1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_kstatus, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 struct { 143 int type; 144 int code; 145 int mtu; 146 } icmpopts; 147 }; 148 149 STAILQ_HEAD(pf_send_head, pf_send_entry); 150 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 151 #define V_pf_sendqueue VNET(pf_sendqueue) 152 153 static struct mtx pf_sendqueue_mtx; 154 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 155 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 156 157 /* 158 * Queue for pf_overload_task() tasks. 159 */ 160 struct pf_overload_entry { 161 SLIST_ENTRY(pf_overload_entry) next; 162 struct pf_addr addr; 163 sa_family_t af; 164 uint8_t dir; 165 struct pf_rule *rule; 166 }; 167 168 SLIST_HEAD(pf_overload_head, pf_overload_entry); 169 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 170 #define V_pf_overloadqueue VNET(pf_overloadqueue) 171 static VNET_DEFINE(struct task, pf_overloadtask); 172 #define V_pf_overloadtask VNET(pf_overloadtask) 173 174 static struct mtx pf_overloadqueue_mtx; 175 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 176 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 177 178 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 179 struct mtx pf_unlnkdrules_mtx; 180 181 static VNET_DEFINE(uma_zone_t, pf_sources_z); 182 #define V_pf_sources_z VNET(pf_sources_z) 183 uma_zone_t pf_mtag_z; 184 VNET_DEFINE(uma_zone_t, pf_state_z); 185 VNET_DEFINE(uma_zone_t, pf_state_key_z); 186 187 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 188 #define PFID_CPUBITS 8 189 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 190 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 191 #define PFID_MAXID (~PFID_CPUMASK) 192 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 193 194 static void pf_src_tree_remove_state(struct pf_state *); 195 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 196 u_int32_t); 197 static void pf_add_threshold(struct pf_threshold *); 198 static int pf_check_threshold(struct pf_threshold *); 199 200 static void pf_change_ap(struct pf_addr *, u_int16_t *, 201 u_int16_t *, u_int16_t *, struct pf_addr *, 202 u_int16_t, u_int8_t, sa_family_t); 203 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 204 struct tcphdr *, struct pf_state_peer *); 205 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 206 struct pf_addr *, struct pf_addr *, u_int16_t, 207 u_int16_t *, u_int16_t *, u_int16_t *, 208 u_int16_t *, u_int8_t, sa_family_t); 209 static void pf_send_tcp(struct mbuf *, 210 const struct pf_rule *, sa_family_t, 211 const struct pf_addr *, const struct pf_addr *, 212 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 213 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 214 u_int16_t, struct ifnet *); 215 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 216 sa_family_t, struct pf_rule *); 217 static void pf_detach_state(struct pf_state *); 218 static int pf_state_key_attach(struct pf_state_key *, 219 struct pf_state_key *, struct pf_state *); 220 static void pf_state_key_detach(struct pf_state *, int); 221 static int pf_state_key_ctor(void *, int, void *, int); 222 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 223 static int pf_test_rule(struct pf_rule **, struct pf_state **, 224 int, struct pfi_kif *, struct mbuf *, int, 225 struct pf_pdesc *, struct pf_rule **, 226 struct pf_ruleset **, struct inpcb *); 227 static int pf_create_state(struct pf_rule *, struct pf_rule *, 228 struct pf_rule *, struct pf_pdesc *, 229 struct pf_src_node *, struct pf_state_key *, 230 struct pf_state_key *, struct mbuf *, int, 231 u_int16_t, u_int16_t, int *, struct pfi_kif *, 232 struct pf_state **, int, u_int16_t, u_int16_t, 233 int); 234 static int pf_test_fragment(struct pf_rule **, int, 235 struct pfi_kif *, struct mbuf *, void *, 236 struct pf_pdesc *, struct pf_rule **, 237 struct pf_ruleset **); 238 static int pf_tcp_track_full(struct pf_state_peer *, 239 struct pf_state_peer *, struct pf_state **, 240 struct pfi_kif *, struct mbuf *, int, 241 struct pf_pdesc *, u_short *, int *); 242 static int pf_tcp_track_sloppy(struct pf_state_peer *, 243 struct pf_state_peer *, struct pf_state **, 244 struct pf_pdesc *, u_short *); 245 static int pf_test_state_tcp(struct pf_state **, int, 246 struct pfi_kif *, struct mbuf *, int, 247 void *, struct pf_pdesc *, u_short *); 248 static int pf_test_state_udp(struct pf_state **, int, 249 struct pfi_kif *, struct mbuf *, int, 250 void *, struct pf_pdesc *); 251 static int pf_test_state_icmp(struct pf_state **, int, 252 struct pfi_kif *, struct mbuf *, int, 253 void *, struct pf_pdesc *, u_short *); 254 static int pf_test_state_other(struct pf_state **, int, 255 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 256 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 257 sa_family_t); 258 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 259 sa_family_t); 260 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 261 int, u_int16_t); 262 static int pf_check_proto_cksum(struct mbuf *, int, int, 263 u_int8_t, sa_family_t); 264 static void pf_print_state_parts(struct pf_state *, 265 struct pf_state_key *, struct pf_state_key *); 266 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 267 struct pf_addr_wrap *); 268 static struct pf_state *pf_find_state(struct pfi_kif *, 269 struct pf_state_key_cmp *, u_int); 270 static int pf_src_connlimit(struct pf_state **); 271 static void pf_overload_task(void *v, int pending); 272 static int pf_insert_src_node(struct pf_src_node **, 273 struct pf_rule *, struct pf_addr *, sa_family_t); 274 static u_int pf_purge_expired_states(u_int, int); 275 static void pf_purge_unlinked_rules(void); 276 static int pf_mtag_uminit(void *, int, int); 277 static void pf_mtag_free(struct m_tag *); 278 #ifdef INET 279 static void pf_route(struct mbuf **, struct pf_rule *, int, 280 struct ifnet *, struct pf_state *, 281 struct pf_pdesc *); 282 #endif /* INET */ 283 #ifdef INET6 284 static void pf_change_a6(struct pf_addr *, u_int16_t *, 285 struct pf_addr *, u_int8_t); 286 static void pf_route6(struct mbuf **, struct pf_rule *, int, 287 struct ifnet *, struct pf_state *, 288 struct pf_pdesc *); 289 #endif /* INET6 */ 290 291 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 292 293 VNET_DECLARE(int, pf_end_threads); 294 295 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 296 297 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 298 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 299 300 #define STATE_LOOKUP(i, k, d, s, pd) \ 301 do { \ 302 (s) = pf_find_state((i), (k), (d)); \ 303 if ((s) == NULL) \ 304 return (PF_DROP); \ 305 if (PACKET_LOOPED(pd)) \ 306 return (PF_PASS); \ 307 if ((d) == PF_OUT && \ 308 (((s)->rule.ptr->rt == PF_ROUTETO && \ 309 (s)->rule.ptr->direction == PF_OUT) || \ 310 ((s)->rule.ptr->rt == PF_REPLYTO && \ 311 (s)->rule.ptr->direction == PF_IN)) && \ 312 (s)->rt_kif != NULL && \ 313 (s)->rt_kif != (i)) \ 314 return (PF_PASS); \ 315 } while (0) 316 317 #define BOUND_IFACE(r, k) \ 318 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 319 320 #define STATE_INC_COUNTERS(s) \ 321 do { \ 322 counter_u64_add(s->rule.ptr->states_cur, 1); \ 323 counter_u64_add(s->rule.ptr->states_tot, 1); \ 324 if (s->anchor.ptr != NULL) { \ 325 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 326 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 327 } \ 328 if (s->nat_rule.ptr != NULL) { \ 329 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 330 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 331 } \ 332 } while (0) 333 334 #define STATE_DEC_COUNTERS(s) \ 335 do { \ 336 if (s->nat_rule.ptr != NULL) \ 337 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 338 if (s->anchor.ptr != NULL) \ 339 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 340 counter_u64_add(s->rule.ptr->states_cur, -1); \ 341 } while (0) 342 343 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 344 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 345 VNET_DEFINE(struct pf_idhash *, pf_idhash); 346 VNET_DEFINE(struct pf_srchash *, pf_srchash); 347 348 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 349 350 u_long pf_hashmask; 351 u_long pf_srchashmask; 352 static u_long pf_hashsize; 353 static u_long pf_srchashsize; 354 355 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 356 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 357 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 358 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 359 360 VNET_DEFINE(void *, pf_swi_cookie); 361 362 VNET_DEFINE(uint32_t, pf_hashseed); 363 #define V_pf_hashseed VNET(pf_hashseed) 364 365 int 366 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 367 { 368 369 switch (af) { 370 #ifdef INET 371 case AF_INET: 372 if (a->addr32[0] > b->addr32[0]) 373 return (1); 374 if (a->addr32[0] < b->addr32[0]) 375 return (-1); 376 break; 377 #endif /* INET */ 378 #ifdef INET6 379 case AF_INET6: 380 if (a->addr32[3] > b->addr32[3]) 381 return (1); 382 if (a->addr32[3] < b->addr32[3]) 383 return (-1); 384 if (a->addr32[2] > b->addr32[2]) 385 return (1); 386 if (a->addr32[2] < b->addr32[2]) 387 return (-1); 388 if (a->addr32[1] > b->addr32[1]) 389 return (1); 390 if (a->addr32[1] < b->addr32[1]) 391 return (-1); 392 if (a->addr32[0] > b->addr32[0]) 393 return (1); 394 if (a->addr32[0] < b->addr32[0]) 395 return (-1); 396 break; 397 #endif /* INET6 */ 398 default: 399 panic("%s: unknown address family %u", __func__, af); 400 } 401 return (0); 402 } 403 404 static __inline uint32_t 405 pf_hashkey(struct pf_state_key *sk) 406 { 407 uint32_t h; 408 409 h = murmur3_32_hash32((uint32_t *)sk, 410 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 411 V_pf_hashseed); 412 413 return (h & pf_hashmask); 414 } 415 416 static __inline uint32_t 417 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 418 { 419 uint32_t h; 420 421 switch (af) { 422 case AF_INET: 423 h = murmur3_32_hash32((uint32_t *)&addr->v4, 424 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 425 break; 426 case AF_INET6: 427 h = murmur3_32_hash32((uint32_t *)&addr->v6, 428 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 429 break; 430 default: 431 panic("%s: unknown address family %u", __func__, af); 432 } 433 434 return (h & pf_srchashmask); 435 } 436 437 #ifdef INET6 438 void 439 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 440 { 441 switch (af) { 442 #ifdef INET 443 case AF_INET: 444 dst->addr32[0] = src->addr32[0]; 445 break; 446 #endif /* INET */ 447 case AF_INET6: 448 dst->addr32[0] = src->addr32[0]; 449 dst->addr32[1] = src->addr32[1]; 450 dst->addr32[2] = src->addr32[2]; 451 dst->addr32[3] = src->addr32[3]; 452 break; 453 } 454 } 455 #endif /* INET6 */ 456 457 static void 458 pf_init_threshold(struct pf_threshold *threshold, 459 u_int32_t limit, u_int32_t seconds) 460 { 461 threshold->limit = limit * PF_THRESHOLD_MULT; 462 threshold->seconds = seconds; 463 threshold->count = 0; 464 threshold->last = time_uptime; 465 } 466 467 static void 468 pf_add_threshold(struct pf_threshold *threshold) 469 { 470 u_int32_t t = time_uptime, diff = t - threshold->last; 471 472 if (diff >= threshold->seconds) 473 threshold->count = 0; 474 else 475 threshold->count -= threshold->count * diff / 476 threshold->seconds; 477 threshold->count += PF_THRESHOLD_MULT; 478 threshold->last = t; 479 } 480 481 static int 482 pf_check_threshold(struct pf_threshold *threshold) 483 { 484 return (threshold->count > threshold->limit); 485 } 486 487 static int 488 pf_src_connlimit(struct pf_state **state) 489 { 490 struct pf_overload_entry *pfoe; 491 int bad = 0; 492 493 PF_STATE_LOCK_ASSERT(*state); 494 495 (*state)->src_node->conn++; 496 (*state)->src.tcp_est = 1; 497 pf_add_threshold(&(*state)->src_node->conn_rate); 498 499 if ((*state)->rule.ptr->max_src_conn && 500 (*state)->rule.ptr->max_src_conn < 501 (*state)->src_node->conn) { 502 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 503 bad++; 504 } 505 506 if ((*state)->rule.ptr->max_src_conn_rate.limit && 507 pf_check_threshold(&(*state)->src_node->conn_rate)) { 508 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 509 bad++; 510 } 511 512 if (!bad) 513 return (0); 514 515 /* Kill this state. */ 516 (*state)->timeout = PFTM_PURGE; 517 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 518 519 if ((*state)->rule.ptr->overload_tbl == NULL) 520 return (1); 521 522 /* Schedule overloading and flushing task. */ 523 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 524 if (pfoe == NULL) 525 return (1); /* too bad :( */ 526 527 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 528 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 529 pfoe->rule = (*state)->rule.ptr; 530 pfoe->dir = (*state)->direction; 531 PF_OVERLOADQ_LOCK(); 532 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 533 PF_OVERLOADQ_UNLOCK(); 534 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 535 536 return (1); 537 } 538 539 static void 540 pf_overload_task(void *v, int pending) 541 { 542 struct pf_overload_head queue; 543 struct pfr_addr p; 544 struct pf_overload_entry *pfoe, *pfoe1; 545 uint32_t killed = 0; 546 547 CURVNET_SET((struct vnet *)v); 548 549 PF_OVERLOADQ_LOCK(); 550 queue = V_pf_overloadqueue; 551 SLIST_INIT(&V_pf_overloadqueue); 552 PF_OVERLOADQ_UNLOCK(); 553 554 bzero(&p, sizeof(p)); 555 SLIST_FOREACH(pfoe, &queue, next) { 556 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 557 if (V_pf_status.debug >= PF_DEBUG_MISC) { 558 printf("%s: blocking address ", __func__); 559 pf_print_host(&pfoe->addr, 0, pfoe->af); 560 printf("\n"); 561 } 562 563 p.pfra_af = pfoe->af; 564 switch (pfoe->af) { 565 #ifdef INET 566 case AF_INET: 567 p.pfra_net = 32; 568 p.pfra_ip4addr = pfoe->addr.v4; 569 break; 570 #endif 571 #ifdef INET6 572 case AF_INET6: 573 p.pfra_net = 128; 574 p.pfra_ip6addr = pfoe->addr.v6; 575 break; 576 #endif 577 } 578 579 PF_RULES_WLOCK(); 580 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 581 PF_RULES_WUNLOCK(); 582 } 583 584 /* 585 * Remove those entries, that don't need flushing. 586 */ 587 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 588 if (pfoe->rule->flush == 0) { 589 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 590 free(pfoe, M_PFTEMP); 591 } else 592 counter_u64_add( 593 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 594 595 /* If nothing to flush, return. */ 596 if (SLIST_EMPTY(&queue)) { 597 CURVNET_RESTORE(); 598 return; 599 } 600 601 for (int i = 0; i <= pf_hashmask; i++) { 602 struct pf_idhash *ih = &V_pf_idhash[i]; 603 struct pf_state_key *sk; 604 struct pf_state *s; 605 606 PF_HASHROW_LOCK(ih); 607 LIST_FOREACH(s, &ih->states, entry) { 608 sk = s->key[PF_SK_WIRE]; 609 SLIST_FOREACH(pfoe, &queue, next) 610 if (sk->af == pfoe->af && 611 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 612 pfoe->rule == s->rule.ptr) && 613 ((pfoe->dir == PF_OUT && 614 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 615 (pfoe->dir == PF_IN && 616 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 617 s->timeout = PFTM_PURGE; 618 s->src.state = s->dst.state = TCPS_CLOSED; 619 killed++; 620 } 621 } 622 PF_HASHROW_UNLOCK(ih); 623 } 624 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 625 free(pfoe, M_PFTEMP); 626 if (V_pf_status.debug >= PF_DEBUG_MISC) 627 printf("%s: %u states killed", __func__, killed); 628 629 CURVNET_RESTORE(); 630 } 631 632 /* 633 * Can return locked on failure, so that we can consistently 634 * allocate and insert a new one. 635 */ 636 struct pf_src_node * 637 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 638 int returnlocked) 639 { 640 struct pf_srchash *sh; 641 struct pf_src_node *n; 642 643 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 644 645 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 646 PF_HASHROW_LOCK(sh); 647 LIST_FOREACH(n, &sh->nodes, entry) 648 if (n->rule.ptr == rule && n->af == af && 649 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 650 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 651 break; 652 if (n != NULL || returnlocked == 0) 653 PF_HASHROW_UNLOCK(sh); 654 655 return (n); 656 } 657 658 static int 659 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 660 struct pf_addr *src, sa_family_t af) 661 { 662 663 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 664 rule->rpool.opts & PF_POOL_STICKYADDR), 665 ("%s for non-tracking rule %p", __func__, rule)); 666 667 if (*sn == NULL) 668 *sn = pf_find_src_node(src, rule, af, 1); 669 670 if (*sn == NULL) { 671 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 672 673 PF_HASHROW_ASSERT(sh); 674 675 if (!rule->max_src_nodes || 676 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 677 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 678 else 679 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 680 1); 681 if ((*sn) == NULL) { 682 PF_HASHROW_UNLOCK(sh); 683 return (-1); 684 } 685 686 pf_init_threshold(&(*sn)->conn_rate, 687 rule->max_src_conn_rate.limit, 688 rule->max_src_conn_rate.seconds); 689 690 (*sn)->af = af; 691 (*sn)->rule.ptr = rule; 692 PF_ACPY(&(*sn)->addr, src, af); 693 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 694 (*sn)->creation = time_uptime; 695 (*sn)->ruletype = rule->action; 696 if ((*sn)->rule.ptr != NULL) 697 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 698 PF_HASHROW_UNLOCK(sh); 699 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 700 } else { 701 if (rule->max_src_states && 702 (*sn)->states >= rule->max_src_states) { 703 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 704 1); 705 return (-1); 706 } 707 } 708 return (0); 709 } 710 711 void 712 pf_unlink_src_node_locked(struct pf_src_node *src) 713 { 714 #ifdef INVARIANTS 715 struct pf_srchash *sh; 716 717 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 718 PF_HASHROW_ASSERT(sh); 719 #endif 720 LIST_REMOVE(src, entry); 721 if (src->rule.ptr) 722 counter_u64_add(src->rule.ptr->src_nodes, -1); 723 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 724 } 725 726 void 727 pf_unlink_src_node(struct pf_src_node *src) 728 { 729 struct pf_srchash *sh; 730 731 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 732 PF_HASHROW_LOCK(sh); 733 pf_unlink_src_node_locked(src); 734 PF_HASHROW_UNLOCK(sh); 735 } 736 737 static void 738 pf_free_src_node(struct pf_src_node *sn) 739 { 740 741 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 742 uma_zfree(V_pf_sources_z, sn); 743 } 744 745 u_int 746 pf_free_src_nodes(struct pf_src_node_list *head) 747 { 748 struct pf_src_node *sn, *tmp; 749 u_int count = 0; 750 751 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 752 pf_free_src_node(sn); 753 count++; 754 } 755 756 return (count); 757 } 758 759 void 760 pf_mtag_initialize() 761 { 762 763 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 764 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 765 UMA_ALIGN_PTR, 0); 766 } 767 768 /* Per-vnet data storage structures initialization. */ 769 void 770 pf_initialize() 771 { 772 struct pf_keyhash *kh; 773 struct pf_idhash *ih; 774 struct pf_srchash *sh; 775 u_int i; 776 777 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 778 pf_hashsize = PF_HASHSIZ; 779 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 780 pf_srchashsize = PF_HASHSIZ / 4; 781 782 V_pf_hashseed = arc4random(); 783 784 /* States and state keys storage. */ 785 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 786 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 787 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 788 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 789 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 790 791 V_pf_state_key_z = uma_zcreate("pf state keys", 792 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 793 UMA_ALIGN_PTR, 0); 794 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 795 M_PFHASH, M_WAITOK | M_ZERO); 796 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 797 M_PFHASH, M_WAITOK | M_ZERO); 798 pf_hashmask = pf_hashsize - 1; 799 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 800 i++, kh++, ih++) { 801 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 802 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 803 } 804 805 /* Source nodes. */ 806 V_pf_sources_z = uma_zcreate("pf source nodes", 807 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 808 0); 809 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 810 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 811 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 812 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 813 M_PFHASH, M_WAITOK|M_ZERO); 814 pf_srchashmask = pf_srchashsize - 1; 815 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 816 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 817 818 /* ALTQ */ 819 TAILQ_INIT(&V_pf_altqs[0]); 820 TAILQ_INIT(&V_pf_altqs[1]); 821 TAILQ_INIT(&V_pf_pabuf); 822 V_pf_altqs_active = &V_pf_altqs[0]; 823 V_pf_altqs_inactive = &V_pf_altqs[1]; 824 825 826 /* Send & overload+flush queues. */ 827 STAILQ_INIT(&V_pf_sendqueue); 828 SLIST_INIT(&V_pf_overloadqueue); 829 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 830 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 831 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 832 MTX_DEF); 833 834 /* Unlinked, but may be referenced rules. */ 835 TAILQ_INIT(&V_pf_unlinked_rules); 836 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 837 } 838 839 void 840 pf_mtag_cleanup() 841 { 842 843 uma_zdestroy(pf_mtag_z); 844 } 845 846 void 847 pf_cleanup() 848 { 849 struct pf_keyhash *kh; 850 struct pf_idhash *ih; 851 struct pf_srchash *sh; 852 struct pf_send_entry *pfse, *next; 853 u_int i; 854 855 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 856 i++, kh++, ih++) { 857 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 858 __func__)); 859 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 860 __func__)); 861 mtx_destroy(&kh->lock); 862 mtx_destroy(&ih->lock); 863 } 864 free(V_pf_keyhash, M_PFHASH); 865 free(V_pf_idhash, M_PFHASH); 866 867 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 868 KASSERT(LIST_EMPTY(&sh->nodes), 869 ("%s: source node hash not empty", __func__)); 870 mtx_destroy(&sh->lock); 871 } 872 free(V_pf_srchash, M_PFHASH); 873 874 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 875 m_freem(pfse->pfse_m); 876 free(pfse, M_PFTEMP); 877 } 878 879 mtx_destroy(&pf_sendqueue_mtx); 880 mtx_destroy(&pf_overloadqueue_mtx); 881 mtx_destroy(&pf_unlnkdrules_mtx); 882 883 uma_zdestroy(V_pf_sources_z); 884 uma_zdestroy(V_pf_state_z); 885 uma_zdestroy(V_pf_state_key_z); 886 } 887 888 static int 889 pf_mtag_uminit(void *mem, int size, int how) 890 { 891 struct m_tag *t; 892 893 t = (struct m_tag *)mem; 894 t->m_tag_cookie = MTAG_ABI_COMPAT; 895 t->m_tag_id = PACKET_TAG_PF; 896 t->m_tag_len = sizeof(struct pf_mtag); 897 t->m_tag_free = pf_mtag_free; 898 899 return (0); 900 } 901 902 static void 903 pf_mtag_free(struct m_tag *t) 904 { 905 906 uma_zfree(pf_mtag_z, t); 907 } 908 909 struct pf_mtag * 910 pf_get_mtag(struct mbuf *m) 911 { 912 struct m_tag *mtag; 913 914 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 915 return ((struct pf_mtag *)(mtag + 1)); 916 917 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 918 if (mtag == NULL) 919 return (NULL); 920 bzero(mtag + 1, sizeof(struct pf_mtag)); 921 m_tag_prepend(m, mtag); 922 923 return ((struct pf_mtag *)(mtag + 1)); 924 } 925 926 static int 927 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 928 struct pf_state *s) 929 { 930 struct pf_keyhash *khs, *khw, *kh; 931 struct pf_state_key *sk, *cur; 932 struct pf_state *si, *olds = NULL; 933 int idx; 934 935 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 936 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 937 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 938 939 /* 940 * We need to lock hash slots of both keys. To avoid deadlock 941 * we always lock the slot with lower address first. Unlock order 942 * isn't important. 