1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #if defined(SCTP) || defined(SCTP_SUPPORT) 115 #include <netinet/sctp_crc32.h> 116 #endif 117 118 #include <machine/in_cksum.h> 119 #include <security/mac/mac_framework.h> 120 121 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 122 123 SDT_PROVIDER_DEFINE(pf); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 127 "struct pf_kstate *"); 128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 130 "struct pf_kstate *"); 131 132 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 133 "struct mbuf *"); 134 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 135 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 136 "int", "struct pf_keth_rule *", "char *"); 137 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 139 "int", "struct pf_keth_rule *"); 140 141 /* 142 * Global variables 143 */ 144 145 /* state tables */ 146 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 147 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 148 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 152 VNET_DEFINE(struct pf_kstatus, pf_status); 153 154 VNET_DEFINE(u_int32_t, ticket_altqs_active); 155 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 156 VNET_DEFINE(int, altqs_inactive_open); 157 VNET_DEFINE(u_int32_t, ticket_pabuf); 158 159 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 160 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 161 VNET_DEFINE(u_char, pf_tcp_secret[16]); 162 #define V_pf_tcp_secret VNET(pf_tcp_secret) 163 VNET_DEFINE(int, pf_tcp_secret_init); 164 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 165 VNET_DEFINE(int, pf_tcp_iss_off); 166 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 167 VNET_DECLARE(int, pf_vnet_active); 168 #define V_pf_vnet_active VNET(pf_vnet_active) 169 170 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 171 #define V_pf_purge_idx VNET(pf_purge_idx) 172 173 #ifdef PF_WANT_32_TO_64_COUNTER 174 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 175 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 176 177 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 178 VNET_DEFINE(size_t, pf_allrulecount); 179 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 180 #endif 181 182 /* 183 * Queue for pf_intr() sends. 184 */ 185 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 186 struct pf_send_entry { 187 STAILQ_ENTRY(pf_send_entry) pfse_next; 188 struct mbuf *pfse_m; 189 enum { 190 PFSE_IP, 191 PFSE_IP6, 192 PFSE_ICMP, 193 PFSE_ICMP6, 194 } pfse_type; 195 struct { 196 int type; 197 int code; 198 int mtu; 199 } icmpopts; 200 }; 201 202 STAILQ_HEAD(pf_send_head, pf_send_entry); 203 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 204 #define V_pf_sendqueue VNET(pf_sendqueue) 205 206 static struct mtx_padalign pf_sendqueue_mtx; 207 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 208 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 209 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 210 211 /* 212 * Queue for pf_overload_task() tasks. 213 */ 214 struct pf_overload_entry { 215 SLIST_ENTRY(pf_overload_entry) next; 216 struct pf_addr addr; 217 sa_family_t af; 218 uint8_t dir; 219 struct pf_krule *rule; 220 }; 221 222 SLIST_HEAD(pf_overload_head, pf_overload_entry); 223 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 224 #define V_pf_overloadqueue VNET(pf_overloadqueue) 225 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 226 #define V_pf_overloadtask VNET(pf_overloadtask) 227 228 static struct mtx_padalign pf_overloadqueue_mtx; 229 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 230 "pf overload/flush queue", MTX_DEF); 231 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 232 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 233 234 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 235 struct mtx_padalign pf_unlnkdrules_mtx; 236 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 237 MTX_DEF); 238 239 struct sx pf_config_lock; 240 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 241 242 struct mtx_padalign pf_table_stats_lock; 243 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 244 MTX_DEF); 245 246 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 247 #define V_pf_sources_z VNET(pf_sources_z) 248 uma_zone_t pf_mtag_z; 249 VNET_DEFINE(uma_zone_t, pf_state_z); 250 VNET_DEFINE(uma_zone_t, pf_state_key_z); 251 252 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 253 #define PFID_CPUBITS 8 254 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 255 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 256 #define PFID_MAXID (~PFID_CPUMASK) 257 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 258 259 static void pf_src_tree_remove_state(struct pf_kstate *); 260 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 261 u_int32_t); 262 static void pf_add_threshold(struct pf_threshold *); 263 static int pf_check_threshold(struct pf_threshold *); 264 265 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 266 u_int16_t *, u_int16_t *, struct pf_addr *, 267 u_int16_t, u_int8_t, sa_family_t); 268 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 269 struct tcphdr *, struct pf_state_peer *); 270 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 271 struct pf_addr *, struct pf_addr *, u_int16_t, 272 u_int16_t *, u_int16_t *, u_int16_t *, 273 u_int16_t *, u_int8_t, sa_family_t); 274 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 275 sa_family_t, struct pf_krule *); 276 static void pf_detach_state(struct pf_kstate *); 277 static int pf_state_key_attach(struct pf_state_key *, 278 struct pf_state_key *, struct pf_kstate *); 279 static void pf_state_key_detach(struct pf_kstate *, int); 280 static int pf_state_key_ctor(void *, int, void *, int); 281 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 282 void pf_rule_to_actions(struct pf_krule *, 283 struct pf_rule_actions *); 284 static int pf_dummynet(struct pf_pdesc *, int, struct pf_kstate *, 285 struct pf_krule *, struct mbuf **); 286 static int pf_dummynet_route(struct pf_pdesc *, int, 287 struct pf_kstate *, struct pf_krule *, 288 struct ifnet *, struct sockaddr *, struct mbuf **); 289 static int pf_test_eth_rule(int, struct pfi_kkif *, 290 struct mbuf **); 291 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 292 int, struct pfi_kkif *, struct mbuf *, int, 293 struct pf_pdesc *, struct pf_krule **, 294 struct pf_kruleset **, struct inpcb *); 295 static int pf_create_state(struct pf_krule *, struct pf_krule *, 296 struct pf_krule *, struct pf_pdesc *, 297 struct pf_ksrc_node *, struct pf_state_key *, 298 struct pf_state_key *, struct mbuf *, int, 299 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 300 struct pf_kstate **, int, u_int16_t, u_int16_t, 301 int); 302 static int pf_test_fragment(struct pf_krule **, int, 303 struct pfi_kkif *, struct mbuf *, void *, 304 struct pf_pdesc *, struct pf_krule **, 305 struct pf_kruleset **); 306 static int pf_tcp_track_full(struct pf_kstate **, 307 struct pfi_kkif *, struct mbuf *, int, 308 struct pf_pdesc *, u_short *, int *); 309 static int pf_tcp_track_sloppy(struct pf_kstate **, 310 struct pf_pdesc *, u_short *); 311 static int pf_test_state_tcp(struct pf_kstate **, int, 312 struct pfi_kkif *, struct mbuf *, int, 313 void *, struct pf_pdesc *, u_short *); 314 static int pf_test_state_udp(struct pf_kstate **, int, 315 struct pfi_kkif *, struct mbuf *, int, 316 void *, struct pf_pdesc *); 317 static int pf_test_state_icmp(struct pf_kstate **, int, 318 struct pfi_kkif *, struct mbuf *, int, 319 void *, struct pf_pdesc *, u_short *); 320 static int pf_test_state_other(struct pf_kstate **, int, 321 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 322 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 323 int, u_int16_t); 324 static int pf_check_proto_cksum(struct mbuf *, int, int, 325 u_int8_t, sa_family_t); 326 static void pf_print_state_parts(struct pf_kstate *, 327 struct pf_state_key *, struct pf_state_key *); 328 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 329 struct pf_addr_wrap *); 330 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 331 bool, u_int8_t); 332 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 333 struct pf_state_key_cmp *, u_int); 334 static int pf_src_connlimit(struct pf_kstate **); 335 static void pf_overload_task(void *v, int pending); 336 static int pf_insert_src_node(struct pf_ksrc_node **, 337 struct pf_krule *, struct pf_addr *, sa_family_t); 338 static u_int pf_purge_expired_states(u_int, int); 339 static void pf_purge_unlinked_rules(void); 340 static int pf_mtag_uminit(void *, int, int); 341 static void pf_mtag_free(struct m_tag *); 342 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 343 int, struct pf_state_key *); 344 #ifdef INET 345 static void pf_route(struct mbuf **, struct pf_krule *, int, 346 struct ifnet *, struct pf_kstate *, 347 struct pf_pdesc *, struct inpcb *); 348 #endif /* INET */ 349 #ifdef INET6 350 static void pf_change_a6(struct pf_addr *, u_int16_t *, 351 struct pf_addr *, u_int8_t); 352 static void pf_route6(struct mbuf **, struct pf_krule *, int, 353 struct ifnet *, struct pf_kstate *, 354 struct pf_pdesc *, struct inpcb *); 355 #endif /* INET6 */ 356 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 357 358 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 359 360 extern int pf_end_threads; 361 extern struct proc *pf_purge_proc; 362 363 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 364 365 #define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \ 366 do { \ 367 struct pf_state_key *nk; \ 368 if ((_dir) == PF_OUT) \ 369 nk = (_s)->key[PF_SK_STACK]; \ 370 else \ 371 nk = (_s)->key[PF_SK_WIRE]; \ 372 pf_packet_rework_nat(_m, _pd, _off, nk); \ 373 } while (0) 374 375 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 376 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 377 378 #define STATE_LOOKUP(i, k, d, s, pd) \ 379 do { \ 380 (s) = pf_find_state((i), (k), (d)); \ 381 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 382 if ((s) == NULL) \ 383 return (PF_DROP); \ 384 if (PACKET_LOOPED(pd)) \ 385 return (PF_PASS); \ 386 } while (0) 387 388 #define BOUND_IFACE(r, k) \ 389 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 390 391 #define STATE_INC_COUNTERS(s) \ 392 do { \ 393 counter_u64_add(s->rule.ptr->states_cur, 1); \ 394 counter_u64_add(s->rule.ptr->states_tot, 1); \ 395 if (s->anchor.ptr != NULL) { \ 396 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 397 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 398 } \ 399 if (s->nat_rule.ptr != NULL) { \ 400 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 401 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 402 } \ 403 } while (0) 404 405 #define STATE_DEC_COUNTERS(s) \ 406 do { \ 407 if (s->nat_rule.ptr != NULL) \ 408 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 409 if (s->anchor.ptr != NULL) \ 410 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 411 counter_u64_add(s->rule.ptr->states_cur, -1); \ 412 } while (0) 413 414 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 415 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 416 VNET_DEFINE(struct pf_idhash *, pf_idhash); 417 VNET_DEFINE(struct pf_srchash *, pf_srchash); 418 419 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 420 "pf(4)"); 421 422 u_long pf_hashmask; 423 u_long pf_srchashmask; 424 static u_long pf_hashsize; 425 static u_long pf_srchashsize; 426 u_long pf_ioctl_maxcount = 65535; 427 428 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 429 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 430 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 431 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 432 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 433 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 434 435 VNET_DEFINE(void *, pf_swi_cookie); 436 VNET_DEFINE(struct intr_event *, pf_swi_ie); 437 438 VNET_DEFINE(uint32_t, pf_hashseed); 439 #define V_pf_hashseed VNET(pf_hashseed) 440 441 #ifdef __LP64__ 442 static int 443 pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig) 444 { 445 unsigned long *k1 = (unsigned long *)k1_orig; 446 unsigned long *k2 = (unsigned long *)k2_orig; 447 448 if (k1[0] != k2[0]) 449 return (1); 450 451 if (k1[1] != k2[1]) 452 return (1); 453 454 if (k1[2] != k2[2]) 455 return (1); 456 457 if (k1[3] != k2[3]) 458 return (1); 459 460 if (k1[4] != k2[4]) 461 return (1); 462 463 return (0); 464 } 465 _Static_assert(sizeof(struct pf_state_key_cmp) == 40, "bad size of pf_state_key_cmp"); 466 #else 467 static inline int 468 pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig) 469 { 470 471 return (bcmp(k1_orig, k2_orig, sizeof(struct pf_state_key_cmp))); 472 } 473 #endif 474 475 int 476 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 477 { 478 479 switch (af) { 480 #ifdef INET 481 case AF_INET: 482 if (a->addr32[0] > b->addr32[0]) 483 return (1); 484 if (a->addr32[0] < b->addr32[0]) 485 return (-1); 486 break; 487 #endif /* INET */ 488 #ifdef INET6 489 case AF_INET6: 490 if (a->addr32[3] > b->addr32[3]) 491 return (1); 492 if (a->addr32[3] < b->addr32[3]) 493 return (-1); 494 if (a->addr32[2] > b->addr32[2]) 495 return (1); 496 if (a->addr32[2] < b->addr32[2]) 497 return (-1); 498 if (a->addr32[1] > b->addr32[1]) 499 return (1); 500 if (a->addr32[1] < b->addr32[1]) 501 return (-1); 502 if (a->addr32[0] > b->addr32[0]) 503 return (1); 504 if (a->addr32[0] < b->addr32[0]) 505 return (-1); 506 break; 507 #endif /* INET6 */ 508 default: 509 panic("%s: unknown address family %u", __func__, af); 510 } 511 return (0); 512 } 513 514 static void 515 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 516 struct pf_state_key *nk) 517 { 518 519 switch (pd->proto) { 520 case IPPROTO_TCP: { 521 struct tcphdr *th = &pd->hdr.tcp; 522 523 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 524 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 525 &th->th_sum, &nk->addr[pd->sidx], 526 nk->port[pd->sidx], 0, pd->af); 527 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 528 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 529 &th->th_sum, &nk->addr[pd->didx], 530 nk->port[pd->didx], 0, pd->af); 531 m_copyback(m, off, sizeof(*th), (caddr_t)th); 532 break; 533 } 534 case IPPROTO_UDP: { 535 struct udphdr *uh = &pd->hdr.udp; 536 537 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 538 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 539 &uh->uh_sum, &nk->addr[pd->sidx], 540 nk->port[pd->sidx], 1, pd->af); 541 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 542 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 543 &uh->uh_sum, &nk->addr[pd->didx], 544 nk->port[pd->didx], 1, pd->af); 545 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 546 break; 547 } 548 case IPPROTO_ICMP: { 549 struct icmp *ih = &pd->hdr.icmp; 550 551 if (nk->port[pd->sidx] != ih->icmp_id) { 552 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 553 ih->icmp_cksum, ih->icmp_id, 554 nk->port[pd->sidx], 0); 555 ih->icmp_id = nk->port[pd->sidx]; 556 pd->sport = &ih->icmp_id; 557 558 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 559 } 560 /* FALLTHROUGH */ 561 } 562 default: 563 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 564 switch (pd->af) { 565 case AF_INET: 566 pf_change_a(&pd->src->v4.s_addr, 567 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 568 0); 569 break; 570 case AF_INET6: 571 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 572 break; 573 } 574 } 575 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 576 switch (pd->af) { 577 case AF_INET: 578 pf_change_a(&pd->dst->v4.s_addr, 579 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 580 0); 581 break; 582 case AF_INET6: 583 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 584 break; 585 } 586 } 587 break; 588 } 589 } 590 591 static __inline uint32_t 592 pf_hashkey(struct pf_state_key *sk) 593 { 594 uint32_t h; 595 596 h = murmur3_32_hash32((uint32_t *)sk, 597 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 598 V_pf_hashseed); 599 600 return (h & pf_hashmask); 601 } 602 603 static __inline uint32_t 604 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 605 { 606 uint32_t h; 607 608 switch (af) { 609 case AF_INET: 610 h = murmur3_32_hash32((uint32_t *)&addr->v4, 611 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 612 break; 613 case AF_INET6: 614 h = murmur3_32_hash32((uint32_t *)&addr->v6, 615 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 616 break; 617 default: 618 panic("%s: unknown address family %u", __func__, af); 619 } 620 621 return (h & pf_srchashmask); 622 } 623 624 #ifdef ALTQ 625 static int 626 pf_state_hash(struct pf_kstate *s) 627 { 628 u_int32_t hv = (intptr_t)s / sizeof(*s); 629 630 hv ^= crc32(&s->src, sizeof(s->src)); 631 hv ^= crc32(&s->dst, sizeof(s->dst)); 632 if (hv == 0) 633 hv = 1; 634 return (hv); 635 } 636 #endif 637 638 static __inline void 639 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 640 { 641 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 642 s->dst.state = newstate; 643 if (which == PF_PEER_DST) 644 return; 645 if (s->src.state == newstate) 646 return; 647 if (s->creatorid == V_pf_status.hostid && 648 s->key[PF_SK_STACK] != NULL && 649 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 650 !(TCPS_HAVEESTABLISHED(s->src.state) || 651 s->src.state == TCPS_CLOSED) && 652 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 653 atomic_add_32(&V_pf_status.states_halfopen, -1); 654 655 s->src.state = newstate; 656 } 657 658 #ifdef INET6 659 void 660 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 661 { 662 switch (af) { 663 #ifdef INET 664 case AF_INET: 665 dst->addr32[0] = src->addr32[0]; 666 break; 667 #endif /* INET */ 668 case AF_INET6: 669 dst->addr32[0] = src->addr32[0]; 670 dst->addr32[1] = src->addr32[1]; 671 dst->addr32[2] = src->addr32[2]; 672 dst->addr32[3] = src->addr32[3]; 673 break; 674 } 675 } 676 #endif /* INET6 */ 677 678 static void 679 pf_init_threshold(struct pf_threshold *threshold, 680 u_int32_t limit, u_int32_t seconds) 681 { 682 threshold->limit = limit * PF_THRESHOLD_MULT; 683 threshold->seconds = seconds; 684 threshold->count = 0; 685 threshold->last = time_uptime; 686 } 687 688 static void 689 pf_add_threshold(struct pf_threshold *threshold) 690 { 691 u_int32_t t = time_uptime, diff = t - threshold->last; 692 693 if (diff >= threshold->seconds) 694 threshold->count = 0; 695 else 696 threshold->count -= threshold->count * diff / 697 threshold->seconds; 698 threshold->count += PF_THRESHOLD_MULT; 699 threshold->last = t; 700 } 701 702 static int 703 pf_check_threshold(struct pf_threshold *threshold) 704 { 705 return (threshold->count > threshold->limit); 706 } 707 708 static int 709 pf_src_connlimit(struct pf_kstate **state) 710 { 711 struct pf_overload_entry *pfoe; 712 int bad = 0; 713 714 PF_STATE_LOCK_ASSERT(*state); 715 716 (*state)->src_node->conn++; 717 (*state)->src.tcp_est = 1; 718 pf_add_threshold(&(*state)->src_node->conn_rate); 719 720 if ((*state)->rule.ptr->max_src_conn && 721 (*state)->rule.ptr->max_src_conn < 722 (*state)->src_node->conn) { 723 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 724 bad++; 725 } 726 727 if ((*state)->rule.ptr->max_src_conn_rate.limit && 728 pf_check_threshold(&(*state)->src_node->conn_rate)) { 729 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 730 bad++; 731 } 732 733 if (!bad) 734 return (0); 735 736 /* Kill this state. */ 737 (*state)->timeout = PFTM_PURGE; 738 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 739 740 if ((*state)->rule.ptr->overload_tbl == NULL) 741 return (1); 742 743 /* Schedule overloading and flushing task. */ 744 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 745 if (pfoe == NULL) 746 return (1); /* too bad :( */ 747 748 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 749 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 750 pfoe->rule = (*state)->rule.ptr; 751 pfoe->dir = (*state)->direction; 752 PF_OVERLOADQ_LOCK(); 753 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 754 PF_OVERLOADQ_UNLOCK(); 755 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 756 757 return (1); 758 } 759 760 static void 761 pf_overload_task(void *v, int pending) 762 { 763 struct pf_overload_head queue; 764 struct pfr_addr p; 765 struct pf_overload_entry *pfoe, *pfoe1; 766 uint32_t killed = 0; 767 768 CURVNET_SET((struct vnet *)v); 769 770 PF_OVERLOADQ_LOCK(); 771 queue = V_pf_overloadqueue; 772 SLIST_INIT(&V_pf_overloadqueue); 773 PF_OVERLOADQ_UNLOCK(); 774 775 bzero(&p, sizeof(p)); 776 SLIST_FOREACH(pfoe, &queue, next) { 777 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 778 if (V_pf_status.debug >= PF_DEBUG_MISC) { 779 printf("%s: blocking address ", __func__); 780 pf_print_host(&pfoe->addr, 0, pfoe->af); 781 printf("\n"); 782 } 783 784 p.pfra_af = pfoe->af; 785 switch (pfoe->af) { 786 #ifdef INET 787 case AF_INET: 788 p.pfra_net = 32; 789 p.pfra_ip4addr = pfoe->addr.v4; 790 break; 791 #endif 792 #ifdef INET6 793 case AF_INET6: 794 p.pfra_net = 128; 795 p.pfra_ip6addr = pfoe->addr.v6; 796 break; 797 #endif 798 } 799 800 PF_RULES_WLOCK(); 801 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 802 PF_RULES_WUNLOCK(); 803 } 804 805 /* 806 * Remove those entries, that don't need flushing. 807 */ 808 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 809 if (pfoe->rule->flush == 0) { 810 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 811 free(pfoe, M_PFTEMP); 812 } else 813 counter_u64_add( 814 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 815 816 /* If nothing to flush, return. */ 817 if (SLIST_EMPTY(&queue)) { 818 CURVNET_RESTORE(); 819 return; 820 } 821 822 for (int i = 0; i <= pf_hashmask; i++) { 823 struct pf_idhash *ih = &V_pf_idhash[i]; 824 struct pf_state_key *sk; 825 struct pf_kstate *s; 826 827 PF_HASHROW_LOCK(ih); 828 LIST_FOREACH(s, &ih->states, entry) { 829 sk = s->key[PF_SK_WIRE]; 830 SLIST_FOREACH(pfoe, &queue, next) 831 if (sk->af == pfoe->af && 832 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 833 pfoe->rule == s->rule.ptr) && 834 ((pfoe->dir == PF_OUT && 835 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 836 (pfoe->dir == PF_IN && 837 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 838 s->timeout = PFTM_PURGE; 839 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 840 killed++; 841 } 842 } 843 PF_HASHROW_UNLOCK(ih); 844 } 845 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 846 free(pfoe, M_PFTEMP); 847 if (V_pf_status.debug >= PF_DEBUG_MISC) 848 printf("%s: %u states killed", __func__, killed); 849 850 CURVNET_RESTORE(); 851 } 852 853 /* 854 * Can return locked on failure, so that we can consistently 855 * allocate and insert a new one. 856 */ 857 struct pf_ksrc_node * 858 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 859 int returnlocked) 860 { 861 struct pf_srchash *sh; 862 struct pf_ksrc_node *n; 863 864 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 865 866 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 867 PF_HASHROW_LOCK(sh); 868 LIST_FOREACH(n, &sh->nodes, entry) 869 if (n->rule.ptr == rule && n->af == af && 870 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 871 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 872 break; 873 if (n != NULL) { 874 n->states++; 875 PF_HASHROW_UNLOCK(sh); 876 } else if (returnlocked == 0) 877 PF_HASHROW_UNLOCK(sh); 878 879 return (n); 880 } 881 882 static void 883 pf_free_src_node(struct pf_ksrc_node *sn) 884 { 885 886 for (int i = 0; i < 2; i++) { 887 counter_u64_free(sn->bytes[i]); 888 counter_u64_free(sn->packets[i]); 889 } 890 uma_zfree(V_pf_sources_z, sn); 891 } 892 893 static int 894 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 895 struct pf_addr *src, sa_family_t af) 896 { 897 898 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 899 rule->rpool.opts & PF_POOL_STICKYADDR), 900 ("%s for non-tracking rule %p", __func__, rule)); 901 902 if (*sn == NULL) 903 *sn = pf_find_src_node(src, rule, af, 1); 904 905 if (*sn == NULL) { 906 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 907 908 PF_HASHROW_ASSERT(sh); 909 910 if (!rule->max_src_nodes || 911 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 912 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 913 else 914 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 915 1); 916 if ((*sn) == NULL) { 917 PF_HASHROW_UNLOCK(sh); 918 return (-1); 919 } 920 921 for (int i = 0; i < 2; i++) { 922 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 923 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 924 925 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 926 pf_free_src_node(*sn); 927 PF_HASHROW_UNLOCK(sh); 928 return (-1); 929 } 930 } 931 932 pf_init_threshold(&(*sn)->conn_rate, 933 rule->max_src_conn_rate.limit, 934 rule->max_src_conn_rate.seconds); 935 936 (*sn)->af = af; 937 (*sn)->rule.ptr = rule; 938 PF_ACPY(&(*sn)->addr, src, af); 939 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 940 (*sn)->creation = time_uptime; 941 (*sn)->ruletype = rule->action; 942 (*sn)->states = 1; 943 if ((*sn)->rule.ptr != NULL) 944 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 945 PF_HASHROW_UNLOCK(sh); 946 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 947 } else { 948 if (rule->max_src_states && 949 (*sn)->states >= rule->max_src_states) { 950 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 951 1); 952 return (-1); 953 } 954 } 955 return (0); 956 } 957 958 void 959 pf_unlink_src_node(struct pf_ksrc_node *src) 960 { 961 962 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 963 LIST_REMOVE(src, entry); 964 if (src->rule.ptr) 965 counter_u64_add(src->rule.ptr->src_nodes, -1); 966 } 967 968 u_int 969 pf_free_src_nodes(struct pf_ksrc_node_list *head) 970 { 971 struct pf_ksrc_node *sn, *tmp; 972 u_int count = 0; 973 974 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 975 pf_free_src_node(sn); 976 count++; 977 } 978 979 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 980 981 return (count); 982 } 983 984 void 985 pf_mtag_initialize() 986 { 987 988 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 989 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 990 UMA_ALIGN_PTR, 0); 991 } 992 993 /* Per-vnet data storage structures initialization. */ 994 void 995 pf_initialize() 996 { 997 struct pf_keyhash *kh; 998 struct pf_idhash *ih; 999 struct pf_srchash *sh; 1000 u_int i; 1001 1002 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 1003 pf_hashsize = PF_HASHSIZ; 1004 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 1005 pf_srchashsize = PF_SRCHASHSIZ; 1006 1007 V_pf_hashseed = arc4random(); 1008 1009 /* States and state keys storage. */ 1010 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1011 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1012 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1013 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1014 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1015 1016 V_pf_state_key_z = uma_zcreate("pf state keys", 1017 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1018 UMA_ALIGN_PTR, 0); 1019 1020 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1021 M_PFHASH, M_NOWAIT | M_ZERO); 1022 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1023 M_PFHASH, M_NOWAIT | M_ZERO); 1024 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1025 printf("pf: Unable to allocate memory for " 1026 "state_hashsize %lu.