1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfil.h> 74 #include <net/pfvar.h> 75 #include <net/if_pflog.h> 76 #include <net/if_pfsync.h> 77 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_var.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_fw.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/tcp.h> 87 #include <netinet/tcp_fsm.h> 88 #include <netinet/tcp_seq.h> 89 #include <netinet/tcp_timer.h> 90 #include <netinet/tcp_var.h> 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #include <machine/in_cksum.h> 107 #include <security/mac/mac_framework.h> 108 109 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 110 111 /* 112 * Global variables 113 */ 114 115 /* state tables */ 116 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 117 VNET_DEFINE(struct pf_palist, pf_pabuf); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 120 VNET_DEFINE(struct pf_kstatus, pf_status); 121 122 VNET_DEFINE(u_int32_t, ticket_altqs_active); 123 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 124 VNET_DEFINE(int, altqs_inactive_open); 125 VNET_DEFINE(u_int32_t, ticket_pabuf); 126 127 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 128 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 129 VNET_DEFINE(u_char, pf_tcp_secret[16]); 130 #define V_pf_tcp_secret VNET(pf_tcp_secret) 131 VNET_DEFINE(int, pf_tcp_secret_init); 132 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 133 VNET_DEFINE(int, pf_tcp_iss_off); 134 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 135 VNET_DECLARE(int, pf_vnet_active); 136 #define V_pf_vnet_active VNET(pf_vnet_active) 137 138 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 139 #define V_pf_purge_idx VNET(pf_purge_idx) 140 141 /* 142 * Queue for pf_intr() sends. 143 */ 144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 145 struct pf_send_entry { 146 STAILQ_ENTRY(pf_send_entry) pfse_next; 147 struct mbuf *pfse_m; 148 enum { 149 PFSE_IP, 150 PFSE_IP6, 151 PFSE_ICMP, 152 PFSE_ICMP6, 153 } pfse_type; 154 struct { 155 int type; 156 int code; 157 int mtu; 158 } icmpopts; 159 }; 160 161 STAILQ_HEAD(pf_send_head, pf_send_entry); 162 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 163 #define V_pf_sendqueue VNET(pf_sendqueue) 164 165 static struct mtx pf_sendqueue_mtx; 166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 167 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 168 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 169 170 /* 171 * Queue for pf_overload_task() tasks. 172 */ 173 struct pf_overload_entry { 174 SLIST_ENTRY(pf_overload_entry) next; 175 struct pf_addr addr; 176 sa_family_t af; 177 uint8_t dir; 178 struct pf_rule *rule; 179 }; 180 181 SLIST_HEAD(pf_overload_head, pf_overload_entry); 182 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 183 #define V_pf_overloadqueue VNET(pf_overloadqueue) 184 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 185 #define V_pf_overloadtask VNET(pf_overloadtask) 186 187 static struct mtx pf_overloadqueue_mtx; 188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 189 "pf overload/flush queue", MTX_DEF); 190 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 191 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 192 193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 194 struct mtx pf_unlnkdrules_mtx; 195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 196 MTX_DEF); 197 198 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 199 #define V_pf_sources_z VNET(pf_sources_z) 200 uma_zone_t pf_mtag_z; 201 VNET_DEFINE(uma_zone_t, pf_state_z); 202 VNET_DEFINE(uma_zone_t, pf_state_key_z); 203 204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 205 #define PFID_CPUBITS 8 206 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 207 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 208 #define PFID_MAXID (~PFID_CPUMASK) 209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 210 211 static void pf_src_tree_remove_state(struct pf_state *); 212 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 213 u_int32_t); 214 static void pf_add_threshold(struct pf_threshold *); 215 static int pf_check_threshold(struct pf_threshold *); 216 217 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 218 u_int16_t *, u_int16_t *, struct pf_addr *, 219 u_int16_t, u_int8_t, sa_family_t); 220 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 221 struct tcphdr *, struct pf_state_peer *); 222 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 223 struct pf_addr *, struct pf_addr *, u_int16_t, 224 u_int16_t *, u_int16_t *, u_int16_t *, 225 u_int16_t *, u_int8_t, sa_family_t); 226 static void pf_send_tcp(struct mbuf *, 227 const struct pf_rule *, sa_family_t, 228 const struct pf_addr *, const struct pf_addr *, 229 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 230 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 231 u_int16_t, struct ifnet *); 232 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 233 sa_family_t, struct pf_rule *); 234 static void pf_detach_state(struct pf_state *); 235 static int pf_state_key_attach(struct pf_state_key *, 236 struct pf_state_key *, struct pf_state *); 237 static void pf_state_key_detach(struct pf_state *, int); 238 static int pf_state_key_ctor(void *, int, void *, int); 239 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 240 static int pf_test_rule(struct pf_rule **, struct pf_state **, 241 int, struct pfi_kif *, struct mbuf *, int, 242 struct pf_pdesc *, struct pf_rule **, 243 struct pf_ruleset **, struct inpcb *); 244 static int pf_create_state(struct pf_rule *, struct pf_rule *, 245 struct pf_rule *, struct pf_pdesc *, 246 struct pf_src_node *, struct pf_state_key *, 247 struct pf_state_key *, struct mbuf *, int, 248 u_int16_t, u_int16_t, int *, struct pfi_kif *, 249 struct pf_state **, int, u_int16_t, u_int16_t, 250 int); 251 static int pf_test_fragment(struct pf_rule **, int, 252 struct pfi_kif *, struct mbuf *, void *, 253 struct pf_pdesc *, struct pf_rule **, 254 struct pf_ruleset **); 255 static int pf_tcp_track_full(struct pf_state_peer *, 256 struct pf_state_peer *, struct pf_state **, 257 struct pfi_kif *, struct mbuf *, int, 258 struct pf_pdesc *, u_short *, int *); 259 static int pf_tcp_track_sloppy(struct pf_state_peer *, 260 struct pf_state_peer *, struct pf_state **, 261 struct pf_pdesc *, u_short *); 262 static int pf_test_state_tcp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_udp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *); 268 static int pf_test_state_icmp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_other(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 273 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 274 sa_family_t); 275 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 276 sa_family_t); 277 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 278 int, u_int16_t); 279 static int pf_check_proto_cksum(struct mbuf *, int, int, 280 u_int8_t, sa_family_t); 281 static void pf_print_state_parts(struct pf_state *, 282 struct pf_state_key *, struct pf_state_key *); 283 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 284 struct pf_addr_wrap *); 285 static struct pf_state *pf_find_state(struct pfi_kif *, 286 struct pf_state_key_cmp *, u_int); 287 static int pf_src_connlimit(struct pf_state **); 288 static void pf_overload_task(void *v, int pending); 289 static int pf_insert_src_node(struct pf_src_node **, 290 struct pf_rule *, struct pf_addr *, sa_family_t); 291 static u_int pf_purge_expired_states(u_int, int); 292 static void pf_purge_unlinked_rules(void); 293 static int pf_mtag_uminit(void *, int, int); 294 static void pf_mtag_free(struct m_tag *); 295 #ifdef INET 296 static void pf_route(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *, struct inpcb *); 299 #endif /* INET */ 300 #ifdef INET6 301 static void pf_change_a6(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, u_int8_t); 303 static void pf_route6(struct mbuf **, struct pf_rule *, int, 304 struct ifnet *, struct pf_state *, 305 struct pf_pdesc *, struct inpcb *); 306 #endif /* INET6 */ 307 308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 309 310 extern int pf_end_threads; 311 extern struct proc *pf_purge_proc; 312 313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 counter_u64_add(s->rule.ptr->states_cur, 1); \ 341 counter_u64_add(s->rule.ptr->states_tot, 1); \ 342 if (s->anchor.ptr != NULL) { \ 343 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 344 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 348 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 356 if (s->anchor.ptr != NULL) \ 357 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 358 counter_u64_add(s->rule.ptr->states_cur, -1); \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(struct pf_srchash *, pf_srchash); 365 366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 367 368 u_long pf_hashmask; 369 u_long pf_srchashmask; 370 static u_long pf_hashsize; 371 static u_long pf_srchashsize; 372 u_long pf_ioctl_maxcount = 65535; 373 374 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 375 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 376 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 377 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 378 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 379 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 380 381 VNET_DEFINE(void *, pf_swi_cookie); 382 383 VNET_DEFINE(uint32_t, pf_hashseed); 384 #define V_pf_hashseed VNET(pf_hashseed) 385 386 int 387 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 388 { 389 390 switch (af) { 391 #ifdef INET 392 case AF_INET: 393 if (a->addr32[0] > b->addr32[0]) 394 return (1); 395 if (a->addr32[0] < b->addr32[0]) 396 return (-1); 397 break; 398 #endif /* INET */ 399 #ifdef INET6 400 case AF_INET6: 401 if (a->addr32[3] > b->addr32[3]) 402 return (1); 403 if (a->addr32[3] < b->addr32[3]) 404 return (-1); 405 if (a->addr32[2] > b->addr32[2]) 406 return (1); 407 if (a->addr32[2] < b->addr32[2]) 408 return (-1); 409 if (a->addr32[1] > b->addr32[1]) 410 return (1); 411 if (a->addr32[1] < b->addr32[1]) 412 return (-1); 413 if (a->addr32[0] > b->addr32[0]) 414 return (1); 415 if (a->addr32[0] < b->addr32[0]) 416 return (-1); 417 break; 418 #endif /* INET6 */ 419 default: 420 panic("%s: unknown address family %u", __func__, af); 421 } 422 return (0); 423 } 424 425 static __inline uint32_t 426 pf_hashkey(struct pf_state_key *sk) 427 { 428 uint32_t h; 429 430 h = murmur3_32_hash32((uint32_t *)sk, 431 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 432 V_pf_hashseed); 433 434 return (h & pf_hashmask); 435 } 436 437 static __inline uint32_t 438 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 439 { 440 uint32_t h; 441 442 switch (af) { 443 case AF_INET: 444 h = murmur3_32_hash32((uint32_t *)&addr->v4, 445 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 case AF_INET6: 448 h = murmur3_32_hash32((uint32_t *)&addr->v6, 449 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 450 break; 451 default: 452 panic("%s: unknown address family %u", __func__, af); 453 } 454 455 return (h & pf_srchashmask); 456 } 457 458 #ifdef ALTQ 459 static int 460 pf_state_hash(struct pf_state *s) 461 { 462 u_int32_t hv = (intptr_t)s / sizeof(*s); 463 464 hv ^= crc32(&s->src, sizeof(s->src)); 465 hv ^= crc32(&s->dst, sizeof(s->dst)); 466 if (hv == 0) 467 hv = 1; 468 return (hv); 469 } 470 #endif 471 472 #ifdef INET6 473 void 474 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 475 { 476 switch (af) { 477 #ifdef INET 478 case AF_INET: 479 dst->addr32[0] = src->addr32[0]; 480 break; 481 #endif /* INET */ 482 case AF_INET6: 483 dst->addr32[0] = src->addr32[0]; 484 dst->addr32[1] = src->addr32[1]; 485 dst->addr32[2] = src->addr32[2]; 486 dst->addr32[3] = src->addr32[3]; 487 break; 488 } 489 } 490 #endif /* INET6 */ 491 492 static void 493 pf_init_threshold(struct pf_threshold *threshold, 494 u_int32_t limit, u_int32_t seconds) 495 { 496 threshold->limit = limit * PF_THRESHOLD_MULT; 497 threshold->seconds = seconds; 498 threshold->count = 0; 499 threshold->last = time_uptime; 500 } 501 502 static void 503 pf_add_threshold(struct pf_threshold *threshold) 504 { 505 u_int32_t t = time_uptime, diff = t - threshold->last; 506 507 if (diff >= threshold->seconds) 508 threshold->count = 0; 509 else 510 threshold->count -= threshold->count * diff / 511 threshold->seconds; 512 threshold->count += PF_THRESHOLD_MULT; 513 threshold->last = t; 514 } 515 516 static int 517 pf_check_threshold(struct pf_threshold *threshold) 518 { 519 return (threshold->count > threshold->limit); 520 } 521 522 static int 523 pf_src_connlimit(struct pf_state **state) 524 { 525 struct pf_overload_entry *pfoe; 526 int bad = 0; 527 528 PF_STATE_LOCK_ASSERT(*state); 529 530 (*state)->src_node->conn++; 531 (*state)->src.tcp_est = 1; 532 pf_add_threshold(&(*state)->src_node->conn_rate); 533 534 if ((*state)->rule.ptr->max_src_conn && 535 (*state)->rule.ptr->max_src_conn < 536 (*state)->src_node->conn) { 537 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 538 bad++; 539 } 540 541 if ((*state)->rule.ptr->max_src_conn_rate.limit && 542 pf_check_threshold(&(*state)->src_node->conn_rate)) { 543 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 544 bad++; 545 } 546 547 if (!bad) 548 return (0); 549 550 /* Kill this state. */ 551 (*state)->timeout = PFTM_PURGE; 552 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 553 554 if ((*state)->rule.ptr->overload_tbl == NULL) 555 return (1); 556 557 /* Schedule overloading and flushing task. */ 558 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 559 if (pfoe == NULL) 560 return (1); /* too bad :( */ 561 562 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 563 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 564 pfoe->rule = (*state)->rule.ptr; 565 pfoe->dir = (*state)->direction; 566 PF_OVERLOADQ_LOCK(); 567 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 568 PF_OVERLOADQ_UNLOCK(); 569 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 570 571 return (1); 572 } 573 574 static void 575 pf_overload_task(void *v, int pending) 576 { 577 struct pf_overload_head queue; 578 struct pfr_addr p; 579 struct pf_overload_entry *pfoe, *pfoe1; 580 uint32_t killed = 0; 581 582 CURVNET_SET((struct vnet *)v); 583 584 PF_OVERLOADQ_LOCK(); 585 queue = V_pf_overloadqueue; 586 SLIST_INIT(&V_pf_overloadqueue); 587 PF_OVERLOADQ_UNLOCK(); 588 589 bzero(&p, sizeof(p)); 590 SLIST_FOREACH(pfoe, &queue, next) { 591 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 592 if (V_pf_status.debug >= PF_DEBUG_MISC) { 593 printf("%s: blocking address ", __func__); 594 pf_print_host(&pfoe->addr, 0, pfoe->af); 595 printf("\n"); 596 } 597 598 p.pfra_af = pfoe->af; 599 switch (pfoe->af) { 600 #ifdef INET 601 case AF_INET: 602 p.pfra_net = 32; 603 p.pfra_ip4addr = pfoe->addr.v4; 604 break; 605 #endif 606 #ifdef INET6 607 case AF_INET6: 608 p.pfra_net = 128; 609 p.pfra_ip6addr = pfoe->addr.v6; 610 break; 611 #endif 612 } 613 614 PF_RULES_WLOCK(); 615 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 616 PF_RULES_WUNLOCK(); 617 } 618 619 /* 620 * Remove those entries, that don't need flushing. 621 */ 622 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 623 if (pfoe->rule->flush == 0) { 624 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 625 free(pfoe, M_PFTEMP); 626 } else 627 counter_u64_add( 628 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 629 630 /* If nothing to flush, return. */ 631 if (SLIST_EMPTY(&queue)) { 632 CURVNET_RESTORE(); 633 return; 634 } 635 636 for (int i = 0; i <= pf_hashmask; i++) { 637 struct pf_idhash *ih = &V_pf_idhash[i]; 638 struct pf_state_key *sk; 639 struct pf_state *s; 640 641 PF_HASHROW_LOCK(ih); 642 LIST_FOREACH(s, &ih->states, entry) { 643 sk = s->key[PF_SK_WIRE]; 644 SLIST_FOREACH(pfoe, &queue, next) 645 if (sk->af == pfoe->af && 646 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 647 pfoe->rule == s->rule.ptr) && 648 ((pfoe->dir == PF_OUT && 649 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 650 (pfoe->dir == PF_IN && 651 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 652 s->timeout = PFTM_PURGE; 653 s->src.state = s->dst.state = TCPS_CLOSED; 654 killed++; 655 } 656 } 657 PF_HASHROW_UNLOCK(ih); 658 } 659 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 660 free(pfoe, M_PFTEMP); 661 if (V_pf_status.debug >= PF_DEBUG_MISC) 662 printf("%s: %u states killed", __func__, killed); 663 664 CURVNET_RESTORE(); 665 } 666 667 /* 668 * Can return locked on failure, so that we can consistently 669 * allocate and insert a new one. 670 */ 671 struct pf_src_node * 672 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 673 int returnlocked) 674 { 675 struct pf_srchash *sh; 676 struct pf_src_node *n; 677 678 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 679 680 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 681 PF_HASHROW_LOCK(sh); 682 LIST_FOREACH(n, &sh->nodes, entry) 683 if (n->rule.ptr == rule && n->af == af && 684 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 685 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 686 break; 687 if (n != NULL) { 688 n->states++; 689 PF_HASHROW_UNLOCK(sh); 690 } else if (returnlocked == 0) 691 PF_HASHROW_UNLOCK(sh); 692 693 return (n); 694 } 695 696 static int 697 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 698 struct pf_addr *src, sa_family_t af) 699 { 700 701 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 702 rule->rpool.opts & PF_POOL_STICKYADDR), 703 ("%s for non-tracking rule %p", __func__, rule)); 704 705 if (*sn == NULL) 706 *sn = pf_find_src_node(src, rule, af, 1); 707 708 if (*sn == NULL) { 709 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 710 711 PF_HASHROW_ASSERT(sh); 712 713 if (!rule->max_src_nodes || 714 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 715 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 716 else 717 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 718 1); 719 if ((*sn) == NULL) { 720 PF_HASHROW_UNLOCK(sh); 721 return (-1); 722 } 723 724 pf_init_threshold(&(*sn)->conn_rate, 725 rule->max_src_conn_rate.limit, 726 rule->max_src_conn_rate.seconds); 727 728 (*sn)->af = af; 729 (*sn)->rule.ptr = rule; 730 PF_ACPY(&(*sn)->addr, src, af); 731 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 732 (*sn)->creation = time_uptime; 733 (*sn)->ruletype = rule->action; 734 (*sn)->states = 1; 735 if ((*sn)->rule.ptr != NULL) 736 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 737 PF_HASHROW_UNLOCK(sh); 738 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 739 } else { 740 if (rule->max_src_states && 741 (*sn)->states >= rule->max_src_states) { 742 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 743 1); 744 return (-1); 745 } 746 } 747 return (0); 748 } 749 750 void 751 pf_unlink_src_node(struct pf_src_node *src) 752 { 753 754 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 755 LIST_REMOVE(src, entry); 756 if (src->rule.ptr) 757 counter_u64_add(src->rule.ptr->src_nodes, -1); 758 } 759 760 u_int 761 pf_free_src_nodes(struct pf_src_node_list *head) 762 { 763 struct pf_src_node *sn, *tmp; 764 u_int count = 0; 765 766 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 767 uma_zfree(V_pf_sources_z, sn); 768 count++; 769 } 770 771 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 772 773 return (count); 774 } 775 776 void 777 pf_mtag_initialize() 778 { 779 780 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 781 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 782 UMA_ALIGN_PTR, 0); 783 } 784 785 /* Per-vnet data storage structures initialization. */ 786 void 787 pf_initialize() 788 { 789 struct pf_keyhash *kh; 790 struct pf_idhash *ih; 791 struct pf_srchash *sh; 792 u_int i; 793 794 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 795 pf_hashsize = PF_HASHSIZ; 796 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 797 pf_srchashsize = PF_SRCHASHSIZ; 798 799 V_pf_hashseed = arc4random(); 800 801 /* States and state keys storage. */ 802 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 803 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 804 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 805 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 806 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 807 808 V_pf_state_key_z = uma_zcreate("pf state keys", 809 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 810 UMA_ALIGN_PTR, 0); 811 812 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 813 M_PFHASH, M_NOWAIT | M_ZERO); 814 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 815 M_PFHASH, M_NOWAIT | M_ZERO); 816 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 817 printf("pf: Unable to allocate memory for " 818 "state_hashsize %lu.\n", pf_hashsize); 819 820 free(V_pf_keyhash, M_PFHASH); 821 free(V_pf_idhash, M_PFHASH); 822 823 pf_hashsize = PF_HASHSIZ; 824 V_pf_keyhash = mallocarray(pf_hashsize, 825 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 826 V_pf_idhash = mallocarray(pf_hashsize, 827 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 828 } 829 830 pf_hashmask = pf_hashsize - 1; 831 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 832 i++, kh++, ih++) { 833 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 834 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 835 } 836 837 /* Source nodes. */ 838 V_pf_sources_z = uma_zcreate("pf source nodes", 839 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 840 0); 841 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 842 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 843 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 844 845 V_pf_srchash = mallocarray(pf_srchashsize, 846 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 847 if (V_pf_srchash == NULL) { 848 printf("pf: Unable to allocate memory for " 849 "source_hashsize %lu.