1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_private.h> 71 #include <net/if_types.h> 72 #include <net/if_vlan_var.h> 73 #include <net/route.h> 74 #include <net/route/nhop.h> 75 #include <net/vnet.h> 76 77 #include <net/pfil.h> 78 #include <net/pfvar.h> 79 #include <net/if_pflog.h> 80 #include <net/if_pfsync.h> 81 82 #include <netinet/in_pcb.h> 83 #include <netinet/in_var.h> 84 #include <netinet/in_fib.h> 85 #include <netinet/ip.h> 86 #include <netinet/ip_fw.h> 87 #include <netinet/ip_icmp.h> 88 #include <netinet/icmp_var.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp.h> 91 #include <netinet/tcp_fsm.h> 92 #include <netinet/tcp_seq.h> 93 #include <netinet/tcp_timer.h> 94 #include <netinet/tcp_var.h> 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 98 /* dummynet */ 99 #include <netinet/ip_dummynet.h> 100 #include <netinet/ip_fw.h> 101 #include <netpfil/ipfw/dn_heap.h> 102 #include <netpfil/ipfw/ip_fw_private.h> 103 #include <netpfil/ipfw/ip_dn_private.h> 104 105 #ifdef INET6 106 #include <netinet/ip6.h> 107 #include <netinet/icmp6.h> 108 #include <netinet6/nd6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet6/in6_pcb.h> 111 #include <netinet6/in6_fib.h> 112 #include <netinet6/scope6_var.h> 113 #endif /* INET6 */ 114 115 #if defined(SCTP) || defined(SCTP_SUPPORT) 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <machine/in_cksum.h> 120 #include <security/mac/mac_framework.h> 121 122 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 123 124 SDT_PROVIDER_DEFINE(pf); 125 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 130 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 131 "struct pf_kstate *"); 132 133 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 134 "struct mbuf *"); 135 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 137 "int", "struct pf_keth_rule *", "char *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 140 "int", "struct pf_keth_rule *"); 141 142 /* 143 * Global variables 144 */ 145 146 /* state tables */ 147 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 148 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 152 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 153 VNET_DEFINE(struct pf_kstatus, pf_status); 154 155 VNET_DEFINE(u_int32_t, ticket_altqs_active); 156 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 157 VNET_DEFINE(int, altqs_inactive_open); 158 VNET_DEFINE(u_int32_t, ticket_pabuf); 159 160 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 161 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 162 VNET_DEFINE(u_char, pf_tcp_secret[16]); 163 #define V_pf_tcp_secret VNET(pf_tcp_secret) 164 VNET_DEFINE(int, pf_tcp_secret_init); 165 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 166 VNET_DEFINE(int, pf_tcp_iss_off); 167 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 168 VNET_DECLARE(int, pf_vnet_active); 169 #define V_pf_vnet_active VNET(pf_vnet_active) 170 171 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 172 #define V_pf_purge_idx VNET(pf_purge_idx) 173 174 #ifdef PF_WANT_32_TO_64_COUNTER 175 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 176 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 177 178 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 179 VNET_DEFINE(size_t, pf_allrulecount); 180 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 181 #endif 182 183 /* 184 * Queue for pf_intr() sends. 185 */ 186 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 187 struct pf_send_entry { 188 STAILQ_ENTRY(pf_send_entry) pfse_next; 189 struct mbuf *pfse_m; 190 enum { 191 PFSE_IP, 192 PFSE_IP6, 193 PFSE_ICMP, 194 PFSE_ICMP6, 195 } pfse_type; 196 struct { 197 int type; 198 int code; 199 int mtu; 200 } icmpopts; 201 }; 202 203 STAILQ_HEAD(pf_send_head, pf_send_entry); 204 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 205 #define V_pf_sendqueue VNET(pf_sendqueue) 206 207 static struct mtx_padalign pf_sendqueue_mtx; 208 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 209 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 210 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 211 212 /* 213 * Queue for pf_overload_task() tasks. 214 */ 215 struct pf_overload_entry { 216 SLIST_ENTRY(pf_overload_entry) next; 217 struct pf_addr addr; 218 sa_family_t af; 219 uint8_t dir; 220 struct pf_krule *rule; 221 }; 222 223 SLIST_HEAD(pf_overload_head, pf_overload_entry); 224 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 225 #define V_pf_overloadqueue VNET(pf_overloadqueue) 226 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 227 #define V_pf_overloadtask VNET(pf_overloadtask) 228 229 static struct mtx_padalign pf_overloadqueue_mtx; 230 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 231 "pf overload/flush queue", MTX_DEF); 232 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 233 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 234 235 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 236 struct mtx_padalign pf_unlnkdrules_mtx; 237 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 238 MTX_DEF); 239 240 struct sx pf_config_lock; 241 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 242 243 struct mtx_padalign pf_table_stats_lock; 244 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 245 MTX_DEF); 246 247 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 248 #define V_pf_sources_z VNET(pf_sources_z) 249 uma_zone_t pf_mtag_z; 250 VNET_DEFINE(uma_zone_t, pf_state_z); 251 VNET_DEFINE(uma_zone_t, pf_state_key_z); 252 253 VNET_DEFINE(struct unrhdr64, pf_stateid); 254 255 static void pf_src_tree_remove_state(struct pf_kstate *); 256 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 257 u_int32_t); 258 static void pf_add_threshold(struct pf_threshold *); 259 static int pf_check_threshold(struct pf_threshold *); 260 261 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 262 u_int16_t *, u_int16_t *, struct pf_addr *, 263 u_int16_t, u_int8_t, sa_family_t); 264 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 265 struct tcphdr *, struct pf_state_peer *); 266 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 267 struct pf_addr *, struct pf_addr *, u_int16_t, 268 u_int16_t *, u_int16_t *, u_int16_t *, 269 u_int16_t *, u_int8_t, sa_family_t); 270 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 271 sa_family_t, struct pf_krule *, int); 272 static void pf_detach_state(struct pf_kstate *); 273 static int pf_state_key_attach(struct pf_state_key *, 274 struct pf_state_key *, struct pf_kstate *); 275 static void pf_state_key_detach(struct pf_kstate *, int); 276 static int pf_state_key_ctor(void *, int, void *, int); 277 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 278 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 279 struct pf_krule *, struct mbuf **); 280 static int pf_dummynet_route(struct pf_pdesc *, 281 struct pf_kstate *, struct pf_krule *, 282 struct ifnet *, struct sockaddr *, struct mbuf **); 283 static int pf_test_eth_rule(int, struct pfi_kkif *, 284 struct mbuf **); 285 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 286 struct pfi_kkif *, struct mbuf *, int, 287 struct pf_pdesc *, struct pf_krule **, 288 struct pf_kruleset **, struct inpcb *); 289 static int pf_create_state(struct pf_krule *, struct pf_krule *, 290 struct pf_krule *, struct pf_pdesc *, 291 struct pf_ksrc_node *, struct pf_state_key *, 292 struct pf_state_key *, struct mbuf *, int, 293 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 294 struct pf_kstate **, int, u_int16_t, u_int16_t, 295 int, struct pf_krule_slist *); 296 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 297 struct mbuf *, void *, struct pf_pdesc *, 298 struct pf_krule **, struct pf_kruleset **); 299 static int pf_tcp_track_full(struct pf_kstate **, 300 struct pfi_kkif *, struct mbuf *, int, 301 struct pf_pdesc *, u_short *, int *); 302 static int pf_tcp_track_sloppy(struct pf_kstate **, 303 struct pf_pdesc *, u_short *); 304 static int pf_test_state_tcp(struct pf_kstate **, 305 struct pfi_kkif *, struct mbuf *, int, 306 void *, struct pf_pdesc *, u_short *); 307 static int pf_test_state_udp(struct pf_kstate **, 308 struct pfi_kkif *, struct mbuf *, int, 309 void *, struct pf_pdesc *); 310 static int pf_test_state_icmp(struct pf_kstate **, 311 struct pfi_kkif *, struct mbuf *, int, 312 void *, struct pf_pdesc *, u_short *); 313 static int pf_test_state_other(struct pf_kstate **, 314 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 315 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 316 int, u_int16_t); 317 static int pf_check_proto_cksum(struct mbuf *, int, int, 318 u_int8_t, sa_family_t); 319 static void pf_print_state_parts(struct pf_kstate *, 320 struct pf_state_key *, struct pf_state_key *); 321 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 322 bool, u_int8_t); 323 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 324 struct pf_state_key_cmp *, u_int); 325 static int pf_src_connlimit(struct pf_kstate **); 326 static void pf_overload_task(void *v, int pending); 327 static u_short pf_insert_src_node(struct pf_ksrc_node **, 328 struct pf_krule *, struct pf_addr *, sa_family_t); 329 static u_int pf_purge_expired_states(u_int, int); 330 static void pf_purge_unlinked_rules(void); 331 static int pf_mtag_uminit(void *, int, int); 332 static void pf_mtag_free(struct m_tag *); 333 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 334 int, struct pf_state_key *); 335 #ifdef INET 336 static void pf_route(struct mbuf **, struct pf_krule *, 337 struct ifnet *, struct pf_kstate *, 338 struct pf_pdesc *, struct inpcb *); 339 #endif /* INET */ 340 #ifdef INET6 341 static void pf_change_a6(struct pf_addr *, u_int16_t *, 342 struct pf_addr *, u_int8_t); 343 static void pf_route6(struct mbuf **, struct pf_krule *, 344 struct ifnet *, struct pf_kstate *, 345 struct pf_pdesc *, struct inpcb *); 346 #endif /* INET6 */ 347 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 348 349 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 350 351 extern int pf_end_threads; 352 extern struct proc *pf_purge_proc; 353 354 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 355 356 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 357 do { \ 358 struct pf_state_key *nk; \ 359 if ((pd->dir) == PF_OUT) \ 360 nk = (_s)->key[PF_SK_STACK]; \ 361 else \ 362 nk = (_s)->key[PF_SK_WIRE]; \ 363 pf_packet_rework_nat(_m, _pd, _off, nk); \ 364 } while (0) 365 366 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 367 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 368 369 #define STATE_LOOKUP(i, k, s, pd) \ 370 do { \ 371 (s) = pf_find_state((i), (k), (pd->dir)); \ 372 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 373 if ((s) == NULL) \ 374 return (PF_DROP); \ 375 if (PACKET_LOOPED(pd)) \ 376 return (PF_PASS); \ 377 } while (0) 378 379 #define BOUND_IFACE(r, k) \ 380 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 381 382 #define STATE_INC_COUNTERS(s) \ 383 do { \ 384 struct pf_krule_item *mrm; \ 385 counter_u64_add(s->rule.ptr->states_cur, 1); \ 386 counter_u64_add(s->rule.ptr->states_tot, 1); \ 387 if (s->anchor.ptr != NULL) { \ 388 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 389 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 390 } \ 391 if (s->nat_rule.ptr != NULL) { \ 392 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 393 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 394 } \ 395 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 396 counter_u64_add(mrm->r->states_cur, 1); \ 397 counter_u64_add(mrm->r->states_tot, 1); \ 398 } \ 399 } while (0) 400 401 #define STATE_DEC_COUNTERS(s) \ 402 do { \ 403 struct pf_krule_item *mrm; \ 404 if (s->nat_rule.ptr != NULL) \ 405 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 406 if (s->anchor.ptr != NULL) \ 407 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 408 counter_u64_add(s->rule.ptr->states_cur, -1); \ 409 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 410 counter_u64_add(mrm->r->states_cur, -1); \ 411 } while (0) 412 413 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 414 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 415 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 416 VNET_DEFINE(struct pf_idhash *, pf_idhash); 417 VNET_DEFINE(struct pf_srchash *, pf_srchash); 418 419 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 420 "pf(4)"); 421 422 u_long pf_hashmask; 423 u_long pf_srchashmask; 424 static u_long pf_hashsize; 425 static u_long pf_srchashsize; 426 u_long pf_ioctl_maxcount = 65535; 427 428 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 429 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 430 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 431 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 432 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 433 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 434 435 VNET_DEFINE(void *, pf_swi_cookie); 436 VNET_DEFINE(struct intr_event *, pf_swi_ie); 437 438 VNET_DEFINE(uint32_t, pf_hashseed); 439 #define V_pf_hashseed VNET(pf_hashseed) 440 441 int 442 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 443 { 444 445 switch (af) { 446 #ifdef INET 447 case AF_INET: 448 if (a->addr32[0] > b->addr32[0]) 449 return (1); 450 if (a->addr32[0] < b->addr32[0]) 451 return (-1); 452 break; 453 #endif /* INET */ 454 #ifdef INET6 455 case AF_INET6: 456 if (a->addr32[3] > b->addr32[3]) 457 return (1); 458 if (a->addr32[3] < b->addr32[3]) 459 return (-1); 460 if (a->addr32[2] > b->addr32[2]) 461 return (1); 462 if (a->addr32[2] < b->addr32[2]) 463 return (-1); 464 if (a->addr32[1] > b->addr32[1]) 465 return (1); 466 if (a->addr32[1] < b->addr32[1]) 467 return (-1); 468 if (a->addr32[0] > b->addr32[0]) 469 return (1); 470 if (a->addr32[0] < b->addr32[0]) 471 return (-1); 472 break; 473 #endif /* INET6 */ 474 default: 475 panic("%s: unknown address family %u", __func__, af); 476 } 477 return (0); 478 } 479 480 static void 481 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 482 struct pf_state_key *nk) 483 { 484 485 switch (pd->proto) { 486 case IPPROTO_TCP: { 487 struct tcphdr *th = &pd->hdr.tcp; 488 489 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 490 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 491 &th->th_sum, &nk->addr[pd->sidx], 492 nk->port[pd->sidx], 0, pd->af); 493 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 494 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 495 &th->th_sum, &nk->addr[pd->didx], 496 nk->port[pd->didx], 0, pd->af); 497 m_copyback(m, off, sizeof(*th), (caddr_t)th); 498 break; 499 } 500 case IPPROTO_UDP: { 501 struct udphdr *uh = &pd->hdr.udp; 502 503 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 504 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 505 &uh->uh_sum, &nk->addr[pd->sidx], 506 nk->port[pd->sidx], 1, pd->af); 507 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 508 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 509 &uh->uh_sum, &nk->addr[pd->didx], 510 nk->port[pd->didx], 1, pd->af); 511 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 512 break; 513 } 514 case IPPROTO_ICMP: { 515 struct icmp *ih = &pd->hdr.icmp; 516 517 if (nk->port[pd->sidx] != ih->icmp_id) { 518 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 519 ih->icmp_cksum, ih->icmp_id, 520 nk->port[pd->sidx], 0); 521 ih->icmp_id = nk->port[pd->sidx]; 522 pd->sport = &ih->icmp_id; 523 524 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 525 } 526 /* FALLTHROUGH */ 527 } 528 default: 529 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 530 switch (pd->af) { 531 case AF_INET: 532 pf_change_a(&pd->src->v4.s_addr, 533 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 534 0); 535 break; 536 case AF_INET6: 537 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 538 break; 539 } 540 } 541 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 542 switch (pd->af) { 543 case AF_INET: 544 pf_change_a(&pd->dst->v4.s_addr, 545 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 546 0); 547 break; 548 case AF_INET6: 549 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 550 break; 551 } 552 } 553 break; 554 } 555 } 556 557 static __inline uint32_t 558 pf_hashkey(struct pf_state_key *sk) 559 { 560 uint32_t h; 561 562 h = murmur3_32_hash32((uint32_t *)sk, 563 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 564 V_pf_hashseed); 565 566 return (h & pf_hashmask); 567 } 568 569 static __inline uint32_t 570 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 571 { 572 uint32_t h; 573 574 switch (af) { 575 case AF_INET: 576 h = murmur3_32_hash32((uint32_t *)&addr->v4, 577 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 578 break; 579 case AF_INET6: 580 h = murmur3_32_hash32((uint32_t *)&addr->v6, 581 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 582 break; 583 default: 584 panic("%s: unknown address family %u", __func__, af); 585 } 586 587 return (h & pf_srchashmask); 588 } 589 590 #ifdef ALTQ 591 static int 592 pf_state_hash(struct pf_kstate *s) 593 { 594 u_int32_t hv = (intptr_t)s / sizeof(*s); 595 596 hv ^= crc32(&s->src, sizeof(s->src)); 597 hv ^= crc32(&s->dst, sizeof(s->dst)); 598 if (hv == 0) 599 hv = 1; 600 return (hv); 601 } 602 #endif 603 604 static __inline void 605 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 606 { 607 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 608 s->dst.state = newstate; 609 if (which == PF_PEER_DST) 610 return; 611 if (s->src.state == newstate) 612 return; 613 if (s->creatorid == V_pf_status.hostid && 614 s->key[PF_SK_STACK] != NULL && 615 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 616 !(TCPS_HAVEESTABLISHED(s->src.state) || 617 s->src.state == TCPS_CLOSED) && 618 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 619 atomic_add_32(&V_pf_status.states_halfopen, -1); 620 621 s->src.state = newstate; 622 } 623 624 #ifdef INET6 625 void 626 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 627 { 628 switch (af) { 629 #ifdef INET 630 case AF_INET: 631 dst->addr32[0] = src->addr32[0]; 632 break; 633 #endif /* INET */ 634 case AF_INET6: 635 dst->addr32[0] = src->addr32[0]; 636 dst->addr32[1] = src->addr32[1]; 637 dst->addr32[2] = src->addr32[2]; 638 dst->addr32[3] = src->addr32[3]; 639 break; 640 } 641 } 642 #endif /* INET6 */ 643 644 static void 645 pf_init_threshold(struct pf_threshold *threshold, 646 u_int32_t limit, u_int32_t seconds) 647 { 648 threshold->limit = limit * PF_THRESHOLD_MULT; 649 threshold->seconds = seconds; 650 threshold->count = 0; 651 threshold->last = time_uptime; 652 } 653 654 static void 655 pf_add_threshold(struct pf_threshold *threshold) 656 { 657 u_int32_t t = time_uptime, diff = t - threshold->last; 658 659 if (diff >= threshold->seconds) 660 threshold->count = 0; 661 else 662 threshold->count -= threshold->count * diff / 663 threshold->seconds; 664 threshold->count += PF_THRESHOLD_MULT; 665 threshold->last = t; 666 } 667 668 static int 669 pf_check_threshold(struct pf_threshold *threshold) 670 { 671 return (threshold->count > threshold->limit); 672 } 673 674 static int 675 pf_src_connlimit(struct pf_kstate **state) 676 { 677 struct pf_overload_entry *pfoe; 678 int bad = 0; 679 680 PF_STATE_LOCK_ASSERT(*state); 681 /* 682 * XXXKS: The src node is accessed unlocked! 683 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 684 */ 685 686 (*state)->src_node->conn++; 687 (*state)->src.tcp_est = 1; 688 pf_add_threshold(&(*state)->src_node->conn_rate); 689 690 if ((*state)->rule.ptr->max_src_conn && 691 (*state)->rule.ptr->max_src_conn < 692 (*state)->src_node->conn) { 693 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 694 bad++; 695 } 696 697 if ((*state)->rule.ptr->max_src_conn_rate.limit && 698 pf_check_threshold(&(*state)->src_node->conn_rate)) { 699 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 700 bad++; 701 } 702 703 if (!bad) 704 return (0); 705 706 /* Kill this state. */ 707 (*state)->timeout = PFTM_PURGE; 708 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 709 710 if ((*state)->rule.ptr->overload_tbl == NULL) 711 return (1); 712 713 /* Schedule overloading and flushing task. */ 714 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 715 if (pfoe == NULL) 716 return (1); /* too bad :( */ 717 718 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 719 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 720 pfoe->rule = (*state)->rule.ptr; 721 pfoe->dir = (*state)->direction; 722 PF_OVERLOADQ_LOCK(); 723 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 724 PF_OVERLOADQ_UNLOCK(); 725 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 726 727 return (1); 728 } 729 730 static void 731 pf_overload_task(void *v, int pending) 732 { 733 struct pf_overload_head queue; 734 struct pfr_addr p; 735 struct pf_overload_entry *pfoe, *pfoe1; 736 uint32_t killed = 0; 737 738 CURVNET_SET((struct vnet *)v); 739 740 PF_OVERLOADQ_LOCK(); 741 queue = V_pf_overloadqueue; 742 SLIST_INIT(&V_pf_overloadqueue); 743 PF_OVERLOADQ_UNLOCK(); 744 745 bzero(&p, sizeof(p)); 746 SLIST_FOREACH(pfoe, &queue, next) { 747 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 748 if (V_pf_status.debug >= PF_DEBUG_MISC) { 749 printf("%s: blocking address ", __func__); 750 pf_print_host(&pfoe->addr, 0, pfoe->af); 751 printf("\n"); 752 } 753 754 p.pfra_af = pfoe->af; 755 switch (pfoe->af) { 756 #ifdef INET 757 case AF_INET: 758 p.pfra_net = 32; 759 p.pfra_ip4addr = pfoe->addr.v4; 760 break; 761 #endif 762 #ifdef INET6 763 case AF_INET6: 764 p.pfra_net = 128; 765 p.pfra_ip6addr = pfoe->addr.v6; 766 break; 767 #endif 768 } 769 770 PF_RULES_WLOCK(); 771 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 772 PF_RULES_WUNLOCK(); 773 } 774 775 /* 776 * Remove those entries, that don't need flushing. 777 */ 778 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 779 if (pfoe->rule->flush == 0) { 780 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 781 free(pfoe, M_PFTEMP); 782 } else 783 counter_u64_add( 784 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 785 786 /* If nothing to flush, return. */ 787 if (SLIST_EMPTY(&queue)) { 788 CURVNET_RESTORE(); 789 return; 790 } 791 792 for (int i = 0; i <= pf_hashmask; i++) { 793 struct pf_idhash *ih = &V_pf_idhash[i]; 794 struct pf_state_key *sk; 795 struct pf_kstate *s; 796 797 PF_HASHROW_LOCK(ih); 798 LIST_FOREACH(s, &ih->states, entry) { 799 sk = s->key[PF_SK_WIRE]; 800 SLIST_FOREACH(pfoe, &queue, next) 801 if (sk->af == pfoe->af && 802 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 803 pfoe->rule == s->rule.ptr) && 804 ((pfoe->dir == PF_OUT && 805 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 806 (pfoe->dir == PF_IN && 807 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 808 s->timeout = PFTM_PURGE; 809 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 810 killed++; 811 } 812 } 813 PF_HASHROW_UNLOCK(ih); 814 } 815 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 816 free(pfoe, M_PFTEMP); 817 if (V_pf_status.debug >= PF_DEBUG_MISC) 818 printf("%s: %u states killed", __func__, killed); 819 820 CURVNET_RESTORE(); 821 } 822 823 /* 824 * Can return locked on failure, so that we can consistently 825 * allocate and insert a new one. 826 */ 827 struct pf_ksrc_node * 828 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 829 struct pf_srchash **sh, bool returnlocked) 830 { 831 struct pf_ksrc_node *n; 832 833 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 834 835 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 836 PF_HASHROW_LOCK(*sh); 837 LIST_FOREACH(n, &(*sh)->nodes, entry) 838 if (n->rule.ptr == rule && n->af == af && 839 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 840 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 841 break; 842 843 if (n != NULL) { 844 n->states++; 845 PF_HASHROW_UNLOCK(*sh); 846 } else if (returnlocked == false) 847 PF_HASHROW_UNLOCK(*sh); 848 849 return (n); 850 } 851 852 static void 853 pf_free_src_node(struct pf_ksrc_node *sn) 854 { 855 856 for (int i = 0; i < 2; i++) { 857 counter_u64_free(sn->bytes[i]); 858 counter_u64_free(sn->packets[i]); 859 } 860 uma_zfree(V_pf_sources_z, sn); 861 } 862 863 static u_short 864 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 865 struct pf_addr *src, sa_family_t af) 866 { 867 u_short reason = 0; 868 struct pf_srchash *sh = NULL; 869 870 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 871 rule->rpool.opts & PF_POOL_STICKYADDR), 872 ("%s for non-tracking rule %p", __func__, rule)); 873 874 if (*sn == NULL) 875 *sn = pf_find_src_node(src, rule, af, &sh, true); 876 877 if (*sn == NULL) { 878 PF_HASHROW_ASSERT(sh); 879 880 if (rule->max_src_nodes && 881 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 882 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 883 PF_HASHROW_UNLOCK(sh); 884 reason = PFRES_SRCLIMIT; 885 goto done; 886 } 887 888 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 889 if ((*sn) == NULL) { 890 PF_HASHROW_UNLOCK(sh); 891 reason = PFRES_MEMORY; 892 goto done; 893 } 894 895 for (int i = 0; i < 2; i++) { 896 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 897 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 898 899 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 900 pf_free_src_node(*sn); 901 PF_HASHROW_UNLOCK(sh); 902 reason = PFRES_MEMORY; 903 goto done; 904 } 905 } 906 907 pf_init_threshold(&(*sn)->conn_rate, 908 rule->max_src_conn_rate.limit, 909 rule->max_src_conn_rate.seconds); 910 911 MPASS((*sn)->lock == NULL); 912 (*sn)->lock = &sh->lock; 913 914 (*sn)->af = af; 915 (*sn)->rule.ptr = rule; 916 PF_ACPY(&(*sn)->addr, src, af); 917 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 918 (*sn)->creation = time_uptime; 919 (*sn)->ruletype = rule->action; 920 (*sn)->states = 1; 921 if ((*sn)->rule.ptr != NULL) 922 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 923 PF_HASHROW_UNLOCK(sh); 924 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 925 } else { 926 if (rule->max_src_states && 927 (*sn)->states >= rule->max_src_states) { 928 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 929 1); 930 reason = PFRES_SRCLIMIT; 931 goto done; 932 } 933 } 934 done: 935 return (reason); 936 } 937 938 void 939 pf_unlink_src_node(struct pf_ksrc_node *src) 940 { 941 PF_SRC_NODE_LOCK_ASSERT(src); 942 943 LIST_REMOVE(src, entry); 944 if (src->rule.ptr) 945 counter_u64_add(src->rule.ptr->src_nodes, -1); 946 } 947 948 u_int 949 pf_free_src_nodes(struct pf_ksrc_node_list *head) 950 { 951 struct pf_ksrc_node *sn, *tmp; 952 u_int count = 0; 953 954 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 955 pf_free_src_node(sn); 956 count++; 957 } 958 959 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 960 961 return (count); 962 } 963 964 void 965 pf_mtag_initialize(void) 966 { 967 968 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 969 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 970 UMA_ALIGN_PTR, 0); 971 } 972 973 /* Per-vnet data storage structures initialization. */ 974 void 975 pf_initialize(void) 976 { 977 struct pf_keyhash *kh; 978 struct pf_idhash *ih; 979 struct pf_srchash *sh; 980 u_int i; 981 982 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 983 pf_hashsize = PF_HASHSIZ; 984 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 985 pf_srchashsize = PF_SRCHASHSIZ; 986 987 V_pf_hashseed = arc4random(); 988 989 /* States and state keys storage. */ 990 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 991 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 992 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 993 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 994 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 995 996 V_pf_state_key_z = uma_zcreate("pf state keys", 997 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 998 UMA_ALIGN_PTR, 0); 999 1000 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1001 M_PFHASH, M_NOWAIT | M_ZERO); 1002 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1003 M_PFHASH, M_NOWAIT | M_ZERO); 1004 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1005 printf("pf: Unable to allocate memory for " 1006 "state_hashsize %lu.