1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 130 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 131 "struct mbuf *"); 132 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 133 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 134 "int", "struct pf_keth_rule *", "char *"); 135 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 136 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 137 "int", "struct pf_keth_rule *"); 138 139 /* 140 * Global variables 141 */ 142 143 /* state tables */ 144 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 145 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 146 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 147 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 148 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 150 VNET_DEFINE(struct pf_kstatus, pf_status); 151 152 VNET_DEFINE(u_int32_t, ticket_altqs_active); 153 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 154 VNET_DEFINE(int, altqs_inactive_open); 155 VNET_DEFINE(u_int32_t, ticket_pabuf); 156 157 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 158 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 159 VNET_DEFINE(u_char, pf_tcp_secret[16]); 160 #define V_pf_tcp_secret VNET(pf_tcp_secret) 161 VNET_DEFINE(int, pf_tcp_secret_init); 162 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 163 VNET_DEFINE(int, pf_tcp_iss_off); 164 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 165 VNET_DECLARE(int, pf_vnet_active); 166 #define V_pf_vnet_active VNET(pf_vnet_active) 167 168 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 169 #define V_pf_purge_idx VNET(pf_purge_idx) 170 171 #ifdef PF_WANT_32_TO_64_COUNTER 172 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 173 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 174 175 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 176 VNET_DEFINE(size_t, pf_allrulecount); 177 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 178 #endif 179 180 /* 181 * Queue for pf_intr() sends. 182 */ 183 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 184 struct pf_send_entry { 185 STAILQ_ENTRY(pf_send_entry) pfse_next; 186 struct mbuf *pfse_m; 187 enum { 188 PFSE_IP, 189 PFSE_IP6, 190 PFSE_ICMP, 191 PFSE_ICMP6, 192 } pfse_type; 193 struct { 194 int type; 195 int code; 196 int mtu; 197 } icmpopts; 198 }; 199 200 STAILQ_HEAD(pf_send_head, pf_send_entry); 201 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 202 #define V_pf_sendqueue VNET(pf_sendqueue) 203 204 static struct mtx_padalign pf_sendqueue_mtx; 205 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 206 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 207 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 208 209 /* 210 * Queue for pf_overload_task() tasks. 211 */ 212 struct pf_overload_entry { 213 SLIST_ENTRY(pf_overload_entry) next; 214 struct pf_addr addr; 215 sa_family_t af; 216 uint8_t dir; 217 struct pf_krule *rule; 218 }; 219 220 SLIST_HEAD(pf_overload_head, pf_overload_entry); 221 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 222 #define V_pf_overloadqueue VNET(pf_overloadqueue) 223 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 224 #define V_pf_overloadtask VNET(pf_overloadtask) 225 226 static struct mtx_padalign pf_overloadqueue_mtx; 227 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 228 "pf overload/flush queue", MTX_DEF); 229 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 230 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 231 232 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 233 struct mtx_padalign pf_unlnkdrules_mtx; 234 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 235 MTX_DEF); 236 237 struct sx pf_config_lock; 238 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 239 240 struct mtx_padalign pf_table_stats_lock; 241 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 242 MTX_DEF); 243 244 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 245 #define V_pf_sources_z VNET(pf_sources_z) 246 uma_zone_t pf_mtag_z; 247 VNET_DEFINE(uma_zone_t, pf_state_z); 248 VNET_DEFINE(uma_zone_t, pf_state_key_z); 249 250 VNET_DEFINE(struct unrhdr64, pf_stateid); 251 252 static void pf_src_tree_remove_state(struct pf_kstate *); 253 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 254 u_int32_t); 255 static void pf_add_threshold(struct pf_threshold *); 256 static int pf_check_threshold(struct pf_threshold *); 257 258 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 259 u_int16_t *, u_int16_t *, struct pf_addr *, 260 u_int16_t, u_int8_t, sa_family_t); 261 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 262 struct tcphdr *, struct pf_state_peer *); 263 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 264 struct pf_addr *, struct pf_addr *, u_int16_t, 265 u_int16_t *, u_int16_t *, u_int16_t *, 266 u_int16_t *, u_int8_t, sa_family_t); 267 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 268 sa_family_t, struct pf_krule *, int); 269 static void pf_detach_state(struct pf_kstate *); 270 static int pf_state_key_attach(struct pf_state_key *, 271 struct pf_state_key *, struct pf_kstate *); 272 static void pf_state_key_detach(struct pf_kstate *, int); 273 static int pf_state_key_ctor(void *, int, void *, int); 274 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 275 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 276 struct pf_krule *, struct mbuf **); 277 static int pf_dummynet_route(struct pf_pdesc *, 278 struct pf_kstate *, struct pf_krule *, 279 struct ifnet *, struct sockaddr *, struct mbuf **); 280 static int pf_test_eth_rule(int, struct pfi_kkif *, 281 struct mbuf **); 282 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 283 struct pfi_kkif *, struct mbuf *, int, 284 struct pf_pdesc *, struct pf_krule **, 285 struct pf_kruleset **, struct inpcb *); 286 static int pf_create_state(struct pf_krule *, struct pf_krule *, 287 struct pf_krule *, struct pf_pdesc *, 288 struct pf_ksrc_node *, struct pf_state_key *, 289 struct pf_state_key *, struct mbuf *, int, 290 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 291 struct pf_kstate **, int, u_int16_t, u_int16_t, 292 int, struct pf_krule_slist *); 293 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 294 struct mbuf *, void *, struct pf_pdesc *, 295 struct pf_krule **, struct pf_kruleset **); 296 static int pf_tcp_track_full(struct pf_kstate **, 297 struct pfi_kkif *, struct mbuf *, int, 298 struct pf_pdesc *, u_short *, int *); 299 static int pf_tcp_track_sloppy(struct pf_kstate **, 300 struct pf_pdesc *, u_short *); 301 static int pf_test_state_tcp(struct pf_kstate **, 302 struct pfi_kkif *, struct mbuf *, int, 303 void *, struct pf_pdesc *, u_short *); 304 static int pf_test_state_udp(struct pf_kstate **, 305 struct pfi_kkif *, struct mbuf *, int, 306 void *, struct pf_pdesc *); 307 static int pf_test_state_icmp(struct pf_kstate **, 308 struct pfi_kkif *, struct mbuf *, int, 309 void *, struct pf_pdesc *, u_short *); 310 static int pf_test_state_sctp(struct pf_kstate **, 311 struct pfi_kkif *, struct mbuf *, int, 312 void *, struct pf_pdesc *, u_short *); 313 static int pf_test_state_other(struct pf_kstate **, 314 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 315 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 316 int, u_int16_t); 317 static int pf_check_proto_cksum(struct mbuf *, int, int, 318 u_int8_t, sa_family_t); 319 static void pf_print_state_parts(struct pf_kstate *, 320 struct pf_state_key *, struct pf_state_key *); 321 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 322 bool, u_int8_t); 323 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 324 struct pf_state_key_cmp *, u_int); 325 static int pf_src_connlimit(struct pf_kstate **); 326 static void pf_overload_task(void *v, int pending); 327 static u_short pf_insert_src_node(struct pf_ksrc_node **, 328 struct pf_krule *, struct pf_addr *, sa_family_t); 329 static u_int pf_purge_expired_states(u_int, int); 330 static void pf_purge_unlinked_rules(void); 331 static int pf_mtag_uminit(void *, int, int); 332 static void pf_mtag_free(struct m_tag *); 333 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 334 int, struct pf_state_key *); 335 #ifdef INET 336 static void pf_route(struct mbuf **, struct pf_krule *, 337 struct ifnet *, struct pf_kstate *, 338 struct pf_pdesc *, struct inpcb *); 339 #endif /* INET */ 340 #ifdef INET6 341 static void pf_change_a6(struct pf_addr *, u_int16_t *, 342 struct pf_addr *, u_int8_t); 343 static void pf_route6(struct mbuf **, struct pf_krule *, 344 struct ifnet *, struct pf_kstate *, 345 struct pf_pdesc *, struct inpcb *); 346 #endif /* INET6 */ 347 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 348 349 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 350 351 extern int pf_end_threads; 352 extern struct proc *pf_purge_proc; 353 354 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 355 356 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 357 do { \ 358 struct pf_state_key *nk; \ 359 if ((pd->dir) == PF_OUT) \ 360 nk = (_s)->key[PF_SK_STACK]; \ 361 else \ 362 nk = (_s)->key[PF_SK_WIRE]; \ 363 pf_packet_rework_nat(_m, _pd, _off, nk); \ 364 } while (0) 365 366 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 367 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 368 369 #define STATE_LOOKUP(i, k, s, pd) \ 370 do { \ 371 (s) = pf_find_state((i), (k), (pd->dir)); \ 372 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 373 if ((s) == NULL) \ 374 return (PF_DROP); \ 375 if (PACKET_LOOPED(pd)) \ 376 return (PF_PASS); \ 377 } while (0) 378 379 #define BOUND_IFACE(r, k) \ 380 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 381 382 #define STATE_INC_COUNTERS(s) \ 383 do { \ 384 struct pf_krule_item *mrm; \ 385 counter_u64_add(s->rule.ptr->states_cur, 1); \ 386 counter_u64_add(s->rule.ptr->states_tot, 1); \ 387 if (s->anchor.ptr != NULL) { \ 388 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 389 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 390 } \ 391 if (s->nat_rule.ptr != NULL) { \ 392 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 393 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 394 } \ 395 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 396 counter_u64_add(mrm->r->states_cur, 1); \ 397 counter_u64_add(mrm->r->states_tot, 1); \ 398 } \ 399 } while (0) 400 401 #define STATE_DEC_COUNTERS(s) \ 402 do { \ 403 struct pf_krule_item *mrm; \ 404 if (s->nat_rule.ptr != NULL) \ 405 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 406 if (s->anchor.ptr != NULL) \ 407 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 408 counter_u64_add(s->rule.ptr->states_cur, -1); \ 409 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 410 counter_u64_add(mrm->r->states_cur, -1); \ 411 } while (0) 412 413 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 414 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 415 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 416 VNET_DEFINE(struct pf_idhash *, pf_idhash); 417 VNET_DEFINE(struct pf_srchash *, pf_srchash); 418 419 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 420 "pf(4)"); 421 422 u_long pf_hashmask; 423 u_long pf_srchashmask; 424 static u_long pf_hashsize; 425 static u_long pf_srchashsize; 426 u_long pf_ioctl_maxcount = 65535; 427 428 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 429 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 430 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 431 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 432 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 433 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 434 435 VNET_DEFINE(void *, pf_swi_cookie); 436 VNET_DEFINE(struct intr_event *, pf_swi_ie); 437 438 VNET_DEFINE(uint32_t, pf_hashseed); 439 #define V_pf_hashseed VNET(pf_hashseed) 440 441 static void 442 pf_sctp_checksum(struct mbuf *m, int off) 443 { 444 uint32_t sum = 0; 445 446 /* Zero out the checksum, to enable recalculation. */ 447 m_copyback(m, off + offsetof(struct sctphdr, checksum), 448 sizeof(sum), (caddr_t)&sum); 449 450 sum = sctp_calculate_cksum(m, off); 451 452 m_copyback(m, off + offsetof(struct sctphdr, checksum), 453 sizeof(sum), (caddr_t)&sum); 454 } 455 456 int 457 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 458 { 459 460 switch (af) { 461 #ifdef INET 462 case AF_INET: 463 if (a->addr32[0] > b->addr32[0]) 464 return (1); 465 if (a->addr32[0] < b->addr32[0]) 466 return (-1); 467 break; 468 #endif /* INET */ 469 #ifdef INET6 470 case AF_INET6: 471 if (a->addr32[3] > b->addr32[3]) 472 return (1); 473 if (a->addr32[3] < b->addr32[3]) 474 return (-1); 475 if (a->addr32[2] > b->addr32[2]) 476 return (1); 477 if (a->addr32[2] < b->addr32[2]) 478 return (-1); 479 if (a->addr32[1] > b->addr32[1]) 480 return (1); 481 if (a->addr32[1] < b->addr32[1]) 482 return (-1); 483 if (a->addr32[0] > b->addr32[0]) 484 return (1); 485 if (a->addr32[0] < b->addr32[0]) 486 return (-1); 487 break; 488 #endif /* INET6 */ 489 default: 490 panic("%s: unknown address family %u", __func__, af); 491 } 492 return (0); 493 } 494 495 static void 496 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 497 struct pf_state_key *nk) 498 { 499 500 switch (pd->proto) { 501 case IPPROTO_TCP: { 502 struct tcphdr *th = &pd->hdr.tcp; 503 504 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 505 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 506 &th->th_sum, &nk->addr[pd->sidx], 507 nk->port[pd->sidx], 0, pd->af); 508 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 509 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 510 &th->th_sum, &nk->addr[pd->didx], 511 nk->port[pd->didx], 0, pd->af); 512 m_copyback(m, off, sizeof(*th), (caddr_t)th); 513 break; 514 } 515 case IPPROTO_UDP: { 516 struct udphdr *uh = &pd->hdr.udp; 517 518 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 519 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 520 &uh->uh_sum, &nk->addr[pd->sidx], 521 nk->port[pd->sidx], 1, pd->af); 522 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 523 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 524 &uh->uh_sum, &nk->addr[pd->didx], 525 nk->port[pd->didx], 1, pd->af); 526 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 527 break; 528 } 529 case IPPROTO_SCTP: { 530 struct sctphdr *sh = &pd->hdr.sctp; 531 uint16_t checksum = 0; 532 533 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 534 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 535 &checksum, &nk->addr[pd->sidx], 536 nk->port[pd->sidx], 1, pd->af); 537 } 538 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 539 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 540 &checksum, &nk->addr[pd->didx], 541 nk->port[pd->didx], 1, pd->af); 542 } 543 544 break; 545 } 546 case IPPROTO_ICMP: { 547 struct icmp *ih = &pd->hdr.icmp; 548 549 if (nk->port[pd->sidx] != ih->icmp_id) { 550 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 551 ih->icmp_cksum, ih->icmp_id, 552 nk->port[pd->sidx], 0); 553 ih->icmp_id = nk->port[pd->sidx]; 554 pd->sport = &ih->icmp_id; 555 556 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 557 } 558 /* FALLTHROUGH */ 559 } 560 default: 561 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 562 switch (pd->af) { 563 case AF_INET: 564 pf_change_a(&pd->src->v4.s_addr, 565 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 566 0); 567 break; 568 case AF_INET6: 569 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 570 break; 571 } 572 } 573 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 574 switch (pd->af) { 575 case AF_INET: 576 pf_change_a(&pd->dst->v4.s_addr, 577 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 578 0); 579 break; 580 case AF_INET6: 581 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 582 break; 583 } 584 } 585 break; 586 } 587 } 588 589 static __inline uint32_t 590 pf_hashkey(struct pf_state_key *sk) 591 { 592 uint32_t h; 593 594 h = murmur3_32_hash32((uint32_t *)sk, 595 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 596 V_pf_hashseed); 597 598 return (h & pf_hashmask); 599 } 600 601 static __inline uint32_t 602 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 603 { 604 uint32_t h; 605 606 switch (af) { 607 case AF_INET: 608 h = murmur3_32_hash32((uint32_t *)&addr->v4, 609 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 610 break; 611 case AF_INET6: 612 h = murmur3_32_hash32((uint32_t *)&addr->v6, 613 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 614 break; 615 default: 616 panic("%s: unknown address family %u", __func__, af); 617 } 618 619 return (h & pf_srchashmask); 620 } 621 622 #ifdef ALTQ 623 static int 624 pf_state_hash(struct pf_kstate *s) 625 { 626 u_int32_t hv = (intptr_t)s / sizeof(*s); 627 628 hv ^= crc32(&s->src, sizeof(s->src)); 629 hv ^= crc32(&s->dst, sizeof(s->dst)); 630 if (hv == 0) 631 hv = 1; 632 return (hv); 633 } 634 #endif 635 636 static __inline void 637 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 638 { 639 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 640 s->dst.state = newstate; 641 if (which == PF_PEER_DST) 642 return; 643 if (s->src.state == newstate) 644 return; 645 if (s->creatorid == V_pf_status.hostid && 646 s->key[PF_SK_STACK] != NULL && 647 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 648 !(TCPS_HAVEESTABLISHED(s->src.state) || 649 s->src.state == TCPS_CLOSED) && 650 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 651 atomic_add_32(&V_pf_status.states_halfopen, -1); 652 653 s->src.state = newstate; 654 } 655 656 #ifdef INET6 657 void 658 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 659 { 660 switch (af) { 661 #ifdef INET 662 case AF_INET: 663 dst->addr32[0] = src->addr32[0]; 664 break; 665 #endif /* INET */ 666 case AF_INET6: 667 dst->addr32[0] = src->addr32[0]; 668 dst->addr32[1] = src->addr32[1]; 669 dst->addr32[2] = src->addr32[2]; 670 dst->addr32[3] = src->addr32[3]; 671 break; 672 } 673 } 674 #endif /* INET6 */ 675 676 static void 677 pf_init_threshold(struct pf_threshold *threshold, 678 u_int32_t limit, u_int32_t seconds) 679 { 680 threshold->limit = limit * PF_THRESHOLD_MULT; 681 threshold->seconds = seconds; 682 threshold->count = 0; 683 threshold->last = time_uptime; 684 } 685 686 static void 687 pf_add_threshold(struct pf_threshold *threshold) 688 { 689 u_int32_t t = time_uptime, diff = t - threshold->last; 690 691 if (diff >= threshold->seconds) 692 threshold->count = 0; 693 else 694 threshold->count -= threshold->count * diff / 695 threshold->seconds; 696 threshold->count += PF_THRESHOLD_MULT; 697 threshold->last = t; 698 } 699 700 static int 701 pf_check_threshold(struct pf_threshold *threshold) 702 { 703 return (threshold->count > threshold->limit); 704 } 705 706 static int 707 pf_src_connlimit(struct pf_kstate **state) 708 { 709 struct pf_overload_entry *pfoe; 710 int bad = 0; 711 712 PF_STATE_LOCK_ASSERT(*state); 713 /* 714 * XXXKS: The src node is accessed unlocked! 715 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 716 */ 717 718 (*state)->src_node->conn++; 719 (*state)->src.tcp_est = 1; 720 pf_add_threshold(&(*state)->src_node->conn_rate); 721 722 if ((*state)->rule.ptr->max_src_conn && 723 (*state)->rule.ptr->max_src_conn < 724 (*state)->src_node->conn) { 725 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 726 bad++; 727 } 728 729 if ((*state)->rule.ptr->max_src_conn_rate.limit && 730 pf_check_threshold(&(*state)->src_node->conn_rate)) { 731 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 732 bad++; 733 } 734 735 if (!bad) 736 return (0); 737 738 /* Kill this state. */ 739 (*state)->timeout = PFTM_PURGE; 740 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 741 742 if ((*state)->rule.ptr->overload_tbl == NULL) 743 return (1); 744 745 /* Schedule overloading and flushing task. */ 746 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 747 if (pfoe == NULL) 748 return (1); /* too bad :( */ 749 750 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 751 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 752 pfoe->rule = (*state)->rule.ptr; 753 pfoe->dir = (*state)->direction; 754 PF_OVERLOADQ_LOCK(); 755 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 756 PF_OVERLOADQ_UNLOCK(); 757 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 758 759 return (1); 760 } 761 762 static void 763 pf_overload_task(void *v, int pending) 764 { 765 struct pf_overload_head queue; 766 struct pfr_addr p; 767 struct pf_overload_entry *pfoe, *pfoe1; 768 uint32_t killed = 0; 769 770 CURVNET_SET((struct vnet *)v); 771 772 PF_OVERLOADQ_LOCK(); 773 queue = V_pf_overloadqueue; 774 SLIST_INIT(&V_pf_overloadqueue); 775 PF_OVERLOADQ_UNLOCK(); 776 777 bzero(&p, sizeof(p)); 778 SLIST_FOREACH(pfoe, &queue, next) { 779 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 780 if (V_pf_status.debug >= PF_DEBUG_MISC) { 781 printf("%s: blocking address ", __func__); 782 pf_print_host(&pfoe->addr, 0, pfoe->af); 783 printf("\n"); 784 } 785 786 p.pfra_af = pfoe->af; 787 switch (pfoe->af) { 788 #ifdef INET 789 case AF_INET: 790 p.pfra_net = 32; 791 p.pfra_ip4addr = pfoe->addr.v4; 792 break; 793 #endif 794 #ifdef INET6 795 case AF_INET6: 796 p.pfra_net = 128; 797 p.pfra_ip6addr = pfoe->addr.v6; 798 break; 799 #endif 800 } 801 802 PF_RULES_WLOCK(); 803 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 804 PF_RULES_WUNLOCK(); 805 } 806 807 /* 808 * Remove those entries, that don't need flushing. 809 */ 810 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 811 if (pfoe->rule->flush == 0) { 812 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 813 free(pfoe, M_PFTEMP); 814 } else 815 counter_u64_add( 816 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 817 818 /* If nothing to flush, return. */ 819 if (SLIST_EMPTY(&queue)) { 820 CURVNET_RESTORE(); 821 return; 822 } 823 824 for (int i = 0; i <= pf_hashmask; i++) { 825 struct pf_idhash *ih = &V_pf_idhash[i]; 826 struct pf_state_key *sk; 827 struct pf_kstate *s; 828 829 PF_HASHROW_LOCK(ih); 830 LIST_FOREACH(s, &ih->states, entry) { 831 sk = s->key[PF_SK_WIRE]; 832 SLIST_FOREACH(pfoe, &queue, next) 833 if (sk->af == pfoe->af && 834 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 835 pfoe->rule == s->rule.ptr) && 836 ((pfoe->dir == PF_OUT && 837 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 838 (pfoe->dir == PF_IN && 839 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 840 s->timeout = PFTM_PURGE; 841 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 842 killed++; 843 } 844 } 845 PF_HASHROW_UNLOCK(ih); 846 } 847 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 848 free(pfoe, M_PFTEMP); 849 if (V_pf_status.debug >= PF_DEBUG_MISC) 850 printf("%s: %u states killed", __func__, killed); 851 852 CURVNET_RESTORE(); 853 } 854 855 /* 856 * Can return locked on failure, so that we can consistently 857 * allocate and insert a new one. 858 */ 859 struct pf_ksrc_node * 860 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 861 struct pf_srchash **sh, bool returnlocked) 862 { 863 struct pf_ksrc_node *n; 864 865 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 866 867 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 868 PF_HASHROW_LOCK(*sh); 869 LIST_FOREACH(n, &(*sh)->nodes, entry) 870 if (n->rule.ptr == rule && n->af == af && 871 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 872 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 873 break; 874 875 if (n != NULL) { 876 n->states++; 877 PF_HASHROW_UNLOCK(*sh); 878 } else if (returnlocked == false) 879 PF_HASHROW_UNLOCK(*sh); 880 881 return (n); 882 } 883 884 static void 885 pf_free_src_node(struct pf_ksrc_node *sn) 886 { 887 888 for (int i = 0; i < 2; i++) { 889 counter_u64_free(sn->bytes[i]); 890 counter_u64_free(sn->packets[i]); 891 } 892 uma_zfree(V_pf_sources_z, sn); 893 } 894 895 static u_short 896 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 897 struct pf_addr *src, sa_family_t af) 898 { 899 u_short reason = 0; 900 struct pf_srchash *sh = NULL; 901 902 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 903 rule->rpool.opts & PF_POOL_STICKYADDR), 904 ("%s for non-tracking rule %p", __func__, rule)); 905 906 if (*sn == NULL) 907 *sn = pf_find_src_node(src, rule, af, &sh, true); 908 909 if (*sn == NULL) { 910 PF_HASHROW_ASSERT(sh); 911 912 if (rule->max_src_nodes && 913 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 914 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 915 PF_HASHROW_UNLOCK(sh); 916 reason = PFRES_SRCLIMIT; 917 goto done; 918 } 919 920 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 921 if ((*sn) == NULL) { 922 PF_HASHROW_UNLOCK(sh); 923 reason = PFRES_MEMORY; 924 goto done; 925 } 926 927 for (int i = 0; i < 2; i++) { 928 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 929 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 930 931 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 932 pf_free_src_node(*sn); 933 PF_HASHROW_UNLOCK(sh); 934 reason = PFRES_MEMORY; 935 goto done; 936 } 937 } 938 939 pf_init_threshold(&(*sn)->conn_rate, 940 rule->max_src_conn_rate.limit, 941 rule->max_src_conn_rate.seconds); 942 943 MPASS((*sn)->lock == NULL); 944 (*sn)->lock = &sh->lock; 945 946 (*sn)->af = af; 947 (*sn)->rule.ptr = rule; 948 PF_ACPY(&(*sn)->addr, src, af); 949 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 950 (*sn)->creation = time_uptime; 951 (*sn)->ruletype = rule->action; 952 (*sn)->states = 1; 953 if ((*sn)->rule.ptr != NULL) 954 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 955 PF_HASHROW_UNLOCK(sh); 956 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 957 } else { 958 if (rule->max_src_states && 959 (*sn)->states >= rule->max_src_states) { 960 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 961 1); 962 reason = PFRES_SRCLIMIT; 963 goto done; 964 } 965 } 966 done: 967 return (reason); 968 } 969 970 void 971 pf_unlink_src_node(struct pf_ksrc_node *src) 972 { 973 PF_SRC_NODE_LOCK_ASSERT(src); 974 975 LIST_REMOVE(src, entry); 976 if (src->rule.ptr) 977 counter_u64_add(src->rule.ptr->src_nodes, -1); 978 } 979 980 u_int 981 pf_free_src_nodes(struct pf_ksrc_node_list *head) 982 { 983 struct pf_ksrc_node *sn, *tmp; 984 u_int count = 0; 985 986 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 987 pf_free_src_node(sn); 988 count++; 989 } 990 991 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 992 993 return (count); 994 } 995 996 void 997 pf_mtag_initialize(void) 998 { 999 1000 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1001 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1002 UMA_ALIGN_PTR, 0); 1003 } 1004 1005 /* Per-vnet data storage structures initialization. */ 1006 void 1007 pf_initialize(void) 1008 { 1009 struct pf_keyhash *kh; 1010 struct pf_idhash *ih; 1011 struct pf_srchash *sh; 1012 u_int i; 1013 1014 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 1015 pf_hashsize = PF_HASHSIZ; 1016 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 1017 pf_srchashsize = PF_SRCHASHSIZ; 1018 1019 V_pf_hashseed = arc4random(); 1020 1021 /* States and state keys storage. */ 1022 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1023 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1024 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1025 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1026 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1027 1028 V_pf_state_key_z = uma_zcreate("pf state keys", 1029 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1030 UMA_ALIGN_PTR, 0); 1031 1032 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1033 M_PFHASH, M_NOWAIT | M_ZERO); 1034 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1035 M_PFHASH, M_NOWAIT | M_ZERO); 1036 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1037 printf("pf: Unable to allocate memory for " 1038 "state_hashsize %lu.\n", pf_hashsize); 1039 1040 free(V_pf_keyhash, M_PFHASH); 1041 free(V_pf_idhash, M_PFHASH); 1042 1043 pf_hashsize = PF_HASHSIZ; 1044 V_pf_keyhash = mallocarray(pf_hashsize, 1045 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1046 V_pf_idhash = mallocarray(pf_hashsize, 1047 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1048 } 1049 1050 pf_hashmask = pf_hashsize - 1; 1051 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1052 i++, kh++, ih++) { 1053 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1054 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1055 } 1056 1057 /* Source nodes. */ 1058 V_pf_sources_z = uma_zcreate("pf source nodes", 1059 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1060 0); 1061 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1062 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1063 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1064 1065 V_pf_srchash = mallocarray(pf_srchashsize, 1066 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1067 if (V_pf_srchash == NULL) { 1068 printf("pf: Unable to allocate memory for " 1069 "source_hashsize %lu.