\n", pf_hashsize); 1027 1028 free(V_pf_keyhash, M_PFHASH); 1029 free(V_pf_idhash, M_PFHASH); 1030 1031 pf_hashsize = PF_HASHSIZ; 1032 V_pf_keyhash = mallocarray(pf_hashsize, 1033 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1034 V_pf_idhash = mallocarray(pf_hashsize, 1035 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1036 } 1037 1038 pf_hashmask = pf_hashsize - 1; 1039 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1040 i++, kh++, ih++) { 1041 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1042 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1043 } 1044 1045 /* Source nodes. */ 1046 V_pf_sources_z = uma_zcreate("pf source nodes", 1047 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1048 0); 1049 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1050 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1051 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1052 1053 V_pf_srchash = mallocarray(pf_srchashsize, 1054 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1055 if (V_pf_srchash == NULL) { 1056 printf("pf: Unable to allocate memory for " 1057 "source_hashsize %lu.\n", pf_srchashsize); 1058 1059 pf_srchashsize = PF_SRCHASHSIZ; 1060 V_pf_srchash = mallocarray(pf_srchashsize, 1061 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1062 } 1063 1064 pf_srchashmask = pf_srchashsize - 1; 1065 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1066 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1067 1068 /* ALTQ */ 1069 TAILQ_INIT(&V_pf_altqs[0]); 1070 TAILQ_INIT(&V_pf_altqs[1]); 1071 TAILQ_INIT(&V_pf_altqs[2]); 1072 TAILQ_INIT(&V_pf_altqs[3]); 1073 TAILQ_INIT(&V_pf_pabuf); 1074 V_pf_altqs_active = &V_pf_altqs[0]; 1075 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1076 V_pf_altqs_inactive = &V_pf_altqs[2]; 1077 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1078 1079 /* Send & overload+flush queues. */ 1080 STAILQ_INIT(&V_pf_sendqueue); 1081 SLIST_INIT(&V_pf_overloadqueue); 1082 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1083 1084 /* Unlinked, but may be referenced rules. */ 1085 TAILQ_INIT(&V_pf_unlinked_rules); 1086 } 1087 1088 void 1089 pf_mtag_cleanup() 1090 { 1091 1092 uma_zdestroy(pf_mtag_z); 1093 } 1094 1095 void 1096 pf_cleanup() 1097 { 1098 struct pf_keyhash *kh; 1099 struct pf_idhash *ih; 1100 struct pf_srchash *sh; 1101 struct pf_send_entry *pfse, *next; 1102 u_int i; 1103 1104 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1105 i++, kh++, ih++) { 1106 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1107 __func__)); 1108 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1109 __func__)); 1110 mtx_destroy(&kh->lock); 1111 mtx_destroy(&ih->lock); 1112 } 1113 free(V_pf_keyhash, M_PFHASH); 1114 free(V_pf_idhash, M_PFHASH); 1115 1116 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1117 KASSERT(LIST_EMPTY(&sh->nodes), 1118 ("%s: source node hash not empty", __func__)); 1119 mtx_destroy(&sh->lock); 1120 } 1121 free(V_pf_srchash, M_PFHASH); 1122 1123 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1124 m_freem(pfse->pfse_m); 1125 free(pfse, M_PFTEMP); 1126 } 1127 1128 uma_zdestroy(V_pf_sources_z); 1129 uma_zdestroy(V_pf_state_z); 1130 uma_zdestroy(V_pf_state_key_z); 1131 } 1132 1133 static int 1134 pf_mtag_uminit(void *mem, int size, int how) 1135 { 1136 struct m_tag *t; 1137 1138 t = (struct m_tag *)mem; 1139 t->m_tag_cookie = MTAG_ABI_COMPAT; 1140 t->m_tag_id = PACKET_TAG_PF; 1141 t->m_tag_len = sizeof(struct pf_mtag); 1142 t->m_tag_free = pf_mtag_free; 1143 1144 return (0); 1145 } 1146 1147 static void 1148 pf_mtag_free(struct m_tag *t) 1149 { 1150 1151 uma_zfree(pf_mtag_z, t); 1152 } 1153 1154 struct pf_mtag * 1155 pf_get_mtag(struct mbuf *m) 1156 { 1157 struct m_tag *mtag; 1158 1159 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1160 return ((struct pf_mtag *)(mtag + 1)); 1161 1162 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1163 if (mtag == NULL) 1164 return (NULL); 1165 bzero(mtag + 1, sizeof(struct pf_mtag)); 1166 m_tag_prepend(m, mtag); 1167 1168 return ((struct pf_mtag *)(mtag + 1)); 1169 } 1170 1171 static int 1172 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1173 struct pf_kstate *s) 1174 { 1175 struct pf_keyhash *khs, *khw, *kh; 1176 struct pf_state_key *sk, *cur; 1177 struct pf_kstate *si, *olds = NULL; 1178 int idx; 1179 1180 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1181 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1182 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1183 1184 /* 1185 * We need to lock hash slots of both keys. To avoid deadlock 1186 * we always lock the slot with lower address first. Unlock order 1187 * isn't important. 1188 * 1189 * We also need to lock ID hash slot before dropping key 1190 * locks. On success we return with ID hash slot locked. 1191 */ 1192 1193 if (skw == sks) { 1194 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1195 PF_HASHROW_LOCK(khs); 1196 } else { 1197 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1198 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1199 if (khs == khw) { 1200 PF_HASHROW_LOCK(khs); 1201 } else if (khs < khw) { 1202 PF_HASHROW_LOCK(khs); 1203 PF_HASHROW_LOCK(khw); 1204 } else { 1205 PF_HASHROW_LOCK(khw); 1206 PF_HASHROW_LOCK(khs); 1207 } 1208 } 1209 1210 #define KEYS_UNLOCK() do { \ 1211 if (khs != khw) { \ 1212 PF_HASHROW_UNLOCK(khs); \ 1213 PF_HASHROW_UNLOCK(khw); \ 1214 } else \ 1215 PF_HASHROW_UNLOCK(khs); \ 1216 } while (0) 1217 1218 /* 1219 * First run: start with wire key. 1220 */ 1221 sk = skw; 1222 kh = khw; 1223 idx = PF_SK_WIRE; 1224 1225 MPASS(s->lock == NULL); 1226 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1227 1228 keyattach: 1229 LIST_FOREACH(cur, &kh->keys, entry) 1230 if (pf_bcmp_state_key(cur, (struct pf_state_key_cmp *)sk) == 0) 1231 break; 1232 1233 if (cur != NULL) { 1234 /* Key exists. Check for same kif, if none, add to key. */ 1235 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1236 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1237 1238 PF_HASHROW_LOCK(ih); 1239 if (si->kif == s->kif && 1240 si->direction == s->direction) { 1241 if (sk->proto == IPPROTO_TCP && 1242 si->src.state >= TCPS_FIN_WAIT_2 && 1243 si->dst.state >= TCPS_FIN_WAIT_2) { 1244 /* 1245 * New state matches an old >FIN_WAIT_2 1246 * state. We can't drop key hash locks, 1247 * thus we can't unlink it properly. 1248 * 1249 * As a workaround we drop it into 1250 * TCPS_CLOSED state, schedule purge 1251 * ASAP and push it into the very end 1252 * of the slot TAILQ, so that it won't 1253 * conflict with our new state. 1254 */ 1255 pf_set_protostate(si, PF_PEER_BOTH, 1256 TCPS_CLOSED); 1257 si->timeout = PFTM_PURGE; 1258 olds = si; 1259 } else { 1260 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1261 printf("pf: %s key attach " 1262 "failed on %s: ", 1263 (idx == PF_SK_WIRE) ? 1264 "wire" : "stack", 1265 s->kif->pfik_name); 1266 pf_print_state_parts(s, 1267 (idx == PF_SK_WIRE) ? 1268 sk : NULL, 1269 (idx == PF_SK_STACK) ? 1270 sk : NULL); 1271 printf(", existing: "); 1272 pf_print_state_parts(si, 1273 (idx == PF_SK_WIRE) ? 1274 sk : NULL, 1275 (idx == PF_SK_STACK) ? 1276 sk : NULL); 1277 printf("\n"); 1278 } 1279 PF_HASHROW_UNLOCK(ih); 1280 KEYS_UNLOCK(); 1281 uma_zfree(V_pf_state_key_z, sk); 1282 if (idx == PF_SK_STACK) 1283 pf_detach_state(s); 1284 return (EEXIST); /* collision! */ 1285 } 1286 } 1287 PF_HASHROW_UNLOCK(ih); 1288 } 1289 uma_zfree(V_pf_state_key_z, sk); 1290 s->key[idx] = cur; 1291 } else { 1292 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1293 s->key[idx] = sk; 1294 } 1295 1296 stateattach: 1297 /* List is sorted, if-bound states before floating. */ 1298 if (s->kif == V_pfi_all) 1299 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1300 else 1301 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1302 1303 if (olds) { 1304 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1305 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1306 key_list[idx]); 1307 olds = NULL; 1308 } 1309 1310 /* 1311 * Attach done. See how should we (or should not?) 1312 * attach a second key. 1313 */ 1314 if (sks == skw) { 1315 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1316 idx = PF_SK_STACK; 1317 sks = NULL; 1318 goto stateattach; 1319 } else if (sks != NULL) { 1320 /* 1321 * Continue attaching with stack key. 1322 */ 1323 sk = sks; 1324 kh = khs; 1325 idx = PF_SK_STACK; 1326 sks = NULL; 1327 goto keyattach; 1328 } 1329 1330 PF_STATE_LOCK(s); 1331 KEYS_UNLOCK(); 1332 1333 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1334 ("%s failure", __func__)); 1335 1336 return (0); 1337 #undef KEYS_UNLOCK 1338 } 1339 1340 static void 1341 pf_detach_state(struct pf_kstate *s) 1342 { 1343 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1344 struct pf_keyhash *kh; 1345 1346 if (sks != NULL) { 1347 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1348 PF_HASHROW_LOCK(kh); 1349 if (s->key[PF_SK_STACK] != NULL) 1350 pf_state_key_detach(s, PF_SK_STACK); 1351 /* 1352 * If both point to same key, then we are done. 1353 */ 1354 if (sks == s->key[PF_SK_WIRE]) { 1355 pf_state_key_detach(s, PF_SK_WIRE); 1356 PF_HASHROW_UNLOCK(kh); 1357 return; 1358 } 1359 PF_HASHROW_UNLOCK(kh); 1360 } 1361 1362 if (s->key[PF_SK_WIRE] != NULL) { 1363 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1364 PF_HASHROW_LOCK(kh); 1365 if (s->key[PF_SK_WIRE] != NULL) 1366 pf_state_key_detach(s, PF_SK_WIRE); 1367 PF_HASHROW_UNLOCK(kh); 1368 } 1369 } 1370 1371 static void 1372 pf_state_key_detach(struct pf_kstate *s, int idx) 1373 { 1374 struct pf_state_key *sk = s->key[idx]; 1375 #ifdef INVARIANTS 1376 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1377 1378 PF_HASHROW_ASSERT(kh); 1379 #endif 1380 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1381 s->key[idx] = NULL; 1382 1383 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1384 LIST_REMOVE(sk, entry); 1385 uma_zfree(V_pf_state_key_z, sk); 1386 } 1387 } 1388 1389 static int 1390 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1391 { 1392 struct pf_state_key *sk = mem; 1393 1394 bzero(sk, sizeof(struct pf_state_key_cmp)); 1395 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1396 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1397 1398 return (0); 1399 } 1400 1401 struct pf_state_key * 1402 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1403 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1404 { 1405 struct pf_state_key *sk; 1406 1407 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1408 if (sk == NULL) 1409 return (NULL); 1410 1411 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1412 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1413 sk->port[pd->sidx] = sport; 1414 sk->port[pd->didx] = dport; 1415 sk->proto = pd->proto; 1416 sk->af = pd->af; 1417 1418 return (sk); 1419 } 1420 1421 struct pf_state_key * 1422 pf_state_key_clone(struct pf_state_key *orig) 1423 { 1424 struct pf_state_key *sk; 1425 1426 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1427 if (sk == NULL) 1428 return (NULL); 1429 1430 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1431 1432 return (sk); 1433 } 1434 1435 int 1436 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1437 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1438 { 1439 struct pf_idhash *ih; 1440 struct pf_kstate *cur; 1441 int error; 1442 1443 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1444 ("%s: sks not pristine", __func__)); 1445 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1446 ("%s: skw not pristine", __func__)); 1447 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1448 1449 s->kif = kif; 1450 s->orig_kif = orig_kif; 1451 1452 if (s->id == 0 && s->creatorid == 0) { 1453 /* XXX: should be atomic, but probability of collision low */ 1454 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1455 V_pf_stateid[curcpu] = 1; 1456 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1457 s->id = htobe64(s->id); 1458 s->creatorid = V_pf_status.hostid; 1459 } 1460 1461 /* Returns with ID locked on success. */ 1462 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1463 return (error); 1464 1465 ih = &V_pf_idhash[PF_IDHASH(s)]; 1466 PF_HASHROW_ASSERT(ih); 1467 LIST_FOREACH(cur, &ih->states, entry) 1468 if (cur->id == s->id && cur->creatorid == s->creatorid) 1469 break; 1470 1471 if (cur != NULL) { 1472 PF_HASHROW_UNLOCK(ih); 1473 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1474 printf("pf: state ID collision: " 1475 "id: %016llx creatorid: %08x\n", 1476 (unsigned long long)be64toh(s->id), 1477 ntohl(s->creatorid)); 1478 } 1479 pf_detach_state(s); 1480 return (EEXIST); 1481 } 1482 LIST_INSERT_HEAD(&ih->states, s, entry); 1483 /* One for keys, one for ID hash. */ 1484 refcount_init(&s->refs, 2); 1485 1486 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1487 if (V_pfsync_insert_state_ptr != NULL) 1488 V_pfsync_insert_state_ptr(s); 1489 1490 /* Returns locked. */ 1491 return (0); 1492 } 1493 1494 /* 1495 * Find state by ID: returns with locked row on success. 1496 */ 1497 struct pf_kstate * 1498 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1499 { 1500 struct pf_idhash *ih; 1501 struct pf_kstate *s; 1502 1503 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1504 1505 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1506 1507 PF_HASHROW_LOCK(ih); 1508 LIST_FOREACH(s, &ih->states, entry) 1509 if (s->id == id && s->creatorid == creatorid) 1510 break; 1511 1512 if (s == NULL) 1513 PF_HASHROW_UNLOCK(ih); 1514 1515 return (s); 1516 } 1517 1518 /* 1519 * Find state by key. 1520 * Returns with ID hash slot locked on success. 1521 */ 1522 static struct pf_kstate * 1523 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1524 { 1525 struct pf_keyhash *kh; 1526 struct pf_state_key *sk; 1527 struct pf_kstate *s; 1528 int idx; 1529 1530 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1531 1532 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1533 1534 PF_HASHROW_LOCK(kh); 1535 LIST_FOREACH(sk, &kh->keys, entry) 1536 if (pf_bcmp_state_key(sk, key) == 0) 1537 break; 1538 if (sk == NULL) { 1539 PF_HASHROW_UNLOCK(kh); 1540 return (NULL); 1541 } 1542 1543 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1544 1545 /* List is sorted, if-bound states before floating ones. */ 1546 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1547 if (s->kif == V_pfi_all || s->kif == kif) { 1548 PF_STATE_LOCK(s); 1549 PF_HASHROW_UNLOCK(kh); 1550 if (__predict_false(s->timeout >= PFTM_MAX)) { 1551 /* 1552 * State is either being processed by 1553 * pf_unlink_state() in an other thread, or 1554 * is scheduled for immediate expiry. 1555 */ 1556 PF_STATE_UNLOCK(s); 1557 return (NULL); 1558 } 1559 return (s); 1560 } 1561 PF_HASHROW_UNLOCK(kh); 1562 1563 return (NULL); 1564 } 1565 1566 /* 1567 * Returns with ID hash slot locked on success. 1568 */ 1569 struct pf_kstate * 1570 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1571 { 1572 struct pf_keyhash *kh; 1573 struct pf_state_key *sk; 1574 struct pf_kstate *s, *ret = NULL; 1575 int idx, inout = 0; 1576 1577 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1578 1579 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1580 1581 PF_HASHROW_LOCK(kh); 1582 LIST_FOREACH(sk, &kh->keys, entry) 1583 if (pf_bcmp_state_key(sk, key) == 0) 1584 break; 1585 if (sk == NULL) { 1586 PF_HASHROW_UNLOCK(kh); 1587 return (NULL); 1588 } 1589 switch (dir) { 1590 case PF_IN: 1591 idx = PF_SK_WIRE; 1592 break; 1593 case PF_OUT: 1594 idx = PF_SK_STACK; 1595 break; 1596 case PF_INOUT: 1597 idx = PF_SK_WIRE; 1598 inout = 1; 1599 break; 1600 default: 1601 panic("%s: dir %u", __func__, dir); 1602 } 1603 second_run: 1604 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1605 if (more == NULL) { 1606 PF_STATE_LOCK(s); 1607 PF_HASHROW_UNLOCK(kh); 1608 return (s); 1609 } 1610 1611 if (ret) 1612 (*more)++; 1613 else { 1614 ret = s; 1615 PF_STATE_LOCK(s); 1616 } 1617 } 1618 if (inout == 1) { 1619 inout = 0; 1620 idx = PF_SK_STACK; 1621 goto second_run; 1622 } 1623 PF_HASHROW_UNLOCK(kh); 1624 1625 return (ret); 1626 } 1627 1628 /* 1629 * FIXME 1630 * This routine is inefficient -- locks the state only to unlock immediately on 1631 * return. 1632 * It is racy -- after the state is unlocked nothing stops other threads from 1633 * removing it. 1634 */ 1635 bool 1636 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1637 { 1638 struct pf_kstate *s; 1639 1640 s = pf_find_state_all(key, dir, NULL); 1641 if (s != NULL) { 1642 PF_STATE_UNLOCK(s); 1643 return (true); 1644 } 1645 return (false); 1646 } 1647 1648 /* END state table stuff */ 1649 1650 static void 1651 pf_send(struct pf_send_entry *pfse) 1652 { 1653 1654 PF_SENDQ_LOCK(); 1655 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1656 PF_SENDQ_UNLOCK(); 1657 swi_sched(V_pf_swi_cookie, 0); 1658 } 1659 1660 static bool 1661 pf_isforlocal(struct mbuf *m, int af) 1662 { 1663 switch (af) { 1664 #ifdef INET 1665 case AF_INET: { 1666 struct ip *ip = mtod(m, struct ip *); 1667 1668 return (in_localip(ip->ip_dst)); 1669 } 1670 #endif 1671 #ifdef INET6 1672 case AF_INET6: { 1673 struct ip6_hdr *ip6; 1674 struct in6_ifaddr *ia; 1675 ip6 = mtod(m, struct ip6_hdr *); 1676 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1677 if (ia == NULL) 1678 return (false); 1679 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1680 } 1681 #endif 1682 default: 1683 panic("Unsupported af %d", af); 1684 } 1685 1686 return (false); 1687 } 1688 1689 void 1690 pf_intr(void *v) 1691 { 1692 struct epoch_tracker et; 1693 struct pf_send_head queue; 1694 struct pf_send_entry *pfse, *next; 1695 1696 CURVNET_SET((struct vnet *)v); 1697 1698 PF_SENDQ_LOCK(); 1699 queue = V_pf_sendqueue; 1700 STAILQ_INIT(&V_pf_sendqueue); 1701 PF_SENDQ_UNLOCK(); 1702 1703 NET_EPOCH_ENTER(et); 1704 1705 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1706 switch (pfse->pfse_type) { 1707 #ifdef INET 1708 case PFSE_IP: { 1709 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1710 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1711 pfse->pfse_m->m_pkthdr.csum_flags |= 1712 CSUM_IP_VALID | CSUM_IP_CHECKED; 1713 ip_input(pfse->pfse_m); 1714 } else { 1715 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1716 NULL); 1717 } 1718 break; 1719 } 1720 case PFSE_ICMP: 1721 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1722 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1723 break; 1724 #endif /* INET */ 1725 #ifdef INET6 1726 case PFSE_IP6: 1727 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1728 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1729 ip6_input(pfse->pfse_m); 1730 } else { 1731 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1732 NULL, NULL); 1733 } 1734 break; 1735 case PFSE_ICMP6: 1736 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1737 pfse->icmpopts.code, pfse->icmpopts.mtu); 1738 break; 1739 #endif /* INET6 */ 1740 default: 1741 panic("%s: unknown type", __func__); 1742 } 1743 free(pfse, M_PFTEMP); 1744 } 1745 NET_EPOCH_EXIT(et); 1746 CURVNET_RESTORE(); 1747 } 1748 1749 #define pf_purge_thread_period (hz / 10) 1750 1751 #ifdef PF_WANT_32_TO_64_COUNTER 1752 static void 1753 pf_status_counter_u64_periodic(void) 1754 { 1755 1756 PF_RULES_RASSERT(); 1757 1758 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1759 return; 1760 } 1761 1762 for (int i = 0; i < FCNT_MAX; i++) { 1763 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1764 } 1765 } 1766 1767 static void 1768 pf_kif_counter_u64_periodic(void) 1769 { 1770 struct pfi_kkif *kif; 1771 size_t r, run; 1772 1773 PF_RULES_RASSERT(); 1774 1775 if (__predict_false(V_pf_allkifcount == 0)) { 1776 return; 1777 } 1778 1779 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1780 return; 1781 } 1782 1783 run = V_pf_allkifcount / 10; 1784 if (run < 5) 1785 run = 5; 1786 1787 for (r = 0; r < run; r++) { 1788 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1789 if (kif == NULL) { 1790 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1791 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1792 break; 1793 } 1794 1795 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1796 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1797 1798 for (int i = 0; i < 2; i++) { 1799 for (int j = 0; j < 2; j++) { 1800 for (int k = 0; k < 2; k++) { 1801 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1802 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1803 } 1804 } 1805 } 1806 } 1807 } 1808 1809 static void 1810 pf_rule_counter_u64_periodic(void) 1811 { 1812 struct pf_krule *rule; 1813 size_t r, run; 1814 1815 PF_RULES_RASSERT(); 1816 1817 if (__predict_false(V_pf_allrulecount == 0)) { 1818 return; 1819 } 1820 1821 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1822 return; 1823 } 1824 1825 run = V_pf_allrulecount / 10; 1826 if (run < 5) 1827 run = 5; 1828 1829 for (r = 0; r < run; r++) { 1830 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1831 if (rule == NULL) { 1832 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1833 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1834 break; 1835 } 1836 1837 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1838 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1839 1840 pf_counter_u64_periodic(&rule->evaluations); 1841 for (int i = 0; i < 2; i++) { 1842 pf_counter_u64_periodic(&rule->packets[i]); 1843 pf_counter_u64_periodic(&rule->bytes[i]); 1844 } 1845 } 1846 } 1847 1848 static void 1849 pf_counter_u64_periodic_main(void) 1850 { 1851 PF_RULES_RLOCK_TRACKER; 1852 1853 V_pf_counter_periodic_iter++; 1854 1855 PF_RULES_RLOCK(); 1856 pf_counter_u64_critical_enter(); 1857 pf_status_counter_u64_periodic(); 1858 pf_kif_counter_u64_periodic(); 1859 pf_rule_counter_u64_periodic(); 1860 pf_counter_u64_critical_exit(); 1861 PF_RULES_RUNLOCK(); 1862 } 1863 #else 1864 #define pf_counter_u64_periodic_main() do { } while (0) 1865 #endif 1866 1867 void 1868 pf_purge_thread(void *unused __unused) 1869 { 1870 VNET_ITERATOR_DECL(vnet_iter); 1871 1872 sx_xlock(&pf_end_lock); 1873 while (pf_end_threads == 0) { 1874 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1875 1876 VNET_LIST_RLOCK(); 1877 VNET_FOREACH(vnet_iter) { 1878 CURVNET_SET(vnet_iter); 1879 1880 /* Wait until V_pf_default_rule is initialized. */ 1881 if (V_pf_vnet_active == 0) { 1882 CURVNET_RESTORE(); 1883 continue; 1884 } 1885 1886 pf_counter_u64_periodic_main(); 1887 1888 /* 1889 * Process 1/interval fraction of the state 1890 * table every run. 1891 */ 1892 V_pf_purge_idx = 1893 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1894 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1895 1896 /* 1897 * Purge other expired types every 1898 * PFTM_INTERVAL seconds. 1899 */ 1900 if (V_pf_purge_idx == 0) { 1901 /* 1902 * Order is important: 1903 * - states and src nodes reference rules 1904 * - states and rules reference kifs 1905 */ 1906 pf_purge_expired_fragments(); 1907 pf_purge_expired_src_nodes(); 1908 pf_purge_unlinked_rules(); 1909 pfi_kkif_purge(); 1910 } 1911 CURVNET_RESTORE(); 1912 } 1913 VNET_LIST_RUNLOCK(); 1914 } 1915 1916 pf_end_threads++; 1917 sx_xunlock(&pf_end_lock); 1918 kproc_exit(0); 1919 } 1920 1921 void 1922 pf_unload_vnet_purge(void) 1923 { 1924 1925 /* 1926 * To cleanse up all kifs and rules we need 1927 * two runs: first one clears reference flags, 1928 * then pf_purge_expired_states() doesn't 1929 * raise them, and then second run frees. 1930 */ 1931 pf_purge_unlinked_rules(); 1932 pfi_kkif_purge(); 1933 1934 /* 1935 * Now purge everything. 1936 */ 1937 pf_purge_expired_states(0, pf_hashmask); 1938 pf_purge_fragments(UINT_MAX); 1939 pf_purge_expired_src_nodes(); 1940 1941 /* 1942 * Now all kifs & rules should be unreferenced, 1943 * thus should be successfully freed. 1944 */ 1945 pf_purge_unlinked_rules(); 1946 pfi_kkif_purge(); 1947 } 1948 1949 u_int32_t 1950 pf_state_expires(const struct pf_kstate *state) 1951 { 1952 u_int32_t timeout; 1953 u_int32_t start; 1954 u_int32_t end; 1955 u_int32_t states; 1956 1957 /* handle all PFTM_* > PFTM_MAX here */ 1958 if (state->timeout == PFTM_PURGE) 1959 return (time_uptime); 1960 KASSERT(state->timeout != PFTM_UNLINKED, 1961 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1962 KASSERT((state->timeout < PFTM_MAX), 1963 ("pf_state_expires: timeout > PFTM_MAX")); 1964 timeout = state->rule.ptr->timeout[state->timeout]; 1965 if (!timeout) 1966 timeout = V_pf_default_rule.timeout[state->timeout]; 1967 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1968 if (start && state->rule.ptr != &V_pf_default_rule) { 1969 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1970 states = counter_u64_fetch(state->rule.ptr->states_cur); 1971 } else { 1972 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1973 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1974 states = V_pf_status.states; 1975 } 1976 if (end && states > start && start < end) { 1977 if (states < end) { 1978 timeout = (u_int64_t)timeout * (end - states) / 1979 (end - start); 1980 return (state->expire + timeout); 1981 } 1982 else 1983 return (time_uptime); 1984 } 1985 return (state->expire + timeout); 1986 } 1987 1988 void 1989 pf_purge_expired_src_nodes() 1990 { 1991 struct pf_ksrc_node_list freelist; 1992 struct pf_srchash *sh; 1993 struct pf_ksrc_node *cur, *next; 1994 int i; 1995 1996 LIST_INIT(&freelist); 1997 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1998 PF_HASHROW_LOCK(sh); 1999 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2000 if (cur->states == 0 && cur->expire <= time_uptime) { 2001 pf_unlink_src_node(cur); 2002 LIST_INSERT_HEAD(&freelist, cur, entry); 2003 } else if (cur->rule.ptr != NULL) 2004 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2005 PF_HASHROW_UNLOCK(sh); 2006 } 2007 2008 pf_free_src_nodes(&freelist); 2009 2010 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2011 } 2012 2013 static void 2014 pf_src_tree_remove_state(struct pf_kstate *s) 2015 { 2016 struct pf_ksrc_node *sn; 2017 struct pf_srchash *sh; 2018 uint32_t timeout; 2019 2020 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2021 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2022 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2023 2024 if (s->src_node != NULL) { 2025 sn = s->src_node; 2026 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2027 PF_HASHROW_LOCK(sh); 2028 if (s->src.tcp_est) 2029 --sn->conn; 2030 if (--sn->states == 0) 2031 sn->expire = time_uptime + timeout; 2032 PF_HASHROW_UNLOCK(sh); 2033 } 2034 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2035 sn = s->nat_src_node; 2036 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2037 PF_HASHROW_LOCK(sh); 2038 if (--sn->states == 0) 2039 sn->expire = time_uptime + timeout; 2040 PF_HASHROW_UNLOCK(sh); 2041 } 2042 s->src_node = s->nat_src_node = NULL; 2043 } 2044 2045 /* 2046 * Unlink and potentilly free a state. Function may be 2047 * called with ID hash row locked, but always returns 2048 * unlocked, since it needs to go through key hash locking. 2049 */ 2050 int 2051 pf_unlink_state(struct pf_kstate *s) 2052 { 2053 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2054 2055 PF_HASHROW_ASSERT(ih); 2056 2057 if (s->timeout == PFTM_UNLINKED) { 2058 /* 2059 * State is being processed 2060 * by pf_unlink_state() in 2061 * an other thread. 