943 * 944 * We also need to lock ID hash slot before dropping key 945 * locks. On success we return with ID hash slot locked. 946 */ 947 948 if (skw == sks) { 949 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 950 PF_HASHROW_LOCK(khs); 951 } else { 952 khs = &V_pf_keyhash[pf_hashkey(sks)]; 953 khw = &V_pf_keyhash[pf_hashkey(skw)]; 954 if (khs == khw) { 955 PF_HASHROW_LOCK(khs); 956 } else if (khs < khw) { 957 PF_HASHROW_LOCK(khs); 958 PF_HASHROW_LOCK(khw); 959 } else { 960 PF_HASHROW_LOCK(khw); 961 PF_HASHROW_LOCK(khs); 962 } 963 } 964 965 #define KEYS_UNLOCK() do { \ 966 if (khs != khw) { \ 967 PF_HASHROW_UNLOCK(khs); \ 968 PF_HASHROW_UNLOCK(khw); \ 969 } else \ 970 PF_HASHROW_UNLOCK(khs); \ 971 } while (0) 972 973 /* 974 * First run: start with wire key. 975 */ 976 sk = skw; 977 kh = khw; 978 idx = PF_SK_WIRE; 979 980 keyattach: 981 LIST_FOREACH(cur, &kh->keys, entry) 982 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 983 break; 984 985 if (cur != NULL) { 986 /* Key exists. Check for same kif, if none, add to key. */ 987 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 988 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 989 990 PF_HASHROW_LOCK(ih); 991 if (si->kif == s->kif && 992 si->direction == s->direction) { 993 if (sk->proto == IPPROTO_TCP && 994 si->src.state >= TCPS_FIN_WAIT_2 && 995 si->dst.state >= TCPS_FIN_WAIT_2) { 996 /* 997 * New state matches an old >FIN_WAIT_2 998 * state. We can't drop key hash locks, 999 * thus we can't unlink it properly. 1000 * 1001 * As a workaround we drop it into 1002 * TCPS_CLOSED state, schedule purge 1003 * ASAP and push it into the very end 1004 * of the slot TAILQ, so that it won't 1005 * conflict with our new state. 1006 */ 1007 si->src.state = si->dst.state = 1008 TCPS_CLOSED; 1009 si->timeout = PFTM_PURGE; 1010 olds = si; 1011 } else { 1012 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1013 printf("pf: %s key attach " 1014 "failed on %s: ", 1015 (idx == PF_SK_WIRE) ? 1016 "wire" : "stack", 1017 s->kif->pfik_name); 1018 pf_print_state_parts(s, 1019 (idx == PF_SK_WIRE) ? 1020 sk : NULL, 1021 (idx == PF_SK_STACK) ? 1022 sk : NULL); 1023 printf(", existing: "); 1024 pf_print_state_parts(si, 1025 (idx == PF_SK_WIRE) ? 1026 sk : NULL, 1027 (idx == PF_SK_STACK) ? 1028 sk : NULL); 1029 printf("\n"); 1030 } 1031 PF_HASHROW_UNLOCK(ih); 1032 KEYS_UNLOCK(); 1033 uma_zfree(V_pf_state_key_z, sk); 1034 if (idx == PF_SK_STACK) 1035 pf_detach_state(s); 1036 return (EEXIST); /* collision! */ 1037 } 1038 } 1039 PF_HASHROW_UNLOCK(ih); 1040 } 1041 uma_zfree(V_pf_state_key_z, sk); 1042 s->key[idx] = cur; 1043 } else { 1044 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1045 s->key[idx] = sk; 1046 } 1047 1048 stateattach: 1049 /* List is sorted, if-bound states before floating. */ 1050 if (s->kif == V_pfi_all) 1051 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1052 else 1053 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1054 1055 if (olds) { 1056 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1057 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1058 key_list[idx]); 1059 olds = NULL; 1060 } 1061 1062 /* 1063 * Attach done. See how should we (or should not?) 1064 * attach a second key. 1065 */ 1066 if (sks == skw) { 1067 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1068 idx = PF_SK_STACK; 1069 sks = NULL; 1070 goto stateattach; 1071 } else if (sks != NULL) { 1072 /* 1073 * Continue attaching with stack key. 1074 */ 1075 sk = sks; 1076 kh = khs; 1077 idx = PF_SK_STACK; 1078 sks = NULL; 1079 goto keyattach; 1080 } 1081 1082 PF_STATE_LOCK(s); 1083 KEYS_UNLOCK(); 1084 1085 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1086 ("%s failure", __func__)); 1087 1088 return (0); 1089 #undef KEYS_UNLOCK 1090 } 1091 1092 static void 1093 pf_detach_state(struct pf_state *s) 1094 { 1095 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1096 struct pf_keyhash *kh; 1097 1098 if (sks != NULL) { 1099 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1100 PF_HASHROW_LOCK(kh); 1101 if (s->key[PF_SK_STACK] != NULL) 1102 pf_state_key_detach(s, PF_SK_STACK); 1103 /* 1104 * If both point to same key, then we are done. 1105 */ 1106 if (sks == s->key[PF_SK_WIRE]) { 1107 pf_state_key_detach(s, PF_SK_WIRE); 1108 PF_HASHROW_UNLOCK(kh); 1109 return; 1110 } 1111 PF_HASHROW_UNLOCK(kh); 1112 } 1113 1114 if (s->key[PF_SK_WIRE] != NULL) { 1115 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1116 PF_HASHROW_LOCK(kh); 1117 if (s->key[PF_SK_WIRE] != NULL) 1118 pf_state_key_detach(s, PF_SK_WIRE); 1119 PF_HASHROW_UNLOCK(kh); 1120 } 1121 } 1122 1123 static void 1124 pf_state_key_detach(struct pf_state *s, int idx) 1125 { 1126 struct pf_state_key *sk = s->key[idx]; 1127 #ifdef INVARIANTS 1128 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1129 1130 PF_HASHROW_ASSERT(kh); 1131 #endif 1132 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1133 s->key[idx] = NULL; 1134 1135 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1136 LIST_REMOVE(sk, entry); 1137 uma_zfree(V_pf_state_key_z, sk); 1138 } 1139 } 1140 1141 static int 1142 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1143 { 1144 struct pf_state_key *sk = mem; 1145 1146 bzero(sk, sizeof(struct pf_state_key_cmp)); 1147 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1148 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1149 1150 return (0); 1151 } 1152 1153 struct pf_state_key * 1154 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1155 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1156 { 1157 struct pf_state_key *sk; 1158 1159 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1160 if (sk == NULL) 1161 return (NULL); 1162 1163 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1164 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1165 sk->port[pd->sidx] = sport; 1166 sk->port[pd->didx] = dport; 1167 sk->proto = pd->proto; 1168 sk->af = pd->af; 1169 1170 return (sk); 1171 } 1172 1173 struct pf_state_key * 1174 pf_state_key_clone(struct pf_state_key *orig) 1175 { 1176 struct pf_state_key *sk; 1177 1178 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1179 if (sk == NULL) 1180 return (NULL); 1181 1182 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1183 1184 return (sk); 1185 } 1186 1187 int 1188 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1189 struct pf_state_key *sks, struct pf_state *s) 1190 { 1191 struct pf_idhash *ih; 1192 struct pf_state *cur; 1193 int error; 1194 1195 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1196 ("%s: sks not pristine", __func__)); 1197 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1198 ("%s: skw not pristine", __func__)); 1199 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1200 1201 s->kif = kif; 1202 1203 if (s->id == 0 && s->creatorid == 0) { 1204 /* XXX: should be atomic, but probability of collision low */ 1205 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1206 V_pf_stateid[curcpu] = 1; 1207 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1208 s->id = htobe64(s->id); 1209 s->creatorid = V_pf_status.hostid; 1210 } 1211 1212 /* Returns with ID locked on success. */ 1213 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1214 return (error); 1215 1216 ih = &V_pf_idhash[PF_IDHASH(s)]; 1217 PF_HASHROW_ASSERT(ih); 1218 LIST_FOREACH(cur, &ih->states, entry) 1219 if (cur->id == s->id && cur->creatorid == s->creatorid) 1220 break; 1221 1222 if (cur != NULL) { 1223 PF_HASHROW_UNLOCK(ih); 1224 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1225 printf("pf: state ID collision: " 1226 "id: %016llx creatorid: %08x\n", 1227 (unsigned long long)be64toh(s->id), 1228 ntohl(s->creatorid)); 1229 } 1230 pf_detach_state(s); 1231 return (EEXIST); 1232 } 1233 LIST_INSERT_HEAD(&ih->states, s, entry); 1234 /* One for keys, one for ID hash. */ 1235 refcount_init(&s->refs, 2); 1236 1237 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1238 if (pfsync_insert_state_ptr != NULL) 1239 pfsync_insert_state_ptr(s); 1240 1241 /* Returns locked. */ 1242 return (0); 1243 } 1244 1245 /* 1246 * Find state by ID: returns with locked row on success. 1247 */ 1248 struct pf_state * 1249 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1250 { 1251 struct pf_idhash *ih; 1252 struct pf_state *s; 1253 1254 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1255 1256 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1257 1258 PF_HASHROW_LOCK(ih); 1259 LIST_FOREACH(s, &ih->states, entry) 1260 if (s->id == id && s->creatorid == creatorid) 1261 break; 1262 1263 if (s == NULL) 1264 PF_HASHROW_UNLOCK(ih); 1265 1266 return (s); 1267 } 1268 1269 /* 1270 * Find state by key. 1271 * Returns with ID hash slot locked on success. 1272 */ 1273 static struct pf_state * 1274 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1275 { 1276 struct pf_keyhash *kh; 1277 struct pf_state_key *sk; 1278 struct pf_state *s; 1279 int idx; 1280 1281 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1282 1283 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1284 1285 PF_HASHROW_LOCK(kh); 1286 LIST_FOREACH(sk, &kh->keys, entry) 1287 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1288 break; 1289 if (sk == NULL) { 1290 PF_HASHROW_UNLOCK(kh); 1291 return (NULL); 1292 } 1293 1294 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1295 1296 /* List is sorted, if-bound states before floating ones. */ 1297 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1298 if (s->kif == V_pfi_all || s->kif == kif) { 1299 PF_STATE_LOCK(s); 1300 PF_HASHROW_UNLOCK(kh); 1301 if (s->timeout >= PFTM_MAX) { 1302 /* 1303 * State is either being processed by 1304 * pf_unlink_state() in an other thread, or 1305 * is scheduled for immediate expiry. 1306 */ 1307 PF_STATE_UNLOCK(s); 1308 return (NULL); 1309 } 1310 return (s); 1311 } 1312 PF_HASHROW_UNLOCK(kh); 1313 1314 return (NULL); 1315 } 1316 1317 struct pf_state * 1318 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1319 { 1320 struct pf_keyhash *kh; 1321 struct pf_state_key *sk; 1322 struct pf_state *s, *ret = NULL; 1323 int idx, inout = 0; 1324 1325 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1326 1327 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1328 1329 PF_HASHROW_LOCK(kh); 1330 LIST_FOREACH(sk, &kh->keys, entry) 1331 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1332 break; 1333 if (sk == NULL) { 1334 PF_HASHROW_UNLOCK(kh); 1335 return (NULL); 1336 } 1337 switch (dir) { 1338 case PF_IN: 1339 idx = PF_SK_WIRE; 1340 break; 1341 case PF_OUT: 1342 idx = PF_SK_STACK; 1343 break; 1344 case PF_INOUT: 1345 idx = PF_SK_WIRE; 1346 inout = 1; 1347 break; 1348 default: 1349 panic("%s: dir %u", __func__, dir); 1350 } 1351 second_run: 1352 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1353 if (more == NULL) { 1354 PF_HASHROW_UNLOCK(kh); 1355 return (s); 1356 } 1357 1358 if (ret) 1359 (*more)++; 1360 else 1361 ret = s; 1362 } 1363 if (inout == 1) { 1364 inout = 0; 1365 idx = PF_SK_STACK; 1366 goto second_run; 1367 } 1368 PF_HASHROW_UNLOCK(kh); 1369 1370 return (ret); 1371 } 1372 1373 /* END state table stuff */ 1374 1375 static void 1376 pf_send(struct pf_send_entry *pfse) 1377 { 1378 1379 PF_SENDQ_LOCK(); 1380 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1381 PF_SENDQ_UNLOCK(); 1382 swi_sched(V_pf_swi_cookie, 0); 1383 } 1384 1385 void 1386 pf_intr(void *v) 1387 { 1388 struct pf_send_head queue; 1389 struct pf_send_entry *pfse, *next; 1390 1391 CURVNET_SET((struct vnet *)v); 1392 1393 PF_SENDQ_LOCK(); 1394 queue = V_pf_sendqueue; 1395 STAILQ_INIT(&V_pf_sendqueue); 1396 PF_SENDQ_UNLOCK(); 1397 1398 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1399 switch (pfse->pfse_type) { 1400 #ifdef INET 1401 case PFSE_IP: 1402 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1403 break; 1404 case PFSE_ICMP: 1405 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1406 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1407 break; 1408 #endif /* INET */ 1409 #ifdef INET6 1410 case PFSE_IP6: 1411 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1412 NULL); 1413 break; 1414 case PFSE_ICMP6: 1415 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1416 pfse->icmpopts.code, pfse->icmpopts.mtu); 1417 break; 1418 #endif /* INET6 */ 1419 default: 1420 panic("%s: unknown type", __func__); 1421 } 1422 free(pfse, M_PFTEMP); 1423 } 1424 CURVNET_RESTORE(); 1425 } 1426 1427 void 1428 pf_purge_thread(void *v) 1429 { 1430 u_int idx = 0; 1431 1432 CURVNET_SET((struct vnet *)v); 1433 1434 for (;;) { 1435 PF_RULES_RLOCK(); 1436 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1437 1438 if (V_pf_end_threads) { 1439 /* 1440 * To cleanse up all kifs and rules we need 1441 * two runs: first one clears reference flags, 1442 * then pf_purge_expired_states() doesn't 1443 * raise them, and then second run frees. 1444 */ 1445 PF_RULES_RUNLOCK(); 1446 pf_purge_unlinked_rules(); 1447 pfi_kif_purge(); 1448 1449 /* 1450 * Now purge everything. 1451 */ 1452 pf_purge_expired_states(0, pf_hashmask); 1453 pf_purge_expired_fragments(); 1454 pf_purge_expired_src_nodes(); 1455 1456 /* 1457 * Now all kifs & rules should be unreferenced, 1458 * thus should be successfully freed. 1459 */ 1460 pf_purge_unlinked_rules(); 1461 pfi_kif_purge(); 1462 1463 /* 1464 * Announce success and exit. 1465 */ 1466 PF_RULES_RLOCK(); 1467 V_pf_end_threads++; 1468 PF_RULES_RUNLOCK(); 1469 wakeup(pf_purge_thread); 1470 kproc_exit(0); 1471 } 1472 PF_RULES_RUNLOCK(); 1473 1474 /* Process 1/interval fraction of the state table every run. */ 1475 idx = pf_purge_expired_states(idx, pf_hashmask / 1476 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1477 1478 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1479 if (idx == 0) { 1480 /* 1481 * Order is important: 1482 * - states and src nodes reference rules 1483 * - states and rules reference kifs 1484 */ 1485 pf_purge_expired_fragments(); 1486 pf_purge_expired_src_nodes(); 1487 pf_purge_unlinked_rules(); 1488 pfi_kif_purge(); 1489 } 1490 } 1491 /* not reached */ 1492 CURVNET_RESTORE(); 1493 } 1494 1495 u_int32_t 1496 pf_state_expires(const struct pf_state *state) 1497 { 1498 u_int32_t timeout; 1499 u_int32_t start; 1500 u_int32_t end; 1501 u_int32_t states; 1502 1503 /* handle all PFTM_* > PFTM_MAX here */ 1504 if (state->timeout == PFTM_PURGE) 1505 return (time_uptime); 1506 KASSERT(state->timeout != PFTM_UNLINKED, 1507 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1508 KASSERT((state->timeout < PFTM_MAX), 1509 ("pf_state_expires: timeout > PFTM_MAX")); 1510 timeout = state->rule.ptr->timeout[state->timeout]; 1511 if (!timeout) 1512 timeout = V_pf_default_rule.timeout[state->timeout]; 1513 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1514 if (start) { 1515 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1516 states = counter_u64_fetch(state->rule.ptr->states_cur); 1517 } else { 1518 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1519 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1520 states = V_pf_status.states; 1521 } 1522 if (end && states > start && start < end) { 1523 if (states < end) 1524 return (state->expire + timeout * (end - states) / 1525 (end - start)); 1526 else 1527 return (time_uptime); 1528 } 1529 return (state->expire + timeout); 1530 } 1531 1532 void 1533 pf_purge_expired_src_nodes() 1534 { 1535 struct pf_src_node_list freelist; 1536 struct pf_srchash *sh; 1537 struct pf_src_node *cur, *next; 1538 int i; 1539 1540 LIST_INIT(&freelist); 1541 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1542 PF_HASHROW_LOCK(sh); 1543 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1544 if (cur->states == 0 && cur->expire <= time_uptime) { 1545 pf_unlink_src_node_locked(cur); 1546 LIST_INSERT_HEAD(&freelist, cur, entry); 1547 } else if (cur->rule.ptr != NULL) 1548 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1549 PF_HASHROW_UNLOCK(sh); 1550 } 1551 1552 pf_free_src_nodes(&freelist); 1553 1554 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1555 } 1556 1557 static void 1558 pf_src_tree_remove_state(struct pf_state *s) 1559 { 1560 u_int32_t timeout; 1561 1562 if (s->src_node != NULL) { 1563 if (s->src.tcp_est) 1564 --s->src_node->conn; 1565 if (--s->src_node->states == 0) { 1566 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1567 if (!timeout) 1568 timeout = 1569 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1570 s->src_node->expire = time_uptime + timeout; 1571 } 1572 } 1573 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1574 if (--s->nat_src_node->states == 0) { 1575 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1576 if (!timeout) 1577 timeout = 1578 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1579 s->nat_src_node->expire = time_uptime + timeout; 1580 } 1581 } 1582 s->src_node = s->nat_src_node = NULL; 1583 } 1584 1585 /* 1586 * Unlink and potentilly free a state. Function may be 1587 * called with ID hash row locked, but always returns 1588 * unlocked, since it needs to go through key hash locking. 1589 */ 1590 int 1591 pf_unlink_state(struct pf_state *s, u_int flags) 1592 { 1593 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1594 1595 if ((flags & PF_ENTER_LOCKED) == 0) 1596 PF_HASHROW_LOCK(ih); 1597 else 1598 PF_HASHROW_ASSERT(ih); 1599 1600 if (s->timeout == PFTM_UNLINKED) { 1601 /* 1602 * State is being processed 1603 * by pf_unlink_state() in 1604 * an other thread. 1605 */ 1606 PF_HASHROW_UNLOCK(ih); 1607 return (0); /* XXXGL: undefined actually */ 1608 } 1609 1610 if (s->src.state == PF_TCPS_PROXY_DST) { 1611 /* XXX wire key the right one? */ 1612 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1613 &s->key[PF_SK_WIRE]->addr[1], 1614 &s->key[PF_SK_WIRE]->addr[0], 1615 s->key[PF_SK_WIRE]->port[1], 1616 s->key[PF_SK_WIRE]->port[0], 1617 s->src.seqhi, s->src.seqlo + 1, 1618 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1619 } 1620 1621 LIST_REMOVE(s, entry); 1622 pf_src_tree_remove_state(s); 1623 1624 if (pfsync_delete_state_ptr != NULL) 1625 pfsync_delete_state_ptr(s); 1626 1627 STATE_DEC_COUNTERS(s); 1628 1629 s->timeout = PFTM_UNLINKED; 1630 1631 PF_HASHROW_UNLOCK(ih); 1632 1633 pf_detach_state(s); 1634 refcount_release(&s->refs); 1635 1636 return (pf_release_state(s)); 1637 } 1638 1639 void 1640 pf_free_state(struct pf_state *cur) 1641 { 1642 1643 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1644 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1645 cur->timeout)); 1646 1647 pf_normalize_tcp_cleanup(cur); 1648 uma_zfree(V_pf_state_z, cur); 1649 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1650 } 1651 1652 /* 1653 * Called only from pf_purge_thread(), thus serialized. 1654 */ 1655 static u_int 1656 pf_purge_expired_states(u_int i, int maxcheck) 1657 { 1658 struct pf_idhash *ih; 1659 struct pf_state *s; 1660 1661 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1662 1663 /* 1664 * Go through hash and unlink states that expire now. 1665 */ 1666 while (maxcheck > 0) { 1667 1668 ih = &V_pf_idhash[i]; 1669 relock: 1670 PF_HASHROW_LOCK(ih); 1671 LIST_FOREACH(s, &ih->states, entry) { 1672 if (pf_state_expires(s) <= time_uptime) { 1673 V_pf_status.states -= 1674 pf_unlink_state(s, PF_ENTER_LOCKED); 1675 goto relock; 1676 } 1677 s->rule.ptr->rule_flag |= PFRULE_REFS; 1678 if (s->nat_rule.ptr != NULL) 1679 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1680 if (s->anchor.ptr != NULL) 1681 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1682 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1683 if (s->rt_kif) 1684 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1685 } 1686 PF_HASHROW_UNLOCK(ih); 1687 1688 /* Return when we hit end of hash. */ 1689 if (++i > pf_hashmask) { 1690 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1691 return (0); 1692 } 1693 1694 maxcheck--; 1695 } 1696 1697 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1698 1699 return (i); 1700 } 1701 1702 static void 1703 pf_purge_unlinked_rules() 1704 { 1705 struct pf_rulequeue tmpq; 1706 struct pf_rule *r, *r1; 1707 1708 /* 1709 * If we have overloading task pending, then we'd 1710 * better skip purging this time. There is a tiny 1711 * probability that overloading task references 1712 * an already unlinked rule. 1713 */ 1714 PF_OVERLOADQ_LOCK(); 1715 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1716 PF_OVERLOADQ_UNLOCK(); 1717 return; 1718 } 1719 PF_OVERLOADQ_UNLOCK(); 1720 1721 /* 1722 * Do naive mark-and-sweep garbage collecting of old rules. 1723 * Reference flag is raised by pf_purge_expired_states() 1724 * and pf_purge_expired_src_nodes(). 