\n", pf_hashsize); 1007 1008 free(V_pf_keyhash, M_PFHASH); 1009 free(V_pf_idhash, M_PFHASH); 1010 1011 pf_hashsize = PF_HASHSIZ; 1012 V_pf_keyhash = mallocarray(pf_hashsize, 1013 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1014 V_pf_idhash = mallocarray(pf_hashsize, 1015 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1016 } 1017 1018 pf_hashmask = pf_hashsize - 1; 1019 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1020 i++, kh++, ih++) { 1021 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1022 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1023 } 1024 1025 /* Source nodes. */ 1026 V_pf_sources_z = uma_zcreate("pf source nodes", 1027 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1028 0); 1029 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1030 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1031 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1032 1033 V_pf_srchash = mallocarray(pf_srchashsize, 1034 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1035 if (V_pf_srchash == NULL) { 1036 printf("pf: Unable to allocate memory for " 1037 "source_hashsize %lu.\n", pf_srchashsize); 1038 1039 pf_srchashsize = PF_SRCHASHSIZ; 1040 V_pf_srchash = mallocarray(pf_srchashsize, 1041 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1042 } 1043 1044 pf_srchashmask = pf_srchashsize - 1; 1045 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1046 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1047 1048 /* ALTQ */ 1049 TAILQ_INIT(&V_pf_altqs[0]); 1050 TAILQ_INIT(&V_pf_altqs[1]); 1051 TAILQ_INIT(&V_pf_altqs[2]); 1052 TAILQ_INIT(&V_pf_altqs[3]); 1053 TAILQ_INIT(&V_pf_pabuf); 1054 V_pf_altqs_active = &V_pf_altqs[0]; 1055 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1056 V_pf_altqs_inactive = &V_pf_altqs[2]; 1057 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1058 1059 /* Send & overload+flush queues. */ 1060 STAILQ_INIT(&V_pf_sendqueue); 1061 SLIST_INIT(&V_pf_overloadqueue); 1062 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1063 1064 /* Unlinked, but may be referenced rules. */ 1065 TAILQ_INIT(&V_pf_unlinked_rules); 1066 } 1067 1068 void 1069 pf_mtag_cleanup(void) 1070 { 1071 1072 uma_zdestroy(pf_mtag_z); 1073 } 1074 1075 void 1076 pf_cleanup(void) 1077 { 1078 struct pf_keyhash *kh; 1079 struct pf_idhash *ih; 1080 struct pf_srchash *sh; 1081 struct pf_send_entry *pfse, *next; 1082 u_int i; 1083 1084 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1085 i++, kh++, ih++) { 1086 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1087 __func__)); 1088 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1089 __func__)); 1090 mtx_destroy(&kh->lock); 1091 mtx_destroy(&ih->lock); 1092 } 1093 free(V_pf_keyhash, M_PFHASH); 1094 free(V_pf_idhash, M_PFHASH); 1095 1096 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1097 KASSERT(LIST_EMPTY(&sh->nodes), 1098 ("%s: source node hash not empty", __func__)); 1099 mtx_destroy(&sh->lock); 1100 } 1101 free(V_pf_srchash, M_PFHASH); 1102 1103 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1104 m_freem(pfse->pfse_m); 1105 free(pfse, M_PFTEMP); 1106 } 1107 1108 uma_zdestroy(V_pf_sources_z); 1109 uma_zdestroy(V_pf_state_z); 1110 uma_zdestroy(V_pf_state_key_z); 1111 } 1112 1113 static int 1114 pf_mtag_uminit(void *mem, int size, int how) 1115 { 1116 struct m_tag *t; 1117 1118 t = (struct m_tag *)mem; 1119 t->m_tag_cookie = MTAG_ABI_COMPAT; 1120 t->m_tag_id = PACKET_TAG_PF; 1121 t->m_tag_len = sizeof(struct pf_mtag); 1122 t->m_tag_free = pf_mtag_free; 1123 1124 return (0); 1125 } 1126 1127 static void 1128 pf_mtag_free(struct m_tag *t) 1129 { 1130 1131 uma_zfree(pf_mtag_z, t); 1132 } 1133 1134 struct pf_mtag * 1135 pf_get_mtag(struct mbuf *m) 1136 { 1137 struct m_tag *mtag; 1138 1139 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1140 return ((struct pf_mtag *)(mtag + 1)); 1141 1142 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1143 if (mtag == NULL) 1144 return (NULL); 1145 bzero(mtag + 1, sizeof(struct pf_mtag)); 1146 m_tag_prepend(m, mtag); 1147 1148 return ((struct pf_mtag *)(mtag + 1)); 1149 } 1150 1151 static int 1152 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1153 struct pf_kstate *s) 1154 { 1155 struct pf_keyhash *khs, *khw, *kh; 1156 struct pf_state_key *sk, *cur; 1157 struct pf_kstate *si, *olds = NULL; 1158 int idx; 1159 1160 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1161 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1162 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1163 1164 /* 1165 * We need to lock hash slots of both keys. To avoid deadlock 1166 * we always lock the slot with lower address first. Unlock order 1167 * isn't important. 1168 * 1169 * We also need to lock ID hash slot before dropping key 1170 * locks. On success we return with ID hash slot locked. 1171 */ 1172 1173 if (skw == sks) { 1174 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1175 PF_HASHROW_LOCK(khs); 1176 } else { 1177 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1178 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1179 if (khs == khw) { 1180 PF_HASHROW_LOCK(khs); 1181 } else if (khs < khw) { 1182 PF_HASHROW_LOCK(khs); 1183 PF_HASHROW_LOCK(khw); 1184 } else { 1185 PF_HASHROW_LOCK(khw); 1186 PF_HASHROW_LOCK(khs); 1187 } 1188 } 1189 1190 #define KEYS_UNLOCK() do { \ 1191 if (khs != khw) { \ 1192 PF_HASHROW_UNLOCK(khs); \ 1193 PF_HASHROW_UNLOCK(khw); \ 1194 } else \ 1195 PF_HASHROW_UNLOCK(khs); \ 1196 } while (0) 1197 1198 /* 1199 * First run: start with wire key. 1200 */ 1201 sk = skw; 1202 kh = khw; 1203 idx = PF_SK_WIRE; 1204 1205 MPASS(s->lock == NULL); 1206 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1207 1208 keyattach: 1209 LIST_FOREACH(cur, &kh->keys, entry) 1210 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1211 break; 1212 1213 if (cur != NULL) { 1214 /* Key exists. Check for same kif, if none, add to key. */ 1215 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1216 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1217 1218 PF_HASHROW_LOCK(ih); 1219 if (si->kif == s->kif && 1220 si->direction == s->direction) { 1221 if (sk->proto == IPPROTO_TCP && 1222 si->src.state >= TCPS_FIN_WAIT_2 && 1223 si->dst.state >= TCPS_FIN_WAIT_2) { 1224 /* 1225 * New state matches an old >FIN_WAIT_2 1226 * state. We can't drop key hash locks, 1227 * thus we can't unlink it properly. 1228 * 1229 * As a workaround we drop it into 1230 * TCPS_CLOSED state, schedule purge 1231 * ASAP and push it into the very end 1232 * of the slot TAILQ, so that it won't 1233 * conflict with our new state. 1234 */ 1235 pf_set_protostate(si, PF_PEER_BOTH, 1236 TCPS_CLOSED); 1237 si->timeout = PFTM_PURGE; 1238 olds = si; 1239 } else { 1240 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1241 printf("pf: %s key attach " 1242 "failed on %s: ", 1243 (idx == PF_SK_WIRE) ? 1244 "wire" : "stack", 1245 s->kif->pfik_name); 1246 pf_print_state_parts(s, 1247 (idx == PF_SK_WIRE) ? 1248 sk : NULL, 1249 (idx == PF_SK_STACK) ? 1250 sk : NULL); 1251 printf(", existing: "); 1252 pf_print_state_parts(si, 1253 (idx == PF_SK_WIRE) ? 1254 sk : NULL, 1255 (idx == PF_SK_STACK) ? 1256 sk : NULL); 1257 printf("\n"); 1258 } 1259 PF_HASHROW_UNLOCK(ih); 1260 KEYS_UNLOCK(); 1261 uma_zfree(V_pf_state_key_z, sk); 1262 if (idx == PF_SK_STACK) 1263 pf_detach_state(s); 1264 return (EEXIST); /* collision! */ 1265 } 1266 } 1267 PF_HASHROW_UNLOCK(ih); 1268 } 1269 uma_zfree(V_pf_state_key_z, sk); 1270 s->key[idx] = cur; 1271 } else { 1272 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1273 s->key[idx] = sk; 1274 } 1275 1276 stateattach: 1277 /* List is sorted, if-bound states before floating. */ 1278 if (s->kif == V_pfi_all) 1279 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1280 else 1281 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1282 1283 if (olds) { 1284 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1285 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1286 key_list[idx]); 1287 olds = NULL; 1288 } 1289 1290 /* 1291 * Attach done. See how should we (or should not?) 1292 * attach a second key. 1293 */ 1294 if (sks == skw) { 1295 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1296 idx = PF_SK_STACK; 1297 sks = NULL; 1298 goto stateattach; 1299 } else if (sks != NULL) { 1300 /* 1301 * Continue attaching with stack key. 1302 */ 1303 sk = sks; 1304 kh = khs; 1305 idx = PF_SK_STACK; 1306 sks = NULL; 1307 goto keyattach; 1308 } 1309 1310 PF_STATE_LOCK(s); 1311 KEYS_UNLOCK(); 1312 1313 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1314 ("%s failure", __func__)); 1315 1316 return (0); 1317 #undef KEYS_UNLOCK 1318 } 1319 1320 static void 1321 pf_detach_state(struct pf_kstate *s) 1322 { 1323 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1324 struct pf_keyhash *kh; 1325 1326 if (sks != NULL) { 1327 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1328 PF_HASHROW_LOCK(kh); 1329 if (s->key[PF_SK_STACK] != NULL) 1330 pf_state_key_detach(s, PF_SK_STACK); 1331 /* 1332 * If both point to same key, then we are done. 1333 */ 1334 if (sks == s->key[PF_SK_WIRE]) { 1335 pf_state_key_detach(s, PF_SK_WIRE); 1336 PF_HASHROW_UNLOCK(kh); 1337 return; 1338 } 1339 PF_HASHROW_UNLOCK(kh); 1340 } 1341 1342 if (s->key[PF_SK_WIRE] != NULL) { 1343 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1344 PF_HASHROW_LOCK(kh); 1345 if (s->key[PF_SK_WIRE] != NULL) 1346 pf_state_key_detach(s, PF_SK_WIRE); 1347 PF_HASHROW_UNLOCK(kh); 1348 } 1349 } 1350 1351 static void 1352 pf_state_key_detach(struct pf_kstate *s, int idx) 1353 { 1354 struct pf_state_key *sk = s->key[idx]; 1355 #ifdef INVARIANTS 1356 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1357 1358 PF_HASHROW_ASSERT(kh); 1359 #endif 1360 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1361 s->key[idx] = NULL; 1362 1363 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1364 LIST_REMOVE(sk, entry); 1365 uma_zfree(V_pf_state_key_z, sk); 1366 } 1367 } 1368 1369 static int 1370 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1371 { 1372 struct pf_state_key *sk = mem; 1373 1374 bzero(sk, sizeof(struct pf_state_key_cmp)); 1375 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1376 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1377 1378 return (0); 1379 } 1380 1381 struct pf_state_key * 1382 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1383 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1384 { 1385 struct pf_state_key *sk; 1386 1387 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1388 if (sk == NULL) 1389 return (NULL); 1390 1391 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1392 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1393 sk->port[pd->sidx] = sport; 1394 sk->port[pd->didx] = dport; 1395 sk->proto = pd->proto; 1396 sk->af = pd->af; 1397 1398 return (sk); 1399 } 1400 1401 struct pf_state_key * 1402 pf_state_key_clone(struct pf_state_key *orig) 1403 { 1404 struct pf_state_key *sk; 1405 1406 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1407 if (sk == NULL) 1408 return (NULL); 1409 1410 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1411 1412 return (sk); 1413 } 1414 1415 int 1416 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1417 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1418 { 1419 struct pf_idhash *ih; 1420 struct pf_kstate *cur; 1421 int error; 1422 1423 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1424 ("%s: sks not pristine", __func__)); 1425 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1426 ("%s: skw not pristine", __func__)); 1427 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1428 1429 s->kif = kif; 1430 s->orig_kif = orig_kif; 1431 1432 if (s->id == 0 && s->creatorid == 0) { 1433 s->id = alloc_unr64(&V_pf_stateid); 1434 s->id = htobe64(s->id); 1435 s->creatorid = V_pf_status.hostid; 1436 } 1437 1438 /* Returns with ID locked on success. */ 1439 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1440 return (error); 1441 1442 ih = &V_pf_idhash[PF_IDHASH(s)]; 1443 PF_HASHROW_ASSERT(ih); 1444 LIST_FOREACH(cur, &ih->states, entry) 1445 if (cur->id == s->id && cur->creatorid == s->creatorid) 1446 break; 1447 1448 if (cur != NULL) { 1449 PF_HASHROW_UNLOCK(ih); 1450 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1451 printf("pf: state ID collision: " 1452 "id: %016llx creatorid: %08x\n", 1453 (unsigned long long)be64toh(s->id), 1454 ntohl(s->creatorid)); 1455 } 1456 pf_detach_state(s); 1457 return (EEXIST); 1458 } 1459 LIST_INSERT_HEAD(&ih->states, s, entry); 1460 /* One for keys, one for ID hash. */ 1461 refcount_init(&s->refs, 2); 1462 1463 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1464 if (V_pfsync_insert_state_ptr != NULL) 1465 V_pfsync_insert_state_ptr(s); 1466 1467 /* Returns locked. */ 1468 return (0); 1469 } 1470 1471 /* 1472 * Find state by ID: returns with locked row on success. 1473 */ 1474 struct pf_kstate * 1475 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1476 { 1477 struct pf_idhash *ih; 1478 struct pf_kstate *s; 1479 1480 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1481 1482 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1483 1484 PF_HASHROW_LOCK(ih); 1485 LIST_FOREACH(s, &ih->states, entry) 1486 if (s->id == id && s->creatorid == creatorid) 1487 break; 1488 1489 if (s == NULL) 1490 PF_HASHROW_UNLOCK(ih); 1491 1492 return (s); 1493 } 1494 1495 /* 1496 * Find state by key. 1497 * Returns with ID hash slot locked on success. 1498 */ 1499 static struct pf_kstate * 1500 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1501 { 1502 struct pf_keyhash *kh; 1503 struct pf_state_key *sk; 1504 struct pf_kstate *s; 1505 int idx; 1506 1507 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1508 1509 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1510 1511 PF_HASHROW_LOCK(kh); 1512 LIST_FOREACH(sk, &kh->keys, entry) 1513 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1514 break; 1515 if (sk == NULL) { 1516 PF_HASHROW_UNLOCK(kh); 1517 return (NULL); 1518 } 1519 1520 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1521 1522 /* List is sorted, if-bound states before floating ones. */ 1523 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1524 if (s->kif == V_pfi_all || s->kif == kif) { 1525 PF_STATE_LOCK(s); 1526 PF_HASHROW_UNLOCK(kh); 1527 if (__predict_false(s->timeout >= PFTM_MAX)) { 1528 /* 1529 * State is either being processed by 1530 * pf_unlink_state() in an other thread, or 1531 * is scheduled for immediate expiry. 1532 */ 1533 PF_STATE_UNLOCK(s); 1534 return (NULL); 1535 } 1536 return (s); 1537 } 1538 PF_HASHROW_UNLOCK(kh); 1539 1540 return (NULL); 1541 } 1542 1543 /* 1544 * Returns with ID hash slot locked on success. 1545 */ 1546 struct pf_kstate * 1547 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1548 { 1549 struct pf_keyhash *kh; 1550 struct pf_state_key *sk; 1551 struct pf_kstate *s, *ret = NULL; 1552 int idx, inout = 0; 1553 1554 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1555 1556 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1557 1558 PF_HASHROW_LOCK(kh); 1559 LIST_FOREACH(sk, &kh->keys, entry) 1560 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1561 break; 1562 if (sk == NULL) { 1563 PF_HASHROW_UNLOCK(kh); 1564 return (NULL); 1565 } 1566 switch (dir) { 1567 case PF_IN: 1568 idx = PF_SK_WIRE; 1569 break; 1570 case PF_OUT: 1571 idx = PF_SK_STACK; 1572 break; 1573 case PF_INOUT: 1574 idx = PF_SK_WIRE; 1575 inout = 1; 1576 break; 1577 default: 1578 panic("%s: dir %u", __func__, dir); 1579 } 1580 second_run: 1581 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1582 if (more == NULL) { 1583 PF_STATE_LOCK(s); 1584 PF_HASHROW_UNLOCK(kh); 1585 return (s); 1586 } 1587 1588 if (ret) 1589 (*more)++; 1590 else { 1591 ret = s; 1592 PF_STATE_LOCK(s); 1593 } 1594 } 1595 if (inout == 1) { 1596 inout = 0; 1597 idx = PF_SK_STACK; 1598 goto second_run; 1599 } 1600 PF_HASHROW_UNLOCK(kh); 1601 1602 return (ret); 1603 } 1604 1605 /* 1606 * FIXME 1607 * This routine is inefficient -- locks the state only to unlock immediately on 1608 * return. 1609 * It is racy -- after the state is unlocked nothing stops other threads from 1610 * removing it. 1611 */ 1612 bool 1613 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1614 { 1615 struct pf_kstate *s; 1616 1617 s = pf_find_state_all(key, dir, NULL); 1618 if (s != NULL) { 1619 PF_STATE_UNLOCK(s); 1620 return (true); 1621 } 1622 return (false); 1623 } 1624 1625 /* END state table stuff */ 1626 1627 static void 1628 pf_send(struct pf_send_entry *pfse) 1629 { 1630 1631 PF_SENDQ_LOCK(); 1632 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1633 PF_SENDQ_UNLOCK(); 1634 swi_sched(V_pf_swi_cookie, 0); 1635 } 1636 1637 static bool 1638 pf_isforlocal(struct mbuf *m, int af) 1639 { 1640 switch (af) { 1641 #ifdef INET 1642 case AF_INET: { 1643 struct ip *ip = mtod(m, struct ip *); 1644 1645 return (in_localip(ip->ip_dst)); 1646 } 1647 #endif 1648 #ifdef INET6 1649 case AF_INET6: { 1650 struct ip6_hdr *ip6; 1651 struct in6_ifaddr *ia; 1652 ip6 = mtod(m, struct ip6_hdr *); 1653 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1654 if (ia == NULL) 1655 return (false); 1656 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1657 } 1658 #endif 1659 default: 1660 panic("Unsupported af %d", af); 1661 } 1662 1663 return (false); 1664 } 1665 1666 void 1667 pf_intr(void *v) 1668 { 1669 struct epoch_tracker et; 1670 struct pf_send_head queue; 1671 struct pf_send_entry *pfse, *next; 1672 1673 CURVNET_SET((struct vnet *)v); 1674 1675 PF_SENDQ_LOCK(); 1676 queue = V_pf_sendqueue; 1677 STAILQ_INIT(&V_pf_sendqueue); 1678 PF_SENDQ_UNLOCK(); 1679 1680 NET_EPOCH_ENTER(et); 1681 1682 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1683 switch (pfse->pfse_type) { 1684 #ifdef INET 1685 case PFSE_IP: { 1686 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1687 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1688 pfse->pfse_m->m_pkthdr.csum_flags |= 1689 CSUM_IP_VALID | CSUM_IP_CHECKED; 1690 ip_input(pfse->pfse_m); 1691 } else { 1692 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1693 NULL); 1694 } 1695 break; 1696 } 1697 case PFSE_ICMP: 1698 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1699 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1700 break; 1701 #endif /* INET */ 1702 #ifdef INET6 1703 case PFSE_IP6: 1704 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1705 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1706 ip6_input(pfse->pfse_m); 1707 } else { 1708 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1709 NULL, NULL); 1710 } 1711 break; 1712 case PFSE_ICMP6: 1713 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1714 pfse->icmpopts.code, pfse->icmpopts.mtu); 1715 break; 1716 #endif /* INET6 */ 1717 default: 1718 panic("%s: unknown type", __func__); 1719 } 1720 free(pfse, M_PFTEMP); 1721 } 1722 NET_EPOCH_EXIT(et); 1723 CURVNET_RESTORE(); 1724 } 1725 1726 #define pf_purge_thread_period (hz / 10) 1727 1728 #ifdef PF_WANT_32_TO_64_COUNTER 1729 static void 1730 pf_status_counter_u64_periodic(void) 1731 { 1732 1733 PF_RULES_RASSERT(); 1734 1735 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1736 return; 1737 } 1738 1739 for (int i = 0; i < FCNT_MAX; i++) { 1740 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1741 } 1742 } 1743 1744 static void 1745 pf_kif_counter_u64_periodic(void) 1746 { 1747 struct pfi_kkif *kif; 1748 size_t r, run; 1749 1750 PF_RULES_RASSERT(); 1751 1752 if (__predict_false(V_pf_allkifcount == 0)) { 1753 return; 1754 } 1755 1756 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1757 return; 1758 } 1759 1760 run = V_pf_allkifcount / 10; 1761 if (run < 5) 1762 run = 5; 1763 1764 for (r = 0; r < run; r++) { 1765 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1766 if (kif == NULL) { 1767 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1768 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1769 break; 1770 } 1771 1772 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1773 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1774 1775 for (int i = 0; i < 2; i++) { 1776 for (int j = 0; j < 2; j++) { 1777 for (int k = 0; k < 2; k++) { 1778 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1779 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1780 } 1781 } 1782 } 1783 } 1784 } 1785 1786 static void 1787 pf_rule_counter_u64_periodic(void) 1788 { 1789 struct pf_krule *rule; 1790 size_t r, run; 1791 1792 PF_RULES_RASSERT(); 1793 1794 if (__predict_false(V_pf_allrulecount == 0)) { 1795 return; 1796 } 1797 1798 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1799 return; 1800 } 1801 1802 run = V_pf_allrulecount / 10; 1803 if (run < 5) 1804 run = 5; 1805 1806 for (r = 0; r < run; r++) { 1807 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1808 if (rule == NULL) { 1809 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1810 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1811 break; 1812 } 1813 1814 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1815 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1816 1817 pf_counter_u64_periodic(&rule->evaluations); 1818 for (int i = 0; i < 2; i++) { 1819 pf_counter_u64_periodic(&rule->packets[i]); 1820 pf_counter_u64_periodic(&rule->bytes[i]); 1821 } 1822 } 1823 } 1824 1825 static void 1826 pf_counter_u64_periodic_main(void) 1827 { 1828 PF_RULES_RLOCK_TRACKER; 1829 1830 V_pf_counter_periodic_iter++; 1831 1832 PF_RULES_RLOCK(); 1833 pf_counter_u64_critical_enter(); 1834 pf_status_counter_u64_periodic(); 1835 pf_kif_counter_u64_periodic(); 1836 pf_rule_counter_u64_periodic(); 1837 pf_counter_u64_critical_exit(); 1838 PF_RULES_RUNLOCK(); 1839 } 1840 #else 1841 #define pf_counter_u64_periodic_main() do { } while (0) 1842 #endif 1843 1844 void 1845 pf_purge_thread(void *unused __unused) 1846 { 1847 VNET_ITERATOR_DECL(vnet_iter); 1848 1849 sx_xlock(&pf_end_lock); 1850 while (pf_end_threads == 0) { 1851 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1852 1853 VNET_LIST_RLOCK(); 1854 VNET_FOREACH(vnet_iter) { 1855 CURVNET_SET(vnet_iter); 1856 1857 /* Wait until V_pf_default_rule is initialized. */ 1858 if (V_pf_vnet_active == 0) { 1859 CURVNET_RESTORE(); 1860 continue; 1861 } 1862 1863 pf_counter_u64_periodic_main(); 1864 1865 /* 1866 * Process 1/interval fraction of the state 1867 * table every run. 1868 */ 1869 V_pf_purge_idx = 1870 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1871 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1872 1873 /* 1874 * Purge other expired types every 1875 * PFTM_INTERVAL seconds. 1876 */ 1877 if (V_pf_purge_idx == 0) { 1878 /* 1879 * Order is important: 1880 * - states and src nodes reference rules 1881 * - states and rules reference kifs 1882 */ 1883 pf_purge_expired_fragments(); 1884 pf_purge_expired_src_nodes(); 1885 pf_purge_unlinked_rules(); 1886 pfi_kkif_purge(); 1887 } 1888 CURVNET_RESTORE(); 1889 } 1890 VNET_LIST_RUNLOCK(); 1891 } 1892 1893 pf_end_threads++; 1894 sx_xunlock(&pf_end_lock); 1895 kproc_exit(0); 1896 } 1897 1898 void 1899 pf_unload_vnet_purge(void) 1900 { 1901 1902 /* 1903 * To cleanse up all kifs and rules we need 1904 * two runs: first one clears reference flags, 1905 * then pf_purge_expired_states() doesn't 1906 * raise them, and then second run frees. 1907 */ 1908 pf_purge_unlinked_rules(); 1909 pfi_kkif_purge(); 1910 1911 /* 1912 * Now purge everything. 1913 */ 1914 pf_purge_expired_states(0, pf_hashmask); 1915 pf_purge_fragments(UINT_MAX); 1916 pf_purge_expired_src_nodes(); 1917 1918 /* 1919 * Now all kifs & rules should be unreferenced, 1920 * thus should be successfully freed. 1921 */ 1922 pf_purge_unlinked_rules(); 1923 pfi_kkif_purge(); 1924 } 1925 1926 u_int32_t 1927 pf_state_expires(const struct pf_kstate *state) 1928 { 1929 u_int32_t timeout; 1930 u_int32_t start; 1931 u_int32_t end; 1932 u_int32_t states; 1933 1934 /* handle all PFTM_* > PFTM_MAX here */ 1935 if (state->timeout == PFTM_PURGE) 1936 return (time_uptime); 1937 KASSERT(state->timeout != PFTM_UNLINKED, 1938 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1939 KASSERT((state->timeout < PFTM_MAX), 1940 ("pf_state_expires: timeout > PFTM_MAX")); 1941 timeout = state->rule.ptr->timeout[state->timeout]; 1942 if (!timeout) 1943 timeout = V_pf_default_rule.timeout[state->timeout]; 1944 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1945 if (start && state->rule.ptr != &V_pf_default_rule) { 1946 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1947 states = counter_u64_fetch(state->rule.ptr->states_cur); 1948 } else { 1949 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1950 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1951 states = V_pf_status.states; 1952 } 1953 if (end && states > start && start < end) { 1954 if (states < end) { 1955 timeout = (u_int64_t)timeout * (end - states) / 1956 (end - start); 1957 return (state->expire + timeout); 1958 } 1959 else 1960 return (time_uptime); 1961 } 1962 return (state->expire + timeout); 1963 } 1964 1965 void 1966 pf_purge_expired_src_nodes(void) 1967 { 1968 struct pf_ksrc_node_list freelist; 1969 struct pf_srchash *sh; 1970 struct pf_ksrc_node *cur, *next; 1971 int i; 1972 1973 LIST_INIT(&freelist); 1974 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1975 PF_HASHROW_LOCK(sh); 1976 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1977 if (cur->states == 0 && cur->expire <= time_uptime) { 1978 pf_unlink_src_node(cur); 1979 LIST_INSERT_HEAD(&freelist, cur, entry); 1980 } else if (cur->rule.ptr != NULL) 1981 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1982 PF_HASHROW_UNLOCK(sh); 1983 } 1984 1985 pf_free_src_nodes(&freelist); 1986 1987 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1988 } 1989 1990 static void 1991 pf_src_tree_remove_state(struct pf_kstate *s) 1992 { 1993 struct pf_ksrc_node *sn; 1994 uint32_t timeout; 1995 1996 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1997 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1998 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1999 2000 if (s->src_node != NULL) { 2001 sn = s->src_node; 2002 PF_SRC_NODE_LOCK(sn); 2003 if (s->src.tcp_est) 2004 --sn->conn; 2005 if (--sn->states == 0) 2006 sn->expire = time_uptime + timeout; 2007 PF_SRC_NODE_UNLOCK(sn); 2008 } 2009 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2010 sn = s->nat_src_node; 2011 PF_SRC_NODE_LOCK(sn); 2012 if (--sn->states == 0) 2013 sn->expire = time_uptime + timeout; 2014 PF_SRC_NODE_UNLOCK(sn); 2015 } 2016 s->src_node = s->nat_src_node = NULL; 2017 } 2018 2019 /* 2020 * Unlink and potentilly free a state. Function may be 2021 * called with ID hash row locked, but always returns 2022 * unlocked, since it needs to go through key hash locking. 2023 */ 2024 int 2025 pf_unlink_state(struct pf_kstate *s) 2026 { 2027 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2028 2029 PF_HASHROW_ASSERT(ih); 2030 2031 if (s->timeout == PFTM_UNLINKED) { 2032 /* 2033 * State is being processed 2034 * by pf_unlink_state() in 2035 * an other thread. 2036 */ 2037 PF_HASHROW_UNLOCK(ih); 2038 return (0); /* XXXGL: undefined actually */ 2039 } 2040 2041 if (s->src.state == PF_TCPS_PROXY_DST) { 2042 /* XXX wire key the right one? */ 2043 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2044 &s->key[PF_SK_WIRE]->addr[1], 2045 &s->key[PF_SK_WIRE]->addr[0], 2046 s->key[PF_SK_WIRE]->port[1], 2047 s->key[PF_SK_WIRE]->port[0], 2048 s->src.seqhi, s->src.seqlo + 1, 2049 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2050 } 2051 2052 LIST_REMOVE(s, entry); 2053 pf_src_tree_remove_state(s); 2054 2055 if (V_pfsync_delete_state_ptr != NULL) 2056 V_pfsync_delete_state_ptr(s); 2057 2058 STATE_DEC_COUNTERS(s); 2059 2060 s->timeout = PFTM_UNLINKED; 2061 2062 /* Ensure we remove it from the list of halfopen states, if needed. */ 2063 if (s->key[PF_SK_STACK] != NULL && 2064 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2065 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2066 2067 PF_HASHROW_UNLOCK(ih); 2068 2069 pf_detach_state(s); 2070 /* pf_state_insert() initialises refs to 2 */ 2071 return (pf_release_staten(s, 2)); 2072 } 2073 2074 struct pf_kstate * 2075 pf_alloc_state(int flags) 2076 { 2077 2078 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2079 } 2080 2081 void 2082 pf_free_state(struct pf_kstate *cur) 2083 { 2084 struct pf_krule_item *ri; 2085 2086 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2087 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2088 cur->timeout)); 2089 2090 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2091 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2092 free(ri, M_PF_RULE_ITEM); 2093 } 2094 2095 pf_normalize_tcp_cleanup(cur); 2096 uma_zfree(V_pf_state_z, cur); 2097 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2098 } 2099 2100 /* 2101 * Called only from pf_purge_thread(), thus serialized. 