; 1000 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1001 i++, kh++, ih++) { 1002 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1003 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1004 } 1005 1006 /* Source nodes. */ 1007 V_pf_sources_z = uma_zcreate("pf source nodes", 1008 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1009 0); 1010 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1011 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1012 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1013 1014 V_pf_srchash = mallocarray(pf_srchashsize, 1015 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1016 if (V_pf_srchash == NULL) { 1017 printf("pf: Unable to allocate memory for " 1018 "source_hashsize %lu.\n", pf_srchashsize); 1019 1020 pf_srchashsize = PF_SRCHASHSIZ; 1021 V_pf_srchash = mallocarray(pf_srchashsize, 1022 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1023 } 1024 1025 pf_srchashmask = pf_srchashsize - 1; 1026 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1027 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1028 1029 /* ALTQ */ 1030 TAILQ_INIT(&V_pf_altqs[0]); 1031 TAILQ_INIT(&V_pf_altqs[1]); 1032 TAILQ_INIT(&V_pf_altqs[2]); 1033 TAILQ_INIT(&V_pf_altqs[3]); 1034 TAILQ_INIT(&V_pf_pabuf); 1035 V_pf_altqs_active = &V_pf_altqs[0]; 1036 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1037 V_pf_altqs_inactive = &V_pf_altqs[2]; 1038 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1039 1040 /* Send & overload+flush queues. */ 1041 STAILQ_INIT(&V_pf_sendqueue); 1042 SLIST_INIT(&V_pf_overloadqueue); 1043 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1044 1045 /* Unlinked, but may be referenced rules. */ 1046 TAILQ_INIT(&V_pf_unlinked_rules); 1047 } 1048 1049 void 1050 pf_mtag_cleanup(void) 1051 { 1052 1053 uma_zdestroy(pf_mtag_z); 1054 } 1055 1056 void 1057 pf_cleanup(void) 1058 { 1059 struct pf_keyhash *kh; 1060 struct pf_idhash *ih; 1061 struct pf_srchash *sh; 1062 struct pf_send_entry *pfse, *next; 1063 u_int i; 1064 1065 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1066 i++, kh++, ih++) { 1067 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1068 __func__)); 1069 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1070 __func__)); 1071 mtx_destroy(&kh->lock); 1072 mtx_destroy(&ih->lock); 1073 } 1074 free(V_pf_keyhash, M_PFHASH); 1075 free(V_pf_idhash, M_PFHASH); 1076 1077 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1078 KASSERT(LIST_EMPTY(&sh->nodes), 1079 ("%s: source node hash not empty", __func__)); 1080 mtx_destroy(&sh->lock); 1081 } 1082 free(V_pf_srchash, M_PFHASH); 1083 1084 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1085 m_freem(pfse->pfse_m); 1086 free(pfse, M_PFTEMP); 1087 } 1088 1089 uma_zdestroy(V_pf_sources_z); 1090 uma_zdestroy(V_pf_state_z); 1091 uma_zdestroy(V_pf_state_key_z); 1092 } 1093 1094 static int 1095 pf_mtag_uminit(void *mem, int size, int how) 1096 { 1097 struct m_tag *t; 1098 1099 t = (struct m_tag *)mem; 1100 t->m_tag_cookie = MTAG_ABI_COMPAT; 1101 t->m_tag_id = PACKET_TAG_PF; 1102 t->m_tag_len = sizeof(struct pf_mtag); 1103 t->m_tag_free = pf_mtag_free; 1104 1105 return (0); 1106 } 1107 1108 static void 1109 pf_mtag_free(struct m_tag *t) 1110 { 1111 1112 uma_zfree(pf_mtag_z, t); 1113 } 1114 1115 struct pf_mtag * 1116 pf_get_mtag(struct mbuf *m) 1117 { 1118 struct m_tag *mtag; 1119 1120 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1121 return ((struct pf_mtag *)(mtag + 1)); 1122 1123 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1124 if (mtag == NULL) 1125 return (NULL); 1126 bzero(mtag + 1, sizeof(struct pf_mtag)); 1127 m_tag_prepend(m, mtag); 1128 1129 return ((struct pf_mtag *)(mtag + 1)); 1130 } 1131 1132 static int 1133 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1134 struct pf_kstate *s) 1135 { 1136 struct pf_keyhash *khs, *khw, *kh; 1137 struct pf_state_key *sk, *cur; 1138 struct pf_kstate *si, *olds = NULL; 1139 int idx; 1140 1141 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1142 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1143 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1144 1145 /* 1146 * We need to lock hash slots of both keys. To avoid deadlock 1147 * we always lock the slot with lower address first. Unlock order 1148 * isn't important. 1149 * 1150 * We also need to lock ID hash slot before dropping key 1151 * locks. On success we return with ID hash slot locked. 1152 */ 1153 1154 if (skw == sks) { 1155 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1156 PF_HASHROW_LOCK(khs); 1157 } else { 1158 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1159 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1160 if (khs == khw) { 1161 PF_HASHROW_LOCK(khs); 1162 } else if (khs < khw) { 1163 PF_HASHROW_LOCK(khs); 1164 PF_HASHROW_LOCK(khw); 1165 } else { 1166 PF_HASHROW_LOCK(khw); 1167 PF_HASHROW_LOCK(khs); 1168 } 1169 } 1170 1171 #define KEYS_UNLOCK() do { \ 1172 if (khs != khw) { \ 1173 PF_HASHROW_UNLOCK(khs); \ 1174 PF_HASHROW_UNLOCK(khw); \ 1175 } else \ 1176 PF_HASHROW_UNLOCK(khs); \ 1177 } while (0) 1178 1179 /* 1180 * First run: start with wire key. 1181 */ 1182 sk = skw; 1183 kh = khw; 1184 idx = PF_SK_WIRE; 1185 1186 MPASS(s->lock == NULL); 1187 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1188 1189 keyattach: 1190 LIST_FOREACH(cur, &kh->keys, entry) 1191 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1192 break; 1193 1194 if (cur != NULL) { 1195 /* Key exists. Check for same kif, if none, add to key. */ 1196 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1197 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1198 1199 PF_HASHROW_LOCK(ih); 1200 if (si->kif == s->kif && 1201 si->direction == s->direction) { 1202 if (sk->proto == IPPROTO_TCP && 1203 si->src.state >= TCPS_FIN_WAIT_2 && 1204 si->dst.state >= TCPS_FIN_WAIT_2) { 1205 /* 1206 * New state matches an old >FIN_WAIT_2 1207 * state. We can't drop key hash locks, 1208 * thus we can't unlink it properly. 1209 * 1210 * As a workaround we drop it into 1211 * TCPS_CLOSED state, schedule purge 1212 * ASAP and push it into the very end 1213 * of the slot TAILQ, so that it won't 1214 * conflict with our new state. 1215 */ 1216 pf_set_protostate(si, PF_PEER_BOTH, 1217 TCPS_CLOSED); 1218 si->timeout = PFTM_PURGE; 1219 olds = si; 1220 } else { 1221 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1222 printf("pf: %s key attach " 1223 "failed on %s: ", 1224 (idx == PF_SK_WIRE) ? 1225 "wire" : "stack", 1226 s->kif->pfik_name); 1227 pf_print_state_parts(s, 1228 (idx == PF_SK_WIRE) ? 1229 sk : NULL, 1230 (idx == PF_SK_STACK) ? 1231 sk : NULL); 1232 printf(", existing: "); 1233 pf_print_state_parts(si, 1234 (idx == PF_SK_WIRE) ? 1235 sk : NULL, 1236 (idx == PF_SK_STACK) ? 1237 sk : NULL); 1238 printf("\n"); 1239 } 1240 PF_HASHROW_UNLOCK(ih); 1241 KEYS_UNLOCK(); 1242 uma_zfree(V_pf_state_key_z, sk); 1243 if (idx == PF_SK_STACK) 1244 pf_detach_state(s); 1245 return (EEXIST); /* collision! */ 1246 } 1247 } 1248 PF_HASHROW_UNLOCK(ih); 1249 } 1250 uma_zfree(V_pf_state_key_z, sk); 1251 s->key[idx] = cur; 1252 } else { 1253 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1254 s->key[idx] = sk; 1255 } 1256 1257 stateattach: 1258 /* List is sorted, if-bound states before floating. */ 1259 if (s->kif == V_pfi_all) 1260 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1261 else 1262 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1263 1264 if (olds) { 1265 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1266 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1267 key_list[idx]); 1268 olds = NULL; 1269 } 1270 1271 /* 1272 * Attach done. See how should we (or should not?) 1273 * attach a second key. 1274 */ 1275 if (sks == skw) { 1276 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1277 idx = PF_SK_STACK; 1278 sks = NULL; 1279 goto stateattach; 1280 } else if (sks != NULL) { 1281 /* 1282 * Continue attaching with stack key. 1283 */ 1284 sk = sks; 1285 kh = khs; 1286 idx = PF_SK_STACK; 1287 sks = NULL; 1288 goto keyattach; 1289 } 1290 1291 PF_STATE_LOCK(s); 1292 KEYS_UNLOCK(); 1293 1294 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1295 ("%s failure", __func__)); 1296 1297 return (0); 1298 #undef KEYS_UNLOCK 1299 } 1300 1301 static void 1302 pf_detach_state(struct pf_kstate *s) 1303 { 1304 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1305 struct pf_keyhash *kh; 1306 1307 if (sks != NULL) { 1308 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1309 PF_HASHROW_LOCK(kh); 1310 if (s->key[PF_SK_STACK] != NULL) 1311 pf_state_key_detach(s, PF_SK_STACK); 1312 /* 1313 * If both point to same key, then we are done. 1314 */ 1315 if (sks == s->key[PF_SK_WIRE]) { 1316 pf_state_key_detach(s, PF_SK_WIRE); 1317 PF_HASHROW_UNLOCK(kh); 1318 return; 1319 } 1320 PF_HASHROW_UNLOCK(kh); 1321 } 1322 1323 if (s->key[PF_SK_WIRE] != NULL) { 1324 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1325 PF_HASHROW_LOCK(kh); 1326 if (s->key[PF_SK_WIRE] != NULL) 1327 pf_state_key_detach(s, PF_SK_WIRE); 1328 PF_HASHROW_UNLOCK(kh); 1329 } 1330 } 1331 1332 static void 1333 pf_state_key_detach(struct pf_kstate *s, int idx) 1334 { 1335 struct pf_state_key *sk = s->key[idx]; 1336 #ifdef INVARIANTS 1337 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1338 1339 PF_HASHROW_ASSERT(kh); 1340 #endif 1341 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1342 s->key[idx] = NULL; 1343 1344 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1345 LIST_REMOVE(sk, entry); 1346 uma_zfree(V_pf_state_key_z, sk); 1347 } 1348 } 1349 1350 static int 1351 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1352 { 1353 struct pf_state_key *sk = mem; 1354 1355 bzero(sk, sizeof(struct pf_state_key_cmp)); 1356 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1357 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1358 1359 return (0); 1360 } 1361 1362 struct pf_state_key * 1363 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1364 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1365 { 1366 struct pf_state_key *sk; 1367 1368 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1369 if (sk == NULL) 1370 return (NULL); 1371 1372 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1373 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1374 sk->port[pd->sidx] = sport; 1375 sk->port[pd->didx] = dport; 1376 sk->proto = pd->proto; 1377 sk->af = pd->af; 1378 1379 return (sk); 1380 } 1381 1382 struct pf_state_key * 1383 pf_state_key_clone(struct pf_state_key *orig) 1384 { 1385 struct pf_state_key *sk; 1386 1387 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1388 if (sk == NULL) 1389 return (NULL); 1390 1391 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1392 1393 return (sk); 1394 } 1395 1396 int 1397 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1398 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1399 { 1400 struct pf_idhash *ih; 1401 struct pf_kstate *cur; 1402 int error; 1403 1404 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1405 ("%s: sks not pristine", __func__)); 1406 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1407 ("%s: skw not pristine", __func__)); 1408 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1409 1410 s->kif = kif; 1411 s->orig_kif = orig_kif; 1412 1413 if (s->id == 0 && s->creatorid == 0) { 1414 s->id = alloc_unr64(&V_pf_stateid); 1415 s->id = htobe64(s->id); 1416 s->creatorid = V_pf_status.hostid; 1417 } 1418 1419 /* Returns with ID locked on success. */ 1420 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1421 return (error); 1422 1423 ih = &V_pf_idhash[PF_IDHASH(s)]; 1424 PF_HASHROW_ASSERT(ih); 1425 LIST_FOREACH(cur, &ih->states, entry) 1426 if (cur->id == s->id && cur->creatorid == s->creatorid) 1427 break; 1428 1429 if (cur != NULL) { 1430 PF_HASHROW_UNLOCK(ih); 1431 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1432 printf("pf: state ID collision: " 1433 "id: %016llx creatorid: %08x\n", 1434 (unsigned long long)be64toh(s->id), 1435 ntohl(s->creatorid)); 1436 } 1437 pf_detach_state(s); 1438 return (EEXIST); 1439 } 1440 LIST_INSERT_HEAD(&ih->states, s, entry); 1441 /* One for keys, one for ID hash. */ 1442 refcount_init(&s->refs, 2); 1443 1444 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1445 if (V_pfsync_insert_state_ptr != NULL) 1446 V_pfsync_insert_state_ptr(s); 1447 1448 /* Returns locked. */ 1449 return (0); 1450 } 1451 1452 /* 1453 * Find state by ID: returns with locked row on success. 1454 */ 1455 struct pf_kstate * 1456 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1457 { 1458 struct pf_idhash *ih; 1459 struct pf_kstate *s; 1460 1461 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1462 1463 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1464 1465 PF_HASHROW_LOCK(ih); 1466 LIST_FOREACH(s, &ih->states, entry) 1467 if (s->id == id && s->creatorid == creatorid) 1468 break; 1469 1470 if (s == NULL) 1471 PF_HASHROW_UNLOCK(ih); 1472 1473 return (s); 1474 } 1475 1476 /* 1477 * Find state by key. 1478 * Returns with ID hash slot locked on success. 1479 */ 1480 static struct pf_kstate * 1481 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1482 { 1483 struct pf_keyhash *kh; 1484 struct pf_state_key *sk; 1485 struct pf_kstate *s; 1486 int idx; 1487 1488 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1489 1490 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1491 1492 PF_HASHROW_LOCK(kh); 1493 LIST_FOREACH(sk, &kh->keys, entry) 1494 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1495 break; 1496 if (sk == NULL) { 1497 PF_HASHROW_UNLOCK(kh); 1498 return (NULL); 1499 } 1500 1501 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1502 1503 /* List is sorted, if-bound states before floating ones. */ 1504 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1505 if (s->kif == V_pfi_all || s->kif == kif) { 1506 PF_STATE_LOCK(s); 1507 PF_HASHROW_UNLOCK(kh); 1508 if (__predict_false(s->timeout >= PFTM_MAX)) { 1509 /* 1510 * State is either being processed by 1511 * pf_unlink_state() in an other thread, or 1512 * is scheduled for immediate expiry. 1513 */ 1514 PF_STATE_UNLOCK(s); 1515 return (NULL); 1516 } 1517 return (s); 1518 } 1519 PF_HASHROW_UNLOCK(kh); 1520 1521 return (NULL); 1522 } 1523 1524 /* 1525 * Returns with ID hash slot locked on success. 1526 */ 1527 struct pf_kstate * 1528 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1529 { 1530 struct pf_keyhash *kh; 1531 struct pf_state_key *sk; 1532 struct pf_kstate *s, *ret = NULL; 1533 int idx, inout = 0; 1534 1535 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1536 1537 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1538 1539 PF_HASHROW_LOCK(kh); 1540 LIST_FOREACH(sk, &kh->keys, entry) 1541 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1542 break; 1543 if (sk == NULL) { 1544 PF_HASHROW_UNLOCK(kh); 1545 return (NULL); 1546 } 1547 switch (dir) { 1548 case PF_IN: 1549 idx = PF_SK_WIRE; 1550 break; 1551 case PF_OUT: 1552 idx = PF_SK_STACK; 1553 break; 1554 case PF_INOUT: 1555 idx = PF_SK_WIRE; 1556 inout = 1; 1557 break; 1558 default: 1559 panic("%s: dir %u", __func__, dir); 1560 } 1561 second_run: 1562 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1563 if (more == NULL) { 1564 PF_STATE_LOCK(s); 1565 PF_HASHROW_UNLOCK(kh); 1566 return (s); 1567 } 1568 1569 if (ret) 1570 (*more)++; 1571 else { 1572 ret = s; 1573 PF_STATE_LOCK(s); 1574 } 1575 } 1576 if (inout == 1) { 1577 inout = 0; 1578 idx = PF_SK_STACK; 1579 goto second_run; 1580 } 1581 PF_HASHROW_UNLOCK(kh); 1582 1583 return (ret); 1584 } 1585 1586 /* 1587 * FIXME 1588 * This routine is inefficient -- locks the state only to unlock immediately on 1589 * return. 1590 * It is racy -- after the state is unlocked nothing stops other threads from 1591 * removing it. 1592 */ 1593 bool 1594 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1595 { 1596 struct pf_kstate *s; 1597 1598 s = pf_find_state_all(key, dir, NULL); 1599 if (s != NULL) { 1600 PF_STATE_UNLOCK(s); 1601 return (true); 1602 } 1603 return (false); 1604 } 1605 1606 /* END state table stuff */ 1607 1608 static void 1609 pf_send(struct pf_send_entry *pfse) 1610 { 1611 1612 PF_SENDQ_LOCK(); 1613 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1614 PF_SENDQ_UNLOCK(); 1615 swi_sched(V_pf_swi_cookie, 0); 1616 } 1617 1618 static bool 1619 pf_isforlocal(struct mbuf *m, int af) 1620 { 1621 switch (af) { 1622 #ifdef INET 1623 case AF_INET: { 1624 struct ip *ip = mtod(m, struct ip *); 1625 1626 return (in_localip(ip->ip_dst)); 1627 } 1628 #endif 1629 #ifdef INET6 1630 case AF_INET6: { 1631 struct ip6_hdr *ip6; 1632 struct in6_ifaddr *ia; 1633 ip6 = mtod(m, struct ip6_hdr *); 1634 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1635 if (ia == NULL) 1636 return (false); 1637 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1638 } 1639 #endif 1640 default: 1641 panic("Unsupported af %d", af); 1642 } 1643 1644 return (false); 1645 } 1646 1647 void 1648 pf_intr(void *v) 1649 { 1650 struct epoch_tracker et; 1651 struct pf_send_head queue; 1652 struct pf_send_entry *pfse, *next; 1653 1654 CURVNET_SET((struct vnet *)v); 1655 1656 PF_SENDQ_LOCK(); 1657 queue = V_pf_sendqueue; 1658 STAILQ_INIT(&V_pf_sendqueue); 1659 PF_SENDQ_UNLOCK(); 1660 1661 NET_EPOCH_ENTER(et); 1662 1663 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1664 switch (pfse->pfse_type) { 1665 #ifdef INET 1666 case PFSE_IP: { 1667 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1668 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1669 pfse->pfse_m->m_pkthdr.csum_flags |= 1670 CSUM_IP_VALID | CSUM_IP_CHECKED; 1671 ip_input(pfse->pfse_m); 1672 } else { 1673 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1674 NULL); 1675 } 1676 break; 1677 } 1678 case PFSE_ICMP: 1679 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1680 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1681 break; 1682 #endif /* INET */ 1683 #ifdef INET6 1684 case PFSE_IP6: 1685 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1686 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1687 ip6_input(pfse->pfse_m); 1688 } else { 1689 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1690 NULL, NULL); 1691 } 1692 break; 1693 case PFSE_ICMP6: 1694 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1695 pfse->icmpopts.code, pfse->icmpopts.mtu); 1696 break; 1697 #endif /* INET6 */ 1698 default: 1699 panic("%s: unknown type", __func__); 1700 } 1701 free(pfse, M_PFTEMP); 1702 } 1703 NET_EPOCH_EXIT(et); 1704 CURVNET_RESTORE(); 1705 } 1706 1707 #define pf_purge_thread_period (hz / 10) 1708 1709 #ifdef PF_WANT_32_TO_64_COUNTER 1710 static void 1711 pf_status_counter_u64_periodic(void) 1712 { 1713 1714 PF_RULES_RASSERT(); 1715 1716 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1717 return; 1718 } 1719 1720 for (int i = 0; i < FCNT_MAX; i++) { 1721 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1722 } 1723 } 1724 1725 static void 1726 pf_kif_counter_u64_periodic(void) 1727 { 1728 struct pfi_kkif *kif; 1729 size_t r, run; 1730 1731 PF_RULES_RASSERT(); 1732 1733 if (__predict_false(V_pf_allkifcount == 0)) { 1734 return; 1735 } 1736 1737 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1738 return; 1739 } 1740 1741 run = V_pf_allkifcount / 10; 1742 if (run < 5) 1743 run = 5; 1744 1745 for (r = 0; r < run; r++) { 1746 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1747 if (kif == NULL) { 1748 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1749 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1750 break; 1751 } 1752 1753 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1754 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1755 1756 for (int i = 0; i < 2; i++) { 1757 for (int j = 0; j < 2; j++) { 1758 for (int k = 0; k < 2; k++) { 1759 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1760 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1761 } 1762 } 1763 } 1764 } 1765 } 1766 1767 static void 1768 pf_rule_counter_u64_periodic(void) 1769 { 1770 struct pf_krule *rule; 1771 size_t r, run; 1772 1773 PF_RULES_RASSERT(); 1774 1775 if (__predict_false(V_pf_allrulecount == 0)) { 1776 return; 1777 } 1778 1779 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1780 return; 1781 } 1782 1783 run = V_pf_allrulecount / 10; 1784 if (run < 5) 1785 run = 5; 1786 1787 for (r = 0; r < run; r++) { 1788 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1789 if (rule == NULL) { 1790 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1791 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1792 break; 1793 } 1794 1795 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1796 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1797 1798 pf_counter_u64_periodic(&rule->evaluations); 1799 for (int i = 0; i < 2; i++) { 1800 pf_counter_u64_periodic(&rule->packets[i]); 1801 pf_counter_u64_periodic(&rule->bytes[i]); 1802 } 1803 } 1804 } 1805 1806 static void 1807 pf_counter_u64_periodic_main(void) 1808 { 1809 PF_RULES_RLOCK_TRACKER; 1810 1811 V_pf_counter_periodic_iter++; 1812 1813 PF_RULES_RLOCK(); 1814 pf_counter_u64_critical_enter(); 1815 pf_status_counter_u64_periodic(); 1816 pf_kif_counter_u64_periodic(); 1817 pf_rule_counter_u64_periodic(); 1818 pf_counter_u64_critical_exit(); 1819 PF_RULES_RUNLOCK(); 1820 } 1821 #else 1822 #define pf_counter_u64_periodic_main() do { } while (0) 1823 #endif 1824 1825 void 1826 pf_purge_thread(void *unused __unused) 1827 { 1828 VNET_ITERATOR_DECL(vnet_iter); 1829 1830 sx_xlock(&pf_end_lock); 1831 while (pf_end_threads == 0) { 1832 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1833 1834 VNET_LIST_RLOCK(); 1835 VNET_FOREACH(vnet_iter) { 1836 CURVNET_SET(vnet_iter); 1837 1838 /* Wait until V_pf_default_rule is initialized. */ 1839 if (V_pf_vnet_active == 0) { 1840 CURVNET_RESTORE(); 1841 continue; 1842 } 1843 1844 pf_counter_u64_periodic_main(); 1845 1846 /* 1847 * Process 1/interval fraction of the state 1848 * table every run. 1849 */ 1850 V_pf_purge_idx = 1851 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1852 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1853 1854 /* 1855 * Purge other expired types every 1856 * PFTM_INTERVAL seconds. 1857 */ 1858 if (V_pf_purge_idx == 0) { 1859 /* 1860 * Order is important: 1861 * - states and src nodes reference rules 1862 * - states and rules reference kifs 1863 */ 1864 pf_purge_expired_fragments(); 1865 pf_purge_expired_src_nodes(); 1866 pf_purge_unlinked_rules(); 1867 pfi_kkif_purge(); 1868 } 1869 CURVNET_RESTORE(); 1870 } 1871 VNET_LIST_RUNLOCK(); 1872 } 1873 1874 pf_end_threads++; 1875 sx_xunlock(&pf_end_lock); 1876 kproc_exit(0); 1877 } 1878 1879 void 1880 pf_unload_vnet_purge(void) 1881 { 1882 1883 /* 1884 * To cleanse up all kifs and rules we need 1885 * two runs: first one clears reference flags, 1886 * then pf_purge_expired_states() doesn't 1887 * raise them, and then second run frees. 1888 */ 1889 pf_purge_unlinked_rules(); 1890 pfi_kkif_purge(); 1891 1892 /* 1893 * Now purge everything. 1894 */ 1895 pf_purge_expired_states(0, pf_hashmask); 1896 pf_purge_fragments(UINT_MAX); 1897 pf_purge_expired_src_nodes(); 1898 1899 /* 1900 * Now all kifs & rules should be unreferenced, 1901 * thus should be successfully freed. 