1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 132 "struct pf_sctp_source *"); 133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 134 "struct pf_kstate *", "struct pf_sctp_source *"); 135 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 137 "struct mbuf *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 140 "int", "struct pf_keth_rule *", "char *"); 141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 143 "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 145 146 /* 147 * Global variables 148 */ 149 150 /* state tables */ 151 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 152 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 153 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 154 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 157 VNET_DEFINE(struct pf_kstatus, pf_status); 158 159 VNET_DEFINE(u_int32_t, ticket_altqs_active); 160 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 161 VNET_DEFINE(int, altqs_inactive_open); 162 VNET_DEFINE(u_int32_t, ticket_pabuf); 163 164 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 165 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 166 VNET_DEFINE(u_char, pf_tcp_secret[16]); 167 #define V_pf_tcp_secret VNET(pf_tcp_secret) 168 VNET_DEFINE(int, pf_tcp_secret_init); 169 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 170 VNET_DEFINE(int, pf_tcp_iss_off); 171 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 172 VNET_DECLARE(int, pf_vnet_active); 173 #define V_pf_vnet_active VNET(pf_vnet_active) 174 175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 176 #define V_pf_purge_idx VNET(pf_purge_idx) 177 178 #ifdef PF_WANT_32_TO_64_COUNTER 179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 180 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 181 182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 183 VNET_DEFINE(size_t, pf_allrulecount); 184 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 185 #endif 186 187 struct pf_sctp_endpoint; 188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 189 struct pf_sctp_source { 190 sa_family_t af; 191 struct pf_addr addr; 192 TAILQ_ENTRY(pf_sctp_source) entry; 193 }; 194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 195 struct pf_sctp_endpoint 196 { 197 uint32_t v_tag; 198 struct pf_sctp_sources sources; 199 RB_ENTRY(pf_sctp_endpoint) entry; 200 }; 201 static int 202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 203 { 204 return (a->v_tag - b->v_tag); 205 } 206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 209 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 210 static struct mtx_padalign pf_sctp_endpoints_mtx; 211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 212 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 213 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 214 215 /* 216 * Queue for pf_intr() sends. 217 */ 218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 219 struct pf_send_entry { 220 STAILQ_ENTRY(pf_send_entry) pfse_next; 221 struct mbuf *pfse_m; 222 enum { 223 PFSE_IP, 224 PFSE_IP6, 225 PFSE_ICMP, 226 PFSE_ICMP6, 227 } pfse_type; 228 struct { 229 int type; 230 int code; 231 int mtu; 232 } icmpopts; 233 }; 234 235 STAILQ_HEAD(pf_send_head, pf_send_entry); 236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 237 #define V_pf_sendqueue VNET(pf_sendqueue) 238 239 static struct mtx_padalign pf_sendqueue_mtx; 240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 241 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 242 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 243 244 /* 245 * Queue for pf_overload_task() tasks. 246 */ 247 struct pf_overload_entry { 248 SLIST_ENTRY(pf_overload_entry) next; 249 struct pf_addr addr; 250 sa_family_t af; 251 uint8_t dir; 252 struct pf_krule *rule; 253 }; 254 255 SLIST_HEAD(pf_overload_head, pf_overload_entry); 256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 257 #define V_pf_overloadqueue VNET(pf_overloadqueue) 258 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 259 #define V_pf_overloadtask VNET(pf_overloadtask) 260 261 static struct mtx_padalign pf_overloadqueue_mtx; 262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 263 "pf overload/flush queue", MTX_DEF); 264 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 265 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 266 267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 268 struct mtx_padalign pf_unlnkdrules_mtx; 269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 270 MTX_DEF); 271 272 struct sx pf_config_lock; 273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 274 275 struct mtx_padalign pf_table_stats_lock; 276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 277 MTX_DEF); 278 279 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 280 #define V_pf_sources_z VNET(pf_sources_z) 281 uma_zone_t pf_mtag_z; 282 VNET_DEFINE(uma_zone_t, pf_state_z); 283 VNET_DEFINE(uma_zone_t, pf_state_key_z); 284 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 285 286 VNET_DEFINE(struct unrhdr64, pf_stateid); 287 288 static void pf_src_tree_remove_state(struct pf_kstate *); 289 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 290 u_int32_t); 291 static void pf_add_threshold(struct pf_threshold *); 292 static int pf_check_threshold(struct pf_threshold *); 293 294 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 295 u_int16_t *, u_int16_t *, struct pf_addr *, 296 u_int16_t, u_int8_t, sa_family_t); 297 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 298 struct tcphdr *, struct pf_state_peer *); 299 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 300 int *, u_int16_t *, u_int16_t *); 301 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, struct pf_addr *, u_int16_t, 303 u_int16_t *, u_int16_t *, u_int16_t *, 304 u_int16_t *, u_int8_t, sa_family_t); 305 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 306 sa_family_t, struct pf_krule *, int); 307 static void pf_detach_state(struct pf_kstate *); 308 static int pf_state_key_attach(struct pf_state_key *, 309 struct pf_state_key *, struct pf_kstate *); 310 static void pf_state_key_detach(struct pf_kstate *, int); 311 static int pf_state_key_ctor(void *, int, void *, int); 312 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 313 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 314 struct pf_mtag *pf_mtag); 315 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 316 struct pf_krule *, struct mbuf **); 317 static int pf_dummynet_route(struct pf_pdesc *, 318 struct pf_kstate *, struct pf_krule *, 319 struct ifnet *, struct sockaddr *, struct mbuf **); 320 static int pf_test_eth_rule(int, struct pfi_kkif *, 321 struct mbuf **); 322 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 323 struct pfi_kkif *, struct mbuf *, int, 324 struct pf_pdesc *, struct pf_krule **, 325 struct pf_kruleset **, struct inpcb *, int); 326 static int pf_create_state(struct pf_krule *, struct pf_krule *, 327 struct pf_krule *, struct pf_pdesc *, 328 struct pf_ksrc_node *, struct pf_state_key *, 329 struct pf_state_key *, struct mbuf *, int, 330 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 331 struct pf_kstate **, int, u_int16_t, u_int16_t, 332 int, struct pf_krule_slist *, struct pf_udp_mapping *); 333 static int pf_state_key_addr_setup(struct pf_pdesc *, struct mbuf *, 334 int, struct pf_state_key_cmp *, int, struct pf_addr *, 335 int, struct pf_addr *, int); 336 static int pf_tcp_track_full(struct pf_kstate **, 337 struct pfi_kkif *, struct mbuf *, int, 338 struct pf_pdesc *, u_short *, int *); 339 static int pf_tcp_track_sloppy(struct pf_kstate **, 340 struct pf_pdesc *, u_short *); 341 static int pf_test_state_tcp(struct pf_kstate **, 342 struct pfi_kkif *, struct mbuf *, int, 343 struct pf_pdesc *, u_short *); 344 static int pf_test_state_udp(struct pf_kstate **, 345 struct pfi_kkif *, struct mbuf *, int, 346 struct pf_pdesc *); 347 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 348 struct pf_pdesc *, struct pf_kstate **, struct mbuf *, 349 int, int, struct pfi_kkif *, u_int16_t, u_int16_t, 350 int, int *, int, int); 351 static int pf_test_state_icmp(struct pf_kstate **, 352 struct pfi_kkif *, struct mbuf *, int, 353 struct pf_pdesc *, u_short *); 354 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 355 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 356 struct pfi_kkif *, struct pf_kstate *, int); 357 static int pf_test_state_sctp(struct pf_kstate **, 358 struct pfi_kkif *, struct mbuf *, int, 359 struct pf_pdesc *, u_short *); 360 static int pf_test_state_other(struct pf_kstate **, 361 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 362 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 363 int, u_int16_t); 364 static int pf_check_proto_cksum(struct mbuf *, int, int, 365 u_int8_t, sa_family_t); 366 static void pf_print_state_parts(struct pf_kstate *, 367 struct pf_state_key *, struct pf_state_key *); 368 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 369 bool, u_int8_t); 370 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 371 const struct pf_state_key_cmp *, u_int); 372 static int pf_src_connlimit(struct pf_kstate **); 373 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 374 static void pf_counters_inc(int, 375 struct pf_pdesc *, struct pfi_kkif *, 376 struct pf_kstate *, struct pf_krule *, 377 struct pf_krule *); 378 static void pf_overload_task(void *v, int pending); 379 static u_short pf_insert_src_node(struct pf_ksrc_node **, 380 struct pf_krule *, struct pf_addr *, sa_family_t); 381 static u_int pf_purge_expired_states(u_int, int); 382 static void pf_purge_unlinked_rules(void); 383 static int pf_mtag_uminit(void *, int, int); 384 static void pf_mtag_free(struct m_tag *); 385 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 386 int, struct pf_state_key *); 387 #ifdef INET 388 static void pf_route(struct mbuf **, struct pf_krule *, 389 struct ifnet *, struct pf_kstate *, 390 struct pf_pdesc *, struct inpcb *); 391 #endif /* INET */ 392 #ifdef INET6 393 static void pf_change_a6(struct pf_addr *, u_int16_t *, 394 struct pf_addr *, u_int8_t); 395 static void pf_route6(struct mbuf **, struct pf_krule *, 396 struct ifnet *, struct pf_kstate *, 397 struct pf_pdesc *, struct inpcb *); 398 #endif /* INET6 */ 399 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 400 401 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 402 403 extern int pf_end_threads; 404 extern struct proc *pf_purge_proc; 405 406 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 407 408 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 409 410 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 411 do { \ 412 struct pf_state_key *nk; \ 413 if ((pd->dir) == PF_OUT) \ 414 nk = (_s)->key[PF_SK_STACK]; \ 415 else \ 416 nk = (_s)->key[PF_SK_WIRE]; \ 417 pf_packet_rework_nat(_m, _pd, _off, nk); \ 418 } while (0) 419 420 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 421 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 422 423 #define STATE_LOOKUP(i, k, s, pd) \ 424 do { \ 425 (s) = pf_find_state((i), (k), (pd->dir)); \ 426 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 427 if ((s) == NULL) \ 428 return (PF_DROP); \ 429 if (PACKET_LOOPED(pd)) \ 430 return (PF_PASS); \ 431 } while (0) 432 433 static struct pfi_kkif * 434 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 435 { 436 SDT_PROBE2(pf, ip, , bound_iface, st, k); 437 438 /* Floating unless otherwise specified. */ 439 if (! (st->rule.ptr->rule_flag & PFRULE_IFBOUND)) 440 return (V_pfi_all); 441 442 /* 443 * Initially set to all, because we don't know what interface we'll be 444 * sending this out when we create the state. 445 */ 446 if (st->rule.ptr->rt == PF_REPLYTO) 447 return (V_pfi_all); 448 449 /* Don't overrule the interface for states created on incoming packets. */ 450 if (st->direction == PF_IN) 451 return (k); 452 453 /* No route-to, so don't overrule. */ 454 if (st->rt != PF_ROUTETO) 455 return (k); 456 457 /* Bind to the route-to interface. */ 458 return (st->rt_kif); 459 } 460 461 #define STATE_INC_COUNTERS(s) \ 462 do { \ 463 struct pf_krule_item *mrm; \ 464 counter_u64_add(s->rule.ptr->states_cur, 1); \ 465 counter_u64_add(s->rule.ptr->states_tot, 1); \ 466 if (s->anchor.ptr != NULL) { \ 467 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 468 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 469 } \ 470 if (s->nat_rule.ptr != NULL) { \ 471 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 472 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 473 } \ 474 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 475 counter_u64_add(mrm->r->states_cur, 1); \ 476 counter_u64_add(mrm->r->states_tot, 1); \ 477 } \ 478 } while (0) 479 480 #define STATE_DEC_COUNTERS(s) \ 481 do { \ 482 struct pf_krule_item *mrm; \ 483 if (s->nat_rule.ptr != NULL) \ 484 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 485 if (s->anchor.ptr != NULL) \ 486 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 487 counter_u64_add(s->rule.ptr->states_cur, -1); \ 488 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 489 counter_u64_add(mrm->r->states_cur, -1); \ 490 } while (0) 491 492 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 493 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 494 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 495 VNET_DEFINE(struct pf_idhash *, pf_idhash); 496 VNET_DEFINE(struct pf_srchash *, pf_srchash); 497 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 498 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 499 500 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 501 "pf(4)"); 502 503 VNET_DEFINE(u_long, pf_hashmask); 504 VNET_DEFINE(u_long, pf_srchashmask); 505 VNET_DEFINE(u_long, pf_udpendpointhashmask); 506 VNET_DEFINE_STATIC(u_long, pf_hashsize); 507 #define V_pf_hashsize VNET(pf_hashsize) 508 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 509 #define V_pf_srchashsize VNET(pf_srchashsize) 510 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 511 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 512 u_long pf_ioctl_maxcount = 65535; 513 514 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 515 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 516 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 517 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 518 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 519 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 520 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 521 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 522 523 VNET_DEFINE(void *, pf_swi_cookie); 524 VNET_DEFINE(struct intr_event *, pf_swi_ie); 525 526 VNET_DEFINE(uint32_t, pf_hashseed); 527 #define V_pf_hashseed VNET(pf_hashseed) 528 529 static void 530 pf_sctp_checksum(struct mbuf *m, int off) 531 { 532 uint32_t sum = 0; 533 534 /* Zero out the checksum, to enable recalculation. */ 535 m_copyback(m, off + offsetof(struct sctphdr, checksum), 536 sizeof(sum), (caddr_t)&sum); 537 538 sum = sctp_calculate_cksum(m, off); 539 540 m_copyback(m, off + offsetof(struct sctphdr, checksum), 541 sizeof(sum), (caddr_t)&sum); 542 } 543 544 int 545 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 546 { 547 548 switch (af) { 549 #ifdef INET 550 case AF_INET: 551 if (a->addr32[0] > b->addr32[0]) 552 return (1); 553 if (a->addr32[0] < b->addr32[0]) 554 return (-1); 555 break; 556 #endif /* INET */ 557 #ifdef INET6 558 case AF_INET6: 559 if (a->addr32[3] > b->addr32[3]) 560 return (1); 561 if (a->addr32[3] < b->addr32[3]) 562 return (-1); 563 if (a->addr32[2] > b->addr32[2]) 564 return (1); 565 if (a->addr32[2] < b->addr32[2]) 566 return (-1); 567 if (a->addr32[1] > b->addr32[1]) 568 return (1); 569 if (a->addr32[1] < b->addr32[1]) 570 return (-1); 571 if (a->addr32[0] > b->addr32[0]) 572 return (1); 573 if (a->addr32[0] < b->addr32[0]) 574 return (-1); 575 break; 576 #endif /* INET6 */ 577 default: 578 panic("%s: unknown address family %u", __func__, af); 579 } 580 return (0); 581 } 582 583 static bool 584 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 585 { 586 switch (af) { 587 case AF_INET: 588 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 589 case AF_INET6: 590 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 591 default: 592 panic("Unknown af %d", af); 593 } 594 } 595 596 static void 597 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 598 struct pf_state_key *nk) 599 { 600 601 switch (pd->proto) { 602 case IPPROTO_TCP: { 603 struct tcphdr *th = &pd->hdr.tcp; 604 605 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 606 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 607 &th->th_sum, &nk->addr[pd->sidx], 608 nk->port[pd->sidx], 0, pd->af); 609 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 610 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 611 &th->th_sum, &nk->addr[pd->didx], 612 nk->port[pd->didx], 0, pd->af); 613 m_copyback(m, off, sizeof(*th), (caddr_t)th); 614 break; 615 } 616 case IPPROTO_UDP: { 617 struct udphdr *uh = &pd->hdr.udp; 618 619 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 620 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 621 &uh->uh_sum, &nk->addr[pd->sidx], 622 nk->port[pd->sidx], 1, pd->af); 623 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 624 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 625 &uh->uh_sum, &nk->addr[pd->didx], 626 nk->port[pd->didx], 1, pd->af); 627 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 628 break; 629 } 630 case IPPROTO_SCTP: { 631 struct sctphdr *sh = &pd->hdr.sctp; 632 uint16_t checksum = 0; 633 634 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 635 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 636 &checksum, &nk->addr[pd->sidx], 637 nk->port[pd->sidx], 1, pd->af); 638 } 639 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 640 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 641 &checksum, &nk->addr[pd->didx], 642 nk->port[pd->didx], 1, pd->af); 643 } 644 645 break; 646 } 647 case IPPROTO_ICMP: { 648 struct icmp *ih = &pd->hdr.icmp; 649 650 if (nk->port[pd->sidx] != ih->icmp_id) { 651 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 652 ih->icmp_cksum, ih->icmp_id, 653 nk->port[pd->sidx], 0); 654 ih->icmp_id = nk->port[pd->sidx]; 655 pd->sport = &ih->icmp_id; 656 657 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 658 } 659 /* FALLTHROUGH */ 660 } 661 default: 662 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 663 switch (pd->af) { 664 case AF_INET: 665 pf_change_a(&pd->src->v4.s_addr, 666 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 667 0); 668 break; 669 case AF_INET6: 670 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 671 break; 672 } 673 } 674 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 675 switch (pd->af) { 676 case AF_INET: 677 pf_change_a(&pd->dst->v4.s_addr, 678 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 679 0); 680 break; 681 case AF_INET6: 682 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 683 break; 684 } 685 } 686 break; 687 } 688 } 689 690 static __inline uint32_t 691 pf_hashkey(const struct pf_state_key *sk) 692 { 693 uint32_t h; 694 695 h = murmur3_32_hash32((const uint32_t *)sk, 696 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 697 V_pf_hashseed); 698 699 return (h & V_pf_hashmask); 700 } 701 702 static __inline uint32_t 703 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 704 { 705 uint32_t h; 706 707 switch (af) { 708 case AF_INET: 709 h = murmur3_32_hash32((uint32_t *)&addr->v4, 710 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 711 break; 712 case AF_INET6: 713 h = murmur3_32_hash32((uint32_t *)&addr->v6, 714 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 715 break; 716 default: 717 panic("%s: unknown address family %u", __func__, af); 718 } 719 720 return (h & V_pf_srchashmask); 721 } 722 723 static inline uint32_t 724 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 725 { 726 uint32_t h; 727 728 h = murmur3_32_hash32((uint32_t *)endpoint, 729 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 730 V_pf_hashseed); 731 return (h & V_pf_udpendpointhashmask); 732 } 733 734 #ifdef ALTQ 735 static int 736 pf_state_hash(struct pf_kstate *s) 737 { 738 u_int32_t hv = (intptr_t)s / sizeof(*s); 739 740 hv ^= crc32(&s->src, sizeof(s->src)); 741 hv ^= crc32(&s->dst, sizeof(s->dst)); 742 if (hv == 0) 743 hv = 1; 744 return (hv); 745 } 746 #endif 747 748 static __inline void 749 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 750 { 751 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 752 s->dst.state = newstate; 753 if (which == PF_PEER_DST) 754 return; 755 if (s->src.state == newstate) 756 return; 757 if (s->creatorid == V_pf_status.hostid && 758 s->key[PF_SK_STACK] != NULL && 759 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 760 !(TCPS_HAVEESTABLISHED(s->src.state) || 761 s->src.state == TCPS_CLOSED) && 762 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 763 atomic_add_32(&V_pf_status.states_halfopen, -1); 764 765 s->src.state = newstate; 766 } 767 768 #ifdef INET6 769 void 770 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 771 { 772 switch (af) { 773 #ifdef INET 774 case AF_INET: 775 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 776 break; 777 #endif /* INET */ 778 case AF_INET6: 779 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 780 break; 781 } 782 } 783 #endif /* INET6 */ 784 785 static void 786 pf_init_threshold(struct pf_threshold *threshold, 787 u_int32_t limit, u_int32_t seconds) 788 { 789 threshold->limit = limit * PF_THRESHOLD_MULT; 790 threshold->seconds = seconds; 791 threshold->count = 0; 792 threshold->last = time_uptime; 793 } 794 795 static void 796 pf_add_threshold(struct pf_threshold *threshold) 797 { 798 u_int32_t t = time_uptime, diff = t - threshold->last; 799 800 if (diff >= threshold->seconds) 801 threshold->count = 0; 802 else 803 threshold->count -= threshold->count * diff / 804 threshold->seconds; 805 threshold->count += PF_THRESHOLD_MULT; 806 threshold->last = t; 807 } 808 809 static int 810 pf_check_threshold(struct pf_threshold *threshold) 811 { 812 return (threshold->count > threshold->limit); 813 } 814 815 static int 816 pf_src_connlimit(struct pf_kstate **state) 817 { 818 struct pf_overload_entry *pfoe; 819 int bad = 0; 820 821 PF_STATE_LOCK_ASSERT(*state); 822 /* 823 * XXXKS: The src node is accessed unlocked! 824 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 825 */ 826 827 (*state)->src_node->conn++; 828 (*state)->src.tcp_est = 1; 829 pf_add_threshold(&(*state)->src_node->conn_rate); 830 831 if ((*state)->rule.ptr->max_src_conn && 832 (*state)->rule.ptr->max_src_conn < 833 (*state)->src_node->conn) { 834 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 835 bad++; 836 } 837 838 if ((*state)->rule.ptr->max_src_conn_rate.limit && 839 pf_check_threshold(&(*state)->src_node->conn_rate)) { 840 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 841 bad++; 842 } 843 844 if (!bad) 845 return (0); 846 847 /* Kill this state. */ 848 (*state)->timeout = PFTM_PURGE; 849 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 850 851 if ((*state)->rule.ptr->overload_tbl == NULL) 852 return (1); 853 854 /* Schedule overloading and flushing task. */ 855 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 856 if (pfoe == NULL) 857 return (1); /* too bad :( */ 858 859 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 860 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 861 pfoe->rule = (*state)->rule.ptr; 862 pfoe->dir = (*state)->direction; 863 PF_OVERLOADQ_LOCK(); 864 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 865 PF_OVERLOADQ_UNLOCK(); 866 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 867 868 return (1); 869 } 870 871 static void 872 pf_overload_task(void *v, int pending) 873 { 874 struct pf_overload_head queue; 875 struct pfr_addr p; 876 struct pf_overload_entry *pfoe, *pfoe1; 877 uint32_t killed = 0; 878 879 CURVNET_SET((struct vnet *)v); 880 881 PF_OVERLOADQ_LOCK(); 882 queue = V_pf_overloadqueue; 883 SLIST_INIT(&V_pf_overloadqueue); 884 PF_OVERLOADQ_UNLOCK(); 885 886 bzero(&p, sizeof(p)); 887 SLIST_FOREACH(pfoe, &queue, next) { 888 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 889 if (V_pf_status.debug >= PF_DEBUG_MISC) { 890 printf("%s: blocking address ", __func__); 891 pf_print_host(&pfoe->addr, 0, pfoe->af); 892 printf("\n"); 893 } 894 895 p.pfra_af = pfoe->af; 896 switch (pfoe->af) { 897 #ifdef INET 898 case AF_INET: 899 p.pfra_net = 32; 900 p.pfra_ip4addr = pfoe->addr.v4; 901 break; 902 #endif 903 #ifdef INET6 904 case AF_INET6: 905 p.pfra_net = 128; 906 p.pfra_ip6addr = pfoe->addr.v6; 907 break; 908 #endif 909 } 910 911 PF_RULES_WLOCK(); 912 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 913 PF_RULES_WUNLOCK(); 914 } 915 916 /* 917 * Remove those entries, that don't need flushing. 918 */ 919 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 920 if (pfoe->rule->flush == 0) { 921 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 922 free(pfoe, M_PFTEMP); 923 } else 924 counter_u64_add( 925 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 926 927 /* If nothing to flush, return. */ 928 if (SLIST_EMPTY(&queue)) { 929 CURVNET_RESTORE(); 930 return; 931 } 932 933 for (int i = 0; i <= V_pf_hashmask; i++) { 934 struct pf_idhash *ih = &V_pf_idhash[i]; 935 struct pf_state_key *sk; 936 struct pf_kstate *s; 937 938 PF_HASHROW_LOCK(ih); 939 LIST_FOREACH(s, &ih->states, entry) { 940 sk = s->key[PF_SK_WIRE]; 941 SLIST_FOREACH(pfoe, &queue, next) 942 if (sk->af == pfoe->af && 943 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 944 pfoe->rule == s->rule.ptr) && 945 ((pfoe->dir == PF_OUT && 946 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 947 (pfoe->dir == PF_IN && 948 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 949 s->timeout = PFTM_PURGE; 950 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 951 killed++; 952 } 953 } 954 PF_HASHROW_UNLOCK(ih); 955 } 956 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 957 free(pfoe, M_PFTEMP); 958 if (V_pf_status.debug >= PF_DEBUG_MISC) 959 printf("%s: %u states killed", __func__, killed); 960 961 CURVNET_RESTORE(); 962 } 963 964 /* 965 * Can return locked on failure, so that we can consistently 966 * allocate and insert a new one. 967 */ 968 struct pf_ksrc_node * 969 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 970 struct pf_srchash **sh, bool returnlocked) 971 { 972 struct pf_ksrc_node *n; 973 974 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 975 976 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 977 PF_HASHROW_LOCK(*sh); 978 LIST_FOREACH(n, &(*sh)->nodes, entry) 979 if (n->rule.ptr == rule && n->af == af && 980 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 981 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 982 break; 983 984 if (n != NULL) { 985 n->states++; 986 PF_HASHROW_UNLOCK(*sh); 987 } else if (returnlocked == false) 988 PF_HASHROW_UNLOCK(*sh); 989 990 return (n); 991 } 992 993 static void 994 pf_free_src_node(struct pf_ksrc_node *sn) 995 { 996 997 for (int i = 0; i < 2; i++) { 998 counter_u64_free(sn->bytes[i]); 999 counter_u64_free(sn->packets[i]); 1000 } 1001 uma_zfree(V_pf_sources_z, sn); 1002 } 1003 1004 static u_short 1005 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 1006 struct pf_addr *src, sa_family_t af) 1007 { 1008 u_short reason = 0; 1009 struct pf_srchash *sh = NULL; 1010 1011 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1012 rule->rpool.opts & PF_POOL_STICKYADDR), 1013 ("%s for non-tracking rule %p", __func__, rule)); 1014 1015 if (*sn == NULL) 1016 *sn = pf_find_src_node(src, rule, af, &sh, true); 1017 1018 if (*sn == NULL) { 1019 PF_HASHROW_ASSERT(sh); 1020 1021 if (rule->max_src_nodes && 1022 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1023 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1024 PF_HASHROW_UNLOCK(sh); 1025 reason = PFRES_SRCLIMIT; 1026 goto done; 1027 } 1028 1029 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1030 if ((*sn) == NULL) { 1031 PF_HASHROW_UNLOCK(sh); 1032 reason = PFRES_MEMORY; 1033 goto done; 1034 } 1035 1036 for (int i = 0; i < 2; i++) { 1037 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1038 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1039 1040 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1041 pf_free_src_node(*sn); 1042 PF_HASHROW_UNLOCK(sh); 1043 reason = PFRES_MEMORY; 1044 goto done; 1045 } 1046 } 1047 1048 pf_init_threshold(&(*sn)->conn_rate, 1049 rule->max_src_conn_rate.limit, 1050 rule->max_src_conn_rate.seconds); 1051 1052 MPASS((*sn)->lock == NULL); 1053 (*sn)->lock = &sh->lock; 1054 1055 (*sn)->af = af; 1056 (*sn)->rule.ptr = rule; 1057 PF_ACPY(&(*sn)->addr, src, af); 1058 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1059 (*sn)->creation = time_uptime; 1060 (*sn)->ruletype = rule->action; 1061 (*sn)->states = 1; 1062 if ((*sn)->rule.ptr != NULL) 1063 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 1064 PF_HASHROW_UNLOCK(sh); 1065 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1066 } else { 1067 if (rule->max_src_states && 1068 (*sn)->states >= rule->max_src_states) { 1069 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1070 1); 1071 reason = PFRES_SRCLIMIT; 1072 goto done; 1073 } 1074 } 1075 done: 1076 return (reason); 1077 } 1078 1079 void 1080 pf_unlink_src_node(struct pf_ksrc_node *src) 1081 { 1082 PF_SRC_NODE_LOCK_ASSERT(src); 1083 1084 LIST_REMOVE(src, entry); 1085 if (src->rule.ptr) 1086 counter_u64_add(src->rule.ptr->src_nodes, -1); 1087 } 1088 1089 u_int 1090 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1091 { 1092 struct pf_ksrc_node *sn, *tmp; 1093 u_int count = 0; 1094 1095 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1096 pf_free_src_node(sn); 1097 count++; 1098 } 1099 1100 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1101 1102 return (count); 1103 } 1104 1105 void 1106 pf_mtag_initialize(void) 1107 { 1108 1109 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1110 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1111 UMA_ALIGN_PTR, 0); 1112 } 1113 1114 /* Per-vnet data storage structures initialization. */ 1115 void 1116 pf_initialize(void) 1117 { 1118 struct pf_keyhash *kh; 1119 struct pf_idhash *ih; 1120 struct pf_srchash *sh; 1121 struct pf_udpendpointhash *uh; 1122 u_int i; 1123 1124 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1125 V_pf_hashsize = PF_HASHSIZ; 1126 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1127 V_pf_srchashsize = PF_SRCHASHSIZ; 1128 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1129 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1130 1131 V_pf_hashseed = arc4random(); 1132 1133 /* States and state keys storage. */ 1134 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1135 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1136 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1137 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1138 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1139 1140 V_pf_state_key_z = uma_zcreate("pf state keys", 1141 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1142 UMA_ALIGN_PTR, 0); 1143 1144 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1145 M_PFHASH, M_NOWAIT | M_ZERO); 1146 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1147 M_PFHASH, M_NOWAIT | M_ZERO); 1148 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1149 printf("pf: Unable to allocate memory for " 1150 "state_hashsize %lu.\n", V_pf_hashsize); 1151 1152 free(V_pf_keyhash, M_PFHASH); 1153 free(V_pf_idhash, M_PFHASH); 1154 1155 V_pf_hashsize = PF_HASHSIZ; 1156 V_pf_keyhash = mallocarray(V_pf_hashsize, 1157 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1158 V_pf_idhash = mallocarray(V_pf_hashsize, 1159 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1160 } 1161 1162 V_pf_hashmask = V_pf_hashsize - 1; 1163 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1164 i++, kh++, ih++) { 1165 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1166 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1167 } 1168 1169 /* Source nodes. */ 1170 V_pf_sources_z = uma_zcreate("pf source nodes", 1171 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1172 0); 1173 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1174 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1175 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1176 1177 V_pf_srchash = mallocarray(V_pf_srchashsize, 1178 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1179 if (V_pf_srchash == NULL) { 1180 printf("pf: Unable to allocate memory for " 1181 "source_hashsize %lu.