1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #if defined(SCTP) || defined(SCTP_SUPPORT) 115 #include <netinet/sctp_crc32.h> 116 #endif 117 118 #include <machine/in_cksum.h> 119 #include <security/mac/mac_framework.h> 120 121 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 122 123 SDT_PROVIDER_DEFINE(pf); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 127 "struct pf_kstate *"); 128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 130 "struct pf_kstate *"); 131 132 /* 133 * Global variables 134 */ 135 136 /* state tables */ 137 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 138 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 139 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 140 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 141 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 142 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 143 VNET_DEFINE(struct pf_kstatus, pf_status); 144 145 VNET_DEFINE(u_int32_t, ticket_altqs_active); 146 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 147 VNET_DEFINE(int, altqs_inactive_open); 148 VNET_DEFINE(u_int32_t, ticket_pabuf); 149 150 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 151 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 152 VNET_DEFINE(u_char, pf_tcp_secret[16]); 153 #define V_pf_tcp_secret VNET(pf_tcp_secret) 154 VNET_DEFINE(int, pf_tcp_secret_init); 155 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 156 VNET_DEFINE(int, pf_tcp_iss_off); 157 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 158 VNET_DECLARE(int, pf_vnet_active); 159 #define V_pf_vnet_active VNET(pf_vnet_active) 160 161 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 162 #define V_pf_purge_idx VNET(pf_purge_idx) 163 164 #ifdef PF_WANT_32_TO_64_COUNTER 165 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 166 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 167 168 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 169 VNET_DEFINE(size_t, pf_allrulecount); 170 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 171 #endif 172 173 /* 174 * Queue for pf_intr() sends. 175 */ 176 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 177 struct pf_send_entry { 178 STAILQ_ENTRY(pf_send_entry) pfse_next; 179 struct mbuf *pfse_m; 180 enum { 181 PFSE_IP, 182 PFSE_IP6, 183 PFSE_ICMP, 184 PFSE_ICMP6, 185 } pfse_type; 186 struct { 187 int type; 188 int code; 189 int mtu; 190 } icmpopts; 191 }; 192 193 STAILQ_HEAD(pf_send_head, pf_send_entry); 194 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 195 #define V_pf_sendqueue VNET(pf_sendqueue) 196 197 static struct mtx_padalign pf_sendqueue_mtx; 198 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 199 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 200 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 201 202 /* 203 * Queue for pf_overload_task() tasks. 204 */ 205 struct pf_overload_entry { 206 SLIST_ENTRY(pf_overload_entry) next; 207 struct pf_addr addr; 208 sa_family_t af; 209 uint8_t dir; 210 struct pf_krule *rule; 211 }; 212 213 SLIST_HEAD(pf_overload_head, pf_overload_entry); 214 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 215 #define V_pf_overloadqueue VNET(pf_overloadqueue) 216 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 217 #define V_pf_overloadtask VNET(pf_overloadtask) 218 219 static struct mtx_padalign pf_overloadqueue_mtx; 220 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 221 "pf overload/flush queue", MTX_DEF); 222 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 223 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 224 225 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 226 struct mtx_padalign pf_unlnkdrules_mtx; 227 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 228 MTX_DEF); 229 230 struct mtx_padalign pf_table_stats_lock; 231 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 232 MTX_DEF); 233 234 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 235 #define V_pf_sources_z VNET(pf_sources_z) 236 uma_zone_t pf_mtag_z; 237 VNET_DEFINE(uma_zone_t, pf_state_z); 238 VNET_DEFINE(uma_zone_t, pf_state_key_z); 239 240 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 241 #define PFID_CPUBITS 8 242 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 243 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 244 #define PFID_MAXID (~PFID_CPUMASK) 245 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 246 247 static void pf_src_tree_remove_state(struct pf_kstate *); 248 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 249 u_int32_t); 250 static void pf_add_threshold(struct pf_threshold *); 251 static int pf_check_threshold(struct pf_threshold *); 252 253 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 254 u_int16_t *, u_int16_t *, struct pf_addr *, 255 u_int16_t, u_int8_t, sa_family_t); 256 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 257 struct tcphdr *, struct pf_state_peer *); 258 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 259 struct pf_addr *, struct pf_addr *, u_int16_t, 260 u_int16_t *, u_int16_t *, u_int16_t *, 261 u_int16_t *, u_int8_t, sa_family_t); 262 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 263 sa_family_t, struct pf_krule *); 264 static void pf_detach_state(struct pf_kstate *); 265 static int pf_state_key_attach(struct pf_state_key *, 266 struct pf_state_key *, struct pf_kstate *); 267 static void pf_state_key_detach(struct pf_kstate *, int); 268 static int pf_state_key_ctor(void *, int, void *, int); 269 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 270 void pf_rule_to_actions(struct pf_krule *, 271 struct pf_rule_actions *); 272 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 273 int, struct pfi_kkif *, struct mbuf *, int, 274 struct pf_pdesc *, struct pf_krule **, 275 struct pf_kruleset **, struct inpcb *); 276 static int pf_create_state(struct pf_krule *, struct pf_krule *, 277 struct pf_krule *, struct pf_pdesc *, 278 struct pf_ksrc_node *, struct pf_state_key *, 279 struct pf_state_key *, struct mbuf *, int, 280 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 281 struct pf_kstate **, int, u_int16_t, u_int16_t, 282 int); 283 static int pf_test_fragment(struct pf_krule **, int, 284 struct pfi_kkif *, struct mbuf *, void *, 285 struct pf_pdesc *, struct pf_krule **, 286 struct pf_kruleset **); 287 static int pf_tcp_track_full(struct pf_kstate **, 288 struct pfi_kkif *, struct mbuf *, int, 289 struct pf_pdesc *, u_short *, int *); 290 static int pf_tcp_track_sloppy(struct pf_kstate **, 291 struct pf_pdesc *, u_short *); 292 static int pf_test_state_tcp(struct pf_kstate **, int, 293 struct pfi_kkif *, struct mbuf *, int, 294 void *, struct pf_pdesc *, u_short *); 295 static int pf_test_state_udp(struct pf_kstate **, int, 296 struct pfi_kkif *, struct mbuf *, int, 297 void *, struct pf_pdesc *); 298 static int pf_test_state_icmp(struct pf_kstate **, int, 299 struct pfi_kkif *, struct mbuf *, int, 300 void *, struct pf_pdesc *, u_short *); 301 static int pf_test_state_other(struct pf_kstate **, int, 302 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 303 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 304 int, u_int16_t); 305 static int pf_check_proto_cksum(struct mbuf *, int, int, 306 u_int8_t, sa_family_t); 307 static void pf_print_state_parts(struct pf_kstate *, 308 struct pf_state_key *, struct pf_state_key *); 309 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 310 struct pf_addr_wrap *); 311 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 312 bool, u_int8_t); 313 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 314 struct pf_state_key_cmp *, u_int); 315 static int pf_src_connlimit(struct pf_kstate **); 316 static void pf_overload_task(void *v, int pending); 317 static int pf_insert_src_node(struct pf_ksrc_node **, 318 struct pf_krule *, struct pf_addr *, sa_family_t); 319 static u_int pf_purge_expired_states(u_int, int); 320 static void pf_purge_unlinked_rules(void); 321 static int pf_mtag_uminit(void *, int, int); 322 static void pf_mtag_free(struct m_tag *); 323 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 324 int, struct pf_state_key *); 325 #ifdef INET 326 static void pf_route(struct mbuf **, struct pf_krule *, int, 327 struct ifnet *, struct pf_kstate *, 328 struct pf_pdesc *, struct inpcb *); 329 #endif /* INET */ 330 #ifdef INET6 331 static void pf_change_a6(struct pf_addr *, u_int16_t *, 332 struct pf_addr *, u_int8_t); 333 static void pf_route6(struct mbuf **, struct pf_krule *, int, 334 struct ifnet *, struct pf_kstate *, 335 struct pf_pdesc *, struct inpcb *); 336 #endif /* INET6 */ 337 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 338 339 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 340 341 extern int pf_end_threads; 342 extern struct proc *pf_purge_proc; 343 344 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 345 346 #define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \ 347 do { \ 348 struct pf_state_key *nk; \ 349 if ((_dir) == PF_OUT) \ 350 nk = (_s)->key[PF_SK_STACK]; \ 351 else \ 352 nk = (_s)->key[PF_SK_WIRE]; \ 353 pf_packet_rework_nat(_m, _pd, _off, nk); \ 354 } while (0) 355 356 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 357 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 358 359 #define STATE_LOOKUP(i, k, d, s, pd) \ 360 do { \ 361 (s) = pf_find_state((i), (k), (d)); \ 362 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 363 if ((s) == NULL) \ 364 return (PF_DROP); \ 365 if (PACKET_LOOPED(pd)) \ 366 return (PF_PASS); \ 367 } while (0) 368 369 #define BOUND_IFACE(r, k) \ 370 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 371 372 #define STATE_INC_COUNTERS(s) \ 373 do { \ 374 counter_u64_add(s->rule.ptr->states_cur, 1); \ 375 counter_u64_add(s->rule.ptr->states_tot, 1); \ 376 if (s->anchor.ptr != NULL) { \ 377 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 378 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 379 } \ 380 if (s->nat_rule.ptr != NULL) { \ 381 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 382 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 383 } \ 384 } while (0) 385 386 #define STATE_DEC_COUNTERS(s) \ 387 do { \ 388 if (s->nat_rule.ptr != NULL) \ 389 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 390 if (s->anchor.ptr != NULL) \ 391 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 392 counter_u64_add(s->rule.ptr->states_cur, -1); \ 393 } while (0) 394 395 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 396 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 397 VNET_DEFINE(struct pf_idhash *, pf_idhash); 398 VNET_DEFINE(struct pf_srchash *, pf_srchash); 399 400 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 401 "pf(4)"); 402 403 u_long pf_hashmask; 404 u_long pf_srchashmask; 405 static u_long pf_hashsize; 406 static u_long pf_srchashsize; 407 u_long pf_ioctl_maxcount = 65535; 408 409 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 410 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 411 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 412 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 413 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 414 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 415 416 VNET_DEFINE(void *, pf_swi_cookie); 417 VNET_DEFINE(struct intr_event *, pf_swi_ie); 418 419 VNET_DEFINE(uint32_t, pf_hashseed); 420 #define V_pf_hashseed VNET(pf_hashseed) 421 422 #ifdef __LP64__ 423 static int 424 pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig) 425 { 426 unsigned long *k1 = (unsigned long *)k1_orig; 427 unsigned long *k2 = (unsigned long *)k2_orig; 428 429 if (k1[0] != k2[0]) 430 return (1); 431 432 if (k1[1] != k2[1]) 433 return (1); 434 435 if (k1[2] != k2[2]) 436 return (1); 437 438 if (k1[3] != k2[3]) 439 return (1); 440 441 if (k1[4] != k2[4]) 442 return (1); 443 444 return (0); 445 } 446 _Static_assert(sizeof(struct pf_state_key_cmp) == 40, "bad size of pf_state_key_cmp"); 447 #else 448 static inline int 449 pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig) 450 { 451 452 return (bcmp(k1_orig, k2_orig, sizeof(struct pf_state_key_cmp))); 453 } 454 #endif 455 456 int 457 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 458 { 459 460 switch (af) { 461 #ifdef INET 462 case AF_INET: 463 if (a->addr32[0] > b->addr32[0]) 464 return (1); 465 if (a->addr32[0] < b->addr32[0]) 466 return (-1); 467 break; 468 #endif /* INET */ 469 #ifdef INET6 470 case AF_INET6: 471 if (a->addr32[3] > b->addr32[3]) 472 return (1); 473 if (a->addr32[3] < b->addr32[3]) 474 return (-1); 475 if (a->addr32[2] > b->addr32[2]) 476 return (1); 477 if (a->addr32[2] < b->addr32[2]) 478 return (-1); 479 if (a->addr32[1] > b->addr32[1]) 480 return (1); 481 if (a->addr32[1] < b->addr32[1]) 482 return (-1); 483 if (a->addr32[0] > b->addr32[0]) 484 return (1); 485 if (a->addr32[0] < b->addr32[0]) 486 return (-1); 487 break; 488 #endif /* INET6 */ 489 default: 490 panic("%s: unknown address family %u", __func__, af); 491 } 492 return (0); 493 } 494 495 static void 496 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 497 struct pf_state_key *nk) 498 { 499 500 switch (pd->proto) { 501 case IPPROTO_TCP: { 502 struct tcphdr *th = &pd->hdr.tcp; 503 504 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 505 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 506 &th->th_sum, &nk->addr[pd->sidx], 507 nk->port[pd->sidx], 0, pd->af); 508 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 509 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 510 &th->th_sum, &nk->addr[pd->didx], 511 nk->port[pd->didx], 0, pd->af); 512 m_copyback(m, off, sizeof(*th), (caddr_t)th); 513 break; 514 } 515 case IPPROTO_UDP: { 516 struct udphdr *uh = &pd->hdr.udp; 517 518 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 519 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 520 &uh->uh_sum, &nk->addr[pd->sidx], 521 nk->port[pd->sidx], 1, pd->af); 522 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 523 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 524 &uh->uh_sum, &nk->addr[pd->didx], 525 nk->port[pd->didx], 1, pd->af); 526 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 527 break; 528 } 529 case IPPROTO_ICMP: { 530 struct icmp *ih = &pd->hdr.icmp; 531 532 if (nk->port[pd->sidx] != ih->icmp_id) { 533 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 534 ih->icmp_cksum, ih->icmp_id, 535 nk->port[pd->sidx], 0); 536 ih->icmp_id = nk->port[pd->sidx]; 537 pd->sport = &ih->icmp_id; 538 539 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 540 } 541 /* FALLTHROUGH */ 542 } 543 default: 544 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 545 switch (pd->af) { 546 case AF_INET: 547 pf_change_a(&pd->src->v4.s_addr, 548 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 549 0); 550 break; 551 case AF_INET6: 552 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 553 break; 554 } 555 } 556 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 557 switch (pd->af) { 558 case AF_INET: 559 pf_change_a(&pd->dst->v4.s_addr, 560 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 561 0); 562 break; 563 case AF_INET6: 564 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 565 break; 566 } 567 } 568 break; 569 } 570 } 571 572 static __inline uint32_t 573 pf_hashkey(struct pf_state_key *sk) 574 { 575 uint32_t h; 576 577 h = murmur3_32_hash32((uint32_t *)sk, 578 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 579 V_pf_hashseed); 580 581 return (h & pf_hashmask); 582 } 583 584 static __inline uint32_t 585 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 586 { 587 uint32_t h; 588 589 switch (af) { 590 case AF_INET: 591 h = murmur3_32_hash32((uint32_t *)&addr->v4, 592 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 593 break; 594 case AF_INET6: 595 h = murmur3_32_hash32((uint32_t *)&addr->v6, 596 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 597 break; 598 default: 599 panic("%s: unknown address family %u", __func__, af); 600 } 601 602 return (h & pf_srchashmask); 603 } 604 605 #ifdef ALTQ 606 static int 607 pf_state_hash(struct pf_kstate *s) 608 { 609 u_int32_t hv = (intptr_t)s / sizeof(*s); 610 611 hv ^= crc32(&s->src, sizeof(s->src)); 612 hv ^= crc32(&s->dst, sizeof(s->dst)); 613 if (hv == 0) 614 hv = 1; 615 return (hv); 616 } 617 #endif 618 619 static __inline void 620 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 621 { 622 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 623 s->dst.state = newstate; 624 if (which == PF_PEER_DST) 625 return; 626 if (s->src.state == newstate) 627 return; 628 if (s->creatorid == V_pf_status.hostid && 629 s->key[PF_SK_STACK] != NULL && 630 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 631 !(TCPS_HAVEESTABLISHED(s->src.state) || 632 s->src.state == TCPS_CLOSED) && 633 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 634 atomic_add_32(&V_pf_status.states_halfopen, -1); 635 636 s->src.state = newstate; 637 } 638 639 #ifdef INET6 640 void 641 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 642 { 643 switch (af) { 644 #ifdef INET 645 case AF_INET: 646 dst->addr32[0] = src->addr32[0]; 647 break; 648 #endif /* INET */ 649 case AF_INET6: 650 dst->addr32[0] = src->addr32[0]; 651 dst->addr32[1] = src->addr32[1]; 652 dst->addr32[2] = src->addr32[2]; 653 dst->addr32[3] = src->addr32[3]; 654 break; 655 } 656 } 657 #endif /* INET6 */ 658 659 static void 660 pf_init_threshold(struct pf_threshold *threshold, 661 u_int32_t limit, u_int32_t seconds) 662 { 663 threshold->limit = limit * PF_THRESHOLD_MULT; 664 threshold->seconds = seconds; 665 threshold->count = 0; 666 threshold->last = time_uptime; 667 } 668 669 static void 670 pf_add_threshold(struct pf_threshold *threshold) 671 { 672 u_int32_t t = time_uptime, diff = t - threshold->last; 673 674 if (diff >= threshold->seconds) 675 threshold->count = 0; 676 else 677 threshold->count -= threshold->count * diff / 678 threshold->seconds; 679 threshold->count += PF_THRESHOLD_MULT; 680 threshold->last = t; 681 } 682 683 static int 684 pf_check_threshold(struct pf_threshold *threshold) 685 { 686 return (threshold->count > threshold->limit); 687 } 688 689 static int 690 pf_src_connlimit(struct pf_kstate **state) 691 { 692 struct pf_overload_entry *pfoe; 693 int bad = 0; 694 695 PF_STATE_LOCK_ASSERT(*state); 696 697 (*state)->src_node->conn++; 698 (*state)->src.tcp_est = 1; 699 pf_add_threshold(&(*state)->src_node->conn_rate); 700 701 if ((*state)->rule.ptr->max_src_conn && 702 (*state)->rule.ptr->max_src_conn < 703 (*state)->src_node->conn) { 704 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 705 bad++; 706 } 707 708 if ((*state)->rule.ptr->max_src_conn_rate.limit && 709 pf_check_threshold(&(*state)->src_node->conn_rate)) { 710 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 711 bad++; 712 } 713 714 if (!bad) 715 return (0); 716 717 /* Kill this state. */ 718 (*state)->timeout = PFTM_PURGE; 719 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 720 721 if ((*state)->rule.ptr->overload_tbl == NULL) 722 return (1); 723 724 /* Schedule overloading and flushing task. */ 725 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 726 if (pfoe == NULL) 727 return (1); /* too bad :( */ 728 729 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 730 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 731 pfoe->rule = (*state)->rule.ptr; 732 pfoe->dir = (*state)->direction; 733 PF_OVERLOADQ_LOCK(); 734 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 735 PF_OVERLOADQ_UNLOCK(); 736 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 737 738 return (1); 739 } 740 741 static void 742 pf_overload_task(void *v, int pending) 743 { 744 struct pf_overload_head queue; 745 struct pfr_addr p; 746 struct pf_overload_entry *pfoe, *pfoe1; 747 uint32_t killed = 0; 748 749 CURVNET_SET((struct vnet *)v); 750 751 PF_OVERLOADQ_LOCK(); 752 queue = V_pf_overloadqueue; 753 SLIST_INIT(&V_pf_overloadqueue); 754 PF_OVERLOADQ_UNLOCK(); 755 756 bzero(&p, sizeof(p)); 757 SLIST_FOREACH(pfoe, &queue, next) { 758 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 759 if (V_pf_status.debug >= PF_DEBUG_MISC) { 760 printf("%s: blocking address ", __func__); 761 pf_print_host(&pfoe->addr, 0, pfoe->af); 762 printf("\n"); 763 } 764 765 p.pfra_af = pfoe->af; 766 switch (pfoe->af) { 767 #ifdef INET 768 case AF_INET: 769 p.pfra_net = 32; 770 p.pfra_ip4addr = pfoe->addr.v4; 771 break; 772 #endif 773 #ifdef INET6 774 case AF_INET6: 775 p.pfra_net = 128; 776 p.pfra_ip6addr = pfoe->addr.v6; 777 break; 778 #endif 779 } 780 781 PF_RULES_WLOCK(); 782 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 783 PF_RULES_WUNLOCK(); 784 } 785 786 /* 787 * Remove those entries, that don't need flushing. 788 */ 789 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 790 if (pfoe->rule->flush == 0) { 791 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 792 free(pfoe, M_PFTEMP); 793 } else 794 counter_u64_add( 795 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 796 797 /* If nothing to flush, return. */ 798 if (SLIST_EMPTY(&queue)) { 799 CURVNET_RESTORE(); 800 return; 801 } 802 803 for (int i = 0; i <= pf_hashmask; i++) { 804 struct pf_idhash *ih = &V_pf_idhash[i]; 805 struct pf_state_key *sk; 806 struct pf_kstate *s; 807 808 PF_HASHROW_LOCK(ih); 809 LIST_FOREACH(s, &ih->states, entry) { 810 sk = s->key[PF_SK_WIRE]; 811 SLIST_FOREACH(pfoe, &queue, next) 812 if (sk->af == pfoe->af && 813 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 814 pfoe->rule == s->rule.ptr) && 815 ((pfoe->dir == PF_OUT && 816 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 817 (pfoe->dir == PF_IN && 818 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 819 s->timeout = PFTM_PURGE; 820 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 821 killed++; 822 } 823 } 824 PF_HASHROW_UNLOCK(ih); 825 } 826 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 827 free(pfoe, M_PFTEMP); 828 if (V_pf_status.debug >= PF_DEBUG_MISC) 829 printf("%s: %u states killed", __func__, killed); 830 831 CURVNET_RESTORE(); 832 } 833 834 /* 835 * Can return locked on failure, so that we can consistently 836 * allocate and insert a new one. 837 */ 838 struct pf_ksrc_node * 839 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 840 int returnlocked) 841 { 842 struct pf_srchash *sh; 843 struct pf_ksrc_node *n; 844 845 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 846 847 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 848 PF_HASHROW_LOCK(sh); 849 LIST_FOREACH(n, &sh->nodes, entry) 850 if (n->rule.ptr == rule && n->af == af && 851 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 852 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 853 break; 854 if (n != NULL) { 855 n->states++; 856 PF_HASHROW_UNLOCK(sh); 857 } else if (returnlocked == 0) 858 PF_HASHROW_UNLOCK(sh); 859 860 return (n); 861 } 862 863 static void 864 pf_free_src_node(struct pf_ksrc_node *sn) 865 { 866 867 for (int i = 0; i < 2; i++) { 868 counter_u64_free(sn->bytes[i]); 869 counter_u64_free(sn->packets[i]); 870 } 871 uma_zfree(V_pf_sources_z, sn); 872 } 873 874 static int 875 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 876 struct pf_addr *src, sa_family_t af) 877 { 878 879 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 880 rule->rpool.opts & PF_POOL_STICKYADDR), 881 ("%s for non-tracking rule %p", __func__, rule)); 882 883 if (*sn == NULL) 884 *sn = pf_find_src_node(src, rule, af, 1); 885 886 if (*sn == NULL) { 887 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 888 889 PF_HASHROW_ASSERT(sh); 890 891 if (!rule->max_src_nodes || 892 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 893 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 894 else 895 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 896 1); 897 if ((*sn) == NULL) { 898 PF_HASHROW_UNLOCK(sh); 899 return (-1); 900 } 901 902 for (int i = 0; i < 2; i++) { 903 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 904 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 905 906 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 907 pf_free_src_node(*sn); 908 PF_HASHROW_UNLOCK(sh); 909 return (-1); 910 } 911 } 912 913 pf_init_threshold(&(*sn)->conn_rate, 914 rule->max_src_conn_rate.limit, 915 rule->max_src_conn_rate.seconds); 916 917 (*sn)->af = af; 918 (*sn)->rule.ptr = rule; 919 PF_ACPY(&(*sn)->addr, src, af); 920 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 921 (*sn)->creation = time_uptime; 922 (*sn)->ruletype = rule->action; 923 (*sn)->states = 1; 924 if ((*sn)->rule.ptr != NULL) 925 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 926 PF_HASHROW_UNLOCK(sh); 927 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 928 } else { 929 if (rule->max_src_states && 930 (*sn)->states >= rule->max_src_states) { 931 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 932 1); 933 return (-1); 934 } 935 } 936 return (0); 937 } 938 939 void 940 pf_unlink_src_node(struct pf_ksrc_node *src) 941 { 942 943 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 944 LIST_REMOVE(src, entry); 945 if (src->rule.ptr) 946 counter_u64_add(src->rule.ptr->src_nodes, -1); 947 } 948 949 u_int 950 pf_free_src_nodes(struct pf_ksrc_node_list *head) 951 { 952 struct pf_ksrc_node *sn, *tmp; 953 u_int count = 0; 954 955 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 956 pf_free_src_node(sn); 957 count++; 958 } 959 960 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 961 962 return (count); 963 } 964 965 void 966 pf_mtag_initialize() 967 { 968 969 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 970 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 971 UMA_ALIGN_PTR, 0); 972 } 973 974 /* Per-vnet data storage structures initialization. */ 975 void 976 pf_initialize() 977 { 978 struct pf_keyhash *kh; 979 struct pf_idhash *ih; 980 struct pf_srchash *sh; 981 u_int i; 982 983 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 984 pf_hashsize = PF_HASHSIZ; 985 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 986 pf_srchashsize = PF_SRCHASHSIZ; 987 988 V_pf_hashseed = arc4random(); 989 990 /* States and state keys storage. */ 991 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 992 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 993 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 994 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 995 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 996 997 V_pf_state_key_z = uma_zcreate("pf state keys", 998 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 999 UMA_ALIGN_PTR, 0); 1000 1001 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1002 M_PFHASH, M_NOWAIT | M_ZERO); 1003 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1004 M_PFHASH, M_NOWAIT | M_ZERO); 1005 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1006 printf("pf: Unable to allocate memory for " 1007 "state_hashsize %lu.