\n", pf_srchashsize); 850 851 pf_srchashsize = PF_SRCHASHSIZ; 852 V_pf_srchash = mallocarray(pf_srchashsize, 853 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 854 } 855 856 pf_srchashmask = pf_srchashsize - 1; 857 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 858 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 859 860 /* ALTQ */ 861 TAILQ_INIT(&V_pf_altqs[0]); 862 TAILQ_INIT(&V_pf_altqs[1]); 863 TAILQ_INIT(&V_pf_pabuf); 864 V_pf_altqs_active = &V_pf_altqs[0]; 865 V_pf_altqs_inactive = &V_pf_altqs[1]; 866 867 /* Send & overload+flush queues. */ 868 STAILQ_INIT(&V_pf_sendqueue); 869 SLIST_INIT(&V_pf_overloadqueue); 870 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 871 872 /* Unlinked, but may be referenced rules. */ 873 TAILQ_INIT(&V_pf_unlinked_rules); 874 } 875 876 void 877 pf_mtag_cleanup() 878 { 879 880 uma_zdestroy(pf_mtag_z); 881 } 882 883 void 884 pf_cleanup() 885 { 886 struct pf_keyhash *kh; 887 struct pf_idhash *ih; 888 struct pf_srchash *sh; 889 struct pf_send_entry *pfse, *next; 890 u_int i; 891 892 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 893 i++, kh++, ih++) { 894 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 895 __func__)); 896 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 897 __func__)); 898 mtx_destroy(&kh->lock); 899 mtx_destroy(&ih->lock); 900 } 901 free(V_pf_keyhash, M_PFHASH); 902 free(V_pf_idhash, M_PFHASH); 903 904 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 905 KASSERT(LIST_EMPTY(&sh->nodes), 906 ("%s: source node hash not empty", __func__)); 907 mtx_destroy(&sh->lock); 908 } 909 free(V_pf_srchash, M_PFHASH); 910 911 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 912 m_freem(pfse->pfse_m); 913 free(pfse, M_PFTEMP); 914 } 915 916 uma_zdestroy(V_pf_sources_z); 917 uma_zdestroy(V_pf_state_z); 918 uma_zdestroy(V_pf_state_key_z); 919 } 920 921 static int 922 pf_mtag_uminit(void *mem, int size, int how) 923 { 924 struct m_tag *t; 925 926 t = (struct m_tag *)mem; 927 t->m_tag_cookie = MTAG_ABI_COMPAT; 928 t->m_tag_id = PACKET_TAG_PF; 929 t->m_tag_len = sizeof(struct pf_mtag); 930 t->m_tag_free = pf_mtag_free; 931 932 return (0); 933 } 934 935 static void 936 pf_mtag_free(struct m_tag *t) 937 { 938 939 uma_zfree(pf_mtag_z, t); 940 } 941 942 struct pf_mtag * 943 pf_get_mtag(struct mbuf *m) 944 { 945 struct m_tag *mtag; 946 947 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 948 return ((struct pf_mtag *)(mtag + 1)); 949 950 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 951 if (mtag == NULL) 952 return (NULL); 953 bzero(mtag + 1, sizeof(struct pf_mtag)); 954 m_tag_prepend(m, mtag); 955 956 return ((struct pf_mtag *)(mtag + 1)); 957 } 958 959 static int 960 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 961 struct pf_state *s) 962 { 963 struct pf_keyhash *khs, *khw, *kh; 964 struct pf_state_key *sk, *cur; 965 struct pf_state *si, *olds = NULL; 966 int idx; 967 968 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 969 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 970 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 971 972 /* 973 * We need to lock hash slots of both keys. To avoid deadlock 974 * we always lock the slot with lower address first. Unlock order 975 * isn't important. 976 * 977 * We also need to lock ID hash slot before dropping key 978 * locks. On success we return with ID hash slot locked. 979 */ 980 981 if (skw == sks) { 982 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 983 PF_HASHROW_LOCK(khs); 984 } else { 985 khs = &V_pf_keyhash[pf_hashkey(sks)]; 986 khw = &V_pf_keyhash[pf_hashkey(skw)]; 987 if (khs == khw) { 988 PF_HASHROW_LOCK(khs); 989 } else if (khs < khw) { 990 PF_HASHROW_LOCK(khs); 991 PF_HASHROW_LOCK(khw); 992 } else { 993 PF_HASHROW_LOCK(khw); 994 PF_HASHROW_LOCK(khs); 995 } 996 } 997 998 #define KEYS_UNLOCK() do { \ 999 if (khs != khw) { \ 1000 PF_HASHROW_UNLOCK(khs); \ 1001 PF_HASHROW_UNLOCK(khw); \ 1002 } else \ 1003 PF_HASHROW_UNLOCK(khs); \ 1004 } while (0) 1005 1006 /* 1007 * First run: start with wire key. 1008 */ 1009 sk = skw; 1010 kh = khw; 1011 idx = PF_SK_WIRE; 1012 1013 keyattach: 1014 LIST_FOREACH(cur, &kh->keys, entry) 1015 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1016 break; 1017 1018 if (cur != NULL) { 1019 /* Key exists. Check for same kif, if none, add to key. */ 1020 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1021 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1022 1023 PF_HASHROW_LOCK(ih); 1024 if (si->kif == s->kif && 1025 si->direction == s->direction) { 1026 if (sk->proto == IPPROTO_TCP && 1027 si->src.state >= TCPS_FIN_WAIT_2 && 1028 si->dst.state >= TCPS_FIN_WAIT_2) { 1029 /* 1030 * New state matches an old >FIN_WAIT_2 1031 * state. We can't drop key hash locks, 1032 * thus we can't unlink it properly. 1033 * 1034 * As a workaround we drop it into 1035 * TCPS_CLOSED state, schedule purge 1036 * ASAP and push it into the very end 1037 * of the slot TAILQ, so that it won't 1038 * conflict with our new state. 1039 */ 1040 si->src.state = si->dst.state = 1041 TCPS_CLOSED; 1042 si->timeout = PFTM_PURGE; 1043 olds = si; 1044 } else { 1045 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1046 printf("pf: %s key attach " 1047 "failed on %s: ", 1048 (idx == PF_SK_WIRE) ? 1049 "wire" : "stack", 1050 s->kif->pfik_name); 1051 pf_print_state_parts(s, 1052 (idx == PF_SK_WIRE) ? 1053 sk : NULL, 1054 (idx == PF_SK_STACK) ? 1055 sk : NULL); 1056 printf(", existing: "); 1057 pf_print_state_parts(si, 1058 (idx == PF_SK_WIRE) ? 1059 sk : NULL, 1060 (idx == PF_SK_STACK) ? 1061 sk : NULL); 1062 printf("\n"); 1063 } 1064 PF_HASHROW_UNLOCK(ih); 1065 KEYS_UNLOCK(); 1066 uma_zfree(V_pf_state_key_z, sk); 1067 if (idx == PF_SK_STACK) 1068 pf_detach_state(s); 1069 return (EEXIST); /* collision! */ 1070 } 1071 } 1072 PF_HASHROW_UNLOCK(ih); 1073 } 1074 uma_zfree(V_pf_state_key_z, sk); 1075 s->key[idx] = cur; 1076 } else { 1077 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1078 s->key[idx] = sk; 1079 } 1080 1081 stateattach: 1082 /* List is sorted, if-bound states before floating. */ 1083 if (s->kif == V_pfi_all) 1084 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1085 else 1086 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1087 1088 if (olds) { 1089 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1090 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1091 key_list[idx]); 1092 olds = NULL; 1093 } 1094 1095 /* 1096 * Attach done. See how should we (or should not?) 1097 * attach a second key. 1098 */ 1099 if (sks == skw) { 1100 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1101 idx = PF_SK_STACK; 1102 sks = NULL; 1103 goto stateattach; 1104 } else if (sks != NULL) { 1105 /* 1106 * Continue attaching with stack key. 1107 */ 1108 sk = sks; 1109 kh = khs; 1110 idx = PF_SK_STACK; 1111 sks = NULL; 1112 goto keyattach; 1113 } 1114 1115 PF_STATE_LOCK(s); 1116 KEYS_UNLOCK(); 1117 1118 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1119 ("%s failure", __func__)); 1120 1121 return (0); 1122 #undef KEYS_UNLOCK 1123 } 1124 1125 static void 1126 pf_detach_state(struct pf_state *s) 1127 { 1128 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1129 struct pf_keyhash *kh; 1130 1131 if (sks != NULL) { 1132 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1133 PF_HASHROW_LOCK(kh); 1134 if (s->key[PF_SK_STACK] != NULL) 1135 pf_state_key_detach(s, PF_SK_STACK); 1136 /* 1137 * If both point to same key, then we are done. 1138 */ 1139 if (sks == s->key[PF_SK_WIRE]) { 1140 pf_state_key_detach(s, PF_SK_WIRE); 1141 PF_HASHROW_UNLOCK(kh); 1142 return; 1143 } 1144 PF_HASHROW_UNLOCK(kh); 1145 } 1146 1147 if (s->key[PF_SK_WIRE] != NULL) { 1148 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1149 PF_HASHROW_LOCK(kh); 1150 if (s->key[PF_SK_WIRE] != NULL) 1151 pf_state_key_detach(s, PF_SK_WIRE); 1152 PF_HASHROW_UNLOCK(kh); 1153 } 1154 } 1155 1156 static void 1157 pf_state_key_detach(struct pf_state *s, int idx) 1158 { 1159 struct pf_state_key *sk = s->key[idx]; 1160 #ifdef INVARIANTS 1161 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1162 1163 PF_HASHROW_ASSERT(kh); 1164 #endif 1165 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1166 s->key[idx] = NULL; 1167 1168 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1169 LIST_REMOVE(sk, entry); 1170 uma_zfree(V_pf_state_key_z, sk); 1171 } 1172 } 1173 1174 static int 1175 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1176 { 1177 struct pf_state_key *sk = mem; 1178 1179 bzero(sk, sizeof(struct pf_state_key_cmp)); 1180 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1181 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1182 1183 return (0); 1184 } 1185 1186 struct pf_state_key * 1187 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1188 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1189 { 1190 struct pf_state_key *sk; 1191 1192 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1193 if (sk == NULL) 1194 return (NULL); 1195 1196 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1197 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1198 sk->port[pd->sidx] = sport; 1199 sk->port[pd->didx] = dport; 1200 sk->proto = pd->proto; 1201 sk->af = pd->af; 1202 1203 return (sk); 1204 } 1205 1206 struct pf_state_key * 1207 pf_state_key_clone(struct pf_state_key *orig) 1208 { 1209 struct pf_state_key *sk; 1210 1211 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1212 if (sk == NULL) 1213 return (NULL); 1214 1215 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1216 1217 return (sk); 1218 } 1219 1220 int 1221 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1222 struct pf_state_key *sks, struct pf_state *s) 1223 { 1224 struct pf_idhash *ih; 1225 struct pf_state *cur; 1226 int error; 1227 1228 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1229 ("%s: sks not pristine", __func__)); 1230 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1231 ("%s: skw not pristine", __func__)); 1232 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1233 1234 s->kif = kif; 1235 1236 if (s->id == 0 && s->creatorid == 0) { 1237 /* XXX: should be atomic, but probability of collision low */ 1238 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1239 V_pf_stateid[curcpu] = 1; 1240 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1241 s->id = htobe64(s->id); 1242 s->creatorid = V_pf_status.hostid; 1243 } 1244 1245 /* Returns with ID locked on success. */ 1246 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1247 return (error); 1248 1249 ih = &V_pf_idhash[PF_IDHASH(s)]; 1250 PF_HASHROW_ASSERT(ih); 1251 LIST_FOREACH(cur, &ih->states, entry) 1252 if (cur->id == s->id && cur->creatorid == s->creatorid) 1253 break; 1254 1255 if (cur != NULL) { 1256 PF_HASHROW_UNLOCK(ih); 1257 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1258 printf("pf: state ID collision: " 1259 "id: %016llx creatorid: %08x\n", 1260 (unsigned long long)be64toh(s->id), 1261 ntohl(s->creatorid)); 1262 } 1263 pf_detach_state(s); 1264 return (EEXIST); 1265 } 1266 LIST_INSERT_HEAD(&ih->states, s, entry); 1267 /* One for keys, one for ID hash. */ 1268 refcount_init(&s->refs, 2); 1269 1270 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1271 if (V_pfsync_insert_state_ptr != NULL) 1272 V_pfsync_insert_state_ptr(s); 1273 1274 /* Returns locked. */ 1275 return (0); 1276 } 1277 1278 /* 1279 * Find state by ID: returns with locked row on success. 1280 */ 1281 struct pf_state * 1282 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1283 { 1284 struct pf_idhash *ih; 1285 struct pf_state *s; 1286 1287 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1288 1289 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1290 1291 PF_HASHROW_LOCK(ih); 1292 LIST_FOREACH(s, &ih->states, entry) 1293 if (s->id == id && s->creatorid == creatorid) 1294 break; 1295 1296 if (s == NULL) 1297 PF_HASHROW_UNLOCK(ih); 1298 1299 return (s); 1300 } 1301 1302 /* 1303 * Find state by key. 1304 * Returns with ID hash slot locked on success. 1305 */ 1306 static struct pf_state * 1307 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1308 { 1309 struct pf_keyhash *kh; 1310 struct pf_state_key *sk; 1311 struct pf_state *s; 1312 int idx; 1313 1314 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1315 1316 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1317 1318 PF_HASHROW_LOCK(kh); 1319 LIST_FOREACH(sk, &kh->keys, entry) 1320 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1321 break; 1322 if (sk == NULL) { 1323 PF_HASHROW_UNLOCK(kh); 1324 return (NULL); 1325 } 1326 1327 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1328 1329 /* List is sorted, if-bound states before floating ones. */ 1330 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1331 if (s->kif == V_pfi_all || s->kif == kif) { 1332 PF_STATE_LOCK(s); 1333 PF_HASHROW_UNLOCK(kh); 1334 if (s->timeout >= PFTM_MAX) { 1335 /* 1336 * State is either being processed by 1337 * pf_unlink_state() in an other thread, or 1338 * is scheduled for immediate expiry. 1339 */ 1340 PF_STATE_UNLOCK(s); 1341 return (NULL); 1342 } 1343 return (s); 1344 } 1345 PF_HASHROW_UNLOCK(kh); 1346 1347 return (NULL); 1348 } 1349 1350 struct pf_state * 1351 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1352 { 1353 struct pf_keyhash *kh; 1354 struct pf_state_key *sk; 1355 struct pf_state *s, *ret = NULL; 1356 int idx, inout = 0; 1357 1358 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1359 1360 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1361 1362 PF_HASHROW_LOCK(kh); 1363 LIST_FOREACH(sk, &kh->keys, entry) 1364 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1365 break; 1366 if (sk == NULL) { 1367 PF_HASHROW_UNLOCK(kh); 1368 return (NULL); 1369 } 1370 switch (dir) { 1371 case PF_IN: 1372 idx = PF_SK_WIRE; 1373 break; 1374 case PF_OUT: 1375 idx = PF_SK_STACK; 1376 break; 1377 case PF_INOUT: 1378 idx = PF_SK_WIRE; 1379 inout = 1; 1380 break; 1381 default: 1382 panic("%s: dir %u", __func__, dir); 1383 } 1384 second_run: 1385 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1386 if (more == NULL) { 1387 PF_HASHROW_UNLOCK(kh); 1388 return (s); 1389 } 1390 1391 if (ret) 1392 (*more)++; 1393 else 1394 ret = s; 1395 } 1396 if (inout == 1) { 1397 inout = 0; 1398 idx = PF_SK_STACK; 1399 goto second_run; 1400 } 1401 PF_HASHROW_UNLOCK(kh); 1402 1403 return (ret); 1404 } 1405 1406 /* END state table stuff */ 1407 1408 static void 1409 pf_send(struct pf_send_entry *pfse) 1410 { 1411 1412 PF_SENDQ_LOCK(); 1413 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1414 PF_SENDQ_UNLOCK(); 1415 swi_sched(V_pf_swi_cookie, 0); 1416 } 1417 1418 void 1419 pf_intr(void *v) 1420 { 1421 struct pf_send_head queue; 1422 struct pf_send_entry *pfse, *next; 1423 1424 CURVNET_SET((struct vnet *)v); 1425 1426 PF_SENDQ_LOCK(); 1427 queue = V_pf_sendqueue; 1428 STAILQ_INIT(&V_pf_sendqueue); 1429 PF_SENDQ_UNLOCK(); 1430 1431 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1432 switch (pfse->pfse_type) { 1433 #ifdef INET 1434 case PFSE_IP: 1435 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1436 break; 1437 case PFSE_ICMP: 1438 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1439 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1440 break; 1441 #endif /* INET */ 1442 #ifdef INET6 1443 case PFSE_IP6: 1444 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1445 NULL); 1446 break; 1447 case PFSE_ICMP6: 1448 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1449 pfse->icmpopts.code, pfse->icmpopts.mtu); 1450 break; 1451 #endif /* INET6 */ 1452 default: 1453 panic("%s: unknown type", __func__); 1454 } 1455 free(pfse, M_PFTEMP); 1456 } 1457 CURVNET_RESTORE(); 1458 } 1459 1460 void 1461 pf_purge_thread(void *unused __unused) 1462 { 1463 VNET_ITERATOR_DECL(vnet_iter); 1464 1465 sx_xlock(&pf_end_lock); 1466 while (pf_end_threads == 0) { 1467 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1468 1469 VNET_LIST_RLOCK(); 1470 VNET_FOREACH(vnet_iter) { 1471 CURVNET_SET(vnet_iter); 1472 1473 1474 /* Wait until V_pf_default_rule is initialized. */ 1475 if (V_pf_vnet_active == 0) { 1476 CURVNET_RESTORE(); 1477 continue; 1478 } 1479 1480 /* 1481 * Process 1/interval fraction of the state 1482 * table every run. 1483 */ 1484 V_pf_purge_idx = 1485 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1486 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1487 1488 /* 1489 * Purge other expired types every 1490 * PFTM_INTERVAL seconds. 1491 */ 1492 if (V_pf_purge_idx == 0) { 1493 /* 1494 * Order is important: 1495 * - states and src nodes reference rules 1496 * - states and rules reference kifs 1497 */ 1498 pf_purge_expired_fragments(); 1499 pf_purge_expired_src_nodes(); 1500 pf_purge_unlinked_rules(); 1501 pfi_kif_purge(); 1502 } 1503 CURVNET_RESTORE(); 1504 } 1505 VNET_LIST_RUNLOCK(); 1506 } 1507 1508 pf_end_threads++; 1509 sx_xunlock(&pf_end_lock); 1510 kproc_exit(0); 1511 } 1512 1513 void 1514 pf_unload_vnet_purge(void) 1515 { 1516 1517 /* 1518 * To cleanse up all kifs and rules we need 1519 * two runs: first one clears reference flags, 1520 * then pf_purge_expired_states() doesn't 1521 * raise them, and then second run frees. 1522 */ 1523 pf_purge_unlinked_rules(); 1524 pfi_kif_purge(); 1525 1526 /* 1527 * Now purge everything. 1528 */ 1529 pf_purge_expired_states(0, pf_hashmask); 1530 pf_purge_fragments(UINT_MAX); 1531 pf_purge_expired_src_nodes(); 1532 1533 /* 1534 * Now all kifs & rules should be unreferenced, 1535 * thus should be successfully freed. 1536 */ 1537 pf_purge_unlinked_rules(); 1538 pfi_kif_purge(); 1539 } 1540 1541 1542 u_int32_t 1543 pf_state_expires(const struct pf_state *state) 1544 { 1545 u_int32_t timeout; 1546 u_int32_t start; 1547 u_int32_t end; 1548 u_int32_t states; 1549 1550 /* handle all PFTM_* > PFTM_MAX here */ 1551 if (state->timeout == PFTM_PURGE) 1552 return (time_uptime); 1553 KASSERT(state->timeout != PFTM_UNLINKED, 1554 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1555 KASSERT((state->timeout < PFTM_MAX), 1556 ("pf_state_expires: timeout > PFTM_MAX")); 1557 timeout = state->rule.ptr->timeout[state->timeout]; 1558 if (!timeout) 1559 timeout = V_pf_default_rule.timeout[state->timeout]; 1560 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1561 if (start) { 1562 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1563 states = counter_u64_fetch(state->rule.ptr->states_cur); 1564 } else { 1565 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1566 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1567 states = V_pf_status.states; 1568 } 1569 if (end && states > start && start < end) { 1570 if (states < end) { 1571 timeout = (u_int64_t)timeout * (end - states) / 1572 (end - start); 1573 return (state->expire + timeout); 1574 } 1575 else 1576 return (time_uptime); 1577 } 1578 return (state->expire + timeout); 1579 } 1580 1581 void 1582 pf_purge_expired_src_nodes() 1583 { 1584 struct pf_src_node_list freelist; 1585 struct pf_srchash *sh; 1586 struct pf_src_node *cur, *next; 1587 int i; 1588 1589 LIST_INIT(&freelist); 1590 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1591 PF_HASHROW_LOCK(sh); 1592 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1593 if (cur->states == 0 && cur->expire <= time_uptime) { 1594 pf_unlink_src_node(cur); 1595 LIST_INSERT_HEAD(&freelist, cur, entry); 1596 } else if (cur->rule.ptr != NULL) 1597 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1598 PF_HASHROW_UNLOCK(sh); 1599 } 1600 1601 pf_free_src_nodes(&freelist); 1602 1603 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1604 } 1605 1606 static void 1607 pf_src_tree_remove_state(struct pf_state *s) 1608 { 1609 struct pf_src_node *sn; 1610 struct pf_srchash *sh; 1611 uint32_t timeout; 1612 1613 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1614 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1615 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1616 1617 if (s->src_node != NULL) { 1618 sn = s->src_node; 1619 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1620 PF_HASHROW_LOCK(sh); 1621 if (s->src.tcp_est) 1622 --sn->conn; 1623 if (--sn->states == 0) 1624 sn->expire = time_uptime + timeout; 1625 PF_HASHROW_UNLOCK(sh); 1626 } 1627 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1628 sn = s->nat_src_node; 1629 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1630 PF_HASHROW_LOCK(sh); 1631 if (--sn->states == 0) 1632 sn->expire = time_uptime + timeout; 1633 PF_HASHROW_UNLOCK(sh); 1634 } 1635 s->src_node = s->nat_src_node = NULL; 1636 } 1637 1638 /* 1639 * Unlink and potentilly free a state. Function may be 1640 * called with ID hash row locked, but always returns 1641 * unlocked, since it needs to go through key hash locking. 1642 */ 1643 int 1644 pf_unlink_state(struct pf_state *s, u_int flags) 1645 { 1646 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1647 1648 if ((flags & PF_ENTER_LOCKED) == 0) 1649 PF_HASHROW_LOCK(ih); 1650 else 1651 PF_HASHROW_ASSERT(ih); 1652 1653 if (s->timeout == PFTM_UNLINKED) { 1654 /* 1655 * State is being processed 1656 * by pf_unlink_state() in 1657 * an other thread. 1658 */ 1659 PF_HASHROW_UNLOCK(ih); 1660 return (0); /* XXXGL: undefined actually */ 1661 } 1662 1663 if (s->src.state == PF_TCPS_PROXY_DST) { 1664 /* XXX wire key the right one? */ 1665 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1666 &s->key[PF_SK_WIRE]->addr[1], 1667 &s->key[PF_SK_WIRE]->addr[0], 1668 s->key[PF_SK_WIRE]->port[1], 1669 s->key[PF_SK_WIRE]->port[0], 1670 s->src.seqhi, s->src.seqlo + 1, 1671 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1672 } 1673 1674 LIST_REMOVE(s, entry); 1675 pf_src_tree_remove_state(s); 1676 1677 if (V_pfsync_delete_state_ptr != NULL) 1678 V_pfsync_delete_state_ptr(s); 1679 1680 STATE_DEC_COUNTERS(s); 1681 1682 s->timeout = PFTM_UNLINKED; 1683 1684 PF_HASHROW_UNLOCK(ih); 1685 1686 pf_detach_state(s); 1687 /* pf_state_insert() initialises refs to 2, so we can never release the 1688 * last reference here, only in pf_release_state(). */ 1689 (void)refcount_release(&s->refs); 1690 1691 return (pf_release_state(s)); 1692 } 1693 1694 void 1695 pf_free_state(struct pf_state *cur) 1696 { 1697 1698 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1699 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1700 cur->timeout)); 1701 1702 pf_normalize_tcp_cleanup(cur); 1703 uma_zfree(V_pf_state_z, cur); 1704 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1705 } 1706 1707 /* 1708 * Called only from pf_purge_thread(), thus serialized. 1709 */ 1710 static u_int 1711 pf_purge_expired_states(u_int i, int maxcheck) 1712 { 1713 struct pf_idhash *ih; 1714 struct pf_state *s; 1715 1716 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1717 1718 /* 1719 * Go through hash and unlink states that expire now. 1720 */ 1721 while (maxcheck > 0) { 1722 1723 ih = &V_pf_idhash[i]; 1724 1725 /* only take the lock if we expect to do work */ 1726 if (!LIST_EMPTY(&ih->states)) { 1727 relock: 1728 PF_HASHROW_LOCK(ih); 1729 LIST_FOREACH(s, &ih->states, entry) { 1730 if (pf_state_expires(s) <= time_uptime) { 1731 V_pf_status.states -= 1732 pf_unlink_state(s, PF_ENTER_LOCKED); 1733 goto relock; 1734 } 1735 s->rule.ptr->rule_flag |= PFRULE_REFS; 1736 if (s->nat_rule.ptr != NULL) 1737 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1738 if (s->anchor.ptr != NULL) 1739 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1740 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1741 if (s->rt_kif) 1742 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1743 } 1744 PF_HASHROW_UNLOCK(ih); 1745 } 1746 1747 /* Return when we hit end of hash. */ 1748 if (++i > pf_hashmask) { 1749 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1750 return (0); 1751 } 1752 1753 maxcheck--; 1754 } 1755 1756 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1757 1758 return (i); 1759 } 1760 1761 static void 1762 pf_purge_unlinked_rules() 1763 { 1764 struct pf_rulequeue tmpq; 1765 struct pf_rule *r, *r1; 1766 1767 /* 1768 * If we have overloading task pending, then we'd 1769 * better skip purging this time. There is a tiny 1770 * probability that overloading task references 1771 * an already unlinked rule. 1772 */ 1773 PF_OVERLOADQ_LOCK(); 1774 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1775 PF_OVERLOADQ_UNLOCK(); 1776 return; 1777 } 1778 PF_OVERLOADQ_UNLOCK(); 1779 1780 /* 1781 * Do naive mark-and-sweep garbage collecting of old rules. 1782 * Reference flag is raised by pf_purge_expired_states() 1783 * and pf_purge_expired_src_nodes(). 