1902 */ 1903 pf_purge_unlinked_rules(); 1904 pfi_kkif_purge(); 1905 } 1906 1907 u_int32_t 1908 pf_state_expires(const struct pf_kstate *state) 1909 { 1910 u_int32_t timeout; 1911 u_int32_t start; 1912 u_int32_t end; 1913 u_int32_t states; 1914 1915 /* handle all PFTM_* > PFTM_MAX here */ 1916 if (state->timeout == PFTM_PURGE) 1917 return (time_uptime); 1918 KASSERT(state->timeout != PFTM_UNLINKED, 1919 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1920 KASSERT((state->timeout < PFTM_MAX), 1921 ("pf_state_expires: timeout > PFTM_MAX")); 1922 timeout = state->rule.ptr->timeout[state->timeout]; 1923 if (!timeout) 1924 timeout = V_pf_default_rule.timeout[state->timeout]; 1925 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1926 if (start && state->rule.ptr != &V_pf_default_rule) { 1927 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1928 states = counter_u64_fetch(state->rule.ptr->states_cur); 1929 } else { 1930 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1931 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1932 states = V_pf_status.states; 1933 } 1934 if (end && states > start && start < end) { 1935 if (states < end) { 1936 timeout = (u_int64_t)timeout * (end - states) / 1937 (end - start); 1938 return (state->expire + timeout); 1939 } 1940 else 1941 return (time_uptime); 1942 } 1943 return (state->expire + timeout); 1944 } 1945 1946 void 1947 pf_purge_expired_src_nodes(void) 1948 { 1949 struct pf_ksrc_node_list freelist; 1950 struct pf_srchash *sh; 1951 struct pf_ksrc_node *cur, *next; 1952 int i; 1953 1954 LIST_INIT(&freelist); 1955 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1956 PF_HASHROW_LOCK(sh); 1957 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1958 if (cur->states == 0 && cur->expire <= time_uptime) { 1959 pf_unlink_src_node(cur); 1960 LIST_INSERT_HEAD(&freelist, cur, entry); 1961 } else if (cur->rule.ptr != NULL) 1962 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1963 PF_HASHROW_UNLOCK(sh); 1964 } 1965 1966 pf_free_src_nodes(&freelist); 1967 1968 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1969 } 1970 1971 static void 1972 pf_src_tree_remove_state(struct pf_kstate *s) 1973 { 1974 struct pf_ksrc_node *sn; 1975 struct pf_srchash *sh; 1976 uint32_t timeout; 1977 1978 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1979 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1980 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1981 1982 if (s->src_node != NULL) { 1983 sn = s->src_node; 1984 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1985 PF_HASHROW_LOCK(sh); 1986 if (s->src.tcp_est) 1987 --sn->conn; 1988 if (--sn->states == 0) 1989 sn->expire = time_uptime + timeout; 1990 PF_HASHROW_UNLOCK(sh); 1991 } 1992 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1993 sn = s->nat_src_node; 1994 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1995 PF_HASHROW_LOCK(sh); 1996 if (--sn->states == 0) 1997 sn->expire = time_uptime + timeout; 1998 PF_HASHROW_UNLOCK(sh); 1999 } 2000 s->src_node = s->nat_src_node = NULL; 2001 } 2002 2003 /* 2004 * Unlink and potentilly free a state. Function may be 2005 * called with ID hash row locked, but always returns 2006 * unlocked, since it needs to go through key hash locking. 2007 */ 2008 int 2009 pf_unlink_state(struct pf_kstate *s) 2010 { 2011 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2012 2013 PF_HASHROW_ASSERT(ih); 2014 2015 if (s->timeout == PFTM_UNLINKED) { 2016 /* 2017 * State is being processed 2018 * by pf_unlink_state() in 2019 * an other thread. 2020 */ 2021 PF_HASHROW_UNLOCK(ih); 2022 return (0); /* XXXGL: undefined actually */ 2023 } 2024 2025 if (s->src.state == PF_TCPS_PROXY_DST) { 2026 /* XXX wire key the right one? */ 2027 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2028 &s->key[PF_SK_WIRE]->addr[1], 2029 &s->key[PF_SK_WIRE]->addr[0], 2030 s->key[PF_SK_WIRE]->port[1], 2031 s->key[PF_SK_WIRE]->port[0], 2032 s->src.seqhi, s->src.seqlo + 1, 2033 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 2034 } 2035 2036 LIST_REMOVE(s, entry); 2037 pf_src_tree_remove_state(s); 2038 2039 if (V_pfsync_delete_state_ptr != NULL) 2040 V_pfsync_delete_state_ptr(s); 2041 2042 STATE_DEC_COUNTERS(s); 2043 2044 s->timeout = PFTM_UNLINKED; 2045 2046 /* Ensure we remove it from the list of halfopen states, if needed. */ 2047 if (s->key[PF_SK_STACK] != NULL && 2048 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2049 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2050 2051 PF_HASHROW_UNLOCK(ih); 2052 2053 pf_detach_state(s); 2054 /* pf_state_insert() initialises refs to 2 */ 2055 return (pf_release_staten(s, 2)); 2056 } 2057 2058 struct pf_kstate * 2059 pf_alloc_state(int flags) 2060 { 2061 2062 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2063 } 2064 2065 void 2066 pf_free_state(struct pf_kstate *cur) 2067 { 2068 2069 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2070 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2071 cur->timeout)); 2072 2073 pf_normalize_tcp_cleanup(cur); 2074 uma_zfree(V_pf_state_z, cur); 2075 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2076 } 2077 2078 /* 2079 * Called only from pf_purge_thread(), thus serialized. 2080 */ 2081 static u_int 2082 pf_purge_expired_states(u_int i, int maxcheck) 2083 { 2084 struct pf_idhash *ih; 2085 struct pf_kstate *s; 2086 2087 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2088 2089 /* 2090 * Go through hash and unlink states that expire now. 2091 */ 2092 while (maxcheck > 0) { 2093 ih = &V_pf_idhash[i]; 2094 2095 /* only take the lock if we expect to do work */ 2096 if (!LIST_EMPTY(&ih->states)) { 2097 relock: 2098 PF_HASHROW_LOCK(ih); 2099 LIST_FOREACH(s, &ih->states, entry) { 2100 if (pf_state_expires(s) <= time_uptime) { 2101 V_pf_status.states -= 2102 pf_unlink_state(s); 2103 goto relock; 2104 } 2105 s->rule.ptr->rule_ref |= PFRULE_REFS; 2106 if (s->nat_rule.ptr != NULL) 2107 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2108 if (s->anchor.ptr != NULL) 2109 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2110 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2111 if (s->rt_kif) 2112 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2113 } 2114 PF_HASHROW_UNLOCK(ih); 2115 } 2116 2117 /* Return when we hit end of hash. */ 2118 if (++i > pf_hashmask) { 2119 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2120 return (0); 2121 } 2122 2123 maxcheck--; 2124 } 2125 2126 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2127 2128 return (i); 2129 } 2130 2131 static void 2132 pf_purge_unlinked_rules(void) 2133 { 2134 struct pf_krulequeue tmpq; 2135 struct pf_krule *r, *r1; 2136 2137 /* 2138 * If we have overloading task pending, then we'd 2139 * better skip purging this time. There is a tiny 2140 * probability that overloading task references 2141 * an already unlinked rule. 2142 */ 2143 PF_OVERLOADQ_LOCK(); 2144 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2145 PF_OVERLOADQ_UNLOCK(); 2146 return; 2147 } 2148 PF_OVERLOADQ_UNLOCK(); 2149 2150 /* 2151 * Do naive mark-and-sweep garbage collecting of old rules. 2152 * Reference flag is raised by pf_purge_expired_states() 2153 * and pf_purge_expired_src_nodes(). 2154 * 2155 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2156 * use a temporary queue. 2157 */ 2158 TAILQ_INIT(&tmpq); 2159 PF_UNLNKDRULES_LOCK(); 2160 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2161 if (!(r->rule_ref & PFRULE_REFS)) { 2162 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2163 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2164 } else 2165 r->rule_ref &= ~PFRULE_REFS; 2166 } 2167 PF_UNLNKDRULES_UNLOCK(); 2168 2169 if (!TAILQ_EMPTY(&tmpq)) { 2170 PF_CONFIG_LOCK(); 2171 PF_RULES_WLOCK(); 2172 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2173 TAILQ_REMOVE(&tmpq, r, entries); 2174 pf_free_rule(r); 2175 } 2176 PF_RULES_WUNLOCK(); 2177 PF_CONFIG_UNLOCK(); 2178 } 2179 } 2180 2181 void 2182 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2183 { 2184 switch (af) { 2185 #ifdef INET 2186 case AF_INET: { 2187 u_int32_t a = ntohl(addr->addr32[0]); 2188 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2189 (a>>8)&255, a&255); 2190 if (p) { 2191 p = ntohs(p); 2192 printf(":%u", p); 2193 } 2194 break; 2195 } 2196 #endif /* INET */ 2197 #ifdef INET6 2198 case AF_INET6: { 2199 u_int16_t b; 2200 u_int8_t i, curstart, curend, maxstart, maxend; 2201 curstart = curend = maxstart = maxend = 255; 2202 for (i = 0; i < 8; i++) { 2203 if (!addr->addr16[i]) { 2204 if (curstart == 255) 2205 curstart = i; 2206 curend = i; 2207 } else { 2208 if ((curend - curstart) > 2209 (maxend - maxstart)) { 2210 maxstart = curstart; 2211 maxend = curend; 2212 } 2213 curstart = curend = 255; 2214 } 2215 } 2216 if ((curend - curstart) > 2217 (maxend - maxstart)) { 2218 maxstart = curstart; 2219 maxend = curend; 2220 } 2221 for (i = 0; i < 8; i++) { 2222 if (i >= maxstart && i <= maxend) { 2223 if (i == 0) 2224 printf(":"); 2225 if (i == maxend) 2226 printf(":"); 2227 } else { 2228 b = ntohs(addr->addr16[i]); 2229 printf("%x", b); 2230 if (i < 7) 2231 printf(":"); 2232 } 2233 } 2234 if (p) { 2235 p = ntohs(p); 2236 printf("[%u]", p); 2237 } 2238 break; 2239 } 2240 #endif /* INET6 */ 2241 } 2242 } 2243 2244 void 2245 pf_print_state(struct pf_kstate *s) 2246 { 2247 pf_print_state_parts(s, NULL, NULL); 2248 } 2249 2250 static void 2251 pf_print_state_parts(struct pf_kstate *s, 2252 struct pf_state_key *skwp, struct pf_state_key *sksp) 2253 { 2254 struct pf_state_key *skw, *sks; 2255 u_int8_t proto, dir; 2256 2257 /* Do our best to fill these, but they're skipped if NULL */ 2258 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2259 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2260 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2261 dir = s ? s->direction : 0; 2262 2263 switch (proto) { 2264 case IPPROTO_IPV4: 2265 printf("IPv4"); 2266 break; 2267 case IPPROTO_IPV6: 2268 printf("IPv6"); 2269 break; 2270 case IPPROTO_TCP: 2271 printf("TCP"); 2272 break; 2273 case IPPROTO_UDP: 2274 printf("UDP"); 2275 break; 2276 case IPPROTO_ICMP: 2277 printf("ICMP"); 2278 break; 2279 case IPPROTO_ICMPV6: 2280 printf("ICMPv6"); 2281 break; 2282 default: 2283 printf("%u", proto); 2284 break; 2285 } 2286 switch (dir) { 2287 case PF_IN: 2288 printf(" in"); 2289 break; 2290 case PF_OUT: 2291 printf(" out"); 2292 break; 2293 } 2294 if (skw) { 2295 printf(" wire: "); 2296 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2297 printf(" "); 2298 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2299 } 2300 if (sks) { 2301 printf(" stack: "); 2302 if (sks != skw) { 2303 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2304 printf(" "); 2305 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2306 } else 2307 printf("-"); 2308 } 2309 if (s) { 2310 if (proto == IPPROTO_TCP) { 2311 printf(" [lo=%u high=%u win=%u modulator=%u", 2312 s->src.seqlo, s->src.seqhi, 2313 s->src.max_win, s->src.seqdiff); 2314 if (s->src.wscale && s->dst.wscale) 2315 printf(" wscale=%u", 2316 s->src.wscale & PF_WSCALE_MASK); 2317 printf("]"); 2318 printf(" [lo=%u high=%u win=%u modulator=%u", 2319 s->dst.seqlo, s->dst.seqhi, 2320 s->dst.max_win, s->dst.seqdiff); 2321 if (s->src.wscale && s->dst.wscale) 2322 printf(" wscale=%u", 2323 s->dst.wscale & PF_WSCALE_MASK); 2324 printf("]"); 2325 } 2326 printf(" %u:%u", s->src.state, s->dst.state); 2327 } 2328 } 2329 2330 void 2331 pf_print_flags(u_int8_t f) 2332 { 2333 if (f) 2334 printf(" "); 2335 if (f & TH_FIN) 2336 printf("F"); 2337 if (f & TH_SYN) 2338 printf("S"); 2339 if (f & TH_RST) 2340 printf("R"); 2341 if (f & TH_PUSH) 2342 printf("P"); 2343 if (f & TH_ACK) 2344 printf("A"); 2345 if (f & TH_URG) 2346 printf("U"); 2347 if (f & TH_ECE) 2348 printf("E"); 2349 if (f & TH_CWR) 2350 printf("W"); 2351 } 2352 2353 #define PF_SET_SKIP_STEPS(i) \ 2354 do { \ 2355 while (head[i] != cur) { \ 2356 head[i]->skip[i].ptr = cur; \ 2357 head[i] = TAILQ_NEXT(head[i], entries); \ 2358 } \ 2359 } while (0) 2360 2361 void 2362 pf_calc_skip_steps(struct pf_krulequeue *rules) 2363 { 2364 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2365 int i; 2366 2367 cur = TAILQ_FIRST(rules); 2368 prev = cur; 2369 for (i = 0; i < PF_SKIP_COUNT; ++i) 2370 head[i] = cur; 2371 while (cur != NULL) { 2372 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2373 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2374 if (cur->direction != prev->direction) 2375 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2376 if (cur->af != prev->af) 2377 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2378 if (cur->proto != prev->proto) 2379 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2380 if (cur->src.neg != prev->src.neg || 2381 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2382 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2383 if (cur->src.port[0] != prev->src.port[0] || 2384 cur->src.port[1] != prev->src.port[1] || 2385 cur->src.port_op != prev->src.port_op) 2386 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2387 if (cur->dst.neg != prev->dst.neg || 2388 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2389 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2390 if (cur->dst.port[0] != prev->dst.port[0] || 2391 cur->dst.port[1] != prev->dst.port[1] || 2392 cur->dst.port_op != prev->dst.port_op) 2393 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2394 2395 prev = cur; 2396 cur = TAILQ_NEXT(cur, entries); 2397 } 2398 for (i = 0; i < PF_SKIP_COUNT; ++i) 2399 PF_SET_SKIP_STEPS(i); 2400 } 2401 2402 static int 2403 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2404 { 2405 if (aw1->type != aw2->type) 2406 return (1); 2407 switch (aw1->type) { 2408 case PF_ADDR_ADDRMASK: 2409 case PF_ADDR_RANGE: 2410 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2411 return (1); 2412 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2413 return (1); 2414 return (0); 2415 case PF_ADDR_DYNIFTL: 2416 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2417 case PF_ADDR_NOROUTE: 2418 case PF_ADDR_URPFFAILED: 2419 return (0); 2420 case PF_ADDR_TABLE: 2421 return (aw1->p.tbl != aw2->p.tbl); 2422 default: 2423 printf("invalid address type: %d\n", aw1->type); 2424 return (1); 2425 } 2426 } 2427 2428 /** 2429 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2430 * header isn't always a full checksum. In some cases (i.e. output) it's a 2431 * pseudo-header checksum, which is a partial checksum over src/dst IP 2432 * addresses, protocol number and length. 2433 * 2434 * That means we have the following cases: 2435 * * Input or forwarding: we don't have TSO, the checksum fields are full 2436 * checksums, we need to update the checksum whenever we change anything. 2437 * * Output (i.e. the checksum is a pseudo-header checksum): 2438 * x The field being updated is src/dst address or affects the length of 2439 * the packet. We need to update the pseudo-header checksum (note that this 2440 * checksum is not ones' complement). 2441 * x Some other field is being modified (e.g. src/dst port numbers): We 2442 * don't have to update anything. 2443 **/ 2444 u_int16_t 2445 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2446 { 2447 u_int32_t x; 2448 2449 x = cksum + old - new; 2450 x = (x + (x >> 16)) & 0xffff; 2451 2452 /* optimise: eliminate a branch when not udp */ 2453 if (udp && cksum == 0x0000) 2454 return cksum; 2455 if (udp && x == 0x0000) 2456 x = 0xffff; 2457 2458 return (u_int16_t)(x); 2459 } 2460 2461 static void 2462 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2463 u_int8_t udp) 2464 { 2465 u_int16_t old = htons(hi ? (*f << 8) : *f); 2466 u_int16_t new = htons(hi ? ( v << 8) : v); 2467 2468 if (*f == v) 2469 return; 2470 2471 *f = v; 2472 2473 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2474 return; 2475 2476 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2477 } 2478 2479 void 2480 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2481 bool hi, u_int8_t udp) 2482 { 2483 u_int8_t *fb = (u_int8_t *)f; 2484 u_int8_t *vb = (u_int8_t *)&v; 2485 2486 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2487 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2488 } 2489 2490 void 2491 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2492 bool hi, u_int8_t udp) 2493 { 2494 u_int8_t *fb = (u_int8_t *)f; 2495 u_int8_t *vb = (u_int8_t *)&v; 2496 2497 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2498 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2499 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2500 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2501 } 2502 2503 u_int16_t 2504 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2505 u_int16_t new, u_int8_t udp) 2506 { 2507 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2508 return (cksum); 2509 2510 return (pf_cksum_fixup(cksum, old, new, udp)); 2511 } 2512 2513 static void 2514 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2515 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2516 sa_family_t af) 2517 { 2518 struct pf_addr ao; 2519 u_int16_t po = *p; 2520 2521 PF_ACPY(&ao, a, af); 2522 PF_ACPY(a, an, af); 2523 2524 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2525 *pc = ~*pc; 2526 2527 *p = pn; 2528 2529 switch (af) { 2530 #ifdef INET 2531 case AF_INET: 2532 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2533 ao.addr16[0], an->addr16[0], 0), 2534 ao.addr16[1], an->addr16[1], 0); 2535 *p = pn; 2536 2537 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2538 ao.addr16[0], an->addr16[0], u), 2539 ao.addr16[1], an->addr16[1], u); 2540 2541 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2542 break; 2543 #endif /* INET */ 2544 #ifdef INET6 2545 case AF_INET6: 2546 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2547 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2548 pf_cksum_fixup(pf_cksum_fixup(*pc, 2549 ao.addr16[0], an->addr16[0], u), 2550 ao.addr16[1], an->addr16[1], u), 2551 ao.addr16[2], an->addr16[2], u), 2552 ao.addr16[3], an->addr16[3], u), 2553 ao.addr16[4], an->addr16[4], u), 2554 ao.addr16[5], an->addr16[5], u), 2555 ao.addr16[6], an->addr16[6], u), 2556 ao.addr16[7], an->addr16[7], u); 2557 2558 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2559 break; 2560 #endif /* INET6 */ 2561 } 2562 2563 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2564 CSUM_DELAY_DATA_IPV6)) { 2565 *pc = ~*pc; 2566 if (! *pc) 2567 *pc = 0xffff; 2568 } 2569 } 2570 2571 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2572 void 2573 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2574 { 2575 u_int32_t ao; 2576 2577 memcpy(&ao, a, sizeof(ao)); 2578 memcpy(a, &an, sizeof(u_int32_t)); 2579 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2580 ao % 65536, an % 65536, u); 2581 } 2582 2583 void 2584 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2585 { 2586 u_int32_t ao; 2587 2588 memcpy(&ao, a, sizeof(ao)); 2589 memcpy(a, &an, sizeof(u_int32_t)); 2590 2591 *c = pf_proto_cksum_fixup(m, 2592 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2593 ao % 65536, an % 65536, udp); 2594 } 2595 2596 #ifdef INET6 2597 static void 2598 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2599 { 2600 struct pf_addr ao; 2601 2602 PF_ACPY(&ao, a, AF_INET6); 2603 PF_ACPY(a, an, AF_INET6); 2604 2605 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2606 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2607 pf_cksum_fixup(pf_cksum_fixup(*c, 2608 ao.addr16[0], an->addr16[0], u), 2609 ao.addr16[1], an->addr16[1], u), 2610 ao.addr16[2], an->addr16[2], u), 2611 ao.addr16[3], an->addr16[3], u), 2612 ao.addr16[4], an->addr16[4], u), 2613 ao.addr16[5], an->addr16[5], u), 2614 ao.addr16[6], an->addr16[6], u), 2615 ao.addr16[7], an->addr16[7], u); 2616 } 2617 #endif /* INET6 */ 2618 2619 static void 2620 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2621 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2622 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2623 { 2624 struct pf_addr oia, ooa; 2625 2626 PF_ACPY(&oia, ia, af); 2627 if (oa) 2628 PF_ACPY(&ooa, oa, af); 2629 2630 /* Change inner protocol port, fix inner protocol checksum. */ 2631 if (ip != NULL) { 2632 u_int16_t oip = *ip; 2633 u_int32_t opc; 2634 2635 if (pc != NULL) 2636 opc = *pc; 2637 *ip = np; 2638 if (pc != NULL) 2639 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2640 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2641 if (pc != NULL) 2642 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2643 } 2644 /* Change inner ip address, fix inner ip and icmp checksums. */ 2645 PF_ACPY(ia, na, af); 2646 switch (af) { 2647 #ifdef INET 2648 case AF_INET: { 2649 u_int32_t oh2c = *h2c; 2650 2651 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2652 oia.addr16[0], ia->addr16[0], 0), 2653 oia.addr16[1], ia->addr16[1], 0); 2654 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2655 oia.addr16[0], ia->addr16[0], 0), 2656 oia.addr16[1], ia->addr16[1], 0); 2657 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2658 break; 2659 } 2660 #endif /* INET */ 2661 #ifdef INET6 2662 case AF_INET6: 2663 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2664 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2665 pf_cksum_fixup(pf_cksum_fixup(*ic, 2666 oia.addr16[0], ia->addr16[0], u), 2667 oia.addr16[1], ia->addr16[1], u), 2668 oia.addr16[2], ia->addr16[2], u), 2669 oia.addr16[3], ia->addr16[3], u), 2670 oia.addr16[4], ia->addr16[4], u), 2671 oia.addr16[5], ia->addr16[5], u), 2672 oia.addr16[6], ia->addr16[6], u), 2673 oia.addr16[7], ia->addr16[7], u); 2674 break; 2675 #endif /* INET6 */ 2676 } 2677 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2678 if (oa) { 2679 PF_ACPY(oa, na, af); 2680 switch (af) { 2681 #ifdef INET 2682 case AF_INET: 2683 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2684 ooa.addr16[0], oa->addr16[0], 0), 2685 ooa.addr16[1], oa->addr16[1], 0); 2686 break; 2687 #endif /* INET */ 2688 #ifdef INET6 2689 case AF_INET6: 2690 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2691 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2692 pf_cksum_fixup(pf_cksum_fixup(*ic, 2693 ooa.addr16[0], oa->addr16[0], u), 2694 ooa.addr16[1], oa->addr16[1], u), 2695 ooa.addr16[2], oa->addr16[2], u), 2696 ooa.addr16[3], oa->addr16[3], u), 2697 ooa.addr16[4], oa->addr16[4], u), 2698 ooa.addr16[5], oa->addr16[5], u), 2699 ooa.addr16[6], oa->addr16[6], u), 2700 ooa.addr16[7], oa->addr16[7], u); 2701 break; 2702 #endif /* INET6 */ 2703 } 2704 } 2705 } 2706 2707 /* 2708 * Need to modulate the sequence numbers in the TCP SACK option 2709 * (credits to Krzysztof Pfaff for report and patch) 2710 */ 2711 static int 2712 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2713 struct tcphdr *th, struct pf_state_peer *dst) 2714 { 2715 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2716 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2717 int copyback = 0, i, olen; 2718 struct sackblk sack; 2719 2720 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2721 if (hlen < TCPOLEN_SACKLEN || 2722 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2723 return 0; 2724 2725 while (hlen >= TCPOLEN_SACKLEN) { 2726 size_t startoff = opt - opts; 2727 olen = opt[1]; 2728 switch (*opt) { 2729 case TCPOPT_EOL: /* FALLTHROUGH */ 2730 case TCPOPT_NOP: 2731 opt++; 2732 hlen--; 2733 break; 2734 case TCPOPT_SACK: 2735 if (olen > hlen) 2736 olen = hlen; 2737 if (olen >= TCPOLEN_SACKLEN) { 2738 for (i = 2; i + TCPOLEN_SACK <= olen; 2739 i += TCPOLEN_SACK) { 2740 memcpy(&sack, &opt[i], sizeof(sack)); 2741 pf_patch_32_unaligned(m, 2742 &th->th_sum, &sack.start, 2743 htonl(ntohl(sack.start) - dst->seqdiff), 2744 PF_ALGNMNT(startoff), 2745 0); 2746 pf_patch_32_unaligned(m, &th->th_sum, 2747 &sack.end, 2748 htonl(ntohl(sack.end) - dst->seqdiff), 2749 PF_ALGNMNT(startoff), 2750 0); 2751 memcpy(&opt[i], &sack, sizeof(sack)); 2752 } 2753 copyback = 1; 2754 } 2755 /* FALLTHROUGH */ 2756 default: 2757 if (olen < 2) 2758 olen = 2; 2759 hlen -= olen; 2760 opt += olen; 2761 } 2762 } 2763 2764 if (copyback) 2765 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2766 return (copyback); 2767 } 2768 2769 struct mbuf * 2770 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2771 const struct pf_addr *saddr, const struct pf_addr *daddr, 2772 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2773 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2774 u_int16_t rtag) 2775 { 2776 struct mbuf *m; 2777 int len, tlen; 2778 #ifdef INET 2779 struct ip *h = NULL; 2780 #endif /* INET */ 2781 #ifdef INET6 2782 struct ip6_hdr *h6 = NULL; 2783 #endif /* INET6 */ 2784 struct tcphdr *th; 2785 char *opt; 2786 struct pf_mtag *pf_mtag; 2787 2788 len = 0; 2789 th = NULL; 2790 2791 /* maximum segment size tcp option */ 2792 tlen = sizeof(struct tcphdr); 2793 if (mss) 2794 tlen += 4; 2795 2796 switch (af) { 2797 #ifdef INET 2798 case AF_INET: 2799 len = sizeof(struct ip) + tlen; 2800 break; 2801 #endif /* INET */ 2802 #ifdef INET6 2803 case AF_INET6: 2804 len = sizeof(struct ip6_hdr) + tlen; 2805 break; 2806 #endif /* INET6 */ 2807 default: 2808 panic("%s: unsupported af %d", __func__, af); 2809 } 2810 2811 m = m_gethdr(M_NOWAIT, MT_DATA); 2812 if (m == NULL) 2813 return (NULL); 2814 2815 #ifdef MAC 2816 mac_netinet_firewall_send(m); 2817 #endif 2818 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2819 m_freem(m); 2820 return (NULL); 2821 } 2822 if (tag) 2823 m->m_flags |= M_SKIP_FIREWALL; 2824 pf_mtag->tag = rtag; 2825 2826 if (r != NULL && r->rtableid >= 0) 2827 M_SETFIB(m, r->rtableid); 2828 2829 #ifdef ALTQ 2830 if (r != NULL && r->qid) { 2831 pf_mtag->qid = r->qid; 2832 2833 /* add hints for ecn */ 2834 pf_mtag->hdr = mtod(m, struct ip *); 2835 } 2836 #endif /* ALTQ */ 2837 m->m_data += max_linkhdr; 2838 m->m_pkthdr.len = m->m_len = len; 2839 /* The rest of the stack assumes a rcvif, so provide one. 2840 * This is a locally generated packet, so .. close enough. */ 2841 m->m_pkthdr.rcvif = V_loif; 2842 bzero(m->m_data, len); 2843 switch (af) { 2844 #ifdef INET 2845 case AF_INET: 2846 h = mtod(m, struct ip *); 2847 2848 /* IP header fields included in the TCP checksum */ 2849 h->ip_p = IPPROTO_TCP; 2850 h->ip_len = htons(tlen); 2851 h->ip_src.s_addr = saddr->v4.s_addr; 2852 h->ip_dst.s_addr = daddr->v4.s_addr; 2853 2854 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2855 break; 2856 #endif /* INET */ 2857 #ifdef INET6 2858 case AF_INET6: 2859 h6 = mtod(m, struct ip6_hdr *); 2860 2861 /* IP header fields included in the TCP checksum */ 2862 h6->ip6_nxt = IPPROTO_TCP; 2863 h6->ip6_plen = htons(tlen); 2864 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2865 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2866 2867 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2868 break; 2869 #endif /* INET6 */ 2870 } 2871 2872 /* TCP header */ 2873 th->th_sport = sport; 2874 th->th_dport = dport; 2875 th->th_seq = htonl(seq); 2876 th->th_ack = htonl(ack); 2877 th->th_off = tlen >> 2; 2878 th->th_flags = flags; 2879 th->th_win = htons(win); 2880 2881 if (mss) { 2882 opt = (char *)(th + 1); 2883 opt[0] = TCPOPT_MAXSEG; 2884 opt[1] = 4; 2885 HTONS(mss); 2886 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2887 } 2888 2889 switch (af) { 2890 #ifdef INET 2891 case AF_INET: 2892 /* TCP checksum */ 2893 th->th_sum = in_cksum(m, len); 2894 2895 /* Finish the IP header */ 2896 h->ip_v = 4; 2897 h->ip_hl = sizeof(*h) >> 2; 2898 h->ip_tos = IPTOS_LOWDELAY; 2899 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2900 h->ip_len = htons(len); 2901 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2902 h->ip_sum = 0; 2903 break; 2904 #endif /* INET */ 2905 #ifdef INET6 2906 case AF_INET6: 2907 /* TCP checksum */ 2908 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2909 sizeof(struct ip6_hdr), tlen); 2910 2911 h6->ip6_vfc |= IPV6_VERSION; 2912 h6->ip6_hlim = IPV6_DEFHLIM; 2913 break; 2914 #endif /* INET6 */ 2915 } 2916 2917 return (m); 2918 } 2919 2920 void 2921 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2922 const struct pf_addr *saddr, const struct pf_addr *daddr, 2923 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2924 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2925 u_int16_t rtag) 2926 { 2927 struct pf_send_entry *pfse; 2928 struct mbuf *m; 2929 2930 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2931 win, mss, ttl, tag, rtag); 2932 if (m == NULL) 2933 return; 2934 2935 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2936 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2937 if (pfse == NULL) { 2938 m_freem(m); 2939 return; 2940 } 2941 2942 switch (af) { 2943 #ifdef INET 2944 case AF_INET: 2945 pfse->pfse_type = PFSE_IP; 2946 break; 2947 #endif /* INET */ 2948 #ifdef INET6 2949 case AF_INET6: 2950 pfse->pfse_type = PFSE_IP6; 2951 break; 2952 #endif /* INET6 */ 2953 } 2954 2955 pfse->pfse_m = m; 2956 pf_send(pfse); 2957 } 2958 2959 static void 2960 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2961 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2962 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2963 u_short *reason) 2964 { 2965 struct pf_addr * const saddr = pd->src; 2966 struct pf_addr * const daddr = pd->dst; 2967 sa_family_t af = pd->af; 2968 2969 /* undo NAT changes, if they have taken place */ 2970 if (nr != NULL) { 2971 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2972 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2973 if (pd->sport) 2974 *pd->sport = sk->port[pd->sidx]; 2975 if (pd->dport) 2976 *pd->dport = sk->port[pd->didx]; 2977 if (pd->proto_sum) 2978 *pd->proto_sum = bproto_sum; 2979 if (pd->ip_sum) 2980 *pd->ip_sum = bip_sum; 2981 m_copyback(m, off, hdrlen, pd->hdr.any); 2982 } 2983 if (pd->proto == IPPROTO_TCP && 2984 ((r->rule_flag & PFRULE_RETURNRST) || 2985 (r->rule_flag & PFRULE_RETURN)) && 2986 !(th->th_flags & TH_RST)) { 2987 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2988 int len = 0; 2989 #ifdef INET 2990 struct ip *h4; 2991 #endif 2992 #ifdef INET6 2993 struct ip6_hdr *h6; 2994 #endif 2995 2996 switch (af) { 2997 #ifdef INET 2998 case AF_INET: 2999 h4 = mtod(m, struct ip *); 3000 len = ntohs(h4->ip_len) - off; 3001 break; 3002 #endif 3003 #ifdef INET6 3004 case AF_INET6: 3005 h6 = mtod(m, struct ip6_hdr *); 3006 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3007 break; 3008 #endif 3009 } 3010 3011 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3012 REASON_SET(reason, PFRES_PROTCKSUM); 3013 else { 3014 if (th->th_flags & TH_SYN) 3015 ack++; 3016 if (th->th_flags & TH_FIN) 3017 ack++; 3018 pf_send_tcp(r, af, pd->dst, 3019 pd->src, th->th_dport, th->th_sport, 3020 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3021 r->return_ttl, 1, 0); 3022 } 3023 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3024 r->return_icmp) 3025 pf_send_icmp(m, r->return_icmp >> 8, 3026 r->return_icmp & 255, af, r); 3027 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3028 r->return_icmp6) 3029 pf_send_icmp(m, r->return_icmp6 >> 8, 3030 r->return_icmp6 & 255, af, r); 3031 } 3032 3033 static int 3034 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3035 { 3036 struct m_tag *mtag; 3037 u_int8_t mpcp; 3038 3039 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3040 if (mtag == NULL) 3041 return (0); 3042 3043 if (prio == PF_PRIO_ZERO) 3044 prio = 0; 3045 3046 mpcp = *(uint8_t *)(mtag + 1); 3047 3048 return (mpcp == prio); 3049 } 3050 3051 static int 3052 pf_icmp_to_bandlim(uint8_t type) 3053 { 3054 switch (type) { 3055 case ICMP_ECHO: 3056 case ICMP_ECHOREPLY: 3057 return (BANDLIM_ICMP_ECHO); 3058 case ICMP_TSTAMP: 3059 case ICMP_TSTAMPREPLY: 3060 return (BANDLIM_ICMP_TSTAMP); 3061 case ICMP_UNREACH: 3062 default: 3063 return (BANDLIM_ICMP_UNREACH); 3064 } 3065 } 3066 3067 static void 3068 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3069 struct pf_krule *r) 3070 { 3071 struct pf_send_entry *pfse; 3072 struct mbuf *m0; 3073 struct pf_mtag *pf_mtag; 3074 3075 /* ICMP packet rate limitation. */ 3076 #ifdef INET6 3077 if (af == AF_INET6) { 3078 if (icmp6_ratelimit(NULL, type, code)) 3079 return; 3080 } 3081 #endif 3082 #ifdef INET 3083 if (af == AF_INET) { 3084 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3085 return; 3086 } 3087 #endif 3088 3089 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3090 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3091 if (pfse == NULL) 3092 return; 3093 3094 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3095 free(pfse, M_PFTEMP); 3096 return; 3097 } 3098 3099 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3100 free(pfse, M_PFTEMP); 3101 return; 3102 } 3103 /* XXX: revisit */ 3104 m0->m_flags |= M_SKIP_FIREWALL; 3105 3106 if (r->rtableid >= 0) 3107 M_SETFIB(m0, r->rtableid); 3108 3109 #ifdef ALTQ 3110 if (r->qid) { 3111 pf_mtag->qid = r->qid; 3112 /* add hints for ecn */ 3113 pf_mtag->hdr = mtod(m0, struct ip *); 3114 } 3115 #endif /* ALTQ */ 3116 3117 switch (af) { 3118 #ifdef INET 3119 case AF_INET: 3120 pfse->pfse_type = PFSE_ICMP; 3121 break; 3122 #endif /* INET */ 3123 #ifdef INET6 3124 case AF_INET6: 3125 pfse->pfse_type = PFSE_ICMP6; 3126 break; 3127 #endif /* INET6 */ 3128 } 3129 pfse->pfse_m = m0; 3130 pfse->icmpopts.type = type; 3131 pfse->icmpopts.code = code; 3132 pf_send(pfse); 3133 } 3134 3135 /* 3136 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3137 * If n is 0, they match if they are equal. If n is != 0, they match if they 3138 * are different. 3139 */ 3140 int 3141 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3142 struct pf_addr *b, sa_family_t af) 3143 { 3144 int match = 0; 3145 3146 switch (af) { 3147 #ifdef INET 3148 case AF_INET: 3149 if ((a->addr32[0] & m->addr32[0]) == 3150 (b->addr32[0] & m->addr32[0])) 3151 match++; 3152 break; 3153 #endif /* INET */ 3154 #ifdef INET6 3155 case AF_INET6: 3156 if (((a->addr32[0] & m->addr32[0]) == 3157 (b->addr32[0] & m->addr32[0])) && 3158 ((a->addr32[1] & m->addr32[1]) == 3159 (b->addr32[1] & m->addr32[1])) && 3160 ((a->addr32[2] & m->addr32[2]) == 3161 (b->addr32[2] & m->addr32[2])) && 3162 ((a->addr32[3] & m->addr32[3]) == 3163 (b->addr32[3] & m->addr32[3]))) 3164 match++; 3165 break; 3166 #endif /* INET6 */ 3167 } 3168 if (match) { 3169 if (n) 3170 return (0); 3171 else 3172 return (1); 3173 } else { 3174 if (n) 3175 return (1); 3176 else 3177 return (0); 3178 } 3179 } 3180 3181 /* 3182 * Return 1 if b <= a <= e, otherwise return 0. 3183 */ 3184 int 3185 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3186 struct pf_addr *a, sa_family_t af) 3187 { 3188 switch (af) { 3189 #ifdef INET 3190 case AF_INET: 3191 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3192 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3193 return (0); 3194 break; 3195 #endif /* INET */ 3196 #ifdef INET6 3197 case AF_INET6: { 3198 int i; 3199 3200 /* check a >= b */ 3201 for (i = 0; i < 4; ++i) 3202 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3203 break; 3204 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3205 return (0); 3206 /* check a <= e */ 3207 for (i = 0; i < 4; ++i) 3208 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3209 break; 3210 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3211 return (0); 3212 break; 3213 } 3214 #endif /* INET6 */ 3215 } 3216 return (1); 3217 } 3218 3219 static int 3220 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3221 { 3222 switch (op) { 3223 case PF_OP_IRG: 3224 return ((p > a1) && (p < a2)); 3225 case PF_OP_XRG: 3226 return ((p < a1) || (p > a2)); 3227 case PF_OP_RRG: 3228 return ((p >= a1) && (p <= a2)); 3229 case PF_OP_EQ: 3230 return (p == a1); 3231 case PF_OP_NE: 3232 return (p != a1); 3233 case PF_OP_LT: 3234 return (p < a1); 3235 case PF_OP_LE: 3236 return (p <= a1); 3237 case PF_OP_GT: 3238 return (p > a1); 3239 case PF_OP_GE: 3240 return (p >= a1); 3241 } 3242 return (0); /* never reached */ 3243 } 3244 3245 int 3246 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3247 { 3248 NTOHS(a1); 3249 NTOHS(a2); 3250 NTOHS(p); 3251 return (pf_match(op, a1, a2, p)); 3252 } 3253 3254 static int 3255 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3256 { 3257 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3258 return (0); 3259 return (pf_match(op, a1, a2, u)); 3260 } 3261 3262 static int 3263 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3264 { 3265 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3266 return (0); 3267 return (pf_match(op, a1, a2, g)); 3268 } 3269 3270 int 3271 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3272 { 3273 if (*tag == -1) 3274 *tag = mtag; 3275 3276 return ((!r->match_tag_not && r->match_tag == *tag) || 3277 (r->match_tag_not && r->match_tag != *tag)); 3278 } 3279 3280 int 3281 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3282 { 3283 3284 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3285 3286 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3287 return (ENOMEM); 3288 3289 pd->pf_mtag->tag = tag; 3290 3291 return (0); 3292 } 3293 3294 #define PF_ANCHOR_STACKSIZE 32 3295 struct pf_kanchor_stackframe { 3296 struct pf_kruleset *rs; 3297 struct pf_krule *r; /* XXX: + match bit */ 3298 struct pf_kanchor *child; 3299 }; 3300 3301 /* 3302 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3303 */ 3304 #define PF_ANCHORSTACK_MATCH 0x00000001 3305 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3306 3307 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3308 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3309 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3310 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3311 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3312 } while (0) 3313 3314 void 3315 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3316 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3317 int *match) 3318 { 3319 struct pf_kanchor_stackframe *f; 3320 3321 PF_RULES_RASSERT(); 3322 3323 if (match) 3324 *match = 0; 3325 if (*depth >= PF_ANCHOR_STACKSIZE) { 3326 printf("%s: anchor stack overflow on %s\n", 3327 __func__, (*r)->anchor->name); 3328 *r = TAILQ_NEXT(*r, entries); 3329 return; 3330 } else if (*depth == 0 && a != NULL) 3331 *a = *r; 3332 f = stack + (*depth)++; 3333 f->rs = *rs; 3334 f->r = *r; 3335 if ((*r)->anchor_wildcard) { 3336 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3337 3338 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3339 *r = NULL; 3340 return; 3341 } 3342 *rs = &f->child->ruleset; 3343 } else { 3344 f->child = NULL; 3345 *rs = &(*r)->anchor->ruleset; 3346 } 3347 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3348 } 3349 3350 int 3351 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3352 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3353 int *match) 3354 { 3355 struct pf_kanchor_stackframe *f; 3356 struct pf_krule *fr; 3357 int quick = 0; 3358 3359 PF_RULES_RASSERT(); 3360 3361 do { 3362 if (*depth <= 0) 3363 break; 3364 f = stack + *depth - 1; 3365 fr = PF_ANCHOR_RULE(f); 3366 if (f->child != NULL) { 3367 /* 3368 * This block traverses through 3369 * a wildcard anchor. 3370 */ 3371 if (match != NULL && *match) { 3372 /* 3373 * If any of "*" matched, then 3374 * "foo/ *" matched, mark frame 3375 * appropriately. 3376 */ 3377 PF_ANCHOR_SET_MATCH(f); 3378 *match = 0; 3379 } 3380 f->child = RB_NEXT(pf_kanchor_node, 3381 &fr->anchor->children, f->child); 3382 if (f->child != NULL) { 3383 *rs = &f->child->ruleset; 3384 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3385 if (*r == NULL) 3386 continue; 3387 else 3388 break; 3389 } 3390 } 3391 (*depth)--; 3392 if (*depth == 0 && a != NULL) 3393 *a = NULL; 3394 *rs = f->rs; 3395 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3396 quick = fr->quick; 3397 *r = TAILQ_NEXT(fr, entries); 3398 } while (*r == NULL); 3399 3400 return (quick); 3401 } 3402 3403 struct pf_keth_anchor_stackframe { 3404 struct pf_keth_ruleset *rs; 3405 struct pf_keth_rule *r; /* XXX: + match bit */ 3406 struct pf_keth_anchor *child; 3407 }; 3408 3409 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3410 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3411 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3412 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3413 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3414 } while (0) 3415 3416 void 3417 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3418 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3419 struct pf_keth_rule **a, int *match) 3420 { 3421 struct pf_keth_anchor_stackframe *f; 3422 3423 NET_EPOCH_ASSERT(); 3424 3425 if (match) 3426 *match = 0; 3427 if (*depth >= PF_ANCHOR_STACKSIZE) { 3428 printf("%s: anchor stack overflow on %s\n", 3429 __func__, (*r)->anchor->name); 3430 *r = TAILQ_NEXT(*r, entries); 3431 return; 3432 } else if (*depth == 0 && a != NULL) 3433 *a = *r; 3434 f = stack + (*depth)++; 3435 f->rs = *rs; 3436 f->r = *r; 3437 if ((*r)->anchor_wildcard) { 3438 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3439 3440 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3441 *r = NULL; 3442 return; 3443 } 3444 *rs = &f->child->ruleset; 3445 } else { 3446 f->child = NULL; 3447 *rs = &(*r)->anchor->ruleset; 3448 } 3449 *r = TAILQ_FIRST((*rs)->active.rules); 3450 } 3451 3452 int 3453 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3454 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3455 struct pf_keth_rule **a, int *match) 3456 { 3457 struct pf_keth_anchor_stackframe *f; 3458 struct pf_keth_rule *fr; 3459 int quick = 0; 3460 3461 NET_EPOCH_ASSERT(); 3462 3463 do { 3464 if (*depth <= 0) 3465 break; 3466 f = stack + *depth - 1; 3467 fr = PF_ETH_ANCHOR_RULE(f); 3468 if (f->child != NULL) { 3469 /* 3470 * This block traverses through 3471 * a wildcard anchor. 3472 */ 3473 if (match != NULL && *match) { 3474 /* 3475 * If any of "*" matched, then 3476 * "foo/ *" matched, mark frame 3477 * appropriately. 3478 */ 3479 PF_ETH_ANCHOR_SET_MATCH(f); 3480 *match = 0; 3481 } 3482 f->child = RB_NEXT(pf_keth_anchor_node, 3483 &fr->anchor->children, f->child); 3484 if (f->child != NULL) { 3485 *rs = &f->child->ruleset; 3486 *r = TAILQ_FIRST((*rs)->active.rules); 3487 if (*r == NULL) 3488 continue; 3489 else 3490 break; 3491 } 3492 } 3493 (*depth)--; 3494 if (*depth == 0 && a != NULL) 3495 *a = NULL; 3496 *rs = f->rs; 3497 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3498 quick = fr->quick; 3499 *r = TAILQ_NEXT(fr, entries); 3500 } while (*r == NULL); 3501 3502 return (quick); 3503 } 3504 3505 #ifdef INET6 3506 void 3507 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3508 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3509 { 3510 switch (af) { 3511 #ifdef INET 3512 case AF_INET: 3513 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3514 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3515 break; 3516 #endif /* INET */ 3517 case AF_INET6: 3518 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3519 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3520 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3521 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3522 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3523 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3524 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3525 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3526 break; 3527 } 3528 } 3529 3530 void 3531 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3532 { 3533 switch (af) { 3534 #ifdef INET 3535 case AF_INET: 3536 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3537 break; 3538 #endif /* INET */ 3539 case AF_INET6: 3540 if (addr->addr32[3] == 0xffffffff) { 3541 addr->addr32[3] = 0; 3542 if (addr->addr32[2] == 0xffffffff) { 3543 addr->addr32[2] = 0; 3544 if (addr->addr32[1] == 0xffffffff) { 3545 addr->addr32[1] = 0; 3546 addr->addr32[0] = 3547 htonl(ntohl(addr->addr32[0]) + 1); 3548 } else 3549 addr->addr32[1] = 3550 htonl(ntohl(addr->addr32[1]) + 1); 3551 } else 3552 addr->addr32[2] = 3553 htonl(ntohl(addr->addr32[2]) + 1); 3554 } else 3555 addr->addr32[3] = 3556 htonl(ntohl(addr->addr32[3]) + 1); 3557 break; 3558 } 3559 } 3560 #endif /* INET6 */ 3561 3562 void 3563 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3564 { 3565 if (r->qid) 3566 a->qid = r->qid; 3567 if (r->pqid) 3568 a->pqid = r->pqid; 3569 if (r->dnpipe) 3570 a->dnpipe = r->dnpipe; 3571 if (r->dnrpipe) 3572 a->dnrpipe = r->dnrpipe; 3573 if (r->dnpipe || r->dnrpipe) { 3574 if (r->free_flags & PFRULE_DN_IS_PIPE) 3575 a->flags |= PFRULE_DN_IS_PIPE; 3576 else 3577 a->flags &= ~PFRULE_DN_IS_PIPE; 3578 } 3579 } 3580 3581 int 3582 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3583 { 3584 struct pf_addr *saddr, *daddr; 3585 u_int16_t sport, dport; 3586 struct inpcbinfo *pi; 3587 struct inpcb *inp; 3588 3589 pd->lookup.uid = UID_MAX; 3590 pd->lookup.gid = GID_MAX; 3591 3592 switch (pd->proto) { 3593 case IPPROTO_TCP: 3594 sport = pd->hdr.tcp.th_sport; 3595 dport = pd->hdr.tcp.th_dport; 3596 pi = &V_tcbinfo; 3597 break; 3598 case IPPROTO_UDP: 3599 sport = pd->hdr.udp.uh_sport; 3600 dport = pd->hdr.udp.uh_dport; 3601 pi = &V_udbinfo; 3602 break; 3603 default: 3604 return (-1); 3605 } 3606 if (direction == PF_IN) { 3607 saddr = pd->src; 3608 daddr = pd->dst; 3609 } else { 3610 u_int16_t p; 3611 3612 p = sport; 3613 sport = dport; 3614 dport = p; 3615 saddr = pd->dst; 3616 daddr = pd->src; 3617 } 3618 switch (pd->af) { 3619 #ifdef INET 3620 case AF_INET: 3621 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3622 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3623 if (inp == NULL) { 3624 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3625 daddr->v4, dport, INPLOOKUP_WILDCARD | 3626 INPLOOKUP_RLOCKPCB, NULL, m); 3627 if (inp == NULL) 3628 return (-1); 3629 } 3630 break; 3631 #endif /* INET */ 3632 #ifdef INET6 3633 case AF_INET6: 3634 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3635 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3636 if (inp == NULL) { 3637 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3638 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3639 INPLOOKUP_RLOCKPCB, NULL, m); 3640 if (inp == NULL) 3641 return (-1); 3642 } 3643 break; 3644 #endif /* INET6 */ 3645 3646 default: 3647 return (-1); 3648 } 3649 INP_RLOCK_ASSERT(inp); 3650 pd->lookup.uid = inp->inp_cred->cr_uid; 3651 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3652 INP_RUNLOCK(inp); 3653 3654 return (1); 3655 } 3656 3657 u_int8_t 3658 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3659 { 3660 int hlen; 3661 u_int8_t hdr[60]; 3662 u_int8_t *opt, optlen; 3663 u_int8_t wscale = 0; 3664 3665 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3666 if (hlen <= sizeof(struct tcphdr)) 3667 return (0); 3668 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3669 return (0); 3670 opt = hdr + sizeof(struct tcphdr); 3671 hlen -= sizeof(struct tcphdr); 3672 while (hlen >= 3) { 3673 switch (*opt) { 3674 case TCPOPT_EOL: 3675 case TCPOPT_NOP: 3676 ++opt; 3677 --hlen; 3678 break; 3679 case TCPOPT_WINDOW: 3680 wscale = opt[2]; 3681 if (wscale > TCP_MAX_WINSHIFT) 3682 wscale = TCP_MAX_WINSHIFT; 3683 wscale |= PF_WSCALE_FLAG; 3684 /* FALLTHROUGH */ 3685 default: 3686 optlen = opt[1]; 3687 if (optlen < 2) 3688 optlen = 2; 3689 hlen -= optlen; 3690 opt += optlen; 3691 break; 3692 } 3693 } 3694 return (wscale); 3695 } 3696 3697 u_int16_t 3698 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3699 { 3700 int hlen; 3701 u_int8_t hdr[60]; 3702 u_int8_t *opt, optlen; 3703 u_int16_t mss = V_tcp_mssdflt; 3704 3705 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3706 if (hlen <= sizeof(struct tcphdr)) 3707 return (0); 3708 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3709 return (0); 3710 opt = hdr + sizeof(struct tcphdr); 3711 hlen -= sizeof(struct tcphdr); 3712 while (hlen >= TCPOLEN_MAXSEG) { 3713 switch (*opt) { 3714 case TCPOPT_EOL: 3715 case TCPOPT_NOP: 3716 ++opt; 3717 --hlen; 3718 break; 3719 case TCPOPT_MAXSEG: 3720 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3721 NTOHS(mss); 3722 /* FALLTHROUGH */ 3723 default: 3724 optlen = opt[1]; 3725 if (optlen < 2) 3726 optlen = 2; 3727 hlen -= optlen; 3728 opt += optlen; 3729 break; 3730 } 3731 } 3732 return (mss); 3733 } 3734 3735 static u_int16_t 3736 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3737 { 3738 struct nhop_object *nh; 3739 #ifdef INET6 3740 struct in6_addr dst6; 3741 uint32_t scopeid; 3742 #endif /* INET6 */ 3743 int hlen = 0; 3744 uint16_t mss = 0; 3745 3746 NET_EPOCH_ASSERT(); 3747 3748 switch (af) { 3749 #ifdef INET 3750 case AF_INET: 3751 hlen = sizeof(struct ip); 3752 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3753 if (nh != NULL) 3754 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3755 break; 3756 #endif /* INET */ 3757 #ifdef INET6 3758 case AF_INET6: 3759 hlen = sizeof(struct ip6_hdr); 3760 in6_splitscope(&addr->v6, &dst6, &scopeid); 3761 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3762 if (nh != NULL) 3763 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3764 break; 3765 #endif /* INET6 */ 3766 } 3767 3768 mss = max(V_tcp_mssdflt, mss); 3769 mss = min(mss, offer); 3770 mss = max(mss, 64); /* sanity - at least max opt space */ 3771 return (mss); 3772 } 3773 3774 static u_int32_t 3775 pf_tcp_iss(struct pf_pdesc *pd) 3776 { 3777 MD5_CTX ctx; 3778 u_int32_t digest[4]; 3779 3780 if (V_pf_tcp_secret_init == 0) { 3781 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3782 MD5Init(&V_pf_tcp_secret_ctx); 3783 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3784 sizeof(V_pf_tcp_secret)); 3785 V_pf_tcp_secret_init = 1; 3786 } 3787 3788 ctx = V_pf_tcp_secret_ctx; 3789 3790 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3791 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3792 if (pd->af == AF_INET6) { 3793 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3794 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3795 } else { 3796 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3797 