\n", pf_hashsize); 1008 1009 free(V_pf_keyhash, M_PFHASH); 1010 free(V_pf_idhash, M_PFHASH); 1011 1012 pf_hashsize = PF_HASHSIZ; 1013 V_pf_keyhash = mallocarray(pf_hashsize, 1014 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1015 V_pf_idhash = mallocarray(pf_hashsize, 1016 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1017 } 1018 1019 pf_hashmask = pf_hashsize - 1; 1020 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1021 i++, kh++, ih++) { 1022 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1023 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1024 } 1025 1026 /* Source nodes. */ 1027 V_pf_sources_z = uma_zcreate("pf source nodes", 1028 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1029 0); 1030 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1031 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1032 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1033 1034 V_pf_srchash = mallocarray(pf_srchashsize, 1035 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1036 if (V_pf_srchash == NULL) { 1037 printf("pf: Unable to allocate memory for " 1038 "source_hashsize %lu.\n", pf_srchashsize); 1039 1040 pf_srchashsize = PF_SRCHASHSIZ; 1041 V_pf_srchash = mallocarray(pf_srchashsize, 1042 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1043 } 1044 1045 pf_srchashmask = pf_srchashsize - 1; 1046 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1047 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1048 1049 /* ALTQ */ 1050 TAILQ_INIT(&V_pf_altqs[0]); 1051 TAILQ_INIT(&V_pf_altqs[1]); 1052 TAILQ_INIT(&V_pf_altqs[2]); 1053 TAILQ_INIT(&V_pf_altqs[3]); 1054 TAILQ_INIT(&V_pf_pabuf); 1055 V_pf_altqs_active = &V_pf_altqs[0]; 1056 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1057 V_pf_altqs_inactive = &V_pf_altqs[2]; 1058 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1059 1060 /* Send & overload+flush queues. */ 1061 STAILQ_INIT(&V_pf_sendqueue); 1062 SLIST_INIT(&V_pf_overloadqueue); 1063 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1064 1065 /* Unlinked, but may be referenced rules. */ 1066 TAILQ_INIT(&V_pf_unlinked_rules); 1067 } 1068 1069 void 1070 pf_mtag_cleanup() 1071 { 1072 1073 uma_zdestroy(pf_mtag_z); 1074 } 1075 1076 void 1077 pf_cleanup() 1078 { 1079 struct pf_keyhash *kh; 1080 struct pf_idhash *ih; 1081 struct pf_srchash *sh; 1082 struct pf_send_entry *pfse, *next; 1083 u_int i; 1084 1085 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1086 i++, kh++, ih++) { 1087 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1088 __func__)); 1089 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1090 __func__)); 1091 mtx_destroy(&kh->lock); 1092 mtx_destroy(&ih->lock); 1093 } 1094 free(V_pf_keyhash, M_PFHASH); 1095 free(V_pf_idhash, M_PFHASH); 1096 1097 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1098 KASSERT(LIST_EMPTY(&sh->nodes), 1099 ("%s: source node hash not empty", __func__)); 1100 mtx_destroy(&sh->lock); 1101 } 1102 free(V_pf_srchash, M_PFHASH); 1103 1104 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1105 m_freem(pfse->pfse_m); 1106 free(pfse, M_PFTEMP); 1107 } 1108 1109 uma_zdestroy(V_pf_sources_z); 1110 uma_zdestroy(V_pf_state_z); 1111 uma_zdestroy(V_pf_state_key_z); 1112 } 1113 1114 static int 1115 pf_mtag_uminit(void *mem, int size, int how) 1116 { 1117 struct m_tag *t; 1118 1119 t = (struct m_tag *)mem; 1120 t->m_tag_cookie = MTAG_ABI_COMPAT; 1121 t->m_tag_id = PACKET_TAG_PF; 1122 t->m_tag_len = sizeof(struct pf_mtag); 1123 t->m_tag_free = pf_mtag_free; 1124 1125 return (0); 1126 } 1127 1128 static void 1129 pf_mtag_free(struct m_tag *t) 1130 { 1131 1132 uma_zfree(pf_mtag_z, t); 1133 } 1134 1135 struct pf_mtag * 1136 pf_get_mtag(struct mbuf *m) 1137 { 1138 struct m_tag *mtag; 1139 1140 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1141 return ((struct pf_mtag *)(mtag + 1)); 1142 1143 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1144 if (mtag == NULL) 1145 return (NULL); 1146 bzero(mtag + 1, sizeof(struct pf_mtag)); 1147 m_tag_prepend(m, mtag); 1148 1149 return ((struct pf_mtag *)(mtag + 1)); 1150 } 1151 1152 static int 1153 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1154 struct pf_kstate *s) 1155 { 1156 struct pf_keyhash *khs, *khw, *kh; 1157 struct pf_state_key *sk, *cur; 1158 struct pf_kstate *si, *olds = NULL; 1159 int idx; 1160 1161 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1162 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1163 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1164 1165 /* 1166 * We need to lock hash slots of both keys. To avoid deadlock 1167 * we always lock the slot with lower address first. Unlock order 1168 * isn't important. 1169 * 1170 * We also need to lock ID hash slot before dropping key 1171 * locks. On success we return with ID hash slot locked. 1172 */ 1173 1174 if (skw == sks) { 1175 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1176 PF_HASHROW_LOCK(khs); 1177 } else { 1178 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1179 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1180 if (khs == khw) { 1181 PF_HASHROW_LOCK(khs); 1182 } else if (khs < khw) { 1183 PF_HASHROW_LOCK(khs); 1184 PF_HASHROW_LOCK(khw); 1185 } else { 1186 PF_HASHROW_LOCK(khw); 1187 PF_HASHROW_LOCK(khs); 1188 } 1189 } 1190 1191 #define KEYS_UNLOCK() do { \ 1192 if (khs != khw) { \ 1193 PF_HASHROW_UNLOCK(khs); \ 1194 PF_HASHROW_UNLOCK(khw); \ 1195 } else \ 1196 PF_HASHROW_UNLOCK(khs); \ 1197 } while (0) 1198 1199 /* 1200 * First run: start with wire key. 1201 */ 1202 sk = skw; 1203 kh = khw; 1204 idx = PF_SK_WIRE; 1205 1206 MPASS(s->lock == NULL); 1207 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1208 1209 keyattach: 1210 LIST_FOREACH(cur, &kh->keys, entry) 1211 if (pf_bcmp_state_key(cur, (struct pf_state_key_cmp *)sk) == 0) 1212 break; 1213 1214 if (cur != NULL) { 1215 /* Key exists. Check for same kif, if none, add to key. */ 1216 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1217 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1218 1219 PF_HASHROW_LOCK(ih); 1220 if (si->kif == s->kif && 1221 si->direction == s->direction) { 1222 if (sk->proto == IPPROTO_TCP && 1223 si->src.state >= TCPS_FIN_WAIT_2 && 1224 si->dst.state >= TCPS_FIN_WAIT_2) { 1225 /* 1226 * New state matches an old >FIN_WAIT_2 1227 * state. We can't drop key hash locks, 1228 * thus we can't unlink it properly. 1229 * 1230 * As a workaround we drop it into 1231 * TCPS_CLOSED state, schedule purge 1232 * ASAP and push it into the very end 1233 * of the slot TAILQ, so that it won't 1234 * conflict with our new state. 1235 */ 1236 pf_set_protostate(si, PF_PEER_BOTH, 1237 TCPS_CLOSED); 1238 si->timeout = PFTM_PURGE; 1239 olds = si; 1240 } else { 1241 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1242 printf("pf: %s key attach " 1243 "failed on %s: ", 1244 (idx == PF_SK_WIRE) ? 1245 "wire" : "stack", 1246 s->kif->pfik_name); 1247 pf_print_state_parts(s, 1248 (idx == PF_SK_WIRE) ? 1249 sk : NULL, 1250 (idx == PF_SK_STACK) ? 1251 sk : NULL); 1252 printf(", existing: "); 1253 pf_print_state_parts(si, 1254 (idx == PF_SK_WIRE) ? 1255 sk : NULL, 1256 (idx == PF_SK_STACK) ? 1257 sk : NULL); 1258 printf("\n"); 1259 } 1260 PF_HASHROW_UNLOCK(ih); 1261 KEYS_UNLOCK(); 1262 uma_zfree(V_pf_state_key_z, sk); 1263 if (idx == PF_SK_STACK) 1264 pf_detach_state(s); 1265 return (EEXIST); /* collision! */ 1266 } 1267 } 1268 PF_HASHROW_UNLOCK(ih); 1269 } 1270 uma_zfree(V_pf_state_key_z, sk); 1271 s->key[idx] = cur; 1272 } else { 1273 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1274 s->key[idx] = sk; 1275 } 1276 1277 stateattach: 1278 /* List is sorted, if-bound states before floating. */ 1279 if (s->kif == V_pfi_all) 1280 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1281 else 1282 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1283 1284 if (olds) { 1285 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1286 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1287 key_list[idx]); 1288 olds = NULL; 1289 } 1290 1291 /* 1292 * Attach done. See how should we (or should not?) 1293 * attach a second key. 1294 */ 1295 if (sks == skw) { 1296 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1297 idx = PF_SK_STACK; 1298 sks = NULL; 1299 goto stateattach; 1300 } else if (sks != NULL) { 1301 /* 1302 * Continue attaching with stack key. 1303 */ 1304 sk = sks; 1305 kh = khs; 1306 idx = PF_SK_STACK; 1307 sks = NULL; 1308 goto keyattach; 1309 } 1310 1311 PF_STATE_LOCK(s); 1312 KEYS_UNLOCK(); 1313 1314 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1315 ("%s failure", __func__)); 1316 1317 return (0); 1318 #undef KEYS_UNLOCK 1319 } 1320 1321 static void 1322 pf_detach_state(struct pf_kstate *s) 1323 { 1324 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1325 struct pf_keyhash *kh; 1326 1327 if (sks != NULL) { 1328 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1329 PF_HASHROW_LOCK(kh); 1330 if (s->key[PF_SK_STACK] != NULL) 1331 pf_state_key_detach(s, PF_SK_STACK); 1332 /* 1333 * If both point to same key, then we are done. 1334 */ 1335 if (sks == s->key[PF_SK_WIRE]) { 1336 pf_state_key_detach(s, PF_SK_WIRE); 1337 PF_HASHROW_UNLOCK(kh); 1338 return; 1339 } 1340 PF_HASHROW_UNLOCK(kh); 1341 } 1342 1343 if (s->key[PF_SK_WIRE] != NULL) { 1344 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1345 PF_HASHROW_LOCK(kh); 1346 if (s->key[PF_SK_WIRE] != NULL) 1347 pf_state_key_detach(s, PF_SK_WIRE); 1348 PF_HASHROW_UNLOCK(kh); 1349 } 1350 } 1351 1352 static void 1353 pf_state_key_detach(struct pf_kstate *s, int idx) 1354 { 1355 struct pf_state_key *sk = s->key[idx]; 1356 #ifdef INVARIANTS 1357 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1358 1359 PF_HASHROW_ASSERT(kh); 1360 #endif 1361 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1362 s->key[idx] = NULL; 1363 1364 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1365 LIST_REMOVE(sk, entry); 1366 uma_zfree(V_pf_state_key_z, sk); 1367 } 1368 } 1369 1370 static int 1371 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1372 { 1373 struct pf_state_key *sk = mem; 1374 1375 bzero(sk, sizeof(struct pf_state_key_cmp)); 1376 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1377 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1378 1379 return (0); 1380 } 1381 1382 struct pf_state_key * 1383 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1384 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1385 { 1386 struct pf_state_key *sk; 1387 1388 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1389 if (sk == NULL) 1390 return (NULL); 1391 1392 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1393 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1394 sk->port[pd->sidx] = sport; 1395 sk->port[pd->didx] = dport; 1396 sk->proto = pd->proto; 1397 sk->af = pd->af; 1398 1399 return (sk); 1400 } 1401 1402 struct pf_state_key * 1403 pf_state_key_clone(struct pf_state_key *orig) 1404 { 1405 struct pf_state_key *sk; 1406 1407 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1408 if (sk == NULL) 1409 return (NULL); 1410 1411 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1412 1413 return (sk); 1414 } 1415 1416 int 1417 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1418 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1419 { 1420 struct pf_idhash *ih; 1421 struct pf_kstate *cur; 1422 int error; 1423 1424 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1425 ("%s: sks not pristine", __func__)); 1426 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1427 ("%s: skw not pristine", __func__)); 1428 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1429 1430 s->kif = kif; 1431 s->orig_kif = orig_kif; 1432 1433 if (s->id == 0 && s->creatorid == 0) { 1434 /* XXX: should be atomic, but probability of collision low */ 1435 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1436 V_pf_stateid[curcpu] = 1; 1437 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1438 s->id = htobe64(s->id); 1439 s->creatorid = V_pf_status.hostid; 1440 } 1441 1442 /* Returns with ID locked on success. */ 1443 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1444 return (error); 1445 1446 ih = &V_pf_idhash[PF_IDHASH(s)]; 1447 PF_HASHROW_ASSERT(ih); 1448 LIST_FOREACH(cur, &ih->states, entry) 1449 if (cur->id == s->id && cur->creatorid == s->creatorid) 1450 break; 1451 1452 if (cur != NULL) { 1453 PF_HASHROW_UNLOCK(ih); 1454 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1455 printf("pf: state ID collision: " 1456 "id: %016llx creatorid: %08x\n", 1457 (unsigned long long)be64toh(s->id), 1458 ntohl(s->creatorid)); 1459 } 1460 pf_detach_state(s); 1461 return (EEXIST); 1462 } 1463 LIST_INSERT_HEAD(&ih->states, s, entry); 1464 /* One for keys, one for ID hash. */ 1465 refcount_init(&s->refs, 2); 1466 1467 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1468 if (V_pfsync_insert_state_ptr != NULL) 1469 V_pfsync_insert_state_ptr(s); 1470 1471 /* Returns locked. */ 1472 return (0); 1473 } 1474 1475 /* 1476 * Find state by ID: returns with locked row on success. 1477 */ 1478 struct pf_kstate * 1479 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1480 { 1481 struct pf_idhash *ih; 1482 struct pf_kstate *s; 1483 1484 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1485 1486 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1487 1488 PF_HASHROW_LOCK(ih); 1489 LIST_FOREACH(s, &ih->states, entry) 1490 if (s->id == id && s->creatorid == creatorid) 1491 break; 1492 1493 if (s == NULL) 1494 PF_HASHROW_UNLOCK(ih); 1495 1496 return (s); 1497 } 1498 1499 /* 1500 * Find state by key. 1501 * Returns with ID hash slot locked on success. 1502 */ 1503 static struct pf_kstate * 1504 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1505 { 1506 struct pf_keyhash *kh; 1507 struct pf_state_key *sk; 1508 struct pf_kstate *s; 1509 int idx; 1510 1511 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1512 1513 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1514 1515 PF_HASHROW_LOCK(kh); 1516 LIST_FOREACH(sk, &kh->keys, entry) 1517 if (pf_bcmp_state_key(sk, key) == 0) 1518 break; 1519 if (sk == NULL) { 1520 PF_HASHROW_UNLOCK(kh); 1521 return (NULL); 1522 } 1523 1524 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1525 1526 /* List is sorted, if-bound states before floating ones. */ 1527 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1528 if (s->kif == V_pfi_all || s->kif == kif) { 1529 PF_STATE_LOCK(s); 1530 PF_HASHROW_UNLOCK(kh); 1531 if (__predict_false(s->timeout >= PFTM_MAX)) { 1532 /* 1533 * State is either being processed by 1534 * pf_unlink_state() in an other thread, or 1535 * is scheduled for immediate expiry. 1536 */ 1537 PF_STATE_UNLOCK(s); 1538 return (NULL); 1539 } 1540 return (s); 1541 } 1542 PF_HASHROW_UNLOCK(kh); 1543 1544 return (NULL); 1545 } 1546 1547 /* 1548 * Returns with ID hash slot locked on success. 1549 */ 1550 struct pf_kstate * 1551 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1552 { 1553 struct pf_keyhash *kh; 1554 struct pf_state_key *sk; 1555 struct pf_kstate *s, *ret = NULL; 1556 int idx, inout = 0; 1557 1558 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1559 1560 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1561 1562 PF_HASHROW_LOCK(kh); 1563 LIST_FOREACH(sk, &kh->keys, entry) 1564 if (pf_bcmp_state_key(sk, key) == 0) 1565 break; 1566 if (sk == NULL) { 1567 PF_HASHROW_UNLOCK(kh); 1568 return (NULL); 1569 } 1570 switch (dir) { 1571 case PF_IN: 1572 idx = PF_SK_WIRE; 1573 break; 1574 case PF_OUT: 1575 idx = PF_SK_STACK; 1576 break; 1577 case PF_INOUT: 1578 idx = PF_SK_WIRE; 1579 inout = 1; 1580 break; 1581 default: 1582 panic("%s: dir %u", __func__, dir); 1583 } 1584 second_run: 1585 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1586 if (more == NULL) { 1587 PF_STATE_LOCK(s); 1588 PF_HASHROW_UNLOCK(kh); 1589 return (s); 1590 } 1591 1592 if (ret) 1593 (*more)++; 1594 else { 1595 ret = s; 1596 PF_STATE_LOCK(s); 1597 } 1598 } 1599 if (inout == 1) { 1600 inout = 0; 1601 idx = PF_SK_STACK; 1602 goto second_run; 1603 } 1604 PF_HASHROW_UNLOCK(kh); 1605 1606 return (ret); 1607 } 1608 1609 /* 1610 * FIXME 1611 * This routine is inefficient -- locks the state only to unlock immediately on 1612 * return. 1613 * It is racy -- after the state is unlocked nothing stops other threads from 1614 * removing it. 1615 */ 1616 bool 1617 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1618 { 1619 struct pf_kstate *s; 1620 1621 s = pf_find_state_all(key, dir, NULL); 1622 if (s != NULL) { 1623 PF_STATE_UNLOCK(s); 1624 return (true); 1625 } 1626 return (false); 1627 } 1628 1629 /* END state table stuff */ 1630 1631 static void 1632 pf_send(struct pf_send_entry *pfse) 1633 { 1634 1635 PF_SENDQ_LOCK(); 1636 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1637 PF_SENDQ_UNLOCK(); 1638 swi_sched(V_pf_swi_cookie, 0); 1639 } 1640 1641 static bool 1642 pf_isforlocal(struct mbuf *m, int af) 1643 { 1644 switch (af) { 1645 #ifdef INET 1646 case AF_INET: { 1647 struct ip *ip = mtod(m, struct ip *); 1648 1649 return (in_localip(ip->ip_dst)); 1650 } 1651 #endif 1652 #ifdef INET6 1653 case AF_INET6: { 1654 struct ip6_hdr *ip6; 1655 struct in6_ifaddr *ia; 1656 ip6 = mtod(m, struct ip6_hdr *); 1657 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1658 if (ia == NULL) 1659 return (false); 1660 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1661 } 1662 #endif 1663 default: 1664 panic("Unsupported af %d", af); 1665 } 1666 1667 return (false); 1668 } 1669 1670 void 1671 pf_intr(void *v) 1672 { 1673 struct epoch_tracker et; 1674 struct pf_send_head queue; 1675 struct pf_send_entry *pfse, *next; 1676 1677 CURVNET_SET((struct vnet *)v); 1678 1679 PF_SENDQ_LOCK(); 1680 queue = V_pf_sendqueue; 1681 STAILQ_INIT(&V_pf_sendqueue); 1682 PF_SENDQ_UNLOCK(); 1683 1684 NET_EPOCH_ENTER(et); 1685 1686 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1687 switch (pfse->pfse_type) { 1688 #ifdef INET 1689 case PFSE_IP: { 1690 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1691 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1692 pfse->pfse_m->m_pkthdr.csum_flags |= 1693 CSUM_IP_VALID | CSUM_IP_CHECKED; 1694 ip_input(pfse->pfse_m); 1695 } else { 1696 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1697 NULL); 1698 } 1699 break; 1700 } 1701 case PFSE_ICMP: 1702 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1703 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1704 break; 1705 #endif /* INET */ 1706 #ifdef INET6 1707 case PFSE_IP6: 1708 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1709 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1710 ip6_input(pfse->pfse_m); 1711 } else { 1712 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1713 NULL, NULL); 1714 } 1715 break; 1716 case PFSE_ICMP6: 1717 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1718 pfse->icmpopts.code, pfse->icmpopts.mtu); 1719 break; 1720 #endif /* INET6 */ 1721 default: 1722 panic("%s: unknown type", __func__); 1723 } 1724 free(pfse, M_PFTEMP); 1725 } 1726 NET_EPOCH_EXIT(et); 1727 CURVNET_RESTORE(); 1728 } 1729 1730 #define pf_purge_thread_period (hz / 10) 1731 1732 #ifdef PF_WANT_32_TO_64_COUNTER 1733 static void 1734 pf_status_counter_u64_periodic(void) 1735 { 1736 1737 PF_RULES_RASSERT(); 1738 1739 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1740 return; 1741 } 1742 1743 for (int i = 0; i < FCNT_MAX; i++) { 1744 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1745 } 1746 } 1747 1748 static void 1749 pf_kif_counter_u64_periodic(void) 1750 { 1751 struct pfi_kkif *kif; 1752 size_t r, run; 1753 1754 PF_RULES_RASSERT(); 1755 1756 if (__predict_false(V_pf_allkifcount == 0)) { 1757 return; 1758 } 1759 1760 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1761 return; 1762 } 1763 1764 run = V_pf_allkifcount / 10; 1765 if (run < 5) 1766 run = 5; 1767 1768 for (r = 0; r < run; r++) { 1769 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1770 if (kif == NULL) { 1771 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1772 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1773 break; 1774 } 1775 1776 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1777 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1778 1779 for (int i = 0; i < 2; i++) { 1780 for (int j = 0; j < 2; j++) { 1781 for (int k = 0; k < 2; k++) { 1782 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1783 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1784 } 1785 } 1786 } 1787 } 1788 } 1789 1790 static void 1791 pf_rule_counter_u64_periodic(void) 1792 { 1793 struct pf_krule *rule; 1794 size_t r, run; 1795 1796 PF_RULES_RASSERT(); 1797 1798 if (__predict_false(V_pf_allrulecount == 0)) { 1799 return; 1800 } 1801 1802 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1803 return; 1804 } 1805 1806 run = V_pf_allrulecount / 10; 1807 if (run < 5) 1808 run = 5; 1809 1810 for (r = 0; r < run; r++) { 1811 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1812 if (rule == NULL) { 1813 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1814 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1815 break; 1816 } 1817 1818 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1819 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1820 1821 pf_counter_u64_periodic(&rule->evaluations); 1822 for (int i = 0; i < 2; i++) { 1823 pf_counter_u64_periodic(&rule->packets[i]); 1824 pf_counter_u64_periodic(&rule->bytes[i]); 1825 } 1826 } 1827 } 1828 1829 static void 1830 pf_counter_u64_periodic_main(void) 1831 { 1832 PF_RULES_RLOCK_TRACKER; 1833 1834 V_pf_counter_periodic_iter++; 1835 1836 PF_RULES_RLOCK(); 1837 pf_counter_u64_critical_enter(); 1838 pf_status_counter_u64_periodic(); 1839 pf_kif_counter_u64_periodic(); 1840 pf_rule_counter_u64_periodic(); 1841 pf_counter_u64_critical_exit(); 1842 PF_RULES_RUNLOCK(); 1843 } 1844 #else 1845 #define pf_counter_u64_periodic_main() do { } while (0) 1846 #endif 1847 1848 void 1849 pf_purge_thread(void *unused __unused) 1850 { 1851 VNET_ITERATOR_DECL(vnet_iter); 1852 1853 sx_xlock(&pf_end_lock); 1854 while (pf_end_threads == 0) { 1855 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1856 1857 VNET_LIST_RLOCK(); 1858 VNET_FOREACH(vnet_iter) { 1859 CURVNET_SET(vnet_iter); 1860 1861 /* Wait until V_pf_default_rule is initialized. */ 1862 if (V_pf_vnet_active == 0) { 1863 CURVNET_RESTORE(); 1864 continue; 1865 } 1866 1867 pf_counter_u64_periodic_main(); 1868 1869 /* 1870 * Process 1/interval fraction of the state 1871 * table every run. 1872 */ 1873 V_pf_purge_idx = 1874 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1875 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1876 1877 /* 1878 * Purge other expired types every 1879 * PFTM_INTERVAL seconds. 1880 */ 1881 if (V_pf_purge_idx == 0) { 1882 /* 1883 * Order is important: 1884 * - states and src nodes reference rules 1885 * - states and rules reference kifs 1886 */ 1887 pf_purge_expired_fragments(); 1888 pf_purge_expired_src_nodes(); 1889 pf_purge_unlinked_rules(); 1890 pfi_kkif_purge(); 1891 } 1892 CURVNET_RESTORE(); 1893 } 1894 VNET_LIST_RUNLOCK(); 1895 } 1896 1897 pf_end_threads++; 1898 sx_xunlock(&pf_end_lock); 1899 kproc_exit(0); 1900 } 1901 1902 void 1903 pf_unload_vnet_purge(void) 1904 { 1905 1906 /* 1907 * To cleanse up all kifs and rules we need 1908 * two runs: first one clears reference flags, 1909 * then pf_purge_expired_states() doesn't 1910 * raise them, and then second run frees. 1911 */ 1912 pf_purge_unlinked_rules(); 1913 pfi_kkif_purge(); 1914 1915 /* 1916 * Now purge everything. 1917 */ 1918 pf_purge_expired_states(0, pf_hashmask); 1919 pf_purge_fragments(UINT_MAX); 1920 pf_purge_expired_src_nodes(); 1921 1922 /* 1923 * Now all kifs & rules should be unreferenced, 1924 * thus should be successfully freed. 