1784 * 1785 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1786 * use a temporary queue. 1787 */ 1788 TAILQ_INIT(&tmpq); 1789 PF_UNLNKDRULES_LOCK(); 1790 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1791 if (!(r->rule_flag & PFRULE_REFS)) { 1792 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1793 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1794 } else 1795 r->rule_flag &= ~PFRULE_REFS; 1796 } 1797 PF_UNLNKDRULES_UNLOCK(); 1798 1799 if (!TAILQ_EMPTY(&tmpq)) { 1800 PF_RULES_WLOCK(); 1801 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1802 TAILQ_REMOVE(&tmpq, r, entries); 1803 pf_free_rule(r); 1804 } 1805 PF_RULES_WUNLOCK(); 1806 } 1807 } 1808 1809 void 1810 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1811 { 1812 switch (af) { 1813 #ifdef INET 1814 case AF_INET: { 1815 u_int32_t a = ntohl(addr->addr32[0]); 1816 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1817 (a>>8)&255, a&255); 1818 if (p) { 1819 p = ntohs(p); 1820 printf(":%u", p); 1821 } 1822 break; 1823 } 1824 #endif /* INET */ 1825 #ifdef INET6 1826 case AF_INET6: { 1827 u_int16_t b; 1828 u_int8_t i, curstart, curend, maxstart, maxend; 1829 curstart = curend = maxstart = maxend = 255; 1830 for (i = 0; i < 8; i++) { 1831 if (!addr->addr16[i]) { 1832 if (curstart == 255) 1833 curstart = i; 1834 curend = i; 1835 } else { 1836 if ((curend - curstart) > 1837 (maxend - maxstart)) { 1838 maxstart = curstart; 1839 maxend = curend; 1840 } 1841 curstart = curend = 255; 1842 } 1843 } 1844 if ((curend - curstart) > 1845 (maxend - maxstart)) { 1846 maxstart = curstart; 1847 maxend = curend; 1848 } 1849 for (i = 0; i < 8; i++) { 1850 if (i >= maxstart && i <= maxend) { 1851 if (i == 0) 1852 printf(":"); 1853 if (i == maxend) 1854 printf(":"); 1855 } else { 1856 b = ntohs(addr->addr16[i]); 1857 printf("%x", b); 1858 if (i < 7) 1859 printf(":"); 1860 } 1861 } 1862 if (p) { 1863 p = ntohs(p); 1864 printf("[%u]", p); 1865 } 1866 break; 1867 } 1868 #endif /* INET6 */ 1869 } 1870 } 1871 1872 void 1873 pf_print_state(struct pf_state *s) 1874 { 1875 pf_print_state_parts(s, NULL, NULL); 1876 } 1877 1878 static void 1879 pf_print_state_parts(struct pf_state *s, 1880 struct pf_state_key *skwp, struct pf_state_key *sksp) 1881 { 1882 struct pf_state_key *skw, *sks; 1883 u_int8_t proto, dir; 1884 1885 /* Do our best to fill these, but they're skipped if NULL */ 1886 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1887 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1888 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1889 dir = s ? s->direction : 0; 1890 1891 switch (proto) { 1892 case IPPROTO_IPV4: 1893 printf("IPv4"); 1894 break; 1895 case IPPROTO_IPV6: 1896 printf("IPv6"); 1897 break; 1898 case IPPROTO_TCP: 1899 printf("TCP"); 1900 break; 1901 case IPPROTO_UDP: 1902 printf("UDP"); 1903 break; 1904 case IPPROTO_ICMP: 1905 printf("ICMP"); 1906 break; 1907 case IPPROTO_ICMPV6: 1908 printf("ICMPv6"); 1909 break; 1910 default: 1911 printf("%u", proto); 1912 break; 1913 } 1914 switch (dir) { 1915 case PF_IN: 1916 printf(" in"); 1917 break; 1918 case PF_OUT: 1919 printf(" out"); 1920 break; 1921 } 1922 if (skw) { 1923 printf(" wire: "); 1924 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1925 printf(" "); 1926 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1927 } 1928 if (sks) { 1929 printf(" stack: "); 1930 if (sks != skw) { 1931 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1932 printf(" "); 1933 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1934 } else 1935 printf("-"); 1936 } 1937 if (s) { 1938 if (proto == IPPROTO_TCP) { 1939 printf(" [lo=%u high=%u win=%u modulator=%u", 1940 s->src.seqlo, s->src.seqhi, 1941 s->src.max_win, s->src.seqdiff); 1942 if (s->src.wscale && s->dst.wscale) 1943 printf(" wscale=%u", 1944 s->src.wscale & PF_WSCALE_MASK); 1945 printf("]"); 1946 printf(" [lo=%u high=%u win=%u modulator=%u", 1947 s->dst.seqlo, s->dst.seqhi, 1948 s->dst.max_win, s->dst.seqdiff); 1949 if (s->src.wscale && s->dst.wscale) 1950 printf(" wscale=%u", 1951 s->dst.wscale & PF_WSCALE_MASK); 1952 printf("]"); 1953 } 1954 printf(" %u:%u", s->src.state, s->dst.state); 1955 } 1956 } 1957 1958 void 1959 pf_print_flags(u_int8_t f) 1960 { 1961 if (f) 1962 printf(" "); 1963 if (f & TH_FIN) 1964 printf("F"); 1965 if (f & TH_SYN) 1966 printf("S"); 1967 if (f & TH_RST) 1968 printf("R"); 1969 if (f & TH_PUSH) 1970 printf("P"); 1971 if (f & TH_ACK) 1972 printf("A"); 1973 if (f & TH_URG) 1974 printf("U"); 1975 if (f & TH_ECE) 1976 printf("E"); 1977 if (f & TH_CWR) 1978 printf("W"); 1979 } 1980 1981 #define PF_SET_SKIP_STEPS(i) \ 1982 do { \ 1983 while (head[i] != cur) { \ 1984 head[i]->skip[i].ptr = cur; \ 1985 head[i] = TAILQ_NEXT(head[i], entries); \ 1986 } \ 1987 } while (0) 1988 1989 void 1990 pf_calc_skip_steps(struct pf_rulequeue *rules) 1991 { 1992 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1993 int i; 1994 1995 cur = TAILQ_FIRST(rules); 1996 prev = cur; 1997 for (i = 0; i < PF_SKIP_COUNT; ++i) 1998 head[i] = cur; 1999 while (cur != NULL) { 2000 2001 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2002 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2003 if (cur->direction != prev->direction) 2004 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2005 if (cur->af != prev->af) 2006 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2007 if (cur->proto != prev->proto) 2008 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2009 if (cur->src.neg != prev->src.neg || 2010 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2011 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2012 if (cur->src.port[0] != prev->src.port[0] || 2013 cur->src.port[1] != prev->src.port[1] || 2014 cur->src.port_op != prev->src.port_op) 2015 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2016 if (cur->dst.neg != prev->dst.neg || 2017 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2018 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2019 if (cur->dst.port[0] != prev->dst.port[0] || 2020 cur->dst.port[1] != prev->dst.port[1] || 2021 cur->dst.port_op != prev->dst.port_op) 2022 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2023 2024 prev = cur; 2025 cur = TAILQ_NEXT(cur, entries); 2026 } 2027 for (i = 0; i < PF_SKIP_COUNT; ++i) 2028 PF_SET_SKIP_STEPS(i); 2029 } 2030 2031 static int 2032 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2033 { 2034 if (aw1->type != aw2->type) 2035 return (1); 2036 switch (aw1->type) { 2037 case PF_ADDR_ADDRMASK: 2038 case PF_ADDR_RANGE: 2039 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2040 return (1); 2041 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2042 return (1); 2043 return (0); 2044 case PF_ADDR_DYNIFTL: 2045 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2046 case PF_ADDR_NOROUTE: 2047 case PF_ADDR_URPFFAILED: 2048 return (0); 2049 case PF_ADDR_TABLE: 2050 return (aw1->p.tbl != aw2->p.tbl); 2051 default: 2052 printf("invalid address type: %d\n", aw1->type); 2053 return (1); 2054 } 2055 } 2056 2057 /** 2058 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2059 * header isn't always a full checksum. In some cases (i.e. output) it's a 2060 * pseudo-header checksum, which is a partial checksum over src/dst IP 2061 * addresses, protocol number and length. 2062 * 2063 * That means we have the following cases: 2064 * * Input or forwarding: we don't have TSO, the checksum fields are full 2065 * checksums, we need to update the checksum whenever we change anything. 2066 * * Output (i.e. the checksum is a pseudo-header checksum): 2067 * x The field being updated is src/dst address or affects the length of 2068 * the packet. We need to update the pseudo-header checksum (note that this 2069 * checksum is not ones' complement). 2070 * x Some other field is being modified (e.g. src/dst port numbers): We 2071 * don't have to update anything. 2072 **/ 2073 u_int16_t 2074 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2075 { 2076 u_int32_t l; 2077 2078 if (udp && !cksum) 2079 return (0x0000); 2080 l = cksum + old - new; 2081 l = (l >> 16) + (l & 65535); 2082 l = l & 65535; 2083 if (udp && !l) 2084 return (0xFFFF); 2085 return (l); 2086 } 2087 2088 u_int16_t 2089 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2090 u_int16_t new, u_int8_t udp) 2091 { 2092 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2093 return (cksum); 2094 2095 return (pf_cksum_fixup(cksum, old, new, udp)); 2096 } 2097 2098 static void 2099 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2100 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2101 sa_family_t af) 2102 { 2103 struct pf_addr ao; 2104 u_int16_t po = *p; 2105 2106 PF_ACPY(&ao, a, af); 2107 PF_ACPY(a, an, af); 2108 2109 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2110 *pc = ~*pc; 2111 2112 *p = pn; 2113 2114 switch (af) { 2115 #ifdef INET 2116 case AF_INET: 2117 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2118 ao.addr16[0], an->addr16[0], 0), 2119 ao.addr16[1], an->addr16[1], 0); 2120 *p = pn; 2121 2122 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2123 ao.addr16[0], an->addr16[0], u), 2124 ao.addr16[1], an->addr16[1], u); 2125 2126 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2127 break; 2128 #endif /* INET */ 2129 #ifdef INET6 2130 case AF_INET6: 2131 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2132 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2133 pf_cksum_fixup(pf_cksum_fixup(*pc, 2134 ao.addr16[0], an->addr16[0], u), 2135 ao.addr16[1], an->addr16[1], u), 2136 ao.addr16[2], an->addr16[2], u), 2137 ao.addr16[3], an->addr16[3], u), 2138 ao.addr16[4], an->addr16[4], u), 2139 ao.addr16[5], an->addr16[5], u), 2140 ao.addr16[6], an->addr16[6], u), 2141 ao.addr16[7], an->addr16[7], u); 2142 2143 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2144 break; 2145 #endif /* INET6 */ 2146 } 2147 2148 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2149 CSUM_DELAY_DATA_IPV6)) { 2150 *pc = ~*pc; 2151 if (! *pc) 2152 *pc = 0xffff; 2153 } 2154 } 2155 2156 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2157 void 2158 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2159 { 2160 u_int32_t ao; 2161 2162 memcpy(&ao, a, sizeof(ao)); 2163 memcpy(a, &an, sizeof(u_int32_t)); 2164 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2165 ao % 65536, an % 65536, u); 2166 } 2167 2168 void 2169 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2170 { 2171 u_int32_t ao; 2172 2173 memcpy(&ao, a, sizeof(ao)); 2174 memcpy(a, &an, sizeof(u_int32_t)); 2175 2176 *c = pf_proto_cksum_fixup(m, 2177 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2178 ao % 65536, an % 65536, udp); 2179 } 2180 2181 #ifdef INET6 2182 static void 2183 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2184 { 2185 struct pf_addr ao; 2186 2187 PF_ACPY(&ao, a, AF_INET6); 2188 PF_ACPY(a, an, AF_INET6); 2189 2190 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2191 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2192 pf_cksum_fixup(pf_cksum_fixup(*c, 2193 ao.addr16[0], an->addr16[0], u), 2194 ao.addr16[1], an->addr16[1], u), 2195 ao.addr16[2], an->addr16[2], u), 2196 ao.addr16[3], an->addr16[3], u), 2197 ao.addr16[4], an->addr16[4], u), 2198 ao.addr16[5], an->addr16[5], u), 2199 ao.addr16[6], an->addr16[6], u), 2200 ao.addr16[7], an->addr16[7], u); 2201 } 2202 #endif /* INET6 */ 2203 2204 static void 2205 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2206 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2207 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2208 { 2209 struct pf_addr oia, ooa; 2210 2211 PF_ACPY(&oia, ia, af); 2212 if (oa) 2213 PF_ACPY(&ooa, oa, af); 2214 2215 /* Change inner protocol port, fix inner protocol checksum. */ 2216 if (ip != NULL) { 2217 u_int16_t oip = *ip; 2218 u_int32_t opc; 2219 2220 if (pc != NULL) 2221 opc = *pc; 2222 *ip = np; 2223 if (pc != NULL) 2224 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2225 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2226 if (pc != NULL) 2227 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2228 } 2229 /* Change inner ip address, fix inner ip and icmp checksums. */ 2230 PF_ACPY(ia, na, af); 2231 switch (af) { 2232 #ifdef INET 2233 case AF_INET: { 2234 u_int32_t oh2c = *h2c; 2235 2236 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2237 oia.addr16[0], ia->addr16[0], 0), 2238 oia.addr16[1], ia->addr16[1], 0); 2239 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2240 oia.addr16[0], ia->addr16[0], 0), 2241 oia.addr16[1], ia->addr16[1], 0); 2242 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2243 break; 2244 } 2245 #endif /* INET */ 2246 #ifdef INET6 2247 case AF_INET6: 2248 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2249 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2250 pf_cksum_fixup(pf_cksum_fixup(*ic, 2251 oia.addr16[0], ia->addr16[0], u), 2252 oia.addr16[1], ia->addr16[1], u), 2253 oia.addr16[2], ia->addr16[2], u), 2254 oia.addr16[3], ia->addr16[3], u), 2255 oia.addr16[4], ia->addr16[4], u), 2256 oia.addr16[5], ia->addr16[5], u), 2257 oia.addr16[6], ia->addr16[6], u), 2258 oia.addr16[7], ia->addr16[7], u); 2259 break; 2260 #endif /* INET6 */ 2261 } 2262 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2263 if (oa) { 2264 PF_ACPY(oa, na, af); 2265 switch (af) { 2266 #ifdef INET 2267 case AF_INET: 2268 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2269 ooa.addr16[0], oa->addr16[0], 0), 2270 ooa.addr16[1], oa->addr16[1], 0); 2271 break; 2272 #endif /* INET */ 2273 #ifdef INET6 2274 case AF_INET6: 2275 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2276 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2277 pf_cksum_fixup(pf_cksum_fixup(*ic, 2278 ooa.addr16[0], oa->addr16[0], u), 2279 ooa.addr16[1], oa->addr16[1], u), 2280 ooa.addr16[2], oa->addr16[2], u), 2281 ooa.addr16[3], oa->addr16[3], u), 2282 ooa.addr16[4], oa->addr16[4], u), 2283 ooa.addr16[5], oa->addr16[5], u), 2284 ooa.addr16[6], oa->addr16[6], u), 2285 ooa.addr16[7], oa->addr16[7], u); 2286 break; 2287 #endif /* INET6 */ 2288 } 2289 } 2290 } 2291 2292 2293 /* 2294 * Need to modulate the sequence numbers in the TCP SACK option 2295 * (credits to Krzysztof Pfaff for report and patch) 2296 */ 2297 static int 2298 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2299 struct tcphdr *th, struct pf_state_peer *dst) 2300 { 2301 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2302 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2303 int copyback = 0, i, olen; 2304 struct sackblk sack; 2305 2306 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2307 if (hlen < TCPOLEN_SACKLEN || 2308 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2309 return 0; 2310 2311 while (hlen >= TCPOLEN_SACKLEN) { 2312 olen = opt[1]; 2313 switch (*opt) { 2314 case TCPOPT_EOL: /* FALLTHROUGH */ 2315 case TCPOPT_NOP: 2316 opt++; 2317 hlen--; 2318 break; 2319 case TCPOPT_SACK: 2320 if (olen > hlen) 2321 olen = hlen; 2322 if (olen >= TCPOLEN_SACKLEN) { 2323 for (i = 2; i + TCPOLEN_SACK <= olen; 2324 i += TCPOLEN_SACK) { 2325 memcpy(&sack, &opt[i], sizeof(sack)); 2326 pf_change_proto_a(m, &sack.start, &th->th_sum, 2327 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2328 pf_change_proto_a(m, &sack.end, &th->th_sum, 2329 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2330 memcpy(&opt[i], &sack, sizeof(sack)); 2331 } 2332 copyback = 1; 2333 } 2334 /* FALLTHROUGH */ 2335 default: 2336 if (olen < 2) 2337 olen = 2; 2338 hlen -= olen; 2339 opt += olen; 2340 } 2341 } 2342 2343 if (copyback) 2344 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2345 return (copyback); 2346 } 2347 2348 static void 2349 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2350 const struct pf_addr *saddr, const struct pf_addr *daddr, 2351 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2352 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2353 u_int16_t rtag, struct ifnet *ifp) 2354 { 2355 struct pf_send_entry *pfse; 2356 struct mbuf *m; 2357 int len, tlen; 2358 #ifdef INET 2359 struct ip *h = NULL; 2360 #endif /* INET */ 2361 #ifdef INET6 2362 struct ip6_hdr *h6 = NULL; 2363 #endif /* INET6 */ 2364 struct tcphdr *th; 2365 char *opt; 2366 struct pf_mtag *pf_mtag; 2367 2368 len = 0; 2369 th = NULL; 2370 2371 /* maximum segment size tcp option */ 2372 tlen = sizeof(struct tcphdr); 2373 if (mss) 2374 tlen += 4; 2375 2376 switch (af) { 2377 #ifdef INET 2378 case AF_INET: 2379 len = sizeof(struct ip) + tlen; 2380 break; 2381 #endif /* INET */ 2382 #ifdef INET6 2383 case AF_INET6: 2384 len = sizeof(struct ip6_hdr) + tlen; 2385 break; 2386 #endif /* INET6 */ 2387 default: 2388 panic("%s: unsupported af %d", __func__, af); 2389 } 2390 2391 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2392 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2393 if (pfse == NULL) 2394 return; 2395 m = m_gethdr(M_NOWAIT, MT_DATA); 2396 if (m == NULL) { 2397 free(pfse, M_PFTEMP); 2398 return; 2399 } 2400 #ifdef MAC 2401 mac_netinet_firewall_send(m); 2402 #endif 2403 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2404 free(pfse, M_PFTEMP); 2405 m_freem(m); 2406 return; 2407 } 2408 if (tag) 2409 m->m_flags |= M_SKIP_FIREWALL; 2410 pf_mtag->tag = rtag; 2411 2412 if (r != NULL && r->rtableid >= 0) 2413 M_SETFIB(m, r->rtableid); 2414 2415 #ifdef ALTQ 2416 if (r != NULL && r->qid) { 2417 pf_mtag->qid = r->qid; 2418 2419 /* add hints for ecn */ 2420 pf_mtag->hdr = mtod(m, struct ip *); 2421 } 2422 #endif /* ALTQ */ 2423 m->m_data += max_linkhdr; 2424 m->m_pkthdr.len = m->m_len = len; 2425 m->m_pkthdr.rcvif = NULL; 2426 bzero(m->m_data, len); 2427 switch (af) { 2428 #ifdef INET 2429 case AF_INET: 2430 h = mtod(m, struct ip *); 2431 2432 /* IP header fields included in the TCP checksum */ 2433 h->ip_p = IPPROTO_TCP; 2434 h->ip_len = htons(tlen); 2435 h->ip_src.s_addr = saddr->v4.s_addr; 2436 h->ip_dst.s_addr = daddr->v4.s_addr; 2437 2438 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2439 break; 2440 #endif /* INET */ 2441 #ifdef INET6 2442 case AF_INET6: 2443 h6 = mtod(m, struct ip6_hdr *); 2444 2445 /* IP header fields included in the TCP checksum */ 2446 h6->ip6_nxt = IPPROTO_TCP; 2447 h6->ip6_plen = htons(tlen); 2448 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2449 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2450 2451 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2452 break; 2453 #endif /* INET6 */ 2454 } 2455 2456 /* TCP header */ 2457 th->th_sport = sport; 2458 th->th_dport = dport; 2459 th->th_seq = htonl(seq); 2460 th->th_ack = htonl(ack); 2461 th->th_off = tlen >> 2; 2462 th->th_flags = flags; 2463 th->th_win = htons(win); 2464 2465 if (mss) { 2466 opt = (char *)(th + 1); 2467 opt[0] = TCPOPT_MAXSEG; 2468 opt[1] = 4; 2469 HTONS(mss); 2470 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2471 } 2472 2473 switch (af) { 2474 #ifdef INET 2475 case AF_INET: 2476 /* TCP checksum */ 2477 th->th_sum = in_cksum(m, len); 2478 2479 /* Finish the IP header */ 2480 h->ip_v = 4; 2481 h->ip_hl = sizeof(*h) >> 2; 2482 h->ip_tos = IPTOS_LOWDELAY; 2483 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2484 h->ip_len = htons(len); 2485 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2486 h->ip_sum = 0; 2487 2488 pfse->pfse_type = PFSE_IP; 2489 break; 2490 #endif /* INET */ 2491 #ifdef INET6 2492 case AF_INET6: 2493 /* TCP checksum */ 2494 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2495 sizeof(struct ip6_hdr), tlen); 2496 2497 h6->ip6_vfc |= IPV6_VERSION; 2498 h6->ip6_hlim = IPV6_DEFHLIM; 2499 2500 pfse->pfse_type = PFSE_IP6; 2501 break; 2502 #endif /* INET6 */ 2503 } 2504 pfse->pfse_m = m; 2505 pf_send(pfse); 2506 } 2507 2508 static void 2509 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2510 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2511 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2512 u_short *reason) 2513 { 2514 struct pf_addr * const saddr = pd->src; 2515 struct pf_addr * const daddr = pd->dst; 2516 sa_family_t af = pd->af; 2517 2518 /* undo NAT changes, if they have taken place */ 2519 if (nr != NULL) { 2520 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2521 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2522 if (pd->sport) 2523 *pd->sport = sk->port[pd->sidx]; 2524 if (pd->dport) 2525 *pd->dport = sk->port[pd->didx]; 2526 if (pd->proto_sum) 2527 *pd->proto_sum = bproto_sum; 2528 if (pd->ip_sum) 2529 *pd->ip_sum = bip_sum; 2530 m_copyback(m, off, hdrlen, pd->hdr.any); 2531 } 2532 if (pd->proto == IPPROTO_TCP && 2533 ((r->rule_flag & PFRULE_RETURNRST) || 2534 (r->rule_flag & PFRULE_RETURN)) && 2535 !(th->th_flags & TH_RST)) { 2536 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2537 int len = 0; 2538 #ifdef INET 2539 struct ip *h4; 2540 #endif 2541 #ifdef INET6 2542 struct ip6_hdr *h6; 2543 #endif 2544 2545 switch (af) { 2546 #ifdef INET 2547 case AF_INET: 2548 h4 = mtod(m, struct ip *); 2549 len = ntohs(h4->ip_len) - off; 2550 break; 2551 #endif 2552 #ifdef INET6 2553 case AF_INET6: 2554 h6 = mtod(m, struct ip6_hdr *); 2555 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2556 break; 2557 #endif 2558 } 2559 2560 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2561 REASON_SET(reason, PFRES_PROTCKSUM); 2562 else { 2563 if (th->th_flags & TH_SYN) 2564 ack++; 2565 if (th->th_flags & TH_FIN) 2566 ack++; 2567 pf_send_tcp(m, r, af, pd->dst, 2568 pd->src, th->th_dport, th->th_sport, 2569 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2570 r->return_ttl, 1, 0, kif->pfik_ifp); 2571 } 2572 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2573 r->return_icmp) 2574 pf_send_icmp(m, r->return_icmp >> 8, 2575 r->return_icmp & 255, af, r); 2576 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2577 r->return_icmp6) 2578 pf_send_icmp(m, r->return_icmp6 >> 8, 2579 r->return_icmp6 & 255, af, r); 2580 } 2581 2582 2583 static int 2584 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2585 { 2586 struct m_tag *mtag; 2587 2588 KASSERT(prio <= PF_PRIO_MAX, 2589 ("%s with invalid pcp", __func__)); 2590 2591 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2592 if (mtag == NULL) { 2593 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2594 sizeof(uint8_t), M_NOWAIT); 2595 if (mtag == NULL) 2596 return (ENOMEM); 2597 m_tag_prepend(m, mtag); 2598 } 2599 2600 *(uint8_t *)(mtag + 1) = prio; 2601 return (0); 2602 } 2603 2604 static int 2605 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2606 { 2607 struct m_tag *mtag; 2608 u_int8_t mpcp; 2609 2610 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2611 if (mtag == NULL) 2612 return (0); 2613 2614 if (prio == PF_PRIO_ZERO) 2615 prio = 0; 2616 2617 mpcp = *(uint8_t *)(mtag + 1); 2618 2619 return (mpcp == prio); 2620 } 2621 2622 static void 2623 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2624 struct pf_rule *r) 2625 { 2626 struct pf_send_entry *pfse; 2627 struct mbuf *m0; 2628 struct pf_mtag *pf_mtag; 2629 2630 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2631 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2632 if (pfse == NULL) 2633 return; 2634 2635 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2636 free(pfse, M_PFTEMP); 2637 return; 2638 } 2639 2640 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2641 free(pfse, M_PFTEMP); 2642 return; 2643 } 2644 /* XXX: revisit */ 2645 m0->m_flags |= M_SKIP_FIREWALL; 2646 2647 if (r->rtableid >= 0) 2648 M_SETFIB(m0, r->rtableid); 2649 2650 #ifdef ALTQ 2651 if (r->qid) { 2652 pf_mtag->qid = r->qid; 2653 /* add hints for ecn */ 2654 pf_mtag->hdr = mtod(m0, struct ip *); 2655 } 2656 #endif /* ALTQ */ 2657 2658 switch (af) { 2659 #ifdef INET 2660 case AF_INET: 2661 pfse->pfse_type = PFSE_ICMP; 2662 break; 2663 #endif /* INET */ 2664 #ifdef INET6 2665 case AF_INET6: 2666 pfse->pfse_type = PFSE_ICMP6; 2667 break; 2668 #endif /* INET6 */ 2669 } 2670 pfse->pfse_m = m0; 2671 pfse->icmpopts.type = type; 2672 pfse->icmpopts.code = code; 2673 pf_send(pfse); 2674 } 2675 2676 /* 2677 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2678 * If n is 0, they match if they are equal. If n is != 0, they match if they 2679 * are different. 