1725 * 1726 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1727 * use a temporary queue. 1728 */ 1729 TAILQ_INIT(&tmpq); 1730 PF_UNLNKDRULES_LOCK(); 1731 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1732 if (!(r->rule_flag & PFRULE_REFS)) { 1733 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1734 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1735 } else 1736 r->rule_flag &= ~PFRULE_REFS; 1737 } 1738 PF_UNLNKDRULES_UNLOCK(); 1739 1740 if (!TAILQ_EMPTY(&tmpq)) { 1741 PF_RULES_WLOCK(); 1742 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1743 TAILQ_REMOVE(&tmpq, r, entries); 1744 pf_free_rule(r); 1745 } 1746 PF_RULES_WUNLOCK(); 1747 } 1748 } 1749 1750 void 1751 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1752 { 1753 switch (af) { 1754 #ifdef INET 1755 case AF_INET: { 1756 u_int32_t a = ntohl(addr->addr32[0]); 1757 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1758 (a>>8)&255, a&255); 1759 if (p) { 1760 p = ntohs(p); 1761 printf(":%u", p); 1762 } 1763 break; 1764 } 1765 #endif /* INET */ 1766 #ifdef INET6 1767 case AF_INET6: { 1768 u_int16_t b; 1769 u_int8_t i, curstart, curend, maxstart, maxend; 1770 curstart = curend = maxstart = maxend = 255; 1771 for (i = 0; i < 8; i++) { 1772 if (!addr->addr16[i]) { 1773 if (curstart == 255) 1774 curstart = i; 1775 curend = i; 1776 } else { 1777 if ((curend - curstart) > 1778 (maxend - maxstart)) { 1779 maxstart = curstart; 1780 maxend = curend; 1781 } 1782 curstart = curend = 255; 1783 } 1784 } 1785 if ((curend - curstart) > 1786 (maxend - maxstart)) { 1787 maxstart = curstart; 1788 maxend = curend; 1789 } 1790 for (i = 0; i < 8; i++) { 1791 if (i >= maxstart && i <= maxend) { 1792 if (i == 0) 1793 printf(":"); 1794 if (i == maxend) 1795 printf(":"); 1796 } else { 1797 b = ntohs(addr->addr16[i]); 1798 printf("%x", b); 1799 if (i < 7) 1800 printf(":"); 1801 } 1802 } 1803 if (p) { 1804 p = ntohs(p); 1805 printf("[%u]", p); 1806 } 1807 break; 1808 } 1809 #endif /* INET6 */ 1810 } 1811 } 1812 1813 void 1814 pf_print_state(struct pf_state *s) 1815 { 1816 pf_print_state_parts(s, NULL, NULL); 1817 } 1818 1819 static void 1820 pf_print_state_parts(struct pf_state *s, 1821 struct pf_state_key *skwp, struct pf_state_key *sksp) 1822 { 1823 struct pf_state_key *skw, *sks; 1824 u_int8_t proto, dir; 1825 1826 /* Do our best to fill these, but they're skipped if NULL */ 1827 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1828 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1829 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1830 dir = s ? s->direction : 0; 1831 1832 switch (proto) { 1833 case IPPROTO_IPV4: 1834 printf("IPv4"); 1835 break; 1836 case IPPROTO_IPV6: 1837 printf("IPv6"); 1838 break; 1839 case IPPROTO_TCP: 1840 printf("TCP"); 1841 break; 1842 case IPPROTO_UDP: 1843 printf("UDP"); 1844 break; 1845 case IPPROTO_ICMP: 1846 printf("ICMP"); 1847 break; 1848 case IPPROTO_ICMPV6: 1849 printf("ICMPv6"); 1850 break; 1851 default: 1852 printf("%u", skw->proto); 1853 break; 1854 } 1855 switch (dir) { 1856 case PF_IN: 1857 printf(" in"); 1858 break; 1859 case PF_OUT: 1860 printf(" out"); 1861 break; 1862 } 1863 if (skw) { 1864 printf(" wire: "); 1865 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1866 printf(" "); 1867 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1868 } 1869 if (sks) { 1870 printf(" stack: "); 1871 if (sks != skw) { 1872 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1873 printf(" "); 1874 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1875 } else 1876 printf("-"); 1877 } 1878 if (s) { 1879 if (proto == IPPROTO_TCP) { 1880 printf(" [lo=%u high=%u win=%u modulator=%u", 1881 s->src.seqlo, s->src.seqhi, 1882 s->src.max_win, s->src.seqdiff); 1883 if (s->src.wscale && s->dst.wscale) 1884 printf(" wscale=%u", 1885 s->src.wscale & PF_WSCALE_MASK); 1886 printf("]"); 1887 printf(" [lo=%u high=%u win=%u modulator=%u", 1888 s->dst.seqlo, s->dst.seqhi, 1889 s->dst.max_win, s->dst.seqdiff); 1890 if (s->src.wscale && s->dst.wscale) 1891 printf(" wscale=%u", 1892 s->dst.wscale & PF_WSCALE_MASK); 1893 printf("]"); 1894 } 1895 printf(" %u:%u", s->src.state, s->dst.state); 1896 } 1897 } 1898 1899 void 1900 pf_print_flags(u_int8_t f) 1901 { 1902 if (f) 1903 printf(" "); 1904 if (f & TH_FIN) 1905 printf("F"); 1906 if (f & TH_SYN) 1907 printf("S"); 1908 if (f & TH_RST) 1909 printf("R"); 1910 if (f & TH_PUSH) 1911 printf("P"); 1912 if (f & TH_ACK) 1913 printf("A"); 1914 if (f & TH_URG) 1915 printf("U"); 1916 if (f & TH_ECE) 1917 printf("E"); 1918 if (f & TH_CWR) 1919 printf("W"); 1920 } 1921 1922 #define PF_SET_SKIP_STEPS(i) \ 1923 do { \ 1924 while (head[i] != cur) { \ 1925 head[i]->skip[i].ptr = cur; \ 1926 head[i] = TAILQ_NEXT(head[i], entries); \ 1927 } \ 1928 } while (0) 1929 1930 void 1931 pf_calc_skip_steps(struct pf_rulequeue *rules) 1932 { 1933 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1934 int i; 1935 1936 cur = TAILQ_FIRST(rules); 1937 prev = cur; 1938 for (i = 0; i < PF_SKIP_COUNT; ++i) 1939 head[i] = cur; 1940 while (cur != NULL) { 1941 1942 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1943 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1944 if (cur->direction != prev->direction) 1945 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1946 if (cur->af != prev->af) 1947 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1948 if (cur->proto != prev->proto) 1949 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1950 if (cur->src.neg != prev->src.neg || 1951 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1952 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1953 if (cur->src.port[0] != prev->src.port[0] || 1954 cur->src.port[1] != prev->src.port[1] || 1955 cur->src.port_op != prev->src.port_op) 1956 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1957 if (cur->dst.neg != prev->dst.neg || 1958 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1959 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1960 if (cur->dst.port[0] != prev->dst.port[0] || 1961 cur->dst.port[1] != prev->dst.port[1] || 1962 cur->dst.port_op != prev->dst.port_op) 1963 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1964 1965 prev = cur; 1966 cur = TAILQ_NEXT(cur, entries); 1967 } 1968 for (i = 0; i < PF_SKIP_COUNT; ++i) 1969 PF_SET_SKIP_STEPS(i); 1970 } 1971 1972 static int 1973 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1974 { 1975 if (aw1->type != aw2->type) 1976 return (1); 1977 switch (aw1->type) { 1978 case PF_ADDR_ADDRMASK: 1979 case PF_ADDR_RANGE: 1980 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1981 return (1); 1982 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1983 return (1); 1984 return (0); 1985 case PF_ADDR_DYNIFTL: 1986 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1987 case PF_ADDR_NOROUTE: 1988 case PF_ADDR_URPFFAILED: 1989 return (0); 1990 case PF_ADDR_TABLE: 1991 return (aw1->p.tbl != aw2->p.tbl); 1992 default: 1993 printf("invalid address type: %d\n", aw1->type); 1994 return (1); 1995 } 1996 } 1997 1998 u_int16_t 1999 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2000 { 2001 u_int32_t l; 2002 2003 if (udp && !cksum) 2004 return (0x0000); 2005 l = cksum + old - new; 2006 l = (l >> 16) + (l & 65535); 2007 l = l & 65535; 2008 if (udp && !l) 2009 return (0xFFFF); 2010 return (l); 2011 } 2012 2013 static void 2014 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 2015 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 2016 { 2017 struct pf_addr ao; 2018 u_int16_t po = *p; 2019 2020 PF_ACPY(&ao, a, af); 2021 PF_ACPY(a, an, af); 2022 2023 *p = pn; 2024 2025 switch (af) { 2026 #ifdef INET 2027 case AF_INET: 2028 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2029 ao.addr16[0], an->addr16[0], 0), 2030 ao.addr16[1], an->addr16[1], 0); 2031 *p = pn; 2032 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2033 ao.addr16[0], an->addr16[0], u), 2034 ao.addr16[1], an->addr16[1], u), 2035 po, pn, u); 2036 break; 2037 #endif /* INET */ 2038 #ifdef INET6 2039 case AF_INET6: 2040 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2041 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2042 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2043 ao.addr16[0], an->addr16[0], u), 2044 ao.addr16[1], an->addr16[1], u), 2045 ao.addr16[2], an->addr16[2], u), 2046 ao.addr16[3], an->addr16[3], u), 2047 ao.addr16[4], an->addr16[4], u), 2048 ao.addr16[5], an->addr16[5], u), 2049 ao.addr16[6], an->addr16[6], u), 2050 ao.addr16[7], an->addr16[7], u), 2051 po, pn, u); 2052 break; 2053 #endif /* INET6 */ 2054 } 2055 } 2056 2057 2058 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2059 void 2060 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2061 { 2062 u_int32_t ao; 2063 2064 memcpy(&ao, a, sizeof(ao)); 2065 memcpy(a, &an, sizeof(u_int32_t)); 2066 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2067 ao % 65536, an % 65536, u); 2068 } 2069 2070 #ifdef INET6 2071 static void 2072 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2073 { 2074 struct pf_addr ao; 2075 2076 PF_ACPY(&ao, a, AF_INET6); 2077 PF_ACPY(a, an, AF_INET6); 2078 2079 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2080 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2081 pf_cksum_fixup(pf_cksum_fixup(*c, 2082 ao.addr16[0], an->addr16[0], u), 2083 ao.addr16[1], an->addr16[1], u), 2084 ao.addr16[2], an->addr16[2], u), 2085 ao.addr16[3], an->addr16[3], u), 2086 ao.addr16[4], an->addr16[4], u), 2087 ao.addr16[5], an->addr16[5], u), 2088 ao.addr16[6], an->addr16[6], u), 2089 ao.addr16[7], an->addr16[7], u); 2090 } 2091 #endif /* INET6 */ 2092 2093 static void 2094 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2095 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2096 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2097 { 2098 struct pf_addr oia, ooa; 2099 2100 PF_ACPY(&oia, ia, af); 2101 if (oa) 2102 PF_ACPY(&ooa, oa, af); 2103 2104 /* Change inner protocol port, fix inner protocol checksum. */ 2105 if (ip != NULL) { 2106 u_int16_t oip = *ip; 2107 u_int32_t opc; 2108 2109 if (pc != NULL) 2110 opc = *pc; 2111 *ip = np; 2112 if (pc != NULL) 2113 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2114 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2115 if (pc != NULL) 2116 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2117 } 2118 /* Change inner ip address, fix inner ip and icmp checksums. */ 2119 PF_ACPY(ia, na, af); 2120 switch (af) { 2121 #ifdef INET 2122 case AF_INET: { 2123 u_int32_t oh2c = *h2c; 2124 2125 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2126 oia.addr16[0], ia->addr16[0], 0), 2127 oia.addr16[1], ia->addr16[1], 0); 2128 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2129 oia.addr16[0], ia->addr16[0], 0), 2130 oia.addr16[1], ia->addr16[1], 0); 2131 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2132 break; 2133 } 2134 #endif /* INET */ 2135 #ifdef INET6 2136 case AF_INET6: 2137 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2138 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2139 pf_cksum_fixup(pf_cksum_fixup(*ic, 2140 oia.addr16[0], ia->addr16[0], u), 2141 oia.addr16[1], ia->addr16[1], u), 2142 oia.addr16[2], ia->addr16[2], u), 2143 oia.addr16[3], ia->addr16[3], u), 2144 oia.addr16[4], ia->addr16[4], u), 2145 oia.addr16[5], ia->addr16[5], u), 2146 oia.addr16[6], ia->addr16[6], u), 2147 oia.addr16[7], ia->addr16[7], u); 2148 break; 2149 #endif /* INET6 */ 2150 } 2151 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2152 if (oa) { 2153 PF_ACPY(oa, na, af); 2154 switch (af) { 2155 #ifdef INET 2156 case AF_INET: 2157 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2158 ooa.addr16[0], oa->addr16[0], 0), 2159 ooa.addr16[1], oa->addr16[1], 0); 2160 break; 2161 #endif /* INET */ 2162 #ifdef INET6 2163 case AF_INET6: 2164 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2165 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2166 pf_cksum_fixup(pf_cksum_fixup(*ic, 2167 ooa.addr16[0], oa->addr16[0], u), 2168 ooa.addr16[1], oa->addr16[1], u), 2169 ooa.addr16[2], oa->addr16[2], u), 2170 ooa.addr16[3], oa->addr16[3], u), 2171 ooa.addr16[4], oa->addr16[4], u), 2172 ooa.addr16[5], oa->addr16[5], u), 2173 ooa.addr16[6], oa->addr16[6], u), 2174 ooa.addr16[7], oa->addr16[7], u); 2175 break; 2176 #endif /* INET6 */ 2177 } 2178 } 2179 } 2180 2181 2182 /* 2183 * Need to modulate the sequence numbers in the TCP SACK option 2184 * (credits to Krzysztof Pfaff for report and patch) 2185 */ 2186 static int 2187 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2188 struct tcphdr *th, struct pf_state_peer *dst) 2189 { 2190 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2191 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2192 int copyback = 0, i, olen; 2193 struct sackblk sack; 2194 2195 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2196 if (hlen < TCPOLEN_SACKLEN || 2197 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2198 return 0; 2199 2200 while (hlen >= TCPOLEN_SACKLEN) { 2201 olen = opt[1]; 2202 switch (*opt) { 2203 case TCPOPT_EOL: /* FALLTHROUGH */ 2204 case TCPOPT_NOP: 2205 opt++; 2206 hlen--; 2207 break; 2208 case TCPOPT_SACK: 2209 if (olen > hlen) 2210 olen = hlen; 2211 if (olen >= TCPOLEN_SACKLEN) { 2212 for (i = 2; i + TCPOLEN_SACK <= olen; 2213 i += TCPOLEN_SACK) { 2214 memcpy(&sack, &opt[i], sizeof(sack)); 2215 pf_change_a(&sack.start, &th->th_sum, 2216 htonl(ntohl(sack.start) - 2217 dst->seqdiff), 0); 2218 pf_change_a(&sack.end, &th->th_sum, 2219 htonl(ntohl(sack.end) - 2220 dst->seqdiff), 0); 2221 memcpy(&opt[i], &sack, sizeof(sack)); 2222 } 2223 copyback = 1; 2224 } 2225 /* FALLTHROUGH */ 2226 default: 2227 if (olen < 2) 2228 olen = 2; 2229 hlen -= olen; 2230 opt += olen; 2231 } 2232 } 2233 2234 if (copyback) 2235 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2236 return (copyback); 2237 } 2238 2239 static void 2240 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2241 const struct pf_addr *saddr, const struct pf_addr *daddr, 2242 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2243 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2244 u_int16_t rtag, struct ifnet *ifp) 2245 { 2246 struct pf_send_entry *pfse; 2247 struct mbuf *m; 2248 int len, tlen; 2249 #ifdef INET 2250 struct ip *h = NULL; 2251 #endif /* INET */ 2252 #ifdef INET6 2253 struct ip6_hdr *h6 = NULL; 2254 #endif /* INET6 */ 2255 struct tcphdr *th; 2256 char *opt; 2257 struct pf_mtag *pf_mtag; 2258 2259 len = 0; 2260 th = NULL; 2261 2262 /* maximum segment size tcp option */ 2263 tlen = sizeof(struct tcphdr); 2264 if (mss) 2265 tlen += 4; 2266 2267 switch (af) { 2268 #ifdef INET 2269 case AF_INET: 2270 len = sizeof(struct ip) + tlen; 2271 break; 2272 #endif /* INET */ 2273 #ifdef INET6 2274 case AF_INET6: 2275 len = sizeof(struct ip6_hdr) + tlen; 2276 break; 2277 #endif /* INET6 */ 2278 default: 2279 panic("%s: unsupported af %d", __func__, af); 2280 } 2281 2282 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2283 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2284 if (pfse == NULL) 2285 return; 2286 m = m_gethdr(M_NOWAIT, MT_DATA); 2287 if (m == NULL) { 2288 free(pfse, M_PFTEMP); 2289 return; 2290 } 2291 #ifdef MAC 2292 mac_netinet_firewall_send(m); 2293 #endif 2294 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2295 free(pfse, M_PFTEMP); 2296 m_freem(m); 2297 return; 2298 } 2299 if (tag) 2300 m->m_flags |= M_SKIP_FIREWALL; 2301 pf_mtag->tag = rtag; 2302 2303 if (r != NULL && r->rtableid >= 0) 2304 M_SETFIB(m, r->rtableid); 2305 2306 #ifdef ALTQ 2307 if (r != NULL && r->qid) { 2308 pf_mtag->qid = r->qid; 2309 2310 /* add hints for ecn */ 2311 pf_mtag->hdr = mtod(m, struct ip *); 2312 } 2313 #endif /* ALTQ */ 2314 m->m_data += max_linkhdr; 2315 m->m_pkthdr.len = m->m_len = len; 2316 m->m_pkthdr.rcvif = NULL; 2317 bzero(m->m_data, len); 2318 switch (af) { 2319 #ifdef INET 2320 case AF_INET: 2321 h = mtod(m, struct ip *); 2322 2323 /* IP header fields included in the TCP checksum */ 2324 h->ip_p = IPPROTO_TCP; 2325 h->ip_len = htons(tlen); 2326 h->ip_src.s_addr = saddr->v4.s_addr; 2327 h->ip_dst.s_addr = daddr->v4.s_addr; 2328 2329 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2330 break; 2331 #endif /* INET */ 2332 #ifdef INET6 2333 case AF_INET6: 2334 h6 = mtod(m, struct ip6_hdr *); 2335 2336 /* IP header fields included in the TCP checksum */ 2337 h6->ip6_nxt = IPPROTO_TCP; 2338 h6->ip6_plen = htons(tlen); 2339 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2340 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2341 2342 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2343 break; 2344 #endif /* INET6 */ 2345 } 2346 2347 /* TCP header */ 2348 th->th_sport = sport; 2349 th->th_dport = dport; 2350 th->th_seq = htonl(seq); 2351 th->th_ack = htonl(ack); 2352 th->th_off = tlen >> 2; 2353 th->th_flags = flags; 2354 th->th_win = htons(win); 2355 2356 if (mss) { 2357 opt = (char *)(th + 1); 2358 opt[0] = TCPOPT_MAXSEG; 2359 opt[1] = 4; 2360 HTONS(mss); 2361 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2362 } 2363 2364 switch (af) { 2365 #ifdef INET 2366 case AF_INET: 2367 /* TCP checksum */ 2368 th->th_sum = in_cksum(m, len); 2369 2370 /* Finish the IP header */ 2371 h->ip_v = 4; 2372 h->ip_hl = sizeof(*h) >> 2; 2373 h->ip_tos = IPTOS_LOWDELAY; 2374 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2375 h->ip_len = htons(len); 2376 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2377 h->ip_sum = 0; 2378 2379 pfse->pfse_type = PFSE_IP; 2380 break; 2381 #endif /* INET */ 2382 #ifdef INET6 2383 case AF_INET6: 2384 /* TCP checksum */ 2385 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2386 sizeof(struct ip6_hdr), tlen); 2387 2388 h6->ip6_vfc |= IPV6_VERSION; 2389 h6->ip6_hlim = IPV6_DEFHLIM; 2390 2391 pfse->pfse_type = PFSE_IP6; 2392 break; 2393 #endif /* INET6 */ 2394 } 2395 pfse->pfse_m = m; 2396 pf_send(pfse); 2397 } 2398 2399 static void 2400 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2401 struct pf_rule *r) 2402 { 2403 struct pf_send_entry *pfse; 2404 struct mbuf *m0; 2405 struct pf_mtag *pf_mtag; 2406 2407 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2408 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2409 if (pfse == NULL) 2410 return; 2411 2412 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2413 free(pfse, M_PFTEMP); 2414 return; 2415 } 2416 2417 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2418 free(pfse, M_PFTEMP); 2419 return; 2420 } 2421 /* XXX: revisit */ 2422 m0->m_flags |= M_SKIP_FIREWALL; 2423 2424 if (r->rtableid >= 0) 2425 M_SETFIB(m0, r->rtableid); 2426 2427 #ifdef ALTQ 2428 if (r->qid) { 2429 pf_mtag->qid = r->qid; 2430 /* add hints for ecn */ 2431 pf_mtag->hdr = mtod(m0, struct ip *); 2432 } 2433 #endif /* ALTQ */ 2434 2435 switch (af) { 2436 #ifdef INET 2437 case AF_INET: 2438 pfse->pfse_type = PFSE_ICMP; 2439 break; 2440 #endif /* INET */ 2441 #ifdef INET6 2442 case AF_INET6: 2443 pfse->pfse_type = PFSE_ICMP6; 2444 break; 2445 #endif /* INET6 */ 2446 } 2447 pfse->pfse_m = m0; 2448 pfse->icmpopts.type = type; 2449 pfse->icmpopts.code = code; 2450 pf_send(pfse); 2451 } 2452 2453 /* 2454 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2455 * If n is 0, they match if they are equal. If n is != 0, they match if they 2456 * are different. 2457 */ 2458 int 2459 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2460 struct pf_addr *b, sa_family_t af) 2461 { 2462 int match = 0; 2463 2464 switch (af) { 2465 #ifdef INET 2466 case AF_INET: 2467 if ((a->addr32[0] & m->addr32[0]) == 2468 (b->addr32[0] & m->addr32[0])) 2469 match++; 2470 break; 2471 #endif /* INET */ 2472 #ifdef INET6 2473 case AF_INET6: 2474 if (((a->addr32[0] & m->addr32[0]) == 2475 (b->addr32[0] & m->addr32[0])) && 2476 ((a->addr32[1] & m->addr32[1]) == 2477 (b->addr32[1] & m->addr32[1])) && 2478 ((a->addr32[2] & m->addr32[2]) == 2479 (b->addr32[2] & m->addr32[2])) && 2480 ((a->addr32[3] & m->addr32[3]) == 2481 (b->addr32[3] & m->addr32[3]))) 2482 match++; 2483 break; 2484 #endif /* INET6 */ 2485 } 2486 if (match) { 2487 if (n) 2488 return (0); 2489 else 2490 return (1); 2491 } else { 2492 if (n) 2493 return (1); 2494 else 2495 return (0); 2496 } 2497 } 2498 2499 /* 2500 * Return 1 if b <= a <= e, otherwise return 0. 