2102 */ 2103 static u_int 2104 pf_purge_expired_states(u_int i, int maxcheck) 2105 { 2106 struct pf_idhash *ih; 2107 struct pf_kstate *s; 2108 struct pf_krule_item *mrm; 2109 2110 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2111 2112 /* 2113 * Go through hash and unlink states that expire now. 2114 */ 2115 while (maxcheck > 0) { 2116 ih = &V_pf_idhash[i]; 2117 2118 /* only take the lock if we expect to do work */ 2119 if (!LIST_EMPTY(&ih->states)) { 2120 relock: 2121 PF_HASHROW_LOCK(ih); 2122 LIST_FOREACH(s, &ih->states, entry) { 2123 if (pf_state_expires(s) <= time_uptime) { 2124 V_pf_status.states -= 2125 pf_unlink_state(s); 2126 goto relock; 2127 } 2128 s->rule.ptr->rule_ref |= PFRULE_REFS; 2129 if (s->nat_rule.ptr != NULL) 2130 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2131 if (s->anchor.ptr != NULL) 2132 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2133 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2134 SLIST_FOREACH(mrm, &s->match_rules, entry) 2135 mrm->r->rule_ref |= PFRULE_REFS; 2136 if (s->rt_kif) 2137 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2138 } 2139 PF_HASHROW_UNLOCK(ih); 2140 } 2141 2142 /* Return when we hit end of hash. */ 2143 if (++i > pf_hashmask) { 2144 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2145 return (0); 2146 } 2147 2148 maxcheck--; 2149 } 2150 2151 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2152 2153 return (i); 2154 } 2155 2156 static void 2157 pf_purge_unlinked_rules(void) 2158 { 2159 struct pf_krulequeue tmpq; 2160 struct pf_krule *r, *r1; 2161 2162 /* 2163 * If we have overloading task pending, then we'd 2164 * better skip purging this time. There is a tiny 2165 * probability that overloading task references 2166 * an already unlinked rule. 2167 */ 2168 PF_OVERLOADQ_LOCK(); 2169 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2170 PF_OVERLOADQ_UNLOCK(); 2171 return; 2172 } 2173 PF_OVERLOADQ_UNLOCK(); 2174 2175 /* 2176 * Do naive mark-and-sweep garbage collecting of old rules. 2177 * Reference flag is raised by pf_purge_expired_states() 2178 * and pf_purge_expired_src_nodes(). 2179 * 2180 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2181 * use a temporary queue. 2182 */ 2183 TAILQ_INIT(&tmpq); 2184 PF_UNLNKDRULES_LOCK(); 2185 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2186 if (!(r->rule_ref & PFRULE_REFS)) { 2187 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2188 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2189 } else 2190 r->rule_ref &= ~PFRULE_REFS; 2191 } 2192 PF_UNLNKDRULES_UNLOCK(); 2193 2194 if (!TAILQ_EMPTY(&tmpq)) { 2195 PF_CONFIG_LOCK(); 2196 PF_RULES_WLOCK(); 2197 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2198 TAILQ_REMOVE(&tmpq, r, entries); 2199 pf_free_rule(r); 2200 } 2201 PF_RULES_WUNLOCK(); 2202 PF_CONFIG_UNLOCK(); 2203 } 2204 } 2205 2206 void 2207 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2208 { 2209 switch (af) { 2210 #ifdef INET 2211 case AF_INET: { 2212 u_int32_t a = ntohl(addr->addr32[0]); 2213 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2214 (a>>8)&255, a&255); 2215 if (p) { 2216 p = ntohs(p); 2217 printf(":%u", p); 2218 } 2219 break; 2220 } 2221 #endif /* INET */ 2222 #ifdef INET6 2223 case AF_INET6: { 2224 u_int16_t b; 2225 u_int8_t i, curstart, curend, maxstart, maxend; 2226 curstart = curend = maxstart = maxend = 255; 2227 for (i = 0; i < 8; i++) { 2228 if (!addr->addr16[i]) { 2229 if (curstart == 255) 2230 curstart = i; 2231 curend = i; 2232 } else { 2233 if ((curend - curstart) > 2234 (maxend - maxstart)) { 2235 maxstart = curstart; 2236 maxend = curend; 2237 } 2238 curstart = curend = 255; 2239 } 2240 } 2241 if ((curend - curstart) > 2242 (maxend - maxstart)) { 2243 maxstart = curstart; 2244 maxend = curend; 2245 } 2246 for (i = 0; i < 8; i++) { 2247 if (i >= maxstart && i <= maxend) { 2248 if (i == 0) 2249 printf(":"); 2250 if (i == maxend) 2251 printf(":"); 2252 } else { 2253 b = ntohs(addr->addr16[i]); 2254 printf("%x", b); 2255 if (i < 7) 2256 printf(":"); 2257 } 2258 } 2259 if (p) { 2260 p = ntohs(p); 2261 printf("[%u]", p); 2262 } 2263 break; 2264 } 2265 #endif /* INET6 */ 2266 } 2267 } 2268 2269 void 2270 pf_print_state(struct pf_kstate *s) 2271 { 2272 pf_print_state_parts(s, NULL, NULL); 2273 } 2274 2275 static void 2276 pf_print_state_parts(struct pf_kstate *s, 2277 struct pf_state_key *skwp, struct pf_state_key *sksp) 2278 { 2279 struct pf_state_key *skw, *sks; 2280 u_int8_t proto, dir; 2281 2282 /* Do our best to fill these, but they're skipped if NULL */ 2283 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2284 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2285 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2286 dir = s ? s->direction : 0; 2287 2288 switch (proto) { 2289 case IPPROTO_IPV4: 2290 printf("IPv4"); 2291 break; 2292 case IPPROTO_IPV6: 2293 printf("IPv6"); 2294 break; 2295 case IPPROTO_TCP: 2296 printf("TCP"); 2297 break; 2298 case IPPROTO_UDP: 2299 printf("UDP"); 2300 break; 2301 case IPPROTO_ICMP: 2302 printf("ICMP"); 2303 break; 2304 case IPPROTO_ICMPV6: 2305 printf("ICMPv6"); 2306 break; 2307 default: 2308 printf("%u", proto); 2309 break; 2310 } 2311 switch (dir) { 2312 case PF_IN: 2313 printf(" in"); 2314 break; 2315 case PF_OUT: 2316 printf(" out"); 2317 break; 2318 } 2319 if (skw) { 2320 printf(" wire: "); 2321 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2322 printf(" "); 2323 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2324 } 2325 if (sks) { 2326 printf(" stack: "); 2327 if (sks != skw) { 2328 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2329 printf(" "); 2330 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2331 } else 2332 printf("-"); 2333 } 2334 if (s) { 2335 if (proto == IPPROTO_TCP) { 2336 printf(" [lo=%u high=%u win=%u modulator=%u", 2337 s->src.seqlo, s->src.seqhi, 2338 s->src.max_win, s->src.seqdiff); 2339 if (s->src.wscale && s->dst.wscale) 2340 printf(" wscale=%u", 2341 s->src.wscale & PF_WSCALE_MASK); 2342 printf("]"); 2343 printf(" [lo=%u high=%u win=%u modulator=%u", 2344 s->dst.seqlo, s->dst.seqhi, 2345 s->dst.max_win, s->dst.seqdiff); 2346 if (s->src.wscale && s->dst.wscale) 2347 printf(" wscale=%u", 2348 s->dst.wscale & PF_WSCALE_MASK); 2349 printf("]"); 2350 } 2351 printf(" %u:%u", s->src.state, s->dst.state); 2352 } 2353 } 2354 2355 void 2356 pf_print_flags(u_int8_t f) 2357 { 2358 if (f) 2359 printf(" "); 2360 if (f & TH_FIN) 2361 printf("F"); 2362 if (f & TH_SYN) 2363 printf("S"); 2364 if (f & TH_RST) 2365 printf("R"); 2366 if (f & TH_PUSH) 2367 printf("P"); 2368 if (f & TH_ACK) 2369 printf("A"); 2370 if (f & TH_URG) 2371 printf("U"); 2372 if (f & TH_ECE) 2373 printf("E"); 2374 if (f & TH_CWR) 2375 printf("W"); 2376 } 2377 2378 #define PF_SET_SKIP_STEPS(i) \ 2379 do { \ 2380 while (head[i] != cur) { \ 2381 head[i]->skip[i].ptr = cur; \ 2382 head[i] = TAILQ_NEXT(head[i], entries); \ 2383 } \ 2384 } while (0) 2385 2386 void 2387 pf_calc_skip_steps(struct pf_krulequeue *rules) 2388 { 2389 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2390 int i; 2391 2392 cur = TAILQ_FIRST(rules); 2393 prev = cur; 2394 for (i = 0; i < PF_SKIP_COUNT; ++i) 2395 head[i] = cur; 2396 while (cur != NULL) { 2397 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2398 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2399 if (cur->direction != prev->direction) 2400 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2401 if (cur->af != prev->af) 2402 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2403 if (cur->proto != prev->proto) 2404 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2405 if (cur->src.neg != prev->src.neg || 2406 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2407 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2408 if (cur->src.port[0] != prev->src.port[0] || 2409 cur->src.port[1] != prev->src.port[1] || 2410 cur->src.port_op != prev->src.port_op) 2411 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2412 if (cur->dst.neg != prev->dst.neg || 2413 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2414 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2415 if (cur->dst.port[0] != prev->dst.port[0] || 2416 cur->dst.port[1] != prev->dst.port[1] || 2417 cur->dst.port_op != prev->dst.port_op) 2418 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2419 2420 prev = cur; 2421 cur = TAILQ_NEXT(cur, entries); 2422 } 2423 for (i = 0; i < PF_SKIP_COUNT; ++i) 2424 PF_SET_SKIP_STEPS(i); 2425 } 2426 2427 int 2428 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2429 { 2430 if (aw1->type != aw2->type) 2431 return (1); 2432 switch (aw1->type) { 2433 case PF_ADDR_ADDRMASK: 2434 case PF_ADDR_RANGE: 2435 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2436 return (1); 2437 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2438 return (1); 2439 return (0); 2440 case PF_ADDR_DYNIFTL: 2441 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2442 case PF_ADDR_NOROUTE: 2443 case PF_ADDR_URPFFAILED: 2444 return (0); 2445 case PF_ADDR_TABLE: 2446 return (aw1->p.tbl != aw2->p.tbl); 2447 default: 2448 printf("invalid address type: %d\n", aw1->type); 2449 return (1); 2450 } 2451 } 2452 2453 /** 2454 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2455 * header isn't always a full checksum. In some cases (i.e. output) it's a 2456 * pseudo-header checksum, which is a partial checksum over src/dst IP 2457 * addresses, protocol number and length. 2458 * 2459 * That means we have the following cases: 2460 * * Input or forwarding: we don't have TSO, the checksum fields are full 2461 * checksums, we need to update the checksum whenever we change anything. 2462 * * Output (i.e. the checksum is a pseudo-header checksum): 2463 * x The field being updated is src/dst address or affects the length of 2464 * the packet. We need to update the pseudo-header checksum (note that this 2465 * checksum is not ones' complement). 2466 * x Some other field is being modified (e.g. src/dst port numbers): We 2467 * don't have to update anything. 2468 **/ 2469 u_int16_t 2470 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2471 { 2472 u_int32_t x; 2473 2474 x = cksum + old - new; 2475 x = (x + (x >> 16)) & 0xffff; 2476 2477 /* optimise: eliminate a branch when not udp */ 2478 if (udp && cksum == 0x0000) 2479 return cksum; 2480 if (udp && x == 0x0000) 2481 x = 0xffff; 2482 2483 return (u_int16_t)(x); 2484 } 2485 2486 static void 2487 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2488 u_int8_t udp) 2489 { 2490 u_int16_t old = htons(hi ? (*f << 8) : *f); 2491 u_int16_t new = htons(hi ? ( v << 8) : v); 2492 2493 if (*f == v) 2494 return; 2495 2496 *f = v; 2497 2498 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2499 return; 2500 2501 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2502 } 2503 2504 void 2505 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2506 bool hi, u_int8_t udp) 2507 { 2508 u_int8_t *fb = (u_int8_t *)f; 2509 u_int8_t *vb = (u_int8_t *)&v; 2510 2511 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2512 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2513 } 2514 2515 void 2516 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2517 bool hi, u_int8_t udp) 2518 { 2519 u_int8_t *fb = (u_int8_t *)f; 2520 u_int8_t *vb = (u_int8_t *)&v; 2521 2522 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2523 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2524 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2525 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2526 } 2527 2528 u_int16_t 2529 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2530 u_int16_t new, u_int8_t udp) 2531 { 2532 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2533 return (cksum); 2534 2535 return (pf_cksum_fixup(cksum, old, new, udp)); 2536 } 2537 2538 static void 2539 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2540 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2541 sa_family_t af) 2542 { 2543 struct pf_addr ao; 2544 u_int16_t po = *p; 2545 2546 PF_ACPY(&ao, a, af); 2547 PF_ACPY(a, an, af); 2548 2549 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2550 *pc = ~*pc; 2551 2552 *p = pn; 2553 2554 switch (af) { 2555 #ifdef INET 2556 case AF_INET: 2557 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2558 ao.addr16[0], an->addr16[0], 0), 2559 ao.addr16[1], an->addr16[1], 0); 2560 *p = pn; 2561 2562 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2563 ao.addr16[0], an->addr16[0], u), 2564 ao.addr16[1], an->addr16[1], u); 2565 2566 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2567 break; 2568 #endif /* INET */ 2569 #ifdef INET6 2570 case AF_INET6: 2571 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2572 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2573 pf_cksum_fixup(pf_cksum_fixup(*pc, 2574 ao.addr16[0], an->addr16[0], u), 2575 ao.addr16[1], an->addr16[1], u), 2576 ao.addr16[2], an->addr16[2], u), 2577 ao.addr16[3], an->addr16[3], u), 2578 ao.addr16[4], an->addr16[4], u), 2579 ao.addr16[5], an->addr16[5], u), 2580 ao.addr16[6], an->addr16[6], u), 2581 ao.addr16[7], an->addr16[7], u); 2582 2583 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2584 break; 2585 #endif /* INET6 */ 2586 } 2587 2588 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2589 CSUM_DELAY_DATA_IPV6)) { 2590 *pc = ~*pc; 2591 if (! *pc) 2592 *pc = 0xffff; 2593 } 2594 } 2595 2596 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2597 void 2598 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2599 { 2600 u_int32_t ao; 2601 2602 memcpy(&ao, a, sizeof(ao)); 2603 memcpy(a, &an, sizeof(u_int32_t)); 2604 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2605 ao % 65536, an % 65536, u); 2606 } 2607 2608 void 2609 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2610 { 2611 u_int32_t ao; 2612 2613 memcpy(&ao, a, sizeof(ao)); 2614 memcpy(a, &an, sizeof(u_int32_t)); 2615 2616 *c = pf_proto_cksum_fixup(m, 2617 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2618 ao % 65536, an % 65536, udp); 2619 } 2620 2621 #ifdef INET6 2622 static void 2623 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2624 { 2625 struct pf_addr ao; 2626 2627 PF_ACPY(&ao, a, AF_INET6); 2628 PF_ACPY(a, an, AF_INET6); 2629 2630 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2631 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2632 pf_cksum_fixup(pf_cksum_fixup(*c, 2633 ao.addr16[0], an->addr16[0], u), 2634 ao.addr16[1], an->addr16[1], u), 2635 ao.addr16[2], an->addr16[2], u), 2636 ao.addr16[3], an->addr16[3], u), 2637 ao.addr16[4], an->addr16[4], u), 2638 ao.addr16[5], an->addr16[5], u), 2639 ao.addr16[6], an->addr16[6], u), 2640 ao.addr16[7], an->addr16[7], u); 2641 } 2642 #endif /* INET6 */ 2643 2644 static void 2645 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2646 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2647 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2648 { 2649 struct pf_addr oia, ooa; 2650 2651 PF_ACPY(&oia, ia, af); 2652 if (oa) 2653 PF_ACPY(&ooa, oa, af); 2654 2655 /* Change inner protocol port, fix inner protocol checksum. */ 2656 if (ip != NULL) { 2657 u_int16_t oip = *ip; 2658 u_int32_t opc; 2659 2660 if (pc != NULL) 2661 opc = *pc; 2662 *ip = np; 2663 if (pc != NULL) 2664 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2665 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2666 if (pc != NULL) 2667 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2668 } 2669 /* Change inner ip address, fix inner ip and icmp checksums. */ 2670 PF_ACPY(ia, na, af); 2671 switch (af) { 2672 #ifdef INET 2673 case AF_INET: { 2674 u_int32_t oh2c = *h2c; 2675 2676 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2677 oia.addr16[0], ia->addr16[0], 0), 2678 oia.addr16[1], ia->addr16[1], 0); 2679 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2680 oia.addr16[0], ia->addr16[0], 0), 2681 oia.addr16[1], ia->addr16[1], 0); 2682 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2683 break; 2684 } 2685 #endif /* INET */ 2686 #ifdef INET6 2687 case AF_INET6: 2688 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2689 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2690 pf_cksum_fixup(pf_cksum_fixup(*ic, 2691 oia.addr16[0], ia->addr16[0], u), 2692 oia.addr16[1], ia->addr16[1], u), 2693 oia.addr16[2], ia->addr16[2], u), 2694 oia.addr16[3], ia->addr16[3], u), 2695 oia.addr16[4], ia->addr16[4], u), 2696 oia.addr16[5], ia->addr16[5], u), 2697 oia.addr16[6], ia->addr16[6], u), 2698 oia.addr16[7], ia->addr16[7], u); 2699 break; 2700 #endif /* INET6 */ 2701 } 2702 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2703 if (oa) { 2704 PF_ACPY(oa, na, af); 2705 switch (af) { 2706 #ifdef INET 2707 case AF_INET: 2708 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2709 ooa.addr16[0], oa->addr16[0], 0), 2710 ooa.addr16[1], oa->addr16[1], 0); 2711 break; 2712 #endif /* INET */ 2713 #ifdef INET6 2714 case AF_INET6: 2715 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2716 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2717 pf_cksum_fixup(pf_cksum_fixup(*ic, 2718 ooa.addr16[0], oa->addr16[0], u), 2719 ooa.addr16[1], oa->addr16[1], u), 2720 ooa.addr16[2], oa->addr16[2], u), 2721 ooa.addr16[3], oa->addr16[3], u), 2722 ooa.addr16[4], oa->addr16[4], u), 2723 ooa.addr16[5], oa->addr16[5], u), 2724 ooa.addr16[6], oa->addr16[6], u), 2725 ooa.addr16[7], oa->addr16[7], u); 2726 break; 2727 #endif /* INET6 */ 2728 } 2729 } 2730 } 2731 2732 /* 2733 * Need to modulate the sequence numbers in the TCP SACK option 2734 * (credits to Krzysztof Pfaff for report and patch) 2735 */ 2736 static int 2737 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2738 struct tcphdr *th, struct pf_state_peer *dst) 2739 { 2740 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2741 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2742 int copyback = 0, i, olen; 2743 struct sackblk sack; 2744 2745 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2746 if (hlen < TCPOLEN_SACKLEN || 2747 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2748 return 0; 2749 2750 while (hlen >= TCPOLEN_SACKLEN) { 2751 size_t startoff = opt - opts; 2752 olen = opt[1]; 2753 switch (*opt) { 2754 case TCPOPT_EOL: /* FALLTHROUGH */ 2755 case TCPOPT_NOP: 2756 opt++; 2757 hlen--; 2758 break; 2759 case TCPOPT_SACK: 2760 if (olen > hlen) 2761 olen = hlen; 2762 if (olen >= TCPOLEN_SACKLEN) { 2763 for (i = 2; i + TCPOLEN_SACK <= olen; 2764 i += TCPOLEN_SACK) { 2765 memcpy(&sack, &opt[i], sizeof(sack)); 2766 pf_patch_32_unaligned(m, 2767 &th->th_sum, &sack.start, 2768 htonl(ntohl(sack.start) - dst->seqdiff), 2769 PF_ALGNMNT(startoff), 2770 0); 2771 pf_patch_32_unaligned(m, &th->th_sum, 2772 &sack.end, 2773 htonl(ntohl(sack.end) - dst->seqdiff), 2774 PF_ALGNMNT(startoff), 2775 0); 2776 memcpy(&opt[i], &sack, sizeof(sack)); 2777 } 2778 copyback = 1; 2779 } 2780 /* FALLTHROUGH */ 2781 default: 2782 if (olen < 2) 2783 olen = 2; 2784 hlen -= olen; 2785 opt += olen; 2786 } 2787 } 2788 2789 if (copyback) 2790 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2791 return (copyback); 2792 } 2793 2794 struct mbuf * 2795 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2796 const struct pf_addr *saddr, const struct pf_addr *daddr, 2797 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2798 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2799 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2800 { 2801 struct mbuf *m; 2802 int len, tlen; 2803 #ifdef INET 2804 struct ip *h = NULL; 2805 #endif /* INET */ 2806 #ifdef INET6 2807 struct ip6_hdr *h6 = NULL; 2808 #endif /* INET6 */ 2809 struct tcphdr *th; 2810 char *opt; 2811 struct pf_mtag *pf_mtag; 2812 2813 len = 0; 2814 th = NULL; 2815 2816 /* maximum segment size tcp option */ 2817 tlen = sizeof(struct tcphdr); 2818 if (mss) 2819 tlen += 4; 2820 2821 switch (af) { 2822 #ifdef INET 2823 case AF_INET: 2824 len = sizeof(struct ip) + tlen; 2825 break; 2826 #endif /* INET */ 2827 #ifdef INET6 2828 case AF_INET6: 2829 len = sizeof(struct ip6_hdr) + tlen; 2830 break; 2831 #endif /* INET6 */ 2832 default: 2833 panic("%s: unsupported af %d", __func__, af); 2834 } 2835 2836 m = m_gethdr(M_NOWAIT, MT_DATA); 2837 if (m == NULL) 2838 return (NULL); 2839 2840 #ifdef MAC 2841 mac_netinet_firewall_send(m); 2842 #endif 2843 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2844 m_freem(m); 2845 return (NULL); 2846 } 2847 if (skip_firewall) 2848 m->m_flags |= M_SKIP_FIREWALL; 2849 pf_mtag->tag = mtag_tag; 2850 pf_mtag->flags = mtag_flags; 2851 2852 if (rtableid >= 0) 2853 M_SETFIB(m, rtableid); 2854 2855 #ifdef ALTQ 2856 if (r != NULL && r->qid) { 2857 pf_mtag->qid = r->qid; 2858 2859 /* add hints for ecn */ 2860 pf_mtag->hdr = mtod(m, struct ip *); 2861 } 2862 #endif /* ALTQ */ 2863 m->m_data += max_linkhdr; 2864 m->m_pkthdr.len = m->m_len = len; 2865 /* The rest of the stack assumes a rcvif, so provide one. 2866 * This is a locally generated packet, so .. close enough. */ 2867 m->m_pkthdr.rcvif = V_loif; 2868 bzero(m->m_data, len); 2869 switch (af) { 2870 #ifdef INET 2871 case AF_INET: 2872 h = mtod(m, struct ip *); 2873 2874 /* IP header fields included in the TCP checksum */ 2875 h->ip_p = IPPROTO_TCP; 2876 h->ip_len = htons(tlen); 2877 h->ip_src.s_addr = saddr->v4.s_addr; 2878 h->ip_dst.s_addr = daddr->v4.s_addr; 2879 2880 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2881 break; 2882 #endif /* INET */ 2883 #ifdef INET6 2884 case AF_INET6: 2885 h6 = mtod(m, struct ip6_hdr *); 2886 2887 /* IP header fields included in the TCP checksum */ 2888 h6->ip6_nxt = IPPROTO_TCP; 2889 h6->ip6_plen = htons(tlen); 2890 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2891 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2892 2893 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2894 break; 2895 #endif /* INET6 */ 2896 } 2897 2898 /* TCP header */ 2899 th->th_sport = sport; 2900 th->th_dport = dport; 2901 th->th_seq = htonl(seq); 2902 th->th_ack = htonl(ack); 2903 th->th_off = tlen >> 2; 2904 th->th_flags = tcp_flags; 2905 th->th_win = htons(win); 2906 2907 if (mss) { 2908 opt = (char *)(th + 1); 2909 opt[0] = TCPOPT_MAXSEG; 2910 opt[1] = 4; 2911 HTONS(mss); 2912 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2913 } 2914 2915 switch (af) { 2916 #ifdef INET 2917 case AF_INET: 2918 /* TCP checksum */ 2919 th->th_sum = in_cksum(m, len); 2920 2921 /* Finish the IP header */ 2922 h->ip_v = 4; 2923 h->ip_hl = sizeof(*h) >> 2; 2924 h->ip_tos = IPTOS_LOWDELAY; 2925 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2926 h->ip_len = htons(len); 2927 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2928 h->ip_sum = 0; 2929 break; 2930 #endif /* INET */ 2931 #ifdef INET6 2932 case AF_INET6: 2933 /* TCP checksum */ 2934 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2935 sizeof(struct ip6_hdr), tlen); 2936 2937 h6->ip6_vfc |= IPV6_VERSION; 2938 h6->ip6_hlim = IPV6_DEFHLIM; 2939 break; 2940 #endif /* INET6 */ 2941 } 2942 2943 return (m); 2944 } 2945 2946 void 2947 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2948 const struct pf_addr *saddr, const struct pf_addr *daddr, 2949 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2950 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2951 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2952 { 2953 struct pf_send_entry *pfse; 2954 struct mbuf *m; 2955 2956 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 2957 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 2958 if (m == NULL) 2959 return; 2960 2961 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2962 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2963 if (pfse == NULL) { 2964 m_freem(m); 2965 return; 2966 } 2967 2968 switch (af) { 2969 #ifdef INET 2970 case AF_INET: 2971 pfse->pfse_type = PFSE_IP; 2972 break; 2973 #endif /* INET */ 2974 #ifdef INET6 2975 case AF_INET6: 2976 pfse->pfse_type = PFSE_IP6; 2977 break; 2978 #endif /* INET6 */ 2979 } 2980 2981 pfse->pfse_m = m; 2982 pf_send(pfse); 2983 } 2984 2985 static void 2986 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2987 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2988 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2989 u_short *reason, int rtableid) 2990 { 2991 struct pf_addr * const saddr = pd->src; 2992 struct pf_addr * const daddr = pd->dst; 2993 sa_family_t af = pd->af; 2994 2995 /* undo NAT changes, if they have taken place */ 2996 if (nr != NULL) { 2997 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2998 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2999 if (pd->sport) 3000 *pd->sport = sk->port[pd->sidx]; 3001 if (pd->dport) 3002 *pd->dport = sk->port[pd->didx]; 3003 if (pd->proto_sum) 3004 *pd->proto_sum = bproto_sum; 3005 if (pd->ip_sum) 3006 *pd->ip_sum = bip_sum; 3007 m_copyback(m, off, hdrlen, pd->hdr.any); 3008 } 3009 if (pd->proto == IPPROTO_TCP && 3010 ((r->rule_flag & PFRULE_RETURNRST) || 3011 (r->rule_flag & PFRULE_RETURN)) && 3012 !(th->th_flags & TH_RST)) { 3013 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3014 int len = 0; 3015 #ifdef INET 3016 struct ip *h4; 3017 #endif 3018 #ifdef INET6 3019 struct ip6_hdr *h6; 3020 #endif 3021 3022 switch (af) { 3023 #ifdef INET 3024 case AF_INET: 3025 h4 = mtod(m, struct ip *); 3026 len = ntohs(h4->ip_len) - off; 3027 break; 3028 #endif 3029 #ifdef INET6 3030 case AF_INET6: 3031 h6 = mtod(m, struct ip6_hdr *); 3032 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3033 break; 3034 #endif 3035 } 3036 3037 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3038 REASON_SET(reason, PFRES_PROTCKSUM); 3039 else { 3040 if (th->th_flags & TH_SYN) 3041 ack++; 3042 if (th->th_flags & TH_FIN) 3043 ack++; 3044 pf_send_tcp(r, af, pd->dst, 3045 pd->src, th->th_dport, th->th_sport, 3046 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3047 r->return_ttl, true, 0, 0, rtableid); 3048 } 3049 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3050 r->return_icmp) 3051 pf_send_icmp(m, r->return_icmp >> 8, 3052 r->return_icmp & 255, af, r, rtableid); 3053 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3054 r->return_icmp6) 3055 pf_send_icmp(m, r->return_icmp6 >> 8, 3056 r->return_icmp6 & 255, af, r, rtableid); 3057 } 3058 3059 static int 3060 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3061 { 3062 struct m_tag *mtag; 3063 u_int8_t mpcp; 3064 3065 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3066 if (mtag == NULL) 3067 return (0); 3068 3069 if (prio == PF_PRIO_ZERO) 3070 prio = 0; 3071 3072 mpcp = *(uint8_t *)(mtag + 1); 3073 3074 return (mpcp == prio); 3075 } 3076 3077 static int 3078 pf_icmp_to_bandlim(uint8_t type) 3079 { 3080 switch (type) { 3081 case ICMP_ECHO: 3082 case ICMP_ECHOREPLY: 3083 return (BANDLIM_ICMP_ECHO); 3084 case ICMP_TSTAMP: 3085 case ICMP_TSTAMPREPLY: 3086 return (BANDLIM_ICMP_TSTAMP); 3087 case ICMP_UNREACH: 3088 default: 3089 return (BANDLIM_ICMP_UNREACH); 3090 } 3091 } 3092 3093 static void 3094 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3095 struct pf_krule *r, int rtableid) 3096 { 3097 struct pf_send_entry *pfse; 3098 struct mbuf *m0; 3099 struct pf_mtag *pf_mtag; 3100 3101 /* ICMP packet rate limitation. */ 3102 #ifdef INET6 3103 if (af == AF_INET6) { 3104 if (icmp6_ratelimit(NULL, type, code)) 3105 return; 3106 } 3107 #endif 3108 #ifdef INET 3109 if (af == AF_INET) { 3110 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3111 return; 3112 } 3113 #endif 3114 3115 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3116 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3117 if (pfse == NULL) 3118 return; 3119 3120 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3121 free(pfse, M_PFTEMP); 3122 return; 3123 } 3124 3125 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3126 free(pfse, M_PFTEMP); 3127 return; 3128 } 3129 /* XXX: revisit */ 3130 m0->m_flags |= M_SKIP_FIREWALL; 3131 3132 if (rtableid >= 0) 3133 M_SETFIB(m0, rtableid); 3134 3135 #ifdef ALTQ 3136 if (r->qid) { 3137 pf_mtag->qid = r->qid; 3138 /* add hints for ecn */ 3139 pf_mtag->hdr = mtod(m0, struct ip *); 3140 } 3141 #endif /* ALTQ */ 3142 3143 switch (af) { 3144 #ifdef INET 3145 case AF_INET: 3146 pfse->pfse_type = PFSE_ICMP; 3147 break; 3148 #endif /* INET */ 3149 #ifdef INET6 3150 case AF_INET6: 3151 pfse->pfse_type = PFSE_ICMP6; 3152 break; 3153 #endif /* INET6 */ 3154 } 3155 pfse->pfse_m = m0; 3156 pfse->icmpopts.type = type; 3157 pfse->icmpopts.code = code; 3158 pf_send(pfse); 3159 } 3160 3161 /* 3162 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3163 * If n is 0, they match if they are equal. If n is != 0, they match if they 3164 * are different. 