2680 */ 2681 int 2682 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2683 struct pf_addr *b, sa_family_t af) 2684 { 2685 int match = 0; 2686 2687 switch (af) { 2688 #ifdef INET 2689 case AF_INET: 2690 if ((a->addr32[0] & m->addr32[0]) == 2691 (b->addr32[0] & m->addr32[0])) 2692 match++; 2693 break; 2694 #endif /* INET */ 2695 #ifdef INET6 2696 case AF_INET6: 2697 if (((a->addr32[0] & m->addr32[0]) == 2698 (b->addr32[0] & m->addr32[0])) && 2699 ((a->addr32[1] & m->addr32[1]) == 2700 (b->addr32[1] & m->addr32[1])) && 2701 ((a->addr32[2] & m->addr32[2]) == 2702 (b->addr32[2] & m->addr32[2])) && 2703 ((a->addr32[3] & m->addr32[3]) == 2704 (b->addr32[3] & m->addr32[3]))) 2705 match++; 2706 break; 2707 #endif /* INET6 */ 2708 } 2709 if (match) { 2710 if (n) 2711 return (0); 2712 else 2713 return (1); 2714 } else { 2715 if (n) 2716 return (1); 2717 else 2718 return (0); 2719 } 2720 } 2721 2722 /* 2723 * Return 1 if b <= a <= e, otherwise return 0. 2724 */ 2725 int 2726 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2727 struct pf_addr *a, sa_family_t af) 2728 { 2729 switch (af) { 2730 #ifdef INET 2731 case AF_INET: 2732 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2733 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2734 return (0); 2735 break; 2736 #endif /* INET */ 2737 #ifdef INET6 2738 case AF_INET6: { 2739 int i; 2740 2741 /* check a >= b */ 2742 for (i = 0; i < 4; ++i) 2743 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2744 break; 2745 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2746 return (0); 2747 /* check a <= e */ 2748 for (i = 0; i < 4; ++i) 2749 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2750 break; 2751 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2752 return (0); 2753 break; 2754 } 2755 #endif /* INET6 */ 2756 } 2757 return (1); 2758 } 2759 2760 static int 2761 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2762 { 2763 switch (op) { 2764 case PF_OP_IRG: 2765 return ((p > a1) && (p < a2)); 2766 case PF_OP_XRG: 2767 return ((p < a1) || (p > a2)); 2768 case PF_OP_RRG: 2769 return ((p >= a1) && (p <= a2)); 2770 case PF_OP_EQ: 2771 return (p == a1); 2772 case PF_OP_NE: 2773 return (p != a1); 2774 case PF_OP_LT: 2775 return (p < a1); 2776 case PF_OP_LE: 2777 return (p <= a1); 2778 case PF_OP_GT: 2779 return (p > a1); 2780 case PF_OP_GE: 2781 return (p >= a1); 2782 } 2783 return (0); /* never reached */ 2784 } 2785 2786 int 2787 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2788 { 2789 NTOHS(a1); 2790 NTOHS(a2); 2791 NTOHS(p); 2792 return (pf_match(op, a1, a2, p)); 2793 } 2794 2795 static int 2796 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2797 { 2798 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2799 return (0); 2800 return (pf_match(op, a1, a2, u)); 2801 } 2802 2803 static int 2804 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2805 { 2806 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2807 return (0); 2808 return (pf_match(op, a1, a2, g)); 2809 } 2810 2811 int 2812 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2813 { 2814 if (*tag == -1) 2815 *tag = mtag; 2816 2817 return ((!r->match_tag_not && r->match_tag == *tag) || 2818 (r->match_tag_not && r->match_tag != *tag)); 2819 } 2820 2821 int 2822 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2823 { 2824 2825 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2826 2827 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2828 return (ENOMEM); 2829 2830 pd->pf_mtag->tag = tag; 2831 2832 return (0); 2833 } 2834 2835 #define PF_ANCHOR_STACKSIZE 32 2836 struct pf_anchor_stackframe { 2837 struct pf_ruleset *rs; 2838 struct pf_rule *r; /* XXX: + match bit */ 2839 struct pf_anchor *child; 2840 }; 2841 2842 /* 2843 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2844 */ 2845 #define PF_ANCHORSTACK_MATCH 0x00000001 2846 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2847 2848 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2849 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2850 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2851 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2852 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2853 } while (0) 2854 2855 void 2856 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2857 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2858 int *match) 2859 { 2860 struct pf_anchor_stackframe *f; 2861 2862 PF_RULES_RASSERT(); 2863 2864 if (match) 2865 *match = 0; 2866 if (*depth >= PF_ANCHOR_STACKSIZE) { 2867 printf("%s: anchor stack overflow on %s\n", 2868 __func__, (*r)->anchor->name); 2869 *r = TAILQ_NEXT(*r, entries); 2870 return; 2871 } else if (*depth == 0 && a != NULL) 2872 *a = *r; 2873 f = stack + (*depth)++; 2874 f->rs = *rs; 2875 f->r = *r; 2876 if ((*r)->anchor_wildcard) { 2877 struct pf_anchor_node *parent = &(*r)->anchor->children; 2878 2879 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2880 *r = NULL; 2881 return; 2882 } 2883 *rs = &f->child->ruleset; 2884 } else { 2885 f->child = NULL; 2886 *rs = &(*r)->anchor->ruleset; 2887 } 2888 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2889 } 2890 2891 int 2892 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2893 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2894 int *match) 2895 { 2896 struct pf_anchor_stackframe *f; 2897 struct pf_rule *fr; 2898 int quick = 0; 2899 2900 PF_RULES_RASSERT(); 2901 2902 do { 2903 if (*depth <= 0) 2904 break; 2905 f = stack + *depth - 1; 2906 fr = PF_ANCHOR_RULE(f); 2907 if (f->child != NULL) { 2908 struct pf_anchor_node *parent; 2909 2910 /* 2911 * This block traverses through 2912 * a wildcard anchor. 2913 */ 2914 parent = &fr->anchor->children; 2915 if (match != NULL && *match) { 2916 /* 2917 * If any of "*" matched, then 2918 * "foo/ *" matched, mark frame 2919 * appropriately. 2920 */ 2921 PF_ANCHOR_SET_MATCH(f); 2922 *match = 0; 2923 } 2924 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2925 if (f->child != NULL) { 2926 *rs = &f->child->ruleset; 2927 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2928 if (*r == NULL) 2929 continue; 2930 else 2931 break; 2932 } 2933 } 2934 (*depth)--; 2935 if (*depth == 0 && a != NULL) 2936 *a = NULL; 2937 *rs = f->rs; 2938 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2939 quick = fr->quick; 2940 *r = TAILQ_NEXT(fr, entries); 2941 } while (*r == NULL); 2942 2943 return (quick); 2944 } 2945 2946 #ifdef INET6 2947 void 2948 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2949 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2950 { 2951 switch (af) { 2952 #ifdef INET 2953 case AF_INET: 2954 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2955 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2956 break; 2957 #endif /* INET */ 2958 case AF_INET6: 2959 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2960 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2961 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2962 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2963 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2964 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2965 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2966 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2967 break; 2968 } 2969 } 2970 2971 void 2972 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2973 { 2974 switch (af) { 2975 #ifdef INET 2976 case AF_INET: 2977 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2978 break; 2979 #endif /* INET */ 2980 case AF_INET6: 2981 if (addr->addr32[3] == 0xffffffff) { 2982 addr->addr32[3] = 0; 2983 if (addr->addr32[2] == 0xffffffff) { 2984 addr->addr32[2] = 0; 2985 if (addr->addr32[1] == 0xffffffff) { 2986 addr->addr32[1] = 0; 2987 addr->addr32[0] = 2988 htonl(ntohl(addr->addr32[0]) + 1); 2989 } else 2990 addr->addr32[1] = 2991 htonl(ntohl(addr->addr32[1]) + 1); 2992 } else 2993 addr->addr32[2] = 2994 htonl(ntohl(addr->addr32[2]) + 1); 2995 } else 2996 addr->addr32[3] = 2997 htonl(ntohl(addr->addr32[3]) + 1); 2998 break; 2999 } 3000 } 3001 #endif /* INET6 */ 3002 3003 int 3004 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3005 { 3006 struct pf_addr *saddr, *daddr; 3007 u_int16_t sport, dport; 3008 struct inpcbinfo *pi; 3009 struct inpcb *inp; 3010 3011 pd->lookup.uid = UID_MAX; 3012 pd->lookup.gid = GID_MAX; 3013 3014 switch (pd->proto) { 3015 case IPPROTO_TCP: 3016 if (pd->hdr.tcp == NULL) 3017 return (-1); 3018 sport = pd->hdr.tcp->th_sport; 3019 dport = pd->hdr.tcp->th_dport; 3020 pi = &V_tcbinfo; 3021 break; 3022 case IPPROTO_UDP: 3023 if (pd->hdr.udp == NULL) 3024 return (-1); 3025 sport = pd->hdr.udp->uh_sport; 3026 dport = pd->hdr.udp->uh_dport; 3027 pi = &V_udbinfo; 3028 break; 3029 default: 3030 return (-1); 3031 } 3032 if (direction == PF_IN) { 3033 saddr = pd->src; 3034 daddr = pd->dst; 3035 } else { 3036 u_int16_t p; 3037 3038 p = sport; 3039 sport = dport; 3040 dport = p; 3041 saddr = pd->dst; 3042 daddr = pd->src; 3043 } 3044 switch (pd->af) { 3045 #ifdef INET 3046 case AF_INET: 3047 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3048 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3049 if (inp == NULL) { 3050 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3051 daddr->v4, dport, INPLOOKUP_WILDCARD | 3052 INPLOOKUP_RLOCKPCB, NULL, m); 3053 if (inp == NULL) 3054 return (-1); 3055 } 3056 break; 3057 #endif /* INET */ 3058 #ifdef INET6 3059 case AF_INET6: 3060 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3061 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3062 if (inp == NULL) { 3063 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3064 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3065 INPLOOKUP_RLOCKPCB, NULL, m); 3066 if (inp == NULL) 3067 return (-1); 3068 } 3069 break; 3070 #endif /* INET6 */ 3071 3072 default: 3073 return (-1); 3074 } 3075 INP_RLOCK_ASSERT(inp); 3076 pd->lookup.uid = inp->inp_cred->cr_uid; 3077 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3078 INP_RUNLOCK(inp); 3079 3080 return (1); 3081 } 3082 3083 static u_int8_t 3084 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3085 { 3086 int hlen; 3087 u_int8_t hdr[60]; 3088 u_int8_t *opt, optlen; 3089 u_int8_t wscale = 0; 3090 3091 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3092 if (hlen <= sizeof(struct tcphdr)) 3093 return (0); 3094 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3095 return (0); 3096 opt = hdr + sizeof(struct tcphdr); 3097 hlen -= sizeof(struct tcphdr); 3098 while (hlen >= 3) { 3099 switch (*opt) { 3100 case TCPOPT_EOL: 3101 case TCPOPT_NOP: 3102 ++opt; 3103 --hlen; 3104 break; 3105 case TCPOPT_WINDOW: 3106 wscale = opt[2]; 3107 if (wscale > TCP_MAX_WINSHIFT) 3108 wscale = TCP_MAX_WINSHIFT; 3109 wscale |= PF_WSCALE_FLAG; 3110 /* FALLTHROUGH */ 3111 default: 3112 optlen = opt[1]; 3113 if (optlen < 2) 3114 optlen = 2; 3115 hlen -= optlen; 3116 opt += optlen; 3117 break; 3118 } 3119 } 3120 return (wscale); 3121 } 3122 3123 static u_int16_t 3124 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3125 { 3126 int hlen; 3127 u_int8_t hdr[60]; 3128 u_int8_t *opt, optlen; 3129 u_int16_t mss = V_tcp_mssdflt; 3130 3131 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3132 if (hlen <= sizeof(struct tcphdr)) 3133 return (0); 3134 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3135 return (0); 3136 opt = hdr + sizeof(struct tcphdr); 3137 hlen -= sizeof(struct tcphdr); 3138 while (hlen >= TCPOLEN_MAXSEG) { 3139 switch (*opt) { 3140 case TCPOPT_EOL: 3141 case TCPOPT_NOP: 3142 ++opt; 3143 --hlen; 3144 break; 3145 case TCPOPT_MAXSEG: 3146 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3147 NTOHS(mss); 3148 /* FALLTHROUGH */ 3149 default: 3150 optlen = opt[1]; 3151 if (optlen < 2) 3152 optlen = 2; 3153 hlen -= optlen; 3154 opt += optlen; 3155 break; 3156 } 3157 } 3158 return (mss); 3159 } 3160 3161 static u_int16_t 3162 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3163 { 3164 #ifdef INET 3165 struct nhop4_basic nh4; 3166 #endif /* INET */ 3167 #ifdef INET6 3168 struct nhop6_basic nh6; 3169 struct in6_addr dst6; 3170 uint32_t scopeid; 3171 #endif /* INET6 */ 3172 int hlen = 0; 3173 uint16_t mss = 0; 3174 3175 switch (af) { 3176 #ifdef INET 3177 case AF_INET: 3178 hlen = sizeof(struct ip); 3179 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3180 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3181 break; 3182 #endif /* INET */ 3183 #ifdef INET6 3184 case AF_INET6: 3185 hlen = sizeof(struct ip6_hdr); 3186 in6_splitscope(&addr->v6, &dst6, &scopeid); 3187 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3188 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3189 break; 3190 #endif /* INET6 */ 3191 } 3192 3193 mss = max(V_tcp_mssdflt, mss); 3194 mss = min(mss, offer); 3195 mss = max(mss, 64); /* sanity - at least max opt space */ 3196 return (mss); 3197 } 3198 3199 static u_int32_t 3200 pf_tcp_iss(struct pf_pdesc *pd) 3201 { 3202 MD5_CTX ctx; 3203 u_int32_t digest[4]; 3204 3205 if (V_pf_tcp_secret_init == 0) { 3206 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3207 MD5Init(&V_pf_tcp_secret_ctx); 3208 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3209 sizeof(V_pf_tcp_secret)); 3210 V_pf_tcp_secret_init = 1; 3211 } 3212 3213 ctx = V_pf_tcp_secret_ctx; 3214 3215 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3216 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3217 if (pd->af == AF_INET6) { 3218 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3219 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3220 } else { 3221 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3222 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3223 } 3224 MD5Final((u_char *)digest, &ctx); 3225 V_pf_tcp_iss_off += 4096; 3226 #define ISN_RANDOM_INCREMENT (4096 - 1) 3227 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3228 V_pf_tcp_iss_off); 3229 #undef ISN_RANDOM_INCREMENT 3230 } 3231 3232 static int 3233 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3234 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3235 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3236 { 3237 struct pf_rule *nr = NULL; 3238 struct pf_addr * const saddr = pd->src; 3239 struct pf_addr * const daddr = pd->dst; 3240 sa_family_t af = pd->af; 3241 struct pf_rule *r, *a = NULL; 3242 struct pf_ruleset *ruleset = NULL; 3243 struct pf_src_node *nsn = NULL; 3244 struct tcphdr *th = pd->hdr.tcp; 3245 struct pf_state_key *sk = NULL, *nk = NULL; 3246 u_short reason; 3247 int rewrite = 0, hdrlen = 0; 3248 int tag = -1, rtableid = -1; 3249 int asd = 0; 3250 int match = 0; 3251 int state_icmp = 0; 3252 u_int16_t sport = 0, dport = 0; 3253 u_int16_t bproto_sum = 0, bip_sum = 0; 3254 u_int8_t icmptype = 0, icmpcode = 0; 3255 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3256 3257 PF_RULES_RASSERT(); 3258 3259 if (inp != NULL) { 3260 INP_LOCK_ASSERT(inp); 3261 pd->lookup.uid = inp->inp_cred->cr_uid; 3262 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3263 pd->lookup.done = 1; 3264 } 3265 3266 switch (pd->proto) { 3267 case IPPROTO_TCP: 3268 sport = th->th_sport; 3269 dport = th->th_dport; 3270 hdrlen = sizeof(*th); 3271 break; 3272 case IPPROTO_UDP: 3273 sport = pd->hdr.udp->uh_sport; 3274 dport = pd->hdr.udp->uh_dport; 3275 hdrlen = sizeof(*pd->hdr.udp); 3276 break; 3277 #ifdef INET 3278 case IPPROTO_ICMP: 3279 if (pd->af != AF_INET) 3280 break; 3281 sport = dport = pd->hdr.icmp->icmp_id; 3282 hdrlen = sizeof(*pd->hdr.icmp); 3283 icmptype = pd->hdr.icmp->icmp_type; 3284 icmpcode = pd->hdr.icmp->icmp_code; 3285 3286 if (icmptype == ICMP_UNREACH || 3287 icmptype == ICMP_SOURCEQUENCH || 3288 icmptype == ICMP_REDIRECT || 3289 icmptype == ICMP_TIMXCEED || 3290 icmptype == ICMP_PARAMPROB) 3291 state_icmp++; 3292 break; 3293 #endif /* INET */ 3294 #ifdef INET6 3295 case IPPROTO_ICMPV6: 3296 if (af != AF_INET6) 3297 break; 3298 sport = dport = pd->hdr.icmp6->icmp6_id; 3299 hdrlen = sizeof(*pd->hdr.icmp6); 3300 icmptype = pd->hdr.icmp6->icmp6_type; 3301 icmpcode = pd->hdr.icmp6->icmp6_code; 3302 3303 if (icmptype == ICMP6_DST_UNREACH || 3304 icmptype == ICMP6_PACKET_TOO_BIG || 3305 icmptype == ICMP6_TIME_EXCEEDED || 3306 icmptype == ICMP6_PARAM_PROB) 3307 state_icmp++; 3308 break; 3309 #endif /* INET6 */ 3310 default: 3311 sport = dport = hdrlen = 0; 3312 break; 3313 } 3314 3315 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3316 3317 /* check packet for BINAT/NAT/RDR */ 3318 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3319 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3320 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3321 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3322 3323 if (pd->ip_sum) 3324 bip_sum = *pd->ip_sum; 3325 3326 switch (pd->proto) { 3327 case IPPROTO_TCP: 3328 bproto_sum = th->th_sum; 3329 pd->proto_sum = &th->th_sum; 3330 3331 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3332 nk->port[pd->sidx] != sport) { 3333 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3334 &th->th_sum, &nk->addr[pd->sidx], 3335 nk->port[pd->sidx], 0, af); 3336 pd->sport = &th->th_sport; 3337 sport = th->th_sport; 3338 } 3339 3340 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3341 nk->port[pd->didx] != dport) { 3342 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3343 &th->th_sum, &nk->addr[pd->didx], 3344 nk->port[pd->didx], 0, af); 3345 dport = th->th_dport; 3346 pd->dport = &th->th_dport; 3347 } 3348 rewrite++; 3349 break; 3350 case IPPROTO_UDP: 3351 bproto_sum = pd->hdr.udp->uh_sum; 3352 pd->proto_sum = &pd->hdr.udp->uh_sum; 3353 3354 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3355 nk->port[pd->sidx] != sport) { 3356 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3357 pd->ip_sum, &pd->hdr.udp->uh_sum, 3358 &nk->addr[pd->sidx], 3359 nk->port[pd->sidx], 1, af); 3360 sport = pd->hdr.udp->uh_sport; 3361 pd->sport = &pd->hdr.udp->uh_sport; 3362 } 3363 3364 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3365 nk->port[pd->didx] != dport) { 3366 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3367 pd->ip_sum, &pd->hdr.udp->uh_sum, 3368 &nk->addr[pd->didx], 3369 nk->port[pd->didx], 1, af); 3370 dport = pd->hdr.udp->uh_dport; 3371 pd->dport = &pd->hdr.udp->uh_dport; 3372 } 3373 rewrite++; 3374 break; 3375 #ifdef INET 3376 case IPPROTO_ICMP: 3377 nk->port[0] = nk->port[1]; 3378 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3379 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3380 nk->addr[pd->sidx].v4.s_addr, 0); 3381 3382 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3383 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3384 nk->addr[pd->didx].v4.s_addr, 0); 3385 3386 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3387 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3388 pd->hdr.icmp->icmp_cksum, sport, 3389 nk->port[1], 0); 3390 pd->hdr.icmp->icmp_id = nk->port[1]; 3391 pd->sport = &pd->hdr.icmp->icmp_id; 3392 } 3393 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3394 break; 3395 #endif /* INET */ 3396 #ifdef INET6 3397 case IPPROTO_ICMPV6: 3398 nk->port[0] = nk->port[1]; 3399 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3400 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3401 &nk->addr[pd->sidx], 0); 3402 3403 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3404 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3405 &nk->addr[pd->didx], 0); 3406 rewrite++; 3407 break; 3408 #endif /* INET */ 3409 default: 3410 switch (af) { 3411 #ifdef INET 3412 case AF_INET: 3413 if (PF_ANEQ(saddr, 3414 &nk->addr[pd->sidx], AF_INET)) 3415 pf_change_a(&saddr->v4.s_addr, 3416 pd->ip_sum, 3417 nk->addr[pd->sidx].v4.s_addr, 0); 3418 3419 if (PF_ANEQ(daddr, 3420 &nk->addr[pd->didx], AF_INET)) 3421 pf_change_a(&daddr->v4.s_addr, 3422 pd->ip_sum, 3423 nk->addr[pd->didx].v4.s_addr, 0); 3424 break; 3425 #endif /* INET */ 3426 #ifdef INET6 3427 case AF_INET6: 3428 if (PF_ANEQ(saddr, 3429 &nk->addr[pd->sidx], AF_INET6)) 3430 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3431 3432 if (PF_ANEQ(daddr, 3433 &nk->addr[pd->didx], AF_INET6)) 3434 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3435 break; 3436 #endif /* INET */ 3437 } 3438 break; 3439 } 3440 if (nr->natpass) 3441 r = NULL; 3442 pd->nat_rule = nr; 3443 } 3444 3445 while (r != NULL) { 3446 r->evaluations++; 3447 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3448 r = r->skip[PF_SKIP_IFP].ptr; 3449 else if (r->direction && r->direction != direction) 3450 r = r->skip[PF_SKIP_DIR].ptr; 3451 else if (r->af && r->af != af) 3452 r = r->skip[PF_SKIP_AF].ptr; 3453 else if (r->proto && r->proto != pd->proto) 3454 r = r->skip[PF_SKIP_PROTO].ptr; 3455 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3456 r->src.neg, kif, M_GETFIB(m))) 3457 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3458 /* tcp/udp only. port_op always 0 in other cases */ 3459 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3460 r->src.port[0], r->src.port[1], sport)) 3461 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3462 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3463 r->dst.neg, NULL, M_GETFIB(m))) 3464 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3465 /* tcp/udp only. port_op always 0 in other cases */ 3466 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3467 r->dst.port[0], r->dst.port[1], dport)) 3468 r = r->skip[PF_SKIP_DST_PORT].ptr; 3469 /* icmp only. type always 0 in other cases */ 3470 else if (r->type && r->type != icmptype + 1) 3471 r = TAILQ_NEXT(r, entries); 3472 /* icmp only. type always 0 in other cases */ 3473 else if (r->code && r->code != icmpcode + 1) 3474 r = TAILQ_NEXT(r, entries); 3475 else if (r->tos && !