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3798 } 3799 MD5Final((u_char *)digest, &ctx); 3800 V_pf_tcp_iss_off += 4096; 3801 #define ISN_RANDOM_INCREMENT (4096 - 1) 3802 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3803 V_pf_tcp_iss_off); 3804 #undef ISN_RANDOM_INCREMENT 3805 } 3806 3807 static bool 3808 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 3809 { 3810 bool match = true; 3811 3812 /* Always matches if not set */ 3813 if (! r->isset) 3814 return (!r->neg); 3815 3816 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 3817 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 3818 match = false; 3819 break; 3820 } 3821 } 3822 3823 return (match ^ r->neg); 3824 } 3825 3826 static int 3827 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 3828 { 3829 if (*tag == -1) 3830 *tag = mtag; 3831 3832 return ((!r->match_tag_not && r->match_tag == *tag) || 3833 (r->match_tag_not && r->match_tag != *tag)); 3834 } 3835 3836 static void 3837 pf_bridge_to(struct pfi_kkif *kif, struct mbuf *m) 3838 { 3839 struct ifnet *ifp = kif->pfik_ifp; 3840 3841 /* If we don't have the interface drop the packet. */ 3842 if (ifp == NULL) { 3843 m_freem(m); 3844 return; 3845 } 3846 3847 switch (ifp->if_type) { 3848 case IFT_ETHER: 3849 case IFT_XETHER: 3850 case IFT_L2VLAN: 3851 case IFT_BRIDGE: 3852 case IFT_IEEE8023ADLAG: 3853 break; 3854 default: 3855 m_freem(m); 3856 return; 3857 } 3858 3859 kif->pfik_ifp->if_transmit(kif->pfik_ifp, m); 3860 } 3861 3862 static int 3863 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 3864 { 3865 #ifdef INET 3866 struct ip ip; 3867 #endif 3868 #ifdef INET6 3869 struct ip6_hdr ip6; 3870 #endif 3871 struct mbuf *m = *m0; 3872 struct ether_header *e; 3873 struct pf_keth_rule *r, *rm, *a = NULL; 3874 struct pf_keth_ruleset *ruleset = NULL; 3875 struct pf_mtag *mtag; 3876 struct pf_keth_ruleq *rules; 3877 struct pf_addr *src = NULL, *dst = NULL; 3878 sa_family_t af = 0; 3879 uint16_t proto; 3880 int asd = 0, match = 0; 3881 int tag = -1; 3882 uint8_t action; 3883 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3884 3885 MPASS(kif->pfik_ifp->if_vnet == curvnet); 3886 NET_EPOCH_ASSERT(); 3887 3888 PF_RULES_RLOCK_TRACKER; 3889 3890 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 3891 3892 mtag = pf_find_mtag(m); 3893 if (mtag != NULL && mtag->flags & PF_TAG_DUMMYNET) { 3894 /* Dummynet re-injects packets after they've 3895 * completed their delay. We've already 3896 * processed them, so pass unconditionally. */ 3897 3898 /* But only once. We may see the packet multiple times (e.g. 3899 * PFIL_IN/PFIL_OUT). */ 3900 mtag->flags &= ~PF_TAG_DUMMYNET; 3901 3902 return (PF_PASS); 3903 } 3904 3905 ruleset = V_pf_keth; 3906 rules = ck_pr_load_ptr(&ruleset->active.rules); 3907 r = TAILQ_FIRST(rules); 3908 rm = NULL; 3909 3910 e = mtod(m, struct ether_header *); 3911 proto = ntohs(e->ether_type); 3912 3913 switch (proto) { 3914 #ifdef INET 3915 case ETHERTYPE_IP: { 3916 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3917 sizeof(ip))) 3918 return (PF_DROP); 3919 3920 af = AF_INET; 3921 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 3922 (caddr_t)&ip); 3923 src = (struct pf_addr *)&ip.ip_src; 3924 dst = (struct pf_addr *)&ip.ip_dst; 3925 break; 3926 } 3927 #endif /* INET */ 3928 #ifdef INET6 3929 case ETHERTYPE_IPV6: { 3930 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3931 sizeof(ip6))) 3932 return (PF_DROP); 3933 3934 af = AF_INET6; 3935 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 3936 (caddr_t)&ip6); 3937 src = (struct pf_addr *)&ip6.ip6_src; 3938 dst = (struct pf_addr *)&ip6.ip6_dst; 3939 break; 3940 } 3941 #endif /* INET6 */ 3942 } 3943 3944 PF_RULES_RLOCK(); 3945 3946 while (r != NULL) { 3947 counter_u64_add(r->evaluations, 1); 3948 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 3949 3950 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 3951 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3952 "kif"); 3953 r = r->skip[PFE_SKIP_IFP].ptr; 3954 } 3955 else if (r->direction && r->direction != dir) { 3956 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3957 "dir"); 3958 r = r->skip[PFE_SKIP_DIR].ptr; 3959 } 3960 else if (r->proto && r->proto != proto) { 3961 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3962 "proto"); 3963 r = r->skip[PFE_SKIP_PROTO].ptr; 3964 } 3965 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 3966 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3967 "src"); 3968 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 3969 } 3970 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 3971 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3972 "dst"); 3973 r = TAILQ_NEXT(r, entries); 3974 } 3975 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 3976 r->ipsrc.neg, kif, M_GETFIB(m))) { 3977 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3978 "ip_src"); 3979 r = TAILQ_NEXT(r, entries); 3980 } 3981 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 3982 r->ipdst.neg, kif, M_GETFIB(m))) { 3983 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3984 "ip_dst"); 3985 r = TAILQ_NEXT(r, entries); 3986 } 3987 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 3988 mtag ? mtag->tag : 0)) { 3989 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3990 "match_tag"); 3991 r = TAILQ_NEXT(r, entries); 3992 } 3993 else { 3994 if (r->tag) 3995 tag = r->tag; 3996 if (r->anchor == NULL) { 3997 /* Rule matches */ 3998 rm = r; 3999 4000 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4001 4002 if (r->quick) 4003 break; 4004 4005 r = TAILQ_NEXT(r, entries); 4006 } else { 4007 pf_step_into_keth_anchor(anchor_stack, &asd, 4008 &ruleset, &r, &a, &match); 4009 } 4010 } 4011 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4012 &ruleset, &r, &a, &match)) 4013 break; 4014 } 4015 4016 r = rm; 4017 4018 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4019 4020 /* Default to pass. */ 4021 if (r == NULL) { 4022 PF_RULES_RUNLOCK(); 4023 return (PF_PASS); 4024 } 4025 4026 /* Execute action. */ 4027 counter_u64_add(r->packets[dir == PF_OUT], 1); 4028 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4029 pf_update_timestamp(r); 4030 4031 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4032 if (r->action == PF_DROP) { 4033 PF_RULES_RUNLOCK(); 4034 return (PF_DROP); 4035 } 4036 4037 if (tag > 0) { 4038 if (mtag == NULL) 4039 mtag = pf_get_mtag(m); 4040 if (mtag == NULL) { 4041 PF_RULES_RUNLOCK(); 4042 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4043 return (PF_DROP); 4044 } 4045 mtag->tag = tag; 4046 } 4047 4048 if (r->qid != 0) { 4049 if (mtag == NULL) 4050 mtag = pf_get_mtag(m); 4051 if (mtag == NULL) { 4052 PF_RULES_RUNLOCK(); 4053 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4054 return (PF_DROP); 4055 } 4056 mtag->qid = r->qid; 4057 } 4058 4059 /* Dummynet */ 4060 if (r->dnpipe) { 4061 struct ip_fw_args dnflow; 4062 4063 /* Drop packet if dummynet is not loaded. */ 4064 if (ip_dn_io_ptr == NULL) { 4065 PF_RULES_RUNLOCK(); 4066 m_freem(m); 4067 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4068 return (PF_DROP); 4069 } 4070 if (mtag == NULL) 4071 mtag = pf_get_mtag(m); 4072 if (mtag == NULL) { 4073 PF_RULES_RUNLOCK(); 4074 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4075 return (PF_DROP); 4076 } 4077 4078 bzero(&dnflow, sizeof(dnflow)); 4079 4080 /* We don't have port numbers here, so we set 0. That means 4081 * that we'll be somewhat limited in distinguishing flows (i.e. 4082 * only based on IP addresses, not based on port numbers), but 4083 * it's better than nothing. */ 4084 dnflow.f_id.dst_port = 0; 4085 dnflow.f_id.src_port = 0; 4086 dnflow.f_id.proto = 0; 4087 4088 dnflow.rule.info = r->dnpipe; 4089 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4090 if (r->dnflags & PFRULE_DN_IS_PIPE) 4091 dnflow.rule.info |= IPFW_IS_PIPE; 4092 4093 dnflow.f_id.extra = dnflow.rule.info; 4094 4095 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4096 dnflow.flags |= IPFW_ARGS_ETHER; 4097 dnflow.ifp = kif->pfik_ifp; 4098 4099 switch (af) { 4100 case AF_INET: 4101 dnflow.f_id.addr_type = 4; 4102 dnflow.f_id.src_ip = src->v4.s_addr; 4103 dnflow.f_id.dst_ip = dst->v4.s_addr; 4104 break; 4105 case AF_INET6: 4106 dnflow.flags |= IPFW_ARGS_IP6; 4107 dnflow.f_id.addr_type = 6; 4108 dnflow.f_id.src_ip6 = src->v6; 4109 dnflow.f_id.dst_ip6 = dst->v6; 4110 break; 4111 } 4112 4113 mtag->flags |= PF_TAG_DUMMYNET; 4114 ip_dn_io_ptr(m0, &dnflow); 4115 if (*m0 != NULL) 4116 mtag->flags &= ~PF_TAG_DUMMYNET; 4117 } 4118 4119 action = r->action; 4120 4121 if (action == PF_PASS && r->bridge_to) { 4122 pf_bridge_to(r->bridge_to, *m0); 4123 *m0 = NULL; /* We've eaten the packet. */ 4124 } 4125 4126 PF_RULES_RUNLOCK(); 4127 4128 return (action); 4129 } 4130 4131 static int 4132 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 4133 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 4134 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 4135 { 4136 struct pf_krule *nr = NULL; 4137 struct pf_addr * const saddr = pd->src; 4138 struct pf_addr * const daddr = pd->dst; 4139 sa_family_t af = pd->af; 4140 struct pf_krule *r, *a = NULL; 4141 struct pf_kruleset *ruleset = NULL; 4142 struct pf_ksrc_node *nsn = NULL; 4143 struct tcphdr *th = &pd->hdr.tcp; 4144 struct pf_state_key *sk = NULL, *nk = NULL; 4145 u_short reason; 4146 int rewrite = 0, hdrlen = 0; 4147 int tag = -1, rtableid = -1; 4148 int asd = 0; 4149 int match = 0; 4150 int state_icmp = 0; 4151 u_int16_t sport = 0, dport = 0; 4152 u_int16_t bproto_sum = 0, bip_sum = 0; 4153 u_int8_t icmptype = 0, icmpcode = 0; 4154 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4155 4156 PF_RULES_RASSERT(); 4157 4158 if (inp != NULL) { 4159 INP_LOCK_ASSERT(inp); 4160 pd->lookup.uid = inp->inp_cred->cr_uid; 4161 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4162 pd->lookup.done = 1; 4163 } 4164 4165 switch (pd->proto) { 4166 case IPPROTO_TCP: 4167 sport = th->th_sport; 4168 dport = th->th_dport; 4169 hdrlen = sizeof(*th); 4170 break; 4171 case IPPROTO_UDP: 4172 sport = pd->hdr.udp.uh_sport; 4173 dport = pd->hdr.udp.uh_dport; 4174 hdrlen = sizeof(pd->hdr.udp); 4175 break; 4176 #ifdef INET 4177 case IPPROTO_ICMP: 4178 if (pd->af != AF_INET) 4179 break; 4180 sport = dport = pd->hdr.icmp.icmp_id; 4181 hdrlen = sizeof(pd->hdr.icmp); 4182 icmptype = pd->hdr.icmp.icmp_type; 4183 icmpcode = pd->hdr.icmp.icmp_code; 4184 4185 if (icmptype == ICMP_UNREACH || 4186 icmptype == ICMP_SOURCEQUENCH || 4187 icmptype == ICMP_REDIRECT || 4188 icmptype == ICMP_TIMXCEED || 4189 icmptype == ICMP_PARAMPROB) 4190 state_icmp++; 4191 break; 4192 #endif /* INET */ 4193 #ifdef INET6 4194 case IPPROTO_ICMPV6: 4195 if (af != AF_INET6) 4196 break; 4197 sport = dport = pd->hdr.icmp6.icmp6_id; 4198 hdrlen = sizeof(pd->hdr.icmp6); 4199 icmptype = pd->hdr.icmp6.icmp6_type; 4200 icmpcode = pd->hdr.icmp6.icmp6_code; 4201 4202 if (icmptype == ICMP6_DST_UNREACH || 4203 icmptype == ICMP6_PACKET_TOO_BIG || 4204 icmptype == ICMP6_TIME_EXCEEDED || 4205 icmptype == ICMP6_PARAM_PROB) 4206 state_icmp++; 4207 break; 4208 #endif /* INET6 */ 4209 default: 4210 sport = dport = hdrlen = 0; 4211 break; 4212 } 4213 4214 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4215 4216 /* check packet for BINAT/NAT/RDR */ 4217 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 4218 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4219 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4220 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4221 4222 if (nr->log) { 4223 PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, 4224 ruleset, pd, 1); 4225 } 4226 4227 if (pd->ip_sum) 4228 bip_sum = *pd->ip_sum; 4229 4230 switch (pd->proto) { 4231 case IPPROTO_TCP: 4232 bproto_sum = th->th_sum; 4233 pd->proto_sum = &th->th_sum; 4234 4235 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4236 nk->port[pd->sidx] != sport) { 4237 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4238 &th->th_sum, &nk->addr[pd->sidx], 4239 nk->port[pd->sidx], 0, af); 4240 pd->sport = &th->th_sport; 4241 sport = th->th_sport; 4242 } 4243 4244 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4245 nk->port[pd->didx] != dport) { 4246 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4247 &th->th_sum, &nk->addr[pd->didx], 4248 nk->port[pd->didx], 0, af); 4249 dport = th->th_dport; 4250 pd->dport = &th->th_dport; 4251 } 4252 rewrite++; 4253 break; 4254 case IPPROTO_UDP: 4255 bproto_sum = pd->hdr.udp.uh_sum; 4256 pd->proto_sum = &pd->hdr.udp.uh_sum; 4257 4258 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4259 nk->port[pd->sidx] != sport) { 4260 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4261 pd->ip_sum, &pd->hdr.udp.uh_sum, 4262 &nk->addr[pd->sidx], 4263 nk->port[pd->sidx], 1, af); 4264 sport = pd->hdr.udp.uh_sport; 4265 pd->sport = &pd->hdr.udp.uh_sport; 4266 } 4267 4268 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4269 nk->port[pd->didx] != dport) { 4270 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4271 pd->ip_sum, &pd->hdr.udp.uh_sum, 4272 &nk->addr[pd->didx], 4273 nk->port[pd->didx], 1, af); 4274 dport = pd->hdr.udp.uh_dport; 4275 pd->dport = &pd->hdr.udp.uh_dport; 4276 } 4277 rewrite++; 4278 break; 4279 #ifdef INET 4280 case IPPROTO_ICMP: 4281 nk->port[0] = nk->port[1]; 4282 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4283 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4284 nk->addr[pd->sidx].v4.s_addr, 0); 4285 4286 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4287 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4288 nk->addr[pd->didx].v4.s_addr, 0); 4289 4290 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4291 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4292 pd->hdr.icmp.icmp_cksum, sport, 4293 nk->port[1], 0); 4294 pd->hdr.icmp.icmp_id = nk->port[1]; 4295 pd->sport = &pd->hdr.icmp.icmp_id; 4296 } 4297 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4298 break; 4299 #endif /* INET */ 4300 #ifdef INET6 4301 case IPPROTO_ICMPV6: 4302 nk->port[0] = nk->port[1]; 4303 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4304 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4305 &nk->addr[pd->sidx], 0); 4306 4307 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4308 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4309 &nk->addr[pd->didx], 0); 4310 rewrite++; 4311 break; 4312 #endif /* INET */ 4313 default: 4314 switch (af) { 4315 #ifdef INET 4316 case AF_INET: 4317 if (PF_ANEQ(saddr, 4318 &nk->addr[pd->sidx], AF_INET)) 4319 pf_change_a(&saddr->v4.s_addr, 4320 pd->ip_sum, 4321 nk->addr[pd->sidx].v4.s_addr, 0); 4322 4323 if (PF_ANEQ(daddr, 4324 &nk->addr[pd->didx], AF_INET)) 4325 pf_change_a(&daddr->v4.s_addr, 4326 pd->ip_sum, 4327 nk->addr[pd->didx].v4.s_addr, 0); 4328 break; 4329 #endif /* INET */ 4330 #ifdef INET6 4331 case AF_INET6: 4332 if (PF_ANEQ(saddr, 4333 &nk->addr[pd->sidx], AF_INET6)) 4334 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4335 4336 if (PF_ANEQ(daddr, 4337 &nk->addr[pd->didx], AF_INET6)) 4338 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4339 break; 4340 #endif /* INET */ 4341 } 4342 break; 4343 } 4344 if (nr->natpass) 4345 r = NULL; 4346 pd->nat_rule = nr; 4347 } 4348 4349 while (r != NULL) { 4350 pf_counter_u64_add(&r->evaluations, 1); 4351 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4352 r = r->skip[PF_SKIP_IFP].ptr; 4353 else if (r->direction && r->direction != direction) 4354 r = r->skip[PF_SKIP_DIR].ptr; 4355 else if (r->af && r->af != af) 4356 r = r->skip[PF_SKIP_AF].ptr; 4357 else if (r->proto && r->proto != pd->proto) 4358 r = r->skip[PF_SKIP_PROTO].ptr; 4359 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4360 r->src.neg, kif, M_GETFIB(m))) 4361 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4362 /* tcp/udp only. port_op always 0 in other cases */ 4363 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4364 r->src.port[0], r->src.port[1], sport)) 4365 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4366 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4367 r->dst.neg, NULL, M_GETFIB(m))) 4368 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4369 /* tcp/udp only. port_op always 0 in other cases */ 4370 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4371 r->dst.port[0], r->dst.port[1], dport)) 4372 r = r->skip[PF_SKIP_DST_PORT].ptr; 4373 /* icmp only. type always 0 in other cases */ 4374 else if (r->type && r->type != icmptype + 1) 4375 r = TAILQ_NEXT(r, entries); 4376 /* icmp only. type always 0 in other cases */ 4377 else if (r->code && r->code != icmpcode + 1) 4378 r = TAILQ_NEXT(r, entries); 4379 else if (r->tos && !(r->tos == pd->tos)) 4380 r = TAILQ_NEXT(r, entries); 4381 else if (r->rule_flag & PFRULE_FRAGMENT) 4382 r = TAILQ_NEXT(r, entries); 4383 else if (pd->proto == IPPROTO_TCP && 4384 (r->flagset & th->th_flags) != r->flags) 4385 r = TAILQ_NEXT(r, entries); 4386 /* tcp/udp only. uid.op always 0 in other cases */ 4387 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4388 pf_socket_lookup(direction, pd, m), 1)) && 4389 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4390 pd->lookup.uid)) 4391 r = TAILQ_NEXT(r, entries); 4392 /* tcp/udp only. gid.op always 0 in other cases */ 4393 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4394 pf_socket_lookup(direction, pd, m), 1)) && 4395 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4396 pd->lookup.gid)) 4397 r = TAILQ_NEXT(r, entries); 4398 else if (r->prio && 4399 !pf_match_ieee8021q_pcp(r->prio, m)) 4400 r = TAILQ_NEXT(r, entries); 4401 else if (r->prob && 4402 r->prob <= arc4random()) 4403 r = TAILQ_NEXT(r, entries); 4404 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4405 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4406 r = TAILQ_NEXT(r, entries); 4407 else if (r->os_fingerprint != PF_OSFP_ANY && 4408 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4409 pf_osfp_fingerprint(pd, m, off, th), 4410 r->os_fingerprint))) 4411 r = TAILQ_NEXT(r, entries); 4412 else { 4413 if (r->tag) 4414 tag = r->tag; 4415 if (r->rtableid >= 0) 4416 rtableid = r->rtableid; 4417 if (r->anchor == NULL) { 4418 if (r->action == PF_MATCH) { 4419 pf_counter_u64_critical_enter(); 4420 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4421 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4422 pf_counter_u64_critical_exit(); 4423 pf_rule_to_actions(r, &pd->act); 4424 if (r->log) 4425 PFLOG_PACKET(kif, m, af, 4426 direction, PFRES_MATCH, r, 4427 a, ruleset, pd, 1); 4428 } else { 4429 match = 1; 4430 *rm = r; 4431 *am = a; 4432 *rsm = ruleset; 4433 } 4434 if ((*rm)->quick) 4435 break; 4436 r = TAILQ_NEXT(r, entries); 4437 } else 4438 pf_step_into_anchor(anchor_stack, &asd, 4439 &ruleset, PF_RULESET_FILTER, &r, &a, 4440 &match); 4441 } 4442 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4443 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4444 break; 4445 } 4446 r = *rm; 4447 a = *am; 4448 ruleset = *rsm; 4449 4450 REASON_SET(&reason, PFRES_MATCH); 4451 4452 /* apply actions for last matching pass/block rule */ 4453 pf_rule_to_actions(r, &pd->act); 4454 4455 if (r->log) { 4456 if (rewrite) 4457 m_copyback(m, off, hdrlen, pd->hdr.any); 4458 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 4459 ruleset, pd, 1); 4460 } 4461 4462 if ((r->action == PF_DROP) && 4463 ((r->rule_flag & PFRULE_RETURNRST) || 4464 (r->rule_flag & PFRULE_RETURNICMP) || 4465 (r->rule_flag & PFRULE_RETURN))) { 4466 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4467 bip_sum, hdrlen, &reason); 4468 } 4469 4470 if (r->action == PF_DROP) 4471 goto cleanup; 4472 4473 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4474 REASON_SET(&reason, PFRES_MEMORY); 4475 goto cleanup; 4476 } 4477 if (rtableid >= 0) 4478 M_SETFIB(m, rtableid); 4479 4480 if (!state_icmp && (r->keep_state || nr != NULL || 4481 (pd->flags & PFDESC_TCP_NORM))) { 4482 int action; 4483 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4484 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4485 hdrlen); 4486 if (action != PF_PASS) { 4487 if (action == PF_DROP && 4488 (r->rule_flag & PFRULE_RETURN)) 4489 pf_return(r, nr, pd, sk, off, m, th, kif, 4490 bproto_sum, bip_sum, hdrlen, &reason); 4491 return (action); 4492 } 4493 } else { 4494 if (sk != NULL) 4495 uma_zfree(V_pf_state_key_z, sk); 4496 if (nk != NULL) 4497 uma_zfree(V_pf_state_key_z, nk); 4498 } 4499 4500 /* copy back packet headers if we performed NAT operations */ 4501 if (rewrite) 4502 m_copyback(m, off, hdrlen, pd->hdr.any); 4503 4504 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4505 direction == PF_OUT && 4506 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4507 /* 4508 * We want the state created, but we dont 4509 * want to send this in case a partner 4510 * firewall has to know about it to allow 4511 * replies through it. 4512 */ 4513 return (PF_DEFER); 4514 4515 return (PF_PASS); 4516 4517 cleanup: 4518 if (sk != NULL) 4519 uma_zfree(V_pf_state_key_z, sk); 4520 if (nk != NULL) 4521 uma_zfree(V_pf_state_key_z, nk); 4522 return (PF_DROP); 4523 } 4524 4525 static int 4526 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4527 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4528 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4529 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4530 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 4531 { 4532 struct pf_kstate *s = NULL; 4533 struct pf_ksrc_node *sn = NULL; 4534 struct tcphdr *th = &pd->hdr.tcp; 4535 u_int16_t mss = V_tcp_mssdflt; 4536 u_short reason; 4537 4538 /* check maximums */ 4539 if (r->max_states && 4540 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4541 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4542 REASON_SET(&reason, PFRES_MAXSTATES); 4543 goto csfailed; 4544 } 4545 /* src node for filter rule */ 4546 if ((r->rule_flag & PFRULE_SRCTRACK || 4547 r->rpool.opts & PF_POOL_STICKYADDR) && 4548 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 4549 REASON_SET(&reason, PFRES_SRCLIMIT); 4550 goto csfailed; 4551 } 4552 /* src node for translation rule */ 4553 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4554 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 4555 REASON_SET(&reason, PFRES_SRCLIMIT); 4556 goto csfailed; 4557 } 4558 s = pf_alloc_state(M_NOWAIT); 4559 if (s == NULL) { 4560 REASON_SET(&reason, PFRES_MEMORY); 4561 goto csfailed; 4562 } 4563 s->rule.ptr = r; 4564 s->nat_rule.ptr = nr; 4565 s->anchor.ptr = a; 4566 STATE_INC_COUNTERS(s); 4567 if (r->allow_opts) 4568 s->state_flags |= PFSTATE_ALLOWOPTS; 4569 if (r->rule_flag & PFRULE_STATESLOPPY) 4570 s->state_flags |= PFSTATE_SLOPPY; 4571 s->log = r->log & PF_LOG_ALL; 4572 s->sync_state = PFSYNC_S_NONE; 4573 s->qid = pd->act.qid; 4574 s->pqid = pd->act.pqid; 4575 s->dnpipe = pd->act.dnpipe; 4576 s->dnrpipe = pd->act.dnrpipe; 4577 s->state_flags |= pd->act.flags; 4578 if (nr != NULL) 4579 s->log |= nr->log & PF_LOG_ALL; 4580 switch (pd->proto) { 4581 case IPPROTO_TCP: 4582 s->src.seqlo = ntohl(th->th_seq); 4583 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4584 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4585 r->keep_state == PF_STATE_MODULATE) { 4586 /* Generate sequence number modulator */ 4587 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4588 0) 4589 s->src.seqdiff = 1; 4590 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4591 htonl(s->src.seqlo + s->src.seqdiff), 0); 4592 *rewrite = 1; 4593 } else 4594 s->src.seqdiff = 0; 4595 if (th->th_flags & TH_SYN) { 4596 s->src.seqhi++; 4597 s->src.wscale = pf_get_wscale(m, off, 4598 th->th_off, pd->af); 4599 } 4600 s->src.max_win = MAX(ntohs(th->th_win), 1); 4601 if (s->src.wscale & PF_WSCALE_MASK) { 4602 /* Remove scale factor from initial window */ 4603 int win = s->src.max_win; 4604 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4605 s->src.max_win = (win - 1) >> 4606 (s->src.wscale & PF_WSCALE_MASK); 4607 } 4608 if (th->th_flags & TH_FIN) 4609 s->src.seqhi++; 4610 s->dst.seqhi = 1; 4611 s->dst.max_win = 1; 4612 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4613 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4614 s->timeout = PFTM_TCP_FIRST_PACKET; 4615 atomic_add_32(&V_pf_status.states_halfopen, 1); 4616 break; 4617 case IPPROTO_UDP: 4618 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4619 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4620 s->timeout = PFTM_UDP_FIRST_PACKET; 4621 break; 4622 case IPPROTO_ICMP: 4623 #ifdef INET6 4624 case IPPROTO_ICMPV6: 4625 #endif 4626 s->timeout = PFTM_ICMP_FIRST_PACKET; 4627 break; 4628 default: 4629 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4630 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4631 s->timeout = PFTM_OTHER_FIRST_PACKET; 4632 } 4633 4634 if (r->rt) { 4635 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4636 REASON_SET(&reason, PFRES_MAPFAILED); 4637 pf_src_tree_remove_state(s); 4638 s->timeout = PFTM_UNLINKED; 4639 STATE_DEC_COUNTERS(s); 4640 pf_free_state(s); 4641 goto csfailed; 4642 } 4643 s->rt_kif = r->rpool.cur->kif; 4644 } 4645 4646 s->creation = time_uptime; 4647 s->expire = time_uptime; 4648 4649 if (sn != NULL) 4650 s->src_node = sn; 4651 if (nsn != NULL) { 4652 /* XXX We only modify one side for now. */ 4653 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4654 s->nat_src_node = nsn; 4655 } 4656 if (pd->proto == IPPROTO_TCP) { 4657 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4658 off, pd, th, &s->src, &s->dst)) { 4659 REASON_SET(&reason, PFRES_MEMORY); 4660 pf_src_tree_remove_state(s); 4661 s->timeout = PFTM_UNLINKED; 4662 STATE_DEC_COUNTERS(s); 4663 pf_free_state(s); 4664 return (PF_DROP); 4665 } 4666 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4667 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4668 &s->src, &s->dst, rewrite)) { 4669 /* This really shouldn't happen!!! */ 4670 DPFPRINTF(PF_DEBUG_URGENT, 4671 ("pf_normalize_tcp_stateful failed on first " 4672 "pkt\n")); 4673 pf_src_tree_remove_state(s); 4674 s->timeout = PFTM_UNLINKED; 4675 STATE_DEC_COUNTERS(s); 4676 pf_free_state(s); 4677 return (PF_DROP); 4678 } 4679 } 4680 s->direction = pd->dir; 4681 4682 /* 4683 * sk/nk could already been setup by pf_get_translation(). 