3165 */ 3166 int 3167 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3168 struct pf_addr *b, sa_family_t af) 3169 { 3170 int match = 0; 3171 3172 switch (af) { 3173 #ifdef INET 3174 case AF_INET: 3175 if ((a->addr32[0] & m->addr32[0]) == 3176 (b->addr32[0] & m->addr32[0])) 3177 match++; 3178 break; 3179 #endif /* INET */ 3180 #ifdef INET6 3181 case AF_INET6: 3182 if (((a->addr32[0] & m->addr32[0]) == 3183 (b->addr32[0] & m->addr32[0])) && 3184 ((a->addr32[1] & m->addr32[1]) == 3185 (b->addr32[1] & m->addr32[1])) && 3186 ((a->addr32[2] & m->addr32[2]) == 3187 (b->addr32[2] & m->addr32[2])) && 3188 ((a->addr32[3] & m->addr32[3]) == 3189 (b->addr32[3] & m->addr32[3]))) 3190 match++; 3191 break; 3192 #endif /* INET6 */ 3193 } 3194 if (match) { 3195 if (n) 3196 return (0); 3197 else 3198 return (1); 3199 } else { 3200 if (n) 3201 return (1); 3202 else 3203 return (0); 3204 } 3205 } 3206 3207 /* 3208 * Return 1 if b <= a <= e, otherwise return 0. 3209 */ 3210 int 3211 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3212 struct pf_addr *a, sa_family_t af) 3213 { 3214 switch (af) { 3215 #ifdef INET 3216 case AF_INET: 3217 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3218 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3219 return (0); 3220 break; 3221 #endif /* INET */ 3222 #ifdef INET6 3223 case AF_INET6: { 3224 int i; 3225 3226 /* check a >= b */ 3227 for (i = 0; i < 4; ++i) 3228 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3229 break; 3230 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3231 return (0); 3232 /* check a <= e */ 3233 for (i = 0; i < 4; ++i) 3234 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3235 break; 3236 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3237 return (0); 3238 break; 3239 } 3240 #endif /* INET6 */ 3241 } 3242 return (1); 3243 } 3244 3245 static int 3246 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3247 { 3248 switch (op) { 3249 case PF_OP_IRG: 3250 return ((p > a1) && (p < a2)); 3251 case PF_OP_XRG: 3252 return ((p < a1) || (p > a2)); 3253 case PF_OP_RRG: 3254 return ((p >= a1) && (p <= a2)); 3255 case PF_OP_EQ: 3256 return (p == a1); 3257 case PF_OP_NE: 3258 return (p != a1); 3259 case PF_OP_LT: 3260 return (p < a1); 3261 case PF_OP_LE: 3262 return (p <= a1); 3263 case PF_OP_GT: 3264 return (p > a1); 3265 case PF_OP_GE: 3266 return (p >= a1); 3267 } 3268 return (0); /* never reached */ 3269 } 3270 3271 int 3272 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3273 { 3274 NTOHS(a1); 3275 NTOHS(a2); 3276 NTOHS(p); 3277 return (pf_match(op, a1, a2, p)); 3278 } 3279 3280 static int 3281 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3282 { 3283 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3284 return (0); 3285 return (pf_match(op, a1, a2, u)); 3286 } 3287 3288 static int 3289 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3290 { 3291 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3292 return (0); 3293 return (pf_match(op, a1, a2, g)); 3294 } 3295 3296 int 3297 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3298 { 3299 if (*tag == -1) 3300 *tag = mtag; 3301 3302 return ((!r->match_tag_not && r->match_tag == *tag) || 3303 (r->match_tag_not && r->match_tag != *tag)); 3304 } 3305 3306 int 3307 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3308 { 3309 3310 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3311 3312 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3313 return (ENOMEM); 3314 3315 pd->pf_mtag->tag = tag; 3316 3317 return (0); 3318 } 3319 3320 #define PF_ANCHOR_STACKSIZE 32 3321 struct pf_kanchor_stackframe { 3322 struct pf_kruleset *rs; 3323 struct pf_krule *r; /* XXX: + match bit */ 3324 struct pf_kanchor *child; 3325 }; 3326 3327 /* 3328 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3329 */ 3330 #define PF_ANCHORSTACK_MATCH 0x00000001 3331 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3332 3333 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3334 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3335 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3336 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3337 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3338 } while (0) 3339 3340 void 3341 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3342 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3343 int *match) 3344 { 3345 struct pf_kanchor_stackframe *f; 3346 3347 PF_RULES_RASSERT(); 3348 3349 if (match) 3350 *match = 0; 3351 if (*depth >= PF_ANCHOR_STACKSIZE) { 3352 printf("%s: anchor stack overflow on %s\n", 3353 __func__, (*r)->anchor->name); 3354 *r = TAILQ_NEXT(*r, entries); 3355 return; 3356 } else if (*depth == 0 && a != NULL) 3357 *a = *r; 3358 f = stack + (*depth)++; 3359 f->rs = *rs; 3360 f->r = *r; 3361 if ((*r)->anchor_wildcard) { 3362 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3363 3364 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3365 *r = NULL; 3366 return; 3367 } 3368 *rs = &f->child->ruleset; 3369 } else { 3370 f->child = NULL; 3371 *rs = &(*r)->anchor->ruleset; 3372 } 3373 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3374 } 3375 3376 int 3377 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3378 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3379 int *match) 3380 { 3381 struct pf_kanchor_stackframe *f; 3382 struct pf_krule *fr; 3383 int quick = 0; 3384 3385 PF_RULES_RASSERT(); 3386 3387 do { 3388 if (*depth <= 0) 3389 break; 3390 f = stack + *depth - 1; 3391 fr = PF_ANCHOR_RULE(f); 3392 if (f->child != NULL) { 3393 /* 3394 * This block traverses through 3395 * a wildcard anchor. 3396 */ 3397 if (match != NULL && *match) { 3398 /* 3399 * If any of "*" matched, then 3400 * "foo/ *" matched, mark frame 3401 * appropriately. 3402 */ 3403 PF_ANCHOR_SET_MATCH(f); 3404 *match = 0; 3405 } 3406 f->child = RB_NEXT(pf_kanchor_node, 3407 &fr->anchor->children, f->child); 3408 if (f->child != NULL) { 3409 *rs = &f->child->ruleset; 3410 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3411 if (*r == NULL) 3412 continue; 3413 else 3414 break; 3415 } 3416 } 3417 (*depth)--; 3418 if (*depth == 0 && a != NULL) 3419 *a = NULL; 3420 *rs = f->rs; 3421 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3422 quick = fr->quick; 3423 *r = TAILQ_NEXT(fr, entries); 3424 } while (*r == NULL); 3425 3426 return (quick); 3427 } 3428 3429 struct pf_keth_anchor_stackframe { 3430 struct pf_keth_ruleset *rs; 3431 struct pf_keth_rule *r; /* XXX: + match bit */ 3432 struct pf_keth_anchor *child; 3433 }; 3434 3435 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3436 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3437 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3438 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3439 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3440 } while (0) 3441 3442 void 3443 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3444 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3445 struct pf_keth_rule **a, int *match) 3446 { 3447 struct pf_keth_anchor_stackframe *f; 3448 3449 NET_EPOCH_ASSERT(); 3450 3451 if (match) 3452 *match = 0; 3453 if (*depth >= PF_ANCHOR_STACKSIZE) { 3454 printf("%s: anchor stack overflow on %s\n", 3455 __func__, (*r)->anchor->name); 3456 *r = TAILQ_NEXT(*r, entries); 3457 return; 3458 } else if (*depth == 0 && a != NULL) 3459 *a = *r; 3460 f = stack + (*depth)++; 3461 f->rs = *rs; 3462 f->r = *r; 3463 if ((*r)->anchor_wildcard) { 3464 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3465 3466 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3467 *r = NULL; 3468 return; 3469 } 3470 *rs = &f->child->ruleset; 3471 } else { 3472 f->child = NULL; 3473 *rs = &(*r)->anchor->ruleset; 3474 } 3475 *r = TAILQ_FIRST((*rs)->active.rules); 3476 } 3477 3478 int 3479 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3480 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3481 struct pf_keth_rule **a, int *match) 3482 { 3483 struct pf_keth_anchor_stackframe *f; 3484 struct pf_keth_rule *fr; 3485 int quick = 0; 3486 3487 NET_EPOCH_ASSERT(); 3488 3489 do { 3490 if (*depth <= 0) 3491 break; 3492 f = stack + *depth - 1; 3493 fr = PF_ETH_ANCHOR_RULE(f); 3494 if (f->child != NULL) { 3495 /* 3496 * This block traverses through 3497 * a wildcard anchor. 3498 */ 3499 if (match != NULL && *match) { 3500 /* 3501 * If any of "*" matched, then 3502 * "foo/ *" matched, mark frame 3503 * appropriately. 3504 */ 3505 PF_ETH_ANCHOR_SET_MATCH(f); 3506 *match = 0; 3507 } 3508 f->child = RB_NEXT(pf_keth_anchor_node, 3509 &fr->anchor->children, f->child); 3510 if (f->child != NULL) { 3511 *rs = &f->child->ruleset; 3512 *r = TAILQ_FIRST((*rs)->active.rules); 3513 if (*r == NULL) 3514 continue; 3515 else 3516 break; 3517 } 3518 } 3519 (*depth)--; 3520 if (*depth == 0 && a != NULL) 3521 *a = NULL; 3522 *rs = f->rs; 3523 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3524 quick = fr->quick; 3525 *r = TAILQ_NEXT(fr, entries); 3526 } while (*r == NULL); 3527 3528 return (quick); 3529 } 3530 3531 #ifdef INET6 3532 void 3533 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3534 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3535 { 3536 switch (af) { 3537 #ifdef INET 3538 case AF_INET: 3539 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3540 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3541 break; 3542 #endif /* INET */ 3543 case AF_INET6: 3544 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3545 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3546 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3547 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3548 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3549 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3550 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3551 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3552 break; 3553 } 3554 } 3555 3556 void 3557 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3558 { 3559 switch (af) { 3560 #ifdef INET 3561 case AF_INET: 3562 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3563 break; 3564 #endif /* INET */ 3565 case AF_INET6: 3566 if (addr->addr32[3] == 0xffffffff) { 3567 addr->addr32[3] = 0; 3568 if (addr->addr32[2] == 0xffffffff) { 3569 addr->addr32[2] = 0; 3570 if (addr->addr32[1] == 0xffffffff) { 3571 addr->addr32[1] = 0; 3572 addr->addr32[0] = 3573 htonl(ntohl(addr->addr32[0]) + 1); 3574 } else 3575 addr->addr32[1] = 3576 htonl(ntohl(addr->addr32[1]) + 1); 3577 } else 3578 addr->addr32[2] = 3579 htonl(ntohl(addr->addr32[2]) + 1); 3580 } else 3581 addr->addr32[3] = 3582 htonl(ntohl(addr->addr32[3]) + 1); 3583 break; 3584 } 3585 } 3586 #endif /* INET6 */ 3587 3588 void 3589 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3590 { 3591 /* 3592 * Modern rules use the same flags in rules as they do in states. 3593 */ 3594 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3595 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3596 3597 /* 3598 * Old-style scrub rules have different flags which need to be translated. 3599 */ 3600 if (r->rule_flag & PFRULE_RANDOMID) 3601 a->flags |= PFSTATE_RANDOMID; 3602 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 3603 a->flags |= PFSTATE_SETTOS; 3604 a->set_tos = r->set_tos; 3605 } 3606 3607 if (r->qid) 3608 a->qid = r->qid; 3609 if (r->pqid) 3610 a->pqid = r->pqid; 3611 if (r->rtableid >= 0) 3612 a->rtableid = r->rtableid; 3613 a->log |= r->log; 3614 if (r->min_ttl) 3615 a->min_ttl = r->min_ttl; 3616 if (r->max_mss) 3617 a->max_mss = r->max_mss; 3618 if (r->dnpipe) 3619 a->dnpipe = r->dnpipe; 3620 if (r->dnrpipe) 3621 a->dnrpipe = r->dnrpipe; 3622 if (r->dnpipe || r->dnrpipe) { 3623 if (r->free_flags & PFRULE_DN_IS_PIPE) 3624 a->flags |= PFSTATE_DN_IS_PIPE; 3625 else 3626 a->flags &= ~PFSTATE_DN_IS_PIPE; 3627 } 3628 if (r->scrub_flags & PFSTATE_SETPRIO) { 3629 a->set_prio[0] = r->set_prio[0]; 3630 a->set_prio[1] = r->set_prio[1]; 3631 } 3632 } 3633 3634 int 3635 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 3636 { 3637 struct pf_addr *saddr, *daddr; 3638 u_int16_t sport, dport; 3639 struct inpcbinfo *pi; 3640 struct inpcb *inp; 3641 3642 pd->lookup.uid = UID_MAX; 3643 pd->lookup.gid = GID_MAX; 3644 3645 switch (pd->proto) { 3646 case IPPROTO_TCP: 3647 sport = pd->hdr.tcp.th_sport; 3648 dport = pd->hdr.tcp.th_dport; 3649 pi = &V_tcbinfo; 3650 break; 3651 case IPPROTO_UDP: 3652 sport = pd->hdr.udp.uh_sport; 3653 dport = pd->hdr.udp.uh_dport; 3654 pi = &V_udbinfo; 3655 break; 3656 default: 3657 return (-1); 3658 } 3659 if (pd->dir == PF_IN) { 3660 saddr = pd->src; 3661 daddr = pd->dst; 3662 } else { 3663 u_int16_t p; 3664 3665 p = sport; 3666 sport = dport; 3667 dport = p; 3668 saddr = pd->dst; 3669 daddr = pd->src; 3670 } 3671 switch (pd->af) { 3672 #ifdef INET 3673 case AF_INET: 3674 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3675 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3676 if (inp == NULL) { 3677 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3678 daddr->v4, dport, INPLOOKUP_WILDCARD | 3679 INPLOOKUP_RLOCKPCB, NULL, m); 3680 if (inp == NULL) 3681 return (-1); 3682 } 3683 break; 3684 #endif /* INET */ 3685 #ifdef INET6 3686 case AF_INET6: 3687 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3688 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3689 if (inp == NULL) { 3690 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3691 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3692 INPLOOKUP_RLOCKPCB, NULL, m); 3693 if (inp == NULL) 3694 return (-1); 3695 } 3696 break; 3697 #endif /* INET6 */ 3698 3699 default: 3700 return (-1); 3701 } 3702 INP_RLOCK_ASSERT(inp); 3703 pd->lookup.uid = inp->inp_cred->cr_uid; 3704 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3705 INP_RUNLOCK(inp); 3706 3707 return (1); 3708 } 3709 3710 u_int8_t 3711 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3712 { 3713 int hlen; 3714 u_int8_t hdr[60]; 3715 u_int8_t *opt, optlen; 3716 u_int8_t wscale = 0; 3717 3718 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3719 if (hlen <= sizeof(struct tcphdr)) 3720 return (0); 3721 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3722 return (0); 3723 opt = hdr + sizeof(struct tcphdr); 3724 hlen -= sizeof(struct tcphdr); 3725 while (hlen >= 3) { 3726 switch (*opt) { 3727 case TCPOPT_EOL: 3728 case TCPOPT_NOP: 3729 ++opt; 3730 --hlen; 3731 break; 3732 case TCPOPT_WINDOW: 3733 wscale = opt[2]; 3734 if (wscale > TCP_MAX_WINSHIFT) 3735 wscale = TCP_MAX_WINSHIFT; 3736 wscale |= PF_WSCALE_FLAG; 3737 /* FALLTHROUGH */ 3738 default: 3739 optlen = opt[1]; 3740 if (optlen < 2) 3741 optlen = 2; 3742 hlen -= optlen; 3743 opt += optlen; 3744 break; 3745 } 3746 } 3747 return (wscale); 3748 } 3749 3750 u_int16_t 3751 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3752 { 3753 int hlen; 3754 u_int8_t hdr[60]; 3755 u_int8_t *opt, optlen; 3756 u_int16_t mss = V_tcp_mssdflt; 3757 3758 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3759 if (hlen <= sizeof(struct tcphdr)) 3760 return (0); 3761 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3762 return (0); 3763 opt = hdr + sizeof(struct tcphdr); 3764 hlen -= sizeof(struct tcphdr); 3765 while (hlen >= TCPOLEN_MAXSEG) { 3766 switch (*opt) { 3767 case TCPOPT_EOL: 3768 case TCPOPT_NOP: 3769 ++opt; 3770 --hlen; 3771 break; 3772 case TCPOPT_MAXSEG: 3773 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3774 NTOHS(mss); 3775 /* FALLTHROUGH */ 3776 default: 3777 optlen = opt[1]; 3778 if (optlen < 2) 3779 optlen = 2; 3780 hlen -= optlen; 3781 opt += optlen; 3782 break; 3783 } 3784 } 3785 return (mss); 3786 } 3787 3788 static u_int16_t 3789 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3790 { 3791 struct nhop_object *nh; 3792 #ifdef INET6 3793 struct in6_addr dst6; 3794 uint32_t scopeid; 3795 #endif /* INET6 */ 3796 int hlen = 0; 3797 uint16_t mss = 0; 3798 3799 NET_EPOCH_ASSERT(); 3800 3801 switch (af) { 3802 #ifdef INET 3803 case AF_INET: 3804 hlen = sizeof(struct ip); 3805 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3806 if (nh != NULL) 3807 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3808 break; 3809 #endif /* INET */ 3810 #ifdef INET6 3811 case AF_INET6: 3812 hlen = sizeof(struct ip6_hdr); 3813 in6_splitscope(&addr->v6, &dst6, &scopeid); 3814 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3815 if (nh != NULL) 3816 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3817 break; 3818 #endif /* INET6 */ 3819 } 3820 3821 mss = max(V_tcp_mssdflt, mss); 3822 mss = min(mss, offer); 3823 mss = max(mss, 64); /* sanity - at least max opt space */ 3824 return (mss); 3825 } 3826 3827 static u_int32_t 3828 pf_tcp_iss(struct pf_pdesc *pd) 3829 { 3830 MD5_CTX ctx; 3831 u_int32_t digest[4]; 3832 3833 if (V_pf_tcp_secret_init == 0) { 3834 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3835 MD5Init(&V_pf_tcp_secret_ctx); 3836 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3837 sizeof(V_pf_tcp_secret)); 3838 V_pf_tcp_secret_init = 1; 3839 } 3840 3841 ctx = V_pf_tcp_secret_ctx; 3842 3843 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3844 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3845 if (pd->af == AF_INET6) { 3846 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3847 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3848 } else { 3849 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3850 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3851 } 3852 MD5Final((u_char *)digest, &ctx); 3853 V_pf_tcp_iss_off += 4096; 3854 #define ISN_RANDOM_INCREMENT (4096 - 1) 3855 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3856 V_pf_tcp_iss_off); 3857 #undef ISN_RANDOM_INCREMENT 3858 } 3859 3860 static bool 3861 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 3862 { 3863 bool match = true; 3864 3865 /* Always matches if not set */ 3866 if (! r->isset) 3867 return (!r->neg); 3868 3869 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 3870 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 3871 match = false; 3872 break; 3873 } 3874 } 3875 3876 return (match ^ r->neg); 3877 } 3878 3879 static int 3880 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 3881 { 3882 if (*tag == -1) 3883 *tag = mtag; 3884 3885 return ((!r->match_tag_not && r->match_tag == *tag) || 3886 (r->match_tag_not && r->match_tag != *tag)); 3887 } 3888 3889 static void 3890 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 3891 { 3892 /* If we don't have the interface drop the packet. */ 3893 if (ifp == NULL) { 3894 m_freem(m); 3895 return; 3896 } 3897 3898 switch (ifp->if_type) { 3899 case IFT_ETHER: 3900 case IFT_XETHER: 3901 case IFT_L2VLAN: 3902 case IFT_BRIDGE: 3903 case IFT_IEEE8023ADLAG: 3904 break; 3905 default: 3906 m_freem(m); 3907 return; 3908 } 3909 3910 ifp->if_transmit(ifp, m); 3911 } 3912 3913 static int 3914 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 3915 { 3916 #ifdef INET 3917 struct ip ip; 3918 #endif 3919 #ifdef INET6 3920 struct ip6_hdr ip6; 3921 #endif 3922 struct mbuf *m = *m0; 3923 struct ether_header *e; 3924 struct pf_keth_rule *r, *rm, *a = NULL; 3925 struct pf_keth_ruleset *ruleset = NULL; 3926 struct pf_mtag *mtag; 3927 struct pf_keth_ruleq *rules; 3928 struct pf_addr *src = NULL, *dst = NULL; 3929 struct pfi_kkif *bridge_to; 3930 sa_family_t af = 0; 3931 uint16_t proto; 3932 int asd = 0, match = 0; 3933 int tag = -1; 3934 uint8_t action; 3935 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3936 3937 MPASS(kif->pfik_ifp->if_vnet == curvnet); 3938 NET_EPOCH_ASSERT(); 3939 3940 PF_RULES_RLOCK_TRACKER; 3941 3942 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 3943 3944 mtag = pf_find_mtag(m); 3945 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 3946 /* Dummynet re-injects packets after they've 3947 * completed their delay. We've already 3948 * processed them, so pass unconditionally. */ 3949 3950 /* But only once. We may see the packet multiple times (e.g. 3951 * PFIL_IN/PFIL_OUT). */ 3952 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 3953 3954 return (PF_PASS); 3955 } 3956 3957 ruleset = V_pf_keth; 3958 rules = ck_pr_load_ptr(&ruleset->active.rules); 3959 r = TAILQ_FIRST(rules); 3960 rm = NULL; 3961 3962 e = mtod(m, struct ether_header *); 3963 proto = ntohs(e->ether_type); 3964 3965 switch (proto) { 3966 #ifdef INET 3967 case ETHERTYPE_IP: { 3968 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3969 sizeof(ip))) 3970 return (PF_DROP); 3971 3972 af = AF_INET; 3973 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 3974 (caddr_t)&ip); 3975 src = (struct pf_addr *)&ip.ip_src; 3976 dst = (struct pf_addr *)&ip.ip_dst; 3977 break; 3978 } 3979 #endif /* INET */ 3980 #ifdef INET6 3981 case ETHERTYPE_IPV6: { 3982 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3983 sizeof(ip6))) 3984 return (PF_DROP); 3985 3986 af = AF_INET6; 3987 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 3988 (caddr_t)&ip6); 3989 src = (struct pf_addr *)&ip6.ip6_src; 3990 dst = (struct pf_addr *)&ip6.ip6_dst; 3991 break; 3992 } 3993 #endif /* INET6 */ 3994 } 3995 3996 PF_RULES_RLOCK(); 3997 3998 while (r != NULL) { 3999 counter_u64_add(r->evaluations, 1); 4000 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4001 4002 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4003 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4004 "kif"); 4005 r = r->skip[PFE_SKIP_IFP].ptr; 4006 } 4007 else if (r->direction && r->direction != dir) { 4008 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4009 "dir"); 4010 r = r->skip[PFE_SKIP_DIR].ptr; 4011 } 4012 else if (r->proto && r->proto != proto) { 4013 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4014 "proto"); 4015 r = r->skip[PFE_SKIP_PROTO].ptr; 4016 } 4017 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4018 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4019 "src"); 4020 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4021 } 4022 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4023 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4024 "dst"); 4025 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4026 } 4027 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4028 r->ipsrc.neg, kif, M_GETFIB(m))) { 4029 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4030 "ip_src"); 4031 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4032 } 4033 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4034 r->ipdst.neg, kif, M_GETFIB(m))) { 4035 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4036 "ip_dst"); 4037 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4038 } 4039 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4040 mtag ? mtag->tag : 0)) { 4041 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4042 "match_tag"); 4043 r = TAILQ_NEXT(r, entries); 4044 } 4045 else { 4046 if (r->tag) 4047 tag = r->tag; 4048 if (r->anchor == NULL) { 4049 /* Rule matches */ 4050 rm = r; 4051 4052 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4053 4054 if (r->quick) 4055 break; 4056 4057 r = TAILQ_NEXT(r, entries); 4058 } else { 4059 pf_step_into_keth_anchor(anchor_stack, &asd, 4060 &ruleset, &r, &a, &match); 4061 } 4062 } 4063 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4064 &ruleset, &r, &a, &match)) 4065 break; 4066 } 4067 4068 r = rm; 4069 4070 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4071 4072 /* Default to pass. */ 4073 if (r == NULL) { 4074 PF_RULES_RUNLOCK(); 4075 return (PF_PASS); 4076 } 4077 4078 /* Execute action. */ 4079 counter_u64_add(r->packets[dir == PF_OUT], 1); 4080 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4081 pf_update_timestamp(r); 4082 4083 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4084 if (r->action == PF_DROP) { 4085 PF_RULES_RUNLOCK(); 4086 return (PF_DROP); 4087 } 4088 4089 if (tag > 0) { 4090 if (mtag == NULL) 4091 mtag = pf_get_mtag(m); 4092 if (mtag == NULL) { 4093 PF_RULES_RUNLOCK(); 4094 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4095 return (PF_DROP); 4096 } 4097 mtag->tag = tag; 4098 } 4099 4100 if (r->qid != 0) { 4101 if (mtag == NULL) 4102 mtag = pf_get_mtag(m); 4103 if (mtag == NULL) { 4104 PF_RULES_RUNLOCK(); 4105 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4106 return (PF_DROP); 4107 } 4108 mtag->qid = r->qid; 4109 } 4110 4111 action = r->action; 4112 bridge_to = r->bridge_to; 4113 4114 /* Dummynet */ 4115 if (r->dnpipe) { 4116 struct ip_fw_args dnflow; 4117 4118 /* Drop packet if dummynet is not loaded. */ 4119 if (ip_dn_io_ptr == NULL) { 4120 PF_RULES_RUNLOCK(); 4121 m_freem(m); 4122 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4123 return (PF_DROP); 4124 } 4125 if (mtag == NULL) 4126 mtag = pf_get_mtag(m); 4127 if (mtag == NULL) { 4128 PF_RULES_RUNLOCK(); 4129 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4130 return (PF_DROP); 4131 } 4132 4133 bzero(&dnflow, sizeof(dnflow)); 4134 4135 /* We don't have port numbers here, so we set 0. That means 4136 * that we'll be somewhat limited in distinguishing flows (i.e. 4137 * only based on IP addresses, not based on port numbers), but 4138 * it's better than nothing. */ 4139 dnflow.f_id.dst_port = 0; 4140 dnflow.f_id.src_port = 0; 4141 dnflow.f_id.proto = 0; 4142 4143 dnflow.rule.info = r->dnpipe; 4144 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4145 if (r->dnflags & PFRULE_DN_IS_PIPE) 4146 dnflow.rule.info |= IPFW_IS_PIPE; 4147 4148 dnflow.f_id.extra = dnflow.rule.info; 4149 4150 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4151 dnflow.flags |= IPFW_ARGS_ETHER; 4152 dnflow.ifp = kif->pfik_ifp; 4153 4154 switch (af) { 4155 case AF_INET: 4156 dnflow.f_id.addr_type = 4; 4157 dnflow.f_id.src_ip = src->v4.s_addr; 4158 dnflow.f_id.dst_ip = dst->v4.s_addr; 4159 break; 4160 case AF_INET6: 4161 dnflow.flags |= IPFW_ARGS_IP6; 4162 dnflow.f_id.addr_type = 6; 4163 dnflow.f_id.src_ip6 = src->v6; 4164 dnflow.f_id.dst_ip6 = dst->v6; 4165 break; 4166 } 4167 4168 PF_RULES_RUNLOCK(); 4169 4170 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4171 ip_dn_io_ptr(m0, &dnflow); 4172 if (*m0 != NULL) 4173 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 4174 } else { 4175 PF_RULES_RUNLOCK(); 4176 } 4177 4178 if (action == PF_PASS && bridge_to) { 4179 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4180 *m0 = NULL; /* We've eaten the packet. */ 4181 } 4182 4183 return (action); 4184 } 4185 4186 static int 4187 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4188 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4189 struct pf_kruleset **rsm, struct inpcb *inp) 4190 { 4191 struct pf_krule *nr = NULL; 4192 struct pf_addr * const saddr = pd->src; 4193 struct pf_addr * const daddr = pd->dst; 4194 sa_family_t af = pd->af; 4195 struct pf_krule *r, *a = NULL; 4196 struct pf_kruleset *ruleset = NULL; 4197 struct pf_krule_slist match_rules; 4198 struct pf_krule_item *ri; 4199 struct pf_ksrc_node *nsn = NULL; 4200 struct tcphdr *th = &pd->hdr.tcp; 4201 struct pf_state_key *sk = NULL, *nk = NULL; 4202 u_short reason; 4203 int rewrite = 0, hdrlen = 0; 4204 int tag = -1; 4205 int asd = 0; 4206 int match = 0; 4207 int state_icmp = 0; 4208 u_int16_t sport = 0, dport = 0; 4209 u_int16_t bproto_sum = 0, bip_sum = 0; 4210 u_int8_t icmptype = 0, icmpcode = 0; 4211 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4212 4213 PF_RULES_RASSERT(); 4214 4215 if (inp != NULL) { 4216 INP_LOCK_ASSERT(inp); 4217 pd->lookup.uid = inp->inp_cred->cr_uid; 4218 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4219 pd->lookup.done = 1; 4220 } 4221 4222 switch (pd->proto) { 4223 case IPPROTO_TCP: 4224 sport = th->th_sport; 4225 dport = th->th_dport; 4226 hdrlen = sizeof(*th); 4227 break; 4228 case IPPROTO_UDP: 4229 sport = pd->hdr.udp.uh_sport; 4230 dport = pd->hdr.udp.uh_dport; 4231 hdrlen = sizeof(pd->hdr.udp); 4232 break; 4233 #ifdef INET 4234 case IPPROTO_ICMP: 4235 if (pd->af != AF_INET) 4236 break; 4237 sport = dport = pd->hdr.icmp.icmp_id; 4238 hdrlen = sizeof(pd->hdr.icmp); 4239 icmptype = pd->hdr.icmp.icmp_type; 4240 icmpcode = pd->hdr.icmp.icmp_code; 4241 4242 if (icmptype == ICMP_UNREACH || 4243 icmptype == ICMP_SOURCEQUENCH || 4244 icmptype == ICMP_REDIRECT || 4245 icmptype == ICMP_TIMXCEED || 4246 icmptype == ICMP_PARAMPROB) 4247 state_icmp++; 4248 break; 4249 #endif /* INET */ 4250 #ifdef INET6 4251 case IPPROTO_ICMPV6: 4252 if (af != AF_INET6) 4253 break; 4254 sport = dport = pd->hdr.icmp6.icmp6_id; 4255 hdrlen = sizeof(pd->hdr.icmp6); 