\n", pf_srchashsize); 1070 1071 pf_srchashsize = PF_SRCHASHSIZ; 1072 V_pf_srchash = mallocarray(pf_srchashsize, 1073 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1074 } 1075 1076 pf_srchashmask = pf_srchashsize - 1; 1077 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1078 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1079 1080 /* ALTQ */ 1081 TAILQ_INIT(&V_pf_altqs[0]); 1082 TAILQ_INIT(&V_pf_altqs[1]); 1083 TAILQ_INIT(&V_pf_altqs[2]); 1084 TAILQ_INIT(&V_pf_altqs[3]); 1085 TAILQ_INIT(&V_pf_pabuf); 1086 V_pf_altqs_active = &V_pf_altqs[0]; 1087 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1088 V_pf_altqs_inactive = &V_pf_altqs[2]; 1089 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1090 1091 /* Send & overload+flush queues. */ 1092 STAILQ_INIT(&V_pf_sendqueue); 1093 SLIST_INIT(&V_pf_overloadqueue); 1094 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1095 1096 /* Unlinked, but may be referenced rules. */ 1097 TAILQ_INIT(&V_pf_unlinked_rules); 1098 } 1099 1100 void 1101 pf_mtag_cleanup(void) 1102 { 1103 1104 uma_zdestroy(pf_mtag_z); 1105 } 1106 1107 void 1108 pf_cleanup(void) 1109 { 1110 struct pf_keyhash *kh; 1111 struct pf_idhash *ih; 1112 struct pf_srchash *sh; 1113 struct pf_send_entry *pfse, *next; 1114 u_int i; 1115 1116 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1117 i++, kh++, ih++) { 1118 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1119 __func__)); 1120 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1121 __func__)); 1122 mtx_destroy(&kh->lock); 1123 mtx_destroy(&ih->lock); 1124 } 1125 free(V_pf_keyhash, M_PFHASH); 1126 free(V_pf_idhash, M_PFHASH); 1127 1128 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1129 KASSERT(LIST_EMPTY(&sh->nodes), 1130 ("%s: source node hash not empty", __func__)); 1131 mtx_destroy(&sh->lock); 1132 } 1133 free(V_pf_srchash, M_PFHASH); 1134 1135 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1136 m_freem(pfse->pfse_m); 1137 free(pfse, M_PFTEMP); 1138 } 1139 1140 uma_zdestroy(V_pf_sources_z); 1141 uma_zdestroy(V_pf_state_z); 1142 uma_zdestroy(V_pf_state_key_z); 1143 } 1144 1145 static int 1146 pf_mtag_uminit(void *mem, int size, int how) 1147 { 1148 struct m_tag *t; 1149 1150 t = (struct m_tag *)mem; 1151 t->m_tag_cookie = MTAG_ABI_COMPAT; 1152 t->m_tag_id = PACKET_TAG_PF; 1153 t->m_tag_len = sizeof(struct pf_mtag); 1154 t->m_tag_free = pf_mtag_free; 1155 1156 return (0); 1157 } 1158 1159 static void 1160 pf_mtag_free(struct m_tag *t) 1161 { 1162 1163 uma_zfree(pf_mtag_z, t); 1164 } 1165 1166 struct pf_mtag * 1167 pf_get_mtag(struct mbuf *m) 1168 { 1169 struct m_tag *mtag; 1170 1171 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1172 return ((struct pf_mtag *)(mtag + 1)); 1173 1174 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1175 if (mtag == NULL) 1176 return (NULL); 1177 bzero(mtag + 1, sizeof(struct pf_mtag)); 1178 m_tag_prepend(m, mtag); 1179 1180 return ((struct pf_mtag *)(mtag + 1)); 1181 } 1182 1183 static int 1184 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1185 struct pf_kstate *s) 1186 { 1187 struct pf_keyhash *khs, *khw, *kh; 1188 struct pf_state_key *sk, *cur; 1189 struct pf_kstate *si, *olds = NULL; 1190 int idx; 1191 1192 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1193 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1194 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1195 1196 /* 1197 * We need to lock hash slots of both keys. To avoid deadlock 1198 * we always lock the slot with lower address first. Unlock order 1199 * isn't important. 1200 * 1201 * We also need to lock ID hash slot before dropping key 1202 * locks. On success we return with ID hash slot locked. 1203 */ 1204 1205 if (skw == sks) { 1206 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1207 PF_HASHROW_LOCK(khs); 1208 } else { 1209 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1210 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1211 if (khs == khw) { 1212 PF_HASHROW_LOCK(khs); 1213 } else if (khs < khw) { 1214 PF_HASHROW_LOCK(khs); 1215 PF_HASHROW_LOCK(khw); 1216 } else { 1217 PF_HASHROW_LOCK(khw); 1218 PF_HASHROW_LOCK(khs); 1219 } 1220 } 1221 1222 #define KEYS_UNLOCK() do { \ 1223 if (khs != khw) { \ 1224 PF_HASHROW_UNLOCK(khs); \ 1225 PF_HASHROW_UNLOCK(khw); \ 1226 } else \ 1227 PF_HASHROW_UNLOCK(khs); \ 1228 } while (0) 1229 1230 /* 1231 * First run: start with wire key. 1232 */ 1233 sk = skw; 1234 kh = khw; 1235 idx = PF_SK_WIRE; 1236 1237 MPASS(s->lock == NULL); 1238 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1239 1240 keyattach: 1241 LIST_FOREACH(cur, &kh->keys, entry) 1242 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1243 break; 1244 1245 if (cur != NULL) { 1246 /* Key exists. Check for same kif, if none, add to key. */ 1247 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1248 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1249 1250 PF_HASHROW_LOCK(ih); 1251 if (si->kif == s->kif && 1252 si->direction == s->direction) { 1253 if (sk->proto == IPPROTO_TCP && 1254 si->src.state >= TCPS_FIN_WAIT_2 && 1255 si->dst.state >= TCPS_FIN_WAIT_2) { 1256 /* 1257 * New state matches an old >FIN_WAIT_2 1258 * state. We can't drop key hash locks, 1259 * thus we can't unlink it properly. 1260 * 1261 * As a workaround we drop it into 1262 * TCPS_CLOSED state, schedule purge 1263 * ASAP and push it into the very end 1264 * of the slot TAILQ, so that it won't 1265 * conflict with our new state. 1266 */ 1267 pf_set_protostate(si, PF_PEER_BOTH, 1268 TCPS_CLOSED); 1269 si->timeout = PFTM_PURGE; 1270 olds = si; 1271 } else { 1272 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1273 printf("pf: %s key attach " 1274 "failed on %s: ", 1275 (idx == PF_SK_WIRE) ? 1276 "wire" : "stack", 1277 s->kif->pfik_name); 1278 pf_print_state_parts(s, 1279 (idx == PF_SK_WIRE) ? 1280 sk : NULL, 1281 (idx == PF_SK_STACK) ? 1282 sk : NULL); 1283 printf(", existing: "); 1284 pf_print_state_parts(si, 1285 (idx == PF_SK_WIRE) ? 1286 sk : NULL, 1287 (idx == PF_SK_STACK) ? 1288 sk : NULL); 1289 printf("\n"); 1290 } 1291 PF_HASHROW_UNLOCK(ih); 1292 KEYS_UNLOCK(); 1293 uma_zfree(V_pf_state_key_z, sk); 1294 if (idx == PF_SK_STACK) 1295 pf_detach_state(s); 1296 return (EEXIST); /* collision! */ 1297 } 1298 } 1299 PF_HASHROW_UNLOCK(ih); 1300 } 1301 uma_zfree(V_pf_state_key_z, sk); 1302 s->key[idx] = cur; 1303 } else { 1304 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1305 s->key[idx] = sk; 1306 } 1307 1308 stateattach: 1309 /* List is sorted, if-bound states before floating. */ 1310 if (s->kif == V_pfi_all) 1311 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1312 else 1313 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1314 1315 if (olds) { 1316 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1317 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1318 key_list[idx]); 1319 olds = NULL; 1320 } 1321 1322 /* 1323 * Attach done. See how should we (or should not?) 1324 * attach a second key. 1325 */ 1326 if (sks == skw) { 1327 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1328 idx = PF_SK_STACK; 1329 sks = NULL; 1330 goto stateattach; 1331 } else if (sks != NULL) { 1332 /* 1333 * Continue attaching with stack key. 1334 */ 1335 sk = sks; 1336 kh = khs; 1337 idx = PF_SK_STACK; 1338 sks = NULL; 1339 goto keyattach; 1340 } 1341 1342 PF_STATE_LOCK(s); 1343 KEYS_UNLOCK(); 1344 1345 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1346 ("%s failure", __func__)); 1347 1348 return (0); 1349 #undef KEYS_UNLOCK 1350 } 1351 1352 static void 1353 pf_detach_state(struct pf_kstate *s) 1354 { 1355 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1356 struct pf_keyhash *kh; 1357 1358 if (sks != NULL) { 1359 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1360 PF_HASHROW_LOCK(kh); 1361 if (s->key[PF_SK_STACK] != NULL) 1362 pf_state_key_detach(s, PF_SK_STACK); 1363 /* 1364 * If both point to same key, then we are done. 1365 */ 1366 if (sks == s->key[PF_SK_WIRE]) { 1367 pf_state_key_detach(s, PF_SK_WIRE); 1368 PF_HASHROW_UNLOCK(kh); 1369 return; 1370 } 1371 PF_HASHROW_UNLOCK(kh); 1372 } 1373 1374 if (s->key[PF_SK_WIRE] != NULL) { 1375 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1376 PF_HASHROW_LOCK(kh); 1377 if (s->key[PF_SK_WIRE] != NULL) 1378 pf_state_key_detach(s, PF_SK_WIRE); 1379 PF_HASHROW_UNLOCK(kh); 1380 } 1381 } 1382 1383 static void 1384 pf_state_key_detach(struct pf_kstate *s, int idx) 1385 { 1386 struct pf_state_key *sk = s->key[idx]; 1387 #ifdef INVARIANTS 1388 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1389 1390 PF_HASHROW_ASSERT(kh); 1391 #endif 1392 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1393 s->key[idx] = NULL; 1394 1395 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1396 LIST_REMOVE(sk, entry); 1397 uma_zfree(V_pf_state_key_z, sk); 1398 } 1399 } 1400 1401 static int 1402 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1403 { 1404 struct pf_state_key *sk = mem; 1405 1406 bzero(sk, sizeof(struct pf_state_key_cmp)); 1407 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1408 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1409 1410 return (0); 1411 } 1412 1413 struct pf_state_key * 1414 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1415 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1416 { 1417 struct pf_state_key *sk; 1418 1419 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1420 if (sk == NULL) 1421 return (NULL); 1422 1423 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1424 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1425 sk->port[pd->sidx] = sport; 1426 sk->port[pd->didx] = dport; 1427 sk->proto = pd->proto; 1428 sk->af = pd->af; 1429 1430 return (sk); 1431 } 1432 1433 struct pf_state_key * 1434 pf_state_key_clone(struct pf_state_key *orig) 1435 { 1436 struct pf_state_key *sk; 1437 1438 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1439 if (sk == NULL) 1440 return (NULL); 1441 1442 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1443 1444 return (sk); 1445 } 1446 1447 int 1448 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1449 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1450 { 1451 struct pf_idhash *ih; 1452 struct pf_kstate *cur; 1453 int error; 1454 1455 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1456 ("%s: sks not pristine", __func__)); 1457 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1458 ("%s: skw not pristine", __func__)); 1459 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1460 1461 s->kif = kif; 1462 s->orig_kif = orig_kif; 1463 1464 if (s->id == 0 && s->creatorid == 0) { 1465 s->id = alloc_unr64(&V_pf_stateid); 1466 s->id = htobe64(s->id); 1467 s->creatorid = V_pf_status.hostid; 1468 } 1469 1470 /* Returns with ID locked on success. */ 1471 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1472 return (error); 1473 1474 ih = &V_pf_idhash[PF_IDHASH(s)]; 1475 PF_HASHROW_ASSERT(ih); 1476 LIST_FOREACH(cur, &ih->states, entry) 1477 if (cur->id == s->id && cur->creatorid == s->creatorid) 1478 break; 1479 1480 if (cur != NULL) { 1481 PF_HASHROW_UNLOCK(ih); 1482 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1483 printf("pf: state ID collision: " 1484 "id: %016llx creatorid: %08x\n", 1485 (unsigned long long)be64toh(s->id), 1486 ntohl(s->creatorid)); 1487 } 1488 pf_detach_state(s); 1489 return (EEXIST); 1490 } 1491 LIST_INSERT_HEAD(&ih->states, s, entry); 1492 /* One for keys, one for ID hash. */ 1493 refcount_init(&s->refs, 2); 1494 1495 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1496 if (V_pfsync_insert_state_ptr != NULL) 1497 V_pfsync_insert_state_ptr(s); 1498 1499 /* Returns locked. */ 1500 return (0); 1501 } 1502 1503 /* 1504 * Find state by ID: returns with locked row on success. 1505 */ 1506 struct pf_kstate * 1507 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1508 { 1509 struct pf_idhash *ih; 1510 struct pf_kstate *s; 1511 1512 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1513 1514 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1515 1516 PF_HASHROW_LOCK(ih); 1517 LIST_FOREACH(s, &ih->states, entry) 1518 if (s->id == id && s->creatorid == creatorid) 1519 break; 1520 1521 if (s == NULL) 1522 PF_HASHROW_UNLOCK(ih); 1523 1524 return (s); 1525 } 1526 1527 /* 1528 * Find state by key. 1529 * Returns with ID hash slot locked on success. 1530 */ 1531 static struct pf_kstate * 1532 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1533 { 1534 struct pf_keyhash *kh; 1535 struct pf_state_key *sk; 1536 struct pf_kstate *s; 1537 int idx; 1538 1539 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1540 1541 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1542 1543 PF_HASHROW_LOCK(kh); 1544 LIST_FOREACH(sk, &kh->keys, entry) 1545 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1546 break; 1547 if (sk == NULL) { 1548 PF_HASHROW_UNLOCK(kh); 1549 return (NULL); 1550 } 1551 1552 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1553 1554 /* List is sorted, if-bound states before floating ones. */ 1555 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1556 if (s->kif == V_pfi_all || s->kif == kif) { 1557 PF_STATE_LOCK(s); 1558 PF_HASHROW_UNLOCK(kh); 1559 if (__predict_false(s->timeout >= PFTM_MAX)) { 1560 /* 1561 * State is either being processed by 1562 * pf_unlink_state() in an other thread, or 1563 * is scheduled for immediate expiry. 1564 */ 1565 PF_STATE_UNLOCK(s); 1566 return (NULL); 1567 } 1568 return (s); 1569 } 1570 PF_HASHROW_UNLOCK(kh); 1571 1572 return (NULL); 1573 } 1574 1575 /* 1576 * Returns with ID hash slot locked on success. 1577 */ 1578 struct pf_kstate * 1579 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1580 { 1581 struct pf_keyhash *kh; 1582 struct pf_state_key *sk; 1583 struct pf_kstate *s, *ret = NULL; 1584 int idx, inout = 0; 1585 1586 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1587 1588 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1589 1590 PF_HASHROW_LOCK(kh); 1591 LIST_FOREACH(sk, &kh->keys, entry) 1592 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1593 break; 1594 if (sk == NULL) { 1595 PF_HASHROW_UNLOCK(kh); 1596 return (NULL); 1597 } 1598 switch (dir) { 1599 case PF_IN: 1600 idx = PF_SK_WIRE; 1601 break; 1602 case PF_OUT: 1603 idx = PF_SK_STACK; 1604 break; 1605 case PF_INOUT: 1606 idx = PF_SK_WIRE; 1607 inout = 1; 1608 break; 1609 default: 1610 panic("%s: dir %u", __func__, dir); 1611 } 1612 second_run: 1613 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1614 if (more == NULL) { 1615 PF_STATE_LOCK(s); 1616 PF_HASHROW_UNLOCK(kh); 1617 return (s); 1618 } 1619 1620 if (ret) 1621 (*more)++; 1622 else { 1623 ret = s; 1624 PF_STATE_LOCK(s); 1625 } 1626 } 1627 if (inout == 1) { 1628 inout = 0; 1629 idx = PF_SK_STACK; 1630 goto second_run; 1631 } 1632 PF_HASHROW_UNLOCK(kh); 1633 1634 return (ret); 1635 } 1636 1637 /* 1638 * FIXME 1639 * This routine is inefficient -- locks the state only to unlock immediately on 1640 * return. 1641 * It is racy -- after the state is unlocked nothing stops other threads from 1642 * removing it. 1643 */ 1644 bool 1645 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1646 { 1647 struct pf_kstate *s; 1648 1649 s = pf_find_state_all(key, dir, NULL); 1650 if (s != NULL) { 1651 PF_STATE_UNLOCK(s); 1652 return (true); 1653 } 1654 return (false); 1655 } 1656 1657 /* END state table stuff */ 1658 1659 static void 1660 pf_send(struct pf_send_entry *pfse) 1661 { 1662 1663 PF_SENDQ_LOCK(); 1664 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1665 PF_SENDQ_UNLOCK(); 1666 swi_sched(V_pf_swi_cookie, 0); 1667 } 1668 1669 static bool 1670 pf_isforlocal(struct mbuf *m, int af) 1671 { 1672 switch (af) { 1673 #ifdef INET 1674 case AF_INET: { 1675 struct ip *ip = mtod(m, struct ip *); 1676 1677 return (in_localip(ip->ip_dst)); 1678 } 1679 #endif 1680 #ifdef INET6 1681 case AF_INET6: { 1682 struct ip6_hdr *ip6; 1683 struct in6_ifaddr *ia; 1684 ip6 = mtod(m, struct ip6_hdr *); 1685 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1686 if (ia == NULL) 1687 return (false); 1688 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1689 } 1690 #endif 1691 default: 1692 panic("Unsupported af %d", af); 1693 } 1694 1695 return (false); 1696 } 1697 1698 void 1699 pf_intr(void *v) 1700 { 1701 struct epoch_tracker et; 1702 struct pf_send_head queue; 1703 struct pf_send_entry *pfse, *next; 1704 1705 CURVNET_SET((struct vnet *)v); 1706 1707 PF_SENDQ_LOCK(); 1708 queue = V_pf_sendqueue; 1709 STAILQ_INIT(&V_pf_sendqueue); 1710 PF_SENDQ_UNLOCK(); 1711 1712 NET_EPOCH_ENTER(et); 1713 1714 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1715 switch (pfse->pfse_type) { 1716 #ifdef INET 1717 case PFSE_IP: { 1718 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1719 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1720 pfse->pfse_m->m_pkthdr.csum_flags |= 1721 CSUM_IP_VALID | CSUM_IP_CHECKED; 1722 ip_input(pfse->pfse_m); 1723 } else { 1724 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1725 NULL); 1726 } 1727 break; 1728 } 1729 case PFSE_ICMP: 1730 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1731 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1732 break; 1733 #endif /* INET */ 1734 #ifdef INET6 1735 case PFSE_IP6: 1736 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1737 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1738 ip6_input(pfse->pfse_m); 1739 } else { 1740 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1741 NULL, NULL); 1742 } 1743 break; 1744 case PFSE_ICMP6: 1745 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1746 pfse->icmpopts.code, pfse->icmpopts.mtu); 1747 break; 1748 #endif /* INET6 */ 1749 default: 1750 panic("%s: unknown type", __func__); 1751 } 1752 free(pfse, M_PFTEMP); 1753 } 1754 NET_EPOCH_EXIT(et); 1755 CURVNET_RESTORE(); 1756 } 1757 1758 #define pf_purge_thread_period (hz / 10) 1759 1760 #ifdef PF_WANT_32_TO_64_COUNTER 1761 static void 1762 pf_status_counter_u64_periodic(void) 1763 { 1764 1765 PF_RULES_RASSERT(); 1766 1767 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1768 return; 1769 } 1770 1771 for (int i = 0; i < FCNT_MAX; i++) { 1772 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1773 } 1774 } 1775 1776 static void 1777 pf_kif_counter_u64_periodic(void) 1778 { 1779 struct pfi_kkif *kif; 1780 size_t r, run; 1781 1782 PF_RULES_RASSERT(); 1783 1784 if (__predict_false(V_pf_allkifcount == 0)) { 1785 return; 1786 } 1787 1788 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1789 return; 1790 } 1791 1792 run = V_pf_allkifcount / 10; 1793 if (run < 5) 1794 run = 5; 1795 1796 for (r = 0; r < run; r++) { 1797 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1798 if (kif == NULL) { 1799 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1800 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1801 break; 1802 } 1803 1804 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1805 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1806 1807 for (int i = 0; i < 2; i++) { 1808 for (int j = 0; j < 2; j++) { 1809 for (int k = 0; k < 2; k++) { 1810 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1811 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1812 } 1813 } 1814 } 1815 } 1816 } 1817 1818 static void 1819 pf_rule_counter_u64_periodic(void) 1820 { 1821 struct pf_krule *rule; 1822 size_t r, run; 1823 1824 PF_RULES_RASSERT(); 1825 1826 if (__predict_false(V_pf_allrulecount == 0)) { 1827 return; 1828 } 1829 1830 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1831 return; 1832 } 1833 1834 run = V_pf_allrulecount / 10; 1835 if (run < 5) 1836 run = 5; 1837 1838 for (r = 0; r < run; r++) { 1839 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1840 if (rule == NULL) { 1841 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1842 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1843 break; 1844 } 1845 1846 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1847 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1848 1849 pf_counter_u64_periodic(&rule->evaluations); 1850 for (int i = 0; i < 2; i++) { 1851 pf_counter_u64_periodic(&rule->packets[i]); 1852 pf_counter_u64_periodic(&rule->bytes[i]); 1853 } 1854 } 1855 } 1856 1857 static void 1858 pf_counter_u64_periodic_main(void) 1859 { 1860 PF_RULES_RLOCK_TRACKER; 1861 1862 V_pf_counter_periodic_iter++; 1863 1864 PF_RULES_RLOCK(); 1865 pf_counter_u64_critical_enter(); 1866 pf_status_counter_u64_periodic(); 1867 pf_kif_counter_u64_periodic(); 1868 pf_rule_counter_u64_periodic(); 1869 pf_counter_u64_critical_exit(); 1870 PF_RULES_RUNLOCK(); 1871 } 1872 #else 1873 #define pf_counter_u64_periodic_main() do { } while (0) 1874 #endif 1875 1876 void 1877 pf_purge_thread(void *unused __unused) 1878 { 1879 VNET_ITERATOR_DECL(vnet_iter); 1880 1881 sx_xlock(&pf_end_lock); 1882 while (pf_end_threads == 0) { 1883 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1884 1885 VNET_LIST_RLOCK(); 1886 VNET_FOREACH(vnet_iter) { 1887 CURVNET_SET(vnet_iter); 1888 1889 /* Wait until V_pf_default_rule is initialized. */ 1890 if (V_pf_vnet_active == 0) { 1891 CURVNET_RESTORE(); 1892 continue; 1893 } 1894 1895 pf_counter_u64_periodic_main(); 1896 1897 /* 1898 * Process 1/interval fraction of the state 1899 * table every run. 1900 */ 1901 V_pf_purge_idx = 1902 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1903 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1904 1905 /* 1906 * Purge other expired types every 1907 * PFTM_INTERVAL seconds. 1908 */ 1909 if (V_pf_purge_idx == 0) { 1910 /* 1911 * Order is important: 1912 * - states and src nodes reference rules 1913 * - states and rules reference kifs 1914 */ 1915 pf_purge_expired_fragments(); 1916 pf_purge_expired_src_nodes(); 1917 pf_purge_unlinked_rules(); 1918 pfi_kkif_purge(); 1919 } 1920 CURVNET_RESTORE(); 1921 } 1922 VNET_LIST_RUNLOCK(); 1923 } 1924 1925 pf_end_threads++; 1926 sx_xunlock(&pf_end_lock); 1927 kproc_exit(0); 1928 } 1929 1930 void 1931 pf_unload_vnet_purge(void) 1932 { 1933 1934 /* 1935 * To cleanse up all kifs and rules we need 1936 * two runs: first one clears reference flags, 1937 * then pf_purge_expired_states() doesn't 1938 * raise them, and then second run frees. 1939 */ 1940 pf_purge_unlinked_rules(); 1941 pfi_kkif_purge(); 1942 1943 /* 1944 * Now purge everything. 1945 */ 1946 pf_purge_expired_states(0, pf_hashmask); 1947 pf_purge_fragments(UINT_MAX); 1948 pf_purge_expired_src_nodes(); 1949 1950 /* 1951 * Now all kifs & rules should be unreferenced, 1952 * thus should be successfully freed. 1953 */ 1954 pf_purge_unlinked_rules(); 1955 pfi_kkif_purge(); 1956 } 1957 1958 u_int32_t 1959 pf_state_expires(const struct pf_kstate *state) 1960 { 1961 u_int32_t timeout; 1962 u_int32_t start; 1963 u_int32_t end; 1964 u_int32_t states; 1965 1966 /* handle all PFTM_* > PFTM_MAX here */ 1967 if (state->timeout == PFTM_PURGE) 1968 return (time_uptime); 1969 KASSERT(state->timeout != PFTM_UNLINKED, 1970 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1971 KASSERT((state->timeout < PFTM_MAX), 1972 ("pf_state_expires: timeout > PFTM_MAX")); 1973 timeout = state->rule.ptr->timeout[state->timeout]; 1974 if (!timeout) 1975 timeout = V_pf_default_rule.timeout[state->timeout]; 1976 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1977 if (start && state->rule.ptr != &V_pf_default_rule) { 1978 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1979 states = counter_u64_fetch(state->rule.ptr->states_cur); 1980 } else { 1981 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1982 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1983 states = V_pf_status.states; 1984 } 1985 if (end && states > start && start < end) { 1986 if (states < end) { 1987 timeout = (u_int64_t)timeout * (end - states) / 1988 (end - start); 1989 return (state->expire + timeout); 1990 } 1991 else 1992 return (time_uptime); 1993 } 1994 return (state->expire + timeout); 1995 } 1996 1997 void 1998 pf_purge_expired_src_nodes(void) 1999 { 2000 struct pf_ksrc_node_list freelist; 2001 struct pf_srchash *sh; 2002 struct pf_ksrc_node *cur, *next; 2003 int i; 2004 2005 LIST_INIT(&freelist); 2006 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 2007 PF_HASHROW_LOCK(sh); 2008 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2009 if (cur->states == 0 && cur->expire <= time_uptime) { 2010 pf_unlink_src_node(cur); 2011 LIST_INSERT_HEAD(&freelist, cur, entry); 2012 } else if (cur->rule.ptr != NULL) 2013 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2014 PF_HASHROW_UNLOCK(sh); 2015 } 2016 2017 pf_free_src_nodes(&freelist); 2018 2019 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2020 } 2021 2022 static void 2023 pf_src_tree_remove_state(struct pf_kstate *s) 2024 { 2025 struct pf_ksrc_node *sn; 2026 uint32_t timeout; 2027 2028 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2029 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2030 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2031 2032 if (s->src_node != NULL) { 2033 sn = s->src_node; 2034 PF_SRC_NODE_LOCK(sn); 2035 if (s->src.tcp_est) 2036 --sn->conn; 2037 if (--sn->states == 0) 2038 sn->expire = time_uptime + timeout; 2039 PF_SRC_NODE_UNLOCK(sn); 2040 } 2041 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2042 sn = s->nat_src_node; 2043 PF_SRC_NODE_LOCK(sn); 2044 if (--sn->states == 0) 2045 sn->expire = time_uptime + timeout; 2046 PF_SRC_NODE_UNLOCK(sn); 2047 } 2048 s->src_node = s->nat_src_node = NULL; 2049 } 2050 2051 /* 2052 * Unlink and potentilly free a state. Function may be 2053 * called with ID hash row locked, but always returns 2054 * unlocked, since it needs to go through key hash locking. 2055 */ 2056 int 2057 pf_unlink_state(struct pf_kstate *s) 2058 { 2059 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2060 2061 PF_HASHROW_ASSERT(ih); 2062 2063 if (s->timeout == PFTM_UNLINKED) { 2064 /* 2065 * State is being processed 2066 * by pf_unlink_state() in 2067 * an other thread. 2068 */ 2069 PF_HASHROW_UNLOCK(ih); 2070 return (0); /* XXXGL: undefined actually */ 2071 } 2072 2073 if (s->src.state == PF_TCPS_PROXY_DST) { 2074 /* XXX wire key the right one? */ 2075 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2076 &s->key[PF_SK_WIRE]->addr[1], 2077 &s->key[PF_SK_WIRE]->addr[0], 2078 s->key[PF_SK_WIRE]->port[1], 2079 s->key[PF_SK_WIRE]->port[0], 2080 s->src.seqhi, s->src.seqlo + 1, 2081 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2082 } 2083 2084 LIST_REMOVE(s, entry); 2085 pf_src_tree_remove_state(s); 2086 2087 if (V_pfsync_delete_state_ptr != NULL) 2088 V_pfsync_delete_state_ptr(s); 2089 2090 STATE_DEC_COUNTERS(s); 2091 2092 s->timeout = PFTM_UNLINKED; 2093 2094 /* Ensure we remove it from the list of halfopen states, if needed. */ 2095 if (s->key[PF_SK_STACK] != NULL && 2096 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2097 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2098 2099 PF_HASHROW_UNLOCK(ih); 2100 2101 pf_detach_state(s); 2102 /* pf_state_insert() initialises refs to 2 */ 2103 return (pf_release_staten(s, 2)); 2104 } 2105 2106 struct pf_kstate * 2107 pf_alloc_state(int flags) 2108 { 2109 2110 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2111 } 2112 2113 void 2114 pf_free_state(struct pf_kstate *cur) 2115 { 2116 struct pf_krule_item *ri; 2117 2118 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2119 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2120 cur->timeout)); 2121 2122 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2123 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2124 free(ri, M_PF_RULE_ITEM); 2125 } 2126 2127 pf_normalize_tcp_cleanup(cur); 2128 uma_zfree(V_pf_state_z, cur); 2129 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2130 } 2131 2132 /* 2133 * Called only from pf_purge_thread(), thus serialized. 2134 */ 2135 static u_int 2136 pf_purge_expired_states(u_int i, int maxcheck) 2137 { 2138 struct pf_idhash *ih; 2139 struct pf_kstate *s; 2140 struct pf_krule_item *mrm; 2141 2142 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2143 2144 /* 2145 * Go through hash and unlink states that expire now. 2146 */ 2147 while (maxcheck > 0) { 2148 ih = &V_pf_idhash[i]; 2149 2150 /* only take the lock if we expect to do work */ 2151 if (!LIST_EMPTY(&ih->states)) { 2152 relock: 2153 PF_HASHROW_LOCK(ih); 2154 LIST_FOREACH(s, &ih->states, entry) { 2155 if (pf_state_expires(s) <= time_uptime) { 2156 V_pf_status.states -= 2157 pf_unlink_state(s); 2158 goto relock; 2159 } 2160 s->rule.ptr->rule_ref |= PFRULE_REFS; 2161 if (s->nat_rule.ptr != NULL) 2162 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2163 if (s->anchor.ptr != NULL) 2164 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2165 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2166 SLIST_FOREACH(mrm, &s->match_rules, entry) 2167 mrm->r->rule_ref |= PFRULE_REFS; 2168 if (s->rt_kif) 2169 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2170 } 2171 PF_HASHROW_UNLOCK(ih); 2172 } 2173 2174 /* Return when we hit end of hash. */ 2175 if (++i > pf_hashmask) { 2176 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2177 return (0); 2178 } 2179 2180 maxcheck--; 2181 } 2182 2183 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2184 2185 return (i); 2186 } 2187 2188 static void 2189 pf_purge_unlinked_rules(void) 2190 { 2191 struct pf_krulequeue tmpq; 2192 struct pf_krule *r, *r1; 2193 2194 /* 2195 * If we have overloading task pending, then we'd 2196 * better skip purging this time. There is a tiny 2197 * probability that overloading task references 2198 * an already unlinked rule. 2199 */ 2200 PF_OVERLOADQ_LOCK(); 2201 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2202 PF_OVERLOADQ_UNLOCK(); 2203 return; 2204 } 2205 PF_OVERLOADQ_UNLOCK(); 2206 2207 /* 2208 * Do naive mark-and-sweep garbage collecting of old rules. 2209 * Reference flag is raised by pf_purge_expired_states() 2210 * and pf_purge_expired_src_nodes(). 2211 * 2212 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2213 * use a temporary queue. 2214 */ 2215 TAILQ_INIT(&tmpq); 2216 PF_UNLNKDRULES_LOCK(); 2217 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2218 if (!