\n", V_pf_srchashsize); 1182 1183 V_pf_srchashsize = PF_SRCHASHSIZ; 1184 V_pf_srchash = mallocarray(V_pf_srchashsize, 1185 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1186 } 1187 1188 V_pf_srchashmask = V_pf_srchashsize - 1; 1189 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1190 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1191 1192 1193 /* UDP endpoint mappings. */ 1194 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1195 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1196 UMA_ALIGN_PTR, 0); 1197 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1198 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1199 if (V_pf_udpendpointhash == NULL) { 1200 printf("pf: Unable to allocate memory for " 1201 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1202 1203 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1204 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1205 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1206 } 1207 1208 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1209 for (i = 0, uh = V_pf_udpendpointhash; 1210 i <= V_pf_udpendpointhashmask; 1211 i++, uh++) { 1212 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1213 MTX_DEF | MTX_DUPOK); 1214 } 1215 1216 /* ALTQ */ 1217 TAILQ_INIT(&V_pf_altqs[0]); 1218 TAILQ_INIT(&V_pf_altqs[1]); 1219 TAILQ_INIT(&V_pf_altqs[2]); 1220 TAILQ_INIT(&V_pf_altqs[3]); 1221 TAILQ_INIT(&V_pf_pabuf); 1222 V_pf_altqs_active = &V_pf_altqs[0]; 1223 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1224 V_pf_altqs_inactive = &V_pf_altqs[2]; 1225 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1226 1227 /* Send & overload+flush queues. */ 1228 STAILQ_INIT(&V_pf_sendqueue); 1229 SLIST_INIT(&V_pf_overloadqueue); 1230 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1231 1232 /* Unlinked, but may be referenced rules. */ 1233 TAILQ_INIT(&V_pf_unlinked_rules); 1234 } 1235 1236 void 1237 pf_mtag_cleanup(void) 1238 { 1239 1240 uma_zdestroy(pf_mtag_z); 1241 } 1242 1243 void 1244 pf_cleanup(void) 1245 { 1246 struct pf_keyhash *kh; 1247 struct pf_idhash *ih; 1248 struct pf_srchash *sh; 1249 struct pf_udpendpointhash *uh; 1250 struct pf_send_entry *pfse, *next; 1251 u_int i; 1252 1253 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1254 i <= V_pf_hashmask; 1255 i++, kh++, ih++) { 1256 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1257 __func__)); 1258 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1259 __func__)); 1260 mtx_destroy(&kh->lock); 1261 mtx_destroy(&ih->lock); 1262 } 1263 free(V_pf_keyhash, M_PFHASH); 1264 free(V_pf_idhash, M_PFHASH); 1265 1266 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1267 KASSERT(LIST_EMPTY(&sh->nodes), 1268 ("%s: source node hash not empty", __func__)); 1269 mtx_destroy(&sh->lock); 1270 } 1271 free(V_pf_srchash, M_PFHASH); 1272 1273 for (i = 0, uh = V_pf_udpendpointhash; 1274 i <= V_pf_udpendpointhashmask; 1275 i++, uh++) { 1276 KASSERT(LIST_EMPTY(&uh->endpoints), 1277 ("%s: udp endpoint hash not empty", __func__)); 1278 mtx_destroy(&uh->lock); 1279 } 1280 free(V_pf_udpendpointhash, M_PFHASH); 1281 1282 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1283 m_freem(pfse->pfse_m); 1284 free(pfse, M_PFTEMP); 1285 } 1286 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1287 1288 uma_zdestroy(V_pf_sources_z); 1289 uma_zdestroy(V_pf_state_z); 1290 uma_zdestroy(V_pf_state_key_z); 1291 uma_zdestroy(V_pf_udp_mapping_z); 1292 } 1293 1294 static int 1295 pf_mtag_uminit(void *mem, int size, int how) 1296 { 1297 struct m_tag *t; 1298 1299 t = (struct m_tag *)mem; 1300 t->m_tag_cookie = MTAG_ABI_COMPAT; 1301 t->m_tag_id = PACKET_TAG_PF; 1302 t->m_tag_len = sizeof(struct pf_mtag); 1303 t->m_tag_free = pf_mtag_free; 1304 1305 return (0); 1306 } 1307 1308 static void 1309 pf_mtag_free(struct m_tag *t) 1310 { 1311 1312 uma_zfree(pf_mtag_z, t); 1313 } 1314 1315 struct pf_mtag * 1316 pf_get_mtag(struct mbuf *m) 1317 { 1318 struct m_tag *mtag; 1319 1320 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1321 return ((struct pf_mtag *)(mtag + 1)); 1322 1323 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1324 if (mtag == NULL) 1325 return (NULL); 1326 bzero(mtag + 1, sizeof(struct pf_mtag)); 1327 m_tag_prepend(m, mtag); 1328 1329 return ((struct pf_mtag *)(mtag + 1)); 1330 } 1331 1332 static int 1333 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1334 struct pf_kstate *s) 1335 { 1336 struct pf_keyhash *khs, *khw, *kh; 1337 struct pf_state_key *sk, *cur; 1338 struct pf_kstate *si, *olds = NULL; 1339 int idx; 1340 1341 NET_EPOCH_ASSERT(); 1342 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1343 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1344 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1345 1346 /* 1347 * We need to lock hash slots of both keys. To avoid deadlock 1348 * we always lock the slot with lower address first. Unlock order 1349 * isn't important. 1350 * 1351 * We also need to lock ID hash slot before dropping key 1352 * locks. On success we return with ID hash slot locked. 1353 */ 1354 1355 if (skw == sks) { 1356 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1357 PF_HASHROW_LOCK(khs); 1358 } else { 1359 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1360 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1361 if (khs == khw) { 1362 PF_HASHROW_LOCK(khs); 1363 } else if (khs < khw) { 1364 PF_HASHROW_LOCK(khs); 1365 PF_HASHROW_LOCK(khw); 1366 } else { 1367 PF_HASHROW_LOCK(khw); 1368 PF_HASHROW_LOCK(khs); 1369 } 1370 } 1371 1372 #define KEYS_UNLOCK() do { \ 1373 if (khs != khw) { \ 1374 PF_HASHROW_UNLOCK(khs); \ 1375 PF_HASHROW_UNLOCK(khw); \ 1376 } else \ 1377 PF_HASHROW_UNLOCK(khs); \ 1378 } while (0) 1379 1380 /* 1381 * First run: start with wire key. 1382 */ 1383 sk = skw; 1384 kh = khw; 1385 idx = PF_SK_WIRE; 1386 1387 MPASS(s->lock == NULL); 1388 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1389 1390 keyattach: 1391 LIST_FOREACH(cur, &kh->keys, entry) 1392 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1393 break; 1394 1395 if (cur != NULL) { 1396 /* Key exists. Check for same kif, if none, add to key. */ 1397 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1398 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1399 1400 PF_HASHROW_LOCK(ih); 1401 if (si->kif == s->kif && 1402 si->direction == s->direction) { 1403 if (sk->proto == IPPROTO_TCP && 1404 si->src.state >= TCPS_FIN_WAIT_2 && 1405 si->dst.state >= TCPS_FIN_WAIT_2) { 1406 /* 1407 * New state matches an old >FIN_WAIT_2 1408 * state. We can't drop key hash locks, 1409 * thus we can't unlink it properly. 1410 * 1411 * As a workaround we drop it into 1412 * TCPS_CLOSED state, schedule purge 1413 * ASAP and push it into the very end 1414 * of the slot TAILQ, so that it won't 1415 * conflict with our new state. 1416 */ 1417 pf_set_protostate(si, PF_PEER_BOTH, 1418 TCPS_CLOSED); 1419 si->timeout = PFTM_PURGE; 1420 olds = si; 1421 } else { 1422 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1423 printf("pf: %s key attach " 1424 "failed on %s: ", 1425 (idx == PF_SK_WIRE) ? 1426 "wire" : "stack", 1427 s->kif->pfik_name); 1428 pf_print_state_parts(s, 1429 (idx == PF_SK_WIRE) ? 1430 sk : NULL, 1431 (idx == PF_SK_STACK) ? 1432 sk : NULL); 1433 printf(", existing: "); 1434 pf_print_state_parts(si, 1435 (idx == PF_SK_WIRE) ? 1436 sk : NULL, 1437 (idx == PF_SK_STACK) ? 1438 sk : NULL); 1439 printf("\n"); 1440 } 1441 s->timeout = PFTM_UNLINKED; 1442 PF_HASHROW_UNLOCK(ih); 1443 KEYS_UNLOCK(); 1444 uma_zfree(V_pf_state_key_z, sk); 1445 if (idx == PF_SK_STACK) 1446 pf_detach_state(s); 1447 return (EEXIST); /* collision! */ 1448 } 1449 } 1450 PF_HASHROW_UNLOCK(ih); 1451 } 1452 uma_zfree(V_pf_state_key_z, sk); 1453 s->key[idx] = cur; 1454 } else { 1455 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1456 s->key[idx] = sk; 1457 } 1458 1459 stateattach: 1460 /* List is sorted, if-bound states before floating. */ 1461 if (s->kif == V_pfi_all) 1462 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1463 else 1464 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1465 1466 if (olds) { 1467 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1468 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1469 key_list[idx]); 1470 olds = NULL; 1471 } 1472 1473 /* 1474 * Attach done. See how should we (or should not?) 1475 * attach a second key. 1476 */ 1477 if (sks == skw) { 1478 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1479 idx = PF_SK_STACK; 1480 sks = NULL; 1481 goto stateattach; 1482 } else if (sks != NULL) { 1483 /* 1484 * Continue attaching with stack key. 1485 */ 1486 sk = sks; 1487 kh = khs; 1488 idx = PF_SK_STACK; 1489 sks = NULL; 1490 goto keyattach; 1491 } 1492 1493 PF_STATE_LOCK(s); 1494 KEYS_UNLOCK(); 1495 1496 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1497 ("%s failure", __func__)); 1498 1499 return (0); 1500 #undef KEYS_UNLOCK 1501 } 1502 1503 static void 1504 pf_detach_state(struct pf_kstate *s) 1505 { 1506 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1507 struct pf_keyhash *kh; 1508 1509 NET_EPOCH_ASSERT(); 1510 MPASS(s->timeout >= PFTM_MAX); 1511 1512 pf_sctp_multihome_detach_addr(s); 1513 1514 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1515 V_pflow_export_state_ptr(s); 1516 1517 if (sks != NULL) { 1518 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1519 PF_HASHROW_LOCK(kh); 1520 if (s->key[PF_SK_STACK] != NULL) 1521 pf_state_key_detach(s, PF_SK_STACK); 1522 /* 1523 * If both point to same key, then we are done. 1524 */ 1525 if (sks == s->key[PF_SK_WIRE]) { 1526 pf_state_key_detach(s, PF_SK_WIRE); 1527 PF_HASHROW_UNLOCK(kh); 1528 return; 1529 } 1530 PF_HASHROW_UNLOCK(kh); 1531 } 1532 1533 if (s->key[PF_SK_WIRE] != NULL) { 1534 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1535 PF_HASHROW_LOCK(kh); 1536 if (s->key[PF_SK_WIRE] != NULL) 1537 pf_state_key_detach(s, PF_SK_WIRE); 1538 PF_HASHROW_UNLOCK(kh); 1539 } 1540 } 1541 1542 static void 1543 pf_state_key_detach(struct pf_kstate *s, int idx) 1544 { 1545 struct pf_state_key *sk = s->key[idx]; 1546 #ifdef INVARIANTS 1547 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1548 1549 PF_HASHROW_ASSERT(kh); 1550 #endif 1551 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1552 s->key[idx] = NULL; 1553 1554 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1555 LIST_REMOVE(sk, entry); 1556 uma_zfree(V_pf_state_key_z, sk); 1557 } 1558 } 1559 1560 static int 1561 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1562 { 1563 struct pf_state_key *sk = mem; 1564 1565 bzero(sk, sizeof(struct pf_state_key_cmp)); 1566 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1567 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1568 1569 return (0); 1570 } 1571 1572 static int 1573 pf_state_key_addr_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1574 struct pf_state_key_cmp *key, int sidx, struct pf_addr *saddr, 1575 int didx, struct pf_addr *daddr, int multi) 1576 { 1577 #ifdef INET6 1578 struct nd_neighbor_solicit nd; 1579 struct pf_addr *target; 1580 u_short action, reason; 1581 1582 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1583 goto copy; 1584 1585 switch (pd->hdr.icmp6.icmp6_type) { 1586 case ND_NEIGHBOR_SOLICIT: 1587 if (multi) 1588 return (-1); 1589 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1590 return (-1); 1591 target = (struct pf_addr *)&nd.nd_ns_target; 1592 daddr = target; 1593 break; 1594 case ND_NEIGHBOR_ADVERT: 1595 if (multi) 1596 return (-1); 1597 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1598 return (-1); 1599 target = (struct pf_addr *)&nd.nd_ns_target; 1600 saddr = target; 1601 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1602 key->addr[didx].addr32[0] = 0; 1603 key->addr[didx].addr32[1] = 0; 1604 key->addr[didx].addr32[2] = 0; 1605 key->addr[didx].addr32[3] = 0; 1606 daddr = NULL; /* overwritten */ 1607 } 1608 break; 1609 default: 1610 if (multi == PF_ICMP_MULTI_LINK) { 1611 key->addr[sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1612 key->addr[sidx].addr32[1] = 0; 1613 key->addr[sidx].addr32[2] = 0; 1614 key->addr[sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1615 saddr = NULL; /* overwritten */ 1616 } 1617 } 1618 copy: 1619 #endif 1620 if (saddr) 1621 PF_ACPY(&key->addr[sidx], saddr, pd->af); 1622 if (daddr) 1623 PF_ACPY(&key->addr[didx], daddr, pd->af); 1624 1625 return (0); 1626 } 1627 1628 struct pf_state_key * 1629 pf_state_key_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1630 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1631 u_int16_t dport) 1632 { 1633 struct pf_state_key *sk; 1634 1635 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1636 if (sk == NULL) 1637 return (NULL); 1638 1639 if (pf_state_key_addr_setup(pd, m, off, (struct pf_state_key_cmp *)sk, 1640 pd->sidx, pd->src, pd->didx, pd->dst, 0)) { 1641 uma_zfree(V_pf_state_key_z, sk); 1642 return (NULL); 1643 } 1644 1645 sk->port[pd->sidx] = sport; 1646 sk->port[pd->didx] = dport; 1647 sk->proto = pd->proto; 1648 sk->af = pd->af; 1649 1650 return (sk); 1651 } 1652 1653 struct pf_state_key * 1654 pf_state_key_clone(const struct pf_state_key *orig) 1655 { 1656 struct pf_state_key *sk; 1657 1658 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1659 if (sk == NULL) 1660 return (NULL); 1661 1662 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1663 1664 return (sk); 1665 } 1666 1667 int 1668 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1669 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1670 { 1671 struct pf_idhash *ih; 1672 struct pf_kstate *cur; 1673 int error; 1674 1675 NET_EPOCH_ASSERT(); 1676 1677 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1678 ("%s: sks not pristine", __func__)); 1679 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1680 ("%s: skw not pristine", __func__)); 1681 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1682 1683 s->kif = kif; 1684 s->orig_kif = orig_kif; 1685 1686 if (s->id == 0 && s->creatorid == 0) { 1687 s->id = alloc_unr64(&V_pf_stateid); 1688 s->id = htobe64(s->id); 1689 s->creatorid = V_pf_status.hostid; 1690 } 1691 1692 /* Returns with ID locked on success. */ 1693 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1694 return (error); 1695 1696 ih = &V_pf_idhash[PF_IDHASH(s)]; 1697 PF_HASHROW_ASSERT(ih); 1698 LIST_FOREACH(cur, &ih->states, entry) 1699 if (cur->id == s->id && cur->creatorid == s->creatorid) 1700 break; 1701 1702 if (cur != NULL) { 1703 s->timeout = PFTM_UNLINKED; 1704 PF_HASHROW_UNLOCK(ih); 1705 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1706 printf("pf: state ID collision: " 1707 "id: %016llx creatorid: %08x\n", 1708 (unsigned long long)be64toh(s->id), 1709 ntohl(s->creatorid)); 1710 } 1711 pf_detach_state(s); 1712 return (EEXIST); 1713 } 1714 LIST_INSERT_HEAD(&ih->states, s, entry); 1715 /* One for keys, one for ID hash. */ 1716 refcount_init(&s->refs, 2); 1717 1718 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1719 if (V_pfsync_insert_state_ptr != NULL) 1720 V_pfsync_insert_state_ptr(s); 1721 1722 /* Returns locked. */ 1723 return (0); 1724 } 1725 1726 /* 1727 * Find state by ID: returns with locked row on success. 1728 */ 1729 struct pf_kstate * 1730 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1731 { 1732 struct pf_idhash *ih; 1733 struct pf_kstate *s; 1734 1735 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1736 1737 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1738 1739 PF_HASHROW_LOCK(ih); 1740 LIST_FOREACH(s, &ih->states, entry) 1741 if (s->id == id && s->creatorid == creatorid) 1742 break; 1743 1744 if (s == NULL) 1745 PF_HASHROW_UNLOCK(ih); 1746 1747 return (s); 1748 } 1749 1750 /* 1751 * Find state by key. 1752 * Returns with ID hash slot locked on success. 1753 */ 1754 static struct pf_kstate * 1755 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1756 u_int dir) 1757 { 1758 struct pf_keyhash *kh; 1759 struct pf_state_key *sk; 1760 struct pf_kstate *s; 1761 int idx; 1762 1763 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1764 1765 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1766 1767 PF_HASHROW_LOCK(kh); 1768 LIST_FOREACH(sk, &kh->keys, entry) 1769 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1770 break; 1771 if (sk == NULL) { 1772 PF_HASHROW_UNLOCK(kh); 1773 return (NULL); 1774 } 1775 1776 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1777 1778 /* List is sorted, if-bound states before floating ones. */ 1779 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1780 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1781 PF_STATE_LOCK(s); 1782 PF_HASHROW_UNLOCK(kh); 1783 if (__predict_false(s->timeout >= PFTM_MAX)) { 1784 /* 1785 * State is either being processed by 1786 * pf_unlink_state() in an other thread, or 1787 * is scheduled for immediate expiry. 1788 */ 1789 PF_STATE_UNLOCK(s); 1790 return (NULL); 1791 } 1792 return (s); 1793 } 1794 PF_HASHROW_UNLOCK(kh); 1795 1796 return (NULL); 1797 } 1798 1799 /* 1800 * Returns with ID hash slot locked on success. 1801 */ 1802 struct pf_kstate * 1803 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1804 { 1805 struct pf_keyhash *kh; 1806 struct pf_state_key *sk; 1807 struct pf_kstate *s, *ret = NULL; 1808 int idx, inout = 0; 1809 1810 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1811 1812 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1813 1814 PF_HASHROW_LOCK(kh); 1815 LIST_FOREACH(sk, &kh->keys, entry) 1816 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1817 break; 1818 if (sk == NULL) { 1819 PF_HASHROW_UNLOCK(kh); 1820 return (NULL); 1821 } 1822 switch (dir) { 1823 case PF_IN: 1824 idx = PF_SK_WIRE; 1825 break; 1826 case PF_OUT: 1827 idx = PF_SK_STACK; 1828 break; 1829 case PF_INOUT: 1830 idx = PF_SK_WIRE; 1831 inout = 1; 1832 break; 1833 default: 1834 panic("%s: dir %u", __func__, dir); 1835 } 1836 second_run: 1837 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1838 if (more == NULL) { 1839 PF_STATE_LOCK(s); 1840 PF_HASHROW_UNLOCK(kh); 1841 return (s); 1842 } 1843 1844 if (ret) 1845 (*more)++; 1846 else { 1847 ret = s; 1848 PF_STATE_LOCK(s); 1849 } 1850 } 1851 if (inout == 1) { 1852 inout = 0; 1853 idx = PF_SK_STACK; 1854 goto second_run; 1855 } 1856 PF_HASHROW_UNLOCK(kh); 1857 1858 return (ret); 1859 } 1860 1861 /* 1862 * FIXME 1863 * This routine is inefficient -- locks the state only to unlock immediately on 1864 * return. 1865 * It is racy -- after the state is unlocked nothing stops other threads from 1866 * removing it. 1867 */ 1868 bool 1869 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1870 { 1871 struct pf_kstate *s; 1872 1873 s = pf_find_state_all(key, dir, NULL); 1874 if (s != NULL) { 1875 PF_STATE_UNLOCK(s); 1876 return (true); 1877 } 1878 return (false); 1879 } 1880 1881 struct pf_udp_mapping * 1882 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1883 struct pf_addr *nat_addr, uint16_t nat_port) 1884 { 1885 struct pf_udp_mapping *mapping; 1886 1887 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1888 if (mapping == NULL) 1889 return (NULL); 1890 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1891 mapping->endpoints[0].port = src_port; 1892 mapping->endpoints[0].af = af; 1893 mapping->endpoints[0].mapping = mapping; 1894 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1895 mapping->endpoints[1].port = nat_port; 1896 mapping->endpoints[1].af = af; 1897 mapping->endpoints[1].mapping = mapping; 1898 refcount_init(&mapping->refs, 1); 1899 return (mapping); 1900 } 1901 1902 int 1903 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1904 { 1905 struct pf_udpendpointhash *h0, *h1; 1906 struct pf_udp_endpoint *endpoint; 1907 int ret = EEXIST; 1908 1909 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1910 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1911 if (h0 == h1) { 1912 PF_HASHROW_LOCK(h0); 1913 } else if (h0 < h1) { 1914 PF_HASHROW_LOCK(h0); 1915 PF_HASHROW_LOCK(h1); 1916 } else { 1917 PF_HASHROW_LOCK(h1); 1918 PF_HASHROW_LOCK(h0); 1919 } 1920 1921 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1922 if (bcmp(endpoint, &mapping->endpoints[0], 1923 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1924 break; 1925 } 1926 if (endpoint != NULL) 1927 goto cleanup; 1928 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1929 if (bcmp(endpoint, &mapping->endpoints[1], 1930 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1931 break; 1932 } 1933 if (endpoint != NULL) 1934 goto cleanup; 1935 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1936 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1937 ret = 0; 1938 1939 cleanup: 1940 if (h0 != h1) { 1941 PF_HASHROW_UNLOCK(h0); 1942 PF_HASHROW_UNLOCK(h1); 1943 } else { 1944 PF_HASHROW_UNLOCK(h0); 1945 } 1946 return (ret); 1947 } 1948 1949 void 1950 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1951 { 1952 /* refcount is synchronized on the source endpoint's row lock */ 1953 struct pf_udpendpointhash *h0, *h1; 1954 1955 if (mapping == NULL) 1956 return; 1957 1958 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1959 PF_HASHROW_LOCK(h0); 1960 if (refcount_release(&mapping->refs)) { 1961 LIST_REMOVE(&mapping->endpoints[0], entry); 1962 PF_HASHROW_UNLOCK(h0); 1963 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1964 PF_HASHROW_LOCK(h1); 1965 LIST_REMOVE(&mapping->endpoints[1], entry); 1966 PF_HASHROW_UNLOCK(h1); 1967 1968 uma_zfree(V_pf_udp_mapping_z, mapping); 1969 } else { 1970 PF_HASHROW_UNLOCK(h0); 1971 } 1972 } 1973 1974 1975 struct pf_udp_mapping * 1976 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1977 { 1978 struct pf_udpendpointhash *uh; 1979 struct pf_udp_endpoint *endpoint; 1980 1981 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1982 1983 PF_HASHROW_LOCK(uh); 1984 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1985 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1986 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1987 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1988 break; 1989 } 1990 if (endpoint == NULL) { 1991 PF_HASHROW_UNLOCK(uh); 1992 return (NULL); 1993 } 1994 refcount_acquire(&endpoint->mapping->refs); 1995 PF_HASHROW_UNLOCK(uh); 1996 return (endpoint->mapping); 1997 } 1998 /* END state table stuff */ 1999 2000 static void 2001 pf_send(struct pf_send_entry *pfse) 2002 { 2003 2004 PF_SENDQ_LOCK(); 2005 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2006 PF_SENDQ_UNLOCK(); 2007 swi_sched(V_pf_swi_cookie, 0); 2008 } 2009 2010 static bool 2011 pf_isforlocal(struct mbuf *m, int af) 2012 { 2013 switch (af) { 2014 #ifdef INET 2015 case AF_INET: { 2016 struct ip *ip = mtod(m, struct ip *); 2017 2018 return (in_localip(ip->ip_dst)); 2019 } 2020 #endif 2021 #ifdef INET6 2022 case AF_INET6: { 2023 struct ip6_hdr *ip6; 2024 struct in6_ifaddr *ia; 2025 ip6 = mtod(m, struct ip6_hdr *); 2026 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2027 if (ia == NULL) 2028 return (false); 2029 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2030 } 2031 #endif 2032 default: 2033 panic("Unsupported af %d", af); 2034 } 2035 2036 return (false); 2037 } 2038 2039 int 2040 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2041 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2042 { 2043 /* 2044 * ICMP types marked with PF_OUT are typically responses to 2045 * PF_IN, and will match states in the opposite direction. 2046 * PF_IN ICMP types need to match a state with that type. 2047 */ 2048 *icmp_dir = PF_OUT; 2049 *multi = PF_ICMP_MULTI_LINK; 2050 /* Queries (and responses) */ 2051 switch (pd->af) { 2052 #ifdef INET 2053 case AF_INET: 2054 switch (type) { 2055 case ICMP_ECHO: 2056 *icmp_dir = PF_IN; 2057 case ICMP_ECHOREPLY: 2058 *virtual_type = ICMP_ECHO; 2059 *virtual_id = pd->hdr.icmp.icmp_id; 2060 break; 2061 2062 case ICMP_TSTAMP: 2063 *icmp_dir = PF_IN; 2064 case ICMP_TSTAMPREPLY: 2065 *virtual_type = ICMP_TSTAMP; 2066 *virtual_id = pd->hdr.icmp.icmp_id; 2067 break; 2068 2069 case ICMP_IREQ: 2070 *icmp_dir = PF_IN; 2071 case ICMP_IREQREPLY: 2072 *virtual_type = ICMP_IREQ; 2073 *virtual_id = pd->hdr.icmp.icmp_id; 2074 break; 2075 2076 case ICMP_MASKREQ: 2077 *icmp_dir = PF_IN; 2078 case ICMP_MASKREPLY: 2079 *virtual_type = ICMP_MASKREQ; 2080 *virtual_id = pd->hdr.icmp.icmp_id; 2081 break; 2082 2083 case ICMP_IPV6_WHEREAREYOU: 2084 *icmp_dir = PF_IN; 2085 case ICMP_IPV6_IAMHERE: 2086 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2087 *virtual_id = 0; /* Nothing sane to match on! */ 2088 break; 2089 2090 case ICMP_MOBILE_REGREQUEST: 2091 *icmp_dir = PF_IN; 2092 case ICMP_MOBILE_REGREPLY: 2093 *virtual_type = ICMP_MOBILE_REGREQUEST; 2094 *virtual_id = 0; /* Nothing sane to match on! */ 2095 break; 2096 2097 case ICMP_ROUTERSOLICIT: 2098 *icmp_dir = PF_IN; 2099 case ICMP_ROUTERADVERT: 2100 *virtual_type = ICMP_ROUTERSOLICIT; 2101 *virtual_id = 0; /* Nothing sane to match on! */ 2102 break; 2103 2104 /* These ICMP types map to other connections */ 2105 case ICMP_UNREACH: 2106 case ICMP_SOURCEQUENCH: 2107 case ICMP_REDIRECT: 2108 case ICMP_TIMXCEED: 2109 case ICMP_PARAMPROB: 2110 /* These will not be used, but set them anyway */ 2111 *icmp_dir = PF_IN; 2112 *virtual_type = type; 2113 *virtual_id = 0; 2114 HTONS(*virtual_type); 2115 return (1); /* These types match to another state */ 2116 2117 /* 2118 * All remaining ICMP types get their own states, 2119 * and will only match in one direction. 2120 */ 2121 default: 2122 *icmp_dir = PF_IN; 2123 *virtual_type = type; 2124 *virtual_id = 0; 2125 break; 2126 } 2127 break; 2128 #endif /* INET */ 2129 #ifdef INET6 2130 case AF_INET6: 2131 switch (type) { 2132 case ICMP6_ECHO_REQUEST: 2133 *icmp_dir = PF_IN; 2134 case ICMP6_ECHO_REPLY: 2135 *virtual_type = ICMP6_ECHO_REQUEST; 2136 *virtual_id = pd->hdr.icmp6.icmp6_id; 2137 break; 2138 2139 case MLD_LISTENER_QUERY: 2140 case MLD_LISTENER_REPORT: { 2141 /* 2142 * Listener Report can be sent by clients 2143 * without an associated Listener Query. 2144 * In addition to that, when Report is sent as a 2145 * reply to a Query its source and destination 2146 * address are different. 2147 */ 2148 *icmp_dir = PF_IN; 2149 *virtual_type = MLD_LISTENER_QUERY; 2150 *virtual_id = 0; 2151 break; 2152 } 2153 case MLD_MTRACE: 2154 *icmp_dir = PF_IN; 2155 case MLD_MTRACE_RESP: 2156 *virtual_type = MLD_MTRACE; 2157 *virtual_id = 0; /* Nothing sane to match on! */ 2158 break; 2159 2160 case ND_NEIGHBOR_SOLICIT: 2161 *icmp_dir = PF_IN; 2162 case ND_NEIGHBOR_ADVERT: { 2163 *virtual_type = ND_NEIGHBOR_SOLICIT; 2164 *virtual_id = 0; 2165 break; 2166 } 2167 2168 /* 2169 * These ICMP types map to other connections. 2170 * ND_REDIRECT can't be in this list because the triggering 2171 * packet header is optional. 2172 */ 2173 case ICMP6_DST_UNREACH: 2174 case ICMP6_PACKET_TOO_BIG: 2175 case ICMP6_TIME_EXCEEDED: 2176 case ICMP6_PARAM_PROB: 2177 /* These will not be used, but set them anyway */ 2178 *icmp_dir = PF_IN; 2179 *virtual_type = type; 2180 *virtual_id = 0; 2181 HTONS(*virtual_type); 2182 return (1); /* These types match to another state */ 2183 /* 2184 * All remaining ICMP6 types get their own states, 2185 * and will only match in one direction. 2186 */ 2187 default: 2188 *icmp_dir = PF_IN; 2189 *virtual_type = type; 2190 *virtual_id = 0; 2191 break; 2192 } 2193 break; 2194 #endif /* INET6 */ 2195 default: 2196 *icmp_dir = PF_IN; 2197 *virtual_type = type; 2198 *virtual_id = 0; 2199 break; 2200 } 2201 HTONS(*virtual_type); 2202 return (0); /* These types match to their own state */ 2203 } 2204 2205 void 2206 pf_intr(void *v) 2207 { 2208 struct epoch_tracker et; 2209 struct pf_send_head queue; 2210 struct pf_send_entry *pfse, *next; 2211 2212 CURVNET_SET((struct vnet *)v); 2213 2214 PF_SENDQ_LOCK(); 2215 queue = V_pf_sendqueue; 2216 STAILQ_INIT(&V_pf_sendqueue); 2217 PF_SENDQ_UNLOCK(); 2218 2219 NET_EPOCH_ENTER(et); 2220 2221 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2222 switch (pfse->pfse_type) { 2223 #ifdef INET 2224 case PFSE_IP: { 2225 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2226 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2227 pfse->pfse_m->m_pkthdr.csum_flags |= 2228 CSUM_IP_VALID | CSUM_IP_CHECKED; 2229 ip_input(pfse->pfse_m); 2230 } else { 2231 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2232 NULL); 2233 } 2234 break; 2235 } 2236 case PFSE_ICMP: 2237 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2238 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2239 break; 2240 #endif /* INET */ 2241 #ifdef INET6 2242 case PFSE_IP6: 2243 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2244 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2245 ip6_input(pfse->pfse_m); 2246 } else { 2247 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2248 NULL, NULL); 2249 } 2250 break; 2251 case PFSE_ICMP6: 2252 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2253 pfse->icmpopts.code, pfse->icmpopts.mtu); 2254 break; 2255 #endif /* INET6 */ 2256 default: 2257 panic("%s: unknown type", __func__); 2258 } 2259 free(pfse, M_PFTEMP); 2260 } 2261 NET_EPOCH_EXIT(et); 2262 CURVNET_RESTORE(); 2263 } 2264 2265 #define pf_purge_thread_period (hz / 10) 2266 2267 #ifdef PF_WANT_32_TO_64_COUNTER 2268 static void 2269 pf_status_counter_u64_periodic(void) 2270 { 2271 2272 PF_RULES_RASSERT(); 2273 2274 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2275 return; 2276 } 2277 2278 for (int i = 0; i < FCNT_MAX; i++) { 2279 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2280 } 2281 } 2282 2283 static void 2284 pf_kif_counter_u64_periodic(void) 2285 { 2286 struct pfi_kkif *kif; 2287 size_t r, run; 2288 2289 PF_RULES_RASSERT(); 2290 2291 if (__predict_false(V_pf_allkifcount == 0)) { 2292 return; 2293 } 2294 2295 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2296 return; 2297 } 2298 2299 run = V_pf_allkifcount / 10; 2300 if (run < 5) 2301 run = 5; 2302 2303 for (r = 0; r < run; r++) { 2304 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2305 if (kif == NULL) { 2306 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2307 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2308 break; 2309 } 2310 2311 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2312 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2313 2314 for (int i = 0; i < 2; i++) { 2315 for (int j = 0; j < 2; j++) { 2316 for (int k = 0; k < 2; k++) { 2317 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2318 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2319 } 2320 } 2321 } 2322 } 2323 } 2324 2325 static void 2326 pf_rule_counter_u64_periodic(void) 2327 { 2328 struct pf_krule *rule; 2329 size_t r, run; 2330 2331 PF_RULES_RASSERT(); 2332 2333 if (__predict_false(V_pf_allrulecount == 0)) { 2334 return; 2335 } 2336 2337 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2338 return; 2339 } 2340 2341 run = V_pf_allrulecount / 10; 2342 if (run < 5) 2343 run = 5; 2344 2345 for (r = 0; r < run; r++) { 2346 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2347 if (rule == NULL) { 2348 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2349 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2350 break; 2351 } 2352 2353 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2354 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2355 2356 pf_counter_u64_periodic(&rule->evaluations); 2357 for (int i = 0; i < 2; i++) { 2358 pf_counter_u64_periodic(&rule->packets[i]); 2359 pf_counter_u64_periodic(&rule->bytes[i]); 2360 } 2361 } 2362 } 2363 2364 static void 2365 pf_counter_u64_periodic_main(void) 2366 { 2367 PF_RULES_RLOCK_TRACKER; 2368 2369 V_pf_counter_periodic_iter++; 2370 2371 PF_RULES_RLOCK(); 2372 pf_counter_u64_critical_enter(); 2373 pf_status_counter_u64_periodic(); 2374 pf_kif_counter_u64_periodic(); 2375 pf_rule_counter_u64_periodic(); 2376 pf_counter_u64_critical_exit(); 2377 PF_RULES_RUNLOCK(); 2378 } 2379 #else 2380 #define pf_counter_u64_periodic_main() do { } while (0) 2381 #endif 2382 2383 void 2384 pf_purge_thread(void *unused __unused) 2385 { 2386 struct epoch_tracker et; 2387 2388 VNET_ITERATOR_DECL(vnet_iter); 2389 2390 sx_xlock(&pf_end_lock); 2391 while (pf_end_threads == 0) { 2392 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2393 2394 VNET_LIST_RLOCK(); 2395 NET_EPOCH_ENTER(et); 2396 VNET_FOREACH(vnet_iter) { 2397 CURVNET_SET(vnet_iter); 2398 2399 /* Wait until V_pf_default_rule is initialized. */ 2400 if (V_pf_vnet_active == 0) { 2401 CURVNET_RESTORE(); 2402 continue; 2403 } 2404 2405 pf_counter_u64_periodic_main(); 2406 2407 /* 2408 * Process 1/interval fraction of the state 2409 * table every run. 2410 */ 2411 V_pf_purge_idx = 2412 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2413 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2414 2415 /* 2416 * Purge other expired types every 2417 * PFTM_INTERVAL seconds. 