4684 */ 4685 if (nr == NULL) { 4686 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4687 __func__, nr, sk, nk)); 4688 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4689 if (sk == NULL) 4690 goto csfailed; 4691 nk = sk; 4692 } else 4693 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4694 __func__, nr, sk, nk)); 4695 4696 /* Swap sk/nk for PF_OUT. */ 4697 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4698 (pd->dir == PF_IN) ? sk : nk, 4699 (pd->dir == PF_IN) ? nk : sk, s)) { 4700 REASON_SET(&reason, PFRES_STATEINS); 4701 pf_src_tree_remove_state(s); 4702 s->timeout = PFTM_UNLINKED; 4703 STATE_DEC_COUNTERS(s); 4704 pf_free_state(s); 4705 return (PF_DROP); 4706 } else 4707 *sm = s; 4708 4709 if (tag > 0) 4710 s->tag = tag; 4711 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4712 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4713 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4714 /* undo NAT changes, if they have taken place */ 4715 if (nr != NULL) { 4716 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4717 if (pd->dir == PF_OUT) 4718 skt = s->key[PF_SK_STACK]; 4719 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4720 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4721 if (pd->sport) 4722 *pd->sport = skt->port[pd->sidx]; 4723 if (pd->dport) 4724 *pd->dport = skt->port[pd->didx]; 4725 if (pd->proto_sum) 4726 *pd->proto_sum = bproto_sum; 4727 if (pd->ip_sum) 4728 *pd->ip_sum = bip_sum; 4729 m_copyback(m, off, hdrlen, pd->hdr.any); 4730 } 4731 s->src.seqhi = htonl(arc4random()); 4732 /* Find mss option */ 4733 int rtid = M_GETFIB(m); 4734 mss = pf_get_mss(m, off, th->th_off, pd->af); 4735 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4736 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4737 s->src.mss = mss; 4738 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4739 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4740 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4741 REASON_SET(&reason, PFRES_SYNPROXY); 4742 return (PF_SYNPROXY_DROP); 4743 } 4744 4745 return (PF_PASS); 4746 4747 csfailed: 4748 if (sk != NULL) 4749 uma_zfree(V_pf_state_key_z, sk); 4750 if (nk != NULL) 4751 uma_zfree(V_pf_state_key_z, nk); 4752 4753 if (sn != NULL) { 4754 struct pf_srchash *sh; 4755 4756 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4757 PF_HASHROW_LOCK(sh); 4758 if (--sn->states == 0 && sn->expire == 0) { 4759 pf_unlink_src_node(sn); 4760 uma_zfree(V_pf_sources_z, sn); 4761 counter_u64_add( 4762 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4763 } 4764 PF_HASHROW_UNLOCK(sh); 4765 } 4766 4767 if (nsn != sn && nsn != NULL) { 4768 struct pf_srchash *sh; 4769 4770 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4771 PF_HASHROW_LOCK(sh); 4772 if (--nsn->states == 0 && nsn->expire == 0) { 4773 pf_unlink_src_node(nsn); 4774 uma_zfree(V_pf_sources_z, nsn); 4775 counter_u64_add( 4776 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4777 } 4778 PF_HASHROW_UNLOCK(sh); 4779 } 4780 4781 return (PF_DROP); 4782 } 4783 4784 static int 4785 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4786 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4787 struct pf_kruleset **rsm) 4788 { 4789 struct pf_krule *r, *a = NULL; 4790 struct pf_kruleset *ruleset = NULL; 4791 sa_family_t af = pd->af; 4792 u_short reason; 4793 int tag = -1; 4794 int asd = 0; 4795 int match = 0; 4796 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4797 4798 PF_RULES_RASSERT(); 4799 4800 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4801 while (r != NULL) { 4802 pf_counter_u64_add(&r->evaluations, 1); 4803 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4804 r = r->skip[PF_SKIP_IFP].ptr; 4805 else if (r->direction && r->direction != direction) 4806 r = r->skip[PF_SKIP_DIR].ptr; 4807 else if (r->af && r->af != af) 4808 r = r->skip[PF_SKIP_AF].ptr; 4809 else if (r->proto && r->proto != pd->proto) 4810 r = r->skip[PF_SKIP_PROTO].ptr; 4811 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4812 r->src.neg, kif, M_GETFIB(m))) 4813 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4814 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4815 r->dst.neg, NULL, M_GETFIB(m))) 4816 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4817 else if (r->tos && !(r->tos == pd->tos)) 4818 r = TAILQ_NEXT(r, entries); 4819 else if (r->os_fingerprint != PF_OSFP_ANY) 4820 r = TAILQ_NEXT(r, entries); 4821 else if (pd->proto == IPPROTO_UDP && 4822 (r->src.port_op || r->dst.port_op)) 4823 r = TAILQ_NEXT(r, entries); 4824 else if (pd->proto == IPPROTO_TCP && 4825 (r->src.port_op || r->dst.port_op || r->flagset)) 4826 r = TAILQ_NEXT(r, entries); 4827 else if ((pd->proto == IPPROTO_ICMP || 4828 pd->proto == IPPROTO_ICMPV6) && 4829 (r->type || r->code)) 4830 r = TAILQ_NEXT(r, entries); 4831 else if (r->prio && 4832 !pf_match_ieee8021q_pcp(r->prio, m)) 4833 r = TAILQ_NEXT(r, entries); 4834 else if (r->prob && r->prob <= 4835 (arc4random() % (UINT_MAX - 1) + 1)) 4836 r = TAILQ_NEXT(r, entries); 4837 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4838 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4839 r = TAILQ_NEXT(r, entries); 4840 else { 4841 if (r->anchor == NULL) { 4842 if (r->action == PF_MATCH) { 4843 pf_counter_u64_critical_enter(); 4844 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4845 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4846 pf_counter_u64_critical_exit(); 4847 pf_rule_to_actions(r, &pd->act); 4848 if (r->log) 4849 PFLOG_PACKET(kif, m, af, 4850 direction, PFRES_MATCH, r, 4851 a, ruleset, pd, 1); 4852 } else { 4853 match = 1; 4854 *rm = r; 4855 *am = a; 4856 *rsm = ruleset; 4857 } 4858 if ((*rm)->quick) 4859 break; 4860 r = TAILQ_NEXT(r, entries); 4861 } else 4862 pf_step_into_anchor(anchor_stack, &asd, 4863 &ruleset, PF_RULESET_FILTER, &r, &a, 4864 &match); 4865 } 4866 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4867 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4868 break; 4869 } 4870 r = *rm; 4871 a = *am; 4872 ruleset = *rsm; 4873 4874 REASON_SET(&reason, PFRES_MATCH); 4875 4876 /* apply actions for last matching pass/block rule */ 4877 pf_rule_to_actions(r, &pd->act); 4878 4879 if (r->log) 4880 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4881 1); 4882 4883 if (r->action != PF_PASS) 4884 return (PF_DROP); 4885 4886 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4887 REASON_SET(&reason, PFRES_MEMORY); 4888 return (PF_DROP); 4889 } 4890 4891 return (PF_PASS); 4892 } 4893 4894 static int 4895 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4896 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4897 int *copyback) 4898 { 4899 struct tcphdr *th = &pd->hdr.tcp; 4900 struct pf_state_peer *src, *dst; 4901 u_int16_t win = ntohs(th->th_win); 4902 u_int32_t ack, end, seq, orig_seq; 4903 u_int8_t sws, dws, psrc, pdst; 4904 int ackskew; 4905 4906 if (pd->dir == (*state)->direction) { 4907 src = &(*state)->src; 4908 dst = &(*state)->dst; 4909 psrc = PF_PEER_SRC; 4910 pdst = PF_PEER_DST; 4911 } else { 4912 src = &(*state)->dst; 4913 dst = &(*state)->src; 4914 psrc = PF_PEER_DST; 4915 pdst = PF_PEER_SRC; 4916 } 4917 4918 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4919 sws = src->wscale & PF_WSCALE_MASK; 4920 dws = dst->wscale & PF_WSCALE_MASK; 4921 } else 4922 sws = dws = 0; 4923 4924 /* 4925 * Sequence tracking algorithm from Guido van Rooij's paper: 4926 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4927 * tcp_filtering.ps 4928 */ 4929 4930 orig_seq = seq = ntohl(th->th_seq); 4931 if (src->seqlo == 0) { 4932 /* First packet from this end. Set its state */ 4933 4934 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4935 src->scrub == NULL) { 4936 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4937 REASON_SET(reason, PFRES_MEMORY); 4938 return (PF_DROP); 4939 } 4940 } 4941 4942 /* Deferred generation of sequence number modulator */ 4943 if (dst->seqdiff && !src->seqdiff) { 4944 /* use random iss for the TCP server */ 4945 while ((src->seqdiff = arc4random() - seq) == 0) 4946 ; 4947 ack = ntohl(th->th_ack) - dst->seqdiff; 4948 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4949 src->seqdiff), 0); 4950 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4951 *copyback = 1; 4952 } else { 4953 ack = ntohl(th->th_ack); 4954 } 4955 4956 end = seq + pd->p_len; 4957 if (th->th_flags & TH_SYN) { 4958 end++; 4959 if (dst->wscale & PF_WSCALE_FLAG) { 4960 src->wscale = pf_get_wscale(m, off, th->th_off, 4961 pd->af); 4962 if (src->wscale & PF_WSCALE_FLAG) { 4963 /* Remove scale factor from initial 4964 * window */ 4965 sws = src->wscale & PF_WSCALE_MASK; 4966 win = ((u_int32_t)win + (1 << sws) - 1) 4967 >> sws; 4968 dws = dst->wscale & PF_WSCALE_MASK; 4969 } else { 4970 /* fixup other window */ 4971 dst->max_win <<= dst->wscale & 4972 PF_WSCALE_MASK; 4973 /* in case of a retrans SYN|ACK */ 4974 dst->wscale = 0; 4975 } 4976 } 4977 } 4978 if (th->th_flags & TH_FIN) 4979 end++; 4980 4981 src->seqlo = seq; 4982 if (src->state < TCPS_SYN_SENT) 4983 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4984 4985 /* 4986 * May need to slide the window (seqhi may have been set by 4987 * the crappy stack check or if we picked up the connection 4988 * after establishment) 4989 */ 4990 if (src->seqhi == 1 || 4991 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4992 src->seqhi = end + MAX(1, dst->max_win << dws); 4993 if (win > src->max_win) 4994 src->max_win = win; 4995 4996 } else { 4997 ack = ntohl(th->th_ack) - dst->seqdiff; 4998 if (src->seqdiff) { 4999 /* Modulate sequence numbers */ 5000 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5001 src->seqdiff), 0); 5002 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5003 *copyback = 1; 5004 } 5005 end = seq + pd->p_len; 5006 if (th->th_flags & TH_SYN) 5007 end++; 5008 if (th->th_flags & TH_FIN) 5009 end++; 5010 } 5011 5012 if ((th->th_flags & TH_ACK) == 0) { 5013 /* Let it pass through the ack skew check */ 5014 ack = dst->seqlo; 5015 } else if ((ack == 0 && 5016 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5017 /* broken tcp stacks do not set ack */ 5018 (dst->state < TCPS_SYN_SENT)) { 5019 /* 5020 * Many stacks (ours included) will set the ACK number in an 5021 * FIN|ACK if the SYN times out -- no sequence to ACK. 5022 */ 5023 ack = dst->seqlo; 5024 } 5025 5026 if (seq == end) { 5027 /* Ease sequencing restrictions on no data packets */ 5028 seq = src->seqlo; 5029 end = seq; 5030 } 5031 5032 ackskew = dst->seqlo - ack; 5033 5034 /* 5035 * Need to demodulate the sequence numbers in any TCP SACK options 5036 * (Selective ACK). We could optionally validate the SACK values 5037 * against the current ACK window, either forwards or backwards, but 5038 * I'm not confident that SACK has been implemented properly 5039 * everywhere. It wouldn't surprise me if several stacks accidentally 5040 * SACK too far backwards of previously ACKed data. There really aren't 5041 * any security implications of bad SACKing unless the target stack 5042 * doesn't validate the option length correctly. Someone trying to 5043 * spoof into a TCP connection won't bother blindly sending SACK 5044 * options anyway. 5045 */ 5046 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5047 if (pf_modulate_sack(m, off, pd, th, dst)) 5048 *copyback = 1; 5049 } 5050 5051 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5052 if (SEQ_GEQ(src->seqhi, end) && 5053 /* Last octet inside other's window space */ 5054 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5055 /* Retrans: not more than one window back */ 5056 (ackskew >= -MAXACKWINDOW) && 5057 /* Acking not more than one reassembled fragment backwards */ 5058 (ackskew <= (MAXACKWINDOW << sws)) && 5059 /* Acking not more than one window forward */ 5060 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5061 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5062 (pd->flags & PFDESC_IP_REAS) == 0)) { 5063 /* Require an exact/+1 sequence match on resets when possible */ 5064 5065 if (dst->scrub || src->scrub) { 5066 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5067 *state, src, dst, copyback)) 5068 return (PF_DROP); 5069 } 5070 5071 /* update max window */ 5072 if (src->max_win < win) 5073 src->max_win = win; 5074 /* synchronize sequencing */ 5075 if (SEQ_GT(end, src->seqlo)) 5076 src->seqlo = end; 5077 /* slide the window of what the other end can send */ 5078 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5079 dst->seqhi = ack + MAX((win << sws), 1); 5080 5081 /* update states */ 5082 if (th->th_flags & TH_SYN) 5083 if (src->state < TCPS_SYN_SENT) 5084 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5085 if (th->th_flags & TH_FIN) 5086 if (src->state < TCPS_CLOSING) 5087 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5088 if (th->th_flags & TH_ACK) { 5089 if (dst->state == TCPS_SYN_SENT) { 5090 pf_set_protostate(*state, pdst, 5091 TCPS_ESTABLISHED); 5092 if (src->state == TCPS_ESTABLISHED && 5093 (*state)->src_node != NULL && 5094 pf_src_connlimit(state)) { 5095 REASON_SET(reason, PFRES_SRCLIMIT); 5096 return (PF_DROP); 5097 } 5098 } else if (dst->state == TCPS_CLOSING) 5099 pf_set_protostate(*state, pdst, 5100 TCPS_FIN_WAIT_2); 5101 } 5102 if (th->th_flags & TH_RST) 5103 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5104 5105 /* update expire time */ 5106 (*state)->expire = time_uptime; 5107 if (src->state >= TCPS_FIN_WAIT_2 && 5108 dst->state >= TCPS_FIN_WAIT_2) 5109 (*state)->timeout = PFTM_TCP_CLOSED; 5110 else if (src->state >= TCPS_CLOSING && 5111 dst->state >= TCPS_CLOSING) 5112 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5113 else if (src->state < TCPS_ESTABLISHED || 5114 dst->state < TCPS_ESTABLISHED) 5115 (*state)->timeout = PFTM_TCP_OPENING; 5116 else if (src->state >= TCPS_CLOSING || 5117 dst->state >= TCPS_CLOSING) 5118 (*state)->timeout = PFTM_TCP_CLOSING; 5119 else 5120 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5121 5122 /* Fall through to PASS packet */ 5123 5124 } else if ((dst->state < TCPS_SYN_SENT || 5125 dst->state >= TCPS_FIN_WAIT_2 || 5126 src->state >= TCPS_FIN_WAIT_2) && 5127 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5128 /* Within a window forward of the originating packet */ 5129 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5130 /* Within a window backward of the originating packet */ 5131 5132 /* 5133 * This currently handles three situations: 5134 * 1) Stupid stacks will shotgun SYNs before their peer 5135 * replies. 5136 * 2) When PF catches an already established stream (the 5137 * firewall rebooted, the state table was flushed, routes 5138 * changed...) 5139 * 3) Packets get funky immediately after the connection 5140 * closes (this should catch Solaris spurious ACK|FINs 5141 * that web servers like to spew after a close) 5142 * 5143 * This must be a little more careful than the above code 5144 * since packet floods will also be caught here. We don't 5145 * update the TTL here to mitigate the damage of a packet 5146 * flood and so the same code can handle awkward establishment 5147 * and a loosened connection close. 5148 * In the establishment case, a correct peer response will 5149 * validate the connection, go through the normal state code 5150 * and keep updating the state TTL. 5151 */ 5152 5153 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5154 printf("pf: loose state match: "); 5155 pf_print_state(*state); 5156 pf_print_flags(th->th_flags); 5157 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5158 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5159 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5160 (unsigned long long)(*state)->packets[1], 5161 pd->dir == PF_IN ? "in" : "out", 5162 pd->dir == (*state)->direction ? "fwd" : "rev"); 5163 } 5164 5165 if (dst->scrub || src->scrub) { 5166 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5167 *state, src, dst, copyback)) 5168 return (PF_DROP); 5169 } 5170 5171 /* update max window */ 5172 if (src->max_win < win) 5173 src->max_win = win; 5174 /* synchronize sequencing */ 5175 if (SEQ_GT(end, src->seqlo)) 5176 src->seqlo = end; 5177 /* slide the window of what the other end can send */ 5178 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5179 dst->seqhi = ack + MAX((win << sws), 1); 5180 5181 /* 5182 * Cannot set dst->seqhi here since this could be a shotgunned 5183 * SYN and not an already established connection. 5184 */ 5185 5186 if (th->th_flags & TH_FIN) 5187 if (src->state < TCPS_CLOSING) 5188 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5189 if (th->th_flags & TH_RST) 5190 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5191 5192 /* Fall through to PASS packet */ 5193 5194 } else { 5195 if ((*state)->dst.state == TCPS_SYN_SENT && 5196 (*state)->src.state == TCPS_SYN_SENT) { 5197 /* Send RST for state mismatches during handshake */ 5198 if (!(th->th_flags & TH_RST)) 5199 pf_send_tcp((*state)->rule.ptr, pd->af, 5200 pd->dst, pd->src, th->th_dport, 5201 th->th_sport, ntohl(th->th_ack), 0, 5202 TH_RST, 0, 0, 5203 (*state)->rule.ptr->return_ttl, 1, 0); 5204 src->seqlo = 0; 5205 src->seqhi = 1; 5206 src->max_win = 1; 5207 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5208 printf("pf: BAD state: "); 5209 pf_print_state(*state); 5210 pf_print_flags(th->th_flags); 5211 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5212 "pkts=%llu:%llu dir=%s,%s\n", 5213 seq, orig_seq, ack, pd->p_len, ackskew, 5214 (unsigned long long)(*state)->packets[0], 5215 (unsigned long long)(*state)->packets[1], 5216 pd->dir == PF_IN ? "in" : "out", 5217 pd->dir == (*state)->direction ? "fwd" : "rev"); 5218 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5219 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5220 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5221 ' ': '2', 5222 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5223 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5224 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5225 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5226 } 5227 REASON_SET(reason, PFRES_BADSTATE); 5228 return (PF_DROP); 5229 } 5230 5231 return (PF_PASS); 5232 } 5233 5234 static int 5235 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5236 { 5237 struct tcphdr *th = &pd->hdr.tcp; 5238 struct pf_state_peer *src, *dst; 5239 u_int8_t psrc, pdst; 5240 5241 if (pd->dir == (*state)->direction) { 5242 src = &(*state)->src; 5243 dst = &(*state)->dst; 5244 psrc = PF_PEER_SRC; 5245 pdst = PF_PEER_DST; 5246 } else { 5247 src = &(*state)->dst; 5248 dst = &(*state)->src; 5249 psrc = PF_PEER_DST; 5250 pdst = PF_PEER_SRC; 5251 } 5252 5253 if (th->th_flags & TH_SYN) 5254 if (src->state < TCPS_SYN_SENT) 5255 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5256 if (th->th_flags & TH_FIN) 5257 if (src->state < TCPS_CLOSING) 5258 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5259 if (th->th_flags & TH_ACK) { 5260 if (dst->state == TCPS_SYN_SENT) { 5261 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5262 if (src->state == TCPS_ESTABLISHED && 5263 (*state)->src_node != NULL && 5264 pf_src_connlimit(state)) { 5265 REASON_SET(reason, PFRES_SRCLIMIT); 5266 return (PF_DROP); 5267 } 5268 } else if (dst->state == TCPS_CLOSING) { 5269 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5270 } else if (src->state == TCPS_SYN_SENT && 5271 dst->state < TCPS_SYN_SENT) { 5272 /* 5273 * Handle a special sloppy case where we only see one 5274 * half of the connection. If there is a ACK after 5275 * the initial SYN without ever seeing a packet from 5276 * the destination, set the connection to established. 5277 */ 5278 pf_set_protostate(*state, PF_PEER_BOTH, 5279 TCPS_ESTABLISHED); 5280 dst->state = src->state = TCPS_ESTABLISHED; 5281 if ((*state)->src_node != NULL && 5282 pf_src_connlimit(state)) { 5283 REASON_SET(reason, PFRES_SRCLIMIT); 5284 return (PF_DROP); 5285 } 5286 } else if (src->state == TCPS_CLOSING && 5287 dst->state == TCPS_ESTABLISHED && 5288 dst->seqlo == 0) { 5289 /* 5290 * Handle the closing of half connections where we 5291 * don't see the full bidirectional FIN/ACK+ACK 5292 * handshake. 