2062 */ 2063 PF_HASHROW_UNLOCK(ih); 2064 return (0); /* XXXGL: undefined actually */ 2065 } 2066 2067 if (s->src.state == PF_TCPS_PROXY_DST) { 2068 /* XXX wire key the right one? */ 2069 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2070 &s->key[PF_SK_WIRE]->addr[1], 2071 &s->key[PF_SK_WIRE]->addr[0], 2072 s->key[PF_SK_WIRE]->port[1], 2073 s->key[PF_SK_WIRE]->port[0], 2074 s->src.seqhi, s->src.seqlo + 1, 2075 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 2076 } 2077 2078 LIST_REMOVE(s, entry); 2079 pf_src_tree_remove_state(s); 2080 2081 if (V_pfsync_delete_state_ptr != NULL) 2082 V_pfsync_delete_state_ptr(s); 2083 2084 STATE_DEC_COUNTERS(s); 2085 2086 s->timeout = PFTM_UNLINKED; 2087 2088 /* Ensure we remove it from the list of halfopen states, if needed. */ 2089 if (s->key[PF_SK_STACK] != NULL && 2090 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2091 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2092 2093 PF_HASHROW_UNLOCK(ih); 2094 2095 pf_detach_state(s); 2096 /* pf_state_insert() initialises refs to 2 */ 2097 return (pf_release_staten(s, 2)); 2098 } 2099 2100 struct pf_kstate * 2101 pf_alloc_state(int flags) 2102 { 2103 2104 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2105 } 2106 2107 void 2108 pf_free_state(struct pf_kstate *cur) 2109 { 2110 2111 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2112 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2113 cur->timeout)); 2114 2115 pf_normalize_tcp_cleanup(cur); 2116 uma_zfree(V_pf_state_z, cur); 2117 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2118 } 2119 2120 /* 2121 * Called only from pf_purge_thread(), thus serialized. 2122 */ 2123 static u_int 2124 pf_purge_expired_states(u_int i, int maxcheck) 2125 { 2126 struct pf_idhash *ih; 2127 struct pf_kstate *s; 2128 2129 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2130 2131 /* 2132 * Go through hash and unlink states that expire now. 2133 */ 2134 while (maxcheck > 0) { 2135 ih = &V_pf_idhash[i]; 2136 2137 /* only take the lock if we expect to do work */ 2138 if (!LIST_EMPTY(&ih->states)) { 2139 relock: 2140 PF_HASHROW_LOCK(ih); 2141 LIST_FOREACH(s, &ih->states, entry) { 2142 if (pf_state_expires(s) <= time_uptime) { 2143 V_pf_status.states -= 2144 pf_unlink_state(s); 2145 goto relock; 2146 } 2147 s->rule.ptr->rule_ref |= PFRULE_REFS; 2148 if (s->nat_rule.ptr != NULL) 2149 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2150 if (s->anchor.ptr != NULL) 2151 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2152 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2153 if (s->rt_kif) 2154 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2155 } 2156 PF_HASHROW_UNLOCK(ih); 2157 } 2158 2159 /* Return when we hit end of hash. */ 2160 if (++i > pf_hashmask) { 2161 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2162 return (0); 2163 } 2164 2165 maxcheck--; 2166 } 2167 2168 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2169 2170 return (i); 2171 } 2172 2173 static void 2174 pf_purge_unlinked_rules() 2175 { 2176 struct pf_krulequeue tmpq; 2177 struct pf_krule *r, *r1; 2178 2179 /* 2180 * If we have overloading task pending, then we'd 2181 * better skip purging this time. There is a tiny 2182 * probability that overloading task references 2183 * an already unlinked rule. 2184 */ 2185 PF_OVERLOADQ_LOCK(); 2186 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2187 PF_OVERLOADQ_UNLOCK(); 2188 return; 2189 } 2190 PF_OVERLOADQ_UNLOCK(); 2191 2192 /* 2193 * Do naive mark-and-sweep garbage collecting of old rules. 2194 * Reference flag is raised by pf_purge_expired_states() 2195 * and pf_purge_expired_src_nodes(). 2196 * 2197 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2198 * use a temporary queue. 2199 */ 2200 TAILQ_INIT(&tmpq); 2201 PF_UNLNKDRULES_LOCK(); 2202 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2203 if (!(r->rule_ref & PFRULE_REFS)) { 2204 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2205 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2206 } else 2207 r->rule_ref &= ~PFRULE_REFS; 2208 } 2209 PF_UNLNKDRULES_UNLOCK(); 2210 2211 if (!TAILQ_EMPTY(&tmpq)) { 2212 PF_CONFIG_LOCK(); 2213 PF_RULES_WLOCK(); 2214 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2215 TAILQ_REMOVE(&tmpq, r, entries); 2216 pf_free_rule(r); 2217 } 2218 PF_RULES_WUNLOCK(); 2219 PF_CONFIG_UNLOCK(); 2220 } 2221 } 2222 2223 void 2224 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2225 { 2226 switch (af) { 2227 #ifdef INET 2228 case AF_INET: { 2229 u_int32_t a = ntohl(addr->addr32[0]); 2230 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2231 (a>>8)&255, a&255); 2232 if (p) { 2233 p = ntohs(p); 2234 printf(":%u", p); 2235 } 2236 break; 2237 } 2238 #endif /* INET */ 2239 #ifdef INET6 2240 case AF_INET6: { 2241 u_int16_t b; 2242 u_int8_t i, curstart, curend, maxstart, maxend; 2243 curstart = curend = maxstart = maxend = 255; 2244 for (i = 0; i < 8; i++) { 2245 if (!addr->addr16[i]) { 2246 if (curstart == 255) 2247 curstart = i; 2248 curend = i; 2249 } else { 2250 if ((curend - curstart) > 2251 (maxend - maxstart)) { 2252 maxstart = curstart; 2253 maxend = curend; 2254 } 2255 curstart = curend = 255; 2256 } 2257 } 2258 if ((curend - curstart) > 2259 (maxend - maxstart)) { 2260 maxstart = curstart; 2261 maxend = curend; 2262 } 2263 for (i = 0; i < 8; i++) { 2264 if (i >= maxstart && i <= maxend) { 2265 if (i == 0) 2266 printf(":"); 2267 if (i == maxend) 2268 printf(":"); 2269 } else { 2270 b = ntohs(addr->addr16[i]); 2271 printf("%x", b); 2272 if (i < 7) 2273 printf(":"); 2274 } 2275 } 2276 if (p) { 2277 p = ntohs(p); 2278 printf("[%u]", p); 2279 } 2280 break; 2281 } 2282 #endif /* INET6 */ 2283 } 2284 } 2285 2286 void 2287 pf_print_state(struct pf_kstate *s) 2288 { 2289 pf_print_state_parts(s, NULL, NULL); 2290 } 2291 2292 static void 2293 pf_print_state_parts(struct pf_kstate *s, 2294 struct pf_state_key *skwp, struct pf_state_key *sksp) 2295 { 2296 struct pf_state_key *skw, *sks; 2297 u_int8_t proto, dir; 2298 2299 /* Do our best to fill these, but they're skipped if NULL */ 2300 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2301 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2302 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2303 dir = s ? s->direction : 0; 2304 2305 switch (proto) { 2306 case IPPROTO_IPV4: 2307 printf("IPv4"); 2308 break; 2309 case IPPROTO_IPV6: 2310 printf("IPv6"); 2311 break; 2312 case IPPROTO_TCP: 2313 printf("TCP"); 2314 break; 2315 case IPPROTO_UDP: 2316 printf("UDP"); 2317 break; 2318 case IPPROTO_ICMP: 2319 printf("ICMP"); 2320 break; 2321 case IPPROTO_ICMPV6: 2322 printf("ICMPv6"); 2323 break; 2324 default: 2325 printf("%u", proto); 2326 break; 2327 } 2328 switch (dir) { 2329 case PF_IN: 2330 printf(" in"); 2331 break; 2332 case PF_OUT: 2333 printf(" out"); 2334 break; 2335 } 2336 if (skw) { 2337 printf(" wire: "); 2338 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2339 printf(" "); 2340 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2341 } 2342 if (sks) { 2343 printf(" stack: "); 2344 if (sks != skw) { 2345 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2346 printf(" "); 2347 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2348 } else 2349 printf("-"); 2350 } 2351 if (s) { 2352 if (proto == IPPROTO_TCP) { 2353 printf(" [lo=%u high=%u win=%u modulator=%u", 2354 s->src.seqlo, s->src.seqhi, 2355 s->src.max_win, s->src.seqdiff); 2356 if (s->src.wscale && s->dst.wscale) 2357 printf(" wscale=%u", 2358 s->src.wscale & PF_WSCALE_MASK); 2359 printf("]"); 2360 printf(" [lo=%u high=%u win=%u modulator=%u", 2361 s->dst.seqlo, s->dst.seqhi, 2362 s->dst.max_win, s->dst.seqdiff); 2363 if (s->src.wscale && s->dst.wscale) 2364 printf(" wscale=%u", 2365 s->dst.wscale & PF_WSCALE_MASK); 2366 printf("]"); 2367 } 2368 printf(" %u:%u", s->src.state, s->dst.state); 2369 } 2370 } 2371 2372 void 2373 pf_print_flags(u_int8_t f) 2374 { 2375 if (f) 2376 printf(" "); 2377 if (f & TH_FIN) 2378 printf("F"); 2379 if (f & TH_SYN) 2380 printf("S"); 2381 if (f & TH_RST) 2382 printf("R"); 2383 if (f & TH_PUSH) 2384 printf("P"); 2385 if (f & TH_ACK) 2386 printf("A"); 2387 if (f & TH_URG) 2388 printf("U"); 2389 if (f & TH_ECE) 2390 printf("E"); 2391 if (f & TH_CWR) 2392 printf("W"); 2393 } 2394 2395 #define PF_SET_SKIP_STEPS(i) \ 2396 do { \ 2397 while (head[i] != cur) { \ 2398 head[i]->skip[i].ptr = cur; \ 2399 head[i] = TAILQ_NEXT(head[i], entries); \ 2400 } \ 2401 } while (0) 2402 2403 void 2404 pf_calc_skip_steps(struct pf_krulequeue *rules) 2405 { 2406 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2407 int i; 2408 2409 cur = TAILQ_FIRST(rules); 2410 prev = cur; 2411 for (i = 0; i < PF_SKIP_COUNT; ++i) 2412 head[i] = cur; 2413 while (cur != NULL) { 2414 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2415 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2416 if (cur->direction != prev->direction) 2417 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2418 if (cur->af != prev->af) 2419 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2420 if (cur->proto != prev->proto) 2421 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2422 if (cur->src.neg != prev->src.neg || 2423 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2424 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2425 if (cur->src.port[0] != prev->src.port[0] || 2426 cur->src.port[1] != prev->src.port[1] || 2427 cur->src.port_op != prev->src.port_op) 2428 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2429 if (cur->dst.neg != prev->dst.neg || 2430 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2431 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2432 if (cur->dst.port[0] != prev->dst.port[0] || 2433 cur->dst.port[1] != prev->dst.port[1] || 2434 cur->dst.port_op != prev->dst.port_op) 2435 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2436 2437 prev = cur; 2438 cur = TAILQ_NEXT(cur, entries); 2439 } 2440 for (i = 0; i < PF_SKIP_COUNT; ++i) 2441 PF_SET_SKIP_STEPS(i); 2442 } 2443 2444 static int 2445 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2446 { 2447 if (aw1->type != aw2->type) 2448 return (1); 2449 switch (aw1->type) { 2450 case PF_ADDR_ADDRMASK: 2451 case PF_ADDR_RANGE: 2452 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2453 return (1); 2454 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2455 return (1); 2456 return (0); 2457 case PF_ADDR_DYNIFTL: 2458 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2459 case PF_ADDR_NOROUTE: 2460 case PF_ADDR_URPFFAILED: 2461 return (0); 2462 case PF_ADDR_TABLE: 2463 return (aw1->p.tbl != aw2->p.tbl); 2464 default: 2465 printf("invalid address type: %d\n", aw1->type); 2466 return (1); 2467 } 2468 } 2469 2470 /** 2471 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2472 * header isn't always a full checksum. In some cases (i.e. output) it's a 2473 * pseudo-header checksum, which is a partial checksum over src/dst IP 2474 * addresses, protocol number and length. 2475 * 2476 * That means we have the following cases: 2477 * * Input or forwarding: we don't have TSO, the checksum fields are full 2478 * checksums, we need to update the checksum whenever we change anything. 2479 * * Output (i.e. the checksum is a pseudo-header checksum): 2480 * x The field being updated is src/dst address or affects the length of 2481 * the packet. We need to update the pseudo-header checksum (note that this 2482 * checksum is not ones' complement). 2483 * x Some other field is being modified (e.g. src/dst port numbers): We 2484 * don't have to update anything. 2485 **/ 2486 u_int16_t 2487 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2488 { 2489 u_int32_t x; 2490 2491 x = cksum + old - new; 2492 x = (x + (x >> 16)) & 0xffff; 2493 2494 /* optimise: eliminate a branch when not udp */ 2495 if (udp && cksum == 0x0000) 2496 return cksum; 2497 if (udp && x == 0x0000) 2498 x = 0xffff; 2499 2500 return (u_int16_t)(x); 2501 } 2502 2503 static void 2504 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2505 u_int8_t udp) 2506 { 2507 u_int16_t old = htons(hi ? (*f << 8) : *f); 2508 u_int16_t new = htons(hi ? ( v << 8) : v); 2509 2510 if (*f == v) 2511 return; 2512 2513 *f = v; 2514 2515 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2516 return; 2517 2518 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2519 } 2520 2521 void 2522 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2523 bool hi, u_int8_t udp) 2524 { 2525 u_int8_t *fb = (u_int8_t *)f; 2526 u_int8_t *vb = (u_int8_t *)&v; 2527 2528 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2529 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2530 } 2531 2532 void 2533 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2534 bool hi, u_int8_t udp) 2535 { 2536 u_int8_t *fb = (u_int8_t *)f; 2537 u_int8_t *vb = (u_int8_t *)&v; 2538 2539 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2540 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2541 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2542 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2543 } 2544 2545 u_int16_t 2546 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2547 u_int16_t new, u_int8_t udp) 2548 { 2549 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2550 return (cksum); 2551 2552 return (pf_cksum_fixup(cksum, old, new, udp)); 2553 } 2554 2555 static void 2556 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2557 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2558 sa_family_t af) 2559 { 2560 struct pf_addr ao; 2561 u_int16_t po = *p; 2562 2563 PF_ACPY(&ao, a, af); 2564 PF_ACPY(a, an, af); 2565 2566 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2567 *pc = ~*pc; 2568 2569 *p = pn; 2570 2571 switch (af) { 2572 #ifdef INET 2573 case AF_INET: 2574 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2575 ao.addr16[0], an->addr16[0], 0), 2576 ao.addr16[1], an->addr16[1], 0); 2577 *p = pn; 2578 2579 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2580 ao.addr16[0], an->addr16[0], u), 2581 ao.addr16[1], an->addr16[1], u); 2582 2583 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2584 break; 2585 #endif /* INET */ 2586 #ifdef INET6 2587 case AF_INET6: 2588 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2589 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2590 pf_cksum_fixup(pf_cksum_fixup(*pc, 2591 ao.addr16[0], an->addr16[0], u), 2592 ao.addr16[1], an->addr16[1], u), 2593 ao.addr16[2], an->addr16[2], u), 2594 ao.addr16[3], an->addr16[3], u), 2595 ao.addr16[4], an->addr16[4], u), 2596 ao.addr16[5], an->addr16[5], u), 2597 ao.addr16[6], an->addr16[6], u), 2598 ao.addr16[7], an->addr16[7], u); 2599 2600 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2601 break; 2602 #endif /* INET6 */ 2603 } 2604 2605 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2606 CSUM_DELAY_DATA_IPV6)) { 2607 *pc = ~*pc; 2608 if (! *pc) 2609 *pc = 0xffff; 2610 } 2611 } 2612 2613 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2614 void 2615 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2616 { 2617 u_int32_t ao; 2618 2619 memcpy(&ao, a, sizeof(ao)); 2620 memcpy(a, &an, sizeof(u_int32_t)); 2621 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2622 ao % 65536, an % 65536, u); 2623 } 2624 2625 void 2626 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2627 { 2628 u_int32_t ao; 2629 2630 memcpy(&ao, a, sizeof(ao)); 2631 memcpy(a, &an, sizeof(u_int32_t)); 2632 2633 *c = pf_proto_cksum_fixup(m, 2634 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2635 ao % 65536, an % 65536, udp); 2636 } 2637 2638 #ifdef INET6 2639 static void 2640 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2641 { 2642 struct pf_addr ao; 2643 2644 PF_ACPY(&ao, a, AF_INET6); 2645 PF_ACPY(a, an, AF_INET6); 2646 2647 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2648 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2649 pf_cksum_fixup(pf_cksum_fixup(*c, 2650 ao.addr16[0], an->addr16[0], u), 2651 ao.addr16[1], an->addr16[1], u), 2652 ao.addr16[2], an->addr16[2], u), 2653 ao.addr16[3], an->addr16[3], u), 2654 ao.addr16[4], an->addr16[4], u), 2655 ao.addr16[5], an->addr16[5], u), 2656 ao.addr16[6], an->addr16[6], u), 2657 ao.addr16[7], an->addr16[7], u); 2658 } 2659 #endif /* INET6 */ 2660 2661 static void 2662 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2663 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2664 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2665 { 2666 struct pf_addr oia, ooa; 2667 2668 PF_ACPY(&oia, ia, af); 2669 if (oa) 2670 PF_ACPY(&ooa, oa, af); 2671 2672 /* Change inner protocol port, fix inner protocol checksum. */ 2673 if (ip != NULL) { 2674 u_int16_t oip = *ip; 2675 u_int32_t opc; 2676 2677 if (pc != NULL) 2678 opc = *pc; 2679 *ip = np; 2680 if (pc != NULL) 2681 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2682 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2683 if (pc != NULL) 2684 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2685 } 2686 /* Change inner ip address, fix inner ip and icmp checksums. */ 2687 PF_ACPY(ia, na, af); 2688 switch (af) { 2689 #ifdef INET 2690 case AF_INET: { 2691 u_int32_t oh2c = *h2c; 2692 2693 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2694 oia.addr16[0], ia->addr16[0], 0), 2695 oia.addr16[1], ia->addr16[1], 0); 2696 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2697 oia.addr16[0], ia->addr16[0], 0), 2698 oia.addr16[1], ia->addr16[1], 0); 2699 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2700 break; 2701 } 2702 #endif /* INET */ 2703 #ifdef INET6 2704 case AF_INET6: 2705 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2706 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2707 pf_cksum_fixup(pf_cksum_fixup(*ic, 2708 oia.addr16[0], ia->addr16[0], u), 2709 oia.addr16[1], ia->addr16[1], u), 2710 oia.addr16[2], ia->addr16[2], u), 2711 oia.addr16[3], ia->addr16[3], u), 2712 oia.addr16[4], ia->addr16[4], u), 2713 oia.addr16[5], ia->addr16[5], u), 2714 oia.addr16[6], ia->addr16[6], u), 2715 oia.addr16[7], ia->addr16[7], u); 2716 break; 2717 #endif /* INET6 */ 2718 } 2719 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2720 if (oa) { 2721 PF_ACPY(oa, na, af); 2722 switch (af) { 2723 #ifdef INET 2724 case AF_INET: 2725 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2726 ooa.addr16[0], oa->addr16[0], 0), 2727 ooa.addr16[1], oa->addr16[1], 0); 2728 break; 2729 #endif /* INET */ 2730 #ifdef INET6 2731 case AF_INET6: 2732 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2733 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2734 pf_cksum_fixup(pf_cksum_fixup(*ic, 2735 ooa.addr16[0], oa->addr16[0], u), 2736 ooa.addr16[1], oa->addr16[1], u), 2737 ooa.addr16[2], oa->addr16[2], u), 2738 ooa.addr16[3], oa->addr16[3], u), 2739 ooa.addr16[4], oa->addr16[4], u), 2740 ooa.addr16[5], oa->addr16[5], u), 2741 ooa.addr16[6], oa->addr16[6], u), 2742 ooa.addr16[7], oa->addr16[7], u); 2743 break; 2744 #endif /* INET6 */ 2745 } 2746 } 2747 } 2748 2749 /* 2750 * Need to modulate the sequence numbers in the TCP SACK option 2751 * (credits to Krzysztof Pfaff for report and patch) 2752 */ 2753 static int 2754 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2755 struct tcphdr *th, struct pf_state_peer *dst) 2756 { 2757 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2758 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2759 int copyback = 0, i, olen; 2760 struct sackblk sack; 2761 2762 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2763 if (hlen < TCPOLEN_SACKLEN || 2764 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2765 return 0; 2766 2767 while (hlen >= TCPOLEN_SACKLEN) { 2768 size_t startoff = opt - opts; 2769 olen = opt[1]; 2770 switch (*opt) { 2771 case TCPOPT_EOL: /* FALLTHROUGH */ 2772 case TCPOPT_NOP: 2773 opt++; 2774 hlen--; 2775 break; 2776 case TCPOPT_SACK: 2777 if (olen > hlen) 2778 olen = hlen; 2779 if (olen >= TCPOLEN_SACKLEN) { 2780 for (i = 2; i + TCPOLEN_SACK <= olen; 2781 i += TCPOLEN_SACK) { 2782 memcpy(&sack, &opt[i], sizeof(sack)); 2783 pf_patch_32_unaligned(m, 2784 &th->th_sum, &sack.start, 2785 htonl(ntohl(sack.start) - dst->seqdiff), 2786 PF_ALGNMNT(startoff), 2787 0); 2788 pf_patch_32_unaligned(m, &th->th_sum, 2789 &sack.end, 2790 htonl(ntohl(sack.end) - dst->seqdiff), 2791 PF_ALGNMNT(startoff), 2792 0); 2793 memcpy(&opt[i], &sack, sizeof(sack)); 2794 } 2795 copyback = 1; 2796 } 2797 /* FALLTHROUGH */ 2798 default: 2799 if (olen < 2) 2800 olen = 2; 2801 hlen -= olen; 2802 opt += olen; 2803 } 2804 } 2805 2806 if (copyback) 2807 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2808 return (copyback); 2809 } 2810 2811 struct mbuf * 2812 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2813 const struct pf_addr *saddr, const struct pf_addr *daddr, 2814 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2815 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2816 u_int16_t rtag) 2817 { 2818 struct mbuf *m; 2819 int len, tlen; 2820 #ifdef INET 2821 struct ip *h = NULL; 2822 #endif /* INET */ 2823 #ifdef INET6 2824 struct ip6_hdr *h6 = NULL; 2825 #endif /* INET6 */ 2826 struct tcphdr *th; 2827 char *opt; 2828 struct pf_mtag *pf_mtag; 2829 2830 len = 0; 2831 th = NULL; 2832 2833 /* maximum segment size tcp option */ 2834 tlen = sizeof(struct tcphdr); 2835 if (mss) 2836 tlen += 4; 2837 2838 switch (af) { 2839 #ifdef INET 2840 case AF_INET: 2841 len = sizeof(struct ip) + tlen; 2842 break; 2843 #endif /* INET */ 2844 #ifdef INET6 2845 case AF_INET6: 2846 len = sizeof(struct ip6_hdr) + tlen; 2847 break; 2848 #endif /* INET6 */ 2849 default: 2850 panic("%s: unsupported af %d", __func__, af); 2851 } 2852 2853 m = m_gethdr(M_NOWAIT, MT_DATA); 2854 if (m == NULL) 2855 return (NULL); 2856 2857 #ifdef MAC 2858 mac_netinet_firewall_send(m); 2859 #endif 2860 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2861 m_freem(m); 2862 return (NULL); 2863 } 2864 if (tag) 2865 m->m_flags |= M_SKIP_FIREWALL; 2866 pf_mtag->tag = rtag; 2867 2868 if (r != NULL && r->rtableid >= 0) 2869 M_SETFIB(m, r->rtableid); 2870 2871 #ifdef ALTQ 2872 if (r != NULL && r->qid) { 2873 pf_mtag->qid = r->qid; 2874 2875 /* add hints for ecn */ 2876 pf_mtag->hdr = mtod(m, struct ip *); 2877 } 2878 #endif /* ALTQ */ 2879 m->m_data += max_linkhdr; 2880 m->m_pkthdr.len = m->m_len = len; 2881 /* The rest of the stack assumes a rcvif, so provide one. 2882 * This is a locally generated packet, so .. close enough. */ 2883 m->m_pkthdr.rcvif = V_loif; 2884 bzero(m->m_data, len); 2885 switch (af) { 2886 #ifdef INET 2887 case AF_INET: 2888 h = mtod(m, struct ip *); 2889 2890 /* IP header fields included in the TCP checksum */ 2891 h->ip_p = IPPROTO_TCP; 2892 h->ip_len = htons(tlen); 2893 h->ip_src.s_addr = saddr->v4.s_addr; 2894 h->ip_dst.s_addr = daddr->v4.s_addr; 2895 2896 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2897 break; 2898 #endif /* INET */ 2899 #ifdef INET6 2900 case AF_INET6: 2901 h6 = mtod(m, struct ip6_hdr *); 2902 2903 /* IP header fields included in the TCP checksum */ 2904 h6->ip6_nxt = IPPROTO_TCP; 2905 h6->ip6_plen = htons(tlen); 2906 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2907 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2908 2909 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2910 break; 2911 #endif /* INET6 */ 2912 } 2913 2914 /* TCP header */ 2915 th->th_sport = sport; 2916 th->th_dport = dport; 2917 th->th_seq = htonl(seq); 2918 th->th_ack = htonl(ack); 2919 th->th_off = tlen >> 2; 2920 th->th_flags = flags; 2921 th->th_win = htons(win); 2922 2923 if (mss) { 2924 opt = (char *)(th + 1); 2925 opt[0] = TCPOPT_MAXSEG; 2926 opt[1] = 4; 2927 HTONS(mss); 2928 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2929 } 2930 2931 switch (af) { 2932 #ifdef INET 2933 case AF_INET: 2934 /* TCP checksum */ 2935 th->th_sum = in_cksum(m, len); 2936 2937 /* Finish the IP header */ 2938 h->ip_v = 4; 2939 h->ip_hl = sizeof(*h) >> 2; 2940 h->ip_tos = IPTOS_LOWDELAY; 2941 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2942 h->ip_len = htons(len); 2943 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2944 h->ip_sum = 0; 2945 break; 2946 #endif /* INET */ 2947 #ifdef INET6 2948 case AF_INET6: 2949 /* TCP checksum */ 2950 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2951 sizeof(struct ip6_hdr), tlen); 2952 2953 h6->ip6_vfc |= IPV6_VERSION; 2954 h6->ip6_hlim = IPV6_DEFHLIM; 2955 break; 2956 #endif /* INET6 */ 2957 } 2958 2959 return (m); 2960 } 2961 2962 void 2963 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2964 const struct pf_addr *saddr, const struct pf_addr *daddr, 2965 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2966 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2967 u_int16_t rtag) 2968 { 2969 struct pf_send_entry *pfse; 2970 struct mbuf *m; 2971 2972 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2973 win, mss, ttl, tag, rtag); 2974 if (m == NULL) 2975 return; 2976 2977 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2978 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2979 if (pfse == NULL) { 2980 m_freem(m); 2981 return; 2982 } 2983 2984 switch (af) { 2985 #ifdef INET 2986 case AF_INET: 2987 pfse->pfse_type = PFSE_IP; 2988 break; 2989 #endif /* INET */ 2990 #ifdef INET6 2991 case AF_INET6: 2992 pfse->pfse_type = PFSE_IP6; 2993 break; 2994 #endif /* INET6 */ 2995 } 2996 2997 pfse->pfse_m = m; 2998 pf_send(pfse); 2999 } 3000 3001 static void 3002 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3003 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3004 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3005 u_short *reason) 3006 { 3007 struct pf_addr * const saddr = pd->src; 3008 struct pf_addr * const daddr = pd->dst; 3009 sa_family_t af = pd->af; 3010 3011 /* undo NAT changes, if they have taken place */ 3012 if (nr != NULL) { 3013 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3014 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3015 if (pd->sport) 3016 *pd->sport = sk->port[pd->sidx]; 3017 if (pd->dport) 3018 *pd->dport = sk->port[pd->didx]; 3019 if (pd->proto_sum) 3020 *pd->proto_sum = bproto_sum; 3021 if (pd->ip_sum) 3022 *pd->ip_sum = bip_sum; 3023 m_copyback(m, off, hdrlen, pd->hdr.any); 3024 } 3025 if (pd->proto == IPPROTO_TCP && 3026 ((r->rule_flag & PFRULE_RETURNRST) || 3027 (r->rule_flag & PFRULE_RETURN)) && 3028 !(th->th_flags & TH_RST)) { 3029 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3030 int len = 0; 3031 #ifdef INET 3032 struct ip *h4; 3033 #endif 3034 #ifdef INET6 3035 struct ip6_hdr *h6; 3036 #endif 3037 3038 switch (af) { 3039 #ifdef INET 3040 case AF_INET: 3041 h4 = mtod(m, struct ip *); 3042 len = ntohs(h4->ip_len) - off; 3043 break; 3044 #endif 3045 #ifdef INET6 3046 case AF_INET6: 3047 h6 = mtod(m, struct ip6_hdr *); 3048 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3049 break; 3050 #endif 3051 } 3052 3053 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3054 REASON_SET(reason, PFRES_PROTCKSUM); 3055 else { 3056 if (th->th_flags & TH_SYN) 3057 ack++; 3058 if (th->th_flags & TH_FIN) 3059 ack++; 3060 pf_send_tcp(r, af, pd->dst, 3061 pd->src, th->th_dport, th->th_sport, 3062 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3063 r->return_ttl, 1, 0); 3064 } 3065 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3066 r->return_icmp) 3067 pf_send_icmp(m, r->return_icmp >> 8, 3068 r->return_icmp & 255, af, r); 3069 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3070 r->return_icmp6) 3071 pf_send_icmp(m, r->return_icmp6 >> 8, 3072 r->return_icmp6 & 255, af, r); 3073 } 3074 3075 static int 3076 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3077 { 3078 struct m_tag *mtag; 3079 u_int8_t mpcp; 3080 3081 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3082 if (mtag == NULL) 3083 return (0); 3084 3085 if (prio == PF_PRIO_ZERO) 3086 prio = 0; 3087 3088 mpcp = *(uint8_t *)(mtag + 1); 3089 3090 return (mpcp == prio); 3091 } 3092 3093 static void 3094 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3095 struct pf_krule *r) 3096 { 3097 struct pf_send_entry *pfse; 3098 struct mbuf *m0; 3099 struct pf_mtag *pf_mtag; 3100 3101 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3102 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3103 if (pfse == NULL) 3104 return; 3105 3106 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3107 free(pfse, M_PFTEMP); 3108 return; 3109 } 3110 3111 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3112 free(pfse, M_PFTEMP); 3113 return; 3114 } 3115 /* XXX: revisit */ 3116 m0->m_flags |= M_SKIP_FIREWALL; 3117 3118 if (r->rtableid >= 0) 3119 M_SETFIB(m0, r->rtableid); 3120 3121 #ifdef ALTQ 3122 if (r->qid) { 3123 pf_mtag->qid = r->qid; 3124 /* add hints for ecn */ 3125 pf_mtag->hdr = mtod(m0, struct ip *); 3126 } 3127 #endif /* ALTQ */ 3128 3129 switch (af) { 3130 #ifdef INET 3131 case AF_INET: 3132 pfse->pfse_type = PFSE_ICMP; 3133 break; 3134 #endif /* INET */ 3135 #ifdef INET6 3136 case AF_INET6: 3137 pfse->pfse_type = PFSE_ICMP6; 3138 break; 3139 #endif /* INET6 */ 3140 } 3141 pfse->pfse_m = m0; 3142 pfse->icmpopts.type = type; 3143 pfse->icmpopts.code = code; 3144 pf_send(pfse); 3145 } 3146 3147 /* 3148 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3149 * If n is 0, they match if they are equal. If n is != 0, they match if they 3150 * are different. 