2501 */ 2502 int 2503 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2504 struct pf_addr *a, sa_family_t af) 2505 { 2506 switch (af) { 2507 #ifdef INET 2508 case AF_INET: 2509 if ((a->addr32[0] < b->addr32[0]) || 2510 (a->addr32[0] > e->addr32[0])) 2511 return (0); 2512 break; 2513 #endif /* INET */ 2514 #ifdef INET6 2515 case AF_INET6: { 2516 int i; 2517 2518 /* check a >= b */ 2519 for (i = 0; i < 4; ++i) 2520 if (a->addr32[i] > b->addr32[i]) 2521 break; 2522 else if (a->addr32[i] < b->addr32[i]) 2523 return (0); 2524 /* check a <= e */ 2525 for (i = 0; i < 4; ++i) 2526 if (a->addr32[i] < e->addr32[i]) 2527 break; 2528 else if (a->addr32[i] > e->addr32[i]) 2529 return (0); 2530 break; 2531 } 2532 #endif /* INET6 */ 2533 } 2534 return (1); 2535 } 2536 2537 static int 2538 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2539 { 2540 switch (op) { 2541 case PF_OP_IRG: 2542 return ((p > a1) && (p < a2)); 2543 case PF_OP_XRG: 2544 return ((p < a1) || (p > a2)); 2545 case PF_OP_RRG: 2546 return ((p >= a1) && (p <= a2)); 2547 case PF_OP_EQ: 2548 return (p == a1); 2549 case PF_OP_NE: 2550 return (p != a1); 2551 case PF_OP_LT: 2552 return (p < a1); 2553 case PF_OP_LE: 2554 return (p <= a1); 2555 case PF_OP_GT: 2556 return (p > a1); 2557 case PF_OP_GE: 2558 return (p >= a1); 2559 } 2560 return (0); /* never reached */ 2561 } 2562 2563 int 2564 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2565 { 2566 NTOHS(a1); 2567 NTOHS(a2); 2568 NTOHS(p); 2569 return (pf_match(op, a1, a2, p)); 2570 } 2571 2572 static int 2573 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2574 { 2575 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2576 return (0); 2577 return (pf_match(op, a1, a2, u)); 2578 } 2579 2580 static int 2581 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2582 { 2583 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2584 return (0); 2585 return (pf_match(op, a1, a2, g)); 2586 } 2587 2588 int 2589 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2590 { 2591 if (*tag == -1) 2592 *tag = mtag; 2593 2594 return ((!r->match_tag_not && r->match_tag == *tag) || 2595 (r->match_tag_not && r->match_tag != *tag)); 2596 } 2597 2598 int 2599 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2600 { 2601 2602 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2603 2604 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2605 return (ENOMEM); 2606 2607 pd->pf_mtag->tag = tag; 2608 2609 return (0); 2610 } 2611 2612 #define PF_ANCHOR_STACKSIZE 32 2613 struct pf_anchor_stackframe { 2614 struct pf_ruleset *rs; 2615 struct pf_rule *r; /* XXX: + match bit */ 2616 struct pf_anchor *child; 2617 }; 2618 2619 /* 2620 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2621 */ 2622 #define PF_ANCHORSTACK_MATCH 0x00000001 2623 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2624 2625 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2626 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2627 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2628 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2629 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2630 } while (0) 2631 2632 void 2633 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2634 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2635 int *match) 2636 { 2637 struct pf_anchor_stackframe *f; 2638 2639 PF_RULES_RASSERT(); 2640 2641 if (match) 2642 *match = 0; 2643 if (*depth >= PF_ANCHOR_STACKSIZE) { 2644 printf("%s: anchor stack overflow on %s\n", 2645 __func__, (*r)->anchor->name); 2646 *r = TAILQ_NEXT(*r, entries); 2647 return; 2648 } else if (*depth == 0 && a != NULL) 2649 *a = *r; 2650 f = stack + (*depth)++; 2651 f->rs = *rs; 2652 f->r = *r; 2653 if ((*r)->anchor_wildcard) { 2654 struct pf_anchor_node *parent = &(*r)->anchor->children; 2655 2656 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2657 *r = NULL; 2658 return; 2659 } 2660 *rs = &f->child->ruleset; 2661 } else { 2662 f->child = NULL; 2663 *rs = &(*r)->anchor->ruleset; 2664 } 2665 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2666 } 2667 2668 int 2669 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2670 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2671 int *match) 2672 { 2673 struct pf_anchor_stackframe *f; 2674 struct pf_rule *fr; 2675 int quick = 0; 2676 2677 PF_RULES_RASSERT(); 2678 2679 do { 2680 if (*depth <= 0) 2681 break; 2682 f = stack + *depth - 1; 2683 fr = PF_ANCHOR_RULE(f); 2684 if (f->child != NULL) { 2685 struct pf_anchor_node *parent; 2686 2687 /* 2688 * This block traverses through 2689 * a wildcard anchor. 2690 */ 2691 parent = &fr->anchor->children; 2692 if (match != NULL && *match) { 2693 /* 2694 * If any of "*" matched, then 2695 * "foo/ *" matched, mark frame 2696 * appropriately. 2697 */ 2698 PF_ANCHOR_SET_MATCH(f); 2699 *match = 0; 2700 } 2701 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2702 if (f->child != NULL) { 2703 *rs = &f->child->ruleset; 2704 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2705 if (*r == NULL) 2706 continue; 2707 else 2708 break; 2709 } 2710 } 2711 (*depth)--; 2712 if (*depth == 0 && a != NULL) 2713 *a = NULL; 2714 *rs = f->rs; 2715 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2716 quick = fr->quick; 2717 *r = TAILQ_NEXT(fr, entries); 2718 } while (*r == NULL); 2719 2720 return (quick); 2721 } 2722 2723 #ifdef INET6 2724 void 2725 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2726 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2727 { 2728 switch (af) { 2729 #ifdef INET 2730 case AF_INET: 2731 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2732 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2733 break; 2734 #endif /* INET */ 2735 case AF_INET6: 2736 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2737 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2738 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2739 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2740 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2741 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2742 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2743 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2744 break; 2745 } 2746 } 2747 2748 void 2749 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2750 { 2751 switch (af) { 2752 #ifdef INET 2753 case AF_INET: 2754 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2755 break; 2756 #endif /* INET */ 2757 case AF_INET6: 2758 if (addr->addr32[3] == 0xffffffff) { 2759 addr->addr32[3] = 0; 2760 if (addr->addr32[2] == 0xffffffff) { 2761 addr->addr32[2] = 0; 2762 if (addr->addr32[1] == 0xffffffff) { 2763 addr->addr32[1] = 0; 2764 addr->addr32[0] = 2765 htonl(ntohl(addr->addr32[0]) + 1); 2766 } else 2767 addr->addr32[1] = 2768 htonl(ntohl(addr->addr32[1]) + 1); 2769 } else 2770 addr->addr32[2] = 2771 htonl(ntohl(addr->addr32[2]) + 1); 2772 } else 2773 addr->addr32[3] = 2774 htonl(ntohl(addr->addr32[3]) + 1); 2775 break; 2776 } 2777 } 2778 #endif /* INET6 */ 2779 2780 int 2781 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2782 { 2783 struct pf_addr *saddr, *daddr; 2784 u_int16_t sport, dport; 2785 struct inpcbinfo *pi; 2786 struct inpcb *inp; 2787 2788 pd->lookup.uid = UID_MAX; 2789 pd->lookup.gid = GID_MAX; 2790 2791 switch (pd->proto) { 2792 case IPPROTO_TCP: 2793 if (pd->hdr.tcp == NULL) 2794 return (-1); 2795 sport = pd->hdr.tcp->th_sport; 2796 dport = pd->hdr.tcp->th_dport; 2797 pi = &V_tcbinfo; 2798 break; 2799 case IPPROTO_UDP: 2800 if (pd->hdr.udp == NULL) 2801 return (-1); 2802 sport = pd->hdr.udp->uh_sport; 2803 dport = pd->hdr.udp->uh_dport; 2804 pi = &V_udbinfo; 2805 break; 2806 default: 2807 return (-1); 2808 } 2809 if (direction == PF_IN) { 2810 saddr = pd->src; 2811 daddr = pd->dst; 2812 } else { 2813 u_int16_t p; 2814 2815 p = sport; 2816 sport = dport; 2817 dport = p; 2818 saddr = pd->dst; 2819 daddr = pd->src; 2820 } 2821 switch (pd->af) { 2822 #ifdef INET 2823 case AF_INET: 2824 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2825 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2826 if (inp == NULL) { 2827 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2828 daddr->v4, dport, INPLOOKUP_WILDCARD | 2829 INPLOOKUP_RLOCKPCB, NULL, m); 2830 if (inp == NULL) 2831 return (-1); 2832 } 2833 break; 2834 #endif /* INET */ 2835 #ifdef INET6 2836 case AF_INET6: 2837 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2838 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2839 if (inp == NULL) { 2840 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2841 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2842 INPLOOKUP_RLOCKPCB, NULL, m); 2843 if (inp == NULL) 2844 return (-1); 2845 } 2846 break; 2847 #endif /* INET6 */ 2848 2849 default: 2850 return (-1); 2851 } 2852 INP_RLOCK_ASSERT(inp); 2853 pd->lookup.uid = inp->inp_cred->cr_uid; 2854 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2855 INP_RUNLOCK(inp); 2856 2857 return (1); 2858 } 2859 2860 static u_int8_t 2861 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2862 { 2863 int hlen; 2864 u_int8_t hdr[60]; 2865 u_int8_t *opt, optlen; 2866 u_int8_t wscale = 0; 2867 2868 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2869 if (hlen <= sizeof(struct tcphdr)) 2870 return (0); 2871 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2872 return (0); 2873 opt = hdr + sizeof(struct tcphdr); 2874 hlen -= sizeof(struct tcphdr); 2875 while (hlen >= 3) { 2876 switch (*opt) { 2877 case TCPOPT_EOL: 2878 case TCPOPT_NOP: 2879 ++opt; 2880 --hlen; 2881 break; 2882 case TCPOPT_WINDOW: 2883 wscale = opt[2]; 2884 if (wscale > TCP_MAX_WINSHIFT) 2885 wscale = TCP_MAX_WINSHIFT; 2886 wscale |= PF_WSCALE_FLAG; 2887 /* FALLTHROUGH */ 2888 default: 2889 optlen = opt[1]; 2890 if (optlen < 2) 2891 optlen = 2; 2892 hlen -= optlen; 2893 opt += optlen; 2894 break; 2895 } 2896 } 2897 return (wscale); 2898 } 2899 2900 static u_int16_t 2901 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2902 { 2903 int hlen; 2904 u_int8_t hdr[60]; 2905 u_int8_t *opt, optlen; 2906 u_int16_t mss = V_tcp_mssdflt; 2907 2908 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2909 if (hlen <= sizeof(struct tcphdr)) 2910 return (0); 2911 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2912 return (0); 2913 opt = hdr + sizeof(struct tcphdr); 2914 hlen -= sizeof(struct tcphdr); 2915 while (hlen >= TCPOLEN_MAXSEG) { 2916 switch (*opt) { 2917 case TCPOPT_EOL: 2918 case TCPOPT_NOP: 2919 ++opt; 2920 --hlen; 2921 break; 2922 case TCPOPT_MAXSEG: 2923 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2924 NTOHS(mss); 2925 /* FALLTHROUGH */ 2926 default: 2927 optlen = opt[1]; 2928 if (optlen < 2) 2929 optlen = 2; 2930 hlen -= optlen; 2931 opt += optlen; 2932 break; 2933 } 2934 } 2935 return (mss); 2936 } 2937 2938 static u_int16_t 2939 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2940 { 2941 #ifdef INET 2942 struct sockaddr_in *dst; 2943 struct route ro; 2944 #endif /* INET */ 2945 #ifdef INET6 2946 struct sockaddr_in6 *dst6; 2947 struct route_in6 ro6; 2948 #endif /* INET6 */ 2949 struct rtentry *rt = NULL; 2950 int hlen = 0; 2951 u_int16_t mss = V_tcp_mssdflt; 2952 2953 switch (af) { 2954 #ifdef INET 2955 case AF_INET: 2956 hlen = sizeof(struct ip); 2957 bzero(&ro, sizeof(ro)); 2958 dst = (struct sockaddr_in *)&ro.ro_dst; 2959 dst->sin_family = AF_INET; 2960 dst->sin_len = sizeof(*dst); 2961 dst->sin_addr = addr->v4; 2962 in_rtalloc_ign(&ro, 0, rtableid); 2963 rt = ro.ro_rt; 2964 break; 2965 #endif /* INET */ 2966 #ifdef INET6 2967 case AF_INET6: 2968 hlen = sizeof(struct ip6_hdr); 2969 bzero(&ro6, sizeof(ro6)); 2970 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2971 dst6->sin6_family = AF_INET6; 2972 dst6->sin6_len = sizeof(*dst6); 2973 dst6->sin6_addr = addr->v6; 2974 in6_rtalloc_ign(&ro6, 0, rtableid); 2975 rt = ro6.ro_rt; 2976 break; 2977 #endif /* INET6 */ 2978 } 2979 2980 if (rt && rt->rt_ifp) { 2981 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2982 mss = max(V_tcp_mssdflt, mss); 2983 RTFREE(rt); 2984 } 2985 mss = min(mss, offer); 2986 mss = max(mss, 64); /* sanity - at least max opt space */ 2987 return (mss); 2988 } 2989 2990 static u_int32_t 2991 pf_tcp_iss(struct pf_pdesc *pd) 2992 { 2993 MD5_CTX ctx; 2994 u_int32_t digest[4]; 2995 2996 if (V_pf_tcp_secret_init == 0) { 2997 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2998 MD5Init(&V_pf_tcp_secret_ctx); 2999 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3000 sizeof(V_pf_tcp_secret)); 3001 V_pf_tcp_secret_init = 1; 3002 } 3003 3004 ctx = V_pf_tcp_secret_ctx; 3005 3006 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3007 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3008 if (pd->af == AF_INET6) { 3009 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3010 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3011 } else { 3012 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3013 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3014 } 3015 MD5Final((u_char *)digest, &ctx); 3016 V_pf_tcp_iss_off += 4096; 3017 #define ISN_RANDOM_INCREMENT (4096 - 1) 3018 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3019 V_pf_tcp_iss_off); 3020 #undef ISN_RANDOM_INCREMENT 3021 } 3022 3023 static int 3024 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3025 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3026 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3027 { 3028 struct pf_rule *nr = NULL; 3029 struct pf_addr * const saddr = pd->src; 3030 struct pf_addr * const daddr = pd->dst; 3031 sa_family_t af = pd->af; 3032 struct pf_rule *r, *a = NULL; 3033 struct pf_ruleset *ruleset = NULL; 3034 struct pf_src_node *nsn = NULL; 3035 struct tcphdr *th = pd->hdr.tcp; 3036 struct pf_state_key *sk = NULL, *nk = NULL; 3037 u_short reason; 3038 int rewrite = 0, hdrlen = 0; 3039 int tag = -1, rtableid = -1; 3040 int asd = 0; 3041 int match = 0; 3042 int state_icmp = 0; 3043 u_int16_t sport = 0, dport = 0; 3044 u_int16_t bproto_sum = 0, bip_sum = 0; 3045 u_int8_t icmptype = 0, icmpcode = 0; 3046 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3047 3048 PF_RULES_RASSERT(); 3049 3050 if (inp != NULL) { 3051 INP_LOCK_ASSERT(inp); 3052 pd->lookup.uid = inp->inp_cred->cr_uid; 3053 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3054 pd->lookup.done = 1; 3055 } 3056 3057 switch (pd->proto) { 3058 case IPPROTO_TCP: 3059 sport = th->th_sport; 3060 dport = th->th_dport; 3061 hdrlen = sizeof(*th); 3062 break; 3063 case IPPROTO_UDP: 3064 sport = pd->hdr.udp->uh_sport; 3065 dport = pd->hdr.udp->uh_dport; 3066 hdrlen = sizeof(*pd->hdr.udp); 3067 break; 3068 #ifdef INET 3069 case IPPROTO_ICMP: 3070 if (pd->af != AF_INET) 3071 break; 3072 sport = dport = pd->hdr.icmp->icmp_id; 3073 hdrlen = sizeof(*pd->hdr.icmp); 3074 icmptype = pd->hdr.icmp->icmp_type; 3075 icmpcode = pd->hdr.icmp->icmp_code; 3076 3077 if (icmptype == ICMP_UNREACH || 3078 icmptype == ICMP_SOURCEQUENCH || 3079 icmptype == ICMP_REDIRECT || 3080 icmptype == ICMP_TIMXCEED || 3081 icmptype == ICMP_PARAMPROB) 3082 state_icmp++; 3083 break; 3084 #endif /* INET */ 3085 #ifdef INET6 3086 case IPPROTO_ICMPV6: 3087 if (af != AF_INET6) 3088 break; 3089 sport = dport = pd->hdr.icmp6->icmp6_id; 3090 hdrlen = sizeof(*pd->hdr.icmp6); 3091 icmptype = pd->hdr.icmp6->icmp6_type; 3092 icmpcode = pd->hdr.icmp6->icmp6_code; 3093 3094 if (icmptype == ICMP6_DST_UNREACH || 3095 icmptype == ICMP6_PACKET_TOO_BIG || 3096 icmptype == ICMP6_TIME_EXCEEDED || 3097 icmptype == ICMP6_PARAM_PROB) 3098 state_icmp++; 3099 break; 3100 #endif /* INET6 */ 3101 default: 3102 sport = dport = hdrlen = 0; 3103 break; 3104 } 3105 3106 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3107 3108 /* check packet for BINAT/NAT/RDR */ 3109 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3110 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3111 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3112 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3113 3114 if (pd->ip_sum) 3115 bip_sum = *pd->ip_sum; 3116 3117 switch (pd->proto) { 3118 case IPPROTO_TCP: 3119 bproto_sum = th->th_sum; 3120 pd->proto_sum = &th->th_sum; 3121 3122 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3123 nk->port[pd->sidx] != sport) { 3124 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3125 &th->th_sum, &nk->addr[pd->sidx], 3126 nk->port[pd->sidx], 0, af); 3127 pd->sport = &th->th_sport; 3128 sport = th->th_sport; 3129 } 3130 3131 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3132 nk->port[pd->didx] != dport) { 3133 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3134 &th->th_sum, &nk->addr[pd->didx], 3135 nk->port[pd->didx], 0, af); 3136 dport = th->th_dport; 3137 pd->dport = &th->th_dport; 3138 } 3139 rewrite++; 3140 break; 3141 case IPPROTO_UDP: 3142 bproto_sum = pd->hdr.udp->uh_sum; 3143 pd->proto_sum = &pd->hdr.udp->uh_sum; 3144 3145 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3146 nk->port[pd->sidx] != sport) { 3147 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3148 pd->ip_sum, &pd->hdr.udp->uh_sum, 3149 &nk->addr[pd->sidx], 3150 nk->port[pd->sidx], 1, af); 3151 sport = pd->hdr.udp->uh_sport; 3152 pd->sport = &pd->hdr.udp->uh_sport; 3153 } 3154 3155 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3156 nk->port[pd->didx] != dport) { 3157 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3158 pd->ip_sum, &pd->hdr.udp->uh_sum, 3159 &nk->addr[pd->didx], 3160 nk->port[pd->didx], 1, af); 3161 dport = pd->hdr.udp->uh_dport; 3162 pd->dport = &pd->hdr.udp->uh_dport; 3163 } 3164 rewrite++; 3165 break; 3166 #ifdef INET 3167 case IPPROTO_ICMP: 3168 nk->port[0] = nk->port[1]; 3169 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3170 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3171 nk->addr[pd->sidx].v4.s_addr, 0); 3172 3173 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3174 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3175 nk->addr[pd->didx].v4.s_addr, 0); 3176 3177 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3178 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3179 pd->hdr.icmp->icmp_cksum, sport, 3180 nk->port[1], 0); 3181 pd->hdr.icmp->icmp_id = nk->port[1]; 3182 pd->sport = &pd->hdr.icmp->icmp_id; 3183 } 3184 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3185 break; 3186 #endif /* INET */ 3187 #ifdef INET6 3188 case IPPROTO_ICMPV6: 3189 nk->port[0] = nk->port[1]; 3190 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3191 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3192 &nk->addr[pd->sidx], 0); 3193 3194 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3195 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3196 &nk->addr[pd->didx], 0); 3197 rewrite++; 3198 break; 3199 #endif /* INET */ 3200 default: 3201 switch (af) { 3202 #ifdef INET 3203 case AF_INET: 3204 if (PF_ANEQ(saddr, 3205 &nk->addr[pd->sidx], AF_INET)) 3206 pf_change_a(&saddr->v4.s_addr, 3207 pd->ip_sum, 3208 nk->addr[pd->sidx].v4.s_addr, 0); 3209 3210 if (PF_ANEQ(daddr, 3211 &nk->addr[pd->didx], AF_INET)) 3212 pf_change_a(&daddr->v4.s_addr, 3213 pd->ip_sum, 3214 nk->addr[pd->didx].v4.s_addr, 0); 3215 break; 3216 #endif /* INET */ 3217 #ifdef INET6 3218 case AF_INET6: 3219 if (PF_ANEQ(saddr, 3220 &nk->addr[pd->sidx], AF_INET6)) 3221 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3222 3223 if (PF_ANEQ(daddr, 3224 &nk->addr[pd->didx], AF_INET6)) 3225 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3226 break; 3227 #endif /* INET */ 3228 } 3229 break; 3230 } 3231 if (nr->natpass) 3232 r = NULL; 3233 pd->nat_rule = nr; 3234 } 3235 3236 while (r != NULL) { 3237 r->evaluations++; 3238 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3239 r = r->skip[PF_SKIP_IFP].ptr; 3240 else if (r->direction && r->direction != direction) 3241 r = r->skip[PF_SKIP_DIR].ptr; 3242 else if (r->af && r->af != af) 3243 r = r->skip[PF_SKIP_AF].ptr; 3244 else if (r->proto && r->proto != pd->proto) 3245 r = r->skip[PF_SKIP_PROTO].ptr; 3246 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3247 r->src.neg, kif, M_GETFIB(m))) 3248 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3249 /* tcp/udp only. port_op always 0 in other cases */ 3250 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3251 r->src.port[0], r->src.port[1], sport)) 3252 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3253 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3254 r->dst.neg, NULL, M_GETFIB(m))) 3255 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3256 /* tcp/udp only. port_op always 0 in other cases */ 3257 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3258 r->dst.port[0], r->dst.port[1], dport)) 3259 r = r->skip[PF_SKIP_DST_PORT].ptr; 3260 /* icmp only. type always 0 in other cases */ 3261 else if (r->type && r->type != icmptype + 1) 3262 r = TAILQ_NEXT(r, entries); 3263 /* icmp only. type always 0 in other cases */ 3264 else if (r->code && r->code != icmpcode + 1) 3265 r = TAILQ_NEXT(r, entries); 3266 else if (r->tos && !(r->tos == pd->tos)) 3267 r = TAILQ_NEXT(r, entries); 3268 else if (r->rule_flag & PFRULE_FRAGMENT) 3269 r = TAILQ_NEXT(r, entries); 3270 else if (pd->proto == IPPROTO_TCP && 3271 (r->flagset & th->th_flags) != r->flags) 3272 r = TAILQ_NEXT(r, entries); 3273 /* tcp/udp only. uid.op always 0 in other cases */ 3274 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3275 pf_socket_lookup(direction, pd, m), 1)) && 3276 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3277 pd->lookup.uid)) 3278 r = TAILQ_NEXT(r, entries); 3279 /* tcp/udp only. gid.op always 0 in other cases */ 3280 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3281 pf_socket_lookup(direction, pd, m), 1)) && 3282 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3283 pd->lookup.gid)) 3284 r = TAILQ_NEXT(r, entries); 3285 else if (r->prob && 3286 r->prob <= arc4random()) 3287 r = TAILQ_NEXT(r, entries); 3288 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3289 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3290 r = TAILQ_NEXT(r, entries); 3291 else if (r->os_fingerprint != PF_OSFP_ANY && 3292 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3293 pf_osfp_fingerprint(pd, m, off, th), 3294 r->os_fingerprint))) 3295 r = TAILQ_NEXT(r, entries); 3296 else { 3297 if (r->tag) 3298 tag = r->tag; 3299 if (r->rtableid >= 0) 3300 rtableid = r->rtableid; 3301 if (r->anchor == NULL) { 3302 match = 1; 3303 *rm = r; 3304 *am = a; 3305 *rsm = ruleset; 3306 if ((*rm)->quick) 3307 break; 3308 r = TAILQ_NEXT(r, entries); 3309 } else 3310 pf_step_into_anchor(anchor_stack, &asd, 3311 &ruleset, PF_RULESET_FILTER, &r, &a, 3312 &match); 3313 } 3314 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3315 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3316 break; 3317 } 3318 r = *rm; 3319 a = *am; 3320 ruleset = *rsm; 3321 3322 REASON_SET(&reason, PFRES_MATCH); 3323 3324 if (r->log || (nr != NULL && nr->log)) { 3325 if (rewrite) 3326 m_copyback(m, off, hdrlen, pd->hdr.any); 3327 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3328 ruleset, pd, 1); 3329 } 3330 3331 if ((r->action == PF_DROP) && 3332 ((r->rule_flag & PFRULE_RETURNRST) || 3333 (r->rule_flag & PFRULE_RETURNICMP) || 3334 (r->rule_flag & PFRULE_RETURN))) { 3335 /* undo NAT changes, if they have taken place */ 3336 if (nr != NULL) { 3337 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3338 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3339 if (pd->sport) 3340 *pd->sport = sk->port[pd->sidx]; 3341 if (pd->dport) 3342 *pd->dport = sk->port[pd->didx]; 3343 if (pd->proto_sum) 3344 *pd->proto_sum = bproto_sum; 3345 if (pd->ip_sum) 3346 *pd->ip_sum = bip_sum; 3347 m_copyback(m, off, hdrlen, pd->hdr.any); 3348 } 3349 if (pd->proto == IPPROTO_TCP && 3350 ((r->rule_flag & PFRULE_RETURNRST) || 3351 (r->rule_flag & PFRULE_RETURN)) && 3352 !