5293 */ 5294 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5295 } 5296 } 5297 if (th->th_flags & TH_RST) 5298 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5299 5300 /* update expire time */ 5301 (*state)->expire = time_uptime; 5302 if (src->state >= TCPS_FIN_WAIT_2 && 5303 dst->state >= TCPS_FIN_WAIT_2) 5304 (*state)->timeout = PFTM_TCP_CLOSED; 5305 else if (src->state >= TCPS_CLOSING && 5306 dst->state >= TCPS_CLOSING) 5307 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5308 else if (src->state < TCPS_ESTABLISHED || 5309 dst->state < TCPS_ESTABLISHED) 5310 (*state)->timeout = PFTM_TCP_OPENING; 5311 else if (src->state >= TCPS_CLOSING || 5312 dst->state >= TCPS_CLOSING) 5313 (*state)->timeout = PFTM_TCP_CLOSING; 5314 else 5315 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5316 5317 return (PF_PASS); 5318 } 5319 5320 static int 5321 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5322 { 5323 struct pf_state_key *sk = (*state)->key[pd->didx]; 5324 struct tcphdr *th = &pd->hdr.tcp; 5325 5326 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5327 if (pd->dir != (*state)->direction) { 5328 REASON_SET(reason, PFRES_SYNPROXY); 5329 return (PF_SYNPROXY_DROP); 5330 } 5331 if (th->th_flags & TH_SYN) { 5332 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5333 REASON_SET(reason, PFRES_SYNPROXY); 5334 return (PF_DROP); 5335 } 5336 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5337 pd->src, th->th_dport, th->th_sport, 5338 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5339 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 5340 REASON_SET(reason, PFRES_SYNPROXY); 5341 return (PF_SYNPROXY_DROP); 5342 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5343 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5344 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5345 REASON_SET(reason, PFRES_SYNPROXY); 5346 return (PF_DROP); 5347 } else if ((*state)->src_node != NULL && 5348 pf_src_connlimit(state)) { 5349 REASON_SET(reason, PFRES_SRCLIMIT); 5350 return (PF_DROP); 5351 } else 5352 pf_set_protostate(*state, PF_PEER_SRC, 5353 PF_TCPS_PROXY_DST); 5354 } 5355 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5356 if (pd->dir == (*state)->direction) { 5357 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5358 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5359 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5360 REASON_SET(reason, PFRES_SYNPROXY); 5361 return (PF_DROP); 5362 } 5363 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5364 if ((*state)->dst.seqhi == 1) 5365 (*state)->dst.seqhi = htonl(arc4random()); 5366 pf_send_tcp((*state)->rule.ptr, pd->af, 5367 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5368 sk->port[pd->sidx], sk->port[pd->didx], 5369 (*state)->dst.seqhi, 0, TH_SYN, 0, 5370 (*state)->src.mss, 0, 0, (*state)->tag); 5371 REASON_SET(reason, PFRES_SYNPROXY); 5372 return (PF_SYNPROXY_DROP); 5373 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5374 (TH_SYN|TH_ACK)) || 5375 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5376 REASON_SET(reason, PFRES_SYNPROXY); 5377 return (PF_DROP); 5378 } else { 5379 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5380 (*state)->dst.seqlo = ntohl(th->th_seq); 5381 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5382 pd->src, th->th_dport, th->th_sport, 5383 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5384 TH_ACK, (*state)->src.max_win, 0, 0, 0, 5385 (*state)->tag); 5386 pf_send_tcp((*state)->rule.ptr, pd->af, 5387 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5388 sk->port[pd->sidx], sk->port[pd->didx], 5389 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5390 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 5391 (*state)->src.seqdiff = (*state)->dst.seqhi - 5392 (*state)->src.seqlo; 5393 (*state)->dst.seqdiff = (*state)->src.seqhi - 5394 (*state)->dst.seqlo; 5395 (*state)->src.seqhi = (*state)->src.seqlo + 5396 (*state)->dst.max_win; 5397 (*state)->dst.seqhi = (*state)->dst.seqlo + 5398 (*state)->src.max_win; 5399 (*state)->src.wscale = (*state)->dst.wscale = 0; 5400 pf_set_protostate(*state, PF_PEER_BOTH, 5401 TCPS_ESTABLISHED); 5402 REASON_SET(reason, PFRES_SYNPROXY); 5403 return (PF_SYNPROXY_DROP); 5404 } 5405 } 5406 5407 return (PF_PASS); 5408 } 5409 5410 static int 5411 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5412 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5413 u_short *reason) 5414 { 5415 struct pf_state_key_cmp key; 5416 struct tcphdr *th = &pd->hdr.tcp; 5417 int copyback = 0; 5418 int action; 5419 struct pf_state_peer *src, *dst; 5420 5421 bzero(&key, sizeof(key)); 5422 key.af = pd->af; 5423 key.proto = IPPROTO_TCP; 5424 if (direction == PF_IN) { /* wire side, straight */ 5425 PF_ACPY(&key.addr[0], pd->src, key.af); 5426 PF_ACPY(&key.addr[1], pd->dst, key.af); 5427 key.port[0] = th->th_sport; 5428 key.port[1] = th->th_dport; 5429 } else { /* stack side, reverse */ 5430 PF_ACPY(&key.addr[1], pd->src, key.af); 5431 PF_ACPY(&key.addr[0], pd->dst, key.af); 5432 key.port[1] = th->th_sport; 5433 key.port[0] = th->th_dport; 5434 } 5435 5436 STATE_LOOKUP(kif, &key, direction, *state, pd); 5437 5438 if (direction == (*state)->direction) { 5439 src = &(*state)->src; 5440 dst = &(*state)->dst; 5441 } else { 5442 src = &(*state)->dst; 5443 dst = &(*state)->src; 5444 } 5445 5446 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5447 return (action); 5448 5449 if (dst->state >= TCPS_FIN_WAIT_2 && 5450 src->state >= TCPS_FIN_WAIT_2 && 5451 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5452 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5453 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5454 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5455 printf("pf: state reuse "); 5456 pf_print_state(*state); 5457 pf_print_flags(th->th_flags); 5458 printf("\n"); 5459 } 5460 /* XXX make sure it's the same direction ?? */ 5461 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5462 pf_unlink_state(*state); 5463 *state = NULL; 5464 return (PF_DROP); 5465 } 5466 5467 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5468 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5469 return (PF_DROP); 5470 } else { 5471 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5472 ©back) == PF_DROP) 5473 return (PF_DROP); 5474 } 5475 5476 /* translate source/destination address, if necessary */ 5477 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5478 struct pf_state_key *nk = (*state)->key[pd->didx]; 5479 5480 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5481 nk->port[pd->sidx] != th->th_sport) 5482 pf_change_ap(m, pd->src, &th->th_sport, 5483 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5484 nk->port[pd->sidx], 0, pd->af); 5485 5486 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5487 nk->port[pd->didx] != th->th_dport) 5488 pf_change_ap(m, pd->dst, &th->th_dport, 5489 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5490 nk->port[pd->didx], 0, pd->af); 5491 copyback = 1; 5492 } 5493 5494 /* Copyback sequence modulation or stateful scrub changes if needed */ 5495 if (copyback) 5496 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5497 5498 return (PF_PASS); 5499 } 5500 5501 static int 5502 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5503 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5504 { 5505 struct pf_state_peer *src, *dst; 5506 struct pf_state_key_cmp key; 5507 struct udphdr *uh = &pd->hdr.udp; 5508 uint8_t psrc, pdst; 5509 5510 bzero(&key, sizeof(key)); 5511 key.af = pd->af; 5512 key.proto = IPPROTO_UDP; 5513 if (direction == PF_IN) { /* wire side, straight */ 5514 PF_ACPY(&key.addr[0], pd->src, key.af); 5515 PF_ACPY(&key.addr[1], pd->dst, key.af); 5516 key.port[0] = uh->uh_sport; 5517 key.port[1] = uh->uh_dport; 5518 } else { /* stack side, reverse */ 5519 PF_ACPY(&key.addr[1], pd->src, key.af); 5520 PF_ACPY(&key.addr[0], pd->dst, key.af); 5521 key.port[1] = uh->uh_sport; 5522 key.port[0] = uh->uh_dport; 5523 } 5524 5525 STATE_LOOKUP(kif, &key, direction, *state, pd); 5526 5527 if (direction == (*state)->direction) { 5528 src = &(*state)->src; 5529 dst = &(*state)->dst; 5530 psrc = PF_PEER_SRC; 5531 pdst = PF_PEER_DST; 5532 } else { 5533 src = &(*state)->dst; 5534 dst = &(*state)->src; 5535 psrc = PF_PEER_DST; 5536 pdst = PF_PEER_SRC; 5537 } 5538 5539 /* update states */ 5540 if (src->state < PFUDPS_SINGLE) 5541 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5542 if (dst->state == PFUDPS_SINGLE) 5543 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5544 5545 /* update expire time */ 5546 (*state)->expire = time_uptime; 5547 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5548 (*state)->timeout = PFTM_UDP_MULTIPLE; 5549 else 5550 (*state)->timeout = PFTM_UDP_SINGLE; 5551 5552 /* translate source/destination address, if necessary */ 5553 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5554 struct pf_state_key *nk = (*state)->key[pd->didx]; 5555 5556 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5557 nk->port[pd->sidx] != uh->uh_sport) 5558 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5559 &uh->uh_sum, &nk->addr[pd->sidx], 5560 nk->port[pd->sidx], 1, pd->af); 5561 5562 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5563 nk->port[pd->didx] != uh->uh_dport) 5564 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5565 &uh->uh_sum, &nk->addr[pd->didx], 5566 nk->port[pd->didx], 1, pd->af); 5567 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5568 } 5569 5570 return (PF_PASS); 5571 } 5572 5573 static int 5574 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5575 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5576 { 5577 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5578 u_int16_t icmpid = 0, *icmpsum; 5579 u_int8_t icmptype, icmpcode; 5580 int state_icmp = 0; 5581 struct pf_state_key_cmp key; 5582 5583 bzero(&key, sizeof(key)); 5584 switch (pd->proto) { 5585 #ifdef INET 5586 case IPPROTO_ICMP: 5587 icmptype = pd->hdr.icmp.icmp_type; 5588 icmpcode = pd->hdr.icmp.icmp_code; 5589 icmpid = pd->hdr.icmp.icmp_id; 5590 icmpsum = &pd->hdr.icmp.icmp_cksum; 5591 5592 if (icmptype == ICMP_UNREACH || 5593 icmptype == ICMP_SOURCEQUENCH || 5594 icmptype == ICMP_REDIRECT || 5595 icmptype == ICMP_TIMXCEED || 5596 icmptype == ICMP_PARAMPROB) 5597 state_icmp++; 5598 break; 5599 #endif /* INET */ 5600 #ifdef INET6 5601 case IPPROTO_ICMPV6: 5602 icmptype = pd->hdr.icmp6.icmp6_type; 5603 icmpcode = pd->hdr.icmp6.icmp6_code; 5604 icmpid = pd->hdr.icmp6.icmp6_id; 5605 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5606 5607 if (icmptype == ICMP6_DST_UNREACH || 5608 icmptype == ICMP6_PACKET_TOO_BIG || 5609 icmptype == ICMP6_TIME_EXCEEDED || 5610 icmptype == ICMP6_PARAM_PROB) 5611 state_icmp++; 5612 break; 5613 #endif /* INET6 */ 5614 } 5615 5616 if (!state_icmp) { 5617 /* 5618 * ICMP query/reply message not related to a TCP/UDP packet. 5619 * Search for an ICMP state. 5620 */ 5621 key.af = pd->af; 5622 key.proto = pd->proto; 5623 key.port[0] = key.port[1] = icmpid; 5624 if (direction == PF_IN) { /* wire side, straight */ 5625 PF_ACPY(&key.addr[0], pd->src, key.af); 5626 PF_ACPY(&key.addr[1], pd->dst, key.af); 5627 } else { /* stack side, reverse */ 5628 PF_ACPY(&key.addr[1], pd->src, key.af); 5629 PF_ACPY(&key.addr[0], pd->dst, key.af); 5630 } 5631 5632 STATE_LOOKUP(kif, &key, direction, *state, pd); 5633 5634 (*state)->expire = time_uptime; 5635 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5636 5637 /* translate source/destination address, if necessary */ 5638 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5639 struct pf_state_key *nk = (*state)->key[pd->didx]; 5640 5641 switch (pd->af) { 5642 #ifdef INET 5643 case AF_INET: 5644 if (PF_ANEQ(pd->src, 5645 &nk->addr[pd->sidx], AF_INET)) 5646 pf_change_a(&saddr->v4.s_addr, 5647 pd->ip_sum, 5648 nk->addr[pd->sidx].v4.s_addr, 0); 5649 5650 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5651 AF_INET)) 5652 pf_change_a(&daddr->v4.s_addr, 5653 pd->ip_sum, 5654 nk->addr[pd->didx].v4.s_addr, 0); 5655 5656 if (nk->port[0] != 5657 pd->hdr.icmp.icmp_id) { 5658 pd->hdr.icmp.icmp_cksum = 5659 pf_cksum_fixup( 5660 pd->hdr.icmp.icmp_cksum, icmpid, 5661 nk->port[pd->sidx], 0); 5662 pd->hdr.icmp.icmp_id = 5663 nk->port[pd->sidx]; 5664 } 5665 5666 m_copyback(m, off, ICMP_MINLEN, 5667 (caddr_t )&pd->hdr.icmp); 5668 break; 5669 #endif /* INET */ 5670 #ifdef INET6 5671 case AF_INET6: 5672 if (PF_ANEQ(pd->src, 5673 &nk->addr[pd->sidx], AF_INET6)) 5674 pf_change_a6(saddr, 5675 &pd->hdr.icmp6.icmp6_cksum, 5676 &nk->addr[pd->sidx], 0); 5677 5678 if (PF_ANEQ(pd->dst, 5679 &nk->addr[pd->didx], AF_INET6)) 5680 pf_change_a6(daddr, 5681 &pd->hdr.icmp6.icmp6_cksum, 5682 &nk->addr[pd->didx], 0); 5683 5684 m_copyback(m, off, sizeof(struct icmp6_hdr), 5685 (caddr_t )&pd->hdr.icmp6); 5686 break; 5687 #endif /* INET6 */ 5688 } 5689 } 5690 return (PF_PASS); 5691 5692 } else { 5693 /* 5694 * ICMP error message in response to a TCP/UDP packet. 5695 * Extract the inner TCP/UDP header and search for that state. 5696 */ 5697 5698 struct pf_pdesc pd2; 5699 bzero(&pd2, sizeof pd2); 5700 #ifdef INET 5701 struct ip h2; 5702 #endif /* INET */ 5703 #ifdef INET6 5704 struct ip6_hdr h2_6; 5705 int terminal = 0; 5706 #endif /* INET6 */ 5707 int ipoff2 = 0; 5708 int off2 = 0; 5709 5710 pd2.af = pd->af; 5711 /* Payload packet is from the opposite direction. */ 5712 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5713 pd2.didx = (direction == PF_IN) ? 0 : 1; 5714 switch (pd->af) { 5715 #ifdef INET 5716 case AF_INET: 5717 /* offset of h2 in mbuf chain */ 5718 ipoff2 = off + ICMP_MINLEN; 5719 5720 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5721 NULL, reason, pd2.af)) { 5722 DPFPRINTF(PF_DEBUG_MISC, 5723 ("pf: ICMP error message too short " 5724 "(ip)\n")); 5725 return (PF_DROP); 5726 } 5727 /* 5728 * ICMP error messages don't refer to non-first 5729 * fragments 5730 */ 5731 if (h2.ip_off & htons(IP_OFFMASK)) { 5732 REASON_SET(reason, PFRES_FRAG); 5733 return (PF_DROP); 5734 } 5735 5736 /* offset of protocol header that follows h2 */ 5737 off2 = ipoff2 + (h2.ip_hl << 2); 5738 5739 pd2.proto = h2.ip_p; 5740 pd2.src = (struct pf_addr *)&h2.ip_src; 5741 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5742 pd2.ip_sum = &h2.ip_sum; 5743 break; 5744 #endif /* INET */ 5745 #ifdef INET6 5746 case AF_INET6: 5747 ipoff2 = off + sizeof(struct icmp6_hdr); 5748 5749 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5750 NULL, reason, pd2.af)) { 5751 DPFPRINTF(PF_DEBUG_MISC, 5752 ("pf: ICMP error message too short " 5753 "(ip6)\n")); 5754 return (PF_DROP); 5755 } 5756 pd2.proto = h2_6.ip6_nxt; 5757 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5758 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5759 pd2.ip_sum = NULL; 5760 off2 = ipoff2 + sizeof(h2_6); 5761 do { 5762 switch (pd2.proto) { 5763 case IPPROTO_FRAGMENT: 5764 /* 5765 * ICMPv6 error messages for 5766 * non-first fragments 5767 */ 5768 REASON_SET(reason, PFRES_FRAG); 5769 return (PF_DROP); 5770 case IPPROTO_AH: 5771 case IPPROTO_HOPOPTS: 5772 case IPPROTO_ROUTING: 5773 case IPPROTO_DSTOPTS: { 5774 /* get next header and header length */ 5775 struct ip6_ext opt6; 5776 5777 if (!pf_pull_hdr(m, off2, &opt6, 5778 sizeof(opt6), NULL, reason, 5779 pd2.af)) { 5780 DPFPRINTF(PF_DEBUG_MISC, 5781 ("pf: ICMPv6 short opt\n")); 5782 return (PF_DROP); 5783 } 5784 if (pd2.proto == IPPROTO_AH) 5785 off2 += (opt6.ip6e_len + 2) * 4; 5786 else 5787 off2 += (opt6.ip6e_len + 1) * 8; 5788 pd2.proto = opt6.ip6e_nxt; 5789 /* goto the next header */ 5790 break; 5791 } 5792 default: 5793 terminal++; 5794 break; 5795 } 5796 } while (!terminal); 5797 break; 5798 #endif /* INET6 */ 5799 } 5800 5801 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5802 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5803 printf("pf: BAD ICMP %d:%d outer dst: ", 5804 icmptype, icmpcode); 5805 pf_print_host(pd->src, 0, pd->af); 5806 printf(" -> "); 5807 pf_print_host(pd->dst, 0, pd->af); 5808 printf(" inner src: "); 5809 pf_print_host(pd2.src, 0, pd2.af); 5810 printf(" -> "); 5811 pf_print_host(pd2.dst, 0, pd2.af); 5812 printf("\n"); 5813 } 5814 REASON_SET(reason, PFRES_BADSTATE); 5815 return (PF_DROP); 5816 } 5817 5818 switch (pd2.proto) { 5819 case IPPROTO_TCP: { 5820 struct tcphdr th; 5821 u_int32_t seq; 5822 struct pf_state_peer *src, *dst; 5823 u_int8_t dws; 5824 int copyback = 0; 5825 5826 /* 5827 * Only the first 8 bytes of the TCP header can be 5828 * expected. Don't access any TCP header fields after 5829 * th_seq, an ackskew test is not possible. 5830 */ 5831 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5832 pd2.af)) { 5833 DPFPRINTF(PF_DEBUG_MISC, 5834 ("pf: ICMP error message too short " 5835 "(tcp)\n")); 5836 return (PF_DROP); 5837 } 5838 5839 key.af = pd2.af; 5840 key.proto = IPPROTO_TCP; 5841 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5842 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5843 key.port[pd2.sidx] = th.th_sport; 5844 key.port[pd2.didx] = th.th_dport; 5845 5846 STATE_LOOKUP(kif, &key, direction, *state, pd); 5847 5848 if (direction == (*state)->direction) { 5849 src = &(*state)->dst; 5850 dst = &(*state)->src; 5851 } else { 5852 src = &(*state)->src; 5853 dst = &(*state)->dst; 5854 } 5855 5856 if (src->wscale && dst->wscale) 5857 dws = dst->wscale & PF_WSCALE_MASK; 5858 else 5859 dws = 0; 5860 5861 /* Demodulate sequence number */ 5862 seq = ntohl(th.th_seq) - src->seqdiff; 5863 if (src->seqdiff) { 5864 pf_change_a(&th.th_seq, icmpsum, 5865 htonl(seq), 0); 5866 copyback = 1; 5867 } 5868 5869 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5870 (!SEQ_GEQ(src->seqhi, seq) || 5871 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5872 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5873 printf("pf: BAD ICMP %d:%d ", 5874 icmptype, icmpcode); 5875 pf_print_host(pd->src, 0, pd->af); 5876 printf(" -> "); 5877 pf_print_host(pd->dst, 0, pd->af); 5878 printf(" state: "); 5879 pf_print_state(*state); 5880 printf(" seq=%u\n", seq); 5881 } 5882 REASON_SET(reason, PFRES_BADSTATE); 5883 return (PF_DROP); 5884 } else { 5885 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5886 printf("pf: OK ICMP %d:%d ", 5887 icmptype, icmpcode); 5888 pf_print_host(pd->src, 0, pd->af); 5889 printf(" -> "); 5890 pf_print_host(pd->dst, 0, pd->af); 5891 printf(" state: "); 5892 pf_print_state(*state); 5893 printf(" seq=%u\n", seq); 5894 } 5895 } 5896 5897 /* translate source/destination address, if necessary */ 5898 if ((*state)->key[PF_SK_WIRE] != 5899 (*state)->key[PF_SK_STACK]) { 5900 struct pf_state_key *nk = 5901 (*state)->key[pd->didx]; 5902 5903 if (PF_ANEQ(pd2.src, 5904 &nk->addr[pd2.sidx], pd2.af) || 5905 nk->port[pd2.sidx] != th.th_sport) 5906 pf_change_icmp(pd2.src, &th.th_sport, 5907 daddr, &nk->addr[pd2.sidx], 5908 nk->port[pd2.sidx], NULL, 5909 pd2.ip_sum, icmpsum, 5910 pd->ip_sum, 0, pd2.af); 5911 5912 if (PF_ANEQ(pd2.dst, 5913 &nk->addr[pd2.didx], pd2.af) || 5914 nk->port[pd2.didx] != th.th_dport) 5915 pf_change_icmp(pd2.dst, &th.th_dport, 5916 saddr, &nk->addr[pd2.didx], 5917 nk->port[pd2.didx], NULL, 5918 pd2.ip_sum, icmpsum, 5919 pd->ip_sum, 0, pd2.af); 5920 copyback = 1; 5921 } 5922 5923 if (copyback) { 5924 switch (pd2.af) { 5925 #ifdef INET 5926 case AF_INET: 5927 m_copyback(m, off, ICMP_MINLEN, 5928 (caddr_t )&pd->hdr.icmp); 5929 m_copyback(m, ipoff2, sizeof(h2), 5930 (caddr_t )&h2); 5931 break; 5932 #endif /* INET */ 5933 #ifdef INET6 5934 case AF_INET6: 5935 m_copyback(m, off, 5936 sizeof(struct icmp6_hdr), 5937 (caddr_t )&pd->hdr.icmp6); 5938 m_copyback(m, ipoff2, sizeof(h2_6), 5939 (caddr_t )&h2_6); 5940 break; 5941 #endif /* INET6 */ 5942 } 5943 m_copyback(m, off2, 8, (caddr_t)&th); 5944 } 5945 5946 return (PF_PASS); 5947 break; 5948 } 5949 case IPPROTO_UDP: { 5950 struct udphdr uh; 5951 5952 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5953 NULL, reason, pd2.af)) { 5954 DPFPRINTF(PF_DEBUG_MISC, 5955 ("pf: ICMP error message too short " 5956 "(udp)\n")); 5957 return (PF_DROP); 5958 } 5959 5960 key.af = pd2.af; 5961 key.proto = IPPROTO_UDP; 5962 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5963 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5964 key.port[pd2.sidx] = uh.uh_sport; 5965 key.port[pd2.didx] = uh.uh_dport; 5966 5967 STATE_LOOKUP(kif, &key, direction, *state, pd); 5968 5969 /* translate source/destination address, if necessary */ 5970 if ((*state)->key[PF_SK_WIRE] != 5971 (*state)->key[PF_SK_STACK]) { 5972 struct pf_state_key *nk = 5973 (*state)->key[pd->didx]; 5974 5975 if (PF_ANEQ(pd2.src, 5976 &nk->addr[pd2.sidx], pd2.af) || 5977 nk->port[pd2.sidx] != uh.uh_sport) 5978 pf_change_icmp(pd2.src, &uh.uh_sport, 5979 daddr, &nk->addr[pd2.sidx], 5980 nk->port[pd2.sidx], &uh.uh_sum, 5981 pd2.ip_sum, icmpsum, 5982 pd->ip_sum, 1, pd2.af); 5983 5984 if (PF_ANEQ(pd2.dst, 5985 &nk->addr[pd2.didx], pd2.af) || 5986 nk->port[pd2.didx] != uh.uh_dport) 5987 pf_change_icmp(pd2.dst, &uh.uh_dport, 5988 saddr, &nk->addr[pd2.didx], 5989 nk->port[pd2.didx], &uh.uh_sum, 5990 pd2.ip_sum, icmpsum, 5991 pd->ip_sum, 1, pd2.af); 5992 5993 switch (pd2.af) { 5994 #ifdef INET 5995 case AF_INET: 5996 m_copyback(m, off, ICMP_MINLEN, 5997 (caddr_t )&pd->hdr.icmp); 5998 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5999 break; 6000 #endif /* INET */ 6001 #ifdef INET6 6002 case AF_INET6: 6003 m_copyback(m, off, 6004 sizeof(struct icmp6_hdr), 6005 (caddr_t )&pd->hdr.icmp6); 6006 m_copyback(m, ipoff2, sizeof(h2_6), 6007 (caddr_t )&h2_6); 6008 break; 6009 #endif /* INET6 */ 6010 } 6011 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6012 } 6013 return (PF_PASS); 6014 break; 6015 } 6016 #ifdef INET 6017 case IPPROTO_ICMP: { 6018 struct icmp iih; 6019 6020 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6021 NULL, reason, pd2.af)) { 6022 DPFPRINTF(PF_DEBUG_MISC, 6023 ("pf: ICMP error message too short i" 6024 "(icmp)\n")); 6025 return (PF_DROP); 6026 } 6027 6028 key.af = pd2.af; 6029 key.proto = IPPROTO_ICMP; 6030 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6031 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6032 key.port[0] = key.port[1] = iih.icmp_id; 6033 6034 STATE_LOOKUP(kif, &key, direction, *state, pd); 6035 6036 /* translate source/destination address, if necessary */ 6037 if ((*state)->key[PF_SK_WIRE] != 6038 (*state)->key[PF_SK_STACK]) { 6039 struct pf_state_key *nk = 6040 (*state)->key[pd->didx]; 6041 6042 if (PF_ANEQ(pd2.src, 6043 &nk->addr[pd2.sidx], pd2.af) || 6044 nk->port[pd2.sidx] != iih.icmp_id) 6045 pf_change_icmp(pd2.src, &iih.icmp_id, 6046 daddr, &nk->addr[pd2.sidx], 6047 nk->port[pd2.sidx], NULL, 6048 pd2.ip_sum, icmpsum, 6049 pd->ip_sum, 0, AF_INET); 6050 6051 if (PF_ANEQ(pd2.dst, 6052 &nk->addr[pd2.didx], pd2.af) || 6053 nk->port[pd2.didx] != iih.icmp_id) 6054 pf_change_icmp(pd2.dst, &iih.icmp_id, 6055 saddr, &nk->addr[pd2.didx], 6056 nk->port[pd2.didx], NULL, 6057 pd2.ip_sum, icmpsum, 6058 pd->ip_sum, 0, AF_INET); 6059 6060 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6061 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6062 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6063 } 6064 return (PF_PASS); 6065 break; 6066 } 6067 #endif /* INET */ 6068 #ifdef INET6 6069 case IPPROTO_ICMPV6: { 6070 struct icmp6_hdr iih; 6071 6072 if (!pf_pull_hdr(m, off2, &iih, 6073 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6074 DPFPRINTF(PF_DEBUG_MISC, 6075 ("pf: ICMP error message too short " 6076 "(icmp6)\n")); 6077 return (PF_DROP); 6078 } 6079 6080 key.af = pd2.af; 6081 key.proto = IPPROTO_ICMPV6; 6082 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6083 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6084 key.port[0] = key.port[1] = iih.icmp6_id; 6085 6086 STATE_LOOKUP(kif, &key, direction, *state, pd); 6087 6088 /* translate source/destination address, if necessary */ 6089 if ((*state)->key[PF_SK_WIRE] != 6090 (*state)->key[PF_SK_STACK]) { 6091 struct pf_state_key *nk = 6092 (*state)->key[pd->didx]; 6093 6094 if (PF_ANEQ(pd2.src, 6095 &nk->addr[pd2.sidx], pd2.af) || 6096 nk->port[pd2.sidx] != iih.icmp6_id) 6097 pf_change_icmp(pd2.src, &iih.icmp6_id, 6098 daddr, &nk->addr[pd2.sidx], 6099 nk->port[pd2.sidx], NULL, 6100 pd2.ip_sum, icmpsum, 6101 pd->ip_sum, 0, AF_INET6); 6102 6103 if (PF_ANEQ(pd2.dst, 6104 &nk->addr[pd2.didx], pd2.af) || 6105 nk->port[pd2.didx] != iih.icmp6_id) 6106 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6107 saddr, &nk->addr[pd2.didx], 6108 nk->port[pd2.didx], NULL, 6109 pd2.ip_sum, icmpsum, 6110 pd->ip_sum, 0, AF_INET6); 6111 6112 m_copyback(m, off, sizeof(struct icmp6_hdr), 6113 (caddr_t)&pd->hdr.icmp6); 6114 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6115 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6116 (caddr_t)&iih); 6117 } 6118 return (PF_PASS); 6119 break; 6120 } 6121 #endif /* INET6 */ 6122 default: { 6123 key.af = pd2.af; 6124 key.proto = pd2.proto; 6125 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6126 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6127 key.port[0] = key.port[1] = 0; 6128 6129 STATE_LOOKUP(kif, &key, direction, *state, pd); 6130 6131 /* translate source/destination address, if necessary */ 6132 if ((*state)->key[PF_SK_WIRE] != 6133 (*state)->key[PF_SK_STACK]) { 6134 struct pf_state_key *nk = 6135 (*state)->key[pd->didx]; 6136 6137 if (PF_ANEQ(pd2.src, 6138 &nk->addr[pd2.sidx], pd2.af)) 6139 pf_change_icmp(pd2.src, NULL, daddr, 6140 &nk->addr[pd2.sidx], 0, NULL, 6141 pd2.ip_sum, icmpsum, 6142 pd->ip_sum, 0, pd2.af); 6143 6144 if (PF_ANEQ(pd2.dst, 6145 &nk->addr[pd2.didx], pd2.af)) 6146 pf_change_icmp(pd2.dst, NULL, saddr, 6147 &nk->addr[pd2.didx], 0, NULL, 6148 pd2.ip_sum, icmpsum, 6149 pd->ip_sum, 0, pd2.af); 6150 6151 switch (pd2.af) { 6152 #ifdef INET 6153 case AF_INET: 6154 m_copyback(m, off, ICMP_MINLEN, 6155 (caddr_t)&pd->hdr.icmp); 6156 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6157 break; 6158 #endif /* INET */ 6159 #ifdef INET6 6160 case AF_INET6: 6161 m_copyback(m, off, 6162 sizeof(struct icmp6_hdr), 6163 (caddr_t )&pd->hdr.icmp6); 6164 m_copyback(m, ipoff2, sizeof(h2_6), 6165 (caddr_t )&h2_6); 6166 break; 6167 #endif /* INET6 */ 6168 } 6169 } 6170 return (PF_PASS); 6171 break; 6172 } 6173 } 6174 } 6175 } 6176 6177 static int 6178 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 6179 struct mbuf *m, struct pf_pdesc *pd) 6180 { 6181 struct pf_state_peer *src, *dst; 6182 struct pf_state_key_cmp key; 6183 uint8_t psrc, pdst; 6184 6185 bzero(&key, sizeof(key)); 6186 key.af = pd->af; 6187 key.proto = pd->proto; 6188 if (direction == PF_IN) { 6189 PF_ACPY(&key.addr[0], pd->src, key.af); 6190 PF_ACPY(&key.addr[1], pd->dst, key.af); 6191 key.port[0] = key.port[1] = 0; 6192 } else { 6193 PF_ACPY(&key.addr[1], pd->src, key.af); 6194 PF_ACPY(&key.addr[0], pd->dst, key.af); 6195 key.port[1] = key.port[0] = 0; 6196 } 6197 6198 STATE_LOOKUP(kif, &key, direction, *state, pd); 6199 6200 if (direction == (*state)->direction) { 6201 src = &(*state)->src; 6202 dst = &(*state)->dst; 6203 psrc = PF_PEER_SRC; 6204 pdst = PF_PEER_DST; 6205 } else { 6206 src = &(*state)->dst; 6207 dst = &(*state)->src; 6208 psrc = PF_PEER_DST; 6209 pdst = PF_PEER_SRC; 6210 } 6211 6212 /* update states */ 6213 if (src->state < PFOTHERS_SINGLE) 6214 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6215 if (dst->state == PFOTHERS_SINGLE) 6216 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6217 6218 /* update expire time */ 6219 (*state)->expire = time_uptime; 6220 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6221 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6222 else 6223 (*state)->timeout = PFTM_OTHER_SINGLE; 6224 6225 /* translate source/destination address, if necessary */ 6226 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6227 struct pf_state_key *nk = (*state)->key[pd->didx]; 6228 6229 KASSERT(nk, ("%s: nk is null", __func__)); 6230 KASSERT(pd, ("%s: pd is null", __func__)); 6231 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6232 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6233 switch (pd->af) { 6234 #ifdef INET 6235 case AF_INET: 6236 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6237 pf_change_a(&pd->src->v4.s_addr, 6238 pd->ip_sum, 6239 nk->addr[pd->sidx].v4.s_addr, 6240 0); 6241 6242 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6243 pf_change_a(&pd->dst->v4.s_addr, 6244 pd->ip_sum, 6245 nk->addr[pd->didx].v4.s_addr, 6246 0); 6247 6248 break; 6249 #endif /* INET */ 6250 #ifdef INET6 6251 case AF_INET6: 6252 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6253 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6254 6255 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6256 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6257 #endif /* INET6 */ 6258 } 6259 } 6260 return (PF_PASS); 6261 } 6262 6263 /* 6264 * ipoff and off are measured from the start of the mbuf chain. 