1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 #include <net/route.h> 68 #include <net/radix_mpath.h> 69 #include <net/vnet.h> 70 71 #include <net/pfvar.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/ip.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/icmp_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 92 93 #ifdef INET6 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_fib.h> 100 #include <netinet6/scope6_var.h> 101 #endif /* INET6 */ 102 103 #include <machine/in_cksum.h> 104 #include <security/mac/mac_framework.h> 105 106 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 107 108 /* 109 * Global variables 110 */ 111 112 /* state tables */ 113 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 114 VNET_DEFINE(struct pf_palist, pf_pabuf); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 117 VNET_DEFINE(struct pf_kstatus, pf_status); 118 119 VNET_DEFINE(u_int32_t, ticket_altqs_active); 120 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 121 VNET_DEFINE(int, altqs_inactive_open); 122 VNET_DEFINE(u_int32_t, ticket_pabuf); 123 124 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 125 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 126 VNET_DEFINE(u_char, pf_tcp_secret[16]); 127 #define V_pf_tcp_secret VNET(pf_tcp_secret) 128 VNET_DEFINE(int, pf_tcp_secret_init); 129 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 130 VNET_DEFINE(int, pf_tcp_iss_off); 131 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 132 VNET_DECLARE(int, pf_vnet_active); 133 #define V_pf_vnet_active VNET(pf_vnet_active) 134 135 /* 136 * Queue for pf_intr() sends. 137 */ 138 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 139 struct pf_send_entry { 140 STAILQ_ENTRY(pf_send_entry) pfse_next; 141 struct mbuf *pfse_m; 142 enum { 143 PFSE_IP, 144 PFSE_IP6, 145 PFSE_ICMP, 146 PFSE_ICMP6, 147 } pfse_type; 148 struct { 149 int type; 150 int code; 151 int mtu; 152 } icmpopts; 153 }; 154 155 STAILQ_HEAD(pf_send_head, pf_send_entry); 156 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 157 #define V_pf_sendqueue VNET(pf_sendqueue) 158 159 static struct mtx pf_sendqueue_mtx; 160 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 183 "pf overload/flush queue", MTX_DEF); 184 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 185 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 186 187 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 188 struct mtx pf_unlnkdrules_mtx; 189 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 190 MTX_DEF); 191 192 static VNET_DEFINE(uma_zone_t, pf_sources_z); 193 #define V_pf_sources_z VNET(pf_sources_z) 194 uma_zone_t pf_mtag_z; 195 VNET_DEFINE(uma_zone_t, pf_state_z); 196 VNET_DEFINE(uma_zone_t, pf_state_key_z); 197 198 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 199 #define PFID_CPUBITS 8 200 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 201 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 202 #define PFID_MAXID (~PFID_CPUMASK) 203 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 204 205 static void pf_src_tree_remove_state(struct pf_state *); 206 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 207 u_int32_t); 208 static void pf_add_threshold(struct pf_threshold *); 209 static int pf_check_threshold(struct pf_threshold *); 210 211 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 212 u_int16_t *, u_int16_t *, struct pf_addr *, 213 u_int16_t, u_int8_t, sa_family_t); 214 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 215 struct tcphdr *, struct pf_state_peer *); 216 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 217 struct pf_addr *, struct pf_addr *, u_int16_t, 218 u_int16_t *, u_int16_t *, u_int16_t *, 219 u_int16_t *, u_int8_t, sa_family_t); 220 static void pf_send_tcp(struct mbuf *, 221 const struct pf_rule *, sa_family_t, 222 const struct pf_addr *, const struct pf_addr *, 223 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 224 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 225 u_int16_t, struct ifnet *); 226 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 227 sa_family_t, struct pf_rule *); 228 static void pf_detach_state(struct pf_state *); 229 static int pf_state_key_attach(struct pf_state_key *, 230 struct pf_state_key *, struct pf_state *); 231 static void pf_state_key_detach(struct pf_state *, int); 232 static int pf_state_key_ctor(void *, int, void *, int); 233 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 234 static int pf_test_rule(struct pf_rule **, struct pf_state **, 235 int, struct pfi_kif *, struct mbuf *, int, 236 struct pf_pdesc *, struct pf_rule **, 237 struct pf_ruleset **, struct inpcb *); 238 static int pf_create_state(struct pf_rule *, struct pf_rule *, 239 struct pf_rule *, struct pf_pdesc *, 240 struct pf_src_node *, struct pf_state_key *, 241 struct pf_state_key *, struct mbuf *, int, 242 u_int16_t, u_int16_t, int *, struct pfi_kif *, 243 struct pf_state **, int, u_int16_t, u_int16_t, 244 int); 245 static int pf_test_fragment(struct pf_rule **, int, 246 struct pfi_kif *, struct mbuf *, void *, 247 struct pf_pdesc *, struct pf_rule **, 248 struct pf_ruleset **); 249 static int pf_tcp_track_full(struct pf_state_peer *, 250 struct pf_state_peer *, struct pf_state **, 251 struct pfi_kif *, struct mbuf *, int, 252 struct pf_pdesc *, u_short *, int *); 253 static int pf_tcp_track_sloppy(struct pf_state_peer *, 254 struct pf_state_peer *, struct pf_state **, 255 struct pf_pdesc *, u_short *); 256 static int pf_test_state_tcp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *, u_short *); 259 static int pf_test_state_udp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *); 262 static int pf_test_state_icmp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_other(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 267 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 270 sa_family_t); 271 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 272 int, u_int16_t); 273 static int pf_check_proto_cksum(struct mbuf *, int, int, 274 u_int8_t, sa_family_t); 275 static void pf_print_state_parts(struct pf_state *, 276 struct pf_state_key *, struct pf_state_key *); 277 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 278 struct pf_addr_wrap *); 279 static struct pf_state *pf_find_state(struct pfi_kif *, 280 struct pf_state_key_cmp *, u_int); 281 static int pf_src_connlimit(struct pf_state **); 282 static void pf_overload_task(void *v, int pending); 283 static int pf_insert_src_node(struct pf_src_node **, 284 struct pf_rule *, struct pf_addr *, sa_family_t); 285 static u_int pf_purge_expired_states(u_int, int); 286 static void pf_purge_unlinked_rules(void); 287 static int pf_mtag_uminit(void *, int, int); 288 static void pf_mtag_free(struct m_tag *); 289 #ifdef INET 290 static void pf_route(struct mbuf **, struct pf_rule *, int, 291 struct ifnet *, struct pf_state *, 292 struct pf_pdesc *); 293 #endif /* INET */ 294 #ifdef INET6 295 static void pf_change_a6(struct pf_addr *, u_int16_t *, 296 struct pf_addr *, u_int8_t); 297 static void pf_route6(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *); 300 #endif /* INET6 */ 301 302 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 303 304 extern int pf_end_threads; 305 306 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 307 308 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 309 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 310 311 #define STATE_LOOKUP(i, k, d, s, pd) \ 312 do { \ 313 (s) = pf_find_state((i), (k), (d)); \ 314 if ((s) == NULL) \ 315 return (PF_DROP); \ 316 if (PACKET_LOOPED(pd)) \ 317 return (PF_PASS); \ 318 if ((d) == PF_OUT && \ 319 (((s)->rule.ptr->rt == PF_ROUTETO && \ 320 (s)->rule.ptr->direction == PF_OUT) || \ 321 ((s)->rule.ptr->rt == PF_REPLYTO && \ 322 (s)->rule.ptr->direction == PF_IN)) && \ 323 (s)->rt_kif != NULL && \ 324 (s)->rt_kif != (i)) \ 325 return (PF_PASS); \ 326 } while (0) 327 328 #define BOUND_IFACE(r, k) \ 329 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 330 331 #define STATE_INC_COUNTERS(s) \ 332 do { \ 333 counter_u64_add(s->rule.ptr->states_cur, 1); \ 334 counter_u64_add(s->rule.ptr->states_tot, 1); \ 335 if (s->anchor.ptr != NULL) { \ 336 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 337 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 338 } \ 339 if (s->nat_rule.ptr != NULL) { \ 340 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 341 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 342 } \ 343 } while (0) 344 345 #define STATE_DEC_COUNTERS(s) \ 346 do { \ 347 if (s->nat_rule.ptr != NULL) \ 348 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 349 if (s->anchor.ptr != NULL) \ 350 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 351 counter_u64_add(s->rule.ptr->states_cur, -1); \ 352 } while (0) 353 354 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 355 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 356 VNET_DEFINE(struct pf_idhash *, pf_idhash); 357 VNET_DEFINE(struct pf_srchash *, pf_srchash); 358 359 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 360 361 u_long pf_hashmask; 362 u_long pf_srchashmask; 363 static u_long pf_hashsize; 364 static u_long pf_srchashsize; 365 366 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 367 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 368 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 369 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 370 371 VNET_DEFINE(void *, pf_swi_cookie); 372 373 VNET_DEFINE(uint32_t, pf_hashseed); 374 #define V_pf_hashseed VNET(pf_hashseed) 375 376 int 377 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 378 { 379 380 switch (af) { 381 #ifdef INET 382 case AF_INET: 383 if (a->addr32[0] > b->addr32[0]) 384 return (1); 385 if (a->addr32[0] < b->addr32[0]) 386 return (-1); 387 break; 388 #endif /* INET */ 389 #ifdef INET6 390 case AF_INET6: 391 if (a->addr32[3] > b->addr32[3]) 392 return (1); 393 if (a->addr32[3] < b->addr32[3]) 394 return (-1); 395 if (a->addr32[2] > b->addr32[2]) 396 return (1); 397 if (a->addr32[2] < b->addr32[2]) 398 return (-1); 399 if (a->addr32[1] > b->addr32[1]) 400 return (1); 401 if (a->addr32[1] < b->addr32[1]) 402 return (-1); 403 if (a->addr32[0] > b->addr32[0]) 404 return (1); 405 if (a->addr32[0] < b->addr32[0]) 406 return (-1); 407 break; 408 #endif /* INET6 */ 409 default: 410 panic("%s: unknown address family %u", __func__, af); 411 } 412 return (0); 413 } 414 415 static __inline uint32_t 416 pf_hashkey(struct pf_state_key *sk) 417 { 418 uint32_t h; 419 420 h = murmur3_32_hash32((uint32_t *)sk, 421 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 422 V_pf_hashseed); 423 424 return (h & pf_hashmask); 425 } 426 427 static __inline uint32_t 428 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 429 { 430 uint32_t h; 431 432 switch (af) { 433 case AF_INET: 434 h = murmur3_32_hash32((uint32_t *)&addr->v4, 435 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 436 break; 437 case AF_INET6: 438 h = murmur3_32_hash32((uint32_t *)&addr->v6, 439 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 440 break; 441 default: 442 panic("%s: unknown address family %u", __func__, af); 443 } 444 445 return (h & pf_srchashmask); 446 } 447 448 #ifdef ALTQ 449 static int 450 pf_state_hash(struct pf_state *s) 451 { 452 u_int32_t hv = (intptr_t)s / sizeof(*s); 453 454 hv ^= crc32(&s->src, sizeof(s->src)); 455 hv ^= crc32(&s->dst, sizeof(s->dst)); 456 if (hv == 0) 457 hv = 1; 458 return (hv); 459 } 460 #endif 461 462 #ifdef INET6 463 void 464 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 465 { 466 switch (af) { 467 #ifdef INET 468 case AF_INET: 469 dst->addr32[0] = src->addr32[0]; 470 break; 471 #endif /* INET */ 472 case AF_INET6: 473 dst->addr32[0] = src->addr32[0]; 474 dst->addr32[1] = src->addr32[1]; 475 dst->addr32[2] = src->addr32[2]; 476 dst->addr32[3] = src->addr32[3]; 477 break; 478 } 479 } 480 #endif /* INET6 */ 481 482 static void 483 pf_init_threshold(struct pf_threshold *threshold, 484 u_int32_t limit, u_int32_t seconds) 485 { 486 threshold->limit = limit * PF_THRESHOLD_MULT; 487 threshold->seconds = seconds; 488 threshold->count = 0; 489 threshold->last = time_uptime; 490 } 491 492 static void 493 pf_add_threshold(struct pf_threshold *threshold) 494 { 495 u_int32_t t = time_uptime, diff = t - threshold->last; 496 497 if (diff >= threshold->seconds) 498 threshold->count = 0; 499 else 500 threshold->count -= threshold->count * diff / 501 threshold->seconds; 502 threshold->count += PF_THRESHOLD_MULT; 503 threshold->last = t; 504 } 505 506 static int 507 pf_check_threshold(struct pf_threshold *threshold) 508 { 509 return (threshold->count > threshold->limit); 510 } 511 512 static int 513 pf_src_connlimit(struct pf_state **state) 514 { 515 struct pf_overload_entry *pfoe; 516 int bad = 0; 517 518 PF_STATE_LOCK_ASSERT(*state); 519 520 (*state)->src_node->conn++; 521 (*state)->src.tcp_est = 1; 522 pf_add_threshold(&(*state)->src_node->conn_rate); 523 524 if ((*state)->rule.ptr->max_src_conn && 525 (*state)->rule.ptr->max_src_conn < 526 (*state)->src_node->conn) { 527 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 528 bad++; 529 } 530 531 if ((*state)->rule.ptr->max_src_conn_rate.limit && 532 pf_check_threshold(&(*state)->src_node->conn_rate)) { 533 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 534 bad++; 535 } 536 537 if (!bad) 538 return (0); 539 540 /* Kill this state. */ 541 (*state)->timeout = PFTM_PURGE; 542 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 543 544 if ((*state)->rule.ptr->overload_tbl == NULL) 545 return (1); 546 547 /* Schedule overloading and flushing task. */ 548 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 549 if (pfoe == NULL) 550 return (1); /* too bad :( */ 551 552 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 553 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 554 pfoe->rule = (*state)->rule.ptr; 555 pfoe->dir = (*state)->direction; 556 PF_OVERLOADQ_LOCK(); 557 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 558 PF_OVERLOADQ_UNLOCK(); 559 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 560 561 return (1); 562 } 563 564 static void 565 pf_overload_task(void *v, int pending) 566 { 567 struct pf_overload_head queue; 568 struct pfr_addr p; 569 struct pf_overload_entry *pfoe, *pfoe1; 570 uint32_t killed = 0; 571 572 CURVNET_SET((struct vnet *)v); 573 574 PF_OVERLOADQ_LOCK(); 575 queue = V_pf_overloadqueue; 576 SLIST_INIT(&V_pf_overloadqueue); 577 PF_OVERLOADQ_UNLOCK(); 578 579 bzero(&p, sizeof(p)); 580 SLIST_FOREACH(pfoe, &queue, next) { 581 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 582 if (V_pf_status.debug >= PF_DEBUG_MISC) { 583 printf("%s: blocking address ", __func__); 584 pf_print_host(&pfoe->addr, 0, pfoe->af); 585 printf("\n"); 586 } 587 588 p.pfra_af = pfoe->af; 589 switch (pfoe->af) { 590 #ifdef INET 591 case AF_INET: 592 p.pfra_net = 32; 593 p.pfra_ip4addr = pfoe->addr.v4; 594 break; 595 #endif 596 #ifdef INET6 597 case AF_INET6: 598 p.pfra_net = 128; 599 p.pfra_ip6addr = pfoe->addr.v6; 600 break; 601 #endif 602 } 603 604 PF_RULES_WLOCK(); 605 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 606 PF_RULES_WUNLOCK(); 607 } 608 609 /* 610 * Remove those entries, that don't need flushing. 611 */ 612 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 613 if (pfoe->rule->flush == 0) { 614 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 615 free(pfoe, M_PFTEMP); 616 } else 617 counter_u64_add( 618 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 619 620 /* If nothing to flush, return. */ 621 if (SLIST_EMPTY(&queue)) { 622 CURVNET_RESTORE(); 623 return; 624 } 625 626 for (int i = 0; i <= pf_hashmask; i++) { 627 struct pf_idhash *ih = &V_pf_idhash[i]; 628 struct pf_state_key *sk; 629 struct pf_state *s; 630 631 PF_HASHROW_LOCK(ih); 632 LIST_FOREACH(s, &ih->states, entry) { 633 sk = s->key[PF_SK_WIRE]; 634 SLIST_FOREACH(pfoe, &queue, next) 635 if (sk->af == pfoe->af && 636 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 637 pfoe->rule == s->rule.ptr) && 638 ((pfoe->dir == PF_OUT && 639 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 640 (pfoe->dir == PF_IN && 641 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 642 s->timeout = PFTM_PURGE; 643 s->src.state = s->dst.state = TCPS_CLOSED; 644 killed++; 645 } 646 } 647 PF_HASHROW_UNLOCK(ih); 648 } 649 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 650 free(pfoe, M_PFTEMP); 651 if (V_pf_status.debug >= PF_DEBUG_MISC) 652 printf("%s: %u states killed", __func__, killed); 653 654 CURVNET_RESTORE(); 655 } 656 657 /* 658 * Can return locked on failure, so that we can consistently 659 * allocate and insert a new one. 660 */ 661 struct pf_src_node * 662 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 663 int returnlocked) 664 { 665 struct pf_srchash *sh; 666 struct pf_src_node *n; 667 668 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 669 670 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 671 PF_HASHROW_LOCK(sh); 672 LIST_FOREACH(n, &sh->nodes, entry) 673 if (n->rule.ptr == rule && n->af == af && 674 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 675 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 676 break; 677 if (n != NULL) { 678 n->states++; 679 PF_HASHROW_UNLOCK(sh); 680 } else if (returnlocked == 0) 681 PF_HASHROW_UNLOCK(sh); 682 683 return (n); 684 } 685 686 static int 687 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 688 struct pf_addr *src, sa_family_t af) 689 { 690 691 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 692 rule->rpool.opts & PF_POOL_STICKYADDR), 693 ("%s for non-tracking rule %p", __func__, rule)); 694 695 if (*sn == NULL) 696 *sn = pf_find_src_node(src, rule, af, 1); 697 698 if (*sn == NULL) { 699 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 700 701 PF_HASHROW_ASSERT(sh); 702 703 if (!rule->max_src_nodes || 704 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 705 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 706 else 707 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 708 1); 709 if ((*sn) == NULL) { 710 PF_HASHROW_UNLOCK(sh); 711 return (-1); 712 } 713 714 pf_init_threshold(&(*sn)->conn_rate, 715 rule->max_src_conn_rate.limit, 716 rule->max_src_conn_rate.seconds); 717 718 (*sn)->af = af; 719 (*sn)->rule.ptr = rule; 720 PF_ACPY(&(*sn)->addr, src, af); 721 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 722 (*sn)->creation = time_uptime; 723 (*sn)->ruletype = rule->action; 724 (*sn)->states = 1; 725 if ((*sn)->rule.ptr != NULL) 726 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 727 PF_HASHROW_UNLOCK(sh); 728 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 729 } else { 730 if (rule->max_src_states && 731 (*sn)->states >= rule->max_src_states) { 732 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 733 1); 734 return (-1); 735 } 736 } 737 return (0); 738 } 739 740 void 741 pf_unlink_src_node(struct pf_src_node *src) 742 { 743 744 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 745 LIST_REMOVE(src, entry); 746 if (src->rule.ptr) 747 counter_u64_add(src->rule.ptr->src_nodes, -1); 748 } 749 750 u_int 751 pf_free_src_nodes(struct pf_src_node_list *head) 752 { 753 struct pf_src_node *sn, *tmp; 754 u_int count = 0; 755 756 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 757 uma_zfree(V_pf_sources_z, sn); 758 count++; 759 } 760 761 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 762 763 return (count); 764 } 765 766 void 767 pf_mtag_initialize() 768 { 769 770 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 771 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 772 UMA_ALIGN_PTR, 0); 773 } 774 775 /* Per-vnet data storage structures initialization. */ 776 void 777 pf_initialize() 778 { 779 struct pf_keyhash *kh; 780 struct pf_idhash *ih; 781 struct pf_srchash *sh; 782 u_int i; 783 784 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 785 pf_hashsize = PF_HASHSIZ; 786 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 787 pf_srchashsize = PF_HASHSIZ / 4; 788 789 V_pf_hashseed = arc4random(); 790 791 /* States and state keys storage. */ 792 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 793 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 794 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 795 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 796 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 797 798 V_pf_state_key_z = uma_zcreate("pf state keys", 799 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 800 UMA_ALIGN_PTR, 0); 801 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 802 M_PFHASH, M_WAITOK | M_ZERO); 803 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 804 M_PFHASH, M_WAITOK | M_ZERO); 805 pf_hashmask = pf_hashsize - 1; 806 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 807 i++, kh++, ih++) { 808 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 809 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 810 } 811 812 /* Source nodes. */ 813 V_pf_sources_z = uma_zcreate("pf source nodes", 814 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 815 0); 816 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 817 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 818 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 819 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 820 M_PFHASH, M_WAITOK|M_ZERO); 821 pf_srchashmask = pf_srchashsize - 1; 822 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 823 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 824 825 /* ALTQ */ 826 TAILQ_INIT(&V_pf_altqs[0]); 827 TAILQ_INIT(&V_pf_altqs[1]); 828 TAILQ_INIT(&V_pf_pabuf); 829 V_pf_altqs_active = &V_pf_altqs[0]; 830 V_pf_altqs_inactive = &V_pf_altqs[1]; 831 832 /* Send & overload+flush queues. */ 833 STAILQ_INIT(&V_pf_sendqueue); 834 SLIST_INIT(&V_pf_overloadqueue); 835 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 836 837 /* Unlinked, but may be referenced rules. */ 838 TAILQ_INIT(&V_pf_unlinked_rules); 839 } 840 841 void 842 pf_mtag_cleanup() 843 { 844 845 uma_zdestroy(pf_mtag_z); 846 } 847 848 void 849 pf_cleanup() 850 { 851 struct pf_keyhash *kh; 852 struct pf_idhash *ih; 853 struct pf_srchash *sh; 854 struct pf_send_entry *pfse, *next; 855 u_int i; 856 857 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 858 i++, kh++, ih++) { 859 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 860 __func__)); 861 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 862 __func__)); 863 mtx_destroy(&kh->lock); 864 mtx_destroy(&ih->lock); 865 } 866 free(V_pf_keyhash, M_PFHASH); 867 free(V_pf_idhash, M_PFHASH); 868 869 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 870 KASSERT(LIST_EMPTY(&sh->nodes), 871 ("%s: source node hash not empty", __func__)); 872 mtx_destroy(&sh->lock); 873 } 874 free(V_pf_srchash, M_PFHASH); 875 876 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 877 m_freem(pfse->pfse_m); 878 free(pfse, M_PFTEMP); 879 } 880 881 uma_zdestroy(V_pf_sources_z); 882 uma_zdestroy(V_pf_state_z); 883 uma_zdestroy(V_pf_state_key_z); 884 } 885 886 static int 887 pf_mtag_uminit(void *mem, int size, int how) 888 { 889 struct m_tag *t; 890 891 t = (struct m_tag *)mem; 892 t->m_tag_cookie = MTAG_ABI_COMPAT; 893 t->m_tag_id = PACKET_TAG_PF; 894 t->m_tag_len = sizeof(struct pf_mtag); 895 t->m_tag_free = pf_mtag_free; 896 897 return (0); 898 } 899 900 static void 901 pf_mtag_free(struct m_tag *t) 902 { 903 904 uma_zfree(pf_mtag_z, t); 905 } 906 907 struct pf_mtag * 908 pf_get_mtag(struct mbuf *m) 909 { 910 struct m_tag *mtag; 911 912 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 913 return ((struct pf_mtag *)(mtag + 1)); 914 915 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 916 if (mtag == NULL) 917 return (NULL); 918 bzero(mtag + 1, sizeof(struct pf_mtag)); 919 m_tag_prepend(m, mtag); 920 921 return ((struct pf_mtag *)(mtag + 1)); 922 } 923 924 static int 925 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 926 struct pf_state *s) 927 { 928 struct pf_keyhash *khs, *khw, *kh; 929 struct pf_state_key *sk, *cur; 930 struct pf_state *si, *olds = NULL; 931 int idx; 932 933 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 934 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 935 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 936 937 /* 938 * We need to lock hash slots of both keys. To avoid deadlock 939 * we always lock the slot with lower address first. Unlock order 940 * isn't important. 