2418 */ 2419 if (V_pf_purge_idx == 0) { 2420 /* 2421 * Order is important: 2422 * - states and src nodes reference rules 2423 * - states and rules reference kifs 2424 */ 2425 pf_purge_expired_fragments(); 2426 pf_purge_expired_src_nodes(); 2427 pf_purge_unlinked_rules(); 2428 pfi_kkif_purge(); 2429 } 2430 CURVNET_RESTORE(); 2431 } 2432 NET_EPOCH_EXIT(et); 2433 VNET_LIST_RUNLOCK(); 2434 } 2435 2436 pf_end_threads++; 2437 sx_xunlock(&pf_end_lock); 2438 kproc_exit(0); 2439 } 2440 2441 void 2442 pf_unload_vnet_purge(void) 2443 { 2444 2445 /* 2446 * To cleanse up all kifs and rules we need 2447 * two runs: first one clears reference flags, 2448 * then pf_purge_expired_states() doesn't 2449 * raise them, and then second run frees. 2450 */ 2451 pf_purge_unlinked_rules(); 2452 pfi_kkif_purge(); 2453 2454 /* 2455 * Now purge everything. 2456 */ 2457 pf_purge_expired_states(0, V_pf_hashmask); 2458 pf_purge_fragments(UINT_MAX); 2459 pf_purge_expired_src_nodes(); 2460 2461 /* 2462 * Now all kifs & rules should be unreferenced, 2463 * thus should be successfully freed. 2464 */ 2465 pf_purge_unlinked_rules(); 2466 pfi_kkif_purge(); 2467 } 2468 2469 u_int32_t 2470 pf_state_expires(const struct pf_kstate *state) 2471 { 2472 u_int32_t timeout; 2473 u_int32_t start; 2474 u_int32_t end; 2475 u_int32_t states; 2476 2477 /* handle all PFTM_* > PFTM_MAX here */ 2478 if (state->timeout == PFTM_PURGE) 2479 return (time_uptime); 2480 KASSERT(state->timeout != PFTM_UNLINKED, 2481 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2482 KASSERT((state->timeout < PFTM_MAX), 2483 ("pf_state_expires: timeout > PFTM_MAX")); 2484 timeout = state->rule.ptr->timeout[state->timeout]; 2485 if (!timeout) 2486 timeout = V_pf_default_rule.timeout[state->timeout]; 2487 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2488 if (start && state->rule.ptr != &V_pf_default_rule) { 2489 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2490 states = counter_u64_fetch(state->rule.ptr->states_cur); 2491 } else { 2492 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2493 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2494 states = V_pf_status.states; 2495 } 2496 if (end && states > start && start < end) { 2497 if (states < end) { 2498 timeout = (u_int64_t)timeout * (end - states) / 2499 (end - start); 2500 return ((state->expire / 1000) + timeout); 2501 } 2502 else 2503 return (time_uptime); 2504 } 2505 return ((state->expire / 1000) + timeout); 2506 } 2507 2508 void 2509 pf_purge_expired_src_nodes(void) 2510 { 2511 struct pf_ksrc_node_list freelist; 2512 struct pf_srchash *sh; 2513 struct pf_ksrc_node *cur, *next; 2514 int i; 2515 2516 LIST_INIT(&freelist); 2517 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2518 PF_HASHROW_LOCK(sh); 2519 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2520 if (cur->states == 0 && cur->expire <= time_uptime) { 2521 pf_unlink_src_node(cur); 2522 LIST_INSERT_HEAD(&freelist, cur, entry); 2523 } else if (cur->rule.ptr != NULL) 2524 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2525 PF_HASHROW_UNLOCK(sh); 2526 } 2527 2528 pf_free_src_nodes(&freelist); 2529 2530 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2531 } 2532 2533 static void 2534 pf_src_tree_remove_state(struct pf_kstate *s) 2535 { 2536 struct pf_ksrc_node *sn; 2537 uint32_t timeout; 2538 2539 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2540 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2541 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2542 2543 if (s->src_node != NULL) { 2544 sn = s->src_node; 2545 PF_SRC_NODE_LOCK(sn); 2546 if (s->src.tcp_est) 2547 --sn->conn; 2548 if (--sn->states == 0) 2549 sn->expire = time_uptime + timeout; 2550 PF_SRC_NODE_UNLOCK(sn); 2551 } 2552 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2553 sn = s->nat_src_node; 2554 PF_SRC_NODE_LOCK(sn); 2555 if (--sn->states == 0) 2556 sn->expire = time_uptime + timeout; 2557 PF_SRC_NODE_UNLOCK(sn); 2558 } 2559 s->src_node = s->nat_src_node = NULL; 2560 } 2561 2562 /* 2563 * Unlink and potentilly free a state. Function may be 2564 * called with ID hash row locked, but always returns 2565 * unlocked, since it needs to go through key hash locking. 2566 */ 2567 int 2568 pf_unlink_state(struct pf_kstate *s) 2569 { 2570 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2571 2572 NET_EPOCH_ASSERT(); 2573 PF_HASHROW_ASSERT(ih); 2574 2575 if (s->timeout == PFTM_UNLINKED) { 2576 /* 2577 * State is being processed 2578 * by pf_unlink_state() in 2579 * an other thread. 2580 */ 2581 PF_HASHROW_UNLOCK(ih); 2582 return (0); /* XXXGL: undefined actually */ 2583 } 2584 2585 if (s->src.state == PF_TCPS_PROXY_DST) { 2586 /* XXX wire key the right one? */ 2587 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2588 &s->key[PF_SK_WIRE]->addr[1], 2589 &s->key[PF_SK_WIRE]->addr[0], 2590 s->key[PF_SK_WIRE]->port[1], 2591 s->key[PF_SK_WIRE]->port[0], 2592 s->src.seqhi, s->src.seqlo + 1, 2593 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2594 } 2595 2596 LIST_REMOVE(s, entry); 2597 pf_src_tree_remove_state(s); 2598 2599 if (V_pfsync_delete_state_ptr != NULL) 2600 V_pfsync_delete_state_ptr(s); 2601 2602 STATE_DEC_COUNTERS(s); 2603 2604 s->timeout = PFTM_UNLINKED; 2605 2606 /* Ensure we remove it from the list of halfopen states, if needed. */ 2607 if (s->key[PF_SK_STACK] != NULL && 2608 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2609 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2610 2611 PF_HASHROW_UNLOCK(ih); 2612 2613 pf_detach_state(s); 2614 2615 pf_udp_mapping_release(s->udp_mapping); 2616 2617 /* pf_state_insert() initialises refs to 2 */ 2618 return (pf_release_staten(s, 2)); 2619 } 2620 2621 struct pf_kstate * 2622 pf_alloc_state(int flags) 2623 { 2624 2625 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2626 } 2627 2628 void 2629 pf_free_state(struct pf_kstate *cur) 2630 { 2631 struct pf_krule_item *ri; 2632 2633 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2634 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2635 cur->timeout)); 2636 2637 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2638 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2639 free(ri, M_PF_RULE_ITEM); 2640 } 2641 2642 pf_normalize_tcp_cleanup(cur); 2643 uma_zfree(V_pf_state_z, cur); 2644 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2645 } 2646 2647 /* 2648 * Called only from pf_purge_thread(), thus serialized. 2649 */ 2650 static u_int 2651 pf_purge_expired_states(u_int i, int maxcheck) 2652 { 2653 struct pf_idhash *ih; 2654 struct pf_kstate *s; 2655 struct pf_krule_item *mrm; 2656 size_t count __unused; 2657 2658 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2659 2660 /* 2661 * Go through hash and unlink states that expire now. 2662 */ 2663 while (maxcheck > 0) { 2664 count = 0; 2665 ih = &V_pf_idhash[i]; 2666 2667 /* only take the lock if we expect to do work */ 2668 if (!LIST_EMPTY(&ih->states)) { 2669 relock: 2670 PF_HASHROW_LOCK(ih); 2671 LIST_FOREACH(s, &ih->states, entry) { 2672 if (pf_state_expires(s) <= time_uptime) { 2673 V_pf_status.states -= 2674 pf_unlink_state(s); 2675 goto relock; 2676 } 2677 s->rule.ptr->rule_ref |= PFRULE_REFS; 2678 if (s->nat_rule.ptr != NULL) 2679 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2680 if (s->anchor.ptr != NULL) 2681 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2682 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2683 SLIST_FOREACH(mrm, &s->match_rules, entry) 2684 mrm->r->rule_ref |= PFRULE_REFS; 2685 if (s->rt_kif) 2686 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2687 count++; 2688 } 2689 PF_HASHROW_UNLOCK(ih); 2690 } 2691 2692 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2693 2694 /* Return when we hit end of hash. */ 2695 if (++i > V_pf_hashmask) { 2696 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2697 return (0); 2698 } 2699 2700 maxcheck--; 2701 } 2702 2703 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2704 2705 return (i); 2706 } 2707 2708 static void 2709 pf_purge_unlinked_rules(void) 2710 { 2711 struct pf_krulequeue tmpq; 2712 struct pf_krule *r, *r1; 2713 2714 /* 2715 * If we have overloading task pending, then we'd 2716 * better skip purging this time. There is a tiny 2717 * probability that overloading task references 2718 * an already unlinked rule. 2719 */ 2720 PF_OVERLOADQ_LOCK(); 2721 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2722 PF_OVERLOADQ_UNLOCK(); 2723 return; 2724 } 2725 PF_OVERLOADQ_UNLOCK(); 2726 2727 /* 2728 * Do naive mark-and-sweep garbage collecting of old rules. 2729 * Reference flag is raised by pf_purge_expired_states() 2730 * and pf_purge_expired_src_nodes(). 2731 * 2732 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2733 * use a temporary queue. 2734 */ 2735 TAILQ_INIT(&tmpq); 2736 PF_UNLNKDRULES_LOCK(); 2737 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2738 if (!(r->rule_ref & PFRULE_REFS)) { 2739 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2740 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2741 } else 2742 r->rule_ref &= ~PFRULE_REFS; 2743 } 2744 PF_UNLNKDRULES_UNLOCK(); 2745 2746 if (!TAILQ_EMPTY(&tmpq)) { 2747 PF_CONFIG_LOCK(); 2748 PF_RULES_WLOCK(); 2749 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2750 TAILQ_REMOVE(&tmpq, r, entries); 2751 pf_free_rule(r); 2752 } 2753 PF_RULES_WUNLOCK(); 2754 PF_CONFIG_UNLOCK(); 2755 } 2756 } 2757 2758 void 2759 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2760 { 2761 switch (af) { 2762 #ifdef INET 2763 case AF_INET: { 2764 u_int32_t a = ntohl(addr->addr32[0]); 2765 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2766 (a>>8)&255, a&255); 2767 if (p) { 2768 p = ntohs(p); 2769 printf(":%u", p); 2770 } 2771 break; 2772 } 2773 #endif /* INET */ 2774 #ifdef INET6 2775 case AF_INET6: { 2776 u_int16_t b; 2777 u_int8_t i, curstart, curend, maxstart, maxend; 2778 curstart = curend = maxstart = maxend = 255; 2779 for (i = 0; i < 8; i++) { 2780 if (!addr->addr16[i]) { 2781 if (curstart == 255) 2782 curstart = i; 2783 curend = i; 2784 } else { 2785 if ((curend - curstart) > 2786 (maxend - maxstart)) { 2787 maxstart = curstart; 2788 maxend = curend; 2789 } 2790 curstart = curend = 255; 2791 } 2792 } 2793 if ((curend - curstart) > 2794 (maxend - maxstart)) { 2795 maxstart = curstart; 2796 maxend = curend; 2797 } 2798 for (i = 0; i < 8; i++) { 2799 if (i >= maxstart && i <= maxend) { 2800 if (i == 0) 2801 printf(":"); 2802 if (i == maxend) 2803 printf(":"); 2804 } else { 2805 b = ntohs(addr->addr16[i]); 2806 printf("%x", b); 2807 if (i < 7) 2808 printf(":"); 2809 } 2810 } 2811 if (p) { 2812 p = ntohs(p); 2813 printf("[%u]", p); 2814 } 2815 break; 2816 } 2817 #endif /* INET6 */ 2818 } 2819 } 2820 2821 void 2822 pf_print_state(struct pf_kstate *s) 2823 { 2824 pf_print_state_parts(s, NULL, NULL); 2825 } 2826 2827 static void 2828 pf_print_state_parts(struct pf_kstate *s, 2829 struct pf_state_key *skwp, struct pf_state_key *sksp) 2830 { 2831 struct pf_state_key *skw, *sks; 2832 u_int8_t proto, dir; 2833 2834 /* Do our best to fill these, but they're skipped if NULL */ 2835 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2836 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2837 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2838 dir = s ? s->direction : 0; 2839 2840 switch (proto) { 2841 case IPPROTO_IPV4: 2842 printf("IPv4"); 2843 break; 2844 case IPPROTO_IPV6: 2845 printf("IPv6"); 2846 break; 2847 case IPPROTO_TCP: 2848 printf("TCP"); 2849 break; 2850 case IPPROTO_UDP: 2851 printf("UDP"); 2852 break; 2853 case IPPROTO_ICMP: 2854 printf("ICMP"); 2855 break; 2856 case IPPROTO_ICMPV6: 2857 printf("ICMPv6"); 2858 break; 2859 default: 2860 printf("%u", proto); 2861 break; 2862 } 2863 switch (dir) { 2864 case PF_IN: 2865 printf(" in"); 2866 break; 2867 case PF_OUT: 2868 printf(" out"); 2869 break; 2870 } 2871 if (skw) { 2872 printf(" wire: "); 2873 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2874 printf(" "); 2875 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2876 } 2877 if (sks) { 2878 printf(" stack: "); 2879 if (sks != skw) { 2880 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2881 printf(" "); 2882 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2883 } else 2884 printf("-"); 2885 } 2886 if (s) { 2887 if (proto == IPPROTO_TCP) { 2888 printf(" [lo=%u high=%u win=%u modulator=%u", 2889 s->src.seqlo, s->src.seqhi, 2890 s->src.max_win, s->src.seqdiff); 2891 if (s->src.wscale && s->dst.wscale) 2892 printf(" wscale=%u", 2893 s->src.wscale & PF_WSCALE_MASK); 2894 printf("]"); 2895 printf(" [lo=%u high=%u win=%u modulator=%u", 2896 s->dst.seqlo, s->dst.seqhi, 2897 s->dst.max_win, s->dst.seqdiff); 2898 if (s->src.wscale && s->dst.wscale) 2899 printf(" wscale=%u", 2900 s->dst.wscale & PF_WSCALE_MASK); 2901 printf("]"); 2902 } 2903 printf(" %u:%u", s->src.state, s->dst.state); 2904 if (s->rule.ptr) 2905 printf(" @%d", s->rule.ptr->nr); 2906 } 2907 } 2908 2909 void 2910 pf_print_flags(u_int8_t f) 2911 { 2912 if (f) 2913 printf(" "); 2914 if (f & TH_FIN) 2915 printf("F"); 2916 if (f & TH_SYN) 2917 printf("S"); 2918 if (f & TH_RST) 2919 printf("R"); 2920 if (f & TH_PUSH) 2921 printf("P"); 2922 if (f & TH_ACK) 2923 printf("A"); 2924 if (f & TH_URG) 2925 printf("U"); 2926 if (f & TH_ECE) 2927 printf("E"); 2928 if (f & TH_CWR) 2929 printf("W"); 2930 } 2931 2932 #define PF_SET_SKIP_STEPS(i) \ 2933 do { \ 2934 while (head[i] != cur) { \ 2935 head[i]->skip[i].ptr = cur; \ 2936 head[i] = TAILQ_NEXT(head[i], entries); \ 2937 } \ 2938 } while (0) 2939 2940 void 2941 pf_calc_skip_steps(struct pf_krulequeue *rules) 2942 { 2943 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2944 int i; 2945 2946 cur = TAILQ_FIRST(rules); 2947 prev = cur; 2948 for (i = 0; i < PF_SKIP_COUNT; ++i) 2949 head[i] = cur; 2950 while (cur != NULL) { 2951 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2952 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2953 if (cur->direction != prev->direction) 2954 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2955 if (cur->af != prev->af) 2956 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2957 if (cur->proto != prev->proto) 2958 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2959 if (cur->src.neg != prev->src.neg || 2960 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2961 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2962 if (cur->dst.neg != prev->dst.neg || 2963 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2964 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2965 if (cur->src.port[0] != prev->src.port[0] || 2966 cur->src.port[1] != prev->src.port[1] || 2967 cur->src.port_op != prev->src.port_op) 2968 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2969 if (cur->dst.port[0] != prev->dst.port[0] || 2970 cur->dst.port[1] != prev->dst.port[1] || 2971 cur->dst.port_op != prev->dst.port_op) 2972 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2973 2974 prev = cur; 2975 cur = TAILQ_NEXT(cur, entries); 2976 } 2977 for (i = 0; i < PF_SKIP_COUNT; ++i) 2978 PF_SET_SKIP_STEPS(i); 2979 } 2980 2981 int 2982 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2983 { 2984 if (aw1->type != aw2->type) 2985 return (1); 2986 switch (aw1->type) { 2987 case PF_ADDR_ADDRMASK: 2988 case PF_ADDR_RANGE: 2989 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2990 return (1); 2991 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2992 return (1); 2993 return (0); 2994 case PF_ADDR_DYNIFTL: 2995 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2996 case PF_ADDR_NOROUTE: 2997 case PF_ADDR_URPFFAILED: 2998 return (0); 2999 case PF_ADDR_TABLE: 3000 return (aw1->p.tbl != aw2->p.tbl); 3001 default: 3002 printf("invalid address type: %d\n", aw1->type); 3003 return (1); 3004 } 3005 } 3006 3007 /** 3008 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3009 * header isn't always a full checksum. In some cases (i.e. output) it's a 3010 * pseudo-header checksum, which is a partial checksum over src/dst IP 3011 * addresses, protocol number and length. 3012 * 3013 * That means we have the following cases: 3014 * * Input or forwarding: we don't have TSO, the checksum fields are full 3015 * checksums, we need to update the checksum whenever we change anything. 3016 * * Output (i.e. the checksum is a pseudo-header checksum): 3017 * x The field being updated is src/dst address or affects the length of 3018 * the packet. We need to update the pseudo-header checksum (note that this 3019 * checksum is not ones' complement). 3020 * x Some other field is being modified (e.g. src/dst port numbers): We 3021 * don't have to update anything. 3022 **/ 3023 u_int16_t 3024 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3025 { 3026 u_int32_t x; 3027 3028 x = cksum + old - new; 3029 x = (x + (x >> 16)) & 0xffff; 3030 3031 /* optimise: eliminate a branch when not udp */ 3032 if (udp && cksum == 0x0000) 3033 return cksum; 3034 if (udp && x == 0x0000) 3035 x = 0xffff; 3036 3037 return (u_int16_t)(x); 3038 } 3039 3040 static void 3041 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3042 u_int8_t udp) 3043 { 3044 u_int16_t old = htons(hi ? (*f << 8) : *f); 3045 u_int16_t new = htons(hi ? ( v << 8) : v); 3046 3047 if (*f == v) 3048 return; 3049 3050 *f = v; 3051 3052 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3053 return; 3054 3055 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3056 } 3057 3058 void 3059 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3060 bool hi, u_int8_t udp) 3061 { 3062 u_int8_t *fb = (u_int8_t *)f; 3063 u_int8_t *vb = (u_int8_t *)&v; 3064 3065 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3066 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3067 } 3068 3069 void 3070 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3071 bool hi, u_int8_t udp) 3072 { 3073 u_int8_t *fb = (u_int8_t *)f; 3074 u_int8_t *vb = (u_int8_t *)&v; 3075 3076 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3077 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3078 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3079 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3080 } 3081 3082 u_int16_t 3083 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3084 u_int16_t new, u_int8_t udp) 3085 { 3086 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3087 return (cksum); 3088 3089 return (pf_cksum_fixup(cksum, old, new, udp)); 3090 } 3091 3092 static void 3093 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3094 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3095 sa_family_t af) 3096 { 3097 struct pf_addr ao; 3098 u_int16_t po = *p; 3099 3100 PF_ACPY(&ao, a, af); 3101 PF_ACPY(a, an, af); 3102 3103 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3104 *pc = ~*pc; 3105 3106 *p = pn; 3107 3108 switch (af) { 3109 #ifdef INET 3110 case AF_INET: 3111 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3112 ao.addr16[0], an->addr16[0], 0), 3113 ao.addr16[1], an->addr16[1], 0); 3114 *p = pn; 3115 3116 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3117 ao.addr16[0], an->addr16[0], u), 3118 ao.addr16[1], an->addr16[1], u); 3119 3120 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3121 break; 3122 #endif /* INET */ 3123 #ifdef INET6 3124 case AF_INET6: 3125 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3126 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3127 pf_cksum_fixup(pf_cksum_fixup(*pc, 3128 ao.addr16[0], an->addr16[0], u), 3129 ao.addr16[1], an->addr16[1], u), 3130 ao.addr16[2], an->addr16[2], u), 3131 ao.addr16[3], an->addr16[3], u), 3132 ao.addr16[4], an->addr16[4], u), 3133 ao.addr16[5], an->addr16[5], u), 3134 ao.addr16[6], an->addr16[6], u), 3135 ao.addr16[7], an->addr16[7], u); 3136 3137 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3138 break; 3139 #endif /* INET6 */ 3140 } 3141 3142 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3143 CSUM_DELAY_DATA_IPV6)) { 3144 *pc = ~*pc; 3145 if (! *pc) 3146 *pc = 0xffff; 3147 } 3148 } 3149 3150 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3151 void 3152 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3153 { 3154 u_int32_t ao; 3155 3156 memcpy(&ao, a, sizeof(ao)); 3157 memcpy(a, &an, sizeof(u_int32_t)); 3158 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3159 ao % 65536, an % 65536, u); 3160 } 3161 3162 void 3163 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3164 { 3165 u_int32_t ao; 3166 3167 memcpy(&ao, a, sizeof(ao)); 3168 memcpy(a, &an, sizeof(u_int32_t)); 3169 3170 *c = pf_proto_cksum_fixup(m, 3171 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3172 ao % 65536, an % 65536, udp); 3173 } 3174 3175 #ifdef INET6 3176 static void 3177 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3178 { 3179 struct pf_addr ao; 3180 3181 PF_ACPY(&ao, a, AF_INET6); 3182 PF_ACPY(a, an, AF_INET6); 3183 3184 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3185 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3186 pf_cksum_fixup(pf_cksum_fixup(*c, 3187 ao.addr16[0], an->addr16[0], u), 3188 ao.addr16[1], an->addr16[1], u), 3189 ao.addr16[2], an->addr16[2], u), 3190 ao.addr16[3], an->addr16[3], u), 3191 ao.addr16[4], an->addr16[4], u), 3192 ao.addr16[5], an->addr16[5], u), 3193 ao.addr16[6], an->addr16[6], u), 3194 ao.addr16[7], an->addr16[7], u); 3195 } 3196 #endif /* INET6 */ 3197 3198 static void 3199 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3200 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3201 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3202 { 3203 struct pf_addr oia, ooa; 3204 3205 PF_ACPY(&oia, ia, af); 3206 if (oa) 3207 PF_ACPY(&ooa, oa, af); 3208 3209 /* Change inner protocol port, fix inner protocol checksum. */ 3210 if (ip != NULL) { 3211 u_int16_t oip = *ip; 3212 u_int32_t opc; 3213 3214 if (pc != NULL) 3215 opc = *pc; 3216 *ip = np; 3217 if (pc != NULL) 3218 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3219 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3220 if (pc != NULL) 3221 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3222 } 3223 /* Change inner ip address, fix inner ip and icmp checksums. */ 3224 PF_ACPY(ia, na, af); 3225 switch (af) { 3226 #ifdef INET 3227 case AF_INET: { 3228 u_int32_t oh2c = *h2c; 3229 3230 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3231 oia.addr16[0], ia->addr16[0], 0), 3232 oia.addr16[1], ia->addr16[1], 0); 3233 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3234 oia.addr16[0], ia->addr16[0], 0), 3235 oia.addr16[1], ia->addr16[1], 0); 3236 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3237 break; 3238 } 3239 #endif /* INET */ 3240 #ifdef INET6 3241 case AF_INET6: 3242 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3243 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3244 pf_cksum_fixup(pf_cksum_fixup(*ic, 3245 oia.addr16[0], ia->addr16[0], u), 3246 oia.addr16[1], ia->addr16[1], u), 3247 oia.addr16[2], ia->addr16[2], u), 3248 oia.addr16[3], ia->addr16[3], u), 3249 oia.addr16[4], ia->addr16[4], u), 3250 oia.addr16[5], ia->addr16[5], u), 3251 oia.addr16[6], ia->addr16[6], u), 3252 oia.addr16[7], ia->addr16[7], u); 3253 break; 3254 #endif /* INET6 */ 3255 } 3256 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3257 if (oa) { 3258 PF_ACPY(oa, na, af); 3259 switch (af) { 3260 #ifdef INET 3261 case AF_INET: 3262 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3263 ooa.addr16[0], oa->addr16[0], 0), 3264 ooa.addr16[1], oa->addr16[1], 0); 3265 break; 3266 #endif /* INET */ 3267 #ifdef INET6 3268 case AF_INET6: 3269 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3270 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3271 pf_cksum_fixup(pf_cksum_fixup(*ic, 3272 ooa.addr16[0], oa->addr16[0], u), 3273 ooa.addr16[1], oa->addr16[1], u), 3274 ooa.addr16[2], oa->addr16[2], u), 3275 ooa.addr16[3], oa->addr16[3], u), 3276 ooa.addr16[4], oa->addr16[4], u), 3277 ooa.addr16[5], oa->addr16[5], u), 3278 ooa.addr16[6], oa->addr16[6], u), 3279 ooa.addr16[7], oa->addr16[7], u); 3280 break; 3281 #endif /* INET6 */ 3282 } 3283 } 3284 } 3285 3286 /* 3287 * Need to modulate the sequence numbers in the TCP SACK option 3288 * (credits to Krzysztof Pfaff for report and patch) 3289 */ 3290 static int 3291 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 3292 struct tcphdr *th, struct pf_state_peer *dst) 3293 { 3294 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3295 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3296 int copyback = 0, i, olen; 3297 struct sackblk sack; 3298 3299 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3300 if (hlen < TCPOLEN_SACKLEN || 3301 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3302 return 0; 3303 3304 while (hlen >= TCPOLEN_SACKLEN) { 3305 size_t startoff = opt - opts; 3306 olen = opt[1]; 3307 switch (*opt) { 3308 case TCPOPT_EOL: /* FALLTHROUGH */ 3309 case TCPOPT_NOP: 3310 opt++; 3311 hlen--; 3312 break; 3313 case TCPOPT_SACK: 3314 if (olen > hlen) 3315 olen = hlen; 3316 if (olen >= TCPOLEN_SACKLEN) { 3317 for (i = 2; i + TCPOLEN_SACK <= olen; 3318 i += TCPOLEN_SACK) { 3319 memcpy(&sack, &opt[i], sizeof(sack)); 3320 pf_patch_32_unaligned(m, 3321 &th->th_sum, &sack.start, 3322 htonl(ntohl(sack.start) - dst->seqdiff), 3323 PF_ALGNMNT(startoff), 3324 0); 3325 pf_patch_32_unaligned(m, &th->th_sum, 3326 &sack.end, 3327 htonl(ntohl(sack.end) - dst->seqdiff), 3328 PF_ALGNMNT(startoff), 3329 0); 3330 memcpy(&opt[i], &sack, sizeof(sack)); 3331 } 3332 copyback = 1; 3333 } 3334 /* FALLTHROUGH */ 3335 default: 3336 if (olen < 2) 3337 olen = 2; 3338 hlen -= olen; 3339 opt += olen; 3340 } 3341 } 3342 3343 if (copyback) 3344 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 3345 return (copyback); 3346 } 3347 3348 struct mbuf * 3349 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3350 const struct pf_addr *saddr, const struct pf_addr *daddr, 3351 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3352 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3353 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3354 { 3355 struct mbuf *m; 3356 int len, tlen; 3357 #ifdef INET 3358 struct ip *h = NULL; 3359 #endif /* INET */ 3360 #ifdef INET6 3361 struct ip6_hdr *h6 = NULL; 3362 #endif /* INET6 */ 3363 struct tcphdr *th; 3364 char *opt; 3365 struct pf_mtag *pf_mtag; 3366 3367 len = 0; 3368 th = NULL; 3369 3370 /* maximum segment size tcp option */ 3371 tlen = sizeof(struct tcphdr); 3372 if (mss) 3373 tlen += 4; 3374 3375 switch (af) { 3376 #ifdef INET 3377 case AF_INET: 3378 len = sizeof(struct ip) + tlen; 3379 break; 3380 #endif /* INET */ 3381 #ifdef INET6 3382 case AF_INET6: 3383 len = sizeof(struct ip6_hdr) + tlen; 3384 break; 3385 #endif /* INET6 */ 3386 default: 3387 panic("%s: unsupported af %d", __func__, af); 3388 } 3389 3390 m = m_gethdr(M_NOWAIT, MT_DATA); 3391 if (m == NULL) 3392 return (NULL); 3393 3394 #ifdef MAC 3395 mac_netinet_firewall_send(m); 3396 #endif 3397 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3398 m_freem(m); 3399 return (NULL); 3400 } 3401 if (skip_firewall) 3402 m->m_flags |= M_SKIP_FIREWALL; 3403 pf_mtag->tag = mtag_tag; 3404 pf_mtag->flags = mtag_flags; 3405 3406 if (rtableid >= 0) 3407 M_SETFIB(m, rtableid); 3408 3409 #ifdef ALTQ 3410 if (r != NULL && r->qid) { 3411 pf_mtag->qid = r->qid; 3412 3413 /* add hints for ecn */ 3414 pf_mtag->hdr = mtod(m, struct ip *); 3415 } 3416 #endif /* ALTQ */ 3417 m->m_data += max_linkhdr; 3418 m->m_pkthdr.len = m->m_len = len; 3419 /* The rest of the stack assumes a rcvif, so provide one. 3420 * This is a locally generated packet, so .. close enough. */ 3421 m->m_pkthdr.rcvif = V_loif; 3422 bzero(m->m_data, len); 3423 switch (af) { 3424 #ifdef INET 3425 case AF_INET: 3426 h = mtod(m, struct ip *); 3427 3428 /* IP header fields included in the TCP checksum */ 3429 h->ip_p = IPPROTO_TCP; 3430 h->ip_len = htons(tlen); 3431 h->ip_src.s_addr = saddr->v4.s_addr; 3432 h->ip_dst.s_addr = daddr->v4.s_addr; 3433 3434 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3435 break; 3436 #endif /* INET */ 3437 #ifdef INET6 3438 case AF_INET6: 3439 h6 = mtod(m, struct ip6_hdr *); 3440 3441 /* IP header fields included in the TCP checksum */ 3442 h6->ip6_nxt = IPPROTO_TCP; 3443 h6->ip6_plen = htons(tlen); 3444 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3445 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3446 3447 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3448 break; 3449 #endif /* INET6 */ 3450 } 3451 3452 /* TCP header */ 3453 th->th_sport = sport; 3454 th->th_dport = dport; 3455 th->th_seq = htonl(seq); 3456 th->th_ack = htonl(ack); 3457 th->th_off = tlen >> 2; 3458 th->th_flags = tcp_flags; 3459 th->th_win = htons(win); 3460 3461 if (mss) { 3462 opt = (char *)(th + 1); 3463 opt[0] = TCPOPT_MAXSEG; 3464 opt[1] = 4; 3465 HTONS(mss); 3466 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3467 } 3468 3469 switch (af) { 3470 #ifdef INET 3471 case AF_INET: 3472 /* TCP checksum */ 3473 th->th_sum = in_cksum(m, len); 3474 3475 /* Finish the IP header */ 3476 h->ip_v = 4; 3477 h->ip_hl = sizeof(*h) >> 2; 3478 h->ip_tos = IPTOS_LOWDELAY; 3479 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3480 h->ip_len = htons(len); 3481 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3482 h->ip_sum = 0; 3483 break; 3484 #endif /* INET */ 3485 #ifdef INET6 3486 case AF_INET6: 3487 /* TCP checksum */ 3488 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3489 sizeof(struct ip6_hdr), tlen); 3490 3491 h6->ip6_vfc |= IPV6_VERSION; 3492 h6->ip6_hlim = IPV6_DEFHLIM; 3493 break; 3494 #endif /* INET6 */ 3495 } 3496 3497 return (m); 3498 } 3499 3500 static void 3501 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3502 uint8_t ttl, int rtableid) 3503 { 3504 struct mbuf *m; 3505 #ifdef INET 3506 struct ip *h = NULL; 3507 #endif /* INET */ 3508 #ifdef INET6 3509 struct ip6_hdr *h6 = NULL; 3510 #endif /* INET6 */ 3511 struct sctphdr *hdr; 3512 struct sctp_chunkhdr *chunk; 3513 struct pf_send_entry *pfse; 3514 int off = 0; 3515 3516 MPASS(af == pd->af); 3517 3518 m = m_gethdr(M_NOWAIT, MT_DATA); 3519 if (m == NULL) 3520 return; 3521 3522 m->m_data += max_linkhdr; 3523 m->m_flags |= M_SKIP_FIREWALL; 3524 /* The rest of the stack assumes a rcvif, so provide one. 3525 * This is a locally generated packet, so .. close enough. */ 3526 m->m_pkthdr.rcvif = V_loif; 3527 3528 /* IPv4|6 header */ 3529 switch (af) { 3530 #ifdef INET 3531 case AF_INET: 3532 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3533 3534 h = mtod(m, struct ip *); 3535 3536 /* IP header fields included in the TCP checksum */ 3537 3538 h->ip_p = IPPROTO_SCTP; 3539 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3540 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3541 h->ip_src = pd->dst->v4; 3542 h->ip_dst = pd->src->v4; 3543 3544 off += sizeof(struct ip); 3545 break; 3546 #endif /* INET */ 3547 #ifdef INET6 3548 case AF_INET6: 3549 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3550 3551 h6 = mtod(m, struct ip6_hdr *); 3552 3553 /* IP header fields included in the TCP checksum */ 3554 h6->ip6_vfc |= IPV6_VERSION; 3555 h6->ip6_nxt = IPPROTO_SCTP; 3556 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3557 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3558 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3559 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3560 3561 off += sizeof(struct ip6_hdr); 3562 break; 3563 #endif /* INET6 */ 3564 } 3565 3566 /* SCTP header */ 3567 hdr = mtodo(m, off); 3568 3569 hdr->src_port = pd->hdr.sctp.dest_port; 3570 hdr->dest_port = pd->hdr.sctp.src_port; 3571 hdr->v_tag = pd->sctp_initiate_tag; 3572 hdr->checksum = 0; 3573 3574 /* Abort chunk. */ 3575 off += sizeof(struct sctphdr); 3576 chunk = mtodo(m, off); 3577 3578 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3579 chunk->chunk_length = htons(sizeof(*chunk)); 3580 3581 /* SCTP checksum */ 3582 off += sizeof(*chunk); 3583 m->m_pkthdr.len = m->m_len = off; 3584 3585 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3586 3587 if (rtableid >= 0) 3588 M_SETFIB(m, rtableid); 3589 3590 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3591 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3592 if (pfse == NULL) { 3593 m_freem(m); 3594 return; 3595 } 3596 3597 switch (af) { 3598 #ifdef INET 3599 case AF_INET: 3600 pfse->pfse_type = PFSE_IP; 3601 break; 3602 #endif /* INET */ 3603 #ifdef INET6 3604 case AF_INET6: 3605 pfse->pfse_type = PFSE_IP6; 3606 break; 3607 #endif /* INET6 */ 3608 } 3609 3610 pfse->pfse_m = m; 3611 pf_send(pfse); 3612 } 3613 3614 void 3615 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3616 const struct pf_addr *saddr, const struct pf_addr *daddr, 3617 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3618 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3619 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3620 { 3621 struct pf_send_entry *pfse; 3622 struct mbuf *m; 3623 3624 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3625 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3626 if (m == NULL) 3627 return; 3628 3629 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3630 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3631 if (pfse == NULL) { 3632 m_freem(m); 3633 return; 3634 } 3635 3636 switch (af) { 3637 #ifdef INET 3638 case AF_INET: 3639 pfse->pfse_type = PFSE_IP; 3640 break; 3641 #endif /* INET */ 3642 #ifdef INET6 3643 case AF_INET6: 3644 pfse->pfse_type = PFSE_IP6; 3645 break; 3646 #endif /* INET6 */ 3647 } 3648 3649 pfse->pfse_m = m; 3650 pf_send(pfse); 3651 } 3652 3653 static void 3654 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3655 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3656 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3657 u_short *reason, int rtableid) 3658 { 3659 struct pf_addr * const saddr = pd->src; 3660 struct pf_addr * const daddr = pd->dst; 3661 sa_family_t af = pd->af; 3662 3663 /* undo NAT changes, if they have taken place */ 3664 if (nr != NULL) { 3665 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3666 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3667 if (pd->sport) 3668 *pd->sport = sk->port[pd->sidx]; 3669 if (pd->dport) 3670 *pd->dport = sk->port[pd->didx]; 3671 if (pd->proto_sum) 3672 *pd->proto_sum = bproto_sum; 3673 if (pd->ip_sum) 3674 *pd->ip_sum = bip_sum; 3675 m_copyback(m, off, hdrlen, pd->hdr.any); 3676 } 3677 if (pd->proto == IPPROTO_TCP && 3678 ((r->rule_flag & PFRULE_RETURNRST) || 3679 (r->rule_flag & PFRULE_RETURN)) && 3680 !