3151 */ 3152 int 3153 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3154 struct pf_addr *b, sa_family_t af) 3155 { 3156 int match = 0; 3157 3158 switch (af) { 3159 #ifdef INET 3160 case AF_INET: 3161 if ((a->addr32[0] & m->addr32[0]) == 3162 (b->addr32[0] & m->addr32[0])) 3163 match++; 3164 break; 3165 #endif /* INET */ 3166 #ifdef INET6 3167 case AF_INET6: 3168 if (((a->addr32[0] & m->addr32[0]) == 3169 (b->addr32[0] & m->addr32[0])) && 3170 ((a->addr32[1] & m->addr32[1]) == 3171 (b->addr32[1] & m->addr32[1])) && 3172 ((a->addr32[2] & m->addr32[2]) == 3173 (b->addr32[2] & m->addr32[2])) && 3174 ((a->addr32[3] & m->addr32[3]) == 3175 (b->addr32[3] & m->addr32[3]))) 3176 match++; 3177 break; 3178 #endif /* INET6 */ 3179 } 3180 if (match) { 3181 if (n) 3182 return (0); 3183 else 3184 return (1); 3185 } else { 3186 if (n) 3187 return (1); 3188 else 3189 return (0); 3190 } 3191 } 3192 3193 /* 3194 * Return 1 if b <= a <= e, otherwise return 0. 3195 */ 3196 int 3197 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3198 struct pf_addr *a, sa_family_t af) 3199 { 3200 switch (af) { 3201 #ifdef INET 3202 case AF_INET: 3203 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3204 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3205 return (0); 3206 break; 3207 #endif /* INET */ 3208 #ifdef INET6 3209 case AF_INET6: { 3210 int i; 3211 3212 /* check a >= b */ 3213 for (i = 0; i < 4; ++i) 3214 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3215 break; 3216 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3217 return (0); 3218 /* check a <= e */ 3219 for (i = 0; i < 4; ++i) 3220 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3221 break; 3222 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3223 return (0); 3224 break; 3225 } 3226 #endif /* INET6 */ 3227 } 3228 return (1); 3229 } 3230 3231 static int 3232 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3233 { 3234 switch (op) { 3235 case PF_OP_IRG: 3236 return ((p > a1) && (p < a2)); 3237 case PF_OP_XRG: 3238 return ((p < a1) || (p > a2)); 3239 case PF_OP_RRG: 3240 return ((p >= a1) && (p <= a2)); 3241 case PF_OP_EQ: 3242 return (p == a1); 3243 case PF_OP_NE: 3244 return (p != a1); 3245 case PF_OP_LT: 3246 return (p < a1); 3247 case PF_OP_LE: 3248 return (p <= a1); 3249 case PF_OP_GT: 3250 return (p > a1); 3251 case PF_OP_GE: 3252 return (p >= a1); 3253 } 3254 return (0); /* never reached */ 3255 } 3256 3257 int 3258 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3259 { 3260 NTOHS(a1); 3261 NTOHS(a2); 3262 NTOHS(p); 3263 return (pf_match(op, a1, a2, p)); 3264 } 3265 3266 static int 3267 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3268 { 3269 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3270 return (0); 3271 return (pf_match(op, a1, a2, u)); 3272 } 3273 3274 static int 3275 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3276 { 3277 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3278 return (0); 3279 return (pf_match(op, a1, a2, g)); 3280 } 3281 3282 int 3283 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3284 { 3285 if (*tag == -1) 3286 *tag = mtag; 3287 3288 return ((!r->match_tag_not && r->match_tag == *tag) || 3289 (r->match_tag_not && r->match_tag != *tag)); 3290 } 3291 3292 int 3293 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3294 { 3295 3296 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3297 3298 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3299 return (ENOMEM); 3300 3301 pd->pf_mtag->tag = tag; 3302 3303 return (0); 3304 } 3305 3306 #define PF_ANCHOR_STACKSIZE 32 3307 struct pf_kanchor_stackframe { 3308 struct pf_kruleset *rs; 3309 struct pf_krule *r; /* XXX: + match bit */ 3310 struct pf_kanchor *child; 3311 }; 3312 3313 /* 3314 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3315 */ 3316 #define PF_ANCHORSTACK_MATCH 0x00000001 3317 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3318 3319 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3320 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3321 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3322 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3323 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3324 } while (0) 3325 3326 void 3327 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3328 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3329 int *match) 3330 { 3331 struct pf_kanchor_stackframe *f; 3332 3333 PF_RULES_RASSERT(); 3334 3335 if (match) 3336 *match = 0; 3337 if (*depth >= PF_ANCHOR_STACKSIZE) { 3338 printf("%s: anchor stack overflow on %s\n", 3339 __func__, (*r)->anchor->name); 3340 *r = TAILQ_NEXT(*r, entries); 3341 return; 3342 } else if (*depth == 0 && a != NULL) 3343 *a = *r; 3344 f = stack + (*depth)++; 3345 f->rs = *rs; 3346 f->r = *r; 3347 if ((*r)->anchor_wildcard) { 3348 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3349 3350 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3351 *r = NULL; 3352 return; 3353 } 3354 *rs = &f->child->ruleset; 3355 } else { 3356 f->child = NULL; 3357 *rs = &(*r)->anchor->ruleset; 3358 } 3359 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3360 } 3361 3362 int 3363 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3364 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3365 int *match) 3366 { 3367 struct pf_kanchor_stackframe *f; 3368 struct pf_krule *fr; 3369 int quick = 0; 3370 3371 PF_RULES_RASSERT(); 3372 3373 do { 3374 if (*depth <= 0) 3375 break; 3376 f = stack + *depth - 1; 3377 fr = PF_ANCHOR_RULE(f); 3378 if (f->child != NULL) { 3379 /* 3380 * This block traverses through 3381 * a wildcard anchor. 3382 */ 3383 if (match != NULL && *match) { 3384 /* 3385 * If any of "*" matched, then 3386 * "foo/ *" matched, mark frame 3387 * appropriately. 3388 */ 3389 PF_ANCHOR_SET_MATCH(f); 3390 *match = 0; 3391 } 3392 f->child = RB_NEXT(pf_kanchor_node, 3393 &fr->anchor->children, f->child); 3394 if (f->child != NULL) { 3395 *rs = &f->child->ruleset; 3396 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3397 if (*r == NULL) 3398 continue; 3399 else 3400 break; 3401 } 3402 } 3403 (*depth)--; 3404 if (*depth == 0 && a != NULL) 3405 *a = NULL; 3406 *rs = f->rs; 3407 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3408 quick = fr->quick; 3409 *r = TAILQ_NEXT(fr, entries); 3410 } while (*r == NULL); 3411 3412 return (quick); 3413 } 3414 3415 struct pf_keth_anchor_stackframe { 3416 struct pf_keth_ruleset *rs; 3417 struct pf_keth_rule *r; /* XXX: + match bit */ 3418 struct pf_keth_anchor *child; 3419 }; 3420 3421 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3422 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3423 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3424 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3425 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3426 } while (0) 3427 3428 void 3429 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3430 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3431 struct pf_keth_rule **a, int *match) 3432 { 3433 struct pf_keth_anchor_stackframe *f; 3434 3435 NET_EPOCH_ASSERT(); 3436 3437 if (match) 3438 *match = 0; 3439 if (*depth >= PF_ANCHOR_STACKSIZE) { 3440 printf("%s: anchor stack overflow on %s\n", 3441 __func__, (*r)->anchor->name); 3442 *r = TAILQ_NEXT(*r, entries); 3443 return; 3444 } else if (*depth == 0 && a != NULL) 3445 *a = *r; 3446 f = stack + (*depth)++; 3447 f->rs = *rs; 3448 f->r = *r; 3449 if ((*r)->anchor_wildcard) { 3450 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3451 3452 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3453 *r = NULL; 3454 return; 3455 } 3456 *rs = &f->child->ruleset; 3457 } else { 3458 f->child = NULL; 3459 *rs = &(*r)->anchor->ruleset; 3460 } 3461 *r = TAILQ_FIRST((*rs)->active.rules); 3462 } 3463 3464 int 3465 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3466 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3467 struct pf_keth_rule **a, int *match) 3468 { 3469 struct pf_keth_anchor_stackframe *f; 3470 struct pf_keth_rule *fr; 3471 int quick = 0; 3472 3473 NET_EPOCH_ASSERT(); 3474 3475 do { 3476 if (*depth <= 0) 3477 break; 3478 f = stack + *depth - 1; 3479 fr = PF_ETH_ANCHOR_RULE(f); 3480 if (f->child != NULL) { 3481 /* 3482 * This block traverses through 3483 * a wildcard anchor. 3484 */ 3485 if (match != NULL && *match) { 3486 /* 3487 * If any of "*" matched, then 3488 * "foo/ *" matched, mark frame 3489 * appropriately. 3490 */ 3491 PF_ETH_ANCHOR_SET_MATCH(f); 3492 *match = 0; 3493 } 3494 f->child = RB_NEXT(pf_keth_anchor_node, 3495 &fr->anchor->children, f->child); 3496 if (f->child != NULL) { 3497 *rs = &f->child->ruleset; 3498 *r = TAILQ_FIRST((*rs)->active.rules); 3499 if (*r == NULL) 3500 continue; 3501 else 3502 break; 3503 } 3504 } 3505 (*depth)--; 3506 if (*depth == 0 && a != NULL) 3507 *a = NULL; 3508 *rs = f->rs; 3509 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3510 quick = fr->quick; 3511 *r = TAILQ_NEXT(fr, entries); 3512 } while (*r == NULL); 3513 3514 return (quick); 3515 } 3516 3517 #ifdef INET6 3518 void 3519 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3520 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3521 { 3522 switch (af) { 3523 #ifdef INET 3524 case AF_INET: 3525 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3526 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3527 break; 3528 #endif /* INET */ 3529 case AF_INET6: 3530 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3531 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3532 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3533 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3534 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3535 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3536 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3537 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3538 break; 3539 } 3540 } 3541 3542 void 3543 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3544 { 3545 switch (af) { 3546 #ifdef INET 3547 case AF_INET: 3548 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3549 break; 3550 #endif /* INET */ 3551 case AF_INET6: 3552 if (addr->addr32[3] == 0xffffffff) { 3553 addr->addr32[3] = 0; 3554 if (addr->addr32[2] == 0xffffffff) { 3555 addr->addr32[2] = 0; 3556 if (addr->addr32[1] == 0xffffffff) { 3557 addr->addr32[1] = 0; 3558 addr->addr32[0] = 3559 htonl(ntohl(addr->addr32[0]) + 1); 3560 } else 3561 addr->addr32[1] = 3562 htonl(ntohl(addr->addr32[1]) + 1); 3563 } else 3564 addr->addr32[2] = 3565 htonl(ntohl(addr->addr32[2]) + 1); 3566 } else 3567 addr->addr32[3] = 3568 htonl(ntohl(addr->addr32[3]) + 1); 3569 break; 3570 } 3571 } 3572 #endif /* INET6 */ 3573 3574 void 3575 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3576 { 3577 if (r->qid) 3578 a->qid = r->qid; 3579 if (r->pqid) 3580 a->pqid = r->pqid; 3581 if (r->dnpipe) 3582 a->dnpipe = r->dnpipe; 3583 if (r->dnrpipe) 3584 a->dnrpipe = r->dnrpipe; 3585 if (r->dnpipe || r->dnrpipe) { 3586 if (r->free_flags & PFRULE_DN_IS_PIPE) 3587 a->flags |= PFRULE_DN_IS_PIPE; 3588 else 3589 a->flags &= ~PFRULE_DN_IS_PIPE; 3590 } 3591 } 3592 3593 int 3594 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3595 { 3596 struct pf_addr *saddr, *daddr; 3597 u_int16_t sport, dport; 3598 struct inpcbinfo *pi; 3599 struct inpcb *inp; 3600 3601 pd->lookup.uid = UID_MAX; 3602 pd->lookup.gid = GID_MAX; 3603 3604 switch (pd->proto) { 3605 case IPPROTO_TCP: 3606 sport = pd->hdr.tcp.th_sport; 3607 dport = pd->hdr.tcp.th_dport; 3608 pi = &V_tcbinfo; 3609 break; 3610 case IPPROTO_UDP: 3611 sport = pd->hdr.udp.uh_sport; 3612 dport = pd->hdr.udp.uh_dport; 3613 pi = &V_udbinfo; 3614 break; 3615 default: 3616 return (-1); 3617 } 3618 if (direction == PF_IN) { 3619 saddr = pd->src; 3620 daddr = pd->dst; 3621 } else { 3622 u_int16_t p; 3623 3624 p = sport; 3625 sport = dport; 3626 dport = p; 3627 saddr = pd->dst; 3628 daddr = pd->src; 3629 } 3630 switch (pd->af) { 3631 #ifdef INET 3632 case AF_INET: 3633 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3634 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3635 if (inp == NULL) { 3636 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3637 daddr->v4, dport, INPLOOKUP_WILDCARD | 3638 INPLOOKUP_RLOCKPCB, NULL, m); 3639 if (inp == NULL) 3640 return (-1); 3641 } 3642 break; 3643 #endif /* INET */ 3644 #ifdef INET6 3645 case AF_INET6: 3646 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3647 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3648 if (inp == NULL) { 3649 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3650 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3651 INPLOOKUP_RLOCKPCB, NULL, m); 3652 if (inp == NULL) 3653 return (-1); 3654 } 3655 break; 3656 #endif /* INET6 */ 3657 3658 default: 3659 return (-1); 3660 } 3661 INP_RLOCK_ASSERT(inp); 3662 pd->lookup.uid = inp->inp_cred->cr_uid; 3663 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3664 INP_RUNLOCK(inp); 3665 3666 return (1); 3667 } 3668 3669 u_int8_t 3670 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3671 { 3672 int hlen; 3673 u_int8_t hdr[60]; 3674 u_int8_t *opt, optlen; 3675 u_int8_t wscale = 0; 3676 3677 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3678 if (hlen <= sizeof(struct tcphdr)) 3679 return (0); 3680 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3681 return (0); 3682 opt = hdr + sizeof(struct tcphdr); 3683 hlen -= sizeof(struct tcphdr); 3684 while (hlen >= 3) { 3685 switch (*opt) { 3686 case TCPOPT_EOL: 3687 case TCPOPT_NOP: 3688 ++opt; 3689 --hlen; 3690 break; 3691 case TCPOPT_WINDOW: 3692 wscale = opt[2]; 3693 if (wscale > TCP_MAX_WINSHIFT) 3694 wscale = TCP_MAX_WINSHIFT; 3695 wscale |= PF_WSCALE_FLAG; 3696 /* FALLTHROUGH */ 3697 default: 3698 optlen = opt[1]; 3699 if (optlen < 2) 3700 optlen = 2; 3701 hlen -= optlen; 3702 opt += optlen; 3703 break; 3704 } 3705 } 3706 return (wscale); 3707 } 3708 3709 u_int16_t 3710 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3711 { 3712 int hlen; 3713 u_int8_t hdr[60]; 3714 u_int8_t *opt, optlen; 3715 u_int16_t mss = V_tcp_mssdflt; 3716 3717 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3718 if (hlen <= sizeof(struct tcphdr)) 3719 return (0); 3720 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3721 return (0); 3722 opt = hdr + sizeof(struct tcphdr); 3723 hlen -= sizeof(struct tcphdr); 3724 while (hlen >= TCPOLEN_MAXSEG) { 3725 switch (*opt) { 3726 case TCPOPT_EOL: 3727 case TCPOPT_NOP: 3728 ++opt; 3729 --hlen; 3730 break; 3731 case TCPOPT_MAXSEG: 3732 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3733 NTOHS(mss); 3734 /* FALLTHROUGH */ 3735 default: 3736 optlen = opt[1]; 3737 if (optlen < 2) 3738 optlen = 2; 3739 hlen -= optlen; 3740 opt += optlen; 3741 break; 3742 } 3743 } 3744 return (mss); 3745 } 3746 3747 static u_int16_t 3748 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3749 { 3750 struct nhop_object *nh; 3751 #ifdef INET6 3752 struct in6_addr dst6; 3753 uint32_t scopeid; 3754 #endif /* INET6 */ 3755 int hlen = 0; 3756 uint16_t mss = 0; 3757 3758 NET_EPOCH_ASSERT(); 3759 3760 switch (af) { 3761 #ifdef INET 3762 case AF_INET: 3763 hlen = sizeof(struct ip); 3764 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3765 if (nh != NULL) 3766 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3767 break; 3768 #endif /* INET */ 3769 #ifdef INET6 3770 case AF_INET6: 3771 hlen = sizeof(struct ip6_hdr); 3772 in6_splitscope(&addr->v6, &dst6, &scopeid); 3773 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3774 if (nh != NULL) 3775 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3776 break; 3777 #endif /* INET6 */ 3778 } 3779 3780 mss = max(V_tcp_mssdflt, mss); 3781 mss = min(mss, offer); 3782 mss = max(mss, 64); /* sanity - at least max opt space */ 3783 return (mss); 3784 } 3785 3786 static u_int32_t 3787 pf_tcp_iss(struct pf_pdesc *pd) 3788 { 3789 MD5_CTX ctx; 3790 u_int32_t digest[4]; 3791 3792 if (V_pf_tcp_secret_init == 0) { 3793 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3794 MD5Init(&V_pf_tcp_secret_ctx); 3795 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3796 sizeof(V_pf_tcp_secret)); 3797 V_pf_tcp_secret_init = 1; 3798 } 3799 3800 ctx = V_pf_tcp_secret_ctx; 3801 3802 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3803 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3804 if (pd->af == AF_INET6) { 3805 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3806 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3807 } else { 3808 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3809 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3810 } 3811 MD5Final((u_char *)digest, &ctx); 3812 V_pf_tcp_iss_off += 4096; 3813 #define ISN_RANDOM_INCREMENT (4096 - 1) 3814 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3815 V_pf_tcp_iss_off); 3816 #undef ISN_RANDOM_INCREMENT 3817 } 3818 3819 static bool 3820 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 3821 { 3822 bool match = true; 3823 3824 /* Always matches if not set */ 3825 if (! r->isset) 3826 return (!r->neg); 3827 3828 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 3829 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 3830 match = false; 3831 break; 3832 } 3833 } 3834 3835 return (match ^ r->neg); 3836 } 3837 3838 static int 3839 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 3840 { 3841 if (*tag == -1) 3842 *tag = mtag; 3843 3844 return ((!r->match_tag_not && r->match_tag == *tag) || 3845 (r->match_tag_not && r->match_tag != *tag)); 3846 } 3847 3848 static int 3849 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 3850 { 3851 #ifdef INET 3852 struct ip ip; 3853 #endif 3854 #ifdef INET6 3855 struct ip6_hdr ip6; 3856 #endif 3857 struct mbuf *m = *m0; 3858 struct ether_header *e; 3859 struct pf_keth_rule *r, *rm, *a = NULL; 3860 struct pf_keth_ruleset *ruleset = NULL; 3861 struct pf_mtag *mtag; 3862 struct pf_keth_ruleq *rules; 3863 struct pf_addr *src, *dst; 3864 sa_family_t af = 0; 3865 uint16_t proto; 3866 int asd = 0, match = 0; 3867 int tag = -1; 3868 uint8_t action; 3869 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3870 3871 MPASS(kif->pfik_ifp->if_vnet == curvnet); 3872 NET_EPOCH_ASSERT(); 3873 3874 PF_RULES_RLOCK_TRACKER; 3875 3876 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 3877 3878 mtag = pf_find_mtag(m); 3879 if (mtag != NULL && mtag->flags & PF_TAG_DUMMYNET) { 3880 /* Dummynet re-injects packets after they've 3881 * completed their delay. We've already 3882 * processed them, so pass unconditionally. */ 3883 3884 /* But only once. We may see the packet multiple times (e.g. 3885 * PFIL_IN/PFIL_OUT). */ 3886 mtag->flags &= ~PF_TAG_DUMMYNET; 3887 3888 return (PF_PASS); 3889 } 3890 3891 ruleset = V_pf_keth; 3892 rules = ck_pr_load_ptr(&ruleset->active.rules); 3893 r = TAILQ_FIRST(rules); 3894 rm = NULL; 3895 3896 e = mtod(m, struct ether_header *); 3897 proto = ntohs(e->ether_type); 3898 3899 switch (proto) { 3900 #ifdef INET 3901 case ETHERTYPE_IP: { 3902 af = AF_INET; 3903 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 3904 (caddr_t)&ip); 3905 src = (struct pf_addr *)&ip.ip_src; 3906 dst = (struct pf_addr *)&ip.ip_dst; 3907 break; 3908 } 3909 #endif /* INET */ 3910 #ifdef INET6 3911 case ETHERTYPE_IPV6: { 3912 af = AF_INET6; 3913 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 3914 (caddr_t)&ip6); 3915 src = (struct pf_addr *)&ip6.ip6_src; 3916 dst = (struct pf_addr *)&ip6.ip6_dst; 3917 break; 3918 } 3919 #endif /* INET6 */ 3920 } 3921 3922 PF_RULES_RLOCK(); 3923 3924 while (r != NULL) { 3925 counter_u64_add(r->evaluations, 1); 3926 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 3927 3928 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 3929 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3930 "kif"); 3931 r = r->skip[PFE_SKIP_IFP].ptr; 3932 } 3933 else if (r->direction && r->direction != dir) { 3934 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3935 "dir"); 3936 r = r->skip[PFE_SKIP_DIR].ptr; 3937 } 3938 else if (r->proto && r->proto != proto) { 3939 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3940 "proto"); 3941 r = r->skip[PFE_SKIP_PROTO].ptr; 3942 } 3943 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 3944 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3945 "src"); 3946 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 3947 } 3948 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 3949 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3950 "dst"); 3951 r = TAILQ_NEXT(r, entries); 3952 } 3953 else if (af != 0 && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 3954 r->ipsrc.neg, kif, M_GETFIB(m))) { 3955 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3956 "ip_src"); 3957 r = TAILQ_NEXT(r, entries); 3958 } 3959 else if (af != 0 && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 3960 r->ipdst.neg, kif, M_GETFIB(m))) { 3961 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3962 "ip_dst"); 3963 r = TAILQ_NEXT(r, entries); 3964 } 3965 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 3966 mtag ? mtag->tag : 0)) { 3967 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3968 "match_tag"); 3969 r = TAILQ_NEXT(r, entries); 3970 } 3971 else { 3972 if (r->tag) 3973 tag = r->tag; 3974 if (r->anchor == NULL) { 3975 /* Rule matches */ 3976 rm = r; 3977 3978 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 3979 3980 if (r->quick) 3981 break; 3982 3983 r = TAILQ_NEXT(r, entries); 3984 } else { 3985 pf_step_into_keth_anchor(anchor_stack, &asd, 3986 &ruleset, &r, &a, &match); 3987 } 3988 } 3989 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 3990 &ruleset, &r, &a, &match)) 3991 break; 3992 } 3993 3994 r = rm; 3995 3996 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 3997 3998 /* Default to pass. */ 3999 if (r == NULL) { 4000 PF_RULES_RUNLOCK(); 4001 return (PF_PASS); 4002 } 4003 4004 /* Execute action. */ 4005 counter_u64_add(r->packets[dir == PF_OUT], 1); 4006 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4007 pf_update_timestamp(r); 4008 4009 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4010 if (r->action == PF_DROP) { 4011 PF_RULES_RUNLOCK(); 4012 return (PF_DROP); 4013 } 4014 4015 if (tag > 0) { 4016 if (mtag == NULL) 4017 mtag = pf_get_mtag(m); 4018 if (mtag == NULL) { 4019 PF_RULES_RUNLOCK(); 4020 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4021 return (PF_DROP); 4022 } 4023 mtag->tag = tag; 4024 } 4025 4026 if (r->qid != 0) { 4027 if (mtag == NULL) 4028 mtag = pf_get_mtag(m); 4029 if (mtag == NULL) { 4030 PF_RULES_RUNLOCK(); 4031 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4032 return (PF_DROP); 4033 } 4034 mtag->qid = r->qid; 4035 } 4036 4037 /* Dummynet */ 4038 if (r->dnpipe) { 4039 struct ip_fw_args dnflow; 4040 4041 /* Drop packet if dummynet is not loaded. */ 4042 if (ip_dn_io_ptr == NULL) { 4043 PF_RULES_RUNLOCK(); 4044 m_freem(m); 4045 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4046 return (PF_DROP); 4047 } 4048 if (mtag == NULL) 4049 mtag = pf_get_mtag(m); 4050 if (mtag == NULL) { 4051 PF_RULES_RUNLOCK(); 4052 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4053 return (PF_DROP); 4054 } 4055 4056 bzero(&dnflow, sizeof(dnflow)); 4057 4058 /* We don't have port numbers here, so we set 0. That means 4059 * that we'll be somewhat limited in distinguishing flows (i.e. 4060 * only based on IP addresses, not based on port numbers), but 4061 * it's better than nothing. */ 4062 dnflow.f_id.dst_port = 0; 4063 dnflow.f_id.src_port = 0; 4064 dnflow.f_id.proto = 0; 4065 4066 dnflow.rule.info = r->dnpipe; 4067 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4068 if (r->dnflags & PFRULE_DN_IS_PIPE) 4069 dnflow.rule.info |= IPFW_IS_PIPE; 4070 4071 dnflow.f_id.extra = dnflow.rule.info; 4072 4073 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4074 dnflow.flags |= IPFW_ARGS_ETHER; 4075 dnflow.ifp = kif->pfik_ifp; 4076 4077 switch (af) { 4078 case AF_INET: 4079 dnflow.f_id.addr_type = 4; 4080 dnflow.f_id.src_ip = src->v4.s_addr; 4081 dnflow.f_id.dst_ip = dst->v4.s_addr; 4082 break; 4083 case AF_INET6: 4084 dnflow.flags |= IPFW_ARGS_IP6; 4085 dnflow.f_id.addr_type = 6; 4086 dnflow.f_id.src_ip6 = src->v6; 4087 dnflow.f_id.dst_ip6 = dst->v6; 4088 break; 4089 default: 4090 panic("Unknown address family"); 4091 } 4092 4093 mtag->flags |= PF_TAG_DUMMYNET; 4094 ip_dn_io_ptr(m0, &dnflow); 4095 if (*m0 != NULL) 4096 mtag->flags &= ~PF_TAG_DUMMYNET; 4097 } 4098 4099 action = r->action; 4100 4101 PF_RULES_RUNLOCK(); 4102 4103 return (action); 4104 } 4105 4106 static int 4107 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 4108 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 4109 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 4110 { 4111 struct pf_krule *nr = NULL; 4112 struct pf_addr * const saddr = pd->src; 4113 struct pf_addr * const daddr = pd->dst; 4114 sa_family_t af = pd->af; 4115 struct pf_krule *r, *a = NULL; 4116 struct pf_kruleset *ruleset = NULL; 4117 struct pf_ksrc_node *nsn = NULL; 4118 struct tcphdr *th = &pd->hdr.tcp; 4119 struct pf_state_key *sk = NULL, *nk = NULL; 4120 u_short reason; 4121 int rewrite = 0, hdrlen = 0; 4122 int tag = -1, rtableid = -1; 4123 int asd = 0; 4124 int match = 0; 4125 int state_icmp = 0; 4126 u_int16_t sport = 0, dport = 0; 4127 u_int16_t bproto_sum = 0, bip_sum = 0; 4128 u_int8_t icmptype = 0, icmpcode = 0; 4129 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4130 4131 PF_RULES_RASSERT(); 4132 4133 if (inp != NULL) { 4134 INP_LOCK_ASSERT(inp); 4135 pd->lookup.uid = inp->inp_cred->cr_uid; 4136 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4137 pd->lookup.done = 1; 4138 } 4139 4140 switch (pd->proto) { 4141 case IPPROTO_TCP: 4142 sport = th->th_sport; 4143 dport = th->th_dport; 4144 hdrlen = sizeof(*th); 4145 break; 4146 case IPPROTO_UDP: 4147 sport = pd->hdr.udp.uh_sport; 4148 dport = pd->hdr.udp.uh_dport; 4149 hdrlen = sizeof(pd->hdr.udp); 4150 break; 4151 #ifdef INET 4152 case IPPROTO_ICMP: 4153 if (pd->af != AF_INET) 4154 break; 4155 sport = dport = pd->hdr.icmp.icmp_id; 4156 hdrlen = sizeof(pd->hdr.icmp); 4157 icmptype = pd->hdr.icmp.icmp_type; 4158 icmpcode = pd->hdr.icmp.icmp_code; 4159 4160 if (icmptype == ICMP_UNREACH || 4161 icmptype == ICMP_SOURCEQUENCH || 4162 icmptype == ICMP_REDIRECT || 4163 icmptype == ICMP_TIMXCEED || 4164 icmptype == ICMP_PARAMPROB) 4165 state_icmp++; 4166 break; 4167 #endif /* INET */ 4168 #ifdef INET6 4169 case IPPROTO_ICMPV6: 4170 if (af != AF_INET6) 4171 break; 4172 sport = dport = pd->hdr.icmp6.icmp6_id; 4173 hdrlen = sizeof(pd->hdr.icmp6); 4174 icmptype = pd->hdr.icmp6.icmp6_type; 4175 icmpcode = pd->hdr.icmp6.icmp6_code; 4176 4177 if (icmptype == ICMP6_DST_UNREACH || 4178 icmptype == ICMP6_PACKET_TOO_BIG || 4179 icmptype == ICMP6_TIME_EXCEEDED || 4180 icmptype == ICMP6_PARAM_PROB) 4181 