941 * 942 * We also need to lock ID hash slot before dropping key 943 * locks. On success we return with ID hash slot locked. 944 */ 945 946 if (skw == sks) { 947 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 948 PF_HASHROW_LOCK(khs); 949 } else { 950 khs = &V_pf_keyhash[pf_hashkey(sks)]; 951 khw = &V_pf_keyhash[pf_hashkey(skw)]; 952 if (khs == khw) { 953 PF_HASHROW_LOCK(khs); 954 } else if (khs < khw) { 955 PF_HASHROW_LOCK(khs); 956 PF_HASHROW_LOCK(khw); 957 } else { 958 PF_HASHROW_LOCK(khw); 959 PF_HASHROW_LOCK(khs); 960 } 961 } 962 963 #define KEYS_UNLOCK() do { \ 964 if (khs != khw) { \ 965 PF_HASHROW_UNLOCK(khs); \ 966 PF_HASHROW_UNLOCK(khw); \ 967 } else \ 968 PF_HASHROW_UNLOCK(khs); \ 969 } while (0) 970 971 /* 972 * First run: start with wire key. 973 */ 974 sk = skw; 975 kh = khw; 976 idx = PF_SK_WIRE; 977 978 keyattach: 979 LIST_FOREACH(cur, &kh->keys, entry) 980 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 981 break; 982 983 if (cur != NULL) { 984 /* Key exists. Check for same kif, if none, add to key. */ 985 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 986 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 987 988 PF_HASHROW_LOCK(ih); 989 if (si->kif == s->kif && 990 si->direction == s->direction) { 991 if (sk->proto == IPPROTO_TCP && 992 si->src.state >= TCPS_FIN_WAIT_2 && 993 si->dst.state >= TCPS_FIN_WAIT_2) { 994 /* 995 * New state matches an old >FIN_WAIT_2 996 * state. We can't drop key hash locks, 997 * thus we can't unlink it properly. 998 * 999 * As a workaround we drop it into 1000 * TCPS_CLOSED state, schedule purge 1001 * ASAP and push it into the very end 1002 * of the slot TAILQ, so that it won't 1003 * conflict with our new state. 1004 */ 1005 si->src.state = si->dst.state = 1006 TCPS_CLOSED; 1007 si->timeout = PFTM_PURGE; 1008 olds = si; 1009 } else { 1010 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1011 printf("pf: %s key attach " 1012 "failed on %s: ", 1013 (idx == PF_SK_WIRE) ? 1014 "wire" : "stack", 1015 s->kif->pfik_name); 1016 pf_print_state_parts(s, 1017 (idx == PF_SK_WIRE) ? 1018 sk : NULL, 1019 (idx == PF_SK_STACK) ? 1020 sk : NULL); 1021 printf(", existing: "); 1022 pf_print_state_parts(si, 1023 (idx == PF_SK_WIRE) ? 1024 sk : NULL, 1025 (idx == PF_SK_STACK) ? 1026 sk : NULL); 1027 printf("\n"); 1028 } 1029 PF_HASHROW_UNLOCK(ih); 1030 KEYS_UNLOCK(); 1031 uma_zfree(V_pf_state_key_z, sk); 1032 if (idx == PF_SK_STACK) 1033 pf_detach_state(s); 1034 return (EEXIST); /* collision! */ 1035 } 1036 } 1037 PF_HASHROW_UNLOCK(ih); 1038 } 1039 uma_zfree(V_pf_state_key_z, sk); 1040 s->key[idx] = cur; 1041 } else { 1042 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1043 s->key[idx] = sk; 1044 } 1045 1046 stateattach: 1047 /* List is sorted, if-bound states before floating. */ 1048 if (s->kif == V_pfi_all) 1049 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1050 else 1051 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1052 1053 if (olds) { 1054 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1055 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1056 key_list[idx]); 1057 olds = NULL; 1058 } 1059 1060 /* 1061 * Attach done. See how should we (or should not?) 1062 * attach a second key. 1063 */ 1064 if (sks == skw) { 1065 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1066 idx = PF_SK_STACK; 1067 sks = NULL; 1068 goto stateattach; 1069 } else if (sks != NULL) { 1070 /* 1071 * Continue attaching with stack key. 1072 */ 1073 sk = sks; 1074 kh = khs; 1075 idx = PF_SK_STACK; 1076 sks = NULL; 1077 goto keyattach; 1078 } 1079 1080 PF_STATE_LOCK(s); 1081 KEYS_UNLOCK(); 1082 1083 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1084 ("%s failure", __func__)); 1085 1086 return (0); 1087 #undef KEYS_UNLOCK 1088 } 1089 1090 static void 1091 pf_detach_state(struct pf_state *s) 1092 { 1093 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1094 struct pf_keyhash *kh; 1095 1096 if (sks != NULL) { 1097 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1098 PF_HASHROW_LOCK(kh); 1099 if (s->key[PF_SK_STACK] != NULL) 1100 pf_state_key_detach(s, PF_SK_STACK); 1101 /* 1102 * If both point to same key, then we are done. 1103 */ 1104 if (sks == s->key[PF_SK_WIRE]) { 1105 pf_state_key_detach(s, PF_SK_WIRE); 1106 PF_HASHROW_UNLOCK(kh); 1107 return; 1108 } 1109 PF_HASHROW_UNLOCK(kh); 1110 } 1111 1112 if (s->key[PF_SK_WIRE] != NULL) { 1113 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1114 PF_HASHROW_LOCK(kh); 1115 if (s->key[PF_SK_WIRE] != NULL) 1116 pf_state_key_detach(s, PF_SK_WIRE); 1117 PF_HASHROW_UNLOCK(kh); 1118 } 1119 } 1120 1121 static void 1122 pf_state_key_detach(struct pf_state *s, int idx) 1123 { 1124 struct pf_state_key *sk = s->key[idx]; 1125 #ifdef INVARIANTS 1126 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1127 1128 PF_HASHROW_ASSERT(kh); 1129 #endif 1130 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1131 s->key[idx] = NULL; 1132 1133 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1134 LIST_REMOVE(sk, entry); 1135 uma_zfree(V_pf_state_key_z, sk); 1136 } 1137 } 1138 1139 static int 1140 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1141 { 1142 struct pf_state_key *sk = mem; 1143 1144 bzero(sk, sizeof(struct pf_state_key_cmp)); 1145 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1146 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1147 1148 return (0); 1149 } 1150 1151 struct pf_state_key * 1152 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1153 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1154 { 1155 struct pf_state_key *sk; 1156 1157 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1158 if (sk == NULL) 1159 return (NULL); 1160 1161 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1162 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1163 sk->port[pd->sidx] = sport; 1164 sk->port[pd->didx] = dport; 1165 sk->proto = pd->proto; 1166 sk->af = pd->af; 1167 1168 return (sk); 1169 } 1170 1171 struct pf_state_key * 1172 pf_state_key_clone(struct pf_state_key *orig) 1173 { 1174 struct pf_state_key *sk; 1175 1176 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1177 if (sk == NULL) 1178 return (NULL); 1179 1180 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1181 1182 return (sk); 1183 } 1184 1185 int 1186 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1187 struct pf_state_key *sks, struct pf_state *s) 1188 { 1189 struct pf_idhash *ih; 1190 struct pf_state *cur; 1191 int error; 1192 1193 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1194 ("%s: sks not pristine", __func__)); 1195 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1196 ("%s: skw not pristine", __func__)); 1197 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1198 1199 s->kif = kif; 1200 1201 if (s->id == 0 && s->creatorid == 0) { 1202 /* XXX: should be atomic, but probability of collision low */ 1203 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1204 V_pf_stateid[curcpu] = 1; 1205 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1206 s->id = htobe64(s->id); 1207 s->creatorid = V_pf_status.hostid; 1208 } 1209 1210 /* Returns with ID locked on success. */ 1211 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1212 return (error); 1213 1214 ih = &V_pf_idhash[PF_IDHASH(s)]; 1215 PF_HASHROW_ASSERT(ih); 1216 LIST_FOREACH(cur, &ih->states, entry) 1217 if (cur->id == s->id && cur->creatorid == s->creatorid) 1218 break; 1219 1220 if (cur != NULL) { 1221 PF_HASHROW_UNLOCK(ih); 1222 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1223 printf("pf: state ID collision: " 1224 "id: %016llx creatorid: %08x\n", 1225 (unsigned long long)be64toh(s->id), 1226 ntohl(s->creatorid)); 1227 } 1228 pf_detach_state(s); 1229 return (EEXIST); 1230 } 1231 LIST_INSERT_HEAD(&ih->states, s, entry); 1232 /* One for keys, one for ID hash. */ 1233 refcount_init(&s->refs, 2); 1234 1235 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1236 if (pfsync_insert_state_ptr != NULL) 1237 pfsync_insert_state_ptr(s); 1238 1239 /* Returns locked. */ 1240 return (0); 1241 } 1242 1243 /* 1244 * Find state by ID: returns with locked row on success. 1245 */ 1246 struct pf_state * 1247 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1248 { 1249 struct pf_idhash *ih; 1250 struct pf_state *s; 1251 1252 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1253 1254 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1255 1256 PF_HASHROW_LOCK(ih); 1257 LIST_FOREACH(s, &ih->states, entry) 1258 if (s->id == id && s->creatorid == creatorid) 1259 break; 1260 1261 if (s == NULL) 1262 PF_HASHROW_UNLOCK(ih); 1263 1264 return (s); 1265 } 1266 1267 /* 1268 * Find state by key. 1269 * Returns with ID hash slot locked on success. 1270 */ 1271 static struct pf_state * 1272 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1273 { 1274 struct pf_keyhash *kh; 1275 struct pf_state_key *sk; 1276 struct pf_state *s; 1277 int idx; 1278 1279 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1280 1281 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1282 1283 PF_HASHROW_LOCK(kh); 1284 LIST_FOREACH(sk, &kh->keys, entry) 1285 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1286 break; 1287 if (sk == NULL) { 1288 PF_HASHROW_UNLOCK(kh); 1289 return (NULL); 1290 } 1291 1292 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1293 1294 /* List is sorted, if-bound states before floating ones. */ 1295 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1296 if (s->kif == V_pfi_all || s->kif == kif) { 1297 PF_STATE_LOCK(s); 1298 PF_HASHROW_UNLOCK(kh); 1299 if (s->timeout >= PFTM_MAX) { 1300 /* 1301 * State is either being processed by 1302 * pf_unlink_state() in an other thread, or 1303 * is scheduled for immediate expiry. 1304 */ 1305 PF_STATE_UNLOCK(s); 1306 return (NULL); 1307 } 1308 return (s); 1309 } 1310 PF_HASHROW_UNLOCK(kh); 1311 1312 return (NULL); 1313 } 1314 1315 struct pf_state * 1316 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1317 { 1318 struct pf_keyhash *kh; 1319 struct pf_state_key *sk; 1320 struct pf_state *s, *ret = NULL; 1321 int idx, inout = 0; 1322 1323 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1324 1325 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1326 1327 PF_HASHROW_LOCK(kh); 1328 LIST_FOREACH(sk, &kh->keys, entry) 1329 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1330 break; 1331 if (sk == NULL) { 1332 PF_HASHROW_UNLOCK(kh); 1333 return (NULL); 1334 } 1335 switch (dir) { 1336 case PF_IN: 1337 idx = PF_SK_WIRE; 1338 break; 1339 case PF_OUT: 1340 idx = PF_SK_STACK; 1341 break; 1342 case PF_INOUT: 1343 idx = PF_SK_WIRE; 1344 inout = 1; 1345 break; 1346 default: 1347 panic("%s: dir %u", __func__, dir); 1348 } 1349 second_run: 1350 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1351 if (more == NULL) { 1352 PF_HASHROW_UNLOCK(kh); 1353 return (s); 1354 } 1355 1356 if (ret) 1357 (*more)++; 1358 else 1359 ret = s; 1360 } 1361 if (inout == 1) { 1362 inout = 0; 1363 idx = PF_SK_STACK; 1364 goto second_run; 1365 } 1366 PF_HASHROW_UNLOCK(kh); 1367 1368 return (ret); 1369 } 1370 1371 /* END state table stuff */ 1372 1373 static void 1374 pf_send(struct pf_send_entry *pfse) 1375 { 1376 1377 PF_SENDQ_LOCK(); 1378 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1379 PF_SENDQ_UNLOCK(); 1380 swi_sched(V_pf_swi_cookie, 0); 1381 } 1382 1383 void 1384 pf_intr(void *v) 1385 { 1386 struct pf_send_head queue; 1387 struct pf_send_entry *pfse, *next; 1388 1389 CURVNET_SET((struct vnet *)v); 1390 1391 PF_SENDQ_LOCK(); 1392 queue = V_pf_sendqueue; 1393 STAILQ_INIT(&V_pf_sendqueue); 1394 PF_SENDQ_UNLOCK(); 1395 1396 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1397 switch (pfse->pfse_type) { 1398 #ifdef INET 1399 case PFSE_IP: 1400 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1401 break; 1402 case PFSE_ICMP: 1403 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1404 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1405 break; 1406 #endif /* INET */ 1407 #ifdef INET6 1408 case PFSE_IP6: 1409 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1410 NULL); 1411 break; 1412 case PFSE_ICMP6: 1413 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1414 pfse->icmpopts.code, pfse->icmpopts.mtu); 1415 break; 1416 #endif /* INET6 */ 1417 default: 1418 panic("%s: unknown type", __func__); 1419 } 1420 free(pfse, M_PFTEMP); 1421 } 1422 CURVNET_RESTORE(); 1423 } 1424 1425 void 1426 pf_purge_thread(void *unused __unused) 1427 { 1428 VNET_ITERATOR_DECL(vnet_iter); 1429 u_int idx = 0; 1430 1431 for (;;) { 1432 PF_RULES_RLOCK(); 1433 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1434 PF_RULES_RUNLOCK(); 1435 1436 VNET_LIST_RLOCK(); 1437 VNET_FOREACH(vnet_iter) { 1438 CURVNET_SET(vnet_iter); 1439 1440 if (pf_end_threads) { 1441 pf_end_threads++; 1442 wakeup(pf_purge_thread); 1443 kproc_exit(0); 1444 } 1445 1446 /* Wait until V_pf_default_rule is initialized. */ 1447 if (V_pf_vnet_active == 0) { 1448 CURVNET_RESTORE(); 1449 continue; 1450 } 1451 1452 /* 1453 * Process 1/interval fraction of the state 1454 * table every run. 1455 */ 1456 idx = pf_purge_expired_states(idx, pf_hashmask / 1457 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1458 1459 /* 1460 * Purge other expired types every 1461 * PFTM_INTERVAL seconds. 1462 */ 1463 if (idx == 0) { 1464 /* 1465 * Order is important: 1466 * - states and src nodes reference rules 1467 * - states and rules reference kifs 1468 */ 1469 pf_purge_expired_fragments(); 1470 pf_purge_expired_src_nodes(); 1471 pf_purge_unlinked_rules(); 1472 pfi_kif_purge(); 1473 } 1474 CURVNET_RESTORE(); 1475 } 1476 VNET_LIST_RUNLOCK(); 1477 } 1478 /* not reached */ 1479 } 1480 1481 void 1482 pf_unload_vnet_purge(void) 1483 { 1484 1485 /* 1486 * To cleanse up all kifs and rules we need 1487 * two runs: first one clears reference flags, 1488 * then pf_purge_expired_states() doesn't 1489 * raise them, and then second run frees. 1490 */ 1491 pf_purge_unlinked_rules(); 1492 pfi_kif_purge(); 1493 1494 /* 1495 * Now purge everything. 1496 */ 1497 pf_purge_expired_states(0, pf_hashmask); 1498 pf_purge_expired_fragments(); 1499 pf_purge_expired_src_nodes(); 1500 1501 /* 1502 * Now all kifs & rules should be unreferenced, 1503 * thus should be successfully freed. 1504 */ 1505 pf_purge_unlinked_rules(); 1506 pfi_kif_purge(); 1507 } 1508 1509 1510 u_int32_t 1511 pf_state_expires(const struct pf_state *state) 1512 { 1513 u_int32_t timeout; 1514 u_int32_t start; 1515 u_int32_t end; 1516 u_int32_t states; 1517 1518 /* handle all PFTM_* > PFTM_MAX here */ 1519 if (state->timeout == PFTM_PURGE) 1520 return (time_uptime); 1521 KASSERT(state->timeout != PFTM_UNLINKED, 1522 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1523 KASSERT((state->timeout < PFTM_MAX), 1524 ("pf_state_expires: timeout > PFTM_MAX")); 1525 timeout = state->rule.ptr->timeout[state->timeout]; 1526 if (!timeout) 1527 timeout = V_pf_default_rule.timeout[state->timeout]; 1528 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1529 if (start) { 1530 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1531 states = counter_u64_fetch(state->rule.ptr->states_cur); 1532 } else { 1533 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1534 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1535 states = V_pf_status.states; 1536 } 1537 if (end && states > start && start < end) { 1538 if (states < end) 1539 return (state->expire + timeout * (end - states) / 1540 (end - start)); 1541 else 1542 return (time_uptime); 1543 } 1544 return (state->expire + timeout); 1545 } 1546 1547 void 1548 pf_purge_expired_src_nodes() 1549 { 1550 struct pf_src_node_list freelist; 1551 struct pf_srchash *sh; 1552 struct pf_src_node *cur, *next; 1553 int i; 1554 1555 LIST_INIT(&freelist); 1556 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1557 PF_HASHROW_LOCK(sh); 1558 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1559 if (cur->states == 0 && cur->expire <= time_uptime) { 1560 pf_unlink_src_node(cur); 1561 LIST_INSERT_HEAD(&freelist, cur, entry); 1562 } else if (cur->rule.ptr != NULL) 1563 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1564 PF_HASHROW_UNLOCK(sh); 1565 } 1566 1567 pf_free_src_nodes(&freelist); 1568 1569 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1570 } 1571 1572 static void 1573 pf_src_tree_remove_state(struct pf_state *s) 1574 { 1575 struct pf_src_node *sn; 1576 struct pf_srchash *sh; 1577 uint32_t timeout; 1578 1579 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1580 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1581 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1582 1583 if (s->src_node != NULL) { 1584 sn = s->src_node; 1585 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1586 PF_HASHROW_LOCK(sh); 1587 if (s->src.tcp_est) 1588 --sn->conn; 1589 if (--sn->states == 0) 1590 sn->expire = time_uptime + timeout; 1591 PF_HASHROW_UNLOCK(sh); 1592 } 1593 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1594 sn = s->nat_src_node; 1595 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1596 PF_HASHROW_LOCK(sh); 1597 if (--sn->states == 0) 1598 sn->expire = time_uptime + timeout; 1599 PF_HASHROW_UNLOCK(sh); 1600 } 1601 s->src_node = s->nat_src_node = NULL; 1602 } 1603 1604 /* 1605 * Unlink and potentilly free a state. Function may be 1606 * called with ID hash row locked, but always returns 1607 * unlocked, since it needs to go through key hash locking. 1608 */ 1609 int 1610 pf_unlink_state(struct pf_state *s, u_int flags) 1611 { 1612 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1613 1614 if ((flags & PF_ENTER_LOCKED) == 0) 1615 PF_HASHROW_LOCK(ih); 1616 else 1617 PF_HASHROW_ASSERT(ih); 1618 1619 if (s->timeout == PFTM_UNLINKED) { 1620 /* 1621 * State is being processed 1622 * by pf_unlink_state() in 1623 * an other thread. 1624 */ 1625 PF_HASHROW_UNLOCK(ih); 1626 return (0); /* XXXGL: undefined actually */ 1627 } 1628 1629 if (s->src.state == PF_TCPS_PROXY_DST) { 1630 /* XXX wire key the right one? */ 1631 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1632 &s->key[PF_SK_WIRE]->addr[1], 1633 &s->key[PF_SK_WIRE]->addr[0], 1634 s->key[PF_SK_WIRE]->port[1], 1635 s->key[PF_SK_WIRE]->port[0], 1636 s->src.seqhi, s->src.seqlo + 1, 1637 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1638 } 1639 1640 LIST_REMOVE(s, entry); 1641 pf_src_tree_remove_state(s); 1642 1643 if (pfsync_delete_state_ptr != NULL) 1644 pfsync_delete_state_ptr(s); 1645 1646 STATE_DEC_COUNTERS(s); 1647 1648 s->timeout = PFTM_UNLINKED; 1649 1650 PF_HASHROW_UNLOCK(ih); 1651 1652 pf_detach_state(s); 1653 refcount_release(&s->refs); 1654 1655 return (pf_release_state(s)); 1656 } 1657 1658 void 1659 pf_free_state(struct pf_state *cur) 1660 { 1661 1662 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1663 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1664 cur->timeout)); 1665 1666 pf_normalize_tcp_cleanup(cur); 1667 uma_zfree(V_pf_state_z, cur); 1668 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1669 } 1670 1671 /* 1672 * Called only from pf_purge_thread(), thus serialized. 1673 */ 1674 static u_int 1675 pf_purge_expired_states(u_int i, int maxcheck) 1676 { 1677 struct pf_idhash *ih; 1678 struct pf_state *s; 1679 1680 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1681 1682 /* 1683 * Go through hash and unlink states that expire now. 1684 */ 1685 while (maxcheck > 0) { 1686 1687 ih = &V_pf_idhash[i]; 1688 relock: 1689 PF_HASHROW_LOCK(ih); 1690 LIST_FOREACH(s, &ih->states, entry) { 1691 if (pf_state_expires(s) <= time_uptime) { 1692 V_pf_status.states -= 1693 pf_unlink_state(s, PF_ENTER_LOCKED); 1694 goto relock; 1695 } 1696 s->rule.ptr->rule_flag |= PFRULE_REFS; 1697 if (s->nat_rule.ptr != NULL) 1698 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1699 if (s->anchor.ptr != NULL) 1700 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1701 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1702 if (s->rt_kif) 1703 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1704 } 1705 PF_HASHROW_UNLOCK(ih); 1706 1707 /* Return when we hit end of hash. */ 1708 if (++i > pf_hashmask) { 1709 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1710 return (0); 1711 } 1712 1713 maxcheck--; 1714 } 1715 1716 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1717 1718 return (i); 1719 } 1720 1721 static void 1722 pf_purge_unlinked_rules() 1723 { 1724 struct pf_rulequeue tmpq; 1725 struct pf_rule *r, *r1; 1726 1727 /* 1728 * If we have overloading task pending, then we'd 1729 * better skip purging this time. There is a tiny 1730 * probability that overloading task references 1731 * an already unlinked rule. 1732 */ 1733 PF_OVERLOADQ_LOCK(); 1734 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1735 PF_OVERLOADQ_UNLOCK(); 1736 return; 1737 } 1738 PF_OVERLOADQ_UNLOCK(); 1739 1740 /* 1741 * Do naive mark-and-sweep garbage collecting of old rules. 1742 * Reference flag is raised by pf_purge_expired_states() 1743 * and pf_purge_expired_src_nodes(). 1744 * 1745 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1746 * use a temporary queue. 1747 */ 1748 TAILQ_INIT(&tmpq); 1749 PF_UNLNKDRULES_LOCK(); 1750 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1751 if (!