(th->th_flags & TH_RST)) { 3681 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3682 int len = 0; 3683 #ifdef INET 3684 struct ip *h4; 3685 #endif 3686 #ifdef INET6 3687 struct ip6_hdr *h6; 3688 #endif 3689 3690 switch (af) { 3691 #ifdef INET 3692 case AF_INET: 3693 h4 = mtod(m, struct ip *); 3694 len = ntohs(h4->ip_len) - off; 3695 break; 3696 #endif 3697 #ifdef INET6 3698 case AF_INET6: 3699 h6 = mtod(m, struct ip6_hdr *); 3700 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3701 break; 3702 #endif 3703 } 3704 3705 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3706 REASON_SET(reason, PFRES_PROTCKSUM); 3707 else { 3708 if (th->th_flags & TH_SYN) 3709 ack++; 3710 if (th->th_flags & TH_FIN) 3711 ack++; 3712 pf_send_tcp(r, af, pd->dst, 3713 pd->src, th->th_dport, th->th_sport, 3714 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3715 r->return_ttl, true, 0, 0, rtableid); 3716 } 3717 } else if (pd->proto == IPPROTO_SCTP && 3718 (r->rule_flag & PFRULE_RETURN)) { 3719 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3720 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3721 r->return_icmp) 3722 pf_send_icmp(m, r->return_icmp >> 8, 3723 r->return_icmp & 255, af, r, rtableid); 3724 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3725 r->return_icmp6) 3726 pf_send_icmp(m, r->return_icmp6 >> 8, 3727 r->return_icmp6 & 255, af, r, rtableid); 3728 } 3729 3730 static int 3731 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3732 { 3733 struct m_tag *mtag; 3734 u_int8_t mpcp; 3735 3736 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3737 if (mtag == NULL) 3738 return (0); 3739 3740 if (prio == PF_PRIO_ZERO) 3741 prio = 0; 3742 3743 mpcp = *(uint8_t *)(mtag + 1); 3744 3745 return (mpcp == prio); 3746 } 3747 3748 static int 3749 pf_icmp_to_bandlim(uint8_t type) 3750 { 3751 switch (type) { 3752 case ICMP_ECHO: 3753 case ICMP_ECHOREPLY: 3754 return (BANDLIM_ICMP_ECHO); 3755 case ICMP_TSTAMP: 3756 case ICMP_TSTAMPREPLY: 3757 return (BANDLIM_ICMP_TSTAMP); 3758 case ICMP_UNREACH: 3759 default: 3760 return (BANDLIM_ICMP_UNREACH); 3761 } 3762 } 3763 3764 static void 3765 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3766 struct pf_krule *r, int rtableid) 3767 { 3768 struct pf_send_entry *pfse; 3769 struct mbuf *m0; 3770 struct pf_mtag *pf_mtag; 3771 3772 /* ICMP packet rate limitation. */ 3773 #ifdef INET6 3774 if (af == AF_INET6) { 3775 if (icmp6_ratelimit(NULL, type, code)) 3776 return; 3777 } 3778 #endif 3779 #ifdef INET 3780 if (af == AF_INET) { 3781 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3782 return; 3783 } 3784 #endif 3785 3786 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3787 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3788 if (pfse == NULL) 3789 return; 3790 3791 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3792 free(pfse, M_PFTEMP); 3793 return; 3794 } 3795 3796 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3797 free(pfse, M_PFTEMP); 3798 return; 3799 } 3800 /* XXX: revisit */ 3801 m0->m_flags |= M_SKIP_FIREWALL; 3802 3803 if (rtableid >= 0) 3804 M_SETFIB(m0, rtableid); 3805 3806 #ifdef ALTQ 3807 if (r->qid) { 3808 pf_mtag->qid = r->qid; 3809 /* add hints for ecn */ 3810 pf_mtag->hdr = mtod(m0, struct ip *); 3811 } 3812 #endif /* ALTQ */ 3813 3814 switch (af) { 3815 #ifdef INET 3816 case AF_INET: 3817 pfse->pfse_type = PFSE_ICMP; 3818 break; 3819 #endif /* INET */ 3820 #ifdef INET6 3821 case AF_INET6: 3822 pfse->pfse_type = PFSE_ICMP6; 3823 break; 3824 #endif /* INET6 */ 3825 } 3826 pfse->pfse_m = m0; 3827 pfse->icmpopts.type = type; 3828 pfse->icmpopts.code = code; 3829 pf_send(pfse); 3830 } 3831 3832 /* 3833 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3834 * If n is 0, they match if they are equal. If n is != 0, they match if they 3835 * are different. 3836 */ 3837 int 3838 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3839 struct pf_addr *b, sa_family_t af) 3840 { 3841 int match = 0; 3842 3843 switch (af) { 3844 #ifdef INET 3845 case AF_INET: 3846 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3847 match++; 3848 break; 3849 #endif /* INET */ 3850 #ifdef INET6 3851 case AF_INET6: 3852 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3853 match++; 3854 break; 3855 #endif /* INET6 */ 3856 } 3857 if (match) { 3858 if (n) 3859 return (0); 3860 else 3861 return (1); 3862 } else { 3863 if (n) 3864 return (1); 3865 else 3866 return (0); 3867 } 3868 } 3869 3870 /* 3871 * Return 1 if b <= a <= e, otherwise return 0. 3872 */ 3873 int 3874 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3875 struct pf_addr *a, sa_family_t af) 3876 { 3877 switch (af) { 3878 #ifdef INET 3879 case AF_INET: 3880 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3881 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3882 return (0); 3883 break; 3884 #endif /* INET */ 3885 #ifdef INET6 3886 case AF_INET6: { 3887 int i; 3888 3889 /* check a >= b */ 3890 for (i = 0; i < 4; ++i) 3891 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3892 break; 3893 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3894 return (0); 3895 /* check a <= e */ 3896 for (i = 0; i < 4; ++i) 3897 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3898 break; 3899 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3900 return (0); 3901 break; 3902 } 3903 #endif /* INET6 */ 3904 } 3905 return (1); 3906 } 3907 3908 static int 3909 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3910 { 3911 switch (op) { 3912 case PF_OP_IRG: 3913 return ((p > a1) && (p < a2)); 3914 case PF_OP_XRG: 3915 return ((p < a1) || (p > a2)); 3916 case PF_OP_RRG: 3917 return ((p >= a1) && (p <= a2)); 3918 case PF_OP_EQ: 3919 return (p == a1); 3920 case PF_OP_NE: 3921 return (p != a1); 3922 case PF_OP_LT: 3923 return (p < a1); 3924 case PF_OP_LE: 3925 return (p <= a1); 3926 case PF_OP_GT: 3927 return (p > a1); 3928 case PF_OP_GE: 3929 return (p >= a1); 3930 } 3931 return (0); /* never reached */ 3932 } 3933 3934 int 3935 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3936 { 3937 NTOHS(a1); 3938 NTOHS(a2); 3939 NTOHS(p); 3940 return (pf_match(op, a1, a2, p)); 3941 } 3942 3943 static int 3944 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3945 { 3946 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3947 return (0); 3948 return (pf_match(op, a1, a2, u)); 3949 } 3950 3951 static int 3952 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3953 { 3954 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3955 return (0); 3956 return (pf_match(op, a1, a2, g)); 3957 } 3958 3959 int 3960 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3961 { 3962 if (*tag == -1) 3963 *tag = mtag; 3964 3965 return ((!r->match_tag_not && r->match_tag == *tag) || 3966 (r->match_tag_not && r->match_tag != *tag)); 3967 } 3968 3969 static int 3970 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3971 { 3972 struct ifnet *ifp = m->m_pkthdr.rcvif; 3973 struct pfi_kkif *kif; 3974 3975 if (ifp == NULL) 3976 return (0); 3977 3978 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3979 3980 if (kif == NULL) { 3981 DPFPRINTF(PF_DEBUG_URGENT, 3982 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3983 r->rcv_ifname)); 3984 return (0); 3985 } 3986 3987 return (pfi_kkif_match(r->rcv_kif, kif)); 3988 } 3989 3990 int 3991 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3992 { 3993 3994 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3995 3996 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3997 return (ENOMEM); 3998 3999 pd->pf_mtag->tag = tag; 4000 4001 return (0); 4002 } 4003 4004 #define PF_ANCHOR_STACKSIZE 32 4005 struct pf_kanchor_stackframe { 4006 struct pf_kruleset *rs; 4007 struct pf_krule *r; /* XXX: + match bit */ 4008 struct pf_kanchor *child; 4009 }; 4010 4011 /* 4012 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4013 */ 4014 #define PF_ANCHORSTACK_MATCH 0x00000001 4015 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4016 4017 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4018 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4019 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4020 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4021 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4022 } while (0) 4023 4024 void 4025 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4026 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4027 int *match) 4028 { 4029 struct pf_kanchor_stackframe *f; 4030 4031 PF_RULES_RASSERT(); 4032 4033 if (match) 4034 *match = 0; 4035 if (*depth >= PF_ANCHOR_STACKSIZE) { 4036 printf("%s: anchor stack overflow on %s\n", 4037 __func__, (*r)->anchor->name); 4038 *r = TAILQ_NEXT(*r, entries); 4039 return; 4040 } else if (*depth == 0 && a != NULL) 4041 *a = *r; 4042 f = stack + (*depth)++; 4043 f->rs = *rs; 4044 f->r = *r; 4045 if ((*r)->anchor_wildcard) { 4046 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4047 4048 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4049 *r = NULL; 4050 return; 4051 } 4052 *rs = &f->child->ruleset; 4053 } else { 4054 f->child = NULL; 4055 *rs = &(*r)->anchor->ruleset; 4056 } 4057 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4058 } 4059 4060 int 4061 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4062 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4063 int *match) 4064 { 4065 struct pf_kanchor_stackframe *f; 4066 struct pf_krule *fr; 4067 int quick = 0; 4068 4069 PF_RULES_RASSERT(); 4070 4071 do { 4072 if (*depth <= 0) 4073 break; 4074 f = stack + *depth - 1; 4075 fr = PF_ANCHOR_RULE(f); 4076 if (f->child != NULL) { 4077 /* 4078 * This block traverses through 4079 * a wildcard anchor. 4080 */ 4081 if (match != NULL && *match) { 4082 /* 4083 * If any of "*" matched, then 4084 * "foo/ *" matched, mark frame 4085 * appropriately. 4086 */ 4087 PF_ANCHOR_SET_MATCH(f); 4088 *match = 0; 4089 } 4090 f->child = RB_NEXT(pf_kanchor_node, 4091 &fr->anchor->children, f->child); 4092 if (f->child != NULL) { 4093 *rs = &f->child->ruleset; 4094 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4095 if (*r == NULL) 4096 continue; 4097 else 4098 break; 4099 } 4100 } 4101 (*depth)--; 4102 if (*depth == 0 && a != NULL) 4103 *a = NULL; 4104 *rs = f->rs; 4105 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4106 quick = fr->quick; 4107 *r = TAILQ_NEXT(fr, entries); 4108 } while (*r == NULL); 4109 4110 return (quick); 4111 } 4112 4113 struct pf_keth_anchor_stackframe { 4114 struct pf_keth_ruleset *rs; 4115 struct pf_keth_rule *r; /* XXX: + match bit */ 4116 struct pf_keth_anchor *child; 4117 }; 4118 4119 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4120 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4121 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4122 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4123 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4124 } while (0) 4125 4126 void 4127 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4128 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4129 struct pf_keth_rule **a, int *match) 4130 { 4131 struct pf_keth_anchor_stackframe *f; 4132 4133 NET_EPOCH_ASSERT(); 4134 4135 if (match) 4136 *match = 0; 4137 if (*depth >= PF_ANCHOR_STACKSIZE) { 4138 printf("%s: anchor stack overflow on %s\n", 4139 __func__, (*r)->anchor->name); 4140 *r = TAILQ_NEXT(*r, entries); 4141 return; 4142 } else if (*depth == 0 && a != NULL) 4143 *a = *r; 4144 f = stack + (*depth)++; 4145 f->rs = *rs; 4146 f->r = *r; 4147 if ((*r)->anchor_wildcard) { 4148 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4149 4150 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4151 *r = NULL; 4152 return; 4153 } 4154 *rs = &f->child->ruleset; 4155 } else { 4156 f->child = NULL; 4157 *rs = &(*r)->anchor->ruleset; 4158 } 4159 *r = TAILQ_FIRST((*rs)->active.rules); 4160 } 4161 4162 int 4163 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4164 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4165 struct pf_keth_rule **a, int *match) 4166 { 4167 struct pf_keth_anchor_stackframe *f; 4168 struct pf_keth_rule *fr; 4169 int quick = 0; 4170 4171 NET_EPOCH_ASSERT(); 4172 4173 do { 4174 if (*depth <= 0) 4175 break; 4176 f = stack + *depth - 1; 4177 fr = PF_ETH_ANCHOR_RULE(f); 4178 if (f->child != NULL) { 4179 /* 4180 * This block traverses through 4181 * a wildcard anchor. 4182 */ 4183 if (match != NULL && *match) { 4184 /* 4185 * If any of "*" matched, then 4186 * "foo/ *" matched, mark frame 4187 * appropriately. 4188 */ 4189 PF_ETH_ANCHOR_SET_MATCH(f); 4190 *match = 0; 4191 } 4192 f->child = RB_NEXT(pf_keth_anchor_node, 4193 &fr->anchor->children, f->child); 4194 if (f->child != NULL) { 4195 *rs = &f->child->ruleset; 4196 *r = TAILQ_FIRST((*rs)->active.rules); 4197 if (*r == NULL) 4198 continue; 4199 else 4200 break; 4201 } 4202 } 4203 (*depth)--; 4204 if (*depth == 0 && a != NULL) 4205 *a = NULL; 4206 *rs = f->rs; 4207 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4208 quick = fr->quick; 4209 *r = TAILQ_NEXT(fr, entries); 4210 } while (*r == NULL); 4211 4212 return (quick); 4213 } 4214 4215 #ifdef INET6 4216 void 4217 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4218 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4219 { 4220 switch (af) { 4221 #ifdef INET 4222 case AF_INET: 4223 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4224 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4225 break; 4226 #endif /* INET */ 4227 case AF_INET6: 4228 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4229 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4230 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4231 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4232 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4233 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4234 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4235 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4236 break; 4237 } 4238 } 4239 4240 void 4241 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4242 { 4243 switch (af) { 4244 #ifdef INET 4245 case AF_INET: 4246 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4247 break; 4248 #endif /* INET */ 4249 case AF_INET6: 4250 if (addr->addr32[3] == 0xffffffff) { 4251 addr->addr32[3] = 0; 4252 if (addr->addr32[2] == 0xffffffff) { 4253 addr->addr32[2] = 0; 4254 if (addr->addr32[1] == 0xffffffff) { 4255 addr->addr32[1] = 0; 4256 addr->addr32[0] = 4257 htonl(ntohl(addr->addr32[0]) + 1); 4258 } else 4259 addr->addr32[1] = 4260 htonl(ntohl(addr->addr32[1]) + 1); 4261 } else 4262 addr->addr32[2] = 4263 htonl(ntohl(addr->addr32[2]) + 1); 4264 } else 4265 addr->addr32[3] = 4266 htonl(ntohl(addr->addr32[3]) + 1); 4267 break; 4268 } 4269 } 4270 #endif /* INET6 */ 4271 4272 void 4273 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4274 { 4275 /* 4276 * Modern rules use the same flags in rules as they do in states. 4277 */ 4278 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4279 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4280 4281 /* 4282 * Old-style scrub rules have different flags which need to be translated. 4283 */ 4284 if (r->rule_flag & PFRULE_RANDOMID) 4285 a->flags |= PFSTATE_RANDOMID; 4286 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4287 a->flags |= PFSTATE_SETTOS; 4288 a->set_tos = r->set_tos; 4289 } 4290 4291 if (r->qid) 4292 a->qid = r->qid; 4293 if (r->pqid) 4294 a->pqid = r->pqid; 4295 if (r->rtableid >= 0) 4296 a->rtableid = r->rtableid; 4297 a->log |= r->log; 4298 if (r->min_ttl) 4299 a->min_ttl = r->min_ttl; 4300 if (r->max_mss) 4301 a->max_mss = r->max_mss; 4302 if (r->dnpipe) 4303 a->dnpipe = r->dnpipe; 4304 if (r->dnrpipe) 4305 a->dnrpipe = r->dnrpipe; 4306 if (r->dnpipe || r->dnrpipe) { 4307 if (r->free_flags & PFRULE_DN_IS_PIPE) 4308 a->flags |= PFSTATE_DN_IS_PIPE; 4309 else 4310 a->flags &= ~PFSTATE_DN_IS_PIPE; 4311 } 4312 if (r->scrub_flags & PFSTATE_SETPRIO) { 4313 a->set_prio[0] = r->set_prio[0]; 4314 a->set_prio[1] = r->set_prio[1]; 4315 } 4316 } 4317 4318 int 4319 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 4320 { 4321 struct pf_addr *saddr, *daddr; 4322 u_int16_t sport, dport; 4323 struct inpcbinfo *pi; 4324 struct inpcb *inp; 4325 4326 pd->lookup.uid = UID_MAX; 4327 pd->lookup.gid = GID_MAX; 4328 4329 switch (pd->proto) { 4330 case IPPROTO_TCP: 4331 sport = pd->hdr.tcp.th_sport; 4332 dport = pd->hdr.tcp.th_dport; 4333 pi = &V_tcbinfo; 4334 break; 4335 case IPPROTO_UDP: 4336 sport = pd->hdr.udp.uh_sport; 4337 dport = pd->hdr.udp.uh_dport; 4338 pi = &V_udbinfo; 4339 break; 4340 default: 4341 return (-1); 4342 } 4343 if (pd->dir == PF_IN) { 4344 saddr = pd->src; 4345 daddr = pd->dst; 4346 } else { 4347 u_int16_t p; 4348 4349 p = sport; 4350 sport = dport; 4351 dport = p; 4352 saddr = pd->dst; 4353 daddr = pd->src; 4354 } 4355 switch (pd->af) { 4356 #ifdef INET 4357 case AF_INET: 4358 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4359 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4360 if (inp == NULL) { 4361 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4362 daddr->v4, dport, INPLOOKUP_WILDCARD | 4363 INPLOOKUP_RLOCKPCB, NULL, m); 4364 if (inp == NULL) 4365 return (-1); 4366 } 4367 break; 4368 #endif /* INET */ 4369 #ifdef INET6 4370 case AF_INET6: 4371 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4372 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4373 if (inp == NULL) { 4374 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4375 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4376 INPLOOKUP_RLOCKPCB, NULL, m); 4377 if (inp == NULL) 4378 return (-1); 4379 } 4380 break; 4381 #endif /* INET6 */ 4382 4383 default: 4384 return (-1); 4385 } 4386 INP_RLOCK_ASSERT(inp); 4387 pd->lookup.uid = inp->inp_cred->cr_uid; 4388 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4389 INP_RUNLOCK(inp); 4390 4391 return (1); 4392 } 4393 4394 u_int8_t 4395 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4396 { 4397 int hlen; 4398 u_int8_t hdr[60]; 4399 u_int8_t *opt, optlen; 4400 u_int8_t wscale = 0; 4401 4402 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4403 if (hlen <= sizeof(struct tcphdr)) 4404 return (0); 4405 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4406 return (0); 4407 opt = hdr + sizeof(struct tcphdr); 4408 hlen -= sizeof(struct tcphdr); 4409 while (hlen >= 3) { 4410 switch (*opt) { 4411 case TCPOPT_EOL: 4412 case TCPOPT_NOP: 4413 ++opt; 4414 --hlen; 4415 break; 4416 case TCPOPT_WINDOW: 4417 wscale = opt[2]; 4418 if (wscale > TCP_MAX_WINSHIFT) 4419 wscale = TCP_MAX_WINSHIFT; 4420 wscale |= PF_WSCALE_FLAG; 4421 /* FALLTHROUGH */ 4422 default: 4423 optlen = opt[1]; 4424 if (optlen < 2) 4425 optlen = 2; 4426 hlen -= optlen; 4427 opt += optlen; 4428 break; 4429 } 4430 } 4431 return (wscale); 4432 } 4433 4434 u_int16_t 4435 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4436 { 4437 int hlen; 4438 u_int8_t hdr[60]; 4439 u_int8_t *opt, optlen; 4440 u_int16_t mss = V_tcp_mssdflt; 4441 4442 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4443 if (hlen <= sizeof(struct tcphdr)) 4444 return (0); 4445 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4446 return (0); 4447 opt = hdr + sizeof(struct tcphdr); 4448 hlen -= sizeof(struct tcphdr); 4449 while (hlen >= TCPOLEN_MAXSEG) { 4450 switch (*opt) { 4451 case TCPOPT_EOL: 4452 case TCPOPT_NOP: 4453 ++opt; 4454 --hlen; 4455 break; 4456 case TCPOPT_MAXSEG: 4457 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4458 NTOHS(mss); 4459 /* FALLTHROUGH */ 4460 default: 4461 optlen = opt[1]; 4462 if (optlen < 2) 4463 optlen = 2; 4464 hlen -= optlen; 4465 opt += optlen; 4466 break; 4467 } 4468 } 4469 return (mss); 4470 } 4471 4472 static u_int16_t 4473 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4474 { 4475 struct nhop_object *nh; 4476 #ifdef INET6 4477 struct in6_addr dst6; 4478 uint32_t scopeid; 4479 #endif /* INET6 */ 4480 int hlen = 0; 4481 uint16_t mss = 0; 4482 4483 NET_EPOCH_ASSERT(); 4484 4485 switch (af) { 4486 #ifdef INET 4487 case AF_INET: 4488 hlen = sizeof(struct ip); 4489 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4490 if (nh != NULL) 4491 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4492 break; 4493 #endif /* INET */ 4494 #ifdef INET6 4495 case AF_INET6: 4496 hlen = sizeof(struct ip6_hdr); 4497 in6_splitscope(&addr->v6, &dst6, &scopeid); 4498 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4499 if (nh != NULL) 4500 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4501 break; 4502 #endif /* INET6 */ 4503 } 4504 4505 mss = max(V_tcp_mssdflt, mss); 4506 mss = min(mss, offer); 4507 mss = max(mss, 64); /* sanity - at least max opt space */ 4508 return (mss); 4509 } 4510 4511 static u_int32_t 4512 pf_tcp_iss(struct pf_pdesc *pd) 4513 { 4514 MD5_CTX ctx; 4515 u_int32_t digest[4]; 4516 4517 if (V_pf_tcp_secret_init == 0) { 4518 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4519 MD5Init(&V_pf_tcp_secret_ctx); 4520 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4521 sizeof(V_pf_tcp_secret)); 4522 V_pf_tcp_secret_init = 1; 4523 } 4524 4525 ctx = V_pf_tcp_secret_ctx; 4526 4527 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4528 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4529 if (pd->af == AF_INET6) { 4530 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4531 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4532 } else { 4533 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4534 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4535 } 4536 MD5Final((u_char *)digest, &ctx); 4537 V_pf_tcp_iss_off += 4096; 4538 #define ISN_RANDOM_INCREMENT (4096 - 1) 4539 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4540 V_pf_tcp_iss_off); 4541 #undef ISN_RANDOM_INCREMENT 4542 } 4543 4544 static bool 4545 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4546 { 4547 bool match = true; 4548 4549 /* Always matches if not set */ 4550 if (! r->isset) 4551 return (!r->neg); 4552 4553 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4554 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4555 match = false; 4556 break; 4557 } 4558 } 4559 4560 return (match ^ r->neg); 4561 } 4562 4563 static int 4564 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4565 { 4566 if (*tag == -1) 4567 *tag = mtag; 4568 4569 return ((!r->match_tag_not && r->match_tag == *tag) || 4570 (r->match_tag_not && r->match_tag != *tag)); 4571 } 4572 4573 static void 4574 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4575 { 4576 /* If we don't have the interface drop the packet. */ 4577 if (ifp == NULL) { 4578 m_freem(m); 4579 return; 4580 } 4581 4582 switch (ifp->if_type) { 4583 case IFT_ETHER: 4584 case IFT_XETHER: 4585 case IFT_L2VLAN: 4586 case IFT_BRIDGE: 4587 case IFT_IEEE8023ADLAG: 4588 break; 4589 default: 4590 m_freem(m); 4591 return; 4592 } 4593 4594 ifp->if_transmit(ifp, m); 4595 } 4596 4597 static int 4598 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4599 { 4600 #ifdef INET 4601 struct ip ip; 4602 #endif 4603 #ifdef INET6 4604 struct ip6_hdr ip6; 4605 #endif 4606 struct mbuf *m = *m0; 4607 struct ether_header *e; 4608 struct pf_keth_rule *r, *rm, *a = NULL; 4609 struct pf_keth_ruleset *ruleset = NULL; 4610 struct pf_mtag *mtag; 4611 struct pf_keth_ruleq *rules; 4612 struct pf_addr *src = NULL, *dst = NULL; 4613 struct pfi_kkif *bridge_to; 4614 sa_family_t af = 0; 4615 uint16_t proto; 4616 int asd = 0, match = 0; 4617 int tag = -1; 4618 uint8_t action; 4619 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4620 4621 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4622 NET_EPOCH_ASSERT(); 4623 4624 PF_RULES_RLOCK_TRACKER; 4625 4626 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4627 4628 mtag = pf_find_mtag(m); 4629 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4630 /* Dummynet re-injects packets after they've 4631 * completed their delay. We've already 4632 * processed them, so pass unconditionally. */ 4633 4634 /* But only once. We may see the packet multiple times (e.g. 4635 * PFIL_IN/PFIL_OUT). */ 4636 pf_dummynet_flag_remove(m, mtag); 4637 4638 return (PF_PASS); 4639 } 4640 4641 ruleset = V_pf_keth; 4642 rules = ck_pr_load_ptr(&ruleset->active.rules); 4643 r = TAILQ_FIRST(rules); 4644 rm = NULL; 4645 4646 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4647 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4648 DPFPRINTF(PF_DEBUG_URGENT, 4649 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4650 ", pullup failed\n")); 4651 return (PF_DROP); 4652 } 4653 e = mtod(m, struct ether_header *); 4654 proto = ntohs(e->ether_type); 4655 4656 switch (proto) { 4657 #ifdef INET 4658 case ETHERTYPE_IP: { 4659 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4660 sizeof(ip))) 4661 return (PF_DROP); 4662 4663 af = AF_INET; 4664 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4665 (caddr_t)&ip); 4666 src = (struct pf_addr *)&ip.ip_src; 4667 dst = (struct pf_addr *)&ip.ip_dst; 4668 break; 4669 } 4670 #endif /* INET */ 4671 #ifdef INET6 4672 case ETHERTYPE_IPV6: { 4673 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4674 sizeof(ip6))) 4675 return (PF_DROP); 4676 4677 af = AF_INET6; 4678 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4679 (caddr_t)&ip6); 4680 src = (struct pf_addr *)&ip6.ip6_src; 4681 dst = (struct pf_addr *)&ip6.ip6_dst; 4682 break; 4683 } 4684 #endif /* INET6 */ 4685 } 4686 4687 PF_RULES_RLOCK(); 4688 4689 while (r != NULL) { 4690 counter_u64_add(r->evaluations, 1); 4691 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4692 4693 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4694 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4695 "kif"); 4696 r = r->skip[PFE_SKIP_IFP].ptr; 4697 } 4698 else if (r->direction && r->direction != dir) { 4699 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4700 "dir"); 4701 r = r->skip[PFE_SKIP_DIR].ptr; 4702 } 4703 else if (r->proto && r->proto != proto) { 4704 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4705 "proto"); 4706 r = r->skip[PFE_SKIP_PROTO].ptr; 4707 } 4708 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4709 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4710 "src"); 4711 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4712 } 4713 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4714 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4715 "dst"); 4716 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4717 } 4718 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4719 r->ipsrc.neg, kif, M_GETFIB(m))) { 4720 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4721 "ip_src"); 4722 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4723 } 4724 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4725 r->ipdst.neg, kif, M_GETFIB(m))) { 4726 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4727 "ip_dst"); 4728 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4729 } 4730 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4731 mtag ? mtag->tag : 0)) { 4732 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4733 "match_tag"); 4734 r = TAILQ_NEXT(r, entries); 4735 } 4736 else { 4737 if (r->tag) 4738 tag = r->tag; 4739 if (r->anchor == NULL) { 4740 /* Rule matches */ 4741 rm = r; 4742 4743 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4744 4745 if (r->quick) 4746 break; 4747 4748 r = TAILQ_NEXT(r, entries); 4749 } else { 4750 pf_step_into_keth_anchor(anchor_stack, &asd, 4751 &ruleset, &r, &a, &match); 4752 } 4753 } 4754 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4755 &ruleset, &r, &a, &match)) 4756 break; 4757 } 4758 4759 r = rm; 4760 4761 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4762 4763 /* Default to pass. */ 4764 if (r == NULL) { 4765 PF_RULES_RUNLOCK(); 4766 return (PF_PASS); 4767 } 4768 4769 /* Execute action. */ 4770 counter_u64_add(r->packets[dir == PF_OUT], 1); 4771 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4772 pf_update_timestamp(r); 4773 4774 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4775 if (r->action == PF_DROP) { 4776 PF_RULES_RUNLOCK(); 4777 return (PF_DROP); 4778 } 4779 4780 if (tag > 0) { 4781 if (mtag == NULL) 4782 mtag = pf_get_mtag(m); 4783 if (mtag == NULL) { 4784 PF_RULES_RUNLOCK(); 4785 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4786 return (PF_DROP); 4787 } 4788 mtag->tag = tag; 4789 } 4790 4791 if (r->qid != 0) { 4792 if (mtag == NULL) 4793 mtag = pf_get_mtag(m); 4794 if (mtag == NULL) { 4795 PF_RULES_RUNLOCK(); 4796 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4797 return (PF_DROP); 4798 } 4799 mtag->qid = r->qid; 4800 } 4801 4802 action = r->action; 4803 bridge_to = r->bridge_to; 4804 4805 /* Dummynet */ 4806 if (r->dnpipe) { 4807 struct ip_fw_args dnflow; 4808 4809 /* Drop packet if dummynet is not loaded. */ 4810 if (ip_dn_io_ptr == NULL) { 4811 PF_RULES_RUNLOCK(); 4812 m_freem(m); 4813 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4814 return (PF_DROP); 4815 } 4816 if (mtag == NULL) 4817 mtag = pf_get_mtag(m); 4818 if (mtag == NULL) { 4819 PF_RULES_RUNLOCK(); 4820 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4821 return (PF_DROP); 4822 } 4823 4824 bzero(&dnflow, sizeof(dnflow)); 4825 4826 /* We don't have port numbers here, so we set 0. That means 4827 * that we'll be somewhat limited in distinguishing flows (i.e. 4828 * only based on IP addresses, not based on port numbers), but 4829 * it's better than nothing. */ 4830 dnflow.f_id.dst_port = 0; 4831 dnflow.f_id.src_port = 0; 4832 dnflow.f_id.proto = 0; 4833 4834 dnflow.rule.info = r->dnpipe; 4835 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4836 if (r->dnflags & PFRULE_DN_IS_PIPE) 4837 dnflow.rule.info |= IPFW_IS_PIPE; 4838 4839 dnflow.f_id.extra = dnflow.rule.info; 4840 4841 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4842 dnflow.flags |= IPFW_ARGS_ETHER; 4843 dnflow.ifp = kif->pfik_ifp; 4844 4845 switch (af) { 4846 case AF_INET: 4847 dnflow.f_id.addr_type = 4; 4848 dnflow.f_id.src_ip = src->v4.s_addr; 4849 dnflow.f_id.dst_ip = dst->v4.s_addr; 4850 break; 4851 case AF_INET6: 4852 dnflow.flags |= IPFW_ARGS_IP6; 4853 dnflow.f_id.addr_type = 6; 4854 dnflow.f_id.src_ip6 = src->v6; 4855 dnflow.f_id.dst_ip6 = dst->v6; 4856 break; 4857 } 4858 4859 PF_RULES_RUNLOCK(); 4860 4861 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4862 ip_dn_io_ptr(m0, &dnflow); 4863 if (*m0 != NULL) 4864 pf_dummynet_flag_remove(m, mtag); 4865 } else { 4866 PF_RULES_RUNLOCK(); 4867 } 4868 4869 if (action == PF_PASS && bridge_to) { 4870 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4871 *m0 = NULL; /* We've eaten the packet. */ 4872 } 4873 4874 return (action); 4875 } 4876 4877 #define PF_TEST_ATTRIB(t, a)\ 4878 do { \ 4879 if (t) { \ 4880 r = a; \ 4881 goto nextrule; \ 4882 } \ 4883 } while (0) 4884 4885 static int 4886 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4887 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4888 struct pf_kruleset **rsm, struct inpcb *inp, int hdrlen) 4889 { 4890 struct pf_krule *nr = NULL; 4891 struct pf_addr * const saddr = pd->src; 4892 struct pf_addr * const daddr = pd->dst; 4893 sa_family_t af = pd->af; 4894 struct pf_krule *r, *a = NULL; 4895 struct pf_kruleset *ruleset = NULL; 4896 struct pf_krule_slist match_rules; 4897 struct pf_krule_item *ri; 4898 struct pf_ksrc_node *nsn = NULL; 4899 struct tcphdr *th = &pd->hdr.tcp; 4900 struct pf_state_key *sk = NULL, *nk = NULL; 4901 u_short reason, transerror; 4902 int rewrite = 0; 4903 int tag = -1; 4904 int asd = 0; 4905 int match = 0; 4906 int state_icmp = 0, icmp_dir, multi; 4907 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4908 u_int16_t bproto_sum = 0, bip_sum = 0; 4909 u_int8_t icmptype = 0, icmpcode = 0; 4910 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4911 struct pf_udp_mapping *udp_mapping = NULL; 4912 4913 PF_RULES_RASSERT(); 4914 4915 SLIST_INIT(&match_rules); 4916 4917 if (inp != NULL) { 4918 INP_LOCK_ASSERT(inp); 4919 pd->lookup.uid = inp->inp_cred->cr_uid; 4920 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4921 pd->lookup.done = 1; 4922 } 4923 4924 switch (pd->virtual_proto) { 4925 case IPPROTO_TCP: 4926 sport = th->th_sport; 4927 dport = th->th_dport; 4928 break; 4929 case IPPROTO_UDP: 4930 sport = pd->hdr.udp.uh_sport; 4931 dport = pd->hdr.udp.uh_dport; 4932 break; 4933 case IPPROTO_SCTP: 4934 sport = pd->hdr.sctp.src_port; 4935 dport = pd->hdr.sctp.dest_port; 4936 break; 4937 #ifdef INET 4938 case IPPROTO_ICMP: 4939 MPASS(af == AF_INET); 4940 icmptype = pd->hdr.icmp.icmp_type; 4941 icmpcode = pd->hdr.icmp.icmp_code; 4942 state_icmp = pf_icmp_mapping(pd, icmptype, 4943 &icmp_dir, &multi, &virtual_id, &virtual_type); 4944 if (icmp_dir == PF_IN) { 4945 sport = virtual_id; 4946 dport = virtual_type; 4947 } else { 4948 sport = virtual_type; 4949 dport = virtual_id; 4950 } 4951 break; 4952 #endif /* INET */ 4953 #ifdef INET6 4954 case IPPROTO_ICMPV6: 4955 MPASS(af == AF_INET6); 4956 icmptype = pd->hdr.icmp6.icmp6_type; 4957 icmpcode = pd->hdr.icmp6.icmp6_code; 4958 state_icmp = pf_icmp_mapping(pd, icmptype, 4959 &icmp_dir, &multi, &virtual_id, &virtual_type); 4960 if (icmp_dir == PF_IN) { 4961 sport = virtual_id; 4962 dport = virtual_type; 4963 } else { 4964 sport = virtual_type; 4965 dport = virtual_id; 4966 } 4967 4968 break; 4969 #endif /* INET6 */ 4970 default: 4971 sport = dport = 0; 4972 break; 4973 } 4974 4975 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4976 4977 /* check packet for BINAT/NAT/RDR */ 4978 transerror = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4979 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4980 switch (transerror) { 4981 default: 4982 /* A translation error occurred. */ 4983 REASON_SET(&reason, transerror); 4984 goto cleanup; 4985 case PFRES_MAX: 4986 /* No match. */ 4987 break; 4988 case PFRES_MATCH: 4989 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4990 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4991 4992 if (nr->log) { 4993 PFLOG_PACKET(kif, m, PF_PASS, PFRES_MATCH, nr, a, 4994 ruleset, pd, 1); 4995 } 4996 4997 if (pd->ip_sum) 4998 bip_sum = *pd->ip_sum; 4999 5000 switch (pd->proto) { 5001 case IPPROTO_TCP: 5002 bproto_sum = th->th_sum; 5003 pd->proto_sum = &th->th_sum; 5004 5005 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5006 nk->port[pd->sidx] != sport) { 5007 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 5008 &th->th_sum, &nk->addr[pd->sidx], 5009 nk->port[pd->sidx], 0, af); 5010 pd->sport = &th->th_sport; 5011 sport = th->th_sport; 5012 } 5013 5014 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5015 nk->port[pd->didx] != dport) { 5016 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 5017 &th->th_sum, &nk->addr[pd->didx], 5018 nk->port[pd->didx], 0, af); 5019 dport = th->th_dport; 5020 pd->dport = &th->th_dport; 5021 } 5022 rewrite++; 5023 break; 5024 case IPPROTO_UDP: 5025 bproto_sum = pd->hdr.udp.uh_sum; 5026 pd->proto_sum = &pd->hdr.udp.uh_sum; 5027 5028 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5029 nk->port[pd->sidx] != sport) { 5030 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 5031 pd->ip_sum, &pd->hdr.udp.uh_sum, 5032 &nk->addr[pd->sidx], 5033 nk->port[pd->sidx], 1, af); 5034 sport = pd->hdr.udp.uh_sport; 5035 pd->sport = &pd->hdr.udp.uh_sport; 5036 } 5037 5038 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5039 nk->port[pd->didx] != dport) { 5040 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 5041 pd->ip_sum, &pd->hdr.udp.uh_sum, 5042 &nk->addr[pd->didx], 5043 nk->port[pd->didx], 1, af); 5044 dport = pd->hdr.udp.uh_dport; 5045 pd->dport = &pd->hdr.udp.uh_dport; 5046 } 5047 rewrite++; 5048 break; 5049 case IPPROTO_SCTP: { 5050 uint16_t checksum = 0; 5051 5052 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5053 nk->port[pd->sidx] != sport) { 5054 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 5055 pd->ip_sum, &checksum, 5056 &nk->addr[pd->sidx], 5057 nk->port[pd->sidx], 1, af); 5058 } 5059 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5060 nk->port[pd->didx] != dport) { 5061 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 5062 pd->ip_sum, &checksum, 5063 &nk->addr[pd->didx], 5064 nk->port[pd->didx], 1, af); 5065 } 5066 break; 5067 } 5068 #ifdef INET 5069 case IPPROTO_ICMP: 5070 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5071 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5072 nk->addr[pd->sidx].v4.s_addr, 0); 5073 5074 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5075 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5076 nk->addr[pd->didx].v4.s_addr, 0); 5077 5078 if (virtual_type == htons(ICMP_ECHO) && 5079 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5080 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5081 pd->hdr.icmp.icmp_cksum, sport, 5082 nk->port[pd->sidx], 0); 5083 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5084 pd->sport = &pd->hdr.icmp.icmp_id; 5085 } 5086 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5087 break; 5088 #endif /* INET */ 5089 #ifdef INET6 5090 case IPPROTO_ICMPV6: 5091 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5092 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5093 &nk->addr[pd->sidx], 0); 5094 5095 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5096 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5097 &nk->addr[pd->didx], 0); 5098 rewrite++; 5099 break; 5100 #endif /* INET */ 5101 default: 5102 switch (af) { 5103 #ifdef INET 5104 case AF_INET: 5105 if (PF_ANEQ(saddr, 5106 &nk->addr[pd->sidx], AF_INET)) 5107 pf_change_a(&saddr->v4.s_addr, 5108 pd->ip_sum, 5109 nk->addr[pd->sidx].v4.s_addr, 0); 5110 5111 if (PF_ANEQ(daddr, 5112 &nk->addr[pd->didx], AF_INET)) 5113 pf_change_a(&daddr->v4.s_addr, 5114 pd->ip_sum, 5115 nk->addr[pd->didx].v4.s_addr, 0); 5116 break; 5117 #endif /* INET */ 5118 #ifdef INET6 5119 case AF_INET6: 5120 if (PF_ANEQ(saddr, 5121 &nk->addr[pd->sidx], AF_INET6)) 5122 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 5123 5124 if (PF_ANEQ(daddr, 5125 &nk->addr[pd->didx], AF_INET6)) 5126 PF_ACPY(daddr, &nk->addr[pd->didx], af); 5127 break; 5128 #endif /* INET */ 5129 } 5130 break; 5131 } 5132 if (nr->natpass) 5133 r = NULL; 5134 pd->nat_rule = nr; 5135 } 5136 5137 while (r != NULL) { 5138 pf_counter_u64_add(&r->evaluations, 1); 5139 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, kif) == r->ifnot, 5140 r->skip[PF_SKIP_IFP].ptr); 5141 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5142 r->skip[PF_SKIP_DIR].ptr); 5143 PF_TEST_ATTRIB(r->af && r->af != af, 5144 r->skip[PF_SKIP_AF].ptr); 5145 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5146 r->skip[PF_SKIP_PROTO].ptr); 5147 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, af, 5148 r->src.neg, kif, M_GETFIB(m)), 5149 r->skip[PF_SKIP_SRC_ADDR].ptr); 5150 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, af, 5151 r->dst.neg, NULL, M_GETFIB(m)), 5152 r->skip[PF_SKIP_DST_ADDR].ptr); 5153 switch (pd->virtual_proto) { 5154 case PF_VPROTO_FRAGMENT: 5155 /* tcp/udp only. port_op always 0 in other cases */ 5156 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5157 TAILQ_NEXT(r, entries)); 5158 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5159 TAILQ_NEXT(r, entries)); 5160 /* icmp only. type/code always 0 in other cases */ 5161 PF_TEST_ATTRIB((r->type || r->code), 5162 TAILQ_NEXT(r, entries)); 5163 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5164 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5165 TAILQ_NEXT(r, entries)); 5166 break; 5167 5168 case IPPROTO_TCP: 5169 PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags, 5170 TAILQ_NEXT(r, entries)); 5171 /* FALLTHROUGH */ 5172 case IPPROTO_SCTP: 5173 case IPPROTO_UDP: 5174 /* tcp/udp only. port_op always 0 in other cases */ 5175 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5176 r->src.port[0], r->src.port[1], sport), 5177 r->skip[PF_SKIP_SRC_PORT].ptr); 5178 /* tcp/udp only. port_op always 0 in other cases */ 5179 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5180 r->dst.port[0], r->dst.port[1], dport), 5181 r->skip[PF_SKIP_DST_PORT].ptr); 5182 /* tcp/udp only. uid.op always 0 in other cases */ 5183 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5184 pf_socket_lookup(pd, m), 1)) && 5185 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5186 pd->lookup.uid), 5187 TAILQ_NEXT(r, entries)); 5188 /* tcp/udp only. gid.op always 0 in other cases */ 5189 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5190 pf_socket_lookup(pd, m), 1)) && 5191 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5192 pd->lookup.gid), 5193 TAILQ_NEXT(r, entries)); 5194 break; 5195 5196 case IPPROTO_ICMP: 5197 case IPPROTO_ICMPV6: 5198 /* icmp only. type always 0 in other cases */ 5199 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5200 TAILQ_NEXT(r, entries)); 5201 /* icmp only. type always 0 in other cases */ 5202 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5203 TAILQ_NEXT(r, entries)); 5204 break; 5205 5206 default: 5207 break; 5208 } 5209 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5210 TAILQ_NEXT(r, entries)); 5211 PF_TEST_ATTRIB(r->prio && 5212 !pf_match_ieee8021q_pcp(r->prio, m), 5213 TAILQ_NEXT(r, entries)); 5214 PF_TEST_ATTRIB(r->prob && 5215 r->prob <= arc4random(), 5216 TAILQ_NEXT(r, entries)); 5217 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(m, r, &tag, 5218 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5219 TAILQ_NEXT(r, entries)); 5220 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(m, r), 5221 TAILQ_NEXT(r, entries)); 5222 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5223 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5224 TAILQ_NEXT(r, entries)); 5225 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5226 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5227 pf_osfp_fingerprint(pd, m, off, th), 5228 r->os_fingerprint)), 5229 TAILQ_NEXT(r, entries)); 5230 /* FALLTHROUGH */ 5231 if (r->tag) 5232 tag = r->tag; 5233 if (r->anchor == NULL) { 5234 if (r->action == PF_MATCH) { 5235 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5236 if (ri == NULL) { 5237 REASON_SET(&reason, PFRES_MEMORY); 5238 goto cleanup; 5239 } 5240 ri->r = r; 5241 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5242 pf_counter_u64_critical_enter(); 5243 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5244 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5245 pf_counter_u64_critical_exit(); 5246 pf_rule_to_actions(r, &pd->act); 5247 if (r->log || pd->act.log & PF_LOG_MATCHES) 5248 PFLOG_PACKET(kif, m, 5249 r->action, PFRES_MATCH, r, 5250 a, ruleset, pd, 1); 5251 } else { 5252 match = 1; 5253 *rm = r; 5254 *am = a; 5255 *rsm = ruleset; 5256 if (pd->act.log & PF_LOG_MATCHES) 5257 PFLOG_PACKET(kif, m, 5258 r->action, PFRES_MATCH, r, 5259 a, ruleset, pd, 1); 5260 } 5261 if ((*rm)->quick) 5262 break; 5263 r = TAILQ_NEXT(r, entries); 5264 } else 5265 pf_step_into_anchor(anchor_stack, &asd, 5266 &ruleset, PF_RULESET_FILTER, &r, &a, 5267 &match); 5268 nextrule: 5269 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5270 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5271 break; 5272 } 5273 r = *rm; 5274 a = *am; 5275 ruleset = *rsm; 5276 5277 REASON_SET(&reason, PFRES_MATCH); 5278 5279 /* apply actions for last matching pass/block rule */ 5280 pf_rule_to_actions(r, &pd->act); 5281 5282 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5283 if (rewrite) 5284 m_copyback(m, off, hdrlen, pd->hdr.any); 5285 PFLOG_PACKET(kif, m, r->action, reason, r, a, ruleset, pd, 1); 5286 } 5287 5288 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5289 (r->action == PF_DROP) && 5290 ((r->rule_flag & PFRULE_RETURNRST) || 5291 (r->rule_flag & PFRULE_RETURNICMP) || 5292 (r->rule_flag & PFRULE_RETURN))) { 5293 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 5294 bip_sum, hdrlen, &reason, r->rtableid); 5295 } 5296 5297 if (r->action == PF_DROP) 5298 goto cleanup; 5299 5300 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5301 REASON_SET(&reason, PFRES_MEMORY); 5302 goto cleanup; 5303 } 5304 if (pd->act.rtableid >= 0) 5305 M_SETFIB(m, pd->act.rtableid); 5306 5307 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5308 (!state_icmp && (r->keep_state || nr != NULL || 5309 (pd->flags & PFDESC_TCP_NORM)))) { 5310 int action; 5311 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 5312 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 5313 hdrlen, &match_rules, udp_mapping); 5314 if (action != PF_PASS) { 5315 pf_udp_mapping_release(udp_mapping); 5316 if (action == PF_DROP && 5317 (r->rule_flag & PFRULE_RETURN)) 5318 pf_return(r, nr, pd, sk, off, m, th, kif, 5319 bproto_sum, bip_sum, hdrlen, &reason, 5320 pd->act.rtableid); 5321 return (action); 5322 } 5323 } else { 5324 while ((ri = SLIST_FIRST(&match_rules))) { 5325 SLIST_REMOVE_HEAD(&match_rules, entry); 5326 free(ri, M_PF_RULE_ITEM); 5327 } 5328 5329 uma_zfree(V_pf_state_key_z, sk); 5330 uma_zfree(V_pf_state_key_z, nk); 5331 pf_udp_mapping_release(udp_mapping); 5332 } 5333 5334 /* copy back packet headers if we performed NAT operations */ 5335 if (rewrite) 5336 m_copyback(m, off, hdrlen, pd->hdr.any); 5337 5338 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5339 pd->dir == PF_OUT && 5340 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 5341 /* 5342 * We want the state created, but we dont 5343 * want to send this in case a partner 5344 * firewall has to know about it to allow 5345 * replies through it. 5346 */ 5347 return (PF_DEFER); 5348 5349 return (PF_PASS); 5350 5351 cleanup: 5352 while ((ri = SLIST_FIRST(&match_rules))) { 5353 SLIST_REMOVE_HEAD(&match_rules, entry); 5354 free(ri, M_PF_RULE_ITEM); 5355 } 5356 5357 uma_zfree(V_pf_state_key_z, sk); 5358 uma_zfree(V_pf_state_key_z, nk); 5359 pf_udp_mapping_release(udp_mapping); 5360 5361 return (PF_DROP); 5362 } 5363 5364 static int 5365 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5366 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5367 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 5368 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 5369 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 5370 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5371 { 5372 struct pf_kstate *s = NULL; 5373 struct pf_ksrc_node *sn = NULL; 5374 struct tcphdr *th = &pd->hdr.tcp; 5375 u_int16_t mss = V_tcp_mssdflt; 5376 u_short reason, sn_reason; 5377 struct pf_krule_item *ri; 5378 5379 /* check maximums */ 5380 if (r->max_states && 5381 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5382 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5383 REASON_SET(&reason, PFRES_MAXSTATES); 5384 goto csfailed; 5385 } 5386 /* src node for filter rule */ 5387 if ((r->rule_flag & PFRULE_SRCTRACK || 5388 r->rpool.opts & PF_POOL_STICKYADDR) && 5389 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5390 REASON_SET(&reason, sn_reason); 5391 goto csfailed; 5392 } 5393 /* src node for translation rule */ 5394 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5395 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5396 pd->af)) != 0 ) { 5397 REASON_SET(&reason, sn_reason); 5398 goto csfailed; 5399 } 5400 s = pf_alloc_state(M_NOWAIT); 5401 if (s == NULL) { 5402 REASON_SET(&reason, PFRES_MEMORY); 5403 goto csfailed; 5404 } 5405 s->rule.ptr = r; 5406 s->nat_rule.ptr = nr; 5407 s->anchor.ptr = a; 5408 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5409 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5410 5411 STATE_INC_COUNTERS(s); 5412 if (r->allow_opts) 5413 s->state_flags |= PFSTATE_ALLOWOPTS; 5414 if (r->rule_flag & PFRULE_STATESLOPPY) 5415 s->state_flags |= PFSTATE_SLOPPY; 5416 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5417 s->state_flags |= PFSTATE_SCRUB_TCP; 5418 if ((r->rule_flag & PFRULE_PFLOW) || 5419 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5420 s->state_flags |= PFSTATE_PFLOW; 5421 5422 s->act.log = pd->act.log & PF_LOG_ALL; 5423 s->sync_state = PFSYNC_S_NONE; 5424 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5425 5426 if (nr != NULL) 5427 s->act.log |= nr->log & PF_LOG_ALL; 5428 switch (pd->proto) { 5429 case IPPROTO_TCP: 5430 s->src.seqlo = ntohl(th->th_seq); 5431 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5432 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5433 r->keep_state == PF_STATE_MODULATE) { 5434 /* Generate sequence number modulator */ 5435 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5436 0) 5437 s->src.seqdiff = 1; 5438 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 5439 htonl(s->src.seqlo + s->src.seqdiff), 0); 5440 *rewrite = 1; 5441 } else 5442 s->src.seqdiff = 0; 5443 if (th->th_flags & TH_SYN) { 5444 s->src.seqhi++; 5445 s->src.wscale = pf_get_wscale(m, off, 5446 th->th_off, pd->af); 5447 } 5448 s->src.max_win = MAX(ntohs(th->th_win), 1); 5449 if (s->src.wscale & PF_WSCALE_MASK) { 5450 /* Remove scale factor from initial window */ 5451 int win = s->src.max_win; 5452 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5453 s->src.max_win = (win - 1) >> 5454 (s->src.wscale & PF_WSCALE_MASK); 5455 } 5456 if (th->th_flags & TH_FIN) 5457 s->src.seqhi++; 5458 s->dst.seqhi = 1; 5459 s->dst.max_win = 1; 5460 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5461 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5462 s->timeout = PFTM_TCP_FIRST_PACKET; 5463 atomic_add_32(&V_pf_status.states_halfopen, 1); 5464 break; 5465 case IPPROTO_UDP: 5466 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5467 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5468 s->timeout = PFTM_UDP_FIRST_PACKET; 5469 break; 5470 case IPPROTO_SCTP: 5471 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5472 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5473 s->timeout = PFTM_SCTP_FIRST_PACKET; 5474 break; 5475 case IPPROTO_ICMP: 5476 #ifdef INET6 5477 case IPPROTO_ICMPV6: 5478 #endif 5479 s->timeout = PFTM_ICMP_FIRST_PACKET; 5480 break; 5481 default: 5482 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5483 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5484 s->timeout = PFTM_OTHER_FIRST_PACKET; 5485 } 5486 5487 if (r->rt) { 5488 /* pf_map_addr increases the reason counters */ 5489 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr, 5490 &s->rt_kif, NULL, &sn)) != 0) 5491 goto csfailed; 5492 s->rt = r->rt; 5493 } 5494 5495 s->creation = s->expire = pf_get_uptime(); 5496 5497 if (sn != NULL) 5498 s->src_node = sn; 5499 if (nsn != NULL) { 5500 /* XXX We only modify one side for now. */ 5501 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5502 s->nat_src_node = nsn; 5503 } 5504 if (pd->proto == IPPROTO_TCP) { 5505 if (s->state_flags & PFSTATE_SCRUB_TCP && 5506 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 5507 REASON_SET(&reason, PFRES_MEMORY); 5508 goto csfailed; 5509 } 5510 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5511 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 5512 &s->src, &s->dst, rewrite)) { 5513 /* This really shouldn't happen!!! */ 5514 DPFPRINTF(PF_DEBUG_URGENT, 5515 ("pf_normalize_tcp_stateful failed on first " 5516 "pkt\n")); 5517 goto csfailed; 5518 } 5519 } else if (pd->proto == IPPROTO_SCTP) { 5520 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 5521 goto csfailed; 5522 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5523 goto csfailed; 5524 } 5525 s->direction = pd->dir; 5526 5527 /* 5528 * sk/nk could already been setup by pf_get_translation(). 5529 */ 5530 if (nr == NULL) { 5531 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5532 __func__, nr, sk, nk)); 5533 sk = pf_state_key_setup(pd, m, off, pd->src, pd->dst, sport, dport); 5534 if (sk == NULL) 5535 goto csfailed; 5536 nk = sk; 5537 } else 5538 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5539 __func__, nr, sk, nk)); 5540 5541 /* Swap sk/nk for PF_OUT. */ 5542 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5543 (pd->dir == PF_IN) ? sk : nk, 5544 (pd->dir == PF_IN) ? nk : sk, s)) { 5545 REASON_SET(&reason, PFRES_STATEINS); 5546 goto drop; 5547 } else 5548 *sm = s; 5549 5550 if (tag > 0) 5551 s->tag = tag; 5552 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5553 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5554 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5555 /* undo NAT changes, if they have taken place */ 5556 if (nr != NULL) { 5557 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5558 if (pd->dir == PF_OUT) 5559 skt = s->key[PF_SK_STACK]; 5560 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5561 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5562 if (pd->sport) 5563 *pd->sport = skt->port[pd->sidx]; 5564 if (pd->dport) 5565 *pd->dport = skt->port[pd->didx]; 5566 if (pd->proto_sum) 5567 *pd->proto_sum = bproto_sum; 5568 if (pd->ip_sum) 5569 *pd->ip_sum = bip_sum; 5570 m_copyback(m, off, hdrlen, pd->hdr.any); 5571 } 5572 s->src.seqhi = htonl(arc4random()); 5573 /* Find mss option */ 5574 int rtid = M_GETFIB(m); 5575 mss = pf_get_mss(m, off, th->th_off, pd->af); 5576 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5577 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5578 s->src.mss = mss; 5579 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5580 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5581 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5582 pd->act.rtableid); 5583 REASON_SET(&reason, PFRES_SYNPROXY); 5584 return (PF_SYNPROXY_DROP); 5585 } 5586 5587 s->udp_mapping = udp_mapping; 5588 5589 return (PF_PASS); 5590 5591 csfailed: 5592 while ((ri = SLIST_FIRST(match_rules))) { 5593 SLIST_REMOVE_HEAD(match_rules, entry); 5594 free(ri, M_PF_RULE_ITEM); 5595 } 5596 5597 uma_zfree(V_pf_state_key_z, sk); 5598 uma_zfree(V_pf_state_key_z, nk); 5599 5600 if (sn != NULL) { 5601 PF_SRC_NODE_LOCK(sn); 5602 if (--sn->states == 0 && sn->expire == 0) { 5603 pf_unlink_src_node(sn); 5604 uma_zfree(V_pf_sources_z, sn); 5605 counter_u64_add( 5606 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5607 } 5608 PF_SRC_NODE_UNLOCK(sn); 5609 } 5610 5611 if (nsn != sn && nsn != NULL) { 5612 PF_SRC_NODE_LOCK(nsn); 5613 if (--nsn->states == 0 && nsn->expire == 0) { 5614 pf_unlink_src_node(nsn); 5615 uma_zfree(V_pf_sources_z, nsn); 5616 counter_u64_add( 5617 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5618 } 5619 PF_SRC_NODE_UNLOCK(nsn); 5620 } 5621 5622 drop: 5623 if (s != NULL) { 5624 pf_src_tree_remove_state(s); 5625 s->timeout = PFTM_UNLINKED; 5626 STATE_DEC_COUNTERS(s); 5627 pf_free_state(s); 5628 } 5629 5630 return (PF_DROP); 5631 } 5632 5633 static int 5634 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5635 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5636 int *copyback) 5637 { 5638 struct tcphdr *th = &pd->hdr.tcp; 5639 struct pf_state_peer *src, *dst; 5640 u_int16_t win = ntohs(th->th_win); 5641 u_int32_t ack, end, data_end, seq, orig_seq; 5642 u_int8_t sws, dws, psrc, pdst; 5643 int ackskew; 5644 5645 if (pd->dir == (*state)->direction) { 5646 src = &(*state)->src; 5647 dst = &(*state)->dst; 5648 psrc = PF_PEER_SRC; 5649 pdst = PF_PEER_DST; 5650 } else { 5651 src = &(*state)->dst; 5652 dst = &(*state)->src; 5653 psrc = PF_PEER_DST; 5654 pdst = PF_PEER_SRC; 5655 } 5656 5657 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5658 sws = src->wscale & PF_WSCALE_MASK; 5659 dws = dst->wscale & PF_WSCALE_MASK; 5660 } else 5661 sws = dws = 0; 5662 5663 /* 5664 * Sequence tracking algorithm from Guido van Rooij's paper: 5665 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5666 * tcp_filtering.ps 5667 */ 5668 5669 orig_seq = seq = ntohl(th->th_seq); 5670 if (src->seqlo == 0) { 5671 /* First packet from this end. Set its state */ 5672 5673 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5674 src->scrub == NULL) { 5675 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5676 REASON_SET(reason, PFRES_MEMORY); 5677 return (PF_DROP); 5678 } 5679 } 5680 5681 /* Deferred generation of sequence number modulator */ 5682 if (dst->seqdiff && !src->seqdiff) { 5683 /* use random iss for the TCP server */ 5684 while ((src->seqdiff = arc4random() - seq) == 0) 5685 ; 5686 ack = ntohl(th->th_ack) - dst->seqdiff; 5687 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5688 src->seqdiff), 0); 5689 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5690 *copyback = 1; 5691 } else { 5692 ack = ntohl(th->th_ack); 5693 } 5694 5695 end = seq + pd->p_len; 5696 if (th->th_flags & TH_SYN) { 5697 end++; 5698 if (dst->wscale & PF_WSCALE_FLAG) { 5699 src->wscale = pf_get_wscale(m, off, th->th_off, 5700 pd->af); 5701 if (src->wscale & PF_WSCALE_FLAG) { 5702 /* Remove scale factor from initial 5703 * window */ 5704 sws = src->wscale & PF_WSCALE_MASK; 5705 win = ((u_int32_t)win + (1 << sws) - 1) 5706 >> sws; 5707 dws = dst->wscale & PF_WSCALE_MASK; 5708 } else { 5709 /* fixup other window */ 5710 dst->max_win = MIN(TCP_MAXWIN, 5711 (u_int32_t)dst->max_win << 5712 (dst->wscale & PF_WSCALE_MASK)); 5713 /* in case of a retrans SYN|ACK */ 5714 dst->wscale = 0; 5715 } 5716 } 5717 } 5718 data_end = end; 5719 if (th->th_flags & TH_FIN) 5720 end++; 5721 5722 src->seqlo = seq; 5723 if (src->state < TCPS_SYN_SENT) 5724 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5725 5726 /* 5727 * May need to slide the window (seqhi may have been set by 5728 * the crappy stack check or if we picked up the connection 5729 * after establishment) 5730 */ 5731 if (src->seqhi == 1 || 5732 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5733 src->seqhi = end + MAX(1, dst->max_win << dws); 5734 if (win > src->max_win) 5735 src->max_win = win; 5736 5737 } else { 5738 ack = ntohl(th->th_ack) - dst->seqdiff; 5739 if (src->seqdiff) { 5740 /* Modulate sequence numbers */ 5741 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5742 src->seqdiff), 0); 5743 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5744 *copyback = 1; 5745 } 5746 end = seq + pd->p_len; 5747 if (th->th_flags & TH_SYN) 5748 end++; 5749 data_end = end; 5750 if (th->th_flags & TH_FIN) 5751 end++; 5752 } 5753 5754 if ((th->th_flags & TH_ACK) == 0) { 5755 /* Let it pass through the ack skew check */ 5756 ack = dst->seqlo; 5757 } else if ((ack == 0 && 5758 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5759 /* broken tcp stacks do not set ack */ 5760 (dst->state < TCPS_SYN_SENT)) { 5761 /* 5762 * Many stacks (ours included) will set the ACK number in an 5763 * FIN|ACK if the SYN times out -- no sequence to ACK. 5764 */ 5765 ack = dst->seqlo; 5766 } 5767 5768 if (seq == end) { 5769 /* Ease sequencing restrictions on no data packets */ 5770 seq = src->seqlo; 5771 data_end = end = seq; 5772 } 5773 5774 ackskew = dst->seqlo - ack; 5775 5776 /* 5777 * Need to demodulate the sequence numbers in any TCP SACK options 5778 * (Selective ACK). We could optionally validate the SACK values 5779 * against the current ACK window, either forwards or backwards, but 5780 * I'm not confident that SACK has been implemented properly 5781 * everywhere. It wouldn't surprise me if several stacks accidentally 5782 * SACK too far backwards of previously ACKed data. There really aren't 5783 * any security implications of bad SACKing unless the target stack 5784 * doesn't validate the option length correctly. Someone trying to 5785 * spoof into a TCP connection won't bother blindly sending SACK 5786 * options anyway. 5787 */ 5788 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5789 if (pf_modulate_sack(m, off, pd, th, dst)) 5790 *copyback = 1; 5791 } 5792 5793 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5794 if (SEQ_GEQ(src->seqhi, data_end) && 5795 /* Last octet inside other's window space */ 5796 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5797 /* Retrans: not more than one window back */ 5798 (ackskew >= -MAXACKWINDOW) && 5799 /* Acking not more than one reassembled fragment backwards */ 5800 (ackskew <= (MAXACKWINDOW << sws)) && 5801 /* Acking not more than one window forward */ 5802 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5803 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5804 /* Require an exact/+1 sequence match on resets when possible */ 5805 5806 if (dst->scrub || src->scrub) { 5807 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5808 *state, src, dst, copyback)) 5809 return (PF_DROP); 5810 } 5811 5812 /* update max window */ 5813 if (src->max_win < win) 5814 src->max_win = win; 5815 /* synchronize sequencing */ 5816 if (SEQ_GT(end, src->seqlo)) 5817 src->seqlo = end; 5818 /* slide the window of what the other end can send */ 5819 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5820 dst->seqhi = ack + MAX((win << sws), 1); 5821 5822 /* update states */ 5823 if (th->th_flags & TH_SYN) 5824 if (src->state < TCPS_SYN_SENT) 5825 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5826 if (th->th_flags & TH_FIN) 5827 if (src->state < TCPS_CLOSING) 5828 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5829 if (th->th_flags & TH_ACK) { 5830 if (dst->state == TCPS_SYN_SENT) { 5831 pf_set_protostate(*state, pdst, 5832 TCPS_ESTABLISHED); 5833 if (src->state == TCPS_ESTABLISHED && 5834 (*state)->src_node != NULL && 5835 pf_src_connlimit(state)) { 5836 REASON_SET(reason, PFRES_SRCLIMIT); 5837 return (PF_DROP); 5838 } 5839 } else if (dst->state == TCPS_CLOSING) 5840 pf_set_protostate(*state, pdst, 5841 TCPS_FIN_WAIT_2); 5842 } 5843 if (th->th_flags & TH_RST) 5844 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5845 5846 /* update expire time */ 5847 (*state)->expire = pf_get_uptime(); 5848 if (src->state >= TCPS_FIN_WAIT_2 && 5849 dst->state >= TCPS_FIN_WAIT_2) 5850 (*state)->timeout = PFTM_TCP_CLOSED; 5851 else if (src->state >= TCPS_CLOSING && 5852 dst->state >= TCPS_CLOSING) 5853 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5854 else if (src->state < TCPS_ESTABLISHED || 5855 dst->state < TCPS_ESTABLISHED) 5856 (*state)->timeout = PFTM_TCP_OPENING; 5857 else if (src->state >= TCPS_CLOSING || 5858 dst->state >= TCPS_CLOSING) 5859 (*state)->timeout = PFTM_TCP_CLOSING; 5860 else 5861 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5862 5863 /* Fall through to PASS packet */ 5864 5865 } else if ((dst->state < TCPS_SYN_SENT || 5866 dst->state >= TCPS_FIN_WAIT_2 || 5867 src->state >= TCPS_FIN_WAIT_2) && 5868 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5869 /* Within a window forward of the originating packet */ 5870 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5871 /* Within a window backward of the originating packet */ 5872 5873 /* 5874 * This currently handles three situations: 5875 * 1) Stupid stacks will shotgun SYNs before their peer 5876 * replies. 5877 * 2) When PF catches an already established stream (the 5878 * firewall rebooted, the state table was flushed, routes 5879 * changed...) 5880 * 3) Packets get funky immediately after the connection 5881 * closes (this should catch Solaris spurious ACK|FINs 5882 * that web servers like to spew after a close) 5883 * 5884 * This must be a little more careful than the above code 5885 * since packet floods will also be caught here. We don't 5886 * update the TTL here to mitigate the damage of a packet 5887 * flood and so the same code can handle awkward establishment 5888 * and a loosened connection close. 5889 * In the establishment case, a correct peer response will 5890 * validate the connection, go through the normal state code 5891 * and keep updating the state TTL. 5892 */ 5893 5894 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5895 printf("pf: loose state match: "); 5896 pf_print_state(*state); 5897 pf_print_flags(th->th_flags); 5898 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5899 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5900 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5901 (unsigned long long)(*state)->packets[1], 5902 pd->dir == PF_IN ? "in" : "out", 5903 pd->dir == (*state)->direction ? "fwd" : "rev"); 5904 } 5905 5906 if (dst->scrub || src->scrub) { 5907 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5908 *state, src, dst, copyback)) 5909 return (PF_DROP); 5910 } 5911 5912 /* update max window */ 5913 if (src->max_win < win) 5914 src->max_win = win; 5915 /* synchronize sequencing */ 5916 if (SEQ_GT(end, src->seqlo)) 5917 src->seqlo = end; 5918 /* slide the window of what the other end can send */ 5919 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5920 dst->seqhi = ack + MAX((win << sws), 1); 5921 5922 /* 5923 * Cannot set dst->seqhi here since this could be a shotgunned 5924 * SYN and not an already established connection. 