4256 icmptype = pd->hdr.icmp6.icmp6_type; 4257 icmpcode = pd->hdr.icmp6.icmp6_code; 4258 4259 if (icmptype == ICMP6_DST_UNREACH || 4260 icmptype == ICMP6_PACKET_TOO_BIG || 4261 icmptype == ICMP6_TIME_EXCEEDED || 4262 icmptype == ICMP6_PARAM_PROB) 4263 state_icmp++; 4264 break; 4265 #endif /* INET6 */ 4266 default: 4267 sport = dport = hdrlen = 0; 4268 break; 4269 } 4270 4271 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4272 4273 /* check packet for BINAT/NAT/RDR */ 4274 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4275 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4276 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4277 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4278 4279 if (nr->log) { 4280 PFLOG_PACKET(kif, m, af, PFRES_MATCH, nr, a, 4281 ruleset, pd, 1); 4282 } 4283 4284 if (pd->ip_sum) 4285 bip_sum = *pd->ip_sum; 4286 4287 switch (pd->proto) { 4288 case IPPROTO_TCP: 4289 bproto_sum = th->th_sum; 4290 pd->proto_sum = &th->th_sum; 4291 4292 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4293 nk->port[pd->sidx] != sport) { 4294 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4295 &th->th_sum, &nk->addr[pd->sidx], 4296 nk->port[pd->sidx], 0, af); 4297 pd->sport = &th->th_sport; 4298 sport = th->th_sport; 4299 } 4300 4301 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4302 nk->port[pd->didx] != dport) { 4303 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4304 &th->th_sum, &nk->addr[pd->didx], 4305 nk->port[pd->didx], 0, af); 4306 dport = th->th_dport; 4307 pd->dport = &th->th_dport; 4308 } 4309 rewrite++; 4310 break; 4311 case IPPROTO_UDP: 4312 bproto_sum = pd->hdr.udp.uh_sum; 4313 pd->proto_sum = &pd->hdr.udp.uh_sum; 4314 4315 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4316 nk->port[pd->sidx] != sport) { 4317 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4318 pd->ip_sum, &pd->hdr.udp.uh_sum, 4319 &nk->addr[pd->sidx], 4320 nk->port[pd->sidx], 1, af); 4321 sport = pd->hdr.udp.uh_sport; 4322 pd->sport = &pd->hdr.udp.uh_sport; 4323 } 4324 4325 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4326 nk->port[pd->didx] != dport) { 4327 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4328 pd->ip_sum, &pd->hdr.udp.uh_sum, 4329 &nk->addr[pd->didx], 4330 nk->port[pd->didx], 1, af); 4331 dport = pd->hdr.udp.uh_dport; 4332 pd->dport = &pd->hdr.udp.uh_dport; 4333 } 4334 rewrite++; 4335 break; 4336 #ifdef INET 4337 case IPPROTO_ICMP: 4338 nk->port[0] = nk->port[1]; 4339 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4340 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4341 nk->addr[pd->sidx].v4.s_addr, 0); 4342 4343 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4344 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4345 nk->addr[pd->didx].v4.s_addr, 0); 4346 4347 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4348 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4349 pd->hdr.icmp.icmp_cksum, sport, 4350 nk->port[1], 0); 4351 pd->hdr.icmp.icmp_id = nk->port[1]; 4352 pd->sport = &pd->hdr.icmp.icmp_id; 4353 } 4354 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4355 break; 4356 #endif /* INET */ 4357 #ifdef INET6 4358 case IPPROTO_ICMPV6: 4359 nk->port[0] = nk->port[1]; 4360 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4361 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4362 &nk->addr[pd->sidx], 0); 4363 4364 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4365 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4366 &nk->addr[pd->didx], 0); 4367 rewrite++; 4368 break; 4369 #endif /* INET */ 4370 default: 4371 switch (af) { 4372 #ifdef INET 4373 case AF_INET: 4374 if (PF_ANEQ(saddr, 4375 &nk->addr[pd->sidx], AF_INET)) 4376 pf_change_a(&saddr->v4.s_addr, 4377 pd->ip_sum, 4378 nk->addr[pd->sidx].v4.s_addr, 0); 4379 4380 if (PF_ANEQ(daddr, 4381 &nk->addr[pd->didx], AF_INET)) 4382 pf_change_a(&daddr->v4.s_addr, 4383 pd->ip_sum, 4384 nk->addr[pd->didx].v4.s_addr, 0); 4385 break; 4386 #endif /* INET */ 4387 #ifdef INET6 4388 case AF_INET6: 4389 if (PF_ANEQ(saddr, 4390 &nk->addr[pd->sidx], AF_INET6)) 4391 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4392 4393 if (PF_ANEQ(daddr, 4394 &nk->addr[pd->didx], AF_INET6)) 4395 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4396 break; 4397 #endif /* INET */ 4398 } 4399 break; 4400 } 4401 if (nr->natpass) 4402 r = NULL; 4403 pd->nat_rule = nr; 4404 } 4405 4406 SLIST_INIT(&match_rules); 4407 while (r != NULL) { 4408 pf_counter_u64_add(&r->evaluations, 1); 4409 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4410 r = r->skip[PF_SKIP_IFP].ptr; 4411 else if (r->direction && r->direction != pd->dir) 4412 r = r->skip[PF_SKIP_DIR].ptr; 4413 else if (r->af && r->af != af) 4414 r = r->skip[PF_SKIP_AF].ptr; 4415 else if (r->proto && r->proto != pd->proto) 4416 r = r->skip[PF_SKIP_PROTO].ptr; 4417 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4418 r->src.neg, kif, M_GETFIB(m))) 4419 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4420 /* tcp/udp only. port_op always 0 in other cases */ 4421 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4422 r->src.port[0], r->src.port[1], sport)) 4423 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4424 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4425 r->dst.neg, NULL, M_GETFIB(m))) 4426 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4427 /* tcp/udp only. port_op always 0 in other cases */ 4428 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4429 r->dst.port[0], r->dst.port[1], dport)) 4430 r = r->skip[PF_SKIP_DST_PORT].ptr; 4431 /* icmp only. type always 0 in other cases */ 4432 else if (r->type && r->type != icmptype + 1) 4433 r = TAILQ_NEXT(r, entries); 4434 /* icmp only. type always 0 in other cases */ 4435 else if (r->code && r->code != icmpcode + 1) 4436 r = TAILQ_NEXT(r, entries); 4437 else if (r->tos && !(r->tos == pd->tos)) 4438 r = TAILQ_NEXT(r, entries); 4439 else if (r->rule_flag & PFRULE_FRAGMENT) 4440 r = TAILQ_NEXT(r, entries); 4441 else if (pd->proto == IPPROTO_TCP && 4442 (r->flagset & th->th_flags) != r->flags) 4443 r = TAILQ_NEXT(r, entries); 4444 /* tcp/udp only. uid.op always 0 in other cases */ 4445 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4446 pf_socket_lookup(pd, m), 1)) && 4447 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4448 pd->lookup.uid)) 4449 r = TAILQ_NEXT(r, entries); 4450 /* tcp/udp only. gid.op always 0 in other cases */ 4451 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4452 pf_socket_lookup(pd, m), 1)) && 4453 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4454 pd->lookup.gid)) 4455 r = TAILQ_NEXT(r, entries); 4456 else if (r->prio && 4457 !pf_match_ieee8021q_pcp(r->prio, m)) 4458 r = TAILQ_NEXT(r, entries); 4459 else if (r->prob && 4460 r->prob <= arc4random()) 4461 r = TAILQ_NEXT(r, entries); 4462 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4463 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4464 r = TAILQ_NEXT(r, entries); 4465 else if (r->os_fingerprint != PF_OSFP_ANY && 4466 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4467 pf_osfp_fingerprint(pd, m, off, th), 4468 r->os_fingerprint))) 4469 r = TAILQ_NEXT(r, entries); 4470 else { 4471 if (r->tag) 4472 tag = r->tag; 4473 if (r->anchor == NULL) { 4474 if (r->action == PF_MATCH) { 4475 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4476 if (ri == NULL) { 4477 REASON_SET(&reason, PFRES_MEMORY); 4478 goto cleanup; 4479 } 4480 ri->r = r; 4481 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4482 pf_counter_u64_critical_enter(); 4483 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4484 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4485 pf_counter_u64_critical_exit(); 4486 pf_rule_to_actions(r, &pd->act); 4487 if (r->log) 4488 PFLOG_PACKET(kif, m, af, 4489 PFRES_MATCH, r, 4490 a, ruleset, pd, 1); 4491 } else { 4492 match = 1; 4493 *rm = r; 4494 *am = a; 4495 *rsm = ruleset; 4496 } 4497 if ((*rm)->quick) 4498 break; 4499 r = TAILQ_NEXT(r, entries); 4500 } else 4501 pf_step_into_anchor(anchor_stack, &asd, 4502 &ruleset, PF_RULESET_FILTER, &r, &a, 4503 &match); 4504 } 4505 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4506 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4507 break; 4508 } 4509 r = *rm; 4510 a = *am; 4511 ruleset = *rsm; 4512 4513 REASON_SET(&reason, PFRES_MATCH); 4514 4515 /* apply actions for last matching pass/block rule */ 4516 pf_rule_to_actions(r, &pd->act); 4517 4518 if (r->log) { 4519 if (rewrite) 4520 m_copyback(m, off, hdrlen, pd->hdr.any); 4521 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 4522 } 4523 4524 if ((r->action == PF_DROP) && 4525 ((r->rule_flag & PFRULE_RETURNRST) || 4526 (r->rule_flag & PFRULE_RETURNICMP) || 4527 (r->rule_flag & PFRULE_RETURN))) { 4528 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4529 bip_sum, hdrlen, &reason, r->rtableid); 4530 } 4531 4532 if (r->action == PF_DROP) 4533 goto cleanup; 4534 4535 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4536 REASON_SET(&reason, PFRES_MEMORY); 4537 goto cleanup; 4538 } 4539 if (pd->act.rtableid >= 0) 4540 M_SETFIB(m, pd->act.rtableid); 4541 4542 if (!state_icmp && (r->keep_state || nr != NULL || 4543 (pd->flags & PFDESC_TCP_NORM))) { 4544 int action; 4545 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4546 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4547 hdrlen, &match_rules); 4548 if (action != PF_PASS) { 4549 if (action == PF_DROP && 4550 (r->rule_flag & PFRULE_RETURN)) 4551 pf_return(r, nr, pd, sk, off, m, th, kif, 4552 bproto_sum, bip_sum, hdrlen, &reason, 4553 pd->act.rtableid); 4554 return (action); 4555 } 4556 } else { 4557 uma_zfree(V_pf_state_key_z, sk); 4558 uma_zfree(V_pf_state_key_z, nk); 4559 } 4560 4561 /* copy back packet headers if we performed NAT operations */ 4562 if (rewrite) 4563 m_copyback(m, off, hdrlen, pd->hdr.any); 4564 4565 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4566 pd->dir == PF_OUT && 4567 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4568 /* 4569 * We want the state created, but we dont 4570 * want to send this in case a partner 4571 * firewall has to know about it to allow 4572 * replies through it. 4573 */ 4574 return (PF_DEFER); 4575 4576 return (PF_PASS); 4577 4578 cleanup: 4579 while ((ri = SLIST_FIRST(&match_rules))) { 4580 SLIST_REMOVE_HEAD(&match_rules, entry); 4581 free(ri, M_PF_RULE_ITEM); 4582 } 4583 4584 uma_zfree(V_pf_state_key_z, sk); 4585 uma_zfree(V_pf_state_key_z, nk); 4586 return (PF_DROP); 4587 } 4588 4589 static int 4590 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4591 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4592 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4593 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4594 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4595 struct pf_krule_slist *match_rules) 4596 { 4597 struct pf_kstate *s = NULL; 4598 struct pf_ksrc_node *sn = NULL; 4599 struct tcphdr *th = &pd->hdr.tcp; 4600 u_int16_t mss = V_tcp_mssdflt; 4601 u_short reason, sn_reason; 4602 4603 /* check maximums */ 4604 if (r->max_states && 4605 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4606 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4607 REASON_SET(&reason, PFRES_MAXSTATES); 4608 goto csfailed; 4609 } 4610 /* src node for filter rule */ 4611 if ((r->rule_flag & PFRULE_SRCTRACK || 4612 r->rpool.opts & PF_POOL_STICKYADDR) && 4613 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 4614 REASON_SET(&reason, sn_reason); 4615 goto csfailed; 4616 } 4617 /* src node for translation rule */ 4618 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4619 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 4620 pd->af)) != 0 ) { 4621 REASON_SET(&reason, sn_reason); 4622 goto csfailed; 4623 } 4624 s = pf_alloc_state(M_NOWAIT); 4625 if (s == NULL) { 4626 REASON_SET(&reason, PFRES_MEMORY); 4627 goto csfailed; 4628 } 4629 s->rule.ptr = r; 4630 s->nat_rule.ptr = nr; 4631 s->anchor.ptr = a; 4632 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4633 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 4634 4635 STATE_INC_COUNTERS(s); 4636 if (r->allow_opts) 4637 s->state_flags |= PFSTATE_ALLOWOPTS; 4638 if (r->rule_flag & PFRULE_STATESLOPPY) 4639 s->state_flags |= PFSTATE_SLOPPY; 4640 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4641 s->state_flags |= PFSTATE_SCRUB_TCP; 4642 4643 s->act.log = pd->act.log & PF_LOG_ALL; 4644 s->sync_state = PFSYNC_S_NONE; 4645 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 4646 4647 if (nr != NULL) 4648 s->act.log |= nr->log & PF_LOG_ALL; 4649 switch (pd->proto) { 4650 case IPPROTO_TCP: 4651 s->src.seqlo = ntohl(th->th_seq); 4652 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4653 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4654 r->keep_state == PF_STATE_MODULATE) { 4655 /* Generate sequence number modulator */ 4656 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4657 0) 4658 s->src.seqdiff = 1; 4659 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4660 htonl(s->src.seqlo + s->src.seqdiff), 0); 4661 *rewrite = 1; 4662 } else 4663 s->src.seqdiff = 0; 4664 if (th->th_flags & TH_SYN) { 4665 s->src.seqhi++; 4666 s->src.wscale = pf_get_wscale(m, off, 4667 th->th_off, pd->af); 4668 } 4669 s->src.max_win = MAX(ntohs(th->th_win), 1); 4670 if (s->src.wscale & PF_WSCALE_MASK) { 4671 /* Remove scale factor from initial window */ 4672 int win = s->src.max_win; 4673 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4674 s->src.max_win = (win - 1) >> 4675 (s->src.wscale & PF_WSCALE_MASK); 4676 } 4677 if (th->th_flags & TH_FIN) 4678 s->src.seqhi++; 4679 s->dst.seqhi = 1; 4680 s->dst.max_win = 1; 4681 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4682 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4683 s->timeout = PFTM_TCP_FIRST_PACKET; 4684 atomic_add_32(&V_pf_status.states_halfopen, 1); 4685 break; 4686 case IPPROTO_UDP: 4687 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4688 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4689 s->timeout = PFTM_UDP_FIRST_PACKET; 4690 break; 4691 case IPPROTO_ICMP: 4692 #ifdef INET6 4693 case IPPROTO_ICMPV6: 4694 #endif 4695 s->timeout = PFTM_ICMP_FIRST_PACKET; 4696 break; 4697 default: 4698 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4699 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4700 s->timeout = PFTM_OTHER_FIRST_PACKET; 4701 } 4702 4703 if (r->rt) { 4704 /* pf_map_addr increases the reason counters */ 4705 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, 4706 &sn)) != 0) { 4707 pf_src_tree_remove_state(s); 4708 s->timeout = PFTM_UNLINKED; 4709 STATE_DEC_COUNTERS(s); 4710 pf_free_state(s); 4711 goto csfailed; 4712 } 4713 s->rt_kif = r->rpool.cur->kif; 4714 s->rt = r->rt; 4715 } 4716 4717 s->creation = time_uptime; 4718 s->expire = time_uptime; 4719 4720 if (sn != NULL) 4721 s->src_node = sn; 4722 if (nsn != NULL) { 4723 /* XXX We only modify one side for now. */ 4724 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4725 s->nat_src_node = nsn; 4726 } 4727 if (pd->proto == IPPROTO_TCP) { 4728 if (s->state_flags & PFSTATE_SCRUB_TCP && 4729 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4730 REASON_SET(&reason, PFRES_MEMORY); 4731 pf_src_tree_remove_state(s); 4732 s->timeout = PFTM_UNLINKED; 4733 STATE_DEC_COUNTERS(s); 4734 pf_free_state(s); 4735 return (PF_DROP); 4736 } 4737 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4738 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4739 &s->src, &s->dst, rewrite)) { 4740 /* This really shouldn't happen!!! */ 4741 DPFPRINTF(PF_DEBUG_URGENT, 4742 ("pf_normalize_tcp_stateful failed on first " 4743 "pkt\n")); 4744 pf_src_tree_remove_state(s); 4745 s->timeout = PFTM_UNLINKED; 4746 STATE_DEC_COUNTERS(s); 4747 pf_free_state(s); 4748 return (PF_DROP); 4749 } 4750 } 4751 s->direction = pd->dir; 4752 4753 /* 4754 * sk/nk could already been setup by pf_get_translation(). 4755 */ 4756 if (nr == NULL) { 4757 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4758 __func__, nr, sk, nk)); 4759 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4760 if (sk == NULL) 4761 goto csfailed; 4762 nk = sk; 4763 } else 4764 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4765 __func__, nr, sk, nk)); 4766 4767 /* Swap sk/nk for PF_OUT. */ 4768 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4769 (pd->dir == PF_IN) ? sk : nk, 4770 (pd->dir == PF_IN) ? nk : sk, s)) { 4771 REASON_SET(&reason, PFRES_STATEINS); 4772 pf_src_tree_remove_state(s); 4773 s->timeout = PFTM_UNLINKED; 4774 STATE_DEC_COUNTERS(s); 4775 pf_free_state(s); 4776 return (PF_DROP); 4777 } else 4778 *sm = s; 4779 4780 if (tag > 0) 4781 s->tag = tag; 4782 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4783 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4784 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4785 /* undo NAT changes, if they have taken place */ 4786 if (nr != NULL) { 4787 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4788 if (pd->dir == PF_OUT) 4789 skt = s->key[PF_SK_STACK]; 4790 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4791 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4792 if (pd->sport) 4793 *pd->sport = skt->port[pd->sidx]; 4794 if (pd->dport) 4795 *pd->dport = skt->port[pd->didx]; 4796 if (pd->proto_sum) 4797 *pd->proto_sum = bproto_sum; 4798 if (pd->ip_sum) 4799 *pd->ip_sum = bip_sum; 4800 m_copyback(m, off, hdrlen, pd->hdr.any); 4801 } 4802 s->src.seqhi = htonl(arc4random()); 4803 /* Find mss option */ 4804 int rtid = M_GETFIB(m); 4805 mss = pf_get_mss(m, off, th->th_off, pd->af); 4806 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4807 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4808 s->src.mss = mss; 4809 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4810 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4811 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 4812 pd->act.rtableid); 4813 REASON_SET(&reason, PFRES_SYNPROXY); 4814 return (PF_SYNPROXY_DROP); 4815 } 4816 4817 return (PF_PASS); 4818 4819 csfailed: 4820 uma_zfree(V_pf_state_key_z, sk); 4821 uma_zfree(V_pf_state_key_z, nk); 4822 4823 if (sn != NULL) { 4824 PF_SRC_NODE_LOCK(sn); 4825 if (--sn->states == 0 && sn->expire == 0) { 4826 pf_unlink_src_node(sn); 4827 uma_zfree(V_pf_sources_z, sn); 4828 counter_u64_add( 4829 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4830 } 4831 PF_SRC_NODE_UNLOCK(sn); 4832 } 4833 4834 if (nsn != sn && nsn != NULL) { 4835 PF_SRC_NODE_LOCK(nsn); 4836 if (--nsn->states == 0 && nsn->expire == 0) { 4837 pf_unlink_src_node(nsn); 4838 uma_zfree(V_pf_sources_z, nsn); 4839 counter_u64_add( 4840 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4841 } 4842 PF_SRC_NODE_UNLOCK(nsn); 4843 } 4844 4845 return (PF_DROP); 4846 } 4847 4848 static int 4849 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 4850 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4851 struct pf_kruleset **rsm) 4852 { 4853 struct pf_krule *r, *a = NULL; 4854 struct pf_kruleset *ruleset = NULL; 4855 struct pf_krule_slist match_rules; 4856 struct pf_krule_item *ri; 4857 sa_family_t af = pd->af; 4858 u_short reason; 4859 int tag = -1; 4860 int asd = 0; 4861 int match = 0; 4862 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4863 4864 PF_RULES_RASSERT(); 4865 4866 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4867 SLIST_INIT(&match_rules); 4868 while (r != NULL) { 4869 pf_counter_u64_add(&r->evaluations, 1); 4870 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4871 r = r->skip[PF_SKIP_IFP].ptr; 4872 else if (r->direction && r->direction != pd->dir) 4873 r = r->skip[PF_SKIP_DIR].ptr; 4874 else if (r->af && r->af != af) 4875 r = r->skip[PF_SKIP_AF].ptr; 4876 else if (r->proto && r->proto != pd->proto) 4877 r = r->skip[PF_SKIP_PROTO].ptr; 4878 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4879 r->src.neg, kif, M_GETFIB(m))) 4880 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4881 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4882 r->dst.neg, NULL, M_GETFIB(m))) 4883 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4884 else if (r->tos && !(r->tos == pd->tos)) 4885 r = TAILQ_NEXT(r, entries); 4886 else if (r->os_fingerprint != PF_OSFP_ANY) 4887 r = TAILQ_NEXT(r, entries); 4888 else if (pd->proto == IPPROTO_UDP && 4889 (r->src.port_op || r->dst.port_op)) 4890 r = TAILQ_NEXT(r, entries); 4891 else if (pd->proto == IPPROTO_TCP && 4892 (r->src.port_op || r->dst.port_op || r->flagset)) 4893 r = TAILQ_NEXT(r, entries); 4894 else if ((pd->proto == IPPROTO_ICMP || 4895 pd->proto == IPPROTO_ICMPV6) && 4896 (r->type || r->code)) 4897 r = TAILQ_NEXT(r, entries); 4898 else if (r->prio && 4899 !pf_match_ieee8021q_pcp(r->prio, m)) 4900 r = TAILQ_NEXT(r, entries); 4901 else if (r->prob && r->prob <= 4902 (arc4random() % (UINT_MAX - 1) + 1)) 4903 r = TAILQ_NEXT(r, entries); 4904 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4905 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4906 r = TAILQ_NEXT(r, entries); 4907 else { 4908 if (r->anchor == NULL) { 4909 if (r->action == PF_MATCH) { 4910 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4911 if (ri == NULL) { 4912 REASON_SET(&reason, PFRES_MEMORY); 4913 goto cleanup; 4914 } 4915 ri->r = r; 4916 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4917 pf_counter_u64_critical_enter(); 4918 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4919 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4920 pf_counter_u64_critical_exit(); 4921 pf_rule_to_actions(r, &pd->act); 4922 if (r->log) 4923 PFLOG_PACKET(kif, m, af, 4924 PFRES_MATCH, r, 4925 a, ruleset, pd, 1); 4926 } else { 4927 match = 1; 4928 *rm = r; 4929 *am = a; 4930 *rsm = ruleset; 4931 } 4932 if ((*rm)->quick) 4933 break; 4934 r = TAILQ_NEXT(r, entries); 4935 } else 4936 pf_step_into_anchor(anchor_stack, &asd, 4937 &ruleset, PF_RULESET_FILTER, &r, &a, 4938 &match); 4939 } 4940 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4941 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4942 break; 4943 } 4944 r = *rm; 4945 a = *am; 4946 ruleset = *rsm; 4947 4948 REASON_SET(&reason, PFRES_MATCH); 4949 4950 /* apply actions for last matching pass/block rule */ 4951 pf_rule_to_actions(r, &pd->act); 4952 4953 if (r->log) 4954 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 4955 4956 if (r->action != PF_PASS) 4957 return (PF_DROP); 4958 4959 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4960 REASON_SET(&reason, PFRES_MEMORY); 4961 goto cleanup; 4962 } 4963 4964 return (PF_PASS); 4965 4966 cleanup: 4967 while ((ri = SLIST_FIRST(&match_rules))) { 4968 SLIST_REMOVE_HEAD(&match_rules, entry); 4969 free(ri, M_PF_RULE_ITEM); 4970 } 4971 4972 return (PF_DROP); 4973 } 4974 4975 static int 4976 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4977 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4978 int *copyback) 4979 { 4980 struct tcphdr *th = &pd->hdr.tcp; 4981 struct pf_state_peer *src, *dst; 4982 u_int16_t win = ntohs(th->th_win); 4983 u_int32_t ack, end, seq, orig_seq; 4984 u_int8_t sws, dws, psrc, pdst; 4985 int ackskew; 4986 4987 if (pd->dir == (*state)->direction) { 4988 src = &(*state)->src; 4989 dst = &(*state)->dst; 4990 psrc = PF_PEER_SRC; 4991 pdst = PF_PEER_DST; 4992 } else { 4993 src = &(*state)->dst; 4994 dst = &(*state)->src; 4995 psrc = PF_PEER_DST; 4996 pdst = PF_PEER_SRC; 4997 } 4998 4999 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5000 sws = src->wscale & PF_WSCALE_MASK; 5001 dws = dst->wscale & PF_WSCALE_MASK; 5002 } else 5003 sws = dws = 0; 5004 5005 /* 5006 * Sequence tracking algorithm from Guido van Rooij's paper: 5007 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5008 * tcp_filtering.ps 5009 */ 5010 5011 orig_seq = seq = ntohl(th->th_seq); 5012 if (src->seqlo == 0) { 5013 /* First packet from this end. Set its state */ 5014 5015 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5016 src->scrub == NULL) { 5017 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5018 REASON_SET(reason, PFRES_MEMORY); 5019 return (PF_DROP); 5020 } 5021 } 5022 5023 /* Deferred generation of sequence number modulator */ 5024 if (dst->seqdiff && !src->seqdiff) { 5025 /* use random iss for the TCP server */ 5026 while ((src->seqdiff = arc4random() - seq) == 0) 5027 ; 5028 ack = ntohl(th->th_ack) - dst->seqdiff; 5029 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5030 src->seqdiff), 0); 5031 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5032 *copyback = 1; 5033 } else { 5034 ack = ntohl(th->th_ack); 5035 } 5036 5037 end = seq + pd->p_len; 5038 if (th->th_flags & TH_SYN) { 5039 end++; 5040 if (dst->wscale & PF_WSCALE_FLAG) { 5041 src->wscale = pf_get_wscale(m, off, th->th_off, 5042 pd->af); 5043 if (src->wscale & PF_WSCALE_FLAG) { 5044 /* Remove scale factor from initial 5045 * window */ 5046 sws = src->wscale & PF_WSCALE_MASK; 5047 win = ((u_int32_t)win + (1 << sws) - 1) 5048 >> sws; 5049 dws = dst->wscale & PF_WSCALE_MASK; 5050 } else { 5051 /* fixup other window */ 5052 dst->max_win <<= dst->wscale & 5053 PF_WSCALE_MASK; 5054 /* in case of a retrans SYN|ACK */ 5055 dst->wscale = 0; 5056 } 5057 } 5058 } 5059 if (th->th_flags & TH_FIN) 5060 end++; 5061 5062 src->seqlo = seq; 5063 if (src->state < TCPS_SYN_SENT) 5064 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5065 5066 /* 5067 * May need to slide the window (seqhi may have been set by 5068 * the crappy stack check or if we picked up the connection 5069 * after establishment) 5070 */ 5071 if (src->seqhi == 1 || 5072 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5073 src->seqhi = end + MAX(1, dst->max_win << dws); 5074 if (win > src->max_win) 5075 src->max_win = win; 5076 5077 } else { 5078 ack = ntohl(th->th_ack) - dst->seqdiff; 5079 if (src->seqdiff) { 5080 /* Modulate sequence numbers */ 5081 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5082 src->seqdiff), 0); 5083 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5084 *copyback = 1; 5085 } 5086 end = seq + pd->p_len; 5087 if (th->th_flags & TH_SYN) 5088 end++; 5089 if (th->th_flags & TH_FIN) 5090 end++; 5091 } 5092 5093 if ((th->th_flags & TH_ACK) == 0) { 5094 /* Let it pass through the ack skew check */ 5095 ack = dst->seqlo; 5096 } else if ((ack == 0 && 5097 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5098 /* broken tcp stacks do not set ack */ 5099 (dst->state < TCPS_SYN_SENT)) { 5100 /* 5101 * Many stacks (ours included) will set the ACK number in an 5102 * FIN|ACK if the SYN times out -- no sequence to ACK. 5103 */ 5104 ack = dst->seqlo; 5105 } 5106 5107 if (seq == end) { 5108 /* Ease sequencing restrictions on no data packets */ 5109 seq = src->seqlo; 5110 end = seq; 5111 } 5112 5113 ackskew = dst->seqlo - ack; 5114 5115 /* 5116 * Need to demodulate the sequence numbers in any TCP SACK options 5117 * (Selective ACK). We could optionally validate the SACK values 5118 * against the current ACK window, either forwards or backwards, but 5119 * I'm not confident that SACK has been implemented properly 5120 * everywhere. It wouldn't surprise me if several stacks accidentally 5121 * SACK too far backwards of previously ACKed data. There really aren't 5122 * any security implications of bad SACKing unless the target stack 5123 * doesn't validate the option length correctly. Someone trying to 5124 * spoof into a TCP connection won't bother blindly sending SACK 5125 * options anyway. 