(r->rule_flag & PFRULE_REFS)) { 1752 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1753 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1754 } else 1755 r->rule_flag &= ~PFRULE_REFS; 1756 } 1757 PF_UNLNKDRULES_UNLOCK(); 1758 1759 if (!TAILQ_EMPTY(&tmpq)) { 1760 PF_RULES_WLOCK(); 1761 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1762 TAILQ_REMOVE(&tmpq, r, entries); 1763 pf_free_rule(r); 1764 } 1765 PF_RULES_WUNLOCK(); 1766 } 1767 } 1768 1769 void 1770 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1771 { 1772 switch (af) { 1773 #ifdef INET 1774 case AF_INET: { 1775 u_int32_t a = ntohl(addr->addr32[0]); 1776 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1777 (a>>8)&255, a&255); 1778 if (p) { 1779 p = ntohs(p); 1780 printf(":%u", p); 1781 } 1782 break; 1783 } 1784 #endif /* INET */ 1785 #ifdef INET6 1786 case AF_INET6: { 1787 u_int16_t b; 1788 u_int8_t i, curstart, curend, maxstart, maxend; 1789 curstart = curend = maxstart = maxend = 255; 1790 for (i = 0; i < 8; i++) { 1791 if (!addr->addr16[i]) { 1792 if (curstart == 255) 1793 curstart = i; 1794 curend = i; 1795 } else { 1796 if ((curend - curstart) > 1797 (maxend - maxstart)) { 1798 maxstart = curstart; 1799 maxend = curend; 1800 } 1801 curstart = curend = 255; 1802 } 1803 } 1804 if ((curend - curstart) > 1805 (maxend - maxstart)) { 1806 maxstart = curstart; 1807 maxend = curend; 1808 } 1809 for (i = 0; i < 8; i++) { 1810 if (i >= maxstart && i <= maxend) { 1811 if (i == 0) 1812 printf(":"); 1813 if (i == maxend) 1814 printf(":"); 1815 } else { 1816 b = ntohs(addr->addr16[i]); 1817 printf("%x", b); 1818 if (i < 7) 1819 printf(":"); 1820 } 1821 } 1822 if (p) { 1823 p = ntohs(p); 1824 printf("[%u]", p); 1825 } 1826 break; 1827 } 1828 #endif /* INET6 */ 1829 } 1830 } 1831 1832 void 1833 pf_print_state(struct pf_state *s) 1834 { 1835 pf_print_state_parts(s, NULL, NULL); 1836 } 1837 1838 static void 1839 pf_print_state_parts(struct pf_state *s, 1840 struct pf_state_key *skwp, struct pf_state_key *sksp) 1841 { 1842 struct pf_state_key *skw, *sks; 1843 u_int8_t proto, dir; 1844 1845 /* Do our best to fill these, but they're skipped if NULL */ 1846 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1847 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1848 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1849 dir = s ? s->direction : 0; 1850 1851 switch (proto) { 1852 case IPPROTO_IPV4: 1853 printf("IPv4"); 1854 break; 1855 case IPPROTO_IPV6: 1856 printf("IPv6"); 1857 break; 1858 case IPPROTO_TCP: 1859 printf("TCP"); 1860 break; 1861 case IPPROTO_UDP: 1862 printf("UDP"); 1863 break; 1864 case IPPROTO_ICMP: 1865 printf("ICMP"); 1866 break; 1867 case IPPROTO_ICMPV6: 1868 printf("ICMPv6"); 1869 break; 1870 default: 1871 printf("%u", proto); 1872 break; 1873 } 1874 switch (dir) { 1875 case PF_IN: 1876 printf(" in"); 1877 break; 1878 case PF_OUT: 1879 printf(" out"); 1880 break; 1881 } 1882 if (skw) { 1883 printf(" wire: "); 1884 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1885 printf(" "); 1886 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1887 } 1888 if (sks) { 1889 printf(" stack: "); 1890 if (sks != skw) { 1891 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1892 printf(" "); 1893 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1894 } else 1895 printf("-"); 1896 } 1897 if (s) { 1898 if (proto == IPPROTO_TCP) { 1899 printf(" [lo=%u high=%u win=%u modulator=%u", 1900 s->src.seqlo, s->src.seqhi, 1901 s->src.max_win, s->src.seqdiff); 1902 if (s->src.wscale && s->dst.wscale) 1903 printf(" wscale=%u", 1904 s->src.wscale & PF_WSCALE_MASK); 1905 printf("]"); 1906 printf(" [lo=%u high=%u win=%u modulator=%u", 1907 s->dst.seqlo, s->dst.seqhi, 1908 s->dst.max_win, s->dst.seqdiff); 1909 if (s->src.wscale && s->dst.wscale) 1910 printf(" wscale=%u", 1911 s->dst.wscale & PF_WSCALE_MASK); 1912 printf("]"); 1913 } 1914 printf(" %u:%u", s->src.state, s->dst.state); 1915 } 1916 } 1917 1918 void 1919 pf_print_flags(u_int8_t f) 1920 { 1921 if (f) 1922 printf(" "); 1923 if (f & TH_FIN) 1924 printf("F"); 1925 if (f & TH_SYN) 1926 printf("S"); 1927 if (f & TH_RST) 1928 printf("R"); 1929 if (f & TH_PUSH) 1930 printf("P"); 1931 if (f & TH_ACK) 1932 printf("A"); 1933 if (f & TH_URG) 1934 printf("U"); 1935 if (f & TH_ECE) 1936 printf("E"); 1937 if (f & TH_CWR) 1938 printf("W"); 1939 } 1940 1941 #define PF_SET_SKIP_STEPS(i) \ 1942 do { \ 1943 while (head[i] != cur) { \ 1944 head[i]->skip[i].ptr = cur; \ 1945 head[i] = TAILQ_NEXT(head[i], entries); \ 1946 } \ 1947 } while (0) 1948 1949 void 1950 pf_calc_skip_steps(struct pf_rulequeue *rules) 1951 { 1952 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1953 int i; 1954 1955 cur = TAILQ_FIRST(rules); 1956 prev = cur; 1957 for (i = 0; i < PF_SKIP_COUNT; ++i) 1958 head[i] = cur; 1959 while (cur != NULL) { 1960 1961 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1962 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1963 if (cur->direction != prev->direction) 1964 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1965 if (cur->af != prev->af) 1966 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1967 if (cur->proto != prev->proto) 1968 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1969 if (cur->src.neg != prev->src.neg || 1970 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1971 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1972 if (cur->src.port[0] != prev->src.port[0] || 1973 cur->src.port[1] != prev->src.port[1] || 1974 cur->src.port_op != prev->src.port_op) 1975 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1976 if (cur->dst.neg != prev->dst.neg || 1977 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1978 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1979 if (cur->dst.port[0] != prev->dst.port[0] || 1980 cur->dst.port[1] != prev->dst.port[1] || 1981 cur->dst.port_op != prev->dst.port_op) 1982 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1983 1984 prev = cur; 1985 cur = TAILQ_NEXT(cur, entries); 1986 } 1987 for (i = 0; i < PF_SKIP_COUNT; ++i) 1988 PF_SET_SKIP_STEPS(i); 1989 } 1990 1991 static int 1992 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1993 { 1994 if (aw1->type != aw2->type) 1995 return (1); 1996 switch (aw1->type) { 1997 case PF_ADDR_ADDRMASK: 1998 case PF_ADDR_RANGE: 1999 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2000 return (1); 2001 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2002 return (1); 2003 return (0); 2004 case PF_ADDR_DYNIFTL: 2005 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2006 case PF_ADDR_NOROUTE: 2007 case PF_ADDR_URPFFAILED: 2008 return (0); 2009 case PF_ADDR_TABLE: 2010 return (aw1->p.tbl != aw2->p.tbl); 2011 default: 2012 printf("invalid address type: %d\n", aw1->type); 2013 return (1); 2014 } 2015 } 2016 2017 /** 2018 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2019 * header isn't always a full checksum. In some cases (i.e. output) it's a 2020 * pseudo-header checksum, which is a partial checksum over src/dst IP 2021 * addresses, protocol number and length. 2022 * 2023 * That means we have the following cases: 2024 * * Input or forwarding: we don't have TSO, the checksum fields are full 2025 * checksums, we need to update the checksum whenever we change anything. 2026 * * Output (i.e. the checksum is a pseudo-header checksum): 2027 * x The field being updated is src/dst address or affects the length of 2028 * the packet. We need to update the pseudo-header checksum (note that this 2029 * checksum is not ones' complement). 2030 * x Some other field is being modified (e.g. src/dst port numbers): We 2031 * don't have to update anything. 2032 **/ 2033 u_int16_t 2034 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2035 { 2036 u_int32_t l; 2037 2038 if (udp && !cksum) 2039 return (0x0000); 2040 l = cksum + old - new; 2041 l = (l >> 16) + (l & 65535); 2042 l = l & 65535; 2043 if (udp && !l) 2044 return (0xFFFF); 2045 return (l); 2046 } 2047 2048 u_int16_t 2049 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2050 u_int16_t new, u_int8_t udp) 2051 { 2052 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2053 return (cksum); 2054 2055 return (pf_cksum_fixup(cksum, old, new, udp)); 2056 } 2057 2058 static void 2059 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2060 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2061 sa_family_t af) 2062 { 2063 struct pf_addr ao; 2064 u_int16_t po = *p; 2065 2066 PF_ACPY(&ao, a, af); 2067 PF_ACPY(a, an, af); 2068 2069 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2070 *pc = ~*pc; 2071 2072 *p = pn; 2073 2074 switch (af) { 2075 #ifdef INET 2076 case AF_INET: 2077 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2078 ao.addr16[0], an->addr16[0], 0), 2079 ao.addr16[1], an->addr16[1], 0); 2080 *p = pn; 2081 2082 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2083 ao.addr16[0], an->addr16[0], u), 2084 ao.addr16[1], an->addr16[1], u); 2085 2086 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2087 break; 2088 #endif /* INET */ 2089 #ifdef INET6 2090 case AF_INET6: 2091 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2092 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2093 pf_cksum_fixup(pf_cksum_fixup(*pc, 2094 ao.addr16[0], an->addr16[0], u), 2095 ao.addr16[1], an->addr16[1], u), 2096 ao.addr16[2], an->addr16[2], u), 2097 ao.addr16[3], an->addr16[3], u), 2098 ao.addr16[4], an->addr16[4], u), 2099 ao.addr16[5], an->addr16[5], u), 2100 ao.addr16[6], an->addr16[6], u), 2101 ao.addr16[7], an->addr16[7], u); 2102 2103 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2104 break; 2105 #endif /* INET6 */ 2106 } 2107 2108 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2109 CSUM_DELAY_DATA_IPV6)) { 2110 *pc = ~*pc; 2111 if (! *pc) 2112 *pc = 0xffff; 2113 } 2114 } 2115 2116 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2117 void 2118 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2119 { 2120 u_int32_t ao; 2121 2122 memcpy(&ao, a, sizeof(ao)); 2123 memcpy(a, &an, sizeof(u_int32_t)); 2124 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2125 ao % 65536, an % 65536, u); 2126 } 2127 2128 void 2129 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2130 { 2131 u_int32_t ao; 2132 2133 memcpy(&ao, a, sizeof(ao)); 2134 memcpy(a, &an, sizeof(u_int32_t)); 2135 2136 *c = pf_proto_cksum_fixup(m, 2137 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2138 ao % 65536, an % 65536, udp); 2139 } 2140 2141 #ifdef INET6 2142 static void 2143 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2144 { 2145 struct pf_addr ao; 2146 2147 PF_ACPY(&ao, a, AF_INET6); 2148 PF_ACPY(a, an, AF_INET6); 2149 2150 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2151 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2152 pf_cksum_fixup(pf_cksum_fixup(*c, 2153 ao.addr16[0], an->addr16[0], u), 2154 ao.addr16[1], an->addr16[1], u), 2155 ao.addr16[2], an->addr16[2], u), 2156 ao.addr16[3], an->addr16[3], u), 2157 ao.addr16[4], an->addr16[4], u), 2158 ao.addr16[5], an->addr16[5], u), 2159 ao.addr16[6], an->addr16[6], u), 2160 ao.addr16[7], an->addr16[7], u); 2161 } 2162 #endif /* INET6 */ 2163 2164 static void 2165 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2166 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2167 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2168 { 2169 struct pf_addr oia, ooa; 2170 2171 PF_ACPY(&oia, ia, af); 2172 if (oa) 2173 PF_ACPY(&ooa, oa, af); 2174 2175 /* Change inner protocol port, fix inner protocol checksum. */ 2176 if (ip != NULL) { 2177 u_int16_t oip = *ip; 2178 u_int32_t opc; 2179 2180 if (pc != NULL) 2181 opc = *pc; 2182 *ip = np; 2183 if (pc != NULL) 2184 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2185 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2186 if (pc != NULL) 2187 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2188 } 2189 /* Change inner ip address, fix inner ip and icmp checksums. */ 2190 PF_ACPY(ia, na, af); 2191 switch (af) { 2192 #ifdef INET 2193 case AF_INET: { 2194 u_int32_t oh2c = *h2c; 2195 2196 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2197 oia.addr16[0], ia->addr16[0], 0), 2198 oia.addr16[1], ia->addr16[1], 0); 2199 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2200 oia.addr16[0], ia->addr16[0], 0), 2201 oia.addr16[1], ia->addr16[1], 0); 2202 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2203 break; 2204 } 2205 #endif /* INET */ 2206 #ifdef INET6 2207 case AF_INET6: 2208 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2209 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2210 pf_cksum_fixup(pf_cksum_fixup(*ic, 2211 oia.addr16[0], ia->addr16[0], u), 2212 oia.addr16[1], ia->addr16[1], u), 2213 oia.addr16[2], ia->addr16[2], u), 2214 oia.addr16[3], ia->addr16[3], u), 2215 oia.addr16[4], ia->addr16[4], u), 2216 oia.addr16[5], ia->addr16[5], u), 2217 oia.addr16[6], ia->addr16[6], u), 2218 oia.addr16[7], ia->addr16[7], u); 2219 break; 2220 #endif /* INET6 */ 2221 } 2222 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2223 if (oa) { 2224 PF_ACPY(oa, na, af); 2225 switch (af) { 2226 #ifdef INET 2227 case AF_INET: 2228 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2229 ooa.addr16[0], oa->addr16[0], 0), 2230 ooa.addr16[1], oa->addr16[1], 0); 2231 break; 2232 #endif /* INET */ 2233 #ifdef INET6 2234 case AF_INET6: 2235 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2236 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2237 pf_cksum_fixup(pf_cksum_fixup(*ic, 2238 ooa.addr16[0], oa->addr16[0], u), 2239 ooa.addr16[1], oa->addr16[1], u), 2240 ooa.addr16[2], oa->addr16[2], u), 2241 ooa.addr16[3], oa->addr16[3], u), 2242 ooa.addr16[4], oa->addr16[4], u), 2243 ooa.addr16[5], oa->addr16[5], u), 2244 ooa.addr16[6], oa->addr16[6], u), 2245 ooa.addr16[7], oa->addr16[7], u); 2246 break; 2247 #endif /* INET6 */ 2248 } 2249 } 2250 } 2251 2252 2253 /* 2254 * Need to modulate the sequence numbers in the TCP SACK option 2255 * (credits to Krzysztof Pfaff for report and patch) 2256 */ 2257 static int 2258 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2259 struct tcphdr *th, struct pf_state_peer *dst) 2260 { 2261 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2262 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2263 int copyback = 0, i, olen; 2264 struct sackblk sack; 2265 2266 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2267 if (hlen < TCPOLEN_SACKLEN || 2268 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2269 return 0; 2270 2271 while (hlen >= TCPOLEN_SACKLEN) { 2272 olen = opt[1]; 2273 switch (*opt) { 2274 case TCPOPT_EOL: /* FALLTHROUGH */ 2275 case TCPOPT_NOP: 2276 opt++; 2277 hlen--; 2278 break; 2279 case TCPOPT_SACK: 2280 if (olen > hlen) 2281 olen = hlen; 2282 if (olen >= TCPOLEN_SACKLEN) { 2283 for (i = 2; i + TCPOLEN_SACK <= olen; 2284 i += TCPOLEN_SACK) { 2285 memcpy(&sack, &opt[i], sizeof(sack)); 2286 pf_change_proto_a(m, &sack.start, &th->th_sum, 2287 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2288 pf_change_proto_a(m, &sack.end, &th->th_sum, 2289 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2290 memcpy(&opt[i], &sack, sizeof(sack)); 2291 } 2292 copyback = 1; 2293 } 2294 /* FALLTHROUGH */ 2295 default: 2296 if (olen < 2) 2297 olen = 2; 2298 hlen -= olen; 2299 opt += olen; 2300 } 2301 } 2302 2303 if (copyback) 2304 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2305 return (copyback); 2306 } 2307 2308 static void 2309 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2310 const struct pf_addr *saddr, const struct pf_addr *daddr, 2311 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2312 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2313 u_int16_t rtag, struct ifnet *ifp) 2314 { 2315 struct pf_send_entry *pfse; 2316 struct mbuf *m; 2317 int len, tlen; 2318 #ifdef INET 2319 struct ip *h = NULL; 2320 #endif /* INET */ 2321 #ifdef INET6 2322 struct ip6_hdr *h6 = NULL; 2323 #endif /* INET6 */ 2324 struct tcphdr *th; 2325 char *opt; 2326 struct pf_mtag *pf_mtag; 2327 2328 len = 0; 2329 th = NULL; 2330 2331 /* maximum segment size tcp option */ 2332 tlen = sizeof(struct tcphdr); 2333 if (mss) 2334 tlen += 4; 2335 2336 switch (af) { 2337 #ifdef INET 2338 case AF_INET: 2339 len = sizeof(struct ip) + tlen; 2340 break; 2341 #endif /* INET */ 2342 #ifdef INET6 2343 case AF_INET6: 2344 len = sizeof(struct ip6_hdr) + tlen; 2345 break; 2346 #endif /* INET6 */ 2347 default: 2348 panic("%s: unsupported af %d", __func__, af); 2349 } 2350 2351 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2352 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2353 if (pfse == NULL) 2354 return; 2355 m = m_gethdr(M_NOWAIT, MT_DATA); 2356 if (m == NULL) { 2357 free(pfse, M_PFTEMP); 2358 return; 2359 } 2360 #ifdef MAC 2361 mac_netinet_firewall_send(m); 2362 #endif 2363 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2364 free(pfse, M_PFTEMP); 2365 m_freem(m); 2366 return; 2367 } 2368 if (tag) 2369 m->m_flags |= M_SKIP_FIREWALL; 2370 pf_mtag->tag = rtag; 2371 2372 if (r != NULL && r->rtableid >= 0) 2373 M_SETFIB(m, r->rtableid); 2374 2375 #ifdef ALTQ 2376 if (r != NULL && r->qid) { 2377 pf_mtag->qid = r->qid; 2378 2379 /* add hints for ecn */ 2380 pf_mtag->hdr = mtod(m, struct ip *); 2381 } 2382 #endif /* ALTQ */ 2383 m->m_data += max_linkhdr; 2384 m->m_pkthdr.len = m->m_len = len; 2385 m->m_pkthdr.rcvif = NULL; 2386 bzero(m->m_data, len); 2387 switch (af) { 2388 #ifdef INET 2389 case AF_INET: 2390 h = mtod(m, struct ip *); 2391 2392 /* IP header fields included in the TCP checksum */ 2393 h->ip_p = IPPROTO_TCP; 2394 h->ip_len = htons(tlen); 2395 h->ip_src.s_addr = saddr->v4.s_addr; 2396 h->ip_dst.s_addr = daddr->v4.s_addr; 2397 2398 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2399 break; 2400 #endif /* INET */ 2401 #ifdef INET6 2402 case AF_INET6: 2403 h6 = mtod(m, struct ip6_hdr *); 2404 2405 /* IP header fields included in the TCP checksum */ 2406 h6->ip6_nxt = IPPROTO_TCP; 2407 h6->ip6_plen = htons(tlen); 2408 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2409 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2410 2411 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2412 break; 2413 #endif /* INET6 */ 2414 } 2415 2416 /* TCP header */ 2417 th->th_sport = sport; 2418 th->th_dport = dport; 2419 th->th_seq = htonl(seq); 2420 th->th_ack = htonl(ack); 2421 th->th_off = tlen >> 2; 2422 th->th_flags = flags; 2423 th->th_win = htons(win); 2424 2425 if (mss) { 2426 opt = (char *)(th + 1); 2427 opt[0] = TCPOPT_MAXSEG; 2428 opt[1] = 4; 2429 HTONS(mss); 2430 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2431 } 2432 2433 switch (af) { 2434 #ifdef INET 2435 case AF_INET: 2436 /* TCP checksum */ 2437 th->th_sum = in_cksum(m, len); 2438 2439 /* Finish the IP header */ 2440 h->ip_v = 4; 2441 h->ip_hl = sizeof(*h) >> 2; 2442 h->ip_tos = IPTOS_LOWDELAY; 2443 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2444 h->ip_len = htons(len); 2445 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2446 h->ip_sum = 0; 2447 2448 pfse->pfse_type = PFSE_IP; 2449 break; 2450 #endif /* INET */ 2451 #ifdef INET6 2452 case AF_INET6: 2453 /* TCP checksum */ 2454 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2455 sizeof(struct ip6_hdr), tlen); 2456 2457 h6->ip6_vfc |= IPV6_VERSION; 2458 h6->ip6_hlim = IPV6_DEFHLIM; 2459 2460 pfse->pfse_type = PFSE_IP6; 2461 break; 2462 #endif /* INET6 */ 2463 } 2464 pfse->pfse_m = m; 2465 pf_send(pfse); 2466 } 2467 2468 static int 2469 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2470 { 2471 struct m_tag *mtag; 2472 2473 KASSERT(prio <= PF_PRIO_MAX, 2474 ("%s with invalid pcp", __func__)); 2475 2476 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2477 if (mtag == NULL) { 2478 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2479 sizeof(uint8_t), M_NOWAIT); 2480 if (mtag == NULL) 2481 return (ENOMEM); 2482 m_tag_prepend(m, mtag); 2483 } 2484 2485 *(uint8_t *)(mtag + 1) = prio; 2486 return (0); 2487 } 2488 2489 static int 2490 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2491 { 2492 struct m_tag *mtag; 2493 u_int8_t mpcp; 2494 2495 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2496 if (mtag == NULL) 2497 return (0); 2498 2499 if (prio == PF_PRIO_ZERO) 2500 prio = 0; 2501 2502 mpcp = *(uint8_t *)(mtag + 1); 2503 2504 return (mpcp == prio); 2505 } 2506 2507 static void 2508 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2509 struct pf_rule *r) 2510 { 2511 struct pf_send_entry *pfse; 2512 struct mbuf *m0; 2513 struct pf_mtag *pf_mtag; 2514 2515 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2516 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2517 if (pfse == NULL) 2518 return; 2519 2520 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2521 free(pfse, M_PFTEMP); 2522 return; 2523 } 2524 2525 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2526 free(pfse, M_PFTEMP); 2527 return; 2528 } 2529 /* XXX: revisit */ 2530 m0->m_flags |= M_SKIP_FIREWALL; 2531 2532 if (r->rtableid >= 0) 2533 M_SETFIB(m0, r->rtableid); 2534 2535 #ifdef ALTQ 2536 if (r->qid) { 2537 pf_mtag->qid = r->qid; 2538 /* add hints for ecn */ 2539 pf_mtag->hdr = mtod(m0, struct ip *); 2540 } 2541 #endif /* ALTQ */ 2542 2543 switch (af) { 2544 #ifdef INET 2545 case AF_INET: 2546 pfse->pfse_type = PFSE_ICMP; 2547 break; 2548 #endif /* INET */ 2549 #ifdef INET6 2550 case AF_INET6: 2551 pfse->pfse_type = PFSE_ICMP6; 2552 break; 2553 #endif /* INET6 */ 2554 } 2555 pfse->pfse_m = m0; 2556 pfse->icmpopts.type = type; 2557 pfse->icmpopts.code = code; 2558 pf_send(pfse); 2559 } 2560 2561 /* 2562 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2563 * If n is 0, they match if they are equal. If n is != 0, they match if they 2564 * are different. 2565 */ 2566 int 2567 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2568 struct pf_addr *b, sa_family_t af) 2569 { 2570 int match = 0; 2571 2572 switch (af) { 2573 #ifdef INET 2574 case AF_INET: 2575 if ((a->addr32[0] & m->addr32[0]) == 2576 (b->addr32[0] & m->addr32[0])) 2577 match++; 2578 break; 2579 #endif /* INET */ 2580 #ifdef INET6 2581 case AF_INET6: 2582 if (((a->addr32[0] & m->addr32[0]) == 2583 (b->addr32[0] & m->addr32[0])) && 2584 ((a->addr32[1] & m->addr32[1]) == 2585 (b->addr32[1] & m->addr32[1])) && 2586 ((a->addr32[2] & m->addr32[2]) == 2587 (b->addr32[2] & m->addr32[2])) && 2588 ((a->addr32[3] & m->addr32[3]) == 2589 (b->addr32[3] & m->addr32[3]))) 2590 match++; 2591 break; 2592 #endif /* INET6 */ 2593 } 2594 if (match) { 2595 if (n) 2596 return (0); 2597 else 2598 return (1); 2599 } else { 2600 if (n) 2601 return (1); 2602 else 2603 return (0); 2604 } 2605 } 2606 2607 /* 2608 * Return 1 if b <= a <= e, otherwise return 0. 