(r->rule_ref & PFRULE_REFS)) { 2219 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2220 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2221 } else 2222 r->rule_ref &= ~PFRULE_REFS; 2223 } 2224 PF_UNLNKDRULES_UNLOCK(); 2225 2226 if (!TAILQ_EMPTY(&tmpq)) { 2227 PF_CONFIG_LOCK(); 2228 PF_RULES_WLOCK(); 2229 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2230 TAILQ_REMOVE(&tmpq, r, entries); 2231 pf_free_rule(r); 2232 } 2233 PF_RULES_WUNLOCK(); 2234 PF_CONFIG_UNLOCK(); 2235 } 2236 } 2237 2238 void 2239 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2240 { 2241 switch (af) { 2242 #ifdef INET 2243 case AF_INET: { 2244 u_int32_t a = ntohl(addr->addr32[0]); 2245 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2246 (a>>8)&255, a&255); 2247 if (p) { 2248 p = ntohs(p); 2249 printf(":%u", p); 2250 } 2251 break; 2252 } 2253 #endif /* INET */ 2254 #ifdef INET6 2255 case AF_INET6: { 2256 u_int16_t b; 2257 u_int8_t i, curstart, curend, maxstart, maxend; 2258 curstart = curend = maxstart = maxend = 255; 2259 for (i = 0; i < 8; i++) { 2260 if (!addr->addr16[i]) { 2261 if (curstart == 255) 2262 curstart = i; 2263 curend = i; 2264 } else { 2265 if ((curend - curstart) > 2266 (maxend - maxstart)) { 2267 maxstart = curstart; 2268 maxend = curend; 2269 } 2270 curstart = curend = 255; 2271 } 2272 } 2273 if ((curend - curstart) > 2274 (maxend - maxstart)) { 2275 maxstart = curstart; 2276 maxend = curend; 2277 } 2278 for (i = 0; i < 8; i++) { 2279 if (i >= maxstart && i <= maxend) { 2280 if (i == 0) 2281 printf(":"); 2282 if (i == maxend) 2283 printf(":"); 2284 } else { 2285 b = ntohs(addr->addr16[i]); 2286 printf("%x", b); 2287 if (i < 7) 2288 printf(":"); 2289 } 2290 } 2291 if (p) { 2292 p = ntohs(p); 2293 printf("[%u]", p); 2294 } 2295 break; 2296 } 2297 #endif /* INET6 */ 2298 } 2299 } 2300 2301 void 2302 pf_print_state(struct pf_kstate *s) 2303 { 2304 pf_print_state_parts(s, NULL, NULL); 2305 } 2306 2307 static void 2308 pf_print_state_parts(struct pf_kstate *s, 2309 struct pf_state_key *skwp, struct pf_state_key *sksp) 2310 { 2311 struct pf_state_key *skw, *sks; 2312 u_int8_t proto, dir; 2313 2314 /* Do our best to fill these, but they're skipped if NULL */ 2315 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2316 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2317 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2318 dir = s ? s->direction : 0; 2319 2320 switch (proto) { 2321 case IPPROTO_IPV4: 2322 printf("IPv4"); 2323 break; 2324 case IPPROTO_IPV6: 2325 printf("IPv6"); 2326 break; 2327 case IPPROTO_TCP: 2328 printf("TCP"); 2329 break; 2330 case IPPROTO_UDP: 2331 printf("UDP"); 2332 break; 2333 case IPPROTO_ICMP: 2334 printf("ICMP"); 2335 break; 2336 case IPPROTO_ICMPV6: 2337 printf("ICMPv6"); 2338 break; 2339 default: 2340 printf("%u", proto); 2341 break; 2342 } 2343 switch (dir) { 2344 case PF_IN: 2345 printf(" in"); 2346 break; 2347 case PF_OUT: 2348 printf(" out"); 2349 break; 2350 } 2351 if (skw) { 2352 printf(" wire: "); 2353 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2354 printf(" "); 2355 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2356 } 2357 if (sks) { 2358 printf(" stack: "); 2359 if (sks != skw) { 2360 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2361 printf(" "); 2362 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2363 } else 2364 printf("-"); 2365 } 2366 if (s) { 2367 if (proto == IPPROTO_TCP) { 2368 printf(" [lo=%u high=%u win=%u modulator=%u", 2369 s->src.seqlo, s->src.seqhi, 2370 s->src.max_win, s->src.seqdiff); 2371 if (s->src.wscale && s->dst.wscale) 2372 printf(" wscale=%u", 2373 s->src.wscale & PF_WSCALE_MASK); 2374 printf("]"); 2375 printf(" [lo=%u high=%u win=%u modulator=%u", 2376 s->dst.seqlo, s->dst.seqhi, 2377 s->dst.max_win, s->dst.seqdiff); 2378 if (s->src.wscale && s->dst.wscale) 2379 printf(" wscale=%u", 2380 s->dst.wscale & PF_WSCALE_MASK); 2381 printf("]"); 2382 } 2383 printf(" %u:%u", s->src.state, s->dst.state); 2384 } 2385 } 2386 2387 void 2388 pf_print_flags(u_int8_t f) 2389 { 2390 if (f) 2391 printf(" "); 2392 if (f & TH_FIN) 2393 printf("F"); 2394 if (f & TH_SYN) 2395 printf("S"); 2396 if (f & TH_RST) 2397 printf("R"); 2398 if (f & TH_PUSH) 2399 printf("P"); 2400 if (f & TH_ACK) 2401 printf("A"); 2402 if (f & TH_URG) 2403 printf("U"); 2404 if (f & TH_ECE) 2405 printf("E"); 2406 if (f & TH_CWR) 2407 printf("W"); 2408 } 2409 2410 #define PF_SET_SKIP_STEPS(i) \ 2411 do { \ 2412 while (head[i] != cur) { \ 2413 head[i]->skip[i].ptr = cur; \ 2414 head[i] = TAILQ_NEXT(head[i], entries); \ 2415 } \ 2416 } while (0) 2417 2418 void 2419 pf_calc_skip_steps(struct pf_krulequeue *rules) 2420 { 2421 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2422 int i; 2423 2424 cur = TAILQ_FIRST(rules); 2425 prev = cur; 2426 for (i = 0; i < PF_SKIP_COUNT; ++i) 2427 head[i] = cur; 2428 while (cur != NULL) { 2429 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2430 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2431 if (cur->direction != prev->direction) 2432 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2433 if (cur->af != prev->af) 2434 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2435 if (cur->proto != prev->proto) 2436 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2437 if (cur->src.neg != prev->src.neg || 2438 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2439 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2440 if (cur->src.port[0] != prev->src.port[0] || 2441 cur->src.port[1] != prev->src.port[1] || 2442 cur->src.port_op != prev->src.port_op) 2443 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2444 if (cur->dst.neg != prev->dst.neg || 2445 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2446 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2447 if (cur->dst.port[0] != prev->dst.port[0] || 2448 cur->dst.port[1] != prev->dst.port[1] || 2449 cur->dst.port_op != prev->dst.port_op) 2450 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2451 2452 prev = cur; 2453 cur = TAILQ_NEXT(cur, entries); 2454 } 2455 for (i = 0; i < PF_SKIP_COUNT; ++i) 2456 PF_SET_SKIP_STEPS(i); 2457 } 2458 2459 int 2460 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2461 { 2462 if (aw1->type != aw2->type) 2463 return (1); 2464 switch (aw1->type) { 2465 case PF_ADDR_ADDRMASK: 2466 case PF_ADDR_RANGE: 2467 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2468 return (1); 2469 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2470 return (1); 2471 return (0); 2472 case PF_ADDR_DYNIFTL: 2473 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2474 case PF_ADDR_NOROUTE: 2475 case PF_ADDR_URPFFAILED: 2476 return (0); 2477 case PF_ADDR_TABLE: 2478 return (aw1->p.tbl != aw2->p.tbl); 2479 default: 2480 printf("invalid address type: %d\n", aw1->type); 2481 return (1); 2482 } 2483 } 2484 2485 /** 2486 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2487 * header isn't always a full checksum. In some cases (i.e. output) it's a 2488 * pseudo-header checksum, which is a partial checksum over src/dst IP 2489 * addresses, protocol number and length. 2490 * 2491 * That means we have the following cases: 2492 * * Input or forwarding: we don't have TSO, the checksum fields are full 2493 * checksums, we need to update the checksum whenever we change anything. 2494 * * Output (i.e. the checksum is a pseudo-header checksum): 2495 * x The field being updated is src/dst address or affects the length of 2496 * the packet. We need to update the pseudo-header checksum (note that this 2497 * checksum is not ones' complement). 2498 * x Some other field is being modified (e.g. src/dst port numbers): We 2499 * don't have to update anything. 2500 **/ 2501 u_int16_t 2502 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2503 { 2504 u_int32_t x; 2505 2506 x = cksum + old - new; 2507 x = (x + (x >> 16)) & 0xffff; 2508 2509 /* optimise: eliminate a branch when not udp */ 2510 if (udp && cksum == 0x0000) 2511 return cksum; 2512 if (udp && x == 0x0000) 2513 x = 0xffff; 2514 2515 return (u_int16_t)(x); 2516 } 2517 2518 static void 2519 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2520 u_int8_t udp) 2521 { 2522 u_int16_t old = htons(hi ? (*f << 8) : *f); 2523 u_int16_t new = htons(hi ? ( v << 8) : v); 2524 2525 if (*f == v) 2526 return; 2527 2528 *f = v; 2529 2530 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2531 return; 2532 2533 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2534 } 2535 2536 void 2537 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2538 bool hi, u_int8_t udp) 2539 { 2540 u_int8_t *fb = (u_int8_t *)f; 2541 u_int8_t *vb = (u_int8_t *)&v; 2542 2543 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2544 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2545 } 2546 2547 void 2548 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2549 bool hi, u_int8_t udp) 2550 { 2551 u_int8_t *fb = (u_int8_t *)f; 2552 u_int8_t *vb = (u_int8_t *)&v; 2553 2554 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2555 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2556 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2557 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2558 } 2559 2560 u_int16_t 2561 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2562 u_int16_t new, u_int8_t udp) 2563 { 2564 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2565 return (cksum); 2566 2567 return (pf_cksum_fixup(cksum, old, new, udp)); 2568 } 2569 2570 static void 2571 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2572 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2573 sa_family_t af) 2574 { 2575 struct pf_addr ao; 2576 u_int16_t po = *p; 2577 2578 PF_ACPY(&ao, a, af); 2579 PF_ACPY(a, an, af); 2580 2581 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2582 *pc = ~*pc; 2583 2584 *p = pn; 2585 2586 switch (af) { 2587 #ifdef INET 2588 case AF_INET: 2589 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2590 ao.addr16[0], an->addr16[0], 0), 2591 ao.addr16[1], an->addr16[1], 0); 2592 *p = pn; 2593 2594 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2595 ao.addr16[0], an->addr16[0], u), 2596 ao.addr16[1], an->addr16[1], u); 2597 2598 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2599 break; 2600 #endif /* INET */ 2601 #ifdef INET6 2602 case AF_INET6: 2603 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2604 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2605 pf_cksum_fixup(pf_cksum_fixup(*pc, 2606 ao.addr16[0], an->addr16[0], u), 2607 ao.addr16[1], an->addr16[1], u), 2608 ao.addr16[2], an->addr16[2], u), 2609 ao.addr16[3], an->addr16[3], u), 2610 ao.addr16[4], an->addr16[4], u), 2611 ao.addr16[5], an->addr16[5], u), 2612 ao.addr16[6], an->addr16[6], u), 2613 ao.addr16[7], an->addr16[7], u); 2614 2615 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2616 break; 2617 #endif /* INET6 */ 2618 } 2619 2620 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2621 CSUM_DELAY_DATA_IPV6)) { 2622 *pc = ~*pc; 2623 if (! *pc) 2624 *pc = 0xffff; 2625 } 2626 } 2627 2628 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2629 void 2630 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2631 { 2632 u_int32_t ao; 2633 2634 memcpy(&ao, a, sizeof(ao)); 2635 memcpy(a, &an, sizeof(u_int32_t)); 2636 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2637 ao % 65536, an % 65536, u); 2638 } 2639 2640 void 2641 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2642 { 2643 u_int32_t ao; 2644 2645 memcpy(&ao, a, sizeof(ao)); 2646 memcpy(a, &an, sizeof(u_int32_t)); 2647 2648 *c = pf_proto_cksum_fixup(m, 2649 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2650 ao % 65536, an % 65536, udp); 2651 } 2652 2653 #ifdef INET6 2654 static void 2655 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2656 { 2657 struct pf_addr ao; 2658 2659 PF_ACPY(&ao, a, AF_INET6); 2660 PF_ACPY(a, an, AF_INET6); 2661 2662 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2663 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2664 pf_cksum_fixup(pf_cksum_fixup(*c, 2665 ao.addr16[0], an->addr16[0], u), 2666 ao.addr16[1], an->addr16[1], u), 2667 ao.addr16[2], an->addr16[2], u), 2668 ao.addr16[3], an->addr16[3], u), 2669 ao.addr16[4], an->addr16[4], u), 2670 ao.addr16[5], an->addr16[5], u), 2671 ao.addr16[6], an->addr16[6], u), 2672 ao.addr16[7], an->addr16[7], u); 2673 } 2674 #endif /* INET6 */ 2675 2676 static void 2677 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2678 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2679 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2680 { 2681 struct pf_addr oia, ooa; 2682 2683 PF_ACPY(&oia, ia, af); 2684 if (oa) 2685 PF_ACPY(&ooa, oa, af); 2686 2687 /* Change inner protocol port, fix inner protocol checksum. */ 2688 if (ip != NULL) { 2689 u_int16_t oip = *ip; 2690 u_int32_t opc; 2691 2692 if (pc != NULL) 2693 opc = *pc; 2694 *ip = np; 2695 if (pc != NULL) 2696 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2697 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2698 if (pc != NULL) 2699 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2700 } 2701 /* Change inner ip address, fix inner ip and icmp checksums. */ 2702 PF_ACPY(ia, na, af); 2703 switch (af) { 2704 #ifdef INET 2705 case AF_INET: { 2706 u_int32_t oh2c = *h2c; 2707 2708 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2709 oia.addr16[0], ia->addr16[0], 0), 2710 oia.addr16[1], ia->addr16[1], 0); 2711 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2712 oia.addr16[0], ia->addr16[0], 0), 2713 oia.addr16[1], ia->addr16[1], 0); 2714 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2715 break; 2716 } 2717 #endif /* INET */ 2718 #ifdef INET6 2719 case AF_INET6: 2720 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2721 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2722 pf_cksum_fixup(pf_cksum_fixup(*ic, 2723 oia.addr16[0], ia->addr16[0], u), 2724 oia.addr16[1], ia->addr16[1], u), 2725 oia.addr16[2], ia->addr16[2], u), 2726 oia.addr16[3], ia->addr16[3], u), 2727 oia.addr16[4], ia->addr16[4], u), 2728 oia.addr16[5], ia->addr16[5], u), 2729 oia.addr16[6], ia->addr16[6], u), 2730 oia.addr16[7], ia->addr16[7], u); 2731 break; 2732 #endif /* INET6 */ 2733 } 2734 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2735 if (oa) { 2736 PF_ACPY(oa, na, af); 2737 switch (af) { 2738 #ifdef INET 2739 case AF_INET: 2740 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2741 ooa.addr16[0], oa->addr16[0], 0), 2742 ooa.addr16[1], oa->addr16[1], 0); 2743 break; 2744 #endif /* INET */ 2745 #ifdef INET6 2746 case AF_INET6: 2747 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2748 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2749 pf_cksum_fixup(pf_cksum_fixup(*ic, 2750 ooa.addr16[0], oa->addr16[0], u), 2751 ooa.addr16[1], oa->addr16[1], u), 2752 ooa.addr16[2], oa->addr16[2], u), 2753 ooa.addr16[3], oa->addr16[3], u), 2754 ooa.addr16[4], oa->addr16[4], u), 2755 ooa.addr16[5], oa->addr16[5], u), 2756 ooa.addr16[6], oa->addr16[6], u), 2757 ooa.addr16[7], oa->addr16[7], u); 2758 break; 2759 #endif /* INET6 */ 2760 } 2761 } 2762 } 2763 2764 /* 2765 * Need to modulate the sequence numbers in the TCP SACK option 2766 * (credits to Krzysztof Pfaff for report and patch) 2767 */ 2768 static int 2769 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2770 struct tcphdr *th, struct pf_state_peer *dst) 2771 { 2772 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2773 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2774 int copyback = 0, i, olen; 2775 struct sackblk sack; 2776 2777 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2778 if (hlen < TCPOLEN_SACKLEN || 2779 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2780 return 0; 2781 2782 while (hlen >= TCPOLEN_SACKLEN) { 2783 size_t startoff = opt - opts; 2784 olen = opt[1]; 2785 switch (*opt) { 2786 case TCPOPT_EOL: /* FALLTHROUGH */ 2787 case TCPOPT_NOP: 2788 opt++; 2789 hlen--; 2790 break; 2791 case TCPOPT_SACK: 2792 if (olen > hlen) 2793 olen = hlen; 2794 if (olen >= TCPOLEN_SACKLEN) { 2795 for (i = 2; i + TCPOLEN_SACK <= olen; 2796 i += TCPOLEN_SACK) { 2797 memcpy(&sack, &opt[i], sizeof(sack)); 2798 pf_patch_32_unaligned(m, 2799 &th->th_sum, &sack.start, 2800 htonl(ntohl(sack.start) - dst->seqdiff), 2801 PF_ALGNMNT(startoff), 2802 0); 2803 pf_patch_32_unaligned(m, &th->th_sum, 2804 &sack.end, 2805 htonl(ntohl(sack.end) - dst->seqdiff), 2806 PF_ALGNMNT(startoff), 2807 0); 2808 memcpy(&opt[i], &sack, sizeof(sack)); 2809 } 2810 copyback = 1; 2811 } 2812 /* FALLTHROUGH */ 2813 default: 2814 if (olen < 2) 2815 olen = 2; 2816 hlen -= olen; 2817 opt += olen; 2818 } 2819 } 2820 2821 if (copyback) 2822 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2823 return (copyback); 2824 } 2825 2826 struct mbuf * 2827 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2828 const struct pf_addr *saddr, const struct pf_addr *daddr, 2829 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2830 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2831 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2832 { 2833 struct mbuf *m; 2834 int len, tlen; 2835 #ifdef INET 2836 struct ip *h = NULL; 2837 #endif /* INET */ 2838 #ifdef INET6 2839 struct ip6_hdr *h6 = NULL; 2840 #endif /* INET6 */ 2841 struct tcphdr *th; 2842 char *opt; 2843 struct pf_mtag *pf_mtag; 2844 2845 len = 0; 2846 th = NULL; 2847 2848 /* maximum segment size tcp option */ 2849 tlen = sizeof(struct tcphdr); 2850 if (mss) 2851 tlen += 4; 2852 2853 switch (af) { 2854 #ifdef INET 2855 case AF_INET: 2856 len = sizeof(struct ip) + tlen; 2857 break; 2858 #endif /* INET */ 2859 #ifdef INET6 2860 case AF_INET6: 2861 len = sizeof(struct ip6_hdr) + tlen; 2862 break; 2863 #endif /* INET6 */ 2864 default: 2865 panic("%s: unsupported af %d", __func__, af); 2866 } 2867 2868 m = m_gethdr(M_NOWAIT, MT_DATA); 2869 if (m == NULL) 2870 return (NULL); 2871 2872 #ifdef MAC 2873 mac_netinet_firewall_send(m); 2874 #endif 2875 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2876 m_freem(m); 2877 return (NULL); 2878 } 2879 if (skip_firewall) 2880 m->m_flags |= M_SKIP_FIREWALL; 2881 pf_mtag->tag = mtag_tag; 2882 pf_mtag->flags = mtag_flags; 2883 2884 if (rtableid >= 0) 2885 M_SETFIB(m, rtableid); 2886 2887 #ifdef ALTQ 2888 if (r != NULL && r->qid) { 2889 pf_mtag->qid = r->qid; 2890 2891 /* add hints for ecn */ 2892 pf_mtag->hdr = mtod(m, struct ip *); 2893 } 2894 #endif /* ALTQ */ 2895 m->m_data += max_linkhdr; 2896 m->m_pkthdr.len = m->m_len = len; 2897 /* The rest of the stack assumes a rcvif, so provide one. 2898 * This is a locally generated packet, so .. close enough. */ 2899 m->m_pkthdr.rcvif = V_loif; 2900 bzero(m->m_data, len); 2901 switch (af) { 2902 #ifdef INET 2903 case AF_INET: 2904 h = mtod(m, struct ip *); 2905 2906 /* IP header fields included in the TCP checksum */ 2907 h->ip_p = IPPROTO_TCP; 2908 h->ip_len = htons(tlen); 2909 h->ip_src.s_addr = saddr->v4.s_addr; 2910 h->ip_dst.s_addr = daddr->v4.s_addr; 2911 2912 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2913 break; 2914 #endif /* INET */ 2915 #ifdef INET6 2916 case AF_INET6: 2917 h6 = mtod(m, struct ip6_hdr *); 2918 2919 /* IP header fields included in the TCP checksum */ 2920 h6->ip6_nxt = IPPROTO_TCP; 2921 h6->ip6_plen = htons(tlen); 2922 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2923 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2924 2925 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2926 break; 2927 #endif /* INET6 */ 2928 } 2929 2930 /* TCP header */ 2931 th->th_sport = sport; 2932 th->th_dport = dport; 2933 th->th_seq = htonl(seq); 2934 th->th_ack = htonl(ack); 2935 th->th_off = tlen >> 2; 2936 th->th_flags = tcp_flags; 2937 th->th_win = htons(win); 2938 2939 if (mss) { 2940 opt = (char *)(th + 1); 2941 opt[0] = TCPOPT_MAXSEG; 2942 opt[1] = 4; 2943 HTONS(mss); 2944 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2945 } 2946 2947 switch (af) { 2948 #ifdef INET 2949 case AF_INET: 2950 /* TCP checksum */ 2951 th->th_sum = in_cksum(m, len); 2952 2953 /* Finish the IP header */ 2954 h->ip_v = 4; 2955 h->ip_hl = sizeof(*h) >> 2; 2956 h->ip_tos = IPTOS_LOWDELAY; 2957 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2958 h->ip_len = htons(len); 2959 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2960 h->ip_sum = 0; 2961 break; 2962 #endif /* INET */ 2963 #ifdef INET6 2964 case AF_INET6: 2965 /* TCP checksum */ 2966 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2967 sizeof(struct ip6_hdr), tlen); 2968 2969 h6->ip6_vfc |= IPV6_VERSION; 2970 h6->ip6_hlim = IPV6_DEFHLIM; 2971 break; 2972 #endif /* INET6 */ 2973 } 2974 2975 return (m); 2976 } 2977 2978 static void 2979 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 2980 uint8_t ttl, int rtableid) 2981 { 2982 struct mbuf *m; 2983 #ifdef INET 2984 struct ip *h = NULL; 2985 #endif /* INET */ 2986 #ifdef INET6 2987 struct ip6_hdr *h6 = NULL; 2988 #endif /* INET6 */ 2989 struct sctphdr *hdr; 2990 struct sctp_chunkhdr *chunk; 2991 struct pf_send_entry *pfse; 2992 int off = 0; 2993 2994 MPASS(af == pd->af); 2995 2996 m = m_gethdr(M_NOWAIT, MT_DATA); 2997 if (m == NULL) 2998 return; 2999 3000 m->m_data += max_linkhdr; 3001 m->m_flags |= M_SKIP_FIREWALL; 3002 /* The rest of the stack assumes a rcvif, so provide one. 3003 * This is a locally generated packet, so .. close enough. */ 3004 m->m_pkthdr.rcvif = V_loif; 3005 3006 /* IPv4|6 header */ 3007 switch (af) { 3008 #ifdef INET 3009 case AF_INET: 3010 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3011 3012 h = mtod(m, struct ip *); 3013 3014 /* IP header fields included in the TCP checksum */ 3015 3016 h->ip_p = IPPROTO_SCTP; 3017 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3018 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3019 h->ip_src = pd->dst->v4; 3020 h->ip_dst = pd->src->v4; 3021 3022 off += sizeof(struct ip); 3023 break; 3024 #endif /* INET */ 3025 #ifdef INET6 3026 case AF_INET6: 3027 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3028 3029 h6 = mtod(m, struct ip6_hdr *); 3030 3031 /* IP header fields included in the TCP checksum */ 3032 h6->ip6_vfc |= IPV6_VERSION; 3033 h6->ip6_nxt = IPPROTO_SCTP; 3034 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3035 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3036 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3037 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3038 3039 off += sizeof(struct ip6_hdr); 3040 break; 3041 #endif /* INET6 */ 3042 } 3043 3044 /* SCTP header */ 3045 hdr = mtodo(m, off); 3046 3047 hdr->src_port = pd->hdr.sctp.dest_port; 3048 hdr->dest_port = pd->hdr.sctp.src_port; 3049 hdr->v_tag = pd->sctp_initiate_tag; 3050 hdr->checksum = 0; 3051 3052 /* Abort chunk. */ 3053 off += sizeof(struct sctphdr); 3054 chunk = mtodo(m, off); 3055 3056 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3057 chunk->chunk_length = htons(sizeof(*chunk)); 3058 3059 /* SCTP checksum */ 3060 off += sizeof(*chunk); 3061 m->m_pkthdr.len = m->m_len = off; 3062 3063 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));; 3064 3065 if (rtableid >= 0) 3066 M_SETFIB(m, rtableid); 3067 3068 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3069 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3070 if (pfse == NULL) { 3071 m_freem(m); 3072 return; 3073 } 3074 3075 switch (af) { 3076 #ifdef INET 3077 case AF_INET: 3078 pfse->pfse_type = PFSE_IP; 3079 break; 3080 #endif /* INET */ 3081 #ifdef INET6 3082 case AF_INET6: 3083 pfse->pfse_type = PFSE_IP6; 3084 break; 3085 #endif /* INET6 */ 3086 } 3087 3088 pfse->pfse_m = m; 3089 pf_send(pfse); 3090 } 3091 3092 void 3093 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3094 const struct pf_addr *saddr, const struct pf_addr *daddr, 3095 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3096 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3097 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3098 { 3099 struct pf_send_entry *pfse; 3100 struct mbuf *m; 3101 3102 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3103 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3104 if (m == NULL) 3105 return; 3106 3107 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3108 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3109 if (pfse == NULL) { 3110 m_freem(m); 3111 return; 3112 } 3113 3114 switch (af) { 3115 #ifdef INET 3116 case AF_INET: 3117 pfse->pfse_type = PFSE_IP; 3118 break; 3119 #endif /* INET */ 3120 #ifdef INET6 3121 case AF_INET6: 3122 pfse->pfse_type = PFSE_IP6; 3123 break; 3124 #endif /* INET6 */ 3125 } 3126 3127 pfse->pfse_m = m; 3128 pf_send(pfse); 3129 } 3130 3131 static void 3132 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3133 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3134 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3135 u_short *reason, int rtableid) 3136 { 3137 struct pf_addr * const saddr = pd->src; 3138 struct pf_addr * const daddr = pd->dst; 3139 sa_family_t af = pd->af; 3140 3141 /* undo NAT changes, if they have taken place */ 3142 if (nr != NULL) { 3143 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3144 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3145 if (pd->sport) 3146 *pd->sport = sk->port[pd->sidx]; 3147 if (pd->dport) 3148 *pd->dport = sk->port[pd->didx]; 3149 if (pd->proto_sum) 3150 *pd->proto_sum = bproto_sum; 3151 if (pd->ip_sum) 3152 *pd->ip_sum = bip_sum; 3153 m_copyback(m, off, hdrlen, pd->hdr.any); 3154 } 3155 if (pd->proto == IPPROTO_TCP && 3156 ((r->rule_flag & PFRULE_RETURNRST) || 3157 (r->rule_flag & PFRULE_RETURN)) && 3158 !(th->th_flags & TH_RST)) { 3159 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3160 int len = 0; 3161 #ifdef INET 3162 struct ip *h4; 3163 #endif 3164 #ifdef INET6 3165 struct ip6_hdr *h6; 3166 #endif 3167 3168 switch (af) { 3169 #ifdef INET 3170 case AF_INET: 3171 h4 = mtod(m, struct ip *); 3172 len = ntohs(h4->ip_len) - off; 3173 break; 3174 #endif 3175 #ifdef INET6 3176 case AF_INET6: 3177 h6 = mtod(m, struct ip6_hdr *); 3178 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3179 break; 3180 #endif 3181 } 3182 3183 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3184 REASON_SET(reason, PFRES_PROTCKSUM); 3185 else { 3186 if (th->th_flags & TH_SYN) 3187 ack++; 3188 if (th->th_flags & TH_FIN) 3189 ack++; 3190 pf_send_tcp(r, af, pd->dst, 3191 pd->src, th->th_dport, th->th_sport, 3192 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3193 r->return_ttl, true, 0, 0, rtableid); 3194 } 3195 } else if (pd->proto == IPPROTO_SCTP && 3196 (r->rule_flag & PFRULE_RETURN)) { 3197 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3198 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3199 r->return_icmp) 3200 pf_send_icmp(m, r->return_icmp >> 8, 3201 r->return_icmp & 255, af, r, rtableid); 3202 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3203 r->return_icmp6) 3204 pf_send_icmp(m, r->return_icmp6 >> 8, 3205 r->return_icmp6 & 255, af, r, rtableid); 3206 } 3207 3208 static int 3209 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3210 { 3211 struct m_tag *mtag; 3212 u_int8_t mpcp; 3213 3214 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3215 if (mtag == NULL) 3216 return (0); 3217 3218 if (prio == PF_PRIO_ZERO) 3219 prio = 0; 3220 3221 mpcp = *(uint8_t *)(mtag + 1); 3222 3223 return (mpcp == prio); 3224 } 3225 3226 static int 3227 pf_icmp_to_bandlim(uint8_t type) 3228 { 3229 switch (type) { 3230 case ICMP_ECHO: 3231 case ICMP_ECHOREPLY: 3232 return (BANDLIM_ICMP_ECHO); 3233 case ICMP_TSTAMP: 3234 case ICMP_TSTAMPREPLY: 3235 return (BANDLIM_ICMP_TSTAMP); 3236 case ICMP_UNREACH: 3237 default: 3238 return (BANDLIM_ICMP_UNREACH); 3239 } 3240 } 3241 3242 static void 3243 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3244 struct pf_krule *r, int rtableid) 3245 { 3246 struct pf_send_entry *pfse; 3247 struct mbuf *m0; 3248 struct pf_mtag *pf_mtag; 3249 3250 /* ICMP packet rate limitation. */ 3251 #ifdef INET6 3252 if (af == AF_INET6) { 3253 if (icmp6_ratelimit(NULL, type, code)) 3254 return; 3255 } 3256 #endif 3257 #ifdef INET 3258 if (af == AF_INET) { 3259 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3260 return; 3261 } 3262 #endif 3263 3264 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3265 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3266 if (pfse == NULL) 3267 return; 3268 3269 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3270 free(pfse, M_PFTEMP); 3271 return; 3272 } 3273 3274 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3275 free(pfse, M_PFTEMP); 3276 return; 3277 } 3278 /* XXX: revisit */ 3279 m0->m_flags |= M_SKIP_FIREWALL; 3280 3281 if (rtableid >= 0) 3282 M_SETFIB(m0, rtableid); 3283 3284 #ifdef ALTQ 3285 if (r->qid) { 3286 pf_mtag->qid = r->qid; 3287 /* add hints for ecn */ 3288 pf_mtag->hdr = mtod(m0, struct ip *); 3289 } 3290 #endif /* ALTQ */ 3291 3292 switch (af) { 3293 #ifdef INET 3294 case AF_INET: 3295 pfse->pfse_type = PFSE_ICMP; 3296 break; 3297 #endif /* INET */ 3298 #ifdef INET6 3299 case AF_INET6: 3300 pfse->pfse_type = PFSE_ICMP6; 3301 break; 3302 #endif /* INET6 */ 3303 } 3304 pfse->pfse_m = m0; 3305 pfse->icmpopts.type = type; 3306 pfse->icmpopts.code = code; 3307 pf_send(pfse); 3308 } 3309 3310 /* 3311 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3312 * If n is 0, they match if they are equal. If n is != 0, they match if they 3313 * are different. 3314 */ 3315 int 3316 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3317 struct pf_addr *b, sa_family_t af) 3318 { 3319 int match = 0; 3320 3321 switch (af) { 3322 #ifdef INET 3323 case AF_INET: 3324 if ((a->addr32[0] & m->addr32[0]) == 3325 (b->addr32[0] & m->addr32[0])) 3326 match++; 3327 break; 3328 #endif /* INET */ 3329 #ifdef INET6 3330 case AF_INET6: 3331 if (((a->addr32[0] & m->addr32[0]) == 3332 (b->addr32[0] & m->addr32[0])) && 3333 ((a->addr32[1] & m->addr32[1]) == 3334 (b->addr32[1] & m->addr32[1])) && 3335 ((a->addr32[2] & m->addr32[2]) == 3336 (b->addr32[2] & m->addr32[2])) && 3337 ((a->addr32[3] & m->addr32[3]) == 3338 (b->addr32[3] & m->addr32[3]))) 3339 match++; 3340 break; 3341 #endif /* INET6 */ 3342 } 3343 if (match) { 3344 if (n) 3345 return (0); 3346 else 3347 return (1); 3348 } else { 3349 if (n) 3350 return (1); 3351 else 3352 return (0); 3353 } 3354 } 3355 3356 /* 3357 * Return 1 if b <= a <= e, otherwise return 0. 