5126 */ 5127 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5128 if (pf_modulate_sack(m, off, pd, th, dst)) 5129 *copyback = 1; 5130 } 5131 5132 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5133 if (SEQ_GEQ(src->seqhi, end) && 5134 /* Last octet inside other's window space */ 5135 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5136 /* Retrans: not more than one window back */ 5137 (ackskew >= -MAXACKWINDOW) && 5138 /* Acking not more than one reassembled fragment backwards */ 5139 (ackskew <= (MAXACKWINDOW << sws)) && 5140 /* Acking not more than one window forward */ 5141 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5142 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5143 (pd->flags & PFDESC_IP_REAS) == 0)) { 5144 /* Require an exact/+1 sequence match on resets when possible */ 5145 5146 if (dst->scrub || src->scrub) { 5147 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5148 *state, src, dst, copyback)) 5149 return (PF_DROP); 5150 } 5151 5152 /* update max window */ 5153 if (src->max_win < win) 5154 src->max_win = win; 5155 /* synchronize sequencing */ 5156 if (SEQ_GT(end, src->seqlo)) 5157 src->seqlo = end; 5158 /* slide the window of what the other end can send */ 5159 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5160 dst->seqhi = ack + MAX((win << sws), 1); 5161 5162 /* update states */ 5163 if (th->th_flags & TH_SYN) 5164 if (src->state < TCPS_SYN_SENT) 5165 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5166 if (th->th_flags & TH_FIN) 5167 if (src->state < TCPS_CLOSING) 5168 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5169 if (th->th_flags & TH_ACK) { 5170 if (dst->state == TCPS_SYN_SENT) { 5171 pf_set_protostate(*state, pdst, 5172 TCPS_ESTABLISHED); 5173 if (src->state == TCPS_ESTABLISHED && 5174 (*state)->src_node != NULL && 5175 pf_src_connlimit(state)) { 5176 REASON_SET(reason, PFRES_SRCLIMIT); 5177 return (PF_DROP); 5178 } 5179 } else if (dst->state == TCPS_CLOSING) 5180 pf_set_protostate(*state, pdst, 5181 TCPS_FIN_WAIT_2); 5182 } 5183 if (th->th_flags & TH_RST) 5184 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5185 5186 /* update expire time */ 5187 (*state)->expire = time_uptime; 5188 if (src->state >= TCPS_FIN_WAIT_2 && 5189 dst->state >= TCPS_FIN_WAIT_2) 5190 (*state)->timeout = PFTM_TCP_CLOSED; 5191 else if (src->state >= TCPS_CLOSING && 5192 dst->state >= TCPS_CLOSING) 5193 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5194 else if (src->state < TCPS_ESTABLISHED || 5195 dst->state < TCPS_ESTABLISHED) 5196 (*state)->timeout = PFTM_TCP_OPENING; 5197 else if (src->state >= TCPS_CLOSING || 5198 dst->state >= TCPS_CLOSING) 5199 (*state)->timeout = PFTM_TCP_CLOSING; 5200 else 5201 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5202 5203 /* Fall through to PASS packet */ 5204 5205 } else if ((dst->state < TCPS_SYN_SENT || 5206 dst->state >= TCPS_FIN_WAIT_2 || 5207 src->state >= TCPS_FIN_WAIT_2) && 5208 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5209 /* Within a window forward of the originating packet */ 5210 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5211 /* Within a window backward of the originating packet */ 5212 5213 /* 5214 * This currently handles three situations: 5215 * 1) Stupid stacks will shotgun SYNs before their peer 5216 * replies. 5217 * 2) When PF catches an already established stream (the 5218 * firewall rebooted, the state table was flushed, routes 5219 * changed...) 5220 * 3) Packets get funky immediately after the connection 5221 * closes (this should catch Solaris spurious ACK|FINs 5222 * that web servers like to spew after a close) 5223 * 5224 * This must be a little more careful than the above code 5225 * since packet floods will also be caught here. We don't 5226 * update the TTL here to mitigate the damage of a packet 5227 * flood and so the same code can handle awkward establishment 5228 * and a loosened connection close. 5229 * In the establishment case, a correct peer response will 5230 * validate the connection, go through the normal state code 5231 * and keep updating the state TTL. 5232 */ 5233 5234 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5235 printf("pf: loose state match: "); 5236 pf_print_state(*state); 5237 pf_print_flags(th->th_flags); 5238 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5239 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5240 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5241 (unsigned long long)(*state)->packets[1], 5242 pd->dir == PF_IN ? "in" : "out", 5243 pd->dir == (*state)->direction ? "fwd" : "rev"); 5244 } 5245 5246 if (dst->scrub || src->scrub) { 5247 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5248 *state, src, dst, copyback)) 5249 return (PF_DROP); 5250 } 5251 5252 /* update max window */ 5253 if (src->max_win < win) 5254 src->max_win = win; 5255 /* synchronize sequencing */ 5256 if (SEQ_GT(end, src->seqlo)) 5257 src->seqlo = end; 5258 /* slide the window of what the other end can send */ 5259 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5260 dst->seqhi = ack + MAX((win << sws), 1); 5261 5262 /* 5263 * Cannot set dst->seqhi here since this could be a shotgunned 5264 * SYN and not an already established connection. 5265 */ 5266 5267 if (th->th_flags & TH_FIN) 5268 if (src->state < TCPS_CLOSING) 5269 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5270 if (th->th_flags & TH_RST) 5271 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5272 5273 /* Fall through to PASS packet */ 5274 5275 } else { 5276 if ((*state)->dst.state == TCPS_SYN_SENT && 5277 (*state)->src.state == TCPS_SYN_SENT) { 5278 /* Send RST for state mismatches during handshake */ 5279 if (!(th->th_flags & TH_RST)) 5280 pf_send_tcp((*state)->rule.ptr, pd->af, 5281 pd->dst, pd->src, th->th_dport, 5282 th->th_sport, ntohl(th->th_ack), 0, 5283 TH_RST, 0, 0, 5284 (*state)->rule.ptr->return_ttl, true, 0, 0, 5285 (*state)->act.rtableid); 5286 src->seqlo = 0; 5287 src->seqhi = 1; 5288 src->max_win = 1; 5289 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5290 printf("pf: BAD state: "); 5291 pf_print_state(*state); 5292 pf_print_flags(th->th_flags); 5293 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5294 "pkts=%llu:%llu dir=%s,%s\n", 5295 seq, orig_seq, ack, pd->p_len, ackskew, 5296 (unsigned long long)(*state)->packets[0], 5297 (unsigned long long)(*state)->packets[1], 5298 pd->dir == PF_IN ? "in" : "out", 5299 pd->dir == (*state)->direction ? "fwd" : "rev"); 5300 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5301 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5302 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5303 ' ': '2', 5304 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5305 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5306 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5307 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5308 } 5309 REASON_SET(reason, PFRES_BADSTATE); 5310 return (PF_DROP); 5311 } 5312 5313 return (PF_PASS); 5314 } 5315 5316 static int 5317 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5318 { 5319 struct tcphdr *th = &pd->hdr.tcp; 5320 struct pf_state_peer *src, *dst; 5321 u_int8_t psrc, pdst; 5322 5323 if (pd->dir == (*state)->direction) { 5324 src = &(*state)->src; 5325 dst = &(*state)->dst; 5326 psrc = PF_PEER_SRC; 5327 pdst = PF_PEER_DST; 5328 } else { 5329 src = &(*state)->dst; 5330 dst = &(*state)->src; 5331 psrc = PF_PEER_DST; 5332 pdst = PF_PEER_SRC; 5333 } 5334 5335 if (th->th_flags & TH_SYN) 5336 if (src->state < TCPS_SYN_SENT) 5337 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5338 if (th->th_flags & TH_FIN) 5339 if (src->state < TCPS_CLOSING) 5340 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5341 if (th->th_flags & TH_ACK) { 5342 if (dst->state == TCPS_SYN_SENT) { 5343 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5344 if (src->state == TCPS_ESTABLISHED && 5345 (*state)->src_node != NULL && 5346 pf_src_connlimit(state)) { 5347 REASON_SET(reason, PFRES_SRCLIMIT); 5348 return (PF_DROP); 5349 } 5350 } else if (dst->state == TCPS_CLOSING) { 5351 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5352 } else if (src->state == TCPS_SYN_SENT && 5353 dst->state < TCPS_SYN_SENT) { 5354 /* 5355 * Handle a special sloppy case where we only see one 5356 * half of the connection. If there is a ACK after 5357 * the initial SYN without ever seeing a packet from 5358 * the destination, set the connection to established. 5359 */ 5360 pf_set_protostate(*state, PF_PEER_BOTH, 5361 TCPS_ESTABLISHED); 5362 dst->state = src->state = TCPS_ESTABLISHED; 5363 if ((*state)->src_node != NULL && 5364 pf_src_connlimit(state)) { 5365 REASON_SET(reason, PFRES_SRCLIMIT); 5366 return (PF_DROP); 5367 } 5368 } else if (src->state == TCPS_CLOSING && 5369 dst->state == TCPS_ESTABLISHED && 5370 dst->seqlo == 0) { 5371 /* 5372 * Handle the closing of half connections where we 5373 * don't see the full bidirectional FIN/ACK+ACK 5374 * handshake. 5375 */ 5376 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5377 } 5378 } 5379 if (th->th_flags & TH_RST) 5380 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5381 5382 /* update expire time */ 5383 (*state)->expire = time_uptime; 5384 if (src->state >= TCPS_FIN_WAIT_2 && 5385 dst->state >= TCPS_FIN_WAIT_2) 5386 (*state)->timeout = PFTM_TCP_CLOSED; 5387 else if (src->state >= TCPS_CLOSING && 5388 dst->state >= TCPS_CLOSING) 5389 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5390 else if (src->state < TCPS_ESTABLISHED || 5391 dst->state < TCPS_ESTABLISHED) 5392 (*state)->timeout = PFTM_TCP_OPENING; 5393 else if (src->state >= TCPS_CLOSING || 5394 dst->state >= TCPS_CLOSING) 5395 (*state)->timeout = PFTM_TCP_CLOSING; 5396 else 5397 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5398 5399 return (PF_PASS); 5400 } 5401 5402 static int 5403 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5404 { 5405 struct pf_state_key *sk = (*state)->key[pd->didx]; 5406 struct tcphdr *th = &pd->hdr.tcp; 5407 5408 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5409 if (pd->dir != (*state)->direction) { 5410 REASON_SET(reason, PFRES_SYNPROXY); 5411 return (PF_SYNPROXY_DROP); 5412 } 5413 if (th->th_flags & TH_SYN) { 5414 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5415 REASON_SET(reason, PFRES_SYNPROXY); 5416 return (PF_DROP); 5417 } 5418 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5419 pd->src, th->th_dport, th->th_sport, 5420 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5421 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5422 (*state)->act.rtableid); 5423 REASON_SET(reason, PFRES_SYNPROXY); 5424 return (PF_SYNPROXY_DROP); 5425 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5426 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5427 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5428 REASON_SET(reason, PFRES_SYNPROXY); 5429 return (PF_DROP); 5430 } else if ((*state)->src_node != NULL && 5431 pf_src_connlimit(state)) { 5432 REASON_SET(reason, PFRES_SRCLIMIT); 5433 return (PF_DROP); 5434 } else 5435 pf_set_protostate(*state, PF_PEER_SRC, 5436 PF_TCPS_PROXY_DST); 5437 } 5438 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5439 if (pd->dir == (*state)->direction) { 5440 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5441 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5442 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5443 REASON_SET(reason, PFRES_SYNPROXY); 5444 return (PF_DROP); 5445 } 5446 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5447 if ((*state)->dst.seqhi == 1) 5448 (*state)->dst.seqhi = htonl(arc4random()); 5449 pf_send_tcp((*state)->rule.ptr, pd->af, 5450 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5451 sk->port[pd->sidx], sk->port[pd->didx], 5452 (*state)->dst.seqhi, 0, TH_SYN, 0, 5453 (*state)->src.mss, 0, false, (*state)->tag, 0, 5454 (*state)->act.rtableid); 5455 REASON_SET(reason, PFRES_SYNPROXY); 5456 return (PF_SYNPROXY_DROP); 5457 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5458 (TH_SYN|TH_ACK)) || 5459 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5460 REASON_SET(reason, PFRES_SYNPROXY); 5461 return (PF_DROP); 5462 } else { 5463 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5464 (*state)->dst.seqlo = ntohl(th->th_seq); 5465 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5466 pd->src, th->th_dport, th->th_sport, 5467 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5468 TH_ACK, (*state)->src.max_win, 0, 0, false, 5469 (*state)->tag, 0, (*state)->act.rtableid); 5470 pf_send_tcp((*state)->rule.ptr, pd->af, 5471 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5472 sk->port[pd->sidx], sk->port[pd->didx], 5473 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5474 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5475 (*state)->act.rtableid); 5476 (*state)->src.seqdiff = (*state)->dst.seqhi - 5477 (*state)->src.seqlo; 5478 (*state)->dst.seqdiff = (*state)->src.seqhi - 5479 (*state)->dst.seqlo; 5480 (*state)->src.seqhi = (*state)->src.seqlo + 5481 (*state)->dst.max_win; 5482 (*state)->dst.seqhi = (*state)->dst.seqlo + 5483 (*state)->src.max_win; 5484 (*state)->src.wscale = (*state)->dst.wscale = 0; 5485 pf_set_protostate(*state, PF_PEER_BOTH, 5486 TCPS_ESTABLISHED); 5487 REASON_SET(reason, PFRES_SYNPROXY); 5488 return (PF_SYNPROXY_DROP); 5489 } 5490 } 5491 5492 return (PF_PASS); 5493 } 5494 5495 static int 5496 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5497 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5498 u_short *reason) 5499 { 5500 struct pf_state_key_cmp key; 5501 struct tcphdr *th = &pd->hdr.tcp; 5502 int copyback = 0; 5503 int action; 5504 struct pf_state_peer *src, *dst; 5505 5506 bzero(&key, sizeof(key)); 5507 key.af = pd->af; 5508 key.proto = IPPROTO_TCP; 5509 if (pd->dir == PF_IN) { /* wire side, straight */ 5510 PF_ACPY(&key.addr[0], pd->src, key.af); 5511 PF_ACPY(&key.addr[1], pd->dst, key.af); 5512 key.port[0] = th->th_sport; 5513 key.port[1] = th->th_dport; 5514 } else { /* stack side, reverse */ 5515 PF_ACPY(&key.addr[1], pd->src, key.af); 5516 PF_ACPY(&key.addr[0], pd->dst, key.af); 5517 key.port[1] = th->th_sport; 5518 key.port[0] = th->th_dport; 5519 } 5520 5521 STATE_LOOKUP(kif, &key, *state, pd); 5522 5523 if (pd->dir == (*state)->direction) { 5524 src = &(*state)->src; 5525 dst = &(*state)->dst; 5526 } else { 5527 src = &(*state)->dst; 5528 dst = &(*state)->src; 5529 } 5530 5531 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5532 return (action); 5533 5534 if (dst->state >= TCPS_FIN_WAIT_2 && 5535 src->state >= TCPS_FIN_WAIT_2 && 5536 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5537 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5538 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5539 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5540 printf("pf: state reuse "); 5541 pf_print_state(*state); 5542 pf_print_flags(th->th_flags); 5543 printf("\n"); 5544 } 5545 /* XXX make sure it's the same direction ?? */ 5546 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5547 pf_unlink_state(*state); 5548 *state = NULL; 5549 return (PF_DROP); 5550 } 5551 5552 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5553 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5554 return (PF_DROP); 5555 } else { 5556 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5557 ©back) == PF_DROP) 5558 return (PF_DROP); 5559 } 5560 5561 /* translate source/destination address, if necessary */ 5562 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5563 struct pf_state_key *nk = (*state)->key[pd->didx]; 5564 5565 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5566 nk->port[pd->sidx] != th->th_sport) 5567 pf_change_ap(m, pd->src, &th->th_sport, 5568 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5569 nk->port[pd->sidx], 0, pd->af); 5570 5571 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5572 nk->port[pd->didx] != th->th_dport) 5573 pf_change_ap(m, pd->dst, &th->th_dport, 5574 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5575 nk->port[pd->didx], 0, pd->af); 5576 copyback = 1; 5577 } 5578 5579 /* Copyback sequence modulation or stateful scrub changes if needed */ 5580 if (copyback) 5581 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5582 5583 return (PF_PASS); 5584 } 5585 5586 static int 5587 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 5588 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5589 { 5590 struct pf_state_peer *src, *dst; 5591 struct pf_state_key_cmp key; 5592 struct udphdr *uh = &pd->hdr.udp; 5593 uint8_t psrc, pdst; 5594 5595 bzero(&key, sizeof(key)); 5596 key.af = pd->af; 5597 key.proto = IPPROTO_UDP; 5598 if (pd->dir == PF_IN) { /* wire side, straight */ 5599 PF_ACPY(&key.addr[0], pd->src, key.af); 5600 PF_ACPY(&key.addr[1], pd->dst, key.af); 5601 key.port[0] = uh->uh_sport; 5602 key.port[1] = uh->uh_dport; 5603 } else { /* stack side, reverse */ 5604 PF_ACPY(&key.addr[1], pd->src, key.af); 5605 PF_ACPY(&key.addr[0], pd->dst, key.af); 5606 key.port[1] = uh->uh_sport; 5607 key.port[0] = uh->uh_dport; 5608 } 5609 5610 STATE_LOOKUP(kif, &key, *state, pd); 5611 5612 if (pd->dir == (*state)->direction) { 5613 src = &(*state)->src; 5614 dst = &(*state)->dst; 5615 psrc = PF_PEER_SRC; 5616 pdst = PF_PEER_DST; 5617 } else { 5618 src = &(*state)->dst; 5619 dst = &(*state)->src; 5620 psrc = PF_PEER_DST; 5621 pdst = PF_PEER_SRC; 5622 } 5623 5624 /* update states */ 5625 if (src->state < PFUDPS_SINGLE) 5626 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5627 if (dst->state == PFUDPS_SINGLE) 5628 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5629 5630 /* update expire time */ 5631 (*state)->expire = time_uptime; 5632 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5633 (*state)->timeout = PFTM_UDP_MULTIPLE; 5634 else 5635 (*state)->timeout = PFTM_UDP_SINGLE; 5636 5637 /* translate source/destination address, if necessary */ 5638 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5639 struct pf_state_key *nk = (*state)->key[pd->didx]; 5640 5641 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5642 nk->port[pd->sidx] != uh->uh_sport) 5643 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5644 &uh->uh_sum, &nk->addr[pd->sidx], 5645 nk->port[pd->sidx], 1, pd->af); 5646 5647 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5648 nk->port[pd->didx] != uh->uh_dport) 5649 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5650 &uh->uh_sum, &nk->addr[pd->didx], 5651 nk->port[pd->didx], 1, pd->af); 5652 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5653 } 5654 5655 return (PF_PASS); 5656 } 5657 5658 static int 5659 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 5660 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5661 { 5662 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5663 u_int16_t icmpid = 0, *icmpsum; 5664 u_int8_t icmptype, icmpcode; 5665 int state_icmp = 0; 5666 struct pf_state_key_cmp key; 5667 5668 bzero(&key, sizeof(key)); 5669 switch (pd->proto) { 5670 #ifdef INET 5671 case IPPROTO_ICMP: 5672 icmptype = pd->hdr.icmp.icmp_type; 5673 icmpcode = pd->hdr.icmp.icmp_code; 5674 icmpid = pd->hdr.icmp.icmp_id; 5675 icmpsum = &pd->hdr.icmp.icmp_cksum; 5676 5677 if (icmptype == ICMP_UNREACH || 5678 icmptype == ICMP_SOURCEQUENCH || 5679 icmptype == ICMP_REDIRECT || 5680 icmptype == ICMP_TIMXCEED || 5681 icmptype == ICMP_PARAMPROB) 5682 state_icmp++; 5683 break; 5684 #endif /* INET */ 5685 #ifdef INET6 5686 case IPPROTO_ICMPV6: 5687 icmptype = pd->hdr.icmp6.icmp6_type; 5688 icmpcode = pd->hdr.icmp6.icmp6_code; 5689 icmpid = pd->hdr.icmp6.icmp6_id; 5690 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5691 5692 if (icmptype == ICMP6_DST_UNREACH || 5693 icmptype == ICMP6_PACKET_TOO_BIG || 5694 icmptype == ICMP6_TIME_EXCEEDED || 5695 icmptype == ICMP6_PARAM_PROB) 5696 state_icmp++; 5697 break; 5698 #endif /* INET6 */ 5699 } 5700 5701 if (!state_icmp) { 5702 /* 5703 * ICMP query/reply message not related to a TCP/UDP packet. 5704 * Search for an ICMP state. 5705 */ 5706 key.af = pd->af; 5707 key.proto = pd->proto; 5708 key.port[0] = key.port[1] = icmpid; 5709 if (pd->dir == PF_IN) { /* wire side, straight */ 5710 PF_ACPY(&key.addr[0], pd->src, key.af); 5711 PF_ACPY(&key.addr[1], pd->dst, key.af); 5712 } else { /* stack side, reverse */ 5713 PF_ACPY(&key.addr[1], pd->src, key.af); 5714 PF_ACPY(&key.addr[0], pd->dst, key.af); 5715 } 5716 5717 STATE_LOOKUP(kif, &key, *state, pd); 5718 5719 (*state)->expire = time_uptime; 5720 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5721 5722 /* translate source/destination address, if necessary */ 5723 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5724 struct pf_state_key *nk = (*state)->key[pd->didx]; 5725 5726 switch (pd->af) { 5727 #ifdef INET 5728 case AF_INET: 5729 if (PF_ANEQ(pd->src, 5730 &nk->addr[pd->sidx], AF_INET)) 5731 pf_change_a(&saddr->v4.s_addr, 5732 pd->ip_sum, 5733 nk->addr[pd->sidx].v4.s_addr, 0); 5734 5735 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5736 AF_INET)) 5737 pf_change_a(&daddr->v4.s_addr, 5738 pd->ip_sum, 5739 nk->addr[pd->didx].v4.s_addr, 0); 5740 5741 if (nk->port[0] != 5742 pd->hdr.icmp.icmp_id) { 5743 pd->hdr.icmp.icmp_cksum = 5744 pf_cksum_fixup( 5745 pd->hdr.icmp.icmp_cksum, icmpid, 5746 nk->port[pd->sidx], 0); 5747 pd->hdr.icmp.icmp_id = 5748 nk->port[pd->sidx]; 5749 } 5750 5751 m_copyback(m, off, ICMP_MINLEN, 5752 (caddr_t )&pd->hdr.icmp); 5753 break; 5754 #endif /* INET */ 5755 #ifdef INET6 5756 case AF_INET6: 5757 if (PF_ANEQ(pd->src, 5758 &nk->addr[pd->sidx], AF_INET6)) 5759 pf_change_a6(saddr, 5760 &pd->hdr.icmp6.icmp6_cksum, 5761 &nk->addr[pd->sidx], 0); 5762 5763 if (PF_ANEQ(pd->dst, 5764 &nk->addr[pd->didx], AF_INET6)) 5765 pf_change_a6(daddr, 5766 &pd->hdr.icmp6.icmp6_cksum, 5767 &nk->addr[pd->didx], 0); 5768 5769 m_copyback(m, off, sizeof(struct icmp6_hdr), 5770 (caddr_t )&pd->hdr.icmp6); 5771 break; 5772 #endif /* INET6 */ 5773 } 5774 } 5775 return (PF_PASS); 5776 5777 } else { 5778 /* 5779 * ICMP error message in response to a TCP/UDP packet. 5780 * Extract the inner TCP/UDP header and search for that state. 5781 */ 5782 5783 struct pf_pdesc pd2; 5784 bzero(&pd2, sizeof pd2); 5785 #ifdef INET 5786 struct ip h2; 5787 #endif /* INET */ 5788 #ifdef INET6 5789 struct ip6_hdr h2_6; 5790 int terminal = 0; 5791 #endif /* INET6 */ 5792 int ipoff2 = 0; 5793 int off2 = 0; 5794 5795 pd2.af = pd->af; 5796 /* Payload packet is from the opposite direction. */ 5797 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 5798 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 5799 switch (pd->af) { 5800 #ifdef INET 5801 case AF_INET: 5802 /* offset of h2 in mbuf chain */ 5803 ipoff2 = off + ICMP_MINLEN; 5804 5805 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5806 NULL, reason, pd2.af)) { 5807 DPFPRINTF(PF_DEBUG_MISC, 5808 ("pf: ICMP error message too short " 5809 "(ip)\n")); 5810 return (PF_DROP); 5811 } 5812 /* 5813 * ICMP error messages don't refer to non-first 5814 * fragments 5815 */ 5816 if (h2.ip_off & htons(IP_OFFMASK)) { 5817 REASON_SET(reason, PFRES_FRAG); 5818 return (PF_DROP); 5819 } 5820 5821 /* offset of protocol header that follows h2 */ 5822 off2 = ipoff2 + (h2.ip_hl << 2); 5823 5824 pd2.proto = h2.ip_p; 5825 pd2.src = (struct pf_addr *)&h2.ip_src; 5826 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5827 pd2.ip_sum = &h2.ip_sum; 5828 break; 5829 #endif /* INET */ 5830 #ifdef INET6 5831 case AF_INET6: 5832 ipoff2 = off + sizeof(struct icmp6_hdr); 5833 5834 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5835 NULL, reason, pd2.af)) { 5836 DPFPRINTF(PF_DEBUG_MISC, 5837 ("pf: ICMP error message too short " 5838 "(ip6)\n")); 5839 return (PF_DROP); 5840 } 5841 pd2.proto = h2_6.ip6_nxt; 5842 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5843 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5844 pd2.ip_sum = NULL; 5845 off2 = ipoff2 + sizeof(h2_6); 5846 do { 5847 switch (pd2.proto) { 5848 case IPPROTO_FRAGMENT: 5849 /* 5850 * ICMPv6 error messages for 5851 * non-first fragments 5852 */ 5853 REASON_SET(reason, PFRES_FRAG); 5854 return (PF_DROP); 5855 case IPPROTO_AH: 5856 case IPPROTO_HOPOPTS: 5857 case IPPROTO_ROUTING: 5858 case IPPROTO_DSTOPTS: { 5859 /* get next header and header length */ 5860 struct ip6_ext opt6; 5861 5862 if (!pf_pull_hdr(m, off2, &opt6, 5863 sizeof(opt6), NULL, reason, 5864 pd2.af)) { 5865 DPFPRINTF(PF_DEBUG_MISC, 5866 ("pf: ICMPv6 short opt\n")); 5867 return (PF_DROP); 5868 } 5869 if (pd2.proto == IPPROTO_AH) 5870 off2 += (opt6.ip6e_len + 2) * 4; 5871 else 5872 off2 += (opt6.ip6e_len + 1) * 8; 5873 pd2.proto = opt6.ip6e_nxt; 5874 /* goto the next header */ 5875 break; 5876 } 5877 default: 5878 terminal++; 5879 break; 5880 } 5881 } while (!terminal); 5882 break; 5883 #endif /* INET6 */ 5884 } 5885 5886 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5887 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5888 printf("pf: BAD ICMP %d:%d outer dst: ", 5889 icmptype, icmpcode); 5890 pf_print_host(pd->src, 0, pd->af); 5891 printf(" -> "); 5892 pf_print_host(pd->dst, 0, pd->af); 5893 printf(" inner src: "); 5894 pf_print_host(pd2.src, 0, pd2.af); 5895 printf(" -> "); 5896 pf_print_host(pd2.dst, 0, pd2.af); 5897 printf("\n"); 5898 } 5899 REASON_SET(reason, PFRES_BADSTATE); 5900 return (PF_DROP); 5901 } 5902 5903 switch (pd2.proto) { 5904 case IPPROTO_TCP: { 5905 struct tcphdr th; 5906 u_int32_t seq; 5907 struct pf_state_peer *src, *dst; 5908 u_int8_t dws; 5909 int copyback = 0; 5910 5911 /* 5912 * Only the first 8 bytes of the TCP header can be 5913 * expected. Don't access any TCP header fields after 5914 * th_seq, an ackskew test is not possible. 