2609 */ 2610 int 2611 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2612 struct pf_addr *a, sa_family_t af) 2613 { 2614 switch (af) { 2615 #ifdef INET 2616 case AF_INET: 2617 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2618 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2619 return (0); 2620 break; 2621 #endif /* INET */ 2622 #ifdef INET6 2623 case AF_INET6: { 2624 int i; 2625 2626 /* check a >= b */ 2627 for (i = 0; i < 4; ++i) 2628 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2629 break; 2630 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2631 return (0); 2632 /* check a <= e */ 2633 for (i = 0; i < 4; ++i) 2634 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2635 break; 2636 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2637 return (0); 2638 break; 2639 } 2640 #endif /* INET6 */ 2641 } 2642 return (1); 2643 } 2644 2645 static int 2646 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2647 { 2648 switch (op) { 2649 case PF_OP_IRG: 2650 return ((p > a1) && (p < a2)); 2651 case PF_OP_XRG: 2652 return ((p < a1) || (p > a2)); 2653 case PF_OP_RRG: 2654 return ((p >= a1) && (p <= a2)); 2655 case PF_OP_EQ: 2656 return (p == a1); 2657 case PF_OP_NE: 2658 return (p != a1); 2659 case PF_OP_LT: 2660 return (p < a1); 2661 case PF_OP_LE: 2662 return (p <= a1); 2663 case PF_OP_GT: 2664 return (p > a1); 2665 case PF_OP_GE: 2666 return (p >= a1); 2667 } 2668 return (0); /* never reached */ 2669 } 2670 2671 int 2672 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2673 { 2674 NTOHS(a1); 2675 NTOHS(a2); 2676 NTOHS(p); 2677 return (pf_match(op, a1, a2, p)); 2678 } 2679 2680 static int 2681 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2682 { 2683 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2684 return (0); 2685 return (pf_match(op, a1, a2, u)); 2686 } 2687 2688 static int 2689 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2690 { 2691 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2692 return (0); 2693 return (pf_match(op, a1, a2, g)); 2694 } 2695 2696 int 2697 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2698 { 2699 if (*tag == -1) 2700 *tag = mtag; 2701 2702 return ((!r->match_tag_not && r->match_tag == *tag) || 2703 (r->match_tag_not && r->match_tag != *tag)); 2704 } 2705 2706 int 2707 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2708 { 2709 2710 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2711 2712 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2713 return (ENOMEM); 2714 2715 pd->pf_mtag->tag = tag; 2716 2717 return (0); 2718 } 2719 2720 #define PF_ANCHOR_STACKSIZE 32 2721 struct pf_anchor_stackframe { 2722 struct pf_ruleset *rs; 2723 struct pf_rule *r; /* XXX: + match bit */ 2724 struct pf_anchor *child; 2725 }; 2726 2727 /* 2728 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2729 */ 2730 #define PF_ANCHORSTACK_MATCH 0x00000001 2731 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2732 2733 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2734 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2735 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2736 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2737 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2738 } while (0) 2739 2740 void 2741 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2742 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2743 int *match) 2744 { 2745 struct pf_anchor_stackframe *f; 2746 2747 PF_RULES_RASSERT(); 2748 2749 if (match) 2750 *match = 0; 2751 if (*depth >= PF_ANCHOR_STACKSIZE) { 2752 printf("%s: anchor stack overflow on %s\n", 2753 __func__, (*r)->anchor->name); 2754 *r = TAILQ_NEXT(*r, entries); 2755 return; 2756 } else if (*depth == 0 && a != NULL) 2757 *a = *r; 2758 f = stack + (*depth)++; 2759 f->rs = *rs; 2760 f->r = *r; 2761 if ((*r)->anchor_wildcard) { 2762 struct pf_anchor_node *parent = &(*r)->anchor->children; 2763 2764 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2765 *r = NULL; 2766 return; 2767 } 2768 *rs = &f->child->ruleset; 2769 } else { 2770 f->child = NULL; 2771 *rs = &(*r)->anchor->ruleset; 2772 } 2773 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2774 } 2775 2776 int 2777 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2778 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2779 int *match) 2780 { 2781 struct pf_anchor_stackframe *f; 2782 struct pf_rule *fr; 2783 int quick = 0; 2784 2785 PF_RULES_RASSERT(); 2786 2787 do { 2788 if (*depth <= 0) 2789 break; 2790 f = stack + *depth - 1; 2791 fr = PF_ANCHOR_RULE(f); 2792 if (f->child != NULL) { 2793 struct pf_anchor_node *parent; 2794 2795 /* 2796 * This block traverses through 2797 * a wildcard anchor. 2798 */ 2799 parent = &fr->anchor->children; 2800 if (match != NULL && *match) { 2801 /* 2802 * If any of "*" matched, then 2803 * "foo/ *" matched, mark frame 2804 * appropriately. 2805 */ 2806 PF_ANCHOR_SET_MATCH(f); 2807 *match = 0; 2808 } 2809 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2810 if (f->child != NULL) { 2811 *rs = &f->child->ruleset; 2812 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2813 if (*r == NULL) 2814 continue; 2815 else 2816 break; 2817 } 2818 } 2819 (*depth)--; 2820 if (*depth == 0 && a != NULL) 2821 *a = NULL; 2822 *rs = f->rs; 2823 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2824 quick = fr->quick; 2825 *r = TAILQ_NEXT(fr, entries); 2826 } while (*r == NULL); 2827 2828 return (quick); 2829 } 2830 2831 #ifdef INET6 2832 void 2833 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2834 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2835 { 2836 switch (af) { 2837 #ifdef INET 2838 case AF_INET: 2839 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2840 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2841 break; 2842 #endif /* INET */ 2843 case AF_INET6: 2844 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2845 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2846 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2847 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2848 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2849 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2850 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2851 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2852 break; 2853 } 2854 } 2855 2856 void 2857 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2858 { 2859 switch (af) { 2860 #ifdef INET 2861 case AF_INET: 2862 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2863 break; 2864 #endif /* INET */ 2865 case AF_INET6: 2866 if (addr->addr32[3] == 0xffffffff) { 2867 addr->addr32[3] = 0; 2868 if (addr->addr32[2] == 0xffffffff) { 2869 addr->addr32[2] = 0; 2870 if (addr->addr32[1] == 0xffffffff) { 2871 addr->addr32[1] = 0; 2872 addr->addr32[0] = 2873 htonl(ntohl(addr->addr32[0]) + 1); 2874 } else 2875 addr->addr32[1] = 2876 htonl(ntohl(addr->addr32[1]) + 1); 2877 } else 2878 addr->addr32[2] = 2879 htonl(ntohl(addr->addr32[2]) + 1); 2880 } else 2881 addr->addr32[3] = 2882 htonl(ntohl(addr->addr32[3]) + 1); 2883 break; 2884 } 2885 } 2886 #endif /* INET6 */ 2887 2888 int 2889 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2890 { 2891 struct pf_addr *saddr, *daddr; 2892 u_int16_t sport, dport; 2893 struct inpcbinfo *pi; 2894 struct inpcb *inp; 2895 2896 pd->lookup.uid = UID_MAX; 2897 pd->lookup.gid = GID_MAX; 2898 2899 switch (pd->proto) { 2900 case IPPROTO_TCP: 2901 if (pd->hdr.tcp == NULL) 2902 return (-1); 2903 sport = pd->hdr.tcp->th_sport; 2904 dport = pd->hdr.tcp->th_dport; 2905 pi = &V_tcbinfo; 2906 break; 2907 case IPPROTO_UDP: 2908 if (pd->hdr.udp == NULL) 2909 return (-1); 2910 sport = pd->hdr.udp->uh_sport; 2911 dport = pd->hdr.udp->uh_dport; 2912 pi = &V_udbinfo; 2913 break; 2914 default: 2915 return (-1); 2916 } 2917 if (direction == PF_IN) { 2918 saddr = pd->src; 2919 daddr = pd->dst; 2920 } else { 2921 u_int16_t p; 2922 2923 p = sport; 2924 sport = dport; 2925 dport = p; 2926 saddr = pd->dst; 2927 daddr = pd->src; 2928 } 2929 switch (pd->af) { 2930 #ifdef INET 2931 case AF_INET: 2932 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2933 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2934 if (inp == NULL) { 2935 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2936 daddr->v4, dport, INPLOOKUP_WILDCARD | 2937 INPLOOKUP_RLOCKPCB, NULL, m); 2938 if (inp == NULL) 2939 return (-1); 2940 } 2941 break; 2942 #endif /* INET */ 2943 #ifdef INET6 2944 case AF_INET6: 2945 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2946 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2947 if (inp == NULL) { 2948 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2949 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2950 INPLOOKUP_RLOCKPCB, NULL, m); 2951 if (inp == NULL) 2952 return (-1); 2953 } 2954 break; 2955 #endif /* INET6 */ 2956 2957 default: 2958 return (-1); 2959 } 2960 INP_RLOCK_ASSERT(inp); 2961 pd->lookup.uid = inp->inp_cred->cr_uid; 2962 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2963 INP_RUNLOCK(inp); 2964 2965 return (1); 2966 } 2967 2968 static u_int8_t 2969 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2970 { 2971 int hlen; 2972 u_int8_t hdr[60]; 2973 u_int8_t *opt, optlen; 2974 u_int8_t wscale = 0; 2975 2976 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2977 if (hlen <= sizeof(struct tcphdr)) 2978 return (0); 2979 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2980 return (0); 2981 opt = hdr + sizeof(struct tcphdr); 2982 hlen -= sizeof(struct tcphdr); 2983 while (hlen >= 3) { 2984 switch (*opt) { 2985 case TCPOPT_EOL: 2986 case TCPOPT_NOP: 2987 ++opt; 2988 --hlen; 2989 break; 2990 case TCPOPT_WINDOW: 2991 wscale = opt[2]; 2992 if (wscale > TCP_MAX_WINSHIFT) 2993 wscale = TCP_MAX_WINSHIFT; 2994 wscale |= PF_WSCALE_FLAG; 2995 /* FALLTHROUGH */ 2996 default: 2997 optlen = opt[1]; 2998 if (optlen < 2) 2999 optlen = 2; 3000 hlen -= optlen; 3001 opt += optlen; 3002 break; 3003 } 3004 } 3005 return (wscale); 3006 } 3007 3008 static u_int16_t 3009 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3010 { 3011 int hlen; 3012 u_int8_t hdr[60]; 3013 u_int8_t *opt, optlen; 3014 u_int16_t mss = V_tcp_mssdflt; 3015 3016 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3017 if (hlen <= sizeof(struct tcphdr)) 3018 return (0); 3019 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3020 return (0); 3021 opt = hdr + sizeof(struct tcphdr); 3022 hlen -= sizeof(struct tcphdr); 3023 while (hlen >= TCPOLEN_MAXSEG) { 3024 switch (*opt) { 3025 case TCPOPT_EOL: 3026 case TCPOPT_NOP: 3027 ++opt; 3028 --hlen; 3029 break; 3030 case TCPOPT_MAXSEG: 3031 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3032 NTOHS(mss); 3033 /* FALLTHROUGH */ 3034 default: 3035 optlen = opt[1]; 3036 if (optlen < 2) 3037 optlen = 2; 3038 hlen -= optlen; 3039 opt += optlen; 3040 break; 3041 } 3042 } 3043 return (mss); 3044 } 3045 3046 static u_int16_t 3047 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3048 { 3049 #ifdef INET 3050 struct nhop4_basic nh4; 3051 #endif /* INET */ 3052 #ifdef INET6 3053 struct nhop6_basic nh6; 3054 struct in6_addr dst6; 3055 uint32_t scopeid; 3056 #endif /* INET6 */ 3057 int hlen = 0; 3058 uint16_t mss = 0; 3059 3060 switch (af) { 3061 #ifdef INET 3062 case AF_INET: 3063 hlen = sizeof(struct ip); 3064 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3065 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3066 break; 3067 #endif /* INET */ 3068 #ifdef INET6 3069 case AF_INET6: 3070 hlen = sizeof(struct ip6_hdr); 3071 in6_splitscope(&addr->v6, &dst6, &scopeid); 3072 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3073 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3074 break; 3075 #endif /* INET6 */ 3076 } 3077 3078 mss = max(V_tcp_mssdflt, mss); 3079 mss = min(mss, offer); 3080 mss = max(mss, 64); /* sanity - at least max opt space */ 3081 return (mss); 3082 } 3083 3084 static u_int32_t 3085 pf_tcp_iss(struct pf_pdesc *pd) 3086 { 3087 MD5_CTX ctx; 3088 u_int32_t digest[4]; 3089 3090 if (V_pf_tcp_secret_init == 0) { 3091 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3092 MD5Init(&V_pf_tcp_secret_ctx); 3093 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3094 sizeof(V_pf_tcp_secret)); 3095 V_pf_tcp_secret_init = 1; 3096 } 3097 3098 ctx = V_pf_tcp_secret_ctx; 3099 3100 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3101 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3102 if (pd->af == AF_INET6) { 3103 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3104 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3105 } else { 3106 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3107 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3108 } 3109 MD5Final((u_char *)digest, &ctx); 3110 V_pf_tcp_iss_off += 4096; 3111 #define ISN_RANDOM_INCREMENT (4096 - 1) 3112 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3113 V_pf_tcp_iss_off); 3114 #undef ISN_RANDOM_INCREMENT 3115 } 3116 3117 static int 3118 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3119 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3120 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3121 { 3122 struct pf_rule *nr = NULL; 3123 struct pf_addr * const saddr = pd->src; 3124 struct pf_addr * const daddr = pd->dst; 3125 sa_family_t af = pd->af; 3126 struct pf_rule *r, *a = NULL; 3127 struct pf_ruleset *ruleset = NULL; 3128 struct pf_src_node *nsn = NULL; 3129 struct tcphdr *th = pd->hdr.tcp; 3130 struct pf_state_key *sk = NULL, *nk = NULL; 3131 u_short reason; 3132 int rewrite = 0, hdrlen = 0; 3133 int tag = -1, rtableid = -1; 3134 int asd = 0; 3135 int match = 0; 3136 int state_icmp = 0; 3137 u_int16_t sport = 0, dport = 0; 3138 u_int16_t bproto_sum = 0, bip_sum = 0; 3139 u_int8_t icmptype = 0, icmpcode = 0; 3140 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3141 3142 PF_RULES_RASSERT(); 3143 3144 if (inp != NULL) { 3145 INP_LOCK_ASSERT(inp); 3146 pd->lookup.uid = inp->inp_cred->cr_uid; 3147 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3148 pd->lookup.done = 1; 3149 } 3150 3151 switch (pd->proto) { 3152 case IPPROTO_TCP: 3153 sport = th->th_sport; 3154 dport = th->th_dport; 3155 hdrlen = sizeof(*th); 3156 break; 3157 case IPPROTO_UDP: 3158 sport = pd->hdr.udp->uh_sport; 3159 dport = pd->hdr.udp->uh_dport; 3160 hdrlen = sizeof(*pd->hdr.udp); 3161 break; 3162 #ifdef INET 3163 case IPPROTO_ICMP: 3164 if (pd->af != AF_INET) 3165 break; 3166 sport = dport = pd->hdr.icmp->icmp_id; 3167 hdrlen = sizeof(*pd->hdr.icmp); 3168 icmptype = pd->hdr.icmp->icmp_type; 3169 icmpcode = pd->hdr.icmp->icmp_code; 3170 3171 if (icmptype == ICMP_UNREACH || 3172 icmptype == ICMP_SOURCEQUENCH || 3173 icmptype == ICMP_REDIRECT || 3174 icmptype == ICMP_TIMXCEED || 3175 icmptype == ICMP_PARAMPROB) 3176 state_icmp++; 3177 break; 3178 #endif /* INET */ 3179 #ifdef INET6 3180 case IPPROTO_ICMPV6: 3181 if (af != AF_INET6) 3182 break; 3183 sport = dport = pd->hdr.icmp6->icmp6_id; 3184 hdrlen = sizeof(*pd->hdr.icmp6); 3185 icmptype = pd->hdr.icmp6->icmp6_type; 3186 icmpcode = pd->hdr.icmp6->icmp6_code; 3187 3188 if (icmptype == ICMP6_DST_UNREACH || 3189 icmptype == ICMP6_PACKET_TOO_BIG || 3190 icmptype == ICMP6_TIME_EXCEEDED || 3191 icmptype == ICMP6_PARAM_PROB) 3192 state_icmp++; 3193 break; 3194 #endif /* INET6 */ 3195 default: 3196 sport = dport = hdrlen = 0; 3197 break; 3198 } 3199 3200 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3201 3202 /* check packet for BINAT/NAT/RDR */ 3203 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3204 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3205 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3206 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3207 3208 if (pd->ip_sum) 3209 bip_sum = *pd->ip_sum; 3210 3211 switch (pd->proto) { 3212 case IPPROTO_TCP: 3213 bproto_sum = th->th_sum; 3214 pd->proto_sum = &th->th_sum; 3215 3216 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3217 nk->port[pd->sidx] != sport) { 3218 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3219 &th->th_sum, &nk->addr[pd->sidx], 3220 nk->port[pd->sidx], 0, af); 3221 pd->sport = &th->th_sport; 3222 sport = th->th_sport; 3223 } 3224 3225 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3226 nk->port[pd->didx] != dport) { 3227 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3228 &th->th_sum, &nk->addr[pd->didx], 3229 nk->port[pd->didx], 0, af); 3230 dport = th->th_dport; 3231 pd->dport = &th->th_dport; 3232 } 3233 rewrite++; 3234 break; 3235 case IPPROTO_UDP: 3236 bproto_sum = pd->hdr.udp->uh_sum; 3237 pd->proto_sum = &pd->hdr.udp->uh_sum; 3238 3239 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3240 nk->port[pd->sidx] != sport) { 3241 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3242 pd->ip_sum, &pd->hdr.udp->uh_sum, 3243 &nk->addr[pd->sidx], 3244 nk->port[pd->sidx], 1, af); 3245 sport = pd->hdr.udp->uh_sport; 3246 pd->sport = &pd->hdr.udp->uh_sport; 3247 } 3248 3249 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3250 nk->port[pd->didx] != dport) { 3251 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3252 pd->ip_sum, &pd->hdr.udp->uh_sum, 3253 &nk->addr[pd->didx], 3254 nk->port[pd->didx], 1, af); 3255 dport = pd->hdr.udp->uh_dport; 3256 pd->dport = &pd->hdr.udp->uh_dport; 3257 } 3258 rewrite++; 3259 break; 3260 #ifdef INET 3261 case IPPROTO_ICMP: 3262 nk->port[0] = nk->port[1]; 3263 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3264 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3265 nk->addr[pd->sidx].v4.s_addr, 0); 3266 3267 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3268 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3269 nk->addr[pd->didx].v4.s_addr, 0); 3270 3271 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3272 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3273 pd->hdr.icmp->icmp_cksum, sport, 3274 nk->port[1], 0); 3275 pd->hdr.icmp->icmp_id = nk->port[1]; 3276 pd->sport = &pd->hdr.icmp->icmp_id; 3277 } 3278 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3279 break; 3280 #endif /* INET */ 3281 #ifdef INET6 3282 case IPPROTO_ICMPV6: 3283 nk->port[0] = nk->port[1]; 3284 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3285 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3286 &nk->addr[pd->sidx], 0); 3287 3288 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3289 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3290 &nk->addr[pd->didx], 0); 3291 rewrite++; 3292 break; 3293 #endif /* INET */ 3294 default: 3295 switch (af) { 3296 #ifdef INET 3297 case AF_INET: 3298 if (PF_ANEQ(saddr, 3299 &nk->addr[pd->sidx], AF_INET)) 3300 pf_change_a(&saddr->v4.s_addr, 3301 pd->ip_sum, 3302 nk->addr[pd->sidx].v4.s_addr, 0); 3303 3304 if (PF_ANEQ(daddr, 3305 &nk->addr[pd->didx], AF_INET)) 3306 pf_change_a(&daddr->v4.s_addr, 3307 pd->ip_sum, 3308 nk->addr[pd->didx].v4.s_addr, 0); 3309 break; 3310 #endif /* INET */ 3311 #ifdef INET6 3312 case AF_INET6: 3313 if (PF_ANEQ(saddr, 3314 &nk->addr[pd->sidx], AF_INET6)) 3315 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3316 3317 if (PF_ANEQ(daddr, 3318 &nk->addr[pd->didx], AF_INET6)) 3319 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3320 break; 3321 #endif /* INET */ 3322 } 3323 break; 3324 } 3325 if (nr->natpass) 3326 r = NULL; 3327 pd->nat_rule = nr; 3328 } 3329 3330 while (r != NULL) { 3331 r->evaluations++; 3332 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3333 r = r->skip[PF_SKIP_IFP].ptr; 3334 else if (r->direction && r->direction != direction) 3335 r = r->skip[PF_SKIP_DIR].ptr; 3336 else if (r->af && r->af != af) 3337 r = r->skip[PF_SKIP_AF].ptr; 3338 else if (r->proto && r->proto != pd->proto) 3339 r = r->skip[PF_SKIP_PROTO].ptr; 3340 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3341 r->src.neg, kif, M_GETFIB(m))) 3342 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3343 /* tcp/udp only. port_op always 0 in other cases */ 3344 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3345 r->src.port[0], r->src.port[1], sport)) 3346 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3347 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3348 r->dst.neg, NULL, M_GETFIB(m))) 3349 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3350 /* tcp/udp only. port_op always 0 in other cases */ 3351 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3352 r->dst.port[0], r->dst.port[1], dport)) 3353 r = r->skip[PF_SKIP_DST_PORT].ptr; 3354 /* icmp only. type always 0 in other cases */ 3355 else if (r->type && r->type != icmptype + 1) 3356 r = TAILQ_NEXT(r, entries); 3357 /* icmp only. type always 0 in other cases */ 3358 else if (r->code && r->code != icmpcode + 1) 3359 r = TAILQ_NEXT(r, entries); 3360 else if (r->tos && !(r->tos == pd->tos)) 3361 r = TAILQ_NEXT(r, entries); 3362 else if (r->rule_flag & PFRULE_FRAGMENT) 3363 r = TAILQ_NEXT(r, entries); 3364 else if (pd->proto == IPPROTO_TCP && 3365 (r->flagset & th->th_flags) != r->flags) 3366 r = TAILQ_NEXT(r, entries); 3367 /* tcp/udp only. uid.op always 0 in other cases */ 3368 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3369 pf_socket_lookup(direction, pd, m), 1)) && 3370 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3371 pd->lookup.uid)) 3372 r = TAILQ_NEXT(r, entries); 3373 /* tcp/udp only. gid.op always 0 in other cases */ 3374 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3375 pf_socket_lookup(direction, pd, m), 1)) && 3376 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3377 pd->lookup.gid)) 3378 r = TAILQ_NEXT(r, entries); 3379 else if (r->prio && 3380 !pf_match_ieee8021q_pcp(r->prio, m)) 3381 r = TAILQ_NEXT(r, entries); 3382 else if (r->prob && 3383 r->prob <= arc4random()) 3384 r = TAILQ_NEXT(r, entries); 3385 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3386 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3387 r = TAILQ_NEXT(r, entries); 3388 else if (r->os_fingerprint != PF_OSFP_ANY && 3389 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3390 pf_osfp_fingerprint(pd, m, off, th), 3391 r->os_fingerprint))) 3392 r = TAILQ_NEXT(r, entries); 3393 else { 3394 if (r->tag) 3395 tag = r->tag; 3396 if (r->rtableid >= 0) 3397 rtableid = r->rtableid; 3398 if (r->anchor == NULL) { 3399 match = 1; 3400 *rm = r; 3401 *am = a; 3402 *rsm = ruleset; 3403 if ((*rm)->quick) 3404 break; 3405 r = TAILQ_NEXT(r, entries); 3406 } else 3407 pf_step_into_anchor(anchor_stack, &asd, 3408 &ruleset, PF_RULESET_FILTER, &r, &a, 3409 &match); 3410 } 3411 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3412 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3413 break; 3414 } 3415 r = *rm; 3416 a = *am; 3417 ruleset = *rsm; 3418 3419 REASON_SET(&reason, PFRES_MATCH); 3420 3421 if (r->log || (nr != NULL && nr->log)) { 3422 if (rewrite) 3423 m_copyback(m, off, hdrlen, pd->hdr.any); 3424 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3425 ruleset, pd, 1); 3426 } 3427 3428 if ((r->action == PF_DROP) && 3429 ((r->rule_flag & PFRULE_RETURNRST) || 3430 (r->rule_flag & PFRULE_RETURNICMP) || 3431 (r->rule_flag & PFRULE_RETURN))) { 3432 /* undo NAT changes, if they have taken place */ 3433 if (nr != NULL) { 3434 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3435 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3436 if (pd->sport) 3437 *pd->sport = sk->port[pd->sidx]; 3438 if (pd->dport) 3439 *pd->dport = sk->port[pd->didx]; 3440 if (pd->proto_sum) 3441 *pd->proto_sum = bproto_sum; 3442 if (pd->ip_sum) 3443 *pd->ip_sum = bip_sum; 3444 m_copyback(m, off, hdrlen, pd->hdr.any); 3445 } 3446 if (pd->proto == IPPROTO_TCP && 3447 ((r->rule_flag & PFRULE_RETURNRST) || 3448 (r->rule_flag & PFRULE_RETURN)) && 3449 !