(r->tos == pd->tos)) 3476 r = TAILQ_NEXT(r, entries); 3477 else if (r->rule_flag & PFRULE_FRAGMENT) 3478 r = TAILQ_NEXT(r, entries); 3479 else if (pd->proto == IPPROTO_TCP && 3480 (r->flagset & th->th_flags) != r->flags) 3481 r = TAILQ_NEXT(r, entries); 3482 /* tcp/udp only. uid.op always 0 in other cases */ 3483 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3484 pf_socket_lookup(direction, pd, m), 1)) && 3485 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3486 pd->lookup.uid)) 3487 r = TAILQ_NEXT(r, entries); 3488 /* tcp/udp only. gid.op always 0 in other cases */ 3489 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3490 pf_socket_lookup(direction, pd, m), 1)) && 3491 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3492 pd->lookup.gid)) 3493 r = TAILQ_NEXT(r, entries); 3494 else if (r->prio && 3495 !pf_match_ieee8021q_pcp(r->prio, m)) 3496 r = TAILQ_NEXT(r, entries); 3497 else if (r->prob && 3498 r->prob <= arc4random()) 3499 r = TAILQ_NEXT(r, entries); 3500 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3501 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3502 r = TAILQ_NEXT(r, entries); 3503 else if (r->os_fingerprint != PF_OSFP_ANY && 3504 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3505 pf_osfp_fingerprint(pd, m, off, th), 3506 r->os_fingerprint))) 3507 r = TAILQ_NEXT(r, entries); 3508 else { 3509 if (r->tag) 3510 tag = r->tag; 3511 if (r->rtableid >= 0) 3512 rtableid = r->rtableid; 3513 if (r->anchor == NULL) { 3514 match = 1; 3515 *rm = r; 3516 *am = a; 3517 *rsm = ruleset; 3518 if ((*rm)->quick) 3519 break; 3520 r = TAILQ_NEXT(r, entries); 3521 } else 3522 pf_step_into_anchor(anchor_stack, &asd, 3523 &ruleset, PF_RULESET_FILTER, &r, &a, 3524 &match); 3525 } 3526 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3527 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3528 break; 3529 } 3530 r = *rm; 3531 a = *am; 3532 ruleset = *rsm; 3533 3534 REASON_SET(&reason, PFRES_MATCH); 3535 3536 if (r->log || (nr != NULL && nr->log)) { 3537 if (rewrite) 3538 m_copyback(m, off, hdrlen, pd->hdr.any); 3539 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3540 ruleset, pd, 1); 3541 } 3542 3543 if ((r->action == PF_DROP) && 3544 ((r->rule_flag & PFRULE_RETURNRST) || 3545 (r->rule_flag & PFRULE_RETURNICMP) || 3546 (r->rule_flag & PFRULE_RETURN))) { 3547 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3548 bip_sum, hdrlen, &reason); 3549 } 3550 3551 if (r->action == PF_DROP) 3552 goto cleanup; 3553 3554 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3555 REASON_SET(&reason, PFRES_MEMORY); 3556 goto cleanup; 3557 } 3558 if (rtableid >= 0) 3559 M_SETFIB(m, rtableid); 3560 3561 if (!state_icmp && (r->keep_state || nr != NULL || 3562 (pd->flags & PFDESC_TCP_NORM))) { 3563 int action; 3564 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3565 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3566 hdrlen); 3567 if (action != PF_PASS) { 3568 if (action == PF_DROP && 3569 (r->rule_flag & PFRULE_RETURN)) 3570 pf_return(r, nr, pd, sk, off, m, th, kif, 3571 bproto_sum, bip_sum, hdrlen, &reason); 3572 return (action); 3573 } 3574 } else { 3575 if (sk != NULL) 3576 uma_zfree(V_pf_state_key_z, sk); 3577 if (nk != NULL) 3578 uma_zfree(V_pf_state_key_z, nk); 3579 } 3580 3581 /* copy back packet headers if we performed NAT operations */ 3582 if (rewrite) 3583 m_copyback(m, off, hdrlen, pd->hdr.any); 3584 3585 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3586 direction == PF_OUT && 3587 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3588 /* 3589 * We want the state created, but we dont 3590 * want to send this in case a partner 3591 * firewall has to know about it to allow 3592 * replies through it. 3593 */ 3594 return (PF_DEFER); 3595 3596 return (PF_PASS); 3597 3598 cleanup: 3599 if (sk != NULL) 3600 uma_zfree(V_pf_state_key_z, sk); 3601 if (nk != NULL) 3602 uma_zfree(V_pf_state_key_z, nk); 3603 return (PF_DROP); 3604 } 3605 3606 static int 3607 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3608 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3609 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3610 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3611 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3612 { 3613 struct pf_state *s = NULL; 3614 struct pf_src_node *sn = NULL; 3615 struct tcphdr *th = pd->hdr.tcp; 3616 u_int16_t mss = V_tcp_mssdflt; 3617 u_short reason; 3618 3619 /* check maximums */ 3620 if (r->max_states && 3621 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3622 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3623 REASON_SET(&reason, PFRES_MAXSTATES); 3624 goto csfailed; 3625 } 3626 /* src node for filter rule */ 3627 if ((r->rule_flag & PFRULE_SRCTRACK || 3628 r->rpool.opts & PF_POOL_STICKYADDR) && 3629 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3630 REASON_SET(&reason, PFRES_SRCLIMIT); 3631 goto csfailed; 3632 } 3633 /* src node for translation rule */ 3634 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3635 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3636 REASON_SET(&reason, PFRES_SRCLIMIT); 3637 goto csfailed; 3638 } 3639 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3640 if (s == NULL) { 3641 REASON_SET(&reason, PFRES_MEMORY); 3642 goto csfailed; 3643 } 3644 s->rule.ptr = r; 3645 s->nat_rule.ptr = nr; 3646 s->anchor.ptr = a; 3647 STATE_INC_COUNTERS(s); 3648 if (r->allow_opts) 3649 s->state_flags |= PFSTATE_ALLOWOPTS; 3650 if (r->rule_flag & PFRULE_STATESLOPPY) 3651 s->state_flags |= PFSTATE_SLOPPY; 3652 s->log = r->log & PF_LOG_ALL; 3653 s->sync_state = PFSYNC_S_NONE; 3654 if (nr != NULL) 3655 s->log |= nr->log & PF_LOG_ALL; 3656 switch (pd->proto) { 3657 case IPPROTO_TCP: 3658 s->src.seqlo = ntohl(th->th_seq); 3659 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3660 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3661 r->keep_state == PF_STATE_MODULATE) { 3662 /* Generate sequence number modulator */ 3663 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3664 0) 3665 s->src.seqdiff = 1; 3666 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3667 htonl(s->src.seqlo + s->src.seqdiff), 0); 3668 *rewrite = 1; 3669 } else 3670 s->src.seqdiff = 0; 3671 if (th->th_flags & TH_SYN) { 3672 s->src.seqhi++; 3673 s->src.wscale = pf_get_wscale(m, off, 3674 th->th_off, pd->af); 3675 } 3676 s->src.max_win = MAX(ntohs(th->th_win), 1); 3677 if (s->src.wscale & PF_WSCALE_MASK) { 3678 /* Remove scale factor from initial window */ 3679 int win = s->src.max_win; 3680 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3681 s->src.max_win = (win - 1) >> 3682 (s->src.wscale & PF_WSCALE_MASK); 3683 } 3684 if (th->th_flags & TH_FIN) 3685 s->src.seqhi++; 3686 s->dst.seqhi = 1; 3687 s->dst.max_win = 1; 3688 s->src.state = TCPS_SYN_SENT; 3689 s->dst.state = TCPS_CLOSED; 3690 s->timeout = PFTM_TCP_FIRST_PACKET; 3691 break; 3692 case IPPROTO_UDP: 3693 s->src.state = PFUDPS_SINGLE; 3694 s->dst.state = PFUDPS_NO_TRAFFIC; 3695 s->timeout = PFTM_UDP_FIRST_PACKET; 3696 break; 3697 case IPPROTO_ICMP: 3698 #ifdef INET6 3699 case IPPROTO_ICMPV6: 3700 #endif 3701 s->timeout = PFTM_ICMP_FIRST_PACKET; 3702 break; 3703 default: 3704 s->src.state = PFOTHERS_SINGLE; 3705 s->dst.state = PFOTHERS_NO_TRAFFIC; 3706 s->timeout = PFTM_OTHER_FIRST_PACKET; 3707 } 3708 3709 if (r->rt) { 3710 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3711 REASON_SET(&reason, PFRES_MAPFAILED); 3712 pf_src_tree_remove_state(s); 3713 STATE_DEC_COUNTERS(s); 3714 uma_zfree(V_pf_state_z, s); 3715 goto csfailed; 3716 } 3717 s->rt_kif = r->rpool.cur->kif; 3718 } 3719 3720 s->creation = time_uptime; 3721 s->expire = time_uptime; 3722 3723 if (sn != NULL) 3724 s->src_node = sn; 3725 if (nsn != NULL) { 3726 /* XXX We only modify one side for now. */ 3727 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3728 s->nat_src_node = nsn; 3729 } 3730 if (pd->proto == IPPROTO_TCP) { 3731 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3732 off, pd, th, &s->src, &s->dst)) { 3733 REASON_SET(&reason, PFRES_MEMORY); 3734 pf_src_tree_remove_state(s); 3735 STATE_DEC_COUNTERS(s); 3736 uma_zfree(V_pf_state_z, s); 3737 return (PF_DROP); 3738 } 3739 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3740 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3741 &s->src, &s->dst, rewrite)) { 3742 /* This really shouldn't happen!!! */ 3743 DPFPRINTF(PF_DEBUG_URGENT, 3744 ("pf_normalize_tcp_stateful failed on first pkt")); 3745 pf_normalize_tcp_cleanup(s); 3746 pf_src_tree_remove_state(s); 3747 STATE_DEC_COUNTERS(s); 3748 uma_zfree(V_pf_state_z, s); 3749 return (PF_DROP); 3750 } 3751 } 3752 s->direction = pd->dir; 3753 3754 /* 3755 * sk/nk could already been setup by pf_get_translation(). 3756 */ 3757 if (nr == NULL) { 3758 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3759 __func__, nr, sk, nk)); 3760 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3761 if (sk == NULL) 3762 goto csfailed; 3763 nk = sk; 3764 } else 3765 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3766 __func__, nr, sk, nk)); 3767 3768 /* Swap sk/nk for PF_OUT. */ 3769 if (pf_state_insert(BOUND_IFACE(r, kif), 3770 (pd->dir == PF_IN) ? sk : nk, 3771 (pd->dir == PF_IN) ? nk : sk, s)) { 3772 if (pd->proto == IPPROTO_TCP) 3773 pf_normalize_tcp_cleanup(s); 3774 REASON_SET(&reason, PFRES_STATEINS); 3775 pf_src_tree_remove_state(s); 3776 STATE_DEC_COUNTERS(s); 3777 uma_zfree(V_pf_state_z, s); 3778 return (PF_DROP); 3779 } else 3780 *sm = s; 3781 3782 if (tag > 0) 3783 s->tag = tag; 3784 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3785 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3786 s->src.state = PF_TCPS_PROXY_SRC; 3787 /* undo NAT changes, if they have taken place */ 3788 if (nr != NULL) { 3789 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3790 if (pd->dir == PF_OUT) 3791 skt = s->key[PF_SK_STACK]; 3792 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3793 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3794 if (pd->sport) 3795 *pd->sport = skt->port[pd->sidx]; 3796 if (pd->dport) 3797 *pd->dport = skt->port[pd->didx]; 3798 if (pd->proto_sum) 3799 *pd->proto_sum = bproto_sum; 3800 if (pd->ip_sum) 3801 *pd->ip_sum = bip_sum; 3802 m_copyback(m, off, hdrlen, pd->hdr.any); 3803 } 3804 s->src.seqhi = htonl(arc4random()); 3805 /* Find mss option */ 3806 int rtid = M_GETFIB(m); 3807 mss = pf_get_mss(m, off, th->th_off, pd->af); 3808 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3809 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3810 s->src.mss = mss; 3811 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3812 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3813 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3814 REASON_SET(&reason, PFRES_SYNPROXY); 3815 return (PF_SYNPROXY_DROP); 3816 } 3817 3818 return (PF_PASS); 3819 3820 csfailed: 3821 if (sk != NULL) 3822 uma_zfree(V_pf_state_key_z, sk); 3823 if (nk != NULL) 3824 uma_zfree(V_pf_state_key_z, nk); 3825 3826 if (sn != NULL) { 3827 struct pf_srchash *sh; 3828 3829 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3830 PF_HASHROW_LOCK(sh); 3831 if (--sn->states == 0 && sn->expire == 0) { 3832 pf_unlink_src_node(sn); 3833 uma_zfree(V_pf_sources_z, sn); 3834 counter_u64_add( 3835 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3836 } 3837 PF_HASHROW_UNLOCK(sh); 3838 } 3839 3840 if (nsn != sn && nsn != NULL) { 3841 struct pf_srchash *sh; 3842 3843 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3844 PF_HASHROW_LOCK(sh); 3845 if (--nsn->states == 0 && nsn->expire == 0) { 3846 pf_unlink_src_node(nsn); 3847 uma_zfree(V_pf_sources_z, nsn); 3848 counter_u64_add( 3849 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3850 } 3851 PF_HASHROW_UNLOCK(sh); 3852 } 3853 3854 return (PF_DROP); 3855 } 3856 3857 static int 3858 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3859 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3860 struct pf_ruleset **rsm) 3861 { 3862 struct pf_rule *r, *a = NULL; 3863 struct pf_ruleset *ruleset = NULL; 3864 sa_family_t af = pd->af; 3865 u_short reason; 3866 int tag = -1; 3867 int asd = 0; 3868 int match = 0; 3869 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3870 3871 PF_RULES_RASSERT(); 3872 3873 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3874 while (r != NULL) { 3875 r->evaluations++; 3876 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3877 r = r->skip[PF_SKIP_IFP].ptr; 3878 else if (r->direction && r->direction != direction) 3879 r = r->skip[PF_SKIP_DIR].ptr; 3880 else if (r->af && r->af != af) 3881 r = r->skip[PF_SKIP_AF].ptr; 3882 else if (r->proto && r->proto != pd->proto) 3883 r = r->skip[PF_SKIP_PROTO].ptr; 3884 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3885 r->src.neg, kif, M_GETFIB(m))) 3886 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3887 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3888 r->dst.neg, NULL, M_GETFIB(m))) 3889 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3890 else if (r->tos && !(r->tos == pd->tos)) 3891 r = TAILQ_NEXT(r, entries); 3892 else if (r->os_fingerprint != PF_OSFP_ANY) 3893 r = TAILQ_NEXT(r, entries); 3894 else if (pd->proto == IPPROTO_UDP && 3895 (r->src.port_op || r->dst.port_op)) 3896 r = TAILQ_NEXT(r, entries); 3897 else if (pd->proto == IPPROTO_TCP && 3898 (r->src.port_op || r->dst.port_op || r->flagset)) 3899 r = TAILQ_NEXT(r, entries); 3900 else if ((pd->proto == IPPROTO_ICMP || 3901 pd->proto == IPPROTO_ICMPV6) && 3902 (r->type || r->code)) 3903 r = TAILQ_NEXT(r, entries); 3904 else if (r->prio && 3905 !pf_match_ieee8021q_pcp(r->prio, m)) 3906 r = TAILQ_NEXT(r, entries); 3907 else if (r->prob && r->prob <= 3908 (arc4random() % (UINT_MAX - 1) + 1)) 3909 r = TAILQ_NEXT(r, entries); 3910 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3911 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3912 r = TAILQ_NEXT(r, entries); 3913 else { 3914 if (r->anchor == NULL) { 3915 match = 1; 3916 *rm = r; 3917 *am = a; 3918 *rsm = ruleset; 3919 if ((*rm)->quick) 3920 break; 3921 r = TAILQ_NEXT(r, entries); 3922 } else 3923 pf_step_into_anchor(anchor_stack, &asd, 3924 &ruleset, PF_RULESET_FILTER, &r, &a, 3925 &match); 3926 } 3927 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3928 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3929 break; 3930 } 3931 r = *rm; 3932 a = *am; 3933 ruleset = *rsm; 3934 3935 REASON_SET(&reason, PFRES_MATCH); 3936 3937 if (r->log) 3938 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3939 1); 3940 3941 if (r->action != PF_PASS) 3942 return (PF_DROP); 3943 3944 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3945 REASON_SET(&reason, PFRES_MEMORY); 3946 return (PF_DROP); 3947 } 3948 3949 return (PF_PASS); 3950 } 3951 3952 static int 3953 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3954 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3955 struct pf_pdesc *pd, u_short *reason, int *copyback) 3956 { 3957 struct tcphdr *th = pd->hdr.tcp; 3958 u_int16_t win = ntohs(th->th_win); 3959 u_int32_t ack, end, seq, orig_seq; 3960 u_int8_t sws, dws; 3961 int ackskew; 3962 3963 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3964 sws = src->wscale & PF_WSCALE_MASK; 3965 dws = dst->wscale & PF_WSCALE_MASK; 3966 } else 3967 sws = dws = 0; 3968 3969 /* 3970 * Sequence tracking algorithm from Guido van Rooij's paper: 3971 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3972 * tcp_filtering.ps 3973 */ 3974 3975 orig_seq = seq = ntohl(th->th_seq); 3976 if (src->seqlo == 0) { 3977 /* First packet from this end. Set its state */ 3978 3979 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3980 src->scrub == NULL) { 3981 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3982 REASON_SET(reason, PFRES_MEMORY); 3983 return (PF_DROP); 3984 } 3985 } 3986 3987 /* Deferred generation of sequence number modulator */ 3988 if (dst->seqdiff && !src->seqdiff) { 3989 /* use random iss for the TCP server */ 3990 while ((src->seqdiff = arc4random() - seq) == 0) 3991 ; 3992 ack = ntohl(th->th_ack) - dst->seqdiff; 3993 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3994 src->seqdiff), 0); 3995 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3996 *copyback = 1; 3997 } else { 3998 ack = ntohl(th->th_ack); 3999 } 4000 4001 end = seq + pd->p_len; 4002 if (th->th_flags & TH_SYN) { 4003 end++; 4004 if (dst->wscale & PF_WSCALE_FLAG) { 4005 src->wscale = pf_get_wscale(m, off, th->th_off, 4006 pd->af); 4007 if (src->wscale & PF_WSCALE_FLAG) { 4008 /* Remove scale factor from initial 4009 * window */ 4010 sws = src->wscale & PF_WSCALE_MASK; 4011 win = ((u_int32_t)win + (1 << sws) - 1) 4012 >> sws; 4013 dws = dst->wscale & PF_WSCALE_MASK; 4014 } else { 4015 /* fixup other window */ 4016 dst->max_win <<= dst->wscale & 4017 PF_WSCALE_MASK; 4018 /* in case of a retrans SYN|ACK */ 4019 dst->wscale = 0; 4020 } 4021 } 4022 } 4023 if (th->th_flags & TH_FIN) 4024 end++; 4025 4026 src->seqlo = seq; 4027 if (src->state < TCPS_SYN_SENT) 4028 src->state = TCPS_SYN_SENT; 4029 4030 /* 4031 * May need to slide the window (seqhi may have been set by 4032 * the crappy stack check or if we picked up the connection 4033 * after establishment) 4034 */ 4035 if (src->seqhi == 1 || 4036 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4037 src->seqhi = end + MAX(1, dst->max_win << dws); 4038 if (win > src->max_win) 4039 src->max_win = win; 4040 4041 } else { 4042 ack = ntohl(th->th_ack) - dst->seqdiff; 4043 if (src->seqdiff) { 4044 /* Modulate sequence numbers */ 4045 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4046 src->seqdiff), 0); 4047 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4048 *copyback = 1; 4049 } 4050 end = seq + pd->p_len; 4051 if (th->th_flags & TH_SYN) 4052 end++; 4053 if (th->th_flags & TH_FIN) 4054 end++; 4055 } 4056 4057 if ((th->th_flags & TH_ACK) == 0) { 4058 /* Let it pass through the ack skew check */ 4059 ack = dst->seqlo; 4060 } else if ((ack == 0 && 4061 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4062 /* broken tcp stacks do not set ack */ 4063 (dst->state < TCPS_SYN_SENT)) { 4064 /* 4065 * Many stacks (ours included) will set the ACK number in an 4066 * FIN|ACK if the SYN times out -- no sequence to ACK. 4067 */ 4068 ack = dst->seqlo; 4069 } 4070 4071 if (seq == end) { 4072 /* Ease sequencing restrictions on no data packets */ 4073 seq = src->seqlo; 4074 end = seq; 4075 } 4076 4077 ackskew = dst->seqlo - ack; 4078 4079 4080 /* 4081 * Need to demodulate the sequence numbers in any TCP SACK options 4082 * (Selective ACK). We could optionally validate the SACK values 4083 * against the current ACK window, either forwards or backwards, but 4084 * I'm not confident that SACK has been implemented properly 4085 * everywhere. It wouldn't surprise me if several stacks accidentally 4086 * SACK too far backwards of previously ACKed data. There really aren't 4087 * any security implications of bad SACKing unless the target stack 4088 * doesn't validate the option length correctly. Someone trying to 4089 * spoof into a TCP connection won't bother blindly sending SACK 4090 * options anyway. 4091 */ 4092 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4093 if (pf_modulate_sack(m, off, pd, th, dst)) 4094 *copyback = 1; 4095 } 4096 4097 4098 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4099 if (SEQ_GEQ(src->seqhi, end) && 4100 /* Last octet inside other's window space */ 4101 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4102 /* Retrans: not more than one window back */ 4103 (ackskew >= -MAXACKWINDOW) && 4104 /* Acking not more than one reassembled fragment backwards */ 4105 (ackskew <= (MAXACKWINDOW << sws)) && 4106 /* Acking not more than one window forward */ 4107 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4108 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4109 (pd->flags & PFDESC_IP_REAS) == 0)) { 4110 /* Require an exact/+1 sequence match on resets when possible */ 4111 4112 if (dst->scrub || src->scrub) { 4113 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4114 *state, src, dst, copyback)) 4115 return (PF_DROP); 4116 } 4117 4118 /* update max window */ 4119 if (src->max_win < win) 4120 src->max_win = win; 4121 /* synchronize sequencing */ 4122 if (SEQ_GT(end, src->seqlo)) 4123 src->seqlo = end; 4124 /* slide the window of what the other end can send */ 4125 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4126 dst->seqhi = ack + MAX((win << sws), 1); 4127 4128 4129 /* update states */ 4130 if (th->th_flags & TH_SYN) 4131 if (src->state < TCPS_SYN_SENT) 4132 src->state = TCPS_SYN_SENT; 4133 if (th->th_flags & TH_FIN) 4134 if (src->state < TCPS_CLOSING) 4135 src->state = TCPS_CLOSING; 4136 if (th->th_flags & TH_ACK) { 4137 if (dst->state == TCPS_SYN_SENT) { 4138 dst->state = TCPS_ESTABLISHED; 4139 if (src->state == TCPS_ESTABLISHED && 4140 (*state)->src_node != NULL && 4141 pf_src_connlimit(state)) { 4142 REASON_SET(reason, PFRES_SRCLIMIT); 4143 return (PF_DROP); 4144 } 4145 } else if (dst->state == TCPS_CLOSING) 4146 dst->state = TCPS_FIN_WAIT_2; 4147 } 4148 if (th->th_flags & TH_RST) 4149 src->state = dst->state = TCPS_TIME_WAIT; 4150 4151 /* update expire time */ 4152 (*state)->expire = time_uptime; 4153 if (src->state >= TCPS_FIN_WAIT_2 && 4154 dst->state >= TCPS_FIN_WAIT_2) 4155 (*state)->timeout = PFTM_TCP_CLOSED; 4156 else if (src->state >= TCPS_CLOSING && 4157 dst->state >= TCPS_CLOSING) 4158 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4159 else if (src->state < TCPS_ESTABLISHED || 4160 dst->state < TCPS_ESTABLISHED) 4161 (*state)->timeout = PFTM_TCP_OPENING; 4162 else if (src->state >= TCPS_CLOSING || 4163 dst->state >= TCPS_CLOSING) 4164 (*state)->timeout = PFTM_TCP_CLOSING; 4165 else 4166 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4167 4168 /* Fall through to PASS packet */ 4169 4170 } else if ((dst->state < TCPS_SYN_SENT || 4171 dst->state >= TCPS_FIN_WAIT_2 || 4172 src->state >= TCPS_FIN_WAIT_2) && 4173 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4174 /* Within a window forward of the originating packet */ 4175 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4176 /* Within a window backward of the originating packet */ 4177 4178 /* 4179 * This currently handles three situations: 4180 * 1) Stupid stacks will shotgun SYNs before their peer 4181 * replies. 4182 * 2) When PF catches an already established stream (the 4183 * firewall rebooted, the state table was flushed, routes 4184 * changed...) 4185 * 3) Packets get funky immediately after the connection 4186 * closes (this should catch Solaris spurious ACK|FINs 4187 * that web servers like to spew after a close) 4188 * 4189 * This must be a little more careful than the above code 4190 * since packet floods will also be caught here. We don't 4191 * update the TTL here to mitigate the damage of a packet 4192 * flood and so the same code can handle awkward establishment 4193 * and a loosened connection close. 4194 * In the establishment case, a correct peer response will 4195 * validate the connection, go through the normal state code 4196 * and keep updating the state TTL. 4197 */ 4198 4199 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4200 printf("pf: loose state match: "); 4201 pf_print_state(*state); 4202 pf_print_flags(th->th_flags); 4203 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4204 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4205 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4206 (unsigned long long)(*state)->packets[1], 4207 pd->dir == PF_IN ? "in" : "out", 4208 pd->dir == (*state)->direction ? "fwd" : "rev"); 4209 } 4210 4211 if (dst->scrub || src->scrub) { 4212 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4213 *state, src, dst, copyback)) 4214 return (PF_DROP); 4215 } 4216 4217 /* update max window */ 4218 if (src->max_win < win) 4219 src->max_win = win; 4220 /* synchronize sequencing */ 4221 if (SEQ_GT(end, src->seqlo)) 4222 src->seqlo = end; 4223 /* slide the window of what the other end can send */ 4224 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4225 dst->seqhi = ack + MAX((win << sws), 1); 4226 4227 /* 4228 * Cannot set dst->seqhi here since this could be a shotgunned 4229 * SYN and not an already established connection. 