3358 */ 3359 int 3360 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3361 struct pf_addr *a, sa_family_t af) 3362 { 3363 switch (af) { 3364 #ifdef INET 3365 case AF_INET: 3366 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3367 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3368 return (0); 3369 break; 3370 #endif /* INET */ 3371 #ifdef INET6 3372 case AF_INET6: { 3373 int i; 3374 3375 /* check a >= b */ 3376 for (i = 0; i < 4; ++i) 3377 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3378 break; 3379 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3380 return (0); 3381 /* check a <= e */ 3382 for (i = 0; i < 4; ++i) 3383 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3384 break; 3385 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3386 return (0); 3387 break; 3388 } 3389 #endif /* INET6 */ 3390 } 3391 return (1); 3392 } 3393 3394 static int 3395 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3396 { 3397 switch (op) { 3398 case PF_OP_IRG: 3399 return ((p > a1) && (p < a2)); 3400 case PF_OP_XRG: 3401 return ((p < a1) || (p > a2)); 3402 case PF_OP_RRG: 3403 return ((p >= a1) && (p <= a2)); 3404 case PF_OP_EQ: 3405 return (p == a1); 3406 case PF_OP_NE: 3407 return (p != a1); 3408 case PF_OP_LT: 3409 return (p < a1); 3410 case PF_OP_LE: 3411 return (p <= a1); 3412 case PF_OP_GT: 3413 return (p > a1); 3414 case PF_OP_GE: 3415 return (p >= a1); 3416 } 3417 return (0); /* never reached */ 3418 } 3419 3420 int 3421 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3422 { 3423 NTOHS(a1); 3424 NTOHS(a2); 3425 NTOHS(p); 3426 return (pf_match(op, a1, a2, p)); 3427 } 3428 3429 static int 3430 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3431 { 3432 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3433 return (0); 3434 return (pf_match(op, a1, a2, u)); 3435 } 3436 3437 static int 3438 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3439 { 3440 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3441 return (0); 3442 return (pf_match(op, a1, a2, g)); 3443 } 3444 3445 int 3446 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3447 { 3448 if (*tag == -1) 3449 *tag = mtag; 3450 3451 return ((!r->match_tag_not && r->match_tag == *tag) || 3452 (r->match_tag_not && r->match_tag != *tag)); 3453 } 3454 3455 int 3456 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3457 { 3458 3459 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3460 3461 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3462 return (ENOMEM); 3463 3464 pd->pf_mtag->tag = tag; 3465 3466 return (0); 3467 } 3468 3469 #define PF_ANCHOR_STACKSIZE 32 3470 struct pf_kanchor_stackframe { 3471 struct pf_kruleset *rs; 3472 struct pf_krule *r; /* XXX: + match bit */ 3473 struct pf_kanchor *child; 3474 }; 3475 3476 /* 3477 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3478 */ 3479 #define PF_ANCHORSTACK_MATCH 0x00000001 3480 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3481 3482 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3483 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3484 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3485 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3486 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3487 } while (0) 3488 3489 void 3490 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3491 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3492 int *match) 3493 { 3494 struct pf_kanchor_stackframe *f; 3495 3496 PF_RULES_RASSERT(); 3497 3498 if (match) 3499 *match = 0; 3500 if (*depth >= PF_ANCHOR_STACKSIZE) { 3501 printf("%s: anchor stack overflow on %s\n", 3502 __func__, (*r)->anchor->name); 3503 *r = TAILQ_NEXT(*r, entries); 3504 return; 3505 } else if (*depth == 0 && a != NULL) 3506 *a = *r; 3507 f = stack + (*depth)++; 3508 f->rs = *rs; 3509 f->r = *r; 3510 if ((*r)->anchor_wildcard) { 3511 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3512 3513 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3514 *r = NULL; 3515 return; 3516 } 3517 *rs = &f->child->ruleset; 3518 } else { 3519 f->child = NULL; 3520 *rs = &(*r)->anchor->ruleset; 3521 } 3522 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3523 } 3524 3525 int 3526 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3527 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3528 int *match) 3529 { 3530 struct pf_kanchor_stackframe *f; 3531 struct pf_krule *fr; 3532 int quick = 0; 3533 3534 PF_RULES_RASSERT(); 3535 3536 do { 3537 if (*depth <= 0) 3538 break; 3539 f = stack + *depth - 1; 3540 fr = PF_ANCHOR_RULE(f); 3541 if (f->child != NULL) { 3542 /* 3543 * This block traverses through 3544 * a wildcard anchor. 3545 */ 3546 if (match != NULL && *match) { 3547 /* 3548 * If any of "*" matched, then 3549 * "foo/ *" matched, mark frame 3550 * appropriately. 3551 */ 3552 PF_ANCHOR_SET_MATCH(f); 3553 *match = 0; 3554 } 3555 f->child = RB_NEXT(pf_kanchor_node, 3556 &fr->anchor->children, f->child); 3557 if (f->child != NULL) { 3558 *rs = &f->child->ruleset; 3559 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3560 if (*r == NULL) 3561 continue; 3562 else 3563 break; 3564 } 3565 } 3566 (*depth)--; 3567 if (*depth == 0 && a != NULL) 3568 *a = NULL; 3569 *rs = f->rs; 3570 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3571 quick = fr->quick; 3572 *r = TAILQ_NEXT(fr, entries); 3573 } while (*r == NULL); 3574 3575 return (quick); 3576 } 3577 3578 struct pf_keth_anchor_stackframe { 3579 struct pf_keth_ruleset *rs; 3580 struct pf_keth_rule *r; /* XXX: + match bit */ 3581 struct pf_keth_anchor *child; 3582 }; 3583 3584 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3585 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3586 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3587 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3588 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3589 } while (0) 3590 3591 void 3592 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3593 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3594 struct pf_keth_rule **a, int *match) 3595 { 3596 struct pf_keth_anchor_stackframe *f; 3597 3598 NET_EPOCH_ASSERT(); 3599 3600 if (match) 3601 *match = 0; 3602 if (*depth >= PF_ANCHOR_STACKSIZE) { 3603 printf("%s: anchor stack overflow on %s\n", 3604 __func__, (*r)->anchor->name); 3605 *r = TAILQ_NEXT(*r, entries); 3606 return; 3607 } else if (*depth == 0 && a != NULL) 3608 *a = *r; 3609 f = stack + (*depth)++; 3610 f->rs = *rs; 3611 f->r = *r; 3612 if ((*r)->anchor_wildcard) { 3613 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3614 3615 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3616 *r = NULL; 3617 return; 3618 } 3619 *rs = &f->child->ruleset; 3620 } else { 3621 f->child = NULL; 3622 *rs = &(*r)->anchor->ruleset; 3623 } 3624 *r = TAILQ_FIRST((*rs)->active.rules); 3625 } 3626 3627 int 3628 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3629 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3630 struct pf_keth_rule **a, int *match) 3631 { 3632 struct pf_keth_anchor_stackframe *f; 3633 struct pf_keth_rule *fr; 3634 int quick = 0; 3635 3636 NET_EPOCH_ASSERT(); 3637 3638 do { 3639 if (*depth <= 0) 3640 break; 3641 f = stack + *depth - 1; 3642 fr = PF_ETH_ANCHOR_RULE(f); 3643 if (f->child != NULL) { 3644 /* 3645 * This block traverses through 3646 * a wildcard anchor. 3647 */ 3648 if (match != NULL && *match) { 3649 /* 3650 * If any of "*" matched, then 3651 * "foo/ *" matched, mark frame 3652 * appropriately. 3653 */ 3654 PF_ETH_ANCHOR_SET_MATCH(f); 3655 *match = 0; 3656 } 3657 f->child = RB_NEXT(pf_keth_anchor_node, 3658 &fr->anchor->children, f->child); 3659 if (f->child != NULL) { 3660 *rs = &f->child->ruleset; 3661 *r = TAILQ_FIRST((*rs)->active.rules); 3662 if (*r == NULL) 3663 continue; 3664 else 3665 break; 3666 } 3667 } 3668 (*depth)--; 3669 if (*depth == 0 && a != NULL) 3670 *a = NULL; 3671 *rs = f->rs; 3672 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3673 quick = fr->quick; 3674 *r = TAILQ_NEXT(fr, entries); 3675 } while (*r == NULL); 3676 3677 return (quick); 3678 } 3679 3680 #ifdef INET6 3681 void 3682 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3683 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3684 { 3685 switch (af) { 3686 #ifdef INET 3687 case AF_INET: 3688 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3689 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3690 break; 3691 #endif /* INET */ 3692 case AF_INET6: 3693 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3694 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3695 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3696 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3697 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3698 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3699 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3700 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3701 break; 3702 } 3703 } 3704 3705 void 3706 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3707 { 3708 switch (af) { 3709 #ifdef INET 3710 case AF_INET: 3711 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3712 break; 3713 #endif /* INET */ 3714 case AF_INET6: 3715 if (addr->addr32[3] == 0xffffffff) { 3716 addr->addr32[3] = 0; 3717 if (addr->addr32[2] == 0xffffffff) { 3718 addr->addr32[2] = 0; 3719 if (addr->addr32[1] == 0xffffffff) { 3720 addr->addr32[1] = 0; 3721 addr->addr32[0] = 3722 htonl(ntohl(addr->addr32[0]) + 1); 3723 } else 3724 addr->addr32[1] = 3725 htonl(ntohl(addr->addr32[1]) + 1); 3726 } else 3727 addr->addr32[2] = 3728 htonl(ntohl(addr->addr32[2]) + 1); 3729 } else 3730 addr->addr32[3] = 3731 htonl(ntohl(addr->addr32[3]) + 1); 3732 break; 3733 } 3734 } 3735 #endif /* INET6 */ 3736 3737 void 3738 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3739 { 3740 /* 3741 * Modern rules use the same flags in rules as they do in states. 3742 */ 3743 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3744 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3745 3746 /* 3747 * Old-style scrub rules have different flags which need to be translated. 3748 */ 3749 if (r->rule_flag & PFRULE_RANDOMID) 3750 a->flags |= PFSTATE_RANDOMID; 3751 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 3752 a->flags |= PFSTATE_SETTOS; 3753 a->set_tos = r->set_tos; 3754 } 3755 3756 if (r->qid) 3757 a->qid = r->qid; 3758 if (r->pqid) 3759 a->pqid = r->pqid; 3760 if (r->rtableid >= 0) 3761 a->rtableid = r->rtableid; 3762 a->log |= r->log; 3763 if (r->min_ttl) 3764 a->min_ttl = r->min_ttl; 3765 if (r->max_mss) 3766 a->max_mss = r->max_mss; 3767 if (r->dnpipe) 3768 a->dnpipe = r->dnpipe; 3769 if (r->dnrpipe) 3770 a->dnrpipe = r->dnrpipe; 3771 if (r->dnpipe || r->dnrpipe) { 3772 if (r->free_flags & PFRULE_DN_IS_PIPE) 3773 a->flags |= PFSTATE_DN_IS_PIPE; 3774 else 3775 a->flags &= ~PFSTATE_DN_IS_PIPE; 3776 } 3777 if (r->scrub_flags & PFSTATE_SETPRIO) { 3778 a->set_prio[0] = r->set_prio[0]; 3779 a->set_prio[1] = r->set_prio[1]; 3780 } 3781 } 3782 3783 int 3784 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 3785 { 3786 struct pf_addr *saddr, *daddr; 3787 u_int16_t sport, dport; 3788 struct inpcbinfo *pi; 3789 struct inpcb *inp; 3790 3791 pd->lookup.uid = UID_MAX; 3792 pd->lookup.gid = GID_MAX; 3793 3794 switch (pd->proto) { 3795 case IPPROTO_TCP: 3796 sport = pd->hdr.tcp.th_sport; 3797 dport = pd->hdr.tcp.th_dport; 3798 pi = &V_tcbinfo; 3799 break; 3800 case IPPROTO_UDP: 3801 sport = pd->hdr.udp.uh_sport; 3802 dport = pd->hdr.udp.uh_dport; 3803 pi = &V_udbinfo; 3804 break; 3805 default: 3806 return (-1); 3807 } 3808 if (pd->dir == PF_IN) { 3809 saddr = pd->src; 3810 daddr = pd->dst; 3811 } else { 3812 u_int16_t p; 3813 3814 p = sport; 3815 sport = dport; 3816 dport = p; 3817 saddr = pd->dst; 3818 daddr = pd->src; 3819 } 3820 switch (pd->af) { 3821 #ifdef INET 3822 case AF_INET: 3823 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3824 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3825 if (inp == NULL) { 3826 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3827 daddr->v4, dport, INPLOOKUP_WILDCARD | 3828 INPLOOKUP_RLOCKPCB, NULL, m); 3829 if (inp == NULL) 3830 return (-1); 3831 } 3832 break; 3833 #endif /* INET */ 3834 #ifdef INET6 3835 case AF_INET6: 3836 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3837 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3838 if (inp == NULL) { 3839 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3840 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3841 INPLOOKUP_RLOCKPCB, NULL, m); 3842 if (inp == NULL) 3843 return (-1); 3844 } 3845 break; 3846 #endif /* INET6 */ 3847 3848 default: 3849 return (-1); 3850 } 3851 INP_RLOCK_ASSERT(inp); 3852 pd->lookup.uid = inp->inp_cred->cr_uid; 3853 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3854 INP_RUNLOCK(inp); 3855 3856 return (1); 3857 } 3858 3859 u_int8_t 3860 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3861 { 3862 int hlen; 3863 u_int8_t hdr[60]; 3864 u_int8_t *opt, optlen; 3865 u_int8_t wscale = 0; 3866 3867 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3868 if (hlen <= sizeof(struct tcphdr)) 3869 return (0); 3870 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3871 return (0); 3872 opt = hdr + sizeof(struct tcphdr); 3873 hlen -= sizeof(struct tcphdr); 3874 while (hlen >= 3) { 3875 switch (*opt) { 3876 case TCPOPT_EOL: 3877 case TCPOPT_NOP: 3878 ++opt; 3879 --hlen; 3880 break; 3881 case TCPOPT_WINDOW: 3882 wscale = opt[2]; 3883 if (wscale > TCP_MAX_WINSHIFT) 3884 wscale = TCP_MAX_WINSHIFT; 3885 wscale |= PF_WSCALE_FLAG; 3886 /* FALLTHROUGH */ 3887 default: 3888 optlen = opt[1]; 3889 if (optlen < 2) 3890 optlen = 2; 3891 hlen -= optlen; 3892 opt += optlen; 3893 break; 3894 } 3895 } 3896 return (wscale); 3897 } 3898 3899 u_int16_t 3900 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3901 { 3902 int hlen; 3903 u_int8_t hdr[60]; 3904 u_int8_t *opt, optlen; 3905 u_int16_t mss = V_tcp_mssdflt; 3906 3907 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3908 if (hlen <= sizeof(struct tcphdr)) 3909 return (0); 3910 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3911 return (0); 3912 opt = hdr + sizeof(struct tcphdr); 3913 hlen -= sizeof(struct tcphdr); 3914 while (hlen >= TCPOLEN_MAXSEG) { 3915 switch (*opt) { 3916 case TCPOPT_EOL: 3917 case TCPOPT_NOP: 3918 ++opt; 3919 --hlen; 3920 break; 3921 case TCPOPT_MAXSEG: 3922 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3923 NTOHS(mss); 3924 /* FALLTHROUGH */ 3925 default: 3926 optlen = opt[1]; 3927 if (optlen < 2) 3928 optlen = 2; 3929 hlen -= optlen; 3930 opt += optlen; 3931 break; 3932 } 3933 } 3934 return (mss); 3935 } 3936 3937 static u_int16_t 3938 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3939 { 3940 struct nhop_object *nh; 3941 #ifdef INET6 3942 struct in6_addr dst6; 3943 uint32_t scopeid; 3944 #endif /* INET6 */ 3945 int hlen = 0; 3946 uint16_t mss = 0; 3947 3948 NET_EPOCH_ASSERT(); 3949 3950 switch (af) { 3951 #ifdef INET 3952 case AF_INET: 3953 hlen = sizeof(struct ip); 3954 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3955 if (nh != NULL) 3956 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3957 break; 3958 #endif /* INET */ 3959 #ifdef INET6 3960 case AF_INET6: 3961 hlen = sizeof(struct ip6_hdr); 3962 in6_splitscope(&addr->v6, &dst6, &scopeid); 3963 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3964 if (nh != NULL) 3965 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3966 break; 3967 #endif /* INET6 */ 3968 } 3969 3970 mss = max(V_tcp_mssdflt, mss); 3971 mss = min(mss, offer); 3972 mss = max(mss, 64); /* sanity - at least max opt space */ 3973 return (mss); 3974 } 3975 3976 static u_int32_t 3977 pf_tcp_iss(struct pf_pdesc *pd) 3978 { 3979 MD5_CTX ctx; 3980 u_int32_t digest[4]; 3981 3982 if (V_pf_tcp_secret_init == 0) { 3983 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3984 MD5Init(&V_pf_tcp_secret_ctx); 3985 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3986 sizeof(V_pf_tcp_secret)); 3987 V_pf_tcp_secret_init = 1; 3988 } 3989 3990 ctx = V_pf_tcp_secret_ctx; 3991 3992 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3993 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3994 if (pd->af == AF_INET6) { 3995 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3996 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3997 } else { 3998 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3999 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4000 } 4001 MD5Final((u_char *)digest, &ctx); 4002 V_pf_tcp_iss_off += 4096; 4003 #define ISN_RANDOM_INCREMENT (4096 - 1) 4004 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4005 V_pf_tcp_iss_off); 4006 #undef ISN_RANDOM_INCREMENT 4007 } 4008 4009 static bool 4010 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4011 { 4012 bool match = true; 4013 4014 /* Always matches if not set */ 4015 if (! r->isset) 4016 return (!r->neg); 4017 4018 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4019 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4020 match = false; 4021 break; 4022 } 4023 } 4024 4025 return (match ^ r->neg); 4026 } 4027 4028 static int 4029 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4030 { 4031 if (*tag == -1) 4032 *tag = mtag; 4033 4034 return ((!r->match_tag_not && r->match_tag == *tag) || 4035 (r->match_tag_not && r->match_tag != *tag)); 4036 } 4037 4038 static void 4039 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4040 { 4041 /* If we don't have the interface drop the packet. */ 4042 if (ifp == NULL) { 4043 m_freem(m); 4044 return; 4045 } 4046 4047 switch (ifp->if_type) { 4048 case IFT_ETHER: 4049 case IFT_XETHER: 4050 case IFT_L2VLAN: 4051 case IFT_BRIDGE: 4052 case IFT_IEEE8023ADLAG: 4053 break; 4054 default: 4055 m_freem(m); 4056 return; 4057 } 4058 4059 ifp->if_transmit(ifp, m); 4060 } 4061 4062 static int 4063 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4064 { 4065 #ifdef INET 4066 struct ip ip; 4067 #endif 4068 #ifdef INET6 4069 struct ip6_hdr ip6; 4070 #endif 4071 struct mbuf *m = *m0; 4072 struct ether_header *e; 4073 struct pf_keth_rule *r, *rm, *a = NULL; 4074 struct pf_keth_ruleset *ruleset = NULL; 4075 struct pf_mtag *mtag; 4076 struct pf_keth_ruleq *rules; 4077 struct pf_addr *src = NULL, *dst = NULL; 4078 struct pfi_kkif *bridge_to; 4079 sa_family_t af = 0; 4080 uint16_t proto; 4081 int asd = 0, match = 0; 4082 int tag = -1; 4083 uint8_t action; 4084 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4085 4086 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4087 NET_EPOCH_ASSERT(); 4088 4089 PF_RULES_RLOCK_TRACKER; 4090 4091 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4092 4093 mtag = pf_find_mtag(m); 4094 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4095 /* Dummynet re-injects packets after they've 4096 * completed their delay. We've already 4097 * processed them, so pass unconditionally. */ 4098 4099 /* But only once. We may see the packet multiple times (e.g. 4100 * PFIL_IN/PFIL_OUT). */ 4101 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 4102 4103 return (PF_PASS); 4104 } 4105 4106 ruleset = V_pf_keth; 4107 rules = ck_pr_load_ptr(&ruleset->active.rules); 4108 r = TAILQ_FIRST(rules); 4109 rm = NULL; 4110 4111 e = mtod(m, struct ether_header *); 4112 proto = ntohs(e->ether_type); 4113 4114 switch (proto) { 4115 #ifdef INET 4116 case ETHERTYPE_IP: { 4117 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4118 sizeof(ip))) 4119 return (PF_DROP); 4120 4121 af = AF_INET; 4122 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4123 (caddr_t)&ip); 4124 src = (struct pf_addr *)&ip.ip_src; 4125 dst = (struct pf_addr *)&ip.ip_dst; 4126 break; 4127 } 4128 #endif /* INET */ 4129 #ifdef INET6 4130 case ETHERTYPE_IPV6: { 4131 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4132 sizeof(ip6))) 4133 return (PF_DROP); 4134 4135 af = AF_INET6; 4136 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4137 (caddr_t)&ip6); 4138 src = (struct pf_addr *)&ip6.ip6_src; 4139 dst = (struct pf_addr *)&ip6.ip6_dst; 4140 break; 4141 } 4142 #endif /* INET6 */ 4143 } 4144 4145 PF_RULES_RLOCK(); 4146 4147 while (r != NULL) { 4148 counter_u64_add(r->evaluations, 1); 4149 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4150 4151 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4152 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4153 "kif"); 4154 r = r->skip[PFE_SKIP_IFP].ptr; 4155 } 4156 else if (r->direction && r->direction != dir) { 4157 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4158 "dir"); 4159 r = r->skip[PFE_SKIP_DIR].ptr; 4160 } 4161 else if (r->proto && r->proto != proto) { 4162 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4163 "proto"); 4164 r = r->skip[PFE_SKIP_PROTO].ptr; 4165 } 4166 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4167 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4168 "src"); 4169 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4170 } 4171 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4172 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4173 "dst"); 4174 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4175 } 4176 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4177 r->ipsrc.neg, kif, M_GETFIB(m))) { 4178 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4179 "ip_src"); 4180 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4181 } 4182 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4183 r->ipdst.neg, kif, M_GETFIB(m))) { 4184 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4185 "ip_dst"); 4186 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4187 } 4188 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4189 mtag ? mtag->tag : 0)) { 4190 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4191 "match_tag"); 4192 r = TAILQ_NEXT(r, entries); 4193 } 4194 else { 4195 if (r->tag) 4196 tag = r->tag; 4197 if (r->anchor == NULL) { 4198 /* Rule matches */ 4199 rm = r; 4200 4201 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4202 4203 if (r->quick) 4204 break; 4205 4206 r = TAILQ_NEXT(r, entries); 4207 } else { 4208 pf_step_into_keth_anchor(anchor_stack, &asd, 4209 &ruleset, &r, &a, &match); 4210 } 4211 } 4212 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4213 &ruleset, &r, &a, &match)) 4214 break; 4215 } 4216 4217 r = rm; 4218 4219 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4220 4221 /* Default to pass. */ 4222 if (r == NULL) { 4223 PF_RULES_RUNLOCK(); 4224 return (PF_PASS); 4225 } 4226 4227 /* Execute action. */ 4228 counter_u64_add(r->packets[dir == PF_OUT], 1); 4229 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4230 pf_update_timestamp(r); 4231 4232 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4233 if (r->action == PF_DROP) { 4234 PF_RULES_RUNLOCK(); 4235 return (PF_DROP); 4236 } 4237 4238 if (tag > 0) { 4239 if (mtag == NULL) 4240 mtag = pf_get_mtag(m); 4241 if (mtag == NULL) { 4242 PF_RULES_RUNLOCK(); 4243 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4244 return (PF_DROP); 4245 } 4246 mtag->tag = tag; 4247 } 4248 4249 if (r->qid != 0) { 4250 if (mtag == NULL) 4251 mtag = pf_get_mtag(m); 4252 if (mtag == NULL) { 4253 PF_RULES_RUNLOCK(); 4254 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4255 return (PF_DROP); 4256 } 4257 mtag->qid = r->qid; 4258 } 4259 4260 action = r->action; 4261 bridge_to = r->bridge_to; 4262 4263 /* Dummynet */ 4264 if (r->dnpipe) { 4265 struct ip_fw_args dnflow; 4266 4267 /* Drop packet if dummynet is not loaded. */ 4268 if (ip_dn_io_ptr == NULL) { 4269 PF_RULES_RUNLOCK(); 4270 m_freem(m); 4271 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4272 return (PF_DROP); 4273 } 4274 if (mtag == NULL) 4275 mtag = pf_get_mtag(m); 4276 if (mtag == NULL) { 4277 PF_RULES_RUNLOCK(); 4278 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4279 return (PF_DROP); 4280 } 4281 4282 bzero(&dnflow, sizeof(dnflow)); 4283 4284 /* We don't have port numbers here, so we set 0. That means 4285 * that we'll be somewhat limited in distinguishing flows (i.e. 4286 * only based on IP addresses, not based on port numbers), but 4287 * it's better than nothing. */ 4288 dnflow.f_id.dst_port = 0; 4289 dnflow.f_id.src_port = 0; 4290 dnflow.f_id.proto = 0; 4291 4292 dnflow.rule.info = r->dnpipe; 4293 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4294 if (r->dnflags & PFRULE_DN_IS_PIPE) 4295 dnflow.rule.info |= IPFW_IS_PIPE; 4296 4297 dnflow.f_id.extra = dnflow.rule.info; 4298 4299 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4300 dnflow.flags |= IPFW_ARGS_ETHER; 4301 dnflow.ifp = kif->pfik_ifp; 4302 4303 switch (af) { 4304 case AF_INET: 4305 dnflow.f_id.addr_type = 4; 4306 dnflow.f_id.src_ip = src->v4.s_addr; 4307 dnflow.f_id.dst_ip = dst->v4.s_addr; 4308 break; 4309 case AF_INET6: 4310 dnflow.flags |= IPFW_ARGS_IP6; 4311 dnflow.f_id.addr_type = 6; 4312 dnflow.f_id.src_ip6 = src->v6; 4313 dnflow.f_id.dst_ip6 = dst->v6; 4314 break; 4315 } 4316 4317 PF_RULES_RUNLOCK(); 4318 4319 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4320 ip_dn_io_ptr(m0, &dnflow); 4321 if (*m0 != NULL) 4322 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 4323 } else { 4324 PF_RULES_RUNLOCK(); 4325 } 4326 4327 if (action == PF_PASS && bridge_to) { 4328 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4329 *m0 = NULL; /* We've eaten the packet. */ 4330 } 4331 4332 return (action); 4333 } 4334 4335 static int 4336 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4337 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4338 struct pf_kruleset **rsm, struct inpcb *inp) 4339 { 4340 struct pf_krule *nr = NULL; 4341 struct pf_addr * const saddr = pd->src; 4342 struct pf_addr * const daddr = pd->dst; 4343 sa_family_t af = pd->af; 4344 struct pf_krule *r, *a = NULL; 4345 struct pf_kruleset *ruleset = NULL; 4346 struct pf_krule_slist match_rules; 4347 struct pf_krule_item *ri; 4348 struct pf_ksrc_node *nsn = NULL; 4349 struct tcphdr *th = &pd->hdr.tcp; 4350 struct pf_state_key *sk = NULL, *nk = NULL; 4351 u_short reason; 4352 int rewrite = 0, hdrlen = 0; 4353 int tag = -1; 4354 int asd = 0; 4355 int match = 0; 4356 int state_icmp = 0; 4357 u_int16_t sport = 0, dport = 0; 4358 u_int16_t bproto_sum = 0, bip_sum = 0; 4359 u_int8_t icmptype = 0, icmpcode = 0; 4360 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4361 4362 PF_RULES_RASSERT(); 4363 4364 if (inp != NULL) { 4365 INP_LOCK_ASSERT(inp); 4366 pd->lookup.uid = inp->inp_cred->cr_uid; 4367 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4368 pd->lookup.done = 1; 4369 } 4370 4371 switch (pd->proto) { 4372 case IPPROTO_TCP: 4373 sport = th->th_sport; 4374 dport = th->th_dport; 4375 hdrlen = sizeof(*th); 4376 break; 4377 case IPPROTO_UDP: 4378 sport = pd->hdr.udp.uh_sport; 4379 dport = pd->hdr.udp.uh_dport; 4380 hdrlen = sizeof(pd->hdr.udp); 4381 break; 4382 case IPPROTO_SCTP: 4383 sport = pd->hdr.sctp.src_port; 4384 dport = pd->hdr.sctp.dest_port; 4385 hdrlen = sizeof(pd->hdr.sctp); 4386 break; 4387 #ifdef INET 4388 case IPPROTO_ICMP: 4389 if (pd->af != AF_INET) 4390 break; 4391 sport = dport = pd->hdr.icmp.icmp_id; 4392 hdrlen = sizeof(pd->hdr.icmp); 4393 icmptype = pd->hdr.icmp.icmp_type; 4394 icmpcode = pd->hdr.icmp.icmp_code; 4395 4396 if (icmptype == ICMP_UNREACH || 4397 icmptype == ICMP_SOURCEQUENCH || 4398 icmptype == ICMP_REDIRECT || 4399 icmptype == ICMP_TIMXCEED || 4400 icmptype == ICMP_PARAMPROB) 4401 state_icmp++; 4402 break; 4403 #endif /* INET */ 4404 #ifdef INET6 4405 case IPPROTO_ICMPV6: 4406 if (af != AF_INET6) 4407 break; 4408 sport = dport = pd->hdr.icmp6.icmp6_id; 4409 hdrlen = sizeof(pd->hdr.icmp6); 4410 icmptype = pd->hdr.icmp6.icmp6_type; 4411 icmpcode = pd->hdr.icmp6.icmp6_code; 4412 4413 if (icmptype == ICMP6_DST_UNREACH || 4414 icmptype == ICMP6_PACKET_TOO_BIG || 4415 icmptype == ICMP6_TIME_EXCEEDED || 4416 icmptype == ICMP6_PARAM_PROB) 4417 state_icmp++; 4418 break; 4419 #endif /* INET6 */ 4420 default: 4421 sport = dport = hdrlen = 0; 4422 break; 4423 } 4424 4425 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4426 4427 /* check packet for BINAT/NAT/RDR */ 4428 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4429 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4430 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4431 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4432 4433 if (nr->log) { 4434 PFLOG_PACKET(kif, m, af, PFRES_MATCH, nr, a, 4435 ruleset, pd, 1); 4436 } 4437 4438 if (pd->ip_sum) 4439 bip_sum = *pd->ip_sum; 4440 4441 switch (pd->proto) { 4442 case IPPROTO_TCP: 4443 bproto_sum = th->th_sum; 4444 pd->proto_sum = &th->th_sum; 4445 4446 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4447 nk->port[pd->sidx] != sport) { 4448 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4449 &th->th_sum, &nk->addr[pd->sidx], 4450 nk->port[pd->sidx], 0, af); 4451 pd->sport = &th->th_sport; 4452 sport = th->th_sport; 4453 } 4454 4455 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4456 nk->port[pd->didx] != dport) { 4457 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4458 &th->th_sum, &nk->addr[pd->didx], 4459 nk->port[pd->didx], 0, af); 4460 dport = th->th_dport; 4461 pd->dport = &th->th_dport; 4462 } 4463 rewrite++; 4464 break; 4465 case IPPROTO_UDP: 4466 