(th->th_flags & TH_RST)) { 3450 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3451 int len = 0; 3452 #ifdef INET 3453 struct ip *h4; 3454 #endif 3455 #ifdef INET6 3456 struct ip6_hdr *h6; 3457 #endif 3458 3459 switch (af) { 3460 #ifdef INET 3461 case AF_INET: 3462 h4 = mtod(m, struct ip *); 3463 len = ntohs(h4->ip_len) - off; 3464 break; 3465 #endif 3466 #ifdef INET6 3467 case AF_INET6: 3468 h6 = mtod(m, struct ip6_hdr *); 3469 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3470 break; 3471 #endif 3472 } 3473 3474 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3475 REASON_SET(&reason, PFRES_PROTCKSUM); 3476 else { 3477 if (th->th_flags & TH_SYN) 3478 ack++; 3479 if (th->th_flags & TH_FIN) 3480 ack++; 3481 pf_send_tcp(m, r, af, pd->dst, 3482 pd->src, th->th_dport, th->th_sport, 3483 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3484 r->return_ttl, 1, 0, kif->pfik_ifp); 3485 } 3486 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3487 r->return_icmp) 3488 pf_send_icmp(m, r->return_icmp >> 8, 3489 r->return_icmp & 255, af, r); 3490 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3491 r->return_icmp6) 3492 pf_send_icmp(m, r->return_icmp6 >> 8, 3493 r->return_icmp6 & 255, af, r); 3494 } 3495 3496 if (r->action == PF_DROP) 3497 goto cleanup; 3498 3499 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3500 REASON_SET(&reason, PFRES_MEMORY); 3501 goto cleanup; 3502 } 3503 if (rtableid >= 0) 3504 M_SETFIB(m, rtableid); 3505 3506 if (!state_icmp && (r->keep_state || nr != NULL || 3507 (pd->flags & PFDESC_TCP_NORM))) { 3508 int action; 3509 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3510 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3511 hdrlen); 3512 if (action != PF_PASS) 3513 return (action); 3514 } else { 3515 if (sk != NULL) 3516 uma_zfree(V_pf_state_key_z, sk); 3517 if (nk != NULL) 3518 uma_zfree(V_pf_state_key_z, nk); 3519 } 3520 3521 /* copy back packet headers if we performed NAT operations */ 3522 if (rewrite) 3523 m_copyback(m, off, hdrlen, pd->hdr.any); 3524 3525 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3526 direction == PF_OUT && 3527 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3528 /* 3529 * We want the state created, but we dont 3530 * want to send this in case a partner 3531 * firewall has to know about it to allow 3532 * replies through it. 3533 */ 3534 return (PF_DEFER); 3535 3536 return (PF_PASS); 3537 3538 cleanup: 3539 if (sk != NULL) 3540 uma_zfree(V_pf_state_key_z, sk); 3541 if (nk != NULL) 3542 uma_zfree(V_pf_state_key_z, nk); 3543 return (PF_DROP); 3544 } 3545 3546 static int 3547 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3548 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3549 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3550 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3551 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3552 { 3553 struct pf_state *s = NULL; 3554 struct pf_src_node *sn = NULL; 3555 struct tcphdr *th = pd->hdr.tcp; 3556 u_int16_t mss = V_tcp_mssdflt; 3557 u_short reason; 3558 3559 /* check maximums */ 3560 if (r->max_states && 3561 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3562 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3563 REASON_SET(&reason, PFRES_MAXSTATES); 3564 return (PF_DROP); 3565 } 3566 /* src node for filter rule */ 3567 if ((r->rule_flag & PFRULE_SRCTRACK || 3568 r->rpool.opts & PF_POOL_STICKYADDR) && 3569 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3570 REASON_SET(&reason, PFRES_SRCLIMIT); 3571 goto csfailed; 3572 } 3573 /* src node for translation rule */ 3574 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3575 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3576 REASON_SET(&reason, PFRES_SRCLIMIT); 3577 goto csfailed; 3578 } 3579 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3580 if (s == NULL) { 3581 REASON_SET(&reason, PFRES_MEMORY); 3582 goto csfailed; 3583 } 3584 s->rule.ptr = r; 3585 s->nat_rule.ptr = nr; 3586 s->anchor.ptr = a; 3587 STATE_INC_COUNTERS(s); 3588 if (r->allow_opts) 3589 s->state_flags |= PFSTATE_ALLOWOPTS; 3590 if (r->rule_flag & PFRULE_STATESLOPPY) 3591 s->state_flags |= PFSTATE_SLOPPY; 3592 s->log = r->log & PF_LOG_ALL; 3593 s->sync_state = PFSYNC_S_NONE; 3594 if (nr != NULL) 3595 s->log |= nr->log & PF_LOG_ALL; 3596 switch (pd->proto) { 3597 case IPPROTO_TCP: 3598 s->src.seqlo = ntohl(th->th_seq); 3599 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3600 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3601 r->keep_state == PF_STATE_MODULATE) { 3602 /* Generate sequence number modulator */ 3603 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3604 0) 3605 s->src.seqdiff = 1; 3606 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3607 htonl(s->src.seqlo + s->src.seqdiff), 0); 3608 *rewrite = 1; 3609 } else 3610 s->src.seqdiff = 0; 3611 if (th->th_flags & TH_SYN) { 3612 s->src.seqhi++; 3613 s->src.wscale = pf_get_wscale(m, off, 3614 th->th_off, pd->af); 3615 } 3616 s->src.max_win = MAX(ntohs(th->th_win), 1); 3617 if (s->src.wscale & PF_WSCALE_MASK) { 3618 /* Remove scale factor from initial window */ 3619 int win = s->src.max_win; 3620 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3621 s->src.max_win = (win - 1) >> 3622 (s->src.wscale & PF_WSCALE_MASK); 3623 } 3624 if (th->th_flags & TH_FIN) 3625 s->src.seqhi++; 3626 s->dst.seqhi = 1; 3627 s->dst.max_win = 1; 3628 s->src.state = TCPS_SYN_SENT; 3629 s->dst.state = TCPS_CLOSED; 3630 s->timeout = PFTM_TCP_FIRST_PACKET; 3631 break; 3632 case IPPROTO_UDP: 3633 s->src.state = PFUDPS_SINGLE; 3634 s->dst.state = PFUDPS_NO_TRAFFIC; 3635 s->timeout = PFTM_UDP_FIRST_PACKET; 3636 break; 3637 case IPPROTO_ICMP: 3638 #ifdef INET6 3639 case IPPROTO_ICMPV6: 3640 #endif 3641 s->timeout = PFTM_ICMP_FIRST_PACKET; 3642 break; 3643 default: 3644 s->src.state = PFOTHERS_SINGLE; 3645 s->dst.state = PFOTHERS_NO_TRAFFIC; 3646 s->timeout = PFTM_OTHER_FIRST_PACKET; 3647 } 3648 3649 if (r->rt) { 3650 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3651 REASON_SET(&reason, PFRES_MAPFAILED); 3652 pf_src_tree_remove_state(s); 3653 STATE_DEC_COUNTERS(s); 3654 uma_zfree(V_pf_state_z, s); 3655 goto csfailed; 3656 } 3657 s->rt_kif = r->rpool.cur->kif; 3658 } 3659 3660 s->creation = time_uptime; 3661 s->expire = time_uptime; 3662 3663 if (sn != NULL) 3664 s->src_node = sn; 3665 if (nsn != NULL) { 3666 /* XXX We only modify one side for now. */ 3667 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3668 s->nat_src_node = nsn; 3669 } 3670 if (pd->proto == IPPROTO_TCP) { 3671 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3672 off, pd, th, &s->src, &s->dst)) { 3673 REASON_SET(&reason, PFRES_MEMORY); 3674 pf_src_tree_remove_state(s); 3675 STATE_DEC_COUNTERS(s); 3676 uma_zfree(V_pf_state_z, s); 3677 return (PF_DROP); 3678 } 3679 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3680 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3681 &s->src, &s->dst, rewrite)) { 3682 /* This really shouldn't happen!!! */ 3683 DPFPRINTF(PF_DEBUG_URGENT, 3684 ("pf_normalize_tcp_stateful failed on first pkt")); 3685 pf_normalize_tcp_cleanup(s); 3686 pf_src_tree_remove_state(s); 3687 STATE_DEC_COUNTERS(s); 3688 uma_zfree(V_pf_state_z, s); 3689 return (PF_DROP); 3690 } 3691 } 3692 s->direction = pd->dir; 3693 3694 /* 3695 * sk/nk could already been setup by pf_get_translation(). 3696 */ 3697 if (nr == NULL) { 3698 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3699 __func__, nr, sk, nk)); 3700 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3701 if (sk == NULL) 3702 goto csfailed; 3703 nk = sk; 3704 } else 3705 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3706 __func__, nr, sk, nk)); 3707 3708 /* Swap sk/nk for PF_OUT. */ 3709 if (pf_state_insert(BOUND_IFACE(r, kif), 3710 (pd->dir == PF_IN) ? sk : nk, 3711 (pd->dir == PF_IN) ? nk : sk, s)) { 3712 if (pd->proto == IPPROTO_TCP) 3713 pf_normalize_tcp_cleanup(s); 3714 REASON_SET(&reason, PFRES_STATEINS); 3715 pf_src_tree_remove_state(s); 3716 STATE_DEC_COUNTERS(s); 3717 uma_zfree(V_pf_state_z, s); 3718 return (PF_DROP); 3719 } else 3720 *sm = s; 3721 3722 if (tag > 0) 3723 s->tag = tag; 3724 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3725 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3726 s->src.state = PF_TCPS_PROXY_SRC; 3727 /* undo NAT changes, if they have taken place */ 3728 if (nr != NULL) { 3729 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3730 if (pd->dir == PF_OUT) 3731 skt = s->key[PF_SK_STACK]; 3732 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3733 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3734 if (pd->sport) 3735 *pd->sport = skt->port[pd->sidx]; 3736 if (pd->dport) 3737 *pd->dport = skt->port[pd->didx]; 3738 if (pd->proto_sum) 3739 *pd->proto_sum = bproto_sum; 3740 if (pd->ip_sum) 3741 *pd->ip_sum = bip_sum; 3742 m_copyback(m, off, hdrlen, pd->hdr.any); 3743 } 3744 s->src.seqhi = htonl(arc4random()); 3745 /* Find mss option */ 3746 int rtid = M_GETFIB(m); 3747 mss = pf_get_mss(m, off, th->th_off, pd->af); 3748 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3749 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3750 s->src.mss = mss; 3751 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3752 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3753 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3754 REASON_SET(&reason, PFRES_SYNPROXY); 3755 return (PF_SYNPROXY_DROP); 3756 } 3757 3758 return (PF_PASS); 3759 3760 csfailed: 3761 if (sk != NULL) 3762 uma_zfree(V_pf_state_key_z, sk); 3763 if (nk != NULL) 3764 uma_zfree(V_pf_state_key_z, nk); 3765 3766 if (sn != NULL) { 3767 struct pf_srchash *sh; 3768 3769 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3770 PF_HASHROW_LOCK(sh); 3771 if (--sn->states == 0 && sn->expire == 0) { 3772 pf_unlink_src_node(sn); 3773 uma_zfree(V_pf_sources_z, sn); 3774 counter_u64_add( 3775 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3776 } 3777 PF_HASHROW_UNLOCK(sh); 3778 } 3779 3780 if (nsn != sn && nsn != NULL) { 3781 struct pf_srchash *sh; 3782 3783 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3784 PF_HASHROW_LOCK(sh); 3785 if (--nsn->states == 0 && nsn->expire == 0) { 3786 pf_unlink_src_node(nsn); 3787 uma_zfree(V_pf_sources_z, nsn); 3788 counter_u64_add( 3789 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3790 } 3791 PF_HASHROW_UNLOCK(sh); 3792 } 3793 3794 return (PF_DROP); 3795 } 3796 3797 static int 3798 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3799 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3800 struct pf_ruleset **rsm) 3801 { 3802 struct pf_rule *r, *a = NULL; 3803 struct pf_ruleset *ruleset = NULL; 3804 sa_family_t af = pd->af; 3805 u_short reason; 3806 int tag = -1; 3807 int asd = 0; 3808 int match = 0; 3809 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3810 3811 PF_RULES_RASSERT(); 3812 3813 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3814 while (r != NULL) { 3815 r->evaluations++; 3816 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3817 r = r->skip[PF_SKIP_IFP].ptr; 3818 else if (r->direction && r->direction != direction) 3819 r = r->skip[PF_SKIP_DIR].ptr; 3820 else if (r->af && r->af != af) 3821 r = r->skip[PF_SKIP_AF].ptr; 3822 else if (r->proto && r->proto != pd->proto) 3823 r = r->skip[PF_SKIP_PROTO].ptr; 3824 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3825 r->src.neg, kif, M_GETFIB(m))) 3826 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3827 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3828 r->dst.neg, NULL, M_GETFIB(m))) 3829 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3830 else if (r->tos && !(r->tos == pd->tos)) 3831 r = TAILQ_NEXT(r, entries); 3832 else if (r->os_fingerprint != PF_OSFP_ANY) 3833 r = TAILQ_NEXT(r, entries); 3834 else if (pd->proto == IPPROTO_UDP && 3835 (r->src.port_op || r->dst.port_op)) 3836 r = TAILQ_NEXT(r, entries); 3837 else if (pd->proto == IPPROTO_TCP && 3838 (r->src.port_op || r->dst.port_op || r->flagset)) 3839 r = TAILQ_NEXT(r, entries); 3840 else if ((pd->proto == IPPROTO_ICMP || 3841 pd->proto == IPPROTO_ICMPV6) && 3842 (r->type || r->code)) 3843 r = TAILQ_NEXT(r, entries); 3844 else if (r->prio && 3845 !pf_match_ieee8021q_pcp(r->prio, m)) 3846 r = TAILQ_NEXT(r, entries); 3847 else if (r->prob && r->prob <= 3848 (arc4random() % (UINT_MAX - 1) + 1)) 3849 r = TAILQ_NEXT(r, entries); 3850 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3851 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3852 r = TAILQ_NEXT(r, entries); 3853 else { 3854 if (r->anchor == NULL) { 3855 match = 1; 3856 *rm = r; 3857 *am = a; 3858 *rsm = ruleset; 3859 if ((*rm)->quick) 3860 break; 3861 r = TAILQ_NEXT(r, entries); 3862 } else 3863 pf_step_into_anchor(anchor_stack, &asd, 3864 &ruleset, PF_RULESET_FILTER, &r, &a, 3865 &match); 3866 } 3867 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3868 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3869 break; 3870 } 3871 r = *rm; 3872 a = *am; 3873 ruleset = *rsm; 3874 3875 REASON_SET(&reason, PFRES_MATCH); 3876 3877 if (r->log) 3878 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3879 1); 3880 3881 if (r->action != PF_PASS) 3882 return (PF_DROP); 3883 3884 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3885 REASON_SET(&reason, PFRES_MEMORY); 3886 return (PF_DROP); 3887 } 3888 3889 return (PF_PASS); 3890 } 3891 3892 static int 3893 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3894 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3895 struct pf_pdesc *pd, u_short *reason, int *copyback) 3896 { 3897 struct tcphdr *th = pd->hdr.tcp; 3898 u_int16_t win = ntohs(th->th_win); 3899 u_int32_t ack, end, seq, orig_seq; 3900 u_int8_t sws, dws; 3901 int ackskew; 3902 3903 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3904 sws = src->wscale & PF_WSCALE_MASK; 3905 dws = dst->wscale & PF_WSCALE_MASK; 3906 } else 3907 sws = dws = 0; 3908 3909 /* 3910 * Sequence tracking algorithm from Guido van Rooij's paper: 3911 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3912 * tcp_filtering.ps 3913 */ 3914 3915 orig_seq = seq = ntohl(th->th_seq); 3916 if (src->seqlo == 0) { 3917 /* First packet from this end. Set its state */ 3918 3919 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3920 src->scrub == NULL) { 3921 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3922 REASON_SET(reason, PFRES_MEMORY); 3923 return (PF_DROP); 3924 } 3925 } 3926 3927 /* Deferred generation of sequence number modulator */ 3928 if (dst->seqdiff && !src->seqdiff) { 3929 /* use random iss for the TCP server */ 3930 while ((src->seqdiff = arc4random() - seq) == 0) 3931 ; 3932 ack = ntohl(th->th_ack) - dst->seqdiff; 3933 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3934 src->seqdiff), 0); 3935 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3936 *copyback = 1; 3937 } else { 3938 ack = ntohl(th->th_ack); 3939 } 3940 3941 end = seq + pd->p_len; 3942 if (th->th_flags & TH_SYN) { 3943 end++; 3944 if (dst->wscale & PF_WSCALE_FLAG) { 3945 src->wscale = pf_get_wscale(m, off, th->th_off, 3946 pd->af); 3947 if (src->wscale & PF_WSCALE_FLAG) { 3948 /* Remove scale factor from initial 3949 * window */ 3950 sws = src->wscale & PF_WSCALE_MASK; 3951 win = ((u_int32_t)win + (1 << sws) - 1) 3952 >> sws; 3953 dws = dst->wscale & PF_WSCALE_MASK; 3954 } else { 3955 /* fixup other window */ 3956 dst->max_win <<= dst->wscale & 3957 PF_WSCALE_MASK; 3958 /* in case of a retrans SYN|ACK */ 3959 dst->wscale = 0; 3960 } 3961 } 3962 } 3963 if (th->th_flags & TH_FIN) 3964 end++; 3965 3966 src->seqlo = seq; 3967 if (src->state < TCPS_SYN_SENT) 3968 src->state = TCPS_SYN_SENT; 3969 3970 /* 3971 * May need to slide the window (seqhi may have been set by 3972 * the crappy stack check or if we picked up the connection 3973 * after establishment) 3974 */ 3975 if (src->seqhi == 1 || 3976 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3977 src->seqhi = end + MAX(1, dst->max_win << dws); 3978 if (win > src->max_win) 3979 src->max_win = win; 3980 3981 } else { 3982 ack = ntohl(th->th_ack) - dst->seqdiff; 3983 if (src->seqdiff) { 3984 /* Modulate sequence numbers */ 3985 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3986 src->seqdiff), 0); 3987 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3988 *copyback = 1; 3989 } 3990 end = seq + pd->p_len; 3991 if (th->th_flags & TH_SYN) 3992 end++; 3993 if (th->th_flags & TH_FIN) 3994 end++; 3995 } 3996 3997 if ((th->th_flags & TH_ACK) == 0) { 3998 /* Let it pass through the ack skew check */ 3999 ack = dst->seqlo; 4000 } else if ((ack == 0 && 4001 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4002 /* broken tcp stacks do not set ack */ 4003 (dst->state < TCPS_SYN_SENT)) { 4004 /* 4005 * Many stacks (ours included) will set the ACK number in an 4006 * FIN|ACK if the SYN times out -- no sequence to ACK. 4007 */ 4008 ack = dst->seqlo; 4009 } 4010 4011 if (seq == end) { 4012 /* Ease sequencing restrictions on no data packets */ 4013 seq = src->seqlo; 4014 end = seq; 4015 } 4016 4017 ackskew = dst->seqlo - ack; 4018 4019 4020 /* 4021 * Need to demodulate the sequence numbers in any TCP SACK options 4022 * (Selective ACK). We could optionally validate the SACK values 4023 * against the current ACK window, either forwards or backwards, but 4024 * I'm not confident that SACK has been implemented properly 4025 * everywhere. It wouldn't surprise me if several stacks accidentally 4026 * SACK too far backwards of previously ACKed data. There really aren't 4027 * any security implications of bad SACKing unless the target stack 4028 * doesn't validate the option length correctly. Someone trying to 4029 * spoof into a TCP connection won't bother blindly sending SACK 4030 * options anyway. 4031 */ 4032 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4033 if (pf_modulate_sack(m, off, pd, th, dst)) 4034 *copyback = 1; 4035 } 4036 4037 4038 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4039 if (SEQ_GEQ(src->seqhi, end) && 4040 /* Last octet inside other's window space */ 4041 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4042 /* Retrans: not more than one window back */ 4043 (ackskew >= -MAXACKWINDOW) && 4044 /* Acking not more than one reassembled fragment backwards */ 4045 (ackskew <= (MAXACKWINDOW << sws)) && 4046 /* Acking not more than one window forward */ 4047 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4048 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4049 (pd->flags & PFDESC_IP_REAS) == 0)) { 4050 /* Require an exact/+1 sequence match on resets when possible */ 4051 4052 if (dst->scrub || src->scrub) { 4053 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4054 *state, src, dst, copyback)) 4055 return (PF_DROP); 4056 } 4057 4058 /* update max window */ 4059 if (src->max_win < win) 4060 src->max_win = win; 4061 /* synchronize sequencing */ 4062 if (SEQ_GT(end, src->seqlo)) 4063 src->seqlo = end; 4064 /* slide the window of what the other end can send */ 4065 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4066 dst->seqhi = ack + MAX((win << sws), 1); 4067 4068 4069 /* update states */ 4070 if (th->th_flags & TH_SYN) 4071 if (src->state < TCPS_SYN_SENT) 4072 src->state = TCPS_SYN_SENT; 4073 if (th->th_flags & TH_FIN) 4074 if (src->state < TCPS_CLOSING) 4075 src->state = TCPS_CLOSING; 4076 if (th->th_flags & TH_ACK) { 4077 if (dst->state == TCPS_SYN_SENT) { 4078 dst->state = TCPS_ESTABLISHED; 4079 if (src->state == TCPS_ESTABLISHED && 4080 (*state)->src_node != NULL && 4081 pf_src_connlimit(state)) { 4082 REASON_SET(reason, PFRES_SRCLIMIT); 4083 return (PF_DROP); 4084 } 4085 } else if (dst->state == TCPS_CLOSING) 4086 dst->state = TCPS_FIN_WAIT_2; 4087 } 4088 if (th->th_flags & TH_RST) 4089 src->state = dst->state = TCPS_TIME_WAIT; 4090 4091 /* update expire time */ 4092 (*state)->expire = time_uptime; 4093 if (src->state >= TCPS_FIN_WAIT_2 && 4094 dst->state >= TCPS_FIN_WAIT_2) 4095 (*state)->timeout = PFTM_TCP_CLOSED; 4096 else if (src->state >= TCPS_CLOSING && 4097 dst->state >= TCPS_CLOSING) 4098 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4099 else if (src->state < TCPS_ESTABLISHED || 4100 dst->state < TCPS_ESTABLISHED) 4101 (*state)->timeout = PFTM_TCP_OPENING; 4102 else if (src->state >= TCPS_CLOSING || 4103 dst->state >= TCPS_CLOSING) 4104 (*state)->timeout = PFTM_TCP_CLOSING; 4105 else 4106 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4107 4108 /* Fall through to PASS packet */ 4109 4110 } else if ((dst->state < TCPS_SYN_SENT || 4111 dst->state >= TCPS_FIN_WAIT_2 || 4112 src->state >= TCPS_FIN_WAIT_2) && 4113 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4114 /* Within a window forward of the originating packet */ 4115 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4116 /* Within a window backward of the originating packet */ 4117 4118 /* 4119 * This currently handles three situations: 4120 * 1) Stupid stacks will shotgun SYNs before their peer 4121 * replies. 4122 * 2) When PF catches an already established stream (the 4123 * firewall rebooted, the state table was flushed, routes 4124 * changed...) 4125 * 3) Packets get funky immediately after the connection 4126 * closes (this should catch Solaris spurious ACK|FINs 4127 * that web servers like to spew after a close) 4128 * 4129 * This must be a little more careful than the above code 4130 * since packet floods will also be caught here. We don't 4131 * update the TTL here to mitigate the damage of a packet 4132 * flood and so the same code can handle awkward establishment 4133 * and a loosened connection close. 