state_icmp++; 4182 break; 4183 #endif /* INET6 */ 4184 default: 4185 sport = dport = hdrlen = 0; 4186 break; 4187 } 4188 4189 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4190 4191 /* check packet for BINAT/NAT/RDR */ 4192 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 4193 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4194 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4195 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4196 4197 if (nr->log) { 4198 PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, 4199 ruleset, pd, 1); 4200 } 4201 4202 if (pd->ip_sum) 4203 bip_sum = *pd->ip_sum; 4204 4205 switch (pd->proto) { 4206 case IPPROTO_TCP: 4207 bproto_sum = th->th_sum; 4208 pd->proto_sum = &th->th_sum; 4209 4210 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4211 nk->port[pd->sidx] != sport) { 4212 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4213 &th->th_sum, &nk->addr[pd->sidx], 4214 nk->port[pd->sidx], 0, af); 4215 pd->sport = &th->th_sport; 4216 sport = th->th_sport; 4217 } 4218 4219 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4220 nk->port[pd->didx] != dport) { 4221 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4222 &th->th_sum, &nk->addr[pd->didx], 4223 nk->port[pd->didx], 0, af); 4224 dport = th->th_dport; 4225 pd->dport = &th->th_dport; 4226 } 4227 rewrite++; 4228 break; 4229 case IPPROTO_UDP: 4230 bproto_sum = pd->hdr.udp.uh_sum; 4231 pd->proto_sum = &pd->hdr.udp.uh_sum; 4232 4233 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4234 nk->port[pd->sidx] != sport) { 4235 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4236 pd->ip_sum, &pd->hdr.udp.uh_sum, 4237 &nk->addr[pd->sidx], 4238 nk->port[pd->sidx], 1, af); 4239 sport = pd->hdr.udp.uh_sport; 4240 pd->sport = &pd->hdr.udp.uh_sport; 4241 } 4242 4243 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4244 nk->port[pd->didx] != dport) { 4245 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4246 pd->ip_sum, &pd->hdr.udp.uh_sum, 4247 &nk->addr[pd->didx], 4248 nk->port[pd->didx], 1, af); 4249 dport = pd->hdr.udp.uh_dport; 4250 pd->dport = &pd->hdr.udp.uh_dport; 4251 } 4252 rewrite++; 4253 break; 4254 #ifdef INET 4255 case IPPROTO_ICMP: 4256 nk->port[0] = nk->port[1]; 4257 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4258 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4259 nk->addr[pd->sidx].v4.s_addr, 0); 4260 4261 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4262 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4263 nk->addr[pd->didx].v4.s_addr, 0); 4264 4265 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4266 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4267 pd->hdr.icmp.icmp_cksum, sport, 4268 nk->port[1], 0); 4269 pd->hdr.icmp.icmp_id = nk->port[1]; 4270 pd->sport = &pd->hdr.icmp.icmp_id; 4271 } 4272 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4273 break; 4274 #endif /* INET */ 4275 #ifdef INET6 4276 case IPPROTO_ICMPV6: 4277 nk->port[0] = nk->port[1]; 4278 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4279 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4280 &nk->addr[pd->sidx], 0); 4281 4282 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4283 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4284 &nk->addr[pd->didx], 0); 4285 rewrite++; 4286 break; 4287 #endif /* INET */ 4288 default: 4289 switch (af) { 4290 #ifdef INET 4291 case AF_INET: 4292 if (PF_ANEQ(saddr, 4293 &nk->addr[pd->sidx], AF_INET)) 4294 pf_change_a(&saddr->v4.s_addr, 4295 pd->ip_sum, 4296 nk->addr[pd->sidx].v4.s_addr, 0); 4297 4298 if (PF_ANEQ(daddr, 4299 &nk->addr[pd->didx], AF_INET)) 4300 pf_change_a(&daddr->v4.s_addr, 4301 pd->ip_sum, 4302 nk->addr[pd->didx].v4.s_addr, 0); 4303 break; 4304 #endif /* INET */ 4305 #ifdef INET6 4306 case AF_INET6: 4307 if (PF_ANEQ(saddr, 4308 &nk->addr[pd->sidx], AF_INET6)) 4309 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4310 4311 if (PF_ANEQ(daddr, 4312 &nk->addr[pd->didx], AF_INET6)) 4313 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4314 break; 4315 #endif /* INET */ 4316 } 4317 break; 4318 } 4319 if (nr->natpass) 4320 r = NULL; 4321 pd->nat_rule = nr; 4322 } 4323 4324 while (r != NULL) { 4325 pf_counter_u64_add(&r->evaluations, 1); 4326 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4327 r = r->skip[PF_SKIP_IFP].ptr; 4328 else if (r->direction && r->direction != direction) 4329 r = r->skip[PF_SKIP_DIR].ptr; 4330 else if (r->af && r->af != af) 4331 r = r->skip[PF_SKIP_AF].ptr; 4332 else if (r->proto && r->proto != pd->proto) 4333 r = r->skip[PF_SKIP_PROTO].ptr; 4334 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4335 r->src.neg, kif, M_GETFIB(m))) 4336 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4337 /* tcp/udp only. port_op always 0 in other cases */ 4338 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4339 r->src.port[0], r->src.port[1], sport)) 4340 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4341 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4342 r->dst.neg, NULL, M_GETFIB(m))) 4343 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4344 /* tcp/udp only. port_op always 0 in other cases */ 4345 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4346 r->dst.port[0], r->dst.port[1], dport)) 4347 r = r->skip[PF_SKIP_DST_PORT].ptr; 4348 /* icmp only. type always 0 in other cases */ 4349 else if (r->type && r->type != icmptype + 1) 4350 r = TAILQ_NEXT(r, entries); 4351 /* icmp only. type always 0 in other cases */ 4352 else if (r->code && r->code != icmpcode + 1) 4353 r = TAILQ_NEXT(r, entries); 4354 else if (r->tos && !(r->tos == pd->tos)) 4355 r = TAILQ_NEXT(r, entries); 4356 else if (r->rule_flag & PFRULE_FRAGMENT) 4357 r = TAILQ_NEXT(r, entries); 4358 else if (pd->proto == IPPROTO_TCP && 4359 (r->flagset & th->th_flags) != r->flags) 4360 r = TAILQ_NEXT(r, entries); 4361 /* tcp/udp only. uid.op always 0 in other cases */ 4362 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4363 pf_socket_lookup(direction, pd, m), 1)) && 4364 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4365 pd->lookup.uid)) 4366 r = TAILQ_NEXT(r, entries); 4367 /* tcp/udp only. gid.op always 0 in other cases */ 4368 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4369 pf_socket_lookup(direction, pd, m), 1)) && 4370 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4371 pd->lookup.gid)) 4372 r = TAILQ_NEXT(r, entries); 4373 else if (r->prio && 4374 !pf_match_ieee8021q_pcp(r->prio, m)) 4375 r = TAILQ_NEXT(r, entries); 4376 else if (r->prob && 4377 r->prob <= arc4random()) 4378 r = TAILQ_NEXT(r, entries); 4379 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4380 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4381 r = TAILQ_NEXT(r, entries); 4382 else if (r->os_fingerprint != PF_OSFP_ANY && 4383 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4384 pf_osfp_fingerprint(pd, m, off, th), 4385 r->os_fingerprint))) 4386 r = TAILQ_NEXT(r, entries); 4387 else { 4388 if (r->tag) 4389 tag = r->tag; 4390 if (r->rtableid >= 0) 4391 rtableid = r->rtableid; 4392 if (r->anchor == NULL) { 4393 if (r->action == PF_MATCH) { 4394 pf_counter_u64_critical_enter(); 4395 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4396 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4397 pf_counter_u64_critical_exit(); 4398 pf_rule_to_actions(r, &pd->act); 4399 if (r->log) 4400 PFLOG_PACKET(kif, m, af, 4401 direction, PFRES_MATCH, r, 4402 a, ruleset, pd, 1); 4403 } else { 4404 match = 1; 4405 *rm = r; 4406 *am = a; 4407 *rsm = ruleset; 4408 } 4409 if ((*rm)->quick) 4410 break; 4411 r = TAILQ_NEXT(r, entries); 4412 } else 4413 pf_step_into_anchor(anchor_stack, &asd, 4414 &ruleset, PF_RULESET_FILTER, &r, &a, 4415 &match); 4416 } 4417 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4418 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4419 break; 4420 } 4421 r = *rm; 4422 a = *am; 4423 ruleset = *rsm; 4424 4425 REASON_SET(&reason, PFRES_MATCH); 4426 4427 /* apply actions for last matching pass/block rule */ 4428 pf_rule_to_actions(r, &pd->act); 4429 4430 if (r->log) { 4431 if (rewrite) 4432 m_copyback(m, off, hdrlen, pd->hdr.any); 4433 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 4434 ruleset, pd, 1); 4435 } 4436 4437 if ((r->action == PF_DROP) && 4438 ((r->rule_flag & PFRULE_RETURNRST) || 4439 (r->rule_flag & PFRULE_RETURNICMP) || 4440 (r->rule_flag & PFRULE_RETURN))) { 4441 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4442 bip_sum, hdrlen, &reason); 4443 } 4444 4445 if (r->action == PF_DROP) 4446 goto cleanup; 4447 4448 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4449 REASON_SET(&reason, PFRES_MEMORY); 4450 goto cleanup; 4451 } 4452 if (rtableid >= 0) 4453 M_SETFIB(m, rtableid); 4454 4455 if (!state_icmp && (r->keep_state || nr != NULL || 4456 (pd->flags & PFDESC_TCP_NORM))) { 4457 int action; 4458 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4459 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4460 hdrlen); 4461 if (action != PF_PASS) { 4462 if (action == PF_DROP && 4463 (r->rule_flag & PFRULE_RETURN)) 4464 pf_return(r, nr, pd, sk, off, m, th, kif, 4465 bproto_sum, bip_sum, hdrlen, &reason); 4466 return (action); 4467 } 4468 } else { 4469 if (sk != NULL) 4470 uma_zfree(V_pf_state_key_z, sk); 4471 if (nk != NULL) 4472 uma_zfree(V_pf_state_key_z, nk); 4473 } 4474 4475 /* copy back packet headers if we performed NAT operations */ 4476 if (rewrite) 4477 m_copyback(m, off, hdrlen, pd->hdr.any); 4478 4479 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4480 direction == PF_OUT && 4481 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4482 /* 4483 * We want the state created, but we dont 4484 * want to send this in case a partner 4485 * firewall has to know about it to allow 4486 * replies through it. 4487 */ 4488 return (PF_DEFER); 4489 4490 return (PF_PASS); 4491 4492 cleanup: 4493 if (sk != NULL) 4494 uma_zfree(V_pf_state_key_z, sk); 4495 if (nk != NULL) 4496 uma_zfree(V_pf_state_key_z, nk); 4497 return (PF_DROP); 4498 } 4499 4500 static int 4501 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4502 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4503 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4504 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4505 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 4506 { 4507 struct pf_kstate *s = NULL; 4508 struct pf_ksrc_node *sn = NULL; 4509 struct tcphdr *th = &pd->hdr.tcp; 4510 u_int16_t mss = V_tcp_mssdflt; 4511 u_short reason; 4512 4513 /* check maximums */ 4514 if (r->max_states && 4515 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4516 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4517 REASON_SET(&reason, PFRES_MAXSTATES); 4518 goto csfailed; 4519 } 4520 /* src node for filter rule */ 4521 if ((r->rule_flag & PFRULE_SRCTRACK || 4522 r->rpool.opts & PF_POOL_STICKYADDR) && 4523 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 4524 REASON_SET(&reason, PFRES_SRCLIMIT); 4525 goto csfailed; 4526 } 4527 /* src node for translation rule */ 4528 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4529 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 4530 REASON_SET(&reason, PFRES_SRCLIMIT); 4531 goto csfailed; 4532 } 4533 s = pf_alloc_state(M_NOWAIT); 4534 if (s == NULL) { 4535 REASON_SET(&reason, PFRES_MEMORY); 4536 goto csfailed; 4537 } 4538 s->rule.ptr = r; 4539 s->nat_rule.ptr = nr; 4540 s->anchor.ptr = a; 4541 STATE_INC_COUNTERS(s); 4542 if (r->allow_opts) 4543 s->state_flags |= PFSTATE_ALLOWOPTS; 4544 if (r->rule_flag & PFRULE_STATESLOPPY) 4545 s->state_flags |= PFSTATE_SLOPPY; 4546 s->log = r->log & PF_LOG_ALL; 4547 s->sync_state = PFSYNC_S_NONE; 4548 s->qid = pd->act.qid; 4549 s->pqid = pd->act.pqid; 4550 s->dnpipe = pd->act.dnpipe; 4551 s->dnrpipe = pd->act.dnrpipe; 4552 s->state_flags |= pd->act.flags; 4553 if (nr != NULL) 4554 s->log |= nr->log & PF_LOG_ALL; 4555 switch (pd->proto) { 4556 case IPPROTO_TCP: 4557 s->src.seqlo = ntohl(th->th_seq); 4558 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4559 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4560 r->keep_state == PF_STATE_MODULATE) { 4561 /* Generate sequence number modulator */ 4562 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4563 0) 4564 s->src.seqdiff = 1; 4565 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4566 htonl(s->src.seqlo + s->src.seqdiff), 0); 4567 *rewrite = 1; 4568 } else 4569 s->src.seqdiff = 0; 4570 if (th->th_flags & TH_SYN) { 4571 s->src.seqhi++; 4572 s->src.wscale = pf_get_wscale(m, off, 4573 th->th_off, pd->af); 4574 } 4575 s->src.max_win = MAX(ntohs(th->th_win), 1); 4576 if (s->src.wscale & PF_WSCALE_MASK) { 4577 /* Remove scale factor from initial window */ 4578 int win = s->src.max_win; 4579 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4580 s->src.max_win = (win - 1) >> 4581 (s->src.wscale & PF_WSCALE_MASK); 4582 } 4583 if (th->th_flags & TH_FIN) 4584 s->src.seqhi++; 4585 s->dst.seqhi = 1; 4586 s->dst.max_win = 1; 4587 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4588 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4589 s->timeout = PFTM_TCP_FIRST_PACKET; 4590 atomic_add_32(&V_pf_status.states_halfopen, 1); 4591 break; 4592 case IPPROTO_UDP: 4593 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4594 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4595 s->timeout = PFTM_UDP_FIRST_PACKET; 4596 break; 4597 case IPPROTO_ICMP: 4598 #ifdef INET6 4599 case IPPROTO_ICMPV6: 4600 #endif 4601 s->timeout = PFTM_ICMP_FIRST_PACKET; 4602 break; 4603 default: 4604 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4605 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4606 s->timeout = PFTM_OTHER_FIRST_PACKET; 4607 } 4608 4609 if (r->rt) { 4610 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4611 REASON_SET(&reason, PFRES_MAPFAILED); 4612 pf_src_tree_remove_state(s); 4613 s->timeout = PFTM_UNLINKED; 4614 STATE_DEC_COUNTERS(s); 4615 pf_free_state(s); 4616 goto csfailed; 4617 } 4618 s->rt_kif = r->rpool.cur->kif; 4619 } 4620 4621 s->creation = time_uptime; 4622 s->expire = time_uptime; 4623 4624 if (sn != NULL) 4625 s->src_node = sn; 4626 if (nsn != NULL) { 4627 /* XXX We only modify one side for now. */ 4628 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4629 s->nat_src_node = nsn; 4630 } 4631 if (pd->proto == IPPROTO_TCP) { 4632 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4633 off, pd, th, &s->src, &s->dst)) { 4634 REASON_SET(&reason, PFRES_MEMORY); 4635 pf_src_tree_remove_state(s); 4636 s->timeout = PFTM_UNLINKED; 4637 STATE_DEC_COUNTERS(s); 4638 pf_free_state(s); 4639 return (PF_DROP); 4640 } 4641 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4642 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4643 &s->src, &s->dst, rewrite)) { 4644 /* This really shouldn't happen!!! */ 4645 DPFPRINTF(PF_DEBUG_URGENT, 4646 ("pf_normalize_tcp_stateful failed on first " 4647 "pkt\n")); 4648 pf_src_tree_remove_state(s); 4649 s->timeout = PFTM_UNLINKED; 4650 STATE_DEC_COUNTERS(s); 4651 pf_free_state(s); 4652 return (PF_DROP); 4653 } 4654 } 4655 s->direction = pd->dir; 4656 4657 /* 4658 * sk/nk could already been setup by pf_get_translation(). 4659 */ 4660 if (nr == NULL) { 4661 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4662 __func__, nr, sk, nk)); 4663 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4664 if (sk == NULL) 4665 goto csfailed; 4666 nk = sk; 4667 } else 4668 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4669 __func__, nr, sk, nk)); 4670 4671 /* Swap sk/nk for PF_OUT. */ 4672 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4673 (pd->dir == PF_IN) ? sk : nk, 4674 (pd->dir == PF_IN) ? nk : sk, s)) { 4675 REASON_SET(&reason, PFRES_STATEINS); 4676 pf_src_tree_remove_state(s); 4677 s->timeout = PFTM_UNLINKED; 4678 STATE_DEC_COUNTERS(s); 4679 pf_free_state(s); 4680 return (PF_DROP); 4681 } else 4682 *sm = s; 4683 4684 if (tag > 0) 4685 s->tag = tag; 4686 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4687 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4688 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4689 /* undo NAT changes, if they have taken place */ 4690 if (nr != NULL) { 4691 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4692 if (pd->dir == PF_OUT) 4693 skt = s->key[PF_SK_STACK]; 4694 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4695 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4696 if (pd->sport) 4697 *pd->sport = skt->port[pd->sidx]; 4698 if (pd->dport) 4699 *pd->dport = skt->port[pd->didx]; 4700 if (pd->proto_sum) 4701 *pd->proto_sum = bproto_sum; 4702 if (pd->ip_sum) 4703 *pd->ip_sum = bip_sum; 4704 m_copyback(m, off, hdrlen, pd->hdr.any); 4705 } 4706 s->src.seqhi = htonl(arc4random()); 4707 /* Find mss option */ 4708 int rtid = M_GETFIB(m); 4709 mss = pf_get_mss(m, off, th->th_off, pd->af); 4710 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4711 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4712 s->src.mss = mss; 4713 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4714 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4715 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4716 REASON_SET(&reason, PFRES_SYNPROXY); 4717 return (PF_SYNPROXY_DROP); 4718 } 4719 4720 return (PF_PASS); 4721 4722 csfailed: 4723 if (sk != NULL) 4724 uma_zfree(V_pf_state_key_z, sk); 4725 if (nk != NULL) 4726 uma_zfree(V_pf_state_key_z, nk); 4727 4728 if (sn != NULL) { 4729 struct pf_srchash *sh; 4730 4731 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4732 PF_HASHROW_LOCK(sh); 4733 if (--sn->states == 0 && sn->expire == 0) { 4734 pf_unlink_src_node(sn); 4735 uma_zfree(V_pf_sources_z, sn); 4736 counter_u64_add( 4737 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4738 } 4739 PF_HASHROW_UNLOCK(sh); 4740 } 4741 4742 if (nsn != sn && nsn != NULL) { 4743 struct pf_srchash *sh; 4744 4745 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4746 PF_HASHROW_LOCK(sh); 4747 if (--nsn->states == 0 && nsn->expire == 0) { 4748 pf_unlink_src_node(nsn); 4749 uma_zfree(V_pf_sources_z, nsn); 4750 counter_u64_add( 4751 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4752 } 4753 PF_HASHROW_UNLOCK(sh); 4754 } 4755 4756 return (PF_DROP); 4757 } 4758 4759 static int 4760 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4761 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4762 struct pf_kruleset **rsm) 4763 { 4764 struct pf_krule *r, *a = NULL; 4765 struct pf_kruleset *ruleset = NULL; 4766 sa_family_t af = pd->af; 4767 u_short reason; 4768 int tag = -1; 4769 int asd = 0; 4770 int match = 0; 4771 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4772 4773 PF_RULES_RASSERT(); 4774 4775 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4776 while (r != NULL) { 4777 pf_counter_u64_add(&r->evaluations, 1); 4778 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4779 r = r->skip[PF_SKIP_IFP].ptr; 4780 else if (r->direction && r->direction != direction) 4781 r = r->skip[PF_SKIP_DIR].ptr; 4782 else if (r->af && r->af != af) 4783 r = r->skip[PF_SKIP_AF].ptr; 4784 else if (r->proto && r->proto != pd->proto) 4785 r = r->skip[PF_SKIP_PROTO].ptr; 4786 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4787 r->src.neg, kif, M_GETFIB(m))) 4788 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4789 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4790 r->dst.neg, NULL, M_GETFIB(m))) 4791 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4792 else if (r->tos && !(r->tos == pd->tos)) 4793 r = TAILQ_NEXT(r, entries); 4794 else if (r->os_fingerprint != PF_OSFP_ANY) 4795 r = TAILQ_NEXT(r, entries); 4796 else if (pd->proto == IPPROTO_UDP && 4797 (r->src.port_op || r->dst.port_op)) 4798 r = TAILQ_NEXT(r, entries); 4799 else if (pd->proto == IPPROTO_TCP && 4800 (r->src.port_op || r->dst.port_op || r->flagset)) 4801 r = TAILQ_NEXT(r, entries); 4802 else if ((pd->proto == IPPROTO_ICMP || 4803 pd->proto == IPPROTO_ICMPV6) && 4804 (r->type || r->code)) 4805 r = TAILQ_NEXT(r, entries); 4806 else if (r->prio && 4807 !pf_match_ieee8021q_pcp(r->prio, m)) 4808 r = TAILQ_NEXT(r, entries); 4809 else if (r->prob && r->prob <= 4810 (arc4random() % (UINT_MAX - 1) + 1)) 4811 r = TAILQ_NEXT(r, entries); 4812 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4813 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4814 r = TAILQ_NEXT(r, entries); 4815 else { 4816 if (r->anchor == NULL) { 4817 if (r->action == PF_MATCH) { 4818 pf_counter_u64_critical_enter(); 4819 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4820 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4821 pf_counter_u64_critical_exit(); 4822 pf_rule_to_actions(r, &pd->act); 4823 if (r->log) 4824 PFLOG_PACKET(kif, m, af, 4825 direction, PFRES_MATCH, r, 4826 a, ruleset, pd, 1); 4827 } else { 4828 match = 1; 4829 *rm = r; 4830 *am = a; 4831 *rsm = ruleset; 4832 } 4833 if ((*rm)->quick) 4834 break; 4835 r = TAILQ_NEXT(r, entries); 4836 } else 4837 pf_step_into_anchor(anchor_stack, &asd, 4838 &ruleset, PF_RULESET_FILTER, &r, &a, 4839 &match); 4840 } 4841 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4842 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4843 break; 4844 } 4845 r = *rm; 4846 a = *am; 4847 ruleset = *rsm; 4848 4849 REASON_SET(&reason, PFRES_MATCH); 4850 4851 /* apply actions for last matching pass/block rule */ 4852 pf_rule_to_actions(r, &pd->act); 4853 4854 if (r->log) 4855 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4856 1); 4857 4858 if (r->action != PF_PASS) 4859 return (PF_DROP); 4860 4861 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4862 REASON_SET(&reason, PFRES_MEMORY); 4863 return (PF_DROP); 4864 } 4865 4866 return (PF_PASS); 4867 } 4868 4869 static int 4870 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4871 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4872 int *copyback) 4873 { 4874 struct tcphdr *th = &pd->hdr.tcp; 4875 struct pf_state_peer *src, *dst; 4876 u_int16_t win = ntohs(th->th_win); 4877 u_int32_t ack, end, seq, orig_seq; 4878 u_int8_t sws, dws, psrc, pdst; 4879 int ackskew; 4880 4881 if (pd->dir == (*state)->direction) { 4882 src = &(*state)->src; 4883 dst = &(*state)->dst; 4884 psrc = PF_PEER_SRC; 4885 pdst = PF_PEER_DST; 4886 } else { 4887 src = &(*state)->dst; 4888 dst = &(*state)->src; 4889 psrc = PF_PEER_DST; 4890 pdst = PF_PEER_SRC; 4891 } 4892 4893 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4894 sws = src->wscale & PF_WSCALE_MASK; 4895 dws = dst->wscale & PF_WSCALE_MASK; 4896 } else 4897 sws = dws = 0; 4898 4899 /* 4900 * Sequence tracking algorithm from Guido van Rooij's paper: 4901 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4902 * tcp_filtering.ps 4903 */ 4904 4905 orig_seq = seq = ntohl(th->th_seq); 4906 if (src->seqlo == 0) { 4907 /* First packet from this end. Set its state */ 4908 4909 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4910 src->scrub == NULL) { 4911 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4912 REASON_SET(reason, PFRES_MEMORY); 4913 return (PF_DROP); 4914 } 4915 } 4916 4917 /* Deferred generation of sequence number modulator */ 4918 if (dst->seqdiff && !src->seqdiff) { 4919 /* use random iss for the TCP server */ 4920 while ((src->seqdiff = arc4random() - seq) == 0) 4921 ; 4922 ack = ntohl(th->th_ack) - dst->seqdiff; 4923 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4924 src->seqdiff), 0); 4925 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4926 *copyback = 1; 4927 } else { 4928 ack = ntohl(th->th_ack); 4929 } 4930 4931 end = seq + pd->p_len; 4932 if (th->th_flags & TH_SYN) { 4933 end++; 4934 if (dst->wscale & PF_WSCALE_FLAG) { 4935 src->wscale = pf_get_wscale(m, off, th->th_off, 4936 pd->af); 4937 if (src->wscale & PF_WSCALE_FLAG) { 4938 /* Remove scale factor from initial 4939 * window */ 4940 sws = src->wscale & PF_WSCALE_MASK; 4941 win = ((u_int32_t)win + (1 << sws) - 1) 4942 >> sws; 4943 dws = dst->wscale & PF_WSCALE_MASK; 4944 } else { 4945 /* fixup other window */ 4946 dst->max_win <<= dst->wscale & 4947 PF_WSCALE_MASK; 4948 /* in case of a retrans SYN|ACK */ 4949 dst->wscale = 0; 4950 } 4951 } 4952 } 4953 if (th->th_flags & TH_FIN) 4954 end++; 4955 4956 src->seqlo = seq; 4957 if (src->state < TCPS_SYN_SENT) 4958 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4959 4960 /* 4961 * May need to slide the window (seqhi may have been set by 4962 * the crappy stack check or if we picked up the connection 4963 * after establishment) 4964 */ 4965 if (src->seqhi == 1 || 4966 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4967 src->seqhi = end + MAX(1, dst->max_win << dws); 4968 if (win > src->max_win) 4969 src->max_win = win; 4970 4971 } else { 4972 ack = ntohl(th->th_ack) - dst->seqdiff; 4973 if (src->seqdiff) { 4974 /* Modulate sequence numbers */ 4975 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4976 src->seqdiff), 0); 4977 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4978 *copyback = 1; 4979 } 4980 end = seq + pd->p_len; 4981 if (th->th_flags & TH_SYN) 4982 end++; 4983 if (th->th_flags & TH_FIN) 4984 end++; 4985 } 4986 4987 if ((th->th_flags & TH_ACK) == 0) { 4988 /* Let it pass through the ack skew check */ 4989 ack = dst->seqlo; 4990 } else if ((ack == 0 && 4991 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4992 /* broken tcp stacks do not set ack */ 4993 (dst->state < TCPS_SYN_SENT)) { 4994 /* 4995 * Many stacks (ours included) will set the ACK number in an 4996 * FIN|ACK if the SYN times out -- no sequence to ACK. 4997 */ 4998 ack = dst->seqlo; 4999 } 5000 5001 if (seq == end) { 5002 /* Ease sequencing restrictions on no data packets */ 5003 seq = src->seqlo; 5004 end = seq; 5005 } 5006 5007 ackskew = dst->seqlo - ack; 5008 5009 /* 5010 * Need to demodulate the sequence numbers in any TCP SACK options 5011 * (Selective ACK). We could optionally validate the SACK values 5012 * against the current ACK window, either forwards or backwards, but 5013 * I'm not confident that SACK has been implemented properly 5014 * everywhere. It wouldn't surprise me if several stacks accidentally 5015 * SACK too far backwards of previously ACKed data. There really aren't 5016 * any security implications of bad SACKing unless the target stack 5017 * doesn't validate the option length correctly. Someone trying to 5018 * spoof into a TCP connection won't bother blindly sending SACK 5019 * options anyway. 