bproto_sum = pd->hdr.udp.uh_sum; 4467 pd->proto_sum = &pd->hdr.udp.uh_sum; 4468 4469 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4470 nk->port[pd->sidx] != sport) { 4471 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4472 pd->ip_sum, &pd->hdr.udp.uh_sum, 4473 &nk->addr[pd->sidx], 4474 nk->port[pd->sidx], 1, af); 4475 sport = pd->hdr.udp.uh_sport; 4476 pd->sport = &pd->hdr.udp.uh_sport; 4477 } 4478 4479 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4480 nk->port[pd->didx] != dport) { 4481 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4482 pd->ip_sum, &pd->hdr.udp.uh_sum, 4483 &nk->addr[pd->didx], 4484 nk->port[pd->didx], 1, af); 4485 dport = pd->hdr.udp.uh_dport; 4486 pd->dport = &pd->hdr.udp.uh_dport; 4487 } 4488 rewrite++; 4489 break; 4490 case IPPROTO_SCTP: { 4491 uint16_t checksum = 0; 4492 4493 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4494 nk->port[pd->sidx] != sport) { 4495 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 4496 pd->ip_sum, &checksum, 4497 &nk->addr[pd->sidx], 4498 nk->port[pd->sidx], 1, af); 4499 } 4500 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4501 nk->port[pd->didx] != dport) { 4502 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 4503 pd->ip_sum, &checksum, 4504 &nk->addr[pd->didx], 4505 nk->port[pd->didx], 1, af); 4506 } 4507 break; 4508 } 4509 #ifdef INET 4510 case IPPROTO_ICMP: 4511 nk->port[0] = nk->port[1]; 4512 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4513 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4514 nk->addr[pd->sidx].v4.s_addr, 0); 4515 4516 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4517 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4518 nk->addr[pd->didx].v4.s_addr, 0); 4519 4520 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4521 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4522 pd->hdr.icmp.icmp_cksum, sport, 4523 nk->port[1], 0); 4524 pd->hdr.icmp.icmp_id = nk->port[1]; 4525 pd->sport = &pd->hdr.icmp.icmp_id; 4526 } 4527 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4528 break; 4529 #endif /* INET */ 4530 #ifdef INET6 4531 case IPPROTO_ICMPV6: 4532 nk->port[0] = nk->port[1]; 4533 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4534 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4535 &nk->addr[pd->sidx], 0); 4536 4537 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4538 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4539 &nk->addr[pd->didx], 0); 4540 rewrite++; 4541 break; 4542 #endif /* INET */ 4543 default: 4544 switch (af) { 4545 #ifdef INET 4546 case AF_INET: 4547 if (PF_ANEQ(saddr, 4548 &nk->addr[pd->sidx], AF_INET)) 4549 pf_change_a(&saddr->v4.s_addr, 4550 pd->ip_sum, 4551 nk->addr[pd->sidx].v4.s_addr, 0); 4552 4553 if (PF_ANEQ(daddr, 4554 &nk->addr[pd->didx], AF_INET)) 4555 pf_change_a(&daddr->v4.s_addr, 4556 pd->ip_sum, 4557 nk->addr[pd->didx].v4.s_addr, 0); 4558 break; 4559 #endif /* INET */ 4560 #ifdef INET6 4561 case AF_INET6: 4562 if (PF_ANEQ(saddr, 4563 &nk->addr[pd->sidx], AF_INET6)) 4564 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4565 4566 if (PF_ANEQ(daddr, 4567 &nk->addr[pd->didx], AF_INET6)) 4568 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4569 break; 4570 #endif /* INET */ 4571 } 4572 break; 4573 } 4574 if (nr->natpass) 4575 r = NULL; 4576 pd->nat_rule = nr; 4577 } 4578 4579 SLIST_INIT(&match_rules); 4580 while (r != NULL) { 4581 pf_counter_u64_add(&r->evaluations, 1); 4582 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4583 r = r->skip[PF_SKIP_IFP].ptr; 4584 else if (r->direction && r->direction != pd->dir) 4585 r = r->skip[PF_SKIP_DIR].ptr; 4586 else if (r->af && r->af != af) 4587 r = r->skip[PF_SKIP_AF].ptr; 4588 else if (r->proto && r->proto != pd->proto) 4589 r = r->skip[PF_SKIP_PROTO].ptr; 4590 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4591 r->src.neg, kif, M_GETFIB(m))) 4592 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4593 /* tcp/udp only. port_op always 0 in other cases */ 4594 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4595 r->src.port[0], r->src.port[1], sport)) 4596 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4597 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4598 r->dst.neg, NULL, M_GETFIB(m))) 4599 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4600 /* tcp/udp only. port_op always 0 in other cases */ 4601 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4602 r->dst.port[0], r->dst.port[1], dport)) 4603 r = r->skip[PF_SKIP_DST_PORT].ptr; 4604 /* icmp only. type always 0 in other cases */ 4605 else if (r->type && r->type != icmptype + 1) 4606 r = TAILQ_NEXT(r, entries); 4607 /* icmp only. type always 0 in other cases */ 4608 else if (r->code && r->code != icmpcode + 1) 4609 r = TAILQ_NEXT(r, entries); 4610 else if (r->tos && !(r->tos == pd->tos)) 4611 r = TAILQ_NEXT(r, entries); 4612 else if (r->rule_flag & PFRULE_FRAGMENT) 4613 r = TAILQ_NEXT(r, entries); 4614 else if (pd->proto == IPPROTO_TCP && 4615 (r->flagset & th->th_flags) != r->flags) 4616 r = TAILQ_NEXT(r, entries); 4617 /* tcp/udp only. uid.op always 0 in other cases */ 4618 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4619 pf_socket_lookup(pd, m), 1)) && 4620 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4621 pd->lookup.uid)) 4622 r = TAILQ_NEXT(r, entries); 4623 /* tcp/udp only. gid.op always 0 in other cases */ 4624 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4625 pf_socket_lookup(pd, m), 1)) && 4626 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4627 pd->lookup.gid)) 4628 r = TAILQ_NEXT(r, entries); 4629 else if (r->prio && 4630 !pf_match_ieee8021q_pcp(r->prio, m)) 4631 r = TAILQ_NEXT(r, entries); 4632 else if (r->prob && 4633 r->prob <= arc4random()) 4634 r = TAILQ_NEXT(r, entries); 4635 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4636 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4637 r = TAILQ_NEXT(r, entries); 4638 else if (r->os_fingerprint != PF_OSFP_ANY && 4639 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4640 pf_osfp_fingerprint(pd, m, off, th), 4641 r->os_fingerprint))) 4642 r = TAILQ_NEXT(r, entries); 4643 else { 4644 if (r->tag) 4645 tag = r->tag; 4646 if (r->anchor == NULL) { 4647 if (r->action == PF_MATCH) { 4648 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4649 if (ri == NULL) { 4650 REASON_SET(&reason, PFRES_MEMORY); 4651 goto cleanup; 4652 } 4653 ri->r = r; 4654 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4655 pf_counter_u64_critical_enter(); 4656 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4657 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4658 pf_counter_u64_critical_exit(); 4659 pf_rule_to_actions(r, &pd->act); 4660 if (r->log) 4661 PFLOG_PACKET(kif, m, af, 4662 PFRES_MATCH, r, 4663 a, ruleset, pd, 1); 4664 } else { 4665 match = 1; 4666 *rm = r; 4667 *am = a; 4668 *rsm = ruleset; 4669 } 4670 if ((*rm)->quick) 4671 break; 4672 r = TAILQ_NEXT(r, entries); 4673 } else 4674 pf_step_into_anchor(anchor_stack, &asd, 4675 &ruleset, PF_RULESET_FILTER, &r, &a, 4676 &match); 4677 } 4678 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4679 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4680 break; 4681 } 4682 r = *rm; 4683 a = *am; 4684 ruleset = *rsm; 4685 4686 REASON_SET(&reason, PFRES_MATCH); 4687 4688 /* apply actions for last matching pass/block rule */ 4689 pf_rule_to_actions(r, &pd->act); 4690 4691 if (r->log) { 4692 if (rewrite) 4693 m_copyback(m, off, hdrlen, pd->hdr.any); 4694 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 4695 } 4696 4697 if ((r->action == PF_DROP) && 4698 ((r->rule_flag & PFRULE_RETURNRST) || 4699 (r->rule_flag & PFRULE_RETURNICMP) || 4700 (r->rule_flag & PFRULE_RETURN))) { 4701 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4702 bip_sum, hdrlen, &reason, r->rtableid); 4703 } 4704 4705 if (r->action == PF_DROP) 4706 goto cleanup; 4707 4708 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4709 REASON_SET(&reason, PFRES_MEMORY); 4710 goto cleanup; 4711 } 4712 if (pd->act.rtableid >= 0) 4713 M_SETFIB(m, pd->act.rtableid); 4714 4715 if (!state_icmp && (r->keep_state || nr != NULL || 4716 (pd->flags & PFDESC_TCP_NORM))) { 4717 int action; 4718 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4719 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4720 hdrlen, &match_rules); 4721 if (action != PF_PASS) { 4722 if (action == PF_DROP && 4723 (r->rule_flag & PFRULE_RETURN)) 4724 pf_return(r, nr, pd, sk, off, m, th, kif, 4725 bproto_sum, bip_sum, hdrlen, &reason, 4726 pd->act.rtableid); 4727 return (action); 4728 } 4729 } else { 4730 uma_zfree(V_pf_state_key_z, sk); 4731 uma_zfree(V_pf_state_key_z, nk); 4732 } 4733 4734 /* copy back packet headers if we performed NAT operations */ 4735 if (rewrite) 4736 m_copyback(m, off, hdrlen, pd->hdr.any); 4737 4738 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4739 pd->dir == PF_OUT && 4740 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4741 /* 4742 * We want the state created, but we dont 4743 * want to send this in case a partner 4744 * firewall has to know about it to allow 4745 * replies through it. 4746 */ 4747 return (PF_DEFER); 4748 4749 return (PF_PASS); 4750 4751 cleanup: 4752 while ((ri = SLIST_FIRST(&match_rules))) { 4753 SLIST_REMOVE_HEAD(&match_rules, entry); 4754 free(ri, M_PF_RULE_ITEM); 4755 } 4756 4757 uma_zfree(V_pf_state_key_z, sk); 4758 uma_zfree(V_pf_state_key_z, nk); 4759 return (PF_DROP); 4760 } 4761 4762 static int 4763 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4764 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4765 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4766 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4767 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4768 struct pf_krule_slist *match_rules) 4769 { 4770 struct pf_kstate *s = NULL; 4771 struct pf_ksrc_node *sn = NULL; 4772 struct tcphdr *th = &pd->hdr.tcp; 4773 u_int16_t mss = V_tcp_mssdflt; 4774 u_short reason, sn_reason; 4775 4776 /* check maximums */ 4777 if (r->max_states && 4778 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4779 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4780 REASON_SET(&reason, PFRES_MAXSTATES); 4781 goto csfailed; 4782 } 4783 /* src node for filter rule */ 4784 if ((r->rule_flag & PFRULE_SRCTRACK || 4785 r->rpool.opts & PF_POOL_STICKYADDR) && 4786 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 4787 REASON_SET(&reason, sn_reason); 4788 goto csfailed; 4789 } 4790 /* src node for translation rule */ 4791 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4792 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 4793 pd->af)) != 0 ) { 4794 REASON_SET(&reason, sn_reason); 4795 goto csfailed; 4796 } 4797 s = pf_alloc_state(M_NOWAIT); 4798 if (s == NULL) { 4799 REASON_SET(&reason, PFRES_MEMORY); 4800 goto csfailed; 4801 } 4802 s->rule.ptr = r; 4803 s->nat_rule.ptr = nr; 4804 s->anchor.ptr = a; 4805 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4806 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 4807 4808 STATE_INC_COUNTERS(s); 4809 if (r->allow_opts) 4810 s->state_flags |= PFSTATE_ALLOWOPTS; 4811 if (r->rule_flag & PFRULE_STATESLOPPY) 4812 s->state_flags |= PFSTATE_SLOPPY; 4813 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4814 s->state_flags |= PFSTATE_SCRUB_TCP; 4815 4816 s->act.log = pd->act.log & PF_LOG_ALL; 4817 s->sync_state = PFSYNC_S_NONE; 4818 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 4819 4820 if (nr != NULL) 4821 s->act.log |= nr->log & PF_LOG_ALL; 4822 switch (pd->proto) { 4823 case IPPROTO_TCP: 4824 s->src.seqlo = ntohl(th->th_seq); 4825 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4826 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4827 r->keep_state == PF_STATE_MODULATE) { 4828 /* Generate sequence number modulator */ 4829 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4830 0) 4831 s->src.seqdiff = 1; 4832 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4833 htonl(s->src.seqlo + s->src.seqdiff), 0); 4834 *rewrite = 1; 4835 } else 4836 s->src.seqdiff = 0; 4837 if (th->th_flags & TH_SYN) { 4838 s->src.seqhi++; 4839 s->src.wscale = pf_get_wscale(m, off, 4840 th->th_off, pd->af); 4841 } 4842 s->src.max_win = MAX(ntohs(th->th_win), 1); 4843 if (s->src.wscale & PF_WSCALE_MASK) { 4844 /* Remove scale factor from initial window */ 4845 int win = s->src.max_win; 4846 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4847 s->src.max_win = (win - 1) >> 4848 (s->src.wscale & PF_WSCALE_MASK); 4849 } 4850 if (th->th_flags & TH_FIN) 4851 s->src.seqhi++; 4852 s->dst.seqhi = 1; 4853 s->dst.max_win = 1; 4854 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4855 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4856 s->timeout = PFTM_TCP_FIRST_PACKET; 4857 atomic_add_32(&V_pf_status.states_halfopen, 1); 4858 break; 4859 case IPPROTO_UDP: 4860 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4861 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4862 s->timeout = PFTM_UDP_FIRST_PACKET; 4863 break; 4864 case IPPROTO_SCTP: 4865 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 4866 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 4867 s->timeout = PFTM_TCP_FIRST_PACKET; 4868 break; 4869 case IPPROTO_ICMP: 4870 #ifdef INET6 4871 case IPPROTO_ICMPV6: 4872 #endif 4873 s->timeout = PFTM_ICMP_FIRST_PACKET; 4874 break; 4875 default: 4876 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4877 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4878 s->timeout = PFTM_OTHER_FIRST_PACKET; 4879 } 4880 4881 if (r->rt) { 4882 /* pf_map_addr increases the reason counters */ 4883 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 4884 &s->rt_kif, NULL, &sn)) != 0) { 4885 pf_src_tree_remove_state(s); 4886 s->timeout = PFTM_UNLINKED; 4887 STATE_DEC_COUNTERS(s); 4888 pf_free_state(s); 4889 goto csfailed; 4890 } 4891 s->rt = r->rt; 4892 } 4893 4894 s->creation = time_uptime; 4895 s->expire = time_uptime; 4896 4897 if (sn != NULL) 4898 s->src_node = sn; 4899 if (nsn != NULL) { 4900 /* XXX We only modify one side for now. */ 4901 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4902 s->nat_src_node = nsn; 4903 } 4904 if (pd->proto == IPPROTO_TCP) { 4905 if (s->state_flags & PFSTATE_SCRUB_TCP && 4906 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4907 REASON_SET(&reason, PFRES_MEMORY); 4908 pf_src_tree_remove_state(s); 4909 s->timeout = PFTM_UNLINKED; 4910 STATE_DEC_COUNTERS(s); 4911 pf_free_state(s); 4912 return (PF_DROP); 4913 } 4914 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4915 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4916 &s->src, &s->dst, rewrite)) { 4917 /* This really shouldn't happen!!! */ 4918 DPFPRINTF(PF_DEBUG_URGENT, 4919 ("pf_normalize_tcp_stateful failed on first " 4920 "pkt\n")); 4921 pf_src_tree_remove_state(s); 4922 s->timeout = PFTM_UNLINKED; 4923 STATE_DEC_COUNTERS(s); 4924 pf_free_state(s); 4925 return (PF_DROP); 4926 } 4927 } 4928 s->direction = pd->dir; 4929 4930 /* 4931 * sk/nk could already been setup by pf_get_translation(). 4932 */ 4933 if (nr == NULL) { 4934 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4935 __func__, nr, sk, nk)); 4936 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4937 if (sk == NULL) 4938 goto csfailed; 4939 nk = sk; 4940 } else 4941 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4942 __func__, nr, sk, nk)); 4943 4944 /* Swap sk/nk for PF_OUT. */ 4945 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4946 (pd->dir == PF_IN) ? sk : nk, 4947 (pd->dir == PF_IN) ? nk : sk, s)) { 4948 REASON_SET(&reason, PFRES_STATEINS); 4949 pf_src_tree_remove_state(s); 4950 s->timeout = PFTM_UNLINKED; 4951 STATE_DEC_COUNTERS(s); 4952 pf_free_state(s); 4953 return (PF_DROP); 4954 } else 4955 *sm = s; 4956 4957 if (tag > 0) 4958 s->tag = tag; 4959 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4960 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4961 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4962 /* undo NAT changes, if they have taken place */ 4963 if (nr != NULL) { 4964 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4965 if (pd->dir == PF_OUT) 4966 skt = s->key[PF_SK_STACK]; 4967 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4968 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4969 if (pd->sport) 4970 *pd->sport = skt->port[pd->sidx]; 4971 if (pd->dport) 4972 *pd->dport = skt->port[pd->didx]; 4973 if (pd->proto_sum) 4974 *pd->proto_sum = bproto_sum; 4975 if (pd->ip_sum) 4976 *pd->ip_sum = bip_sum; 4977 m_copyback(m, off, hdrlen, pd->hdr.any); 4978 } 4979 s->src.seqhi = htonl(arc4random()); 4980 /* Find mss option */ 4981 int rtid = M_GETFIB(m); 4982 mss = pf_get_mss(m, off, th->th_off, pd->af); 4983 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4984 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4985 s->src.mss = mss; 4986 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4987 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4988 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 4989 pd->act.rtableid); 4990 REASON_SET(&reason, PFRES_SYNPROXY); 4991 return (PF_SYNPROXY_DROP); 4992 } 4993 4994 return (PF_PASS); 4995 4996 csfailed: 4997 uma_zfree(V_pf_state_key_z, sk); 4998 uma_zfree(V_pf_state_key_z, nk); 4999 5000 if (sn != NULL) { 5001 PF_SRC_NODE_LOCK(sn); 5002 if (--sn->states == 0 && sn->expire == 0) { 5003 pf_unlink_src_node(sn); 5004 uma_zfree(V_pf_sources_z, sn); 5005 counter_u64_add( 5006 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5007 } 5008 PF_SRC_NODE_UNLOCK(sn); 5009 } 5010 5011 if (nsn != sn && nsn != NULL) { 5012 PF_SRC_NODE_LOCK(nsn); 5013 if (--nsn->states == 0 && nsn->expire == 0) { 5014 pf_unlink_src_node(nsn); 5015 uma_zfree(V_pf_sources_z, nsn); 5016 counter_u64_add( 5017 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5018 } 5019 PF_SRC_NODE_UNLOCK(nsn); 5020 } 5021 5022 return (PF_DROP); 5023 } 5024 5025 static int 5026 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5027 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5028 struct pf_kruleset **rsm) 5029 { 5030 struct pf_krule *r, *a = NULL; 5031 struct pf_kruleset *ruleset = NULL; 5032 struct pf_krule_slist match_rules; 5033 struct pf_krule_item *ri; 5034 sa_family_t af = pd->af; 5035 u_short reason; 5036 int tag = -1; 5037 int asd = 0; 5038 int match = 0; 5039 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5040 5041 PF_RULES_RASSERT(); 5042 5043 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5044 SLIST_INIT(&match_rules); 5045 while (r != NULL) { 5046 pf_counter_u64_add(&r->evaluations, 1); 5047 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5048 r = r->skip[PF_SKIP_IFP].ptr; 5049 else if (r->direction && r->direction != pd->dir) 5050 r = r->skip[PF_SKIP_DIR].ptr; 5051 else if (r->af && r->af != af) 5052 r = r->skip[PF_SKIP_AF].ptr; 5053 else if (r->proto && r->proto != pd->proto) 5054 r = r->skip[PF_SKIP_PROTO].ptr; 5055 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5056 r->src.neg, kif, M_GETFIB(m))) 5057 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5058 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5059 r->dst.neg, NULL, M_GETFIB(m))) 5060 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5061 else if (r->tos && !(r->tos == pd->tos)) 5062 r = TAILQ_NEXT(r, entries); 5063 else if (r->os_fingerprint != PF_OSFP_ANY) 5064 r = TAILQ_NEXT(r, entries); 5065 else if (pd->proto == IPPROTO_UDP && 5066 (r->src.port_op || r->dst.port_op)) 5067 r = TAILQ_NEXT(r, entries); 5068 else if (pd->proto == IPPROTO_TCP && 5069 (r->src.port_op || r->dst.port_op || r->flagset)) 5070 r = TAILQ_NEXT(r, entries); 5071 else if ((pd->proto == IPPROTO_ICMP || 5072 pd->proto == IPPROTO_ICMPV6) && 5073 (r->type || r->code)) 5074 r = TAILQ_NEXT(r, entries); 5075 else if (r->prio && 5076 !pf_match_ieee8021q_pcp(r->prio, m)) 5077 r = TAILQ_NEXT(r, entries); 5078 else if (r->prob && r->prob <= 5079 (arc4random() % (UINT_MAX - 1) + 1)) 5080 r = TAILQ_NEXT(r, entries); 5081 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5082 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5083 r = TAILQ_NEXT(r, entries); 5084 else { 5085 if (r->anchor == NULL) { 5086 if (r->action == PF_MATCH) { 5087 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5088 if (ri == NULL) { 5089 REASON_SET(&reason, PFRES_MEMORY); 5090 goto cleanup; 5091 } 5092 ri->r = r; 5093 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5094 pf_counter_u64_critical_enter(); 5095 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5096 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5097 pf_counter_u64_critical_exit(); 5098 pf_rule_to_actions(r, &pd->act); 5099 if (r->log) 5100 PFLOG_PACKET(kif, m, af, 5101 PFRES_MATCH, r, 5102 a, ruleset, pd, 1); 5103 } else { 5104 match = 1; 5105 *rm = r; 5106 *am = a; 5107 *rsm = ruleset; 5108 } 5109 if ((*rm)->quick) 5110 break; 5111 r = TAILQ_NEXT(r, entries); 5112 } else 5113 pf_step_into_anchor(anchor_stack, &asd, 5114 &ruleset, PF_RULESET_FILTER, &r, &a, 5115 &match); 5116 } 5117 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5118 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5119 break; 5120 } 5121 r = *rm; 5122 a = *am; 5123 ruleset = *rsm; 5124 5125 REASON_SET(&reason, PFRES_MATCH); 5126 5127 /* apply actions for last matching pass/block rule */ 5128 pf_rule_to_actions(r, &pd->act); 5129 5130 if (r->log) 5131 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 5132 5133 if (r->action != PF_PASS) 5134 return (PF_DROP); 5135 5136 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5137 REASON_SET(&reason, PFRES_MEMORY); 5138 goto cleanup; 5139 } 5140 5141 return (PF_PASS); 5142 5143 cleanup: 5144 while ((ri = SLIST_FIRST(&match_rules))) { 5145 SLIST_REMOVE_HEAD(&match_rules, entry); 5146 free(ri, M_PF_RULE_ITEM); 5147 } 5148 5149 return (PF_DROP); 5150 } 5151 5152 static int 5153 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5154 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5155 int *copyback) 5156 { 5157 struct tcphdr *th = &pd->hdr.tcp; 5158 struct pf_state_peer *src, *dst; 5159 u_int16_t win = ntohs(th->th_win); 5160 u_int32_t ack, end, seq, orig_seq; 5161 u_int8_t sws, dws, psrc, pdst; 5162 int ackskew; 5163 5164 if (pd->dir == (*state)->direction) { 5165 src = &(*state)->src; 5166 dst = &(*state)->dst; 5167 psrc = PF_PEER_SRC; 5168 pdst = PF_PEER_DST; 5169 } else { 5170 src = &(*state)->dst; 5171 dst = &(*state)->src; 5172 psrc = PF_PEER_DST; 5173 pdst = PF_PEER_SRC; 5174 } 5175 5176 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5177 sws = src->wscale & PF_WSCALE_MASK; 5178 dws = dst->wscale & PF_WSCALE_MASK; 5179 } else 5180 sws = dws = 0; 5181 5182 /* 5183 * Sequence tracking algorithm from Guido van Rooij's paper: 5184 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5185 * tcp_filtering.ps 5186 */ 5187 5188 orig_seq = seq = ntohl(th->th_seq); 5189 if (src->seqlo == 0) { 5190 /* First packet from this end. Set its state */ 5191 5192 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5193 src->scrub == NULL) { 5194 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5195 REASON_SET(reason, PFRES_MEMORY); 5196 return (PF_DROP); 5197 } 5198 } 5199 5200 /* Deferred generation of sequence number modulator */ 5201 if (dst->seqdiff && !src->seqdiff) { 5202 /* use random iss for the TCP server */ 5203 while ((src->seqdiff = arc4random() - seq) == 0) 5204 ; 5205 ack = ntohl(th->th_ack) - dst->seqdiff; 5206 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5207 src->seqdiff), 0); 5208 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5209 *copyback = 1; 5210 } else { 5211 ack = ntohl(th->th_ack); 5212 } 5213 5214 end = seq + pd->p_len; 5215 if (th->th_flags & TH_SYN) { 5216 end++; 5217 if (dst->wscale & PF_WSCALE_FLAG) { 5218 src->wscale = pf_get_wscale(m, off, th->th_off, 5219 pd->af); 5220 if (src->wscale & PF_WSCALE_FLAG) { 5221 /* Remove scale factor from initial 5222 * window */ 5223 sws = src->wscale & PF_WSCALE_MASK; 5224 win = ((u_int32_t)win + (1 << sws) - 1) 5225 >> sws; 5226 dws = dst->wscale & PF_WSCALE_MASK; 5227 } else { 5228 /* fixup other window */ 5229 dst->max_win <<= dst->wscale & 5230 PF_WSCALE_MASK; 5231 /* in case of a retrans SYN|ACK */ 5232 dst->wscale = 0; 5233 } 5234 } 5235 } 5236 if (th->th_flags & TH_FIN) 5237 end++; 5238 5239 src->seqlo = seq; 5240 if (src->state < TCPS_SYN_SENT) 5241 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5242 5243 /* 5244 * May need to slide the window (seqhi may have been set by 5245 * the crappy stack check or if we picked up the connection 5246 * after establishment) 5247 */ 5248 if (src->seqhi == 1 || 5249 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5250 src->seqhi = end + MAX(1, dst->max_win << dws); 5251 if (win > src->max_win) 5252 src->max_win = win; 5253 5254 } else { 5255 ack = ntohl(th->th_ack) - dst->seqdiff; 5256 if (src->seqdiff) { 5257 /* Modulate sequence numbers */ 5258 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5259 src->seqdiff), 0); 5260 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5261 *copyback = 1; 5262 } 5263 end = seq + pd->p_len; 5264 if (th->th_flags & TH_SYN) 5265 end++; 5266 if (th->th_flags & TH_FIN) 5267 end++; 5268 } 5269 5270 if ((th->th_flags & TH_ACK) == 0) { 5271 /* Let it pass through the ack skew check */ 5272 ack = dst->seqlo; 5273 } else if ((ack == 0 && 5274 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5275 /* broken tcp stacks do not set ack */ 5276 (dst->state < TCPS_SYN_SENT)) { 5277 /* 5278 * Many stacks (ours included) will set the ACK number in an 5279 * FIN|ACK if the SYN times out -- no sequence to ACK. 5280 */ 5281 ack = dst->seqlo; 5282 } 5283 5284 if (seq == end) { 5285 /* Ease sequencing restrictions on no data packets */ 5286 seq = src->seqlo; 5287 end = seq; 5288 } 5289 5290 ackskew = dst->seqlo - ack; 5291 5292 /* 5293 * Need to demodulate the sequence numbers in any TCP SACK options 5294 * (Selective ACK). We could optionally validate the SACK values 5295 * against the current ACK window, either forwards or backwards, but 5296 * I'm not confident that SACK has been implemented properly 5297 * everywhere. It wouldn't surprise me if several stacks accidentally 5298 * SACK too far backwards of previously ACKed data. There really aren't 5299 * any security implications of bad SACKing unless the target stack 5300 * doesn't validate the option length correctly. Someone trying to 5301 * spoof into a TCP connection won't bother blindly sending SACK 5302 * options anyway. 5303 */ 5304 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5305 if (pf_modulate_sack(m, off, pd, th, dst)) 5306 *copyback = 1; 5307 } 5308 5309 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5310 if (SEQ_GEQ(src->seqhi, end) && 5311 /* Last octet inside other's window space */ 5312 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5313 /* Retrans: not more than one window back */ 5314 (ackskew >= -MAXACKWINDOW) && 5315 /* Acking not more than one reassembled fragment backwards */ 5316 (ackskew <= (MAXACKWINDOW << sws)) && 5317 /* Acking not more than one window forward */ 5318 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5319 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5320 (pd->flags & PFDESC_IP_REAS) == 0)) { 5321 /* Require an exact/+1 sequence match on resets when possible */ 5322 5323 if (dst->scrub || src->scrub) { 5324 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5325 *state, src, dst, copyback)) 5326 return (PF_DROP); 5327 } 5328 5329 /* update max window */ 5330 if (src->max_win < win) 5331 src->max_win = win; 5332 /* synchronize sequencing */ 5333 if (SEQ_GT(end, src->seqlo)) 5334 src->seqlo = end; 5335 /* slide the window of what the other end can send */ 5336 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5337 dst->seqhi = ack + MAX((win << sws), 1); 5338 5339 /* update states */ 5340 if (th->th_flags & TH_SYN) 5341 if (src->state < TCPS_SYN_SENT) 5342 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5343 if (th->th_flags & TH_FIN) 5344 if (src->state < TCPS_CLOSING) 5345 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5346 if (th->th_flags & TH_ACK) { 5347 if (dst->state == TCPS_SYN_SENT) { 5348 pf_set_protostate(*state, pdst, 5349 TCPS_ESTABLISHED); 5350 if (src->state == TCPS_ESTABLISHED && 5351 (*state)->src_node != NULL && 5352 pf_src_connlimit(state)) { 5353 REASON_SET(reason, PFRES_SRCLIMIT); 5354 return (PF_DROP); 5355 } 5356 } else if (dst->state == TCPS_CLOSING) 5357 pf_set_protostate(*state, pdst, 5358 TCPS_FIN_WAIT_2); 5359 } 5360 if (th->th_flags & TH_RST) 5361 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5362 5363 /* update expire time */ 5364 (*state)->expire = time_uptime; 5365 if (src->state >= TCPS_FIN_WAIT_2 && 5366 dst->state >= TCPS_FIN_WAIT_2) 5367 (*state)->timeout = PFTM_TCP_CLOSED; 5368 else if (src->state >= TCPS_CLOSING && 5369 dst->state >= TCPS_CLOSING) 5370 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5371 else if (src->state < TCPS_ESTABLISHED || 5372 dst->state < TCPS_ESTABLISHED) 5373 (*state)->timeout = PFTM_TCP_OPENING; 5374 else if (src->state >= TCPS_CLOSING || 5375 dst->state >= TCPS_CLOSING) 5376 (*state)->timeout = PFTM_TCP_CLOSING; 5377 else 5378 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5379 5380 /* Fall through to PASS packet */ 5381 5382 } else if ((dst->state < TCPS_SYN_SENT || 5383 dst->state >= TCPS_FIN_WAIT_2 || 5384 src->state >= TCPS_FIN_WAIT_2) && 5385 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5386 /* Within a window forward of the originating packet */ 5387 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5388 /* Within a window backward of the originating packet */ 5389 5390 /* 5391 * This currently handles three situations: 5392 * 1) Stupid stacks will shotgun SYNs before their peer 5393 * replies. 