4134 * In the establishment case, a correct peer response will 4135 * validate the connection, go through the normal state code 4136 * and keep updating the state TTL. 4137 */ 4138 4139 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4140 printf("pf: loose state match: "); 4141 pf_print_state(*state); 4142 pf_print_flags(th->th_flags); 4143 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4144 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4145 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4146 (unsigned long long)(*state)->packets[1], 4147 pd->dir == PF_IN ? "in" : "out", 4148 pd->dir == (*state)->direction ? "fwd" : "rev"); 4149 } 4150 4151 if (dst->scrub || src->scrub) { 4152 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4153 *state, src, dst, copyback)) 4154 return (PF_DROP); 4155 } 4156 4157 /* update max window */ 4158 if (src->max_win < win) 4159 src->max_win = win; 4160 /* synchronize sequencing */ 4161 if (SEQ_GT(end, src->seqlo)) 4162 src->seqlo = end; 4163 /* slide the window of what the other end can send */ 4164 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4165 dst->seqhi = ack + MAX((win << sws), 1); 4166 4167 /* 4168 * Cannot set dst->seqhi here since this could be a shotgunned 4169 * SYN and not an already established connection. 4170 */ 4171 4172 if (th->th_flags & TH_FIN) 4173 if (src->state < TCPS_CLOSING) 4174 src->state = TCPS_CLOSING; 4175 if (th->th_flags & TH_RST) 4176 src->state = dst->state = TCPS_TIME_WAIT; 4177 4178 /* Fall through to PASS packet */ 4179 4180 } else { 4181 if ((*state)->dst.state == TCPS_SYN_SENT && 4182 (*state)->src.state == TCPS_SYN_SENT) { 4183 /* Send RST for state mismatches during handshake */ 4184 if (!(th->th_flags & TH_RST)) 4185 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4186 pd->dst, pd->src, th->th_dport, 4187 th->th_sport, ntohl(th->th_ack), 0, 4188 TH_RST, 0, 0, 4189 (*state)->rule.ptr->return_ttl, 1, 0, 4190 kif->pfik_ifp); 4191 src->seqlo = 0; 4192 src->seqhi = 1; 4193 src->max_win = 1; 4194 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4195 printf("pf: BAD state: "); 4196 pf_print_state(*state); 4197 pf_print_flags(th->th_flags); 4198 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4199 "pkts=%llu:%llu dir=%s,%s\n", 4200 seq, orig_seq, ack, pd->p_len, ackskew, 4201 (unsigned long long)(*state)->packets[0], 4202 (unsigned long long)(*state)->packets[1], 4203 pd->dir == PF_IN ? "in" : "out", 4204 pd->dir == (*state)->direction ? "fwd" : "rev"); 4205 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4206 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4207 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4208 ' ': '2', 4209 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4210 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4211 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4212 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4213 } 4214 REASON_SET(reason, PFRES_BADSTATE); 4215 return (PF_DROP); 4216 } 4217 4218 return (PF_PASS); 4219 } 4220 4221 static int 4222 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4223 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4224 { 4225 struct tcphdr *th = pd->hdr.tcp; 4226 4227 if (th->th_flags & TH_SYN) 4228 if (src->state < TCPS_SYN_SENT) 4229 src->state = TCPS_SYN_SENT; 4230 if (th->th_flags & TH_FIN) 4231 if (src->state < TCPS_CLOSING) 4232 src->state = TCPS_CLOSING; 4233 if (th->th_flags & TH_ACK) { 4234 if (dst->state == TCPS_SYN_SENT) { 4235 dst->state = TCPS_ESTABLISHED; 4236 if (src->state == TCPS_ESTABLISHED && 4237 (*state)->src_node != NULL && 4238 pf_src_connlimit(state)) { 4239 REASON_SET(reason, PFRES_SRCLIMIT); 4240 return (PF_DROP); 4241 } 4242 } else if (dst->state == TCPS_CLOSING) { 4243 dst->state = TCPS_FIN_WAIT_2; 4244 } else if (src->state == TCPS_SYN_SENT && 4245 dst->state < TCPS_SYN_SENT) { 4246 /* 4247 * Handle a special sloppy case where we only see one 4248 * half of the connection. If there is a ACK after 4249 * the initial SYN without ever seeing a packet from 4250 * the destination, set the connection to established. 4251 */ 4252 dst->state = src->state = TCPS_ESTABLISHED; 4253 if ((*state)->src_node != NULL && 4254 pf_src_connlimit(state)) { 4255 REASON_SET(reason, PFRES_SRCLIMIT); 4256 return (PF_DROP); 4257 } 4258 } else if (src->state == TCPS_CLOSING && 4259 dst->state == TCPS_ESTABLISHED && 4260 dst->seqlo == 0) { 4261 /* 4262 * Handle the closing of half connections where we 4263 * don't see the full bidirectional FIN/ACK+ACK 4264 * handshake. 4265 */ 4266 dst->state = TCPS_CLOSING; 4267 } 4268 } 4269 if (th->th_flags & TH_RST) 4270 src->state = dst->state = TCPS_TIME_WAIT; 4271 4272 /* update expire time */ 4273 (*state)->expire = time_uptime; 4274 if (src->state >= TCPS_FIN_WAIT_2 && 4275 dst->state >= TCPS_FIN_WAIT_2) 4276 (*state)->timeout = PFTM_TCP_CLOSED; 4277 else if (src->state >= TCPS_CLOSING && 4278 dst->state >= TCPS_CLOSING) 4279 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4280 else if (src->state < TCPS_ESTABLISHED || 4281 dst->state < TCPS_ESTABLISHED) 4282 (*state)->timeout = PFTM_TCP_OPENING; 4283 else if (src->state >= TCPS_CLOSING || 4284 dst->state >= TCPS_CLOSING) 4285 (*state)->timeout = PFTM_TCP_CLOSING; 4286 else 4287 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4288 4289 return (PF_PASS); 4290 } 4291 4292 static int 4293 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4294 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4295 u_short *reason) 4296 { 4297 struct pf_state_key_cmp key; 4298 struct tcphdr *th = pd->hdr.tcp; 4299 int copyback = 0; 4300 struct pf_state_peer *src, *dst; 4301 struct pf_state_key *sk; 4302 4303 bzero(&key, sizeof(key)); 4304 key.af = pd->af; 4305 key.proto = IPPROTO_TCP; 4306 if (direction == PF_IN) { /* wire side, straight */ 4307 PF_ACPY(&key.addr[0], pd->src, key.af); 4308 PF_ACPY(&key.addr[1], pd->dst, key.af); 4309 key.port[0] = th->th_sport; 4310 key.port[1] = th->th_dport; 4311 } else { /* stack side, reverse */ 4312 PF_ACPY(&key.addr[1], pd->src, key.af); 4313 PF_ACPY(&key.addr[0], pd->dst, key.af); 4314 key.port[1] = th->th_sport; 4315 key.port[0] = th->th_dport; 4316 } 4317 4318 STATE_LOOKUP(kif, &key, direction, *state, pd); 4319 4320 if (direction == (*state)->direction) { 4321 src = &(*state)->src; 4322 dst = &(*state)->dst; 4323 } else { 4324 src = &(*state)->dst; 4325 dst = &(*state)->src; 4326 } 4327 4328 sk = (*state)->key[pd->didx]; 4329 4330 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4331 if (direction != (*state)->direction) { 4332 REASON_SET(reason, PFRES_SYNPROXY); 4333 return (PF_SYNPROXY_DROP); 4334 } 4335 if (th->th_flags & TH_SYN) { 4336 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4337 REASON_SET(reason, PFRES_SYNPROXY); 4338 return (PF_DROP); 4339 } 4340 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4341 pd->src, th->th_dport, th->th_sport, 4342 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4343 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4344 REASON_SET(reason, PFRES_SYNPROXY); 4345 return (PF_SYNPROXY_DROP); 4346 } else if (!(th->th_flags & TH_ACK) || 4347 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4348 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4349 REASON_SET(reason, PFRES_SYNPROXY); 4350 return (PF_DROP); 4351 } else if ((*state)->src_node != NULL && 4352 pf_src_connlimit(state)) { 4353 REASON_SET(reason, PFRES_SRCLIMIT); 4354 return (PF_DROP); 4355 } else 4356 (*state)->src.state = PF_TCPS_PROXY_DST; 4357 } 4358 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4359 if (direction == (*state)->direction) { 4360 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4361 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4362 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4363 REASON_SET(reason, PFRES_SYNPROXY); 4364 return (PF_DROP); 4365 } 4366 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4367 if ((*state)->dst.seqhi == 1) 4368 (*state)->dst.seqhi = htonl(arc4random()); 4369 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4370 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4371 sk->port[pd->sidx], sk->port[pd->didx], 4372 (*state)->dst.seqhi, 0, TH_SYN, 0, 4373 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4374 REASON_SET(reason, PFRES_SYNPROXY); 4375 return (PF_SYNPROXY_DROP); 4376 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4377 (TH_SYN|TH_ACK)) || 4378 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4379 REASON_SET(reason, PFRES_SYNPROXY); 4380 return (PF_DROP); 4381 } else { 4382 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4383 (*state)->dst.seqlo = ntohl(th->th_seq); 4384 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4385 pd->src, th->th_dport, th->th_sport, 4386 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4387 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4388 (*state)->tag, NULL); 4389 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4390 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4391 sk->port[pd->sidx], sk->port[pd->didx], 4392 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4393 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4394 (*state)->src.seqdiff = (*state)->dst.seqhi - 4395 (*state)->src.seqlo; 4396 (*state)->dst.seqdiff = (*state)->src.seqhi - 4397 (*state)->dst.seqlo; 4398 (*state)->src.seqhi = (*state)->src.seqlo + 4399 (*state)->dst.max_win; 4400 (*state)->dst.seqhi = (*state)->dst.seqlo + 4401 (*state)->src.max_win; 4402 (*state)->src.wscale = (*state)->dst.wscale = 0; 4403 (*state)->src.state = (*state)->dst.state = 4404 TCPS_ESTABLISHED; 4405 REASON_SET(reason, PFRES_SYNPROXY); 4406 return (PF_SYNPROXY_DROP); 4407 } 4408 } 4409 4410 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4411 dst->state >= TCPS_FIN_WAIT_2 && 4412 src->state >= TCPS_FIN_WAIT_2) { 4413 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4414 printf("pf: state reuse "); 4415 pf_print_state(*state); 4416 pf_print_flags(th->th_flags); 4417 printf("\n"); 4418 } 4419 /* XXX make sure it's the same direction ?? */ 4420 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4421 pf_unlink_state(*state, PF_ENTER_LOCKED); 4422 *state = NULL; 4423 return (PF_DROP); 4424 } 4425 4426 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4427 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4428 return (PF_DROP); 4429 } else { 4430 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4431 ©back) == PF_DROP) 4432 return (PF_DROP); 4433 } 4434 4435 /* translate source/destination address, if necessary */ 4436 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4437 struct pf_state_key *nk = (*state)->key[pd->didx]; 4438 4439 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4440 nk->port[pd->sidx] != th->th_sport) 4441 pf_change_ap(m, pd->src, &th->th_sport, 4442 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4443 nk->port[pd->sidx], 0, pd->af); 4444 4445 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4446 nk->port[pd->didx] != th->th_dport) 4447 pf_change_ap(m, pd->dst, &th->th_dport, 4448 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4449 nk->port[pd->didx], 0, pd->af); 4450 copyback = 1; 4451 } 4452 4453 /* Copyback sequence modulation or stateful scrub changes if needed */ 4454 if (copyback) 4455 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4456 4457 return (PF_PASS); 4458 } 4459 4460 static int 4461 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4462 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4463 { 4464 struct pf_state_peer *src, *dst; 4465 struct pf_state_key_cmp key; 4466 struct udphdr *uh = pd->hdr.udp; 4467 4468 bzero(&key, sizeof(key)); 4469 key.af = pd->af; 4470 key.proto = IPPROTO_UDP; 4471 if (direction == PF_IN) { /* wire side, straight */ 4472 PF_ACPY(&key.addr[0], pd->src, key.af); 4473 PF_ACPY(&key.addr[1], pd->dst, key.af); 4474 key.port[0] = uh->uh_sport; 4475 key.port[1] = uh->uh_dport; 4476 } else { /* stack side, reverse */ 4477 PF_ACPY(&key.addr[1], pd->src, key.af); 4478 PF_ACPY(&key.addr[0], pd->dst, key.af); 4479 key.port[1] = uh->uh_sport; 4480 key.port[0] = uh->uh_dport; 4481 } 4482 4483 STATE_LOOKUP(kif, &key, direction, *state, pd); 4484 4485 if (direction == (*state)->direction) { 4486 src = &(*state)->src; 4487 dst = &(*state)->dst; 4488 } else { 4489 src = &(*state)->dst; 4490 dst = &(*state)->src; 4491 } 4492 4493 /* update states */ 4494 if (src->state < PFUDPS_SINGLE) 4495 src->state = PFUDPS_SINGLE; 4496 if (dst->state == PFUDPS_SINGLE) 4497 dst->state = PFUDPS_MULTIPLE; 4498 4499 /* update expire time */ 4500 (*state)->expire = time_uptime; 4501 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4502 (*state)->timeout = PFTM_UDP_MULTIPLE; 4503 else 4504 (*state)->timeout = PFTM_UDP_SINGLE; 4505 4506 /* translate source/destination address, if necessary */ 4507 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4508 struct pf_state_key *nk = (*state)->key[pd->didx]; 4509 4510 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4511 nk->port[pd->sidx] != uh->uh_sport) 4512 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4513 &uh->uh_sum, &nk->addr[pd->sidx], 4514 nk->port[pd->sidx], 1, pd->af); 4515 4516 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4517 nk->port[pd->didx] != uh->uh_dport) 4518 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4519 &uh->uh_sum, &nk->addr[pd->didx], 4520 nk->port[pd->didx], 1, pd->af); 4521 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4522 } 4523 4524 return (PF_PASS); 4525 } 4526 4527 static int 4528 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4529 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4530 { 4531 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4532 u_int16_t icmpid = 0, *icmpsum; 4533 u_int8_t icmptype; 4534 int state_icmp = 0; 4535 struct pf_state_key_cmp key; 4536 4537 bzero(&key, sizeof(key)); 4538 switch (pd->proto) { 4539 #ifdef INET 4540 case IPPROTO_ICMP: 4541 icmptype = pd->hdr.icmp->icmp_type; 4542 icmpid = pd->hdr.icmp->icmp_id; 4543 icmpsum = &pd->hdr.icmp->icmp_cksum; 4544 4545 if (icmptype == ICMP_UNREACH || 4546 icmptype == ICMP_SOURCEQUENCH || 4547 icmptype == ICMP_REDIRECT || 4548 icmptype == ICMP_TIMXCEED || 4549 icmptype == ICMP_PARAMPROB) 4550 state_icmp++; 4551 break; 4552 #endif /* INET */ 4553 #ifdef INET6 4554 case IPPROTO_ICMPV6: 4555 icmptype = pd->hdr.icmp6->icmp6_type; 4556 icmpid = pd->hdr.icmp6->icmp6_id; 4557 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4558 4559 if (icmptype == ICMP6_DST_UNREACH || 4560 icmptype == ICMP6_PACKET_TOO_BIG || 4561 icmptype == ICMP6_TIME_EXCEEDED || 4562 icmptype == ICMP6_PARAM_PROB) 4563 state_icmp++; 4564 break; 4565 #endif /* INET6 */ 4566 } 4567 4568 if (!state_icmp) { 4569 4570 /* 4571 * ICMP query/reply message not related to a TCP/UDP packet. 4572 * Search for an ICMP state. 4573 */ 4574 key.af = pd->af; 4575 key.proto = pd->proto; 4576 key.port[0] = key.port[1] = icmpid; 4577 if (direction == PF_IN) { /* wire side, straight */ 4578 PF_ACPY(&key.addr[0], pd->src, key.af); 4579 PF_ACPY(&key.addr[1], pd->dst, key.af); 4580 } else { /* stack side, reverse */ 4581 PF_ACPY(&key.addr[1], pd->src, key.af); 4582 PF_ACPY(&key.addr[0], pd->dst, key.af); 4583 } 4584 4585 STATE_LOOKUP(kif, &key, direction, *state, pd); 4586 4587 (*state)->expire = time_uptime; 4588 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4589 4590 /* translate source/destination address, if necessary */ 4591 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4592 struct pf_state_key *nk = (*state)->key[pd->didx]; 4593 4594 switch (pd->af) { 4595 #ifdef INET 4596 case AF_INET: 4597 if (PF_ANEQ(pd->src, 4598 &nk->addr[pd->sidx], AF_INET)) 4599 pf_change_a(&saddr->v4.s_addr, 4600 pd->ip_sum, 4601 nk->addr[pd->sidx].v4.s_addr, 0); 4602 4603 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4604 AF_INET)) 4605 pf_change_a(&daddr->v4.s_addr, 4606 pd->ip_sum, 4607 nk->addr[pd->didx].v4.s_addr, 0); 4608 4609 if (nk->port[0] != 4610 pd->hdr.icmp->icmp_id) { 4611 pd->hdr.icmp->icmp_cksum = 4612 pf_cksum_fixup( 4613 pd->hdr.icmp->icmp_cksum, icmpid, 4614 nk->port[pd->sidx], 0); 4615 pd->hdr.icmp->icmp_id = 4616 nk->port[pd->sidx]; 4617 } 4618 4619 m_copyback(m, off, ICMP_MINLEN, 4620 (caddr_t )pd->hdr.icmp); 4621 break; 4622 #endif /* INET */ 4623 #ifdef INET6 4624 case AF_INET6: 4625 if (PF_ANEQ(pd->src, 4626 &nk->addr[pd->sidx], AF_INET6)) 4627 pf_change_a6(saddr, 4628 &pd->hdr.icmp6->icmp6_cksum, 4629 &nk->addr[pd->sidx], 0); 4630 4631 if (PF_ANEQ(pd->dst, 4632 &nk->addr[pd->didx], AF_INET6)) 4633 pf_change_a6(daddr, 4634 &pd->hdr.icmp6->icmp6_cksum, 4635 &nk->addr[pd->didx], 0); 4636 4637 m_copyback(m, off, sizeof(struct icmp6_hdr), 4638 (caddr_t )pd->hdr.icmp6); 4639 break; 4640 #endif /* INET6 */ 4641 } 4642 } 4643 return (PF_PASS); 4644 4645 } else { 4646 /* 4647 * ICMP error message in response to a TCP/UDP packet. 4648 * Extract the inner TCP/UDP header and search for that state. 4649 */ 4650 4651 struct pf_pdesc pd2; 4652 bzero(&pd2, sizeof pd2); 4653 #ifdef INET 4654 struct ip h2; 4655 #endif /* INET */ 4656 #ifdef INET6 4657 struct ip6_hdr h2_6; 4658 int terminal = 0; 4659 #endif /* INET6 */ 4660 int ipoff2 = 0; 4661 int off2 = 0; 4662 4663 pd2.af = pd->af; 4664 /* Payload packet is from the opposite direction. */ 4665 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4666 pd2.didx = (direction == PF_IN) ? 0 : 1; 4667 switch (pd->af) { 4668 #ifdef INET 4669 case AF_INET: 4670 /* offset of h2 in mbuf chain */ 4671 ipoff2 = off + ICMP_MINLEN; 4672 4673 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4674 NULL, reason, pd2.af)) { 4675 DPFPRINTF(PF_DEBUG_MISC, 4676 ("pf: ICMP error message too short " 4677 "(ip)\n")); 4678 return (PF_DROP); 4679 } 4680 /* 4681 * ICMP error messages don't refer to non-first 4682 * fragments 4683 */ 4684 if (h2.ip_off & htons(IP_OFFMASK)) { 4685 REASON_SET(reason, PFRES_FRAG); 4686 return (PF_DROP); 4687 } 4688 4689 /* offset of protocol header that follows h2 */ 4690 off2 = ipoff2 + (h2.ip_hl << 2); 4691 4692 pd2.proto = h2.ip_p; 4693 pd2.src = (struct pf_addr *)&h2.ip_src; 4694 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4695 pd2.ip_sum = &h2.ip_sum; 4696 break; 4697 #endif /* INET */ 4698 #ifdef INET6 4699 case AF_INET6: 4700 ipoff2 = off + sizeof(struct icmp6_hdr); 4701 4702 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4703 NULL, reason, pd2.af)) { 4704 DPFPRINTF(PF_DEBUG_MISC, 4705 ("pf: ICMP error message too short " 4706 "(ip6)\n")); 4707 return (PF_DROP); 4708 } 4709 pd2.proto = h2_6.ip6_nxt; 4710 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4711 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4712 pd2.ip_sum = NULL; 4713 off2 = ipoff2 + sizeof(h2_6); 4714 do { 4715 switch (pd2.proto) { 4716 case IPPROTO_FRAGMENT: 4717 /* 4718 * ICMPv6 error messages for 4719 * non-first fragments 4720 */ 4721 REASON_SET(reason, PFRES_FRAG); 4722 return (PF_DROP); 4723 case IPPROTO_AH: 4724 case IPPROTO_HOPOPTS: 4725 case IPPROTO_ROUTING: 4726 case IPPROTO_DSTOPTS: { 4727 /* get next header and header length */ 4728 struct ip6_ext opt6; 4729 4730 if (!pf_pull_hdr(m, off2, &opt6, 4731 sizeof(opt6), NULL, reason, 4732 pd2.af)) { 4733 DPFPRINTF(PF_DEBUG_MISC, 4734 ("pf: ICMPv6 short opt\n")); 4735 return (PF_DROP); 4736 } 4737 if (pd2.proto == IPPROTO_AH) 4738 off2 += (opt6.ip6e_len + 2) * 4; 4739 else 4740 off2 += (opt6.ip6e_len + 1) * 8; 4741 pd2.proto = opt6.ip6e_nxt; 4742 /* goto the next header */ 4743 break; 4744 } 4745 default: 4746 terminal++; 4747 break; 4748 } 4749 } while (!terminal); 4750 break; 4751 #endif /* INET6 */ 4752 } 4753 4754 switch (pd2.proto) { 4755 case IPPROTO_TCP: { 4756 struct tcphdr th; 4757 u_int32_t seq; 4758 struct pf_state_peer *src, *dst; 4759 u_int8_t dws; 4760 int copyback = 0; 4761 4762 /* 4763 * Only the first 8 bytes of the TCP header can be 4764 * expected. Don't access any TCP header fields after 4765 * th_seq, an ackskew test is not possible. 4766 */ 4767 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4768 pd2.af)) { 4769 DPFPRINTF(PF_DEBUG_MISC, 4770 ("pf: ICMP error message too short " 4771 "(tcp)\n")); 4772 return (PF_DROP); 4773 } 4774 4775 key.af = pd2.af; 4776 key.proto = IPPROTO_TCP; 4777 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4778 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4779 key.port[pd2.sidx] = th.th_sport; 4780 key.port[pd2.didx] = th.th_dport; 4781 4782 STATE_LOOKUP(kif, &key, direction, *state, pd); 4783 4784 if (direction == (*state)->direction) { 4785 src = &(*state)->dst; 4786 dst = &(*state)->src; 4787 } else { 4788 src = &(*state)->src; 4789 dst = &(*state)->dst; 4790 } 4791 4792 if (src->wscale && dst->wscale) 4793 dws = dst->wscale & PF_WSCALE_MASK; 4794 else 4795 dws = 0; 4796 4797 /* Demodulate sequence number */ 4798 seq = ntohl(th.th_seq) - src->seqdiff; 4799 if (src->seqdiff) { 4800 pf_change_a(&th.th_seq, icmpsum, 4801 htonl(seq), 0); 4802 copyback = 1; 4803 } 4804 4805 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4806 (!SEQ_GEQ(src->seqhi, seq) || 4807 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4808 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4809 printf("pf: BAD ICMP %d:%d ", 4810 icmptype, pd->hdr.icmp->icmp_code); 4811 pf_print_host(pd->src, 0, pd->af); 4812 printf(" -> "); 4813 pf_print_host(pd->dst, 0, pd->af); 4814 printf(" state: "); 4815 pf_print_state(*state); 4816 printf(" seq=%u\n", seq); 4817 } 4818 REASON_SET(reason, PFRES_BADSTATE); 4819 return (PF_DROP); 4820 } else { 4821 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4822 printf("pf: OK ICMP %d:%d ", 4823 icmptype, pd->hdr.icmp->icmp_code); 4824 pf_print_host(pd->src, 0, pd->af); 4825 printf(" -> "); 4826 pf_print_host(pd->dst, 0, pd->af); 4827 printf(" state: "); 4828 pf_print_state(*state); 4829 printf(" seq=%u\n", seq); 4830 } 4831 } 4832 4833 /* translate source/destination address, if necessary */ 4834 if ((*state)->key[PF_SK_WIRE] != 4835 (*state)->key[PF_SK_STACK]) { 4836 struct pf_state_key *nk = 4837 (*state)->key[pd->didx]; 4838 4839 if (PF_ANEQ(pd2.src, 4840 &nk->addr[pd2.sidx], pd2.af) || 4841 nk->port[pd2.sidx] != th.th_sport) 4842 pf_change_icmp(pd2.src, &th.th_sport, 4843 daddr, &nk->addr[pd2.sidx], 4844 nk->port[pd2.sidx], NULL, 4845 pd2.ip_sum, icmpsum, 4846 pd->ip_sum, 0, pd2.af); 4847 4848 if (PF_ANEQ(pd2.dst, 4849 &nk->addr[pd2.didx], pd2.af) || 4850 nk->port[pd2.didx] != th.th_dport) 4851 pf_change_icmp(pd2.dst, &th.th_dport, 4852 saddr, &nk->addr[pd2.didx], 4853 nk->port[pd2.didx], NULL, 4854 pd2.ip_sum, icmpsum, 4855 pd->ip_sum, 0, pd2.af); 4856 copyback = 1; 4857 } 4858 4859 if (copyback) { 4860 switch (pd2.af) { 4861 #ifdef INET 4862 case AF_INET: 4863 m_copyback(m, off, ICMP_MINLEN, 4864 (caddr_t )pd->hdr.icmp); 4865 m_copyback(m, ipoff2, sizeof(h2), 4866 (caddr_t )&h2); 4867 break; 4868 #endif /* INET */ 4869 #ifdef INET6 4870 case AF_INET6: 4871 m_copyback(m, off, 4872 sizeof(struct icmp6_hdr), 4873 (caddr_t )pd->hdr.icmp6); 4874 m_copyback(m, ipoff2, sizeof(h2_6), 4875 (caddr_t )&h2_6); 4876 break; 4877 #endif /* INET6 */ 4878 } 4879 m_copyback(m, off2, 8, (caddr_t)&th); 4880 } 4881 4882 return (PF_PASS); 4883 break; 4884 } 4885 case IPPROTO_UDP: { 4886 struct udphdr uh; 4887 4888 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4889 NULL, reason, pd2.af)) { 4890 DPFPRINTF(PF_DEBUG_MISC, 4891 ("pf: ICMP error message too