6265 * h must be at "ipoff" on the mbuf chain. 6266 */ 6267 void * 6268 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6269 u_short *actionp, u_short *reasonp, sa_family_t af) 6270 { 6271 switch (af) { 6272 #ifdef INET 6273 case AF_INET: { 6274 struct ip *h = mtod(m, struct ip *); 6275 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6276 6277 if (fragoff) { 6278 if (fragoff >= len) 6279 ACTION_SET(actionp, PF_PASS); 6280 else { 6281 ACTION_SET(actionp, PF_DROP); 6282 REASON_SET(reasonp, PFRES_FRAG); 6283 } 6284 return (NULL); 6285 } 6286 if (m->m_pkthdr.len < off + len || 6287 ntohs(h->ip_len) < off + len) { 6288 ACTION_SET(actionp, PF_DROP); 6289 REASON_SET(reasonp, PFRES_SHORT); 6290 return (NULL); 6291 } 6292 break; 6293 } 6294 #endif /* INET */ 6295 #ifdef INET6 6296 case AF_INET6: { 6297 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6298 6299 if (m->m_pkthdr.len < off + len || 6300 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6301 (unsigned)(off + len)) { 6302 ACTION_SET(actionp, PF_DROP); 6303 REASON_SET(reasonp, PFRES_SHORT); 6304 return (NULL); 6305 } 6306 break; 6307 } 6308 #endif /* INET6 */ 6309 } 6310 m_copydata(m, off, len, p); 6311 return (p); 6312 } 6313 6314 int 6315 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6316 int rtableid) 6317 { 6318 struct ifnet *ifp; 6319 6320 /* 6321 * Skip check for addresses with embedded interface scope, 6322 * as they would always match anyway. 6323 */ 6324 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6325 return (1); 6326 6327 if (af != AF_INET && af != AF_INET6) 6328 return (0); 6329 6330 /* Skip checks for ipsec interfaces */ 6331 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6332 return (1); 6333 6334 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6335 6336 switch (af) { 6337 #ifdef INET6 6338 case AF_INET6: 6339 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6340 ifp)); 6341 #endif 6342 #ifdef INET 6343 case AF_INET: 6344 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6345 ifp)); 6346 #endif 6347 } 6348 6349 return (0); 6350 } 6351 6352 #ifdef INET 6353 static void 6354 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6355 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6356 { 6357 struct mbuf *m0, *m1, *md; 6358 struct sockaddr_in dst; 6359 struct ip *ip; 6360 struct ifnet *ifp = NULL; 6361 struct pf_addr naddr; 6362 struct pf_ksrc_node *sn = NULL; 6363 int error = 0; 6364 uint16_t ip_len, ip_off; 6365 6366 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6367 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6368 __func__)); 6369 6370 if ((pd->pf_mtag == NULL && 6371 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6372 pd->pf_mtag->routed++ > 3) { 6373 m0 = *m; 6374 *m = NULL; 6375 goto bad_locked; 6376 } 6377 6378 if (r->rt == PF_DUPTO) { 6379 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6380 if (s == NULL) { 6381 ifp = r->rpool.cur->kif ? 6382 r->rpool.cur->kif->pfik_ifp : NULL; 6383 } else { 6384 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6385 /* If pfsync'd */ 6386 if (ifp == NULL) 6387 ifp = r->rpool.cur->kif ? 6388 r->rpool.cur->kif->pfik_ifp : NULL; 6389 PF_STATE_UNLOCK(s); 6390 } 6391 if (ifp == oifp) { 6392 /* When the 2nd interface is not skipped */ 6393 return; 6394 } else { 6395 m0 = *m; 6396 *m = NULL; 6397 goto bad; 6398 } 6399 } else { 6400 pd->pf_mtag->flags |= PF_DUPLICATED; 6401 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6402 if (s) 6403 PF_STATE_UNLOCK(s); 6404 return; 6405 } 6406 } 6407 } else { 6408 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6409 pf_dummynet(pd, dir, s, r, m); 6410 if (s) 6411 PF_STATE_UNLOCK(s); 6412 return; 6413 } 6414 m0 = *m; 6415 } 6416 6417 ip = mtod(m0, struct ip *); 6418 6419 bzero(&dst, sizeof(dst)); 6420 dst.sin_family = AF_INET; 6421 dst.sin_len = sizeof(dst); 6422 dst.sin_addr = ip->ip_dst; 6423 6424 bzero(&naddr, sizeof(naddr)); 6425 6426 if (s == NULL) { 6427 if (TAILQ_EMPTY(&r->rpool.list)) { 6428 DPFPRINTF(PF_DEBUG_URGENT, 6429 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6430 goto bad_locked; 6431 } 6432 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6433 &naddr, NULL, &sn); 6434 if (!PF_AZERO(&naddr, AF_INET)) 6435 dst.sin_addr.s_addr = naddr.v4.s_addr; 6436 ifp = r->rpool.cur->kif ? 6437 r->rpool.cur->kif->pfik_ifp : NULL; 6438 } else { 6439 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6440 dst.sin_addr.s_addr = 6441 s->rt_addr.v4.s_addr; 6442 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6443 PF_STATE_UNLOCK(s); 6444 } 6445 /* If pfsync'd */ 6446 if (ifp == NULL) 6447 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6448 if (ifp == NULL) 6449 goto bad; 6450 6451 if (dir == PF_IN) { 6452 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6453 goto bad; 6454 else if (m0 == NULL) 6455 goto done; 6456 if (m0->m_len < sizeof(struct ip)) { 6457 DPFPRINTF(PF_DEBUG_URGENT, 6458 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6459 goto bad; 6460 } 6461 ip = mtod(m0, struct ip *); 6462 } 6463 6464 if (ifp->if_flags & IFF_LOOPBACK) 6465 m0->m_flags |= M_SKIP_FIREWALL; 6466 6467 ip_len = ntohs(ip->ip_len); 6468 ip_off = ntohs(ip->ip_off); 6469 6470 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6471 m0->m_pkthdr.csum_flags |= CSUM_IP; 6472 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6473 in_delayed_cksum(m0); 6474 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6475 } 6476 #if defined(SCTP) || defined(SCTP_SUPPORT) 6477 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6478 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 6479 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6480 } 6481 #endif 6482 6483 /* 6484 * If small enough for interface, or the interface will take 6485 * care of the fragmentation for us, we can just send directly. 6486 */ 6487 if (ip_len <= ifp->if_mtu || 6488 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6489 ip->ip_sum = 0; 6490 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6491 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6492 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6493 } 6494 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6495 6496 md = m0; 6497 error = pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6498 if (md != NULL) 6499 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 6500 goto done; 6501 } 6502 6503 /* Balk when DF bit is set or the interface didn't support TSO. */ 6504 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6505 error = EMSGSIZE; 6506 KMOD_IPSTAT_INC(ips_cantfrag); 6507 if (r->rt != PF_DUPTO) { 6508 if (s && pd->nat_rule != NULL) 6509 PACKET_UNDO_NAT(m0, pd, 6510 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6511 s, dir); 6512 6513 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6514 ifp->if_mtu); 6515 goto done; 6516 } else 6517 goto bad; 6518 } 6519 6520 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6521 if (error) 6522 goto bad; 6523 6524 for (; m0; m0 = m1) { 6525 m1 = m0->m_nextpkt; 6526 m0->m_nextpkt = NULL; 6527 if (error == 0) { 6528 m_clrprotoflags(m0); 6529 md = m0; 6530 error = pf_dummynet_route(pd, dir, s, r, ifp, 6531 sintosa(&dst), &md); 6532 if (md != NULL) 6533 error = (*ifp->if_output)(ifp, md, 6534 sintosa(&dst), NULL); 6535 } else 6536 m_freem(m0); 6537 } 6538 6539 if (error == 0) 6540 KMOD_IPSTAT_INC(ips_fragmented); 6541 6542 done: 6543 if (r->rt != PF_DUPTO) 6544 *m = NULL; 6545 return; 6546 6547 bad_locked: 6548 if (s) 6549 PF_STATE_UNLOCK(s); 6550 bad: 6551 m_freem(m0); 6552 goto done; 6553 } 6554 #endif /* INET */ 6555 6556 #ifdef INET6 6557 static void 6558 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6559 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6560 { 6561 struct mbuf *m0, *md; 6562 struct sockaddr_in6 dst; 6563 struct ip6_hdr *ip6; 6564 struct ifnet *ifp = NULL; 6565 struct pf_addr naddr; 6566 struct pf_ksrc_node *sn = NULL; 6567 6568 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6569 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6570 __func__)); 6571 6572 if ((pd->pf_mtag == NULL && 6573 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6574 pd->pf_mtag->routed++ > 3) { 6575 m0 = *m; 6576 *m = NULL; 6577 goto bad_locked; 6578 } 6579 6580 if (r->rt == PF_DUPTO) { 6581 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6582 if (s == NULL) { 6583 ifp = r->rpool.cur->kif ? 6584 r->rpool.cur->kif->pfik_ifp : NULL; 6585 } else { 6586 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6587 /* If pfsync'd */ 6588 if (ifp == NULL) 6589 ifp = r->rpool.cur->kif ? 6590 r->rpool.cur->kif->pfik_ifp : NULL; 6591 PF_STATE_UNLOCK(s); 6592 } 6593 if (ifp == oifp) { 6594 /* When the 2nd interface is not skipped */ 6595 return; 6596 } else { 6597 m0 = *m; 6598 *m = NULL; 6599 goto bad; 6600 } 6601 } else { 6602 pd->pf_mtag->flags |= PF_DUPLICATED; 6603 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6604 if (s) 6605 PF_STATE_UNLOCK(s); 6606 return; 6607 } 6608 } 6609 } else { 6610 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6611 pf_dummynet(pd, dir, s, r, m); 6612 if (s) 6613 PF_STATE_UNLOCK(s); 6614 return; 6615 } 6616 m0 = *m; 6617 } 6618 6619 ip6 = mtod(m0, struct ip6_hdr *); 6620 6621 bzero(&dst, sizeof(dst)); 6622 dst.sin6_family = AF_INET6; 6623 dst.sin6_len = sizeof(dst); 6624 dst.sin6_addr = ip6->ip6_dst; 6625 6626 bzero(&naddr, sizeof(naddr)); 6627 6628 if (s == NULL) { 6629 if (TAILQ_EMPTY(&r->rpool.list)) { 6630 DPFPRINTF(PF_DEBUG_URGENT, 6631 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6632 goto bad_locked; 6633 } 6634 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6635 &naddr, NULL, &sn); 6636 if (!PF_AZERO(&naddr, AF_INET6)) 6637 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6638 &naddr, AF_INET6); 6639 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6640 } else { 6641 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6642 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6643 &s->rt_addr, AF_INET6); 6644 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6645 } 6646 6647 if (s) 6648 PF_STATE_UNLOCK(s); 6649 6650 /* If pfsync'd */ 6651 if (ifp == NULL) 6652 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6653 if (ifp == NULL) 6654 goto bad; 6655 6656 if (dir == PF_IN) { 6657 if (pf_test6(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6658 goto bad; 6659 else if (m0 == NULL) 6660 goto done; 6661 if (m0->m_len < sizeof(struct ip6_hdr)) { 6662 DPFPRINTF(PF_DEBUG_URGENT, 6663 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6664 __func__)); 6665 goto bad; 6666 } 6667 ip6 = mtod(m0, struct ip6_hdr *); 6668 } 6669 6670 if (ifp->if_flags & IFF_LOOPBACK) 6671 m0->m_flags |= M_SKIP_FIREWALL; 6672 6673 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6674 ~ifp->if_hwassist) { 6675 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6676 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6677 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6678 } 6679 6680 /* 6681 * If the packet is too large for the outgoing interface, 6682 * send back an icmp6 error. 6683 */ 6684 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6685 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6686 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 6687 md = m0; 6688 pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6689 if (md != NULL) 6690 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 6691 } 6692 else { 6693 in6_ifstat_inc(ifp, ifs6_in_toobig); 6694 if (r->rt != PF_DUPTO) { 6695 if (s && pd->nat_rule != NULL) 6696 PACKET_UNDO_NAT(m0, pd, 6697 ((caddr_t)ip6 - m0->m_data) + 6698 sizeof(struct ip6_hdr), s, dir); 6699 6700 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6701 } else 6702 goto bad; 6703 } 6704 6705 done: 6706 if (r->rt != PF_DUPTO) 6707 *m = NULL; 6708 return; 6709 6710 bad_locked: 6711 if (s) 6712 PF_STATE_UNLOCK(s); 6713 bad: 6714 m_freem(m0); 6715 goto done; 6716 } 6717 #endif /* INET6 */ 6718 6719 /* 6720 * FreeBSD supports cksum offloads for the following drivers. 6721 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6722 * 6723 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6724 * network driver performed cksum including pseudo header, need to verify 6725 * csum_data 6726 * CSUM_DATA_VALID : 6727 * network driver performed cksum, needs to additional pseudo header 6728 * cksum computation with partial csum_data(i.e. lack of H/W support for 6729 * pseudo header, for instance sk(4) and possibly gem(4)) 6730 * 6731 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6732 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6733 * TCP/UDP layer. 6734 * Also, set csum_data to 0xffff to force cksum validation. 6735 */ 6736 static int 6737 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6738 { 6739 u_int16_t sum = 0; 6740 int hw_assist = 0; 6741 struct ip *ip; 6742 6743 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6744 return (1); 6745 if (m->m_pkthdr.len < off + len) 6746 return (1); 6747 6748 switch (p) { 6749 case IPPROTO_TCP: 6750 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6751 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6752 sum = m->m_pkthdr.csum_data; 6753 } else { 6754 ip = mtod(m, struct ip *); 6755 sum = in_pseudo(ip->ip_src.s_addr, 6756 ip->ip_dst.s_addr, htonl((u_short)len + 6757 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6758 } 6759 sum ^= 0xffff; 6760 ++hw_assist; 6761 } 6762 break; 6763 case IPPROTO_UDP: 6764 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6765 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6766 sum = m->m_pkthdr.csum_data; 6767 } else { 6768 ip = mtod(m, struct ip *); 6769 sum = in_pseudo(ip->ip_src.s_addr, 6770 ip->ip_dst.s_addr, htonl((u_short)len + 6771 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6772 } 6773 sum ^= 0xffff; 6774 ++hw_assist; 6775 } 6776 break; 6777 case IPPROTO_ICMP: 6778 #ifdef INET6 6779 case IPPROTO_ICMPV6: 6780 #endif /* INET6 */ 6781 break; 6782 default: 6783 return (1); 6784 } 6785 6786 if (!hw_assist) { 6787 switch (af) { 6788 case AF_INET: 6789 if (p == IPPROTO_ICMP) { 6790 if (m->m_len < off) 6791 return (1); 6792 m->m_data += off; 6793 m->m_len -= off; 6794 sum = in_cksum(m, len); 6795 m->m_data -= off; 6796 m->m_len += off; 6797 } else { 6798 if (m->m_len < sizeof(struct ip)) 6799 return (1); 6800 sum = in4_cksum(m, p, off, len); 6801 } 6802 break; 6803 #ifdef INET6 6804 case AF_INET6: 6805 if (m->m_len < sizeof(struct ip6_hdr)) 6806 return (1); 6807 sum = in6_cksum(m, p, off, len); 6808 break; 6809 #endif /* INET6 */ 6810 default: 6811 return (1); 6812 } 6813 } 6814 if (sum) { 6815 switch (p) { 6816 case IPPROTO_TCP: 6817 { 6818 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6819 break; 6820 } 6821 case IPPROTO_UDP: 6822 { 6823 KMOD_UDPSTAT_INC(udps_badsum); 6824 break; 6825 } 6826 #ifdef INET 6827 case IPPROTO_ICMP: 6828 { 6829 KMOD_ICMPSTAT_INC(icps_checksum); 6830 break; 6831 } 6832 #endif 6833 #ifdef INET6 6834 case IPPROTO_ICMPV6: 6835 { 6836 KMOD_ICMP6STAT_INC(icp6s_checksum); 6837 break; 6838 } 6839 #endif /* INET6 */ 6840 } 6841 return (1); 6842 } else { 6843 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6844 m->m_pkthdr.csum_flags |= 6845 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6846 m->m_pkthdr.csum_data = 0xffff; 6847 } 6848 } 6849 return (0); 6850 } 6851 6852 static bool 6853 pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, 6854 const struct pf_krule *r, const struct pf_kstate *s, 6855 struct ip_fw_args *dnflow) 6856 { 6857 int dndir = r->direction; 6858 6859 if (s && dndir == PF_INOUT) { 6860 dndir = s->direction; 6861 } else if (dndir == PF_INOUT) { 6862 /* Assume primary direction. Happens when we've set dnpipe in 6863 * the ethernet level code. */ 6864 dndir = dir; 6865 } 6866 6867 memset(dnflow, 0, sizeof(*dnflow)); 6868 6869 if (pd->dport != NULL) 6870 dnflow->f_id.dst_port = ntohs(*pd->dport); 6871 if (pd->sport != NULL) 6872 dnflow->f_id.src_port = ntohs(*pd->sport); 6873 6874 if (dir == PF_IN) 6875 dnflow->flags |= IPFW_ARGS_IN; 6876 else 6877 dnflow->flags |= IPFW_ARGS_OUT; 6878 6879 if (dir != dndir && pd->act.dnrpipe) { 6880 dnflow->rule.info = pd->act.dnrpipe; 6881 } 6882 else if (dir == dndir && pd->act.dnpipe) { 6883 dnflow->rule.info = pd->act.dnpipe; 6884 } 6885 else { 6886 return (false); 6887 } 6888 6889 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6890 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFRULE_DN_IS_PIPE) 6891 dnflow->rule.info |= IPFW_IS_PIPE; 6892 6893 dnflow->f_id.proto = pd->proto; 6894 dnflow->f_id.extra = dnflow->rule.info; 6895 switch (pd->af) { 6896 case AF_INET: 6897 dnflow->f_id.addr_type = 4; 6898 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 6899 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 6900 break; 6901 case AF_INET6: 6902 dnflow->flags |= IPFW_ARGS_IP6; 6903 dnflow->f_id.addr_type = 6; 6904 dnflow->f_id.src_ip6 = pd->src->v6; 6905 dnflow->f_id.dst_ip6 = pd->dst->v6; 6906 break; 6907 default: 6908 panic("Invalid AF"); 6909 break; 6910 } 6911 6912 return (true); 6913 } 6914 6915 int 6916 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 6917 struct inpcb *inp) 6918 { 6919 struct pfi_kkif *kif; 6920 struct mbuf *m = *m0; 6921 6922 M_ASSERTPKTHDR(m); 6923 MPASS(ifp->if_vnet == curvnet); 6924 NET_EPOCH_ASSERT(); 6925 6926 if (!V_pf_status.running) 6927 return (PF_PASS); 6928 6929 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6930 6931 if (kif == NULL) { 6932 DPFPRINTF(PF_DEBUG_URGENT, 6933 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6934 return (PF_DROP); 6935 } 6936 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6937 return (PF_PASS); 6938 6939 if (m->m_flags & M_SKIP_FIREWALL) 6940 return (PF_PASS); 6941 6942 /* Stateless! */ 6943 return (pf_test_eth_rule(dir, kif, m0)); 6944 } 6945 6946 static int 6947 pf_dummynet(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 6948 struct pf_krule *r, struct mbuf **m0) 6949 { 6950 return (pf_dummynet_route(pd, dir, s, r, NULL, NULL, m0)); 6951 } 6952 6953 static int 6954 pf_dummynet_route(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 6955 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 6956 struct mbuf **m0) 6957 { 6958 NET_EPOCH_ASSERT(); 6959 6960 if (s && (s->dnpipe || s->dnrpipe)) { 6961 pd->act.dnpipe = s->dnpipe; 6962 pd->act.dnrpipe = s->dnrpipe; 6963 pd->act.flags = s->state_flags; 6964 } else if (r->dnpipe || r->dnrpipe) { 6965 pd->act.dnpipe = r->dnpipe; 6966 pd->act.dnrpipe = r->dnrpipe; 6967 pd->act.flags = r->free_flags; 6968 } 6969 if (pd->act.dnpipe || pd->act.dnrpipe) { 6970 struct ip_fw_args dnflow; 6971 if (ip_dn_io_ptr == NULL) { 6972 m_freem(*m0); 6973 *m0 = NULL; 6974 return (ENOMEM); 6975 } 6976 6977 if (pd->pf_mtag == NULL && 6978 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 6979 m_freem(*m0); 6980 *m0 = NULL; 6981 return (ENOMEM); 6982 } 6983 6984 if (ifp != NULL) { 6985 pd->pf_mtag->flags |= PF_TAG_ROUTE_TO; 6986 6987 pd->pf_mtag->if_index = ifp->if_index; 6988 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 6989 6990 MPASS(sa != NULL); 6991 6992 if (pd->af == AF_INET) 6993 memcpy(&pd->pf_mtag->dst, sa, 6994 sizeof(struct sockaddr_in)); 6995 else 6996 memcpy(&pd->pf_mtag->dst, sa, 6997 sizeof(struct sockaddr_in6)); 6998 } 6999 7000 if (pf_pdesc_to_dnflow(dir, pd, r, s, &dnflow)) { 7001 pd->pf_mtag->flags |= PF_TAG_DUMMYNET; 7002 ip_dn_io_ptr(m0, &dnflow); 7003 if (*m0 != NULL) 7004 pd->pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7005 } 7006 } 7007 7008 return (0); 7009 } 7010 7011 #ifdef INET 7012 int 7013 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 7014 { 7015 struct pfi_kkif *kif; 7016 u_short action, reason = 0, log = 0; 7017 struct mbuf *m = *m0; 7018 struct ip *h = NULL; 7019 struct m_tag *ipfwtag; 7020 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7021 struct pf_kstate *s = NULL; 7022 struct pf_kruleset *ruleset = NULL; 7023 struct pf_pdesc pd; 7024 int off, dirndx, pqid = 0; 7025 7026 PF_RULES_RLOCK_TRACKER; 7027 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7028 M_ASSERTPKTHDR(m); 7029 7030 if (!V_pf_status.running) 7031 return (PF_PASS); 7032 7033 PF_RULES_RLOCK(); 7034 7035 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7036 7037 if (__predict_false(kif == NULL)) { 7038 DPFPRINTF(PF_DEBUG_URGENT, 7039 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7040 PF_RULES_RUNLOCK(); 7041 return (PF_DROP); 7042 } 7043 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7044 PF_RULES_RUNLOCK(); 7045 return (PF_PASS); 7046 } 7047 7048 if (m->m_flags & M_SKIP_FIREWALL) { 7049 PF_RULES_RUNLOCK(); 7050 return (PF_PASS); 7051 } 7052 7053 memset(&pd, 0, sizeof(pd)); 7054 pd.pf_mtag = pf_find_mtag(m); 7055 7056 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7057 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7058 7059 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7060 pd.pf_mtag->if_idxgen); 7061 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7062 PF_RULES_RUNLOCK(); 7063 m_freem(*m0); 7064 *m0 = NULL; 7065 return (PF_PASS); 7066 } 7067 PF_RULES_RUNLOCK(); 7068 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7069 *m0 = NULL; 7070 return (PF_PASS); 7071 } 7072 7073 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7074 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7075 pd.act.flags = pd.pf_mtag->dnflags; 7076 } 7077 7078 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7079 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7080 /* Dummynet re-injects packets after they've 7081 * completed their delay. We've already 7082 * processed them, so pass unconditionally. */ 7083 7084 /* But only once. We may see the packet multiple times (e.g. 7085 * PFIL_IN/PFIL_OUT). */ 7086 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7087 PF_RULES_RUNLOCK(); 7088 7089 return (PF_PASS); 7090 } 7091 7092 if (__predict_false(ip_divert_ptr != NULL) && 7093 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 7094 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 7095 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 7096 if (pd.pf_mtag == NULL && 7097 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7098 action = PF_DROP; 7099 goto done; 7100 } 7101 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 7102 m_tag_delete(m, ipfwtag); 7103 } 7104 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 7105 m->m_flags |= M_FASTFWD_OURS; 7106 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 7107 } 7108 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 7109 /* We do IP header normalization and packet reassembly here */ 7110 action = PF_DROP; 7111 goto done; 7112 } 7113 m = *m0; /* pf_normalize messes with m0 */ 7114 h = mtod(m, struct ip *); 7115 7116 off = h->ip_hl << 2; 7117 if (off < (int)sizeof(struct ip)) { 7118 action = PF_DROP; 7119 REASON_SET(&reason, PFRES_SHORT); 7120 log = 1; 7121 goto done; 7122 } 7123 7124 pd.src = (struct pf_addr *)&h->ip_src; 7125 pd.dst = (struct pf_addr *)&h->ip_dst; 7126 pd.sport = pd.dport = NULL; 7127 pd.ip_sum = &h->ip_sum; 7128 pd.proto_sum = NULL; 7129 pd.proto = h->ip_p; 7130 pd.dir = dir; 7131 pd.sidx = (dir == PF_IN) ? 