5020 */ 5021 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5022 if (pf_modulate_sack(m, off, pd, th, dst)) 5023 *copyback = 1; 5024 } 5025 5026 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5027 if (SEQ_GEQ(src->seqhi, end) && 5028 /* Last octet inside other's window space */ 5029 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5030 /* Retrans: not more than one window back */ 5031 (ackskew >= -MAXACKWINDOW) && 5032 /* Acking not more than one reassembled fragment backwards */ 5033 (ackskew <= (MAXACKWINDOW << sws)) && 5034 /* Acking not more than one window forward */ 5035 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5036 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5037 (pd->flags & PFDESC_IP_REAS) == 0)) { 5038 /* Require an exact/+1 sequence match on resets when possible */ 5039 5040 if (dst->scrub || src->scrub) { 5041 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5042 *state, src, dst, copyback)) 5043 return (PF_DROP); 5044 } 5045 5046 /* update max window */ 5047 if (src->max_win < win) 5048 src->max_win = win; 5049 /* synchronize sequencing */ 5050 if (SEQ_GT(end, src->seqlo)) 5051 src->seqlo = end; 5052 /* slide the window of what the other end can send */ 5053 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5054 dst->seqhi = ack + MAX((win << sws), 1); 5055 5056 /* update states */ 5057 if (th->th_flags & TH_SYN) 5058 if (src->state < TCPS_SYN_SENT) 5059 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5060 if (th->th_flags & TH_FIN) 5061 if (src->state < TCPS_CLOSING) 5062 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5063 if (th->th_flags & TH_ACK) { 5064 if (dst->state == TCPS_SYN_SENT) { 5065 pf_set_protostate(*state, pdst, 5066 TCPS_ESTABLISHED); 5067 if (src->state == TCPS_ESTABLISHED && 5068 (*state)->src_node != NULL && 5069 pf_src_connlimit(state)) { 5070 REASON_SET(reason, PFRES_SRCLIMIT); 5071 return (PF_DROP); 5072 } 5073 } else if (dst->state == TCPS_CLOSING) 5074 pf_set_protostate(*state, pdst, 5075 TCPS_FIN_WAIT_2); 5076 } 5077 if (th->th_flags & TH_RST) 5078 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5079 5080 /* update expire time */ 5081 (*state)->expire = time_uptime; 5082 if (src->state >= TCPS_FIN_WAIT_2 && 5083 dst->state >= TCPS_FIN_WAIT_2) 5084 (*state)->timeout = PFTM_TCP_CLOSED; 5085 else if (src->state >= TCPS_CLOSING && 5086 dst->state >= TCPS_CLOSING) 5087 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5088 else if (src->state < TCPS_ESTABLISHED || 5089 dst->state < TCPS_ESTABLISHED) 5090 (*state)->timeout = PFTM_TCP_OPENING; 5091 else if (src->state >= TCPS_CLOSING || 5092 dst->state >= TCPS_CLOSING) 5093 (*state)->timeout = PFTM_TCP_CLOSING; 5094 else 5095 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5096 5097 /* Fall through to PASS packet */ 5098 5099 } else if ((dst->state < TCPS_SYN_SENT || 5100 dst->state >= TCPS_FIN_WAIT_2 || 5101 src->state >= TCPS_FIN_WAIT_2) && 5102 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5103 /* Within a window forward of the originating packet */ 5104 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5105 /* Within a window backward of the originating packet */ 5106 5107 /* 5108 * This currently handles three situations: 5109 * 1) Stupid stacks will shotgun SYNs before their peer 5110 * replies. 5111 * 2) When PF catches an already established stream (the 5112 * firewall rebooted, the state table was flushed, routes 5113 * changed...) 5114 * 3) Packets get funky immediately after the connection 5115 * closes (this should catch Solaris spurious ACK|FINs 5116 * that web servers like to spew after a close) 5117 * 5118 * This must be a little more careful than the above code 5119 * since packet floods will also be caught here. We don't 5120 * update the TTL here to mitigate the damage of a packet 5121 * flood and so the same code can handle awkward establishment 5122 * and a loosened connection close. 5123 * In the establishment case, a correct peer response will 5124 * validate the connection, go through the normal state code 5125 * and keep updating the state TTL. 5126 */ 5127 5128 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5129 printf("pf: loose state match: "); 5130 pf_print_state(*state); 5131 pf_print_flags(th->th_flags); 5132 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5133 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5134 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5135 (unsigned long long)(*state)->packets[1], 5136 pd->dir == PF_IN ? "in" : "out", 5137 pd->dir == (*state)->direction ? "fwd" : "rev"); 5138 } 5139 5140 if (dst->scrub || src->scrub) { 5141 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5142 *state, src, dst, copyback)) 5143 return (PF_DROP); 5144 } 5145 5146 /* update max window */ 5147 if (src->max_win < win) 5148 src->max_win = win; 5149 /* synchronize sequencing */ 5150 if (SEQ_GT(end, src->seqlo)) 5151 src->seqlo = end; 5152 /* slide the window of what the other end can send */ 5153 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5154 dst->seqhi = ack + MAX((win << sws), 1); 5155 5156 /* 5157 * Cannot set dst->seqhi here since this could be a shotgunned 5158 * SYN and not an already established connection. 5159 */ 5160 5161 if (th->th_flags & TH_FIN) 5162 if (src->state < TCPS_CLOSING) 5163 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5164 if (th->th_flags & TH_RST) 5165 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5166 5167 /* Fall through to PASS packet */ 5168 5169 } else { 5170 if ((*state)->dst.state == TCPS_SYN_SENT && 5171 (*state)->src.state == TCPS_SYN_SENT) { 5172 /* Send RST for state mismatches during handshake */ 5173 if (!(th->th_flags & TH_RST)) 5174 pf_send_tcp((*state)->rule.ptr, pd->af, 5175 pd->dst, pd->src, th->th_dport, 5176 th->th_sport, ntohl(th->th_ack), 0, 5177 TH_RST, 0, 0, 5178 (*state)->rule.ptr->return_ttl, 1, 0); 5179 src->seqlo = 0; 5180 src->seqhi = 1; 5181 src->max_win = 1; 5182 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5183 printf("pf: BAD state: "); 5184 pf_print_state(*state); 5185 pf_print_flags(th->th_flags); 5186 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5187 "pkts=%llu:%llu dir=%s,%s\n", 5188 seq, orig_seq, ack, pd->p_len, ackskew, 5189 (unsigned long long)(*state)->packets[0], 5190 (unsigned long long)(*state)->packets[1], 5191 pd->dir == PF_IN ? "in" : "out", 5192 pd->dir == (*state)->direction ? "fwd" : "rev"); 5193 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5194 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5195 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5196 ' ': '2', 5197 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5198 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5199 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5200 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5201 } 5202 REASON_SET(reason, PFRES_BADSTATE); 5203 return (PF_DROP); 5204 } 5205 5206 return (PF_PASS); 5207 } 5208 5209 static int 5210 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5211 { 5212 struct tcphdr *th = &pd->hdr.tcp; 5213 struct pf_state_peer *src, *dst; 5214 u_int8_t psrc, pdst; 5215 5216 if (pd->dir == (*state)->direction) { 5217 src = &(*state)->src; 5218 dst = &(*state)->dst; 5219 psrc = PF_PEER_SRC; 5220 pdst = PF_PEER_DST; 5221 } else { 5222 src = &(*state)->dst; 5223 dst = &(*state)->src; 5224 psrc = PF_PEER_DST; 5225 pdst = PF_PEER_SRC; 5226 } 5227 5228 if (th->th_flags & TH_SYN) 5229 if (src->state < TCPS_SYN_SENT) 5230 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5231 if (th->th_flags & TH_FIN) 5232 if (src->state < TCPS_CLOSING) 5233 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5234 if (th->th_flags & TH_ACK) { 5235 if (dst->state == TCPS_SYN_SENT) { 5236 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5237 if (src->state == TCPS_ESTABLISHED && 5238 (*state)->src_node != NULL && 5239 pf_src_connlimit(state)) { 5240 REASON_SET(reason, PFRES_SRCLIMIT); 5241 return (PF_DROP); 5242 } 5243 } else if (dst->state == TCPS_CLOSING) { 5244 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5245 } else if (src->state == TCPS_SYN_SENT && 5246 dst->state < TCPS_SYN_SENT) { 5247 /* 5248 * Handle a special sloppy case where we only see one 5249 * half of the connection. If there is a ACK after 5250 * the initial SYN without ever seeing a packet from 5251 * the destination, set the connection to established. 5252 */ 5253 pf_set_protostate(*state, PF_PEER_BOTH, 5254 TCPS_ESTABLISHED); 5255 dst->state = src->state = TCPS_ESTABLISHED; 5256 if ((*state)->src_node != NULL && 5257 pf_src_connlimit(state)) { 5258 REASON_SET(reason, PFRES_SRCLIMIT); 5259 return (PF_DROP); 5260 } 5261 } else if (src->state == TCPS_CLOSING && 5262 dst->state == TCPS_ESTABLISHED && 5263 dst->seqlo == 0) { 5264 /* 5265 * Handle the closing of half connections where we 5266 * don't see the full bidirectional FIN/ACK+ACK 5267 * handshake. 5268 */ 5269 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5270 } 5271 } 5272 if (th->th_flags & TH_RST) 5273 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5274 5275 /* update expire time */ 5276 (*state)->expire = time_uptime; 5277 if (src->state >= TCPS_FIN_WAIT_2 && 5278 dst->state >= TCPS_FIN_WAIT_2) 5279 (*state)->timeout = PFTM_TCP_CLOSED; 5280 else if (src->state >= TCPS_CLOSING && 5281 dst->state >= TCPS_CLOSING) 5282 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5283 else if (src->state < TCPS_ESTABLISHED || 5284 dst->state < TCPS_ESTABLISHED) 5285 (*state)->timeout = PFTM_TCP_OPENING; 5286 else if (src->state >= TCPS_CLOSING || 5287 dst->state >= TCPS_CLOSING) 5288 (*state)->timeout = PFTM_TCP_CLOSING; 5289 else 5290 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5291 5292 return (PF_PASS); 5293 } 5294 5295 static int 5296 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5297 { 5298 struct pf_state_key *sk = (*state)->key[pd->didx]; 5299 struct tcphdr *th = &pd->hdr.tcp; 5300 5301 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5302 if (pd->dir != (*state)->direction) { 5303 REASON_SET(reason, PFRES_SYNPROXY); 5304 return (PF_SYNPROXY_DROP); 5305 } 5306 if (th->th_flags & TH_SYN) { 5307 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5308 REASON_SET(reason, PFRES_SYNPROXY); 5309 return (PF_DROP); 5310 } 5311 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5312 pd->src, th->th_dport, th->th_sport, 5313 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5314 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 5315 REASON_SET(reason, PFRES_SYNPROXY); 5316 return (PF_SYNPROXY_DROP); 5317 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5318 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5319 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5320 REASON_SET(reason, PFRES_SYNPROXY); 5321 return (PF_DROP); 5322 } else if ((*state)->src_node != NULL && 5323 pf_src_connlimit(state)) { 5324 REASON_SET(reason, PFRES_SRCLIMIT); 5325 return (PF_DROP); 5326 } else 5327 pf_set_protostate(*state, PF_PEER_SRC, 5328 PF_TCPS_PROXY_DST); 5329 } 5330 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5331 if (pd->dir == (*state)->direction) { 5332 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5333 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5334 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5335 REASON_SET(reason, PFRES_SYNPROXY); 5336 return (PF_DROP); 5337 } 5338 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5339 if ((*state)->dst.seqhi == 1) 5340 (*state)->dst.seqhi = htonl(arc4random()); 5341 pf_send_tcp((*state)->rule.ptr, pd->af, 5342 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5343 sk->port[pd->sidx], sk->port[pd->didx], 5344 (*state)->dst.seqhi, 0, TH_SYN, 0, 5345 (*state)->src.mss, 0, 0, (*state)->tag); 5346 REASON_SET(reason, PFRES_SYNPROXY); 5347 return (PF_SYNPROXY_DROP); 5348 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5349 (TH_SYN|TH_ACK)) || 5350 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5351 REASON_SET(reason, PFRES_SYNPROXY); 5352 return (PF_DROP); 5353 } else { 5354 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5355 (*state)->dst.seqlo = ntohl(th->th_seq); 5356 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5357 pd->src, th->th_dport, th->th_sport, 5358 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5359 TH_ACK, (*state)->src.max_win, 0, 0, 0, 5360 (*state)->tag); 5361 pf_send_tcp((*state)->rule.ptr, pd->af, 5362 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5363 sk->port[pd->sidx], sk->port[pd->didx], 5364 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5365 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 5366 (*state)->src.seqdiff = (*state)->dst.seqhi - 5367 (*state)->src.seqlo; 5368 (*state)->dst.seqdiff = (*state)->src.seqhi - 5369 (*state)->dst.seqlo; 5370 (*state)->src.seqhi = (*state)->src.seqlo + 5371 (*state)->dst.max_win; 5372 (*state)->dst.seqhi = (*state)->dst.seqlo + 5373 (*state)->src.max_win; 5374 (*state)->src.wscale = (*state)->dst.wscale = 0; 5375 pf_set_protostate(*state, PF_PEER_BOTH, 5376 TCPS_ESTABLISHED); 5377 REASON_SET(reason, PFRES_SYNPROXY); 5378 return (PF_SYNPROXY_DROP); 5379 } 5380 } 5381 5382 return (PF_PASS); 5383 } 5384 5385 static int 5386 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5387 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5388 u_short *reason) 5389 { 5390 struct pf_state_key_cmp key; 5391 struct tcphdr *th = &pd->hdr.tcp; 5392 int copyback = 0; 5393 int action; 5394 struct pf_state_peer *src, *dst; 5395 5396 bzero(&key, sizeof(key)); 5397 key.af = pd->af; 5398 key.proto = IPPROTO_TCP; 5399 if (direction == PF_IN) { /* wire side, straight */ 5400 PF_ACPY(&key.addr[0], pd->src, key.af); 5401 PF_ACPY(&key.addr[1], pd->dst, key.af); 5402 key.port[0] = th->th_sport; 5403 key.port[1] = th->th_dport; 5404 } else { /* stack side, reverse */ 5405 PF_ACPY(&key.addr[1], pd->src, key.af); 5406 PF_ACPY(&key.addr[0], pd->dst, key.af); 5407 key.port[1] = th->th_sport; 5408 key.port[0] = th->th_dport; 5409 } 5410 5411 STATE_LOOKUP(kif, &key, direction, *state, pd); 5412 5413 if (direction == (*state)->direction) { 5414 src = &(*state)->src; 5415 dst = &(*state)->dst; 5416 } else { 5417 src = &(*state)->dst; 5418 dst = &(*state)->src; 5419 } 5420 5421 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5422 return (action); 5423 5424 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 5425 dst->state >= TCPS_FIN_WAIT_2 && 5426 src->state >= TCPS_FIN_WAIT_2) { 5427 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5428 printf("pf: state reuse "); 5429 pf_print_state(*state); 5430 pf_print_flags(th->th_flags); 5431 printf("\n"); 5432 } 5433 /* XXX make sure it's the same direction ?? */ 5434 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5435 pf_unlink_state(*state); 5436 *state = NULL; 5437 return (PF_DROP); 5438 } 5439 5440 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5441 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5442 return (PF_DROP); 5443 } else { 5444 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5445 ©back) == PF_DROP) 5446 return (PF_DROP); 5447 } 5448 5449 /* translate source/destination address, if necessary */ 5450 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5451 struct pf_state_key *nk = (*state)->key[pd->didx]; 5452 5453 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5454 nk->port[pd->sidx] != th->th_sport) 5455 pf_change_ap(m, pd->src, &th->th_sport, 5456 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5457 nk->port[pd->sidx], 0, pd->af); 5458 5459 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5460 nk->port[pd->didx] != th->th_dport) 5461 pf_change_ap(m, pd->dst, &th->th_dport, 5462 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5463 nk->port[pd->didx], 0, pd->af); 5464 copyback = 1; 5465 } 5466 5467 /* Copyback sequence modulation or stateful scrub changes if needed */ 5468 if (copyback) 5469 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5470 5471 return (PF_PASS); 5472 } 5473 5474 static int 5475 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5476 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5477 { 5478 struct pf_state_peer *src, *dst; 5479 struct pf_state_key_cmp key; 5480 struct udphdr *uh = &pd->hdr.udp; 5481 uint8_t psrc, pdst; 5482 5483 bzero(&key, sizeof(key)); 5484 key.af = pd->af; 5485 key.proto = IPPROTO_UDP; 5486 if (direction == PF_IN) { /* wire side, straight */ 5487 PF_ACPY(&key.addr[0], pd->src, key.af); 5488 PF_ACPY(&key.addr[1], pd->dst, key.af); 5489 key.port[0] = uh->uh_sport; 5490 key.port[1] = uh->uh_dport; 5491 } else { /* stack side, reverse */ 5492 PF_ACPY(&key.addr[1], pd->src, key.af); 5493 PF_ACPY(&key.addr[0], pd->dst, key.af); 5494 key.port[1] = uh->uh_sport; 5495 key.port[0] = uh->uh_dport; 5496 } 5497 5498 STATE_LOOKUP(kif, &key, direction, *state, pd); 5499 5500 if (direction == (*state)->direction) { 5501 src = &(*state)->src; 5502 dst = &(*state)->dst; 5503 psrc = PF_PEER_SRC; 5504 pdst = PF_PEER_DST; 5505 } else { 5506 src = &(*state)->dst; 5507 dst = &(*state)->src; 5508 psrc = PF_PEER_DST; 5509 pdst = PF_PEER_SRC; 5510 } 5511 5512 /* update states */ 5513 if (src->state < PFUDPS_SINGLE) 5514 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5515 if (dst->state == PFUDPS_SINGLE) 5516 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5517 5518 /* update expire time */ 5519 (*state)->expire = time_uptime; 5520 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5521 (*state)->timeout = PFTM_UDP_MULTIPLE; 5522 else 5523 (*state)->timeout = PFTM_UDP_SINGLE; 5524 5525 /* translate source/destination address, if necessary */ 5526 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5527 struct pf_state_key *nk = (*state)->key[pd->didx]; 5528 5529 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5530 nk->port[pd->sidx] != uh->uh_sport) 5531 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5532 &uh->uh_sum, &nk->addr[pd->sidx], 5533 nk->port[pd->sidx], 1, pd->af); 5534 5535 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5536 nk->port[pd->didx] != uh->uh_dport) 5537 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5538 &uh->uh_sum, &nk->addr[pd->didx], 5539 nk->port[pd->didx], 1, pd->af); 5540 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5541 } 5542 5543 return (PF_PASS); 5544 } 5545 5546 static int 5547 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5548 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5549 { 5550 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5551 u_int16_t icmpid = 0, *icmpsum; 5552 u_int8_t icmptype, icmpcode; 5553 int state_icmp = 0; 5554 struct pf_state_key_cmp key; 5555 5556 bzero(&key, sizeof(key)); 5557 switch (pd->proto) { 5558 #ifdef INET 5559 case IPPROTO_ICMP: 5560 icmptype = pd->hdr.icmp.icmp_type; 5561 icmpcode = pd->hdr.icmp.icmp_code; 5562 icmpid = pd->hdr.icmp.icmp_id; 5563 icmpsum = &pd->hdr.icmp.icmp_cksum; 5564 5565 if (icmptype == ICMP_UNREACH || 5566 icmptype == ICMP_SOURCEQUENCH || 5567 icmptype == ICMP_REDIRECT || 5568 icmptype == ICMP_TIMXCEED || 5569 icmptype == ICMP_PARAMPROB) 5570 state_icmp++; 5571 break; 5572 #endif /* INET */ 5573 #ifdef INET6 5574 case IPPROTO_ICMPV6: 5575 icmptype = pd->hdr.icmp6.icmp6_type; 5576 icmpcode = pd->hdr.icmp6.icmp6_code; 5577 icmpid = pd->hdr.icmp6.icmp6_id; 5578 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5579 5580 if (icmptype == ICMP6_DST_UNREACH || 5581 icmptype == ICMP6_PACKET_TOO_BIG || 5582 icmptype == ICMP6_TIME_EXCEEDED || 5583 icmptype == ICMP6_PARAM_PROB) 5584 state_icmp++; 5585 break; 5586 #endif /* INET6 */ 5587 } 5588 5589 if (!state_icmp) { 5590 /* 5591 * ICMP query/reply message not related to a TCP/UDP packet. 5592 * Search for an ICMP state. 5593 */ 5594 key.af = pd->af; 5595 key.proto = pd->proto; 5596 key.port[0] = key.port[1] = icmpid; 5597 if (direction == PF_IN) { /* wire side, straight */ 5598 PF_ACPY(&key.addr[0], pd->src, key.af); 5599 PF_ACPY(&key.addr[1], pd->dst, key.af); 5600 } else { /* stack side, reverse */ 5601 PF_ACPY(&key.addr[1], pd->src, key.af); 5602 PF_ACPY(&key.addr[0], pd->dst, key.af); 5603 } 5604 5605 STATE_LOOKUP(kif, &key, direction, *state, pd); 5606 5607 (*state)->expire = time_uptime; 5608 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5609 5610 /* translate source/destination address, if necessary */ 5611 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5612 struct pf_state_key *nk = (*state)->key[pd->didx]; 5613 5614 switch (pd->af) { 5615 #ifdef INET 5616 case AF_INET: 5617 if (PF_ANEQ(pd->src, 5618 &nk->addr[pd->sidx], AF_INET)) 5619 pf_change_a(&saddr->v4.s_addr, 5620 pd->ip_sum, 5621 nk->addr[pd->sidx].v4.s_addr, 0); 5622 5623 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5624 AF_INET)) 5625 pf_change_a(&daddr->v4.s_addr, 5626 pd->ip_sum, 5627 nk->addr[pd->didx].v4.s_addr, 0); 5628 5629 if (nk->port[0] != 5630 pd->hdr.icmp.icmp_id) { 5631 pd->hdr.icmp.icmp_cksum = 5632 pf_cksum_fixup( 5633 pd->hdr.icmp.icmp_cksum, icmpid, 5634 nk->port[pd->sidx], 0); 5635 pd->hdr.icmp.icmp_id = 5636 nk->port[pd->sidx]; 5637 } 5638 5639 m_copyback(m, off, ICMP_MINLEN, 5640 (caddr_t )&pd->hdr.icmp); 5641 break; 5642 #endif /* INET */ 5643 #ifdef INET6 5644 case AF_INET6: 5645 if (PF_ANEQ(pd->src, 5646 &nk->addr[pd->sidx], AF_INET6)) 5647 pf_change_a6(saddr, 5648 &pd->hdr.icmp6.icmp6_cksum, 5649 &nk->addr[pd->sidx], 0); 5650 5651 if (PF_ANEQ(pd->dst, 5652 &nk->addr[pd->didx], AF_INET6)) 5653 pf_change_a6(daddr, 5654 &pd->hdr.icmp6.icmp6_cksum, 5655 &nk->addr[pd->didx], 0); 5656 5657 m_copyback(m, off, sizeof(struct icmp6_hdr), 5658 (caddr_t )&pd->hdr.icmp6); 5659 break; 5660 #endif /* INET6 */ 5661 } 5662 } 5663 return (PF_PASS); 5664 5665 } else { 5666 /* 5667 * ICMP error message in response to a TCP/UDP packet. 5668 * Extract the inner TCP/UDP header and search for that state. 5669 */ 5670 5671 struct pf_pdesc pd2; 5672 bzero(&pd2, sizeof pd2); 5673 #ifdef INET 5674 struct ip h2; 5675 #endif /* INET */ 5676 #ifdef INET6 5677 struct ip6_hdr h2_6; 5678 int terminal = 0; 5679 #endif /* INET6 */ 5680 int ipoff2 = 0; 5681 int off2 = 0; 5682 5683 pd2.af = pd->af; 5684 /* Payload packet is from the opposite direction. */ 5685 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5686 pd2.didx = (direction == PF_IN) ? 0 : 1; 5687 switch (pd->af) { 5688 #ifdef INET 5689 case AF_INET: 5690 /* offset of h2 in mbuf chain */ 5691 ipoff2 = off + ICMP_MINLEN; 5692 5693 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5694 NULL, reason, pd2.af)) { 5695 DPFPRINTF(PF_DEBUG_MISC, 5696 ("pf: ICMP error message too short " 5697 "(ip)\n")); 5698 return (PF_DROP); 5699 } 5700 /* 5701 * ICMP error messages don't refer to non-first 5702 * fragments 5703 */ 5704 if (h2.ip_off & htons(IP_OFFMASK)) { 5705 REASON_SET(reason, PFRES_FRAG); 5706 return (PF_DROP); 5707 } 5708 5709 /* offset of protocol header that follows h2 */ 5710 off2 = ipoff2 + (h2.ip_hl << 2); 5711 5712 pd2.proto = h2.ip_p; 5713 pd2.src = (struct pf_addr *)&h2.ip_src; 5714 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5715 pd2.ip_sum = &h2.ip_sum; 5716 break; 5717 #endif /* INET */ 5718 #ifdef INET6 5719 case AF_INET6: 5720 ipoff2 = off + sizeof(struct icmp6_hdr); 5721 5722 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5723 NULL, reason, pd2.af)) { 5724 DPFPRINTF(PF_DEBUG_MISC, 5725 ("pf: ICMP error message too short " 5726 "(ip6)\n")); 5727 return (PF_DROP); 5728 } 5729 pd2.proto = h2_6.ip6_nxt; 5730 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5731 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5732 pd2.ip_sum = NULL; 5733 off2 = ipoff2 + sizeof(h2_6); 5734 do { 5735 switch (pd2.proto) { 5736 case IPPROTO_FRAGMENT: 5737 /* 5738 * ICMPv6 error messages for 5739 * non-first fragments 5740 */ 5741 REASON_SET(reason, PFRES_FRAG); 5742 return (PF_DROP); 5743 case IPPROTO_AH: 5744 case IPPROTO_HOPOPTS: 5745 case IPPROTO_ROUTING: 5746 case IPPROTO_DSTOPTS: { 5747 /* get next header and header length */ 5748 struct ip6_ext opt6; 5749 5750 if (!pf_pull_hdr(m, off2, &opt6, 5751 sizeof(opt6), NULL, reason, 5752 pd2.af)) { 5753 DPFPRINTF(PF_DEBUG_MISC, 5754 ("pf: ICMPv6 short opt\n")); 5755 return (PF_DROP); 5756 } 5757 if (pd2.proto == IPPROTO_AH) 5758 off2 += (opt6.ip6e_len + 2) * 4; 5759 else 5760 off2 += (opt6.ip6e_len + 1) * 8; 5761 pd2.proto = opt6.ip6e_nxt; 5762 /* goto the next header */ 5763 break; 5764 } 5765 default: 5766 terminal++; 5767 break; 5768 } 5769 } while (!terminal); 5770 break; 5771 #endif /* INET6 */ 5772 } 5773 5774 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5775 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5776 printf("pf: BAD ICMP %d:%d outer dst: ", 5777 icmptype, icmpcode); 5778 pf_print_host(pd->src, 0, pd->af); 5779 printf(" -> "); 5780 pf_print_host(pd->dst, 0, pd->af); 5781 printf(" inner src: "); 5782 pf_print_host(pd2.src, 0, pd2.af); 5783 printf(" -> "); 5784 pf_print_host(pd2.dst, 0, pd2.af); 5785 printf("\n"); 5786 } 5787 REASON_SET(reason, PFRES_BADSTATE); 5788 return (PF_DROP); 5789 } 5790 5791 switch (pd2.proto) { 5792 case IPPROTO_TCP: { 5793 struct tcphdr th; 5794 u_int32_t seq; 5795 struct pf_state_peer *src, *dst; 5796 u_int8_t dws; 5797 int copyback = 0; 5798 5799 /* 5800 * Only the first 8 bytes of the TCP header can be 5801 * expected. Don't access any TCP header fields after 5802 * th_seq, an ackskew test is not possible. 