5394 * 2) When PF catches an already established stream (the 5395 * firewall rebooted, the state table was flushed, routes 5396 * changed...) 5397 * 3) Packets get funky immediately after the connection 5398 * closes (this should catch Solaris spurious ACK|FINs 5399 * that web servers like to spew after a close) 5400 * 5401 * This must be a little more careful than the above code 5402 * since packet floods will also be caught here. We don't 5403 * update the TTL here to mitigate the damage of a packet 5404 * flood and so the same code can handle awkward establishment 5405 * and a loosened connection close. 5406 * In the establishment case, a correct peer response will 5407 * validate the connection, go through the normal state code 5408 * and keep updating the state TTL. 5409 */ 5410 5411 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5412 printf("pf: loose state match: "); 5413 pf_print_state(*state); 5414 pf_print_flags(th->th_flags); 5415 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5416 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5417 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5418 (unsigned long long)(*state)->packets[1], 5419 pd->dir == PF_IN ? "in" : "out", 5420 pd->dir == (*state)->direction ? "fwd" : "rev"); 5421 } 5422 5423 if (dst->scrub || src->scrub) { 5424 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5425 *state, src, dst, copyback)) 5426 return (PF_DROP); 5427 } 5428 5429 /* update max window */ 5430 if (src->max_win < win) 5431 src->max_win = win; 5432 /* synchronize sequencing */ 5433 if (SEQ_GT(end, src->seqlo)) 5434 src->seqlo = end; 5435 /* slide the window of what the other end can send */ 5436 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5437 dst->seqhi = ack + MAX((win << sws), 1); 5438 5439 /* 5440 * Cannot set dst->seqhi here since this could be a shotgunned 5441 * SYN and not an already established connection. 5442 */ 5443 5444 if (th->th_flags & TH_FIN) 5445 if (src->state < TCPS_CLOSING) 5446 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5447 if (th->th_flags & TH_RST) 5448 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5449 5450 /* Fall through to PASS packet */ 5451 5452 } else { 5453 if ((*state)->dst.state == TCPS_SYN_SENT && 5454 (*state)->src.state == TCPS_SYN_SENT) { 5455 /* Send RST for state mismatches during handshake */ 5456 if (!(th->th_flags & TH_RST)) 5457 pf_send_tcp((*state)->rule.ptr, pd->af, 5458 pd->dst, pd->src, th->th_dport, 5459 th->th_sport, ntohl(th->th_ack), 0, 5460 TH_RST, 0, 0, 5461 (*state)->rule.ptr->return_ttl, true, 0, 0, 5462 (*state)->act.rtableid); 5463 src->seqlo = 0; 5464 src->seqhi = 1; 5465 src->max_win = 1; 5466 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5467 printf("pf: BAD state: "); 5468 pf_print_state(*state); 5469 pf_print_flags(th->th_flags); 5470 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5471 "pkts=%llu:%llu dir=%s,%s\n", 5472 seq, orig_seq, ack, pd->p_len, ackskew, 5473 (unsigned long long)(*state)->packets[0], 5474 (unsigned long long)(*state)->packets[1], 5475 pd->dir == PF_IN ? "in" : "out", 5476 pd->dir == (*state)->direction ? "fwd" : "rev"); 5477 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5478 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5479 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5480 ' ': '2', 5481 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5482 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5483 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5484 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5485 } 5486 REASON_SET(reason, PFRES_BADSTATE); 5487 return (PF_DROP); 5488 } 5489 5490 return (PF_PASS); 5491 } 5492 5493 static int 5494 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5495 { 5496 struct tcphdr *th = &pd->hdr.tcp; 5497 struct pf_state_peer *src, *dst; 5498 u_int8_t psrc, pdst; 5499 5500 if (pd->dir == (*state)->direction) { 5501 src = &(*state)->src; 5502 dst = &(*state)->dst; 5503 psrc = PF_PEER_SRC; 5504 pdst = PF_PEER_DST; 5505 } else { 5506 src = &(*state)->dst; 5507 dst = &(*state)->src; 5508 psrc = PF_PEER_DST; 5509 pdst = PF_PEER_SRC; 5510 } 5511 5512 if (th->th_flags & TH_SYN) 5513 if (src->state < TCPS_SYN_SENT) 5514 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5515 if (th->th_flags & TH_FIN) 5516 if (src->state < TCPS_CLOSING) 5517 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5518 if (th->th_flags & TH_ACK) { 5519 if (dst->state == TCPS_SYN_SENT) { 5520 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5521 if (src->state == TCPS_ESTABLISHED && 5522 (*state)->src_node != NULL && 5523 pf_src_connlimit(state)) { 5524 REASON_SET(reason, PFRES_SRCLIMIT); 5525 return (PF_DROP); 5526 } 5527 } else if (dst->state == TCPS_CLOSING) { 5528 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5529 } else if (src->state == TCPS_SYN_SENT && 5530 dst->state < TCPS_SYN_SENT) { 5531 /* 5532 * Handle a special sloppy case where we only see one 5533 * half of the connection. If there is a ACK after 5534 * the initial SYN without ever seeing a packet from 5535 * the destination, set the connection to established. 5536 */ 5537 pf_set_protostate(*state, PF_PEER_BOTH, 5538 TCPS_ESTABLISHED); 5539 dst->state = src->state = TCPS_ESTABLISHED; 5540 if ((*state)->src_node != NULL && 5541 pf_src_connlimit(state)) { 5542 REASON_SET(reason, PFRES_SRCLIMIT); 5543 return (PF_DROP); 5544 } 5545 } else if (src->state == TCPS_CLOSING && 5546 dst->state == TCPS_ESTABLISHED && 5547 dst->seqlo == 0) { 5548 /* 5549 * Handle the closing of half connections where we 5550 * don't see the full bidirectional FIN/ACK+ACK 5551 * handshake. 5552 */ 5553 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5554 } 5555 } 5556 if (th->th_flags & TH_RST) 5557 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5558 5559 /* update expire time */ 5560 (*state)->expire = time_uptime; 5561 if (src->state >= TCPS_FIN_WAIT_2 && 5562 dst->state >= TCPS_FIN_WAIT_2) 5563 (*state)->timeout = PFTM_TCP_CLOSED; 5564 else if (src->state >= TCPS_CLOSING && 5565 dst->state >= TCPS_CLOSING) 5566 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5567 else if (src->state < TCPS_ESTABLISHED || 5568 dst->state < TCPS_ESTABLISHED) 5569 (*state)->timeout = PFTM_TCP_OPENING; 5570 else if (src->state >= TCPS_CLOSING || 5571 dst->state >= TCPS_CLOSING) 5572 (*state)->timeout = PFTM_TCP_CLOSING; 5573 else 5574 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5575 5576 return (PF_PASS); 5577 } 5578 5579 static int 5580 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5581 { 5582 struct pf_state_key *sk = (*state)->key[pd->didx]; 5583 struct tcphdr *th = &pd->hdr.tcp; 5584 5585 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5586 if (pd->dir != (*state)->direction) { 5587 REASON_SET(reason, PFRES_SYNPROXY); 5588 return (PF_SYNPROXY_DROP); 5589 } 5590 if (th->th_flags & TH_SYN) { 5591 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5592 REASON_SET(reason, PFRES_SYNPROXY); 5593 return (PF_DROP); 5594 } 5595 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5596 pd->src, th->th_dport, th->th_sport, 5597 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5598 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5599 (*state)->act.rtableid); 5600 REASON_SET(reason, PFRES_SYNPROXY); 5601 return (PF_SYNPROXY_DROP); 5602 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5603 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5604 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5605 REASON_SET(reason, PFRES_SYNPROXY); 5606 return (PF_DROP); 5607 } else if ((*state)->src_node != NULL && 5608 pf_src_connlimit(state)) { 5609 REASON_SET(reason, PFRES_SRCLIMIT); 5610 return (PF_DROP); 5611 } else 5612 pf_set_protostate(*state, PF_PEER_SRC, 5613 PF_TCPS_PROXY_DST); 5614 } 5615 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5616 if (pd->dir == (*state)->direction) { 5617 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5618 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5619 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5620 REASON_SET(reason, PFRES_SYNPROXY); 5621 return (PF_DROP); 5622 } 5623 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5624 if ((*state)->dst.seqhi == 1) 5625 (*state)->dst.seqhi = htonl(arc4random()); 5626 pf_send_tcp((*state)->rule.ptr, pd->af, 5627 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5628 sk->port[pd->sidx], sk->port[pd->didx], 5629 (*state)->dst.seqhi, 0, TH_SYN, 0, 5630 (*state)->src.mss, 0, false, (*state)->tag, 0, 5631 (*state)->act.rtableid); 5632 REASON_SET(reason, PFRES_SYNPROXY); 5633 return (PF_SYNPROXY_DROP); 5634 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5635 (TH_SYN|TH_ACK)) || 5636 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5637 REASON_SET(reason, PFRES_SYNPROXY); 5638 return (PF_DROP); 5639 } else { 5640 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5641 (*state)->dst.seqlo = ntohl(th->th_seq); 5642 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5643 pd->src, th->th_dport, th->th_sport, 5644 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5645 TH_ACK, (*state)->src.max_win, 0, 0, false, 5646 (*state)->tag, 0, (*state)->act.rtableid); 5647 pf_send_tcp((*state)->rule.ptr, pd->af, 5648 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5649 sk->port[pd->sidx], sk->port[pd->didx], 5650 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5651 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5652 (*state)->act.rtableid); 5653 (*state)->src.seqdiff = (*state)->dst.seqhi - 5654 (*state)->src.seqlo; 5655 (*state)->dst.seqdiff = (*state)->src.seqhi - 5656 (*state)->dst.seqlo; 5657 (*state)->src.seqhi = (*state)->src.seqlo + 5658 (*state)->dst.max_win; 5659 (*state)->dst.seqhi = (*state)->dst.seqlo + 5660 (*state)->src.max_win; 5661 (*state)->src.wscale = (*state)->dst.wscale = 0; 5662 pf_set_protostate(*state, PF_PEER_BOTH, 5663 TCPS_ESTABLISHED); 5664 REASON_SET(reason, PFRES_SYNPROXY); 5665 return (PF_SYNPROXY_DROP); 5666 } 5667 } 5668 5669 return (PF_PASS); 5670 } 5671 5672 static int 5673 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5674 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5675 u_short *reason) 5676 { 5677 struct pf_state_key_cmp key; 5678 struct tcphdr *th = &pd->hdr.tcp; 5679 int copyback = 0; 5680 int action; 5681 struct pf_state_peer *src, *dst; 5682 5683 bzero(&key, sizeof(key)); 5684 key.af = pd->af; 5685 key.proto = IPPROTO_TCP; 5686 if (pd->dir == PF_IN) { /* wire side, straight */ 5687 PF_ACPY(&key.addr[0], pd->src, key.af); 5688 PF_ACPY(&key.addr[1], pd->dst, key.af); 5689 key.port[0] = th->th_sport; 5690 key.port[1] = th->th_dport; 5691 } else { /* stack side, reverse */ 5692 PF_ACPY(&key.addr[1], pd->src, key.af); 5693 PF_ACPY(&key.addr[0], pd->dst, key.af); 5694 key.port[1] = th->th_sport; 5695 key.port[0] = th->th_dport; 5696 } 5697 5698 STATE_LOOKUP(kif, &key, *state, pd); 5699 5700 if (pd->dir == (*state)->direction) { 5701 src = &(*state)->src; 5702 dst = &(*state)->dst; 5703 } else { 5704 src = &(*state)->dst; 5705 dst = &(*state)->src; 5706 } 5707 5708 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5709 return (action); 5710 5711 if (dst->state >= TCPS_FIN_WAIT_2 && 5712 src->state >= TCPS_FIN_WAIT_2 && 5713 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5714 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5715 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5716 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5717 printf("pf: state reuse "); 5718 pf_print_state(*state); 5719 pf_print_flags(th->th_flags); 5720 printf("\n"); 5721 } 5722 /* XXX make sure it's the same direction ?? */ 5723 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5724 pf_unlink_state(*state); 5725 *state = NULL; 5726 return (PF_DROP); 5727 } 5728 5729 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5730 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5731 return (PF_DROP); 5732 } else { 5733 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5734 ©back) == PF_DROP) 5735 return (PF_DROP); 5736 } 5737 5738 /* translate source/destination address, if necessary */ 5739 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5740 struct pf_state_key *nk = (*state)->key[pd->didx]; 5741 5742 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5743 nk->port[pd->sidx] != th->th_sport) 5744 pf_change_ap(m, pd->src, &th->th_sport, 5745 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5746 nk->port[pd->sidx], 0, pd->af); 5747 5748 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5749 nk->port[pd->didx] != th->th_dport) 5750 pf_change_ap(m, pd->dst, &th->th_dport, 5751 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5752 nk->port[pd->didx], 0, pd->af); 5753 copyback = 1; 5754 } 5755 5756 /* Copyback sequence modulation or stateful scrub changes if needed */ 5757 if (copyback) 5758 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5759 5760 return (PF_PASS); 5761 } 5762 5763 static int 5764 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 5765 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5766 { 5767 struct pf_state_peer *src, *dst; 5768 struct pf_state_key_cmp key; 5769 struct udphdr *uh = &pd->hdr.udp; 5770 uint8_t psrc, pdst; 5771 5772 bzero(&key, sizeof(key)); 5773 key.af = pd->af; 5774 key.proto = IPPROTO_UDP; 5775 if (pd->dir == PF_IN) { /* wire side, straight */ 5776 PF_ACPY(&key.addr[0], pd->src, key.af); 5777 PF_ACPY(&key.addr[1], pd->dst, key.af); 5778 key.port[0] = uh->uh_sport; 5779 key.port[1] = uh->uh_dport; 5780 } else { /* stack side, reverse */ 5781 PF_ACPY(&key.addr[1], pd->src, key.af); 5782 PF_ACPY(&key.addr[0], pd->dst, key.af); 5783 key.port[1] = uh->uh_sport; 5784 key.port[0] = uh->uh_dport; 5785 } 5786 5787 STATE_LOOKUP(kif, &key, *state, pd); 5788 5789 if (pd->dir == (*state)->direction) { 5790 src = &(*state)->src; 5791 dst = &(*state)->dst; 5792 psrc = PF_PEER_SRC; 5793 pdst = PF_PEER_DST; 5794 } else { 5795 src = &(*state)->dst; 5796 dst = &(*state)->src; 5797 psrc = PF_PEER_DST; 5798 pdst = PF_PEER_SRC; 5799 } 5800 5801 /* update states */ 5802 if (src->state < PFUDPS_SINGLE) 5803 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5804 if (dst->state == PFUDPS_SINGLE) 5805 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5806 5807 /* update expire time */ 5808 (*state)->expire = time_uptime; 5809 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5810 (*state)->timeout = PFTM_UDP_MULTIPLE; 5811 else 5812 (*state)->timeout = PFTM_UDP_SINGLE; 5813 5814 /* translate source/destination address, if necessary */ 5815 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5816 struct pf_state_key *nk = (*state)->key[pd->didx]; 5817 5818 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5819 nk->port[pd->sidx] != uh->uh_sport) 5820 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5821 &uh->uh_sum, &nk->addr[pd->sidx], 5822 nk->port[pd->sidx], 1, pd->af); 5823 5824 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5825 nk->port[pd->didx] != uh->uh_dport) 5826 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5827 &uh->uh_sum, &nk->addr[pd->didx], 5828 nk->port[pd->didx], 1, pd->af); 5829 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5830 } 5831 5832 return (PF_PASS); 5833 } 5834 5835 static int 5836 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 5837 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5838 { 5839 struct pf_state_key_cmp key; 5840 struct pf_state_peer *src; //, *dst; 5841 struct sctphdr *sh = &pd->hdr.sctp; 5842 u_int8_t psrc; //, pdst; 5843 5844 bzero(&key, sizeof(key)); 5845 key.af = pd->af; 5846 key.proto = IPPROTO_SCTP; 5847 if (pd->dir == PF_IN) { /* wire side, straight */ 5848 PF_ACPY(&key.addr[0], pd->src, key.af); 5849 PF_ACPY(&key.addr[1], pd->dst, key.af); 5850 key.port[0] = sh->src_port; 5851 key.port[1] = sh->dest_port; 5852 } else { /* stack side, reverse */ 5853 PF_ACPY(&key.addr[1], pd->src, key.af); 5854 PF_ACPY(&key.addr[0], pd->dst, key.af); 5855 key.port[1] = sh->src_port; 5856 key.port[0] = sh->dest_port; 5857 } 5858 5859 STATE_LOOKUP(kif, &key, *state, pd); 5860 5861 if (pd->dir == (*state)->direction) { 5862 src = &(*state)->src; 5863 psrc = PF_PEER_SRC; 5864 } else { 5865 src = &(*state)->dst; 5866 psrc = PF_PEER_DST; 5867 } 5868 5869 /* Track state. */ 5870 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 5871 if (src->state < SCTP_COOKIE_WAIT) { 5872 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 5873 (*state)->timeout = PFTM_TCP_OPENING; 5874 } 5875 } 5876 if (pd->sctp_flags & PFDESC_SCTP_COOKIE) { 5877 if (src->state < SCTP_ESTABLISHED) { 5878 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 5879 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5880 } 5881 } 5882 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 5883 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5884 if (src->state < SCTP_SHUTDOWN_PENDING) { 5885 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 5886 (*state)->timeout = PFTM_TCP_CLOSING; 5887 } 5888 } 5889 5890 (*state)->expire = time_uptime; 5891 5892 /* translate source/destination address, if necessary */ 5893 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5894 uint16_t checksum = 0; 5895 struct pf_state_key *nk = (*state)->key[pd->didx]; 5896 5897 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5898 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 5899 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 5900 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 5901 nk->port[pd->sidx], 1, pd->af); 5902 } 5903 5904 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5905 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 5906 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 5907 pd->ip_sum, &checksum, &nk->addr[pd->didx], 5908 nk->port[pd->didx], 1, pd->af); 5909 } 5910 } 5911 5912 return (PF_PASS); 5913 } 5914 5915 static int 5916 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 5917 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5918 { 5919 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5920 u_int16_t icmpid = 0, *icmpsum; 5921 u_int8_t icmptype, icmpcode; 5922 int state_icmp = 0; 5923 struct pf_state_key_cmp key; 5924 5925 bzero(&key, sizeof(key)); 5926 switch (pd->proto) { 5927 #ifdef INET 5928 case IPPROTO_ICMP: 5929 icmptype = pd->hdr.icmp.icmp_type; 5930 icmpcode = pd->hdr.icmp.icmp_code; 5931 icmpid = pd->hdr.icmp.icmp_id; 5932 icmpsum = &pd->hdr.icmp.icmp_cksum; 5933 5934 if (icmptype == ICMP_UNREACH || 5935 icmptype == ICMP_SOURCEQUENCH || 5936 icmptype == ICMP_REDIRECT || 5937 icmptype == ICMP_TIMXCEED || 5938 icmptype == ICMP_PARAMPROB) 5939 state_icmp++; 5940 break; 5941 #endif /* INET */ 5942 #ifdef INET6 5943 case IPPROTO_ICMPV6: 5944 icmptype = pd->hdr.icmp6.icmp6_type; 5945 icmpcode = pd->hdr.icmp6.icmp6_code; 5946 icmpid = pd->hdr.icmp6.icmp6_id; 5947 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5948 5949 if (icmptype == ICMP6_DST_UNREACH || 5950 icmptype == ICMP6_PACKET_TOO_BIG || 5951 icmptype == ICMP6_TIME_EXCEEDED || 5952 icmptype == ICMP6_PARAM_PROB) 5953 state_icmp++; 5954 break; 5955 #endif /* INET6 */ 5956 } 5957 5958 if (!state_icmp) { 5959 /* 5960 * ICMP query/reply message not related to a TCP/UDP packet. 5961 * Search for an ICMP state. 5962 */ 5963 key.af = pd->af; 5964 key.proto = pd->proto; 5965 key.port[0] = key.port[1] = icmpid; 5966 if (pd->dir == PF_IN) { /* wire side, straight */ 5967 PF_ACPY(&key.addr[0], pd->src, key.af); 5968 PF_ACPY(&key.addr[1], pd->dst, key.af); 5969 } else { /* stack side, reverse */ 5970 PF_ACPY(&key.addr[1], pd->src, key.af); 5971 PF_ACPY(&key.addr[0], pd->dst, key.af); 5972 } 5973 5974 STATE_LOOKUP(kif, &key, *state, pd); 5975 5976 (*state)->expire = time_uptime; 5977 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5978 5979 /* translate source/destination address, if necessary */ 5980 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5981 struct pf_state_key *nk = (*state)->key[pd->didx]; 5982 5983 switch (pd->af) { 5984 #ifdef INET 5985 case AF_INET: 5986 if (PF_ANEQ(pd->src, 5987 &nk->addr[pd->sidx], AF_INET)) 5988 pf_change_a(&saddr->v4.s_addr, 5989 pd->ip_sum, 5990 nk->addr[pd->sidx].v4.s_addr, 0); 5991 5992 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5993 AF_INET)) 5994 pf_change_a(&daddr->v4.s_addr, 5995 pd->ip_sum, 5996 nk->addr[pd->didx].v4.s_addr, 0); 5997 5998 if (nk->port[0] != 5999 pd->hdr.icmp.icmp_id) { 6000 pd->hdr.icmp.icmp_cksum = 6001 pf_cksum_fixup( 6002 pd->hdr.icmp.icmp_cksum, icmpid, 6003 nk->port[pd->sidx], 0); 6004 pd->hdr.icmp.icmp_id = 6005 nk->port[pd->sidx]; 6006 } 6007 6008 m_copyback(m, off, ICMP_MINLEN, 6009 (caddr_t )&pd->hdr.icmp); 6010 break; 6011 #endif /* INET */ 6012 #ifdef INET6 6013 case AF_INET6: 6014 if (PF_ANEQ(pd->src, 6015 &nk->addr[pd->sidx], AF_INET6)) 6016 pf_change_a6(saddr, 6017 &pd->hdr.icmp6.icmp6_cksum, 6018 &nk->addr[pd->sidx], 0); 6019 6020 if (PF_ANEQ(pd->dst, 6021 &nk->addr[pd->didx], AF_INET6)) 6022 pf_change_a6(daddr, 6023 &pd->hdr.icmp6.icmp6_cksum, 6024 &nk->addr[pd->didx], 0); 6025 6026 m_copyback(m, off, sizeof(struct icmp6_hdr), 6027 (caddr_t )&pd->hdr.icmp6); 6028 break; 6029 #endif /* INET6 */ 6030 } 6031 } 6032 return (PF_PASS); 6033 6034 } else { 6035 /* 6036 * ICMP error message in response to a TCP/UDP packet. 6037 * Extract the inner TCP/UDP header and search for that state. 6038 */ 6039 6040 struct pf_pdesc pd2; 6041 bzero(&pd2, sizeof pd2); 6042 #ifdef INET 6043 struct ip h2; 6044 #endif /* INET */ 6045 #ifdef INET6 6046 struct ip6_hdr h2_6; 6047 int terminal = 0; 6048 #endif /* INET6 */ 6049 int ipoff2 = 0; 6050 int off2 = 0; 6051 6052 pd2.af = pd->af; 6053 /* Payload packet is from the opposite direction. */ 6054 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6055 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6056 switch (pd->af) { 6057 #ifdef INET 6058 case AF_INET: 6059 /* offset of h2 in mbuf chain */ 6060 ipoff2 = off + ICMP_MINLEN; 6061 6062 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 6063 NULL, reason, pd2.af)) { 6064 DPFPRINTF(PF_DEBUG_MISC, 6065 ("pf: ICMP error message too short " 6066 "(ip)\n")); 6067 return (PF_DROP); 6068 } 6069 /* 6070 * ICMP error messages don't refer to non-first 6071 * fragments 6072 */ 6073 if (h2.ip_off & htons(IP_OFFMASK)) { 6074 REASON_SET(reason, PFRES_FRAG); 6075 return (PF_DROP); 6076 } 6077 6078 /* offset of protocol header that follows h2 */ 6079 off2 = ipoff2 + (h2.ip_hl << 2); 6080 6081 pd2.proto = h2.ip_p; 6082 pd2.src = (struct pf_addr *)&h2.ip_src; 6083 pd2.dst = (struct pf_addr *)&h2.ip_dst; 6084 pd2.ip_sum = &h2.ip_sum; 6085 break; 6086 #endif /* INET */ 6087 #ifdef INET6 6088 case AF_INET6: 6089 ipoff2 = off + sizeof(struct icmp6_hdr); 6090 6091 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 6092 NULL, reason, pd2.af)) { 6093 DPFPRINTF(PF_DEBUG_MISC, 6094 ("pf: ICMP error message too short " 6095 "(ip6)\n")); 6096 return (PF_DROP); 6097 } 6098 pd2.proto = h2_6.ip6_nxt; 6099 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 6100 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 6101 pd2.ip_sum = NULL; 6102 off2 = ipoff2 + sizeof(h2_6); 6103 do { 6104 switch (pd2.proto) { 6105 case IPPROTO_FRAGMENT: 6106 /* 6107 * ICMPv6 error messages for 6108 * non-first fragments 6109 */ 6110 REASON_SET(reason, PFRES_FRAG); 6111 return (PF_DROP); 6112 case IPPROTO_AH: 6113 case IPPROTO_HOPOPTS: 6114 case IPPROTO_ROUTING: 6115 case IPPROTO_DSTOPTS: { 6116 /* get next header and header length */ 6117 struct ip6_ext opt6; 6118 6119 if (!pf_pull_hdr(m, off2, &opt6, 6120 sizeof(opt6), NULL, reason, 6121 pd2.af)) { 6122 DPFPRINTF(PF_DEBUG_MISC, 6123 ("pf: ICMPv6 short opt\n")); 6124 return (PF_DROP); 6125 } 6126 if (pd2.proto == IPPROTO_AH) 6127 off2 += (opt6.ip6e_len + 2) * 4; 6128 else 6129 off2 += (opt6.ip6e_len + 1) * 8; 6130 pd2.proto = opt6.ip6e_nxt; 6131 /* goto the next header */ 6132 break; 6133 } 6134 default: 6135 terminal++; 6136 break; 6137 } 6138 } while (!terminal); 6139 break; 6140 #endif /* INET6 */ 6141 } 6142 6143 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 6144 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6145 printf("pf: BAD ICMP %d:%d outer dst: ", 6146 icmptype, icmpcode); 6147 pf_print_host(pd->src, 0, pd->af); 6148 printf(" -> "); 6149 pf_print_host(pd->dst, 0, pd->af); 6150 printf(" inner src: "); 6151 pf_print_host(pd2.src, 0, pd2.af); 6152 printf(" -> "); 6153 pf_print_host(pd2.dst, 0, pd2.af); 6154 printf("\n"); 6155 } 6156 REASON_SET(reason, PFRES_BADSTATE); 6157 return (PF_DROP); 6158 } 6159 6160 switch (pd2.proto) { 6161 case IPPROTO_TCP: { 6162 struct tcphdr th; 6163 u_int32_t seq; 6164 struct pf_state_peer *src, *dst; 6165 u_int8_t dws; 6166 int copyback = 0; 6167 6168 /* 6169 * Only the first 8 bytes of the TCP header can be 6170 * expected. Don't access any TCP header fields after 6171 * th_seq, an ackskew test is not possible. 6172 */ 6173 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 6174 pd2.af)) { 6175 DPFPRINTF(PF_DEBUG_MISC, 6176 ("pf: ICMP error message too short " 6177 "(tcp)\n")); 6178 return (PF_DROP); 6179 } 6180 6181 key.af = pd2.af; 6182 key.proto = IPPROTO_TCP; 6183 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6184 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6185 key.port[pd2.sidx] = th.th_sport; 6186 key.port[pd2.didx] = th.th_dport; 6187 6188 STATE_LOOKUP(kif, &key, *state, pd); 6189 6190 if (pd->dir == (*state)->direction) { 6191 src = &(*state)->dst; 6192 dst = &(*state)->src; 6193 } else { 6194 src = &(*state)->src; 6195 dst = &(*state)->dst; 6196 } 6197 6198 if (src->wscale && dst->wscale) 6199 dws = dst->wscale & PF_WSCALE_MASK; 6200 else 6201 dws = 0; 6202 6203 /* Demodulate sequence number */ 6204 seq = ntohl(th.th_seq) - src->seqdiff; 6205 if (src->seqdiff) { 6206 pf_change_a(&th.th_seq, icmpsum, 6207 htonl(seq), 0); 6208 copyback = 1; 6209 } 6210 6211 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 6212 (!SEQ_GEQ(src->seqhi, seq) || 6213 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 6214 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6215 printf("pf: BAD ICMP %d:%d ", 6216 icmptype, icmpcode); 6217 pf_print_host(pd->src, 0, pd->af); 6218 printf(" -> "); 6219 pf_print_host(pd->dst, 0, pd->af); 6220 printf(" state: "); 6221 pf_print_state(*state); 6222 printf(" seq=%u\n", seq); 6223 } 6224 REASON_SET(reason, PFRES_BADSTATE); 6225 return (PF_DROP); 6226 } else { 6227 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6228 printf("pf: OK ICMP %d:%d ", 6229 icmptype, icmpcode); 6230 pf_print_host(pd->src, 0, pd->af); 6231 printf(" -> "); 6232 pf_print_host(pd->dst, 0, pd->af); 6233 printf(" state: "); 6234 pf_print_state(*state); 6235 printf(" seq=%u\n", seq); 6236 } 6237 } 6238 6239 /* translate source/destination address, if necessary */ 6240 if ((*state)->key[PF_SK_WIRE] != 6241 (*state)->key[PF_SK_STACK]) { 6242 struct pf_state_key *nk = 6243 (*state)->key[pd->didx]; 6244 6245 if (PF_ANEQ(pd2.src, 6246 &nk->addr[pd2.sidx], pd2.af) || 6247 nk->port[pd2.sidx] != th.th_sport) 6248 pf_change_icmp(pd2.src, &th.th_sport, 6249 daddr, &nk->addr[pd2.sidx], 6250 nk->port[pd2.sidx], NULL, 6251 pd2.ip_sum, icmpsum, 6252 pd->ip_sum, 0, pd2.af); 6253 6254 if (PF_ANEQ(pd2.dst, 6255 &nk->addr[pd2.didx], pd2.af) || 6256 nk->port[pd2.didx] != th.th_dport) 6257 pf_change_icmp(pd2.dst, &th.th_dport, 6258 saddr, &nk->addr[pd2.didx], 6259 nk->port[pd2.didx], NULL, 6260 pd2.ip_sum, icmpsum, 6261 pd->ip_sum, 0, pd2.af); 6262 copyback = 1; 6263 } 6264 6265 if (copyback) { 6266 switch (pd2.af) { 6267 #ifdef INET 6268 case AF_INET: 6269 m_copyback(m, off, ICMP_MINLEN, 6270 (caddr_t )&pd->hdr.icmp); 6271 m_copyback(m, ipoff2, sizeof(h2), 6272 (caddr_t )&h2); 6273 break; 6274 #endif /* INET */ 6275 #ifdef INET6 6276 case AF_INET6: 6277 m_copyback(m, off, 6278 sizeof(struct icmp6_hdr), 6279 (caddr_t )&pd->hdr.icmp6); 6280 m_copyback(m, ipoff2, sizeof(h2_6), 6281 (caddr_t )&h2_6); 6282 break; 6283 #endif /* INET6 */ 6284 } 6285 m_copyback(m, off2, 8, (caddr_t)&th); 6286 } 6287 6288 return (PF_PASS); 6289 break; 6290 } 6291 case IPPROTO_UDP: { 6292 struct udphdr uh; 6293 6294 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6295 NULL, reason, pd2.af)) { 6296 DPFPRINTF(PF_DEBUG_MISC, 6297 ("pf: ICMP error message too short " 6298 "(udp)\n")); 6299 return (PF_DROP); 6300 } 6301 6302 key.af = pd2.af; 6303 key.proto = IPPROTO_UDP; 6304 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6305 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6306 key.port[pd2.sidx] = uh.uh_sport; 6307 key.port[pd2.didx] = uh.uh_dport; 6308 6309 STATE_LOOKUP(kif, &key, *state, pd); 6310 6311 /* translate source/destination address, if necessary */ 6312 if ((*state)->key[PF_SK_WIRE] != 6313 (*state)->key[PF_SK_STACK]) { 6314 struct pf_state_key *nk = 6315 (*state)->key[pd->didx]; 6316 6317 if (PF_ANEQ(pd2.src, 6318 &nk->addr[pd2.sidx], pd2.af) || 6319 nk->port[pd2.sidx] != uh.uh_sport) 6320 pf_change_icmp(pd2.src, &uh.uh_sport, 6321 daddr, &nk->addr[pd2.sidx], 6322 nk->port[pd2.sidx], &uh.uh_sum, 6323 pd2.ip_sum, icmpsum, 6324 pd->ip_sum, 1, pd2.af); 6325 6326 if (PF_ANEQ(pd2.dst, 6327 &nk->addr[pd2.didx], pd2.af) || 6328 nk->port[pd2.didx] != uh.uh_dport) 6329 pf_change_icmp(pd2.dst, &uh.uh_dport, 6330 saddr, &nk->addr[pd2.didx], 6331 nk->port[pd2.didx], &uh.uh_sum, 6332 pd2.ip_sum, icmpsum, 