1925 */ 1926 pf_purge_unlinked_rules(); 1927 pfi_kkif_purge(); 1928 } 1929 1930 u_int32_t 1931 pf_state_expires(const struct pf_kstate *state) 1932 { 1933 u_int32_t timeout; 1934 u_int32_t start; 1935 u_int32_t end; 1936 u_int32_t states; 1937 1938 /* handle all PFTM_* > PFTM_MAX here */ 1939 if (state->timeout == PFTM_PURGE) 1940 return (time_uptime); 1941 KASSERT(state->timeout != PFTM_UNLINKED, 1942 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1943 KASSERT((state->timeout < PFTM_MAX), 1944 ("pf_state_expires: timeout > PFTM_MAX")); 1945 timeout = state->rule.ptr->timeout[state->timeout]; 1946 if (!timeout) 1947 timeout = V_pf_default_rule.timeout[state->timeout]; 1948 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1949 if (start && state->rule.ptr != &V_pf_default_rule) { 1950 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1951 states = counter_u64_fetch(state->rule.ptr->states_cur); 1952 } else { 1953 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1954 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1955 states = V_pf_status.states; 1956 } 1957 if (end && states > start && start < end) { 1958 if (states < end) { 1959 timeout = (u_int64_t)timeout * (end - states) / 1960 (end - start); 1961 return (state->expire + timeout); 1962 } 1963 else 1964 return (time_uptime); 1965 } 1966 return (state->expire + timeout); 1967 } 1968 1969 void 1970 pf_purge_expired_src_nodes() 1971 { 1972 struct pf_ksrc_node_list freelist; 1973 struct pf_srchash *sh; 1974 struct pf_ksrc_node *cur, *next; 1975 int i; 1976 1977 LIST_INIT(&freelist); 1978 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1979 PF_HASHROW_LOCK(sh); 1980 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1981 if (cur->states == 0 && cur->expire <= time_uptime) { 1982 pf_unlink_src_node(cur); 1983 LIST_INSERT_HEAD(&freelist, cur, entry); 1984 } else if (cur->rule.ptr != NULL) 1985 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1986 PF_HASHROW_UNLOCK(sh); 1987 } 1988 1989 pf_free_src_nodes(&freelist); 1990 1991 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1992 } 1993 1994 static void 1995 pf_src_tree_remove_state(struct pf_kstate *s) 1996 { 1997 struct pf_ksrc_node *sn; 1998 struct pf_srchash *sh; 1999 uint32_t timeout; 2000 2001 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2002 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2003 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2004 2005 if (s->src_node != NULL) { 2006 sn = s->src_node; 2007 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2008 PF_HASHROW_LOCK(sh); 2009 if (s->src.tcp_est) 2010 --sn->conn; 2011 if (--sn->states == 0) 2012 sn->expire = time_uptime + timeout; 2013 PF_HASHROW_UNLOCK(sh); 2014 } 2015 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2016 sn = s->nat_src_node; 2017 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2018 PF_HASHROW_LOCK(sh); 2019 if (--sn->states == 0) 2020 sn->expire = time_uptime + timeout; 2021 PF_HASHROW_UNLOCK(sh); 2022 } 2023 s->src_node = s->nat_src_node = NULL; 2024 } 2025 2026 /* 2027 * Unlink and potentilly free a state. Function may be 2028 * called with ID hash row locked, but always returns 2029 * unlocked, since it needs to go through key hash locking. 2030 */ 2031 int 2032 pf_unlink_state(struct pf_kstate *s) 2033 { 2034 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2035 2036 PF_HASHROW_ASSERT(ih); 2037 2038 if (s->timeout == PFTM_UNLINKED) { 2039 /* 2040 * State is being processed 2041 * by pf_unlink_state() in 2042 * an other thread. 2043 */ 2044 PF_HASHROW_UNLOCK(ih); 2045 return (0); /* XXXGL: undefined actually */ 2046 } 2047 2048 if (s->src.state == PF_TCPS_PROXY_DST) { 2049 /* XXX wire key the right one? */ 2050 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2051 &s->key[PF_SK_WIRE]->addr[1], 2052 &s->key[PF_SK_WIRE]->addr[0], 2053 s->key[PF_SK_WIRE]->port[1], 2054 s->key[PF_SK_WIRE]->port[0], 2055 s->src.seqhi, s->src.seqlo + 1, 2056 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 2057 } 2058 2059 LIST_REMOVE(s, entry); 2060 pf_src_tree_remove_state(s); 2061 2062 if (V_pfsync_delete_state_ptr != NULL) 2063 V_pfsync_delete_state_ptr(s); 2064 2065 STATE_DEC_COUNTERS(s); 2066 2067 s->timeout = PFTM_UNLINKED; 2068 2069 /* Ensure we remove it from the list of halfopen states, if needed. */ 2070 if (s->key[PF_SK_STACK] != NULL && 2071 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2072 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2073 2074 PF_HASHROW_UNLOCK(ih); 2075 2076 pf_detach_state(s); 2077 /* pf_state_insert() initialises refs to 2 */ 2078 return (pf_release_staten(s, 2)); 2079 } 2080 2081 struct pf_kstate * 2082 pf_alloc_state(int flags) 2083 { 2084 2085 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2086 } 2087 2088 void 2089 pf_free_state(struct pf_kstate *cur) 2090 { 2091 2092 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2093 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2094 cur->timeout)); 2095 2096 pf_normalize_tcp_cleanup(cur); 2097 uma_zfree(V_pf_state_z, cur); 2098 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2099 } 2100 2101 /* 2102 * Called only from pf_purge_thread(), thus serialized. 2103 */ 2104 static u_int 2105 pf_purge_expired_states(u_int i, int maxcheck) 2106 { 2107 struct pf_idhash *ih; 2108 struct pf_kstate *s; 2109 2110 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2111 2112 /* 2113 * Go through hash and unlink states that expire now. 2114 */ 2115 while (maxcheck > 0) { 2116 ih = &V_pf_idhash[i]; 2117 2118 /* only take the lock if we expect to do work */ 2119 if (!LIST_EMPTY(&ih->states)) { 2120 relock: 2121 PF_HASHROW_LOCK(ih); 2122 LIST_FOREACH(s, &ih->states, entry) { 2123 if (pf_state_expires(s) <= time_uptime) { 2124 V_pf_status.states -= 2125 pf_unlink_state(s); 2126 goto relock; 2127 } 2128 s->rule.ptr->rule_ref |= PFRULE_REFS; 2129 if (s->nat_rule.ptr != NULL) 2130 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2131 if (s->anchor.ptr != NULL) 2132 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2133 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2134 if (s->rt_kif) 2135 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2136 } 2137 PF_HASHROW_UNLOCK(ih); 2138 } 2139 2140 /* Return when we hit end of hash. */ 2141 if (++i > pf_hashmask) { 2142 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2143 return (0); 2144 } 2145 2146 maxcheck--; 2147 } 2148 2149 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2150 2151 return (i); 2152 } 2153 2154 static void 2155 pf_purge_unlinked_rules() 2156 { 2157 struct pf_krulequeue tmpq; 2158 struct pf_krule *r, *r1; 2159 2160 /* 2161 * If we have overloading task pending, then we'd 2162 * better skip purging this time. There is a tiny 2163 * probability that overloading task references 2164 * an already unlinked rule. 2165 */ 2166 PF_OVERLOADQ_LOCK(); 2167 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2168 PF_OVERLOADQ_UNLOCK(); 2169 return; 2170 } 2171 PF_OVERLOADQ_UNLOCK(); 2172 2173 /* 2174 * Do naive mark-and-sweep garbage collecting of old rules. 2175 * Reference flag is raised by pf_purge_expired_states() 2176 * and pf_purge_expired_src_nodes(). 2177 * 2178 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2179 * use a temporary queue. 2180 */ 2181 TAILQ_INIT(&tmpq); 2182 PF_UNLNKDRULES_LOCK(); 2183 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2184 if (!(r->rule_ref & PFRULE_REFS)) { 2185 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2186 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2187 } else 2188 r->rule_ref &= ~PFRULE_REFS; 2189 } 2190 PF_UNLNKDRULES_UNLOCK(); 2191 2192 if (!TAILQ_EMPTY(&tmpq)) { 2193 PF_RULES_WLOCK(); 2194 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2195 TAILQ_REMOVE(&tmpq, r, entries); 2196 pf_free_rule(r); 2197 } 2198 PF_RULES_WUNLOCK(); 2199 } 2200 } 2201 2202 void 2203 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2204 { 2205 switch (af) { 2206 #ifdef INET 2207 case AF_INET: { 2208 u_int32_t a = ntohl(addr->addr32[0]); 2209 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2210 (a>>8)&255, a&255); 2211 if (p) { 2212 p = ntohs(p); 2213 printf(":%u", p); 2214 } 2215 break; 2216 } 2217 #endif /* INET */ 2218 #ifdef INET6 2219 case AF_INET6: { 2220 u_int16_t b; 2221 u_int8_t i, curstart, curend, maxstart, maxend; 2222 curstart = curend = maxstart = maxend = 255; 2223 for (i = 0; i < 8; i++) { 2224 if (!addr->addr16[i]) { 2225 if (curstart == 255) 2226 curstart = i; 2227 curend = i; 2228 } else { 2229 if ((curend - curstart) > 2230 (maxend - maxstart)) { 2231 maxstart = curstart; 2232 maxend = curend; 2233 } 2234 curstart = curend = 255; 2235 } 2236 } 2237 if ((curend - curstart) > 2238 (maxend - maxstart)) { 2239 maxstart = curstart; 2240 maxend = curend; 2241 } 2242 for (i = 0; i < 8; i++) { 2243 if (i >= maxstart && i <= maxend) { 2244 if (i == 0) 2245 printf(":"); 2246 if (i == maxend) 2247 printf(":"); 2248 } else { 2249 b = ntohs(addr->addr16[i]); 2250 printf("%x", b); 2251 if (i < 7) 2252 printf(":"); 2253 } 2254 } 2255 if (p) { 2256 p = ntohs(p); 2257 printf("[%u]", p); 2258 } 2259 break; 2260 } 2261 #endif /* INET6 */ 2262 } 2263 } 2264 2265 void 2266 pf_print_state(struct pf_kstate *s) 2267 { 2268 pf_print_state_parts(s, NULL, NULL); 2269 } 2270 2271 static void 2272 pf_print_state_parts(struct pf_kstate *s, 2273 struct pf_state_key *skwp, struct pf_state_key *sksp) 2274 { 2275 struct pf_state_key *skw, *sks; 2276 u_int8_t proto, dir; 2277 2278 /* Do our best to fill these, but they're skipped if NULL */ 2279 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2280 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2281 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2282 dir = s ? s->direction : 0; 2283 2284 switch (proto) { 2285 case IPPROTO_IPV4: 2286 printf("IPv4"); 2287 break; 2288 case IPPROTO_IPV6: 2289 printf("IPv6"); 2290 break; 2291 case IPPROTO_TCP: 2292 printf("TCP"); 2293 break; 2294 case IPPROTO_UDP: 2295 printf("UDP"); 2296 break; 2297 case IPPROTO_ICMP: 2298 printf("ICMP"); 2299 break; 2300 case IPPROTO_ICMPV6: 2301 printf("ICMPv6"); 2302 break; 2303 default: 2304 printf("%u", proto); 2305 break; 2306 } 2307 switch (dir) { 2308 case PF_IN: 2309 printf(" in"); 2310 break; 2311 case PF_OUT: 2312 printf(" out"); 2313 break; 2314 } 2315 if (skw) { 2316 printf(" wire: "); 2317 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2318 printf(" "); 2319 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2320 } 2321 if (sks) { 2322 printf(" stack: "); 2323 if (sks != skw) { 2324 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2325 printf(" "); 2326 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2327 } else 2328 printf("-"); 2329 } 2330 if (s) { 2331 if (proto == IPPROTO_TCP) { 2332 printf(" [lo=%u high=%u win=%u modulator=%u", 2333 s->src.seqlo, s->src.seqhi, 2334 s->src.max_win, s->src.seqdiff); 2335 if (s->src.wscale && s->dst.wscale) 2336 printf(" wscale=%u", 2337 s->src.wscale & PF_WSCALE_MASK); 2338 printf("]"); 2339 printf(" [lo=%u high=%u win=%u modulator=%u", 2340 s->dst.seqlo, s->dst.seqhi, 2341 s->dst.max_win, s->dst.seqdiff); 2342 if (s->src.wscale && s->dst.wscale) 2343 printf(" wscale=%u", 2344 s->dst.wscale & PF_WSCALE_MASK); 2345 printf("]"); 2346 } 2347 printf(" %u:%u", s->src.state, s->dst.state); 2348 } 2349 } 2350 2351 void 2352 pf_print_flags(u_int8_t f) 2353 { 2354 if (f) 2355 printf(" "); 2356 if (f & TH_FIN) 2357 printf("F"); 2358 if (f & TH_SYN) 2359 printf("S"); 2360 if (f & TH_RST) 2361 printf("R"); 2362 if (f & TH_PUSH) 2363 printf("P"); 2364 if (f & TH_ACK) 2365 printf("A"); 2366 if (f & TH_URG) 2367 printf("U"); 2368 if (f & TH_ECE) 2369 printf("E"); 2370 if (f & TH_CWR) 2371 printf("W"); 2372 } 2373 2374 #define PF_SET_SKIP_STEPS(i) \ 2375 do { \ 2376 while (head[i] != cur) { \ 2377 head[i]->skip[i].ptr = cur; \ 2378 head[i] = TAILQ_NEXT(head[i], entries); \ 2379 } \ 2380 } while (0) 2381 2382 void 2383 pf_calc_skip_steps(struct pf_krulequeue *rules) 2384 { 2385 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2386 int i; 2387 2388 cur = TAILQ_FIRST(rules); 2389 prev = cur; 2390 for (i = 0; i < PF_SKIP_COUNT; ++i) 2391 head[i] = cur; 2392 while (cur != NULL) { 2393 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2394 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2395 if (cur->direction != prev->direction) 2396 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2397 if (cur->af != prev->af) 2398 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2399 if (cur->proto != prev->proto) 2400 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2401 if (cur->src.neg != prev->src.neg || 2402 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2403 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2404 if (cur->src.port[0] != prev->src.port[0] || 2405 cur->src.port[1] != prev->src.port[1] || 2406 cur->src.port_op != prev->src.port_op) 2407 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2408 if (cur->dst.neg != prev->dst.neg || 2409 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2410 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2411 if (cur->dst.port[0] != prev->dst.port[0] || 2412 cur->dst.port[1] != prev->dst.port[1] || 2413 cur->dst.port_op != prev->dst.port_op) 2414 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2415 2416 prev = cur; 2417 cur = TAILQ_NEXT(cur, entries); 2418 } 2419 for (i = 0; i < PF_SKIP_COUNT; ++i) 2420 PF_SET_SKIP_STEPS(i); 2421 } 2422 2423 static int 2424 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2425 { 2426 if (aw1->type != aw2->type) 2427 return (1); 2428 switch (aw1->type) { 2429 case PF_ADDR_ADDRMASK: 2430 case PF_ADDR_RANGE: 2431 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2432 return (1); 2433 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2434 return (1); 2435 return (0); 2436 case PF_ADDR_DYNIFTL: 2437 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2438 case PF_ADDR_NOROUTE: 2439 case PF_ADDR_URPFFAILED: 2440 return (0); 2441 case PF_ADDR_TABLE: 2442 return (aw1->p.tbl != aw2->p.tbl); 2443 default: 2444 printf("invalid address type: %d\n", aw1->type); 2445 return (1); 2446 } 2447 } 2448 2449 /** 2450 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2451 * header isn't always a full checksum. In some cases (i.e. output) it's a 2452 * pseudo-header checksum, which is a partial checksum over src/dst IP 2453 * addresses, protocol number and length. 2454 * 2455 * That means we have the following cases: 2456 * * Input or forwarding: we don't have TSO, the checksum fields are full 2457 * checksums, we need to update the checksum whenever we change anything. 2458 * * Output (i.e. the checksum is a pseudo-header checksum): 2459 * x The field being updated is src/dst address or affects the length of 2460 * the packet. We need to update the pseudo-header checksum (note that this 2461 * checksum is not ones' complement). 2462 * x Some other field is being modified (e.g. src/dst port numbers): We 2463 * don't have to update anything. 2464 **/ 2465 u_int16_t 2466 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2467 { 2468 u_int32_t x; 2469 2470 x = cksum + old - new; 2471 x = (x + (x >> 16)) & 0xffff; 2472 2473 /* optimise: eliminate a branch when not udp */ 2474 if (udp && cksum == 0x0000) 2475 return cksum; 2476 if (udp && x == 0x0000) 2477 x = 0xffff; 2478 2479 return (u_int16_t)(x); 2480 } 2481 2482 static void 2483 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2484 u_int8_t udp) 2485 { 2486 u_int16_t old = htons(hi ? (*f << 8) : *f); 2487 u_int16_t new = htons(hi ? ( v << 8) : v); 2488 2489 if (*f == v) 2490 return; 2491 2492 *f = v; 2493 2494 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2495 return; 2496 2497 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2498 } 2499 2500 void 2501 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2502 bool hi, u_int8_t udp) 2503 { 2504 u_int8_t *fb = (u_int8_t *)f; 2505 u_int8_t *vb = (u_int8_t *)&v; 2506 2507 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2508 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2509 } 2510 2511 void 2512 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2513 bool hi, u_int8_t udp) 2514 { 2515 u_int8_t *fb = (u_int8_t *)f; 2516 u_int8_t *vb = (u_int8_t *)&v; 2517 2518 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2519 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2520 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2521 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2522 } 2523 2524 u_int16_t 2525 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2526 u_int16_t new, u_int8_t udp) 2527 { 2528 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2529 return (cksum); 2530 2531 return (pf_cksum_fixup(cksum, old, new, udp)); 2532 } 2533 2534 static void 2535 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2536 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2537 sa_family_t af) 2538 { 2539 struct pf_addr ao; 2540 u_int16_t po = *p; 2541 2542 PF_ACPY(&ao, a, af); 2543 PF_ACPY(a, an, af); 2544 2545 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2546 *pc = ~*pc; 2547 2548 *p = pn; 2549 2550 switch (af) { 2551 #ifdef INET 2552 case AF_INET: 2553 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2554 ao.addr16[0], an->addr16[0], 0), 2555 ao.addr16[1], an->addr16[1], 0); 2556 *p = pn; 2557 2558 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2559 ao.addr16[0], an->addr16[0], u), 2560 ao.addr16[1], an->addr16[1], u); 2561 2562 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2563 break; 2564 #endif /* INET */ 2565 #ifdef INET6 2566 case AF_INET6: 2567 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2568 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2569 pf_cksum_fixup(pf_cksum_fixup(*pc, 2570 ao.addr16[0], an->addr16[0], u), 2571 ao.addr16[1], an->addr16[1], u), 2572 ao.addr16[2], an->addr16[2], u), 2573 ao.addr16[3], an->addr16[3], u), 2574 ao.addr16[4], an->addr16[4], u), 2575 ao.addr16[5], an->addr16[5], u), 2576 ao.addr16[6], an->addr16[6], u), 2577 ao.addr16[7], an->addr16[7], u); 2578 2579 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2580 break; 2581 #endif /* INET6 */ 2582 } 2583 2584 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2585 CSUM_DELAY_DATA_IPV6)) { 2586 *pc = ~*pc; 2587 if (! *pc) 2588 *pc = 0xffff; 2589 } 2590 } 2591 2592 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2593 void 2594 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2595 { 2596 u_int32_t ao; 2597 2598 memcpy(&ao, a, sizeof(ao)); 2599 memcpy(a, &an, sizeof(u_int32_t)); 2600 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2601 ao % 65536, an % 65536, u); 2602 } 2603 2604 void 2605 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2606 { 2607 u_int32_t ao; 2608 2609 memcpy(&ao, a, sizeof(ao)); 2610 memcpy(a, &an, sizeof(u_int32_t)); 2611 2612 *c = pf_proto_cksum_fixup(m, 2613 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2614 ao % 65536, an % 65536, udp); 2615 } 2616 2617 #ifdef INET6 2618 static void 2619 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2620 { 2621 struct pf_addr ao; 2622 2623 PF_ACPY(&ao, a, AF_INET6); 2624 PF_ACPY(a, an, AF_INET6); 2625 2626 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2627 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2628 pf_cksum_fixup(pf_cksum_fixup(*c, 2629 ao.addr16[0], an->addr16[0], u), 2630 ao.addr16[1], an->addr16[1], u), 2631 ao.addr16[2], an->addr16[2], u), 2632 ao.addr16[3], an->addr16[3], u), 2633 ao.addr16[4], an->addr16[4], u), 2634 ao.addr16[5], an->addr16[5], u), 2635 ao.addr16[6], an->addr16[6], u), 2636 ao.addr16[7], an->addr16[7], u); 2637 } 2638 #endif /* INET6 */ 2639 2640 static void 2641 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2642 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2643 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2644 { 2645 struct pf_addr oia, ooa; 2646 2647 PF_ACPY(&oia, ia, af); 2648 if (oa) 2649 PF_ACPY(&ooa, oa, af); 2650 2651 /* Change inner protocol port, fix inner protocol checksum. */ 2652 if (ip != NULL) { 2653 u_int16_t oip = *ip; 2654 u_int32_t opc; 2655 2656 if (pc != NULL) 2657 opc = *pc; 2658 *ip = np; 2659 if (pc != NULL) 2660 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2661 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2662 if (pc != NULL) 2663 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2664 } 2665 /* Change inner ip address, fix inner ip and icmp checksums. */ 2666 PF_ACPY(ia, na, af); 2667 switch (af) { 2668 #ifdef INET 2669 case AF_INET: { 2670 u_int32_t oh2c = *h2c; 2671 2672 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2673 oia.addr16[0], ia->addr16[0], 0), 2674 oia.addr16[1], ia->addr16[1], 0); 2675 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2676 oia.addr16[0], ia->addr16[0], 0), 2677 oia.addr16[1], ia->addr16[1], 0); 2678 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2679 break; 2680 } 2681 #endif /* INET */ 2682 #ifdef INET6 2683 case AF_INET6: 2684 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2685 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2686 pf_cksum_fixup(pf_cksum_fixup(*ic, 2687 oia.addr16[0], ia->addr16[0], u), 2688 oia.addr16[1], ia->addr16[1], u), 2689 oia.addr16[2], ia->addr16[2], u), 2690 oia.addr16[3], ia->addr16[3], u), 2691 oia.addr16[4], ia->addr16[4], u), 2692 oia.addr16[5], ia->addr16[5], u), 2693 oia.addr16[6], ia->addr16[6], u), 2694 oia.addr16[7], ia->addr16[7], u); 2695 break; 2696 #endif /* INET6 */ 2697 } 2698 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2699 if (oa) { 2700 PF_ACPY(oa, na, af); 2701 switch (af) { 2702 #ifdef INET 2703 case AF_INET: 2704 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2705 ooa.addr16[0], oa->addr16[0], 0), 2706 ooa.addr16[1], oa->addr16[1], 0); 2707 break; 2708 #endif /* INET */ 2709 #ifdef INET6 2710 case AF_INET6: 2711 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2712 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2713 pf_cksum_fixup(pf_cksum_fixup(*ic, 2714 ooa.addr16[0], oa->addr16[0], u), 2715 ooa.addr16[1], oa->addr16[1], u), 2716 ooa.addr16[2], oa->addr16[2], u), 2717 ooa.addr16[3], oa->addr16[3], u), 2718 ooa.addr16[4], oa->addr16[4], u), 2719 ooa.addr16[5], oa->addr16[5], u), 2720 ooa.addr16[6], oa->addr16[6], u), 2721 ooa.addr16[7], oa->addr16[7], u); 2722 break; 2723 #endif /* INET6 */ 2724 } 2725 } 2726 } 2727 2728 /* 2729 * Need to modulate the sequence numbers in the TCP SACK option 2730 * (credits to Krzysztof Pfaff for report and patch) 2731 */ 2732 static int 2733 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2734 struct tcphdr *th, struct pf_state_peer *dst) 2735 { 2736 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2737 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2738 int copyback = 0, i, olen; 2739 struct sackblk sack; 2740 2741 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2742 if (hlen < TCPOLEN_SACKLEN || 2743 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2744 return 0; 2745 2746 while (hlen >= TCPOLEN_SACKLEN) { 2747 size_t startoff = opt - opts; 2748 olen = opt[1]; 2749 switch (*opt) { 2750 case TCPOPT_EOL: /* FALLTHROUGH */ 2751 case TCPOPT_NOP: 2752 opt++; 2753 hlen--; 2754 break; 2755 case TCPOPT_SACK: 2756 if (olen > hlen) 2757 olen = hlen; 2758 if (olen >= TCPOLEN_SACKLEN) { 2759 for (i = 2; i + TCPOLEN_SACK <= olen; 2760 i += TCPOLEN_SACK) { 2761 memcpy(&sack, &opt[i], sizeof(sack)); 2762 pf_patch_32_unaligned(m, 2763 &th->th_sum, &sack.start, 2764 htonl(ntohl(sack.start) - dst->seqdiff), 2765 PF_ALGNMNT(startoff), 2766 0); 2767 pf_patch_32_unaligned(m, &th->th_sum, 2768 &sack.end, 2769 htonl(ntohl(sack.end) - dst->seqdiff), 2770 PF_ALGNMNT(startoff), 2771 0); 2772 memcpy(&opt[i], &sack, sizeof(sack)); 2773 } 2774 copyback = 1; 2775 } 2776 /* FALLTHROUGH */ 2777 default: 2778 if (olen < 2) 2779 olen = 2; 2780 hlen -= olen; 2781 opt += olen; 2782 } 2783 } 2784 2785 if (copyback) 2786 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2787 return (copyback); 2788 } 2789 2790 struct mbuf * 2791 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2792 const struct pf_addr *saddr, const struct pf_addr *daddr, 2793 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2794 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2795 u_int16_t rtag) 2796 { 2797 struct mbuf *m; 2798 int len, tlen; 2799 #ifdef INET 2800 struct ip *h = NULL; 2801 #endif /* INET */ 2802 #ifdef INET6 2803 struct ip6_hdr *h6 = NULL; 2804 #endif /* INET6 */ 2805 struct tcphdr *th; 2806 char *opt; 2807 struct pf_mtag *pf_mtag; 2808 2809 len = 0; 2810 th = NULL; 2811 2812 /* maximum segment size tcp option */ 2813 tlen = sizeof(struct tcphdr); 2814 if (mss) 2815 tlen += 4; 2816 2817 switch (af) { 2818 #ifdef INET 2819 case AF_INET: 2820 len = sizeof(struct ip) + tlen; 2821 break; 2822 #endif /* INET */ 2823 #ifdef INET6 2824 case AF_INET6: 2825 len = sizeof(struct ip6_hdr) + tlen; 2826 break; 2827 #endif /* INET6 */ 2828 default: 2829 panic("%s: unsupported af %d", __func__, af); 2830 } 2831 2832 m = m_gethdr(M_NOWAIT, MT_DATA); 2833 if (m == NULL) 2834 return (NULL); 2835 2836 #ifdef MAC 2837 mac_netinet_firewall_send(m); 2838 #endif 2839 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2840 m_freem(m); 2841 return (NULL); 2842 } 2843 if (tag) 2844 m->m_flags |= M_SKIP_FIREWALL; 2845 pf_mtag->tag = rtag; 2846 2847 if (r != NULL && r->rtableid >= 0) 2848 M_SETFIB(m, r->rtableid); 2849 2850 #ifdef ALTQ 2851 if (r != NULL && r->qid) { 2852 pf_mtag->qid = r->qid; 2853 2854 /* add hints for ecn */ 2855 pf_mtag->hdr = mtod(m, struct ip *); 2856 } 2857 #endif /* ALTQ */ 2858 m->m_data += max_linkhdr; 2859 m->m_pkthdr.len = m->m_len = len; 2860 /* The rest of the stack assumes a rcvif, so provide one. 2861 * This is a locally generated packet, so .. close enough. */ 2862 m->m_pkthdr.rcvif = V_loif; 2863 bzero(m->m_data, len); 2864 switch (af) { 2865 #ifdef INET 2866 case AF_INET: 2867 h = mtod(m, struct ip *); 2868 2869 /* IP header fields included in the TCP checksum */ 2870 h->ip_p = IPPROTO_TCP; 2871 h->ip_len = htons(tlen); 2872 h->ip_src.s_addr = saddr->v4.s_addr; 2873 h->ip_dst.s_addr = daddr->v4.s_addr; 2874 2875 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2876 break; 2877 #endif /* INET */ 2878 #ifdef INET6 2879 case AF_INET6: 2880 h6 = mtod(m, struct ip6_hdr *); 2881 2882 /* IP header fields included in the TCP checksum */ 2883 h6->ip6_nxt = IPPROTO_TCP; 2884 h6->ip6_plen = htons(tlen); 2885 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2886 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2887 2888 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2889 break; 2890 #endif /* INET6 */ 2891 } 2892 2893 /* TCP header */ 2894 th->th_sport = sport; 2895 th->th_dport = dport; 2896 th->th_seq = htonl(seq); 2897 th->th_ack = htonl(ack); 2898 th->th_off = tlen >> 2; 2899 th->th_flags = flags; 2900 th->th_win = htons(win); 2901 2902 if (mss) { 2903 opt = (char *)(th + 1); 2904 opt[0] = TCPOPT_MAXSEG; 2905 opt[1] = 4; 2906 HTONS(mss); 2907 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2908 } 2909 2910 switch (af) { 2911 #ifdef INET 2912 case AF_INET: 2913 /* TCP checksum */ 2914 th->th_sum = in_cksum(m, len); 2915 2916 /* Finish the IP header */ 2917 h->ip_v = 4; 2918 h->ip_hl = sizeof(*h) >> 2; 2919 h->ip_tos = IPTOS_LOWDELAY; 2920 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2921 h->ip_len = htons(len); 2922 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2923 h->ip_sum = 0; 2924 break; 2925 #endif /* INET */ 2926 #ifdef INET6 2927 case AF_INET6: 2928 /* TCP checksum */ 2929 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2930 sizeof(struct ip6_hdr), tlen); 2931 2932 h6->ip6_vfc |= IPV6_VERSION; 2933 h6->ip6_hlim = IPV6_DEFHLIM; 2934 break; 2935 #endif /* INET6 */ 2936 } 2937 2938 return (m); 2939 } 2940 2941 void 2942 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2943 const struct pf_addr *saddr, const struct pf_addr *daddr, 2944 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2945 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2946 u_int16_t rtag) 2947 { 2948 struct pf_send_entry *pfse; 2949 struct mbuf *m; 2950 2951 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2952 win, mss, ttl, tag, rtag); 2953 if (m == NULL) 2954 return; 2955 2956 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2957 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2958 if (pfse == NULL) { 2959 m_freem(m); 2960 return; 2961 } 2962 2963 switch (af) { 2964 #ifdef INET 2965 case AF_INET: 2966 pfse->pfse_type = PFSE_IP; 2967 break; 2968 #endif /* INET */ 2969 #ifdef INET6 2970 case AF_INET6: 2971 pfse->pfse_type = PFSE_IP6; 2972 break; 2973 #endif /* INET6 */ 2974 } 2975 2976 pfse->pfse_m = m; 2977 pf_send(pfse); 2978 } 2979 2980 static void 2981 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2982 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2983 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2984 u_short *reason) 2985 { 2986 struct pf_addr * const saddr = pd->src; 2987 struct pf_addr * const daddr = pd->dst; 2988 sa_family_t af = pd->af; 2989 2990 /* undo NAT changes, if they have taken place */ 2991 if (nr != NULL) { 2992 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2993 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2994 if (pd->sport) 2995 *pd->sport = sk->port[pd->sidx]; 2996 if (pd->dport) 2997 *pd->dport = sk->port[pd->didx]; 2998 if (pd->proto_sum) 2999 *pd->proto_sum = bproto_sum; 3000 if (pd->ip_sum) 3001 *pd->ip_sum = bip_sum; 3002 m_copyback(m, off, hdrlen, pd->hdr.any); 3003 } 3004 if (pd->proto == IPPROTO_TCP && 3005 ((r->rule_flag & PFRULE_RETURNRST) || 3006 (r->rule_flag & PFRULE_RETURN)) && 3007 !