(th->th_flags & TH_RST)) { 3353 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3354 int len = 0; 3355 #ifdef INET 3356 struct ip *h4; 3357 #endif 3358 #ifdef INET6 3359 struct ip6_hdr *h6; 3360 #endif 3361 3362 switch (af) { 3363 #ifdef INET 3364 case AF_INET: 3365 h4 = mtod(m, struct ip *); 3366 len = ntohs(h4->ip_len) - off; 3367 break; 3368 #endif 3369 #ifdef INET6 3370 case AF_INET6: 3371 h6 = mtod(m, struct ip6_hdr *); 3372 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3373 break; 3374 #endif 3375 } 3376 3377 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3378 REASON_SET(&reason, PFRES_PROTCKSUM); 3379 else { 3380 if (th->th_flags & TH_SYN) 3381 ack++; 3382 if (th->th_flags & TH_FIN) 3383 ack++; 3384 pf_send_tcp(m, r, af, pd->dst, 3385 pd->src, th->th_dport, th->th_sport, 3386 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3387 r->return_ttl, 1, 0, kif->pfik_ifp); 3388 } 3389 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3390 r->return_icmp) 3391 pf_send_icmp(m, r->return_icmp >> 8, 3392 r->return_icmp & 255, af, r); 3393 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3394 r->return_icmp6) 3395 pf_send_icmp(m, r->return_icmp6 >> 8, 3396 r->return_icmp6 & 255, af, r); 3397 } 3398 3399 if (r->action == PF_DROP) 3400 goto cleanup; 3401 3402 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3403 REASON_SET(&reason, PFRES_MEMORY); 3404 goto cleanup; 3405 } 3406 if (rtableid >= 0) 3407 M_SETFIB(m, rtableid); 3408 3409 if (!state_icmp && (r->keep_state || nr != NULL || 3410 (pd->flags & PFDESC_TCP_NORM))) { 3411 int action; 3412 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3413 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3414 hdrlen); 3415 if (action != PF_PASS) 3416 return (action); 3417 } else { 3418 if (sk != NULL) 3419 uma_zfree(V_pf_state_key_z, sk); 3420 if (nk != NULL) 3421 uma_zfree(V_pf_state_key_z, nk); 3422 } 3423 3424 /* copy back packet headers if we performed NAT operations */ 3425 if (rewrite) 3426 m_copyback(m, off, hdrlen, pd->hdr.any); 3427 3428 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3429 direction == PF_OUT && 3430 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3431 /* 3432 * We want the state created, but we dont 3433 * want to send this in case a partner 3434 * firewall has to know about it to allow 3435 * replies through it. 3436 */ 3437 return (PF_DEFER); 3438 3439 return (PF_PASS); 3440 3441 cleanup: 3442 if (sk != NULL) 3443 uma_zfree(V_pf_state_key_z, sk); 3444 if (nk != NULL) 3445 uma_zfree(V_pf_state_key_z, nk); 3446 return (PF_DROP); 3447 } 3448 3449 static int 3450 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3451 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3452 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3453 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3454 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3455 { 3456 struct pf_state *s = NULL; 3457 struct pf_src_node *sn = NULL; 3458 struct tcphdr *th = pd->hdr.tcp; 3459 u_int16_t mss = V_tcp_mssdflt; 3460 u_short reason; 3461 3462 /* check maximums */ 3463 if (r->max_states && 3464 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3465 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3466 REASON_SET(&reason, PFRES_MAXSTATES); 3467 return (PF_DROP); 3468 } 3469 /* src node for filter rule */ 3470 if ((r->rule_flag & PFRULE_SRCTRACK || 3471 r->rpool.opts & PF_POOL_STICKYADDR) && 3472 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3473 REASON_SET(&reason, PFRES_SRCLIMIT); 3474 goto csfailed; 3475 } 3476 /* src node for translation rule */ 3477 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3478 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3479 REASON_SET(&reason, PFRES_SRCLIMIT); 3480 goto csfailed; 3481 } 3482 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3483 if (s == NULL) { 3484 REASON_SET(&reason, PFRES_MEMORY); 3485 goto csfailed; 3486 } 3487 s->rule.ptr = r; 3488 s->nat_rule.ptr = nr; 3489 s->anchor.ptr = a; 3490 STATE_INC_COUNTERS(s); 3491 if (r->allow_opts) 3492 s->state_flags |= PFSTATE_ALLOWOPTS; 3493 if (r->rule_flag & PFRULE_STATESLOPPY) 3494 s->state_flags |= PFSTATE_SLOPPY; 3495 s->log = r->log & PF_LOG_ALL; 3496 s->sync_state = PFSYNC_S_NONE; 3497 if (nr != NULL) 3498 s->log |= nr->log & PF_LOG_ALL; 3499 switch (pd->proto) { 3500 case IPPROTO_TCP: 3501 s->src.seqlo = ntohl(th->th_seq); 3502 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3503 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3504 r->keep_state == PF_STATE_MODULATE) { 3505 /* Generate sequence number modulator */ 3506 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3507 0) 3508 s->src.seqdiff = 1; 3509 pf_change_a(&th->th_seq, &th->th_sum, 3510 htonl(s->src.seqlo + s->src.seqdiff), 0); 3511 *rewrite = 1; 3512 } else 3513 s->src.seqdiff = 0; 3514 if (th->th_flags & TH_SYN) { 3515 s->src.seqhi++; 3516 s->src.wscale = pf_get_wscale(m, off, 3517 th->th_off, pd->af); 3518 } 3519 s->src.max_win = MAX(ntohs(th->th_win), 1); 3520 if (s->src.wscale & PF_WSCALE_MASK) { 3521 /* Remove scale factor from initial window */ 3522 int win = s->src.max_win; 3523 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3524 s->src.max_win = (win - 1) >> 3525 (s->src.wscale & PF_WSCALE_MASK); 3526 } 3527 if (th->th_flags & TH_FIN) 3528 s->src.seqhi++; 3529 s->dst.seqhi = 1; 3530 s->dst.max_win = 1; 3531 s->src.state = TCPS_SYN_SENT; 3532 s->dst.state = TCPS_CLOSED; 3533 s->timeout = PFTM_TCP_FIRST_PACKET; 3534 break; 3535 case IPPROTO_UDP: 3536 s->src.state = PFUDPS_SINGLE; 3537 s->dst.state = PFUDPS_NO_TRAFFIC; 3538 s->timeout = PFTM_UDP_FIRST_PACKET; 3539 break; 3540 case IPPROTO_ICMP: 3541 #ifdef INET6 3542 case IPPROTO_ICMPV6: 3543 #endif 3544 s->timeout = PFTM_ICMP_FIRST_PACKET; 3545 break; 3546 default: 3547 s->src.state = PFOTHERS_SINGLE; 3548 s->dst.state = PFOTHERS_NO_TRAFFIC; 3549 s->timeout = PFTM_OTHER_FIRST_PACKET; 3550 } 3551 3552 if (r->rt && r->rt != PF_FASTROUTE) { 3553 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3554 REASON_SET(&reason, PFRES_MAPFAILED); 3555 pf_src_tree_remove_state(s); 3556 STATE_DEC_COUNTERS(s); 3557 uma_zfree(V_pf_state_z, s); 3558 goto csfailed; 3559 } 3560 s->rt_kif = r->rpool.cur->kif; 3561 } 3562 3563 s->creation = time_uptime; 3564 s->expire = time_uptime; 3565 3566 if (sn != NULL) { 3567 s->src_node = sn; 3568 s->src_node->states++; 3569 } 3570 if (nsn != NULL) { 3571 /* XXX We only modify one side for now. */ 3572 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3573 s->nat_src_node = nsn; 3574 s->nat_src_node->states++; 3575 } 3576 if (pd->proto == IPPROTO_TCP) { 3577 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3578 off, pd, th, &s->src, &s->dst)) { 3579 REASON_SET(&reason, PFRES_MEMORY); 3580 pf_src_tree_remove_state(s); 3581 STATE_DEC_COUNTERS(s); 3582 uma_zfree(V_pf_state_z, s); 3583 return (PF_DROP); 3584 } 3585 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3586 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3587 &s->src, &s->dst, rewrite)) { 3588 /* This really shouldn't happen!!! */ 3589 DPFPRINTF(PF_DEBUG_URGENT, 3590 ("pf_normalize_tcp_stateful failed on first pkt")); 3591 pf_normalize_tcp_cleanup(s); 3592 pf_src_tree_remove_state(s); 3593 STATE_DEC_COUNTERS(s); 3594 uma_zfree(V_pf_state_z, s); 3595 return (PF_DROP); 3596 } 3597 } 3598 s->direction = pd->dir; 3599 3600 /* 3601 * sk/nk could already been setup by pf_get_translation(). 3602 */ 3603 if (nr == NULL) { 3604 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3605 __func__, nr, sk, nk)); 3606 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3607 if (sk == NULL) 3608 goto csfailed; 3609 nk = sk; 3610 } else 3611 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3612 __func__, nr, sk, nk)); 3613 3614 /* Swap sk/nk for PF_OUT. */ 3615 if (pf_state_insert(BOUND_IFACE(r, kif), 3616 (pd->dir == PF_IN) ? sk : nk, 3617 (pd->dir == PF_IN) ? nk : sk, s)) { 3618 if (pd->proto == IPPROTO_TCP) 3619 pf_normalize_tcp_cleanup(s); 3620 REASON_SET(&reason, PFRES_STATEINS); 3621 pf_src_tree_remove_state(s); 3622 STATE_DEC_COUNTERS(s); 3623 uma_zfree(V_pf_state_z, s); 3624 return (PF_DROP); 3625 } else 3626 *sm = s; 3627 3628 if (tag > 0) 3629 s->tag = tag; 3630 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3631 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3632 s->src.state = PF_TCPS_PROXY_SRC; 3633 /* undo NAT changes, if they have taken place */ 3634 if (nr != NULL) { 3635 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3636 if (pd->dir == PF_OUT) 3637 skt = s->key[PF_SK_STACK]; 3638 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3639 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3640 if (pd->sport) 3641 *pd->sport = skt->port[pd->sidx]; 3642 if (pd->dport) 3643 *pd->dport = skt->port[pd->didx]; 3644 if (pd->proto_sum) 3645 *pd->proto_sum = bproto_sum; 3646 if (pd->ip_sum) 3647 *pd->ip_sum = bip_sum; 3648 m_copyback(m, off, hdrlen, pd->hdr.any); 3649 } 3650 s->src.seqhi = htonl(arc4random()); 3651 /* Find mss option */ 3652 int rtid = M_GETFIB(m); 3653 mss = pf_get_mss(m, off, th->th_off, pd->af); 3654 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3655 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3656 s->src.mss = mss; 3657 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3658 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3659 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3660 REASON_SET(&reason, PFRES_SYNPROXY); 3661 return (PF_SYNPROXY_DROP); 3662 } 3663 3664 return (PF_PASS); 3665 3666 csfailed: 3667 if (sk != NULL) 3668 uma_zfree(V_pf_state_key_z, sk); 3669 if (nk != NULL) 3670 uma_zfree(V_pf_state_key_z, nk); 3671 3672 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3673 pf_unlink_src_node(sn); 3674 pf_free_src_node(sn); 3675 } 3676 3677 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3678 pf_unlink_src_node(nsn); 3679 pf_free_src_node(nsn); 3680 } 3681 3682 return (PF_DROP); 3683 } 3684 3685 static int 3686 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3687 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3688 struct pf_ruleset **rsm) 3689 { 3690 struct pf_rule *r, *a = NULL; 3691 struct pf_ruleset *ruleset = NULL; 3692 sa_family_t af = pd->af; 3693 u_short reason; 3694 int tag = -1; 3695 int asd = 0; 3696 int match = 0; 3697 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3698 3699 PF_RULES_RASSERT(); 3700 3701 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3702 while (r != NULL) { 3703 r->evaluations++; 3704 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3705 r = r->skip[PF_SKIP_IFP].ptr; 3706 else if (r->direction && r->direction != direction) 3707 r = r->skip[PF_SKIP_DIR].ptr; 3708 else if (r->af && r->af != af) 3709 r = r->skip[PF_SKIP_AF].ptr; 3710 else if (r->proto && r->proto != pd->proto) 3711 r = r->skip[PF_SKIP_PROTO].ptr; 3712 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3713 r->src.neg, kif, M_GETFIB(m))) 3714 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3715 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3716 r->dst.neg, NULL, M_GETFIB(m))) 3717 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3718 else if (r->tos && !(r->tos == pd->tos)) 3719 r = TAILQ_NEXT(r, entries); 3720 else if (r->os_fingerprint != PF_OSFP_ANY) 3721 r = TAILQ_NEXT(r, entries); 3722 else if (pd->proto == IPPROTO_UDP && 3723 (r->src.port_op || r->dst.port_op)) 3724 r = TAILQ_NEXT(r, entries); 3725 else if (pd->proto == IPPROTO_TCP && 3726 (r->src.port_op || r->dst.port_op || r->flagset)) 3727 r = TAILQ_NEXT(r, entries); 3728 else if ((pd->proto == IPPROTO_ICMP || 3729 pd->proto == IPPROTO_ICMPV6) && 3730 (r->type || r->code)) 3731 r = TAILQ_NEXT(r, entries); 3732 else if (r->prob && r->prob <= 3733 (arc4random() % (UINT_MAX - 1) + 1)) 3734 r = TAILQ_NEXT(r, entries); 3735 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3736 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3737 r = TAILQ_NEXT(r, entries); 3738 else { 3739 if (r->anchor == NULL) { 3740 match = 1; 3741 *rm = r; 3742 *am = a; 3743 *rsm = ruleset; 3744 if ((*rm)->quick) 3745 break; 3746 r = TAILQ_NEXT(r, entries); 3747 } else 3748 pf_step_into_anchor(anchor_stack, &asd, 3749 &ruleset, PF_RULESET_FILTER, &r, &a, 3750 &match); 3751 } 3752 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3753 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3754 break; 3755 } 3756 r = *rm; 3757 a = *am; 3758 ruleset = *rsm; 3759 3760 REASON_SET(&reason, PFRES_MATCH); 3761 3762 if (r->log) 3763 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3764 1); 3765 3766 if (r->action != PF_PASS) 3767 return (PF_DROP); 3768 3769 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3770 REASON_SET(&reason, PFRES_MEMORY); 3771 return (PF_DROP); 3772 } 3773 3774 return (PF_PASS); 3775 } 3776 3777 static int 3778 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3779 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3780 struct pf_pdesc *pd, u_short *reason, int *copyback) 3781 { 3782 struct tcphdr *th = pd->hdr.tcp; 3783 u_int16_t win = ntohs(th->th_win); 3784 u_int32_t ack, end, seq, orig_seq; 3785 u_int8_t sws, dws; 3786 int ackskew; 3787 3788 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3789 sws = src->wscale & PF_WSCALE_MASK; 3790 dws = dst->wscale & PF_WSCALE_MASK; 3791 } else 3792 sws = dws = 0; 3793 3794 /* 3795 * Sequence tracking algorithm from Guido van Rooij's paper: 3796 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3797 * tcp_filtering.ps 3798 */ 3799 3800 orig_seq = seq = ntohl(th->th_seq); 3801 if (src->seqlo == 0) { 3802 /* First packet from this end. Set its state */ 3803 3804 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3805 src->scrub == NULL) { 3806 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3807 REASON_SET(reason, PFRES_MEMORY); 3808 return (PF_DROP); 3809 } 3810 } 3811 3812 /* Deferred generation of sequence number modulator */ 3813 if (dst->seqdiff && !src->seqdiff) { 3814 /* use random iss for the TCP server */ 3815 while ((src->seqdiff = arc4random() - seq) == 0) 3816 ; 3817 ack = ntohl(th->th_ack) - dst->seqdiff; 3818 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3819 src->seqdiff), 0); 3820 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3821 *copyback = 1; 3822 } else { 3823 ack = ntohl(th->th_ack); 3824 } 3825 3826 end = seq + pd->p_len; 3827 if (th->th_flags & TH_SYN) { 3828 end++; 3829 if (dst->wscale & PF_WSCALE_FLAG) { 3830 src->wscale = pf_get_wscale(m, off, th->th_off, 3831 pd->af); 3832 if (src->wscale & PF_WSCALE_FLAG) { 3833 /* Remove scale factor from initial 3834 * window */ 3835 sws = src->wscale & PF_WSCALE_MASK; 3836 win = ((u_int32_t)win + (1 << sws) - 1) 3837 >> sws; 3838 dws = dst->wscale & PF_WSCALE_MASK; 3839 } else { 3840 /* fixup other window */ 3841 dst->max_win <<= dst->wscale & 3842 PF_WSCALE_MASK; 3843 /* in case of a retrans SYN|ACK */ 3844 dst->wscale = 0; 3845 } 3846 } 3847 } 3848 if (th->th_flags & TH_FIN) 3849 end++; 3850 3851 src->seqlo = seq; 3852 if (src->state < TCPS_SYN_SENT) 3853 src->state = TCPS_SYN_SENT; 3854 3855 /* 3856 * May need to slide the window (seqhi may have been set by 3857 * the crappy stack check or if we picked up the connection 3858 * after establishment) 3859 */ 3860 if (src->seqhi == 1 || 3861 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3862 src->seqhi = end + MAX(1, dst->max_win << dws); 3863 if (win > src->max_win) 3864 src->max_win = win; 3865 3866 } else { 3867 ack = ntohl(th->th_ack) - dst->seqdiff; 3868 if (src->seqdiff) { 3869 /* Modulate sequence numbers */ 3870 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3871 src->seqdiff), 0); 3872 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3873 *copyback = 1; 3874 } 3875 end = seq + pd->p_len; 3876 if (th->th_flags & TH_SYN) 3877 end++; 3878 if (th->th_flags & TH_FIN) 3879 end++; 3880 } 3881 3882 if ((th->th_flags & TH_ACK) == 0) { 3883 /* Let it pass through the ack skew check */ 3884 ack = dst->seqlo; 3885 } else if ((ack == 0 && 3886 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3887 /* broken tcp stacks do not set ack */ 3888 (dst->state < TCPS_SYN_SENT)) { 3889 /* 3890 * Many stacks (ours included) will set the ACK number in an 3891 * FIN|ACK if the SYN times out -- no sequence to ACK. 3892 */ 3893 ack = dst->seqlo; 3894 } 3895 3896 if (seq == end) { 3897 /* Ease sequencing restrictions on no data packets */ 3898 seq = src->seqlo; 3899 end = seq; 3900 } 3901 3902 ackskew = dst->seqlo - ack; 3903 3904 3905 /* 3906 * Need to demodulate the sequence numbers in any TCP SACK options 3907 * (Selective ACK). We could optionally validate the SACK values 3908 * against the current ACK window, either forwards or backwards, but 3909 * I'm not confident that SACK has been implemented properly 3910 * everywhere. It wouldn't surprise me if several stacks accidently 3911 * SACK too far backwards of previously ACKed data. There really aren't 3912 * any security implications of bad SACKing unless the target stack 3913 * doesn't validate the option length correctly. Someone trying to 3914 * spoof into a TCP connection won't bother blindly sending SACK 3915 * options anyway. 3916 */ 3917 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3918 if (pf_modulate_sack(m, off, pd, th, dst)) 3919 *copyback = 1; 3920 } 3921 3922 3923 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3924 if (SEQ_GEQ(src->seqhi, end) && 3925 /* Last octet inside other's window space */ 3926 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3927 /* Retrans: not more than one window back */ 3928 (ackskew >= -MAXACKWINDOW) && 3929 /* Acking not more than one reassembled fragment backwards */ 3930 (ackskew <= (MAXACKWINDOW << sws)) && 3931 /* Acking not more than one window forward */ 3932 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3933 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3934 (pd->flags & PFDESC_IP_REAS) == 0)) { 3935 /* Require an exact/+1 sequence match on resets when possible */ 3936 3937 if (dst->scrub || src->scrub) { 3938 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3939 *state, src, dst, copyback)) 3940 return (PF_DROP); 3941 } 3942 3943 /* update max window */ 3944 if (src->max_win < win) 3945 src->max_win = win; 3946 /* synchronize sequencing */ 3947 if (SEQ_GT(end, src->seqlo)) 3948 src->seqlo = end; 3949 /* slide the window of what the other end can send */ 3950 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3951 dst->seqhi = ack + MAX((win << sws), 1); 3952 3953 3954 /* update states */ 3955 if (th->th_flags & TH_SYN) 3956 if (src->state < TCPS_SYN_SENT) 3957 src->state = TCPS_SYN_SENT; 3958 if (th->th_flags & TH_FIN) 3959 if (src->state < TCPS_CLOSING) 3960 src->state = TCPS_CLOSING; 3961 if (th->th_flags & TH_ACK) { 3962 if (dst->state == TCPS_SYN_SENT) { 3963 dst->state = TCPS_ESTABLISHED; 3964 if (src->state == TCPS_ESTABLISHED && 3965 (*state)->src_node != NULL && 3966 pf_src_connlimit(state)) { 3967 REASON_SET(reason, PFRES_SRCLIMIT); 3968 return (PF_DROP); 3969 } 3970 } else if (dst->state == TCPS_CLOSING) 3971 dst->state = TCPS_FIN_WAIT_2; 3972 } 3973 if (th->th_flags & TH_RST) 3974 src->state = dst->state = TCPS_TIME_WAIT; 3975 3976 /* update expire time */ 3977 (*state)->expire = time_uptime; 3978 if (src->state >= TCPS_FIN_WAIT_2 && 3979 dst->state >= TCPS_FIN_WAIT_2) 3980 (*state)->timeout = PFTM_TCP_CLOSED; 3981 else if (src->state >= TCPS_CLOSING && 3982 dst->state >= TCPS_CLOSING) 3983 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3984 else if (src->state < TCPS_ESTABLISHED || 3985 dst->state < TCPS_ESTABLISHED) 3986 (*state)->timeout = PFTM_TCP_OPENING; 3987 else if (src->state >= TCPS_CLOSING || 3988 dst->state >= TCPS_CLOSING) 3989 (*state)->timeout = PFTM_TCP_CLOSING; 3990 else 3991 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3992 3993 /* Fall through to PASS packet */ 3994 3995 } else if ((dst->state < TCPS_SYN_SENT || 3996 dst->state >= TCPS_FIN_WAIT_2 || 3997 src->state >= TCPS_FIN_WAIT_2) && 3998 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3999 /* Within a window forward of the originating packet */ 4000 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4001 /* Within a window backward of the originating packet */ 4002 4003 /* 4004 * This currently handles three situations: 4005 * 1) Stupid stacks will shotgun SYNs before their peer 4006 * replies. 4007 * 2) When PF catches an already established stream (the 4008 * firewall rebooted, the state table was flushed, routes 4009 * changed...) 4010 * 3) Packets get funky immediately after the connection 4011 * closes (this should catch Solaris spurious ACK|FINs 4012 * that web servers like to spew after a close) 4013 * 4014 * This must be a little more careful than the above code 4015 * since packet floods will also be caught here. We don't 4016 * update the TTL here to mitigate the damage of a packet 4017 * flood and so the same code can handle awkward establishment 4018 * and a loosened connection close. 4019 * In the establishment case, a correct peer response will 4020 * validate the connection, go through the normal state code 4021 * and keep updating the state TTL. 4022 */ 4023 4024 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4025 printf("pf: loose state match: "); 4026 pf_print_state(*state); 4027 pf_print_flags(th->th_flags); 4028 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4029 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4030 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4031 (unsigned long long)(*state)->packets[1], 4032 pd->dir == PF_IN ? "in" : "out", 4033 pd->dir == (*state)->direction ? "fwd" : "rev"); 4034 } 4035 4036 if (dst->scrub || src->scrub) { 4037 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4038 *state, src, dst, copyback)) 4039 return (PF_DROP); 4040 } 4041 4042 /* update max window */ 4043 if (src->max_win < win) 4044 src->max_win = win; 4045 /* synchronize sequencing */ 4046 if (SEQ_GT(end, src->seqlo)) 4047 src->seqlo = end; 4048 /* slide the window of what the other end can send */ 4049 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4050 dst->seqhi = ack + MAX((win << sws), 1); 4051 4052 /* 4053 * Cannot set dst->seqhi here since this could be a shotgunned 4054 * SYN and not an already established connection. 4055 */ 4056 4057 if (th->th_flags & TH_FIN) 4058 if (src->state < TCPS_CLOSING) 4059 src->state = TCPS_CLOSING; 4060 if (th->th_flags & TH_RST) 4061 src->state = dst->state = TCPS_TIME_WAIT; 4062 4063 /* Fall through to PASS packet */ 4064 4065 } else { 4066 if ((*state)->dst.state == TCPS_SYN_SENT && 4067 (*state)->src.state == TCPS_SYN_SENT) { 4068 /* Send RST for state mismatches during handshake */ 4069 if (!