6333 pd->ip_sum, 1, pd2.af); 6334 6335 switch (pd2.af) { 6336 #ifdef INET 6337 case AF_INET: 6338 m_copyback(m, off, ICMP_MINLEN, 6339 (caddr_t )&pd->hdr.icmp); 6340 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6341 break; 6342 #endif /* INET */ 6343 #ifdef INET6 6344 case AF_INET6: 6345 m_copyback(m, off, 6346 sizeof(struct icmp6_hdr), 6347 (caddr_t )&pd->hdr.icmp6); 6348 m_copyback(m, ipoff2, sizeof(h2_6), 6349 (caddr_t )&h2_6); 6350 break; 6351 #endif /* INET6 */ 6352 } 6353 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6354 } 6355 return (PF_PASS); 6356 break; 6357 } 6358 #ifdef INET 6359 case IPPROTO_ICMP: { 6360 struct icmp iih; 6361 6362 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6363 NULL, reason, pd2.af)) { 6364 DPFPRINTF(PF_DEBUG_MISC, 6365 ("pf: ICMP error message too short i" 6366 "(icmp)\n")); 6367 return (PF_DROP); 6368 } 6369 6370 key.af = pd2.af; 6371 key.proto = IPPROTO_ICMP; 6372 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6373 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6374 key.port[0] = key.port[1] = iih.icmp_id; 6375 6376 STATE_LOOKUP(kif, &key, *state, pd); 6377 6378 /* translate source/destination address, if necessary */ 6379 if ((*state)->key[PF_SK_WIRE] != 6380 (*state)->key[PF_SK_STACK]) { 6381 struct pf_state_key *nk = 6382 (*state)->key[pd->didx]; 6383 6384 if (PF_ANEQ(pd2.src, 6385 &nk->addr[pd2.sidx], pd2.af) || 6386 nk->port[pd2.sidx] != iih.icmp_id) 6387 pf_change_icmp(pd2.src, &iih.icmp_id, 6388 daddr, &nk->addr[pd2.sidx], 6389 nk->port[pd2.sidx], NULL, 6390 pd2.ip_sum, icmpsum, 6391 pd->ip_sum, 0, AF_INET); 6392 6393 if (PF_ANEQ(pd2.dst, 6394 &nk->addr[pd2.didx], pd2.af) || 6395 nk->port[pd2.didx] != iih.icmp_id) 6396 pf_change_icmp(pd2.dst, &iih.icmp_id, 6397 saddr, &nk->addr[pd2.didx], 6398 nk->port[pd2.didx], NULL, 6399 pd2.ip_sum, icmpsum, 6400 pd->ip_sum, 0, AF_INET); 6401 6402 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6403 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6404 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6405 } 6406 return (PF_PASS); 6407 break; 6408 } 6409 #endif /* INET */ 6410 #ifdef INET6 6411 case IPPROTO_ICMPV6: { 6412 struct icmp6_hdr iih; 6413 6414 if (!pf_pull_hdr(m, off2, &iih, 6415 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6416 DPFPRINTF(PF_DEBUG_MISC, 6417 ("pf: ICMP error message too short " 6418 "(icmp6)\n")); 6419 return (PF_DROP); 6420 } 6421 6422 key.af = pd2.af; 6423 key.proto = IPPROTO_ICMPV6; 6424 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6425 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6426 key.port[0] = key.port[1] = iih.icmp6_id; 6427 6428 STATE_LOOKUP(kif, &key, *state, pd); 6429 6430 /* translate source/destination address, if necessary */ 6431 if ((*state)->key[PF_SK_WIRE] != 6432 (*state)->key[PF_SK_STACK]) { 6433 struct pf_state_key *nk = 6434 (*state)->key[pd->didx]; 6435 6436 if (PF_ANEQ(pd2.src, 6437 &nk->addr[pd2.sidx], pd2.af) || 6438 nk->port[pd2.sidx] != iih.icmp6_id) 6439 pf_change_icmp(pd2.src, &iih.icmp6_id, 6440 daddr, &nk->addr[pd2.sidx], 6441 nk->port[pd2.sidx], NULL, 6442 pd2.ip_sum, icmpsum, 6443 pd->ip_sum, 0, AF_INET6); 6444 6445 if (PF_ANEQ(pd2.dst, 6446 &nk->addr[pd2.didx], pd2.af) || 6447 nk->port[pd2.didx] != iih.icmp6_id) 6448 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6449 saddr, &nk->addr[pd2.didx], 6450 nk->port[pd2.didx], NULL, 6451 pd2.ip_sum, icmpsum, 6452 pd->ip_sum, 0, AF_INET6); 6453 6454 m_copyback(m, off, sizeof(struct icmp6_hdr), 6455 (caddr_t)&pd->hdr.icmp6); 6456 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6457 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6458 (caddr_t)&iih); 6459 } 6460 return (PF_PASS); 6461 break; 6462 } 6463 #endif /* INET6 */ 6464 default: { 6465 key.af = pd2.af; 6466 key.proto = pd2.proto; 6467 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6468 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6469 key.port[0] = key.port[1] = 0; 6470 6471 STATE_LOOKUP(kif, &key, *state, pd); 6472 6473 /* translate source/destination address, if necessary */ 6474 if ((*state)->key[PF_SK_WIRE] != 6475 (*state)->key[PF_SK_STACK]) { 6476 struct pf_state_key *nk = 6477 (*state)->key[pd->didx]; 6478 6479 if (PF_ANEQ(pd2.src, 6480 &nk->addr[pd2.sidx], pd2.af)) 6481 pf_change_icmp(pd2.src, NULL, daddr, 6482 &nk->addr[pd2.sidx], 0, NULL, 6483 pd2.ip_sum, icmpsum, 6484 pd->ip_sum, 0, pd2.af); 6485 6486 if (PF_ANEQ(pd2.dst, 6487 &nk->addr[pd2.didx], pd2.af)) 6488 pf_change_icmp(pd2.dst, NULL, saddr, 6489 &nk->addr[pd2.didx], 0, NULL, 6490 pd2.ip_sum, icmpsum, 6491 pd->ip_sum, 0, pd2.af); 6492 6493 switch (pd2.af) { 6494 #ifdef INET 6495 case AF_INET: 6496 m_copyback(m, off, ICMP_MINLEN, 6497 (caddr_t)&pd->hdr.icmp); 6498 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6499 break; 6500 #endif /* INET */ 6501 #ifdef INET6 6502 case AF_INET6: 6503 m_copyback(m, off, 6504 sizeof(struct icmp6_hdr), 6505 (caddr_t )&pd->hdr.icmp6); 6506 m_copyback(m, ipoff2, sizeof(h2_6), 6507 (caddr_t )&h2_6); 6508 break; 6509 #endif /* INET6 */ 6510 } 6511 } 6512 return (PF_PASS); 6513 break; 6514 } 6515 } 6516 } 6517 } 6518 6519 static int 6520 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 6521 struct mbuf *m, struct pf_pdesc *pd) 6522 { 6523 struct pf_state_peer *src, *dst; 6524 struct pf_state_key_cmp key; 6525 uint8_t psrc, pdst; 6526 6527 bzero(&key, sizeof(key)); 6528 key.af = pd->af; 6529 key.proto = pd->proto; 6530 if (pd->dir == PF_IN) { 6531 PF_ACPY(&key.addr[0], pd->src, key.af); 6532 PF_ACPY(&key.addr[1], pd->dst, key.af); 6533 key.port[0] = key.port[1] = 0; 6534 } else { 6535 PF_ACPY(&key.addr[1], pd->src, key.af); 6536 PF_ACPY(&key.addr[0], pd->dst, key.af); 6537 key.port[1] = key.port[0] = 0; 6538 } 6539 6540 STATE_LOOKUP(kif, &key, *state, pd); 6541 6542 if (pd->dir == (*state)->direction) { 6543 src = &(*state)->src; 6544 dst = &(*state)->dst; 6545 psrc = PF_PEER_SRC; 6546 pdst = PF_PEER_DST; 6547 } else { 6548 src = &(*state)->dst; 6549 dst = &(*state)->src; 6550 psrc = PF_PEER_DST; 6551 pdst = PF_PEER_SRC; 6552 } 6553 6554 /* update states */ 6555 if (src->state < PFOTHERS_SINGLE) 6556 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6557 if (dst->state == PFOTHERS_SINGLE) 6558 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6559 6560 /* update expire time */ 6561 (*state)->expire = time_uptime; 6562 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6563 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6564 else 6565 (*state)->timeout = PFTM_OTHER_SINGLE; 6566 6567 /* translate source/destination address, if necessary */ 6568 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6569 struct pf_state_key *nk = (*state)->key[pd->didx]; 6570 6571 KASSERT(nk, ("%s: nk is null", __func__)); 6572 KASSERT(pd, ("%s: pd is null", __func__)); 6573 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6574 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6575 switch (pd->af) { 6576 #ifdef INET 6577 case AF_INET: 6578 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6579 pf_change_a(&pd->src->v4.s_addr, 6580 pd->ip_sum, 6581 nk->addr[pd->sidx].v4.s_addr, 6582 0); 6583 6584 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6585 pf_change_a(&pd->dst->v4.s_addr, 6586 pd->ip_sum, 6587 nk->addr[pd->didx].v4.s_addr, 6588 0); 6589 6590 break; 6591 #endif /* INET */ 6592 #ifdef INET6 6593 case AF_INET6: 6594 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6595 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6596 6597 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6598 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6599 #endif /* INET6 */ 6600 } 6601 } 6602 return (PF_PASS); 6603 } 6604 6605 /* 6606 * ipoff and off are measured from the start of the mbuf chain. 6607 * h must be at "ipoff" on the mbuf chain. 6608 */ 6609 void * 6610 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6611 u_short *actionp, u_short *reasonp, sa_family_t af) 6612 { 6613 switch (af) { 6614 #ifdef INET 6615 case AF_INET: { 6616 struct ip *h = mtod(m, struct ip *); 6617 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6618 6619 if (fragoff) { 6620 if (fragoff >= len) 6621 ACTION_SET(actionp, PF_PASS); 6622 else { 6623 ACTION_SET(actionp, PF_DROP); 6624 REASON_SET(reasonp, PFRES_FRAG); 6625 } 6626 return (NULL); 6627 } 6628 if (m->m_pkthdr.len < off + len || 6629 ntohs(h->ip_len) < off + len) { 6630 ACTION_SET(actionp, PF_DROP); 6631 REASON_SET(reasonp, PFRES_SHORT); 6632 return (NULL); 6633 } 6634 break; 6635 } 6636 #endif /* INET */ 6637 #ifdef INET6 6638 case AF_INET6: { 6639 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6640 6641 if (m->m_pkthdr.len < off + len || 6642 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6643 (unsigned)(off + len)) { 6644 ACTION_SET(actionp, PF_DROP); 6645 REASON_SET(reasonp, PFRES_SHORT); 6646 return (NULL); 6647 } 6648 break; 6649 } 6650 #endif /* INET6 */ 6651 } 6652 m_copydata(m, off, len, p); 6653 return (p); 6654 } 6655 6656 int 6657 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6658 int rtableid) 6659 { 6660 struct ifnet *ifp; 6661 6662 /* 6663 * Skip check for addresses with embedded interface scope, 6664 * as they would always match anyway. 6665 */ 6666 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6667 return (1); 6668 6669 if (af != AF_INET && af != AF_INET6) 6670 return (0); 6671 6672 /* Skip checks for ipsec interfaces */ 6673 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6674 return (1); 6675 6676 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6677 6678 switch (af) { 6679 #ifdef INET6 6680 case AF_INET6: 6681 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6682 ifp)); 6683 #endif 6684 #ifdef INET 6685 case AF_INET: 6686 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6687 ifp)); 6688 #endif 6689 } 6690 6691 return (0); 6692 } 6693 6694 #ifdef INET 6695 static void 6696 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 6697 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6698 { 6699 struct mbuf *m0, *m1, *md; 6700 struct sockaddr_in dst; 6701 struct ip *ip; 6702 struct pfi_kkif *nkif = NULL; 6703 struct ifnet *ifp = NULL; 6704 struct pf_addr naddr; 6705 struct pf_ksrc_node *sn = NULL; 6706 int error = 0; 6707 uint16_t ip_len, ip_off; 6708 int r_rt, r_dir; 6709 6710 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6711 6712 if (s) { 6713 r_rt = s->rt; 6714 r_dir = s->direction; 6715 } else { 6716 r_rt = r->rt; 6717 r_dir = r->direction; 6718 } 6719 6720 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 6721 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 6722 __func__)); 6723 6724 if ((pd->pf_mtag == NULL && 6725 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6726 pd->pf_mtag->routed++ > 3) { 6727 m0 = *m; 6728 *m = NULL; 6729 goto bad_locked; 6730 } 6731 6732 if (r_rt == PF_DUPTO) { 6733 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 6734 if (s == NULL) { 6735 ifp = r->rpool.cur->kif ? 6736 r->rpool.cur->kif->pfik_ifp : NULL; 6737 } else { 6738 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6739 /* If pfsync'd */ 6740 if (ifp == NULL) 6741 ifp = r->rpool.cur->kif ? 6742 r->rpool.cur->kif->pfik_ifp : NULL; 6743 PF_STATE_UNLOCK(s); 6744 } 6745 if (ifp == oifp) { 6746 /* When the 2nd interface is not skipped */ 6747 return; 6748 } else { 6749 m0 = *m; 6750 *m = NULL; 6751 goto bad; 6752 } 6753 } else { 6754 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 6755 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6756 if (s) 6757 PF_STATE_UNLOCK(s); 6758 return; 6759 } 6760 } 6761 } else { 6762 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 6763 pf_dummynet(pd, s, r, m); 6764 if (s) 6765 PF_STATE_UNLOCK(s); 6766 return; 6767 } 6768 m0 = *m; 6769 } 6770 6771 ip = mtod(m0, struct ip *); 6772 6773 bzero(&dst, sizeof(dst)); 6774 dst.sin_family = AF_INET; 6775 dst.sin_len = sizeof(dst); 6776 dst.sin_addr = ip->ip_dst; 6777 6778 bzero(&naddr, sizeof(naddr)); 6779 6780 if (s == NULL) { 6781 if (TAILQ_EMPTY(&r->rpool.list)) { 6782 DPFPRINTF(PF_DEBUG_URGENT, 6783 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6784 goto bad_locked; 6785 } 6786 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6787 &naddr, &nkif, NULL, &sn); 6788 if (!PF_AZERO(&naddr, AF_INET)) 6789 dst.sin_addr.s_addr = naddr.v4.s_addr; 6790 ifp = nkif ? nkif->pfik_ifp : NULL; 6791 } else { 6792 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6793 dst.sin_addr.s_addr = 6794 s->rt_addr.v4.s_addr; 6795 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6796 /* If pfsync'd */ 6797 if (ifp == NULL) 6798 ifp = r->rpool.cur->kif ? 6799 r->rpool.cur->kif->pfik_ifp : NULL; 6800 PF_STATE_UNLOCK(s); 6801 } 6802 6803 if (ifp == NULL) 6804 goto bad; 6805 6806 if (pd->dir == PF_IN) { 6807 if (pf_test(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 6808 goto bad; 6809 else if (m0 == NULL) 6810 goto done; 6811 if (m0->m_len < sizeof(struct ip)) { 6812 DPFPRINTF(PF_DEBUG_URGENT, 6813 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6814 goto bad; 6815 } 6816 ip = mtod(m0, struct ip *); 6817 } 6818 6819 if (ifp->if_flags & IFF_LOOPBACK) 6820 m0->m_flags |= M_SKIP_FIREWALL; 6821 6822 ip_len = ntohs(ip->ip_len); 6823 ip_off = ntohs(ip->ip_off); 6824 6825 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6826 m0->m_pkthdr.csum_flags |= CSUM_IP; 6827 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6828 in_delayed_cksum(m0); 6829 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6830 } 6831 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6832 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 6833 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6834 } 6835 6836 /* 6837 * If small enough for interface, or the interface will take 6838 * care of the fragmentation for us, we can just send directly. 6839 */ 6840 if (ip_len <= ifp->if_mtu || 6841 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6842 ip->ip_sum = 0; 6843 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6844 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6845 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6846 } 6847 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6848 6849 md = m0; 6850 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 6851 if (md != NULL) 6852 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 6853 goto done; 6854 } 6855 6856 /* Balk when DF bit is set or the interface didn't support TSO. */ 6857 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6858 error = EMSGSIZE; 6859 KMOD_IPSTAT_INC(ips_cantfrag); 6860 if (r_rt != PF_DUPTO) { 6861 if (s && pd->nat_rule != NULL) 6862 PACKET_UNDO_NAT(m0, pd, 6863 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6864 s); 6865 6866 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6867 ifp->if_mtu); 6868 goto done; 6869 } else 6870 goto bad; 6871 } 6872 6873 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6874 if (error) 6875 goto bad; 6876 6877 for (; m0; m0 = m1) { 6878 m1 = m0->m_nextpkt; 6879 m0->m_nextpkt = NULL; 6880 if (error == 0) { 6881 m_clrprotoflags(m0); 6882 md = m0; 6883 error = pf_dummynet_route(pd, s, r, ifp, 6884 sintosa(&dst), &md); 6885 if (md != NULL) 6886 error = (*ifp->if_output)(ifp, md, 6887 sintosa(&dst), NULL); 6888 } else 6889 m_freem(m0); 6890 } 6891 6892 if (error == 0) 6893 KMOD_IPSTAT_INC(ips_fragmented); 6894 6895 done: 6896 if (r_rt != PF_DUPTO) 6897 *m = NULL; 6898 return; 6899 6900 bad_locked: 6901 if (s) 6902 PF_STATE_UNLOCK(s); 6903 bad: 6904 m_freem(m0); 6905 goto done; 6906 } 6907 #endif /* INET */ 6908 6909 #ifdef INET6 6910 static void 6911 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 6912 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6913 { 6914 struct mbuf *m0, *md; 6915 struct sockaddr_in6 dst; 6916 struct ip6_hdr *ip6; 6917 struct pfi_kkif *nkif = NULL; 6918 struct ifnet *ifp = NULL; 6919 struct pf_addr naddr; 6920 struct pf_ksrc_node *sn = NULL; 6921 int r_rt, r_dir; 6922 6923 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6924 6925 if (s) { 6926 r_rt = s->rt; 6927 r_dir = s->direction; 6928 } else { 6929 r_rt = r->rt; 6930 r_dir = r->direction; 6931 } 6932 6933 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 6934 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 6935 __func__)); 6936 6937 if ((pd->pf_mtag == NULL && 6938 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6939 pd->pf_mtag->routed++ > 3) { 6940 m0 = *m; 6941 *m = NULL; 6942 goto bad_locked; 6943 } 6944 6945 if (r_rt == PF_DUPTO) { 6946 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 6947 if (s == NULL) { 6948 ifp = r->rpool.cur->kif ? 6949 r->rpool.cur->kif->pfik_ifp : NULL; 6950 } else { 6951 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6952 /* If pfsync'd */ 6953 if (ifp == NULL) 6954 ifp = r->rpool.cur->kif ? 6955 r->rpool.cur->kif->pfik_ifp : NULL; 6956 PF_STATE_UNLOCK(s); 6957 } 6958 if (ifp == oifp) { 6959 /* When the 2nd interface is not skipped */ 6960 return; 6961 } else { 6962 m0 = *m; 6963 *m = NULL; 6964 goto bad; 6965 } 6966 } else { 6967 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 6968 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6969 if (s) 6970 PF_STATE_UNLOCK(s); 6971 return; 6972 } 6973 } 6974 } else { 6975 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 6976 pf_dummynet(pd, s, r, m); 6977 if (s) 6978 PF_STATE_UNLOCK(s); 6979 return; 6980 } 6981 m0 = *m; 6982 } 6983 6984 ip6 = mtod(m0, struct ip6_hdr *); 6985 6986 bzero(&dst, sizeof(dst)); 6987 dst.sin6_family = AF_INET6; 6988 dst.sin6_len = sizeof(dst); 6989 dst.sin6_addr = ip6->ip6_dst; 6990 6991 bzero(&naddr, sizeof(naddr)); 6992 6993 if (s == NULL) { 6994 if (TAILQ_EMPTY(&r->rpool.list)) { 6995 DPFPRINTF(PF_DEBUG_URGENT, 6996 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6997 goto bad_locked; 6998 } 6999 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7000 &naddr, &nkif, NULL, &sn); 7001 if (!PF_AZERO(&naddr, AF_INET6)) 7002 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7003 &naddr, AF_INET6); 7004 ifp = nkif ? nkif->pfik_ifp : NULL; 7005 } else { 7006 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7007 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7008 &s->rt_addr, AF_INET6); 7009 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7010 /* If pfsync'd */ 7011 if (ifp == NULL) 7012 ifp = r->rpool.cur->kif ? 7013 r->rpool.cur->kif->pfik_ifp : NULL; 7014 } 7015 7016 if (s) 7017 PF_STATE_UNLOCK(s); 7018 7019 if (ifp == NULL) 7020 goto bad; 7021 7022 if (pd->dir == PF_IN) { 7023 if (pf_test6(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 7024 goto bad; 7025 else if (m0 == NULL) 7026 goto done; 7027 if (m0->m_len < sizeof(struct ip6_hdr)) { 7028 DPFPRINTF(PF_DEBUG_URGENT, 7029 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 7030 __func__)); 7031 goto bad; 7032 } 7033 ip6 = mtod(m0, struct ip6_hdr *); 7034 } 7035 7036 if (ifp->if_flags & IFF_LOOPBACK) 7037 m0->m_flags |= M_SKIP_FIREWALL; 7038 7039 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 7040 ~ifp->if_hwassist) { 7041 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 7042 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 7043 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 7044 } 7045 7046 /* 7047 * If the packet is too large for the outgoing interface, 7048 * send back an icmp6 error. 7049 */ 7050 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 7051 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 7052 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 7053 md = m0; 7054 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7055 if (md != NULL) 7056 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 7057 } 7058 else { 7059 in6_ifstat_inc(ifp, ifs6_in_toobig); 7060 if (r_rt != PF_DUPTO) { 7061 if (s && pd->nat_rule != NULL) 7062 PACKET_UNDO_NAT(m0, pd, 7063 ((caddr_t)ip6 - m0->m_data) + 7064 sizeof(struct ip6_hdr), s); 7065 7066 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 7067 } else 7068 goto bad; 7069 } 7070 7071 done: 7072 if (r_rt != PF_DUPTO) 7073 *m = NULL; 7074 return; 7075 7076 bad_locked: 7077 if (s) 7078 PF_STATE_UNLOCK(s); 7079 bad: 7080 m_freem(m0); 7081 goto done; 7082 } 7083 #endif /* INET6 */ 7084 7085 /* 7086 * FreeBSD supports cksum offloads for the following drivers. 7087 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 7088 * 7089 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 7090 * network driver performed cksum including pseudo header, need to verify 7091 * csum_data 7092 * CSUM_DATA_VALID : 7093 * network driver performed cksum, needs to additional pseudo header 7094 * cksum computation with partial csum_data(i.e. lack of H/W support for 7095 * pseudo header, for instance sk(4) and possibly gem(4)) 7096 * 7097 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 7098 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 7099 * TCP/UDP layer. 7100 * Also, set csum_data to 0xffff to force cksum validation. 7101 */ 7102 static int 7103 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 7104 { 7105 u_int16_t sum = 0; 7106 int hw_assist = 0; 7107 struct ip *ip; 7108 7109 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 7110 return (1); 7111 if (m->m_pkthdr.len < off + len) 7112 return (1); 7113 7114 switch (p) { 7115 case IPPROTO_TCP: 7116 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7117 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7118 sum = m->m_pkthdr.csum_data; 7119 } else { 7120 ip = mtod(m, struct ip *); 7121 sum = in_pseudo(ip->ip_src.s_addr, 7122 ip->ip_dst.s_addr, htonl((u_short)len + 7123 m->m_pkthdr.csum_data + IPPROTO_TCP)); 7124 } 7125 sum ^= 0xffff; 7126 ++hw_assist; 7127 } 7128 break; 7129 case IPPROTO_UDP: 7130 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7131 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7132 sum = m->m_pkthdr.csum_data; 7133 } else { 7134 ip = mtod(m, struct ip *); 7135 sum = in_pseudo(ip->ip_src.s_addr, 7136 ip->ip_dst.s_addr, htonl((u_short)len + 7137 m->m_pkthdr.csum_data + IPPROTO_UDP)); 7138 } 7139 sum ^= 0xffff; 7140 ++hw_assist; 7141 } 7142 break; 7143 case IPPROTO_ICMP: 7144 #ifdef INET6 7145 case IPPROTO_ICMPV6: 7146 #endif /* INET6 */ 7147 break; 7148 default: 7149 return (1); 7150 } 7151 7152 if (!hw_assist) { 7153 switch (af) { 7154 case AF_INET: 7155 if (p == IPPROTO_ICMP) { 7156 if (m->m_len < off) 7157 return (1); 7158 m->m_data += off; 7159 m->m_len -= off; 7160 sum = in_cksum(m, len); 7161 m->m_data -= off; 7162 m->m_len += off; 7163 } else { 7164 if (m->m_len < sizeof(struct ip)) 7165 return (1); 7166 sum = in4_cksum(m, p, off, len); 7167 } 7168 break; 7169 #ifdef INET6 7170 case AF_INET6: 7171 if (m->m_len < sizeof(struct ip6_hdr)) 7172 return (1); 7173 sum = in6_cksum(m, p, off, len); 7174 break; 7175 #endif /* INET6 */ 7176 default: 7177 return (1); 7178 } 7179 } 7180 if (sum) { 7181 switch (p) { 7182 case IPPROTO_TCP: 7183 { 7184 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 7185 break; 7186 } 7187 case IPPROTO_UDP: 7188 { 7189 KMOD_UDPSTAT_INC(udps_badsum); 7190 break; 7191 } 7192 #ifdef INET 7193 case IPPROTO_ICMP: 7194 { 7195 KMOD_ICMPSTAT_INC(icps_checksum); 7196 break; 7197 } 7198 #endif 7199 #ifdef INET6 7200 case IPPROTO_ICMPV6: 7201 { 7202 KMOD_ICMP6STAT_INC(icp6s_checksum); 7203 break; 7204 } 7205 #endif /* INET6 */ 7206 } 7207 return (1); 7208 } else { 7209 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 7210 m->m_pkthdr.csum_flags |= 7211 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 7212 m->m_pkthdr.csum_data = 0xffff; 7213 } 7214 } 7215 return (0); 7216 } 7217 7218 static bool 7219 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 7220 const struct pf_kstate *s, struct ip_fw_args *dnflow) 7221 { 7222 int dndir = r->direction; 7223 7224 if (s && dndir == PF_INOUT) { 7225 dndir = s->direction; 7226 } else if (dndir == PF_INOUT) { 7227 /* Assume primary direction. Happens when we've set dnpipe in 7228 * the ethernet level code. */ 7229 dndir = pd->dir; 7230 } 7231 7232 memset(dnflow, 0, sizeof(*dnflow)); 7233 7234 if (pd->dport != NULL) 7235 dnflow->f_id.dst_port = ntohs(*pd->dport); 7236 if (pd->sport != NULL) 7237 dnflow->f_id.src_port = ntohs(*pd->sport); 7238 7239 if (pd->dir == PF_IN) 7240 dnflow->flags |= IPFW_ARGS_IN; 7241 else 7242 dnflow->flags |= IPFW_ARGS_OUT; 7243 7244 if (pd->dir != dndir && pd->act.dnrpipe) { 7245 dnflow->rule.info = pd->act.dnrpipe; 7246 } 7247 else if (pd->dir == dndir && pd->act.dnpipe) { 7248 dnflow->rule.info = pd->act.dnpipe; 7249 } 7250 else { 7251 return (false); 7252 } 7253 7254 dnflow->rule.info |= IPFW_IS_DUMMYNET; 7255 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 7256 dnflow->rule.info |= IPFW_IS_PIPE; 7257 7258 dnflow->f_id.proto = pd->proto; 7259 dnflow->f_id.extra = dnflow->rule.info; 7260 switch (pd->af) { 7261 case AF_INET: 7262 dnflow->f_id.addr_type = 4; 7263 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 7264 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 7265 break; 7266 case AF_INET6: 7267 dnflow->flags |= IPFW_ARGS_IP6; 7268 dnflow->f_id.addr_type = 6; 7269 dnflow->f_id.src_ip6 = pd->src->v6; 7270 dnflow->f_id.dst_ip6 = pd->dst->v6; 7271 break; 7272 default: 7273 panic("Invalid AF"); 7274 break; 7275 } 7276 7277 return (true); 7278 } 7279 7280 int 7281 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7282 struct inpcb *inp) 7283 { 7284 struct pfi_kkif *kif; 7285 struct mbuf *m = *m0; 7286 7287 M_ASSERTPKTHDR(m); 7288 MPASS(ifp->if_vnet == curvnet); 7289 NET_EPOCH_ASSERT(); 7290 7291 if (!V_pf_status.running) 7292 return (PF_PASS); 7293 7294 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7295 7296 if (kif == NULL) { 7297 DPFPRINTF(PF_DEBUG_URGENT, 7298 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 7299 return (PF_DROP); 7300 } 7301 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7302 return (PF_PASS); 7303 7304 if (m->m_flags & M_SKIP_FIREWALL) 7305 return (PF_PASS); 7306 7307 /* Stateless! */ 7308 return (pf_test_eth_rule(dir, kif, m0)); 7309 } 7310 7311 static int 7312 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 7313 struct pf_krule *r, struct mbuf **m0) 7314 { 7315 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 7316 } 7317 7318 static int 7319 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 7320 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7321 struct mbuf **m0) 7322 { 7323 NET_EPOCH_ASSERT(); 7324 7325 if (pd->act.dnpipe || pd->act.dnrpipe) { 7326 struct ip_fw_args dnflow; 7327 if (ip_dn_io_ptr == NULL) { 7328 m_freem(*m0); 7329 *m0 = NULL; 7330 return (ENOMEM); 7331 } 7332 7333 if (pd->pf_mtag == NULL && 7334 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7335 m_freem(*m0); 7336 *m0 = NULL; 7337 return (ENOMEM); 7338 } 7339 7340 if (ifp != NULL) { 7341 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 7342 7343 pd->pf_mtag->if_index = ifp->if_index; 7344 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7345 7346 MPASS(sa != NULL); 7347 7348 if (pd->af == AF_INET) 7349 memcpy(&pd->pf_mtag->dst, sa, 7350 sizeof(struct sockaddr_in)); 7351 else 7352 memcpy(&pd->pf_mtag->dst, sa, 7353 sizeof(struct sockaddr_in6)); 7354 } 7355 7356 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 7357 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 7358 ip_dn_io_ptr(m0, &dnflow); 7359 if (*m0 != NULL) { 7360 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7361 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7362 } 7363 } 7364 } 7365 7366 return (0); 7367 } 7368 7369 #ifdef INET 7370 int 7371 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7372 struct inpcb *inp, struct pf_rule_actions *default_actions) 7373 { 7374 struct pfi_kkif *kif; 7375 u_short action, reason = 0; 7376 struct mbuf *m = *m0; 7377 struct ip *h = NULL; 7378 struct m_tag *ipfwtag; 7379 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7380 struct pf_kstate *s = NULL; 7381 struct pf_kruleset *ruleset = NULL; 7382 struct pf_pdesc pd; 7383 int off, dirndx, use_2nd_queue = 0; 7384 uint16_t tag; 7385 uint8_t rt; 7386 7387 PF_RULES_RLOCK_TRACKER; 7388 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7389 M_ASSERTPKTHDR(m); 7390 7391 if (!V_pf_status.running) 7392 return (PF_PASS); 7393 7394 PF_RULES_RLOCK(); 7395 7396 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7397 7398 if (__predict_false(kif == NULL)) { 7399 DPFPRINTF(PF_DEBUG_URGENT, 7400 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7401 PF_RULES_RUNLOCK(); 7402 return (PF_DROP); 7403 } 7404 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7405 PF_RULES_RUNLOCK(); 7406 return (PF_PASS); 7407 } 7408 7409 if (m->m_flags & M_SKIP_FIREWALL) { 7410 PF_RULES_RUNLOCK(); 7411 return (PF_PASS); 7412 } 7413 7414 memset(&pd, 0, sizeof(pd)); 7415 if (default_actions != NULL) 7416 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7417 pd.pf_mtag = pf_find_mtag(m); 7418 7419 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7420 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7421 7422 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7423 pd.pf_mtag->if_idxgen); 7424 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7425 PF_RULES_RUNLOCK(); 7426 m_freem(*m0); 7427 *m0 = NULL; 7428 return (PF_PASS); 7429 } 7430 PF_RULES_RUNLOCK(); 7431 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7432 *m0 = NULL; 7433 return (PF_PASS); 7434 } 7435 7436 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7437 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7438 pd.act.flags = pd.pf_mtag->dnflags; 7439 } 7440 7441 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7442 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7443 /* Dummynet re-injects packets after they've 7444 * completed their delay. We've already 7445 * processed them, so pass unconditionally. */ 7446 7447 /* But only once. We may see the packet multiple times (e.g. 7448 * PFIL_IN/PFIL_OUT). */ 7449 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7450 PF_RULES_RUNLOCK(); 7451 7452 return (PF_PASS); 7453 } 7454 7455 pd.sport = pd.dport = NULL; 7456 pd.proto_sum = NULL; 7457 pd.dir = dir; 7458 pd.sidx = (dir == PF_IN) ? 