(th->th_flags & TH_RST)) { 3008 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3009 int len = 0; 3010 #ifdef INET 3011 struct ip *h4; 3012 #endif 3013 #ifdef INET6 3014 struct ip6_hdr *h6; 3015 #endif 3016 3017 switch (af) { 3018 #ifdef INET 3019 case AF_INET: 3020 h4 = mtod(m, struct ip *); 3021 len = ntohs(h4->ip_len) - off; 3022 break; 3023 #endif 3024 #ifdef INET6 3025 case AF_INET6: 3026 h6 = mtod(m, struct ip6_hdr *); 3027 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3028 break; 3029 #endif 3030 } 3031 3032 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3033 REASON_SET(reason, PFRES_PROTCKSUM); 3034 else { 3035 if (th->th_flags & TH_SYN) 3036 ack++; 3037 if (th->th_flags & TH_FIN) 3038 ack++; 3039 pf_send_tcp(r, af, pd->dst, 3040 pd->src, th->th_dport, th->th_sport, 3041 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3042 r->return_ttl, 1, 0); 3043 } 3044 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3045 r->return_icmp) 3046 pf_send_icmp(m, r->return_icmp >> 8, 3047 r->return_icmp & 255, af, r); 3048 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3049 r->return_icmp6) 3050 pf_send_icmp(m, r->return_icmp6 >> 8, 3051 r->return_icmp6 & 255, af, r); 3052 } 3053 3054 static int 3055 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3056 { 3057 struct m_tag *mtag; 3058 u_int8_t mpcp; 3059 3060 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3061 if (mtag == NULL) 3062 return (0); 3063 3064 if (prio == PF_PRIO_ZERO) 3065 prio = 0; 3066 3067 mpcp = *(uint8_t *)(mtag + 1); 3068 3069 return (mpcp == prio); 3070 } 3071 3072 static void 3073 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3074 struct pf_krule *r) 3075 { 3076 struct pf_send_entry *pfse; 3077 struct mbuf *m0; 3078 struct pf_mtag *pf_mtag; 3079 3080 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3081 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3082 if (pfse == NULL) 3083 return; 3084 3085 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3086 free(pfse, M_PFTEMP); 3087 return; 3088 } 3089 3090 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3091 free(pfse, M_PFTEMP); 3092 return; 3093 } 3094 /* XXX: revisit */ 3095 m0->m_flags |= M_SKIP_FIREWALL; 3096 3097 if (r->rtableid >= 0) 3098 M_SETFIB(m0, r->rtableid); 3099 3100 #ifdef ALTQ 3101 if (r->qid) { 3102 pf_mtag->qid = r->qid; 3103 /* add hints for ecn */ 3104 pf_mtag->hdr = mtod(m0, struct ip *); 3105 } 3106 #endif /* ALTQ */ 3107 3108 switch (af) { 3109 #ifdef INET 3110 case AF_INET: 3111 pfse->pfse_type = PFSE_ICMP; 3112 break; 3113 #endif /* INET */ 3114 #ifdef INET6 3115 case AF_INET6: 3116 pfse->pfse_type = PFSE_ICMP6; 3117 break; 3118 #endif /* INET6 */ 3119 } 3120 pfse->pfse_m = m0; 3121 pfse->icmpopts.type = type; 3122 pfse->icmpopts.code = code; 3123 pf_send(pfse); 3124 } 3125 3126 /* 3127 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3128 * If n is 0, they match if they are equal. If n is != 0, they match if they 3129 * are different. 3130 */ 3131 int 3132 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3133 struct pf_addr *b, sa_family_t af) 3134 { 3135 int match = 0; 3136 3137 switch (af) { 3138 #ifdef INET 3139 case AF_INET: 3140 if ((a->addr32[0] & m->addr32[0]) == 3141 (b->addr32[0] & m->addr32[0])) 3142 match++; 3143 break; 3144 #endif /* INET */ 3145 #ifdef INET6 3146 case AF_INET6: 3147 if (((a->addr32[0] & m->addr32[0]) == 3148 (b->addr32[0] & m->addr32[0])) && 3149 ((a->addr32[1] & m->addr32[1]) == 3150 (b->addr32[1] & m->addr32[1])) && 3151 ((a->addr32[2] & m->addr32[2]) == 3152 (b->addr32[2] & m->addr32[2])) && 3153 ((a->addr32[3] & m->addr32[3]) == 3154 (b->addr32[3] & m->addr32[3]))) 3155 match++; 3156 break; 3157 #endif /* INET6 */ 3158 } 3159 if (match) { 3160 if (n) 3161 return (0); 3162 else 3163 return (1); 3164 } else { 3165 if (n) 3166 return (1); 3167 else 3168 return (0); 3169 } 3170 } 3171 3172 /* 3173 * Return 1 if b <= a <= e, otherwise return 0. 3174 */ 3175 int 3176 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3177 struct pf_addr *a, sa_family_t af) 3178 { 3179 switch (af) { 3180 #ifdef INET 3181 case AF_INET: 3182 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3183 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3184 return (0); 3185 break; 3186 #endif /* INET */ 3187 #ifdef INET6 3188 case AF_INET6: { 3189 int i; 3190 3191 /* check a >= b */ 3192 for (i = 0; i < 4; ++i) 3193 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3194 break; 3195 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3196 return (0); 3197 /* check a <= e */ 3198 for (i = 0; i < 4; ++i) 3199 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3200 break; 3201 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3202 return (0); 3203 break; 3204 } 3205 #endif /* INET6 */ 3206 } 3207 return (1); 3208 } 3209 3210 static int 3211 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3212 { 3213 switch (op) { 3214 case PF_OP_IRG: 3215 return ((p > a1) && (p < a2)); 3216 case PF_OP_XRG: 3217 return ((p < a1) || (p > a2)); 3218 case PF_OP_RRG: 3219 return ((p >= a1) && (p <= a2)); 3220 case PF_OP_EQ: 3221 return (p == a1); 3222 case PF_OP_NE: 3223 return (p != a1); 3224 case PF_OP_LT: 3225 return (p < a1); 3226 case PF_OP_LE: 3227 return (p <= a1); 3228 case PF_OP_GT: 3229 return (p > a1); 3230 case PF_OP_GE: 3231 return (p >= a1); 3232 } 3233 return (0); /* never reached */ 3234 } 3235 3236 int 3237 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3238 { 3239 NTOHS(a1); 3240 NTOHS(a2); 3241 NTOHS(p); 3242 return (pf_match(op, a1, a2, p)); 3243 } 3244 3245 static int 3246 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3247 { 3248 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3249 return (0); 3250 return (pf_match(op, a1, a2, u)); 3251 } 3252 3253 static int 3254 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3255 { 3256 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3257 return (0); 3258 return (pf_match(op, a1, a2, g)); 3259 } 3260 3261 int 3262 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3263 { 3264 if (*tag == -1) 3265 *tag = mtag; 3266 3267 return ((!r->match_tag_not && r->match_tag == *tag) || 3268 (r->match_tag_not && r->match_tag != *tag)); 3269 } 3270 3271 int 3272 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3273 { 3274 3275 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3276 3277 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3278 return (ENOMEM); 3279 3280 pd->pf_mtag->tag = tag; 3281 3282 return (0); 3283 } 3284 3285 #define PF_ANCHOR_STACKSIZE 32 3286 struct pf_kanchor_stackframe { 3287 struct pf_kruleset *rs; 3288 struct pf_krule *r; /* XXX: + match bit */ 3289 struct pf_kanchor *child; 3290 }; 3291 3292 /* 3293 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3294 */ 3295 #define PF_ANCHORSTACK_MATCH 0x00000001 3296 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3297 3298 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3299 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3300 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3301 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3302 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3303 } while (0) 3304 3305 void 3306 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3307 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3308 int *match) 3309 { 3310 struct pf_kanchor_stackframe *f; 3311 3312 PF_RULES_RASSERT(); 3313 3314 if (match) 3315 *match = 0; 3316 if (*depth >= PF_ANCHOR_STACKSIZE) { 3317 printf("%s: anchor stack overflow on %s\n", 3318 __func__, (*r)->anchor->name); 3319 *r = TAILQ_NEXT(*r, entries); 3320 return; 3321 } else if (*depth == 0 && a != NULL) 3322 *a = *r; 3323 f = stack + (*depth)++; 3324 f->rs = *rs; 3325 f->r = *r; 3326 if ((*r)->anchor_wildcard) { 3327 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3328 3329 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3330 *r = NULL; 3331 return; 3332 } 3333 *rs = &f->child->ruleset; 3334 } else { 3335 f->child = NULL; 3336 *rs = &(*r)->anchor->ruleset; 3337 } 3338 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3339 } 3340 3341 int 3342 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3343 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3344 int *match) 3345 { 3346 struct pf_kanchor_stackframe *f; 3347 struct pf_krule *fr; 3348 int quick = 0; 3349 3350 PF_RULES_RASSERT(); 3351 3352 do { 3353 if (*depth <= 0) 3354 break; 3355 f = stack + *depth - 1; 3356 fr = PF_ANCHOR_RULE(f); 3357 if (f->child != NULL) { 3358 struct pf_kanchor_node *parent; 3359 3360 /* 3361 * This block traverses through 3362 * a wildcard anchor. 3363 */ 3364 parent = &fr->anchor->children; 3365 if (match != NULL && *match) { 3366 /* 3367 * If any of "*" matched, then 3368 * "foo/ *" matched, mark frame 3369 * appropriately. 3370 */ 3371 PF_ANCHOR_SET_MATCH(f); 3372 *match = 0; 3373 } 3374 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3375 if (f->child != NULL) { 3376 *rs = &f->child->ruleset; 3377 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3378 if (*r == NULL) 3379 continue; 3380 else 3381 break; 3382 } 3383 } 3384 (*depth)--; 3385 if (*depth == 0 && a != NULL) 3386 *a = NULL; 3387 *rs = f->rs; 3388 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3389 quick = fr->quick; 3390 *r = TAILQ_NEXT(fr, entries); 3391 } while (*r == NULL); 3392 3393 return (quick); 3394 } 3395 3396 #ifdef INET6 3397 void 3398 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3399 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3400 { 3401 switch (af) { 3402 #ifdef INET 3403 case AF_INET: 3404 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3405 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3406 break; 3407 #endif /* INET */ 3408 case AF_INET6: 3409 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3410 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3411 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3412 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3413 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3414 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3415 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3416 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3417 break; 3418 } 3419 } 3420 3421 void 3422 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3423 { 3424 switch (af) { 3425 #ifdef INET 3426 case AF_INET: 3427 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3428 break; 3429 #endif /* INET */ 3430 case AF_INET6: 3431 if (addr->addr32[3] == 0xffffffff) { 3432 addr->addr32[3] = 0; 3433 if (addr->addr32[2] == 0xffffffff) { 3434 addr->addr32[2] = 0; 3435 if (addr->addr32[1] == 0xffffffff) { 3436 addr->addr32[1] = 0; 3437 addr->addr32[0] = 3438 htonl(ntohl(addr->addr32[0]) + 1); 3439 } else 3440 addr->addr32[1] = 3441 htonl(ntohl(addr->addr32[1]) + 1); 3442 } else 3443 addr->addr32[2] = 3444 htonl(ntohl(addr->addr32[2]) + 1); 3445 } else 3446 addr->addr32[3] = 3447 htonl(ntohl(addr->addr32[3]) + 1); 3448 break; 3449 } 3450 } 3451 #endif /* INET6 */ 3452 3453 void 3454 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3455 { 3456 if (r->qid) 3457 a->qid = r->qid; 3458 if (r->pqid) 3459 a->pqid = r->pqid; 3460 if (r->dnpipe) 3461 a->dnpipe = r->dnpipe; 3462 if (r->dnrpipe) 3463 a->dnpipe = r->dnrpipe; 3464 if (r->free_flags & PFRULE_DN_IS_PIPE) 3465 a->flags |= PFRULE_DN_IS_PIPE; 3466 } 3467 3468 int 3469 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3470 { 3471 struct pf_addr *saddr, *daddr; 3472 u_int16_t sport, dport; 3473 struct inpcbinfo *pi; 3474 struct inpcb *inp; 3475 3476 pd->lookup.uid = UID_MAX; 3477 pd->lookup.gid = GID_MAX; 3478 3479 switch (pd->proto) { 3480 case IPPROTO_TCP: 3481 sport = pd->hdr.tcp.th_sport; 3482 dport = pd->hdr.tcp.th_dport; 3483 pi = &V_tcbinfo; 3484 break; 3485 case IPPROTO_UDP: 3486 sport = pd->hdr.udp.uh_sport; 3487 dport = pd->hdr.udp.uh_dport; 3488 pi = &V_udbinfo; 3489 break; 3490 default: 3491 return (-1); 3492 } 3493 if (direction == PF_IN) { 3494 saddr = pd->src; 3495 daddr = pd->dst; 3496 } else { 3497 u_int16_t p; 3498 3499 p = sport; 3500 sport = dport; 3501 dport = p; 3502 saddr = pd->dst; 3503 daddr = pd->src; 3504 } 3505 switch (pd->af) { 3506 #ifdef INET 3507 case AF_INET: 3508 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3509 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3510 if (inp == NULL) { 3511 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3512 daddr->v4, dport, INPLOOKUP_WILDCARD | 3513 INPLOOKUP_RLOCKPCB, NULL, m); 3514 if (inp == NULL) 3515 return (-1); 3516 } 3517 break; 3518 #endif /* INET */ 3519 #ifdef INET6 3520 case AF_INET6: 3521 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3522 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3523 if (inp == NULL) { 3524 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3525 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3526 INPLOOKUP_RLOCKPCB, NULL, m); 3527 if (inp == NULL) 3528 return (-1); 3529 } 3530 break; 3531 #endif /* INET6 */ 3532 3533 default: 3534 return (-1); 3535 } 3536 INP_RLOCK_ASSERT(inp); 3537 pd->lookup.uid = inp->inp_cred->cr_uid; 3538 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3539 INP_RUNLOCK(inp); 3540 3541 return (1); 3542 } 3543 3544 u_int8_t 3545 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3546 { 3547 int hlen; 3548 u_int8_t hdr[60]; 3549 u_int8_t *opt, optlen; 3550 u_int8_t wscale = 0; 3551 3552 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3553 if (hlen <= sizeof(struct tcphdr)) 3554 return (0); 3555 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3556 return (0); 3557 opt = hdr + sizeof(struct tcphdr); 3558 hlen -= sizeof(struct tcphdr); 3559 while (hlen >= 3) { 3560 switch (*opt) { 3561 case TCPOPT_EOL: 3562 case TCPOPT_NOP: 3563 ++opt; 3564 --hlen; 3565 break; 3566 case TCPOPT_WINDOW: 3567 wscale = opt[2]; 3568 if (wscale > TCP_MAX_WINSHIFT) 3569 wscale = TCP_MAX_WINSHIFT; 3570 wscale |= PF_WSCALE_FLAG; 3571 /* FALLTHROUGH */ 3572 default: 3573 optlen = opt[1]; 3574 if (optlen < 2) 3575 optlen = 2; 3576 hlen -= optlen; 3577 opt += optlen; 3578 break; 3579 } 3580 } 3581 return (wscale); 3582 } 3583 3584 u_int16_t 3585 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3586 { 3587 int hlen; 3588 u_int8_t hdr[60]; 3589 u_int8_t *opt, optlen; 3590 u_int16_t mss = V_tcp_mssdflt; 3591 3592 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3593 if (hlen <= sizeof(struct tcphdr)) 3594 return (0); 3595 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3596 return (0); 3597 opt = hdr + sizeof(struct tcphdr); 3598 hlen -= sizeof(struct tcphdr); 3599 while (hlen >= TCPOLEN_MAXSEG) { 3600 switch (*opt) { 3601 case TCPOPT_EOL: 3602 case TCPOPT_NOP: 3603 ++opt; 3604 --hlen; 3605 break; 3606 case TCPOPT_MAXSEG: 3607 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3608 NTOHS(mss); 3609 /* FALLTHROUGH */ 3610 default: 3611 optlen = opt[1]; 3612 if (optlen < 2) 3613 optlen = 2; 3614 hlen -= optlen; 3615 opt += optlen; 3616 break; 3617 } 3618 } 3619 return (mss); 3620 } 3621 3622 static u_int16_t 3623 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3624 { 3625 struct nhop_object *nh; 3626 #ifdef INET6 3627 struct in6_addr dst6; 3628 uint32_t scopeid; 3629 #endif /* INET6 */ 3630 int hlen = 0; 3631 uint16_t mss = 0; 3632 3633 NET_EPOCH_ASSERT(); 3634 3635 switch (af) { 3636 #ifdef INET 3637 case AF_INET: 3638 hlen = sizeof(struct ip); 3639 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3640 if (nh != NULL) 3641 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3642 break; 3643 #endif /* INET */ 3644 #ifdef INET6 3645 case AF_INET6: 3646 hlen = sizeof(struct ip6_hdr); 3647 in6_splitscope(&addr->v6, &dst6, &scopeid); 3648 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3649 if (nh != NULL) 3650 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3651 break; 3652 #endif /* INET6 */ 3653 } 3654 3655 mss = max(V_tcp_mssdflt, mss); 3656 mss = min(mss, offer); 3657 mss = max(mss, 64); /* sanity - at least max opt space */ 3658 return (mss); 3659 } 3660 3661 static u_int32_t 3662 pf_tcp_iss(struct pf_pdesc *pd) 3663 { 3664 MD5_CTX ctx; 3665 u_int32_t digest[4]; 3666 3667 if (V_pf_tcp_secret_init == 0) { 3668 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3669 MD5Init(&V_pf_tcp_secret_ctx); 3670 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3671 sizeof(V_pf_tcp_secret)); 3672 V_pf_tcp_secret_init = 1; 3673 } 3674 3675 ctx = V_pf_tcp_secret_ctx; 3676 3677 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3678 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3679 if (pd->af == AF_INET6) { 3680 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3681 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3682 } else { 3683 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3684 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3685 } 3686 MD5Final((u_char *)digest, &ctx); 3687 V_pf_tcp_iss_off += 4096; 3688 #define ISN_RANDOM_INCREMENT (4096 - 1) 3689 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3690 V_pf_tcp_iss_off); 3691 #undef ISN_RANDOM_INCREMENT 3692 } 3693 3694 static int 3695 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3696 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3697 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3698 { 3699 struct pf_krule *nr = NULL; 3700 struct pf_addr * const saddr = pd->src; 3701 struct pf_addr * const daddr = pd->dst; 3702 sa_family_t af = pd->af; 3703 struct pf_krule *r, *a = NULL; 3704 struct pf_kruleset *ruleset = NULL; 3705 struct pf_ksrc_node *nsn = NULL; 3706 struct tcphdr *th = &pd->hdr.tcp; 3707 struct pf_state_key *sk = NULL, *nk = NULL; 3708 u_short reason; 3709 int rewrite = 0, hdrlen = 0; 3710 int tag = -1, rtableid = -1; 3711 int asd = 0; 3712 int match = 0; 3713 int state_icmp = 0; 3714 u_int16_t sport = 0, dport = 0; 3715 u_int16_t bproto_sum = 0, bip_sum = 0; 3716 u_int8_t icmptype = 0, icmpcode = 0; 3717 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3718 3719 PF_RULES_RASSERT(); 3720 3721 if (inp != NULL) { 3722 INP_LOCK_ASSERT(inp); 3723 pd->lookup.uid = inp->inp_cred->cr_uid; 3724 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3725 pd->lookup.done = 1; 3726 } 3727 3728 switch (pd->proto) { 3729 case IPPROTO_TCP: 3730 sport = th->th_sport; 3731 dport = th->th_dport; 3732 hdrlen = sizeof(*th); 3733 break; 3734 case IPPROTO_UDP: 3735 sport = pd->hdr.udp.uh_sport; 3736 dport = pd->hdr.udp.uh_dport; 3737 hdrlen = sizeof(pd->hdr.udp); 3738 break; 3739 #ifdef INET 3740 case IPPROTO_ICMP: 3741 if (pd->af != AF_INET) 3742 break; 3743 sport = dport = pd->hdr.icmp.icmp_id; 3744 hdrlen = sizeof(pd->hdr.icmp); 3745 icmptype = pd->hdr.icmp.icmp_type; 3746 icmpcode = pd->hdr.icmp.icmp_code; 3747 3748 if (icmptype == ICMP_UNREACH || 3749 icmptype == ICMP_SOURCEQUENCH || 3750 icmptype == ICMP_REDIRECT || 3751 icmptype == ICMP_TIMXCEED || 3752 icmptype == ICMP_PARAMPROB) 3753 state_icmp++; 3754 break; 3755 #endif /* INET */ 3756 #ifdef INET6 3757 case IPPROTO_ICMPV6: 3758 if (af != AF_INET6) 3759 break; 3760 sport = dport = pd->hdr.icmp6.icmp6_id; 3761 hdrlen = sizeof(pd->hdr.icmp6); 3762 icmptype = pd->hdr.icmp6.icmp6_type; 3763 icmpcode = pd->hdr.icmp6.icmp6_code; 3764 3765 if (icmptype == ICMP6_DST_UNREACH || 3766 icmptype == ICMP6_PACKET_TOO_BIG || 3767 icmptype == ICMP6_TIME_EXCEEDED || 3768 icmptype == ICMP6_PARAM_PROB) 3769 state_icmp++; 3770 break; 3771 #endif /* INET6 */ 3772 default: 3773 sport = dport = hdrlen = 0; 3774 break; 3775 } 3776 3777 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3778 3779 /* check packet for BINAT/NAT/RDR */ 3780 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3781 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3782 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3783 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3784 3785 if (nr->log) { 3786 PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, 3787 ruleset, pd, 1); 3788 } 3789 3790 if (pd->ip_sum) 3791 bip_sum = *pd->ip_sum; 3792 3793 switch (pd->proto) { 3794 case IPPROTO_TCP: 3795 bproto_sum = th->th_sum; 3796 pd->proto_sum = &th->th_sum; 3797 3798 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3799 nk->port[pd->sidx] != sport) { 3800 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3801 &th->th_sum, &nk->addr[pd->sidx], 3802 nk->port[pd->sidx], 0, af); 3803 pd->sport = &th->th_sport; 3804 sport = th->th_sport; 3805 } 3806 3807 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3808 nk->port[pd->didx] != dport) { 3809 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3810 &th->th_sum, &nk->addr[pd->didx], 3811 nk->port[pd->didx], 0, af); 3812 dport = th->th_dport; 3813 pd->dport = &th->th_dport; 3814 } 3815 rewrite++; 3816 break; 3817 case IPPROTO_UDP: 3818 bproto_sum = pd->hdr.udp.uh_sum; 3819 pd->proto_sum = &pd->hdr.udp.uh_sum; 3820 3821 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3822 nk->port[pd->sidx] != sport) { 3823 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3824 pd->ip_sum, &pd->hdr.udp.uh_sum, 3825 &nk->addr[pd->sidx], 3826 nk->port[pd->sidx], 1, af); 3827 sport = pd->hdr.udp.uh_sport; 3828 pd->sport = &pd->hdr.udp.uh_sport; 3829 } 3830 3831 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3832 nk->port[pd->didx] != dport) { 3833 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3834 pd->ip_sum, &pd->hdr.udp.uh_sum, 3835 &nk->addr[pd->didx], 3836 nk->port[pd->didx], 1, af); 3837 dport = pd->hdr.udp.uh_dport; 3838 pd->dport = &pd->hdr.udp.uh_dport; 3839 } 3840 rewrite++; 3841 break; 3842 #ifdef INET 3843 case IPPROTO_ICMP: 3844 nk->port[0] = nk->port[1]; 3845 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3846 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3847 nk->addr[pd->sidx].v4.s_addr, 0); 3848 3849 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3850 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3851 nk->addr[pd->didx].v4.s_addr, 0); 3852 3853 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3854 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3855 pd->hdr.icmp.icmp_cksum, sport, 3856 nk->port[1], 0); 3857 pd->hdr.icmp.icmp_id = nk->port[1]; 3858 pd->sport = &pd->hdr.icmp.icmp_id; 3859 } 3860 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3861 break; 3862 #endif /* INET */ 3863 #ifdef INET6 3864 case IPPROTO_ICMPV6: 3865 nk->port[0] = nk->port[1]; 3866 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3867 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3868 &nk->addr[pd->sidx], 0); 3869 3870 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3871 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3872 &nk->addr[pd->didx], 0); 3873 rewrite++; 3874 break; 3875 #endif /* INET */ 3876 default: 3877 switch (af) { 3878 #ifdef INET 3879 case AF_INET: 3880 if (PF_ANEQ(saddr, 3881 &nk->addr[pd->sidx], AF_INET)) 3882 pf_change_a(&saddr->v4.s_addr, 3883 pd->ip_sum, 3884 nk->addr[pd->sidx].v4.s_addr, 0); 3885 3886 if (PF_ANEQ(daddr, 3887 &nk->addr[pd->didx], AF_INET)) 3888 pf_change_a(&daddr->v4.s_addr, 3889 pd->ip_sum, 3890 nk->addr[pd->didx].v4.s_addr, 0); 3891 break; 3892 #endif /* INET */ 3893 #ifdef INET6 3894 case AF_INET6: 3895 if (PF_ANEQ(saddr, 3896 &nk->addr[pd->sidx], AF_INET6)) 3897 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3898 3899 if (PF_ANEQ(daddr, 3900 &nk->addr[pd->didx], AF_INET6)) 3901 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3902 break; 3903 #endif /* INET */ 3904 } 3905 break; 3906 } 3907 if (nr->natpass) 3908 r = NULL; 3909 pd->nat_rule = nr; 3910 } 3911 3912 while (r != NULL) { 3913 pf_counter_u64_add(&r->evaluations, 1); 3914 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3915 r = r->skip[PF_SKIP_IFP].ptr; 3916 else if (r->direction && r->direction != direction) 3917 r = r->skip[PF_SKIP_DIR].ptr; 3918 else if (r->af && r->af != af) 3919 r = r->skip[PF_SKIP_AF].ptr; 3920 else if (r->proto && r->proto != pd->proto) 3921 r = r->skip[PF_SKIP_PROTO].ptr; 3922 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3923 r->src.neg, kif, M_GETFIB(m))) 3924 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3925 /* tcp/udp only. port_op always 0 in other cases */ 3926 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3927 r->src.port[0], r->src.port[1], sport)) 3928 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3929 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3930 r->dst.neg, NULL, M_GETFIB(m))) 3931 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3932 /* tcp/udp only. port_op always 0 in other cases */ 3933 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3934 r->dst.port[0], r->dst.port[1], dport)) 3935 r = r->skip[PF_SKIP_DST_PORT].ptr; 3936 /* icmp only. type always 0 in other cases */ 3937 else if (r->type && r->type != icmptype + 1) 3938 r = TAILQ_NEXT(r, entries); 3939 /* icmp only. type always 0 in other cases */ 3940 else if (r->code && r->code != icmpcode + 1) 3941 r = TAILQ_NEXT(r, entries); 3942 else if (r->tos && !