(th->th_flags & TH_RST)) 4070 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4071 pd->dst, pd->src, th->th_dport, 4072 th->th_sport, ntohl(th->th_ack), 0, 4073 TH_RST, 0, 0, 4074 (*state)->rule.ptr->return_ttl, 1, 0, 4075 kif->pfik_ifp); 4076 src->seqlo = 0; 4077 src->seqhi = 1; 4078 src->max_win = 1; 4079 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4080 printf("pf: BAD state: "); 4081 pf_print_state(*state); 4082 pf_print_flags(th->th_flags); 4083 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4084 "pkts=%llu:%llu dir=%s,%s\n", 4085 seq, orig_seq, ack, pd->p_len, ackskew, 4086 (unsigned long long)(*state)->packets[0], 4087 (unsigned long long)(*state)->packets[1], 4088 pd->dir == PF_IN ? "in" : "out", 4089 pd->dir == (*state)->direction ? "fwd" : "rev"); 4090 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4091 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4092 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4093 ' ': '2', 4094 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4095 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4096 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4097 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4098 } 4099 REASON_SET(reason, PFRES_BADSTATE); 4100 return (PF_DROP); 4101 } 4102 4103 return (PF_PASS); 4104 } 4105 4106 static int 4107 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4108 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4109 { 4110 struct tcphdr *th = pd->hdr.tcp; 4111 4112 if (th->th_flags & TH_SYN) 4113 if (src->state < TCPS_SYN_SENT) 4114 src->state = TCPS_SYN_SENT; 4115 if (th->th_flags & TH_FIN) 4116 if (src->state < TCPS_CLOSING) 4117 src->state = TCPS_CLOSING; 4118 if (th->th_flags & TH_ACK) { 4119 if (dst->state == TCPS_SYN_SENT) { 4120 dst->state = TCPS_ESTABLISHED; 4121 if (src->state == TCPS_ESTABLISHED && 4122 (*state)->src_node != NULL && 4123 pf_src_connlimit(state)) { 4124 REASON_SET(reason, PFRES_SRCLIMIT); 4125 return (PF_DROP); 4126 } 4127 } else if (dst->state == TCPS_CLOSING) { 4128 dst->state = TCPS_FIN_WAIT_2; 4129 } else if (src->state == TCPS_SYN_SENT && 4130 dst->state < TCPS_SYN_SENT) { 4131 /* 4132 * Handle a special sloppy case where we only see one 4133 * half of the connection. If there is a ACK after 4134 * the initial SYN without ever seeing a packet from 4135 * the destination, set the connection to established. 4136 */ 4137 dst->state = src->state = TCPS_ESTABLISHED; 4138 if ((*state)->src_node != NULL && 4139 pf_src_connlimit(state)) { 4140 REASON_SET(reason, PFRES_SRCLIMIT); 4141 return (PF_DROP); 4142 } 4143 } else if (src->state == TCPS_CLOSING && 4144 dst->state == TCPS_ESTABLISHED && 4145 dst->seqlo == 0) { 4146 /* 4147 * Handle the closing of half connections where we 4148 * don't see the full bidirectional FIN/ACK+ACK 4149 * handshake. 4150 */ 4151 dst->state = TCPS_CLOSING; 4152 } 4153 } 4154 if (th->th_flags & TH_RST) 4155 src->state = dst->state = TCPS_TIME_WAIT; 4156 4157 /* update expire time */ 4158 (*state)->expire = time_uptime; 4159 if (src->state >= TCPS_FIN_WAIT_2 && 4160 dst->state >= TCPS_FIN_WAIT_2) 4161 (*state)->timeout = PFTM_TCP_CLOSED; 4162 else if (src->state >= TCPS_CLOSING && 4163 dst->state >= TCPS_CLOSING) 4164 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4165 else if (src->state < TCPS_ESTABLISHED || 4166 dst->state < TCPS_ESTABLISHED) 4167 (*state)->timeout = PFTM_TCP_OPENING; 4168 else if (src->state >= TCPS_CLOSING || 4169 dst->state >= TCPS_CLOSING) 4170 (*state)->timeout = PFTM_TCP_CLOSING; 4171 else 4172 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4173 4174 return (PF_PASS); 4175 } 4176 4177 static int 4178 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4179 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4180 u_short *reason) 4181 { 4182 struct pf_state_key_cmp key; 4183 struct tcphdr *th = pd->hdr.tcp; 4184 int copyback = 0; 4185 struct pf_state_peer *src, *dst; 4186 struct pf_state_key *sk; 4187 4188 bzero(&key, sizeof(key)); 4189 key.af = pd->af; 4190 key.proto = IPPROTO_TCP; 4191 if (direction == PF_IN) { /* wire side, straight */ 4192 PF_ACPY(&key.addr[0], pd->src, key.af); 4193 PF_ACPY(&key.addr[1], pd->dst, key.af); 4194 key.port[0] = th->th_sport; 4195 key.port[1] = th->th_dport; 4196 } else { /* stack side, reverse */ 4197 PF_ACPY(&key.addr[1], pd->src, key.af); 4198 PF_ACPY(&key.addr[0], pd->dst, key.af); 4199 key.port[1] = th->th_sport; 4200 key.port[0] = th->th_dport; 4201 } 4202 4203 STATE_LOOKUP(kif, &key, direction, *state, pd); 4204 4205 if (direction == (*state)->direction) { 4206 src = &(*state)->src; 4207 dst = &(*state)->dst; 4208 } else { 4209 src = &(*state)->dst; 4210 dst = &(*state)->src; 4211 } 4212 4213 sk = (*state)->key[pd->didx]; 4214 4215 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4216 if (direction != (*state)->direction) { 4217 REASON_SET(reason, PFRES_SYNPROXY); 4218 return (PF_SYNPROXY_DROP); 4219 } 4220 if (th->th_flags & TH_SYN) { 4221 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4222 REASON_SET(reason, PFRES_SYNPROXY); 4223 return (PF_DROP); 4224 } 4225 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4226 pd->src, th->th_dport, th->th_sport, 4227 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4228 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4229 REASON_SET(reason, PFRES_SYNPROXY); 4230 return (PF_SYNPROXY_DROP); 4231 } else if (!(th->th_flags & TH_ACK) || 4232 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4233 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4234 REASON_SET(reason, PFRES_SYNPROXY); 4235 return (PF_DROP); 4236 } else if ((*state)->src_node != NULL && 4237 pf_src_connlimit(state)) { 4238 REASON_SET(reason, PFRES_SRCLIMIT); 4239 return (PF_DROP); 4240 } else 4241 (*state)->src.state = PF_TCPS_PROXY_DST; 4242 } 4243 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4244 if (direction == (*state)->direction) { 4245 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4246 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4247 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4248 REASON_SET(reason, PFRES_SYNPROXY); 4249 return (PF_DROP); 4250 } 4251 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4252 if ((*state)->dst.seqhi == 1) 4253 (*state)->dst.seqhi = htonl(arc4random()); 4254 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4255 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4256 sk->port[pd->sidx], sk->port[pd->didx], 4257 (*state)->dst.seqhi, 0, TH_SYN, 0, 4258 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4259 REASON_SET(reason, PFRES_SYNPROXY); 4260 return (PF_SYNPROXY_DROP); 4261 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4262 (TH_SYN|TH_ACK)) || 4263 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4264 REASON_SET(reason, PFRES_SYNPROXY); 4265 return (PF_DROP); 4266 } else { 4267 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4268 (*state)->dst.seqlo = ntohl(th->th_seq); 4269 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4270 pd->src, th->th_dport, th->th_sport, 4271 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4272 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4273 (*state)->tag, NULL); 4274 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4275 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4276 sk->port[pd->sidx], sk->port[pd->didx], 4277 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4278 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4279 (*state)->src.seqdiff = (*state)->dst.seqhi - 4280 (*state)->src.seqlo; 4281 (*state)->dst.seqdiff = (*state)->src.seqhi - 4282 (*state)->dst.seqlo; 4283 (*state)->src.seqhi = (*state)->src.seqlo + 4284 (*state)->dst.max_win; 4285 (*state)->dst.seqhi = (*state)->dst.seqlo + 4286 (*state)->src.max_win; 4287 (*state)->src.wscale = (*state)->dst.wscale = 0; 4288 (*state)->src.state = (*state)->dst.state = 4289 TCPS_ESTABLISHED; 4290 REASON_SET(reason, PFRES_SYNPROXY); 4291 return (PF_SYNPROXY_DROP); 4292 } 4293 } 4294 4295 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4296 dst->state >= TCPS_FIN_WAIT_2 && 4297 src->state >= TCPS_FIN_WAIT_2) { 4298 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4299 printf("pf: state reuse "); 4300 pf_print_state(*state); 4301 pf_print_flags(th->th_flags); 4302 printf("\n"); 4303 } 4304 /* XXX make sure it's the same direction ?? */ 4305 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4306 pf_unlink_state(*state, PF_ENTER_LOCKED); 4307 *state = NULL; 4308 return (PF_DROP); 4309 } 4310 4311 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4312 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4313 return (PF_DROP); 4314 } else { 4315 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4316 ©back) == PF_DROP) 4317 return (PF_DROP); 4318 } 4319 4320 /* translate source/destination address, if necessary */ 4321 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4322 struct pf_state_key *nk = (*state)->key[pd->didx]; 4323 4324 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4325 nk->port[pd->sidx] != th->th_sport) 4326 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4327 &th->th_sum, &nk->addr[pd->sidx], 4328 nk->port[pd->sidx], 0, pd->af); 4329 4330 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4331 nk->port[pd->didx] != th->th_dport) 4332 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4333 &th->th_sum, &nk->addr[pd->didx], 4334 nk->port[pd->didx], 0, pd->af); 4335 copyback = 1; 4336 } 4337 4338 /* Copyback sequence modulation or stateful scrub changes if needed */ 4339 if (copyback) 4340 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4341 4342 return (PF_PASS); 4343 } 4344 4345 static int 4346 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4347 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4348 { 4349 struct pf_state_peer *src, *dst; 4350 struct pf_state_key_cmp key; 4351 struct udphdr *uh = pd->hdr.udp; 4352 4353 bzero(&key, sizeof(key)); 4354 key.af = pd->af; 4355 key.proto = IPPROTO_UDP; 4356 if (direction == PF_IN) { /* wire side, straight */ 4357 PF_ACPY(&key.addr[0], pd->src, key.af); 4358 PF_ACPY(&key.addr[1], pd->dst, key.af); 4359 key.port[0] = uh->uh_sport; 4360 key.port[1] = uh->uh_dport; 4361 } else { /* stack side, reverse */ 4362 PF_ACPY(&key.addr[1], pd->src, key.af); 4363 PF_ACPY(&key.addr[0], pd->dst, key.af); 4364 key.port[1] = uh->uh_sport; 4365 key.port[0] = uh->uh_dport; 4366 } 4367 4368 STATE_LOOKUP(kif, &key, direction, *state, pd); 4369 4370 if (direction == (*state)->direction) { 4371 src = &(*state)->src; 4372 dst = &(*state)->dst; 4373 } else { 4374 src = &(*state)->dst; 4375 dst = &(*state)->src; 4376 } 4377 4378 /* update states */ 4379 if (src->state < PFUDPS_SINGLE) 4380 src->state = PFUDPS_SINGLE; 4381 if (dst->state == PFUDPS_SINGLE) 4382 dst->state = PFUDPS_MULTIPLE; 4383 4384 /* update expire time */ 4385 (*state)->expire = time_uptime; 4386 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4387 (*state)->timeout = PFTM_UDP_MULTIPLE; 4388 else 4389 (*state)->timeout = PFTM_UDP_SINGLE; 4390 4391 /* translate source/destination address, if necessary */ 4392 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4393 struct pf_state_key *nk = (*state)->key[pd->didx]; 4394 4395 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4396 nk->port[pd->sidx] != uh->uh_sport) 4397 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4398 &uh->uh_sum, &nk->addr[pd->sidx], 4399 nk->port[pd->sidx], 1, pd->af); 4400 4401 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4402 nk->port[pd->didx] != uh->uh_dport) 4403 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4404 &uh->uh_sum, &nk->addr[pd->didx], 4405 nk->port[pd->didx], 1, pd->af); 4406 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4407 } 4408 4409 return (PF_PASS); 4410 } 4411 4412 static int 4413 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4414 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4415 { 4416 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4417 u_int16_t icmpid = 0, *icmpsum; 4418 u_int8_t icmptype; 4419 int state_icmp = 0; 4420 struct pf_state_key_cmp key; 4421 4422 bzero(&key, sizeof(key)); 4423 switch (pd->proto) { 4424 #ifdef INET 4425 case IPPROTO_ICMP: 4426 icmptype = pd->hdr.icmp->icmp_type; 4427 icmpid = pd->hdr.icmp->icmp_id; 4428 icmpsum = &pd->hdr.icmp->icmp_cksum; 4429 4430 if (icmptype == ICMP_UNREACH || 4431 icmptype == ICMP_SOURCEQUENCH || 4432 icmptype == ICMP_REDIRECT || 4433 icmptype == ICMP_TIMXCEED || 4434 icmptype == ICMP_PARAMPROB) 4435 state_icmp++; 4436 break; 4437 #endif /* INET */ 4438 #ifdef INET6 4439 case IPPROTO_ICMPV6: 4440 icmptype = pd->hdr.icmp6->icmp6_type; 4441 icmpid = pd->hdr.icmp6->icmp6_id; 4442 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4443 4444 if (icmptype == ICMP6_DST_UNREACH || 4445 icmptype == ICMP6_PACKET_TOO_BIG || 4446 icmptype == ICMP6_TIME_EXCEEDED || 4447 icmptype == ICMP6_PARAM_PROB) 4448 state_icmp++; 4449 break; 4450 #endif /* INET6 */ 4451 } 4452 4453 if (!state_icmp) { 4454 4455 /* 4456 * ICMP query/reply message not related to a TCP/UDP packet. 4457 * Search for an ICMP state. 4458 */ 4459 key.af = pd->af; 4460 key.proto = pd->proto; 4461 key.port[0] = key.port[1] = icmpid; 4462 if (direction == PF_IN) { /* wire side, straight */ 4463 PF_ACPY(&key.addr[0], pd->src, key.af); 4464 PF_ACPY(&key.addr[1], pd->dst, key.af); 4465 } else { /* stack side, reverse */ 4466 PF_ACPY(&key.addr[1], pd->src, key.af); 4467 PF_ACPY(&key.addr[0], pd->dst, key.af); 4468 } 4469 4470 STATE_LOOKUP(kif, &key, direction, *state, pd); 4471 4472 (*state)->expire = time_uptime; 4473 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4474 4475 /* translate source/destination address, if necessary */ 4476 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4477 struct pf_state_key *nk = (*state)->key[pd->didx]; 4478 4479 switch (pd->af) { 4480 #ifdef INET 4481 case AF_INET: 4482 if (PF_ANEQ(pd->src, 4483 &nk->addr[pd->sidx], AF_INET)) 4484 pf_change_a(&saddr->v4.s_addr, 4485 pd->ip_sum, 4486 nk->addr[pd->sidx].v4.s_addr, 0); 4487 4488 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4489 AF_INET)) 4490 pf_change_a(&daddr->v4.s_addr, 4491 pd->ip_sum, 4492 nk->addr[pd->didx].v4.s_addr, 0); 4493 4494 if (nk->port[0] != 4495 pd->hdr.icmp->icmp_id) { 4496 pd->hdr.icmp->icmp_cksum = 4497 pf_cksum_fixup( 4498 pd->hdr.icmp->icmp_cksum, icmpid, 4499 nk->port[pd->sidx], 0); 4500 pd->hdr.icmp->icmp_id = 4501 nk->port[pd->sidx]; 4502 } 4503 4504 m_copyback(m, off, ICMP_MINLEN, 4505 (caddr_t )pd->hdr.icmp); 4506 break; 4507 #endif /* INET */ 4508 #ifdef INET6 4509 case AF_INET6: 4510 if (PF_ANEQ(pd->src, 4511 &nk->addr[pd->sidx], AF_INET6)) 4512 pf_change_a6(saddr, 4513 &pd->hdr.icmp6->icmp6_cksum, 4514 &nk->addr[pd->sidx], 0); 4515 4516 if (PF_ANEQ(pd->dst, 4517 &nk->addr[pd->didx], AF_INET6)) 4518 pf_change_a6(daddr, 4519 &pd->hdr.icmp6->icmp6_cksum, 4520 &nk->addr[pd->didx], 0); 4521 4522 m_copyback(m, off, sizeof(struct icmp6_hdr), 4523 (caddr_t )pd->hdr.icmp6); 4524 break; 4525 #endif /* INET6 */ 4526 } 4527 } 4528 return (PF_PASS); 4529 4530 } else { 4531 /* 4532 * ICMP error message in response to a TCP/UDP packet. 4533 * Extract the inner TCP/UDP header and search for that state. 4534 */ 4535 4536 struct pf_pdesc pd2; 4537 bzero(&pd2, sizeof pd2); 4538 #ifdef INET 4539 struct ip h2; 4540 #endif /* INET */ 4541 #ifdef INET6 4542 struct ip6_hdr h2_6; 4543 int terminal = 0; 4544 #endif /* INET6 */ 4545 int ipoff2 = 0; 4546 int off2 = 0; 4547 4548 pd2.af = pd->af; 4549 /* Payload packet is from the opposite direction. */ 4550 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4551 pd2.didx = (direction == PF_IN) ? 0 : 1; 4552 switch (pd->af) { 4553 #ifdef INET 4554 case AF_INET: 4555 /* offset of h2 in mbuf chain */ 4556 ipoff2 = off + ICMP_MINLEN; 4557 4558 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4559 NULL, reason, pd2.af)) { 4560 DPFPRINTF(PF_DEBUG_MISC, 4561 ("pf: ICMP error message too short " 4562 "(ip)\n")); 4563 return (PF_DROP); 4564 } 4565 /* 4566 * ICMP error messages don't refer to non-first 4567 * fragments 4568 */ 4569 if (h2.ip_off & htons(IP_OFFMASK)) { 4570 REASON_SET(reason, PFRES_FRAG); 4571 return (PF_DROP); 4572 } 4573 4574 /* offset of protocol header that follows h2 */ 4575 off2 = ipoff2 + (h2.ip_hl << 2); 4576 4577 pd2.proto = h2.ip_p; 4578 pd2.src = (struct pf_addr *)&h2.ip_src; 4579 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4580 pd2.ip_sum = &h2.ip_sum; 4581 break; 4582 #endif /* INET */ 4583 #ifdef INET6 4584 case AF_INET6: 4585 ipoff2 = off + sizeof(struct icmp6_hdr); 4586 4587 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4588 NULL, reason, pd2.af)) { 4589 DPFPRINTF(PF_DEBUG_MISC, 4590 ("pf: ICMP error message too short " 4591 "(ip6)\n")); 4592 return (PF_DROP); 4593 } 4594 pd2.proto = h2_6.ip6_nxt; 4595 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4596 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4597 pd2.ip_sum = NULL; 4598 off2 = ipoff2 + sizeof(h2_6); 4599 do { 4600 switch (pd2.proto) { 4601 case IPPROTO_FRAGMENT: 4602 /* 4603 * ICMPv6 error messages for 4604 * non-first fragments 4605 */ 4606 REASON_SET(reason, PFRES_FRAG); 4607 return (PF_DROP); 4608 case IPPROTO_AH: 4609 case IPPROTO_HOPOPTS: 4610 case IPPROTO_ROUTING: 4611 case IPPROTO_DSTOPTS: { 4612 /* get next header and header length */ 4613 struct ip6_ext opt6; 4614 4615 if (!pf_pull_hdr(m, off2, &opt6, 4616 sizeof(opt6), NULL, reason, 4617 pd2.af)) { 4618 DPFPRINTF(PF_DEBUG_MISC, 4619 ("pf: ICMPv6 short opt\n")); 4620 return (PF_DROP); 4621 } 4622 if (pd2.proto == IPPROTO_AH) 4623 off2 += (opt6.ip6e_len + 2) * 4; 4624 else 4625 off2 += (opt6.ip6e_len + 1) * 8; 4626 pd2.proto = opt6.ip6e_nxt; 4627 /* goto the next header */ 4628 break; 4629 } 4630 default: 4631 terminal++; 4632 break; 4633 } 4634 } while (!terminal); 4635 break; 4636 #endif /* INET6 */ 4637 } 4638 4639 switch (pd2.proto) { 4640 case IPPROTO_TCP: { 4641 struct tcphdr th; 4642 u_int32_t seq; 4643 struct pf_state_peer *src, *dst; 4644 u_int8_t dws; 4645 int copyback = 0; 4646 4647 /* 4648 * Only the first 8 bytes of the TCP header can be 4649 * expected. Don't access any TCP header fields after 4650 * th_seq, an ackskew test is not possible. 4651 */ 4652 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4653 pd2.af)) { 4654 DPFPRINTF(PF_DEBUG_MISC, 4655 ("pf: ICMP error message too short " 4656 "(tcp)\n")); 4657 return (PF_DROP); 4658 } 4659 4660 key.af = pd2.af; 4661 key.proto = IPPROTO_TCP; 4662 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4663 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4664 key.port[pd2.sidx] = th.th_sport; 4665 key.port[pd2.didx] = th.th_dport; 4666 4667 STATE_LOOKUP(kif, &key, direction, *state, pd); 4668 4669 if (direction == (*state)->direction) { 4670 src = &(*state)->dst; 4671 dst = &(*state)->src; 4672 } else { 4673 src = &(*state)->src; 4674 dst = &(*state)->dst; 4675 } 4676 4677 if (src->wscale && dst->wscale) 4678 dws = dst->wscale & PF_WSCALE_MASK; 4679 else 4680 dws = 0; 4681 4682 /* Demodulate sequence number */ 4683 seq = ntohl(th.th_seq) - src->seqdiff; 4684 if (src->seqdiff) { 4685 pf_change_a(&th.th_seq, icmpsum, 4686 htonl(seq), 0); 4687 copyback = 1; 4688 } 4689 4690 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4691 (!SEQ_GEQ(src->seqhi, seq) || 4692 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4693 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4694 printf("pf: BAD ICMP %d:%d ", 4695 icmptype, pd->hdr.icmp->icmp_code); 4696 pf_print_host(pd->src, 0, pd->af); 4697 printf(" -> "); 4698 pf_print_host(pd->dst, 0, pd->af); 4699 printf(" state: "); 4700 pf_print_state(*state); 4701 printf(" seq=%u\n", seq); 4702 } 4703 REASON_SET(reason, PFRES_BADSTATE); 4704 return (PF_DROP); 4705 } else { 4706 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4707 printf("pf: OK ICMP %d:%d ", 4708 icmptype, pd->hdr.icmp->icmp_code); 4709 pf_print_host(pd->src, 0, pd->af); 4710 printf(" -> "); 4711 pf_print_host(pd->dst, 0, pd->af); 4712 printf(" state: "); 4713 pf_print_state(*state); 4714 printf(" seq=%u\n", seq); 4715 } 4716 } 4717 4718 /* translate source/destination address, if necessary */ 4719 if ((*state)->key[PF_SK_WIRE] != 4720 (*state)->key[PF_SK_STACK]) { 4721 struct pf_state_key *nk = 4722 (*state)->key[pd->didx]; 4723 4724 if (PF_ANEQ(pd2.src, 4725 &nk->addr[pd2.sidx], pd2.af) || 4726 nk->port[pd2.sidx] != th.th_sport) 4727 pf_change_icmp(pd2.src, &th.th_sport, 4728 daddr, &nk->addr[pd2.sidx], 4729 nk->port[pd2.sidx], NULL, 4730 pd2.ip_sum, icmpsum, 4731 pd->ip_sum, 0, pd2.af); 4732 4733 if (PF_ANEQ(pd2.dst, 4734 &nk->addr[pd2.didx], pd2.af) || 4735 nk->port[pd2.didx] != th.th_dport) 4736 pf_change_icmp(pd2.dst, &th.th_dport, 4737 NULL, /* XXX Inbound NAT? */ 4738 &nk->addr[pd2.didx], 4739 nk->port[pd2.didx], NULL, 4740 pd2.ip_sum, icmpsum, 4741 pd->ip_sum, 0, pd2.af); 4742 copyback = 1; 4743 } 4744 4745 if (copyback) { 4746 switch (pd2.af) { 4747 #ifdef INET 4748 case AF_INET: 4749 m_copyback(m, off, ICMP_MINLEN, 4750 (caddr_t )pd->hdr.icmp); 4751 m_copyback(m, ipoff2, sizeof(h2), 4752 (caddr_t )&h2); 4753 break; 4754 #endif /* INET */ 4755 #ifdef INET6 4756 case AF_INET6: 4757 m_copyback(m, off, 4758 sizeof(struct icmp6_hdr), 4759 (caddr_t )pd->hdr.icmp6); 4760 m_copyback(m, ipoff2, sizeof(h2_6), 4761 (caddr_t )&h2_6); 4762 break; 4763 #endif /* INET6 */ 4764 } 4765 m_copyback(m, off2, 8, (caddr_t)&th); 4766 } 4767 4768 return (PF_PASS); 4769 break; 4770 } 4771 case IPPROTO_UDP: { 4772 struct udphdr uh; 4773 4774 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4775 NULL, reason, pd2.af)) { 4776 DPFPRINTF(PF_DEBUG_MISC, 4777 ("pf: ICMP error message too short " 4778 "(udp)\n")); 4779 return (PF_DROP); 4780 } 4781 4782 key.af = pd2.af; 4783 key.proto = IPPROTO_UDP; 4784 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4785 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4786 key.port[pd2.sidx] = uh.uh_sport; 4787 key.port[pd2.didx] = uh.uh_dport; 4788 4789 STATE_LOOKUP(kif, &key, direction, *state, pd); 4790 4791 /* translate source/destination address, if necessary */ 4792 if ((*state)->key[PF_SK_WIRE] != 4793 (*state)->key[PF_SK_STACK]) { 4794 struct pf_state_key *nk = 4795 (*state)->key[pd->didx]; 4796 4797 if (PF_ANEQ(pd2.src, 