5925 */ 5926 5927 if (th->th_flags & TH_FIN) 5928 if (src->state < TCPS_CLOSING) 5929 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5930 if (th->th_flags & TH_RST) 5931 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5932 5933 /* Fall through to PASS packet */ 5934 5935 } else { 5936 if ((*state)->dst.state == TCPS_SYN_SENT && 5937 (*state)->src.state == TCPS_SYN_SENT) { 5938 /* Send RST for state mismatches during handshake */ 5939 if (!(th->th_flags & TH_RST)) 5940 pf_send_tcp((*state)->rule.ptr, pd->af, 5941 pd->dst, pd->src, th->th_dport, 5942 th->th_sport, ntohl(th->th_ack), 0, 5943 TH_RST, 0, 0, 5944 (*state)->rule.ptr->return_ttl, true, 0, 0, 5945 (*state)->act.rtableid); 5946 src->seqlo = 0; 5947 src->seqhi = 1; 5948 src->max_win = 1; 5949 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5950 printf("pf: BAD state: "); 5951 pf_print_state(*state); 5952 pf_print_flags(th->th_flags); 5953 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5954 "pkts=%llu:%llu dir=%s,%s\n", 5955 seq, orig_seq, ack, pd->p_len, ackskew, 5956 (unsigned long long)(*state)->packets[0], 5957 (unsigned long long)(*state)->packets[1], 5958 pd->dir == PF_IN ? "in" : "out", 5959 pd->dir == (*state)->direction ? "fwd" : "rev"); 5960 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5961 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5962 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5963 ' ': '2', 5964 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5965 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5966 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5967 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5968 } 5969 REASON_SET(reason, PFRES_BADSTATE); 5970 return (PF_DROP); 5971 } 5972 5973 return (PF_PASS); 5974 } 5975 5976 static int 5977 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5978 { 5979 struct tcphdr *th = &pd->hdr.tcp; 5980 struct pf_state_peer *src, *dst; 5981 u_int8_t psrc, pdst; 5982 5983 if (pd->dir == (*state)->direction) { 5984 src = &(*state)->src; 5985 dst = &(*state)->dst; 5986 psrc = PF_PEER_SRC; 5987 pdst = PF_PEER_DST; 5988 } else { 5989 src = &(*state)->dst; 5990 dst = &(*state)->src; 5991 psrc = PF_PEER_DST; 5992 pdst = PF_PEER_SRC; 5993 } 5994 5995 if (th->th_flags & TH_SYN) 5996 if (src->state < TCPS_SYN_SENT) 5997 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5998 if (th->th_flags & TH_FIN) 5999 if (src->state < TCPS_CLOSING) 6000 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6001 if (th->th_flags & TH_ACK) { 6002 if (dst->state == TCPS_SYN_SENT) { 6003 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6004 if (src->state == TCPS_ESTABLISHED && 6005 (*state)->src_node != NULL && 6006 pf_src_connlimit(state)) { 6007 REASON_SET(reason, PFRES_SRCLIMIT); 6008 return (PF_DROP); 6009 } 6010 } else if (dst->state == TCPS_CLOSING) { 6011 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6012 } else if (src->state == TCPS_SYN_SENT && 6013 dst->state < TCPS_SYN_SENT) { 6014 /* 6015 * Handle a special sloppy case where we only see one 6016 * half of the connection. If there is a ACK after 6017 * the initial SYN without ever seeing a packet from 6018 * the destination, set the connection to established. 6019 */ 6020 pf_set_protostate(*state, PF_PEER_BOTH, 6021 TCPS_ESTABLISHED); 6022 dst->state = src->state = TCPS_ESTABLISHED; 6023 if ((*state)->src_node != NULL && 6024 pf_src_connlimit(state)) { 6025 REASON_SET(reason, PFRES_SRCLIMIT); 6026 return (PF_DROP); 6027 } 6028 } else if (src->state == TCPS_CLOSING && 6029 dst->state == TCPS_ESTABLISHED && 6030 dst->seqlo == 0) { 6031 /* 6032 * Handle the closing of half connections where we 6033 * don't see the full bidirectional FIN/ACK+ACK 6034 * handshake. 6035 */ 6036 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6037 } 6038 } 6039 if (th->th_flags & TH_RST) 6040 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6041 6042 /* update expire time */ 6043 (*state)->expire = pf_get_uptime(); 6044 if (src->state >= TCPS_FIN_WAIT_2 && 6045 dst->state >= TCPS_FIN_WAIT_2) 6046 (*state)->timeout = PFTM_TCP_CLOSED; 6047 else if (src->state >= TCPS_CLOSING && 6048 dst->state >= TCPS_CLOSING) 6049 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6050 else if (src->state < TCPS_ESTABLISHED || 6051 dst->state < TCPS_ESTABLISHED) 6052 (*state)->timeout = PFTM_TCP_OPENING; 6053 else if (src->state >= TCPS_CLOSING || 6054 dst->state >= TCPS_CLOSING) 6055 (*state)->timeout = PFTM_TCP_CLOSING; 6056 else 6057 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6058 6059 return (PF_PASS); 6060 } 6061 6062 static int 6063 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6064 { 6065 struct pf_state_key *sk = (*state)->key[pd->didx]; 6066 struct tcphdr *th = &pd->hdr.tcp; 6067 6068 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6069 if (pd->dir != (*state)->direction) { 6070 REASON_SET(reason, PFRES_SYNPROXY); 6071 return (PF_SYNPROXY_DROP); 6072 } 6073 if (th->th_flags & TH_SYN) { 6074 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6075 REASON_SET(reason, PFRES_SYNPROXY); 6076 return (PF_DROP); 6077 } 6078 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6079 pd->src, th->th_dport, th->th_sport, 6080 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6081 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 6082 (*state)->act.rtableid); 6083 REASON_SET(reason, PFRES_SYNPROXY); 6084 return (PF_SYNPROXY_DROP); 6085 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6086 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6087 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6088 REASON_SET(reason, PFRES_SYNPROXY); 6089 return (PF_DROP); 6090 } else if ((*state)->src_node != NULL && 6091 pf_src_connlimit(state)) { 6092 REASON_SET(reason, PFRES_SRCLIMIT); 6093 return (PF_DROP); 6094 } else 6095 pf_set_protostate(*state, PF_PEER_SRC, 6096 PF_TCPS_PROXY_DST); 6097 } 6098 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6099 if (pd->dir == (*state)->direction) { 6100 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6101 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6102 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6103 REASON_SET(reason, PFRES_SYNPROXY); 6104 return (PF_DROP); 6105 } 6106 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6107 if ((*state)->dst.seqhi == 1) 6108 (*state)->dst.seqhi = htonl(arc4random()); 6109 pf_send_tcp((*state)->rule.ptr, pd->af, 6110 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6111 sk->port[pd->sidx], sk->port[pd->didx], 6112 (*state)->dst.seqhi, 0, TH_SYN, 0, 6113 (*state)->src.mss, 0, false, (*state)->tag, 0, 6114 (*state)->act.rtableid); 6115 REASON_SET(reason, PFRES_SYNPROXY); 6116 return (PF_SYNPROXY_DROP); 6117 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6118 (TH_SYN|TH_ACK)) || 6119 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6120 REASON_SET(reason, PFRES_SYNPROXY); 6121 return (PF_DROP); 6122 } else { 6123 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6124 (*state)->dst.seqlo = ntohl(th->th_seq); 6125 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6126 pd->src, th->th_dport, th->th_sport, 6127 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6128 TH_ACK, (*state)->src.max_win, 0, 0, false, 6129 (*state)->tag, 0, (*state)->act.rtableid); 6130 pf_send_tcp((*state)->rule.ptr, pd->af, 6131 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6132 sk->port[pd->sidx], sk->port[pd->didx], 6133 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6134 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 6135 (*state)->act.rtableid); 6136 (*state)->src.seqdiff = (*state)->dst.seqhi - 6137 (*state)->src.seqlo; 6138 (*state)->dst.seqdiff = (*state)->src.seqhi - 6139 (*state)->dst.seqlo; 6140 (*state)->src.seqhi = (*state)->src.seqlo + 6141 (*state)->dst.max_win; 6142 (*state)->dst.seqhi = (*state)->dst.seqlo + 6143 (*state)->src.max_win; 6144 (*state)->src.wscale = (*state)->dst.wscale = 0; 6145 pf_set_protostate(*state, PF_PEER_BOTH, 6146 TCPS_ESTABLISHED); 6147 REASON_SET(reason, PFRES_SYNPROXY); 6148 return (PF_SYNPROXY_DROP); 6149 } 6150 } 6151 6152 return (PF_PASS); 6153 } 6154 6155 static int 6156 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 6157 struct mbuf *m, int off, struct pf_pdesc *pd, 6158 u_short *reason) 6159 { 6160 struct pf_state_key_cmp key; 6161 struct tcphdr *th = &pd->hdr.tcp; 6162 int copyback = 0; 6163 int action; 6164 struct pf_state_peer *src, *dst; 6165 6166 bzero(&key, sizeof(key)); 6167 key.af = pd->af; 6168 key.proto = IPPROTO_TCP; 6169 if (pd->dir == PF_IN) { /* wire side, straight */ 6170 PF_ACPY(&key.addr[0], pd->src, key.af); 6171 PF_ACPY(&key.addr[1], pd->dst, key.af); 6172 key.port[0] = th->th_sport; 6173 key.port[1] = th->th_dport; 6174 } else { /* stack side, reverse */ 6175 PF_ACPY(&key.addr[1], pd->src, key.af); 6176 PF_ACPY(&key.addr[0], pd->dst, key.af); 6177 key.port[1] = th->th_sport; 6178 key.port[0] = th->th_dport; 6179 } 6180 6181 STATE_LOOKUP(kif, &key, *state, pd); 6182 6183 if (pd->dir == (*state)->direction) { 6184 src = &(*state)->src; 6185 dst = &(*state)->dst; 6186 } else { 6187 src = &(*state)->dst; 6188 dst = &(*state)->src; 6189 } 6190 6191 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6192 return (action); 6193 6194 if (dst->state >= TCPS_FIN_WAIT_2 && 6195 src->state >= TCPS_FIN_WAIT_2 && 6196 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6197 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6198 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6199 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6200 printf("pf: state reuse "); 6201 pf_print_state(*state); 6202 pf_print_flags(th->th_flags); 6203 printf("\n"); 6204 } 6205 /* XXX make sure it's the same direction ?? */ 6206 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6207 pf_unlink_state(*state); 6208 *state = NULL; 6209 return (PF_DROP); 6210 } 6211 6212 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6213 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6214 return (PF_DROP); 6215 } else { 6216 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 6217 ©back) == PF_DROP) 6218 return (PF_DROP); 6219 } 6220 6221 /* translate source/destination address, if necessary */ 6222 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6223 struct pf_state_key *nk = (*state)->key[pd->didx]; 6224 6225 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6226 nk->port[pd->sidx] != th->th_sport) 6227 pf_change_ap(m, pd->src, &th->th_sport, 6228 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6229 nk->port[pd->sidx], 0, pd->af); 6230 6231 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6232 nk->port[pd->didx] != th->th_dport) 6233 pf_change_ap(m, pd->dst, &th->th_dport, 6234 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6235 nk->port[pd->didx], 0, pd->af); 6236 copyback = 1; 6237 } 6238 6239 /* Copyback sequence modulation or stateful scrub changes if needed */ 6240 if (copyback) 6241 m_copyback(m, off, sizeof(*th), (caddr_t)th); 6242 6243 return (PF_PASS); 6244 } 6245 6246 static int 6247 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 6248 struct mbuf *m, int off, struct pf_pdesc *pd) 6249 { 6250 struct pf_state_peer *src, *dst; 6251 struct pf_state_key_cmp key; 6252 struct udphdr *uh = &pd->hdr.udp; 6253 uint8_t psrc, pdst; 6254 6255 bzero(&key, sizeof(key)); 6256 key.af = pd->af; 6257 key.proto = IPPROTO_UDP; 6258 if (pd->dir == PF_IN) { /* wire side, straight */ 6259 PF_ACPY(&key.addr[0], pd->src, key.af); 6260 PF_ACPY(&key.addr[1], pd->dst, key.af); 6261 key.port[0] = uh->uh_sport; 6262 key.port[1] = uh->uh_dport; 6263 } else { /* stack side, reverse */ 6264 PF_ACPY(&key.addr[1], pd->src, key.af); 6265 PF_ACPY(&key.addr[0], pd->dst, key.af); 6266 key.port[1] = uh->uh_sport; 6267 key.port[0] = uh->uh_dport; 6268 } 6269 6270 STATE_LOOKUP(kif, &key, *state, pd); 6271 6272 if (pd->dir == (*state)->direction) { 6273 src = &(*state)->src; 6274 dst = &(*state)->dst; 6275 psrc = PF_PEER_SRC; 6276 pdst = PF_PEER_DST; 6277 } else { 6278 src = &(*state)->dst; 6279 dst = &(*state)->src; 6280 psrc = PF_PEER_DST; 6281 pdst = PF_PEER_SRC; 6282 } 6283 6284 /* update states */ 6285 if (src->state < PFUDPS_SINGLE) 6286 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6287 if (dst->state == PFUDPS_SINGLE) 6288 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6289 6290 /* update expire time */ 6291 (*state)->expire = pf_get_uptime(); 6292 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6293 (*state)->timeout = PFTM_UDP_MULTIPLE; 6294 else 6295 (*state)->timeout = PFTM_UDP_SINGLE; 6296 6297 /* translate source/destination address, if necessary */ 6298 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6299 struct pf_state_key *nk = (*state)->key[pd->didx]; 6300 6301 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6302 nk->port[pd->sidx] != uh->uh_sport) 6303 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 6304 &uh->uh_sum, &nk->addr[pd->sidx], 6305 nk->port[pd->sidx], 1, pd->af); 6306 6307 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6308 nk->port[pd->didx] != uh->uh_dport) 6309 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 6310 &uh->uh_sum, &nk->addr[pd->didx], 6311 nk->port[pd->didx], 1, pd->af); 6312 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 6313 } 6314 6315 return (PF_PASS); 6316 } 6317 6318 static int 6319 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 6320 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason) 6321 { 6322 struct pf_state_key_cmp key; 6323 struct pf_state_peer *src, *dst; 6324 struct sctphdr *sh = &pd->hdr.sctp; 6325 u_int8_t psrc; //, pdst; 6326 6327 bzero(&key, sizeof(key)); 6328 key.af = pd->af; 6329 key.proto = IPPROTO_SCTP; 6330 if (pd->dir == PF_IN) { /* wire side, straight */ 6331 PF_ACPY(&key.addr[0], pd->src, key.af); 6332 PF_ACPY(&key.addr[1], pd->dst, key.af); 6333 key.port[0] = sh->src_port; 6334 key.port[1] = sh->dest_port; 6335 } else { /* stack side, reverse */ 6336 PF_ACPY(&key.addr[1], pd->src, key.af); 6337 PF_ACPY(&key.addr[0], pd->dst, key.af); 6338 key.port[1] = sh->src_port; 6339 key.port[0] = sh->dest_port; 6340 } 6341 6342 STATE_LOOKUP(kif, &key, *state, pd); 6343 6344 if (pd->dir == (*state)->direction) { 6345 src = &(*state)->src; 6346 dst = &(*state)->dst; 6347 psrc = PF_PEER_SRC; 6348 } else { 6349 src = &(*state)->dst; 6350 dst = &(*state)->src; 6351 psrc = PF_PEER_DST; 6352 } 6353 6354 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6355 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6356 pd->sctp_flags & PFDESC_SCTP_INIT) { 6357 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6358 pf_unlink_state(*state); 6359 *state = NULL; 6360 return (PF_DROP); 6361 } 6362 6363 /* Track state. */ 6364 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6365 if (src->state < SCTP_COOKIE_WAIT) { 6366 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6367 (*state)->timeout = PFTM_SCTP_OPENING; 6368 } 6369 } 6370 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6371 MPASS(dst->scrub != NULL); 6372 if (dst->scrub->pfss_v_tag == 0) 6373 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6374 } 6375 6376 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6377 if (src->state < SCTP_ESTABLISHED) { 6378 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6379 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6380 } 6381 } 6382 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6383 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6384 if (src->state < SCTP_SHUTDOWN_PENDING) { 6385 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6386 (*state)->timeout = PFTM_SCTP_CLOSING; 6387 } 6388 } 6389 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6390 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6391 (*state)->timeout = PFTM_SCTP_CLOSED; 6392 } 6393 6394 if (src->scrub != NULL) { 6395 if (src->scrub->pfss_v_tag == 0) { 6396 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6397 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6398 return (PF_DROP); 6399 } 6400 6401 (*state)->expire = pf_get_uptime(); 6402 6403 /* translate source/destination address, if necessary */ 6404 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6405 uint16_t checksum = 0; 6406 struct pf_state_key *nk = (*state)->key[pd->didx]; 6407 6408 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6409 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6410 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6411 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6412 nk->port[pd->sidx], 1, pd->af); 6413 } 6414 6415 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6416 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6417 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6418 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6419 nk->port[pd->didx], 1, pd->af); 6420 } 6421 } 6422 6423 return (PF_PASS); 6424 } 6425 6426 static void 6427 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6428 { 6429 struct pf_sctp_endpoint key; 6430 struct pf_sctp_endpoint *ep; 6431 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6432 struct pf_sctp_source *i, *tmp; 6433 6434 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6435 return; 6436 6437 PF_SCTP_ENDPOINTS_LOCK(); 6438 6439 key.v_tag = s->dst.scrub->pfss_v_tag; 6440 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6441 if (ep != NULL) { 6442 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6443 if (pf_addr_cmp(&i->addr, 6444 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6445 s->key[PF_SK_WIRE]->af) == 0) { 6446 SDT_PROBE3(pf, sctp, multihome, remove, 6447 key.v_tag, s, i); 6448 TAILQ_REMOVE(&ep->sources, i, entry); 6449 free(i, M_PFTEMP); 6450 break; 6451 } 6452 } 6453 6454 if (TAILQ_EMPTY(&ep->sources)) { 6455 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6456 free(ep, M_PFTEMP); 6457 } 6458 } 6459 6460 /* Other direction. */ 6461 key.v_tag = s->src.scrub->pfss_v_tag; 6462 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6463 if (ep != NULL) { 6464 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6465 if (pf_addr_cmp(&i->addr, 6466 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6467 s->key[PF_SK_WIRE]->af) == 0) { 6468 SDT_PROBE3(pf, sctp, multihome, remove, 6469 key.v_tag, s, i); 6470 TAILQ_REMOVE(&ep->sources, i, entry); 6471 free(i, M_PFTEMP); 6472 break; 6473 } 6474 } 6475 6476 if (TAILQ_EMPTY(&ep->sources)) { 6477 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6478 free(ep, M_PFTEMP); 6479 } 6480 } 6481 6482 PF_SCTP_ENDPOINTS_UNLOCK(); 6483 } 6484 6485 static void 6486 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6487 { 6488 struct pf_sctp_endpoint key = { 6489 .v_tag = v_tag, 6490 }; 6491 struct pf_sctp_source *i; 6492 struct pf_sctp_endpoint *ep; 6493 6494 PF_SCTP_ENDPOINTS_LOCK(); 6495 6496 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6497 if (ep == NULL) { 6498 ep = malloc(sizeof(struct pf_sctp_endpoint), 6499 M_PFTEMP, M_NOWAIT); 6500 if (ep == NULL) { 6501 PF_SCTP_ENDPOINTS_UNLOCK(); 6502 return; 6503 } 6504 6505 ep->v_tag = v_tag; 6506 TAILQ_INIT(&ep->sources); 6507 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6508 } 6509 6510 /* Avoid inserting duplicates. */ 6511 TAILQ_FOREACH(i, &ep->sources, entry) { 6512 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6513 PF_SCTP_ENDPOINTS_UNLOCK(); 6514 return; 6515 } 6516 } 6517 6518 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6519 if (i == NULL) { 6520 PF_SCTP_ENDPOINTS_UNLOCK(); 6521 return; 6522 } 6523 6524 i->af = pd->af; 6525 memcpy(&i->addr, a, sizeof(*a)); 6526 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6527 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6528 6529 PF_SCTP_ENDPOINTS_UNLOCK(); 6530 } 6531 6532 static void 6533 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6534 struct pf_kstate *s, int action) 6535 { 6536 struct pf_sctp_multihome_job *j, *tmp; 6537 struct pf_sctp_source *i; 6538 int ret __unused; 6539 struct pf_kstate *sm = NULL; 6540 struct pf_krule *ra = NULL; 6541 struct pf_krule *r = &V_pf_default_rule; 6542 struct pf_kruleset *rs = NULL; 6543 bool do_extra = true; 6544 6545 PF_RULES_RLOCK_TRACKER; 6546 6547 again: 6548 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6549 if (s == NULL || action != PF_PASS) 6550 goto free; 6551 6552 /* Confirm we don't recurse here. */ 6553 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6554 6555 switch (j->op) { 6556 case SCTP_ADD_IP_ADDRESS: { 6557 uint32_t v_tag = pd->sctp_initiate_tag; 6558 6559 if (v_tag == 0) { 6560 if (s->direction == pd->dir) 6561 v_tag = s->src.scrub->pfss_v_tag; 6562 else 6563 v_tag = s->dst.scrub->pfss_v_tag; 6564 } 6565 6566 /* 6567 * Avoid duplicating states. We'll already have 6568 * created a state based on the source address of 6569 * the packet, but SCTP endpoints may also list this 6570 * address again in the INIT(_ACK) parameters. 6571 */ 6572 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6573 break; 6574 } 6575 6576 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6577 PF_RULES_RLOCK(); 6578 sm = NULL; 6579 /* 6580 * New connections need to be floating, because 6581 * we cannot know what interfaces it will use. 6582 * That's why we pass V_pfi_all rather than kif. 6583 */ 6584 ret = pf_test_rule(&r, &sm, V_pfi_all, 6585 j->m, off, &j->pd, &ra, &rs, NULL, 6586 sizeof(j->pd.hdr.sctp)); 6587 PF_RULES_RUNLOCK(); 6588 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6589 if (ret != PF_DROP && sm != NULL) { 6590 /* Inherit v_tag values. */ 6591 if (sm->direction == s->direction) { 6592 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6593 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6594 } else { 6595 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6596 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6597 } 6598 PF_STATE_UNLOCK(sm); 6599 } else { 6600 /* If we try duplicate inserts? */ 6601 break; 6602 } 6603 6604 /* Only add the address if we've actually allowed the state. */ 6605 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6606 6607 if (! do_extra) { 6608 break; 6609 } 6610 /* 6611 * We need to do this for each of our source addresses. 6612 * Find those based on the verification tag. 6613 */ 6614 struct pf_sctp_endpoint key = { 6615 .v_tag = pd->hdr.sctp.v_tag, 6616 }; 6617 struct pf_sctp_endpoint *ep; 6618 6619 PF_SCTP_ENDPOINTS_LOCK(); 6620 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6621 if (ep == NULL) { 6622 PF_SCTP_ENDPOINTS_UNLOCK(); 6623 break; 6624 } 6625 MPASS(ep != NULL); 6626 6627 TAILQ_FOREACH(i, &ep->sources, entry) { 6628 struct pf_sctp_multihome_job *nj; 6629 6630 /* SCTP can intermingle IPv4 and IPv6. */ 6631 if (i->af != pd->af) 6632 continue; 6633 6634 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6635 if (! nj) { 6636 continue; 6637 } 6638 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6639 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6640 nj->pd.src = &nj->src; 6641 // New destination address! 6642 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6643 nj->pd.dst = &nj->dst; 6644 nj->m = j->m; 6645 nj->op = j->op; 6646 6647 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6648 } 6649 PF_SCTP_ENDPOINTS_UNLOCK(); 6650 6651 break; 6652 } 6653 case SCTP_DEL_IP_ADDRESS: { 6654 struct pf_state_key_cmp key; 6655 uint8_t psrc; 6656 6657 bzero(&key, sizeof(key)); 6658 key.af = j->pd.af; 6659 key.proto = IPPROTO_SCTP; 6660 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6661 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6662 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6663 key.port[0] = j->pd.hdr.sctp.src_port; 6664 key.port[1] = j->pd.hdr.sctp.dest_port; 6665 } else { /* stack side, reverse */ 6666 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6667 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6668 key.port[1] = j->pd.hdr.sctp.src_port; 6669 key.port[0] = j->pd.hdr.sctp.dest_port; 6670 } 6671 6672 sm = pf_find_state(kif, &key, j->pd.dir); 6673 if (sm != NULL) { 6674 PF_STATE_LOCK_ASSERT(sm); 6675 if (j->pd.dir == sm->direction) { 6676 psrc = PF_PEER_SRC; 6677 } else { 6678 psrc = PF_PEER_DST; 6679 } 6680 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6681 sm->timeout = PFTM_SCTP_CLOSING; 6682 PF_STATE_UNLOCK(sm); 6683 } 6684 break; 6685 default: 6686 panic("Unknown op %#x", j->op); 6687 } 6688 } 6689 6690 free: 6691 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6692 free(j, M_PFTEMP); 6693 } 6694 6695 /* We may have inserted extra work while processing the list. */ 6696 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6697 do_extra = false; 6698 goto again; 6699 } 6700 } 6701 6702 static int 6703 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6704 struct pfi_kkif *kif, int op) 6705 { 6706 int off = 0; 6707 struct pf_sctp_multihome_job *job; 6708 6709 while (off < len) { 6710 struct sctp_paramhdr h; 6711 6712 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6713 pd->af)) 6714 return (PF_DROP); 6715 6716 /* Parameters are at least 4 bytes. */ 6717 if (ntohs(h.param_length) < 4) 6718 return (PF_DROP); 6719 6720 switch (ntohs(h.param_type)) { 6721 case SCTP_IPV4_ADDRESS: { 6722 struct in_addr t; 6723 6724 if (ntohs(h.param_length) != 6725 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6726 return (PF_DROP); 6727 6728 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6729 NULL, NULL, pd->af)) 6730 return (PF_DROP); 6731 6732 if (in_nullhost(t)) 6733 t.s_addr = pd->src->v4.s_addr; 6734 6735 /* 6736 * We hold the state lock (idhash) here, which means 6737 * that we can't acquire the keyhash, or we'll get a 6738 * LOR (and potentially double-lock things too). We also 6739 * can't release the state lock here, so instead we'll 6740 * enqueue this for async handling. 6741 * There's a relatively small race here, in that a 6742 * packet using the new addresses could arrive already, 6743 * but that's just though luck for it. 6744 */ 6745 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6746 if (! job) 6747 return (PF_DROP); 6748 6749 memcpy(&job->pd, pd, sizeof(*pd)); 6750 6751 // New source address! 6752 memcpy(&job->src, &t, sizeof(t)); 6753 job->pd.src = &job->src; 6754 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6755 job->pd.dst = &job->dst; 6756 job->m = m; 6757 job->op = op; 6758 6759 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6760 break; 6761 } 6762 #ifdef INET6 6763 case SCTP_IPV6_ADDRESS: { 6764 struct in6_addr t; 6765 6766 if (ntohs(h.param_length) != 6767 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6768 return (PF_DROP); 6769 6770 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6771 NULL, NULL, pd->af)) 6772 return (PF_DROP); 6773 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6774 break; 6775 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6776 memcpy(&t, &pd->src->v6, sizeof(t)); 6777 6778 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6779 if (! job) 6780 return (PF_DROP); 6781 6782 memcpy(&job->pd, pd, sizeof(*pd)); 6783 memcpy(&job->src, &t, sizeof(t)); 6784 job->pd.src = &job->src; 6785 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6786 job->pd.dst = &job->dst; 6787 job->m = m; 6788 job->op = op; 6789 6790 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6791 break; 6792 } 6793 #endif 6794 case SCTP_ADD_IP_ADDRESS: { 6795 int ret; 6796 struct sctp_asconf_paramhdr ah; 6797 6798 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6799 NULL, NULL, pd->af)) 6800 return (PF_DROP); 6801 6802 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6803 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6804 SCTP_ADD_IP_ADDRESS); 6805 if (ret != PF_PASS) 6806 return (ret); 6807 break; 6808 } 6809 case SCTP_DEL_IP_ADDRESS: { 6810 int ret; 6811 struct sctp_asconf_paramhdr ah; 6812 6813 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6814 NULL, NULL, pd->af)) 6815 return (PF_DROP); 6816 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6817 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6818 SCTP_DEL_IP_ADDRESS); 6819 if (ret != PF_PASS) 6820 return (ret); 6821 break; 6822 } 6823 default: 6824 break; 6825 } 6826 6827 off += roundup(ntohs(h.param_length), 4); 6828 } 6829 6830 return (PF_PASS); 6831 } 6832 int 6833 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6834 struct pfi_kkif *kif) 6835 { 6836 start += sizeof(struct sctp_init_chunk); 6837 len -= sizeof(struct sctp_init_chunk); 6838 6839 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6840 } 6841 6842 int 6843 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6844 struct pf_pdesc *pd, struct pfi_kkif *kif) 6845 { 6846 start += sizeof(struct sctp_asconf_chunk); 6847 len -= sizeof(struct sctp_asconf_chunk); 6848 6849 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6850 } 6851 6852 int 6853 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6854 struct pf_kstate **state, struct mbuf *m, int off, int direction, 6855 struct pfi_kkif *kif, u_int16_t icmpid, u_int16_t type, int icmp_dir, 6856 int *iidx, int multi, int inner) 6857 { 6858 key->af = pd->af; 6859 key->proto = pd->proto; 6860 if (icmp_dir == PF_IN) { 6861 *iidx = pd->sidx; 6862 key->port[pd->sidx] = icmpid; 6863 key->port[pd->didx] = type; 6864 } else { 6865 *iidx = pd->didx; 6866 key->port[pd->sidx] = type; 6867 key->port[pd->didx] = icmpid; 6868 } 6869 if (pf_state_key_addr_setup(pd, m, off, key, pd->sidx, pd->src, 6870 pd->didx, pd->dst, multi)) 6871 return (PF_DROP); 6872 6873 STATE_LOOKUP(kif, key, *state, pd); 6874 6875 if ((*state)->state_flags & PFSTATE_SLOPPY) 6876 return (-1); 6877 6878 /* Is this ICMP message flowing in right direction? */ 6879 if ((*state)->rule.ptr->type && 6880 (((!inner && (*state)->direction == direction) || 6881 (inner && (*state)->direction != direction)) ? 6882 PF_IN : PF_OUT) != icmp_dir) { 6883 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6884 printf("pf: icmp type %d in wrong direction (%d): ", 6885 ntohs(type), icmp_dir); 6886 pf_print_state(*state); 6887 printf("\n"); 6888 } 6889 PF_STATE_UNLOCK(*state); 6890 *state = NULL; 6891 return (PF_DROP); 6892 } 6893 return (-1); 6894 } 6895 6896 static int 6897 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6898 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason) 6899 { 6900 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6901 u_int16_t *icmpsum, virtual_id, virtual_type; 6902 u_int8_t icmptype, icmpcode; 6903 int icmp_dir, iidx, ret, multi; 6904 struct pf_state_key_cmp key; 6905 #ifdef INET 6906 u_int16_t icmpid; 6907 #endif 6908 6909 MPASS(*state == NULL); 6910 6911 bzero(&key, sizeof(key)); 6912 switch (pd->proto) { 6913 #ifdef INET 6914 case IPPROTO_ICMP: 6915 icmptype = pd->hdr.icmp.icmp_type; 6916 icmpcode = pd->hdr.icmp.icmp_code; 6917 icmpid = pd->hdr.icmp.icmp_id; 6918 icmpsum = &pd->hdr.icmp.icmp_cksum; 6919 break; 6920 #endif /* INET */ 6921 #ifdef INET6 6922 case IPPROTO_ICMPV6: 6923 icmptype = pd->hdr.icmp6.icmp6_type; 6924 icmpcode = pd->hdr.icmp6.icmp6_code; 6925 #ifdef INET 6926 icmpid = pd->hdr.icmp6.icmp6_id; 6927 #endif 6928 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6929 break; 6930 #endif /* INET6 */ 6931 } 6932 6933 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6934 &virtual_id, &virtual_type) == 0) { 6935 /* 6936 * ICMP query/reply message not related to a TCP/UDP packet. 6937 * Search for an ICMP state. 6938 */ 6939 ret = pf_icmp_state_lookup(&key, pd, state, m, off, pd->dir, 6940 kif, virtual_id, virtual_type, icmp_dir, &iidx, 6941 PF_ICMP_MULTI_NONE, 0); 6942 if (ret >= 0) { 6943 MPASS(*state == NULL); 6944 if (ret == PF_DROP && pd->af == AF_INET6 && 6945 icmp_dir == PF_OUT) { 6946 ret = pf_icmp_state_lookup(&key, pd, state, m, off, 6947 pd->dir, kif, virtual_id, virtual_type, 6948 icmp_dir, &iidx, multi, 0); 6949 if (ret >= 0) { 6950 MPASS(*state == NULL); 6951 return (ret); 6952 } 6953 } else 6954 return (ret); 6955 } 6956 6957 (*state)->expire = pf_get_uptime(); 6958 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6959 6960 /* translate source/destination address, if necessary */ 6961 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6962 struct pf_state_key *nk = (*state)->key[pd->didx]; 6963 6964 switch (pd->af) { 6965 #ifdef INET 6966 case AF_INET: 6967 if (PF_ANEQ(pd->src, 6968 &nk->addr[pd->sidx], AF_INET)) 6969 pf_change_a(&saddr->v4.s_addr, 6970 pd->ip_sum, 6971 nk->addr[pd->sidx].v4.s_addr, 0); 6972 6973 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6974 AF_INET)) 6975 pf_change_a(&daddr->v4.s_addr, 6976 pd->ip_sum, 6977 nk->addr[pd->didx].v4.s_addr, 0); 6978 6979 if (nk->port[iidx] != 6980 pd->hdr.icmp.icmp_id) { 6981 pd->hdr.icmp.icmp_cksum = 6982 pf_cksum_fixup( 6983 pd->hdr.icmp.icmp_cksum, icmpid, 6984 nk->port[iidx], 0); 6985 pd->hdr.icmp.icmp_id = 6986 nk->port[iidx]; 6987 } 6988 6989 m_copyback(m, off, ICMP_MINLEN, 6990 (caddr_t )&pd->hdr.icmp); 6991 break; 6992 #endif /* INET */ 6993 #ifdef INET6 6994 case AF_INET6: 6995 if (PF_ANEQ(pd->src, 6996 &nk->addr[pd->sidx], AF_INET6)) 6997 pf_change_a6(saddr, 6998 &pd->hdr.icmp6.icmp6_cksum, 6999 &nk->addr[pd->sidx], 0); 7000 7001 if (PF_ANEQ(pd->dst, 7002 &nk->addr[pd->didx], AF_INET6)) 7003 pf_change_a6(daddr, 7004 &pd->hdr.icmp6.icmp6_cksum, 7005 &nk->addr[pd->didx], 0); 7006 7007 m_copyback(m, off, sizeof(struct icmp6_hdr), 7008 (caddr_t )&pd->hdr.icmp6); 7009 break; 7010 #endif /* INET6 */ 7011 } 7012 } 7013 return (PF_PASS); 7014 7015 } else { 7016 /* 7017 * ICMP error message in response to a TCP/UDP packet. 