(r->tos == pd->tos)) 3943 r = TAILQ_NEXT(r, entries); 3944 else if (r->rule_flag & PFRULE_FRAGMENT) 3945 r = TAILQ_NEXT(r, entries); 3946 else if (pd->proto == IPPROTO_TCP && 3947 (r->flagset & th->th_flags) != r->flags) 3948 r = TAILQ_NEXT(r, entries); 3949 /* tcp/udp only. uid.op always 0 in other cases */ 3950 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3951 pf_socket_lookup(direction, pd, m), 1)) && 3952 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3953 pd->lookup.uid)) 3954 r = TAILQ_NEXT(r, entries); 3955 /* tcp/udp only. gid.op always 0 in other cases */ 3956 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3957 pf_socket_lookup(direction, pd, m), 1)) && 3958 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3959 pd->lookup.gid)) 3960 r = TAILQ_NEXT(r, entries); 3961 else if (r->prio && 3962 !pf_match_ieee8021q_pcp(r->prio, m)) 3963 r = TAILQ_NEXT(r, entries); 3964 else if (r->prob && 3965 r->prob <= arc4random()) 3966 r = TAILQ_NEXT(r, entries); 3967 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3968 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3969 r = TAILQ_NEXT(r, entries); 3970 else if (r->os_fingerprint != PF_OSFP_ANY && 3971 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3972 pf_osfp_fingerprint(pd, m, off, th), 3973 r->os_fingerprint))) 3974 r = TAILQ_NEXT(r, entries); 3975 else { 3976 if (r->tag) 3977 tag = r->tag; 3978 if (r->rtableid >= 0) 3979 rtableid = r->rtableid; 3980 if (r->anchor == NULL) { 3981 if (r->action == PF_MATCH) { 3982 pf_counter_u64_critical_enter(); 3983 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 3984 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 3985 pf_counter_u64_critical_exit(); 3986 pf_rule_to_actions(r, &pd->act); 3987 if (r->log) 3988 PFLOG_PACKET(kif, m, af, 3989 direction, PFRES_MATCH, r, 3990 a, ruleset, pd, 1); 3991 } else { 3992 match = 1; 3993 *rm = r; 3994 *am = a; 3995 *rsm = ruleset; 3996 } 3997 if ((*rm)->quick) 3998 break; 3999 r = TAILQ_NEXT(r, entries); 4000 } else 4001 pf_step_into_anchor(anchor_stack, &asd, 4002 &ruleset, PF_RULESET_FILTER, &r, &a, 4003 &match); 4004 } 4005 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4006 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4007 break; 4008 } 4009 r = *rm; 4010 a = *am; 4011 ruleset = *rsm; 4012 4013 REASON_SET(&reason, PFRES_MATCH); 4014 4015 /* apply actions for last matching pass/block rule */ 4016 pf_rule_to_actions(r, &pd->act); 4017 4018 if (r->log) { 4019 if (rewrite) 4020 m_copyback(m, off, hdrlen, pd->hdr.any); 4021 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 4022 ruleset, pd, 1); 4023 } 4024 4025 if ((r->action == PF_DROP) && 4026 ((r->rule_flag & PFRULE_RETURNRST) || 4027 (r->rule_flag & PFRULE_RETURNICMP) || 4028 (r->rule_flag & PFRULE_RETURN))) { 4029 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4030 bip_sum, hdrlen, &reason); 4031 } 4032 4033 if (r->action == PF_DROP) 4034 goto cleanup; 4035 4036 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4037 REASON_SET(&reason, PFRES_MEMORY); 4038 goto cleanup; 4039 } 4040 if (rtableid >= 0) 4041 M_SETFIB(m, rtableid); 4042 4043 if (!state_icmp && (r->keep_state || nr != NULL || 4044 (pd->flags & PFDESC_TCP_NORM))) { 4045 int action; 4046 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4047 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4048 hdrlen); 4049 if (action != PF_PASS) { 4050 if (action == PF_DROP && 4051 (r->rule_flag & PFRULE_RETURN)) 4052 pf_return(r, nr, pd, sk, off, m, th, kif, 4053 bproto_sum, bip_sum, hdrlen, &reason); 4054 return (action); 4055 } 4056 } else { 4057 if (sk != NULL) 4058 uma_zfree(V_pf_state_key_z, sk); 4059 if (nk != NULL) 4060 uma_zfree(V_pf_state_key_z, nk); 4061 } 4062 4063 /* copy back packet headers if we performed NAT operations */ 4064 if (rewrite) 4065 m_copyback(m, off, hdrlen, pd->hdr.any); 4066 4067 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4068 direction == PF_OUT && 4069 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4070 /* 4071 * We want the state created, but we dont 4072 * want to send this in case a partner 4073 * firewall has to know about it to allow 4074 * replies through it. 4075 */ 4076 return (PF_DEFER); 4077 4078 return (PF_PASS); 4079 4080 cleanup: 4081 if (sk != NULL) 4082 uma_zfree(V_pf_state_key_z, sk); 4083 if (nk != NULL) 4084 uma_zfree(V_pf_state_key_z, nk); 4085 return (PF_DROP); 4086 } 4087 4088 static int 4089 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4090 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4091 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4092 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4093 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 4094 { 4095 struct pf_kstate *s = NULL; 4096 struct pf_ksrc_node *sn = NULL; 4097 struct tcphdr *th = &pd->hdr.tcp; 4098 u_int16_t mss = V_tcp_mssdflt; 4099 u_short reason; 4100 4101 /* check maximums */ 4102 if (r->max_states && 4103 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4104 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4105 REASON_SET(&reason, PFRES_MAXSTATES); 4106 goto csfailed; 4107 } 4108 /* src node for filter rule */ 4109 if ((r->rule_flag & PFRULE_SRCTRACK || 4110 r->rpool.opts & PF_POOL_STICKYADDR) && 4111 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 4112 REASON_SET(&reason, PFRES_SRCLIMIT); 4113 goto csfailed; 4114 } 4115 /* src node for translation rule */ 4116 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4117 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 4118 REASON_SET(&reason, PFRES_SRCLIMIT); 4119 goto csfailed; 4120 } 4121 s = pf_alloc_state(M_NOWAIT); 4122 if (s == NULL) { 4123 REASON_SET(&reason, PFRES_MEMORY); 4124 goto csfailed; 4125 } 4126 s->rule.ptr = r; 4127 s->nat_rule.ptr = nr; 4128 s->anchor.ptr = a; 4129 STATE_INC_COUNTERS(s); 4130 if (r->allow_opts) 4131 s->state_flags |= PFSTATE_ALLOWOPTS; 4132 if (r->rule_flag & PFRULE_STATESLOPPY) 4133 s->state_flags |= PFSTATE_SLOPPY; 4134 s->log = r->log & PF_LOG_ALL; 4135 s->sync_state = PFSYNC_S_NONE; 4136 s->qid = pd->act.qid; 4137 s->pqid = pd->act.pqid; 4138 s->dnpipe = pd->act.dnpipe; 4139 s->dnrpipe = pd->act.dnrpipe; 4140 s->state_flags |= pd->act.flags; 4141 if (nr != NULL) 4142 s->log |= nr->log & PF_LOG_ALL; 4143 switch (pd->proto) { 4144 case IPPROTO_TCP: 4145 s->src.seqlo = ntohl(th->th_seq); 4146 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4147 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4148 r->keep_state == PF_STATE_MODULATE) { 4149 /* Generate sequence number modulator */ 4150 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4151 0) 4152 s->src.seqdiff = 1; 4153 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4154 htonl(s->src.seqlo + s->src.seqdiff), 0); 4155 *rewrite = 1; 4156 } else 4157 s->src.seqdiff = 0; 4158 if (th->th_flags & TH_SYN) { 4159 s->src.seqhi++; 4160 s->src.wscale = pf_get_wscale(m, off, 4161 th->th_off, pd->af); 4162 } 4163 s->src.max_win = MAX(ntohs(th->th_win), 1); 4164 if (s->src.wscale & PF_WSCALE_MASK) { 4165 /* Remove scale factor from initial window */ 4166 int win = s->src.max_win; 4167 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4168 s->src.max_win = (win - 1) >> 4169 (s->src.wscale & PF_WSCALE_MASK); 4170 } 4171 if (th->th_flags & TH_FIN) 4172 s->src.seqhi++; 4173 s->dst.seqhi = 1; 4174 s->dst.max_win = 1; 4175 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4176 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4177 s->timeout = PFTM_TCP_FIRST_PACKET; 4178 atomic_add_32(&V_pf_status.states_halfopen, 1); 4179 break; 4180 case IPPROTO_UDP: 4181 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4182 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4183 s->timeout = PFTM_UDP_FIRST_PACKET; 4184 break; 4185 case IPPROTO_ICMP: 4186 #ifdef INET6 4187 case IPPROTO_ICMPV6: 4188 #endif 4189 s->timeout = PFTM_ICMP_FIRST_PACKET; 4190 break; 4191 default: 4192 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4193 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4194 s->timeout = PFTM_OTHER_FIRST_PACKET; 4195 } 4196 4197 if (r->rt) { 4198 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4199 REASON_SET(&reason, PFRES_MAPFAILED); 4200 pf_src_tree_remove_state(s); 4201 s->timeout = PFTM_UNLINKED; 4202 STATE_DEC_COUNTERS(s); 4203 pf_free_state(s); 4204 goto csfailed; 4205 } 4206 s->rt_kif = r->rpool.cur->kif; 4207 } 4208 4209 s->creation = time_uptime; 4210 s->expire = time_uptime; 4211 4212 if (sn != NULL) 4213 s->src_node = sn; 4214 if (nsn != NULL) { 4215 /* XXX We only modify one side for now. */ 4216 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4217 s->nat_src_node = nsn; 4218 } 4219 if (pd->proto == IPPROTO_TCP) { 4220 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4221 off, pd, th, &s->src, &s->dst)) { 4222 REASON_SET(&reason, PFRES_MEMORY); 4223 pf_src_tree_remove_state(s); 4224 s->timeout = PFTM_UNLINKED; 4225 STATE_DEC_COUNTERS(s); 4226 pf_free_state(s); 4227 return (PF_DROP); 4228 } 4229 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4230 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4231 &s->src, &s->dst, rewrite)) { 4232 /* This really shouldn't happen!!! */ 4233 DPFPRINTF(PF_DEBUG_URGENT, 4234 ("pf_normalize_tcp_stateful failed on first " 4235 "pkt\n")); 4236 pf_src_tree_remove_state(s); 4237 s->timeout = PFTM_UNLINKED; 4238 STATE_DEC_COUNTERS(s); 4239 pf_free_state(s); 4240 return (PF_DROP); 4241 } 4242 } 4243 s->direction = pd->dir; 4244 4245 /* 4246 * sk/nk could already been setup by pf_get_translation(). 4247 */ 4248 if (nr == NULL) { 4249 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4250 __func__, nr, sk, nk)); 4251 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4252 if (sk == NULL) 4253 goto csfailed; 4254 nk = sk; 4255 } else 4256 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4257 __func__, nr, sk, nk)); 4258 4259 /* Swap sk/nk for PF_OUT. */ 4260 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4261 (pd->dir == PF_IN) ? sk : nk, 4262 (pd->dir == PF_IN) ? nk : sk, s)) { 4263 REASON_SET(&reason, PFRES_STATEINS); 4264 pf_src_tree_remove_state(s); 4265 s->timeout = PFTM_UNLINKED; 4266 STATE_DEC_COUNTERS(s); 4267 pf_free_state(s); 4268 return (PF_DROP); 4269 } else 4270 *sm = s; 4271 4272 if (tag > 0) 4273 s->tag = tag; 4274 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4275 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4276 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4277 /* undo NAT changes, if they have taken place */ 4278 if (nr != NULL) { 4279 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4280 if (pd->dir == PF_OUT) 4281 skt = s->key[PF_SK_STACK]; 4282 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4283 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4284 if (pd->sport) 4285 *pd->sport = skt->port[pd->sidx]; 4286 if (pd->dport) 4287 *pd->dport = skt->port[pd->didx]; 4288 if (pd->proto_sum) 4289 *pd->proto_sum = bproto_sum; 4290 if (pd->ip_sum) 4291 *pd->ip_sum = bip_sum; 4292 m_copyback(m, off, hdrlen, pd->hdr.any); 4293 } 4294 s->src.seqhi = htonl(arc4random()); 4295 /* Find mss option */ 4296 int rtid = M_GETFIB(m); 4297 mss = pf_get_mss(m, off, th->th_off, pd->af); 4298 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4299 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4300 s->src.mss = mss; 4301 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4302 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4303 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4304 REASON_SET(&reason, PFRES_SYNPROXY); 4305 return (PF_SYNPROXY_DROP); 4306 } 4307 4308 return (PF_PASS); 4309 4310 csfailed: 4311 if (sk != NULL) 4312 uma_zfree(V_pf_state_key_z, sk); 4313 if (nk != NULL) 4314 uma_zfree(V_pf_state_key_z, nk); 4315 4316 if (sn != NULL) { 4317 struct pf_srchash *sh; 4318 4319 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4320 PF_HASHROW_LOCK(sh); 4321 if (--sn->states == 0 && sn->expire == 0) { 4322 pf_unlink_src_node(sn); 4323 uma_zfree(V_pf_sources_z, sn); 4324 counter_u64_add( 4325 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4326 } 4327 PF_HASHROW_UNLOCK(sh); 4328 } 4329 4330 if (nsn != sn && nsn != NULL) { 4331 struct pf_srchash *sh; 4332 4333 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4334 PF_HASHROW_LOCK(sh); 4335 if (--nsn->states == 0 && nsn->expire == 0) { 4336 pf_unlink_src_node(nsn); 4337 uma_zfree(V_pf_sources_z, nsn); 4338 counter_u64_add( 4339 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4340 } 4341 PF_HASHROW_UNLOCK(sh); 4342 } 4343 4344 return (PF_DROP); 4345 } 4346 4347 static int 4348 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4349 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4350 struct pf_kruleset **rsm) 4351 { 4352 struct pf_krule *r, *a = NULL; 4353 struct pf_kruleset *ruleset = NULL; 4354 sa_family_t af = pd->af; 4355 u_short reason; 4356 int tag = -1; 4357 int asd = 0; 4358 int match = 0; 4359 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4360 4361 PF_RULES_RASSERT(); 4362 4363 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4364 while (r != NULL) { 4365 pf_counter_u64_add(&r->evaluations, 1); 4366 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4367 r = r->skip[PF_SKIP_IFP].ptr; 4368 else if (r->direction && r->direction != direction) 4369 r = r->skip[PF_SKIP_DIR].ptr; 4370 else if (r->af && r->af != af) 4371 r = r->skip[PF_SKIP_AF].ptr; 4372 else if (r->proto && r->proto != pd->proto) 4373 r = r->skip[PF_SKIP_PROTO].ptr; 4374 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4375 r->src.neg, kif, M_GETFIB(m))) 4376 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4377 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4378 r->dst.neg, NULL, M_GETFIB(m))) 4379 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4380 else if (r->tos && !(r->tos == pd->tos)) 4381 r = TAILQ_NEXT(r, entries); 4382 else if (r->os_fingerprint != PF_OSFP_ANY) 4383 r = TAILQ_NEXT(r, entries); 4384 else if (pd->proto == IPPROTO_UDP && 4385 (r->src.port_op || r->dst.port_op)) 4386 r = TAILQ_NEXT(r, entries); 4387 else if (pd->proto == IPPROTO_TCP && 4388 (r->src.port_op || r->dst.port_op || r->flagset)) 4389 r = TAILQ_NEXT(r, entries); 4390 else if ((pd->proto == IPPROTO_ICMP || 4391 pd->proto == IPPROTO_ICMPV6) && 4392 (r->type || r->code)) 4393 r = TAILQ_NEXT(r, entries); 4394 else if (r->prio && 4395 !pf_match_ieee8021q_pcp(r->prio, m)) 4396 r = TAILQ_NEXT(r, entries); 4397 else if (r->prob && r->prob <= 4398 (arc4random() % (UINT_MAX - 1) + 1)) 4399 r = TAILQ_NEXT(r, entries); 4400 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4401 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4402 r = TAILQ_NEXT(r, entries); 4403 else { 4404 if (r->anchor == NULL) { 4405 if (r->action == PF_MATCH) { 4406 pf_counter_u64_critical_enter(); 4407 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4408 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4409 pf_counter_u64_critical_exit(); 4410 pf_rule_to_actions(r, &pd->act); 4411 if (r->log) 4412 PFLOG_PACKET(kif, m, af, 4413 direction, PFRES_MATCH, r, 4414 a, ruleset, pd, 1); 4415 } else { 4416 match = 1; 4417 *rm = r; 4418 *am = a; 4419 *rsm = ruleset; 4420 } 4421 if ((*rm)->quick) 4422 break; 4423 r = TAILQ_NEXT(r, entries); 4424 } else 4425 pf_step_into_anchor(anchor_stack, &asd, 4426 &ruleset, PF_RULESET_FILTER, &r, &a, 4427 &match); 4428 } 4429 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4430 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4431 break; 4432 } 4433 r = *rm; 4434 a = *am; 4435 ruleset = *rsm; 4436 4437 REASON_SET(&reason, PFRES_MATCH); 4438 4439 /* apply actions for last matching pass/block rule */ 4440 pf_rule_to_actions(r, &pd->act); 4441 4442 if (r->log) 4443 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4444 1); 4445 4446 if (r->action != PF_PASS) 4447 return (PF_DROP); 4448 4449 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4450 REASON_SET(&reason, PFRES_MEMORY); 4451 return (PF_DROP); 4452 } 4453 4454 return (PF_PASS); 4455 } 4456 4457 static int 4458 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4459 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4460 int *copyback) 4461 { 4462 struct tcphdr *th = &pd->hdr.tcp; 4463 struct pf_state_peer *src, *dst; 4464 u_int16_t win = ntohs(th->th_win); 4465 u_int32_t ack, end, seq, orig_seq; 4466 u_int8_t sws, dws, psrc, pdst; 4467 int ackskew; 4468 4469 if (pd->dir == (*state)->direction) { 4470 src = &(*state)->src; 4471 dst = &(*state)->dst; 4472 psrc = PF_PEER_SRC; 4473 pdst = PF_PEER_DST; 4474 } else { 4475 src = &(*state)->dst; 4476 dst = &(*state)->src; 4477 psrc = PF_PEER_DST; 4478 pdst = PF_PEER_SRC; 4479 } 4480 4481 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4482 sws = src->wscale & PF_WSCALE_MASK; 4483 dws = dst->wscale & PF_WSCALE_MASK; 4484 } else 4485 sws = dws = 0; 4486 4487 /* 4488 * Sequence tracking algorithm from Guido van Rooij's paper: 4489 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4490 * tcp_filtering.ps 4491 */ 4492 4493 orig_seq = seq = ntohl(th->th_seq); 4494 if (src->seqlo == 0) { 4495 /* First packet from this end. Set its state */ 4496 4497 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4498 src->scrub == NULL) { 4499 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4500 REASON_SET(reason, PFRES_MEMORY); 4501 return (PF_DROP); 4502 } 4503 } 4504 4505 /* Deferred generation of sequence number modulator */ 4506 if (dst->seqdiff && !src->seqdiff) { 4507 /* use random iss for the TCP server */ 4508 while ((src->seqdiff = arc4random() - seq) == 0) 4509 ; 4510 ack = ntohl(th->th_ack) - dst->seqdiff; 4511 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4512 src->seqdiff), 0); 4513 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4514 *copyback = 1; 4515 } else { 4516 ack = ntohl(th->th_ack); 4517 } 4518 4519 end = seq + pd->p_len; 4520 if (th->th_flags & TH_SYN) { 4521 end++; 4522 if (dst->wscale & PF_WSCALE_FLAG) { 4523 src->wscale = pf_get_wscale(m, off, th->th_off, 4524 pd->af); 4525 if (src->wscale & PF_WSCALE_FLAG) { 4526 /* Remove scale factor from initial 4527 * window */ 4528 sws = src->wscale & PF_WSCALE_MASK; 4529 win = ((u_int32_t)win + (1 << sws) - 1) 4530 >> sws; 4531 dws = dst->wscale & PF_WSCALE_MASK; 4532 } else { 4533 /* fixup other window */ 4534 dst->max_win <<= dst->wscale & 4535 PF_WSCALE_MASK; 4536 /* in case of a retrans SYN|ACK */ 4537 dst->wscale = 0; 4538 } 4539 } 4540 } 4541 if (th->th_flags & TH_FIN) 4542 end++; 4543 4544 src->seqlo = seq; 4545 if (src->state < TCPS_SYN_SENT) 4546 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4547 4548 /* 4549 * May need to slide the window (seqhi may have been set by 4550 * the crappy stack check or if we picked up the connection 4551 * after establishment) 4552 */ 4553 if (src->seqhi == 1 || 4554 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4555 src->seqhi = end + MAX(1, dst->max_win << dws); 4556 if (win > src->max_win) 4557 src->max_win = win; 4558 4559 } else { 4560 ack = ntohl(th->th_ack) - dst->seqdiff; 4561 if (src->seqdiff) { 4562 /* Modulate sequence numbers */ 4563 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4564 src->seqdiff), 0); 4565 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4566 *copyback = 1; 4567 } 4568 end = seq + pd->p_len; 4569 if (th->th_flags & TH_SYN) 4570 end++; 4571 if (th->th_flags & TH_FIN) 4572 end++; 4573 } 4574 4575 if ((th->th_flags & TH_ACK) == 0) { 4576 /* Let it pass through the ack skew check */ 4577 ack = dst->seqlo; 4578 } else if ((ack == 0 && 4579 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4580 /* broken tcp stacks do not set ack */ 4581 (dst->state < TCPS_SYN_SENT)) { 4582 /* 4583 * Many stacks (ours included) will set the ACK number in an 4584 * FIN|ACK if the SYN times out -- no sequence to ACK. 4585 */ 4586 ack = dst->seqlo; 4587 } 4588 4589 if (seq == end) { 4590 /* Ease sequencing restrictions on no data packets */ 4591 seq = src->seqlo; 4592 end = seq; 4593 } 4594 4595 ackskew = dst->seqlo - ack; 4596 4597 /* 4598 * Need to demodulate the sequence numbers in any TCP SACK options 4599 * (Selective ACK). We could optionally validate the SACK values 4600 * against the current ACK window, either forwards or backwards, but 4601 * I'm not confident that SACK has been implemented properly 4602 * everywhere. It wouldn't surprise me if several stacks accidentally 4603 * SACK too far backwards of previously ACKed data. There really aren't 4604 * any security implications of bad SACKing unless the target stack 4605 * doesn't validate the option length correctly. Someone trying to 4606 * spoof into a TCP connection won't bother blindly sending SACK 4607 * options anyway. 4608 */ 4609 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4610 if (pf_modulate_sack(m, off, pd, th, dst)) 4611 *copyback = 1; 4612 } 4613 4614 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4615 if (SEQ_GEQ(src->seqhi, end) && 4616 /* Last octet inside other's window space */ 4617 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4618 /* Retrans: not more than one window back */ 4619 (ackskew >= -MAXACKWINDOW) && 4620 /* Acking not more than one reassembled fragment backwards */ 4621 (ackskew <= (MAXACKWINDOW << sws)) && 4622 /* Acking not more than one window forward */ 4623 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4624 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4625 (pd->flags & PFDESC_IP_REAS) == 0)) { 4626 /* Require an exact/+1 sequence match on resets when possible */ 4627 4628 if (dst->scrub || src->scrub) { 4629 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4630 *state, src, dst, copyback)) 4631 return (PF_DROP); 4632 } 4633 4634 /* update max window */ 4635 if (src->max_win < win) 4636 src->max_win = win; 4637 /* synchronize sequencing */ 4638 if (SEQ_GT(end, src->seqlo)) 4639 src->seqlo = end; 4640 /* slide the window of what the other end can send */ 4641 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4642 dst->seqhi = ack + MAX((win << sws), 1); 4643 4644 /* update states */ 4645 if (th->th_flags & TH_SYN) 4646 if (src->state < TCPS_SYN_SENT) 4647 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4648 if (th->th_flags & TH_FIN) 4649 if (src->state < TCPS_CLOSING) 4650 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4651 if (th->th_flags & TH_ACK) { 4652 if (dst->state == TCPS_SYN_SENT) { 4653 pf_set_protostate(*state, pdst, 4654 TCPS_ESTABLISHED); 4655 if (src->state == TCPS_ESTABLISHED && 4656 (*state)->src_node != NULL && 4657 pf_src_connlimit(state)) { 4658 REASON_SET(reason, PFRES_SRCLIMIT); 4659 return (PF_DROP); 4660 } 4661 } else if (dst->state == TCPS_CLOSING) 4662 pf_set_protostate(*state, pdst, 4663 TCPS_FIN_WAIT_2); 4664 } 4665 if (th->th_flags & TH_RST) 4666 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4667 4668 /* update expire time */ 4669 (*state)->expire = time_uptime; 4670 if (src->state >= TCPS_FIN_WAIT_2 && 4671 dst->state >= TCPS_FIN_WAIT_2) 4672 (*state)->timeout = PFTM_TCP_CLOSED; 4673 else if (src->state >= TCPS_CLOSING && 4674 dst->state >= TCPS_CLOSING) 4675 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4676 else if (src->state < TCPS_ESTABLISHED || 4677 dst->state < TCPS_ESTABLISHED) 4678 (*state)->timeout = PFTM_TCP_OPENING; 4679 else if (src->state >= TCPS_CLOSING || 4680 dst->state >= TCPS_CLOSING) 4681 (*state)->timeout = PFTM_TCP_CLOSING; 4682 else 4683 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4684 4685 /* Fall through to PASS packet */ 4686 4687 } else if ((dst->state < TCPS_SYN_SENT || 4688 dst->state >= TCPS_FIN_WAIT_2 || 4689 src->state >= TCPS_FIN_WAIT_2) && 4690 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4691 /* Within a window forward of the originating packet */ 4692 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4693 /* Within a window backward of the originating packet */ 4694 4695 /* 4696 * This currently handles three situations: 4697 * 1) Stupid stacks will shotgun SYNs before their peer 4698 * replies. 