0 : 1; 7132 pd.didx = (dir == PF_IN) ? 1 : 0; 7133 pd.af = AF_INET; 7134 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7135 pd.tot_len = ntohs(h->ip_len); 7136 7137 /* handle fragments that didn't get reassembled by normalization */ 7138 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7139 action = pf_test_fragment(&r, dir, kif, m, h, 7140 &pd, &a, &ruleset); 7141 goto done; 7142 } 7143 7144 switch (h->ip_p) { 7145 case IPPROTO_TCP: { 7146 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7147 &action, &reason, AF_INET)) { 7148 log = action != PF_PASS; 7149 goto done; 7150 } 7151 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7152 7153 pd.sport = &pd.hdr.tcp.th_sport; 7154 pd.dport = &pd.hdr.tcp.th_dport; 7155 7156 /* Respond to SYN with a syncookie. */ 7157 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 7158 pd.dir == PF_IN && pf_synflood_check(&pd)) { 7159 pf_syncookie_send(m, off, &pd); 7160 action = PF_DROP; 7161 break; 7162 } 7163 7164 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 7165 pqid = 1; 7166 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7167 if (action == PF_DROP) 7168 goto done; 7169 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7170 &reason); 7171 if (action == PF_PASS) { 7172 if (V_pfsync_update_state_ptr != NULL) 7173 V_pfsync_update_state_ptr(s); 7174 r = s->rule.ptr; 7175 a = s->anchor.ptr; 7176 log = s->log; 7177 } else if (s == NULL) { 7178 /* Validate remote SYN|ACK, re-create original SYN if 7179 * valid. */ 7180 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 7181 TH_ACK && pf_syncookie_validate(&pd) && 7182 pd.dir == PF_IN) { 7183 struct mbuf *msyn; 7184 7185 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 7186 off,&pd); 7187 if (msyn == NULL) { 7188 action = PF_DROP; 7189 break; 7190 } 7191 7192 action = pf_test(dir, pflags, ifp, &msyn, inp); 7193 m_freem(msyn); 7194 7195 if (action == PF_PASS) { 7196 action = pf_test_state_tcp(&s, dir, 7197 kif, m, off, h, &pd, &reason); 7198 if (action != PF_PASS || s == NULL) { 7199 action = PF_DROP; 7200 break; 7201 } 7202 7203 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 7204 - 1; 7205 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 7206 - 1; 7207 pf_set_protostate(s, PF_PEER_SRC, 7208 PF_TCPS_PROXY_DST); 7209 7210 action = pf_synproxy(&pd, &s, &reason); 7211 if (action != PF_PASS) 7212 break; 7213 } 7214 break; 7215 } 7216 else { 7217 action = pf_test_rule(&r, &s, dir, kif, m, off, 7218 &pd, &a, &ruleset, inp); 7219 } 7220 } 7221 break; 7222 } 7223 7224 case IPPROTO_UDP: { 7225 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7226 &action, &reason, AF_INET)) { 7227 log = action != PF_PASS; 7228 goto done; 7229 } 7230 pd.sport = &pd.hdr.udp.uh_sport; 7231 pd.dport = &pd.hdr.udp.uh_dport; 7232 if (pd.hdr.udp.uh_dport == 0 || 7233 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7234 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7235 action = PF_DROP; 7236 REASON_SET(&reason, PFRES_SHORT); 7237 goto done; 7238 } 7239 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7240 if (action == PF_PASS) { 7241 if (V_pfsync_update_state_ptr != NULL) 7242 V_pfsync_update_state_ptr(s); 7243 r = s->rule.ptr; 7244 a = s->anchor.ptr; 7245 log = s->log; 7246 } else if (s == NULL) 7247 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7248 &a, &ruleset, inp); 7249 break; 7250 } 7251 7252 case IPPROTO_ICMP: { 7253 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7254 &action, &reason, AF_INET)) { 7255 log = action != PF_PASS; 7256 goto done; 7257 } 7258 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 7259 &reason); 7260 if (action == PF_PASS) { 7261 if (V_pfsync_update_state_ptr != NULL) 7262 V_pfsync_update_state_ptr(s); 7263 r = s->rule.ptr; 7264 a = s->anchor.ptr; 7265 log = s->log; 7266 } else if (s == NULL) 7267 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7268 &a, &ruleset, inp); 7269 break; 7270 } 7271 7272 #ifdef INET6 7273 case IPPROTO_ICMPV6: { 7274 action = PF_DROP; 7275 DPFPRINTF(PF_DEBUG_MISC, 7276 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7277 goto done; 7278 } 7279 #endif 7280 7281 default: 7282 action = pf_test_state_other(&s, dir, kif, m, &pd); 7283 if (action == PF_PASS) { 7284 if (V_pfsync_update_state_ptr != NULL) 7285 V_pfsync_update_state_ptr(s); 7286 r = s->rule.ptr; 7287 a = s->anchor.ptr; 7288 log = s->log; 7289 } else if (s == NULL) 7290 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7291 &a, &ruleset, inp); 7292 break; 7293 } 7294 7295 done: 7296 PF_RULES_RUNLOCK(); 7297 if (action == PF_PASS && h->ip_hl > 5 && 7298 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7299 action = PF_DROP; 7300 REASON_SET(&reason, PFRES_IPOPTIONS); 7301 log = r->log; 7302 DPFPRINTF(PF_DEBUG_MISC, 7303 ("pf: dropping packet with ip options\n")); 7304 } 7305 7306 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7307 action = PF_DROP; 7308 REASON_SET(&reason, PFRES_MEMORY); 7309 } 7310 if (r->rtableid >= 0) 7311 M_SETFIB(m, r->rtableid); 7312 7313 if (r->scrub_flags & PFSTATE_SETPRIO) { 7314 if (pd.tos & IPTOS_LOWDELAY) 7315 pqid = 1; 7316 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7317 action = PF_DROP; 7318 REASON_SET(&reason, PFRES_MEMORY); 7319 log = 1; 7320 DPFPRINTF(PF_DEBUG_MISC, 7321 ("pf: failed to allocate 802.1q mtag\n")); 7322 } 7323 } 7324 7325 #ifdef ALTQ 7326 if (s && s->qid) { 7327 pd.act.pqid = s->pqid; 7328 pd.act.qid = s->qid; 7329 } else if (r->qid) { 7330 pd.act.pqid = r->pqid; 7331 pd.act.qid = r->qid; 7332 } 7333 if (action == PF_PASS && pd.act.qid) { 7334 if (pd.pf_mtag == NULL && 7335 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7336 action = PF_DROP; 7337 REASON_SET(&reason, PFRES_MEMORY); 7338 } else { 7339 if (s != NULL) 7340 pd.pf_mtag->qid_hash = pf_state_hash(s); 7341 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 7342 pd.pf_mtag->qid = pd.act.pqid; 7343 else 7344 pd.pf_mtag->qid = pd.act.qid; 7345 /* Add hints for ecn. */ 7346 pd.pf_mtag->hdr = h; 7347 } 7348 } 7349 #endif /* ALTQ */ 7350 7351 /* 7352 * connections redirected to loopback should not match sockets 7353 * bound specifically to loopback due to security implications, 7354 * see tcp_input() and in_pcblookup_listen(). 7355 */ 7356 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7357 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7358 (s->nat_rule.ptr->action == PF_RDR || 7359 s->nat_rule.ptr->action == PF_BINAT) && 7360 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7361 m->m_flags |= M_SKIP_FIREWALL; 7362 7363 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7364 r->divert.port && !PACKET_LOOPED(&pd)) { 7365 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7366 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7367 if (ipfwtag != NULL) { 7368 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7369 ntohs(r->divert.port); 7370 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7371 7372 if (s) 7373 PF_STATE_UNLOCK(s); 7374 7375 m_tag_prepend(m, ipfwtag); 7376 if (m->m_flags & M_FASTFWD_OURS) { 7377 if (pd.pf_mtag == NULL && 7378 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7379 action = PF_DROP; 7380 REASON_SET(&reason, PFRES_MEMORY); 7381 log = 1; 7382 DPFPRINTF(PF_DEBUG_MISC, 7383 ("pf: failed to allocate tag\n")); 7384 } else { 7385 pd.pf_mtag->flags |= 7386 PF_FASTFWD_OURS_PRESENT; 7387 m->m_flags &= ~M_FASTFWD_OURS; 7388 } 7389 } 7390 ip_divert_ptr(*m0, dir == PF_IN); 7391 *m0 = NULL; 7392 7393 return (action); 7394 } else { 7395 /* XXX: ipfw has the same behaviour! */ 7396 action = PF_DROP; 7397 REASON_SET(&reason, PFRES_MEMORY); 7398 log = 1; 7399 DPFPRINTF(PF_DEBUG_MISC, 7400 ("pf: failed to allocate divert tag\n")); 7401 } 7402 } 7403 7404 if (log) { 7405 struct pf_krule *lr; 7406 7407 if (s != NULL && s->nat_rule.ptr != NULL && 7408 s->nat_rule.ptr->log & PF_LOG_ALL) 7409 lr = s->nat_rule.ptr; 7410 else 7411 lr = r; 7412 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 7413 (s == NULL)); 7414 } 7415 7416 pf_counter_u64_critical_enter(); 7417 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7418 pd.tot_len); 7419 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7420 1); 7421 7422 if (action == PF_PASS || r->action == PF_DROP) { 7423 dirndx = (dir == PF_OUT); 7424 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7425 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7426 pf_update_timestamp(r); 7427 7428 if (a != NULL) { 7429 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7430 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7431 } 7432 if (s != NULL) { 7433 if (s->nat_rule.ptr != NULL) { 7434 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7435 1); 7436 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7437 pd.tot_len); 7438 } 7439 if (s->src_node != NULL) { 7440 counter_u64_add(s->src_node->packets[dirndx], 7441 1); 7442 counter_u64_add(s->src_node->bytes[dirndx], 7443 pd.tot_len); 7444 } 7445 if (s->nat_src_node != NULL) { 7446 counter_u64_add(s->nat_src_node->packets[dirndx], 7447 1); 7448 counter_u64_add(s->nat_src_node->bytes[dirndx], 7449 pd.tot_len); 7450 } 7451 dirndx = (dir == s->direction) ? 0 : 1; 7452 s->packets[dirndx]++; 7453 s->bytes[dirndx] += pd.tot_len; 7454 } 7455 tr = r; 7456 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7457 if (nr != NULL && r == &V_pf_default_rule) 7458 tr = nr; 7459 if (tr->src.addr.type == PF_ADDR_TABLE) 7460 pfr_update_stats(tr->src.addr.p.tbl, 7461 (s == NULL) ? pd.src : 7462 &s->key[(s->direction == PF_IN)]-> 7463 addr[(s->direction == PF_OUT)], 7464 pd.af, pd.tot_len, dir == PF_OUT, 7465 r->action == PF_PASS, tr->src.neg); 7466 if (tr->dst.addr.type == PF_ADDR_TABLE) 7467 pfr_update_stats(tr->dst.addr.p.tbl, 7468 (s == NULL) ? pd.dst : 7469 &s->key[(s->direction == PF_IN)]-> 7470 addr[(s->direction == PF_IN)], 7471 pd.af, pd.tot_len, dir == PF_OUT, 7472 r->action == PF_PASS, tr->dst.neg); 7473 } 7474 pf_counter_u64_critical_exit(); 7475 7476 switch (action) { 7477 case PF_SYNPROXY_DROP: 7478 m_freem(*m0); 7479 case PF_DEFER: 7480 *m0 = NULL; 7481 action = PF_PASS; 7482 break; 7483 case PF_DROP: 7484 m_freem(*m0); 7485 *m0 = NULL; 7486 break; 7487 default: 7488 /* pf_route() returns unlocked. */ 7489 if (r->rt) { 7490 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7491 return (action); 7492 } 7493 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 7494 action = PF_DROP; 7495 REASON_SET(&reason, PFRES_MEMORY); 7496 } 7497 break; 7498 } 7499 7500 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7501 7502 if (s) 7503 PF_STATE_UNLOCK(s); 7504 7505 return (action); 7506 } 7507 #endif /* INET */ 7508 7509 #ifdef INET6 7510 int 7511 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 7512 { 7513 struct pfi_kkif *kif; 7514 u_short action, reason = 0, log = 0; 7515 struct mbuf *m = *m0, *n = NULL; 7516 struct m_tag *mtag; 7517 struct ip6_hdr *h = NULL; 7518 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7519 struct pf_kstate *s = NULL; 7520 struct pf_kruleset *ruleset = NULL; 7521 struct pf_pdesc pd; 7522 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 7523 7524 PF_RULES_RLOCK_TRACKER; 7525 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7526 M_ASSERTPKTHDR(m); 7527 7528 if (!V_pf_status.running) 7529 return (PF_PASS); 7530 7531 PF_RULES_RLOCK(); 7532 7533 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7534 if (__predict_false(kif == NULL)) { 7535 DPFPRINTF(PF_DEBUG_URGENT, 7536 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7537 PF_RULES_RUNLOCK(); 7538 return (PF_DROP); 7539 } 7540 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7541 PF_RULES_RUNLOCK(); 7542 return (PF_PASS); 7543 } 7544 7545 if (m->m_flags & M_SKIP_FIREWALL) { 7546 PF_RULES_RUNLOCK(); 7547 return (PF_PASS); 7548 } 7549 7550 memset(&pd, 0, sizeof(pd)); 7551 pd.pf_mtag = pf_find_mtag(m); 7552 7553 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7554 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7555 7556 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7557 pd.pf_mtag->if_idxgen); 7558 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7559 PF_RULES_RUNLOCK(); 7560 m_freem(*m0); 7561 *m0 = NULL; 7562 return (PF_PASS); 7563 } 7564 PF_RULES_RUNLOCK(); 7565 nd6_output_ifp(ifp, ifp, m, 7566 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 7567 *m0 = NULL; 7568 return (PF_PASS); 7569 } 7570 7571 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7572 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7573 pd.act.flags = pd.pf_mtag->dnflags; 7574 } 7575 7576 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7577 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7578 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7579 /* Dummynet re-injects packets after they've 7580 * completed their delay. We've already 7581 * processed them, so pass unconditionally. */ 7582 PF_RULES_RUNLOCK(); 7583 return (PF_PASS); 7584 } 7585 7586 /* We do IP header normalization and packet reassembly here */ 7587 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 7588 action = PF_DROP; 7589 goto done; 7590 } 7591 m = *m0; /* pf_normalize messes with m0 */ 7592 h = mtod(m, struct ip6_hdr *); 7593 7594 /* 7595 * we do not support jumbogram. if we keep going, zero ip6_plen 7596 * will do something bad, so drop the packet for now. 7597 */ 7598 if (htons(h->ip6_plen) == 0) { 7599 action = PF_DROP; 7600 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 7601 goto done; 7602 } 7603 7604 pd.src = (struct pf_addr *)&h->ip6_src; 7605 pd.dst = (struct pf_addr *)&h->ip6_dst; 7606 pd.sport = pd.dport = NULL; 7607 pd.ip_sum = NULL; 7608 pd.proto_sum = NULL; 7609 pd.dir = dir; 7610 pd.sidx = (dir == PF_IN) ? 0 : 1; 7611 pd.didx = (dir == PF_IN) ? 1 : 0; 7612 pd.af = AF_INET6; 7613 pd.tos = IPV6_DSCP(h); 7614 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 7615 7616 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 7617 pd.proto = h->ip6_nxt; 7618 do { 7619 switch (pd.proto) { 7620 case IPPROTO_FRAGMENT: 7621 action = pf_test_fragment(&r, dir, kif, m, h, 7622 &pd, &a, &ruleset); 7623 if (action == PF_DROP) 7624 REASON_SET(&reason, PFRES_FRAG); 7625 goto done; 7626 case IPPROTO_ROUTING: { 7627 struct ip6_rthdr rthdr; 7628 7629 if (rh_cnt++) { 7630 DPFPRINTF(PF_DEBUG_MISC, 7631 ("pf: IPv6 more than one rthdr\n")); 7632 action = PF_DROP; 7633 REASON_SET(&reason, PFRES_IPOPTIONS); 7634 log = 1; 7635 goto done; 7636 } 7637 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 7638 &reason, pd.af)) { 7639 DPFPRINTF(PF_DEBUG_MISC, 7640 ("pf: IPv6 short rthdr\n")); 7641 action = PF_DROP; 7642 REASON_SET(&reason, PFRES_SHORT); 7643 log = 1; 7644 goto done; 7645 } 7646 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 7647 DPFPRINTF(PF_DEBUG_MISC, 7648 ("pf: IPv6 rthdr0\n")); 7649 action = PF_DROP; 7650 REASON_SET(&reason, PFRES_IPOPTIONS); 7651 log = 1; 7652 goto done; 7653 } 7654 /* FALLTHROUGH */ 7655 } 7656 case IPPROTO_AH: 7657 case IPPROTO_HOPOPTS: 7658 case IPPROTO_DSTOPTS: { 7659 /* get next header and header length */ 7660 struct ip6_ext opt6; 7661 7662 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 7663 NULL, &reason, pd.af)) { 7664 DPFPRINTF(PF_DEBUG_MISC, 7665 ("pf: IPv6 short opt\n")); 7666 action = PF_DROP; 7667 log = 1; 7668 goto done; 7669 } 7670 if (pd.proto == IPPROTO_AH) 7671 off += (opt6.ip6e_len + 2) * 4; 7672 else 7673 off += (opt6.ip6e_len + 1) * 8; 7674 pd.proto = opt6.ip6e_nxt; 7675 /* goto the next header */ 7676 break; 7677 } 7678 default: 7679 terminal++; 7680 break; 7681 } 7682 } while (!terminal); 7683 7684 /* if there's no routing header, use unmodified mbuf for checksumming */ 7685 if (!n) 7686 n = m; 7687 7688 switch (pd.proto) { 7689 case IPPROTO_TCP: { 7690 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7691 &action, &reason, AF_INET6)) { 7692 log = action != PF_PASS; 7693 goto done; 7694 } 7695 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7696 pd.sport = &pd.hdr.tcp.th_sport; 7697 pd.dport = &pd.hdr.tcp.th_dport; 7698 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7699 if (action == PF_DROP) 7700 goto done; 7701 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7702 &reason); 7703 if (action == PF_PASS) { 7704 if (V_pfsync_update_state_ptr != NULL) 7705 V_pfsync_update_state_ptr(s); 7706 r = s->rule.ptr; 7707 a = s->anchor.ptr; 7708 log = s->log; 7709 } else if (s == NULL) 7710 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7711 &a, &ruleset, inp); 7712 break; 7713 } 7714 7715 case IPPROTO_UDP: { 7716 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7717 &action, &reason, AF_INET6)) { 7718 log = action != PF_PASS; 7719 goto done; 7720 } 7721 pd.sport = &pd.hdr.udp.uh_sport; 7722 pd.dport = &pd.hdr.udp.uh_dport; 7723 if (pd.hdr.udp.uh_dport == 0 || 7724 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7725 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7726 action = PF_DROP; 7727 REASON_SET(&reason, PFRES_SHORT); 7728 goto done; 7729 } 7730 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7731 if (action == PF_PASS) { 7732 if (V_pfsync_update_state_ptr != NULL) 7733 V_pfsync_update_state_ptr(s); 7734 r = s->rule.ptr; 7735 a = s->anchor.ptr; 7736 log = s->log; 7737 } else if (s == NULL) 7738 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7739 &a, &ruleset, inp); 7740 break; 7741 } 7742 7743 case IPPROTO_ICMP: { 7744 action = PF_DROP; 7745 DPFPRINTF(PF_DEBUG_MISC, 7746 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7747 goto done; 7748 } 7749 7750 case IPPROTO_ICMPV6: { 7751 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7752 &action, &reason, AF_INET6)) { 7753 log = action != PF_PASS; 7754 goto done; 7755 } 7756 action = pf_test_state_icmp(&s, dir, kif, 7757 m, off, h, &pd, &reason); 7758 if (action == PF_PASS) { 7759 if (V_pfsync_update_state_ptr != NULL) 7760 V_pfsync_update_state_ptr(s); 7761 r = s->rule.ptr; 7762 a = s->anchor.ptr; 7763 log = s->log; 7764 } else if (s == NULL) 7765 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7766 &a, &ruleset, inp); 7767 break; 7768 } 7769 7770 default: 7771 action = pf_test_state_other(&s, dir, kif, m, &pd); 7772 if (action == PF_PASS) { 7773 if (V_pfsync_update_state_ptr != NULL) 7774 V_pfsync_update_state_ptr(s); 7775 r = s->rule.ptr; 7776 a = s->anchor.ptr; 7777 log = s->log; 7778 } else if (s == NULL) 7779 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7780 &a, &ruleset, inp); 7781 break; 7782 } 7783 7784 done: 7785 PF_RULES_RUNLOCK(); 7786 if (n != m) { 7787 m_freem(n); 7788 n = NULL; 7789 } 7790 7791 /* handle dangerous IPv6 extension headers. */ 7792 if (action == PF_PASS && rh_cnt && 7793 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7794 action = PF_DROP; 7795 REASON_SET(&reason, PFRES_IPOPTIONS); 7796 log = r->log; 7797 DPFPRINTF(PF_DEBUG_MISC, 7798 ("pf: dropping packet with dangerous v6 headers\n")); 7799 } 7800 7801 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7802 action = PF_DROP; 7803 REASON_SET(&reason, PFRES_MEMORY); 7804 } 7805 if (r->rtableid >= 0) 7806 M_SETFIB(m, r->rtableid); 7807 7808 if (r->scrub_flags & PFSTATE_SETPRIO) { 7809 if (pd.tos & IPTOS_LOWDELAY) 7810 pqid = 1; 7811 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7812 action = PF_DROP; 7813 REASON_SET(&reason, PFRES_MEMORY); 7814 log = 1; 7815 DPFPRINTF(PF_DEBUG_MISC, 7816 ("pf: failed to allocate 802.1q mtag\n")); 7817 } 7818 } 7819 7820 #ifdef ALTQ 7821 if (s && s->qid) { 7822 pd.act.pqid = s->pqid; 7823 pd.act.qid = s->qid; 7824 } else if (r->qid) { 7825 pd.act.pqid = r->pqid; 7826 pd.act.qid = r->qid; 7827 } 7828 if (action == PF_PASS && pd.act.qid) { 7829 if (pd.pf_mtag == NULL && 7830 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7831 action = PF_DROP; 7832 REASON_SET(&reason, PFRES_MEMORY); 7833 } else { 7834 if (s != NULL) 7835 pd.pf_mtag->qid_hash = pf_state_hash(s); 7836 if (pd.tos & IPTOS_LOWDELAY) 7837 pd.pf_mtag->qid = pd.act.pqid; 7838 else 7839 pd.pf_mtag->qid = pd.act.qid; 7840 /* Add hints for ecn. */ 7841 pd.pf_mtag->hdr = h; 7842 } 7843 } 7844 #endif /* ALTQ */ 7845 7846 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7847 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7848 (s->nat_rule.ptr->action == PF_RDR || 7849 s->nat_rule.ptr->action == PF_BINAT) && 7850 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7851 m->m_flags |= M_SKIP_FIREWALL; 7852 7853 /* XXX: Anybody working on it?! */ 7854 if (r->divert.port) 7855 printf("pf: divert(9) is not supported for IPv6\n"); 7856 7857 if (log) { 7858 struct pf_krule *lr; 7859 7860 if (s != NULL && s->nat_rule.ptr != NULL && 7861 s->nat_rule.ptr->log & PF_LOG_ALL) 7862 lr = s->nat_rule.ptr; 7863 else 7864 lr = r; 7865 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 7866 &pd, (s == NULL)); 7867 } 7868 7869 pf_counter_u64_critical_enter(); 7870 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 7871 pd.tot_len); 7872 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 7873 1); 7874 7875 if (action == PF_PASS || r->action == PF_DROP) { 7876 dirndx = (dir == PF_OUT); 7877 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7878 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7879 if (a != NULL) { 7880 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7881 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7882 } 7883 if (s != NULL) { 7884 if (s->nat_rule.ptr != NULL) { 7885 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7886 1); 7887 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7888 pd.tot_len); 7889 } 7890 if (s->src_node != NULL) { 7891 counter_u64_add(s->src_node->packets[dirndx], 7892 1); 7893 counter_u64_add(s->src_node->bytes[dirndx], 7894 pd.tot_len); 7895 } 7896 if (s->nat_src_node != NULL) { 7897 counter_u64_add(s->nat_src_node->packets[dirndx], 7898 1); 7899 counter_u64_add(s->nat_src_node->bytes[dirndx], 7900 pd.tot_len); 7901 } 7902 dirndx = (dir == s->direction) ? 0 : 1; 7903 s->packets[dirndx]++; 7904 s->bytes[dirndx] += pd.tot_len; 7905 } 7906 tr = r; 7907 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7908 if (nr != NULL && r == &V_pf_default_rule) 7909 tr = nr; 7910 if (tr->src.addr.type == PF_ADDR_TABLE) 7911 pfr_update_stats(tr->src.addr.p.tbl, 7912 (s == NULL) ? pd.src : 7913 &s->key[(s->direction == PF_IN)]->addr[0], 7914 pd.af, pd.tot_len, dir == PF_OUT, 7915 r->action == PF_PASS, tr->src.neg); 7916 if (tr->dst.addr.type == PF_ADDR_TABLE) 7917 pfr_update_stats(tr->dst.addr.p.tbl, 7918 (s == NULL) ? pd.dst : 7919 &s->key[(s->direction == PF_IN)]->addr[1], 7920 pd.af, pd.tot_len, dir == PF_OUT, 7921 r->action == PF_PASS, tr->dst.neg); 7922 } 7923 pf_counter_u64_critical_exit(); 7924 7925 switch (action) { 7926 case PF_SYNPROXY_DROP: 7927 m_freem(*m0); 7928 case PF_DEFER: 7929 *m0 = NULL; 7930 action = PF_PASS; 7931 break; 7932 case PF_DROP: 7933 m_freem(*m0); 7934 *m0 = NULL; 7935 break; 7936 default: 7937 /* pf_route6() returns unlocked. */ 7938 if (r->rt) { 7939 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7940 return (action); 7941 } 7942 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 7943 action = PF_DROP; 7944 REASON_SET(&reason, PFRES_MEMORY); 7945 } 7946 break; 7947 } 7948 7949 if (s) 7950 PF_STATE_UNLOCK(s); 7951 7952 /* If reassembled packet passed, create new fragments. */ 7953 if (action == PF_PASS && *m0 && dir == PF_OUT && 7954 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7955 action = pf_refragment6(ifp, m0, mtag); 7956 7957 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7958 7959 return (action); 7960 } 7961 #endif /* INET6 */ 7962