7018 * Extract the inner TCP/UDP header and search for that state. 7019 */ 7020 7021 struct pf_pdesc pd2; 7022 bzero(&pd2, sizeof pd2); 7023 #ifdef INET 7024 struct ip h2; 7025 #endif /* INET */ 7026 #ifdef INET6 7027 struct ip6_hdr h2_6; 7028 int terminal = 0; 7029 #endif /* INET6 */ 7030 int ipoff2 = 0; 7031 int off2 = 0; 7032 7033 pd2.af = pd->af; 7034 pd2.dir = pd->dir; 7035 /* Payload packet is from the opposite direction. */ 7036 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7037 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7038 switch (pd->af) { 7039 #ifdef INET 7040 case AF_INET: 7041 /* offset of h2 in mbuf chain */ 7042 ipoff2 = off + ICMP_MINLEN; 7043 7044 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 7045 NULL, reason, pd2.af)) { 7046 DPFPRINTF(PF_DEBUG_MISC, 7047 ("pf: ICMP error message too short " 7048 "(ip)\n")); 7049 return (PF_DROP); 7050 } 7051 /* 7052 * ICMP error messages don't refer to non-first 7053 * fragments 7054 */ 7055 if (h2.ip_off & htons(IP_OFFMASK)) { 7056 REASON_SET(reason, PFRES_FRAG); 7057 return (PF_DROP); 7058 } 7059 7060 /* offset of protocol header that follows h2 */ 7061 off2 = ipoff2 + (h2.ip_hl << 2); 7062 7063 pd2.proto = h2.ip_p; 7064 pd2.src = (struct pf_addr *)&h2.ip_src; 7065 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7066 pd2.ip_sum = &h2.ip_sum; 7067 break; 7068 #endif /* INET */ 7069 #ifdef INET6 7070 case AF_INET6: 7071 ipoff2 = off + sizeof(struct icmp6_hdr); 7072 7073 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 7074 NULL, reason, pd2.af)) { 7075 DPFPRINTF(PF_DEBUG_MISC, 7076 ("pf: ICMP error message too short " 7077 "(ip6)\n")); 7078 return (PF_DROP); 7079 } 7080 pd2.proto = h2_6.ip6_nxt; 7081 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7082 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7083 pd2.ip_sum = NULL; 7084 off2 = ipoff2 + sizeof(h2_6); 7085 do { 7086 switch (pd2.proto) { 7087 case IPPROTO_FRAGMENT: 7088 /* 7089 * ICMPv6 error messages for 7090 * non-first fragments 7091 */ 7092 REASON_SET(reason, PFRES_FRAG); 7093 return (PF_DROP); 7094 case IPPROTO_AH: 7095 case IPPROTO_HOPOPTS: 7096 case IPPROTO_ROUTING: 7097 case IPPROTO_DSTOPTS: { 7098 /* get next header and header length */ 7099 struct ip6_ext opt6; 7100 7101 if (!pf_pull_hdr(m, off2, &opt6, 7102 sizeof(opt6), NULL, reason, 7103 pd2.af)) { 7104 DPFPRINTF(PF_DEBUG_MISC, 7105 ("pf: ICMPv6 short opt\n")); 7106 return (PF_DROP); 7107 } 7108 if (pd2.proto == IPPROTO_AH) 7109 off2 += (opt6.ip6e_len + 2) * 4; 7110 else 7111 off2 += (opt6.ip6e_len + 1) * 8; 7112 pd2.proto = opt6.ip6e_nxt; 7113 /* goto the next header */ 7114 break; 7115 } 7116 default: 7117 terminal++; 7118 break; 7119 } 7120 } while (!terminal); 7121 break; 7122 #endif /* INET6 */ 7123 } 7124 7125 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7126 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7127 printf("pf: BAD ICMP %d:%d outer dst: ", 7128 icmptype, icmpcode); 7129 pf_print_host(pd->src, 0, pd->af); 7130 printf(" -> "); 7131 pf_print_host(pd->dst, 0, pd->af); 7132 printf(" inner src: "); 7133 pf_print_host(pd2.src, 0, pd2.af); 7134 printf(" -> "); 7135 pf_print_host(pd2.dst, 0, pd2.af); 7136 printf("\n"); 7137 } 7138 REASON_SET(reason, PFRES_BADSTATE); 7139 return (PF_DROP); 7140 } 7141 7142 switch (pd2.proto) { 7143 case IPPROTO_TCP: { 7144 struct tcphdr th; 7145 u_int32_t seq; 7146 struct pf_state_peer *src, *dst; 7147 u_int8_t dws; 7148 int copyback = 0; 7149 7150 /* 7151 * Only the first 8 bytes of the TCP header can be 7152 * expected. Don't access any TCP header fields after 7153 * th_seq, an ackskew test is not possible. 7154 */ 7155 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 7156 pd2.af)) { 7157 DPFPRINTF(PF_DEBUG_MISC, 7158 ("pf: ICMP error message too short " 7159 "(tcp)\n")); 7160 return (PF_DROP); 7161 } 7162 7163 key.af = pd2.af; 7164 key.proto = IPPROTO_TCP; 7165 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7166 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7167 key.port[pd2.sidx] = th.th_sport; 7168 key.port[pd2.didx] = th.th_dport; 7169 7170 STATE_LOOKUP(kif, &key, *state, pd); 7171 7172 if (pd->dir == (*state)->direction) { 7173 src = &(*state)->dst; 7174 dst = &(*state)->src; 7175 } else { 7176 src = &(*state)->src; 7177 dst = &(*state)->dst; 7178 } 7179 7180 if (src->wscale && dst->wscale) 7181 dws = dst->wscale & PF_WSCALE_MASK; 7182 else 7183 dws = 0; 7184 7185 /* Demodulate sequence number */ 7186 seq = ntohl(th.th_seq) - src->seqdiff; 7187 if (src->seqdiff) { 7188 pf_change_a(&th.th_seq, icmpsum, 7189 htonl(seq), 0); 7190 copyback = 1; 7191 } 7192 7193 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7194 (!SEQ_GEQ(src->seqhi, seq) || 7195 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7196 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7197 printf("pf: BAD ICMP %d:%d ", 7198 icmptype, icmpcode); 7199 pf_print_host(pd->src, 0, pd->af); 7200 printf(" -> "); 7201 pf_print_host(pd->dst, 0, pd->af); 7202 printf(" state: "); 7203 pf_print_state(*state); 7204 printf(" seq=%u\n", seq); 7205 } 7206 REASON_SET(reason, PFRES_BADSTATE); 7207 return (PF_DROP); 7208 } else { 7209 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7210 printf("pf: OK ICMP %d:%d ", 7211 icmptype, icmpcode); 7212 pf_print_host(pd->src, 0, pd->af); 7213 printf(" -> "); 7214 pf_print_host(pd->dst, 0, pd->af); 7215 printf(" state: "); 7216 pf_print_state(*state); 7217 printf(" seq=%u\n", seq); 7218 } 7219 } 7220 7221 /* translate source/destination address, if necessary */ 7222 if ((*state)->key[PF_SK_WIRE] != 7223 (*state)->key[PF_SK_STACK]) { 7224 struct pf_state_key *nk = 7225 (*state)->key[pd->didx]; 7226 7227 if (PF_ANEQ(pd2.src, 7228 &nk->addr[pd2.sidx], pd2.af) || 7229 nk->port[pd2.sidx] != th.th_sport) 7230 pf_change_icmp(pd2.src, &th.th_sport, 7231 daddr, &nk->addr[pd2.sidx], 7232 nk->port[pd2.sidx], NULL, 7233 pd2.ip_sum, icmpsum, 7234 pd->ip_sum, 0, pd2.af); 7235 7236 if (PF_ANEQ(pd2.dst, 7237 &nk->addr[pd2.didx], pd2.af) || 7238 nk->port[pd2.didx] != th.th_dport) 7239 pf_change_icmp(pd2.dst, &th.th_dport, 7240 saddr, &nk->addr[pd2.didx], 7241 nk->port[pd2.didx], NULL, 7242 pd2.ip_sum, icmpsum, 7243 pd->ip_sum, 0, pd2.af); 7244 copyback = 1; 7245 } 7246 7247 if (copyback) { 7248 switch (pd2.af) { 7249 #ifdef INET 7250 case AF_INET: 7251 m_copyback(m, off, ICMP_MINLEN, 7252 (caddr_t )&pd->hdr.icmp); 7253 m_copyback(m, ipoff2, sizeof(h2), 7254 (caddr_t )&h2); 7255 break; 7256 #endif /* INET */ 7257 #ifdef INET6 7258 case AF_INET6: 7259 m_copyback(m, off, 7260 sizeof(struct icmp6_hdr), 7261 (caddr_t )&pd->hdr.icmp6); 7262 m_copyback(m, ipoff2, sizeof(h2_6), 7263 (caddr_t )&h2_6); 7264 break; 7265 #endif /* INET6 */ 7266 } 7267 m_copyback(m, off2, 8, (caddr_t)&th); 7268 } 7269 7270 return (PF_PASS); 7271 break; 7272 } 7273 case IPPROTO_UDP: { 7274 struct udphdr uh; 7275 7276 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 7277 NULL, reason, pd2.af)) { 7278 DPFPRINTF(PF_DEBUG_MISC, 7279 ("pf: ICMP error message too short " 7280 "(udp)\n")); 7281 return (PF_DROP); 7282 } 7283 7284 key.af = pd2.af; 7285 key.proto = IPPROTO_UDP; 7286 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7287 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7288 key.port[pd2.sidx] = uh.uh_sport; 7289 key.port[pd2.didx] = uh.uh_dport; 7290 7291 STATE_LOOKUP(kif, &key, *state, pd); 7292 7293 /* translate source/destination address, if necessary */ 7294 if ((*state)->key[PF_SK_WIRE] != 7295 (*state)->key[PF_SK_STACK]) { 7296 struct pf_state_key *nk = 7297 (*state)->key[pd->didx]; 7298 7299 if (PF_ANEQ(pd2.src, 7300 &nk->addr[pd2.sidx], pd2.af) || 7301 nk->port[pd2.sidx] != uh.uh_sport) 7302 pf_change_icmp(pd2.src, &uh.uh_sport, 7303 daddr, &nk->addr[pd2.sidx], 7304 nk->port[pd2.sidx], &uh.uh_sum, 7305 pd2.ip_sum, icmpsum, 7306 pd->ip_sum, 1, pd2.af); 7307 7308 if (PF_ANEQ(pd2.dst, 7309 &nk->addr[pd2.didx], pd2.af) || 7310 nk->port[pd2.didx] != uh.uh_dport) 7311 pf_change_icmp(pd2.dst, &uh.uh_dport, 7312 saddr, &nk->addr[pd2.didx], 7313 nk->port[pd2.didx], &uh.uh_sum, 7314 pd2.ip_sum, icmpsum, 7315 pd->ip_sum, 1, pd2.af); 7316 7317 switch (pd2.af) { 7318 #ifdef INET 7319 case AF_INET: 7320 m_copyback(m, off, ICMP_MINLEN, 7321 (caddr_t )&pd->hdr.icmp); 7322 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7323 break; 7324 #endif /* INET */ 7325 #ifdef INET6 7326 case AF_INET6: 7327 m_copyback(m, off, 7328 sizeof(struct icmp6_hdr), 7329 (caddr_t )&pd->hdr.icmp6); 7330 m_copyback(m, ipoff2, sizeof(h2_6), 7331 (caddr_t )&h2_6); 7332 break; 7333 #endif /* INET6 */ 7334 } 7335 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 7336 } 7337 return (PF_PASS); 7338 break; 7339 } 7340 #ifdef INET 7341 case IPPROTO_ICMP: { 7342 struct icmp *iih = &pd2.hdr.icmp; 7343 7344 if (!pf_pull_hdr(m, off2, iih, ICMP_MINLEN, 7345 NULL, reason, pd2.af)) { 7346 DPFPRINTF(PF_DEBUG_MISC, 7347 ("pf: ICMP error message too short i" 7348 "(icmp)\n")); 7349 return (PF_DROP); 7350 } 7351 7352 icmpid = iih->icmp_id; 7353 pf_icmp_mapping(&pd2, iih->icmp_type, 7354 &icmp_dir, &multi, &virtual_id, &virtual_type); 7355 7356 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7357 pd2.dir, kif, virtual_id, virtual_type, 7358 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7359 if (ret >= 0) { 7360 MPASS(*state == NULL); 7361 return (ret); 7362 } 7363 7364 /* translate source/destination address, if necessary */ 7365 if ((*state)->key[PF_SK_WIRE] != 7366 (*state)->key[PF_SK_STACK]) { 7367 struct pf_state_key *nk = 7368 (*state)->key[pd->didx]; 7369 7370 if (PF_ANEQ(pd2.src, 7371 &nk->addr[pd2.sidx], pd2.af) || 7372 (virtual_type == htons(ICMP_ECHO) && 7373 nk->port[iidx] != iih->icmp_id)) 7374 pf_change_icmp(pd2.src, 7375 (virtual_type == htons(ICMP_ECHO)) ? 7376 &iih->icmp_id : NULL, 7377 daddr, &nk->addr[pd2.sidx], 7378 (virtual_type == htons(ICMP_ECHO)) ? 7379 nk->port[iidx] : 0, NULL, 7380 pd2.ip_sum, icmpsum, 7381 pd->ip_sum, 0, AF_INET); 7382 7383 if (PF_ANEQ(pd2.dst, 7384 &nk->addr[pd2.didx], pd2.af)) 7385 pf_change_icmp(pd2.dst, NULL, NULL, 7386 &nk->addr[pd2.didx], 0, NULL, 7387 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7388 AF_INET); 7389 7390 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7391 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7392 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)iih); 7393 } 7394 return (PF_PASS); 7395 break; 7396 } 7397 #endif /* INET */ 7398 #ifdef INET6 7399 case IPPROTO_ICMPV6: { 7400 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7401 7402 if (!pf_pull_hdr(m, off2, iih, 7403 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7404 DPFPRINTF(PF_DEBUG_MISC, 7405 ("pf: ICMP error message too short " 7406 "(icmp6)\n")); 7407 return (PF_DROP); 7408 } 7409 7410 pf_icmp_mapping(&pd2, iih->icmp6_type, 7411 &icmp_dir, &multi, &virtual_id, &virtual_type); 7412 7413 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7414 pd->dir, kif, virtual_id, virtual_type, 7415 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7416 if (ret >= 0) { 7417 MPASS(*state == NULL); 7418 if (ret == PF_DROP && pd2.af == AF_INET6 && 7419 icmp_dir == PF_OUT) { 7420 ret = pf_icmp_state_lookup(&key, &pd2, 7421 state, m, off, pd->dir, kif, 7422 virtual_id, virtual_type, 7423 icmp_dir, &iidx, multi, 1); 7424 if (ret >= 0) { 7425 MPASS(*state == NULL); 7426 return (ret); 7427 } 7428 } else 7429 return (ret); 7430 } 7431 7432 /* translate source/destination address, if necessary */ 7433 if ((*state)->key[PF_SK_WIRE] != 7434 (*state)->key[PF_SK_STACK]) { 7435 struct pf_state_key *nk = 7436 (*state)->key[pd->didx]; 7437 7438 if (PF_ANEQ(pd2.src, 7439 &nk->addr[pd2.sidx], pd2.af) || 7440 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7441 nk->port[pd2.sidx] != iih->icmp6_id)) 7442 pf_change_icmp(pd2.src, 7443 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7444 ? &iih->icmp6_id : NULL, 7445 daddr, &nk->addr[pd2.sidx], 7446 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7447 ? nk->port[iidx] : 0, NULL, 7448 pd2.ip_sum, icmpsum, 7449 pd->ip_sum, 0, AF_INET6); 7450 7451 if (PF_ANEQ(pd2.dst, 7452 &nk->addr[pd2.didx], pd2.af)) 7453 pf_change_icmp(pd2.dst, NULL, NULL, 7454 &nk->addr[pd2.didx], 0, NULL, 7455 pd2.ip_sum, icmpsum, 7456 pd->ip_sum, 0, AF_INET6); 7457 7458 m_copyback(m, off, sizeof(struct icmp6_hdr), 7459 (caddr_t)&pd->hdr.icmp6); 7460 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7461 m_copyback(m, off2, sizeof(struct icmp6_hdr), 7462 (caddr_t)iih); 7463 } 7464 return (PF_PASS); 7465 break; 7466 } 7467 #endif /* INET6 */ 7468 default: { 7469 key.af = pd2.af; 7470 key.proto = pd2.proto; 7471 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7472 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7473 key.port[0] = key.port[1] = 0; 7474 7475 STATE_LOOKUP(kif, &key, *state, pd); 7476 7477 /* translate source/destination address, if necessary */ 7478 if ((*state)->key[PF_SK_WIRE] != 7479 (*state)->key[PF_SK_STACK]) { 7480 struct pf_state_key *nk = 7481 (*state)->key[pd->didx]; 7482 7483 if (PF_ANEQ(pd2.src, 7484 &nk->addr[pd2.sidx], pd2.af)) 7485 pf_change_icmp(pd2.src, NULL, daddr, 7486 &nk->addr[pd2.sidx], 0, NULL, 7487 pd2.ip_sum, icmpsum, 7488 pd->ip_sum, 0, pd2.af); 7489 7490 if (PF_ANEQ(pd2.dst, 7491 &nk->addr[pd2.didx], pd2.af)) 7492 pf_change_icmp(pd2.dst, NULL, saddr, 7493 &nk->addr[pd2.didx], 0, NULL, 7494 pd2.ip_sum, icmpsum, 7495 pd->ip_sum, 0, pd2.af); 7496 7497 switch (pd2.af) { 7498 #ifdef INET 7499 case AF_INET: 7500 m_copyback(m, off, ICMP_MINLEN, 7501 (caddr_t)&pd->hdr.icmp); 7502 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7503 break; 7504 #endif /* INET */ 7505 #ifdef INET6 7506 case AF_INET6: 7507 m_copyback(m, off, 7508 sizeof(struct icmp6_hdr), 7509 (caddr_t )&pd->hdr.icmp6); 7510 m_copyback(m, ipoff2, sizeof(h2_6), 7511 (caddr_t )&h2_6); 7512 break; 7513 #endif /* INET6 */ 7514 } 7515 } 7516 return (PF_PASS); 7517 break; 7518 } 7519 } 7520 } 7521 } 7522 7523 static int 7524 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7525 struct mbuf *m, struct pf_pdesc *pd) 7526 { 7527 struct pf_state_peer *src, *dst; 7528 struct pf_state_key_cmp key; 7529 uint8_t psrc, pdst; 7530 7531 bzero(&key, sizeof(key)); 7532 key.af = pd->af; 7533 key.proto = pd->proto; 7534 if (pd->dir == PF_IN) { 7535 PF_ACPY(&key.addr[0], pd->src, key.af); 7536 PF_ACPY(&key.addr[1], pd->dst, key.af); 7537 key.port[0] = key.port[1] = 0; 7538 } else { 7539 PF_ACPY(&key.addr[1], pd->src, key.af); 7540 PF_ACPY(&key.addr[0], pd->dst, key.af); 7541 key.port[1] = key.port[0] = 0; 7542 } 7543 7544 STATE_LOOKUP(kif, &key, *state, pd); 7545 7546 if (pd->dir == (*state)->direction) { 7547 src = &(*state)->src; 7548 dst = &(*state)->dst; 7549 psrc = PF_PEER_SRC; 7550 pdst = PF_PEER_DST; 7551 } else { 7552 src = &(*state)->dst; 7553 dst = &(*state)->src; 7554 psrc = PF_PEER_DST; 7555 pdst = PF_PEER_SRC; 7556 } 7557 7558 /* update states */ 7559 if (src->state < PFOTHERS_SINGLE) 7560 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7561 if (dst->state == PFOTHERS_SINGLE) 7562 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7563 7564 /* update expire time */ 7565 (*state)->expire = pf_get_uptime(); 7566 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7567 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7568 else 7569 (*state)->timeout = PFTM_OTHER_SINGLE; 7570 7571 /* translate source/destination address, if necessary */ 7572 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7573 struct pf_state_key *nk = (*state)->key[pd->didx]; 7574 7575 KASSERT(nk, ("%s: nk is null", __func__)); 7576 KASSERT(pd, ("%s: pd is null", __func__)); 7577 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7578 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7579 switch (pd->af) { 7580 #ifdef INET 7581 case AF_INET: 7582 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7583 pf_change_a(&pd->src->v4.s_addr, 7584 pd->ip_sum, 7585 nk->addr[pd->sidx].v4.s_addr, 7586 0); 7587 7588 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7589 pf_change_a(&pd->dst->v4.s_addr, 7590 pd->ip_sum, 7591 nk->addr[pd->didx].v4.s_addr, 7592 0); 7593 7594 break; 7595 #endif /* INET */ 7596 #ifdef INET6 7597 case AF_INET6: 7598 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7599 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7600 7601 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7602 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7603 #endif /* INET6 */ 7604 } 7605 } 7606 return (PF_PASS); 7607 } 7608 7609 /* 7610 * ipoff and off are measured from the start of the mbuf chain. 7611 * h must be at "ipoff" on the mbuf chain. 7612 */ 7613 void * 7614 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7615 u_short *actionp, u_short *reasonp, sa_family_t af) 7616 { 7617 switch (af) { 7618 #ifdef INET 7619 case AF_INET: { 7620 const struct ip *h = mtod(m, struct ip *); 7621 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7622 7623 if (fragoff) { 7624 if (fragoff >= len) 7625 ACTION_SET(actionp, PF_PASS); 7626 else { 7627 ACTION_SET(actionp, PF_DROP); 7628 REASON_SET(reasonp, PFRES_FRAG); 7629 } 7630 return (NULL); 7631 } 7632 if (m->m_pkthdr.len < off + len || 7633 ntohs(h->ip_len) < off + len) { 7634 ACTION_SET(actionp, PF_DROP); 7635 REASON_SET(reasonp, PFRES_SHORT); 7636 return (NULL); 7637 } 7638 break; 7639 } 7640 #endif /* INET */ 7641 #ifdef INET6 7642 case AF_INET6: { 7643 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7644 7645 if (m->m_pkthdr.len < off + len || 7646 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7647 (unsigned)(off + len)) { 7648 ACTION_SET(actionp, PF_DROP); 7649 REASON_SET(reasonp, PFRES_SHORT); 7650 return (NULL); 7651 } 7652 break; 7653 } 7654 #endif /* INET6 */ 7655 } 7656 m_copydata(m, off, len, p); 7657 return (p); 7658 } 7659 7660 int 7661 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7662 int rtableid) 7663 { 7664 struct ifnet *ifp; 7665 7666 /* 7667 * Skip check for addresses with embedded interface scope, 7668 * as they would always match anyway. 7669 */ 7670 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7671 return (1); 7672 7673 if (af != AF_INET && af != AF_INET6) 7674 return (0); 7675 7676 if (kif == V_pfi_all) 7677 return (1); 7678 7679 /* Skip checks for ipsec interfaces */ 7680 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7681 return (1); 7682 7683 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7684 7685 switch (af) { 7686 #ifdef INET6 7687 case AF_INET6: 7688 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7689 ifp)); 7690 #endif 7691 #ifdef INET 7692 case AF_INET: 7693 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7694 ifp)); 7695 #endif 7696 } 7697 7698 return (0); 7699 } 7700 7701 #ifdef INET 7702 static void 7703 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7704 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7705 { 7706 struct mbuf *m0, *m1, *md; 7707 struct sockaddr_in dst; 7708 struct ip *ip; 7709 struct pfi_kkif *nkif = NULL; 7710 struct ifnet *ifp = NULL; 7711 struct pf_addr naddr; 7712 int error = 0; 7713 uint16_t ip_len, ip_off; 7714 uint16_t tmp; 7715 int r_rt, r_dir; 7716 7717 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7718 7719 if (s) { 7720 r_rt = s->rt; 7721 r_dir = s->direction; 7722 } else { 7723 r_rt = r->rt; 7724 r_dir = r->direction; 7725 } 7726 7727 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7728 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7729 __func__)); 7730 7731 if ((pd->pf_mtag == NULL && 7732 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7733 pd->pf_mtag->routed++ > 3) { 7734 m0 = *m; 7735 *m = NULL; 7736 goto bad_locked; 7737 } 7738 7739 if (r_rt == PF_DUPTO) { 7740 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7741 if (s == NULL) { 7742 ifp = r->rpool.cur->kif ? 7743 r->rpool.cur->kif->pfik_ifp : NULL; 7744 } else { 7745 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7746 /* If pfsync'd */ 7747 if (ifp == NULL && r->rpool.cur != NULL) 7748 ifp = r->rpool.cur->kif ? 7749 r->rpool.cur->kif->pfik_ifp : NULL; 7750 PF_STATE_UNLOCK(s); 7751 } 7752 if (ifp == oifp) { 7753 /* When the 2nd interface is not skipped */ 7754 return; 7755 } else { 7756 m0 = *m; 7757 *m = NULL; 7758 goto bad; 7759 } 7760 } else { 7761 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7762 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7763 if (s) 7764 PF_STATE_UNLOCK(s); 7765 return; 7766 } 7767 } 7768 } else { 7769 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7770 pf_dummynet(pd, s, r, m); 7771 if (s) 7772 PF_STATE_UNLOCK(s); 7773 return; 7774 } 7775 m0 = *m; 7776 } 7777 7778 ip = mtod(m0, struct ip *); 7779 7780 bzero(&dst, sizeof(dst)); 7781 dst.sin_family = AF_INET; 7782 dst.sin_len = sizeof(dst); 7783 dst.sin_addr = ip->ip_dst; 7784 7785 bzero(&naddr, sizeof(naddr)); 7786 7787 if (s == NULL) { 7788 if (TAILQ_EMPTY(&r->rpool.list)) { 7789 DPFPRINTF(PF_DEBUG_URGENT, 7790 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7791 goto bad_locked; 7792 } 7793 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7794 &naddr, &nkif, NULL); 7795 if (!PF_AZERO(&naddr, AF_INET)) 7796 dst.sin_addr.s_addr = naddr.v4.s_addr; 7797 ifp = nkif ? nkif->pfik_ifp : NULL; 7798 } else { 7799 struct pfi_kkif *kif; 7800 7801 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7802 dst.sin_addr.s_addr = 7803 s->rt_addr.v4.s_addr; 7804 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7805 kif = s->rt_kif; 7806 /* If pfsync'd */ 7807 if (ifp == NULL && r->rpool.cur != NULL) { 7808 ifp = r->rpool.cur->kif ? 7809 r->rpool.cur->kif->pfik_ifp : NULL; 7810 kif = r->rpool.cur->kif; 7811 } 7812 if (ifp != NULL && kif != NULL && 7813 r->rule_flag & PFRULE_IFBOUND && 7814 r->rt == PF_REPLYTO && 7815 s->kif == V_pfi_all) { 7816 s->kif = kif; 7817 s->orig_kif = oifp->if_pf_kif; 7818 } 7819 7820 PF_STATE_UNLOCK(s); 7821 } 7822 7823 if (ifp == NULL) 7824 goto bad; 7825 7826 if (pd->dir == PF_IN) { 7827 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7828 &pd->act) != PF_PASS) 7829 goto bad; 7830 else if (m0 == NULL) 7831 goto done; 7832 if (m0->m_len < sizeof(struct ip)) { 7833 DPFPRINTF(PF_DEBUG_URGENT, 7834 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7835 goto bad; 7836 } 7837 ip = mtod(m0, struct ip *); 7838 } 7839 7840 if (ifp->if_flags & IFF_LOOPBACK) 7841 m0->m_flags |= M_SKIP_FIREWALL; 7842 7843 ip_len = ntohs(ip->ip_len); 7844 ip_off = ntohs(ip->ip_off); 7845 7846 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7847 m0->m_pkthdr.csum_flags |= CSUM_IP; 7848 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7849 in_delayed_cksum(m0); 7850 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7851 } 7852 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7853 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7854 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7855 } 7856 7857 if (pd->dir == PF_IN) { 7858 /* 7859 * Make sure dummynet gets the correct direction, in case it needs to 7860 * re-inject later. 7861 */ 7862 pd->dir = PF_OUT; 7863 7864 /* 7865 * The following processing is actually the rest of the inbound processing, even 7866 * though we've marked it as outbound (so we don't look through dummynet) and it 7867 * happens after the outbound processing (pf_test(PF_OUT) above). 7868 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7869 * conclusion about what direction it's processing, and we can't fix it or it 7870 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7871 * decision will pick the right pipe, and everything will mostly work as expected. 7872 */ 7873 tmp = pd->act.dnrpipe; 7874 pd->act.dnrpipe = pd->act.dnpipe; 7875 pd->act.dnpipe = tmp; 7876 } 7877 7878 /* 7879 * If small enough for interface, or the interface will take 7880 * care of the fragmentation for us, we can just send directly. 7881 */ 7882 if (ip_len <= ifp->if_mtu || 7883 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7884 ip->ip_sum = 0; 7885 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7886 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7887 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7888 } 7889 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7890 7891 md = m0; 7892 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7893 if (md != NULL) 7894 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7895 goto done; 7896 } 7897 7898 /* Balk when DF bit is set or the interface didn't support TSO. */ 7899 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7900 error = EMSGSIZE; 7901 KMOD_IPSTAT_INC(ips_cantfrag); 7902 if (r_rt != PF_DUPTO) { 7903 if (s && pd->nat_rule != NULL) 7904 PACKET_UNDO_NAT(m0, pd, 7905 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7906 s); 7907 7908 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7909 ifp->if_mtu); 7910 goto done; 7911 } else 7912 goto bad; 7913 } 7914 7915 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7916 if (error) 7917 goto bad; 7918 7919 for (; m0; m0 = m1) { 7920 m1 = m0->m_nextpkt; 7921 m0->m_nextpkt = NULL; 7922 if (error == 0) { 7923 m_clrprotoflags(m0); 7924 md = m0; 7925 pd->pf_mtag = pf_find_mtag(md); 7926 error = pf_dummynet_route(pd, s, r, ifp, 7927 sintosa(&dst), &md); 7928 if (md != NULL) 7929 error = (*ifp->if_output)(ifp, md, 7930 sintosa(&dst), NULL); 7931 } else 7932 m_freem(m0); 7933 } 7934 7935 if (error == 0) 7936 KMOD_IPSTAT_INC(ips_fragmented); 7937 7938 done: 7939 if (r_rt != PF_DUPTO) 7940 *m = NULL; 7941 return; 7942 7943 bad_locked: 7944 if (s) 7945 PF_STATE_UNLOCK(s); 7946 bad: 7947 m_freem(m0); 7948 goto done; 7949 } 7950 #endif /* INET */ 7951 7952 #ifdef INET6 7953 static void 7954 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7955 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7956 { 7957 struct mbuf *m0, *md; 7958 struct sockaddr_in6 dst; 7959 struct ip6_hdr *ip6; 7960 struct pfi_kkif *nkif = NULL; 7961 struct ifnet *ifp = NULL; 7962 struct pf_addr naddr; 7963 int r_rt, r_dir; 7964 7965 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7966 7967 if (s) { 7968 r_rt = s->rt; 7969 r_dir = s->direction; 7970 } else { 7971 r_rt = r->rt; 7972 r_dir = r->direction; 7973 } 7974 7975 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7976 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7977 __func__)); 7978 7979 if ((pd->pf_mtag == NULL && 7980 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7981 pd->pf_mtag->routed++ > 3) { 7982 m0 = *m; 7983 *m = NULL; 7984 goto bad_locked; 7985 } 7986 7987 if (r_rt == PF_DUPTO) { 7988 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7989 if (s == NULL) { 7990 ifp = r->rpool.cur->kif ? 7991 r->rpool.cur->kif->pfik_ifp : NULL; 7992 } else { 7993 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7994 /* If pfsync'd */ 7995 if (ifp == NULL && r->rpool.cur != NULL) 7996 ifp = r->rpool.cur->kif ? 7997 r->rpool.cur->kif->pfik_ifp : NULL; 7998 PF_STATE_UNLOCK(s); 7999 } 8000 if (ifp == oifp) { 8001 /* When the 2nd interface is not skipped */ 8002 return; 8003 } else { 8004 m0 = *m; 8005 *m = NULL; 8006 goto bad; 8007 } 8008 } else { 8009 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8010 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8011 if (s) 8012 PF_STATE_UNLOCK(s); 8013 return; 8014 } 8015 } 8016 } else { 8017 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8018 pf_dummynet(pd, s, r, m); 8019 if (s) 8020 PF_STATE_UNLOCK(s); 8021 return; 8022 } 8023 m0 = *m; 8024 } 8025 8026 ip6 = mtod(m0, struct ip6_hdr *); 8027 8028 bzero(&dst, sizeof(dst)); 8029 dst.sin6_family = AF_INET6; 8030 dst.sin6_len = sizeof(dst); 8031 dst.sin6_addr = ip6->ip6_dst; 8032 8033 bzero(&naddr, sizeof(naddr)); 8034 8035 if (s == NULL) { 8036 if (TAILQ_EMPTY(&r->rpool.list)) { 8037 DPFPRINTF(PF_DEBUG_URGENT, 8038 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 8039 goto bad_locked; 8040 } 8041 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 8042 &naddr, &nkif, NULL); 8043 if (!PF_AZERO(&naddr, AF_INET6)) 8044 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8045 &naddr, AF_INET6); 8046 ifp = nkif ? nkif->pfik_ifp : NULL; 8047 } else { 8048 struct pfi_kkif *kif; 8049 8050 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 8051 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8052 &s->rt_addr, AF_INET6); 8053 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8054 kif = s->rt_kif; 8055 /* If pfsync'd */ 8056 if (ifp == NULL && r->rpool.cur != NULL) { 8057 ifp = r->rpool.cur->kif ? 8058 r->rpool.cur->kif->pfik_ifp : NULL; 8059 kif = r->rpool.cur->kif; 8060 } 8061 if (ifp != NULL && kif != NULL && 8062 r->rule_flag & PFRULE_IFBOUND && 8063 r->rt == PF_REPLYTO && 8064 s->kif == V_pfi_all) { 8065 s->kif = kif; 8066 s->orig_kif = oifp->if_pf_kif; 8067 } 8068 } 8069 8070 if (s) 8071 PF_STATE_UNLOCK(s); 8072 8073 if (ifp == NULL) 8074 goto bad; 8075 8076 if (pd->dir == PF_IN) { 8077 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8078 &pd->act) != PF_PASS) 8079 goto bad; 8080 else if (m0 == NULL) 8081 goto done; 8082 if (m0->m_len < sizeof(struct ip6_hdr)) { 8083 DPFPRINTF(PF_DEBUG_URGENT, 8084 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8085 __func__)); 8086 goto bad; 8087 } 8088 ip6 = mtod(m0, struct ip6_hdr *); 8089 } 8090 8091 if (ifp->if_flags & IFF_LOOPBACK) 8092 m0->m_flags |= M_SKIP_FIREWALL; 8093 8094 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8095 ~ifp->if_hwassist) { 8096 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8097 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8098 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8099 } 8100 8101 /* 8102 * If the packet is too large for the outgoing interface, 8103 * send back an icmp6 error. 8104 */ 8105 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8106 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8107 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8108 md = m0; 8109 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8110 if (md != NULL) 8111 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8112 } 8113 else { 8114 in6_ifstat_inc(ifp, ifs6_in_toobig); 8115 if (r_rt != PF_DUPTO) { 8116 if (s && pd->nat_rule != NULL) 8117 PACKET_UNDO_NAT(m0, pd, 8118 ((caddr_t)ip6 - m0->m_data) + 8119 sizeof(struct ip6_hdr), s); 8120 8121 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8122 } else 8123 goto bad; 8124 } 8125 8126 done: 8127 if (r_rt != PF_DUPTO) 8128 *m = NULL; 8129 return; 8130 8131 bad_locked: 8132 if (s) 8133 PF_STATE_UNLOCK(s); 8134 bad: 8135 m_freem(m0); 8136 goto done; 8137 } 8138 #endif /* INET6 */ 8139 8140 /* 8141 * FreeBSD supports cksum offloads for the following drivers. 8142 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8143 * 8144 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8145 * network driver performed cksum including pseudo header, need to verify 8146 * csum_data 8147 * CSUM_DATA_VALID : 8148 * network driver performed cksum, needs to additional pseudo header 8149 * cksum computation with partial csum_data(i.e. lack of H/W support for 8150 * pseudo header, for instance sk(4) and possibly gem(4)) 8151 * 8152 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8153 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8154 * TCP/UDP layer. 8155 * Also, set csum_data to 0xffff to force cksum validation. 