4699 * 2) When PF catches an already established stream (the 4700 * firewall rebooted, the state table was flushed, routes 4701 * changed...) 4702 * 3) Packets get funky immediately after the connection 4703 * closes (this should catch Solaris spurious ACK|FINs 4704 * that web servers like to spew after a close) 4705 * 4706 * This must be a little more careful than the above code 4707 * since packet floods will also be caught here. We don't 4708 * update the TTL here to mitigate the damage of a packet 4709 * flood and so the same code can handle awkward establishment 4710 * and a loosened connection close. 4711 * In the establishment case, a correct peer response will 4712 * validate the connection, go through the normal state code 4713 * and keep updating the state TTL. 4714 */ 4715 4716 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4717 printf("pf: loose state match: "); 4718 pf_print_state(*state); 4719 pf_print_flags(th->th_flags); 4720 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4721 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4722 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4723 (unsigned long long)(*state)->packets[1], 4724 pd->dir == PF_IN ? "in" : "out", 4725 pd->dir == (*state)->direction ? "fwd" : "rev"); 4726 } 4727 4728 if (dst->scrub || src->scrub) { 4729 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4730 *state, src, dst, copyback)) 4731 return (PF_DROP); 4732 } 4733 4734 /* update max window */ 4735 if (src->max_win < win) 4736 src->max_win = win; 4737 /* synchronize sequencing */ 4738 if (SEQ_GT(end, src->seqlo)) 4739 src->seqlo = end; 4740 /* slide the window of what the other end can send */ 4741 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4742 dst->seqhi = ack + MAX((win << sws), 1); 4743 4744 /* 4745 * Cannot set dst->seqhi here since this could be a shotgunned 4746 * SYN and not an already established connection. 4747 */ 4748 4749 if (th->th_flags & TH_FIN) 4750 if (src->state < TCPS_CLOSING) 4751 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4752 if (th->th_flags & TH_RST) 4753 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4754 4755 /* Fall through to PASS packet */ 4756 4757 } else { 4758 if ((*state)->dst.state == TCPS_SYN_SENT && 4759 (*state)->src.state == TCPS_SYN_SENT) { 4760 /* Send RST for state mismatches during handshake */ 4761 if (!(th->th_flags & TH_RST)) 4762 pf_send_tcp((*state)->rule.ptr, pd->af, 4763 pd->dst, pd->src, th->th_dport, 4764 th->th_sport, ntohl(th->th_ack), 0, 4765 TH_RST, 0, 0, 4766 (*state)->rule.ptr->return_ttl, 1, 0); 4767 src->seqlo = 0; 4768 src->seqhi = 1; 4769 src->max_win = 1; 4770 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4771 printf("pf: BAD state: "); 4772 pf_print_state(*state); 4773 pf_print_flags(th->th_flags); 4774 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4775 "pkts=%llu:%llu dir=%s,%s\n", 4776 seq, orig_seq, ack, pd->p_len, ackskew, 4777 (unsigned long long)(*state)->packets[0], 4778 (unsigned long long)(*state)->packets[1], 4779 pd->dir == PF_IN ? "in" : "out", 4780 pd->dir == (*state)->direction ? "fwd" : "rev"); 4781 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4782 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4783 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4784 ' ': '2', 4785 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4786 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4787 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4788 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4789 } 4790 REASON_SET(reason, PFRES_BADSTATE); 4791 return (PF_DROP); 4792 } 4793 4794 return (PF_PASS); 4795 } 4796 4797 static int 4798 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4799 { 4800 struct tcphdr *th = &pd->hdr.tcp; 4801 struct pf_state_peer *src, *dst; 4802 u_int8_t psrc, pdst; 4803 4804 if (pd->dir == (*state)->direction) { 4805 src = &(*state)->src; 4806 dst = &(*state)->dst; 4807 psrc = PF_PEER_SRC; 4808 pdst = PF_PEER_DST; 4809 } else { 4810 src = &(*state)->dst; 4811 dst = &(*state)->src; 4812 psrc = PF_PEER_DST; 4813 pdst = PF_PEER_SRC; 4814 } 4815 4816 if (th->th_flags & TH_SYN) 4817 if (src->state < TCPS_SYN_SENT) 4818 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4819 if (th->th_flags & TH_FIN) 4820 if (src->state < TCPS_CLOSING) 4821 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4822 if (th->th_flags & TH_ACK) { 4823 if (dst->state == TCPS_SYN_SENT) { 4824 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 4825 if (src->state == TCPS_ESTABLISHED && 4826 (*state)->src_node != NULL && 4827 pf_src_connlimit(state)) { 4828 REASON_SET(reason, PFRES_SRCLIMIT); 4829 return (PF_DROP); 4830 } 4831 } else if (dst->state == TCPS_CLOSING) { 4832 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 4833 } else if (src->state == TCPS_SYN_SENT && 4834 dst->state < TCPS_SYN_SENT) { 4835 /* 4836 * Handle a special sloppy case where we only see one 4837 * half of the connection. If there is a ACK after 4838 * the initial SYN without ever seeing a packet from 4839 * the destination, set the connection to established. 4840 */ 4841 pf_set_protostate(*state, PF_PEER_BOTH, 4842 TCPS_ESTABLISHED); 4843 dst->state = src->state = TCPS_ESTABLISHED; 4844 if ((*state)->src_node != NULL && 4845 pf_src_connlimit(state)) { 4846 REASON_SET(reason, PFRES_SRCLIMIT); 4847 return (PF_DROP); 4848 } 4849 } else if (src->state == TCPS_CLOSING && 4850 dst->state == TCPS_ESTABLISHED && 4851 dst->seqlo == 0) { 4852 /* 4853 * Handle the closing of half connections where we 4854 * don't see the full bidirectional FIN/ACK+ACK 4855 * handshake. 4856 */ 4857 pf_set_protostate(*state, pdst, TCPS_CLOSING); 4858 } 4859 } 4860 if (th->th_flags & TH_RST) 4861 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4862 4863 /* update expire time */ 4864 (*state)->expire = time_uptime; 4865 if (src->state >= TCPS_FIN_WAIT_2 && 4866 dst->state >= TCPS_FIN_WAIT_2) 4867 (*state)->timeout = PFTM_TCP_CLOSED; 4868 else if (src->state >= TCPS_CLOSING && 4869 dst->state >= TCPS_CLOSING) 4870 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4871 else if (src->state < TCPS_ESTABLISHED || 4872 dst->state < TCPS_ESTABLISHED) 4873 (*state)->timeout = PFTM_TCP_OPENING; 4874 else if (src->state >= TCPS_CLOSING || 4875 dst->state >= TCPS_CLOSING) 4876 (*state)->timeout = PFTM_TCP_CLOSING; 4877 else 4878 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4879 4880 return (PF_PASS); 4881 } 4882 4883 static int 4884 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 4885 { 4886 struct pf_state_key *sk = (*state)->key[pd->didx]; 4887 struct tcphdr *th = &pd->hdr.tcp; 4888 4889 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4890 if (pd->dir != (*state)->direction) { 4891 REASON_SET(reason, PFRES_SYNPROXY); 4892 return (PF_SYNPROXY_DROP); 4893 } 4894 if (th->th_flags & TH_SYN) { 4895 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4896 REASON_SET(reason, PFRES_SYNPROXY); 4897 return (PF_DROP); 4898 } 4899 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4900 pd->src, th->th_dport, th->th_sport, 4901 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4902 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 4903 REASON_SET(reason, PFRES_SYNPROXY); 4904 return (PF_SYNPROXY_DROP); 4905 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4906 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4907 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4908 REASON_SET(reason, PFRES_SYNPROXY); 4909 return (PF_DROP); 4910 } else if ((*state)->src_node != NULL && 4911 pf_src_connlimit(state)) { 4912 REASON_SET(reason, PFRES_SRCLIMIT); 4913 return (PF_DROP); 4914 } else 4915 pf_set_protostate(*state, PF_PEER_SRC, 4916 PF_TCPS_PROXY_DST); 4917 } 4918 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4919 if (pd->dir == (*state)->direction) { 4920 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4921 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4922 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4923 REASON_SET(reason, PFRES_SYNPROXY); 4924 return (PF_DROP); 4925 } 4926 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4927 if ((*state)->dst.seqhi == 1) 4928 (*state)->dst.seqhi = htonl(arc4random()); 4929 pf_send_tcp((*state)->rule.ptr, pd->af, 4930 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4931 sk->port[pd->sidx], sk->port[pd->didx], 4932 (*state)->dst.seqhi, 0, TH_SYN, 0, 4933 (*state)->src.mss, 0, 0, (*state)->tag); 4934 REASON_SET(reason, PFRES_SYNPROXY); 4935 return (PF_SYNPROXY_DROP); 4936 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4937 (TH_SYN|TH_ACK)) || 4938 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4939 REASON_SET(reason, PFRES_SYNPROXY); 4940 return (PF_DROP); 4941 } else { 4942 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4943 (*state)->dst.seqlo = ntohl(th->th_seq); 4944 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4945 pd->src, th->th_dport, th->th_sport, 4946 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4947 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4948 (*state)->tag); 4949 pf_send_tcp((*state)->rule.ptr, pd->af, 4950 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4951 sk->port[pd->sidx], sk->port[pd->didx], 4952 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4953 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 4954 (*state)->src.seqdiff = (*state)->dst.seqhi - 4955 (*state)->src.seqlo; 4956 (*state)->dst.seqdiff = (*state)->src.seqhi - 4957 (*state)->dst.seqlo; 4958 (*state)->src.seqhi = (*state)->src.seqlo + 4959 (*state)->dst.max_win; 4960 (*state)->dst.seqhi = (*state)->dst.seqlo + 4961 (*state)->src.max_win; 4962 (*state)->src.wscale = (*state)->dst.wscale = 0; 4963 pf_set_protostate(*state, PF_PEER_BOTH, 4964 TCPS_ESTABLISHED); 4965 REASON_SET(reason, PFRES_SYNPROXY); 4966 return (PF_SYNPROXY_DROP); 4967 } 4968 } 4969 4970 return (PF_PASS); 4971 } 4972 4973 static int 4974 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4975 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4976 u_short *reason) 4977 { 4978 struct pf_state_key_cmp key; 4979 struct tcphdr *th = &pd->hdr.tcp; 4980 int copyback = 0; 4981 int action; 4982 struct pf_state_peer *src, *dst; 4983 4984 bzero(&key, sizeof(key)); 4985 key.af = pd->af; 4986 key.proto = IPPROTO_TCP; 4987 if (direction == PF_IN) { /* wire side, straight */ 4988 PF_ACPY(&key.addr[0], pd->src, key.af); 4989 PF_ACPY(&key.addr[1], pd->dst, key.af); 4990 key.port[0] = th->th_sport; 4991 key.port[1] = th->th_dport; 4992 } else { /* stack side, reverse */ 4993 PF_ACPY(&key.addr[1], pd->src, key.af); 4994 PF_ACPY(&key.addr[0], pd->dst, key.af); 4995 key.port[1] = th->th_sport; 4996 key.port[0] = th->th_dport; 4997 } 4998 4999 STATE_LOOKUP(kif, &key, direction, *state, pd); 5000 5001 if (direction == (*state)->direction) { 5002 src = &(*state)->src; 5003 dst = &(*state)->dst; 5004 } else { 5005 src = &(*state)->dst; 5006 dst = &(*state)->src; 5007 } 5008 5009 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5010 return (action); 5011 5012 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 5013 dst->state >= TCPS_FIN_WAIT_2 && 5014 src->state >= TCPS_FIN_WAIT_2) { 5015 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5016 printf("pf: state reuse "); 5017 pf_print_state(*state); 5018 pf_print_flags(th->th_flags); 5019 printf("\n"); 5020 } 5021 /* XXX make sure it's the same direction ?? */ 5022 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5023 pf_unlink_state(*state); 5024 *state = NULL; 5025 return (PF_DROP); 5026 } 5027 5028 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5029 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5030 return (PF_DROP); 5031 } else { 5032 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5033 ©back) == PF_DROP) 5034 return (PF_DROP); 5035 } 5036 5037 /* translate source/destination address, if necessary */ 5038 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5039 struct pf_state_key *nk = (*state)->key[pd->didx]; 5040 5041 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5042 nk->port[pd->sidx] != th->th_sport) 5043 pf_change_ap(m, pd->src, &th->th_sport, 5044 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5045 nk->port[pd->sidx], 0, pd->af); 5046 5047 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5048 nk->port[pd->didx] != th->th_dport) 5049 pf_change_ap(m, pd->dst, &th->th_dport, 5050 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5051 nk->port[pd->didx], 0, pd->af); 5052 copyback = 1; 5053 } 5054 5055 /* Copyback sequence modulation or stateful scrub changes if needed */ 5056 if (copyback) 5057 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5058 5059 return (PF_PASS); 5060 } 5061 5062 static int 5063 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5064 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5065 { 5066 struct pf_state_peer *src, *dst; 5067 struct pf_state_key_cmp key; 5068 struct udphdr *uh = &pd->hdr.udp; 5069 uint8_t psrc, pdst; 5070 5071 bzero(&key, sizeof(key)); 5072 key.af = pd->af; 5073 key.proto = IPPROTO_UDP; 5074 if (direction == PF_IN) { /* wire side, straight */ 5075 PF_ACPY(&key.addr[0], pd->src, key.af); 5076 PF_ACPY(&key.addr[1], pd->dst, key.af); 5077 key.port[0] = uh->uh_sport; 5078 key.port[1] = uh->uh_dport; 5079 } else { /* stack side, reverse */ 5080 PF_ACPY(&key.addr[1], pd->src, key.af); 5081 PF_ACPY(&key.addr[0], pd->dst, key.af); 5082 key.port[1] = uh->uh_sport; 5083 key.port[0] = uh->uh_dport; 5084 } 5085 5086 STATE_LOOKUP(kif, &key, direction, *state, pd); 5087 5088 if (direction == (*state)->direction) { 5089 src = &(*state)->src; 5090 dst = &(*state)->dst; 5091 psrc = PF_PEER_SRC; 5092 pdst = PF_PEER_DST; 5093 } else { 5094 src = &(*state)->dst; 5095 dst = &(*state)->src; 5096 psrc = PF_PEER_DST; 5097 pdst = PF_PEER_SRC; 5098 } 5099 5100 /* update states */ 5101 if (src->state < PFUDPS_SINGLE) 5102 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5103 if (dst->state == PFUDPS_SINGLE) 5104 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5105 5106 /* update expire time */ 5107 (*state)->expire = time_uptime; 5108 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5109 (*state)->timeout = PFTM_UDP_MULTIPLE; 5110 else 5111 (*state)->timeout = PFTM_UDP_SINGLE; 5112 5113 /* translate source/destination address, if necessary */ 5114 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5115 struct pf_state_key *nk = (*state)->key[pd->didx]; 5116 5117 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5118 nk->port[pd->sidx] != uh->uh_sport) 5119 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5120 &uh->uh_sum, &nk->addr[pd->sidx], 5121 nk->port[pd->sidx], 1, pd->af); 5122 5123 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5124 nk->port[pd->didx] != uh->uh_dport) 5125 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5126 &uh->uh_sum, &nk->addr[pd->didx], 5127 nk->port[pd->didx], 1, pd->af); 5128 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5129 } 5130 5131 return (PF_PASS); 5132 } 5133 5134 static int 5135 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5136 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5137 { 5138 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5139 u_int16_t icmpid = 0, *icmpsum; 5140 u_int8_t icmptype, icmpcode; 5141 int state_icmp = 0; 5142 struct pf_state_key_cmp key; 5143 5144 bzero(&key, sizeof(key)); 5145 switch (pd->proto) { 5146 #ifdef INET 5147 case IPPROTO_ICMP: 5148 icmptype = pd->hdr.icmp.icmp_type; 5149 icmpcode = pd->hdr.icmp.icmp_code; 5150 icmpid = pd->hdr.icmp.icmp_id; 5151 icmpsum = &pd->hdr.icmp.icmp_cksum; 5152 5153 if (icmptype == ICMP_UNREACH || 5154 icmptype == ICMP_SOURCEQUENCH || 5155 icmptype == ICMP_REDIRECT || 5156 icmptype == ICMP_TIMXCEED || 5157 icmptype == ICMP_PARAMPROB) 5158 state_icmp++; 5159 break; 5160 #endif /* INET */ 5161 #ifdef INET6 5162 case IPPROTO_ICMPV6: 5163 icmptype = pd->hdr.icmp6.icmp6_type; 5164 icmpcode = pd->hdr.icmp6.icmp6_code; 5165 icmpid = pd->hdr.icmp6.icmp6_id; 5166 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5167 5168 if (icmptype == ICMP6_DST_UNREACH || 5169 icmptype == ICMP6_PACKET_TOO_BIG || 5170 icmptype == ICMP6_TIME_EXCEEDED || 5171 icmptype == ICMP6_PARAM_PROB) 5172 state_icmp++; 5173 break; 5174 #endif /* INET6 */ 5175 } 5176 5177 if (!state_icmp) { 5178 /* 5179 * ICMP query/reply message not related to a TCP/UDP packet. 5180 * Search for an ICMP state. 5181 */ 5182 key.af = pd->af; 5183 key.proto = pd->proto; 5184 key.port[0] = key.port[1] = icmpid; 5185 if (direction == PF_IN) { /* wire side, straight */ 5186 PF_ACPY(&key.addr[0], pd->src, key.af); 5187 PF_ACPY(&key.addr[1], pd->dst, key.af); 5188 } else { /* stack side, reverse */ 5189 PF_ACPY(&key.addr[1], pd->src, key.af); 5190 PF_ACPY(&key.addr[0], pd->dst, key.af); 5191 } 5192 5193 STATE_LOOKUP(kif, &key, direction, *state, pd); 5194 5195 (*state)->expire = time_uptime; 5196 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5197 5198 /* translate source/destination address, if necessary */ 5199 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5200 struct pf_state_key *nk = (*state)->key[pd->didx]; 5201 5202 switch (pd->af) { 5203 #ifdef INET 5204 case AF_INET: 5205 if (PF_ANEQ(pd->src, 5206 &nk->addr[pd->sidx], AF_INET)) 5207 pf_change_a(&saddr->v4.s_addr, 5208 pd->ip_sum, 5209 nk->addr[pd->sidx].v4.s_addr, 0); 5210 5211 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5212 AF_INET)) 5213 pf_change_a(&daddr->v4.s_addr, 5214 pd->ip_sum, 5215 nk->addr[pd->didx].v4.s_addr, 0); 5216 5217 if (nk->port[0] != 5218 pd->hdr.icmp.icmp_id) { 5219 pd->hdr.icmp.icmp_cksum = 5220 pf_cksum_fixup( 5221 pd->hdr.icmp.icmp_cksum, icmpid, 5222 nk->port[pd->sidx], 0); 5223 pd->hdr.icmp.icmp_id = 5224 nk->port[pd->sidx]; 5225 } 5226 5227 m_copyback(m, off, ICMP_MINLEN, 5228 (caddr_t )&pd->hdr.icmp); 5229 break; 5230 #endif /* INET */ 5231 #ifdef INET6 5232 case AF_INET6: 5233 if (PF_ANEQ(pd->src, 5234 &nk->addr[pd->sidx], AF_INET6)) 5235 pf_change_a6(saddr, 5236 &pd->hdr.icmp6.icmp6_cksum, 5237 &nk->addr[pd->sidx], 0); 5238 5239 if (PF_ANEQ(pd->dst, 5240 &nk->addr[pd->didx], AF_INET6)) 5241 pf_change_a6(daddr, 5242 &pd->hdr.icmp6.icmp6_cksum, 5243 &nk->addr[pd->didx], 0); 5244 5245 m_copyback(m, off, sizeof(struct icmp6_hdr), 5246 (caddr_t )&pd->hdr.icmp6); 5247 break; 5248 #endif /* INET6 */ 5249 } 5250 } 5251 return (PF_PASS); 5252 5253 } else { 5254 /* 5255 * ICMP error message in response to a TCP/UDP packet. 5256 * Extract the inner TCP/UDP header and search for that state. 5257 */ 5258 5259 struct pf_pdesc pd2; 5260 bzero(&pd2, sizeof pd2); 5261 #ifdef INET 5262 struct ip h2; 5263 #endif /* INET */ 5264 #ifdef INET6 5265 struct ip6_hdr h2_6; 5266 int terminal = 0; 5267 #endif /* INET6 */ 5268 int ipoff2 = 0; 5269 int off2 = 0; 5270 5271 pd2.af = pd->af; 5272 /* Payload packet is from the opposite direction. */ 5273 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5274 pd2.didx = (direction == PF_IN) ? 0 : 1; 5275 switch (pd->af) { 5276 #ifdef INET 5277 case AF_INET: 5278 /* offset of h2 in mbuf chain */ 5279 ipoff2 = off + ICMP_MINLEN; 5280 5281 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5282 NULL, reason, pd2.af)) { 5283 DPFPRINTF(PF_DEBUG_MISC, 5284 ("pf: ICMP error message too short " 5285 "(ip)\n")); 5286 return (PF_DROP); 5287 } 5288 /* 5289 * ICMP error messages don't refer to non-first 5290 * fragments 5291 */ 5292 if (h2.ip_off & htons(IP_OFFMASK)) { 5293 REASON_SET(reason, PFRES_FRAG); 5294 return (PF_DROP); 5295 } 5296 5297 /* offset of protocol header that follows h2 */ 5298 off2 = ipoff2 + (h2.ip_hl << 2); 5299 5300 pd2.proto = h2.ip_p; 5301 pd2.src = (struct pf_addr *)&h2.ip_src; 5302 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5303 pd2.ip_sum = &h2.ip_sum; 5304 break; 5305 #endif /* INET */ 5306 #ifdef INET6 5307 case AF_INET6: 5308 ipoff2 = off + sizeof(struct icmp6_hdr); 5309 5310 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5311 NULL, reason, pd2.af)) { 5312 DPFPRINTF(PF_DEBUG_MISC, 5313 ("pf: ICMP error message too short " 5314 "(ip6)\n")); 5315 return (PF_DROP); 5316 } 5317 pd2.proto = h2_6.ip6_nxt; 5318 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5319 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5320 pd2.ip_sum = NULL; 5321 off2 = ipoff2 + sizeof(h2_6); 5322 do { 5323 switch (pd2.proto) { 5324 case IPPROTO_FRAGMENT: 5325 /* 5326 * ICMPv6 error messages for 5327 * non-first fragments 5328 */ 5329 REASON_SET(reason, PFRES_FRAG); 5330 return (PF_DROP); 5331 case IPPROTO_AH: 5332 case IPPROTO_HOPOPTS: 5333 case IPPROTO_ROUTING: 5334 case IPPROTO_DSTOPTS: { 5335 /* get next header and header length */ 5336 struct ip6_ext opt6; 5337 5338 if (!pf_pull_hdr(m, off2, &opt6, 5339 sizeof(opt6), NULL, reason, 5340 pd2.af)) { 5341 DPFPRINTF(PF_DEBUG_MISC, 5342 ("pf: ICMPv6 short opt\n")); 5343 return (PF_DROP); 5344 } 5345 if (pd2.proto == IPPROTO_AH) 5346 off2 += (opt6.ip6e_len + 2) * 4; 5347 else 5348 off2 += (opt6.ip6e_len + 1) * 8; 5349 pd2.proto = opt6.ip6e_nxt; 5350 /* goto the next header */ 5351 break; 5352 } 5353 default: 5354 terminal++; 5355 break; 5356 } 5357 } while (!terminal); 5358 break; 5359 #endif /* INET6 */ 5360 } 5361 5362 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5363 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5364 printf("pf: BAD ICMP %d:%d outer dst: ", 5365 icmptype, icmpcode); 5366 pf_print_host(pd->src, 0, pd->af); 5367 printf(" -> "); 5368 pf_print_host(pd->dst, 0, pd->af); 5369 printf(" inner src: "); 5370 pf_print_host(pd2.src, 0, pd2.af); 5371 printf(" -> "); 5372 pf_print_host(pd2.dst, 0, pd2.af); 5373 printf("\n"); 5374 } 5375 REASON_SET(reason, PFRES_BADSTATE); 5376 return (PF_DROP); 5377 } 5378 5379 switch (pd2.proto) { 5380 case IPPROTO_TCP: { 5381 struct tcphdr th; 5382 u_int32_t seq; 5383 struct pf_state_peer *src, *dst; 5384 u_int8_t dws; 5385 int copyback = 0; 5386 5387 /* 5388 * Only the first 8 bytes of the TCP header can be 5389 * expected. Don't access any TCP header fields after 5390 * th_seq, an ackskew test is not possible. 