short " 4892 "(udp)\n")); 4893 return (PF_DROP); 4894 } 4895 4896 key.af = pd2.af; 4897 key.proto = IPPROTO_UDP; 4898 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4899 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4900 key.port[pd2.sidx] = uh.uh_sport; 4901 key.port[pd2.didx] = uh.uh_dport; 4902 4903 STATE_LOOKUP(kif, &key, direction, *state, pd); 4904 4905 /* translate source/destination address, if necessary */ 4906 if ((*state)->key[PF_SK_WIRE] != 4907 (*state)->key[PF_SK_STACK]) { 4908 struct pf_state_key *nk = 4909 (*state)->key[pd->didx]; 4910 4911 if (PF_ANEQ(pd2.src, 4912 &nk->addr[pd2.sidx], pd2.af) || 4913 nk->port[pd2.sidx] != uh.uh_sport) 4914 pf_change_icmp(pd2.src, &uh.uh_sport, 4915 daddr, &nk->addr[pd2.sidx], 4916 nk->port[pd2.sidx], &uh.uh_sum, 4917 pd2.ip_sum, icmpsum, 4918 pd->ip_sum, 1, pd2.af); 4919 4920 if (PF_ANEQ(pd2.dst, 4921 &nk->addr[pd2.didx], pd2.af) || 4922 nk->port[pd2.didx] != uh.uh_dport) 4923 pf_change_icmp(pd2.dst, &uh.uh_dport, 4924 saddr, &nk->addr[pd2.didx], 4925 nk->port[pd2.didx], &uh.uh_sum, 4926 pd2.ip_sum, icmpsum, 4927 pd->ip_sum, 1, pd2.af); 4928 4929 switch (pd2.af) { 4930 #ifdef INET 4931 case AF_INET: 4932 m_copyback(m, off, ICMP_MINLEN, 4933 (caddr_t )pd->hdr.icmp); 4934 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4935 break; 4936 #endif /* INET */ 4937 #ifdef INET6 4938 case AF_INET6: 4939 m_copyback(m, off, 4940 sizeof(struct icmp6_hdr), 4941 (caddr_t )pd->hdr.icmp6); 4942 m_copyback(m, ipoff2, sizeof(h2_6), 4943 (caddr_t )&h2_6); 4944 break; 4945 #endif /* INET6 */ 4946 } 4947 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4948 } 4949 return (PF_PASS); 4950 break; 4951 } 4952 #ifdef INET 4953 case IPPROTO_ICMP: { 4954 struct icmp iih; 4955 4956 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4957 NULL, reason, pd2.af)) { 4958 DPFPRINTF(PF_DEBUG_MISC, 4959 ("pf: ICMP error message too short i" 4960 "(icmp)\n")); 4961 return (PF_DROP); 4962 } 4963 4964 key.af = pd2.af; 4965 key.proto = IPPROTO_ICMP; 4966 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4967 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4968 key.port[0] = key.port[1] = iih.icmp_id; 4969 4970 STATE_LOOKUP(kif, &key, direction, *state, pd); 4971 4972 /* translate source/destination address, if necessary */ 4973 if ((*state)->key[PF_SK_WIRE] != 4974 (*state)->key[PF_SK_STACK]) { 4975 struct pf_state_key *nk = 4976 (*state)->key[pd->didx]; 4977 4978 if (PF_ANEQ(pd2.src, 4979 &nk->addr[pd2.sidx], pd2.af) || 4980 nk->port[pd2.sidx] != iih.icmp_id) 4981 pf_change_icmp(pd2.src, &iih.icmp_id, 4982 daddr, &nk->addr[pd2.sidx], 4983 nk->port[pd2.sidx], NULL, 4984 pd2.ip_sum, icmpsum, 4985 pd->ip_sum, 0, AF_INET); 4986 4987 if (PF_ANEQ(pd2.dst, 4988 &nk->addr[pd2.didx], pd2.af) || 4989 nk->port[pd2.didx] != iih.icmp_id) 4990 pf_change_icmp(pd2.dst, &iih.icmp_id, 4991 saddr, &nk->addr[pd2.didx], 4992 nk->port[pd2.didx], NULL, 4993 pd2.ip_sum, icmpsum, 4994 pd->ip_sum, 0, AF_INET); 4995 4996 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4997 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4998 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4999 } 5000 return (PF_PASS); 5001 break; 5002 } 5003 #endif /* INET */ 5004 #ifdef INET6 5005 case IPPROTO_ICMPV6: { 5006 struct icmp6_hdr iih; 5007 5008 if (!pf_pull_hdr(m, off2, &iih, 5009 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5010 DPFPRINTF(PF_DEBUG_MISC, 5011 ("pf: ICMP error message too short " 5012 "(icmp6)\n")); 5013 return (PF_DROP); 5014 } 5015 5016 key.af = pd2.af; 5017 key.proto = IPPROTO_ICMPV6; 5018 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5019 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5020 key.port[0] = key.port[1] = iih.icmp6_id; 5021 5022 STATE_LOOKUP(kif, &key, direction, *state, pd); 5023 5024 /* translate source/destination address, if necessary */ 5025 if ((*state)->key[PF_SK_WIRE] != 5026 (*state)->key[PF_SK_STACK]) { 5027 struct pf_state_key *nk = 5028 (*state)->key[pd->didx]; 5029 5030 if (PF_ANEQ(pd2.src, 5031 &nk->addr[pd2.sidx], pd2.af) || 5032 nk->port[pd2.sidx] != iih.icmp6_id) 5033 pf_change_icmp(pd2.src, &iih.icmp6_id, 5034 daddr, &nk->addr[pd2.sidx], 5035 nk->port[pd2.sidx], NULL, 5036 pd2.ip_sum, icmpsum, 5037 pd->ip_sum, 0, AF_INET6); 5038 5039 if (PF_ANEQ(pd2.dst, 5040 &nk->addr[pd2.didx], pd2.af) || 5041 nk->port[pd2.didx] != iih.icmp6_id) 5042 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5043 saddr, &nk->addr[pd2.didx], 5044 nk->port[pd2.didx], NULL, 5045 pd2.ip_sum, icmpsum, 5046 pd->ip_sum, 0, AF_INET6); 5047 5048 m_copyback(m, off, sizeof(struct icmp6_hdr), 5049 (caddr_t)pd->hdr.icmp6); 5050 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5051 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5052 (caddr_t)&iih); 5053 } 5054 return (PF_PASS); 5055 break; 5056 } 5057 #endif /* INET6 */ 5058 default: { 5059 key.af = pd2.af; 5060 key.proto = pd2.proto; 5061 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5062 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5063 key.port[0] = key.port[1] = 0; 5064 5065 STATE_LOOKUP(kif, &key, direction, *state, pd); 5066 5067 /* translate source/destination address, if necessary */ 5068 if ((*state)->key[PF_SK_WIRE] != 5069 (*state)->key[PF_SK_STACK]) { 5070 struct pf_state_key *nk = 5071 (*state)->key[pd->didx]; 5072 5073 if (PF_ANEQ(pd2.src, 5074 &nk->addr[pd2.sidx], pd2.af)) 5075 pf_change_icmp(pd2.src, NULL, daddr, 5076 &nk->addr[pd2.sidx], 0, NULL, 5077 pd2.ip_sum, icmpsum, 5078 pd->ip_sum, 0, pd2.af); 5079 5080 if (PF_ANEQ(pd2.dst, 5081 &nk->addr[pd2.didx], pd2.af)) 5082 pf_change_icmp(pd2.dst, NULL, saddr, 5083 &nk->addr[pd2.didx], 0, NULL, 5084 pd2.ip_sum, icmpsum, 5085 pd->ip_sum, 0, pd2.af); 5086 5087 switch (pd2.af) { 5088 #ifdef INET 5089 case AF_INET: 5090 m_copyback(m, off, ICMP_MINLEN, 5091 (caddr_t)pd->hdr.icmp); 5092 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5093 break; 5094 #endif /* INET */ 5095 #ifdef INET6 5096 case AF_INET6: 5097 m_copyback(m, off, 5098 sizeof(struct icmp6_hdr), 5099 (caddr_t )pd->hdr.icmp6); 5100 m_copyback(m, ipoff2, sizeof(h2_6), 5101 (caddr_t )&h2_6); 5102 break; 5103 #endif /* INET6 */ 5104 } 5105 } 5106 return (PF_PASS); 5107 break; 5108 } 5109 } 5110 } 5111 } 5112 5113 static int 5114 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5115 struct mbuf *m, struct pf_pdesc *pd) 5116 { 5117 struct pf_state_peer *src, *dst; 5118 struct pf_state_key_cmp key; 5119 5120 bzero(&key, sizeof(key)); 5121 key.af = pd->af; 5122 key.proto = pd->proto; 5123 if (direction == PF_IN) { 5124 PF_ACPY(&key.addr[0], pd->src, key.af); 5125 PF_ACPY(&key.addr[1], pd->dst, key.af); 5126 key.port[0] = key.port[1] = 0; 5127 } else { 5128 PF_ACPY(&key.addr[1], pd->src, key.af); 5129 PF_ACPY(&key.addr[0], pd->dst, key.af); 5130 key.port[1] = key.port[0] = 0; 5131 } 5132 5133 STATE_LOOKUP(kif, &key, direction, *state, pd); 5134 5135 if (direction == (*state)->direction) { 5136 src = &(*state)->src; 5137 dst = &(*state)->dst; 5138 } else { 5139 src = &(*state)->dst; 5140 dst = &(*state)->src; 5141 } 5142 5143 /* update states */ 5144 if (src->state < PFOTHERS_SINGLE) 5145 src->state = PFOTHERS_SINGLE; 5146 if (dst->state == PFOTHERS_SINGLE) 5147 dst->state = PFOTHERS_MULTIPLE; 5148 5149 /* update expire time */ 5150 (*state)->expire = time_uptime; 5151 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5152 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5153 else 5154 (*state)->timeout = PFTM_OTHER_SINGLE; 5155 5156 /* translate source/destination address, if necessary */ 5157 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5158 struct pf_state_key *nk = (*state)->key[pd->didx]; 5159 5160 KASSERT(nk, ("%s: nk is null", __func__)); 5161 KASSERT(pd, ("%s: pd is null", __func__)); 5162 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5163 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5164 switch (pd->af) { 5165 #ifdef INET 5166 case AF_INET: 5167 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5168 pf_change_a(&pd->src->v4.s_addr, 5169 pd->ip_sum, 5170 nk->addr[pd->sidx].v4.s_addr, 5171 0); 5172 5173 5174 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5175 pf_change_a(&pd->dst->v4.s_addr, 5176 pd->ip_sum, 5177 nk->addr[pd->didx].v4.s_addr, 5178 0); 5179 5180 break; 5181 #endif /* INET */ 5182 #ifdef INET6 5183 case AF_INET6: 5184 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5185 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5186 5187 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5188 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5189 #endif /* INET6 */ 5190 } 5191 } 5192 return (PF_PASS); 5193 } 5194 5195 /* 5196 * ipoff and off are measured from the start of the mbuf chain. 5197 * h must be at "ipoff" on the mbuf chain. 5198 */ 5199 void * 5200 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5201 u_short *actionp, u_short *reasonp, sa_family_t af) 5202 { 5203 switch (af) { 5204 #ifdef INET 5205 case AF_INET: { 5206 struct ip *h = mtod(m, struct ip *); 5207 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5208 5209 if (fragoff) { 5210 if (fragoff >= len) 5211 ACTION_SET(actionp, PF_PASS); 5212 else { 5213 ACTION_SET(actionp, PF_DROP); 5214 REASON_SET(reasonp, PFRES_FRAG); 5215 } 5216 return (NULL); 5217 } 5218 if (m->m_pkthdr.len < off + len || 5219 ntohs(h->ip_len) < off + len) { 5220 ACTION_SET(actionp, PF_DROP); 5221 REASON_SET(reasonp, PFRES_SHORT); 5222 return (NULL); 5223 } 5224 break; 5225 } 5226 #endif /* INET */ 5227 #ifdef INET6 5228 case AF_INET6: { 5229 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5230 5231 if (m->m_pkthdr.len < off + len || 5232 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5233 (unsigned)(off + len)) { 5234 ACTION_SET(actionp, PF_DROP); 5235 REASON_SET(reasonp, PFRES_SHORT); 5236 return (NULL); 5237 } 5238 break; 5239 } 5240 #endif /* INET6 */ 5241 } 5242 m_copydata(m, off, len, p); 5243 return (p); 5244 } 5245 5246 #ifdef RADIX_MPATH 5247 static int 5248 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5249 int rtableid) 5250 { 5251 struct radix_node_head *rnh; 5252 struct sockaddr_in *dst; 5253 int ret = 1; 5254 int check_mpath; 5255 #ifdef INET6 5256 struct sockaddr_in6 *dst6; 5257 struct route_in6 ro; 5258 #else 5259 struct route ro; 5260 #endif 5261 struct radix_node *rn; 5262 struct rtentry *rt; 5263 struct ifnet *ifp; 5264 5265 check_mpath = 0; 5266 /* XXX: stick to table 0 for now */ 5267 rnh = rt_tables_get_rnh(0, af); 5268 if (rnh != NULL && rn_mpath_capable(rnh)) 5269 check_mpath = 1; 5270 bzero(&ro, sizeof(ro)); 5271 switch (af) { 5272 case AF_INET: 5273 dst = satosin(&ro.ro_dst); 5274 dst->sin_family = AF_INET; 5275 dst->sin_len = sizeof(*dst); 5276 dst->sin_addr = addr->v4; 5277 break; 5278 #ifdef INET6 5279 case AF_INET6: 5280 /* 5281 * Skip check for addresses with embedded interface scope, 5282 * as they would always match anyway. 5283 */ 5284 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5285 goto out; 5286 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5287 dst6->sin6_family = AF_INET6; 5288 dst6->sin6_len = sizeof(*dst6); 5289 dst6->sin6_addr = addr->v6; 5290 break; 5291 #endif /* INET6 */ 5292 default: 5293 return (0); 5294 } 5295 5296 /* Skip checks for ipsec interfaces */ 5297 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5298 goto out; 5299 5300 switch (af) { 5301 #ifdef INET6 5302 case AF_INET6: 5303 in6_rtalloc_ign(&ro, 0, rtableid); 5304 break; 5305 #endif 5306 #ifdef INET 5307 case AF_INET: 5308 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5309 break; 5310 #endif 5311 } 5312 5313 if (ro.ro_rt != NULL) { 5314 /* No interface given, this is a no-route check */ 5315 if (kif == NULL) 5316 goto out; 5317 5318 if (kif->pfik_ifp == NULL) { 5319 ret = 0; 5320 goto out; 5321 } 5322 5323 /* Perform uRPF check if passed input interface */ 5324 ret = 0; 5325 rn = (struct radix_node *)ro.ro_rt; 5326 do { 5327 rt = (struct rtentry *)rn; 5328 ifp = rt->rt_ifp; 5329 5330 if (kif->pfik_ifp == ifp) 5331 ret = 1; 5332 rn = rn_mpath_next(rn); 5333 } while (check_mpath == 1 && rn != NULL && ret == 0); 5334 } else 5335 ret = 0; 5336 out: 5337 if (ro.ro_rt != NULL) 5338 RTFREE(ro.ro_rt); 5339 return (ret); 5340 } 5341 #endif 5342 5343 int 5344 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5345 int rtableid) 5346 { 5347 #ifdef INET 5348 struct nhop4_basic nh4; 5349 #endif 5350 #ifdef INET6 5351 struct nhop6_basic nh6; 5352 #endif 5353 struct ifnet *ifp; 5354 #ifdef RADIX_MPATH 5355 struct radix_node_head *rnh; 5356 5357 /* XXX: stick to table 0 for now */ 5358 rnh = rt_tables_get_rnh(0, af); 5359 if (rnh != NULL && rn_mpath_capable(rnh)) 5360 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5361 #endif 5362 /* 5363 * Skip check for addresses with embedded interface scope, 5364 * as they would always match anyway. 5365 */ 5366 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5367 return (1); 5368 5369 if (af != AF_INET && af != AF_INET6) 5370 return (0); 5371 5372 /* Skip checks for ipsec interfaces */ 5373 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5374 return (1); 5375 5376 ifp = NULL; 5377 5378 switch (af) { 5379 #ifdef INET6 5380 case AF_INET6: 5381 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5382 return (0); 5383 ifp = nh6.nh_ifp; 5384 break; 5385 #endif 5386 #ifdef INET 5387 case AF_INET: 5388 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5389 return (0); 5390 ifp = nh4.nh_ifp; 5391 break; 5392 #endif 5393 } 5394 5395 /* No interface given, this is a no-route check */ 5396 if (kif == NULL) 5397 return (1); 5398 5399 if (kif->pfik_ifp == NULL) 5400 return (0); 5401 5402 /* Perform uRPF check if passed input interface */ 5403 if (kif->pfik_ifp == ifp) 5404 return (1); 5405 return (0); 5406 } 5407 5408 #ifdef INET 5409 static void 5410 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5411 struct pf_state *s, struct pf_pdesc *pd) 5412 { 5413 struct mbuf *m0, *m1; 5414 struct sockaddr_in dst; 5415 struct ip *ip; 5416 struct ifnet *ifp = NULL; 5417 struct pf_addr naddr; 5418 struct pf_src_node *sn = NULL; 5419 int error = 0; 5420 uint16_t ip_len, ip_off; 5421 5422 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5423 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5424 __func__)); 5425 5426 if ((pd->pf_mtag == NULL && 5427 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5428 pd->pf_mtag->routed++ > 3) { 5429 m0 = *m; 5430 *m = NULL; 5431 goto bad_locked; 5432 } 5433 5434 if (r->rt == PF_DUPTO) { 5435 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5436 if (s) 5437 PF_STATE_UNLOCK(s); 5438 return; 5439 } 5440 } else { 5441 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5442 if (s) 5443 PF_STATE_UNLOCK(s); 5444 return; 5445 } 5446 m0 = *m; 5447 } 5448 5449 ip = mtod(m0, struct ip *); 5450 5451 bzero(&dst, sizeof(dst)); 5452 dst.sin_family = AF_INET; 5453 dst.sin_len = sizeof(dst); 5454 dst.sin_addr = ip->ip_dst; 5455 5456 if (TAILQ_EMPTY(&r->rpool.list)) { 5457 DPFPRINTF(PF_DEBUG_URGENT, 5458 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5459 goto bad_locked; 5460 } 5461 if (s == NULL) { 5462 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5463 &naddr, NULL, &sn); 5464 if (!PF_AZERO(&naddr, AF_INET)) 5465 dst.sin_addr.s_addr = naddr.v4.s_addr; 5466 ifp = r->rpool.cur->kif ? 5467 r->rpool.cur->kif->pfik_ifp : NULL; 5468 } else { 5469 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5470 dst.sin_addr.s_addr = 5471 s->rt_addr.v4.s_addr; 5472 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5473 PF_STATE_UNLOCK(s); 5474 } 5475 if (ifp == NULL) 5476 goto bad; 5477 5478 if (oifp != ifp) { 5479 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5480 goto bad; 5481 else if (m0 == NULL) 5482 goto done; 5483 if (m0->m_len < sizeof(struct ip)) { 5484 DPFPRINTF(PF_DEBUG_URGENT, 5485 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5486 goto bad; 5487 } 5488 ip = mtod(m0, struct ip *); 5489 } 5490 5491 if (ifp->if_flags & IFF_LOOPBACK) 5492 m0->m_flags |= M_SKIP_FIREWALL; 5493 5494 ip_len = ntohs(ip->ip_len); 5495 ip_off = ntohs(ip->ip_off); 5496 5497 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5498 m0->m_pkthdr.csum_flags |= CSUM_IP; 5499 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5500 in_delayed_cksum(m0); 5501 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5502 } 5503 #ifdef SCTP 5504 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5505 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5506 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5507 } 5508 #endif 5509 5510 /* 5511 * If small enough for interface, or the interface will take 5512 * care of the fragmentation for us, we can just send directly. 5513 */ 5514 if (ip_len <= ifp->if_mtu || 5515 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5516 ip->ip_sum = 0; 5517 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5518 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5519 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5520 } 5521 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5522 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5523 goto done; 5524 } 5525 5526 /* Balk when DF bit is set or the interface didn't support TSO. */ 5527 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5528 error = EMSGSIZE; 5529 KMOD_IPSTAT_INC(ips_cantfrag); 5530 if (r->rt != PF_DUPTO) { 5531 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5532 ifp->if_mtu); 5533 goto done; 5534 } else 5535 goto bad; 5536 } 5537 5538 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5539 if (error) 5540 goto bad; 5541 5542 for (; m0; m0 = m1) { 5543 m1 = m0->m_nextpkt; 5544 m0->m_nextpkt = NULL; 5545 if (error == 0) { 5546 m_clrprotoflags(m0); 5547 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5548 } else 5549 m_freem(m0); 5550 } 5551 5552 if (error == 0) 5553 KMOD_IPSTAT_INC(ips_fragmented); 5554 5555 done: 5556 if (r->rt != PF_DUPTO) 5557 *m = NULL; 5558 return; 5559 5560 bad_locked: 5561 if (s) 5562 PF_STATE_UNLOCK(s); 5563 bad: 5564 m_freem(m0); 5565 goto done; 5566 } 5567 #endif /* INET */ 5568 5569 #ifdef INET6 5570 static void 5571 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5572 struct pf_state *s, struct pf_pdesc *pd) 5573 { 5574 struct mbuf *m0; 5575 struct sockaddr_in6 dst; 5576 struct ip6_hdr *ip6; 5577 struct ifnet *ifp = NULL; 5578 struct pf_addr naddr; 5579 struct pf_src_node *sn = NULL; 5580 5581 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5582 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5583 __func__)); 5584 5585 if ((pd->pf_mtag == NULL && 5586 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5587 pd->pf_mtag->routed++ > 3) { 5588 m0 = *m; 5589 *m = NULL; 5590 goto bad_locked; 5591 } 5592 5593 if (r->rt == PF_DUPTO) { 5594 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5595 if (s) 5596 PF_STATE_UNLOCK(s); 5597 return; 5598 } 5599 } else { 5600 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5601 if (s) 5602 PF_STATE_UNLOCK(s); 5603 return; 5604 } 5605 m0 = *m; 5606 } 5607 5608 ip6 = mtod(m0, struct ip6_hdr *); 5609 5610 bzero(&dst, sizeof(dst)); 5611 dst.sin6_family = AF_INET6; 5612 dst.sin6_len = sizeof(dst); 5613 dst.sin6_addr = ip6->ip6_dst; 5614 5615 if (TAILQ_EMPTY(&r->rpool.list)) { 5616 DPFPRINTF(PF_DEBUG_URGENT, 5617 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5618 goto bad_locked; 5619 } 5620 if (s == NULL) { 5621 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5622 &naddr, NULL, &sn); 5623 if (!PF_AZERO(&naddr, AF_INET6)) 5624 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5625 &naddr, AF_INET6); 5626 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5627 } else { 5628 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5629 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5630 &s->rt_addr, AF_INET6); 5631 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5632 } 5633 5634 if (s) 5635 PF_STATE_UNLOCK(s); 5636 5637 if (ifp == NULL) 5638 goto bad; 5639 5640 if (oifp != ifp) { 5641 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5642 goto bad; 5643 else if (m0 == NULL) 5644 goto done; 5645 if (m0->m_len < sizeof(struct ip6_hdr)) { 5646 DPFPRINTF(PF_DEBUG_URGENT, 5647 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5648 __func__)); 5649 goto bad; 5650 } 5651 ip6 = mtod(m0, struct ip6_hdr *); 5652 } 5653 5654 if (ifp->if_flags & IFF_LOOPBACK) 5655 m0->m_flags |= M_SKIP_FIREWALL; 5656 5657 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5658 ~ifp->if_hwassist) { 5659 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5660 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5661 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5662 } 5663 5664 /* 5665 * If the packet is too large for the outgoing interface, 5666 * send back an icmp6 error. 5667 */ 5668 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5669 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5670 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5671 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5672 else { 5673 in6_ifstat_inc(ifp, ifs6_in_toobig); 5674 if (r->rt != PF_DUPTO) 5675 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5676 else 5677 goto bad; 5678 } 5679 5680 done: 5681 if (r->rt != PF_DUPTO) 5682 *m = NULL; 5683 return; 5684 5685 bad_locked: 5686 if (s) 5687 PF_STATE_UNLOCK(s); 5688 bad: 5689 m_freem(m0); 5690 goto done; 5691 } 5692 #endif /* INET6 */ 5693 5694 /* 5695 * FreeBSD supports cksum offloads for the following drivers. 5696 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5697 * ti(4), txp(4), xl(4) 5698 * 5699 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5700 * network driver performed cksum including pseudo header, need to verify 5701 * csum_data 5702 * CSUM_DATA_VALID : 5703 * network driver performed cksum, needs to additional pseudo header 5704 * cksum computation with partial csum_data(i.e. lack of H/W support for 5705 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5706 * 5707 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5708 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5709 * TCP/UDP layer. 5710 * Also, set csum_data to 0xffff to force cksum validation. 