5915 */ 5916 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5917 pd2.af)) { 5918 DPFPRINTF(PF_DEBUG_MISC, 5919 ("pf: ICMP error message too short " 5920 "(tcp)\n")); 5921 return (PF_DROP); 5922 } 5923 5924 key.af = pd2.af; 5925 key.proto = IPPROTO_TCP; 5926 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5927 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5928 key.port[pd2.sidx] = th.th_sport; 5929 key.port[pd2.didx] = th.th_dport; 5930 5931 STATE_LOOKUP(kif, &key, *state, pd); 5932 5933 if (pd->dir == (*state)->direction) { 5934 src = &(*state)->dst; 5935 dst = &(*state)->src; 5936 } else { 5937 src = &(*state)->src; 5938 dst = &(*state)->dst; 5939 } 5940 5941 if (src->wscale && dst->wscale) 5942 dws = dst->wscale & PF_WSCALE_MASK; 5943 else 5944 dws = 0; 5945 5946 /* Demodulate sequence number */ 5947 seq = ntohl(th.th_seq) - src->seqdiff; 5948 if (src->seqdiff) { 5949 pf_change_a(&th.th_seq, icmpsum, 5950 htonl(seq), 0); 5951 copyback = 1; 5952 } 5953 5954 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5955 (!SEQ_GEQ(src->seqhi, seq) || 5956 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5957 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5958 printf("pf: BAD ICMP %d:%d ", 5959 icmptype, icmpcode); 5960 pf_print_host(pd->src, 0, pd->af); 5961 printf(" -> "); 5962 pf_print_host(pd->dst, 0, pd->af); 5963 printf(" state: "); 5964 pf_print_state(*state); 5965 printf(" seq=%u\n", seq); 5966 } 5967 REASON_SET(reason, PFRES_BADSTATE); 5968 return (PF_DROP); 5969 } else { 5970 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5971 printf("pf: OK ICMP %d:%d ", 5972 icmptype, icmpcode); 5973 pf_print_host(pd->src, 0, pd->af); 5974 printf(" -> "); 5975 pf_print_host(pd->dst, 0, pd->af); 5976 printf(" state: "); 5977 pf_print_state(*state); 5978 printf(" seq=%u\n", seq); 5979 } 5980 } 5981 5982 /* translate source/destination address, if necessary */ 5983 if ((*state)->key[PF_SK_WIRE] != 5984 (*state)->key[PF_SK_STACK]) { 5985 struct pf_state_key *nk = 5986 (*state)->key[pd->didx]; 5987 5988 if (PF_ANEQ(pd2.src, 5989 &nk->addr[pd2.sidx], pd2.af) || 5990 nk->port[pd2.sidx] != th.th_sport) 5991 pf_change_icmp(pd2.src, &th.th_sport, 5992 daddr, &nk->addr[pd2.sidx], 5993 nk->port[pd2.sidx], NULL, 5994 pd2.ip_sum, icmpsum, 5995 pd->ip_sum, 0, pd2.af); 5996 5997 if (PF_ANEQ(pd2.dst, 5998 &nk->addr[pd2.didx], pd2.af) || 5999 nk->port[pd2.didx] != th.th_dport) 6000 pf_change_icmp(pd2.dst, &th.th_dport, 6001 saddr, &nk->addr[pd2.didx], 6002 nk->port[pd2.didx], NULL, 6003 pd2.ip_sum, icmpsum, 6004 pd->ip_sum, 0, pd2.af); 6005 copyback = 1; 6006 } 6007 6008 if (copyback) { 6009 switch (pd2.af) { 6010 #ifdef INET 6011 case AF_INET: 6012 m_copyback(m, off, ICMP_MINLEN, 6013 (caddr_t )&pd->hdr.icmp); 6014 m_copyback(m, ipoff2, sizeof(h2), 6015 (caddr_t )&h2); 6016 break; 6017 #endif /* INET */ 6018 #ifdef INET6 6019 case AF_INET6: 6020 m_copyback(m, off, 6021 sizeof(struct icmp6_hdr), 6022 (caddr_t )&pd->hdr.icmp6); 6023 m_copyback(m, ipoff2, sizeof(h2_6), 6024 (caddr_t )&h2_6); 6025 break; 6026 #endif /* INET6 */ 6027 } 6028 m_copyback(m, off2, 8, (caddr_t)&th); 6029 } 6030 6031 return (PF_PASS); 6032 break; 6033 } 6034 case IPPROTO_UDP: { 6035 struct udphdr uh; 6036 6037 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6038 NULL, reason, pd2.af)) { 6039 DPFPRINTF(PF_DEBUG_MISC, 6040 ("pf: ICMP error message too short " 6041 "(udp)\n")); 6042 return (PF_DROP); 6043 } 6044 6045 key.af = pd2.af; 6046 key.proto = IPPROTO_UDP; 6047 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6048 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6049 key.port[pd2.sidx] = uh.uh_sport; 6050 key.port[pd2.didx] = uh.uh_dport; 6051 6052 STATE_LOOKUP(kif, &key, *state, pd); 6053 6054 /* translate source/destination address, if necessary */ 6055 if ((*state)->key[PF_SK_WIRE] != 6056 (*state)->key[PF_SK_STACK]) { 6057 struct pf_state_key *nk = 6058 (*state)->key[pd->didx]; 6059 6060 if (PF_ANEQ(pd2.src, 6061 &nk->addr[pd2.sidx], pd2.af) || 6062 nk->port[pd2.sidx] != uh.uh_sport) 6063 pf_change_icmp(pd2.src, &uh.uh_sport, 6064 daddr, &nk->addr[pd2.sidx], 6065 nk->port[pd2.sidx], &uh.uh_sum, 6066 pd2.ip_sum, icmpsum, 6067 pd->ip_sum, 1, pd2.af); 6068 6069 if (PF_ANEQ(pd2.dst, 6070 &nk->addr[pd2.didx], pd2.af) || 6071 nk->port[pd2.didx] != uh.uh_dport) 6072 pf_change_icmp(pd2.dst, &uh.uh_dport, 6073 saddr, &nk->addr[pd2.didx], 6074 nk->port[pd2.didx], &uh.uh_sum, 6075 pd2.ip_sum, icmpsum, 6076 pd->ip_sum, 1, pd2.af); 6077 6078 switch (pd2.af) { 6079 #ifdef INET 6080 case AF_INET: 6081 m_copyback(m, off, ICMP_MINLEN, 6082 (caddr_t )&pd->hdr.icmp); 6083 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6084 break; 6085 #endif /* INET */ 6086 #ifdef INET6 6087 case AF_INET6: 6088 m_copyback(m, off, 6089 sizeof(struct icmp6_hdr), 6090 (caddr_t )&pd->hdr.icmp6); 6091 m_copyback(m, ipoff2, sizeof(h2_6), 6092 (caddr_t )&h2_6); 6093 break; 6094 #endif /* INET6 */ 6095 } 6096 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6097 } 6098 return (PF_PASS); 6099 break; 6100 } 6101 #ifdef INET 6102 case IPPROTO_ICMP: { 6103 struct icmp iih; 6104 6105 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6106 NULL, reason, pd2.af)) { 6107 DPFPRINTF(PF_DEBUG_MISC, 6108 ("pf: ICMP error message too short i" 6109 "(icmp)\n")); 6110 return (PF_DROP); 6111 } 6112 6113 key.af = pd2.af; 6114 key.proto = IPPROTO_ICMP; 6115 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6116 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6117 key.port[0] = key.port[1] = iih.icmp_id; 6118 6119 STATE_LOOKUP(kif, &key, *state, pd); 6120 6121 /* translate source/destination address, if necessary */ 6122 if ((*state)->key[PF_SK_WIRE] != 6123 (*state)->key[PF_SK_STACK]) { 6124 struct pf_state_key *nk = 6125 (*state)->key[pd->didx]; 6126 6127 if (PF_ANEQ(pd2.src, 6128 &nk->addr[pd2.sidx], pd2.af) || 6129 nk->port[pd2.sidx] != iih.icmp_id) 6130 pf_change_icmp(pd2.src, &iih.icmp_id, 6131 daddr, &nk->addr[pd2.sidx], 6132 nk->port[pd2.sidx], NULL, 6133 pd2.ip_sum, icmpsum, 6134 pd->ip_sum, 0, AF_INET); 6135 6136 if (PF_ANEQ(pd2.dst, 6137 &nk->addr[pd2.didx], pd2.af) || 6138 nk->port[pd2.didx] != iih.icmp_id) 6139 pf_change_icmp(pd2.dst, &iih.icmp_id, 6140 saddr, &nk->addr[pd2.didx], 6141 nk->port[pd2.didx], NULL, 6142 pd2.ip_sum, icmpsum, 6143 pd->ip_sum, 0, AF_INET); 6144 6145 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6146 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6147 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6148 } 6149 return (PF_PASS); 6150 break; 6151 } 6152 #endif /* INET */ 6153 #ifdef INET6 6154 case IPPROTO_ICMPV6: { 6155 struct icmp6_hdr iih; 6156 6157 if (!pf_pull_hdr(m, off2, &iih, 6158 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6159 DPFPRINTF(PF_DEBUG_MISC, 6160 ("pf: ICMP error message too short " 6161 "(icmp6)\n")); 6162 return (PF_DROP); 6163 } 6164 6165 key.af = pd2.af; 6166 key.proto = IPPROTO_ICMPV6; 6167 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6168 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6169 key.port[0] = key.port[1] = iih.icmp6_id; 6170 6171 STATE_LOOKUP(kif, &key, *state, pd); 6172 6173 /* translate source/destination address, if necessary */ 6174 if ((*state)->key[PF_SK_WIRE] != 6175 (*state)->key[PF_SK_STACK]) { 6176 struct pf_state_key *nk = 6177 (*state)->key[pd->didx]; 6178 6179 if (PF_ANEQ(pd2.src, 6180 &nk->addr[pd2.sidx], pd2.af) || 6181 nk->port[pd2.sidx] != iih.icmp6_id) 6182 pf_change_icmp(pd2.src, &iih.icmp6_id, 6183 daddr, &nk->addr[pd2.sidx], 6184 nk->port[pd2.sidx], NULL, 6185 pd2.ip_sum, icmpsum, 6186 pd->ip_sum, 0, AF_INET6); 6187 6188 if (PF_ANEQ(pd2.dst, 6189 &nk->addr[pd2.didx], pd2.af) || 6190 nk->port[pd2.didx] != iih.icmp6_id) 6191 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6192 saddr, &nk->addr[pd2.didx], 6193 nk->port[pd2.didx], NULL, 6194 pd2.ip_sum, icmpsum, 6195 pd->ip_sum, 0, AF_INET6); 6196 6197 m_copyback(m, off, sizeof(struct icmp6_hdr), 6198 (caddr_t)&pd->hdr.icmp6); 6199 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6200 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6201 (caddr_t)&iih); 6202 } 6203 return (PF_PASS); 6204 break; 6205 } 6206 #endif /* INET6 */ 6207 default: { 6208 key.af = pd2.af; 6209 key.proto = pd2.proto; 6210 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6211 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6212 key.port[0] = key.port[1] = 0; 6213 6214 STATE_LOOKUP(kif, &key, *state, pd); 6215 6216 /* translate source/destination address, if necessary */ 6217 if ((*state)->key[PF_SK_WIRE] != 6218 (*state)->key[PF_SK_STACK]) { 6219 struct pf_state_key *nk = 6220 (*state)->key[pd->didx]; 6221 6222 if (PF_ANEQ(pd2.src, 6223 &nk->addr[pd2.sidx], pd2.af)) 6224 pf_change_icmp(pd2.src, NULL, daddr, 6225 &nk->addr[pd2.sidx], 0, NULL, 6226 pd2.ip_sum, icmpsum, 6227 pd->ip_sum, 0, pd2.af); 6228 6229 if (PF_ANEQ(pd2.dst, 6230 &nk->addr[pd2.didx], pd2.af)) 6231 pf_change_icmp(pd2.dst, NULL, saddr, 6232 &nk->addr[pd2.didx], 0, NULL, 6233 pd2.ip_sum, icmpsum, 6234 pd->ip_sum, 0, pd2.af); 6235 6236 switch (pd2.af) { 6237 #ifdef INET 6238 case AF_INET: 6239 m_copyback(m, off, ICMP_MINLEN, 6240 (caddr_t)&pd->hdr.icmp); 6241 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6242 break; 6243 #endif /* INET */ 6244 #ifdef INET6 6245 case AF_INET6: 6246 m_copyback(m, off, 6247 sizeof(struct icmp6_hdr), 6248 (caddr_t )&pd->hdr.icmp6); 6249 m_copyback(m, ipoff2, sizeof(h2_6), 6250 (caddr_t )&h2_6); 6251 break; 6252 #endif /* INET6 */ 6253 } 6254 } 6255 return (PF_PASS); 6256 break; 6257 } 6258 } 6259 } 6260 } 6261 6262 static int 6263 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 6264 struct mbuf *m, struct pf_pdesc *pd) 6265 { 6266 struct pf_state_peer *src, *dst; 6267 struct pf_state_key_cmp key; 6268 uint8_t psrc, pdst; 6269 6270 bzero(&key, sizeof(key)); 6271 key.af = pd->af; 6272 key.proto = pd->proto; 6273 if (pd->dir == PF_IN) { 6274 PF_ACPY(&key.addr[0], pd->src, key.af); 6275 PF_ACPY(&key.addr[1], pd->dst, key.af); 6276 key.port[0] = key.port[1] = 0; 6277 } else { 6278 PF_ACPY(&key.addr[1], pd->src, key.af); 6279 PF_ACPY(&key.addr[0], pd->dst, key.af); 6280 key.port[1] = key.port[0] = 0; 6281 } 6282 6283 STATE_LOOKUP(kif, &key, *state, pd); 6284 6285 if (pd->dir == (*state)->direction) { 6286 src = &(*state)->src; 6287 dst = &(*state)->dst; 6288 psrc = PF_PEER_SRC; 6289 pdst = PF_PEER_DST; 6290 } else { 6291 src = &(*state)->dst; 6292 dst = &(*state)->src; 6293 psrc = PF_PEER_DST; 6294 pdst = PF_PEER_SRC; 6295 } 6296 6297 /* update states */ 6298 if (src->state < PFOTHERS_SINGLE) 6299 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6300 if (dst->state == PFOTHERS_SINGLE) 6301 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6302 6303 /* update expire time */ 6304 (*state)->expire = time_uptime; 6305 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6306 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6307 else 6308 (*state)->timeout = PFTM_OTHER_SINGLE; 6309 6310 /* translate source/destination address, if necessary */ 6311 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6312 struct pf_state_key *nk = (*state)->key[pd->didx]; 6313 6314 KASSERT(nk, ("%s: nk is null", __func__)); 6315 KASSERT(pd, ("%s: pd is null", __func__)); 6316 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6317 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6318 switch (pd->af) { 6319 #ifdef INET 6320 case AF_INET: 6321 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6322 pf_change_a(&pd->src->v4.s_addr, 6323 pd->ip_sum, 6324 nk->addr[pd->sidx].v4.s_addr, 6325 0); 6326 6327 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6328 pf_change_a(&pd->dst->v4.s_addr, 6329 pd->ip_sum, 6330 nk->addr[pd->didx].v4.s_addr, 6331 0); 6332 6333 break; 6334 #endif /* INET */ 6335 #ifdef INET6 6336 case AF_INET6: 6337 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6338 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6339 6340 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6341 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6342 #endif /* INET6 */ 6343 } 6344 } 6345 return (PF_PASS); 6346 } 6347 6348 /* 6349 * ipoff and off are measured from the start of the mbuf chain. 6350 * h must be at "ipoff" on the mbuf chain. 6351 */ 6352 void * 6353 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6354 u_short *actionp, u_short *reasonp, sa_family_t af) 6355 { 6356 switch (af) { 6357 #ifdef INET 6358 case AF_INET: { 6359 struct ip *h = mtod(m, struct ip *); 6360 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6361 6362 if (fragoff) { 6363 if (fragoff >= len) 6364 ACTION_SET(actionp, PF_PASS); 6365 else { 6366 ACTION_SET(actionp, PF_DROP); 6367 REASON_SET(reasonp, PFRES_FRAG); 6368 } 6369 return (NULL); 6370 } 6371 if (m->m_pkthdr.len < off + len || 6372 ntohs(h->ip_len) < off + len) { 6373 ACTION_SET(actionp, PF_DROP); 6374 REASON_SET(reasonp, PFRES_SHORT); 6375 return (NULL); 6376 } 6377 break; 6378 } 6379 #endif /* INET */ 6380 #ifdef INET6 6381 case AF_INET6: { 6382 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6383 6384 if (m->m_pkthdr.len < off + len || 6385 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6386 (unsigned)(off + len)) { 6387 ACTION_SET(actionp, PF_DROP); 6388 REASON_SET(reasonp, PFRES_SHORT); 6389 return (NULL); 6390 } 6391 break; 6392 } 6393 #endif /* INET6 */ 6394 } 6395 m_copydata(m, off, len, p); 6396 return (p); 6397 } 6398 6399 int 6400 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6401 int rtableid) 6402 { 6403 struct ifnet *ifp; 6404 6405 /* 6406 * Skip check for addresses with embedded interface scope, 6407 * as they would always match anyway. 6408 */ 6409 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6410 return (1); 6411 6412 if (af != AF_INET && af != AF_INET6) 6413 return (0); 6414 6415 /* Skip checks for ipsec interfaces */ 6416 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6417 return (1); 6418 6419 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6420 6421 switch (af) { 6422 #ifdef INET6 6423 case AF_INET6: 6424 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6425 ifp)); 6426 #endif 6427 #ifdef INET 6428 case AF_INET: 6429 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6430 ifp)); 6431 #endif 6432 } 6433 6434 return (0); 6435 } 6436 6437 #ifdef INET 6438 static void 6439 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 6440 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6441 { 6442 struct mbuf *m0, *m1, *md; 6443 struct sockaddr_in dst; 6444 struct ip *ip; 6445 struct ifnet *ifp = NULL; 6446 struct pf_addr naddr; 6447 struct pf_ksrc_node *sn = NULL; 6448 int error = 0; 6449 uint16_t ip_len, ip_off; 6450 int r_rt, r_dir; 6451 6452 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6453 6454 if (s) { 6455 r_rt = s->rt; 6456 r_dir = s->direction; 6457 } else { 6458 r_rt = r->rt; 6459 r_dir = r->direction; 6460 } 6461 6462 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 6463 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 6464 __func__)); 6465 6466 if ((pd->pf_mtag == NULL && 6467 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6468 pd->pf_mtag->routed++ > 3) { 6469 m0 = *m; 6470 *m = NULL; 6471 goto bad_locked; 6472 } 6473 6474 if (r_rt == PF_DUPTO) { 6475 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 6476 if (s == NULL) { 6477 ifp = r->rpool.cur->kif ? 6478 r->rpool.cur->kif->pfik_ifp : NULL; 6479 } else { 6480 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6481 /* If pfsync'd */ 6482 if (ifp == NULL) 6483 ifp = r->rpool.cur->kif ? 6484 r->rpool.cur->kif->pfik_ifp : NULL; 6485 PF_STATE_UNLOCK(s); 6486 } 6487 if (ifp == oifp) { 6488 /* When the 2nd interface is not skipped */ 6489 return; 6490 } else { 6491 m0 = *m; 6492 *m = NULL; 6493 goto bad; 6494 } 6495 } else { 6496 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 6497 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6498 if (s) 6499 PF_STATE_UNLOCK(s); 6500 return; 6501 } 6502 } 6503 } else { 6504 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 6505 pf_dummynet(pd, s, r, m); 6506 if (s) 6507 PF_STATE_UNLOCK(s); 6508 return; 6509 } 6510 m0 = *m; 6511 } 6512 6513 ip = mtod(m0, struct ip *); 6514 6515 bzero(&dst, sizeof(dst)); 6516 dst.sin_family = AF_INET; 6517 dst.sin_len = sizeof(dst); 6518 dst.sin_addr = ip->ip_dst; 6519 6520 bzero(&naddr, sizeof(naddr)); 6521 6522 if (s == NULL) { 6523 if (TAILQ_EMPTY(&r->rpool.list)) { 6524 DPFPRINTF(PF_DEBUG_URGENT, 6525 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6526 goto bad_locked; 6527 } 6528 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6529 &naddr, NULL, &sn); 6530 if (!PF_AZERO(&naddr, AF_INET)) 6531 dst.sin_addr.s_addr = naddr.v4.s_addr; 6532 ifp = r->rpool.cur->kif ? 6533 r->rpool.cur->kif->pfik_ifp : NULL; 6534 } else { 6535 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6536 dst.sin_addr.s_addr = 6537 s->rt_addr.v4.s_addr; 6538 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6539 PF_STATE_UNLOCK(s); 6540 } 6541 /* If pfsync'd */ 6542 if (ifp == NULL) 6543 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6544 if (ifp == NULL) 6545 goto bad; 6546 6547 if (pd->dir == PF_IN) { 6548 if (pf_test(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 6549 goto bad; 6550 else if (m0 == NULL) 6551 goto done; 6552 if (m0->m_len < sizeof(struct ip)) { 6553 DPFPRINTF(PF_DEBUG_URGENT, 6554 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6555 goto bad; 6556 } 6557 ip = mtod(m0, struct ip *); 6558 } 6559 6560 if (ifp->if_flags & IFF_LOOPBACK) 6561 m0->m_flags |= M_SKIP_FIREWALL; 6562 6563 ip_len = ntohs(ip->ip_len); 6564 ip_off = ntohs(ip->ip_off); 6565 6566 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6567 m0->m_pkthdr.csum_flags |= CSUM_IP; 6568 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6569 in_delayed_cksum(m0); 6570 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6571 } 6572 #if defined(SCTP) || defined(SCTP_SUPPORT) 6573 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6574 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 6575 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6576 } 6577 #endif 6578 6579 /* 6580 * If small enough for interface, or the interface will take 6581 * care of the fragmentation for us, we can just send directly. 6582 */ 6583 if (ip_len <= ifp->if_mtu || 6584 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6585 ip->ip_sum = 0; 6586 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6587 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6588 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6589 } 6590 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6591 6592 md = m0; 6593 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 6594 if (md != NULL) 6595 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 6596 goto done; 6597 } 6598 6599 /* Balk when DF bit is set or the interface didn't support TSO. */ 6600 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6601 error = EMSGSIZE; 6602 KMOD_IPSTAT_INC(ips_cantfrag); 6603 if (r_rt != PF_DUPTO) { 6604 if (s && pd->nat_rule != NULL) 6605 PACKET_UNDO_NAT(m0, pd, 6606 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6607 s); 6608 6609 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6610 ifp->if_mtu); 6611 goto done; 6612 } else 6613 goto bad; 6614 } 6615 6616 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6617 if (error) 6618 goto bad; 6619 6620 for (; m0; m0 = m1) { 6621 m1 = m0->m_nextpkt; 6622 m0->m_nextpkt = NULL; 6623 if (error == 0) { 6624 m_clrprotoflags(m0); 6625 md = m0; 6626 error = pf_dummynet_route(pd, s, r, ifp, 6627 sintosa(&dst), &md); 6628 if (md != NULL) 6629 error = (*ifp->if_output)(ifp, md, 6630 sintosa(&dst), NULL); 6631 } else 6632 m_freem(m0); 6633 } 6634 6635 if (error == 0) 6636 KMOD_IPSTAT_INC(ips_fragmented); 6637 6638 done: 6639 if (r_rt != PF_DUPTO) 6640 *m = NULL; 6641 return; 6642 6643 bad_locked: 6644 if (s) 6645 PF_STATE_UNLOCK(s); 6646 bad: 6647 m_freem(m0); 6648 goto done; 6649 } 6650 #endif /* INET */ 6651 6652 #ifdef INET6 6653 static void 6654 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 6655 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6656 { 6657 struct mbuf *m0, *md; 6658 struct sockaddr_in6 dst; 6659 struct ip6_hdr *ip6; 6660 struct ifnet *ifp = NULL; 6661 struct pf_addr naddr; 6662 struct pf_ksrc_node *sn = NULL; 6663 int r_rt, r_dir; 6664 6665 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6666 6667 if (s) { 6668 r_rt = s->rt; 6669 r_dir = s->direction; 6670 } else { 6671 r_rt = r->rt; 6672 r_dir = r->direction; 6673 } 6674 6675 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 6676 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 6677 __func__)); 6678 6679 if ((pd->pf_mtag == NULL && 6680 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6681 pd->pf_mtag->routed++ > 3) { 6682 m0 = *m; 6683 *m = NULL; 6684 goto bad_locked; 6685 } 6686 6687 if (r_rt == PF_DUPTO) { 6688 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 6689 if (s == NULL) { 6690 ifp = r->rpool.cur->kif ? 6691 r->rpool.cur->kif->pfik_ifp : NULL; 6692 } else { 6693 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6694 /* If pfsync'd */ 6695 if (ifp == NULL) 6696 ifp = r->rpool.cur->kif ? 6697 r->rpool.cur->kif->pfik_ifp : NULL; 6698 PF_STATE_UNLOCK(s); 6699 } 6700 if (ifp == oifp) { 6701 /* When the 2nd interface is not skipped */ 6702 return; 6703 } else { 6704 m0 = *m; 6705 *m = NULL; 6706 goto bad; 6707 } 6708 } else { 6709 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 6710 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6711 if (s) 6712 PF_STATE_UNLOCK(s); 6713 return; 6714 } 6715 } 6716 } else { 6717 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 6718 pf_dummynet(pd, s, r, m); 6719 if (s) 6720 PF_STATE_UNLOCK(s); 6721 return; 6722 } 6723 m0 = *m; 6724 } 6725 6726 ip6 = mtod(m0, struct ip6_hdr *); 6727 6728 bzero(&dst, sizeof(dst)); 6729 dst.sin6_family = AF_INET6; 6730 dst.sin6_len = sizeof(dst); 6731 dst.sin6_addr = ip6->ip6_dst; 6732 6733 bzero(&naddr, sizeof(naddr)); 6734 6735 if (s == NULL) { 6736 if (TAILQ_EMPTY(&r->rpool.list)) { 6737 DPFPRINTF(PF_DEBUG_URGENT, 6738 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6739 goto bad_locked; 6740 } 6741 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6742 &naddr, NULL, &sn); 6743 if (!PF_AZERO(&naddr, AF_INET6)) 6744 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6745 &naddr, AF_INET6); 6746 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6747 } else { 6748 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6749 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6750 &s->rt_addr, AF_INET6); 6751 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6752 } 6753 6754 if (s) 6755 PF_STATE_UNLOCK(s); 6756 6757 /* If pfsync'd */ 6758 if (ifp == NULL) 6759 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6760 if (ifp == NULL) 6761 goto bad; 6762 6763 if (pd->dir == PF_IN) { 6764 if (pf_test6(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 6765 goto bad; 6766 else if (m0 == NULL) 6767 goto done; 6768 if (m0->m_len < sizeof(struct ip6_hdr)) { 6769 DPFPRINTF(PF_DEBUG_URGENT, 6770 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6771 __func__)); 6772 goto bad; 6773 } 6774 ip6 = mtod(m0, struct ip6_hdr *); 6775 } 6776 6777 if (ifp->if_flags & IFF_LOOPBACK) 6778 m0->m_flags |= M_SKIP_FIREWALL; 6779 6780 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6781 ~ifp->if_hwassist) { 6782 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6783 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6784 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6785 } 6786 6787 /* 6788 * If the packet is too large for the outgoing interface, 6789 * send back an icmp6 error. 6790 */ 6791 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6792 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6793 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 6794 md = m0; 6795 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 6796 if (md != NULL) 6797 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 6798 } 6799 else { 6800 in6_ifstat_inc(ifp, ifs6_in_toobig); 6801 if (r_rt != PF_DUPTO) { 6802 if (s && pd->nat_rule != NULL) 6803 PACKET_UNDO_NAT(m0, pd, 6804 ((caddr_t)ip6 - m0->m_data) + 6805 sizeof(struct ip6_hdr), s); 6806 6807 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6808 } else 6809 goto bad; 6810 } 6811 6812 done: 6813 if (r_rt != PF_DUPTO) 6814 *m = NULL; 6815 return; 6816 6817 bad_locked: 6818 if (s) 6819 PF_STATE_UNLOCK(s); 6820 bad: 6821 m_freem(m0); 6822 goto done; 6823 } 6824 #endif /* INET6 */ 6825 6826 /* 6827 * FreeBSD supports cksum offloads for the following drivers. 6828 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6829 * 6830 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6831 * network driver performed cksum including pseudo header, need to verify 6832 * csum_data 6833 * CSUM_DATA_VALID : 6834 * network driver performed cksum, needs to additional pseudo header 6835 * cksum computation with partial csum_data(i.e. lack of H/W support for 6836 * pseudo header, for instance sk(4) and possibly gem(4)) 6837 * 6838 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6839 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6840 * TCP/UDP layer. 6841 * Also, set csum_data to 0xffff to force cksum validation. 6842 */ 6843 static int 6844 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6845 { 6846 u_int16_t sum = 0; 6847 int hw_assist = 0; 6848 struct ip *ip; 6849 6850 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6851 return (1); 6852 if (m->m_pkthdr.len < off + len) 6853 return (1); 6854 6855 switch (p) { 6856 case IPPROTO_TCP: 6857 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6858 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6859 sum = m->m_pkthdr.csum_data; 6860 } else { 6861 ip = mtod(m, struct ip *); 6862 sum = in_pseudo(ip->ip_src.s_addr, 6863 ip->ip_dst.s_addr, htonl((u_short)len + 6864 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6865 } 6866 sum ^= 0xffff; 6867 ++hw_assist; 6868 } 6869 break; 6870 case IPPROTO_UDP: 6871 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6872 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6873 sum = m->m_pkthdr.csum_data; 6874 } else { 6875 ip = mtod(m, struct ip *); 6876 sum = in_pseudo(ip->ip_src.s_addr, 6877 ip->ip_dst.s_addr, htonl((u_short)len + 6878 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6879 } 6880 sum ^= 0xffff; 6881 ++hw_assist; 6882 } 6883 break; 6884 case IPPROTO_ICMP: 6885 #ifdef INET6 6886 case IPPROTO_ICMPV6: 6887 #endif /* INET6 */ 6888 break; 6889 default: 6890 return (1); 6891 } 6892 6893 if (!hw_assist) { 6894 switch (af) { 6895 case AF_INET: 6896 if (p == IPPROTO_ICMP) { 6897 if (m->m_len < off) 6898 return (1); 6899 m->m_data += off; 6900 m->m_len -= off; 6901 sum = in_cksum(m, len); 6902 m->m_data -= off; 6903 m->m_len += off; 6904 } else { 6905 if (m->m_len < sizeof(struct ip)) 6906 return (1); 6907 sum = in4_cksum(m, p, off, len); 6908 } 6909 break; 6910 #ifdef INET6 6911 case AF_INET6: 6912 if (m->m_len < sizeof(struct ip6_hdr)) 6913 return (1); 6914 sum = in6_cksum(m, p, off, len); 6915 break; 6916 #endif /* INET6 */ 6917 default: 6918 return (1); 6919 } 6920 } 6921 if (sum) { 6922 switch (p) { 6923 case IPPROTO_TCP: 6924 { 6925 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6926 break; 6927 } 6928 case IPPROTO_UDP: 6929 { 6930 KMOD_UDPSTAT_INC(udps_badsum); 6931 break; 6932 } 6933 #ifdef INET 6934 case IPPROTO_ICMP: 6935 { 6936 KMOD_ICMPSTAT_INC(icps_checksum); 6937 break; 6938 } 6939 #endif 6940 #ifdef INET6 6941 case IPPROTO_ICMPV6: 6942 { 6943 KMOD_ICMP6STAT_INC(icp6s_checksum); 6944 break; 6945 } 6946 #endif /* INET6 */ 6947 } 6948 return (1); 6949 } else { 6950 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6951 m->m_pkthdr.csum_flags |= 6952 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6953 m->m_pkthdr.csum_data = 0xffff; 6954 } 6955 } 6956 return (0); 6957 } 6958 6959 static bool 6960 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 6961 const struct pf_kstate *s, struct ip_fw_args *dnflow) 6962 { 6963 int dndir = r->direction; 6964 6965 if (s && dndir == PF_INOUT) { 6966 dndir = s->direction; 6967 } else if (dndir == PF_INOUT) { 6968 /* Assume primary direction. Happens when we've set dnpipe in 6969 * the ethernet level code. */ 6970 dndir = pd->dir; 6971 } 6972 6973 memset(dnflow, 0, sizeof(*dnflow)); 6974 6975 if (pd->dport != NULL) 6976 dnflow->f_id.dst_port = ntohs(*pd->dport); 6977 if (pd->sport != NULL) 6978 dnflow->f_id.src_port = ntohs(*pd->sport); 6979 6980 if (pd->dir == PF_IN) 6981 dnflow->flags |= IPFW_ARGS_IN; 6982 else 6983 dnflow->flags |= IPFW_ARGS_OUT; 6984 6985 if (pd->dir != dndir && pd->act.dnrpipe) { 6986 dnflow->rule.info = pd->act.dnrpipe; 6987 } 6988 else if (pd->dir == dndir && pd->act.dnpipe) { 6989 dnflow->rule.info = pd->act.dnpipe; 6990 } 6991 else { 6992 return (false); 6993 } 6994 6995 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6996 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 6997 dnflow->rule.info |= IPFW_IS_PIPE; 6998 6999 dnflow->f_id.proto = pd->proto; 7000 dnflow->f_id.extra = dnflow->rule.info; 7001 switch (pd->af) { 7002 case AF_INET: 7003 dnflow->f_id.addr_type = 4; 7004 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 7005 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 7006 break; 7007 case AF_INET6: 7008 dnflow->flags |= IPFW_ARGS_IP6; 7009 dnflow->f_id.addr_type = 6; 7010 dnflow->f_id.src_ip6 = pd->src->v6; 7011 dnflow->f_id.dst_ip6 = pd->dst->v6; 7012 break; 7013 default: 7014 panic("Invalid AF"); 7015 break; 7016 } 7017 7018 return (true); 7019 } 7020 7021 int 7022 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7023 struct inpcb *inp) 7024 { 7025 struct pfi_kkif *kif; 7026 struct mbuf *m = *m0; 7027 7028 M_ASSERTPKTHDR(m); 7029 MPASS(ifp->if_vnet == curvnet); 7030 NET_EPOCH_ASSERT(); 7031 7032 if (!V_pf_status.running) 7033 return (PF_PASS); 7034 7035 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7036 7037 if (kif == NULL) { 7038 DPFPRINTF(PF_DEBUG_URGENT, 7039 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 7040 return (PF_DROP); 7041 } 7042 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7043 return (PF_PASS); 7044 7045 if (m->m_flags & M_SKIP_FIREWALL) 7046 return (PF_PASS); 7047 7048 /* Stateless! */ 7049 return (pf_test_eth_rule(dir, kif, m0)); 7050 } 7051 7052 static int 7053 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 7054 struct pf_krule *r, struct mbuf **m0) 7055 { 7056 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 7057 } 7058 7059 static int 7060 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 7061 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7062 struct mbuf **m0) 7063 { 7064 NET_EPOCH_ASSERT(); 7065 7066 if (pd->act.dnpipe || pd->act.dnrpipe) { 7067 struct ip_fw_args dnflow; 7068 if (ip_dn_io_ptr == NULL) { 7069 m_freem(*m0); 7070 *m0 = NULL; 7071 return (ENOMEM); 7072 } 7073 7074 if (pd->pf_mtag == NULL && 7075 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7076 m_freem(*m0); 7077 *m0 = NULL; 7078 return (ENOMEM); 7079 } 7080 7081 if (ifp != NULL) { 7082 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 7083 7084 pd->pf_mtag->if_index = ifp->if_index; 7085 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7086 7087 MPASS(sa != NULL); 7088 7089 if (pd->af == AF_INET) 7090 memcpy(&pd->pf_mtag->dst, sa, 7091 sizeof(struct sockaddr_in)); 7092 else 7093 memcpy(&pd->pf_mtag->dst, sa, 7094 sizeof(struct sockaddr_in6)); 7095 } 7096 7097 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 7098 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 7099 ip_dn_io_ptr(m0, &dnflow); 7100 if (*m0 != NULL) { 7101 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7102 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7103 } 7104 } 7105 } 7106 7107 return (0); 7108 } 7109 7110 #ifdef INET 7111 int 7112 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7113 struct inpcb *inp, struct pf_rule_actions *default_actions) 7114 { 7115 struct pfi_kkif *kif; 7116 u_short action, reason = 0; 7117 struct mbuf *m = *m0; 7118 struct ip *h = NULL; 7119 struct m_tag *ipfwtag; 7120 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7121 struct pf_kstate *s = NULL; 7122 struct pf_kruleset *ruleset = NULL; 7123 struct pf_pdesc pd; 7124 int off, dirndx, use_2nd_queue = 0; 7125 uint16_t tag; 7126 uint8_t rt; 7127 7128 PF_RULES_RLOCK_TRACKER; 7129 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7130 M_ASSERTPKTHDR(m); 7131 7132 if (!V_pf_status.running) 7133 return (PF_PASS); 7134 7135 PF_RULES_RLOCK(); 7136 7137 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7138 7139 if (__predict_false(kif == NULL)) { 7140 DPFPRINTF(PF_DEBUG_URGENT, 7141 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7142 PF_RULES_RUNLOCK(); 7143 return (PF_DROP); 7144 } 7145 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7146 PF_RULES_RUNLOCK(); 7147 return (PF_PASS); 7148 } 7149 7150 if (m->m_flags & M_SKIP_FIREWALL) { 7151 PF_RULES_RUNLOCK(); 7152 return (PF_PASS); 7153 } 7154 7155 memset(&pd, 0, sizeof(pd)); 7156 if (default_actions != NULL) 7157 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7158 pd.pf_mtag = pf_find_mtag(m); 7159 7160 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7161 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7162 7163 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7164 pd.pf_mtag->if_idxgen); 7165 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7166 PF_RULES_RUNLOCK(); 7167 m_freem(*m0); 7168 *m0 = NULL; 7169 return (PF_PASS); 7170 } 7171 PF_RULES_RUNLOCK(); 7172 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7173 *m0 = NULL; 7174 return (PF_PASS); 7175 } 7176 7177 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7178 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7179 pd.act.flags = pd.pf_mtag->dnflags; 7180 } 7181 7182 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7183 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7184 /* Dummynet re-injects packets after they've 7185 * completed their delay. We've already 7186 * processed them, so pass unconditionally. */ 7187 7188 /* But only once. We may see the packet multiple times (e.g. 7189 * PFIL_IN/PFIL_OUT). */ 7190 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7191 PF_RULES_RUNLOCK(); 7192 7193 return (PF_PASS); 7194 } 7195 7196 pd.sport = pd.dport = NULL; 7197 pd.proto_sum = NULL; 7198 pd.dir = dir; 7199 pd.sidx = (dir == PF_IN) ? 