5391 */ 5392 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5393 pd2.af)) { 5394 DPFPRINTF(PF_DEBUG_MISC, 5395 ("pf: ICMP error message too short " 5396 "(tcp)\n")); 5397 return (PF_DROP); 5398 } 5399 5400 key.af = pd2.af; 5401 key.proto = IPPROTO_TCP; 5402 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5403 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5404 key.port[pd2.sidx] = th.th_sport; 5405 key.port[pd2.didx] = th.th_dport; 5406 5407 STATE_LOOKUP(kif, &key, direction, *state, pd); 5408 5409 if (direction == (*state)->direction) { 5410 src = &(*state)->dst; 5411 dst = &(*state)->src; 5412 } else { 5413 src = &(*state)->src; 5414 dst = &(*state)->dst; 5415 } 5416 5417 if (src->wscale && dst->wscale) 5418 dws = dst->wscale & PF_WSCALE_MASK; 5419 else 5420 dws = 0; 5421 5422 /* Demodulate sequence number */ 5423 seq = ntohl(th.th_seq) - src->seqdiff; 5424 if (src->seqdiff) { 5425 pf_change_a(&th.th_seq, icmpsum, 5426 htonl(seq), 0); 5427 copyback = 1; 5428 } 5429 5430 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5431 (!SEQ_GEQ(src->seqhi, seq) || 5432 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5433 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5434 printf("pf: BAD ICMP %d:%d ", 5435 icmptype, icmpcode); 5436 pf_print_host(pd->src, 0, pd->af); 5437 printf(" -> "); 5438 pf_print_host(pd->dst, 0, pd->af); 5439 printf(" state: "); 5440 pf_print_state(*state); 5441 printf(" seq=%u\n", seq); 5442 } 5443 REASON_SET(reason, PFRES_BADSTATE); 5444 return (PF_DROP); 5445 } else { 5446 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5447 printf("pf: OK ICMP %d:%d ", 5448 icmptype, icmpcode); 5449 pf_print_host(pd->src, 0, pd->af); 5450 printf(" -> "); 5451 pf_print_host(pd->dst, 0, pd->af); 5452 printf(" state: "); 5453 pf_print_state(*state); 5454 printf(" seq=%u\n", seq); 5455 } 5456 } 5457 5458 /* translate source/destination address, if necessary */ 5459 if ((*state)->key[PF_SK_WIRE] != 5460 (*state)->key[PF_SK_STACK]) { 5461 struct pf_state_key *nk = 5462 (*state)->key[pd->didx]; 5463 5464 if (PF_ANEQ(pd2.src, 5465 &nk->addr[pd2.sidx], pd2.af) || 5466 nk->port[pd2.sidx] != th.th_sport) 5467 pf_change_icmp(pd2.src, &th.th_sport, 5468 daddr, &nk->addr[pd2.sidx], 5469 nk->port[pd2.sidx], NULL, 5470 pd2.ip_sum, icmpsum, 5471 pd->ip_sum, 0, pd2.af); 5472 5473 if (PF_ANEQ(pd2.dst, 5474 &nk->addr[pd2.didx], pd2.af) || 5475 nk->port[pd2.didx] != th.th_dport) 5476 pf_change_icmp(pd2.dst, &th.th_dport, 5477 saddr, &nk->addr[pd2.didx], 5478 nk->port[pd2.didx], NULL, 5479 pd2.ip_sum, icmpsum, 5480 pd->ip_sum, 0, pd2.af); 5481 copyback = 1; 5482 } 5483 5484 if (copyback) { 5485 switch (pd2.af) { 5486 #ifdef INET 5487 case AF_INET: 5488 m_copyback(m, off, ICMP_MINLEN, 5489 (caddr_t )&pd->hdr.icmp); 5490 m_copyback(m, ipoff2, sizeof(h2), 5491 (caddr_t )&h2); 5492 break; 5493 #endif /* INET */ 5494 #ifdef INET6 5495 case AF_INET6: 5496 m_copyback(m, off, 5497 sizeof(struct icmp6_hdr), 5498 (caddr_t )&pd->hdr.icmp6); 5499 m_copyback(m, ipoff2, sizeof(h2_6), 5500 (caddr_t )&h2_6); 5501 break; 5502 #endif /* INET6 */ 5503 } 5504 m_copyback(m, off2, 8, (caddr_t)&th); 5505 } 5506 5507 return (PF_PASS); 5508 break; 5509 } 5510 case IPPROTO_UDP: { 5511 struct udphdr uh; 5512 5513 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5514 NULL, reason, pd2.af)) { 5515 DPFPRINTF(PF_DEBUG_MISC, 5516 ("pf: ICMP error message too short " 5517 "(udp)\n")); 5518 return (PF_DROP); 5519 } 5520 5521 key.af = pd2.af; 5522 key.proto = IPPROTO_UDP; 5523 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5524 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5525 key.port[pd2.sidx] = uh.uh_sport; 5526 key.port[pd2.didx] = uh.uh_dport; 5527 5528 STATE_LOOKUP(kif, &key, direction, *state, pd); 5529 5530 /* translate source/destination address, if necessary */ 5531 if ((*state)->key[PF_SK_WIRE] != 5532 (*state)->key[PF_SK_STACK]) { 5533 struct pf_state_key *nk = 5534 (*state)->key[pd->didx]; 5535 5536 if (PF_ANEQ(pd2.src, 5537 &nk->addr[pd2.sidx], pd2.af) || 5538 nk->port[pd2.sidx] != uh.uh_sport) 5539 pf_change_icmp(pd2.src, &uh.uh_sport, 5540 daddr, &nk->addr[pd2.sidx], 5541 nk->port[pd2.sidx], &uh.uh_sum, 5542 pd2.ip_sum, icmpsum, 5543 pd->ip_sum, 1, pd2.af); 5544 5545 if (PF_ANEQ(pd2.dst, 5546 &nk->addr[pd2.didx], pd2.af) || 5547 nk->port[pd2.didx] != uh.uh_dport) 5548 pf_change_icmp(pd2.dst, &uh.uh_dport, 5549 saddr, &nk->addr[pd2.didx], 5550 nk->port[pd2.didx], &uh.uh_sum, 5551 pd2.ip_sum, icmpsum, 5552 pd->ip_sum, 1, pd2.af); 5553 5554 switch (pd2.af) { 5555 #ifdef INET 5556 case AF_INET: 5557 m_copyback(m, off, ICMP_MINLEN, 5558 (caddr_t )&pd->hdr.icmp); 5559 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5560 break; 5561 #endif /* INET */ 5562 #ifdef INET6 5563 case AF_INET6: 5564 m_copyback(m, off, 5565 sizeof(struct icmp6_hdr), 5566 (caddr_t )&pd->hdr.icmp6); 5567 m_copyback(m, ipoff2, sizeof(h2_6), 5568 (caddr_t )&h2_6); 5569 break; 5570 #endif /* INET6 */ 5571 } 5572 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5573 } 5574 return (PF_PASS); 5575 break; 5576 } 5577 #ifdef INET 5578 case IPPROTO_ICMP: { 5579 struct icmp iih; 5580 5581 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5582 NULL, reason, pd2.af)) { 5583 DPFPRINTF(PF_DEBUG_MISC, 5584 ("pf: ICMP error message too short i" 5585 "(icmp)\n")); 5586 return (PF_DROP); 5587 } 5588 5589 key.af = pd2.af; 5590 key.proto = IPPROTO_ICMP; 5591 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5592 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5593 key.port[0] = key.port[1] = iih.icmp_id; 5594 5595 STATE_LOOKUP(kif, &key, direction, *state, pd); 5596 5597 /* translate source/destination address, if necessary */ 5598 if ((*state)->key[PF_SK_WIRE] != 5599 (*state)->key[PF_SK_STACK]) { 5600 struct pf_state_key *nk = 5601 (*state)->key[pd->didx]; 5602 5603 if (PF_ANEQ(pd2.src, 5604 &nk->addr[pd2.sidx], pd2.af) || 5605 nk->port[pd2.sidx] != iih.icmp_id) 5606 pf_change_icmp(pd2.src, &iih.icmp_id, 5607 daddr, &nk->addr[pd2.sidx], 5608 nk->port[pd2.sidx], NULL, 5609 pd2.ip_sum, icmpsum, 5610 pd->ip_sum, 0, AF_INET); 5611 5612 if (PF_ANEQ(pd2.dst, 5613 &nk->addr[pd2.didx], pd2.af) || 5614 nk->port[pd2.didx] != iih.icmp_id) 5615 pf_change_icmp(pd2.dst, &iih.icmp_id, 5616 saddr, &nk->addr[pd2.didx], 5617 nk->port[pd2.didx], NULL, 5618 pd2.ip_sum, icmpsum, 5619 pd->ip_sum, 0, AF_INET); 5620 5621 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5622 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5623 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5624 } 5625 return (PF_PASS); 5626 break; 5627 } 5628 #endif /* INET */ 5629 #ifdef INET6 5630 case IPPROTO_ICMPV6: { 5631 struct icmp6_hdr iih; 5632 5633 if (!pf_pull_hdr(m, off2, &iih, 5634 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5635 DPFPRINTF(PF_DEBUG_MISC, 5636 ("pf: ICMP error message too short " 5637 "(icmp6)\n")); 5638 return (PF_DROP); 5639 } 5640 5641 key.af = pd2.af; 5642 key.proto = IPPROTO_ICMPV6; 5643 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5644 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5645 key.port[0] = key.port[1] = iih.icmp6_id; 5646 5647 STATE_LOOKUP(kif, &key, direction, *state, pd); 5648 5649 /* translate source/destination address, if necessary */ 5650 if ((*state)->key[PF_SK_WIRE] != 5651 (*state)->key[PF_SK_STACK]) { 5652 struct pf_state_key *nk = 5653 (*state)->key[pd->didx]; 5654 5655 if (PF_ANEQ(pd2.src, 5656 &nk->addr[pd2.sidx], pd2.af) || 5657 nk->port[pd2.sidx] != iih.icmp6_id) 5658 pf_change_icmp(pd2.src, &iih.icmp6_id, 5659 daddr, &nk->addr[pd2.sidx], 5660 nk->port[pd2.sidx], NULL, 5661 pd2.ip_sum, icmpsum, 5662 pd->ip_sum, 0, AF_INET6); 5663 5664 if (PF_ANEQ(pd2.dst, 5665 &nk->addr[pd2.didx], pd2.af) || 5666 nk->port[pd2.didx] != iih.icmp6_id) 5667 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5668 saddr, &nk->addr[pd2.didx], 5669 nk->port[pd2.didx], NULL, 5670 pd2.ip_sum, icmpsum, 5671 pd->ip_sum, 0, AF_INET6); 5672 5673 m_copyback(m, off, sizeof(struct icmp6_hdr), 5674 (caddr_t)&pd->hdr.icmp6); 5675 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5676 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5677 (caddr_t)&iih); 5678 } 5679 return (PF_PASS); 5680 break; 5681 } 5682 #endif /* INET6 */ 5683 default: { 5684 key.af = pd2.af; 5685 key.proto = pd2.proto; 5686 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5687 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5688 key.port[0] = key.port[1] = 0; 5689 5690 STATE_LOOKUP(kif, &key, direction, *state, pd); 5691 5692 /* translate source/destination address, if necessary */ 5693 if ((*state)->key[PF_SK_WIRE] != 5694 (*state)->key[PF_SK_STACK]) { 5695 struct pf_state_key *nk = 5696 (*state)->key[pd->didx]; 5697 5698 if (PF_ANEQ(pd2.src, 5699 &nk->addr[pd2.sidx], pd2.af)) 5700 pf_change_icmp(pd2.src, NULL, daddr, 5701 &nk->addr[pd2.sidx], 0, NULL, 5702 pd2.ip_sum, icmpsum, 5703 pd->ip_sum, 0, pd2.af); 5704 5705 if (PF_ANEQ(pd2.dst, 5706 &nk->addr[pd2.didx], pd2.af)) 5707 pf_change_icmp(pd2.dst, NULL, saddr, 5708 &nk->addr[pd2.didx], 0, NULL, 5709 pd2.ip_sum, icmpsum, 5710 pd->ip_sum, 0, pd2.af); 5711 5712 switch (pd2.af) { 5713 #ifdef INET 5714 case AF_INET: 5715 m_copyback(m, off, ICMP_MINLEN, 5716 (caddr_t)&pd->hdr.icmp); 5717 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5718 break; 5719 #endif /* INET */ 5720 #ifdef INET6 5721 case AF_INET6: 5722 m_copyback(m, off, 5723 sizeof(struct icmp6_hdr), 5724 (caddr_t )&pd->hdr.icmp6); 5725 m_copyback(m, ipoff2, sizeof(h2_6), 5726 (caddr_t )&h2_6); 5727 break; 5728 #endif /* INET6 */ 5729 } 5730 } 5731 return (PF_PASS); 5732 break; 5733 } 5734 } 5735 } 5736 } 5737 5738 static int 5739 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5740 struct mbuf *m, struct pf_pdesc *pd) 5741 { 5742 struct pf_state_peer *src, *dst; 5743 struct pf_state_key_cmp key; 5744 uint8_t psrc, pdst; 5745 5746 bzero(&key, sizeof(key)); 5747 key.af = pd->af; 5748 key.proto = pd->proto; 5749 if (direction == PF_IN) { 5750 PF_ACPY(&key.addr[0], pd->src, key.af); 5751 PF_ACPY(&key.addr[1], pd->dst, key.af); 5752 key.port[0] = key.port[1] = 0; 5753 } else { 5754 PF_ACPY(&key.addr[1], pd->src, key.af); 5755 PF_ACPY(&key.addr[0], pd->dst, key.af); 5756 key.port[1] = key.port[0] = 0; 5757 } 5758 5759 STATE_LOOKUP(kif, &key, direction, *state, pd); 5760 5761 if (direction == (*state)->direction) { 5762 src = &(*state)->src; 5763 dst = &(*state)->dst; 5764 psrc = PF_PEER_SRC; 5765 pdst = PF_PEER_DST; 5766 } else { 5767 src = &(*state)->dst; 5768 dst = &(*state)->src; 5769 psrc = PF_PEER_DST; 5770 pdst = PF_PEER_SRC; 5771 } 5772 5773 /* update states */ 5774 if (src->state < PFOTHERS_SINGLE) 5775 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 5776 if (dst->state == PFOTHERS_SINGLE) 5777 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 5778 5779 /* update expire time */ 5780 (*state)->expire = time_uptime; 5781 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5782 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5783 else 5784 (*state)->timeout = PFTM_OTHER_SINGLE; 5785 5786 /* translate source/destination address, if necessary */ 5787 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5788 struct pf_state_key *nk = (*state)->key[pd->didx]; 5789 5790 KASSERT(nk, ("%s: nk is null", __func__)); 5791 KASSERT(pd, ("%s: pd is null", __func__)); 5792 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5793 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5794 switch (pd->af) { 5795 #ifdef INET 5796 case AF_INET: 5797 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5798 pf_change_a(&pd->src->v4.s_addr, 5799 pd->ip_sum, 5800 nk->addr[pd->sidx].v4.s_addr, 5801 0); 5802 5803 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5804 pf_change_a(&pd->dst->v4.s_addr, 5805 pd->ip_sum, 5806 nk->addr[pd->didx].v4.s_addr, 5807 0); 5808 5809 break; 5810 #endif /* INET */ 5811 #ifdef INET6 5812 case AF_INET6: 5813 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5814 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5815 5816 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5817 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5818 #endif /* INET6 */ 5819 } 5820 } 5821 return (PF_PASS); 5822 } 5823 5824 /* 5825 * ipoff and off are measured from the start of the mbuf chain. 5826 * h must be at "ipoff" on the mbuf chain. 5827 */ 5828 void * 5829 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5830 u_short *actionp, u_short *reasonp, sa_family_t af) 5831 { 5832 switch (af) { 5833 #ifdef INET 5834 case AF_INET: { 5835 struct ip *h = mtod(m, struct ip *); 5836 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5837 5838 if (fragoff) { 5839 if (fragoff >= len) 5840 ACTION_SET(actionp, PF_PASS); 5841 else { 5842 ACTION_SET(actionp, PF_DROP); 5843 REASON_SET(reasonp, PFRES_FRAG); 5844 } 5845 return (NULL); 5846 } 5847 if (m->m_pkthdr.len < off + len || 5848 ntohs(h->ip_len) < off + len) { 5849 ACTION_SET(actionp, PF_DROP); 5850 REASON_SET(reasonp, PFRES_SHORT); 5851 return (NULL); 5852 } 5853 break; 5854 } 5855 #endif /* INET */ 5856 #ifdef INET6 5857 case AF_INET6: { 5858 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5859 5860 if (m->m_pkthdr.len < off + len || 5861 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5862 (unsigned)(off + len)) { 5863 ACTION_SET(actionp, PF_DROP); 5864 REASON_SET(reasonp, PFRES_SHORT); 5865 return (NULL); 5866 } 5867 break; 5868 } 5869 #endif /* INET6 */ 5870 } 5871 m_copydata(m, off, len, p); 5872 return (p); 5873 } 5874 5875 int 5876 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5877 int rtableid) 5878 { 5879 struct ifnet *ifp; 5880 5881 /* 5882 * Skip check for addresses with embedded interface scope, 5883 * as they would always match anyway. 5884 */ 5885 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5886 return (1); 5887 5888 if (af != AF_INET && af != AF_INET6) 5889 return (0); 5890 5891 /* Skip checks for ipsec interfaces */ 5892 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5893 return (1); 5894 5895 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5896 5897 switch (af) { 5898 #ifdef INET6 5899 case AF_INET6: 5900 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5901 ifp)); 5902 #endif 5903 #ifdef INET 5904 case AF_INET: 5905 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5906 ifp)); 5907 #endif 5908 } 5909 5910 return (0); 5911 } 5912 5913 #ifdef INET 5914 static void 5915 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5916 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5917 { 5918 struct mbuf *m0, *m1; 5919 struct sockaddr_in dst; 5920 struct ip *ip; 5921 struct ifnet *ifp = NULL; 5922 struct pf_addr naddr; 5923 struct pf_ksrc_node *sn = NULL; 5924 int error = 0; 5925 uint16_t ip_len, ip_off; 5926 5927 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5928 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5929 __func__)); 5930 5931 if ((pd->pf_mtag == NULL && 5932 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5933 pd->pf_mtag->routed++ > 3) { 5934 m0 = *m; 5935 *m = NULL; 5936 goto bad_locked; 5937 } 5938 5939 if (r->rt == PF_DUPTO) { 5940 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5941 if (s == NULL) { 5942 ifp = r->rpool.cur->kif ? 5943 r->rpool.cur->kif->pfik_ifp : NULL; 5944 } else { 5945 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5946 PF_STATE_UNLOCK(s); 5947 } 5948 if (ifp == oifp) { 5949 /* When the 2nd interface is not skipped */ 5950 return; 5951 } else { 5952 m0 = *m; 5953 *m = NULL; 5954 goto bad; 5955 } 5956 } else { 5957 pd->pf_mtag->flags |= PF_DUPLICATED; 5958 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5959 if (s) 5960 PF_STATE_UNLOCK(s); 5961 return; 5962 } 5963 } 5964 } else { 5965 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5966 if (s) 5967 PF_STATE_UNLOCK(s); 5968 return; 5969 } 5970 m0 = *m; 5971 } 5972 5973 ip = mtod(m0, struct ip *); 5974 5975 bzero(&dst, sizeof(dst)); 5976 dst.sin_family = AF_INET; 5977 dst.sin_len = sizeof(dst); 5978 dst.sin_addr = ip->ip_dst; 5979 5980 bzero(&naddr, sizeof(naddr)); 5981 5982 if (s == NULL) { 5983 if (TAILQ_EMPTY(&r->rpool.list)) { 5984 DPFPRINTF(PF_DEBUG_URGENT, 5985 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5986 goto bad_locked; 5987 } 5988 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5989 &naddr, NULL, &sn); 5990 if (!PF_AZERO(&naddr, AF_INET)) 5991 dst.sin_addr.s_addr = naddr.v4.s_addr; 5992 ifp = r->rpool.cur->kif ? 5993 r->rpool.cur->kif->pfik_ifp : NULL; 5994 } else { 5995 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5996 dst.sin_addr.s_addr = 5997 s->rt_addr.v4.s_addr; 5998 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5999 PF_STATE_UNLOCK(s); 6000 } 6001 if (ifp == NULL) 6002 goto bad; 6003 6004 if (dir == PF_IN) { 6005 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6006 goto bad; 6007 else if (m0 == NULL) 6008 goto done; 6009 if (m0->m_len < sizeof(struct ip)) { 6010 DPFPRINTF(PF_DEBUG_URGENT, 6011 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6012 goto bad; 6013 } 6014 ip = mtod(m0, struct ip *); 6015 } 6016 6017 if (ifp->if_flags & IFF_LOOPBACK) 6018 m0->m_flags |= M_SKIP_FIREWALL; 6019 6020 ip_len = ntohs(ip->ip_len); 6021 ip_off = ntohs(ip->ip_off); 6022 6023 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6024 m0->m_pkthdr.csum_flags |= CSUM_IP; 6025 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6026 in_delayed_cksum(m0); 6027 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6028 } 6029 #if defined(SCTP) || defined(SCTP_SUPPORT) 6030 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6031 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 6032 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6033 } 6034 #endif 6035 6036 /* 6037 * If small enough for interface, or the interface will take 6038 * care of the fragmentation for us, we can just send directly. 6039 */ 6040 if (ip_len <= ifp->if_mtu || 6041 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6042 ip->ip_sum = 0; 6043 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6044 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6045 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6046 } 6047 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6048 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 6049 goto done; 6050 } 6051 6052 /* Balk when DF bit is set or the interface didn't support TSO. */ 6053 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6054 error = EMSGSIZE; 6055 KMOD_IPSTAT_INC(ips_cantfrag); 6056 if (r->rt != PF_DUPTO) { 6057 if (s && pd->nat_rule != NULL) 6058 PACKET_UNDO_NAT(m0, pd, 6059 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6060 s, dir); 6061 6062 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6063 ifp->if_mtu); 6064 goto done; 6065 } else 6066 goto bad; 6067 } 6068 6069 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6070 if (error) 6071 goto bad; 6072 6073 for (; m0; m0 = m1) { 6074 m1 = m0->m_nextpkt; 6075 m0->m_nextpkt = NULL; 6076 if (error == 0) { 6077 m_clrprotoflags(m0); 6078 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 6079 } else 6080 m_freem(m0); 6081 } 6082 6083 if (error == 0) 6084 KMOD_IPSTAT_INC(ips_fragmented); 6085 6086 done: 6087 if (r->rt != PF_DUPTO) 6088 *m = NULL; 6089 return; 6090 6091 bad_locked: 6092 if (s) 6093 PF_STATE_UNLOCK(s); 6094 bad: 6095 m_freem(m0); 6096 goto done; 6097 } 6098 #endif /* INET */ 6099 6100 #ifdef INET6 6101 static void 6102 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6103 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6104 { 6105 struct mbuf *m0; 6106 struct sockaddr_in6 dst; 6107 struct ip6_hdr *ip6; 6108 struct ifnet *ifp = NULL; 6109 struct pf_addr naddr; 6110 struct pf_ksrc_node *sn = NULL; 6111 6112 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6113 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6114 __func__)); 6115 6116 if ((pd->pf_mtag == NULL && 6117 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6118 pd->pf_mtag->routed++ > 3) { 6119 m0 = *m; 6120 *m = NULL; 6121 goto bad_locked; 6122 } 6123 6124 if (r->rt == PF_DUPTO) { 6125 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6126 if (s == NULL) { 6127 ifp = r->rpool.cur->kif ? 6128 r->rpool.cur->kif->pfik_ifp : NULL; 6129 } else { 6130 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6131 PF_STATE_UNLOCK(s); 6132 } 6133 if (ifp == oifp) { 6134 /* When the 2nd interface is not skipped */ 6135 return; 6136 } else { 6137 m0 = *m; 6138 *m = NULL; 6139 goto bad; 6140 } 6141 } else { 6142 pd->pf_mtag->flags |= PF_DUPLICATED; 6143 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6144 if (s) 6145 PF_STATE_UNLOCK(s); 6146 return; 6147 } 6148 } 6149 } else { 6150 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6151 if (s) 6152 PF_STATE_UNLOCK(s); 6153 return; 6154 } 6155 m0 = *m; 6156 } 6157 6158 ip6 = mtod(m0, struct ip6_hdr *); 6159 6160 bzero(&dst, sizeof(dst)); 6161 dst.sin6_family = AF_INET6; 6162 dst.sin6_len = sizeof(dst); 6163 dst.sin6_addr = ip6->ip6_dst; 6164 6165 bzero(&naddr, sizeof(naddr)); 6166 6167 if (s == NULL) { 6168 if (TAILQ_EMPTY(&r->rpool.list)) { 6169 DPFPRINTF(PF_DEBUG_URGENT, 6170 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6171 goto bad_locked; 6172 } 6173 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6174 &naddr, NULL, &sn); 6175 if (!PF_AZERO(&naddr, AF_INET6)) 6176 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6177 &naddr, AF_INET6); 6178 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6179 } else { 6180 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6181 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6182 &s->rt_addr, AF_INET6); 6183 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6184 } 6185 6186 if (s) 6187 PF_STATE_UNLOCK(s); 6188 6189 if (ifp == NULL) 6190 goto bad; 6191 6192 if (dir == PF_IN) { 6193 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 6194 goto bad; 6195 else if (m0 == NULL) 6196 goto done; 6197 if (m0->m_len < sizeof(struct ip6_hdr)) { 6198 DPFPRINTF(PF_DEBUG_URGENT, 6199 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6200 __func__)); 6201 goto bad; 6202 } 6203 ip6 = mtod(m0, struct ip6_hdr *); 6204 } 6205 6206 if (ifp->if_flags & IFF_LOOPBACK) 6207 m0->m_flags |= M_SKIP_FIREWALL; 6208 6209 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6210 ~ifp->if_hwassist) { 6211 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6212 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6213 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6214 } 6215 6216 /* 6217 * If the packet is too large for the outgoing interface, 6218 * send back an icmp6 error. 6219 */ 6220 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6221 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6222 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 6223 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 6224 else { 6225 in6_ifstat_inc(ifp, ifs6_in_toobig); 6226 if (r->rt != PF_DUPTO) { 6227 if (s && pd->nat_rule != NULL) 6228 PACKET_UNDO_NAT(m0, pd, 6229 ((caddr_t)ip6 - m0->m_data) + 6230 sizeof(struct ip6_hdr), s, dir); 6231 6232 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6233 } else 6234 goto bad; 6235 } 6236 6237 done: 6238 if (r->rt != PF_DUPTO) 6239 *m = NULL; 6240 return; 6241 6242 bad_locked: 6243 if (s) 6244 PF_STATE_UNLOCK(s); 6245 bad: 6246 m_freem(m0); 6247 goto done; 6248 } 6249 #endif /* INET6 */ 6250 6251 /* 6252 * FreeBSD supports cksum offloads for the following drivers. 6253 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6254 * 6255 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6256 * network driver performed cksum including pseudo header, need to verify 6257 * csum_data 6258 * CSUM_DATA_VALID : 6259 * network driver performed cksum, needs to additional pseudo header 6260 * cksum computation with partial csum_data(i.e. lack of H/W support for 6261 * pseudo header, for instance sk(4) and possibly gem(4)) 6262 * 6263 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6264 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6265 * TCP/UDP layer. 6266 * Also, set csum_data to 0xffff to force cksum validation. 6267 */ 6268 static int 6269 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6270 { 6271 u_int16_t sum = 0; 6272 int hw_assist = 0; 6273 struct ip *ip; 6274 6275 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6276 return (1); 6277 if (m->m_pkthdr.len < off + len) 6278 return (1); 6279 6280 switch (p) { 6281 case IPPROTO_TCP: 6282 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6283 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6284 sum = m->m_pkthdr.csum_data; 6285 } else { 6286 ip = mtod(m, struct ip *); 6287 sum = in_pseudo(ip->ip_src.s_addr, 6288 ip->ip_dst.s_addr, htonl((u_short)len + 6289 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6290 } 6291 sum ^= 0xffff; 6292 ++hw_assist; 6293 } 6294 break; 6295 case IPPROTO_UDP: 6296 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6297 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6298 sum = m->m_pkthdr.csum_data; 6299 } else { 6300 ip = mtod(m, struct ip *); 6301 sum = in_pseudo(ip->ip_src.s_addr, 6302 ip->ip_dst.s_addr, htonl((u_short)len + 6303 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6304 } 6305 sum ^= 0xffff; 6306 ++hw_assist; 6307 } 6308 break; 6309 case IPPROTO_ICMP: 6310 #ifdef INET6 6311 case IPPROTO_ICMPV6: 6312 #endif /* INET6 */ 6313 break; 6314 default: 6315 return (1); 6316 } 6317 6318 if (!hw_assist) { 6319 switch (af) { 6320 case AF_INET: 6321 if (p == IPPROTO_ICMP) { 6322 if (m->m_len < off) 6323 return (1); 6324 m->m_data += off; 6325 m->m_len -= off; 6326 sum = in_cksum(m, len); 6327 m->m_data -= off; 6328 m->m_len += off; 6329 } else { 6330 if (m->m_len < sizeof(struct ip)) 6331 return (1); 6332 sum = in4_cksum(m, p, off, len); 6333 } 6334 break; 6335 #ifdef INET6 6336 case AF_INET6: 6337 if (m->m_len < sizeof(struct ip6_hdr)) 6338 return (1); 6339 sum = in6_cksum(m, p, off, len); 6340 break; 6341 #endif /* INET6 */ 6342 default: 6343 return (1); 6344 } 6345 } 6346 if (sum) { 6347 switch (p) { 6348 case IPPROTO_TCP: 6349 { 6350 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6351 break; 6352 } 6353 case IPPROTO_UDP: 6354 { 6355 KMOD_UDPSTAT_INC(udps_badsum); 6356 break; 6357 } 6358 #ifdef INET 6359 case IPPROTO_ICMP: 6360 { 6361 KMOD_ICMPSTAT_INC(icps_checksum); 6362 break; 6363 } 6364 #endif 6365 #ifdef INET6 6366 case IPPROTO_ICMPV6: 6367 { 6368 KMOD_ICMP6STAT_INC(icp6s_checksum); 6369 break; 6370 } 6371 #endif /* INET6 */ 6372 } 6373 return (1); 6374 } else { 6375 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6376 m->m_pkthdr.csum_flags |= 6377 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6378 m->m_pkthdr.csum_data = 0xffff; 6379 } 6380 } 6381 return (0); 6382 } 6383 6384 static bool 6385 pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, 6386 const struct pf_krule *r, const struct pf_kstate *s, 6387 struct ip_fw_args *dnflow) 6388 { 6389 int dndir = r->direction; 6390 6391 if (s && dndir == PF_INOUT) 6392 dndir = s->direction; 6393 6394 memset(dnflow, 0, sizeof(*dnflow)); 6395 6396 if (pd->dport != NULL) 6397 dnflow->f_id.dst_port = ntohs(*pd->dport); 6398 if (pd->sport != NULL) 6399 dnflow->f_id.src_port = ntohs(*pd->sport); 6400 6401 if (dir == PF_IN) 6402 dnflow->flags |= IPFW_ARGS_IN; 6403 else 6404 dnflow->flags |= IPFW_ARGS_OUT; 6405 6406 if (dir != dndir && pd->act.dnrpipe) { 6407 dnflow->rule.info = pd->act.dnrpipe; 6408 } 6409 else if (dir == dndir) { 6410 dnflow->rule.info = pd->act.dnpipe; 6411 } 6412 else { 6413 return (false); 6414 } 6415 6416 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6417 if (r->free_flags & PFRULE_DN_IS_PIPE) 6418 dnflow->rule.info |= IPFW_IS_PIPE; 6419 6420 dnflow->f_id.proto = pd->proto; 6421 dnflow->f_id.extra = dnflow->rule.info; 6422 switch (pd->af) { 6423 case AF_INET: 6424 dnflow->f_id.addr_type = 4; 6425 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 6426 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 6427 break; 6428 case AF_INET6: 6429 dnflow->flags |= IPFW_ARGS_IP6; 6430 dnflow->f_id.addr_type = 6; 6431 dnflow->f_id.src_ip6 = pd->src->v6; 6432 dnflow->f_id.dst_ip6 = pd->dst->v6; 6433 break; 6434 default: 6435 panic("Invalid AF"); 6436 break; 6437 } 6438 6439 return (true); 6440 } 6441 6442 #ifdef INET 6443 int 6444 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6445 { 6446 struct pfi_kkif *kif; 6447 u_short action, reason = 0, log = 0; 6448 struct mbuf *m = *m0; 6449 struct ip *h = NULL; 6450 struct m_tag *ipfwtag; 6451 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6452 struct pf_kstate *s = NULL; 6453 struct pf_kruleset *ruleset = NULL; 6454 struct pf_pdesc pd; 6455 int off, dirndx, pqid = 0; 6456 6457 PF_RULES_RLOCK_TRACKER; 6458 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6459 M_ASSERTPKTHDR(m); 6460 6461 if (!V_pf_status.running) 6462 return (PF_PASS); 6463 6464 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6465 6466 if (kif == NULL) { 6467 DPFPRINTF(PF_DEBUG_URGENT, 6468 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6469 return (PF_DROP); 6470 } 6471 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6472 return (PF_PASS); 6473 6474 if (m->m_flags & M_SKIP_FIREWALL) 6475 return (PF_PASS); 6476 6477 memset(&pd, 0, sizeof(pd)); 6478 pd.pf_mtag = pf_find_mtag(m); 6479 6480 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 6481 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 6482 /* Dummynet re-injects packets after they've 6483 * completed their delay. We've already 6484 * processed them, so pass unconditionally. */ 6485 6486 /* But only once. We may see the packet multiple times (e.g. 6487 * PFIL_IN/PFIL_OUT). */ 6488 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 6489 6490 return (PF_PASS); 6491 } 6492 6493 PF_RULES_RLOCK(); 6494 6495 if (__predict_false(ip_divert_ptr != NULL) && 6496 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6497 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6498 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 6499 if (pd.pf_mtag == NULL && 6500 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6501 action = PF_DROP; 6502 goto done; 6503 } 6504 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6505 m_tag_delete(m, ipfwtag); 6506 } 6507 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6508 m->m_flags |= M_FASTFWD_OURS; 6509 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6510 } 6511 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6512 /* We do IP header normalization and packet reassembly here */ 6513 action = PF_DROP; 6514 goto done; 6515 } 6516 m = *m0; /* pf_normalize messes with m0 */ 6517 h = mtod(m, struct ip *); 6518 6519 off = h->ip_hl << 2; 6520 if (off < (int)sizeof(struct ip)) { 6521 action = PF_DROP; 6522 REASON_SET(&reason, PFRES_SHORT); 6523 log = 1; 6524 goto done; 6525 } 6526 6527 pd.src = (struct pf_addr *)&h->ip_src; 6528 pd.dst = (struct pf_addr *)&h->ip_dst; 6529 pd.sport = pd.dport = NULL; 6530 pd.ip_sum = &h->ip_sum; 6531 pd.proto_sum = NULL; 6532 pd.proto = h->ip_p; 6533 pd.dir = dir; 6534 pd.sidx = (dir == PF_IN) ? 