5803 */ 5804 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5805 pd2.af)) { 5806 DPFPRINTF(PF_DEBUG_MISC, 5807 ("pf: ICMP error message too short " 5808 "(tcp)\n")); 5809 return (PF_DROP); 5810 } 5811 5812 key.af = pd2.af; 5813 key.proto = IPPROTO_TCP; 5814 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5815 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5816 key.port[pd2.sidx] = th.th_sport; 5817 key.port[pd2.didx] = th.th_dport; 5818 5819 STATE_LOOKUP(kif, &key, direction, *state, pd); 5820 5821 if (direction == (*state)->direction) { 5822 src = &(*state)->dst; 5823 dst = &(*state)->src; 5824 } else { 5825 src = &(*state)->src; 5826 dst = &(*state)->dst; 5827 } 5828 5829 if (src->wscale && dst->wscale) 5830 dws = dst->wscale & PF_WSCALE_MASK; 5831 else 5832 dws = 0; 5833 5834 /* Demodulate sequence number */ 5835 seq = ntohl(th.th_seq) - src->seqdiff; 5836 if (src->seqdiff) { 5837 pf_change_a(&th.th_seq, icmpsum, 5838 htonl(seq), 0); 5839 copyback = 1; 5840 } 5841 5842 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5843 (!SEQ_GEQ(src->seqhi, seq) || 5844 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5845 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5846 printf("pf: BAD ICMP %d:%d ", 5847 icmptype, icmpcode); 5848 pf_print_host(pd->src, 0, pd->af); 5849 printf(" -> "); 5850 pf_print_host(pd->dst, 0, pd->af); 5851 printf(" state: "); 5852 pf_print_state(*state); 5853 printf(" seq=%u\n", seq); 5854 } 5855 REASON_SET(reason, PFRES_BADSTATE); 5856 return (PF_DROP); 5857 } else { 5858 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5859 printf("pf: OK ICMP %d:%d ", 5860 icmptype, icmpcode); 5861 pf_print_host(pd->src, 0, pd->af); 5862 printf(" -> "); 5863 pf_print_host(pd->dst, 0, pd->af); 5864 printf(" state: "); 5865 pf_print_state(*state); 5866 printf(" seq=%u\n", seq); 5867 } 5868 } 5869 5870 /* translate source/destination address, if necessary */ 5871 if ((*state)->key[PF_SK_WIRE] != 5872 (*state)->key[PF_SK_STACK]) { 5873 struct pf_state_key *nk = 5874 (*state)->key[pd->didx]; 5875 5876 if (PF_ANEQ(pd2.src, 5877 &nk->addr[pd2.sidx], pd2.af) || 5878 nk->port[pd2.sidx] != th.th_sport) 5879 pf_change_icmp(pd2.src, &th.th_sport, 5880 daddr, &nk->addr[pd2.sidx], 5881 nk->port[pd2.sidx], NULL, 5882 pd2.ip_sum, icmpsum, 5883 pd->ip_sum, 0, pd2.af); 5884 5885 if (PF_ANEQ(pd2.dst, 5886 &nk->addr[pd2.didx], pd2.af) || 5887 nk->port[pd2.didx] != th.th_dport) 5888 pf_change_icmp(pd2.dst, &th.th_dport, 5889 saddr, &nk->addr[pd2.didx], 5890 nk->port[pd2.didx], NULL, 5891 pd2.ip_sum, icmpsum, 5892 pd->ip_sum, 0, pd2.af); 5893 copyback = 1; 5894 } 5895 5896 if (copyback) { 5897 switch (pd2.af) { 5898 #ifdef INET 5899 case AF_INET: 5900 m_copyback(m, off, ICMP_MINLEN, 5901 (caddr_t )&pd->hdr.icmp); 5902 m_copyback(m, ipoff2, sizeof(h2), 5903 (caddr_t )&h2); 5904 break; 5905 #endif /* INET */ 5906 #ifdef INET6 5907 case AF_INET6: 5908 m_copyback(m, off, 5909 sizeof(struct icmp6_hdr), 5910 (caddr_t )&pd->hdr.icmp6); 5911 m_copyback(m, ipoff2, sizeof(h2_6), 5912 (caddr_t )&h2_6); 5913 break; 5914 #endif /* INET6 */ 5915 } 5916 m_copyback(m, off2, 8, (caddr_t)&th); 5917 } 5918 5919 return (PF_PASS); 5920 break; 5921 } 5922 case IPPROTO_UDP: { 5923 struct udphdr uh; 5924 5925 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5926 NULL, reason, pd2.af)) { 5927 DPFPRINTF(PF_DEBUG_MISC, 5928 ("pf: ICMP error message too short " 5929 "(udp)\n")); 5930 return (PF_DROP); 5931 } 5932 5933 key.af = pd2.af; 5934 key.proto = IPPROTO_UDP; 5935 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5936 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5937 key.port[pd2.sidx] = uh.uh_sport; 5938 key.port[pd2.didx] = uh.uh_dport; 5939 5940 STATE_LOOKUP(kif, &key, direction, *state, pd); 5941 5942 /* translate source/destination address, if necessary */ 5943 if ((*state)->key[PF_SK_WIRE] != 5944 (*state)->key[PF_SK_STACK]) { 5945 struct pf_state_key *nk = 5946 (*state)->key[pd->didx]; 5947 5948 if (PF_ANEQ(pd2.src, 5949 &nk->addr[pd2.sidx], pd2.af) || 5950 nk->port[pd2.sidx] != uh.uh_sport) 5951 pf_change_icmp(pd2.src, &uh.uh_sport, 5952 daddr, &nk->addr[pd2.sidx], 5953 nk->port[pd2.sidx], &uh.uh_sum, 5954 pd2.ip_sum, icmpsum, 5955 pd->ip_sum, 1, pd2.af); 5956 5957 if (PF_ANEQ(pd2.dst, 5958 &nk->addr[pd2.didx], pd2.af) || 5959 nk->port[pd2.didx] != uh.uh_dport) 5960 pf_change_icmp(pd2.dst, &uh.uh_dport, 5961 saddr, &nk->addr[pd2.didx], 5962 nk->port[pd2.didx], &uh.uh_sum, 5963 pd2.ip_sum, icmpsum, 5964 pd->ip_sum, 1, pd2.af); 5965 5966 switch (pd2.af) { 5967 #ifdef INET 5968 case AF_INET: 5969 m_copyback(m, off, ICMP_MINLEN, 5970 (caddr_t )&pd->hdr.icmp); 5971 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5972 break; 5973 #endif /* INET */ 5974 #ifdef INET6 5975 case AF_INET6: 5976 m_copyback(m, off, 5977 sizeof(struct icmp6_hdr), 5978 (caddr_t )&pd->hdr.icmp6); 5979 m_copyback(m, ipoff2, sizeof(h2_6), 5980 (caddr_t )&h2_6); 5981 break; 5982 #endif /* INET6 */ 5983 } 5984 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5985 } 5986 return (PF_PASS); 5987 break; 5988 } 5989 #ifdef INET 5990 case IPPROTO_ICMP: { 5991 struct icmp iih; 5992 5993 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5994 NULL, reason, pd2.af)) { 5995 DPFPRINTF(PF_DEBUG_MISC, 5996 ("pf: ICMP error message too short i" 5997 "(icmp)\n")); 5998 return (PF_DROP); 5999 } 6000 6001 key.af = pd2.af; 6002 key.proto = IPPROTO_ICMP; 6003 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6004 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6005 key.port[0] = key.port[1] = iih.icmp_id; 6006 6007 STATE_LOOKUP(kif, &key, direction, *state, pd); 6008 6009 /* translate source/destination address, if necessary */ 6010 if ((*state)->key[PF_SK_WIRE] != 6011 (*state)->key[PF_SK_STACK]) { 6012 struct pf_state_key *nk = 6013 (*state)->key[pd->didx]; 6014 6015 if (PF_ANEQ(pd2.src, 6016 &nk->addr[pd2.sidx], pd2.af) || 6017 nk->port[pd2.sidx] != iih.icmp_id) 6018 pf_change_icmp(pd2.src, &iih.icmp_id, 6019 daddr, &nk->addr[pd2.sidx], 6020 nk->port[pd2.sidx], NULL, 6021 pd2.ip_sum, icmpsum, 6022 pd->ip_sum, 0, AF_INET); 6023 6024 if (PF_ANEQ(pd2.dst, 6025 &nk->addr[pd2.didx], pd2.af) || 6026 nk->port[pd2.didx] != iih.icmp_id) 6027 pf_change_icmp(pd2.dst, &iih.icmp_id, 6028 saddr, &nk->addr[pd2.didx], 6029 nk->port[pd2.didx], NULL, 6030 pd2.ip_sum, icmpsum, 6031 pd->ip_sum, 0, AF_INET); 6032 6033 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6034 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6035 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6036 } 6037 return (PF_PASS); 6038 break; 6039 } 6040 #endif /* INET */ 6041 #ifdef INET6 6042 case IPPROTO_ICMPV6: { 6043 struct icmp6_hdr iih; 6044 6045 if (!pf_pull_hdr(m, off2, &iih, 6046 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6047 DPFPRINTF(PF_DEBUG_MISC, 6048 ("pf: ICMP error message too short " 6049 "(icmp6)\n")); 6050 return (PF_DROP); 6051 } 6052 6053 key.af = pd2.af; 6054 key.proto = IPPROTO_ICMPV6; 6055 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6056 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6057 key.port[0] = key.port[1] = iih.icmp6_id; 6058 6059 STATE_LOOKUP(kif, &key, direction, *state, pd); 6060 6061 /* translate source/destination address, if necessary */ 6062 if ((*state)->key[PF_SK_WIRE] != 6063 (*state)->key[PF_SK_STACK]) { 6064 struct pf_state_key *nk = 6065 (*state)->key[pd->didx]; 6066 6067 if (PF_ANEQ(pd2.src, 6068 &nk->addr[pd2.sidx], pd2.af) || 6069 nk->port[pd2.sidx] != iih.icmp6_id) 6070 pf_change_icmp(pd2.src, &iih.icmp6_id, 6071 daddr, &nk->addr[pd2.sidx], 6072 nk->port[pd2.sidx], NULL, 6073 pd2.ip_sum, icmpsum, 6074 pd->ip_sum, 0, AF_INET6); 6075 6076 if (PF_ANEQ(pd2.dst, 6077 &nk->addr[pd2.didx], pd2.af) || 6078 nk->port[pd2.didx] != iih.icmp6_id) 6079 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6080 saddr, &nk->addr[pd2.didx], 6081 nk->port[pd2.didx], NULL, 6082 pd2.ip_sum, icmpsum, 6083 pd->ip_sum, 0, AF_INET6); 6084 6085 m_copyback(m, off, sizeof(struct icmp6_hdr), 6086 (caddr_t)&pd->hdr.icmp6); 6087 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6088 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6089 (caddr_t)&iih); 6090 } 6091 return (PF_PASS); 6092 break; 6093 } 6094 #endif /* INET6 */ 6095 default: { 6096 key.af = pd2.af; 6097 key.proto = pd2.proto; 6098 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6099 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6100 key.port[0] = key.port[1] = 0; 6101 6102 STATE_LOOKUP(kif, &key, direction, *state, pd); 6103 6104 /* translate source/destination address, if necessary */ 6105 if ((*state)->key[PF_SK_WIRE] != 6106 (*state)->key[PF_SK_STACK]) { 6107 struct pf_state_key *nk = 6108 (*state)->key[pd->didx]; 6109 6110 if (PF_ANEQ(pd2.src, 6111 &nk->addr[pd2.sidx], pd2.af)) 6112 pf_change_icmp(pd2.src, NULL, daddr, 6113 &nk->addr[pd2.sidx], 0, NULL, 6114 pd2.ip_sum, icmpsum, 6115 pd->ip_sum, 0, pd2.af); 6116 6117 if (PF_ANEQ(pd2.dst, 6118 &nk->addr[pd2.didx], pd2.af)) 6119 pf_change_icmp(pd2.dst, NULL, saddr, 6120 &nk->addr[pd2.didx], 0, NULL, 6121 pd2.ip_sum, icmpsum, 6122 pd->ip_sum, 0, pd2.af); 6123 6124 switch (pd2.af) { 6125 #ifdef INET 6126 case AF_INET: 6127 m_copyback(m, off, ICMP_MINLEN, 6128 (caddr_t)&pd->hdr.icmp); 6129 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6130 break; 6131 #endif /* INET */ 6132 #ifdef INET6 6133 case AF_INET6: 6134 m_copyback(m, off, 6135 sizeof(struct icmp6_hdr), 6136 (caddr_t )&pd->hdr.icmp6); 6137 m_copyback(m, ipoff2, sizeof(h2_6), 6138 (caddr_t )&h2_6); 6139 break; 6140 #endif /* INET6 */ 6141 } 6142 } 6143 return (PF_PASS); 6144 break; 6145 } 6146 } 6147 } 6148 } 6149 6150 static int 6151 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 6152 struct mbuf *m, struct pf_pdesc *pd) 6153 { 6154 struct pf_state_peer *src, *dst; 6155 struct pf_state_key_cmp key; 6156 uint8_t psrc, pdst; 6157 6158 bzero(&key, sizeof(key)); 6159 key.af = pd->af; 6160 key.proto = pd->proto; 6161 if (direction == PF_IN) { 6162 PF_ACPY(&key.addr[0], pd->src, key.af); 6163 PF_ACPY(&key.addr[1], pd->dst, key.af); 6164 key.port[0] = key.port[1] = 0; 6165 } else { 6166 PF_ACPY(&key.addr[1], pd->src, key.af); 6167 PF_ACPY(&key.addr[0], pd->dst, key.af); 6168 key.port[1] = key.port[0] = 0; 6169 } 6170 6171 STATE_LOOKUP(kif, &key, direction, *state, pd); 6172 6173 if (direction == (*state)->direction) { 6174 src = &(*state)->src; 6175 dst = &(*state)->dst; 6176 psrc = PF_PEER_SRC; 6177 pdst = PF_PEER_DST; 6178 } else { 6179 src = &(*state)->dst; 6180 dst = &(*state)->src; 6181 psrc = PF_PEER_DST; 6182 pdst = PF_PEER_SRC; 6183 } 6184 6185 /* update states */ 6186 if (src->state < PFOTHERS_SINGLE) 6187 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6188 if (dst->state == PFOTHERS_SINGLE) 6189 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6190 6191 /* update expire time */ 6192 (*state)->expire = time_uptime; 6193 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6194 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6195 else 6196 (*state)->timeout = PFTM_OTHER_SINGLE; 6197 6198 /* translate source/destination address, if necessary */ 6199 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6200 struct pf_state_key *nk = (*state)->key[pd->didx]; 6201 6202 KASSERT(nk, ("%s: nk is null", __func__)); 6203 KASSERT(pd, ("%s: pd is null", __func__)); 6204 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6205 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6206 switch (pd->af) { 6207 #ifdef INET 6208 case AF_INET: 6209 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6210 pf_change_a(&pd->src->v4.s_addr, 6211 pd->ip_sum, 6212 nk->addr[pd->sidx].v4.s_addr, 6213 0); 6214 6215 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6216 pf_change_a(&pd->dst->v4.s_addr, 6217 pd->ip_sum, 6218 nk->addr[pd->didx].v4.s_addr, 6219 0); 6220 6221 break; 6222 #endif /* INET */ 6223 #ifdef INET6 6224 case AF_INET6: 6225 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6226 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6227 6228 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6229 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6230 #endif /* INET6 */ 6231 } 6232 } 6233 return (PF_PASS); 6234 } 6235 6236 /* 6237 * ipoff and off are measured from the start of the mbuf chain. 6238 * h must be at "ipoff" on the mbuf chain. 6239 */ 6240 void * 6241 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6242 u_short *actionp, u_short *reasonp, sa_family_t af) 6243 { 6244 switch (af) { 6245 #ifdef INET 6246 case AF_INET: { 6247 struct ip *h = mtod(m, struct ip *); 6248 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6249 6250 if (fragoff) { 6251 if (fragoff >= len) 6252 ACTION_SET(actionp, PF_PASS); 6253 else { 6254 ACTION_SET(actionp, PF_DROP); 6255 REASON_SET(reasonp, PFRES_FRAG); 6256 } 6257 return (NULL); 6258 } 6259 if (m->m_pkthdr.len < off + len || 6260 ntohs(h->ip_len) < off + len) { 6261 ACTION_SET(actionp, PF_DROP); 6262 REASON_SET(reasonp, PFRES_SHORT); 6263 return (NULL); 6264 } 6265 break; 6266 } 6267 #endif /* INET */ 6268 #ifdef INET6 6269 case AF_INET6: { 6270 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6271 6272 if (m->m_pkthdr.len < off + len || 6273 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6274 (unsigned)(off + len)) { 6275 ACTION_SET(actionp, PF_DROP); 6276 REASON_SET(reasonp, PFRES_SHORT); 6277 return (NULL); 6278 } 6279 break; 6280 } 6281 #endif /* INET6 */ 6282 } 6283 m_copydata(m, off, len, p); 6284 return (p); 6285 } 6286 6287 int 6288 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6289 int rtableid) 6290 { 6291 struct ifnet *ifp; 6292 6293 /* 6294 * Skip check for addresses with embedded interface scope, 6295 * as they would always match anyway. 6296 */ 6297 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6298 return (1); 6299 6300 if (af != AF_INET && af != AF_INET6) 6301 return (0); 6302 6303 /* Skip checks for ipsec interfaces */ 6304 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6305 return (1); 6306 6307 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6308 6309 switch (af) { 6310 #ifdef INET6 6311 case AF_INET6: 6312 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6313 ifp)); 6314 #endif 6315 #ifdef INET 6316 case AF_INET: 6317 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6318 ifp)); 6319 #endif 6320 } 6321 6322 return (0); 6323 } 6324 6325 #ifdef INET 6326 static void 6327 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6328 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6329 { 6330 struct mbuf *m0, *m1, *md; 6331 struct sockaddr_in dst; 6332 struct ip *ip; 6333 struct ifnet *ifp = NULL; 6334 struct pf_addr naddr; 6335 struct pf_ksrc_node *sn = NULL; 6336 int error = 0; 6337 uint16_t ip_len, ip_off; 6338 6339 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6340 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6341 __func__)); 6342 6343 if ((pd->pf_mtag == NULL && 6344 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6345 pd->pf_mtag->routed++ > 3) { 6346 m0 = *m; 6347 *m = NULL; 6348 goto bad_locked; 6349 } 6350 6351 if (r->rt == PF_DUPTO) { 6352 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6353 if (s == NULL) { 6354 ifp = r->rpool.cur->kif ? 6355 r->rpool.cur->kif->pfik_ifp : NULL; 6356 } else { 6357 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6358 /* If pfsync'd */ 6359 if (ifp == NULL) 6360 ifp = r->rpool.cur->kif ? 6361 r->rpool.cur->kif->pfik_ifp : NULL; 6362 PF_STATE_UNLOCK(s); 6363 } 6364 if (ifp == oifp) { 6365 /* When the 2nd interface is not skipped */ 6366 return; 6367 } else { 6368 m0 = *m; 6369 *m = NULL; 6370 goto bad; 6371 } 6372 } else { 6373 pd->pf_mtag->flags |= PF_DUPLICATED; 6374 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6375 if (s) 6376 PF_STATE_UNLOCK(s); 6377 return; 6378 } 6379 } 6380 } else { 6381 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6382 pf_dummynet(pd, dir, s, r, m); 6383 if (s) 6384 PF_STATE_UNLOCK(s); 6385 return; 6386 } 6387 m0 = *m; 6388 } 6389 6390 ip = mtod(m0, struct ip *); 6391 6392 bzero(&dst, sizeof(dst)); 6393 dst.sin_family = AF_INET; 6394 dst.sin_len = sizeof(dst); 6395 dst.sin_addr = ip->ip_dst; 6396 6397 bzero(&naddr, sizeof(naddr)); 6398 6399 if (s == NULL) { 6400 if (TAILQ_EMPTY(&r->rpool.list)) { 6401 DPFPRINTF(PF_DEBUG_URGENT, 6402 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6403 goto bad_locked; 6404 } 6405 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6406 &naddr, NULL, &sn); 6407 if (!PF_AZERO(&naddr, AF_INET)) 6408 dst.sin_addr.s_addr = naddr.v4.s_addr; 6409 ifp = r->rpool.cur->kif ? 6410 r->rpool.cur->kif->pfik_ifp : NULL; 6411 } else { 6412 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6413 dst.sin_addr.s_addr = 6414 s->rt_addr.v4.s_addr; 6415 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6416 PF_STATE_UNLOCK(s); 6417 } 6418 /* If pfsync'd */ 6419 if (ifp == NULL) 6420 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6421 if (ifp == NULL) 6422 goto bad; 6423 6424 if (dir == PF_IN) { 6425 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6426 goto bad; 6427 else if (m0 == NULL) 6428 goto done; 6429 if (m0->m_len < sizeof(struct ip)) { 6430 DPFPRINTF(PF_DEBUG_URGENT, 6431 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6432 goto bad; 6433 } 6434 ip = mtod(m0, struct ip *); 6435 } 6436 6437 if (ifp->if_flags & IFF_LOOPBACK) 6438 m0->m_flags |= M_SKIP_FIREWALL; 6439 6440 ip_len = ntohs(ip->ip_len); 6441 ip_off = ntohs(ip->ip_off); 6442 6443 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6444 m0->m_pkthdr.csum_flags |= CSUM_IP; 6445 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6446 in_delayed_cksum(m0); 6447 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6448 } 6449 #if defined(SCTP) || defined(SCTP_SUPPORT) 6450 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6451 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 6452 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6453 } 6454 #endif 6455 6456 /* 6457 * If small enough for interface, or the interface will take 6458 * care of the fragmentation for us, we can just send directly. 6459 */ 6460 if (ip_len <= ifp->if_mtu || 6461 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6462 ip->ip_sum = 0; 6463 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6464 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6465 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6466 } 6467 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6468 6469 md = m0; 6470 error = pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6471 if (md != NULL) 6472 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 6473 goto done; 6474 } 6475 6476 /* Balk when DF bit is set or the interface didn't support TSO. */ 6477 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6478 error = EMSGSIZE; 6479 KMOD_IPSTAT_INC(ips_cantfrag); 6480 if (r->rt != PF_DUPTO) { 6481 if (s && pd->nat_rule != NULL) 6482 PACKET_UNDO_NAT(m0, pd, 6483 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6484 s, dir); 6485 6486 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6487 ifp->if_mtu); 6488 goto done; 6489 } else 6490 goto bad; 6491 } 6492 6493 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6494 if (error) 6495 goto bad; 6496 6497 for (; m0; m0 = m1) { 6498 m1 = m0->m_nextpkt; 6499 m0->m_nextpkt = NULL; 6500 if (error == 0) { 6501 m_clrprotoflags(m0); 6502 md = m0; 6503 error = pf_dummynet_route(pd, dir, s, r, ifp, 6504 sintosa(&dst), &md); 6505 if (md != NULL) 6506 error = (*ifp->if_output)(ifp, md, 6507 sintosa(&dst), NULL); 6508 } else 6509 m_freem(m0); 6510 } 6511 6512 if (error == 0) 6513 KMOD_IPSTAT_INC(ips_fragmented); 6514 6515 done: 6516 if (r->rt != PF_DUPTO) 6517 *m = NULL; 6518 return; 6519 6520 bad_locked: 6521 if (s) 6522 PF_STATE_UNLOCK(s); 6523 bad: 6524 m_freem(m0); 6525 goto done; 6526 } 6527 #endif /* INET */ 6528 6529 #ifdef INET6 6530 static void 6531 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6532 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6533 { 6534 struct mbuf *m0, *md; 6535 struct sockaddr_in6 dst; 6536 struct ip6_hdr *ip6; 6537 struct ifnet *ifp = NULL; 6538 struct pf_addr naddr; 6539 struct pf_ksrc_node *sn = NULL; 6540 6541 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6542 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6543 __func__)); 6544 6545 if ((pd->pf_mtag == NULL && 6546 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6547 pd->pf_mtag->routed++ > 3) { 6548 m0 = *m; 6549 *m = NULL; 6550 goto bad_locked; 6551 } 6552 6553 if (r->rt == PF_DUPTO) { 6554 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6555 if (s == NULL) { 6556 ifp = r->rpool.cur->kif ? 6557 r->rpool.cur->kif->pfik_ifp : NULL; 6558 } else { 6559 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6560 /* If pfsync'd */ 6561 if (ifp == NULL) 6562 ifp = r->rpool.cur->kif ? 6563 r->rpool.cur->kif->pfik_ifp : NULL; 6564 PF_STATE_UNLOCK(s); 6565 } 6566 if (ifp == oifp) { 6567 /* When the 2nd interface is not skipped */ 6568 return; 6569 } else { 6570 m0 = *m; 6571 *m = NULL; 6572 goto bad; 6573 } 6574 } else { 6575 pd->pf_mtag->flags |= PF_DUPLICATED; 6576 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6577 if (s) 6578 PF_STATE_UNLOCK(s); 6579 return; 6580 } 6581 } 6582 } else { 6583 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6584 pf_dummynet(pd, dir, s, r, m); 6585 if (s) 6586 PF_STATE_UNLOCK(s); 6587 return; 6588 } 6589 m0 = *m; 6590 } 6591 6592 ip6 = mtod(m0, struct ip6_hdr *); 6593 6594 bzero(&dst, sizeof(dst)); 6595 dst.sin6_family = AF_INET6; 6596 dst.sin6_len = sizeof(dst); 6597 dst.sin6_addr = ip6->ip6_dst; 6598 6599 bzero(&naddr, sizeof(naddr)); 6600 6601 if (s == NULL) { 6602 if (TAILQ_EMPTY(&r->rpool.list)) { 6603 DPFPRINTF(PF_DEBUG_URGENT, 6604 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6605 goto bad_locked; 6606 } 6607 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6608 &naddr, NULL, &sn); 6609 if (!PF_AZERO(&naddr, AF_INET6)) 6610 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6611 &naddr, AF_INET6); 6612 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6613 } else { 6614 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6615 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6616 &s->rt_addr, AF_INET6); 6617 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6618 } 6619 6620 if (s) 6621 PF_STATE_UNLOCK(s); 6622 6623 /* If pfsync'd */ 6624 if (ifp == NULL) 6625 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6626 if (ifp == NULL) 6627 goto bad; 6628 6629 if (dir == PF_IN) { 6630 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 6631 goto bad; 6632 else if (m0 == NULL) 6633 goto done; 6634 if (m0->m_len < sizeof(struct ip6_hdr)) { 6635 DPFPRINTF(PF_DEBUG_URGENT, 6636 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6637 __func__)); 6638 goto bad; 6639 } 6640 ip6 = mtod(m0, struct ip6_hdr *); 6641 } 6642 6643 if (ifp->if_flags & IFF_LOOPBACK) 6644 m0->m_flags |= M_SKIP_FIREWALL; 6645 6646 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6647 ~ifp->if_hwassist) { 6648 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6649 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6650 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6651 } 6652 6653 /* 6654 * If the packet is too large for the outgoing interface, 6655 * send back an icmp6 error. 6656 */ 6657 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6658 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6659 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 6660 md = m0; 6661 pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6662 if (md != NULL) 6663 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 6664 } 6665 else { 6666 in6_ifstat_inc(ifp, ifs6_in_toobig); 6667 if (r->rt != PF_DUPTO) { 6668 if (s && pd->nat_rule != NULL) 6669 PACKET_UNDO_NAT(m0, pd, 6670 ((caddr_t)ip6 - m0->m_data) + 6671 sizeof(struct ip6_hdr), s, dir); 6672 6673 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6674 } else 6675 goto bad; 6676 } 6677 6678 done: 6679 if (r->rt != PF_DUPTO) 6680 *m = NULL; 6681 return; 6682 6683 bad_locked: 6684 if (s) 6685 PF_STATE_UNLOCK(s); 6686 bad: 6687 m_freem(m0); 6688 goto done; 6689 } 6690 #endif /* INET6 */ 6691 6692 /* 6693 * FreeBSD supports cksum offloads for the following drivers. 6694 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6695 * 6696 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6697 * network driver performed cksum including pseudo header, need to verify 6698 * csum_data 6699 * CSUM_DATA_VALID : 6700 * network driver performed cksum, needs to additional pseudo header 6701 * cksum computation with partial csum_data(i.e. lack of H/W support for 6702 * pseudo header, for instance sk(4) and possibly gem(4)) 6703 * 6704 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6705 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6706 * TCP/UDP layer. 6707 * Also, set csum_data to 0xffff to force cksum validation. 6708 */ 6709 static int 6710 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6711 { 6712 u_int16_t sum = 0; 6713 int hw_assist = 0; 6714 struct ip *ip; 6715 6716 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6717 return (1); 6718 if (m->m_pkthdr.len < off + len) 6719 return (1); 6720 6721 switch (p) { 6722 case IPPROTO_TCP: 6723 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6724 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6725 sum = m->m_pkthdr.csum_data; 6726 } else { 6727 ip = mtod(m, struct ip *); 6728 sum = in_pseudo(ip->ip_src.s_addr, 6729 ip->ip_dst.s_addr, htonl((u_short)len + 6730 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6731 } 6732 sum ^= 0xffff; 6733 ++hw_assist; 6734 } 6735 break; 6736 case IPPROTO_UDP: 6737 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6738 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6739 sum = m->m_pkthdr.csum_data; 6740 } else { 6741 ip = mtod(m, struct ip *); 6742 sum = in_pseudo(ip->ip_src.s_addr, 6743 ip->ip_dst.s_addr, htonl((u_short)len + 6744 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6745 } 6746 sum ^= 0xffff; 6747 ++hw_assist; 6748 } 6749 break; 6750 case IPPROTO_ICMP: 6751 #ifdef INET6 6752 case IPPROTO_ICMPV6: 6753 #endif /* INET6 */ 6754 break; 6755 default: 6756 return (1); 6757 } 6758 6759 if (!hw_assist) { 6760 switch (af) { 6761 case AF_INET: 6762 if (p == IPPROTO_ICMP) { 6763 if (m->m_len < off) 6764 return (1); 6765 m->m_data += off; 6766 m->m_len -= off; 6767 sum = in_cksum(m, len); 6768 m->m_data -= off; 6769 m->m_len += off; 6770 } else { 6771 if (m->m_len < sizeof(struct ip)) 6772 return (1); 6773 sum = in4_cksum(m, p, off, len); 6774 } 6775 break; 6776 #ifdef INET6 6777 case AF_INET6: 6778 if (m->m_len < sizeof(struct ip6_hdr)) 6779 return (1); 6780 sum = in6_cksum(m, p, off, len); 6781 break; 6782 #endif /* INET6 */ 6783 default: 6784 return (1); 6785 } 6786 } 6787 if (sum) { 6788 switch (p) { 6789 case IPPROTO_TCP: 6790 { 6791 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6792 break; 6793 } 6794 case IPPROTO_UDP: 6795 { 6796 KMOD_UDPSTAT_INC(udps_badsum); 6797 break; 6798 } 6799 #ifdef INET 6800 case IPPROTO_ICMP: 6801 { 6802 KMOD_ICMPSTAT_INC(icps_checksum); 6803 break; 6804 } 6805 #endif 6806 #ifdef INET6 6807 case IPPROTO_ICMPV6: 6808 { 6809 KMOD_ICMP6STAT_INC(icp6s_checksum); 6810 break; 6811 } 6812 #endif /* INET6 */ 6813 } 6814 return (1); 6815 } else { 6816 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6817 m->m_pkthdr.csum_flags |= 6818 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6819 m->m_pkthdr.csum_data = 0xffff; 6820 } 6821 } 6822 return (0); 6823 } 6824 6825 static bool 6826 pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, 6827 const struct pf_krule *r, const struct pf_kstate *s, 6828 struct ip_fw_args *dnflow) 6829 { 6830 int dndir = r->direction; 6831 6832 if (s && dndir == PF_INOUT) { 6833 dndir = s->direction; 6834 } else if (dndir == PF_INOUT) { 6835 /* Assume primary direction. Happens when we've set dnpipe in 6836 * the ethernet level code. */ 6837 dndir = dir; 6838 } 6839 6840 memset(dnflow, 0, sizeof(*dnflow)); 6841 6842 if (pd->dport != NULL) 6843 dnflow->f_id.dst_port = ntohs(*pd->dport); 6844 if (pd->sport != NULL) 6845 dnflow->f_id.src_port = ntohs(*pd->sport); 6846 6847 if (dir == PF_IN) 6848 dnflow->flags |= IPFW_ARGS_IN; 6849 else 6850 dnflow->flags |= IPFW_ARGS_OUT; 6851 6852 if (dir != dndir && pd->act.dnrpipe) { 6853 dnflow->rule.info = pd->act.dnrpipe; 6854 } 6855 else if (dir == dndir && pd->act.dnpipe) { 6856 dnflow->rule.info = pd->act.dnpipe; 6857 } 6858 else { 6859 return (false); 6860 } 6861 6862 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6863 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFRULE_DN_IS_PIPE) 6864 dnflow->rule.info |= IPFW_IS_PIPE; 6865 6866 dnflow->f_id.proto = pd->proto; 6867 dnflow->f_id.extra = dnflow->rule.info; 6868 switch (pd->af) { 6869 case AF_INET: 6870 dnflow->f_id.addr_type = 4; 6871 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 6872 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 6873 break; 6874 case AF_INET6: 6875 dnflow->flags |= IPFW_ARGS_IP6; 6876 dnflow->f_id.addr_type = 6; 6877 dnflow->f_id.src_ip6 = pd->src->v6; 6878 dnflow->f_id.dst_ip6 = pd->dst->v6; 6879 break; 6880 default: 6881 panic("Invalid AF"); 6882 break; 6883 } 6884 6885 return (true); 6886 } 6887 6888 int 6889 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 6890 struct inpcb *inp) 6891 { 6892 struct pfi_kkif *kif; 6893 struct mbuf *m = *m0; 6894 6895 M_ASSERTPKTHDR(m); 6896 MPASS(ifp->if_vnet == curvnet); 6897 NET_EPOCH_ASSERT(); 6898 6899 if (!V_pf_status.running) 6900 return (PF_PASS); 6901 6902 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6903 6904 if (kif == NULL) { 6905 DPFPRINTF(PF_DEBUG_URGENT, 6906 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6907 return (PF_DROP); 6908 } 6909 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6910 return (PF_PASS); 6911 6912 if (m->m_flags & M_SKIP_FIREWALL) 6913 return (PF_PASS); 6914 6915 /* Stateless! */ 6916 return (pf_test_eth_rule(dir, kif, m0)); 6917 } 6918 6919 static int 6920 pf_dummynet(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 6921 struct pf_krule *r, struct mbuf **m0) 6922 { 6923 return (pf_dummynet_route(pd, dir, s, r, NULL, NULL, m0)); 6924 } 6925 6926 static int 6927 pf_dummynet_route(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 6928 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 6929 struct mbuf **m0) 6930 { 6931 NET_EPOCH_ASSERT(); 6932 6933 if (s && (s->dnpipe || s->dnrpipe)) { 6934 pd->act.dnpipe = s->dnpipe; 6935 pd->act.dnrpipe = s->dnrpipe; 6936 pd->act.flags = s->state_flags; 6937 } else if (r->dnpipe || r->dnrpipe) { 6938 pd->act.dnpipe = r->dnpipe; 6939 pd->act.dnrpipe = r->dnrpipe; 6940 pd->act.flags = r->free_flags; 6941 } 6942 if (pd->act.dnpipe || pd->act.dnrpipe) { 6943 struct ip_fw_args dnflow; 6944 if (ip_dn_io_ptr == NULL) { 6945 m_freem(*m0); 6946 *m0 = NULL; 6947 return (ENOMEM); 6948 } 6949 6950 if (pd->pf_mtag == NULL && 6951 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 6952 m_freem(*m0); 6953 *m0 = NULL; 6954 return (ENOMEM); 6955 } 6956 6957 if (ifp != NULL) { 6958 pd->pf_mtag->flags |= PF_TAG_ROUTE_TO; 6959 6960 pd->pf_mtag->if_index = ifp->if_index; 6961 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 6962 6963 MPASS(sa != NULL); 6964 6965 if (pd->af == AF_INET) 6966 memcpy(&pd->pf_mtag->dst, sa, 6967 sizeof(struct sockaddr_in)); 6968 else 6969 memcpy(&pd->pf_mtag->dst, sa, 6970 sizeof(struct sockaddr_in6)); 6971 } 6972 6973 if (pf_pdesc_to_dnflow(dir, pd, r, s, &dnflow)) { 6974 pd->pf_mtag->flags |= PF_TAG_DUMMYNET; 6975 ip_dn_io_ptr(m0, &dnflow); 6976 if (*m0 != NULL) 6977 pd->pf_mtag->flags &= ~PF_TAG_DUMMYNET; 6978 } 6979 } 6980 6981 return (0); 6982 } 6983 6984 #ifdef INET 6985 int 6986 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6987 { 6988 struct pfi_kkif *kif; 6989 u_short action, reason = 0, log = 0; 6990 struct mbuf *m = *m0; 6991 struct ip *h = NULL; 6992 struct m_tag *ipfwtag; 6993 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6994 struct pf_kstate *s = NULL; 6995 struct pf_kruleset *ruleset = NULL; 6996 struct pf_pdesc pd; 6997 int off, dirndx, pqid = 0; 6998 6999 PF_RULES_RLOCK_TRACKER; 7000 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7001 M_ASSERTPKTHDR(m); 7002 7003 if (!V_pf_status.running) 7004 return (PF_PASS); 7005 7006 PF_RULES_RLOCK(); 7007 7008 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7009 7010 if (__predict_false(kif == NULL)) { 7011 DPFPRINTF(PF_DEBUG_URGENT, 7012 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7013 PF_RULES_RUNLOCK(); 7014 return (PF_DROP); 7015 } 7016 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7017 PF_RULES_RUNLOCK(); 7018 return (PF_PASS); 7019 } 7020 7021 if (m->m_flags & M_SKIP_FIREWALL) { 7022 PF_RULES_RUNLOCK(); 7023 return (PF_PASS); 7024 } 7025 7026 memset(&pd, 0, sizeof(pd)); 7027 pd.pf_mtag = pf_find_mtag(m); 7028 7029 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7030 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7031 7032 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7033 pd.pf_mtag->if_idxgen); 7034 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7035 PF_RULES_RUNLOCK(); 7036 m_freem(*m0); 7037 *m0 = NULL; 7038 return (PF_PASS); 7039 } 7040 PF_RULES_RUNLOCK(); 7041 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7042 *m0 = NULL; 7043 return (PF_PASS); 7044 } 7045 7046 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7047 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7048 pd.act.flags = pd.pf_mtag->dnflags; 7049 } 7050 7051 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7052 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7053 /* Dummynet re-injects packets after they've 7054 * completed their delay. We've already 7055 * processed them, so pass unconditionally. */ 7056 7057 /* But only once. We may see the packet multiple times (e.g. 7058 * PFIL_IN/PFIL_OUT). */ 7059 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7060 PF_RULES_RUNLOCK(); 7061 7062 return (PF_PASS); 7063 } 7064 7065 if (__predict_false(ip_divert_ptr != NULL) && 7066 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 7067 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 7068 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 7069 if (pd.pf_mtag == NULL && 7070 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7071 action = PF_DROP; 7072 goto done; 7073 } 7074 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 7075 m_tag_delete(m, ipfwtag); 7076 } 7077 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 7078 m->m_flags |= M_FASTFWD_OURS; 7079 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 7080 } 7081 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 7082 /* We do IP header normalization and packet reassembly here */ 7083 action = PF_DROP; 7084 goto done; 7085 } 7086 m = *m0; /* pf_normalize messes with m0 */ 7087 h = mtod(m, struct ip *); 7088 7089 off = h->ip_hl << 2; 7090 if (off < (int)sizeof(struct ip)) { 7091 action = PF_DROP; 7092 REASON_SET(&reason, PFRES_SHORT); 7093 log = 1; 7094 goto done; 7095 } 7096 7097 pd.src = (struct pf_addr *)&h->ip_src; 7098 pd.dst = (struct pf_addr *)&h->ip_dst; 7099 pd.sport = pd.dport = NULL; 7100 pd.ip_sum = &h->ip_sum; 7101 pd.proto_sum = NULL; 7102 pd.proto = h->ip_p; 7103 pd.dir = dir; 7104 pd.sidx = (dir == PF_IN) ? 