4230 */ 4231 4232 if (th->th_flags & TH_FIN) 4233 if (src->state < TCPS_CLOSING) 4234 src->state = TCPS_CLOSING; 4235 if (th->th_flags & TH_RST) 4236 src->state = dst->state = TCPS_TIME_WAIT; 4237 4238 /* Fall through to PASS packet */ 4239 4240 } else { 4241 if ((*state)->dst.state == TCPS_SYN_SENT && 4242 (*state)->src.state == TCPS_SYN_SENT) { 4243 /* Send RST for state mismatches during handshake */ 4244 if (!(th->th_flags & TH_RST)) 4245 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4246 pd->dst, pd->src, th->th_dport, 4247 th->th_sport, ntohl(th->th_ack), 0, 4248 TH_RST, 0, 0, 4249 (*state)->rule.ptr->return_ttl, 1, 0, 4250 kif->pfik_ifp); 4251 src->seqlo = 0; 4252 src->seqhi = 1; 4253 src->max_win = 1; 4254 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4255 printf("pf: BAD state: "); 4256 pf_print_state(*state); 4257 pf_print_flags(th->th_flags); 4258 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4259 "pkts=%llu:%llu dir=%s,%s\n", 4260 seq, orig_seq, ack, pd->p_len, ackskew, 4261 (unsigned long long)(*state)->packets[0], 4262 (unsigned long long)(*state)->packets[1], 4263 pd->dir == PF_IN ? "in" : "out", 4264 pd->dir == (*state)->direction ? "fwd" : "rev"); 4265 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4266 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4267 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4268 ' ': '2', 4269 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4270 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4271 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4272 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4273 } 4274 REASON_SET(reason, PFRES_BADSTATE); 4275 return (PF_DROP); 4276 } 4277 4278 return (PF_PASS); 4279 } 4280 4281 static int 4282 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4283 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4284 { 4285 struct tcphdr *th = pd->hdr.tcp; 4286 4287 if (th->th_flags & TH_SYN) 4288 if (src->state < TCPS_SYN_SENT) 4289 src->state = TCPS_SYN_SENT; 4290 if (th->th_flags & TH_FIN) 4291 if (src->state < TCPS_CLOSING) 4292 src->state = TCPS_CLOSING; 4293 if (th->th_flags & TH_ACK) { 4294 if (dst->state == TCPS_SYN_SENT) { 4295 dst->state = TCPS_ESTABLISHED; 4296 if (src->state == TCPS_ESTABLISHED && 4297 (*state)->src_node != NULL && 4298 pf_src_connlimit(state)) { 4299 REASON_SET(reason, PFRES_SRCLIMIT); 4300 return (PF_DROP); 4301 } 4302 } else if (dst->state == TCPS_CLOSING) { 4303 dst->state = TCPS_FIN_WAIT_2; 4304 } else if (src->state == TCPS_SYN_SENT && 4305 dst->state < TCPS_SYN_SENT) { 4306 /* 4307 * Handle a special sloppy case where we only see one 4308 * half of the connection. If there is a ACK after 4309 * the initial SYN without ever seeing a packet from 4310 * the destination, set the connection to established. 4311 */ 4312 dst->state = src->state = TCPS_ESTABLISHED; 4313 if ((*state)->src_node != NULL && 4314 pf_src_connlimit(state)) { 4315 REASON_SET(reason, PFRES_SRCLIMIT); 4316 return (PF_DROP); 4317 } 4318 } else if (src->state == TCPS_CLOSING && 4319 dst->state == TCPS_ESTABLISHED && 4320 dst->seqlo == 0) { 4321 /* 4322 * Handle the closing of half connections where we 4323 * don't see the full bidirectional FIN/ACK+ACK 4324 * handshake. 4325 */ 4326 dst->state = TCPS_CLOSING; 4327 } 4328 } 4329 if (th->th_flags & TH_RST) 4330 src->state = dst->state = TCPS_TIME_WAIT; 4331 4332 /* update expire time */ 4333 (*state)->expire = time_uptime; 4334 if (src->state >= TCPS_FIN_WAIT_2 && 4335 dst->state >= TCPS_FIN_WAIT_2) 4336 (*state)->timeout = PFTM_TCP_CLOSED; 4337 else if (src->state >= TCPS_CLOSING && 4338 dst->state >= TCPS_CLOSING) 4339 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4340 else if (src->state < TCPS_ESTABLISHED || 4341 dst->state < TCPS_ESTABLISHED) 4342 (*state)->timeout = PFTM_TCP_OPENING; 4343 else if (src->state >= TCPS_CLOSING || 4344 dst->state >= TCPS_CLOSING) 4345 (*state)->timeout = PFTM_TCP_CLOSING; 4346 else 4347 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4348 4349 return (PF_PASS); 4350 } 4351 4352 static int 4353 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4354 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4355 u_short *reason) 4356 { 4357 struct pf_state_key_cmp key; 4358 struct tcphdr *th = pd->hdr.tcp; 4359 int copyback = 0; 4360 struct pf_state_peer *src, *dst; 4361 struct pf_state_key *sk; 4362 4363 bzero(&key, sizeof(key)); 4364 key.af = pd->af; 4365 key.proto = IPPROTO_TCP; 4366 if (direction == PF_IN) { /* wire side, straight */ 4367 PF_ACPY(&key.addr[0], pd->src, key.af); 4368 PF_ACPY(&key.addr[1], pd->dst, key.af); 4369 key.port[0] = th->th_sport; 4370 key.port[1] = th->th_dport; 4371 } else { /* stack side, reverse */ 4372 PF_ACPY(&key.addr[1], pd->src, key.af); 4373 PF_ACPY(&key.addr[0], pd->dst, key.af); 4374 key.port[1] = th->th_sport; 4375 key.port[0] = th->th_dport; 4376 } 4377 4378 STATE_LOOKUP(kif, &key, direction, *state, pd); 4379 4380 if (direction == (*state)->direction) { 4381 src = &(*state)->src; 4382 dst = &(*state)->dst; 4383 } else { 4384 src = &(*state)->dst; 4385 dst = &(*state)->src; 4386 } 4387 4388 sk = (*state)->key[pd->didx]; 4389 4390 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4391 if (direction != (*state)->direction) { 4392 REASON_SET(reason, PFRES_SYNPROXY); 4393 return (PF_SYNPROXY_DROP); 4394 } 4395 if (th->th_flags & TH_SYN) { 4396 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4397 REASON_SET(reason, PFRES_SYNPROXY); 4398 return (PF_DROP); 4399 } 4400 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4401 pd->src, th->th_dport, th->th_sport, 4402 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4403 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4404 REASON_SET(reason, PFRES_SYNPROXY); 4405 return (PF_SYNPROXY_DROP); 4406 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4407 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4408 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4409 REASON_SET(reason, PFRES_SYNPROXY); 4410 return (PF_DROP); 4411 } else if ((*state)->src_node != NULL && 4412 pf_src_connlimit(state)) { 4413 REASON_SET(reason, PFRES_SRCLIMIT); 4414 return (PF_DROP); 4415 } else 4416 (*state)->src.state = PF_TCPS_PROXY_DST; 4417 } 4418 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4419 if (direction == (*state)->direction) { 4420 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4421 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4422 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4423 REASON_SET(reason, PFRES_SYNPROXY); 4424 return (PF_DROP); 4425 } 4426 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4427 if ((*state)->dst.seqhi == 1) 4428 (*state)->dst.seqhi = htonl(arc4random()); 4429 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4430 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4431 sk->port[pd->sidx], sk->port[pd->didx], 4432 (*state)->dst.seqhi, 0, TH_SYN, 0, 4433 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4434 REASON_SET(reason, PFRES_SYNPROXY); 4435 return (PF_SYNPROXY_DROP); 4436 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4437 (TH_SYN|TH_ACK)) || 4438 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4439 REASON_SET(reason, PFRES_SYNPROXY); 4440 return (PF_DROP); 4441 } else { 4442 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4443 (*state)->dst.seqlo = ntohl(th->th_seq); 4444 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4445 pd->src, th->th_dport, th->th_sport, 4446 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4447 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4448 (*state)->tag, NULL); 4449 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4450 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4451 sk->port[pd->sidx], sk->port[pd->didx], 4452 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4453 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4454 (*state)->src.seqdiff = (*state)->dst.seqhi - 4455 (*state)->src.seqlo; 4456 (*state)->dst.seqdiff = (*state)->src.seqhi - 4457 (*state)->dst.seqlo; 4458 (*state)->src.seqhi = (*state)->src.seqlo + 4459 (*state)->dst.max_win; 4460 (*state)->dst.seqhi = (*state)->dst.seqlo + 4461 (*state)->src.max_win; 4462 (*state)->src.wscale = (*state)->dst.wscale = 0; 4463 (*state)->src.state = (*state)->dst.state = 4464 TCPS_ESTABLISHED; 4465 REASON_SET(reason, PFRES_SYNPROXY); 4466 return (PF_SYNPROXY_DROP); 4467 } 4468 } 4469 4470 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4471 dst->state >= TCPS_FIN_WAIT_2 && 4472 src->state >= TCPS_FIN_WAIT_2) { 4473 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4474 printf("pf: state reuse "); 4475 pf_print_state(*state); 4476 pf_print_flags(th->th_flags); 4477 printf("\n"); 4478 } 4479 /* XXX make sure it's the same direction ?? */ 4480 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4481 pf_unlink_state(*state, PF_ENTER_LOCKED); 4482 *state = NULL; 4483 return (PF_DROP); 4484 } 4485 4486 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4487 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4488 return (PF_DROP); 4489 } else { 4490 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4491 ©back) == PF_DROP) 4492 return (PF_DROP); 4493 } 4494 4495 /* translate source/destination address, if necessary */ 4496 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4497 struct pf_state_key *nk = (*state)->key[pd->didx]; 4498 4499 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4500 nk->port[pd->sidx] != th->th_sport) 4501 pf_change_ap(m, pd->src, &th->th_sport, 4502 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4503 nk->port[pd->sidx], 0, pd->af); 4504 4505 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4506 nk->port[pd->didx] != th->th_dport) 4507 pf_change_ap(m, pd->dst, &th->th_dport, 4508 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4509 nk->port[pd->didx], 0, pd->af); 4510 copyback = 1; 4511 } 4512 4513 /* Copyback sequence modulation or stateful scrub changes if needed */ 4514 if (copyback) 4515 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4516 4517 return (PF_PASS); 4518 } 4519 4520 static int 4521 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4522 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4523 { 4524 struct pf_state_peer *src, *dst; 4525 struct pf_state_key_cmp key; 4526 struct udphdr *uh = pd->hdr.udp; 4527 4528 bzero(&key, sizeof(key)); 4529 key.af = pd->af; 4530 key.proto = IPPROTO_UDP; 4531 if (direction == PF_IN) { /* wire side, straight */ 4532 PF_ACPY(&key.addr[0], pd->src, key.af); 4533 PF_ACPY(&key.addr[1], pd->dst, key.af); 4534 key.port[0] = uh->uh_sport; 4535 key.port[1] = uh->uh_dport; 4536 } else { /* stack side, reverse */ 4537 PF_ACPY(&key.addr[1], pd->src, key.af); 4538 PF_ACPY(&key.addr[0], pd->dst, key.af); 4539 key.port[1] = uh->uh_sport; 4540 key.port[0] = uh->uh_dport; 4541 } 4542 4543 STATE_LOOKUP(kif, &key, direction, *state, pd); 4544 4545 if (direction == (*state)->direction) { 4546 src = &(*state)->src; 4547 dst = &(*state)->dst; 4548 } else { 4549 src = &(*state)->dst; 4550 dst = &(*state)->src; 4551 } 4552 4553 /* update states */ 4554 if (src->state < PFUDPS_SINGLE) 4555 src->state = PFUDPS_SINGLE; 4556 if (dst->state == PFUDPS_SINGLE) 4557 dst->state = PFUDPS_MULTIPLE; 4558 4559 /* update expire time */ 4560 (*state)->expire = time_uptime; 4561 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4562 (*state)->timeout = PFTM_UDP_MULTIPLE; 4563 else 4564 (*state)->timeout = PFTM_UDP_SINGLE; 4565 4566 /* translate source/destination address, if necessary */ 4567 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4568 struct pf_state_key *nk = (*state)->key[pd->didx]; 4569 4570 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4571 nk->port[pd->sidx] != uh->uh_sport) 4572 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4573 &uh->uh_sum, &nk->addr[pd->sidx], 4574 nk->port[pd->sidx], 1, pd->af); 4575 4576 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4577 nk->port[pd->didx] != uh->uh_dport) 4578 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4579 &uh->uh_sum, &nk->addr[pd->didx], 4580 nk->port[pd->didx], 1, pd->af); 4581 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4582 } 4583 4584 return (PF_PASS); 4585 } 4586 4587 static int 4588 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4589 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4590 { 4591 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4592 u_int16_t icmpid = 0, *icmpsum; 4593 u_int8_t icmptype; 4594 int state_icmp = 0; 4595 struct pf_state_key_cmp key; 4596 4597 bzero(&key, sizeof(key)); 4598 switch (pd->proto) { 4599 #ifdef INET 4600 case IPPROTO_ICMP: 4601 icmptype = pd->hdr.icmp->icmp_type; 4602 icmpid = pd->hdr.icmp->icmp_id; 4603 icmpsum = &pd->hdr.icmp->icmp_cksum; 4604 4605 if (icmptype == ICMP_UNREACH || 4606 icmptype == ICMP_SOURCEQUENCH || 4607 icmptype == ICMP_REDIRECT || 4608 icmptype == ICMP_TIMXCEED || 4609 icmptype == ICMP_PARAMPROB) 4610 state_icmp++; 4611 break; 4612 #endif /* INET */ 4613 #ifdef INET6 4614 case IPPROTO_ICMPV6: 4615 icmptype = pd->hdr.icmp6->icmp6_type; 4616 icmpid = pd->hdr.icmp6->icmp6_id; 4617 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4618 4619 if (icmptype == ICMP6_DST_UNREACH || 4620 icmptype == ICMP6_PACKET_TOO_BIG || 4621 icmptype == ICMP6_TIME_EXCEEDED || 4622 icmptype == ICMP6_PARAM_PROB) 4623 state_icmp++; 4624 break; 4625 #endif /* INET6 */ 4626 } 4627 4628 if (!state_icmp) { 4629 4630 /* 4631 * ICMP query/reply message not related to a TCP/UDP packet. 4632 * Search for an ICMP state. 4633 */ 4634 key.af = pd->af; 4635 key.proto = pd->proto; 4636 key.port[0] = key.port[1] = icmpid; 4637 if (direction == PF_IN) { /* wire side, straight */ 4638 PF_ACPY(&key.addr[0], pd->src, key.af); 4639 PF_ACPY(&key.addr[1], pd->dst, key.af); 4640 } else { /* stack side, reverse */ 4641 PF_ACPY(&key.addr[1], pd->src, key.af); 4642 PF_ACPY(&key.addr[0], pd->dst, key.af); 4643 } 4644 4645 STATE_LOOKUP(kif, &key, direction, *state, pd); 4646 4647 (*state)->expire = time_uptime; 4648 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4649 4650 /* translate source/destination address, if necessary */ 4651 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4652 struct pf_state_key *nk = (*state)->key[pd->didx]; 4653 4654 switch (pd->af) { 4655 #ifdef INET 4656 case AF_INET: 4657 if (PF_ANEQ(pd->src, 4658 &nk->addr[pd->sidx], AF_INET)) 4659 pf_change_a(&saddr->v4.s_addr, 4660 pd->ip_sum, 4661 nk->addr[pd->sidx].v4.s_addr, 0); 4662 4663 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4664 AF_INET)) 4665 pf_change_a(&daddr->v4.s_addr, 4666 pd->ip_sum, 4667 nk->addr[pd->didx].v4.s_addr, 0); 4668 4669 if (nk->port[0] != 4670 pd->hdr.icmp->icmp_id) { 4671 pd->hdr.icmp->icmp_cksum = 4672 pf_cksum_fixup( 4673 pd->hdr.icmp->icmp_cksum, icmpid, 4674 nk->port[pd->sidx], 0); 4675 pd->hdr.icmp->icmp_id = 4676 nk->port[pd->sidx]; 4677 } 4678 4679 m_copyback(m, off, ICMP_MINLEN, 4680 (caddr_t )pd->hdr.icmp); 4681 break; 4682 #endif /* INET */ 4683 #ifdef INET6 4684 case AF_INET6: 4685 if (PF_ANEQ(pd->src, 4686 &nk->addr[pd->sidx], AF_INET6)) 4687 pf_change_a6(saddr, 4688 &pd->hdr.icmp6->icmp6_cksum, 4689 &nk->addr[pd->sidx], 0); 4690 4691 if (PF_ANEQ(pd->dst, 4692 &nk->addr[pd->didx], AF_INET6)) 4693 pf_change_a6(daddr, 4694 &pd->hdr.icmp6->icmp6_cksum, 4695 &nk->addr[pd->didx], 0); 4696 4697 m_copyback(m, off, sizeof(struct icmp6_hdr), 4698 (caddr_t )pd->hdr.icmp6); 4699 break; 4700 #endif /* INET6 */ 4701 } 4702 } 4703 return (PF_PASS); 4704 4705 } else { 4706 /* 4707 * ICMP error message in response to a TCP/UDP packet. 4708 * Extract the inner TCP/UDP header and search for that state. 4709 */ 4710 4711 struct pf_pdesc pd2; 4712 bzero(&pd2, sizeof pd2); 4713 #ifdef INET 4714 struct ip h2; 4715 #endif /* INET */ 4716 #ifdef INET6 4717 struct ip6_hdr h2_6; 4718 int terminal = 0; 4719 #endif /* INET6 */ 4720 int ipoff2 = 0; 4721 int off2 = 0; 4722 4723 pd2.af = pd->af; 4724 /* Payload packet is from the opposite direction. */ 4725 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4726 pd2.didx = (direction == PF_IN) ? 0 : 1; 4727 switch (pd->af) { 4728 #ifdef INET 4729 case AF_INET: 4730 /* offset of h2 in mbuf chain */ 4731 ipoff2 = off + ICMP_MINLEN; 4732 4733 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4734 NULL, reason, pd2.af)) { 4735 DPFPRINTF(PF_DEBUG_MISC, 4736 ("pf: ICMP error message too short " 4737 "(ip)\n")); 4738 return (PF_DROP); 4739 } 4740 /* 4741 * ICMP error messages don't refer to non-first 4742 * fragments 4743 */ 4744 if (h2.ip_off & htons(IP_OFFMASK)) { 4745 REASON_SET(reason, PFRES_FRAG); 4746 return (PF_DROP); 4747 } 4748 4749 /* offset of protocol header that follows h2 */ 4750 off2 = ipoff2 + (h2.ip_hl << 2); 4751 4752 pd2.proto = h2.ip_p; 4753 pd2.src = (struct pf_addr *)&h2.ip_src; 4754 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4755 pd2.ip_sum = &h2.ip_sum; 4756 break; 4757 #endif /* INET */ 4758 #ifdef INET6 4759 case AF_INET6: 4760 ipoff2 = off + sizeof(struct icmp6_hdr); 4761 4762 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4763 NULL, reason, pd2.af)) { 4764 DPFPRINTF(PF_DEBUG_MISC, 4765 ("pf: ICMP error message too short " 4766 "(ip6)\n")); 4767 return (PF_DROP); 4768 } 4769 pd2.proto = h2_6.ip6_nxt; 4770 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4771 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4772 pd2.ip_sum = NULL; 4773 off2 = ipoff2 + sizeof(h2_6); 4774 do { 4775 switch (pd2.proto) { 4776 case IPPROTO_FRAGMENT: 4777 /* 4778 * ICMPv6 error messages for 4779 * non-first fragments 4780 */ 4781 REASON_SET(reason, PFRES_FRAG); 4782 return (PF_DROP); 4783 case IPPROTO_AH: 4784 case IPPROTO_HOPOPTS: 4785 case IPPROTO_ROUTING: 4786 case IPPROTO_DSTOPTS: { 4787 /* get next header and header length */ 4788 struct ip6_ext opt6; 4789 4790 if (!pf_pull_hdr(m, off2, &opt6, 4791 sizeof(opt6), NULL, reason, 4792 pd2.af)) { 4793 DPFPRINTF(PF_DEBUG_MISC, 4794 ("pf: ICMPv6 short opt\n")); 4795 return (PF_DROP); 4796 } 4797 if (pd2.proto == IPPROTO_AH) 4798 off2 += (opt6.ip6e_len + 2) * 4; 4799 else 4800 off2 += (opt6.ip6e_len + 1) * 8; 4801 pd2.proto = opt6.ip6e_nxt; 4802 /* goto the next header */ 4803 break; 4804 } 4805 default: 4806 terminal++; 4807 break; 4808 } 4809 } while (!terminal); 4810 break; 4811 #endif /* INET6 */ 4812 } 4813 4814 switch (pd2.proto) { 4815 case IPPROTO_TCP: { 4816 struct tcphdr th; 4817 u_int32_t seq; 4818 struct pf_state_peer *src, *dst; 4819 u_int8_t dws; 4820 int copyback = 0; 4821 4822 /* 4823 * Only the first 8 bytes of the TCP header can be 4824 * expected. Don't access any TCP header fields after 4825 * th_seq, an ackskew test is not possible. 4826 */ 4827 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4828 pd2.af)) { 4829 DPFPRINTF(PF_DEBUG_MISC, 4830 ("pf: ICMP error message too short " 4831 "(tcp)\n")); 4832 return (PF_DROP); 4833 } 4834 4835 key.af = pd2.af; 4836 key.proto = IPPROTO_TCP; 4837 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4838 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4839 key.port[pd2.sidx] = th.th_sport; 4840 key.port[pd2.didx] = th.th_dport; 4841 4842 STATE_LOOKUP(kif, &key, direction, *state, pd); 4843 4844 if (direction == (*state)->direction) { 4845 src = &(*state)->dst; 4846 dst = &(*state)->src; 4847 } else { 4848 src = &(*state)->src; 4849 dst = &(*state)->dst; 4850 } 4851 4852 if (src->wscale && dst->wscale) 4853 dws = dst->wscale & PF_WSCALE_MASK; 4854 else 4855 dws = 0; 4856 4857 /* Demodulate sequence number */ 4858 seq = ntohl(th.th_seq) - src->seqdiff; 4859 if (src->seqdiff) { 4860 pf_change_a(&th.th_seq, icmpsum, 4861 htonl(seq), 0); 4862 copyback = 1; 4863 } 4864 4865 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4866 (!SEQ_GEQ(src->seqhi, seq) || 4867 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4868 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4869 printf("pf: BAD ICMP %d:%d ", 4870 icmptype, pd->hdr.icmp->icmp_code); 4871 pf_print_host(pd->src, 0, pd->af); 4872 printf(" -> "); 4873 pf_print_host(pd->dst, 0, pd->af); 4874 printf(" state: "); 4875 pf_print_state(*state); 4876 printf(" seq=%u\n", seq); 4877 } 4878 REASON_SET(reason, PFRES_BADSTATE); 4879 return (PF_DROP); 4880 } else { 4881 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4882 printf("pf: OK ICMP %d:%d ", 4883 icmptype, pd->hdr.icmp->icmp_code); 4884 pf_print_host(pd->src, 0, pd->af); 4885 printf(" -> "); 4886 pf_print_host(pd->dst, 0, pd->af); 4887 printf(" state: "); 4888 pf_print_state(*state); 4889 printf(" seq=%u\n", seq); 4890 } 4891 } 4892 4893 /* translate source/destination address, if necessary */ 4894 if ((*state)->key[PF_SK_WIRE] != 4895 (*state)->key[PF_SK_STACK]) { 4896 struct pf_state_key *nk = 4897 (*state)->key[pd->didx]; 4898 4899 if (PF_ANEQ(pd2.src, 4900 &nk->addr[pd2.sidx], pd2.af) || 4901 nk->port[pd2.sidx] != th.th_sport) 4902 pf_change_icmp(pd2.src, &th.th_sport, 4903 daddr, &nk->addr[pd2.sidx], 4904 nk->port[pd2.sidx], NULL, 4905 pd2.ip_sum, icmpsum, 4906 pd->ip_sum, 0, pd2.af); 4907 4908 if (PF_ANEQ(pd2.dst, 4909 &nk->addr[pd2.didx], pd2.af) || 4910 nk->port[pd2.didx] != th.th_dport) 4911 pf_change_icmp(pd2.dst, &th.th_dport, 4912 saddr, &nk->addr[pd2.didx], 4913 nk->port[pd2.didx], NULL, 4914 pd2.ip_sum, icmpsum, 4915 pd->ip_sum, 0, pd2.af); 4916 copyback = 1; 4917 } 4918 4919 if (copyback) { 4920 switch (pd2.af) { 4921 #ifdef INET 4922 case AF_INET: 4923 m_copyback(m, off, ICMP_MINLEN, 4924 (caddr_t )pd->hdr.icmp); 4925 m_copyback(m, ipoff2, sizeof(h2), 4926 (caddr_t )&h2); 4927 break; 4928 #endif /* INET */ 4929 #ifdef INET6 4930 case AF_INET6: 4931 m_copyback(m, off, 4932 sizeof(struct icmp6_hdr), 4933 (caddr_t )pd->hdr.icmp6); 4934 m_copyback(m, ipoff2, sizeof(h2_6), 4935 (caddr_t )&h2_6); 4936 break; 4937 #endif /* INET6 */ 4938 } 4939 m_copyback(m, off2, 8, (caddr_t)&th); 4940 } 4941 4942 return (PF_PASS); 4943 break; 4944 } 4945 case IPPROTO_UDP: { 4946 struct udphdr uh; 4947 4948 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4949 NULL, reason, pd2.af)) { 4950 DPFPRINTF(PF_DEBUG_MISC, 4951 ("pf: ICMP error message too short " 4952 "(udp)\n")); 4953 return (PF_DROP); 4954 } 4955 4956 key.af = pd2.af; 4957 key.proto = IPPROTO_UDP; 4958 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4959 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4960 key.port[pd2.sidx] = uh.uh_sport; 4961 key.port[pd2.didx] = uh.uh_dport; 4962 4963 STATE_LOOKUP(kif, &key, direction, *state, pd); 4964 4965 /* translate source/destination address, if necessary */ 4966 if ((*state)->key[PF_SK_WIRE] != 4967 (*state)->key[PF_SK_STACK]) { 4968 struct pf_state_key *nk = 4969 (*state)->key[pd->didx]; 4970 