8156 */ 8157 static int 8158 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8159 { 8160 u_int16_t sum = 0; 8161 int hw_assist = 0; 8162 struct ip *ip; 8163 8164 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8165 return (1); 8166 if (m->m_pkthdr.len < off + len) 8167 return (1); 8168 8169 switch (p) { 8170 case IPPROTO_TCP: 8171 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8172 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8173 sum = m->m_pkthdr.csum_data; 8174 } else { 8175 ip = mtod(m, struct ip *); 8176 sum = in_pseudo(ip->ip_src.s_addr, 8177 ip->ip_dst.s_addr, htonl((u_short)len + 8178 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8179 } 8180 sum ^= 0xffff; 8181 ++hw_assist; 8182 } 8183 break; 8184 case IPPROTO_UDP: 8185 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8186 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8187 sum = m->m_pkthdr.csum_data; 8188 } else { 8189 ip = mtod(m, struct ip *); 8190 sum = in_pseudo(ip->ip_src.s_addr, 8191 ip->ip_dst.s_addr, htonl((u_short)len + 8192 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8193 } 8194 sum ^= 0xffff; 8195 ++hw_assist; 8196 } 8197 break; 8198 case IPPROTO_ICMP: 8199 #ifdef INET6 8200 case IPPROTO_ICMPV6: 8201 #endif /* INET6 */ 8202 break; 8203 default: 8204 return (1); 8205 } 8206 8207 if (!hw_assist) { 8208 switch (af) { 8209 case AF_INET: 8210 if (p == IPPROTO_ICMP) { 8211 if (m->m_len < off) 8212 return (1); 8213 m->m_data += off; 8214 m->m_len -= off; 8215 sum = in_cksum(m, len); 8216 m->m_data -= off; 8217 m->m_len += off; 8218 } else { 8219 if (m->m_len < sizeof(struct ip)) 8220 return (1); 8221 sum = in4_cksum(m, p, off, len); 8222 } 8223 break; 8224 #ifdef INET6 8225 case AF_INET6: 8226 if (m->m_len < sizeof(struct ip6_hdr)) 8227 return (1); 8228 sum = in6_cksum(m, p, off, len); 8229 break; 8230 #endif /* INET6 */ 8231 default: 8232 return (1); 8233 } 8234 } 8235 if (sum) { 8236 switch (p) { 8237 case IPPROTO_TCP: 8238 { 8239 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8240 break; 8241 } 8242 case IPPROTO_UDP: 8243 { 8244 KMOD_UDPSTAT_INC(udps_badsum); 8245 break; 8246 } 8247 #ifdef INET 8248 case IPPROTO_ICMP: 8249 { 8250 KMOD_ICMPSTAT_INC(icps_checksum); 8251 break; 8252 } 8253 #endif 8254 #ifdef INET6 8255 case IPPROTO_ICMPV6: 8256 { 8257 KMOD_ICMP6STAT_INC(icp6s_checksum); 8258 break; 8259 } 8260 #endif /* INET6 */ 8261 } 8262 return (1); 8263 } else { 8264 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8265 m->m_pkthdr.csum_flags |= 8266 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8267 m->m_pkthdr.csum_data = 0xffff; 8268 } 8269 } 8270 return (0); 8271 } 8272 8273 static bool 8274 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8275 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8276 { 8277 int dndir = r->direction; 8278 8279 if (s && dndir == PF_INOUT) { 8280 dndir = s->direction; 8281 } else if (dndir == PF_INOUT) { 8282 /* Assume primary direction. Happens when we've set dnpipe in 8283 * the ethernet level code. */ 8284 dndir = pd->dir; 8285 } 8286 8287 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8288 return (false); 8289 8290 memset(dnflow, 0, sizeof(*dnflow)); 8291 8292 if (pd->dport != NULL) 8293 dnflow->f_id.dst_port = ntohs(*pd->dport); 8294 if (pd->sport != NULL) 8295 dnflow->f_id.src_port = ntohs(*pd->sport); 8296 8297 if (pd->dir == PF_IN) 8298 dnflow->flags |= IPFW_ARGS_IN; 8299 else 8300 dnflow->flags |= IPFW_ARGS_OUT; 8301 8302 if (pd->dir != dndir && pd->act.dnrpipe) { 8303 dnflow->rule.info = pd->act.dnrpipe; 8304 } 8305 else if (pd->dir == dndir && pd->act.dnpipe) { 8306 dnflow->rule.info = pd->act.dnpipe; 8307 } 8308 else { 8309 return (false); 8310 } 8311 8312 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8313 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8314 dnflow->rule.info |= IPFW_IS_PIPE; 8315 8316 dnflow->f_id.proto = pd->proto; 8317 dnflow->f_id.extra = dnflow->rule.info; 8318 switch (pd->af) { 8319 case AF_INET: 8320 dnflow->f_id.addr_type = 4; 8321 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8322 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8323 break; 8324 case AF_INET6: 8325 dnflow->flags |= IPFW_ARGS_IP6; 8326 dnflow->f_id.addr_type = 6; 8327 dnflow->f_id.src_ip6 = pd->src->v6; 8328 dnflow->f_id.dst_ip6 = pd->dst->v6; 8329 break; 8330 default: 8331 panic("Invalid AF"); 8332 break; 8333 } 8334 8335 return (true); 8336 } 8337 8338 int 8339 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8340 struct inpcb *inp) 8341 { 8342 struct pfi_kkif *kif; 8343 struct mbuf *m = *m0; 8344 8345 M_ASSERTPKTHDR(m); 8346 MPASS(ifp->if_vnet == curvnet); 8347 NET_EPOCH_ASSERT(); 8348 8349 if (!V_pf_status.running) 8350 return (PF_PASS); 8351 8352 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8353 8354 if (kif == NULL) { 8355 DPFPRINTF(PF_DEBUG_URGENT, 8356 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8357 return (PF_DROP); 8358 } 8359 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8360 return (PF_PASS); 8361 8362 if (m->m_flags & M_SKIP_FIREWALL) 8363 return (PF_PASS); 8364 8365 if (__predict_false(! M_WRITABLE(*m0))) { 8366 m = *m0 = m_unshare(*m0, M_NOWAIT); 8367 if (*m0 == NULL) 8368 return (PF_DROP); 8369 } 8370 8371 /* Stateless! */ 8372 return (pf_test_eth_rule(dir, kif, m0)); 8373 } 8374 8375 static __inline void 8376 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8377 { 8378 struct m_tag *mtag; 8379 8380 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8381 8382 /* dummynet adds this tag, but pf does not need it, 8383 * and keeping it creates unexpected behavior, 8384 * e.g. in case of divert(4) usage right after dummynet. */ 8385 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8386 if (mtag != NULL) 8387 m_tag_delete(m, mtag); 8388 } 8389 8390 static int 8391 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8392 struct pf_krule *r, struct mbuf **m0) 8393 { 8394 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8395 } 8396 8397 static int 8398 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8399 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8400 struct mbuf **m0) 8401 { 8402 NET_EPOCH_ASSERT(); 8403 8404 if (pd->act.dnpipe || pd->act.dnrpipe) { 8405 struct ip_fw_args dnflow; 8406 if (ip_dn_io_ptr == NULL) { 8407 m_freem(*m0); 8408 *m0 = NULL; 8409 return (ENOMEM); 8410 } 8411 8412 if (pd->pf_mtag == NULL && 8413 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8414 m_freem(*m0); 8415 *m0 = NULL; 8416 return (ENOMEM); 8417 } 8418 8419 if (ifp != NULL) { 8420 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8421 8422 pd->pf_mtag->if_index = ifp->if_index; 8423 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8424 8425 MPASS(sa != NULL); 8426 8427 if (pd->af == AF_INET) 8428 memcpy(&pd->pf_mtag->dst, sa, 8429 sizeof(struct sockaddr_in)); 8430 else 8431 memcpy(&pd->pf_mtag->dst, sa, 8432 sizeof(struct sockaddr_in6)); 8433 } 8434 8435 if (s != NULL && s->nat_rule.ptr != NULL && 8436 s->nat_rule.ptr->action == PF_RDR && 8437 ( 8438 #ifdef INET 8439 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8440 #endif 8441 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8442 /* 8443 * If we're redirecting to loopback mark this packet 8444 * as being local. Otherwise it might get dropped 8445 * if dummynet re-injects. 8446 */ 8447 (*m0)->m_pkthdr.rcvif = V_loif; 8448 } 8449 8450 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8451 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8452 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8453 ip_dn_io_ptr(m0, &dnflow); 8454 if (*m0 != NULL) { 8455 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8456 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8457 } 8458 } 8459 } 8460 8461 return (0); 8462 } 8463 8464 static int 8465 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 8466 u_short *action, u_short *reason, struct pfi_kkif *kif, struct pf_krule **a, 8467 struct pf_krule **r, struct pf_kstate **s, struct pf_kruleset **ruleset, 8468 int *off, int *hdrlen, struct inpcb *inp, 8469 struct pf_rule_actions *default_actions) 8470 { 8471 struct mbuf *m = *m0; 8472 8473 memset(pd, 0, sizeof(*pd)); 8474 pd->dir = dir; 8475 8476 TAILQ_INIT(&pd->sctp_multihome_jobs); 8477 if (default_actions != NULL) 8478 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8479 pd->pf_mtag = pf_find_mtag(m); 8480 8481 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8482 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8483 pd->act.flags = pd->pf_mtag->dnflags; 8484 } 8485 8486 pd->af = af; 8487 8488 switch (af) { 8489 #ifdef INET 8490 case AF_INET: { 8491 struct ip *h; 8492 8493 if (__predict_false(m->m_len < sizeof(struct ip)) && 8494 (m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8495 DPFPRINTF(PF_DEBUG_URGENT, 8496 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8497 *action = PF_DROP; 8498 REASON_SET(reason, PFRES_SHORT); 8499 return (-1); 8500 } 8501 8502 if (pf_normalize_ip(m0, kif, reason, pd) != PF_PASS) { 8503 /* We do IP header normalization and packet reassembly here */ 8504 *action = PF_DROP; 8505 return (-1); 8506 } 8507 m = *m0; 8508 8509 h = mtod(m, struct ip *); 8510 *off = h->ip_hl << 2; 8511 if (*off < (int)sizeof(*h)) { 8512 *action = PF_DROP; 8513 REASON_SET(reason, PFRES_SHORT); 8514 return (-1); 8515 } 8516 pd->src = (struct pf_addr *)&h->ip_src; 8517 pd->dst = (struct pf_addr *)&h->ip_dst; 8518 pd->sport = pd->dport = NULL; 8519 pd->ip_sum = &h->ip_sum; 8520 pd->proto_sum = NULL; 8521 pd->virtual_proto = pd->proto = h->ip_p; 8522 pd->dir = dir; 8523 pd->sidx = (dir == PF_IN) ? 0 : 1; 8524 pd->didx = (dir == PF_IN) ? 1 : 0; 8525 pd->tos = h->ip_tos; 8526 pd->tot_len = ntohs(h->ip_len); 8527 pd->act.rtableid = -1; 8528 8529 if (h->ip_hl > 5) /* has options */ 8530 pd->badopts++; 8531 8532 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 8533 /* 8534 * handle fragments that aren't reassembled by 8535 * normalization 8536 */ 8537 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8538 if (kif == NULL || r == NULL) /* pflog */ 8539 *action = PF_DROP; 8540 else 8541 *action = pf_test_rule(r, s, kif, m, *off, 8542 pd, a, ruleset, inp, *hdrlen); 8543 if (*action != PF_PASS) 8544 REASON_SET(reason, PFRES_FRAG); 8545 return (-1); 8546 } 8547 8548 break; 8549 } 8550 #endif 8551 #ifdef INET6 8552 case AF_INET6: { 8553 struct ip6_hdr *h; 8554 int terminal = 0; 8555 8556 if (__predict_false(m->m_len < sizeof(struct ip6_hdr)) && 8557 (m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8558 DPFPRINTF(PF_DEBUG_URGENT, 8559 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8560 ", pullup failed\n")); 8561 *action = PF_DROP; 8562 REASON_SET(reason, PFRES_SHORT); 8563 return (-1); 8564 } 8565 8566 /* We do IP header normalization and packet reassembly here */ 8567 if (pf_normalize_ip6(m0, kif, reason, pd) != PF_PASS) { 8568 *action = PF_DROP; 8569 return (-1); 8570 } 8571 m = *m0; 8572 8573 h = mtod(m, struct ip6_hdr *); 8574 pd->src = (struct pf_addr *)&h->ip6_src; 8575 pd->dst = (struct pf_addr *)&h->ip6_dst; 8576 pd->sport = pd->dport = NULL; 8577 pd->ip_sum = NULL; 8578 pd->proto_sum = NULL; 8579 pd->dir = dir; 8580 pd->sidx = (dir == PF_IN) ? 0 : 1; 8581 pd->didx = (dir == PF_IN) ? 1 : 0; 8582 pd->tos = IPV6_DSCP(h); 8583 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8584 *off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8585 pd->virtual_proto = pd->proto = h->ip6_nxt; 8586 pd->act.rtableid = -1; 8587 8588 do { 8589 switch (pd->proto) { 8590 case IPPROTO_FRAGMENT: 8591 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8592 if (kif == NULL || r == NULL) /* pflog */ 8593 *action = PF_DROP; 8594 else 8595 *action = pf_test_rule(r, s, kif, m, *off, 8596 pd, a, ruleset, inp, 8597 *hdrlen); 8598 if (*action == PF_DROP) 8599 REASON_SET(reason, PFRES_FRAG); 8600 return (-1); 8601 case IPPROTO_ROUTING: { 8602 struct ip6_rthdr rthdr; 8603 8604 if (pd->badopts++) { 8605 DPFPRINTF(PF_DEBUG_MISC, 8606 ("pf: IPv6 more than one rthdr")); 8607 *action = PF_DROP; 8608 REASON_SET(reason, PFRES_IPOPTIONS); 8609 return (-1); 8610 } 8611 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), 8612 NULL, reason, pd->af)) { 8613 DPFPRINTF(PF_DEBUG_MISC, 8614 ("pf: IPv6 short rthdr")); 8615 *action = PF_DROP; 8616 REASON_SET(reason, PFRES_SHORT); 8617 return (-1); 8618 } 8619 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8620 DPFPRINTF(PF_DEBUG_MISC, 8621 ("pf: IPv6 rthdr0")); 8622 *action = PF_DROP; 8623 REASON_SET(reason, PFRES_IPOPTIONS); 8624 return (-1); 8625 } 8626 /* FALLTHROUGH */ 8627 } 8628 case IPPROTO_AH: 8629 case IPPROTO_HOPOPTS: 8630 case IPPROTO_DSTOPTS: { 8631 /* get next header and header length */ 8632 struct ip6_ext opt6; 8633 8634 if (!pf_pull_hdr(m, *off, &opt6, sizeof(opt6), 8635 NULL, reason, pd->af)) { 8636 DPFPRINTF(PF_DEBUG_MISC, 8637 ("pf: IPv6 short opt")); 8638 *action = PF_DROP; 8639 return (-1); 8640 } 8641 if (pd->proto == IPPROTO_AH) 8642 *off += (opt6.ip6e_len + 2) * 4; 8643 else 8644 *off += (opt6.ip6e_len + 1) * 8; 8645 pd->virtual_proto = pd->proto = opt6.ip6e_nxt; 8646 /* goto the next header */ 8647 break; 8648 } 8649 default: 8650 terminal++; 8651 break; 8652 } 8653 } while (!terminal); 8654 8655 break; 8656 } 8657 #endif 8658 default: 8659 panic("pf_setup_pdesc called with illegal af %u", af); 8660 } 8661 8662 switch (pd->proto) { 8663 case IPPROTO_TCP: { 8664 struct tcphdr *th = &pd->hdr.tcp; 8665 8666 if (!pf_pull_hdr(m, *off, th, sizeof(*th), action, 8667 reason, af)) { 8668 *action = PF_DROP; 8669 REASON_SET(reason, PFRES_SHORT); 8670 return (-1); 8671 } 8672 *hdrlen = sizeof(*th); 8673 pd->p_len = pd->tot_len - *off - (th->th_off << 2); 8674 pd->sport = &th->th_sport; 8675 pd->dport = &th->th_dport; 8676 break; 8677 } 8678 case IPPROTO_UDP: { 8679 struct udphdr *uh = &pd->hdr.udp; 8680 8681 if (!pf_pull_hdr(m, *off, uh, sizeof(*uh), action, 8682 reason, af)) { 8683 *action = PF_DROP; 8684 REASON_SET(reason, PFRES_SHORT); 8685 return (-1); 8686 } 8687 *hdrlen = sizeof(*uh); 8688 if (uh->uh_dport == 0 || 8689 ntohs(uh->uh_ulen) > m->m_pkthdr.len - *off || 8690 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8691 *action = PF_DROP; 8692 REASON_SET(reason, PFRES_SHORT); 8693 return (-1); 8694 } 8695 pd->sport = &uh->uh_sport; 8696 pd->dport = &uh->uh_dport; 8697 break; 8698 } 8699 case IPPROTO_SCTP: { 8700 if (!pf_pull_hdr(m, *off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8701 action, reason, af)) { 8702 *action = PF_DROP; 8703 REASON_SET(reason, PFRES_SHORT); 8704 return (-1); 8705 } 8706 *hdrlen = sizeof(pd->hdr.sctp); 8707 pd->p_len = pd->tot_len - *off; 8708 8709 pd->sport = &pd->hdr.sctp.src_port; 8710 pd->dport = &pd->hdr.sctp.dest_port; 8711 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8712 *action = PF_DROP; 8713 REASON_SET(reason, PFRES_SHORT); 8714 return (-1); 8715 } 8716 if (pf_scan_sctp(m, *off, pd, kif) != PF_PASS) { 8717 *action = PF_DROP; 8718 REASON_SET(reason, PFRES_SHORT); 8719 return (-1); 8720 } 8721 break; 8722 } 8723 case IPPROTO_ICMP: { 8724 if (!pf_pull_hdr(m, *off, &pd->hdr.icmp, ICMP_MINLEN, 8725 action, reason, af)) { 8726 *action = PF_DROP; 8727 REASON_SET(reason, PFRES_SHORT); 8728 return (-1); 8729 } 8730 *hdrlen = ICMP_MINLEN; 8731 break; 8732 } 8733 #ifdef INET6 8734 case IPPROTO_ICMPV6: { 8735 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8736 8737 if (!pf_pull_hdr(m, *off, &pd->hdr.icmp6, icmp_hlen, 8738 action, reason, af)) { 8739 *action = PF_DROP; 8740 REASON_SET(reason, PFRES_SHORT); 8741 return (-1); 8742 } 8743 /* ICMP headers we look further into to match state */ 8744 switch (pd->hdr.icmp6.icmp6_type) { 8745 case MLD_LISTENER_QUERY: 8746 case MLD_LISTENER_REPORT: 8747 icmp_hlen = sizeof(struct mld_hdr); 8748 break; 8749 case ND_NEIGHBOR_SOLICIT: 8750 case ND_NEIGHBOR_ADVERT: 8751 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8752 break; 8753 } 8754 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8755 !pf_pull_hdr(m, *off, &pd->hdr.icmp6, icmp_hlen, 8756 action, reason, af)) { 8757 *action = PF_DROP; 8758 REASON_SET(reason, PFRES_SHORT); 8759 return (-1); 8760 } 8761 *hdrlen = icmp_hlen; 8762 break; 8763 } 8764 #endif 8765 } 8766 return (0); 8767 } 8768 8769 static void 8770 pf_counters_inc(int action, struct pf_pdesc *pd, 8771 struct pfi_kkif *kif, struct pf_kstate *s, 8772 struct pf_krule *r, struct pf_krule *a) 8773 { 8774 struct pf_krule *tr, *nr; 8775 int dir = pd->dir; 8776 int dirndx; 8777 8778 pf_counter_u64_critical_enter(); 8779 pf_counter_u64_add_protected( 8780 &kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8781 pd->tot_len); 8782 pf_counter_u64_add_protected( 8783 &kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8784 1); 8785 8786 if (action == PF_PASS || r->action == PF_DROP) { 8787 dirndx = (dir == PF_OUT); 8788 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8789 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8790 pf_update_timestamp(r); 8791 8792 if (a != NULL) { 8793 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8794 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8795 } 8796 if (s != NULL) { 8797 struct pf_krule_item *ri; 8798 8799 if (s->nat_rule.ptr != NULL) { 8800 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8801 1); 8802 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8803 pd->tot_len); 8804 } 8805 if (s->src_node != NULL) { 8806 counter_u64_add(s->src_node->packets[dirndx], 8807 1); 8808 counter_u64_add(s->src_node->bytes[dirndx], 8809 pd->tot_len); 8810 } 8811 if (s->nat_src_node != NULL) { 8812 counter_u64_add(s->nat_src_node->packets[dirndx], 8813 1); 8814 counter_u64_add(s->nat_src_node->bytes[dirndx], 8815 pd->tot_len); 8816 } 8817 dirndx = (dir == s->direction) ? 0 : 1; 8818 s->packets[dirndx]++; 8819 s->bytes[dirndx] += pd->tot_len; 8820 8821 SLIST_FOREACH(ri, &s->match_rules, entry) { 8822 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8823 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8824 } 8825 } 8826 tr = r; 8827 nr = (s != NULL) ? s->nat_rule.ptr : pd->nat_rule; 8828 if (nr != NULL && r == &V_pf_default_rule) 8829 tr = nr; 8830 if (tr->src.addr.type == PF_ADDR_TABLE) 8831 pfr_update_stats(tr->src.addr.p.tbl, 8832 (s == NULL) ? pd->src : 8833 &s->key[(s->direction == PF_IN)]-> 8834 addr[(s->direction == PF_OUT)], 8835 pd->af, pd->tot_len, dir == PF_OUT, 8836 r->action == PF_PASS, tr->src.neg); 8837 if (tr->dst.addr.type == PF_ADDR_TABLE) 8838 pfr_update_stats(tr->dst.addr.p.tbl, 8839 (s == NULL) ? pd->dst : 8840 &s->key[(s->direction == PF_IN)]-> 8841 addr[(s->direction == PF_IN)], 8842 pd->af, pd->tot_len, dir == PF_OUT, 8843 r->action == PF_PASS, tr->dst.neg); 8844 } 8845 pf_counter_u64_critical_exit(); 8846 } 8847 8848 #if defined(INET) || defined(INET6) 8849 int 8850 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8851 struct inpcb *inp, struct pf_rule_actions *default_actions) 8852 { 8853 struct pfi_kkif *kif; 8854 u_short action, reason = 0; 8855 struct mbuf *m = *m0; 8856 struct ip *h = NULL; 8857 struct ip6_hdr *h6 = NULL; 8858 struct m_tag *mtag; 8859 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 8860 struct pf_kstate *s = NULL; 8861 struct pf_kruleset *ruleset = NULL; 8862 struct pf_pdesc pd; 8863 int off, hdrlen, use_2nd_queue = 0; 8864 uint16_t tag; 8865 uint8_t rt; 8866 uint8_t ttl; 8867 8868 PF_RULES_RLOCK_TRACKER; 8869 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8870 M_ASSERTPKTHDR(m); 8871 8872 if (!V_pf_status.running) 8873 return (PF_PASS); 8874 8875 PF_RULES_RLOCK(); 8876 8877 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8878 8879 if (__predict_false(kif == NULL)) { 8880 DPFPRINTF(PF_DEBUG_URGENT, 8881 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8882 PF_RULES_RUNLOCK(); 8883 return (PF_DROP); 8884 } 8885 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8886 PF_RULES_RUNLOCK(); 8887 return (PF_PASS); 8888 } 8889 8890 if (m->m_flags & M_SKIP_FIREWALL) { 8891 PF_RULES_RUNLOCK(); 8892 return (PF_PASS); 8893 } 8894 8895 #ifdef INET6 8896 /* 8897 * If we end up changing IP addresses (e.g. binat) the stack may get 8898 * confused and fail to send the icmp6 packet too big error. Just send 8899 * it here, before we do any NAT. 8900 */ 8901 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 8902 IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 8903 PF_RULES_RUNLOCK(); 8904 *m0 = NULL; 8905 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8906 return (PF_DROP); 8907 } 8908 #endif 8909 8910 if (__predict_false(! M_WRITABLE(*m0))) { 8911 m = *m0 = m_unshare(*m0, M_NOWAIT); 8912 if (*m0 == NULL) 8913 return (PF_DROP); 8914 } 8915 8916 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, kif, &a, &r, 8917 &s, &ruleset, &off, &hdrlen, inp, default_actions) == -1) { 8918 if (action != PF_PASS) 8919 pd.act.log |= PF_LOG_FORCE; 8920 goto done; 8921 } 8922 m = *m0; 8923 8924 switch (af) { 8925 #ifdef INET 8926 case AF_INET: 8927 h = mtod(m, struct ip *); 8928 ttl = h->ip_ttl; 8929 break; 8930 #endif 8931 #ifdef INET6 8932 case AF_INET6: 8933 h6 = mtod(m, struct ip6_hdr *); 8934 ttl = h6->ip6_hlim; 8935 break; 8936 #endif 8937 default: 8938 panic("Unknown af %d", af); 8939 } 8940 8941 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8942 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8943 8944 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8945 pd.pf_mtag->if_idxgen); 8946 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8947 PF_RULES_RUNLOCK(); 8948 m_freem(*m0); 8949 *m0 = NULL; 8950 return (PF_PASS); 8951 } 8952 PF_RULES_RUNLOCK(); 8953 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 8954 *m0 = NULL; 8955 return (PF_PASS); 8956 } 8957 8958 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8959 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8960 /* Dummynet re-injects packets after they've 8961 * completed their delay. We've already 8962 * processed them, so pass unconditionally. */ 8963 8964 /* But only once. We may see the packet multiple times (e.g. 8965 * PFIL_IN/PFIL_OUT). */ 8966 pf_dummynet_flag_remove(m, pd.pf_mtag); 8967 PF_RULES_RUNLOCK(); 8968 8969 return (PF_PASS); 8970 } 8971 8972 if (__predict_false(ip_divert_ptr != NULL) && 8973 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 8974 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 8975 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 8976 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 8977 if (pd.pf_mtag == NULL && 8978 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8979 action = PF_DROP; 8980 goto done; 8981 } 8982 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 8983 } 8984 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 8985 m->m_flags |= M_FASTFWD_OURS; 8986 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8987 } 8988 m_tag_delete(m, mtag); 8989 8990 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8991 if (mtag != NULL) 8992 m_tag_delete(m, mtag); 8993 } 8994 8995 #ifdef INET6 8996 /* 8997 * we do not support jumbogram. if we keep going, zero ip6_plen 8998 * will do something bad, so drop the packet for now. 8999 */ 9000 if (af == AF_INET6 && htons(h6->ip6_plen) == 0) { 9001 action = PF_DROP; 9002 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 9003 goto done; 9004 } 9005 #endif 9006 9007 switch (pd.proto) { 9008 case IPPROTO_TCP: { 9009 /* Respond to SYN with a syncookie. */ 9010 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9011 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9012 pf_syncookie_send(m, off, &pd); 9013 action = PF_DROP; 9014 break; 9015 } 9016 9017 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 9018 use_2nd_queue = 1; 9019 action = pf_normalize_tcp(kif, m, 0, off, &pd); 9020 if (action == PF_DROP) 9021 goto done; 9022 action = pf_test_state_tcp(&s, kif, m, off, &pd, &reason); 9023 if (action == PF_PASS) { 9024 if (V_pfsync_update_state_ptr != NULL) 9025 V_pfsync_update_state_ptr(s); 9026 r = s->rule.ptr; 9027 a = s->anchor.ptr; 9028 } else if (s == NULL) { 9029 /* Validate remote SYN|ACK, re-create original SYN if 9030 * valid. */ 9031 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9032 TH_ACK && pf_syncookie_validate(&pd) && 9033 pd.dir == PF_IN) { 9034 struct mbuf *msyn; 9035 9036 msyn = pf_syncookie_recreate_syn(ttl, off, 9037 &pd); 9038 if (msyn == NULL) { 9039 action = PF_DROP; 9040 break; 9041 } 9042 9043 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9044 &pd.act); 9045 m_freem(msyn); 9046 if (action != PF_PASS) 9047 break; 9048 9049 action = pf_test_state_tcp(&s, kif, m, off, 9050 &pd, &reason); 9051 if (action != PF_PASS || s == NULL) { 9052 action = PF_DROP; 9053 break; 9054 } 9055 9056 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9057 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9058 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9059 action = pf_synproxy(&pd, &s, &reason); 9060 break; 9061 } else { 9062 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9063 &a, &ruleset, inp, hdrlen); 9064 } 9065 } 9066 break; 9067 } 9068 9069 case IPPROTO_UDP: { 9070 action = pf_test_state_udp(&s, kif, m, off, &pd); 9071 if (action == PF_PASS) { 9072 if (V_pfsync_update_state_ptr != NULL) 9073 V_pfsync_update_state_ptr(s); 9074 r = s->rule.ptr; 9075 a = s->anchor.ptr; 9076 } else if (s == NULL) 9077 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9078 &a, &ruleset, inp, hdrlen); 9079 break; 9080 } 9081 9082 case IPPROTO_SCTP: { 9083 action = pf_normalize_sctp(dir, kif, m, 0, off, &pd); 9084 if (action == PF_DROP) 9085 goto done; 9086 action = pf_test_state_sctp(&s, kif, m, off, &pd, 9087 &reason); 9088 if (action == PF_PASS) { 9089 if (V_pfsync_update_state_ptr != NULL) 9090 V_pfsync_update_state_ptr(s); 9091 r = s->rule.ptr; 9092 a = s->anchor.ptr; 9093 } else if (s == NULL) { 9094 action = pf_test_rule(&r, &s, kif, m, off, 9095 &pd, &a, &ruleset, inp, hdrlen); 9096 } 9097 break; 9098 } 9099 9100 case IPPROTO_ICMP: { 9101 if (af != AF_INET) { 9102 action = PF_DROP; 9103 DPFPRINTF(PF_DEBUG_MISC, 9104 ("dropping IPv6 packet with ICMPv4 payload")); 9105 goto done; 9106 } 9107 action = pf_test_state_icmp(&s, kif, m, off, &pd, &reason); 9108 if (action == PF_PASS) { 9109 if (V_pfsync_update_state_ptr != NULL) 9110 V_pfsync_update_state_ptr(s); 9111 r = s->rule.ptr; 9112 a = s->anchor.ptr; 9113 } else if (s == NULL) 9114 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9115 &a, &ruleset, inp, hdrlen); 9116 break; 9117 } 9118 9119 case IPPROTO_ICMPV6: { 9120 if (af != AF_INET6) { 9121 action = PF_DROP; 9122 DPFPRINTF(PF_DEBUG_MISC, 9123 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9124 goto done; 9125 } 9126 action = pf_test_state_icmp(&s, kif, m, off, &pd, &reason); 9127 if (action == PF_PASS) { 9128 if (V_pfsync_update_state_ptr != NULL) 9129 V_pfsync_update_state_ptr(s); 9130 r = s->rule.ptr; 9131 a = s->anchor.ptr; 9132 } else if (s == NULL) 9133 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9134 &a, &ruleset, inp, hdrlen); 9135 break; 9136 } 9137 9138 default: 9139 action = pf_test_state_other(&s, kif, m, &pd); 9140 if (action == PF_PASS) { 9141 if (V_pfsync_update_state_ptr != NULL) 9142 V_pfsync_update_state_ptr(s); 9143 r = s->rule.ptr; 9144 a = s->anchor.ptr; 9145 } else if (s == NULL) 9146 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9147 &a, &ruleset, inp, hdrlen); 9148 break; 9149 } 9150 9151 done: 9152 PF_RULES_RUNLOCK(); 9153 9154 if (action == PF_PASS && pd.badopts && 9155 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9156 action = PF_DROP; 9157 REASON_SET(&reason, PFRES_IPOPTIONS); 9158 pd.act.log = PF_LOG_FORCE; 9159 DPFPRINTF(PF_DEBUG_MISC, 9160 ("pf: dropping packet with dangerous headers\n")); 9161 } 9162 9163 if (s) { 9164 uint8_t log = pd.act.log; 9165 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9166 pd.act.log |= log; 9167 tag = s->tag; 9168 rt = s->rt; 9169 } else { 9170 tag = r->tag; 9171 rt = r->rt; 9172 } 9173 9174 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 9175 action = PF_DROP; 9176 REASON_SET(&reason, PFRES_MEMORY); 9177 } 9178 9179 pf_scrub(m, &pd); 9180 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9181 pf_normalize_mss(m, off, &pd); 9182 9183 if (pd.act.rtableid >= 0) 9184 M_SETFIB(m, pd.act.rtableid); 9185 9186 if (pd.act.flags & PFSTATE_SETPRIO) { 9187 if (pd.tos & IPTOS_LOWDELAY) 9188 use_2nd_queue = 1; 9189 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 9190 action = PF_DROP; 9191 REASON_SET(&reason, PFRES_MEMORY); 9192 pd.act.log = PF_LOG_FORCE; 9193 DPFPRINTF(PF_DEBUG_MISC, 9194 ("pf: failed to allocate 802.1q mtag\n")); 9195 } 9196 } 9197 9198 #ifdef ALTQ 9199 if (action == PF_PASS && pd.act.qid) { 9200 if (pd.pf_mtag == NULL && 9201 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9202 action = PF_DROP; 9203 REASON_SET(&reason, PFRES_MEMORY); 9204 } else { 9205 if (s != NULL) 9206 pd.pf_mtag->qid_hash = pf_state_hash(s); 9207 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9208 pd.pf_mtag->qid = pd.act.pqid; 9209 else 9210 pd.pf_mtag->qid = pd.act.qid; 9211 /* Add hints for ecn. */ 9212 if (af == AF_INET) 9213 pd.pf_mtag->hdr = h; 9214 else 9215 pd.pf_mtag->hdr = h6; 9216 } 9217 } 9218 #endif /* ALTQ */ 9219 9220 /* 9221 * connections redirected to loopback should not match sockets 9222 * bound specifically to loopback due to security implications, 9223 * see tcp_input() and in_pcblookup_listen(). 9224 */ 9225 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9226 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 9227 (s->nat_rule.ptr->action == PF_RDR || 9228 s->nat_rule.ptr->action == PF_BINAT) && 9229 pf_is_loopback(af, pd.dst)) 9230 m->m_flags |= M_SKIP_FIREWALL; 9231 9232 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9233 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9234 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9235 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9236 if (mtag != NULL) { 9237 ((struct pf_divert_mtag *)(mtag+1))->port = 9238 ntohs(r->divert.port); 9239 ((struct pf_divert_mtag *)(mtag+1))->idir = 9240 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9241 PF_DIVERT_MTAG_DIR_OUT; 9242 9243 if (s) 9244 PF_STATE_UNLOCK(s); 9245 9246 m_tag_prepend(m, mtag); 9247 if (m->m_flags & M_FASTFWD_OURS) { 9248 if (pd.pf_mtag == NULL && 9249 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9250 action = PF_DROP; 9251 REASON_SET(&reason, PFRES_MEMORY); 9252 pd.act.log = PF_LOG_FORCE; 9253 DPFPRINTF(PF_DEBUG_MISC, 9254 ("pf: failed to allocate tag\n")); 9255 } else { 9256 pd.pf_mtag->flags |= 9257 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9258 m->m_flags &= ~M_FASTFWD_OURS; 9259 } 9260 } 9261 ip_divert_ptr(*m0, dir == PF_IN); 9262 *m0 = NULL; 9263 9264 return (action); 9265 } else { 9266 /* XXX: ipfw has the same behaviour! */ 9267 action = PF_DROP; 9268 REASON_SET(&reason, PFRES_MEMORY); 9269 pd.act.log = PF_LOG_FORCE; 9270 DPFPRINTF(PF_DEBUG_MISC, 9271 ("pf: failed to allocate divert tag\n")); 9272 } 9273 } 9274 /* XXX: Anybody working on it?! */ 9275 if (af == AF_INET6 && r->divert.port) 9276 printf("pf: divert(9) is not supported for IPv6\n"); 9277 9278 /* this flag will need revising if the pkt is forwarded */ 9279 if (pd.pf_mtag) 9280 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9281 9282 if (pd.act.log) { 9283 struct pf_krule *lr; 9284 struct pf_krule_item *ri; 9285 9286 if (s != NULL && s->nat_rule.ptr != NULL && 9287 s->nat_rule.ptr->log & PF_LOG_ALL) 9288 lr = s->nat_rule.ptr; 9289 else 9290 lr = r; 9291 9292 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9293 PFLOG_PACKET(kif, m, action, reason, lr, a, 9294 ruleset, &pd, (s == NULL)); 9295 if (s) { 9296 SLIST_FOREACH(ri, &s->match_rules, entry) 9297 if (ri->r->log & PF_LOG_ALL) 9298 PFLOG_PACKET(kif, m, action, 9299 reason, ri->r, a, ruleset, &pd, 0); 9300 } 9301 } 9302 9303 pf_counters_inc(action, &pd, kif, s, r, a); 9304 9305 switch (action) { 9306 case PF_SYNPROXY_DROP: 9307 m_freem(*m0); 9308 case PF_DEFER: 9309 *m0 = NULL; 9310 action = PF_PASS; 9311 break; 9312 case PF_DROP: 9313 m_freem(*m0); 9314 *m0 = NULL; 9315 break; 9316 default: 9317 if (rt) { 9318 switch (af) { 9319 #ifdef INET 9320 case AF_INET: 9321 /* pf_route() returns unlocked. */ 9322 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9323 break; 9324 #endif 9325 #ifdef INET6 9326 case AF_INET6: 9327 /* pf_route6() returns unlocked. */ 9328 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9329 break; 9330 #endif 9331 default: 9332 panic("Unknown af %d", af); 9333 } 9334 goto out; 9335 } 9336 if (pf_dummynet(&pd, s, r, m0) != 0) { 9337 action = PF_DROP; 9338 REASON_SET(&reason, PFRES_MEMORY); 9339 } 9340 break; 9341 } 9342 9343 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9344 9345 if (s && action != PF_DROP) { 9346 if (!s->if_index_in && dir == PF_IN) 9347 s->if_index_in = ifp->if_index; 9348 else if (!s->if_index_out && dir == PF_OUT) 9349 s->if_index_out = ifp->if_index; 9350 } 9351 9352 if (s) 9353 PF_STATE_UNLOCK(s); 9354 9355 #ifdef INET6 9356 /* If reassembled packet passed, create new fragments. */ 9357 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9358 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9359 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9360 #endif 9361 9362 out: 9363 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9364 9365 return (action); 9366 } 9367 #endif /* INET || INET6 */ 9368