0 : 1; 6535 pd.didx = (dir == PF_IN) ? 1 : 0; 6536 pd.af = AF_INET; 6537 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6538 pd.tot_len = ntohs(h->ip_len); 6539 6540 /* handle fragments that didn't get reassembled by normalization */ 6541 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6542 action = pf_test_fragment(&r, dir, kif, m, h, 6543 &pd, &a, &ruleset); 6544 goto done; 6545 } 6546 6547 switch (h->ip_p) { 6548 case IPPROTO_TCP: { 6549 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6550 &action, &reason, AF_INET)) { 6551 log = action != PF_PASS; 6552 goto done; 6553 } 6554 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6555 6556 pd.sport = &pd.hdr.tcp.th_sport; 6557 pd.dport = &pd.hdr.tcp.th_dport; 6558 6559 /* Respond to SYN with a syncookie. */ 6560 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 6561 pd.dir == PF_IN && pf_synflood_check(&pd)) { 6562 pf_syncookie_send(m, off, &pd); 6563 action = PF_DROP; 6564 break; 6565 } 6566 6567 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6568 pqid = 1; 6569 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6570 if (action == PF_DROP) 6571 goto done; 6572 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6573 &reason); 6574 if (action == PF_PASS) { 6575 if (V_pfsync_update_state_ptr != NULL) 6576 V_pfsync_update_state_ptr(s); 6577 r = s->rule.ptr; 6578 a = s->anchor.ptr; 6579 log = s->log; 6580 } else if (s == NULL) { 6581 /* Validate remote SYN|ACK, re-create original SYN if 6582 * valid. */ 6583 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 6584 TH_ACK && pf_syncookie_validate(&pd) && 6585 pd.dir == PF_IN) { 6586 struct mbuf *msyn; 6587 6588 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 6589 off,&pd); 6590 if (msyn == NULL) { 6591 action = PF_DROP; 6592 break; 6593 } 6594 6595 action = pf_test(dir, pflags, ifp, &msyn, inp); 6596 m_freem(msyn); 6597 6598 if (action == PF_PASS) { 6599 action = pf_test_state_tcp(&s, dir, 6600 kif, m, off, h, &pd, &reason); 6601 if (action != PF_PASS || s == NULL) { 6602 action = PF_DROP; 6603 break; 6604 } 6605 6606 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 6607 - 1; 6608 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 6609 - 1; 6610 pf_set_protostate(s, PF_PEER_SRC, 6611 PF_TCPS_PROXY_DST); 6612 6613 action = pf_synproxy(&pd, &s, &reason); 6614 if (action != PF_PASS) 6615 break; 6616 } 6617 break; 6618 } 6619 else { 6620 action = pf_test_rule(&r, &s, dir, kif, m, off, 6621 &pd, &a, &ruleset, inp); 6622 } 6623 } 6624 break; 6625 } 6626 6627 case IPPROTO_UDP: { 6628 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6629 &action, &reason, AF_INET)) { 6630 log = action != PF_PASS; 6631 goto done; 6632 } 6633 pd.sport = &pd.hdr.udp.uh_sport; 6634 pd.dport = &pd.hdr.udp.uh_dport; 6635 if (pd.hdr.udp.uh_dport == 0 || 6636 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6637 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6638 action = PF_DROP; 6639 REASON_SET(&reason, PFRES_SHORT); 6640 goto done; 6641 } 6642 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6643 if (action == PF_PASS) { 6644 if (V_pfsync_update_state_ptr != NULL) 6645 V_pfsync_update_state_ptr(s); 6646 r = s->rule.ptr; 6647 a = s->anchor.ptr; 6648 log = s->log; 6649 } else if (s == NULL) 6650 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6651 &a, &ruleset, inp); 6652 break; 6653 } 6654 6655 case IPPROTO_ICMP: { 6656 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6657 &action, &reason, AF_INET)) { 6658 log = action != PF_PASS; 6659 goto done; 6660 } 6661 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6662 &reason); 6663 if (action == PF_PASS) { 6664 if (V_pfsync_update_state_ptr != NULL) 6665 V_pfsync_update_state_ptr(s); 6666 r = s->rule.ptr; 6667 a = s->anchor.ptr; 6668 log = s->log; 6669 } else if (s == NULL) 6670 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6671 &a, &ruleset, inp); 6672 break; 6673 } 6674 6675 #ifdef INET6 6676 case IPPROTO_ICMPV6: { 6677 action = PF_DROP; 6678 DPFPRINTF(PF_DEBUG_MISC, 6679 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6680 goto done; 6681 } 6682 #endif 6683 6684 default: 6685 action = pf_test_state_other(&s, dir, kif, m, &pd); 6686 if (action == PF_PASS) { 6687 if (V_pfsync_update_state_ptr != NULL) 6688 V_pfsync_update_state_ptr(s); 6689 r = s->rule.ptr; 6690 a = s->anchor.ptr; 6691 log = s->log; 6692 } else if (s == NULL) 6693 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6694 &a, &ruleset, inp); 6695 break; 6696 } 6697 6698 done: 6699 PF_RULES_RUNLOCK(); 6700 if (action == PF_PASS && h->ip_hl > 5 && 6701 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6702 action = PF_DROP; 6703 REASON_SET(&reason, PFRES_IPOPTIONS); 6704 log = r->log; 6705 DPFPRINTF(PF_DEBUG_MISC, 6706 ("pf: dropping packet with ip options\n")); 6707 } 6708 6709 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6710 action = PF_DROP; 6711 REASON_SET(&reason, PFRES_MEMORY); 6712 } 6713 if (r->rtableid >= 0) 6714 M_SETFIB(m, r->rtableid); 6715 6716 if (r->scrub_flags & PFSTATE_SETPRIO) { 6717 if (pd.tos & IPTOS_LOWDELAY) 6718 pqid = 1; 6719 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6720 action = PF_DROP; 6721 REASON_SET(&reason, PFRES_MEMORY); 6722 log = 1; 6723 DPFPRINTF(PF_DEBUG_MISC, 6724 ("pf: failed to allocate 802.1q mtag\n")); 6725 } 6726 } 6727 6728 #ifdef ALTQ 6729 if (s && s->qid) { 6730 pd.act.pqid = s->pqid; 6731 pd.act.qid = s->qid; 6732 } else if (r->qid) { 6733 pd.act.pqid = r->pqid; 6734 pd.act.qid = r->qid; 6735 } 6736 if (action == PF_PASS && pd.act.qid) { 6737 if (pd.pf_mtag == NULL && 6738 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6739 action = PF_DROP; 6740 REASON_SET(&reason, PFRES_MEMORY); 6741 } else { 6742 if (s != NULL) 6743 pd.pf_mtag->qid_hash = pf_state_hash(s); 6744 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6745 pd.pf_mtag->qid = pd.act.pqid; 6746 else 6747 pd.pf_mtag->qid = pd.act.qid; 6748 /* Add hints for ecn. */ 6749 pd.pf_mtag->hdr = h; 6750 } 6751 } 6752 #endif /* ALTQ */ 6753 6754 /* 6755 * connections redirected to loopback should not match sockets 6756 * bound specifically to loopback due to security implications, 6757 * see tcp_input() and in_pcblookup_listen(). 6758 */ 6759 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6760 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6761 (s->nat_rule.ptr->action == PF_RDR || 6762 s->nat_rule.ptr->action == PF_BINAT) && 6763 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6764 m->m_flags |= M_SKIP_FIREWALL; 6765 6766 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 6767 r->divert.port && !PACKET_LOOPED(&pd)) { 6768 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6769 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6770 if (ipfwtag != NULL) { 6771 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6772 ntohs(r->divert.port); 6773 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6774 6775 if (s) 6776 PF_STATE_UNLOCK(s); 6777 6778 m_tag_prepend(m, ipfwtag); 6779 if (m->m_flags & M_FASTFWD_OURS) { 6780 if (pd.pf_mtag == NULL && 6781 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6782 action = PF_DROP; 6783 REASON_SET(&reason, PFRES_MEMORY); 6784 log = 1; 6785 DPFPRINTF(PF_DEBUG_MISC, 6786 ("pf: failed to allocate tag\n")); 6787 } else { 6788 pd.pf_mtag->flags |= 6789 PF_FASTFWD_OURS_PRESENT; 6790 m->m_flags &= ~M_FASTFWD_OURS; 6791 } 6792 } 6793 ip_divert_ptr(*m0, dir == PF_IN); 6794 *m0 = NULL; 6795 6796 return (action); 6797 } else { 6798 /* XXX: ipfw has the same behaviour! */ 6799 action = PF_DROP; 6800 REASON_SET(&reason, PFRES_MEMORY); 6801 log = 1; 6802 DPFPRINTF(PF_DEBUG_MISC, 6803 ("pf: failed to allocate divert tag\n")); 6804 } 6805 } 6806 6807 if (log) { 6808 struct pf_krule *lr; 6809 6810 if (s != NULL && s->nat_rule.ptr != NULL && 6811 s->nat_rule.ptr->log & PF_LOG_ALL) 6812 lr = s->nat_rule.ptr; 6813 else 6814 lr = r; 6815 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6816 (s == NULL)); 6817 } 6818 6819 pf_counter_u64_critical_enter(); 6820 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6821 pd.tot_len); 6822 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6823 1); 6824 6825 if (action == PF_PASS || r->action == PF_DROP) { 6826 dirndx = (dir == PF_OUT); 6827 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 6828 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 6829 if (a != NULL) { 6830 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 6831 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 6832 } 6833 if (s != NULL) { 6834 if (s->nat_rule.ptr != NULL) { 6835 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 6836 1); 6837 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 6838 pd.tot_len); 6839 } 6840 if (s->src_node != NULL) { 6841 counter_u64_add(s->src_node->packets[dirndx], 6842 1); 6843 counter_u64_add(s->src_node->bytes[dirndx], 6844 pd.tot_len); 6845 } 6846 if (s->nat_src_node != NULL) { 6847 counter_u64_add(s->nat_src_node->packets[dirndx], 6848 1); 6849 counter_u64_add(s->nat_src_node->bytes[dirndx], 6850 pd.tot_len); 6851 } 6852 dirndx = (dir == s->direction) ? 0 : 1; 6853 s->packets[dirndx]++; 6854 s->bytes[dirndx] += pd.tot_len; 6855 } 6856 tr = r; 6857 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6858 if (nr != NULL && r == &V_pf_default_rule) 6859 tr = nr; 6860 if (tr->src.addr.type == PF_ADDR_TABLE) 6861 pfr_update_stats(tr->src.addr.p.tbl, 6862 (s == NULL) ? pd.src : 6863 &s->key[(s->direction == PF_IN)]-> 6864 addr[(s->direction == PF_OUT)], 6865 pd.af, pd.tot_len, dir == PF_OUT, 6866 r->action == PF_PASS, tr->src.neg); 6867 if (tr->dst.addr.type == PF_ADDR_TABLE) 6868 pfr_update_stats(tr->dst.addr.p.tbl, 6869 (s == NULL) ? pd.dst : 6870 &s->key[(s->direction == PF_IN)]-> 6871 addr[(s->direction == PF_IN)], 6872 pd.af, pd.tot_len, dir == PF_OUT, 6873 r->action == PF_PASS, tr->dst.neg); 6874 } 6875 pf_counter_u64_critical_exit(); 6876 6877 switch (action) { 6878 case PF_SYNPROXY_DROP: 6879 m_freem(*m0); 6880 case PF_DEFER: 6881 *m0 = NULL; 6882 action = PF_PASS; 6883 break; 6884 case PF_DROP: 6885 m_freem(*m0); 6886 *m0 = NULL; 6887 break; 6888 default: 6889 /* pf_route() returns unlocked. */ 6890 if (r->rt) { 6891 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6892 return (action); 6893 } 6894 /* Dummynet processing. */ 6895 if (s && (s->dnpipe || s->dnrpipe)) { 6896 pd.act.dnpipe = s->dnpipe; 6897 pd.act.dnrpipe = s->dnrpipe; 6898 pd.act.flags = s->state_flags; 6899 } else if (r->dnpipe || r->dnrpipe) { 6900 pd.act.dnpipe = r->dnpipe; 6901 pd.act.dnrpipe = r->dnrpipe; 6902 pd.act.flags = r->free_flags; 6903 } 6904 if (pd.act.dnpipe || pd.act.dnrpipe) { 6905 struct ip_fw_args dnflow; 6906 if (ip_dn_io_ptr == NULL) { 6907 m_freem(*m0); 6908 *m0 = NULL; 6909 action = PF_DROP; 6910 REASON_SET(&reason, PFRES_MEMORY); 6911 break; 6912 } 6913 6914 if (pd.pf_mtag == NULL && 6915 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6916 m_freem(*m0); 6917 *m0 = NULL; 6918 action = PF_DROP; 6919 REASON_SET(&reason, PFRES_MEMORY); 6920 break; 6921 } 6922 6923 if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { 6924 pd.pf_mtag->flags |= PF_TAG_DUMMYNET; 6925 ip_dn_io_ptr(m0, &dnflow); 6926 if (*m0 == NULL) 6927 action = PF_DROP; 6928 } 6929 } 6930 break; 6931 } 6932 6933 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6934 6935 if (s) 6936 PF_STATE_UNLOCK(s); 6937 6938 return (action); 6939 } 6940 #endif /* INET */ 6941 6942 #ifdef INET6 6943 int 6944 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6945 { 6946 struct pfi_kkif *kif; 6947 u_short action, reason = 0, log = 0; 6948 struct mbuf *m = *m0, *n = NULL; 6949 struct m_tag *mtag; 6950 struct ip6_hdr *h = NULL; 6951 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6952 struct pf_kstate *s = NULL; 6953 struct pf_kruleset *ruleset = NULL; 6954 struct pf_pdesc pd; 6955 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6956 6957 PF_RULES_RLOCK_TRACKER; 6958 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6959 M_ASSERTPKTHDR(m); 6960 6961 if (!V_pf_status.running) 6962 return (PF_PASS); 6963 6964 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6965 if (kif == NULL) { 6966 DPFPRINTF(PF_DEBUG_URGENT, 6967 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6968 return (PF_DROP); 6969 } 6970 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6971 return (PF_PASS); 6972 6973 if (m->m_flags & M_SKIP_FIREWALL) 6974 return (PF_PASS); 6975 6976 memset(&pd, 0, sizeof(pd)); 6977 pd.pf_mtag = pf_find_mtag(m); 6978 6979 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 6980 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 6981 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 6982 /* Dummynet re-injects packets after they've 6983 * completed their delay. We've already 6984 * processed them, so pass unconditionally. */ 6985 return (PF_PASS); 6986 } 6987 6988 PF_RULES_RLOCK(); 6989 6990 /* We do IP header normalization and packet reassembly here */ 6991 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6992 action = PF_DROP; 6993 goto done; 6994 } 6995 m = *m0; /* pf_normalize messes with m0 */ 6996 h = mtod(m, struct ip6_hdr *); 6997 6998 /* 6999 * we do not support jumbogram. if we keep going, zero ip6_plen 7000 * will do something bad, so drop the packet for now. 7001 */ 7002 if (htons(h->ip6_plen) == 0) { 7003 action = PF_DROP; 7004 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 7005 goto done; 7006 } 7007 7008 pd.src = (struct pf_addr *)&h->ip6_src; 7009 pd.dst = (struct pf_addr *)&h->ip6_dst; 7010 pd.sport = pd.dport = NULL; 7011 pd.ip_sum = NULL; 7012 pd.proto_sum = NULL; 7013 pd.dir = dir; 7014 pd.sidx = (dir == PF_IN) ? 0 : 1; 7015 pd.didx = (dir == PF_IN) ? 1 : 0; 7016 pd.af = AF_INET6; 7017 pd.tos = IPV6_DSCP(h); 7018 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 7019 7020 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 7021 pd.proto = h->ip6_nxt; 7022 do { 7023 switch (pd.proto) { 7024 case IPPROTO_FRAGMENT: 7025 action = pf_test_fragment(&r, dir, kif, m, h, 7026 &pd, &a, &ruleset); 7027 if (action == PF_DROP) 7028 REASON_SET(&reason, PFRES_FRAG); 7029 goto done; 7030 case IPPROTO_ROUTING: { 7031 struct ip6_rthdr rthdr; 7032 7033 if (rh_cnt++) { 7034 DPFPRINTF(PF_DEBUG_MISC, 7035 ("pf: IPv6 more than one rthdr\n")); 7036 action = PF_DROP; 7037 REASON_SET(&reason, PFRES_IPOPTIONS); 7038 log = 1; 7039 goto done; 7040 } 7041 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 7042 &reason, pd.af)) { 7043 DPFPRINTF(PF_DEBUG_MISC, 7044 ("pf: IPv6 short rthdr\n")); 7045 action = PF_DROP; 7046 REASON_SET(&reason, PFRES_SHORT); 7047 log = 1; 7048 goto done; 7049 } 7050 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 7051 DPFPRINTF(PF_DEBUG_MISC, 7052 ("pf: IPv6 rthdr0\n")); 7053 action = PF_DROP; 7054 REASON_SET(&reason, PFRES_IPOPTIONS); 7055 log = 1; 7056 goto done; 7057 } 7058 /* FALLTHROUGH */ 7059 } 7060 case IPPROTO_AH: 7061 case IPPROTO_HOPOPTS: 7062 case IPPROTO_DSTOPTS: { 7063 /* get next header and header length */ 7064 struct ip6_ext opt6; 7065 7066 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 7067 NULL, &reason, pd.af)) { 7068 DPFPRINTF(PF_DEBUG_MISC, 7069 ("pf: IPv6 short opt\n")); 7070 action = PF_DROP; 7071 log = 1; 7072 goto done; 7073 } 7074 if (pd.proto == IPPROTO_AH) 7075 off += (opt6.ip6e_len + 2) * 4; 7076 else 7077 off += (opt6.ip6e_len + 1) * 8; 7078 pd.proto = opt6.ip6e_nxt; 7079 /* goto the next header */ 7080 break; 7081 } 7082 default: 7083 terminal++; 7084 break; 7085 } 7086 } while (!terminal); 7087 7088 /* if there's no routing header, use unmodified mbuf for checksumming */ 7089 if (!n) 7090 n = m; 7091 7092 switch (pd.proto) { 7093 case IPPROTO_TCP: { 7094 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7095 &action, &reason, AF_INET6)) { 7096 log = action != PF_PASS; 7097 goto done; 7098 } 7099 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7100 pd.sport = &pd.hdr.tcp.th_sport; 7101 pd.dport = &pd.hdr.tcp.th_dport; 7102 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7103 if (action == PF_DROP) 7104 goto done; 7105 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7106 &reason); 7107 if (action == PF_PASS) { 7108 if (V_pfsync_update_state_ptr != NULL) 7109 V_pfsync_update_state_ptr(s); 7110 r = s->rule.ptr; 7111 a = s->anchor.ptr; 7112 log = s->log; 7113 } else if (s == NULL) 7114 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7115 &a, &ruleset, inp); 7116 break; 7117 } 7118 7119 case IPPROTO_UDP: { 7120 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7121 &action, &reason, AF_INET6)) { 7122 log = action != PF_PASS; 7123 goto done; 7124 } 7125 pd.sport = &pd.hdr.udp.uh_sport; 7126 pd.dport = &pd.hdr.udp.uh_dport; 7127 if (pd.hdr.udp.uh_dport == 0 || 7128 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7129 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7130 action = PF_DROP; 7131 REASON_SET(&reason, PFRES_SHORT); 7132 goto done; 7133 } 7134 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7135 if (action == PF_PASS) { 7136 if (V_pfsync_update_state_ptr != NULL) 7137 V_pfsync_update_state_ptr(s); 7138 r = s->rule.ptr; 7139 a = s->anchor.ptr; 7140 log = s->log; 7141 } else if (s == NULL) 7142 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7143 &a, &ruleset, inp); 7144 break; 7145 } 7146 7147 case IPPROTO_ICMP: { 7148 action = PF_DROP; 7149 DPFPRINTF(PF_DEBUG_MISC, 7150 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7151 goto done; 7152 } 7153 7154 case IPPROTO_ICMPV6: { 7155 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7156 &action, &reason, AF_INET6)) { 7157 log = action != PF_PASS; 7158 goto done; 7159 } 7160 action = pf_test_state_icmp(&s, dir, kif, 7161 m, off, h, &pd, &reason); 7162 if (action == PF_PASS) { 7163 if (V_pfsync_update_state_ptr != NULL) 7164 V_pfsync_update_state_ptr(s); 7165 r = s->rule.ptr; 7166 a = s->anchor.ptr; 7167 log = s->log; 7168 } else if (s == NULL) 7169 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7170 &a, &ruleset, inp); 7171 break; 7172 } 7173 7174 default: 7175 action = pf_test_state_other(&s, dir, kif, m, &pd); 7176 if (action == PF_PASS) { 7177 if (V_pfsync_update_state_ptr != NULL) 7178 V_pfsync_update_state_ptr(s); 7179 r = s->rule.ptr; 7180 a = s->anchor.ptr; 7181 log = s->log; 7182 } else if (s == NULL) 7183 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7184 &a, &ruleset, inp); 7185 break; 7186 } 7187 7188 done: 7189 PF_RULES_RUNLOCK(); 7190 if (n != m) { 7191 m_freem(n); 7192 n = NULL; 7193 } 7194 7195 /* handle dangerous IPv6 extension headers. */ 7196 if (action == PF_PASS && rh_cnt && 7197 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7198 action = PF_DROP; 7199 REASON_SET(&reason, PFRES_IPOPTIONS); 7200 log = r->log; 7201 DPFPRINTF(PF_DEBUG_MISC, 7202 ("pf: dropping packet with dangerous v6 headers\n")); 7203 } 7204 7205 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7206 action = PF_DROP; 7207 REASON_SET(&reason, PFRES_MEMORY); 7208 } 7209 if (r->rtableid >= 0) 7210 M_SETFIB(m, r->rtableid); 7211 7212 if (r->scrub_flags & PFSTATE_SETPRIO) { 7213 if (pd.tos & IPTOS_LOWDELAY) 7214 pqid = 1; 7215 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7216 action = PF_DROP; 7217 REASON_SET(&reason, PFRES_MEMORY); 7218 log = 1; 7219 DPFPRINTF(PF_DEBUG_MISC, 7220 ("pf: failed to allocate 802.1q mtag\n")); 7221 } 7222 } 7223 7224 #ifdef ALTQ 7225 if (s && s->qid) { 7226 pd.act.pqid = s->pqid; 7227 pd.act.qid = s->qid; 7228 } else if (r->qid) { 7229 pd.act.pqid = r->pqid; 7230 pd.act.qid = r->qid; 7231 } 7232 if (action == PF_PASS && pd.act.qid) { 7233 if (pd.pf_mtag == NULL && 7234 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7235 action = PF_DROP; 7236 REASON_SET(&reason, PFRES_MEMORY); 7237 } else { 7238 if (s != NULL) 7239 pd.pf_mtag->qid_hash = pf_state_hash(s); 7240 if (pd.tos & IPTOS_LOWDELAY) 7241 pd.pf_mtag->qid = pd.act.pqid; 7242 else 7243 pd.pf_mtag->qid = pd.act.qid; 7244 /* Add hints for ecn. */ 7245 pd.pf_mtag->hdr = h; 7246 } 7247 } 7248 #endif /* ALTQ */ 7249 7250 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7251 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7252 (s->nat_rule.ptr->action == PF_RDR || 7253 s->nat_rule.ptr->action == PF_BINAT) && 7254 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7255 m->m_flags |= M_SKIP_FIREWALL; 7256 7257 /* XXX: Anybody working on it?! */ 7258 if (r->divert.port) 7259 printf("pf: divert(9) is not supported for IPv6\n"); 7260 7261 if (log) { 7262 struct pf_krule *lr; 7263 7264 if (s != NULL && s->nat_rule.ptr != NULL && 7265 s->nat_rule.ptr->log & PF_LOG_ALL) 7266 lr = s->nat_rule.ptr; 7267 else 7268 lr = r; 7269 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 7270 &pd, (s == NULL)); 7271 } 7272 7273 pf_counter_u64_critical_enter(); 7274 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 7275 pd.tot_len); 7276 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 7277 1); 7278 7279 if (action == PF_PASS || r->action == PF_DROP) { 7280 dirndx = (dir == PF_OUT); 7281 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7282 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7283 if (a != NULL) { 7284 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7285 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7286 } 7287 if (s != NULL) { 7288 if (s->nat_rule.ptr != NULL) { 7289 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7290 1); 7291 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7292 pd.tot_len); 7293 } 7294 if (s->src_node != NULL) { 7295 counter_u64_add(s->src_node->packets[dirndx], 7296 1); 7297 counter_u64_add(s->src_node->bytes[dirndx], 7298 pd.tot_len); 7299 } 7300 if (s->nat_src_node != NULL) { 7301 counter_u64_add(s->nat_src_node->packets[dirndx], 7302 1); 7303 counter_u64_add(s->nat_src_node->bytes[dirndx], 7304 pd.tot_len); 7305 } 7306 dirndx = (dir == s->direction) ? 0 : 1; 7307 s->packets[dirndx]++; 7308 s->bytes[dirndx] += pd.tot_len; 7309 } 7310 tr = r; 7311 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7312 if (nr != NULL && r == &V_pf_default_rule) 7313 tr = nr; 7314 if (tr->src.addr.type == PF_ADDR_TABLE) 7315 pfr_update_stats(tr->src.addr.p.tbl, 7316 (s == NULL) ? pd.src : 7317 &s->key[(s->direction == PF_IN)]->addr[0], 7318 pd.af, pd.tot_len, dir == PF_OUT, 7319 r->action == PF_PASS, tr->src.neg); 7320 if (tr->dst.addr.type == PF_ADDR_TABLE) 7321 pfr_update_stats(tr->dst.addr.p.tbl, 7322 (s == NULL) ? pd.dst : 7323 &s->key[(s->direction == PF_IN)]->addr[1], 7324 pd.af, pd.tot_len, dir == PF_OUT, 7325 r->action == PF_PASS, tr->dst.neg); 7326 } 7327 pf_counter_u64_critical_exit(); 7328 7329 switch (action) { 7330 case PF_SYNPROXY_DROP: 7331 m_freem(*m0); 7332 case PF_DEFER: 7333 *m0 = NULL; 7334 action = PF_PASS; 7335 break; 7336 case PF_DROP: 7337 m_freem(*m0); 7338 *m0 = NULL; 7339 break; 7340 default: 7341 /* pf_route6() returns unlocked. */ 7342 if (r->rt) { 7343 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7344 return (action); 7345 } 7346 /* Dummynet processing. */ 7347 if (s && (s->dnpipe || s->dnrpipe)) { 7348 pd.act.dnpipe = s->dnpipe; 7349 pd.act.dnrpipe = s->dnrpipe; 7350 pd.act.flags = s->state_flags; 7351 } else { 7352 pd.act.dnpipe = r->dnpipe; 7353 pd.act.dnrpipe = r->dnrpipe; 7354 pd.act.flags = r->free_flags; 7355 } 7356 if (pd.act.dnpipe || pd.act.dnrpipe) { 7357 struct ip_fw_args dnflow; 7358 7359 if (ip_dn_io_ptr == NULL) { 7360 m_freem(*m0); 7361 *m0 = NULL; 7362 action = PF_DROP; 7363 REASON_SET(&reason, PFRES_MEMORY); 7364 break; 7365 } 7366 7367 if (pd.pf_mtag == NULL && 7368 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7369 m_freem(*m0); 7370 *m0 = NULL; 7371 action = PF_DROP; 7372 REASON_SET(&reason, PFRES_MEMORY); 7373 break; 7374 } 7375 7376 if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { 7377 pd.pf_mtag->flags |= PF_TAG_DUMMYNET; 7378 ip_dn_io_ptr(m0, &dnflow); 7379 if (*m0 == NULL) 7380 action = PF_DROP; 7381 } 7382 } 7383 break; 7384 } 7385 7386 if (s) 7387 PF_STATE_UNLOCK(s); 7388 7389 /* If reassembled packet passed, create new fragments. */ 7390 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 7391 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7392 action = pf_refragment6(ifp, m0, mtag); 7393 7394 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7395 7396 return (action); 7397 } 7398 #endif /* INET6 */ 7399