4971 if (PF_ANEQ(pd2.src, 4972 &nk->addr[pd2.sidx], pd2.af) || 4973 nk->port[pd2.sidx] != uh.uh_sport) 4974 pf_change_icmp(pd2.src, &uh.uh_sport, 4975 daddr, &nk->addr[pd2.sidx], 4976 nk->port[pd2.sidx], &uh.uh_sum, 4977 pd2.ip_sum, icmpsum, 4978 pd->ip_sum, 1, pd2.af); 4979 4980 if (PF_ANEQ(pd2.dst, 4981 &nk->addr[pd2.didx], pd2.af) || 4982 nk->port[pd2.didx] != uh.uh_dport) 4983 pf_change_icmp(pd2.dst, &uh.uh_dport, 4984 saddr, &nk->addr[pd2.didx], 4985 nk->port[pd2.didx], &uh.uh_sum, 4986 pd2.ip_sum, icmpsum, 4987 pd->ip_sum, 1, pd2.af); 4988 4989 switch (pd2.af) { 4990 #ifdef INET 4991 case AF_INET: 4992 m_copyback(m, off, ICMP_MINLEN, 4993 (caddr_t )pd->hdr.icmp); 4994 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4995 break; 4996 #endif /* INET */ 4997 #ifdef INET6 4998 case AF_INET6: 4999 m_copyback(m, off, 5000 sizeof(struct icmp6_hdr), 5001 (caddr_t )pd->hdr.icmp6); 5002 m_copyback(m, ipoff2, sizeof(h2_6), 5003 (caddr_t )&h2_6); 5004 break; 5005 #endif /* INET6 */ 5006 } 5007 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5008 } 5009 return (PF_PASS); 5010 break; 5011 } 5012 #ifdef INET 5013 case IPPROTO_ICMP: { 5014 struct icmp iih; 5015 5016 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5017 NULL, reason, pd2.af)) { 5018 DPFPRINTF(PF_DEBUG_MISC, 5019 ("pf: ICMP error message too short i" 5020 "(icmp)\n")); 5021 return (PF_DROP); 5022 } 5023 5024 key.af = pd2.af; 5025 key.proto = IPPROTO_ICMP; 5026 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5027 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5028 key.port[0] = key.port[1] = iih.icmp_id; 5029 5030 STATE_LOOKUP(kif, &key, direction, *state, pd); 5031 5032 /* translate source/destination address, if necessary */ 5033 if ((*state)->key[PF_SK_WIRE] != 5034 (*state)->key[PF_SK_STACK]) { 5035 struct pf_state_key *nk = 5036 (*state)->key[pd->didx]; 5037 5038 if (PF_ANEQ(pd2.src, 5039 &nk->addr[pd2.sidx], pd2.af) || 5040 nk->port[pd2.sidx] != iih.icmp_id) 5041 pf_change_icmp(pd2.src, &iih.icmp_id, 5042 daddr, &nk->addr[pd2.sidx], 5043 nk->port[pd2.sidx], NULL, 5044 pd2.ip_sum, icmpsum, 5045 pd->ip_sum, 0, AF_INET); 5046 5047 if (PF_ANEQ(pd2.dst, 5048 &nk->addr[pd2.didx], pd2.af) || 5049 nk->port[pd2.didx] != iih.icmp_id) 5050 pf_change_icmp(pd2.dst, &iih.icmp_id, 5051 saddr, &nk->addr[pd2.didx], 5052 nk->port[pd2.didx], NULL, 5053 pd2.ip_sum, icmpsum, 5054 pd->ip_sum, 0, AF_INET); 5055 5056 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5057 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5058 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5059 } 5060 return (PF_PASS); 5061 break; 5062 } 5063 #endif /* INET */ 5064 #ifdef INET6 5065 case IPPROTO_ICMPV6: { 5066 struct icmp6_hdr iih; 5067 5068 if (!pf_pull_hdr(m, off2, &iih, 5069 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5070 DPFPRINTF(PF_DEBUG_MISC, 5071 ("pf: ICMP error message too short " 5072 "(icmp6)\n")); 5073 return (PF_DROP); 5074 } 5075 5076 key.af = pd2.af; 5077 key.proto = IPPROTO_ICMPV6; 5078 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5079 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5080 key.port[0] = key.port[1] = iih.icmp6_id; 5081 5082 STATE_LOOKUP(kif, &key, direction, *state, pd); 5083 5084 /* translate source/destination address, if necessary */ 5085 if ((*state)->key[PF_SK_WIRE] != 5086 (*state)->key[PF_SK_STACK]) { 5087 struct pf_state_key *nk = 5088 (*state)->key[pd->didx]; 5089 5090 if (PF_ANEQ(pd2.src, 5091 &nk->addr[pd2.sidx], pd2.af) || 5092 nk->port[pd2.sidx] != iih.icmp6_id) 5093 pf_change_icmp(pd2.src, &iih.icmp6_id, 5094 daddr, &nk->addr[pd2.sidx], 5095 nk->port[pd2.sidx], NULL, 5096 pd2.ip_sum, icmpsum, 5097 pd->ip_sum, 0, AF_INET6); 5098 5099 if (PF_ANEQ(pd2.dst, 5100 &nk->addr[pd2.didx], pd2.af) || 5101 nk->port[pd2.didx] != iih.icmp6_id) 5102 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5103 saddr, &nk->addr[pd2.didx], 5104 nk->port[pd2.didx], NULL, 5105 pd2.ip_sum, icmpsum, 5106 pd->ip_sum, 0, AF_INET6); 5107 5108 m_copyback(m, off, sizeof(struct icmp6_hdr), 5109 (caddr_t)pd->hdr.icmp6); 5110 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5111 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5112 (caddr_t)&iih); 5113 } 5114 return (PF_PASS); 5115 break; 5116 } 5117 #endif /* INET6 */ 5118 default: { 5119 key.af = pd2.af; 5120 key.proto = pd2.proto; 5121 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5122 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5123 key.port[0] = key.port[1] = 0; 5124 5125 STATE_LOOKUP(kif, &key, direction, *state, pd); 5126 5127 /* translate source/destination address, if necessary */ 5128 if ((*state)->key[PF_SK_WIRE] != 5129 (*state)->key[PF_SK_STACK]) { 5130 struct pf_state_key *nk = 5131 (*state)->key[pd->didx]; 5132 5133 if (PF_ANEQ(pd2.src, 5134 &nk->addr[pd2.sidx], pd2.af)) 5135 pf_change_icmp(pd2.src, NULL, daddr, 5136 &nk->addr[pd2.sidx], 0, NULL, 5137 pd2.ip_sum, icmpsum, 5138 pd->ip_sum, 0, pd2.af); 5139 5140 if (PF_ANEQ(pd2.dst, 5141 &nk->addr[pd2.didx], pd2.af)) 5142 pf_change_icmp(pd2.dst, NULL, saddr, 5143 &nk->addr[pd2.didx], 0, NULL, 5144 pd2.ip_sum, icmpsum, 5145 pd->ip_sum, 0, pd2.af); 5146 5147 switch (pd2.af) { 5148 #ifdef INET 5149 case AF_INET: 5150 m_copyback(m, off, ICMP_MINLEN, 5151 (caddr_t)pd->hdr.icmp); 5152 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5153 break; 5154 #endif /* INET */ 5155 #ifdef INET6 5156 case AF_INET6: 5157 m_copyback(m, off, 5158 sizeof(struct icmp6_hdr), 5159 (caddr_t )pd->hdr.icmp6); 5160 m_copyback(m, ipoff2, sizeof(h2_6), 5161 (caddr_t )&h2_6); 5162 break; 5163 #endif /* INET6 */ 5164 } 5165 } 5166 return (PF_PASS); 5167 break; 5168 } 5169 } 5170 } 5171 } 5172 5173 static int 5174 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5175 struct mbuf *m, struct pf_pdesc *pd) 5176 { 5177 struct pf_state_peer *src, *dst; 5178 struct pf_state_key_cmp key; 5179 5180 bzero(&key, sizeof(key)); 5181 key.af = pd->af; 5182 key.proto = pd->proto; 5183 if (direction == PF_IN) { 5184 PF_ACPY(&key.addr[0], pd->src, key.af); 5185 PF_ACPY(&key.addr[1], pd->dst, key.af); 5186 key.port[0] = key.port[1] = 0; 5187 } else { 5188 PF_ACPY(&key.addr[1], pd->src, key.af); 5189 PF_ACPY(&key.addr[0], pd->dst, key.af); 5190 key.port[1] = key.port[0] = 0; 5191 } 5192 5193 STATE_LOOKUP(kif, &key, direction, *state, pd); 5194 5195 if (direction == (*state)->direction) { 5196 src = &(*state)->src; 5197 dst = &(*state)->dst; 5198 } else { 5199 src = &(*state)->dst; 5200 dst = &(*state)->src; 5201 } 5202 5203 /* update states */ 5204 if (src->state < PFOTHERS_SINGLE) 5205 src->state = PFOTHERS_SINGLE; 5206 if (dst->state == PFOTHERS_SINGLE) 5207 dst->state = PFOTHERS_MULTIPLE; 5208 5209 /* update expire time */ 5210 (*state)->expire = time_uptime; 5211 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5212 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5213 else 5214 (*state)->timeout = PFTM_OTHER_SINGLE; 5215 5216 /* translate source/destination address, if necessary */ 5217 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5218 struct pf_state_key *nk = (*state)->key[pd->didx]; 5219 5220 KASSERT(nk, ("%s: nk is null", __func__)); 5221 KASSERT(pd, ("%s: pd is null", __func__)); 5222 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5223 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5224 switch (pd->af) { 5225 #ifdef INET 5226 case AF_INET: 5227 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5228 pf_change_a(&pd->src->v4.s_addr, 5229 pd->ip_sum, 5230 nk->addr[pd->sidx].v4.s_addr, 5231 0); 5232 5233 5234 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5235 pf_change_a(&pd->dst->v4.s_addr, 5236 pd->ip_sum, 5237 nk->addr[pd->didx].v4.s_addr, 5238 0); 5239 5240 break; 5241 #endif /* INET */ 5242 #ifdef INET6 5243 case AF_INET6: 5244 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5245 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5246 5247 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5248 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5249 #endif /* INET6 */ 5250 } 5251 } 5252 return (PF_PASS); 5253 } 5254 5255 /* 5256 * ipoff and off are measured from the start of the mbuf chain. 5257 * h must be at "ipoff" on the mbuf chain. 5258 */ 5259 void * 5260 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5261 u_short *actionp, u_short *reasonp, sa_family_t af) 5262 { 5263 switch (af) { 5264 #ifdef INET 5265 case AF_INET: { 5266 struct ip *h = mtod(m, struct ip *); 5267 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5268 5269 if (fragoff) { 5270 if (fragoff >= len) 5271 ACTION_SET(actionp, PF_PASS); 5272 else { 5273 ACTION_SET(actionp, PF_DROP); 5274 REASON_SET(reasonp, PFRES_FRAG); 5275 } 5276 return (NULL); 5277 } 5278 if (m->m_pkthdr.len < off + len || 5279 ntohs(h->ip_len) < off + len) { 5280 ACTION_SET(actionp, PF_DROP); 5281 REASON_SET(reasonp, PFRES_SHORT); 5282 return (NULL); 5283 } 5284 break; 5285 } 5286 #endif /* INET */ 5287 #ifdef INET6 5288 case AF_INET6: { 5289 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5290 5291 if (m->m_pkthdr.len < off + len || 5292 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5293 (unsigned)(off + len)) { 5294 ACTION_SET(actionp, PF_DROP); 5295 REASON_SET(reasonp, PFRES_SHORT); 5296 return (NULL); 5297 } 5298 break; 5299 } 5300 #endif /* INET6 */ 5301 } 5302 m_copydata(m, off, len, p); 5303 return (p); 5304 } 5305 5306 #ifdef RADIX_MPATH 5307 static int 5308 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5309 int rtableid) 5310 { 5311 struct radix_node_head *rnh; 5312 struct sockaddr_in *dst; 5313 int ret = 1; 5314 int check_mpath; 5315 #ifdef INET6 5316 struct sockaddr_in6 *dst6; 5317 struct route_in6 ro; 5318 #else 5319 struct route ro; 5320 #endif 5321 struct radix_node *rn; 5322 struct rtentry *rt; 5323 struct ifnet *ifp; 5324 5325 check_mpath = 0; 5326 /* XXX: stick to table 0 for now */ 5327 rnh = rt_tables_get_rnh(0, af); 5328 if (rnh != NULL && rn_mpath_capable(rnh)) 5329 check_mpath = 1; 5330 bzero(&ro, sizeof(ro)); 5331 switch (af) { 5332 case AF_INET: 5333 dst = satosin(&ro.ro_dst); 5334 dst->sin_family = AF_INET; 5335 dst->sin_len = sizeof(*dst); 5336 dst->sin_addr = addr->v4; 5337 break; 5338 #ifdef INET6 5339 case AF_INET6: 5340 /* 5341 * Skip check for addresses with embedded interface scope, 5342 * as they would always match anyway. 5343 */ 5344 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5345 goto out; 5346 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5347 dst6->sin6_family = AF_INET6; 5348 dst6->sin6_len = sizeof(*dst6); 5349 dst6->sin6_addr = addr->v6; 5350 break; 5351 #endif /* INET6 */ 5352 default: 5353 return (0); 5354 } 5355 5356 /* Skip checks for ipsec interfaces */ 5357 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5358 goto out; 5359 5360 switch (af) { 5361 #ifdef INET6 5362 case AF_INET6: 5363 in6_rtalloc_ign(&ro, 0, rtableid); 5364 break; 5365 #endif 5366 #ifdef INET 5367 case AF_INET: 5368 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5369 break; 5370 #endif 5371 } 5372 5373 if (ro.ro_rt != NULL) { 5374 /* No interface given, this is a no-route check */ 5375 if (kif == NULL) 5376 goto out; 5377 5378 if (kif->pfik_ifp == NULL) { 5379 ret = 0; 5380 goto out; 5381 } 5382 5383 /* Perform uRPF check if passed input interface */ 5384 ret = 0; 5385 rn = (struct radix_node *)ro.ro_rt; 5386 do { 5387 rt = (struct rtentry *)rn; 5388 ifp = rt->rt_ifp; 5389 5390 if (kif->pfik_ifp == ifp) 5391 ret = 1; 5392 rn = rn_mpath_next(rn); 5393 } while (check_mpath == 1 && rn != NULL && ret == 0); 5394 } else 5395 ret = 0; 5396 out: 5397 if (ro.ro_rt != NULL) 5398 RTFREE(ro.ro_rt); 5399 return (ret); 5400 } 5401 #endif 5402 5403 int 5404 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5405 int rtableid) 5406 { 5407 #ifdef INET 5408 struct nhop4_basic nh4; 5409 #endif 5410 #ifdef INET6 5411 struct nhop6_basic nh6; 5412 #endif 5413 struct ifnet *ifp; 5414 #ifdef RADIX_MPATH 5415 struct radix_node_head *rnh; 5416 5417 /* XXX: stick to table 0 for now */ 5418 rnh = rt_tables_get_rnh(0, af); 5419 if (rnh != NULL && rn_mpath_capable(rnh)) 5420 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5421 #endif 5422 /* 5423 * Skip check for addresses with embedded interface scope, 5424 * as they would always match anyway. 5425 */ 5426 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5427 return (1); 5428 5429 if (af != AF_INET && af != AF_INET6) 5430 return (0); 5431 5432 /* Skip checks for ipsec interfaces */ 5433 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5434 return (1); 5435 5436 ifp = NULL; 5437 5438 switch (af) { 5439 #ifdef INET6 5440 case AF_INET6: 5441 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5442 return (0); 5443 ifp = nh6.nh_ifp; 5444 break; 5445 #endif 5446 #ifdef INET 5447 case AF_INET: 5448 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5449 return (0); 5450 ifp = nh4.nh_ifp; 5451 break; 5452 #endif 5453 } 5454 5455 /* No interface given, this is a no-route check */ 5456 if (kif == NULL) 5457 return (1); 5458 5459 if (kif->pfik_ifp == NULL) 5460 return (0); 5461 5462 /* Perform uRPF check if passed input interface */ 5463 if (kif->pfik_ifp == ifp) 5464 return (1); 5465 return (0); 5466 } 5467 5468 #ifdef INET 5469 static void 5470 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5471 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5472 { 5473 struct mbuf *m0, *m1; 5474 struct sockaddr_in dst; 5475 struct ip *ip; 5476 struct ifnet *ifp = NULL; 5477 struct pf_addr naddr; 5478 struct pf_src_node *sn = NULL; 5479 int error = 0; 5480 uint16_t ip_len, ip_off; 5481 5482 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5483 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5484 __func__)); 5485 5486 if ((pd->pf_mtag == NULL && 5487 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5488 pd->pf_mtag->routed++ > 3) { 5489 m0 = *m; 5490 *m = NULL; 5491 goto bad_locked; 5492 } 5493 5494 if (r->rt == PF_DUPTO) { 5495 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5496 if (s) 5497 PF_STATE_UNLOCK(s); 5498 return; 5499 } 5500 } else { 5501 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5502 if (s) 5503 PF_STATE_UNLOCK(s); 5504 return; 5505 } 5506 m0 = *m; 5507 } 5508 5509 ip = mtod(m0, struct ip *); 5510 5511 bzero(&dst, sizeof(dst)); 5512 dst.sin_family = AF_INET; 5513 dst.sin_len = sizeof(dst); 5514 dst.sin_addr = ip->ip_dst; 5515 5516 bzero(&naddr, sizeof(naddr)); 5517 5518 if (TAILQ_EMPTY(&r->rpool.list)) { 5519 DPFPRINTF(PF_DEBUG_URGENT, 5520 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5521 goto bad_locked; 5522 } 5523 if (s == NULL) { 5524 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5525 &naddr, NULL, &sn); 5526 if (!PF_AZERO(&naddr, AF_INET)) 5527 dst.sin_addr.s_addr = naddr.v4.s_addr; 5528 ifp = r->rpool.cur->kif ? 5529 r->rpool.cur->kif->pfik_ifp : NULL; 5530 } else { 5531 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5532 dst.sin_addr.s_addr = 5533 s->rt_addr.v4.s_addr; 5534 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5535 PF_STATE_UNLOCK(s); 5536 } 5537 if (ifp == NULL) 5538 goto bad; 5539 5540 if (oifp != ifp) { 5541 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5542 goto bad; 5543 else if (m0 == NULL) 5544 goto done; 5545 if (m0->m_len < sizeof(struct ip)) { 5546 DPFPRINTF(PF_DEBUG_URGENT, 5547 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5548 goto bad; 5549 } 5550 ip = mtod(m0, struct ip *); 5551 } 5552 5553 if (ifp->if_flags & IFF_LOOPBACK) 5554 m0->m_flags |= M_SKIP_FIREWALL; 5555 5556 ip_len = ntohs(ip->ip_len); 5557 ip_off = ntohs(ip->ip_off); 5558 5559 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5560 m0->m_pkthdr.csum_flags |= CSUM_IP; 5561 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5562 in_delayed_cksum(m0); 5563 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5564 } 5565 #ifdef SCTP 5566 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5567 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5568 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5569 } 5570 #endif 5571 5572 /* 5573 * If small enough for interface, or the interface will take 5574 * care of the fragmentation for us, we can just send directly. 5575 */ 5576 if (ip_len <= ifp->if_mtu || 5577 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5578 ip->ip_sum = 0; 5579 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5580 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5581 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5582 } 5583 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5584 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5585 goto done; 5586 } 5587 5588 /* Balk when DF bit is set or the interface didn't support TSO. */ 5589 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5590 error = EMSGSIZE; 5591 KMOD_IPSTAT_INC(ips_cantfrag); 5592 if (r->rt != PF_DUPTO) { 5593 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5594 ifp->if_mtu); 5595 goto done; 5596 } else 5597 goto bad; 5598 } 5599 5600 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5601 if (error) 5602 goto bad; 5603 5604 for (; m0; m0 = m1) { 5605 m1 = m0->m_nextpkt; 5606 m0->m_nextpkt = NULL; 5607 if (error == 0) { 5608 m_clrprotoflags(m0); 5609 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5610 } else 5611 m_freem(m0); 5612 } 5613 5614 if (error == 0) 5615 KMOD_IPSTAT_INC(ips_fragmented); 5616 5617 done: 5618 if (r->rt != PF_DUPTO) 5619 *m = NULL; 5620 return; 5621 5622 bad_locked: 5623 if (s) 5624 PF_STATE_UNLOCK(s); 5625 bad: 5626 m_freem(m0); 5627 goto done; 5628 } 5629 #endif /* INET */ 5630 5631 #ifdef INET6 5632 static void 5633 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5634 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5635 { 5636 struct mbuf *m0; 5637 struct sockaddr_in6 dst; 5638 struct ip6_hdr *ip6; 5639 struct ifnet *ifp = NULL; 5640 struct pf_addr naddr; 5641 struct pf_src_node *sn = NULL; 5642 5643 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5644 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5645 __func__)); 5646 5647 if ((pd->pf_mtag == NULL && 5648 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5649 pd->pf_mtag->routed++ > 3) { 5650 m0 = *m; 5651 *m = NULL; 5652 goto bad_locked; 5653 } 5654 5655 if (r->rt == PF_DUPTO) { 5656 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5657 if (s) 5658 PF_STATE_UNLOCK(s); 5659 return; 5660 } 5661 } else { 5662 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5663 if (s) 5664 PF_STATE_UNLOCK(s); 5665 return; 5666 } 5667 m0 = *m; 5668 } 5669 5670 ip6 = mtod(m0, struct ip6_hdr *); 5671 5672 bzero(&dst, sizeof(dst)); 5673 dst.sin6_family = AF_INET6; 5674 dst.sin6_len = sizeof(dst); 5675 dst.sin6_addr = ip6->ip6_dst; 5676 5677 bzero(&naddr, sizeof(naddr)); 5678 5679 if (TAILQ_EMPTY(&r->rpool.list)) { 5680 DPFPRINTF(PF_DEBUG_URGENT, 5681 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5682 goto bad_locked; 5683 } 5684 if (s == NULL) { 5685 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5686 &naddr, NULL, &sn); 5687 if (!PF_AZERO(&naddr, AF_INET6)) 5688 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5689 &naddr, AF_INET6); 5690 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5691 } else { 5692 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5693 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5694 &s->rt_addr, AF_INET6); 5695 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5696 } 5697 5698 if (s) 5699 PF_STATE_UNLOCK(s); 5700 5701 if (ifp == NULL) 5702 goto bad; 5703 5704 if (oifp != ifp) { 5705 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5706 goto bad; 5707 else if (m0 == NULL) 5708 goto done; 5709 if (m0->m_len < sizeof(struct ip6_hdr)) { 5710 DPFPRINTF(PF_DEBUG_URGENT, 5711 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5712 __func__)); 5713 goto bad; 5714 } 5715 ip6 = mtod(m0, struct ip6_hdr *); 5716 } 5717 5718 if (ifp->if_flags & IFF_LOOPBACK) 5719 m0->m_flags |= M_SKIP_FIREWALL; 5720 5721 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5722 ~ifp->if_hwassist) { 5723 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5724 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5725 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5726 } 5727 5728 /* 5729 * If the packet is too large for the outgoing interface, 5730 * send back an icmp6 error. 5731 */ 5732 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5733 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5734 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5735 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5736 else { 5737 in6_ifstat_inc(ifp, ifs6_in_toobig); 5738 if (r->rt != PF_DUPTO) 5739 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5740 else 5741 goto bad; 5742 } 5743 5744 done: 5745 if (r->rt != PF_DUPTO) 5746 *m = NULL; 5747 return; 5748 5749 bad_locked: 5750 if (s) 5751 PF_STATE_UNLOCK(s); 5752 bad: 5753 m_freem(m0); 5754 goto done; 5755 } 5756 #endif /* INET6 */ 5757 5758 /* 5759 * FreeBSD supports cksum offloads for the following drivers. 5760 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5761 * 5762 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5763 * network driver performed cksum including pseudo header, need to verify 5764 * csum_data 5765 * CSUM_DATA_VALID : 5766 * network driver performed cksum, needs to additional pseudo header 5767 * cksum computation with partial csum_data(i.e. lack of H/W support for 5768 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5769 * 5770 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5771 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5772 * TCP/UDP layer. 5773 * Also, set csum_data to 0xffff to force cksum validation. 