4798 &nk->addr[pd2.sidx], pd2.af) || 4799 nk->port[pd2.sidx] != uh.uh_sport) 4800 pf_change_icmp(pd2.src, &uh.uh_sport, 4801 daddr, &nk->addr[pd2.sidx], 4802 nk->port[pd2.sidx], &uh.uh_sum, 4803 pd2.ip_sum, icmpsum, 4804 pd->ip_sum, 1, pd2.af); 4805 4806 if (PF_ANEQ(pd2.dst, 4807 &nk->addr[pd2.didx], pd2.af) || 4808 nk->port[pd2.didx] != uh.uh_dport) 4809 pf_change_icmp(pd2.dst, &uh.uh_dport, 4810 NULL, /* XXX Inbound NAT? */ 4811 &nk->addr[pd2.didx], 4812 nk->port[pd2.didx], &uh.uh_sum, 4813 pd2.ip_sum, icmpsum, 4814 pd->ip_sum, 1, pd2.af); 4815 4816 switch (pd2.af) { 4817 #ifdef INET 4818 case AF_INET: 4819 m_copyback(m, off, ICMP_MINLEN, 4820 (caddr_t )pd->hdr.icmp); 4821 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4822 break; 4823 #endif /* INET */ 4824 #ifdef INET6 4825 case AF_INET6: 4826 m_copyback(m, off, 4827 sizeof(struct icmp6_hdr), 4828 (caddr_t )pd->hdr.icmp6); 4829 m_copyback(m, ipoff2, sizeof(h2_6), 4830 (caddr_t )&h2_6); 4831 break; 4832 #endif /* INET6 */ 4833 } 4834 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4835 } 4836 return (PF_PASS); 4837 break; 4838 } 4839 #ifdef INET 4840 case IPPROTO_ICMP: { 4841 struct icmp iih; 4842 4843 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4844 NULL, reason, pd2.af)) { 4845 DPFPRINTF(PF_DEBUG_MISC, 4846 ("pf: ICMP error message too short i" 4847 "(icmp)\n")); 4848 return (PF_DROP); 4849 } 4850 4851 key.af = pd2.af; 4852 key.proto = IPPROTO_ICMP; 4853 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4854 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4855 key.port[0] = key.port[1] = iih.icmp_id; 4856 4857 STATE_LOOKUP(kif, &key, direction, *state, pd); 4858 4859 /* translate source/destination address, if necessary */ 4860 if ((*state)->key[PF_SK_WIRE] != 4861 (*state)->key[PF_SK_STACK]) { 4862 struct pf_state_key *nk = 4863 (*state)->key[pd->didx]; 4864 4865 if (PF_ANEQ(pd2.src, 4866 &nk->addr[pd2.sidx], pd2.af) || 4867 nk->port[pd2.sidx] != iih.icmp_id) 4868 pf_change_icmp(pd2.src, &iih.icmp_id, 4869 daddr, &nk->addr[pd2.sidx], 4870 nk->port[pd2.sidx], NULL, 4871 pd2.ip_sum, icmpsum, 4872 pd->ip_sum, 0, AF_INET); 4873 4874 if (PF_ANEQ(pd2.dst, 4875 &nk->addr[pd2.didx], pd2.af) || 4876 nk->port[pd2.didx] != iih.icmp_id) 4877 pf_change_icmp(pd2.dst, &iih.icmp_id, 4878 NULL, /* XXX Inbound NAT? */ 4879 &nk->addr[pd2.didx], 4880 nk->port[pd2.didx], NULL, 4881 pd2.ip_sum, icmpsum, 4882 pd->ip_sum, 0, AF_INET); 4883 4884 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4885 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4886 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4887 } 4888 return (PF_PASS); 4889 break; 4890 } 4891 #endif /* INET */ 4892 #ifdef INET6 4893 case IPPROTO_ICMPV6: { 4894 struct icmp6_hdr iih; 4895 4896 if (!pf_pull_hdr(m, off2, &iih, 4897 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4898 DPFPRINTF(PF_DEBUG_MISC, 4899 ("pf: ICMP error message too short " 4900 "(icmp6)\n")); 4901 return (PF_DROP); 4902 } 4903 4904 key.af = pd2.af; 4905 key.proto = IPPROTO_ICMPV6; 4906 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4907 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4908 key.port[0] = key.port[1] = iih.icmp6_id; 4909 4910 STATE_LOOKUP(kif, &key, direction, *state, pd); 4911 4912 /* translate source/destination address, if necessary */ 4913 if ((*state)->key[PF_SK_WIRE] != 4914 (*state)->key[PF_SK_STACK]) { 4915 struct pf_state_key *nk = 4916 (*state)->key[pd->didx]; 4917 4918 if (PF_ANEQ(pd2.src, 4919 &nk->addr[pd2.sidx], pd2.af) || 4920 nk->port[pd2.sidx] != iih.icmp6_id) 4921 pf_change_icmp(pd2.src, &iih.icmp6_id, 4922 daddr, &nk->addr[pd2.sidx], 4923 nk->port[pd2.sidx], NULL, 4924 pd2.ip_sum, icmpsum, 4925 pd->ip_sum, 0, AF_INET6); 4926 4927 if (PF_ANEQ(pd2.dst, 4928 &nk->addr[pd2.didx], pd2.af) || 4929 nk->port[pd2.didx] != iih.icmp6_id) 4930 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4931 NULL, /* XXX Inbound NAT? */ 4932 &nk->addr[pd2.didx], 4933 nk->port[pd2.didx], NULL, 4934 pd2.ip_sum, icmpsum, 4935 pd->ip_sum, 0, AF_INET6); 4936 4937 m_copyback(m, off, sizeof(struct icmp6_hdr), 4938 (caddr_t)pd->hdr.icmp6); 4939 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4940 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4941 (caddr_t)&iih); 4942 } 4943 return (PF_PASS); 4944 break; 4945 } 4946 #endif /* INET6 */ 4947 default: { 4948 key.af = pd2.af; 4949 key.proto = pd2.proto; 4950 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4951 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4952 key.port[0] = key.port[1] = 0; 4953 4954 STATE_LOOKUP(kif, &key, direction, *state, pd); 4955 4956 /* translate source/destination address, if necessary */ 4957 if ((*state)->key[PF_SK_WIRE] != 4958 (*state)->key[PF_SK_STACK]) { 4959 struct pf_state_key *nk = 4960 (*state)->key[pd->didx]; 4961 4962 if (PF_ANEQ(pd2.src, 4963 &nk->addr[pd2.sidx], pd2.af)) 4964 pf_change_icmp(pd2.src, NULL, daddr, 4965 &nk->addr[pd2.sidx], 0, NULL, 4966 pd2.ip_sum, icmpsum, 4967 pd->ip_sum, 0, pd2.af); 4968 4969 if (PF_ANEQ(pd2.dst, 4970 &nk->addr[pd2.didx], pd2.af)) 4971 pf_change_icmp(pd2.src, NULL, 4972 NULL, /* XXX Inbound NAT? */ 4973 &nk->addr[pd2.didx], 0, NULL, 4974 pd2.ip_sum, icmpsum, 4975 pd->ip_sum, 0, pd2.af); 4976 4977 switch (pd2.af) { 4978 #ifdef INET 4979 case AF_INET: 4980 m_copyback(m, off, ICMP_MINLEN, 4981 (caddr_t)pd->hdr.icmp); 4982 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4983 break; 4984 #endif /* INET */ 4985 #ifdef INET6 4986 case AF_INET6: 4987 m_copyback(m, off, 4988 sizeof(struct icmp6_hdr), 4989 (caddr_t )pd->hdr.icmp6); 4990 m_copyback(m, ipoff2, sizeof(h2_6), 4991 (caddr_t )&h2_6); 4992 break; 4993 #endif /* INET6 */ 4994 } 4995 } 4996 return (PF_PASS); 4997 break; 4998 } 4999 } 5000 } 5001 } 5002 5003 static int 5004 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5005 struct mbuf *m, struct pf_pdesc *pd) 5006 { 5007 struct pf_state_peer *src, *dst; 5008 struct pf_state_key_cmp key; 5009 5010 bzero(&key, sizeof(key)); 5011 key.af = pd->af; 5012 key.proto = pd->proto; 5013 if (direction == PF_IN) { 5014 PF_ACPY(&key.addr[0], pd->src, key.af); 5015 PF_ACPY(&key.addr[1], pd->dst, key.af); 5016 key.port[0] = key.port[1] = 0; 5017 } else { 5018 PF_ACPY(&key.addr[1], pd->src, key.af); 5019 PF_ACPY(&key.addr[0], pd->dst, key.af); 5020 key.port[1] = key.port[0] = 0; 5021 } 5022 5023 STATE_LOOKUP(kif, &key, direction, *state, pd); 5024 5025 if (direction == (*state)->direction) { 5026 src = &(*state)->src; 5027 dst = &(*state)->dst; 5028 } else { 5029 src = &(*state)->dst; 5030 dst = &(*state)->src; 5031 } 5032 5033 /* update states */ 5034 if (src->state < PFOTHERS_SINGLE) 5035 src->state = PFOTHERS_SINGLE; 5036 if (dst->state == PFOTHERS_SINGLE) 5037 dst->state = PFOTHERS_MULTIPLE; 5038 5039 /* update expire time */ 5040 (*state)->expire = time_uptime; 5041 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5042 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5043 else 5044 (*state)->timeout = PFTM_OTHER_SINGLE; 5045 5046 /* translate source/destination address, if necessary */ 5047 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5048 struct pf_state_key *nk = (*state)->key[pd->didx]; 5049 5050 KASSERT(nk, ("%s: nk is null", __func__)); 5051 KASSERT(pd, ("%s: pd is null", __func__)); 5052 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5053 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5054 switch (pd->af) { 5055 #ifdef INET 5056 case AF_INET: 5057 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5058 pf_change_a(&pd->src->v4.s_addr, 5059 pd->ip_sum, 5060 nk->addr[pd->sidx].v4.s_addr, 5061 0); 5062 5063 5064 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5065 pf_change_a(&pd->dst->v4.s_addr, 5066 pd->ip_sum, 5067 nk->addr[pd->didx].v4.s_addr, 5068 0); 5069 5070 break; 5071 #endif /* INET */ 5072 #ifdef INET6 5073 case AF_INET6: 5074 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5075 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5076 5077 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5078 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5079 #endif /* INET6 */ 5080 } 5081 } 5082 return (PF_PASS); 5083 } 5084 5085 /* 5086 * ipoff and off are measured from the start of the mbuf chain. 5087 * h must be at "ipoff" on the mbuf chain. 5088 */ 5089 void * 5090 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5091 u_short *actionp, u_short *reasonp, sa_family_t af) 5092 { 5093 switch (af) { 5094 #ifdef INET 5095 case AF_INET: { 5096 struct ip *h = mtod(m, struct ip *); 5097 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5098 5099 if (fragoff) { 5100 if (fragoff >= len) 5101 ACTION_SET(actionp, PF_PASS); 5102 else { 5103 ACTION_SET(actionp, PF_DROP); 5104 REASON_SET(reasonp, PFRES_FRAG); 5105 } 5106 return (NULL); 5107 } 5108 if (m->m_pkthdr.len < off + len || 5109 ntohs(h->ip_len) < off + len) { 5110 ACTION_SET(actionp, PF_DROP); 5111 REASON_SET(reasonp, PFRES_SHORT); 5112 return (NULL); 5113 } 5114 break; 5115 } 5116 #endif /* INET */ 5117 #ifdef INET6 5118 case AF_INET6: { 5119 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5120 5121 if (m->m_pkthdr.len < off + len || 5122 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5123 (unsigned)(off + len)) { 5124 ACTION_SET(actionp, PF_DROP); 5125 REASON_SET(reasonp, PFRES_SHORT); 5126 return (NULL); 5127 } 5128 break; 5129 } 5130 #endif /* INET6 */ 5131 } 5132 m_copydata(m, off, len, p); 5133 return (p); 5134 } 5135 5136 int 5137 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5138 int rtableid) 5139 { 5140 #ifdef RADIX_MPATH 5141 struct radix_node_head *rnh; 5142 #endif 5143 struct sockaddr_in *dst; 5144 int ret = 1; 5145 int check_mpath; 5146 #ifdef INET6 5147 struct sockaddr_in6 *dst6; 5148 struct route_in6 ro; 5149 #else 5150 struct route ro; 5151 #endif 5152 struct radix_node *rn; 5153 struct rtentry *rt; 5154 struct ifnet *ifp; 5155 5156 check_mpath = 0; 5157 #ifdef RADIX_MPATH 5158 /* XXX: stick to table 0 for now */ 5159 rnh = rt_tables_get_rnh(0, af); 5160 if (rnh != NULL && rn_mpath_capable(rnh)) 5161 check_mpath = 1; 5162 #endif 5163 bzero(&ro, sizeof(ro)); 5164 switch (af) { 5165 case AF_INET: 5166 dst = satosin(&ro.ro_dst); 5167 dst->sin_family = AF_INET; 5168 dst->sin_len = sizeof(*dst); 5169 dst->sin_addr = addr->v4; 5170 break; 5171 #ifdef INET6 5172 case AF_INET6: 5173 /* 5174 * Skip check for addresses with embedded interface scope, 5175 * as they would always match anyway. 5176 */ 5177 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5178 goto out; 5179 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5180 dst6->sin6_family = AF_INET6; 5181 dst6->sin6_len = sizeof(*dst6); 5182 dst6->sin6_addr = addr->v6; 5183 break; 5184 #endif /* INET6 */ 5185 default: 5186 return (0); 5187 } 5188 5189 /* Skip checks for ipsec interfaces */ 5190 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5191 goto out; 5192 5193 switch (af) { 5194 #ifdef INET6 5195 case AF_INET6: 5196 in6_rtalloc_ign(&ro, 0, rtableid); 5197 break; 5198 #endif 5199 #ifdef INET 5200 case AF_INET: 5201 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5202 break; 5203 #endif 5204 default: 5205 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5206 break; 5207 } 5208 5209 if (ro.ro_rt != NULL) { 5210 /* No interface given, this is a no-route check */ 5211 if (kif == NULL) 5212 goto out; 5213 5214 if (kif->pfik_ifp == NULL) { 5215 ret = 0; 5216 goto out; 5217 } 5218 5219 /* Perform uRPF check if passed input interface */ 5220 ret = 0; 5221 rn = (struct radix_node *)ro.ro_rt; 5222 do { 5223 rt = (struct rtentry *)rn; 5224 ifp = rt->rt_ifp; 5225 5226 if (kif->pfik_ifp == ifp) 5227 ret = 1; 5228 #ifdef RADIX_MPATH 5229 rn = rn_mpath_next(rn); 5230 #endif 5231 } while (check_mpath == 1 && rn != NULL && ret == 0); 5232 } else 5233 ret = 0; 5234 out: 5235 if (ro.ro_rt != NULL) 5236 RTFREE(ro.ro_rt); 5237 return (ret); 5238 } 5239 5240 #ifdef INET 5241 static void 5242 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5243 struct pf_state *s, struct pf_pdesc *pd) 5244 { 5245 struct mbuf *m0, *m1; 5246 struct sockaddr_in dst; 5247 struct ip *ip; 5248 struct ifnet *ifp = NULL; 5249 struct pf_addr naddr; 5250 struct pf_src_node *sn = NULL; 5251 int error = 0; 5252 uint16_t ip_len, ip_off; 5253 5254 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5255 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5256 __func__)); 5257 5258 if ((pd->pf_mtag == NULL && 5259 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5260 pd->pf_mtag->routed++ > 3) { 5261 m0 = *m; 5262 *m = NULL; 5263 goto bad_locked; 5264 } 5265 5266 if (r->rt == PF_DUPTO) { 5267 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5268 if (s) 5269 PF_STATE_UNLOCK(s); 5270 return; 5271 } 5272 } else { 5273 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5274 if (s) 5275 PF_STATE_UNLOCK(s); 5276 return; 5277 } 5278 m0 = *m; 5279 } 5280 5281 ip = mtod(m0, struct ip *); 5282 5283 bzero(&dst, sizeof(dst)); 5284 dst.sin_family = AF_INET; 5285 dst.sin_len = sizeof(dst); 5286 dst.sin_addr = ip->ip_dst; 5287 5288 if (r->rt == PF_FASTROUTE) { 5289 struct rtentry *rt; 5290 5291 if (s) 5292 PF_STATE_UNLOCK(s); 5293 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5294 if (rt == NULL) { 5295 KMOD_IPSTAT_INC(ips_noroute); 5296 error = EHOSTUNREACH; 5297 goto bad; 5298 } 5299 5300 ifp = rt->rt_ifp; 5301 counter_u64_add(rt->rt_pksent, 1); 5302 5303 if (rt->rt_flags & RTF_GATEWAY) 5304 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5305 RTFREE_LOCKED(rt); 5306 } else { 5307 if (TAILQ_EMPTY(&r->rpool.list)) { 5308 DPFPRINTF(PF_DEBUG_URGENT, 5309 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5310 goto bad_locked; 5311 } 5312 if (s == NULL) { 5313 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5314 &naddr, NULL, &sn); 5315 if (!PF_AZERO(&naddr, AF_INET)) 5316 dst.sin_addr.s_addr = naddr.v4.s_addr; 5317 ifp = r->rpool.cur->kif ? 5318 r->rpool.cur->kif->pfik_ifp : NULL; 5319 } else { 5320 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5321 dst.sin_addr.s_addr = 5322 s->rt_addr.v4.s_addr; 5323 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5324 PF_STATE_UNLOCK(s); 5325 } 5326 } 5327 if (ifp == NULL) 5328 goto bad; 5329 5330 if (oifp != ifp) { 5331 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5332 goto bad; 5333 else if (m0 == NULL) 5334 goto done; 5335 if (m0->m_len < sizeof(struct ip)) { 5336 DPFPRINTF(PF_DEBUG_URGENT, 5337 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5338 goto bad; 5339 } 5340 ip = mtod(m0, struct ip *); 5341 } 5342 5343 if (ifp->if_flags & IFF_LOOPBACK) 5344 m0->m_flags |= M_SKIP_FIREWALL; 5345 5346 ip_len = ntohs(ip->ip_len); 5347 ip_off = ntohs(ip->ip_off); 5348 5349 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5350 m0->m_pkthdr.csum_flags |= CSUM_IP; 5351 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5352 in_delayed_cksum(m0); 5353 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5354 } 5355 #ifdef SCTP 5356 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5357 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5358 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5359 } 5360 #endif 5361 5362 /* 5363 * If small enough for interface, or the interface will take 5364 * care of the fragmentation for us, we can just send directly. 5365 */ 5366 if (ip_len <= ifp->if_mtu || 5367 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5368 ip->ip_sum = 0; 5369 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5370 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5371 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5372 } 5373 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5374 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5375 goto done; 5376 } 5377 5378 /* Balk when DF bit is set or the interface didn't support TSO. */ 5379 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5380 error = EMSGSIZE; 5381 KMOD_IPSTAT_INC(ips_cantfrag); 5382 if (r->rt != PF_DUPTO) { 5383 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5384 ifp->if_mtu); 5385 goto done; 5386 } else 5387 goto bad; 5388 } 5389 5390 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5391 if (error) 5392 goto bad; 5393 5394 for (; m0; m0 = m1) { 5395 m1 = m0->m_nextpkt; 5396 m0->m_nextpkt = NULL; 5397 if (error == 0) { 5398 m_clrprotoflags(m0); 5399 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5400 } else 5401 m_freem(m0); 5402 } 5403 5404 if (error == 0) 5405 KMOD_IPSTAT_INC(ips_fragmented); 5406 5407 done: 5408 if (r->rt != PF_DUPTO) 5409 *m = NULL; 5410 return; 5411 5412 bad_locked: 5413 if (s) 5414 PF_STATE_UNLOCK(s); 5415 bad: 5416 m_freem(m0); 5417 goto done; 5418 } 5419 #endif /* INET */ 5420 5421 #ifdef INET6 5422 static void 5423 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5424 struct pf_state *s, struct pf_pdesc *pd) 5425 { 5426 struct mbuf *m0; 5427 struct sockaddr_in6 dst; 5428 struct ip6_hdr *ip6; 5429 struct ifnet *ifp = NULL; 5430 struct pf_addr naddr; 5431 struct pf_src_node *sn = NULL; 5432 5433 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5434 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5435 __func__)); 5436 5437 if ((pd->pf_mtag == NULL && 5438 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5439 pd->pf_mtag->routed++ > 3) { 5440 m0 = *m; 5441 *m = NULL; 5442 goto bad_locked; 5443 } 5444 5445 if (r->rt == PF_DUPTO) { 5446 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5447 if (s) 5448 PF_STATE_UNLOCK(s); 5449 return; 5450 } 5451 } else { 5452 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5453 if (s) 5454 PF_STATE_UNLOCK(s); 5455 return; 5456 } 5457 m0 = *m; 5458 } 5459 5460 ip6 = mtod(m0, struct ip6_hdr *); 5461 5462 bzero(&dst, sizeof(dst)); 5463 dst.sin6_family = AF_INET6; 5464 dst.sin6_len = sizeof(dst); 5465 dst.sin6_addr = ip6->ip6_dst; 5466 5467 /* Cheat. XXX why only in the v6 case??? */ 5468 if (r->rt == PF_FASTROUTE) { 5469 if (s) 5470 PF_STATE_UNLOCK(s); 5471 m0->m_flags |= M_SKIP_FIREWALL; 5472 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5473 return; 5474 } 5475 5476 if (TAILQ_EMPTY(&r->rpool.list)) { 5477 DPFPRINTF(PF_DEBUG_URGENT, 5478 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5479 goto bad_locked; 5480 } 5481 if (s == NULL) { 5482 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5483 &naddr, NULL, &sn); 5484 if (!PF_AZERO(&naddr, AF_INET6)) 5485 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5486 &naddr, AF_INET6); 5487 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5488 } else { 5489 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5490 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5491 &s->rt_addr, AF_INET6); 5492 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5493 } 5494 5495 if (s) 5496 PF_STATE_UNLOCK(s); 5497 5498 if (ifp == NULL) 5499 goto bad; 5500 5501 if (oifp != ifp) { 5502 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5503 goto bad; 5504 else if (m0 == NULL) 5505 goto done; 5506 if (m0->m_len < sizeof(struct ip6_hdr)) { 5507 DPFPRINTF(PF_DEBUG_URGENT, 5508 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5509 __func__)); 5510 goto bad; 5511 } 5512 ip6 = mtod(m0, struct ip6_hdr *); 5513 } 5514 5515 if (ifp->if_flags & IFF_LOOPBACK) 5516 m0->m_flags |= M_SKIP_FIREWALL; 5517 5518 /* 5519 * If the packet is too large for the outgoing interface, 5520 * send back an icmp6 error. 5521 */ 5522 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5523 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5524 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5525 nd6_output(ifp, ifp, m0, &dst, NULL); 5526 else { 5527 in6_ifstat_inc(ifp, ifs6_in_toobig); 5528 if (r->rt != PF_DUPTO) 5529 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5530 else 5531 goto bad; 5532 } 5533 5534 done: 5535 if (r->rt != PF_DUPTO) 5536 *m = NULL; 5537 return; 5538 5539 bad_locked: 5540 if (s) 5541 PF_STATE_UNLOCK(s); 5542 bad: 5543 m_freem(m0); 5544 goto done; 5545 } 5546 #endif /* INET6 */ 5547 5548 /* 5549 * FreeBSD supports cksum offloads for the following drivers. 5550 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5551 * ti(4), txp(4), xl(4) 5552 * 5553 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5554 * network driver performed cksum including pseudo header, need to verify 5555 * csum_data 5556 * CSUM_DATA_VALID : 5557 * network driver performed cksum, needs to additional pseudo header 5558 * cksum computation with partial csum_data(i.e. lack of H/W support for 5559 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5560 * 5561 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5562 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5563 * TCP/UDP layer. 5564 * Also, set csum_data to 0xffff to force cksum validation. 