0 : 1; 7105 pd.didx = (dir == PF_IN) ? 1 : 0; 7106 pd.af = AF_INET; 7107 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7108 pd.tot_len = ntohs(h->ip_len); 7109 7110 /* handle fragments that didn't get reassembled by normalization */ 7111 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7112 action = pf_test_fragment(&r, dir, kif, m, h, 7113 &pd, &a, &ruleset); 7114 goto done; 7115 } 7116 7117 switch (h->ip_p) { 7118 case IPPROTO_TCP: { 7119 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7120 &action, &reason, AF_INET)) { 7121 log = action != PF_PASS; 7122 goto done; 7123 } 7124 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7125 7126 pd.sport = &pd.hdr.tcp.th_sport; 7127 pd.dport = &pd.hdr.tcp.th_dport; 7128 7129 /* Respond to SYN with a syncookie. */ 7130 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 7131 pd.dir == PF_IN && pf_synflood_check(&pd)) { 7132 pf_syncookie_send(m, off, &pd); 7133 action = PF_DROP; 7134 break; 7135 } 7136 7137 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 7138 pqid = 1; 7139 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7140 if (action == PF_DROP) 7141 goto done; 7142 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7143 &reason); 7144 if (action == PF_PASS) { 7145 if (V_pfsync_update_state_ptr != NULL) 7146 V_pfsync_update_state_ptr(s); 7147 r = s->rule.ptr; 7148 a = s->anchor.ptr; 7149 log = s->log; 7150 } else if (s == NULL) { 7151 /* Validate remote SYN|ACK, re-create original SYN if 7152 * valid. */ 7153 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 7154 TH_ACK && pf_syncookie_validate(&pd) && 7155 pd.dir == PF_IN) { 7156 struct mbuf *msyn; 7157 7158 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 7159 off,&pd); 7160 if (msyn == NULL) { 7161 action = PF_DROP; 7162 break; 7163 } 7164 7165 action = pf_test(dir, pflags, ifp, &msyn, inp); 7166 m_freem(msyn); 7167 7168 if (action == PF_PASS) { 7169 action = pf_test_state_tcp(&s, dir, 7170 kif, m, off, h, &pd, &reason); 7171 if (action != PF_PASS || s == NULL) { 7172 action = PF_DROP; 7173 break; 7174 } 7175 7176 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 7177 - 1; 7178 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 7179 - 1; 7180 pf_set_protostate(s, PF_PEER_SRC, 7181 PF_TCPS_PROXY_DST); 7182 7183 action = pf_synproxy(&pd, &s, &reason); 7184 if (action != PF_PASS) 7185 break; 7186 } 7187 break; 7188 } 7189 else { 7190 action = pf_test_rule(&r, &s, dir, kif, m, off, 7191 &pd, &a, &ruleset, inp); 7192 } 7193 } 7194 break; 7195 } 7196 7197 case IPPROTO_UDP: { 7198 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7199 &action, &reason, AF_INET)) { 7200 log = action != PF_PASS; 7201 goto done; 7202 } 7203 pd.sport = &pd.hdr.udp.uh_sport; 7204 pd.dport = &pd.hdr.udp.uh_dport; 7205 if (pd.hdr.udp.uh_dport == 0 || 7206 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7207 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7208 action = PF_DROP; 7209 REASON_SET(&reason, PFRES_SHORT); 7210 goto done; 7211 } 7212 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7213 if (action == PF_PASS) { 7214 if (V_pfsync_update_state_ptr != NULL) 7215 V_pfsync_update_state_ptr(s); 7216 r = s->rule.ptr; 7217 a = s->anchor.ptr; 7218 log = s->log; 7219 } else if (s == NULL) 7220 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7221 &a, &ruleset, inp); 7222 break; 7223 } 7224 7225 case IPPROTO_ICMP: { 7226 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7227 &action, &reason, AF_INET)) { 7228 log = action != PF_PASS; 7229 goto done; 7230 } 7231 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 7232 &reason); 7233 if (action == PF_PASS) { 7234 if (V_pfsync_update_state_ptr != NULL) 7235 V_pfsync_update_state_ptr(s); 7236 r = s->rule.ptr; 7237 a = s->anchor.ptr; 7238 log = s->log; 7239 } else if (s == NULL) 7240 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7241 &a, &ruleset, inp); 7242 break; 7243 } 7244 7245 #ifdef INET6 7246 case IPPROTO_ICMPV6: { 7247 action = PF_DROP; 7248 DPFPRINTF(PF_DEBUG_MISC, 7249 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7250 goto done; 7251 } 7252 #endif 7253 7254 default: 7255 action = pf_test_state_other(&s, dir, kif, m, &pd); 7256 if (action == PF_PASS) { 7257 if (V_pfsync_update_state_ptr != NULL) 7258 V_pfsync_update_state_ptr(s); 7259 r = s->rule.ptr; 7260 a = s->anchor.ptr; 7261 log = s->log; 7262 } else if (s == NULL) 7263 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7264 &a, &ruleset, inp); 7265 break; 7266 } 7267 7268 done: 7269 PF_RULES_RUNLOCK(); 7270 if (action == PF_PASS && h->ip_hl > 5 && 7271 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7272 action = PF_DROP; 7273 REASON_SET(&reason, PFRES_IPOPTIONS); 7274 log = r->log; 7275 DPFPRINTF(PF_DEBUG_MISC, 7276 ("pf: dropping packet with ip options\n")); 7277 } 7278 7279 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7280 action = PF_DROP; 7281 REASON_SET(&reason, PFRES_MEMORY); 7282 } 7283 if (r->rtableid >= 0) 7284 M_SETFIB(m, r->rtableid); 7285 7286 if (r->scrub_flags & PFSTATE_SETPRIO) { 7287 if (pd.tos & IPTOS_LOWDELAY) 7288 pqid = 1; 7289 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7290 action = PF_DROP; 7291 REASON_SET(&reason, PFRES_MEMORY); 7292 log = 1; 7293 DPFPRINTF(PF_DEBUG_MISC, 7294 ("pf: failed to allocate 802.1q mtag\n")); 7295 } 7296 } 7297 7298 #ifdef ALTQ 7299 if (s && s->qid) { 7300 pd.act.pqid = s->pqid; 7301 pd.act.qid = s->qid; 7302 } else if (r->qid) { 7303 pd.act.pqid = r->pqid; 7304 pd.act.qid = r->qid; 7305 } 7306 if (action == PF_PASS && pd.act.qid) { 7307 if (pd.pf_mtag == NULL && 7308 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7309 action = PF_DROP; 7310 REASON_SET(&reason, PFRES_MEMORY); 7311 } else { 7312 if (s != NULL) 7313 pd.pf_mtag->qid_hash = pf_state_hash(s); 7314 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 7315 pd.pf_mtag->qid = pd.act.pqid; 7316 else 7317 pd.pf_mtag->qid = pd.act.qid; 7318 /* Add hints for ecn. */ 7319 pd.pf_mtag->hdr = h; 7320 } 7321 } 7322 #endif /* ALTQ */ 7323 7324 /* 7325 * connections redirected to loopback should not match sockets 7326 * bound specifically to loopback due to security implications, 7327 * see tcp_input() and in_pcblookup_listen(). 7328 */ 7329 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7330 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7331 (s->nat_rule.ptr->action == PF_RDR || 7332 s->nat_rule.ptr->action == PF_BINAT) && 7333 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7334 m->m_flags |= M_SKIP_FIREWALL; 7335 7336 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7337 r->divert.port && !PACKET_LOOPED(&pd)) { 7338 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7339 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7340 if (ipfwtag != NULL) { 7341 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7342 ntohs(r->divert.port); 7343 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7344 7345 if (s) 7346 PF_STATE_UNLOCK(s); 7347 7348 m_tag_prepend(m, ipfwtag); 7349 if (m->m_flags & M_FASTFWD_OURS) { 7350 if (pd.pf_mtag == NULL && 7351 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7352 action = PF_DROP; 7353 REASON_SET(&reason, PFRES_MEMORY); 7354 log = 1; 7355 DPFPRINTF(PF_DEBUG_MISC, 7356 ("pf: failed to allocate tag\n")); 7357 } else { 7358 pd.pf_mtag->flags |= 7359 PF_FASTFWD_OURS_PRESENT; 7360 m->m_flags &= ~M_FASTFWD_OURS; 7361 } 7362 } 7363 ip_divert_ptr(*m0, dir == PF_IN); 7364 *m0 = NULL; 7365 7366 return (action); 7367 } else { 7368 /* XXX: ipfw has the same behaviour! */ 7369 action = PF_DROP; 7370 REASON_SET(&reason, PFRES_MEMORY); 7371 log = 1; 7372 DPFPRINTF(PF_DEBUG_MISC, 7373 ("pf: failed to allocate divert tag\n")); 7374 } 7375 } 7376 7377 if (log) { 7378 struct pf_krule *lr; 7379 7380 if (s != NULL && s->nat_rule.ptr != NULL && 7381 s->nat_rule.ptr->log & PF_LOG_ALL) 7382 lr = s->nat_rule.ptr; 7383 else 7384 lr = r; 7385 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 7386 (s == NULL)); 7387 } 7388 7389 pf_counter_u64_critical_enter(); 7390 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7391 pd.tot_len); 7392 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7393 1); 7394 7395 if (action == PF_PASS || r->action == PF_DROP) { 7396 dirndx = (dir == PF_OUT); 7397 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7398 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7399 pf_update_timestamp(r); 7400 7401 if (a != NULL) { 7402 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7403 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7404 } 7405 if (s != NULL) { 7406 if (s->nat_rule.ptr != NULL) { 7407 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7408 1); 7409 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7410 pd.tot_len); 7411 } 7412 if (s->src_node != NULL) { 7413 counter_u64_add(s->src_node->packets[dirndx], 7414 1); 7415 counter_u64_add(s->src_node->bytes[dirndx], 7416 pd.tot_len); 7417 } 7418 if (s->nat_src_node != NULL) { 7419 counter_u64_add(s->nat_src_node->packets[dirndx], 7420 1); 7421 counter_u64_add(s->nat_src_node->bytes[dirndx], 7422 pd.tot_len); 7423 } 7424 dirndx = (dir == s->direction) ? 0 : 1; 7425 s->packets[dirndx]++; 7426 s->bytes[dirndx] += pd.tot_len; 7427 } 7428 tr = r; 7429 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7430 if (nr != NULL && r == &V_pf_default_rule) 7431 tr = nr; 7432 if (tr->src.addr.type == PF_ADDR_TABLE) 7433 pfr_update_stats(tr->src.addr.p.tbl, 7434 (s == NULL) ? pd.src : 7435 &s->key[(s->direction == PF_IN)]-> 7436 addr[(s->direction == PF_OUT)], 7437 pd.af, pd.tot_len, dir == PF_OUT, 7438 r->action == PF_PASS, tr->src.neg); 7439 if (tr->dst.addr.type == PF_ADDR_TABLE) 7440 pfr_update_stats(tr->dst.addr.p.tbl, 7441 (s == NULL) ? pd.dst : 7442 &s->key[(s->direction == PF_IN)]-> 7443 addr[(s->direction == PF_IN)], 7444 pd.af, pd.tot_len, dir == PF_OUT, 7445 r->action == PF_PASS, tr->dst.neg); 7446 } 7447 pf_counter_u64_critical_exit(); 7448 7449 switch (action) { 7450 case PF_SYNPROXY_DROP: 7451 m_freem(*m0); 7452 case PF_DEFER: 7453 *m0 = NULL; 7454 action = PF_PASS; 7455 break; 7456 case PF_DROP: 7457 m_freem(*m0); 7458 *m0 = NULL; 7459 break; 7460 default: 7461 /* pf_route() returns unlocked. */ 7462 if (r->rt) { 7463 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7464 return (action); 7465 } 7466 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 7467 action = PF_DROP; 7468 REASON_SET(&reason, PFRES_MEMORY); 7469 } 7470 break; 7471 } 7472 7473 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7474 7475 if (s) 7476 PF_STATE_UNLOCK(s); 7477 7478 return (action); 7479 } 7480 #endif /* INET */ 7481 7482 #ifdef INET6 7483 int 7484 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 7485 { 7486 struct pfi_kkif *kif; 7487 u_short action, reason = 0, log = 0; 7488 struct mbuf *m = *m0, *n = NULL; 7489 struct m_tag *mtag; 7490 struct ip6_hdr *h = NULL; 7491 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7492 struct pf_kstate *s = NULL; 7493 struct pf_kruleset *ruleset = NULL; 7494 struct pf_pdesc pd; 7495 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 7496 7497 PF_RULES_RLOCK_TRACKER; 7498 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7499 M_ASSERTPKTHDR(m); 7500 7501 if (!V_pf_status.running) 7502 return (PF_PASS); 7503 7504 PF_RULES_RLOCK(); 7505 7506 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7507 if (__predict_false(kif == NULL)) { 7508 DPFPRINTF(PF_DEBUG_URGENT, 7509 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7510 PF_RULES_RUNLOCK(); 7511 return (PF_DROP); 7512 } 7513 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7514 PF_RULES_RUNLOCK(); 7515 return (PF_PASS); 7516 } 7517 7518 if (m->m_flags & M_SKIP_FIREWALL) { 7519 PF_RULES_RUNLOCK(); 7520 return (PF_PASS); 7521 } 7522 7523 memset(&pd, 0, sizeof(pd)); 7524 pd.pf_mtag = pf_find_mtag(m); 7525 7526 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7527 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7528 7529 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7530 pd.pf_mtag->if_idxgen); 7531 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7532 PF_RULES_RUNLOCK(); 7533 m_freem(*m0); 7534 *m0 = NULL; 7535 return (PF_PASS); 7536 } 7537 PF_RULES_RUNLOCK(); 7538 nd6_output_ifp(ifp, ifp, m, 7539 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 7540 *m0 = NULL; 7541 return (PF_PASS); 7542 } 7543 7544 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7545 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7546 pd.act.flags = pd.pf_mtag->dnflags; 7547 } 7548 7549 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7550 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7551 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7552 /* Dummynet re-injects packets after they've 7553 * completed their delay. We've already 7554 * processed them, so pass unconditionally. */ 7555 PF_RULES_RUNLOCK(); 7556 return (PF_PASS); 7557 } 7558 7559 /* We do IP header normalization and packet reassembly here */ 7560 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 7561 action = PF_DROP; 7562 goto done; 7563 } 7564 m = *m0; /* pf_normalize messes with m0 */ 7565 h = mtod(m, struct ip6_hdr *); 7566 7567 /* 7568 * we do not support jumbogram. if we keep going, zero ip6_plen 7569 * will do something bad, so drop the packet for now. 7570 */ 7571 if (htons(h->ip6_plen) == 0) { 7572 action = PF_DROP; 7573 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 7574 goto done; 7575 } 7576 7577 pd.src = (struct pf_addr *)&h->ip6_src; 7578 pd.dst = (struct pf_addr *)&h->ip6_dst; 7579 pd.sport = pd.dport = NULL; 7580 pd.ip_sum = NULL; 7581 pd.proto_sum = NULL; 7582 pd.dir = dir; 7583 pd.sidx = (dir == PF_IN) ? 0 : 1; 7584 pd.didx = (dir == PF_IN) ? 1 : 0; 7585 pd.af = AF_INET6; 7586 pd.tos = IPV6_DSCP(h); 7587 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 7588 7589 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 7590 pd.proto = h->ip6_nxt; 7591 do { 7592 switch (pd.proto) { 7593 case IPPROTO_FRAGMENT: 7594 action = pf_test_fragment(&r, dir, kif, m, h, 7595 &pd, &a, &ruleset); 7596 if (action == PF_DROP) 7597 REASON_SET(&reason, PFRES_FRAG); 7598 goto done; 7599 case IPPROTO_ROUTING: { 7600 struct ip6_rthdr rthdr; 7601 7602 if (rh_cnt++) { 7603 DPFPRINTF(PF_DEBUG_MISC, 7604 ("pf: IPv6 more than one rthdr\n")); 7605 action = PF_DROP; 7606 REASON_SET(&reason, PFRES_IPOPTIONS); 7607 log = 1; 7608 goto done; 7609 } 7610 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 7611 &reason, pd.af)) { 7612 DPFPRINTF(PF_DEBUG_MISC, 7613 ("pf: IPv6 short rthdr\n")); 7614 action = PF_DROP; 7615 REASON_SET(&reason, PFRES_SHORT); 7616 log = 1; 7617 goto done; 7618 } 7619 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 7620 DPFPRINTF(PF_DEBUG_MISC, 7621 ("pf: IPv6 rthdr0\n")); 7622 action = PF_DROP; 7623 REASON_SET(&reason, PFRES_IPOPTIONS); 7624 log = 1; 7625 goto done; 7626 } 7627 /* FALLTHROUGH */ 7628 } 7629 case IPPROTO_AH: 7630 case IPPROTO_HOPOPTS: 7631 case IPPROTO_DSTOPTS: { 7632 /* get next header and header length */ 7633 struct ip6_ext opt6; 7634 7635 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 7636 NULL, &reason, pd.af)) { 7637 DPFPRINTF(PF_DEBUG_MISC, 7638 ("pf: IPv6 short opt\n")); 7639 action = PF_DROP; 7640 log = 1; 7641 goto done; 7642 } 7643 if (pd.proto == IPPROTO_AH) 7644 off += (opt6.ip6e_len + 2) * 4; 7645 else 7646 off += (opt6.ip6e_len + 1) * 8; 7647 pd.proto = opt6.ip6e_nxt; 7648 /* goto the next header */ 7649 break; 7650 } 7651 default: 7652 terminal++; 7653 break; 7654 } 7655 } while (!terminal); 7656 7657 /* if there's no routing header, use unmodified mbuf for checksumming */ 7658 if (!n) 7659 n = m; 7660 7661 switch (pd.proto) { 7662 case IPPROTO_TCP: { 7663 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7664 &action, &reason, AF_INET6)) { 7665 log = action != PF_PASS; 7666 goto done; 7667 } 7668 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7669 pd.sport = &pd.hdr.tcp.th_sport; 7670 pd.dport = &pd.hdr.tcp.th_dport; 7671 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7672 if (action == PF_DROP) 7673 goto done; 7674 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7675 &reason); 7676 if (action == PF_PASS) { 7677 if (V_pfsync_update_state_ptr != NULL) 7678 V_pfsync_update_state_ptr(s); 7679 r = s->rule.ptr; 7680 a = s->anchor.ptr; 7681 log = s->log; 7682 } else if (s == NULL) 7683 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7684 &a, &ruleset, inp); 7685 break; 7686 } 7687 7688 case IPPROTO_UDP: { 7689 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7690 &action, &reason, AF_INET6)) { 7691 log = action != PF_PASS; 7692 goto done; 7693 } 7694 pd.sport = &pd.hdr.udp.uh_sport; 7695 pd.dport = &pd.hdr.udp.uh_dport; 7696 if (pd.hdr.udp.uh_dport == 0 || 7697 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7698 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7699 action = PF_DROP; 7700 REASON_SET(&reason, PFRES_SHORT); 7701 goto done; 7702 } 7703 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7704 if (action == PF_PASS) { 7705 if (V_pfsync_update_state_ptr != NULL) 7706 V_pfsync_update_state_ptr(s); 7707 r = s->rule.ptr; 7708 a = s->anchor.ptr; 7709 log = s->log; 7710 } else if (s == NULL) 7711 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7712 &a, &ruleset, inp); 7713 break; 7714 } 7715 7716 case IPPROTO_ICMP: { 7717 action = PF_DROP; 7718 DPFPRINTF(PF_DEBUG_MISC, 7719 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7720 goto done; 7721 } 7722 7723 case IPPROTO_ICMPV6: { 7724 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7725 &action, &reason, AF_INET6)) { 7726 log = action != PF_PASS; 7727 goto done; 7728 } 7729 action = pf_test_state_icmp(&s, dir, kif, 7730 m, off, h, &pd, &reason); 7731 if (action == PF_PASS) { 7732 if (V_pfsync_update_state_ptr != NULL) 7733 V_pfsync_update_state_ptr(s); 7734 r = s->rule.ptr; 7735 a = s->anchor.ptr; 7736 log = s->log; 7737 } else if (s == NULL) 7738 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7739 &a, &ruleset, inp); 7740 break; 7741 } 7742 7743 default: 7744 action = pf_test_state_other(&s, dir, kif, m, &pd); 7745 if (action == PF_PASS) { 7746 if (V_pfsync_update_state_ptr != NULL) 7747 V_pfsync_update_state_ptr(s); 7748 r = s->rule.ptr; 7749 a = s->anchor.ptr; 7750 log = s->log; 7751 } else if (s == NULL) 7752 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7753 &a, &ruleset, inp); 7754 break; 7755 } 7756 7757 done: 7758 PF_RULES_RUNLOCK(); 7759 if (n != m) { 7760 m_freem(n); 7761 n = NULL; 7762 } 7763 7764 /* handle dangerous IPv6 extension headers. */ 7765 if (action == PF_PASS && rh_cnt && 7766 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7767 action = PF_DROP; 7768 REASON_SET(&reason, PFRES_IPOPTIONS); 7769 log = r->log; 7770 DPFPRINTF(PF_DEBUG_MISC, 7771 ("pf: dropping packet with dangerous v6 headers\n")); 7772 } 7773 7774 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7775 action = PF_DROP; 7776 REASON_SET(&reason, PFRES_MEMORY); 7777 } 7778 if (r->rtableid >= 0) 7779 M_SETFIB(m, r->rtableid); 7780 7781 if (r->scrub_flags & PFSTATE_SETPRIO) { 7782 if (pd.tos & IPTOS_LOWDELAY) 7783 pqid = 1; 7784 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7785 action = PF_DROP; 7786 REASON_SET(&reason, PFRES_MEMORY); 7787 log = 1; 7788 DPFPRINTF(PF_DEBUG_MISC, 7789 ("pf: failed to allocate 802.1q mtag\n")); 7790 } 7791 } 7792 7793 #ifdef ALTQ 7794 if (s && s->qid) { 7795 pd.act.pqid = s->pqid; 7796 pd.act.qid = s->qid; 7797 } else if (r->qid) { 7798 pd.act.pqid = r->pqid; 7799 pd.act.qid = r->qid; 7800 } 7801 if (action == PF_PASS && pd.act.qid) { 7802 if (pd.pf_mtag == NULL && 7803 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7804 action = PF_DROP; 7805 REASON_SET(&reason, PFRES_MEMORY); 7806 } else { 7807 if (s != NULL) 7808 pd.pf_mtag->qid_hash = pf_state_hash(s); 7809 if (pd.tos & IPTOS_LOWDELAY) 7810 pd.pf_mtag->qid = pd.act.pqid; 7811 else 7812 pd.pf_mtag->qid = pd.act.qid; 7813 /* Add hints for ecn. */ 7814 pd.pf_mtag->hdr = h; 7815 } 7816 } 7817 #endif /* ALTQ */ 7818 7819 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7820 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7821 (s->nat_rule.ptr->action == PF_RDR || 7822 s->nat_rule.ptr->action == PF_BINAT) && 7823 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7824 m->m_flags |= M_SKIP_FIREWALL; 7825 7826 /* XXX: Anybody working on it?! */ 7827 if (r->divert.port) 7828 printf("pf: divert(9) is not supported for IPv6\n"); 7829 7830 if (log) { 7831 struct pf_krule *lr; 7832 7833 if (s != NULL && s->nat_rule.ptr != NULL && 7834 s->nat_rule.ptr->log & PF_LOG_ALL) 7835 lr = s->nat_rule.ptr; 7836 else 7837 lr = r; 7838 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 7839 &pd, (s == NULL)); 7840 } 7841 7842 pf_counter_u64_critical_enter(); 7843 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 7844 pd.tot_len); 7845 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 7846 1); 7847 7848 if (action == PF_PASS || r->action == PF_DROP) { 7849 dirndx = (dir == PF_OUT); 7850 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7851 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7852 if (a != NULL) { 7853 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7854 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7855 } 7856 if (s != NULL) { 7857 if (s->nat_rule.ptr != NULL) { 7858 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7859 1); 7860 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7861 pd.tot_len); 7862 } 7863 if (s->src_node != NULL) { 7864 counter_u64_add(s->src_node->packets[dirndx], 7865 1); 7866 counter_u64_add(s->src_node->bytes[dirndx], 7867 pd.tot_len); 7868 } 7869 if (s->nat_src_node != NULL) { 7870 counter_u64_add(s->nat_src_node->packets[dirndx], 7871 1); 7872 counter_u64_add(s->nat_src_node->bytes[dirndx], 7873 pd.tot_len); 7874 } 7875 dirndx = (dir == s->direction) ? 0 : 1; 7876 s->packets[dirndx]++; 7877 s->bytes[dirndx] += pd.tot_len; 7878 } 7879 tr = r; 7880 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7881 if (nr != NULL && r == &V_pf_default_rule) 7882 tr = nr; 7883 if (tr->src.addr.type == PF_ADDR_TABLE) 7884 pfr_update_stats(tr->src.addr.p.tbl, 7885 (s == NULL) ? pd.src : 7886 &s->key[(s->direction == PF_IN)]->addr[0], 7887 pd.af, pd.tot_len, dir == PF_OUT, 7888 r->action == PF_PASS, tr->src.neg); 7889 if (tr->dst.addr.type == PF_ADDR_TABLE) 7890 pfr_update_stats(tr->dst.addr.p.tbl, 7891 (s == NULL) ? pd.dst : 7892 &s->key[(s->direction == PF_IN)]->addr[1], 7893 pd.af, pd.tot_len, dir == PF_OUT, 7894 r->action == PF_PASS, tr->dst.neg); 7895 } 7896 pf_counter_u64_critical_exit(); 7897 7898 switch (action) { 7899 case PF_SYNPROXY_DROP: 7900 m_freem(*m0); 7901 case PF_DEFER: 7902 *m0 = NULL; 7903 action = PF_PASS; 7904 break; 7905 case PF_DROP: 7906 m_freem(*m0); 7907 *m0 = NULL; 7908 break; 7909 default: 7910 /* pf_route6() returns unlocked. */ 7911 if (r->rt) { 7912 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7913 return (action); 7914 } 7915 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 7916 action = PF_DROP; 7917 REASON_SET(&reason, PFRES_MEMORY); 7918 } 7919 break; 7920 } 7921 7922 if (s) 7923 PF_STATE_UNLOCK(s); 7924 7925 /* If reassembled packet passed, create new fragments. */ 7926 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 7927 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7928 action = pf_refragment6(ifp, m0, mtag); 7929 7930 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7931 7932 return (action); 7933 } 7934 #endif /* INET6 */ 7935