5774 */ 5775 static int 5776 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5777 { 5778 u_int16_t sum = 0; 5779 int hw_assist = 0; 5780 struct ip *ip; 5781 5782 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5783 return (1); 5784 if (m->m_pkthdr.len < off + len) 5785 return (1); 5786 5787 switch (p) { 5788 case IPPROTO_TCP: 5789 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5790 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5791 sum = m->m_pkthdr.csum_data; 5792 } else { 5793 ip = mtod(m, struct ip *); 5794 sum = in_pseudo(ip->ip_src.s_addr, 5795 ip->ip_dst.s_addr, htonl((u_short)len + 5796 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5797 } 5798 sum ^= 0xffff; 5799 ++hw_assist; 5800 } 5801 break; 5802 case IPPROTO_UDP: 5803 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5804 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5805 sum = m->m_pkthdr.csum_data; 5806 } else { 5807 ip = mtod(m, struct ip *); 5808 sum = in_pseudo(ip->ip_src.s_addr, 5809 ip->ip_dst.s_addr, htonl((u_short)len + 5810 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5811 } 5812 sum ^= 0xffff; 5813 ++hw_assist; 5814 } 5815 break; 5816 case IPPROTO_ICMP: 5817 #ifdef INET6 5818 case IPPROTO_ICMPV6: 5819 #endif /* INET6 */ 5820 break; 5821 default: 5822 return (1); 5823 } 5824 5825 if (!hw_assist) { 5826 switch (af) { 5827 case AF_INET: 5828 if (p == IPPROTO_ICMP) { 5829 if (m->m_len < off) 5830 return (1); 5831 m->m_data += off; 5832 m->m_len -= off; 5833 sum = in_cksum(m, len); 5834 m->m_data -= off; 5835 m->m_len += off; 5836 } else { 5837 if (m->m_len < sizeof(struct ip)) 5838 return (1); 5839 sum = in4_cksum(m, p, off, len); 5840 } 5841 break; 5842 #ifdef INET6 5843 case AF_INET6: 5844 if (m->m_len < sizeof(struct ip6_hdr)) 5845 return (1); 5846 sum = in6_cksum(m, p, off, len); 5847 break; 5848 #endif /* INET6 */ 5849 default: 5850 return (1); 5851 } 5852 } 5853 if (sum) { 5854 switch (p) { 5855 case IPPROTO_TCP: 5856 { 5857 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5858 break; 5859 } 5860 case IPPROTO_UDP: 5861 { 5862 KMOD_UDPSTAT_INC(udps_badsum); 5863 break; 5864 } 5865 #ifdef INET 5866 case IPPROTO_ICMP: 5867 { 5868 KMOD_ICMPSTAT_INC(icps_checksum); 5869 break; 5870 } 5871 #endif 5872 #ifdef INET6 5873 case IPPROTO_ICMPV6: 5874 { 5875 KMOD_ICMP6STAT_INC(icp6s_checksum); 5876 break; 5877 } 5878 #endif /* INET6 */ 5879 } 5880 return (1); 5881 } else { 5882 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5883 m->m_pkthdr.csum_flags |= 5884 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5885 m->m_pkthdr.csum_data = 0xffff; 5886 } 5887 } 5888 return (0); 5889 } 5890 5891 5892 #ifdef INET 5893 int 5894 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5895 { 5896 struct pfi_kif *kif; 5897 u_short action, reason = 0, log = 0; 5898 struct mbuf *m = *m0; 5899 struct ip *h = NULL; 5900 struct m_tag *ipfwtag; 5901 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5902 struct pf_state *s = NULL; 5903 struct pf_ruleset *ruleset = NULL; 5904 struct pf_pdesc pd; 5905 int off, dirndx, pqid = 0; 5906 5907 PF_RULES_RLOCK_TRACKER; 5908 5909 M_ASSERTPKTHDR(m); 5910 5911 if (!V_pf_status.running) 5912 return (PF_PASS); 5913 5914 memset(&pd, 0, sizeof(pd)); 5915 5916 kif = (struct pfi_kif *)ifp->if_pf_kif; 5917 5918 if (kif == NULL) { 5919 DPFPRINTF(PF_DEBUG_URGENT, 5920 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5921 return (PF_DROP); 5922 } 5923 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5924 return (PF_PASS); 5925 5926 if (m->m_flags & M_SKIP_FIREWALL) 5927 return (PF_PASS); 5928 5929 pd.pf_mtag = pf_find_mtag(m); 5930 5931 PF_RULES_RLOCK(); 5932 5933 if (ip_divert_ptr != NULL && 5934 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5935 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5936 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5937 if (pd.pf_mtag == NULL && 5938 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5939 action = PF_DROP; 5940 goto done; 5941 } 5942 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5943 m_tag_delete(m, ipfwtag); 5944 } 5945 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5946 m->m_flags |= M_FASTFWD_OURS; 5947 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5948 } 5949 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5950 /* We do IP header normalization and packet reassembly here */ 5951 action = PF_DROP; 5952 goto done; 5953 } 5954 m = *m0; /* pf_normalize messes with m0 */ 5955 h = mtod(m, struct ip *); 5956 5957 off = h->ip_hl << 2; 5958 if (off < (int)sizeof(struct ip)) { 5959 action = PF_DROP; 5960 REASON_SET(&reason, PFRES_SHORT); 5961 log = 1; 5962 goto done; 5963 } 5964 5965 pd.src = (struct pf_addr *)&h->ip_src; 5966 pd.dst = (struct pf_addr *)&h->ip_dst; 5967 pd.sport = pd.dport = NULL; 5968 pd.ip_sum = &h->ip_sum; 5969 pd.proto_sum = NULL; 5970 pd.proto = h->ip_p; 5971 pd.dir = dir; 5972 pd.sidx = (dir == PF_IN) ? 0 : 1; 5973 pd.didx = (dir == PF_IN) ? 1 : 0; 5974 pd.af = AF_INET; 5975 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5976 pd.tot_len = ntohs(h->ip_len); 5977 5978 /* handle fragments that didn't get reassembled by normalization */ 5979 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5980 action = pf_test_fragment(&r, dir, kif, m, h, 5981 &pd, &a, &ruleset); 5982 goto done; 5983 } 5984 5985 switch (h->ip_p) { 5986 5987 case IPPROTO_TCP: { 5988 struct tcphdr th; 5989 5990 pd.hdr.tcp = &th; 5991 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5992 &action, &reason, AF_INET)) { 5993 log = action != PF_PASS; 5994 goto done; 5995 } 5996 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5997 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5998 pqid = 1; 5999 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6000 if (action == PF_DROP) 6001 goto done; 6002 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6003 &reason); 6004 if (action == PF_PASS) { 6005 if (V_pfsync_update_state_ptr != NULL) 6006 V_pfsync_update_state_ptr(s); 6007 r = s->rule.ptr; 6008 a = s->anchor.ptr; 6009 log = s->log; 6010 } else if (s == NULL) 6011 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6012 &a, &ruleset, inp); 6013 break; 6014 } 6015 6016 case IPPROTO_UDP: { 6017 struct udphdr uh; 6018 6019 pd.hdr.udp = &uh; 6020 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6021 &action, &reason, AF_INET)) { 6022 log = action != PF_PASS; 6023 goto done; 6024 } 6025 if (uh.uh_dport == 0 || 6026 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6027 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6028 action = PF_DROP; 6029 REASON_SET(&reason, PFRES_SHORT); 6030 goto done; 6031 } 6032 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6033 if (action == PF_PASS) { 6034 if (V_pfsync_update_state_ptr != NULL) 6035 V_pfsync_update_state_ptr(s); 6036 r = s->rule.ptr; 6037 a = s->anchor.ptr; 6038 log = s->log; 6039 } else if (s == NULL) 6040 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6041 &a, &ruleset, inp); 6042 break; 6043 } 6044 6045 case IPPROTO_ICMP: { 6046 struct icmp ih; 6047 6048 pd.hdr.icmp = &ih; 6049 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6050 &action, &reason, AF_INET)) { 6051 log = action != PF_PASS; 6052 goto done; 6053 } 6054 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6055 &reason); 6056 if (action == PF_PASS) { 6057 if (V_pfsync_update_state_ptr != NULL) 6058 V_pfsync_update_state_ptr(s); 6059 r = s->rule.ptr; 6060 a = s->anchor.ptr; 6061 log = s->log; 6062 } else if (s == NULL) 6063 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6064 &a, &ruleset, inp); 6065 break; 6066 } 6067 6068 #ifdef INET6 6069 case IPPROTO_ICMPV6: { 6070 action = PF_DROP; 6071 DPFPRINTF(PF_DEBUG_MISC, 6072 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6073 goto done; 6074 } 6075 #endif 6076 6077 default: 6078 action = pf_test_state_other(&s, dir, kif, m, &pd); 6079 if (action == PF_PASS) { 6080 if (V_pfsync_update_state_ptr != NULL) 6081 V_pfsync_update_state_ptr(s); 6082 r = s->rule.ptr; 6083 a = s->anchor.ptr; 6084 log = s->log; 6085 } else if (s == NULL) 6086 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6087 &a, &ruleset, inp); 6088 break; 6089 } 6090 6091 done: 6092 PF_RULES_RUNLOCK(); 6093 if (action == PF_PASS && h->ip_hl > 5 && 6094 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6095 action = PF_DROP; 6096 REASON_SET(&reason, PFRES_IPOPTIONS); 6097 log = r->log; 6098 DPFPRINTF(PF_DEBUG_MISC, 6099 ("pf: dropping packet with ip options\n")); 6100 } 6101 6102 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6103 action = PF_DROP; 6104 REASON_SET(&reason, PFRES_MEMORY); 6105 } 6106 if (r->rtableid >= 0) 6107 M_SETFIB(m, r->rtableid); 6108 6109 if (r->scrub_flags & PFSTATE_SETPRIO) { 6110 if (pd.tos & IPTOS_LOWDELAY) 6111 pqid = 1; 6112 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6113 action = PF_DROP; 6114 REASON_SET(&reason, PFRES_MEMORY); 6115 log = 1; 6116 DPFPRINTF(PF_DEBUG_MISC, 6117 ("pf: failed to allocate 802.1q mtag\n")); 6118 } 6119 } 6120 6121 #ifdef ALTQ 6122 if (action == PF_PASS && r->qid) { 6123 if (pd.pf_mtag == NULL && 6124 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6125 action = PF_DROP; 6126 REASON_SET(&reason, PFRES_MEMORY); 6127 } else { 6128 if (s != NULL) 6129 pd.pf_mtag->qid_hash = pf_state_hash(s); 6130 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6131 pd.pf_mtag->qid = r->pqid; 6132 else 6133 pd.pf_mtag->qid = r->qid; 6134 /* Add hints for ecn. */ 6135 pd.pf_mtag->hdr = h; 6136 } 6137 6138 } 6139 #endif /* ALTQ */ 6140 6141 /* 6142 * connections redirected to loopback should not match sockets 6143 * bound specifically to loopback due to security implications, 6144 * see tcp_input() and in_pcblookup_listen(). 6145 */ 6146 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6147 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6148 (s->nat_rule.ptr->action == PF_RDR || 6149 s->nat_rule.ptr->action == PF_BINAT) && 6150 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6151 m->m_flags |= M_SKIP_FIREWALL; 6152 6153 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6154 !PACKET_LOOPED(&pd)) { 6155 6156 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6157 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6158 if (ipfwtag != NULL) { 6159 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6160 ntohs(r->divert.port); 6161 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6162 6163 if (s) 6164 PF_STATE_UNLOCK(s); 6165 6166 m_tag_prepend(m, ipfwtag); 6167 if (m->m_flags & M_FASTFWD_OURS) { 6168 if (pd.pf_mtag == NULL && 6169 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6170 action = PF_DROP; 6171 REASON_SET(&reason, PFRES_MEMORY); 6172 log = 1; 6173 DPFPRINTF(PF_DEBUG_MISC, 6174 ("pf: failed to allocate tag\n")); 6175 } else { 6176 pd.pf_mtag->flags |= 6177 PF_FASTFWD_OURS_PRESENT; 6178 m->m_flags &= ~M_FASTFWD_OURS; 6179 } 6180 } 6181 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6182 *m0 = NULL; 6183 6184 return (action); 6185 } else { 6186 /* XXX: ipfw has the same behaviour! */ 6187 action = PF_DROP; 6188 REASON_SET(&reason, PFRES_MEMORY); 6189 log = 1; 6190 DPFPRINTF(PF_DEBUG_MISC, 6191 ("pf: failed to allocate divert tag\n")); 6192 } 6193 } 6194 6195 if (log) { 6196 struct pf_rule *lr; 6197 6198 if (s != NULL && s->nat_rule.ptr != NULL && 6199 s->nat_rule.ptr->log & PF_LOG_ALL) 6200 lr = s->nat_rule.ptr; 6201 else 6202 lr = r; 6203 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6204 (s == NULL)); 6205 } 6206 6207 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6208 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6209 6210 if (action == PF_PASS || r->action == PF_DROP) { 6211 dirndx = (dir == PF_OUT); 6212 r->packets[dirndx]++; 6213 r->bytes[dirndx] += pd.tot_len; 6214 if (a != NULL) { 6215 a->packets[dirndx]++; 6216 a->bytes[dirndx] += pd.tot_len; 6217 } 6218 if (s != NULL) { 6219 if (s->nat_rule.ptr != NULL) { 6220 s->nat_rule.ptr->packets[dirndx]++; 6221 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6222 } 6223 if (s->src_node != NULL) { 6224 s->src_node->packets[dirndx]++; 6225 s->src_node->bytes[dirndx] += pd.tot_len; 6226 } 6227 if (s->nat_src_node != NULL) { 6228 s->nat_src_node->packets[dirndx]++; 6229 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6230 } 6231 dirndx = (dir == s->direction) ? 0 : 1; 6232 s->packets[dirndx]++; 6233 s->bytes[dirndx] += pd.tot_len; 6234 } 6235 tr = r; 6236 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6237 if (nr != NULL && r == &V_pf_default_rule) 6238 tr = nr; 6239 if (tr->src.addr.type == PF_ADDR_TABLE) 6240 pfr_update_stats(tr->src.addr.p.tbl, 6241 (s == NULL) ? pd.src : 6242 &s->key[(s->direction == PF_IN)]-> 6243 addr[(s->direction == PF_OUT)], 6244 pd.af, pd.tot_len, dir == PF_OUT, 6245 r->action == PF_PASS, tr->src.neg); 6246 if (tr->dst.addr.type == PF_ADDR_TABLE) 6247 pfr_update_stats(tr->dst.addr.p.tbl, 6248 (s == NULL) ? pd.dst : 6249 &s->key[(s->direction == PF_IN)]-> 6250 addr[(s->direction == PF_IN)], 6251 pd.af, pd.tot_len, dir == PF_OUT, 6252 r->action == PF_PASS, tr->dst.neg); 6253 } 6254 6255 switch (action) { 6256 case PF_SYNPROXY_DROP: 6257 m_freem(*m0); 6258 case PF_DEFER: 6259 *m0 = NULL; 6260 action = PF_PASS; 6261 break; 6262 case PF_DROP: 6263 m_freem(*m0); 6264 *m0 = NULL; 6265 break; 6266 default: 6267 /* pf_route() returns unlocked. */ 6268 if (r->rt) { 6269 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6270 return (action); 6271 } 6272 break; 6273 } 6274 if (s) 6275 PF_STATE_UNLOCK(s); 6276 6277 return (action); 6278 } 6279 #endif /* INET */ 6280 6281 #ifdef INET6 6282 int 6283 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6284 { 6285 struct pfi_kif *kif; 6286 u_short action, reason = 0, log = 0; 6287 struct mbuf *m = *m0, *n = NULL; 6288 struct m_tag *mtag; 6289 struct ip6_hdr *h = NULL; 6290 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6291 struct pf_state *s = NULL; 6292 struct pf_ruleset *ruleset = NULL; 6293 struct pf_pdesc pd; 6294 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6295 6296 PF_RULES_RLOCK_TRACKER; 6297 M_ASSERTPKTHDR(m); 6298 6299 if (!V_pf_status.running) 6300 return (PF_PASS); 6301 6302 memset(&pd, 0, sizeof(pd)); 6303 pd.pf_mtag = pf_find_mtag(m); 6304 6305 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6306 return (PF_PASS); 6307 6308 kif = (struct pfi_kif *)ifp->if_pf_kif; 6309 if (kif == NULL) { 6310 DPFPRINTF(PF_DEBUG_URGENT, 6311 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6312 return (PF_DROP); 6313 } 6314 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6315 return (PF_PASS); 6316 6317 if (m->m_flags & M_SKIP_FIREWALL) 6318 return (PF_PASS); 6319 6320 PF_RULES_RLOCK(); 6321 6322 /* We do IP header normalization and packet reassembly here */ 6323 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6324 action = PF_DROP; 6325 goto done; 6326 } 6327 m = *m0; /* pf_normalize messes with m0 */ 6328 h = mtod(m, struct ip6_hdr *); 6329 6330 #if 1 6331 /* 6332 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6333 * will do something bad, so drop the packet for now. 6334 */ 6335 if (htons(h->ip6_plen) == 0) { 6336 action = PF_DROP; 6337 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6338 goto done; 6339 } 6340 #endif 6341 6342 pd.src = (struct pf_addr *)&h->ip6_src; 6343 pd.dst = (struct pf_addr *)&h->ip6_dst; 6344 pd.sport = pd.dport = NULL; 6345 pd.ip_sum = NULL; 6346 pd.proto_sum = NULL; 6347 pd.dir = dir; 6348 pd.sidx = (dir == PF_IN) ? 0 : 1; 6349 pd.didx = (dir == PF_IN) ? 1 : 0; 6350 pd.af = AF_INET6; 6351 pd.tos = 0; 6352 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6353 6354 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6355 pd.proto = h->ip6_nxt; 6356 do { 6357 switch (pd.proto) { 6358 case IPPROTO_FRAGMENT: 6359 action = pf_test_fragment(&r, dir, kif, m, h, 6360 &pd, &a, &ruleset); 6361 if (action == PF_DROP) 6362 REASON_SET(&reason, PFRES_FRAG); 6363 goto done; 6364 case IPPROTO_ROUTING: { 6365 struct ip6_rthdr rthdr; 6366 6367 if (rh_cnt++) { 6368 DPFPRINTF(PF_DEBUG_MISC, 6369 ("pf: IPv6 more than one rthdr\n")); 6370 action = PF_DROP; 6371 REASON_SET(&reason, PFRES_IPOPTIONS); 6372 log = 1; 6373 goto done; 6374 } 6375 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6376 &reason, pd.af)) { 6377 DPFPRINTF(PF_DEBUG_MISC, 6378 ("pf: IPv6 short rthdr\n")); 6379 action = PF_DROP; 6380 REASON_SET(&reason, PFRES_SHORT); 6381 log = 1; 6382 goto done; 6383 } 6384 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6385 DPFPRINTF(PF_DEBUG_MISC, 6386 ("pf: IPv6 rthdr0\n")); 6387 action = PF_DROP; 6388 REASON_SET(&reason, PFRES_IPOPTIONS); 6389 log = 1; 6390 goto done; 6391 } 6392 /* FALLTHROUGH */ 6393 } 6394 case IPPROTO_AH: 6395 case IPPROTO_HOPOPTS: 6396 case IPPROTO_DSTOPTS: { 6397 /* get next header and header length */ 6398 struct ip6_ext opt6; 6399 6400 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6401 NULL, &reason, pd.af)) { 6402 DPFPRINTF(PF_DEBUG_MISC, 6403 ("pf: IPv6 short opt\n")); 6404 action = PF_DROP; 6405 log = 1; 6406 goto done; 6407 } 6408 if (pd.proto == IPPROTO_AH) 6409 off += (opt6.ip6e_len + 2) * 4; 6410 else 6411 off += (opt6.ip6e_len + 1) * 8; 6412 pd.proto = opt6.ip6e_nxt; 6413 /* goto the next header */ 6414 break; 6415 } 6416 default: 6417 terminal++; 6418 break; 6419 } 6420 } while (!terminal); 6421 6422 /* if there's no routing header, use unmodified mbuf for checksumming */ 6423 if (!n) 6424 n = m; 6425 6426 switch (pd.proto) { 6427 6428 case IPPROTO_TCP: { 6429 struct tcphdr th; 6430 6431 pd.hdr.tcp = &th; 6432 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6433 &action, &reason, AF_INET6)) { 6434 log = action != PF_PASS; 6435 goto done; 6436 } 6437 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6438 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6439 if (action == PF_DROP) 6440 goto done; 6441 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6442 &reason); 6443 if (action == PF_PASS) { 6444 if (V_pfsync_update_state_ptr != NULL) 6445 V_pfsync_update_state_ptr(s); 6446 r = s->rule.ptr; 6447 a = s->anchor.ptr; 6448 log = s->log; 6449 } else if (s == NULL) 6450 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6451 &a, &ruleset, inp); 6452 break; 6453 } 6454 6455 case IPPROTO_UDP: { 6456 struct udphdr uh; 6457 6458 pd.hdr.udp = &uh; 6459 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6460 &action, &reason, AF_INET6)) { 6461 log = action != PF_PASS; 6462 goto done; 6463 } 6464 if (uh.uh_dport == 0 || 6465 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6466 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6467 action = PF_DROP; 6468 REASON_SET(&reason, PFRES_SHORT); 6469 goto done; 6470 } 6471 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6472 if (action == PF_PASS) { 6473 if (V_pfsync_update_state_ptr != NULL) 6474 V_pfsync_update_state_ptr(s); 6475 r = s->rule.ptr; 6476 a = s->anchor.ptr; 6477 log = s->log; 6478 } else if (s == NULL) 6479 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6480 &a, &ruleset, inp); 6481 break; 6482 } 6483 6484 case IPPROTO_ICMP: { 6485 action = PF_DROP; 6486 DPFPRINTF(PF_DEBUG_MISC, 6487 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6488 goto done; 6489 } 6490 6491 case IPPROTO_ICMPV6: { 6492 struct icmp6_hdr ih; 6493 6494 pd.hdr.icmp6 = &ih; 6495 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6496 &action, &reason, AF_INET6)) { 6497 log = action != PF_PASS; 6498 goto done; 6499 } 6500 action = pf_test_state_icmp(&s, dir, kif, 6501 m, off, h, &pd, &reason); 6502 if (action == PF_PASS) { 6503 if (V_pfsync_update_state_ptr != NULL) 6504 V_pfsync_update_state_ptr(s); 6505 r = s->rule.ptr; 6506 a = s->anchor.ptr; 6507 log = s->log; 6508 } else if (s == NULL) 6509 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6510 &a, &ruleset, inp); 6511 break; 6512 } 6513 6514 default: 6515 action = pf_test_state_other(&s, dir, kif, m, &pd); 6516 if (action == PF_PASS) { 6517 if (V_pfsync_update_state_ptr != NULL) 6518 V_pfsync_update_state_ptr(s); 6519 r = s->rule.ptr; 6520 a = s->anchor.ptr; 6521 log = s->log; 6522 } else if (s == NULL) 6523 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6524 &a, &ruleset, inp); 6525 break; 6526 } 6527 6528 done: 6529 PF_RULES_RUNLOCK(); 6530 if (n != m) { 6531 m_freem(n); 6532 n = NULL; 6533 } 6534 6535 /* handle dangerous IPv6 extension headers. */ 6536 if (action == PF_PASS && rh_cnt && 6537 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6538 action = PF_DROP; 6539 REASON_SET(&reason, PFRES_IPOPTIONS); 6540 log = r->log; 6541 DPFPRINTF(PF_DEBUG_MISC, 6542 ("pf: dropping packet with dangerous v6 headers\n")); 6543 } 6544 6545 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6546 action = PF_DROP; 6547 REASON_SET(&reason, PFRES_MEMORY); 6548 } 6549 if (r->rtableid >= 0) 6550 M_SETFIB(m, r->rtableid); 6551 6552 if (r->scrub_flags & PFSTATE_SETPRIO) { 6553 if (pd.tos & IPTOS_LOWDELAY) 6554 pqid = 1; 6555 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6556 action = PF_DROP; 6557 REASON_SET(&reason, PFRES_MEMORY); 6558 log = 1; 6559 DPFPRINTF(PF_DEBUG_MISC, 6560 ("pf: failed to allocate 802.1q mtag\n")); 6561 } 6562 } 6563 6564 #ifdef ALTQ 6565 if (action == PF_PASS && r->qid) { 6566 if (pd.pf_mtag == NULL && 6567 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6568 action = PF_DROP; 6569 REASON_SET(&reason, PFRES_MEMORY); 6570 } else { 6571 if (s != NULL) 6572 pd.pf_mtag->qid_hash = pf_state_hash(s); 6573 if (pd.tos & IPTOS_LOWDELAY) 6574 pd.pf_mtag->qid = r->pqid; 6575 else 6576 pd.pf_mtag->qid = r->qid; 6577 /* Add hints for ecn. */ 6578 pd.pf_mtag->hdr = h; 6579 } 6580 } 6581 #endif /* ALTQ */ 6582 6583 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6584 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6585 (s->nat_rule.ptr->action == PF_RDR || 6586 s->nat_rule.ptr->action == PF_BINAT) && 6587 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6588 m->m_flags |= M_SKIP_FIREWALL; 6589 6590 /* XXX: Anybody working on it?! */ 6591 if (r->divert.port) 6592 printf("pf: divert(9) is not supported for IPv6\n"); 6593 6594 if (log) { 6595 struct pf_rule *lr; 6596 6597 if (s != NULL && s->nat_rule.ptr != NULL && 6598 s->nat_rule.ptr->log & PF_LOG_ALL) 6599 lr = s->nat_rule.ptr; 6600 else 6601 lr = r; 6602 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6603 &pd, (s == NULL)); 6604 } 6605 6606 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6607 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6608 6609 if (action == PF_PASS || r->action == PF_DROP) { 6610 dirndx = (dir == PF_OUT); 6611 r->packets[dirndx]++; 6612 r->bytes[dirndx] += pd.tot_len; 6613 if (a != NULL) { 6614 a->packets[dirndx]++; 6615 a->bytes[dirndx] += pd.tot_len; 6616 } 6617 if (s != NULL) { 6618 if (s->nat_rule.ptr != NULL) { 6619 s->nat_rule.ptr->packets[dirndx]++; 6620 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6621 } 6622 if (s->src_node != NULL) { 6623 s->src_node->packets[dirndx]++; 6624 s->src_node->bytes[dirndx] += pd.tot_len; 6625 } 6626 if (s->nat_src_node != NULL) { 6627 s->nat_src_node->packets[dirndx]++; 6628 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6629 } 6630 dirndx = (dir == s->direction) ? 0 : 1; 6631 s->packets[dirndx]++; 6632 s->bytes[dirndx] += pd.tot_len; 6633 } 6634 tr = r; 6635 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6636 if (nr != NULL && r == &V_pf_default_rule) 6637 tr = nr; 6638 if (tr->src.addr.type == PF_ADDR_TABLE) 6639 pfr_update_stats(tr->src.addr.p.tbl, 6640 (s == NULL) ? pd.src : 6641 &s->key[(s->direction == PF_IN)]->addr[0], 6642 pd.af, pd.tot_len, dir == PF_OUT, 6643 r->action == PF_PASS, tr->src.neg); 6644 if (tr->dst.addr.type == PF_ADDR_TABLE) 6645 pfr_update_stats(tr->dst.addr.p.tbl, 6646 (s == NULL) ? pd.dst : 6647 &s->key[(s->direction == PF_IN)]->addr[1], 6648 pd.af, pd.tot_len, dir == PF_OUT, 6649 r->action == PF_PASS, tr->dst.neg); 6650 } 6651 6652 switch (action) { 6653 case PF_SYNPROXY_DROP: 6654 m_freem(*m0); 6655 case PF_DEFER: 6656 *m0 = NULL; 6657 action = PF_PASS; 6658 break; 6659 case PF_DROP: 6660 m_freem(*m0); 6661 *m0 = NULL; 6662 break; 6663 default: 6664 /* pf_route6() returns unlocked. */ 6665 if (r->rt) { 6666 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6667 return (action); 6668 } 6669 break; 6670 } 6671 6672 if (s) 6673 PF_STATE_UNLOCK(s); 6674 6675 /* If reassembled packet passed, create new fragments. */ 6676 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6677 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6678 action = pf_refragment6(ifp, m0, mtag); 6679 6680 return (action); 6681 } 6682 #endif /* INET6 */ 6683