0 : 1; 7200 pd.didx = (dir == PF_IN) ? 1 : 0; 7201 pd.af = AF_INET; 7202 pd.act.rtableid = -1; 7203 7204 if (__predict_false(ip_divert_ptr != NULL) && 7205 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 7206 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 7207 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 7208 if (pd.pf_mtag == NULL && 7209 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7210 action = PF_DROP; 7211 goto done; 7212 } 7213 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 7214 m_tag_delete(m, ipfwtag); 7215 } 7216 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 7217 m->m_flags |= M_FASTFWD_OURS; 7218 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 7219 } 7220 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 7221 /* We do IP header normalization and packet reassembly here */ 7222 action = PF_DROP; 7223 goto done; 7224 } 7225 m = *m0; /* pf_normalize messes with m0 */ 7226 h = mtod(m, struct ip *); 7227 7228 off = h->ip_hl << 2; 7229 if (off < (int)sizeof(struct ip)) { 7230 action = PF_DROP; 7231 REASON_SET(&reason, PFRES_SHORT); 7232 pd.act.log = PF_LOG_FORCE; 7233 goto done; 7234 } 7235 7236 pd.src = (struct pf_addr *)&h->ip_src; 7237 pd.dst = (struct pf_addr *)&h->ip_dst; 7238 pd.ip_sum = &h->ip_sum; 7239 pd.proto = h->ip_p; 7240 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7241 pd.tot_len = ntohs(h->ip_len); 7242 7243 /* handle fragments that didn't get reassembled by normalization */ 7244 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7245 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 7246 goto done; 7247 } 7248 7249 switch (h->ip_p) { 7250 case IPPROTO_TCP: { 7251 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7252 &action, &reason, AF_INET)) { 7253 if (action != PF_PASS) 7254 pd.act.log = PF_LOG_FORCE; 7255 goto done; 7256 } 7257 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7258 7259 pd.sport = &pd.hdr.tcp.th_sport; 7260 pd.dport = &pd.hdr.tcp.th_dport; 7261 7262 /* Respond to SYN with a syncookie. */ 7263 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 7264 pd.dir == PF_IN && pf_synflood_check(&pd)) { 7265 pf_syncookie_send(m, off, &pd); 7266 action = PF_DROP; 7267 break; 7268 } 7269 7270 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 7271 use_2nd_queue = 1; 7272 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 7273 if (action == PF_DROP) 7274 goto done; 7275 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 7276 if (action == PF_PASS) { 7277 if (V_pfsync_update_state_ptr != NULL) 7278 V_pfsync_update_state_ptr(s); 7279 r = s->rule.ptr; 7280 a = s->anchor.ptr; 7281 } else if (s == NULL) { 7282 /* Validate remote SYN|ACK, re-create original SYN if 7283 * valid. */ 7284 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 7285 TH_ACK && pf_syncookie_validate(&pd) && 7286 pd.dir == PF_IN) { 7287 struct mbuf *msyn; 7288 7289 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 7290 off,&pd); 7291 if (msyn == NULL) { 7292 action = PF_DROP; 7293 break; 7294 } 7295 7296 action = pf_test(dir, pflags, ifp, &msyn, inp, &pd.act); 7297 m_freem(msyn); 7298 7299 if (action == PF_PASS) { 7300 action = pf_test_state_tcp(&s, kif, m, 7301 off, h, &pd, &reason); 7302 if (action != PF_PASS || s == NULL) { 7303 action = PF_DROP; 7304 break; 7305 } 7306 7307 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 7308 - 1; 7309 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 7310 - 1; 7311 pf_set_protostate(s, PF_PEER_SRC, 7312 PF_TCPS_PROXY_DST); 7313 7314 action = pf_synproxy(&pd, &s, &reason); 7315 if (action != PF_PASS) 7316 break; 7317 } 7318 break; 7319 } 7320 else { 7321 action = pf_test_rule(&r, &s, kif, m, off, 7322 &pd, &a, &ruleset, inp); 7323 } 7324 } 7325 break; 7326 } 7327 7328 case IPPROTO_UDP: { 7329 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7330 &action, &reason, AF_INET)) { 7331 if (action != PF_PASS) 7332 pd.act.log = PF_LOG_FORCE; 7333 goto done; 7334 } 7335 pd.sport = &pd.hdr.udp.uh_sport; 7336 pd.dport = &pd.hdr.udp.uh_dport; 7337 if (pd.hdr.udp.uh_dport == 0 || 7338 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7339 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7340 action = PF_DROP; 7341 REASON_SET(&reason, PFRES_SHORT); 7342 goto done; 7343 } 7344 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 7345 if (action == PF_PASS) { 7346 if (V_pfsync_update_state_ptr != NULL) 7347 V_pfsync_update_state_ptr(s); 7348 r = s->rule.ptr; 7349 a = s->anchor.ptr; 7350 } else if (s == NULL) 7351 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7352 &a, &ruleset, inp); 7353 break; 7354 } 7355 7356 case IPPROTO_ICMP: { 7357 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7358 &action, &reason, AF_INET)) { 7359 if (action != PF_PASS) 7360 pd.act.log = PF_LOG_FORCE; 7361 goto done; 7362 } 7363 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 7364 if (action == PF_PASS) { 7365 if (V_pfsync_update_state_ptr != NULL) 7366 V_pfsync_update_state_ptr(s); 7367 r = s->rule.ptr; 7368 a = s->anchor.ptr; 7369 } else if (s == NULL) 7370 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7371 &a, &ruleset, inp); 7372 break; 7373 } 7374 7375 #ifdef INET6 7376 case IPPROTO_ICMPV6: { 7377 action = PF_DROP; 7378 DPFPRINTF(PF_DEBUG_MISC, 7379 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7380 goto done; 7381 } 7382 #endif 7383 7384 default: 7385 action = pf_test_state_other(&s, kif, m, &pd); 7386 if (action == PF_PASS) { 7387 if (V_pfsync_update_state_ptr != NULL) 7388 V_pfsync_update_state_ptr(s); 7389 r = s->rule.ptr; 7390 a = s->anchor.ptr; 7391 } else if (s == NULL) 7392 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7393 &a, &ruleset, inp); 7394 break; 7395 } 7396 7397 done: 7398 PF_RULES_RUNLOCK(); 7399 if (action == PF_PASS && h->ip_hl > 5 && 7400 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7401 action = PF_DROP; 7402 REASON_SET(&reason, PFRES_IPOPTIONS); 7403 pd.act.log = PF_LOG_FORCE; 7404 DPFPRINTF(PF_DEBUG_MISC, 7405 ("pf: dropping packet with ip options\n")); 7406 } 7407 7408 if (s) { 7409 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 7410 tag = s->tag; 7411 rt = s->rt; 7412 } else { 7413 tag = r->tag; 7414 rt = r->rt; 7415 } 7416 7417 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 7418 action = PF_DROP; 7419 REASON_SET(&reason, PFRES_MEMORY); 7420 } 7421 7422 pf_scrub_ip(&m, &pd); 7423 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 7424 pf_normalize_mss(m, off, &pd); 7425 7426 if (pd.act.rtableid >= 0) 7427 M_SETFIB(m, pd.act.rtableid); 7428 7429 if (pd.act.flags & PFSTATE_SETPRIO) { 7430 if (pd.tos & IPTOS_LOWDELAY) 7431 use_2nd_queue = 1; 7432 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 7433 action = PF_DROP; 7434 REASON_SET(&reason, PFRES_MEMORY); 7435 pd.act.log = PF_LOG_FORCE; 7436 DPFPRINTF(PF_DEBUG_MISC, 7437 ("pf: failed to allocate 802.1q mtag\n")); 7438 } 7439 } 7440 7441 #ifdef ALTQ 7442 if (action == PF_PASS && pd.act.qid) { 7443 if (pd.pf_mtag == NULL && 7444 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7445 action = PF_DROP; 7446 REASON_SET(&reason, PFRES_MEMORY); 7447 } else { 7448 if (s != NULL) 7449 pd.pf_mtag->qid_hash = pf_state_hash(s); 7450 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 7451 pd.pf_mtag->qid = pd.act.pqid; 7452 else 7453 pd.pf_mtag->qid = pd.act.qid; 7454 /* Add hints for ecn. */ 7455 pd.pf_mtag->hdr = h; 7456 } 7457 } 7458 #endif /* ALTQ */ 7459 7460 /* 7461 * connections redirected to loopback should not match sockets 7462 * bound specifically to loopback due to security implications, 7463 * see tcp_input() and in_pcblookup_listen(). 7464 */ 7465 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7466 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7467 (s->nat_rule.ptr->action == PF_RDR || 7468 s->nat_rule.ptr->action == PF_BINAT) && 7469 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7470 m->m_flags |= M_SKIP_FIREWALL; 7471 7472 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7473 r->divert.port && !PACKET_LOOPED(&pd)) { 7474 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7475 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7476 if (ipfwtag != NULL) { 7477 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7478 ntohs(r->divert.port); 7479 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7480 7481 if (s) 7482 PF_STATE_UNLOCK(s); 7483 7484 m_tag_prepend(m, ipfwtag); 7485 if (m->m_flags & M_FASTFWD_OURS) { 7486 if (pd.pf_mtag == NULL && 7487 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7488 action = PF_DROP; 7489 REASON_SET(&reason, PFRES_MEMORY); 7490 pd.act.log = PF_LOG_FORCE; 7491 DPFPRINTF(PF_DEBUG_MISC, 7492 ("pf: failed to allocate tag\n")); 7493 } else { 7494 pd.pf_mtag->flags |= 7495 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 7496 m->m_flags &= ~M_FASTFWD_OURS; 7497 } 7498 } 7499 ip_divert_ptr(*m0, dir == PF_IN); 7500 *m0 = NULL; 7501 7502 return (action); 7503 } else { 7504 /* XXX: ipfw has the same behaviour! */ 7505 action = PF_DROP; 7506 REASON_SET(&reason, PFRES_MEMORY); 7507 pd.act.log = PF_LOG_FORCE; 7508 DPFPRINTF(PF_DEBUG_MISC, 7509 ("pf: failed to allocate divert tag\n")); 7510 } 7511 } 7512 7513 if (pd.act.log) { 7514 struct pf_krule *lr; 7515 struct pf_krule_item *ri; 7516 7517 if (s != NULL && s->nat_rule.ptr != NULL && 7518 s->nat_rule.ptr->log & PF_LOG_ALL) 7519 lr = s->nat_rule.ptr; 7520 else 7521 lr = r; 7522 7523 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 7524 PFLOG_PACKET(kif, m, AF_INET, reason, lr, a, ruleset, 7525 &pd, (s == NULL)); 7526 if (s) { 7527 SLIST_FOREACH(ri, &s->match_rules, entry) 7528 if (ri->r->log & PF_LOG_ALL) 7529 PFLOG_PACKET(kif, m, AF_INET, reason, 7530 ri->r, a, ruleset, &pd, 0); 7531 } 7532 } 7533 7534 pf_counter_u64_critical_enter(); 7535 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7536 pd.tot_len); 7537 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7538 1); 7539 7540 if (action == PF_PASS || r->action == PF_DROP) { 7541 dirndx = (dir == PF_OUT); 7542 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7543 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7544 pf_update_timestamp(r); 7545 7546 if (a != NULL) { 7547 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7548 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7549 } 7550 if (s != NULL) { 7551 struct pf_krule_item *ri; 7552 7553 if (s->nat_rule.ptr != NULL) { 7554 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7555 1); 7556 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7557 pd.tot_len); 7558 } 7559 if (s->src_node != NULL) { 7560 counter_u64_add(s->src_node->packets[dirndx], 7561 1); 7562 counter_u64_add(s->src_node->bytes[dirndx], 7563 pd.tot_len); 7564 } 7565 if (s->nat_src_node != NULL) { 7566 counter_u64_add(s->nat_src_node->packets[dirndx], 7567 1); 7568 counter_u64_add(s->nat_src_node->bytes[dirndx], 7569 pd.tot_len); 7570 } 7571 dirndx = (dir == s->direction) ? 0 : 1; 7572 s->packets[dirndx]++; 7573 s->bytes[dirndx] += pd.tot_len; 7574 SLIST_FOREACH(ri, &s->match_rules, entry) { 7575 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 7576 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 7577 } 7578 } 7579 tr = r; 7580 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7581 if (nr != NULL && r == &V_pf_default_rule) 7582 tr = nr; 7583 if (tr->src.addr.type == PF_ADDR_TABLE) 7584 pfr_update_stats(tr->src.addr.p.tbl, 7585 (s == NULL) ? pd.src : 7586 &s->key[(s->direction == PF_IN)]-> 7587 addr[(s->direction == PF_OUT)], 7588 pd.af, pd.tot_len, dir == PF_OUT, 7589 r->action == PF_PASS, tr->src.neg); 7590 if (tr->dst.addr.type == PF_ADDR_TABLE) 7591 pfr_update_stats(tr->dst.addr.p.tbl, 7592 (s == NULL) ? pd.dst : 7593 &s->key[(s->direction == PF_IN)]-> 7594 addr[(s->direction == PF_IN)], 7595 pd.af, pd.tot_len, dir == PF_OUT, 7596 r->action == PF_PASS, tr->dst.neg); 7597 } 7598 pf_counter_u64_critical_exit(); 7599 7600 switch (action) { 7601 case PF_SYNPROXY_DROP: 7602 m_freem(*m0); 7603 case PF_DEFER: 7604 *m0 = NULL; 7605 action = PF_PASS; 7606 break; 7607 case PF_DROP: 7608 m_freem(*m0); 7609 *m0 = NULL; 7610 break; 7611 default: 7612 /* pf_route() returns unlocked. */ 7613 if (rt) { 7614 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 7615 return (action); 7616 } 7617 if (pf_dummynet(&pd, s, r, m0) != 0) { 7618 action = PF_DROP; 7619 REASON_SET(&reason, PFRES_MEMORY); 7620 } 7621 break; 7622 } 7623 7624 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7625 7626 if (s) 7627 PF_STATE_UNLOCK(s); 7628 7629 return (action); 7630 } 7631 #endif /* INET */ 7632 7633 #ifdef INET6 7634 int 7635 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 7636 struct pf_rule_actions *default_actions) 7637 { 7638 struct pfi_kkif *kif; 7639 u_short action, reason = 0; 7640 struct mbuf *m = *m0, *n = NULL; 7641 struct m_tag *mtag; 7642 struct ip6_hdr *h = NULL; 7643 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7644 struct pf_kstate *s = NULL; 7645 struct pf_kruleset *ruleset = NULL; 7646 struct pf_pdesc pd; 7647 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 7648 uint16_t tag; 7649 uint8_t rt; 7650 7651 PF_RULES_RLOCK_TRACKER; 7652 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7653 M_ASSERTPKTHDR(m); 7654 7655 if (!V_pf_status.running) 7656 return (PF_PASS); 7657 7658 PF_RULES_RLOCK(); 7659 7660 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7661 if (__predict_false(kif == NULL)) { 7662 DPFPRINTF(PF_DEBUG_URGENT, 7663 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7664 PF_RULES_RUNLOCK(); 7665 return (PF_DROP); 7666 } 7667 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7668 PF_RULES_RUNLOCK(); 7669 return (PF_PASS); 7670 } 7671 7672 if (m->m_flags & M_SKIP_FIREWALL) { 7673 PF_RULES_RUNLOCK(); 7674 return (PF_PASS); 7675 } 7676 7677 memset(&pd, 0, sizeof(pd)); 7678 if (default_actions != NULL) 7679 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7680 pd.pf_mtag = pf_find_mtag(m); 7681 7682 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7683 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7684 7685 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7686 pd.pf_mtag->if_idxgen); 7687 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7688 PF_RULES_RUNLOCK(); 7689 m_freem(*m0); 7690 *m0 = NULL; 7691 return (PF_PASS); 7692 } 7693 PF_RULES_RUNLOCK(); 7694 nd6_output_ifp(ifp, ifp, m, 7695 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 7696 *m0 = NULL; 7697 return (PF_PASS); 7698 } 7699 7700 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7701 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7702 pd.act.flags = pd.pf_mtag->dnflags; 7703 } 7704 7705 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7706 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7707 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7708 /* Dummynet re-injects packets after they've 7709 * completed their delay. We've already 7710 * processed them, so pass unconditionally. */ 7711 PF_RULES_RUNLOCK(); 7712 return (PF_PASS); 7713 } 7714 7715 pd.sport = pd.dport = NULL; 7716 pd.ip_sum = NULL; 7717 pd.proto_sum = NULL; 7718 pd.dir = dir; 7719 pd.sidx = (dir == PF_IN) ? 0 : 1; 7720 pd.didx = (dir == PF_IN) ? 1 : 0; 7721 pd.af = AF_INET6; 7722 pd.act.rtableid = -1; 7723 7724 /* We do IP header normalization and packet reassembly here */ 7725 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 7726 action = PF_DROP; 7727 goto done; 7728 } 7729 m = *m0; /* pf_normalize messes with m0 */ 7730 h = mtod(m, struct ip6_hdr *); 7731 7732 /* 7733 * we do not support jumbogram. if we keep going, zero ip6_plen 7734 * will do something bad, so drop the packet for now. 7735 */ 7736 if (htons(h->ip6_plen) == 0) { 7737 action = PF_DROP; 7738 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 7739 goto done; 7740 } 7741 7742 pd.src = (struct pf_addr *)&h->ip6_src; 7743 pd.dst = (struct pf_addr *)&h->ip6_dst; 7744 pd.tos = IPV6_DSCP(h); 7745 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 7746 7747 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 7748 pd.proto = h->ip6_nxt; 7749 do { 7750 switch (pd.proto) { 7751 case IPPROTO_FRAGMENT: 7752 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 7753 &ruleset); 7754 if (action == PF_DROP) 7755 REASON_SET(&reason, PFRES_FRAG); 7756 goto done; 7757 case IPPROTO_ROUTING: { 7758 struct ip6_rthdr rthdr; 7759 7760 if (rh_cnt++) { 7761 DPFPRINTF(PF_DEBUG_MISC, 7762 ("pf: IPv6 more than one rthdr\n")); 7763 action = PF_DROP; 7764 REASON_SET(&reason, PFRES_IPOPTIONS); 7765 pd.act.log = PF_LOG_FORCE; 7766 goto done; 7767 } 7768 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 7769 &reason, pd.af)) { 7770 DPFPRINTF(PF_DEBUG_MISC, 7771 ("pf: IPv6 short rthdr\n")); 7772 action = PF_DROP; 7773 REASON_SET(&reason, PFRES_SHORT); 7774 pd.act.log = PF_LOG_FORCE; 7775 goto done; 7776 } 7777 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 7778 DPFPRINTF(PF_DEBUG_MISC, 7779 ("pf: IPv6 rthdr0\n")); 7780 action = PF_DROP; 7781 REASON_SET(&reason, PFRES_IPOPTIONS); 7782 pd.act.log = PF_LOG_FORCE; 7783 goto done; 7784 } 7785 /* FALLTHROUGH */ 7786 } 7787 case IPPROTO_AH: 7788 case IPPROTO_HOPOPTS: 7789 case IPPROTO_DSTOPTS: { 7790 /* get next header and header length */ 7791 struct ip6_ext opt6; 7792 7793 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 7794 NULL, &reason, pd.af)) { 7795 DPFPRINTF(PF_DEBUG_MISC, 7796 ("pf: IPv6 short opt\n")); 7797 action = PF_DROP; 7798 pd.act.log = PF_LOG_FORCE; 7799 goto done; 7800 } 7801 if (pd.proto == IPPROTO_AH) 7802 off += (opt6.ip6e_len + 2) * 4; 7803 else 7804 off += (opt6.ip6e_len + 1) * 8; 7805 pd.proto = opt6.ip6e_nxt; 7806 /* goto the next header */ 7807 break; 7808 } 7809 default: 7810 terminal++; 7811 break; 7812 } 7813 } while (!terminal); 7814 7815 /* if there's no routing header, use unmodified mbuf for checksumming */ 7816 if (!n) 7817 n = m; 7818 7819 switch (pd.proto) { 7820 case IPPROTO_TCP: { 7821 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7822 &action, &reason, AF_INET6)) { 7823 if (action != PF_PASS) 7824 pd.act.log |= PF_LOG_FORCE; 7825 goto done; 7826 } 7827 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7828 pd.sport = &pd.hdr.tcp.th_sport; 7829 pd.dport = &pd.hdr.tcp.th_dport; 7830 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 7831 if (action == PF_DROP) 7832 goto done; 7833 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 7834 if (action == PF_PASS) { 7835 if (V_pfsync_update_state_ptr != NULL) 7836 V_pfsync_update_state_ptr(s); 7837 r = s->rule.ptr; 7838 a = s->anchor.ptr; 7839 } else if (s == NULL) 7840 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7841 &a, &ruleset, inp); 7842 break; 7843 } 7844 7845 case IPPROTO_UDP: { 7846 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7847 &action, &reason, AF_INET6)) { 7848 if (action != PF_PASS) 7849 pd.act.log |= PF_LOG_FORCE; 7850 goto done; 7851 } 7852 pd.sport = &pd.hdr.udp.uh_sport; 7853 pd.dport = &pd.hdr.udp.uh_dport; 7854 if (pd.hdr.udp.uh_dport == 0 || 7855 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7856 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7857 action = PF_DROP; 7858 REASON_SET(&reason, PFRES_SHORT); 7859 goto done; 7860 } 7861 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 7862 if (action == PF_PASS) { 7863 if (V_pfsync_update_state_ptr != NULL) 7864 V_pfsync_update_state_ptr(s); 7865 r = s->rule.ptr; 7866 a = s->anchor.ptr; 7867 } else if (s == NULL) 7868 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7869 &a, &ruleset, inp); 7870 break; 7871 } 7872 7873 case IPPROTO_ICMP: { 7874 action = PF_DROP; 7875 DPFPRINTF(PF_DEBUG_MISC, 7876 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7877 goto done; 7878 } 7879 7880 case IPPROTO_ICMPV6: { 7881 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7882 &action, &reason, AF_INET6)) { 7883 if (action != PF_PASS) 7884 pd.act.log |= PF_LOG_FORCE; 7885 goto done; 7886 } 7887 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 7888 if (action == PF_PASS) { 7889 if (V_pfsync_update_state_ptr != NULL) 7890 V_pfsync_update_state_ptr(s); 7891 r = s->rule.ptr; 7892 a = s->anchor.ptr; 7893 } else if (s == NULL) 7894 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7895 &a, &ruleset, inp); 7896 break; 7897 } 7898 7899 default: 7900 action = pf_test_state_other(&s, kif, m, &pd); 7901 if (action == PF_PASS) { 7902 if (V_pfsync_update_state_ptr != NULL) 7903 V_pfsync_update_state_ptr(s); 7904 r = s->rule.ptr; 7905 a = s->anchor.ptr; 7906 } else if (s == NULL) 7907 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7908 &a, &ruleset, inp); 7909 break; 7910 } 7911 7912 done: 7913 PF_RULES_RUNLOCK(); 7914 if (n != m) { 7915 m_freem(n); 7916 n = NULL; 7917 } 7918 7919 /* handle dangerous IPv6 extension headers. */ 7920 if (action == PF_PASS && rh_cnt && 7921 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7922 action = PF_DROP; 7923 REASON_SET(&reason, PFRES_IPOPTIONS); 7924 pd.act.log = r->log; 7925 DPFPRINTF(PF_DEBUG_MISC, 7926 ("pf: dropping packet with dangerous v6 headers\n")); 7927 } 7928 7929 if (s) { 7930 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 7931 tag = s->tag; 7932 rt = s->rt; 7933 } else { 7934 tag = r->tag; 7935 rt = r->rt; 7936 } 7937 7938 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 7939 action = PF_DROP; 7940 REASON_SET(&reason, PFRES_MEMORY); 7941 } 7942 7943 pf_scrub_ip6(&m, &pd); 7944 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 7945 pf_normalize_mss(m, off, &pd); 7946 7947 if (pd.act.rtableid >= 0) 7948 M_SETFIB(m, pd.act.rtableid); 7949 7950 if (pd.act.flags & PFSTATE_SETPRIO) { 7951 if (pd.tos & IPTOS_LOWDELAY) 7952 use_2nd_queue = 1; 7953 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 7954 action = PF_DROP; 7955 REASON_SET(&reason, PFRES_MEMORY); 7956 pd.act.log = PF_LOG_FORCE; 7957 DPFPRINTF(PF_DEBUG_MISC, 7958 ("pf: failed to allocate 802.1q mtag\n")); 7959 } 7960 } 7961 7962 #ifdef ALTQ 7963 if (action == PF_PASS && pd.act.qid) { 7964 if (pd.pf_mtag == NULL && 7965 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7966 action = PF_DROP; 7967 REASON_SET(&reason, PFRES_MEMORY); 7968 } else { 7969 if (s != NULL) 7970 pd.pf_mtag->qid_hash = pf_state_hash(s); 7971 if (pd.tos & IPTOS_LOWDELAY) 7972 pd.pf_mtag->qid = pd.act.pqid; 7973 else 7974 pd.pf_mtag->qid = pd.act.qid; 7975 /* Add hints for ecn. */ 7976 pd.pf_mtag->hdr = h; 7977 } 7978 } 7979 #endif /* ALTQ */ 7980 7981 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7982 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7983 (s->nat_rule.ptr->action == PF_RDR || 7984 s->nat_rule.ptr->action == PF_BINAT) && 7985 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7986 m->m_flags |= M_SKIP_FIREWALL; 7987 7988 /* XXX: Anybody working on it?! */ 7989 if (r->divert.port) 7990 printf("pf: divert(9) is not supported for IPv6\n"); 7991 7992 if (pd.act.log) { 7993 struct pf_krule *lr; 7994 struct pf_krule_item *ri; 7995 7996 if (s != NULL && s->nat_rule.ptr != NULL && 7997 s->nat_rule.ptr->log & PF_LOG_ALL) 7998 lr = s->nat_rule.ptr; 7999 else 8000 lr = r; 8001 8002 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8003 PFLOG_PACKET(kif, m, AF_INET6, reason, lr, a, ruleset, 8004 &pd, (s == NULL)); 8005 if (s) { 8006 SLIST_FOREACH(ri, &s->match_rules, entry) 8007 if (ri->r->log & PF_LOG_ALL) 8008 PFLOG_PACKET(kif, m, AF_INET6, reason, 8009 ri->r, a, ruleset, &pd, 0); 8010 } 8011 } 8012 8013 pf_counter_u64_critical_enter(); 8014 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 8015 pd.tot_len); 8016 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 8017 1); 8018 8019 if (action == PF_PASS || r->action == PF_DROP) { 8020 dirndx = (dir == PF_OUT); 8021 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8022 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8023 if (a != NULL) { 8024 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8025 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8026 } 8027 if (s != NULL) { 8028 if (s->nat_rule.ptr != NULL) { 8029 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8030 1); 8031 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8032 pd.tot_len); 8033 } 8034 if (s->src_node != NULL) { 8035 counter_u64_add(s->src_node->packets[dirndx], 8036 1); 8037 counter_u64_add(s->src_node->bytes[dirndx], 8038 pd.tot_len); 8039 } 8040 if (s->nat_src_node != NULL) { 8041 counter_u64_add(s->nat_src_node->packets[dirndx], 8042 1); 8043 counter_u64_add(s->nat_src_node->bytes[dirndx], 8044 pd.tot_len); 8045 } 8046 dirndx = (dir == s->direction) ? 0 : 1; 8047 s->packets[dirndx]++; 8048 s->bytes[dirndx] += pd.tot_len; 8049 } 8050 tr = r; 8051 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8052 if (nr != NULL && r == &V_pf_default_rule) 8053 tr = nr; 8054 if (tr->src.addr.type == PF_ADDR_TABLE) 8055 pfr_update_stats(tr->src.addr.p.tbl, 8056 (s == NULL) ? pd.src : 8057 &s->key[(s->direction == PF_IN)]->addr[0], 8058 pd.af, pd.tot_len, dir == PF_OUT, 8059 r->action == PF_PASS, tr->src.neg); 8060 if (tr->dst.addr.type == PF_ADDR_TABLE) 8061 pfr_update_stats(tr->dst.addr.p.tbl, 8062 (s == NULL) ? pd.dst : 8063 &s->key[(s->direction == PF_IN)]->addr[1], 8064 pd.af, pd.tot_len, dir == PF_OUT, 8065 r->action == PF_PASS, tr->dst.neg); 8066 } 8067 pf_counter_u64_critical_exit(); 8068 8069 switch (action) { 8070 case PF_SYNPROXY_DROP: 8071 m_freem(*m0); 8072 case PF_DEFER: 8073 *m0 = NULL; 8074 action = PF_PASS; 8075 break; 8076 case PF_DROP: 8077 m_freem(*m0); 8078 *m0 = NULL; 8079 break; 8080 default: 8081 /* pf_route6() returns unlocked. */ 8082 if (rt) { 8083 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 8084 return (action); 8085 } 8086 if (pf_dummynet(&pd, s, r, m0) != 0) { 8087 action = PF_DROP; 8088 REASON_SET(&reason, PFRES_MEMORY); 8089 } 8090 break; 8091 } 8092 8093 if (s) 8094 PF_STATE_UNLOCK(s); 8095 8096 /* If reassembled packet passed, create new fragments. */ 8097 if (action == PF_PASS && *m0 && dir == PF_OUT && 8098 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 8099 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 8100 8101 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 8102 8103 return (action); 8104 } 8105 #endif /* INET6 */ 8106