5565 */ 5566 static int 5567 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5568 { 5569 u_int16_t sum = 0; 5570 int hw_assist = 0; 5571 struct ip *ip; 5572 5573 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5574 return (1); 5575 if (m->m_pkthdr.len < off + len) 5576 return (1); 5577 5578 switch (p) { 5579 case IPPROTO_TCP: 5580 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5581 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5582 sum = m->m_pkthdr.csum_data; 5583 } else { 5584 ip = mtod(m, struct ip *); 5585 sum = in_pseudo(ip->ip_src.s_addr, 5586 ip->ip_dst.s_addr, htonl((u_short)len + 5587 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5588 } 5589 sum ^= 0xffff; 5590 ++hw_assist; 5591 } 5592 break; 5593 case IPPROTO_UDP: 5594 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5595 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5596 sum = m->m_pkthdr.csum_data; 5597 } else { 5598 ip = mtod(m, struct ip *); 5599 sum = in_pseudo(ip->ip_src.s_addr, 5600 ip->ip_dst.s_addr, htonl((u_short)len + 5601 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5602 } 5603 sum ^= 0xffff; 5604 ++hw_assist; 5605 } 5606 break; 5607 case IPPROTO_ICMP: 5608 #ifdef INET6 5609 case IPPROTO_ICMPV6: 5610 #endif /* INET6 */ 5611 break; 5612 default: 5613 return (1); 5614 } 5615 5616 if (!hw_assist) { 5617 switch (af) { 5618 case AF_INET: 5619 if (p == IPPROTO_ICMP) { 5620 if (m->m_len < off) 5621 return (1); 5622 m->m_data += off; 5623 m->m_len -= off; 5624 sum = in_cksum(m, len); 5625 m->m_data -= off; 5626 m->m_len += off; 5627 } else { 5628 if (m->m_len < sizeof(struct ip)) 5629 return (1); 5630 sum = in4_cksum(m, p, off, len); 5631 } 5632 break; 5633 #ifdef INET6 5634 case AF_INET6: 5635 if (m->m_len < sizeof(struct ip6_hdr)) 5636 return (1); 5637 sum = in6_cksum(m, p, off, len); 5638 break; 5639 #endif /* INET6 */ 5640 default: 5641 return (1); 5642 } 5643 } 5644 if (sum) { 5645 switch (p) { 5646 case IPPROTO_TCP: 5647 { 5648 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5649 break; 5650 } 5651 case IPPROTO_UDP: 5652 { 5653 KMOD_UDPSTAT_INC(udps_badsum); 5654 break; 5655 } 5656 #ifdef INET 5657 case IPPROTO_ICMP: 5658 { 5659 KMOD_ICMPSTAT_INC(icps_checksum); 5660 break; 5661 } 5662 #endif 5663 #ifdef INET6 5664 case IPPROTO_ICMPV6: 5665 { 5666 KMOD_ICMP6STAT_INC(icp6s_checksum); 5667 break; 5668 } 5669 #endif /* INET6 */ 5670 } 5671 return (1); 5672 } else { 5673 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5674 m->m_pkthdr.csum_flags |= 5675 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5676 m->m_pkthdr.csum_data = 0xffff; 5677 } 5678 } 5679 return (0); 5680 } 5681 5682 5683 #ifdef INET 5684 int 5685 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5686 { 5687 struct pfi_kif *kif; 5688 u_short action, reason = 0, log = 0; 5689 struct mbuf *m = *m0; 5690 struct ip *h = NULL; 5691 struct m_tag *ipfwtag; 5692 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5693 struct pf_state *s = NULL; 5694 struct pf_ruleset *ruleset = NULL; 5695 struct pf_pdesc pd; 5696 int off, dirndx, pqid = 0; 5697 5698 M_ASSERTPKTHDR(m); 5699 5700 if (!V_pf_status.running) 5701 return (PF_PASS); 5702 5703 memset(&pd, 0, sizeof(pd)); 5704 5705 kif = (struct pfi_kif *)ifp->if_pf_kif; 5706 5707 if (kif == NULL) { 5708 DPFPRINTF(PF_DEBUG_URGENT, 5709 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5710 return (PF_DROP); 5711 } 5712 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5713 return (PF_PASS); 5714 5715 if (m->m_flags & M_SKIP_FIREWALL) 5716 return (PF_PASS); 5717 5718 pd.pf_mtag = pf_find_mtag(m); 5719 5720 PF_RULES_RLOCK(); 5721 5722 if (ip_divert_ptr != NULL && 5723 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5724 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5725 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5726 if (pd.pf_mtag == NULL && 5727 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5728 action = PF_DROP; 5729 goto done; 5730 } 5731 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5732 m_tag_delete(m, ipfwtag); 5733 } 5734 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5735 m->m_flags |= M_FASTFWD_OURS; 5736 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5737 } 5738 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5739 /* We do IP header normalization and packet reassembly here */ 5740 action = PF_DROP; 5741 goto done; 5742 } 5743 m = *m0; /* pf_normalize messes with m0 */ 5744 h = mtod(m, struct ip *); 5745 5746 off = h->ip_hl << 2; 5747 if (off < (int)sizeof(struct ip)) { 5748 action = PF_DROP; 5749 REASON_SET(&reason, PFRES_SHORT); 5750 log = 1; 5751 goto done; 5752 } 5753 5754 pd.src = (struct pf_addr *)&h->ip_src; 5755 pd.dst = (struct pf_addr *)&h->ip_dst; 5756 pd.sport = pd.dport = NULL; 5757 pd.ip_sum = &h->ip_sum; 5758 pd.proto_sum = NULL; 5759 pd.proto = h->ip_p; 5760 pd.dir = dir; 5761 pd.sidx = (dir == PF_IN) ? 0 : 1; 5762 pd.didx = (dir == PF_IN) ? 1 : 0; 5763 pd.af = AF_INET; 5764 pd.tos = h->ip_tos; 5765 pd.tot_len = ntohs(h->ip_len); 5766 5767 /* handle fragments that didn't get reassembled by normalization */ 5768 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5769 action = pf_test_fragment(&r, dir, kif, m, h, 5770 &pd, &a, &ruleset); 5771 goto done; 5772 } 5773 5774 switch (h->ip_p) { 5775 5776 case IPPROTO_TCP: { 5777 struct tcphdr th; 5778 5779 pd.hdr.tcp = &th; 5780 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5781 &action, &reason, AF_INET)) { 5782 log = action != PF_PASS; 5783 goto done; 5784 } 5785 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5786 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5787 pqid = 1; 5788 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5789 if (action == PF_DROP) 5790 goto done; 5791 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5792 &reason); 5793 if (action == PF_PASS) { 5794 if (pfsync_update_state_ptr != NULL) 5795 pfsync_update_state_ptr(s); 5796 r = s->rule.ptr; 5797 a = s->anchor.ptr; 5798 log = s->log; 5799 } else if (s == NULL) 5800 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5801 &a, &ruleset, inp); 5802 break; 5803 } 5804 5805 case IPPROTO_UDP: { 5806 struct udphdr uh; 5807 5808 pd.hdr.udp = &uh; 5809 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5810 &action, &reason, AF_INET)) { 5811 log = action != PF_PASS; 5812 goto done; 5813 } 5814 if (uh.uh_dport == 0 || 5815 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5816 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5817 action = PF_DROP; 5818 REASON_SET(&reason, PFRES_SHORT); 5819 goto done; 5820 } 5821 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5822 if (action == PF_PASS) { 5823 if (pfsync_update_state_ptr != NULL) 5824 pfsync_update_state_ptr(s); 5825 r = s->rule.ptr; 5826 a = s->anchor.ptr; 5827 log = s->log; 5828 } else if (s == NULL) 5829 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5830 &a, &ruleset, inp); 5831 break; 5832 } 5833 5834 case IPPROTO_ICMP: { 5835 struct icmp ih; 5836 5837 pd.hdr.icmp = &ih; 5838 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5839 &action, &reason, AF_INET)) { 5840 log = action != PF_PASS; 5841 goto done; 5842 } 5843 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5844 &reason); 5845 if (action == PF_PASS) { 5846 if (pfsync_update_state_ptr != NULL) 5847 pfsync_update_state_ptr(s); 5848 r = s->rule.ptr; 5849 a = s->anchor.ptr; 5850 log = s->log; 5851 } else if (s == NULL) 5852 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5853 &a, &ruleset, inp); 5854 break; 5855 } 5856 5857 #ifdef INET6 5858 case IPPROTO_ICMPV6: { 5859 action = PF_DROP; 5860 DPFPRINTF(PF_DEBUG_MISC, 5861 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5862 goto done; 5863 } 5864 #endif 5865 5866 default: 5867 action = pf_test_state_other(&s, dir, kif, m, &pd); 5868 if (action == PF_PASS) { 5869 if (pfsync_update_state_ptr != NULL) 5870 pfsync_update_state_ptr(s); 5871 r = s->rule.ptr; 5872 a = s->anchor.ptr; 5873 log = s->log; 5874 } else if (s == NULL) 5875 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5876 &a, &ruleset, inp); 5877 break; 5878 } 5879 5880 done: 5881 PF_RULES_RUNLOCK(); 5882 if (action == PF_PASS && h->ip_hl > 5 && 5883 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5884 action = PF_DROP; 5885 REASON_SET(&reason, PFRES_IPOPTIONS); 5886 log = 1; 5887 DPFPRINTF(PF_DEBUG_MISC, 5888 ("pf: dropping packet with ip options\n")); 5889 } 5890 5891 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5892 action = PF_DROP; 5893 REASON_SET(&reason, PFRES_MEMORY); 5894 } 5895 if (r->rtableid >= 0) 5896 M_SETFIB(m, r->rtableid); 5897 5898 #ifdef ALTQ 5899 if (action == PF_PASS && r->qid) { 5900 if (pd.pf_mtag == NULL && 5901 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5902 action = PF_DROP; 5903 REASON_SET(&reason, PFRES_MEMORY); 5904 } 5905 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5906 pd.pf_mtag->qid = r->pqid; 5907 else 5908 pd.pf_mtag->qid = r->qid; 5909 /* add hints for ecn */ 5910 pd.pf_mtag->hdr = h; 5911 5912 } 5913 #endif /* ALTQ */ 5914 5915 /* 5916 * connections redirected to loopback should not match sockets 5917 * bound specifically to loopback due to security implications, 5918 * see tcp_input() and in_pcblookup_listen(). 5919 */ 5920 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5921 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5922 (s->nat_rule.ptr->action == PF_RDR || 5923 s->nat_rule.ptr->action == PF_BINAT) && 5924 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5925 m->m_flags |= M_SKIP_FIREWALL; 5926 5927 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5928 !PACKET_LOOPED(&pd)) { 5929 5930 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5931 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5932 if (ipfwtag != NULL) { 5933 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5934 ntohs(r->divert.port); 5935 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5936 5937 if (s) 5938 PF_STATE_UNLOCK(s); 5939 5940 m_tag_prepend(m, ipfwtag); 5941 if (m->m_flags & M_FASTFWD_OURS) { 5942 if (pd.pf_mtag == NULL && 5943 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5944 action = PF_DROP; 5945 REASON_SET(&reason, PFRES_MEMORY); 5946 log = 1; 5947 DPFPRINTF(PF_DEBUG_MISC, 5948 ("pf: failed to allocate tag\n")); 5949 } 5950 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5951 m->m_flags &= ~M_FASTFWD_OURS; 5952 } 5953 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5954 *m0 = NULL; 5955 5956 return (action); 5957 } else { 5958 /* XXX: ipfw has the same behaviour! */ 5959 action = PF_DROP; 5960 REASON_SET(&reason, PFRES_MEMORY); 5961 log = 1; 5962 DPFPRINTF(PF_DEBUG_MISC, 5963 ("pf: failed to allocate divert tag\n")); 5964 } 5965 } 5966 5967 if (log) { 5968 struct pf_rule *lr; 5969 5970 if (s != NULL && s->nat_rule.ptr != NULL && 5971 s->nat_rule.ptr->log & PF_LOG_ALL) 5972 lr = s->nat_rule.ptr; 5973 else 5974 lr = r; 5975 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5976 (s == NULL)); 5977 } 5978 5979 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5980 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5981 5982 if (action == PF_PASS || r->action == PF_DROP) { 5983 dirndx = (dir == PF_OUT); 5984 r->packets[dirndx]++; 5985 r->bytes[dirndx] += pd.tot_len; 5986 if (a != NULL) { 5987 a->packets[dirndx]++; 5988 a->bytes[dirndx] += pd.tot_len; 5989 } 5990 if (s != NULL) { 5991 if (s->nat_rule.ptr != NULL) { 5992 s->nat_rule.ptr->packets[dirndx]++; 5993 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5994 } 5995 if (s->src_node != NULL) { 5996 s->src_node->packets[dirndx]++; 5997 s->src_node->bytes[dirndx] += pd.tot_len; 5998 } 5999 if (s->nat_src_node != NULL) { 6000 s->nat_src_node->packets[dirndx]++; 6001 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6002 } 6003 dirndx = (dir == s->direction) ? 0 : 1; 6004 s->packets[dirndx]++; 6005 s->bytes[dirndx] += pd.tot_len; 6006 } 6007 tr = r; 6008 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6009 if (nr != NULL && r == &V_pf_default_rule) 6010 tr = nr; 6011 if (tr->src.addr.type == PF_ADDR_TABLE) 6012 pfr_update_stats(tr->src.addr.p.tbl, 6013 (s == NULL) ? pd.src : 6014 &s->key[(s->direction == PF_IN)]-> 6015 addr[(s->direction == PF_OUT)], 6016 pd.af, pd.tot_len, dir == PF_OUT, 6017 r->action == PF_PASS, tr->src.neg); 6018 if (tr->dst.addr.type == PF_ADDR_TABLE) 6019 pfr_update_stats(tr->dst.addr.p.tbl, 6020 (s == NULL) ? pd.dst : 6021 &s->key[(s->direction == PF_IN)]-> 6022 addr[(s->direction == PF_IN)], 6023 pd.af, pd.tot_len, dir == PF_OUT, 6024 r->action == PF_PASS, tr->dst.neg); 6025 } 6026 6027 switch (action) { 6028 case PF_SYNPROXY_DROP: 6029 m_freem(*m0); 6030 case PF_DEFER: 6031 *m0 = NULL; 6032 action = PF_PASS; 6033 break; 6034 case PF_DROP: 6035 m_freem(*m0); 6036 *m0 = NULL; 6037 break; 6038 default: 6039 /* pf_route() returns unlocked. */ 6040 if (r->rt) { 6041 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6042 return (action); 6043 } 6044 break; 6045 } 6046 if (s) 6047 PF_STATE_UNLOCK(s); 6048 6049 return (action); 6050 } 6051 #endif /* INET */ 6052 6053 #ifdef INET6 6054 int 6055 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6056 { 6057 struct pfi_kif *kif; 6058 u_short action, reason = 0, log = 0; 6059 struct mbuf *m = *m0, *n = NULL; 6060 struct m_tag *mtag; 6061 struct ip6_hdr *h = NULL; 6062 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6063 struct pf_state *s = NULL; 6064 struct pf_ruleset *ruleset = NULL; 6065 struct pf_pdesc pd; 6066 int off, terminal = 0, dirndx, rh_cnt = 0; 6067 int fwdir = dir; 6068 6069 M_ASSERTPKTHDR(m); 6070 6071 if (ifp != m->m_pkthdr.rcvif) 6072 fwdir = PF_FWD; 6073 6074 if (!V_pf_status.running) 6075 return (PF_PASS); 6076 6077 memset(&pd, 0, sizeof(pd)); 6078 pd.pf_mtag = pf_find_mtag(m); 6079 6080 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6081 return (PF_PASS); 6082 6083 kif = (struct pfi_kif *)ifp->if_pf_kif; 6084 if (kif == NULL) { 6085 DPFPRINTF(PF_DEBUG_URGENT, 6086 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6087 return (PF_DROP); 6088 } 6089 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6090 return (PF_PASS); 6091 6092 if (m->m_flags & M_SKIP_FIREWALL) 6093 return (PF_PASS); 6094 6095 PF_RULES_RLOCK(); 6096 6097 /* We do IP header normalization and packet reassembly here */ 6098 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6099 action = PF_DROP; 6100 goto done; 6101 } 6102 m = *m0; /* pf_normalize messes with m0 */ 6103 h = mtod(m, struct ip6_hdr *); 6104 6105 #if 1 6106 /* 6107 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6108 * will do something bad, so drop the packet for now. 6109 */ 6110 if (htons(h->ip6_plen) == 0) { 6111 action = PF_DROP; 6112 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6113 goto done; 6114 } 6115 #endif 6116 6117 pd.src = (struct pf_addr *)&h->ip6_src; 6118 pd.dst = (struct pf_addr *)&h->ip6_dst; 6119 pd.sport = pd.dport = NULL; 6120 pd.ip_sum = NULL; 6121 pd.proto_sum = NULL; 6122 pd.dir = dir; 6123 pd.sidx = (dir == PF_IN) ? 0 : 1; 6124 pd.didx = (dir == PF_IN) ? 1 : 0; 6125 pd.af = AF_INET6; 6126 pd.tos = 0; 6127 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6128 6129 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6130 pd.proto = h->ip6_nxt; 6131 do { 6132 switch (pd.proto) { 6133 case IPPROTO_FRAGMENT: 6134 action = pf_test_fragment(&r, dir, kif, m, h, 6135 &pd, &a, &ruleset); 6136 if (action == PF_DROP) 6137 REASON_SET(&reason, PFRES_FRAG); 6138 goto done; 6139 case IPPROTO_ROUTING: { 6140 struct ip6_rthdr rthdr; 6141 6142 if (rh_cnt++) { 6143 DPFPRINTF(PF_DEBUG_MISC, 6144 ("pf: IPv6 more than one rthdr\n")); 6145 action = PF_DROP; 6146 REASON_SET(&reason, PFRES_IPOPTIONS); 6147 log = 1; 6148 goto done; 6149 } 6150 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6151 &reason, pd.af)) { 6152 DPFPRINTF(PF_DEBUG_MISC, 6153 ("pf: IPv6 short rthdr\n")); 6154 action = PF_DROP; 6155 REASON_SET(&reason, PFRES_SHORT); 6156 log = 1; 6157 goto done; 6158 } 6159 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6160 DPFPRINTF(PF_DEBUG_MISC, 6161 ("pf: IPv6 rthdr0\n")); 6162 action = PF_DROP; 6163 REASON_SET(&reason, PFRES_IPOPTIONS); 6164 log = 1; 6165 goto done; 6166 } 6167 /* FALLTHROUGH */ 6168 } 6169 case IPPROTO_AH: 6170 case IPPROTO_HOPOPTS: 6171 case IPPROTO_DSTOPTS: { 6172 /* get next header and header length */ 6173 struct ip6_ext opt6; 6174 6175 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6176 NULL, &reason, pd.af)) { 6177 DPFPRINTF(PF_DEBUG_MISC, 6178 ("pf: IPv6 short opt\n")); 6179 action = PF_DROP; 6180 log = 1; 6181 goto done; 6182 } 6183 if (pd.proto == IPPROTO_AH) 6184 off += (opt6.ip6e_len + 2) * 4; 6185 else 6186 off += (opt6.ip6e_len + 1) * 8; 6187 pd.proto = opt6.ip6e_nxt; 6188 /* goto the next header */ 6189 break; 6190 } 6191 default: 6192 terminal++; 6193 break; 6194 } 6195 } while (!terminal); 6196 6197 /* if there's no routing header, use unmodified mbuf for checksumming */ 6198 if (!n) 6199 n = m; 6200 6201 switch (pd.proto) { 6202 6203 case IPPROTO_TCP: { 6204 struct tcphdr th; 6205 6206 pd.hdr.tcp = &th; 6207 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6208 &action, &reason, AF_INET6)) { 6209 log = action != PF_PASS; 6210 goto done; 6211 } 6212 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6213 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6214 if (action == PF_DROP) 6215 goto done; 6216 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6217 &reason); 6218 if (action == PF_PASS) { 6219 if (pfsync_update_state_ptr != NULL) 6220 pfsync_update_state_ptr(s); 6221 r = s->rule.ptr; 6222 a = s->anchor.ptr; 6223 log = s->log; 6224 } else if (s == NULL) 6225 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6226 &a, &ruleset, inp); 6227 break; 6228 } 6229 6230 case IPPROTO_UDP: { 6231 struct udphdr uh; 6232 6233 pd.hdr.udp = &uh; 6234 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6235 &action, &reason, AF_INET6)) { 6236 log = action != PF_PASS; 6237 goto done; 6238 } 6239 if (uh.uh_dport == 0 || 6240 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6241 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6242 action = PF_DROP; 6243 REASON_SET(&reason, PFRES_SHORT); 6244 goto done; 6245 } 6246 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6247 if (action == PF_PASS) { 6248 if (pfsync_update_state_ptr != NULL) 6249 pfsync_update_state_ptr(s); 6250 r = s->rule.ptr; 6251 a = s->anchor.ptr; 6252 log = s->log; 6253 } else if (s == NULL) 6254 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6255 &a, &ruleset, inp); 6256 break; 6257 } 6258 6259 case IPPROTO_ICMP: { 6260 action = PF_DROP; 6261 DPFPRINTF(PF_DEBUG_MISC, 6262 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6263 goto done; 6264 } 6265 6266 case IPPROTO_ICMPV6: { 6267 struct icmp6_hdr ih; 6268 6269 pd.hdr.icmp6 = &ih; 6270 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6271 &action, &reason, AF_INET6)) { 6272 log = action != PF_PASS; 6273 goto done; 6274 } 6275 action = pf_test_state_icmp(&s, dir, kif, 6276 m, off, h, &pd, &reason); 6277 if (action == PF_PASS) { 6278 if (pfsync_update_state_ptr != NULL) 6279 pfsync_update_state_ptr(s); 6280 r = s->rule.ptr; 6281 a = s->anchor.ptr; 6282 log = s->log; 6283 } else if (s == NULL) 6284 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6285 &a, &ruleset, inp); 6286 break; 6287 } 6288 6289 default: 6290 action = pf_test_state_other(&s, dir, kif, m, &pd); 6291 if (action == PF_PASS) { 6292 if (pfsync_update_state_ptr != NULL) 6293 pfsync_update_state_ptr(s); 6294 r = s->rule.ptr; 6295 a = s->anchor.ptr; 6296 log = s->log; 6297 } else if (s == NULL) 6298 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6299 &a, &ruleset, inp); 6300 break; 6301 } 6302 6303 done: 6304 PF_RULES_RUNLOCK(); 6305 if (n != m) { 6306 m_freem(n); 6307 n = NULL; 6308 } 6309 6310 /* handle dangerous IPv6 extension headers. */ 6311 if (action == PF_PASS && rh_cnt && 6312 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6313 action = PF_DROP; 6314 REASON_SET(&reason, PFRES_IPOPTIONS); 6315 log = 1; 6316 DPFPRINTF(PF_DEBUG_MISC, 6317 ("pf: dropping packet with dangerous v6 headers\n")); 6318 } 6319 6320 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6321 action = PF_DROP; 6322 REASON_SET(&reason, PFRES_MEMORY); 6323 } 6324 if (r->rtableid >= 0) 6325 M_SETFIB(m, r->rtableid); 6326 6327 #ifdef ALTQ 6328 if (action == PF_PASS && r->qid) { 6329 if (pd.pf_mtag == NULL && 6330 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6331 action = PF_DROP; 6332 REASON_SET(&reason, PFRES_MEMORY); 6333 } 6334 if (pd.tos & IPTOS_LOWDELAY) 6335 pd.pf_mtag->qid = r->pqid; 6336 else 6337 pd.pf_mtag->qid = r->qid; 6338 /* add hints for ecn */ 6339 pd.pf_mtag->hdr = h; 6340 } 6341 #endif /* ALTQ */ 6342 6343 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6344 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6345 (s->nat_rule.ptr->action == PF_RDR || 6346 s->nat_rule.ptr->action == PF_BINAT) && 6347 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6348 m->m_flags |= M_SKIP_FIREWALL; 6349 6350 /* XXX: Anybody working on it?! */ 6351 if (r->divert.port) 6352 printf("pf: divert(9) is not supported for IPv6\n"); 6353 6354 if (log) { 6355 struct pf_rule *lr; 6356 6357 if (s != NULL && s->nat_rule.ptr != NULL && 6358 s->nat_rule.ptr->log & PF_LOG_ALL) 6359 lr = s->nat_rule.ptr; 6360 else 6361 lr = r; 6362 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6363 &pd, (s == NULL)); 6364 } 6365 6366 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6367 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6368 6369 if (action == PF_PASS || r->action == PF_DROP) { 6370 dirndx = (dir == PF_OUT); 6371 r->packets[dirndx]++; 6372 r->bytes[dirndx] += pd.tot_len; 6373 if (a != NULL) { 6374 a->packets[dirndx]++; 6375 a->bytes[dirndx] += pd.tot_len; 6376 } 6377 if (s != NULL) { 6378 if (s->nat_rule.ptr != NULL) { 6379 s->nat_rule.ptr->packets[dirndx]++; 6380 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6381 } 6382 if (s->src_node != NULL) { 6383 s->src_node->packets[dirndx]++; 6384 s->src_node->bytes[dirndx] += pd.tot_len; 6385 } 6386 if (s->nat_src_node != NULL) { 6387 s->nat_src_node->packets[dirndx]++; 6388 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6389 } 6390 dirndx = (dir == s->direction) ? 0 : 1; 6391 s->packets[dirndx]++; 6392 s->bytes[dirndx] += pd.tot_len; 6393 } 6394 tr = r; 6395 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6396 if (nr != NULL && r == &V_pf_default_rule) 6397 tr = nr; 6398 if (tr->src.addr.type == PF_ADDR_TABLE) 6399 pfr_update_stats(tr->src.addr.p.tbl, 6400 (s == NULL) ? pd.src : 6401 &s->key[(s->direction == PF_IN)]->addr[0], 6402 pd.af, pd.tot_len, dir == PF_OUT, 6403 r->action == PF_PASS, tr->src.neg); 6404 if (tr->dst.addr.type == PF_ADDR_TABLE) 6405 pfr_update_stats(tr->dst.addr.p.tbl, 6406 (s == NULL) ? pd.dst : 6407 &s->key[(s->direction == PF_IN)]->addr[1], 6408 pd.af, pd.tot_len, dir == PF_OUT, 6409 r->action == PF_PASS, tr->dst.neg); 6410 } 6411 6412 switch (action) { 6413 case PF_SYNPROXY_DROP: 6414 m_freem(*m0); 6415 case PF_DEFER: 6416 *m0 = NULL; 6417 action = PF_PASS; 6418 break; 6419 case PF_DROP: 6420 m_freem(*m0); 6421 *m0 = NULL; 6422 break; 6423 default: 6424 /* pf_route6() returns unlocked. */ 6425 if (r->rt) { 6426 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6427 return (action); 6428 } 6429 break; 6430 } 6431 6432 if (s) 6433 PF_STATE_UNLOCK(s); 6434 6435 /* If reassembled packet passed, create new fragments. */ 6436 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6437 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6438 action = pf_refragment6(ifp, m0, mtag); 6439 6440 return (action); 6441 } 6442 #endif /* INET6 */ 6443