0 : 1; 7459 pd.didx = (dir == PF_IN) ? 1 : 0; 7460 pd.af = AF_INET; 7461 pd.act.rtableid = -1; 7462 7463 if (__predict_false(ip_divert_ptr != NULL) && 7464 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 7465 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 7466 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 7467 if (pd.pf_mtag == NULL && 7468 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7469 action = PF_DROP; 7470 goto done; 7471 } 7472 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 7473 m_tag_delete(m, ipfwtag); 7474 } 7475 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 7476 m->m_flags |= M_FASTFWD_OURS; 7477 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 7478 } 7479 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 7480 /* We do IP header normalization and packet reassembly here */ 7481 action = PF_DROP; 7482 goto done; 7483 } 7484 m = *m0; /* pf_normalize messes with m0 */ 7485 h = mtod(m, struct ip *); 7486 7487 off = h->ip_hl << 2; 7488 if (off < (int)sizeof(struct ip)) { 7489 action = PF_DROP; 7490 REASON_SET(&reason, PFRES_SHORT); 7491 pd.act.log = PF_LOG_FORCE; 7492 goto done; 7493 } 7494 7495 pd.src = (struct pf_addr *)&h->ip_src; 7496 pd.dst = (struct pf_addr *)&h->ip_dst; 7497 pd.ip_sum = &h->ip_sum; 7498 pd.proto = h->ip_p; 7499 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7500 pd.tot_len = ntohs(h->ip_len); 7501 7502 /* handle fragments that didn't get reassembled by normalization */ 7503 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7504 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 7505 goto done; 7506 } 7507 7508 switch (h->ip_p) { 7509 case IPPROTO_TCP: { 7510 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7511 &action, &reason, AF_INET)) { 7512 if (action != PF_PASS) 7513 pd.act.log = PF_LOG_FORCE; 7514 goto done; 7515 } 7516 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7517 7518 pd.sport = &pd.hdr.tcp.th_sport; 7519 pd.dport = &pd.hdr.tcp.th_dport; 7520 7521 /* Respond to SYN with a syncookie. */ 7522 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 7523 pd.dir == PF_IN && pf_synflood_check(&pd)) { 7524 pf_syncookie_send(m, off, &pd); 7525 action = PF_DROP; 7526 break; 7527 } 7528 7529 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 7530 use_2nd_queue = 1; 7531 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 7532 if (action == PF_DROP) 7533 goto done; 7534 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 7535 if (action == PF_PASS) { 7536 if (V_pfsync_update_state_ptr != NULL) 7537 V_pfsync_update_state_ptr(s); 7538 r = s->rule.ptr; 7539 a = s->anchor.ptr; 7540 } else if (s == NULL) { 7541 /* Validate remote SYN|ACK, re-create original SYN if 7542 * valid. */ 7543 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 7544 TH_ACK && pf_syncookie_validate(&pd) && 7545 pd.dir == PF_IN) { 7546 struct mbuf *msyn; 7547 7548 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 7549 &pd); 7550 if (msyn == NULL) { 7551 action = PF_DROP; 7552 break; 7553 } 7554 7555 action = pf_test(dir, pflags, ifp, &msyn, inp, 7556 &pd.act); 7557 m_freem(msyn); 7558 if (action != PF_PASS) 7559 break; 7560 7561 action = pf_test_state_tcp(&s, kif, m, off, h, 7562 &pd, &reason); 7563 if (action != PF_PASS || s == NULL) { 7564 action = PF_DROP; 7565 break; 7566 } 7567 7568 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 7569 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 7570 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 7571 action = pf_synproxy(&pd, &s, &reason); 7572 break; 7573 } else { 7574 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7575 &a, &ruleset, inp); 7576 } 7577 } 7578 break; 7579 } 7580 7581 case IPPROTO_UDP: { 7582 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7583 &action, &reason, AF_INET)) { 7584 if (action != PF_PASS) 7585 pd.act.log = PF_LOG_FORCE; 7586 goto done; 7587 } 7588 pd.sport = &pd.hdr.udp.uh_sport; 7589 pd.dport = &pd.hdr.udp.uh_dport; 7590 if (pd.hdr.udp.uh_dport == 0 || 7591 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7592 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7593 action = PF_DROP; 7594 REASON_SET(&reason, PFRES_SHORT); 7595 goto done; 7596 } 7597 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 7598 if (action == PF_PASS) { 7599 if (V_pfsync_update_state_ptr != NULL) 7600 V_pfsync_update_state_ptr(s); 7601 r = s->rule.ptr; 7602 a = s->anchor.ptr; 7603 } else if (s == NULL) 7604 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7605 &a, &ruleset, inp); 7606 break; 7607 } 7608 7609 case IPPROTO_SCTP: { 7610 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 7611 &action, &reason, AF_INET)) { 7612 if (action != PF_PASS) 7613 pd.act.log |= PF_LOG_FORCE; 7614 goto done; 7615 } 7616 pd.sport = &pd.hdr.sctp.src_port; 7617 pd.dport = &pd.hdr.sctp.dest_port; 7618 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 7619 action = PF_DROP; 7620 REASON_SET(&reason, PFRES_SHORT); 7621 goto done; 7622 } 7623 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 7624 if (action == PF_DROP) 7625 goto done; 7626 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 7627 &reason); 7628 if (action == PF_PASS) { 7629 if (V_pfsync_update_state_ptr != NULL) 7630 V_pfsync_update_state_ptr(s); 7631 r = s->rule.ptr; 7632 a = s->anchor.ptr; 7633 } else { 7634 action = pf_test_rule(&r, &s, kif, m, off, 7635 &pd, &a, &ruleset, inp); 7636 } 7637 break; 7638 } 7639 7640 case IPPROTO_ICMP: { 7641 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7642 &action, &reason, AF_INET)) { 7643 if (action != PF_PASS) 7644 pd.act.log = PF_LOG_FORCE; 7645 goto done; 7646 } 7647 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 7648 if (action == PF_PASS) { 7649 if (V_pfsync_update_state_ptr != NULL) 7650 V_pfsync_update_state_ptr(s); 7651 r = s->rule.ptr; 7652 a = s->anchor.ptr; 7653 } else if (s == NULL) 7654 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7655 &a, &ruleset, inp); 7656 break; 7657 } 7658 7659 #ifdef INET6 7660 case IPPROTO_ICMPV6: { 7661 action = PF_DROP; 7662 DPFPRINTF(PF_DEBUG_MISC, 7663 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7664 goto done; 7665 } 7666 #endif 7667 7668 default: 7669 action = pf_test_state_other(&s, kif, m, &pd); 7670 if (action == PF_PASS) { 7671 if (V_pfsync_update_state_ptr != NULL) 7672 V_pfsync_update_state_ptr(s); 7673 r = s->rule.ptr; 7674 a = s->anchor.ptr; 7675 } else if (s == NULL) 7676 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7677 &a, &ruleset, inp); 7678 break; 7679 } 7680 7681 done: 7682 PF_RULES_RUNLOCK(); 7683 if (action == PF_PASS && h->ip_hl > 5 && 7684 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7685 action = PF_DROP; 7686 REASON_SET(&reason, PFRES_IPOPTIONS); 7687 pd.act.log = PF_LOG_FORCE; 7688 DPFPRINTF(PF_DEBUG_MISC, 7689 ("pf: dropping packet with ip options\n")); 7690 } 7691 7692 if (s) { 7693 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 7694 tag = s->tag; 7695 rt = s->rt; 7696 } else { 7697 tag = r->tag; 7698 rt = r->rt; 7699 } 7700 7701 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 7702 action = PF_DROP; 7703 REASON_SET(&reason, PFRES_MEMORY); 7704 } 7705 7706 pf_scrub_ip(&m, &pd); 7707 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 7708 pf_normalize_mss(m, off, &pd); 7709 7710 if (pd.act.rtableid >= 0) 7711 M_SETFIB(m, pd.act.rtableid); 7712 7713 if (pd.act.flags & PFSTATE_SETPRIO) { 7714 if (pd.tos & IPTOS_LOWDELAY) 7715 use_2nd_queue = 1; 7716 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 7717 action = PF_DROP; 7718 REASON_SET(&reason, PFRES_MEMORY); 7719 pd.act.log = PF_LOG_FORCE; 7720 DPFPRINTF(PF_DEBUG_MISC, 7721 ("pf: failed to allocate 802.1q mtag\n")); 7722 } 7723 } 7724 7725 #ifdef ALTQ 7726 if (action == PF_PASS && pd.act.qid) { 7727 if (pd.pf_mtag == NULL && 7728 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7729 action = PF_DROP; 7730 REASON_SET(&reason, PFRES_MEMORY); 7731 } else { 7732 if (s != NULL) 7733 pd.pf_mtag->qid_hash = pf_state_hash(s); 7734 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 7735 pd.pf_mtag->qid = pd.act.pqid; 7736 else 7737 pd.pf_mtag->qid = pd.act.qid; 7738 /* Add hints for ecn. */ 7739 pd.pf_mtag->hdr = h; 7740 } 7741 } 7742 #endif /* ALTQ */ 7743 7744 /* 7745 * connections redirected to loopback should not match sockets 7746 * bound specifically to loopback due to security implications, 7747 * see tcp_input() and in_pcblookup_listen(). 7748 */ 7749 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7750 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7751 (s->nat_rule.ptr->action == PF_RDR || 7752 s->nat_rule.ptr->action == PF_BINAT) && 7753 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7754 m->m_flags |= M_SKIP_FIREWALL; 7755 7756 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7757 r->divert.port && !PACKET_LOOPED(&pd)) { 7758 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7759 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7760 if (ipfwtag != NULL) { 7761 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7762 ntohs(r->divert.port); 7763 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7764 7765 if (s) 7766 PF_STATE_UNLOCK(s); 7767 7768 m_tag_prepend(m, ipfwtag); 7769 if (m->m_flags & M_FASTFWD_OURS) { 7770 if (pd.pf_mtag == NULL && 7771 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7772 action = PF_DROP; 7773 REASON_SET(&reason, PFRES_MEMORY); 7774 pd.act.log = PF_LOG_FORCE; 7775 DPFPRINTF(PF_DEBUG_MISC, 7776 ("pf: failed to allocate tag\n")); 7777 } else { 7778 pd.pf_mtag->flags |= 7779 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 7780 m->m_flags &= ~M_FASTFWD_OURS; 7781 } 7782 } 7783 ip_divert_ptr(*m0, dir == PF_IN); 7784 *m0 = NULL; 7785 7786 return (action); 7787 } else { 7788 /* XXX: ipfw has the same behaviour! */ 7789 action = PF_DROP; 7790 REASON_SET(&reason, PFRES_MEMORY); 7791 pd.act.log = PF_LOG_FORCE; 7792 DPFPRINTF(PF_DEBUG_MISC, 7793 ("pf: failed to allocate divert tag\n")); 7794 } 7795 } 7796 7797 if (pd.act.log) { 7798 struct pf_krule *lr; 7799 struct pf_krule_item *ri; 7800 7801 if (s != NULL && s->nat_rule.ptr != NULL && 7802 s->nat_rule.ptr->log & PF_LOG_ALL) 7803 lr = s->nat_rule.ptr; 7804 else 7805 lr = r; 7806 7807 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 7808 PFLOG_PACKET(kif, m, AF_INET, reason, lr, a, ruleset, 7809 &pd, (s == NULL)); 7810 if (s) { 7811 SLIST_FOREACH(ri, &s->match_rules, entry) 7812 if (ri->r->log & PF_LOG_ALL) 7813 PFLOG_PACKET(kif, m, AF_INET, reason, 7814 ri->r, a, ruleset, &pd, 0); 7815 } 7816 } 7817 7818 pf_counter_u64_critical_enter(); 7819 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7820 pd.tot_len); 7821 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7822 1); 7823 7824 if (action == PF_PASS || r->action == PF_DROP) { 7825 dirndx = (dir == PF_OUT); 7826 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7827 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7828 pf_update_timestamp(r); 7829 7830 if (a != NULL) { 7831 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7832 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7833 } 7834 if (s != NULL) { 7835 struct pf_krule_item *ri; 7836 7837 if (s->nat_rule.ptr != NULL) { 7838 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7839 1); 7840 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7841 pd.tot_len); 7842 } 7843 if (s->src_node != NULL) { 7844 counter_u64_add(s->src_node->packets[dirndx], 7845 1); 7846 counter_u64_add(s->src_node->bytes[dirndx], 7847 pd.tot_len); 7848 } 7849 if (s->nat_src_node != NULL) { 7850 counter_u64_add(s->nat_src_node->packets[dirndx], 7851 1); 7852 counter_u64_add(s->nat_src_node->bytes[dirndx], 7853 pd.tot_len); 7854 } 7855 dirndx = (dir == s->direction) ? 0 : 1; 7856 s->packets[dirndx]++; 7857 s->bytes[dirndx] += pd.tot_len; 7858 SLIST_FOREACH(ri, &s->match_rules, entry) { 7859 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 7860 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 7861 } 7862 } 7863 tr = r; 7864 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7865 if (nr != NULL && r == &V_pf_default_rule) 7866 tr = nr; 7867 if (tr->src.addr.type == PF_ADDR_TABLE) 7868 pfr_update_stats(tr->src.addr.p.tbl, 7869 (s == NULL) ? pd.src : 7870 &s->key[(s->direction == PF_IN)]-> 7871 addr[(s->direction == PF_OUT)], 7872 pd.af, pd.tot_len, dir == PF_OUT, 7873 r->action == PF_PASS, tr->src.neg); 7874 if (tr->dst.addr.type == PF_ADDR_TABLE) 7875 pfr_update_stats(tr->dst.addr.p.tbl, 7876 (s == NULL) ? pd.dst : 7877 &s->key[(s->direction == PF_IN)]-> 7878 addr[(s->direction == PF_IN)], 7879 pd.af, pd.tot_len, dir == PF_OUT, 7880 r->action == PF_PASS, tr->dst.neg); 7881 } 7882 pf_counter_u64_critical_exit(); 7883 7884 switch (action) { 7885 case PF_SYNPROXY_DROP: 7886 m_freem(*m0); 7887 case PF_DEFER: 7888 *m0 = NULL; 7889 action = PF_PASS; 7890 break; 7891 case PF_DROP: 7892 m_freem(*m0); 7893 *m0 = NULL; 7894 break; 7895 default: 7896 /* pf_route() returns unlocked. */ 7897 if (rt) { 7898 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 7899 return (action); 7900 } 7901 if (pf_dummynet(&pd, s, r, m0) != 0) { 7902 action = PF_DROP; 7903 REASON_SET(&reason, PFRES_MEMORY); 7904 } 7905 break; 7906 } 7907 7908 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7909 7910 if (s) 7911 PF_STATE_UNLOCK(s); 7912 7913 return (action); 7914 } 7915 #endif /* INET */ 7916 7917 #ifdef INET6 7918 int 7919 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 7920 struct pf_rule_actions *default_actions) 7921 { 7922 struct pfi_kkif *kif; 7923 u_short action, reason = 0; 7924 struct mbuf *m = *m0, *n = NULL; 7925 struct m_tag *mtag; 7926 struct ip6_hdr *h = NULL; 7927 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7928 struct pf_kstate *s = NULL; 7929 struct pf_kruleset *ruleset = NULL; 7930 struct pf_pdesc pd; 7931 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 7932 uint16_t tag; 7933 uint8_t rt; 7934 7935 PF_RULES_RLOCK_TRACKER; 7936 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7937 M_ASSERTPKTHDR(m); 7938 7939 if (!V_pf_status.running) 7940 return (PF_PASS); 7941 7942 PF_RULES_RLOCK(); 7943 7944 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7945 if (__predict_false(kif == NULL)) { 7946 DPFPRINTF(PF_DEBUG_URGENT, 7947 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7948 PF_RULES_RUNLOCK(); 7949 return (PF_DROP); 7950 } 7951 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7952 PF_RULES_RUNLOCK(); 7953 return (PF_PASS); 7954 } 7955 7956 if (m->m_flags & M_SKIP_FIREWALL) { 7957 PF_RULES_RUNLOCK(); 7958 return (PF_PASS); 7959 } 7960 7961 memset(&pd, 0, sizeof(pd)); 7962 if (default_actions != NULL) 7963 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7964 pd.pf_mtag = pf_find_mtag(m); 7965 7966 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7967 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7968 7969 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7970 pd.pf_mtag->if_idxgen); 7971 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7972 PF_RULES_RUNLOCK(); 7973 m_freem(*m0); 7974 *m0 = NULL; 7975 return (PF_PASS); 7976 } 7977 PF_RULES_RUNLOCK(); 7978 nd6_output_ifp(ifp, ifp, m, 7979 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 7980 *m0 = NULL; 7981 return (PF_PASS); 7982 } 7983 7984 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7985 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7986 pd.act.flags = pd.pf_mtag->dnflags; 7987 } 7988 7989 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7990 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7991 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7992 /* Dummynet re-injects packets after they've 7993 * completed their delay. We've already 7994 * processed them, so pass unconditionally. */ 7995 PF_RULES_RUNLOCK(); 7996 return (PF_PASS); 7997 } 7998 7999 pd.sport = pd.dport = NULL; 8000 pd.ip_sum = NULL; 8001 pd.proto_sum = NULL; 8002 pd.dir = dir; 8003 pd.sidx = (dir == PF_IN) ? 0 : 1; 8004 pd.didx = (dir == PF_IN) ? 1 : 0; 8005 pd.af = AF_INET6; 8006 pd.act.rtableid = -1; 8007 8008 /* We do IP header normalization and packet reassembly here */ 8009 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8010 action = PF_DROP; 8011 goto done; 8012 } 8013 m = *m0; /* pf_normalize messes with m0 */ 8014 h = mtod(m, struct ip6_hdr *); 8015 8016 /* 8017 * we do not support jumbogram. if we keep going, zero ip6_plen 8018 * will do something bad, so drop the packet for now. 8019 */ 8020 if (htons(h->ip6_plen) == 0) { 8021 action = PF_DROP; 8022 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 8023 goto done; 8024 } 8025 8026 pd.src = (struct pf_addr *)&h->ip6_src; 8027 pd.dst = (struct pf_addr *)&h->ip6_dst; 8028 pd.tos = IPV6_DSCP(h); 8029 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8030 8031 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8032 pd.proto = h->ip6_nxt; 8033 do { 8034 switch (pd.proto) { 8035 case IPPROTO_FRAGMENT: 8036 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 8037 &ruleset); 8038 if (action == PF_DROP) 8039 REASON_SET(&reason, PFRES_FRAG); 8040 goto done; 8041 case IPPROTO_ROUTING: { 8042 struct ip6_rthdr rthdr; 8043 8044 if (rh_cnt++) { 8045 DPFPRINTF(PF_DEBUG_MISC, 8046 ("pf: IPv6 more than one rthdr\n")); 8047 action = PF_DROP; 8048 REASON_SET(&reason, PFRES_IPOPTIONS); 8049 pd.act.log = PF_LOG_FORCE; 8050 goto done; 8051 } 8052 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 8053 &reason, pd.af)) { 8054 DPFPRINTF(PF_DEBUG_MISC, 8055 ("pf: IPv6 short rthdr\n")); 8056 action = PF_DROP; 8057 REASON_SET(&reason, PFRES_SHORT); 8058 pd.act.log = PF_LOG_FORCE; 8059 goto done; 8060 } 8061 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8062 DPFPRINTF(PF_DEBUG_MISC, 8063 ("pf: IPv6 rthdr0\n")); 8064 action = PF_DROP; 8065 REASON_SET(&reason, PFRES_IPOPTIONS); 8066 pd.act.log = PF_LOG_FORCE; 8067 goto done; 8068 } 8069 /* FALLTHROUGH */ 8070 } 8071 case IPPROTO_AH: 8072 case IPPROTO_HOPOPTS: 8073 case IPPROTO_DSTOPTS: { 8074 /* get next header and header length */ 8075 struct ip6_ext opt6; 8076 8077 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 8078 NULL, &reason, pd.af)) { 8079 DPFPRINTF(PF_DEBUG_MISC, 8080 ("pf: IPv6 short opt\n")); 8081 action = PF_DROP; 8082 pd.act.log = PF_LOG_FORCE; 8083 goto done; 8084 } 8085 if (pd.proto == IPPROTO_AH) 8086 off += (opt6.ip6e_len + 2) * 4; 8087 else 8088 off += (opt6.ip6e_len + 1) * 8; 8089 pd.proto = opt6.ip6e_nxt; 8090 /* goto the next header */ 8091 break; 8092 } 8093 default: 8094 terminal++; 8095 break; 8096 } 8097 } while (!terminal); 8098 8099 /* if there's no routing header, use unmodified mbuf for checksumming */ 8100 if (!n) 8101 n = m; 8102 8103 switch (pd.proto) { 8104 case IPPROTO_TCP: { 8105 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8106 &action, &reason, AF_INET6)) { 8107 if (action != PF_PASS) 8108 pd.act.log |= PF_LOG_FORCE; 8109 goto done; 8110 } 8111 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8112 pd.sport = &pd.hdr.tcp.th_sport; 8113 pd.dport = &pd.hdr.tcp.th_dport; 8114 8115 /* Respond to SYN with a syncookie. */ 8116 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8117 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8118 pf_syncookie_send(m, off, &pd); 8119 action = PF_DROP; 8120 break; 8121 } 8122 8123 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8124 if (action == PF_DROP) 8125 goto done; 8126 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8127 if (action == PF_PASS) { 8128 if (V_pfsync_update_state_ptr != NULL) 8129 V_pfsync_update_state_ptr(s); 8130 r = s->rule.ptr; 8131 a = s->anchor.ptr; 8132 } else if (s == NULL) { 8133 /* Validate remote SYN|ACK, re-create original SYN if 8134 * valid. */ 8135 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8136 TH_ACK && pf_syncookie_validate(&pd) && 8137 pd.dir == PF_IN) { 8138 struct mbuf *msyn; 8139 8140 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 8141 off, &pd); 8142 if (msyn == NULL) { 8143 action = PF_DROP; 8144 break; 8145 } 8146 8147 action = pf_test6(dir, pflags, ifp, &msyn, inp, 8148 &pd.act); 8149 m_freem(msyn); 8150 if (action != PF_PASS) 8151 break; 8152 8153 action = pf_test_state_tcp(&s, kif, m, off, h, 8154 &pd, &reason); 8155 if (action != PF_PASS || s == NULL) { 8156 action = PF_DROP; 8157 break; 8158 } 8159 8160 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8161 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8162 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8163 8164 action = pf_synproxy(&pd, &s, &reason); 8165 break; 8166 } else { 8167 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8168 &a, &ruleset, inp); 8169 } 8170 } 8171 break; 8172 } 8173 8174 case IPPROTO_UDP: { 8175 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8176 &action, &reason, AF_INET6)) { 8177 if (action != PF_PASS) 8178 pd.act.log |= PF_LOG_FORCE; 8179 goto done; 8180 } 8181 pd.sport = &pd.hdr.udp.uh_sport; 8182 pd.dport = &pd.hdr.udp.uh_dport; 8183 if (pd.hdr.udp.uh_dport == 0 || 8184 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8185 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8186 action = PF_DROP; 8187 REASON_SET(&reason, PFRES_SHORT); 8188 goto done; 8189 } 8190 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8191 if (action == PF_PASS) { 8192 if (V_pfsync_update_state_ptr != NULL) 8193 V_pfsync_update_state_ptr(s); 8194 r = s->rule.ptr; 8195 a = s->anchor.ptr; 8196 } else if (s == NULL) 8197 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8198 &a, &ruleset, inp); 8199 break; 8200 } 8201 8202 case IPPROTO_SCTP: { 8203 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8204 &action, &reason, AF_INET6)) { 8205 if (action != PF_PASS) 8206 pd.act.log |= PF_LOG_FORCE; 8207 goto done; 8208 } 8209 pd.sport = &pd.hdr.sctp.src_port; 8210 pd.dport = &pd.hdr.sctp.dest_port; 8211 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8212 action = PF_DROP; 8213 REASON_SET(&reason, PFRES_SHORT); 8214 goto done; 8215 } 8216 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8217 if (action == PF_DROP) 8218 goto done; 8219 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8220 &reason); 8221 if (action == PF_PASS) { 8222 if (V_pfsync_update_state_ptr != NULL) 8223 V_pfsync_update_state_ptr(s); 8224 r = s->rule.ptr; 8225 a = s->anchor.ptr; 8226 } else { 8227 action = pf_test_rule(&r, &s, kif, m, off, 8228 &pd, &a, &ruleset, inp); 8229 } 8230 break; 8231 } 8232 8233 case IPPROTO_ICMP: { 8234 action = PF_DROP; 8235 DPFPRINTF(PF_DEBUG_MISC, 8236 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 8237 goto done; 8238 } 8239 8240 case IPPROTO_ICMPV6: { 8241 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 8242 &action, &reason, AF_INET6)) { 8243 if (action != PF_PASS) 8244 pd.act.log |= PF_LOG_FORCE; 8245 goto done; 8246 } 8247 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8248 if (action == PF_PASS) { 8249 if (V_pfsync_update_state_ptr != NULL) 8250 V_pfsync_update_state_ptr(s); 8251 r = s->rule.ptr; 8252 a = s->anchor.ptr; 8253 } else if (s == NULL) 8254 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8255 &a, &ruleset, inp); 8256 break; 8257 } 8258 8259 default: 8260 action = pf_test_state_other(&s, kif, m, &pd); 8261 if (action == PF_PASS) { 8262 if (V_pfsync_update_state_ptr != NULL) 8263 V_pfsync_update_state_ptr(s); 8264 r = s->rule.ptr; 8265 a = s->anchor.ptr; 8266 } else if (s == NULL) 8267 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8268 &a, &ruleset, inp); 8269 break; 8270 } 8271 8272 done: 8273 PF_RULES_RUNLOCK(); 8274 if (n != m) { 8275 m_freem(n); 8276 n = NULL; 8277 } 8278 8279 /* handle dangerous IPv6 extension headers. */ 8280 if (action == PF_PASS && rh_cnt && 8281 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8282 action = PF_DROP; 8283 REASON_SET(&reason, PFRES_IPOPTIONS); 8284 pd.act.log = r->log; 8285 DPFPRINTF(PF_DEBUG_MISC, 8286 ("pf: dropping packet with dangerous v6 headers\n")); 8287 } 8288 8289 if (s) { 8290 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8291 tag = s->tag; 8292 rt = s->rt; 8293 } else { 8294 tag = r->tag; 8295 rt = r->rt; 8296 } 8297 8298 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8299 action = PF_DROP; 8300 REASON_SET(&reason, PFRES_MEMORY); 8301 } 8302 8303 pf_scrub_ip6(&m, &pd); 8304 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8305 pf_normalize_mss(m, off, &pd); 8306 8307 if (pd.act.rtableid >= 0) 8308 M_SETFIB(m, pd.act.rtableid); 8309 8310 if (pd.act.flags & PFSTATE_SETPRIO) { 8311 if (pd.tos & IPTOS_LOWDELAY) 8312 use_2nd_queue = 1; 8313 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8314 action = PF_DROP; 8315 REASON_SET(&reason, PFRES_MEMORY); 8316 pd.act.log = PF_LOG_FORCE; 8317 DPFPRINTF(PF_DEBUG_MISC, 8318 ("pf: failed to allocate 802.1q mtag\n")); 8319 } 8320 } 8321 8322 #ifdef ALTQ 8323 if (action == PF_PASS && pd.act.qid) { 8324 if (pd.pf_mtag == NULL && 8325 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8326 action = PF_DROP; 8327 REASON_SET(&reason, PFRES_MEMORY); 8328 } else { 8329 if (s != NULL) 8330 pd.pf_mtag->qid_hash = pf_state_hash(s); 8331 if (pd.tos & IPTOS_LOWDELAY) 8332 pd.pf_mtag->qid = pd.act.pqid; 8333 else 8334 pd.pf_mtag->qid = pd.act.qid; 8335 /* Add hints for ecn. */ 8336 pd.pf_mtag->hdr = h; 8337 } 8338 } 8339 #endif /* ALTQ */ 8340 8341 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8342 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8343 (s->nat_rule.ptr->action == PF_RDR || 8344 s->nat_rule.ptr->action == PF_BINAT) && 8345 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 8346 m->m_flags |= M_SKIP_FIREWALL; 8347 8348 /* XXX: Anybody working on it?! */ 8349 if (r->divert.port) 8350 printf("pf: divert(9) is not supported for IPv6\n"); 8351 8352 if (pd.act.log) { 8353 struct pf_krule *lr; 8354 struct pf_krule_item *ri; 8355 8356 if (s != NULL && s->nat_rule.ptr != NULL && 8357 s->nat_rule.ptr->log & PF_LOG_ALL) 8358 lr = s->nat_rule.ptr; 8359 else 8360 lr = r; 8361 8362 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8363 PFLOG_PACKET(kif, m, AF_INET6, reason, lr, a, ruleset, 8364 &pd, (s == NULL)); 8365 if (s) { 8366 SLIST_FOREACH(ri, &s->match_rules, entry) 8367 if (ri->r->log & PF_LOG_ALL) 8368 PFLOG_PACKET(kif, m, AF_INET6, reason, 8369 ri->r, a, ruleset, &pd, 0); 8370 } 8371 } 8372 8373 pf_counter_u64_critical_enter(); 8374 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 8375 pd.tot_len); 8376 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 8377 1); 8378 8379 if (action == PF_PASS || r->action == PF_DROP) { 8380 dirndx = (dir == PF_OUT); 8381 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8382 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8383 if (a != NULL) { 8384 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8385 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8386 } 8387 if (s != NULL) { 8388 if (s->nat_rule.ptr != NULL) { 8389 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8390 1); 8391 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8392 pd.tot_len); 8393 } 8394 if (s->src_node != NULL) { 8395 counter_u64_add(s->src_node->packets[dirndx], 8396 1); 8397 counter_u64_add(s->src_node->bytes[dirndx], 8398 pd.tot_len); 8399 } 8400 if (s->nat_src_node != NULL) { 8401 counter_u64_add(s->nat_src_node->packets[dirndx], 8402 1); 8403 counter_u64_add(s->nat_src_node->bytes[dirndx], 8404 pd.tot_len); 8405 } 8406 dirndx = (dir == s->direction) ? 0 : 1; 8407 s->packets[dirndx]++; 8408 s->bytes[dirndx] += pd.tot_len; 8409 } 8410 tr = r; 8411 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8412 if (nr != NULL && r == &V_pf_default_rule) 8413 tr = nr; 8414 if (tr->src.addr.type == PF_ADDR_TABLE) 8415 pfr_update_stats(tr->src.addr.p.tbl, 8416 (s == NULL) ? pd.src : 8417 &s->key[(s->direction == PF_IN)]->addr[0], 8418 pd.af, pd.tot_len, dir == PF_OUT, 8419 r->action == PF_PASS, tr->src.neg); 8420 if (tr->dst.addr.type == PF_ADDR_TABLE) 8421 pfr_update_stats(tr->dst.addr.p.tbl, 8422 (s == NULL) ? pd.dst : 8423 &s->key[(s->direction == PF_IN)]->addr[1], 8424 pd.af, pd.tot_len, dir == PF_OUT, 8425 r->action == PF_PASS, tr->dst.neg); 8426 } 8427 pf_counter_u64_critical_exit(); 8428 8429 switch (action) { 8430 case PF_SYNPROXY_DROP: 8431 m_freem(*m0); 8432 case PF_DEFER: 8433 *m0 = NULL; 8434 action = PF_PASS; 8435 break; 8436 case PF_DROP: 8437 m_freem(*m0); 8438 *m0 = NULL; 8439 break; 8440 default: 8441 /* pf_route6() returns unlocked. */ 8442 if (rt) { 8443 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 8444 return (action); 8445 } 8446 if (pf_dummynet(&pd, s, r, m0) != 0) { 8447 action = PF_DROP; 8448 REASON_SET(&reason, PFRES_MEMORY); 8449 } 8450 break; 8451 } 8452 8453 if (s) 8454 PF_STATE_UNLOCK(s); 8455 8456 /* If reassembled packet passed, create new fragments. */ 8457 if (action == PF_PASS && *m0 && dir == PF_OUT && 8458 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 8459 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 8460 8461 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 8462 8463 return (action); 8464 } 8465 #endif /* INET6 */ 8466