5711 */ 5712 static int 5713 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5714 { 5715 u_int16_t sum = 0; 5716 int hw_assist = 0; 5717 struct ip *ip; 5718 5719 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5720 return (1); 5721 if (m->m_pkthdr.len < off + len) 5722 return (1); 5723 5724 switch (p) { 5725 case IPPROTO_TCP: 5726 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5727 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5728 sum = m->m_pkthdr.csum_data; 5729 } else { 5730 ip = mtod(m, struct ip *); 5731 sum = in_pseudo(ip->ip_src.s_addr, 5732 ip->ip_dst.s_addr, htonl((u_short)len + 5733 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5734 } 5735 sum ^= 0xffff; 5736 ++hw_assist; 5737 } 5738 break; 5739 case IPPROTO_UDP: 5740 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5741 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5742 sum = m->m_pkthdr.csum_data; 5743 } else { 5744 ip = mtod(m, struct ip *); 5745 sum = in_pseudo(ip->ip_src.s_addr, 5746 ip->ip_dst.s_addr, htonl((u_short)len + 5747 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5748 } 5749 sum ^= 0xffff; 5750 ++hw_assist; 5751 } 5752 break; 5753 case IPPROTO_ICMP: 5754 #ifdef INET6 5755 case IPPROTO_ICMPV6: 5756 #endif /* INET6 */ 5757 break; 5758 default: 5759 return (1); 5760 } 5761 5762 if (!hw_assist) { 5763 switch (af) { 5764 case AF_INET: 5765 if (p == IPPROTO_ICMP) { 5766 if (m->m_len < off) 5767 return (1); 5768 m->m_data += off; 5769 m->m_len -= off; 5770 sum = in_cksum(m, len); 5771 m->m_data -= off; 5772 m->m_len += off; 5773 } else { 5774 if (m->m_len < sizeof(struct ip)) 5775 return (1); 5776 sum = in4_cksum(m, p, off, len); 5777 } 5778 break; 5779 #ifdef INET6 5780 case AF_INET6: 5781 if (m->m_len < sizeof(struct ip6_hdr)) 5782 return (1); 5783 sum = in6_cksum(m, p, off, len); 5784 break; 5785 #endif /* INET6 */ 5786 default: 5787 return (1); 5788 } 5789 } 5790 if (sum) { 5791 switch (p) { 5792 case IPPROTO_TCP: 5793 { 5794 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5795 break; 5796 } 5797 case IPPROTO_UDP: 5798 { 5799 KMOD_UDPSTAT_INC(udps_badsum); 5800 break; 5801 } 5802 #ifdef INET 5803 case IPPROTO_ICMP: 5804 { 5805 KMOD_ICMPSTAT_INC(icps_checksum); 5806 break; 5807 } 5808 #endif 5809 #ifdef INET6 5810 case IPPROTO_ICMPV6: 5811 { 5812 KMOD_ICMP6STAT_INC(icp6s_checksum); 5813 break; 5814 } 5815 #endif /* INET6 */ 5816 } 5817 return (1); 5818 } else { 5819 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5820 m->m_pkthdr.csum_flags |= 5821 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5822 m->m_pkthdr.csum_data = 0xffff; 5823 } 5824 } 5825 return (0); 5826 } 5827 5828 5829 #ifdef INET 5830 int 5831 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5832 { 5833 struct pfi_kif *kif; 5834 u_short action, reason = 0, log = 0; 5835 struct mbuf *m = *m0; 5836 struct ip *h = NULL; 5837 struct m_tag *ipfwtag; 5838 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5839 struct pf_state *s = NULL; 5840 struct pf_ruleset *ruleset = NULL; 5841 struct pf_pdesc pd; 5842 int off, dirndx, pqid = 0; 5843 5844 M_ASSERTPKTHDR(m); 5845 5846 if (!V_pf_status.running) 5847 return (PF_PASS); 5848 5849 memset(&pd, 0, sizeof(pd)); 5850 5851 kif = (struct pfi_kif *)ifp->if_pf_kif; 5852 5853 if (kif == NULL) { 5854 DPFPRINTF(PF_DEBUG_URGENT, 5855 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5856 return (PF_DROP); 5857 } 5858 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5859 return (PF_PASS); 5860 5861 if (m->m_flags & M_SKIP_FIREWALL) 5862 return (PF_PASS); 5863 5864 pd.pf_mtag = pf_find_mtag(m); 5865 5866 PF_RULES_RLOCK(); 5867 5868 if (ip_divert_ptr != NULL && 5869 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5870 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5871 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5872 if (pd.pf_mtag == NULL && 5873 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5874 action = PF_DROP; 5875 goto done; 5876 } 5877 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5878 m_tag_delete(m, ipfwtag); 5879 } 5880 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5881 m->m_flags |= M_FASTFWD_OURS; 5882 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5883 } 5884 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5885 /* We do IP header normalization and packet reassembly here */ 5886 action = PF_DROP; 5887 goto done; 5888 } 5889 m = *m0; /* pf_normalize messes with m0 */ 5890 h = mtod(m, struct ip *); 5891 5892 off = h->ip_hl << 2; 5893 if (off < (int)sizeof(struct ip)) { 5894 action = PF_DROP; 5895 REASON_SET(&reason, PFRES_SHORT); 5896 log = 1; 5897 goto done; 5898 } 5899 5900 pd.src = (struct pf_addr *)&h->ip_src; 5901 pd.dst = (struct pf_addr *)&h->ip_dst; 5902 pd.sport = pd.dport = NULL; 5903 pd.ip_sum = &h->ip_sum; 5904 pd.proto_sum = NULL; 5905 pd.proto = h->ip_p; 5906 pd.dir = dir; 5907 pd.sidx = (dir == PF_IN) ? 0 : 1; 5908 pd.didx = (dir == PF_IN) ? 1 : 0; 5909 pd.af = AF_INET; 5910 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5911 pd.tot_len = ntohs(h->ip_len); 5912 5913 /* handle fragments that didn't get reassembled by normalization */ 5914 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5915 action = pf_test_fragment(&r, dir, kif, m, h, 5916 &pd, &a, &ruleset); 5917 goto done; 5918 } 5919 5920 switch (h->ip_p) { 5921 5922 case IPPROTO_TCP: { 5923 struct tcphdr th; 5924 5925 pd.hdr.tcp = &th; 5926 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5927 &action, &reason, AF_INET)) { 5928 log = action != PF_PASS; 5929 goto done; 5930 } 5931 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5932 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5933 pqid = 1; 5934 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5935 if (action == PF_DROP) 5936 goto done; 5937 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5938 &reason); 5939 if (action == PF_PASS) { 5940 if (pfsync_update_state_ptr != NULL) 5941 pfsync_update_state_ptr(s); 5942 r = s->rule.ptr; 5943 a = s->anchor.ptr; 5944 log = s->log; 5945 } else if (s == NULL) 5946 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5947 &a, &ruleset, inp); 5948 break; 5949 } 5950 5951 case IPPROTO_UDP: { 5952 struct udphdr uh; 5953 5954 pd.hdr.udp = &uh; 5955 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5956 &action, &reason, AF_INET)) { 5957 log = action != PF_PASS; 5958 goto done; 5959 } 5960 if (uh.uh_dport == 0 || 5961 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5962 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5963 action = PF_DROP; 5964 REASON_SET(&reason, PFRES_SHORT); 5965 goto done; 5966 } 5967 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5968 if (action == PF_PASS) { 5969 if (pfsync_update_state_ptr != NULL) 5970 pfsync_update_state_ptr(s); 5971 r = s->rule.ptr; 5972 a = s->anchor.ptr; 5973 log = s->log; 5974 } else if (s == NULL) 5975 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5976 &a, &ruleset, inp); 5977 break; 5978 } 5979 5980 case IPPROTO_ICMP: { 5981 struct icmp ih; 5982 5983 pd.hdr.icmp = &ih; 5984 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5985 &action, &reason, AF_INET)) { 5986 log = action != PF_PASS; 5987 goto done; 5988 } 5989 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5990 &reason); 5991 if (action == PF_PASS) { 5992 if (pfsync_update_state_ptr != NULL) 5993 pfsync_update_state_ptr(s); 5994 r = s->rule.ptr; 5995 a = s->anchor.ptr; 5996 log = s->log; 5997 } else if (s == NULL) 5998 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5999 &a, &ruleset, inp); 6000 break; 6001 } 6002 6003 #ifdef INET6 6004 case IPPROTO_ICMPV6: { 6005 action = PF_DROP; 6006 DPFPRINTF(PF_DEBUG_MISC, 6007 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6008 goto done; 6009 } 6010 #endif 6011 6012 default: 6013 action = pf_test_state_other(&s, dir, kif, m, &pd); 6014 if (action == PF_PASS) { 6015 if (pfsync_update_state_ptr != NULL) 6016 pfsync_update_state_ptr(s); 6017 r = s->rule.ptr; 6018 a = s->anchor.ptr; 6019 log = s->log; 6020 } else if (s == NULL) 6021 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6022 &a, &ruleset, inp); 6023 break; 6024 } 6025 6026 done: 6027 PF_RULES_RUNLOCK(); 6028 if (action == PF_PASS && h->ip_hl > 5 && 6029 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6030 action = PF_DROP; 6031 REASON_SET(&reason, PFRES_IPOPTIONS); 6032 log = r->log; 6033 DPFPRINTF(PF_DEBUG_MISC, 6034 ("pf: dropping packet with ip options\n")); 6035 } 6036 6037 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6038 action = PF_DROP; 6039 REASON_SET(&reason, PFRES_MEMORY); 6040 } 6041 if (r->rtableid >= 0) 6042 M_SETFIB(m, r->rtableid); 6043 6044 if (r->scrub_flags & PFSTATE_SETPRIO) { 6045 if (pd.tos & IPTOS_LOWDELAY) 6046 pqid = 1; 6047 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6048 action = PF_DROP; 6049 REASON_SET(&reason, PFRES_MEMORY); 6050 log = 1; 6051 DPFPRINTF(PF_DEBUG_MISC, 6052 ("pf: failed to allocate 802.1q mtag\n")); 6053 } 6054 } 6055 6056 #ifdef ALTQ 6057 if (action == PF_PASS && r->qid) { 6058 if (pd.pf_mtag == NULL && 6059 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6060 action = PF_DROP; 6061 REASON_SET(&reason, PFRES_MEMORY); 6062 } else { 6063 if (s != NULL) 6064 pd.pf_mtag->qid_hash = pf_state_hash(s); 6065 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6066 pd.pf_mtag->qid = r->pqid; 6067 else 6068 pd.pf_mtag->qid = r->qid; 6069 /* Add hints for ecn. */ 6070 pd.pf_mtag->hdr = h; 6071 } 6072 6073 } 6074 #endif /* ALTQ */ 6075 6076 /* 6077 * connections redirected to loopback should not match sockets 6078 * bound specifically to loopback due to security implications, 6079 * see tcp_input() and in_pcblookup_listen(). 6080 */ 6081 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6082 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6083 (s->nat_rule.ptr->action == PF_RDR || 6084 s->nat_rule.ptr->action == PF_BINAT) && 6085 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6086 m->m_flags |= M_SKIP_FIREWALL; 6087 6088 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6089 !PACKET_LOOPED(&pd)) { 6090 6091 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6092 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6093 if (ipfwtag != NULL) { 6094 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6095 ntohs(r->divert.port); 6096 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6097 6098 if (s) 6099 PF_STATE_UNLOCK(s); 6100 6101 m_tag_prepend(m, ipfwtag); 6102 if (m->m_flags & M_FASTFWD_OURS) { 6103 if (pd.pf_mtag == NULL && 6104 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6105 action = PF_DROP; 6106 REASON_SET(&reason, PFRES_MEMORY); 6107 log = 1; 6108 DPFPRINTF(PF_DEBUG_MISC, 6109 ("pf: failed to allocate tag\n")); 6110 } else { 6111 pd.pf_mtag->flags |= 6112 PF_FASTFWD_OURS_PRESENT; 6113 m->m_flags &= ~M_FASTFWD_OURS; 6114 } 6115 } 6116 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6117 *m0 = NULL; 6118 6119 return (action); 6120 } else { 6121 /* XXX: ipfw has the same behaviour! */ 6122 action = PF_DROP; 6123 REASON_SET(&reason, PFRES_MEMORY); 6124 log = 1; 6125 DPFPRINTF(PF_DEBUG_MISC, 6126 ("pf: failed to allocate divert tag\n")); 6127 } 6128 } 6129 6130 if (log) { 6131 struct pf_rule *lr; 6132 6133 if (s != NULL && s->nat_rule.ptr != NULL && 6134 s->nat_rule.ptr->log & PF_LOG_ALL) 6135 lr = s->nat_rule.ptr; 6136 else 6137 lr = r; 6138 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6139 (s == NULL)); 6140 } 6141 6142 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6143 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6144 6145 if (action == PF_PASS || r->action == PF_DROP) { 6146 dirndx = (dir == PF_OUT); 6147 r->packets[dirndx]++; 6148 r->bytes[dirndx] += pd.tot_len; 6149 if (a != NULL) { 6150 a->packets[dirndx]++; 6151 a->bytes[dirndx] += pd.tot_len; 6152 } 6153 if (s != NULL) { 6154 if (s->nat_rule.ptr != NULL) { 6155 s->nat_rule.ptr->packets[dirndx]++; 6156 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6157 } 6158 if (s->src_node != NULL) { 6159 s->src_node->packets[dirndx]++; 6160 s->src_node->bytes[dirndx] += pd.tot_len; 6161 } 6162 if (s->nat_src_node != NULL) { 6163 s->nat_src_node->packets[dirndx]++; 6164 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6165 } 6166 dirndx = (dir == s->direction) ? 0 : 1; 6167 s->packets[dirndx]++; 6168 s->bytes[dirndx] += pd.tot_len; 6169 } 6170 tr = r; 6171 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6172 if (nr != NULL && r == &V_pf_default_rule) 6173 tr = nr; 6174 if (tr->src.addr.type == PF_ADDR_TABLE) 6175 pfr_update_stats(tr->src.addr.p.tbl, 6176 (s == NULL) ? pd.src : 6177 &s->key[(s->direction == PF_IN)]-> 6178 addr[(s->direction == PF_OUT)], 6179 pd.af, pd.tot_len, dir == PF_OUT, 6180 r->action == PF_PASS, tr->src.neg); 6181 if (tr->dst.addr.type == PF_ADDR_TABLE) 6182 pfr_update_stats(tr->dst.addr.p.tbl, 6183 (s == NULL) ? pd.dst : 6184 &s->key[(s->direction == PF_IN)]-> 6185 addr[(s->direction == PF_IN)], 6186 pd.af, pd.tot_len, dir == PF_OUT, 6187 r->action == PF_PASS, tr->dst.neg); 6188 } 6189 6190 switch (action) { 6191 case PF_SYNPROXY_DROP: 6192 m_freem(*m0); 6193 case PF_DEFER: 6194 *m0 = NULL; 6195 action = PF_PASS; 6196 break; 6197 case PF_DROP: 6198 m_freem(*m0); 6199 *m0 = NULL; 6200 break; 6201 default: 6202 /* pf_route() returns unlocked. */ 6203 if (r->rt) { 6204 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6205 return (action); 6206 } 6207 break; 6208 } 6209 if (s) 6210 PF_STATE_UNLOCK(s); 6211 6212 return (action); 6213 } 6214 #endif /* INET */ 6215 6216 #ifdef INET6 6217 int 6218 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6219 { 6220 struct pfi_kif *kif; 6221 u_short action, reason = 0, log = 0; 6222 struct mbuf *m = *m0, *n = NULL; 6223 struct m_tag *mtag; 6224 struct ip6_hdr *h = NULL; 6225 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6226 struct pf_state *s = NULL; 6227 struct pf_ruleset *ruleset = NULL; 6228 struct pf_pdesc pd; 6229 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6230 int fwdir = dir; 6231 6232 M_ASSERTPKTHDR(m); 6233 6234 /* Detect packet forwarding. 6235 * If the input interface is different from the output interface we're 6236 * forwarding. 6237 * We do need to be careful about bridges. If the 6238 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6239 * bridge, so if the input interface is a bridge member and the output 6240 * interface is its bridge or a member of the same bridge we're not 6241 * actually forwarding but bridging. 6242 */ 6243 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6244 (m->m_pkthdr.rcvif->if_bridge == NULL || 6245 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6246 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6247 fwdir = PF_FWD; 6248 6249 if (!V_pf_status.running) 6250 return (PF_PASS); 6251 6252 memset(&pd, 0, sizeof(pd)); 6253 pd.pf_mtag = pf_find_mtag(m); 6254 6255 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6256 return (PF_PASS); 6257 6258 kif = (struct pfi_kif *)ifp->if_pf_kif; 6259 if (kif == NULL) { 6260 DPFPRINTF(PF_DEBUG_URGENT, 6261 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6262 return (PF_DROP); 6263 } 6264 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6265 return (PF_PASS); 6266 6267 if (m->m_flags & M_SKIP_FIREWALL) 6268 return (PF_PASS); 6269 6270 PF_RULES_RLOCK(); 6271 6272 /* We do IP header normalization and packet reassembly here */ 6273 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6274 action = PF_DROP; 6275 goto done; 6276 } 6277 m = *m0; /* pf_normalize messes with m0 */ 6278 h = mtod(m, struct ip6_hdr *); 6279 6280 #if 1 6281 /* 6282 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6283 * will do something bad, so drop the packet for now. 6284 */ 6285 if (htons(h->ip6_plen) == 0) { 6286 action = PF_DROP; 6287 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6288 goto done; 6289 } 6290 #endif 6291 6292 pd.src = (struct pf_addr *)&h->ip6_src; 6293 pd.dst = (struct pf_addr *)&h->ip6_dst; 6294 pd.sport = pd.dport = NULL; 6295 pd.ip_sum = NULL; 6296 pd.proto_sum = NULL; 6297 pd.dir = dir; 6298 pd.sidx = (dir == PF_IN) ? 0 : 1; 6299 pd.didx = (dir == PF_IN) ? 1 : 0; 6300 pd.af = AF_INET6; 6301 pd.tos = 0; 6302 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6303 6304 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6305 pd.proto = h->ip6_nxt; 6306 do { 6307 switch (pd.proto) { 6308 case IPPROTO_FRAGMENT: 6309 action = pf_test_fragment(&r, dir, kif, m, h, 6310 &pd, &a, &ruleset); 6311 if (action == PF_DROP) 6312 REASON_SET(&reason, PFRES_FRAG); 6313 goto done; 6314 case IPPROTO_ROUTING: { 6315 struct ip6_rthdr rthdr; 6316 6317 if (rh_cnt++) { 6318 DPFPRINTF(PF_DEBUG_MISC, 6319 ("pf: IPv6 more than one rthdr\n")); 6320 action = PF_DROP; 6321 REASON_SET(&reason, PFRES_IPOPTIONS); 6322 log = 1; 6323 goto done; 6324 } 6325 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6326 &reason, pd.af)) { 6327 DPFPRINTF(PF_DEBUG_MISC, 6328 ("pf: IPv6 short rthdr\n")); 6329 action = PF_DROP; 6330 REASON_SET(&reason, PFRES_SHORT); 6331 log = 1; 6332 goto done; 6333 } 6334 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6335 DPFPRINTF(PF_DEBUG_MISC, 6336 ("pf: IPv6 rthdr0\n")); 6337 action = PF_DROP; 6338 REASON_SET(&reason, PFRES_IPOPTIONS); 6339 log = 1; 6340 goto done; 6341 } 6342 /* FALLTHROUGH */ 6343 } 6344 case IPPROTO_AH: 6345 case IPPROTO_HOPOPTS: 6346 case IPPROTO_DSTOPTS: { 6347 /* get next header and header length */ 6348 struct ip6_ext opt6; 6349 6350 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6351 NULL, &reason, pd.af)) { 6352 DPFPRINTF(PF_DEBUG_MISC, 6353 ("pf: IPv6 short opt\n")); 6354 action = PF_DROP; 6355 log = 1; 6356 goto done; 6357 } 6358 if (pd.proto == IPPROTO_AH) 6359 off += (opt6.ip6e_len + 2) * 4; 6360 else 6361 off += (opt6.ip6e_len + 1) * 8; 6362 pd.proto = opt6.ip6e_nxt; 6363 /* goto the next header */ 6364 break; 6365 } 6366 default: 6367 terminal++; 6368 break; 6369 } 6370 } while (!terminal); 6371 6372 /* if there's no routing header, use unmodified mbuf for checksumming */ 6373 if (!n) 6374 n = m; 6375 6376 switch (pd.proto) { 6377 6378 case IPPROTO_TCP: { 6379 struct tcphdr th; 6380 6381 pd.hdr.tcp = &th; 6382 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6383 &action, &reason, AF_INET6)) { 6384 log = action != PF_PASS; 6385 goto done; 6386 } 6387 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6388 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6389 if (action == PF_DROP) 6390 goto done; 6391 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6392 &reason); 6393 if (action == PF_PASS) { 6394 if (pfsync_update_state_ptr != NULL) 6395 pfsync_update_state_ptr(s); 6396 r = s->rule.ptr; 6397 a = s->anchor.ptr; 6398 log = s->log; 6399 } else if (s == NULL) 6400 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6401 &a, &ruleset, inp); 6402 break; 6403 } 6404 6405 case IPPROTO_UDP: { 6406 struct udphdr uh; 6407 6408 pd.hdr.udp = &uh; 6409 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6410 &action, &reason, AF_INET6)) { 6411 log = action != PF_PASS; 6412 goto done; 6413 } 6414 if (uh.uh_dport == 0 || 6415 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6416 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6417 action = PF_DROP; 6418 REASON_SET(&reason, PFRES_SHORT); 6419 goto done; 6420 } 6421 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6422 if (action == PF_PASS) { 6423 if (pfsync_update_state_ptr != NULL) 6424 pfsync_update_state_ptr(s); 6425 r = s->rule.ptr; 6426 a = s->anchor.ptr; 6427 log = s->log; 6428 } else if (s == NULL) 6429 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6430 &a, &ruleset, inp); 6431 break; 6432 } 6433 6434 case IPPROTO_ICMP: { 6435 action = PF_DROP; 6436 DPFPRINTF(PF_DEBUG_MISC, 6437 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6438 goto done; 6439 } 6440 6441 case IPPROTO_ICMPV6: { 6442 struct icmp6_hdr ih; 6443 6444 pd.hdr.icmp6 = &ih; 6445 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6446 &action, &reason, AF_INET6)) { 6447 log = action != PF_PASS; 6448 goto done; 6449 } 6450 action = pf_test_state_icmp(&s, dir, kif, 6451 m, off, h, &pd, &reason); 6452 if (action == PF_PASS) { 6453 if (pfsync_update_state_ptr != NULL) 6454 pfsync_update_state_ptr(s); 6455 r = s->rule.ptr; 6456 a = s->anchor.ptr; 6457 log = s->log; 6458 } else if (s == NULL) 6459 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6460 &a, &ruleset, inp); 6461 break; 6462 } 6463 6464 default: 6465 action = pf_test_state_other(&s, dir, kif, m, &pd); 6466 if (action == PF_PASS) { 6467 if (pfsync_update_state_ptr != NULL) 6468 pfsync_update_state_ptr(s); 6469 r = s->rule.ptr; 6470 a = s->anchor.ptr; 6471 log = s->log; 6472 } else if (s == NULL) 6473 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6474 &a, &ruleset, inp); 6475 break; 6476 } 6477 6478 done: 6479 PF_RULES_RUNLOCK(); 6480 if (n != m) { 6481 m_freem(n); 6482 n = NULL; 6483 } 6484 6485 /* handle dangerous IPv6 extension headers. */ 6486 if (action == PF_PASS && rh_cnt && 6487 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6488 action = PF_DROP; 6489 REASON_SET(&reason, PFRES_IPOPTIONS); 6490 log = r->log; 6491 DPFPRINTF(PF_DEBUG_MISC, 6492 ("pf: dropping packet with dangerous v6 headers\n")); 6493 } 6494 6495 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6496 action = PF_DROP; 6497 REASON_SET(&reason, PFRES_MEMORY); 6498 } 6499 if (r->rtableid >= 0) 6500 M_SETFIB(m, r->rtableid); 6501 6502 if (r->scrub_flags & PFSTATE_SETPRIO) { 6503 if (pd.tos & IPTOS_LOWDELAY) 6504 pqid = 1; 6505 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6506 action = PF_DROP; 6507 REASON_SET(&reason, PFRES_MEMORY); 6508 log = 1; 6509 DPFPRINTF(PF_DEBUG_MISC, 6510 ("pf: failed to allocate 802.1q mtag\n")); 6511 } 6512 } 6513 6514 #ifdef ALTQ 6515 if (action == PF_PASS && r->qid) { 6516 if (pd.pf_mtag == NULL && 6517 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6518 action = PF_DROP; 6519 REASON_SET(&reason, PFRES_MEMORY); 6520 } else { 6521 if (s != NULL) 6522 pd.pf_mtag->qid_hash = pf_state_hash(s); 6523 if (pd.tos & IPTOS_LOWDELAY) 6524 pd.pf_mtag->qid = r->pqid; 6525 else 6526 pd.pf_mtag->qid = r->qid; 6527 /* Add hints for ecn. */ 6528 pd.pf_mtag->hdr = h; 6529 } 6530 } 6531 #endif /* ALTQ */ 6532 6533 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6534 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6535 (s->nat_rule.ptr->action == PF_RDR || 6536 s->nat_rule.ptr->action == PF_BINAT) && 6537 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6538 m->m_flags |= M_SKIP_FIREWALL; 6539 6540 /* XXX: Anybody working on it?! */ 6541 if (r->divert.port) 6542 printf("pf: divert(9) is not supported for IPv6\n"); 6543 6544 if (log) { 6545 struct pf_rule *lr; 6546 6547 if (s != NULL && s->nat_rule.ptr != NULL && 6548 s->nat_rule.ptr->log & PF_LOG_ALL) 6549 lr = s->nat_rule.ptr; 6550 else 6551 lr = r; 6552 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6553 &pd, (s == NULL)); 6554 } 6555 6556 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6557 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6558 6559 if (action == PF_PASS || r->action == PF_DROP) { 6560 dirndx = (dir == PF_OUT); 6561 r->packets[dirndx]++; 6562 r->bytes[dirndx] += pd.tot_len; 6563 if (a != NULL) { 6564 a->packets[dirndx]++; 6565 a->bytes[dirndx] += pd.tot_len; 6566 } 6567 if (s != NULL) { 6568 if (s->nat_rule.ptr != NULL) { 6569 s->nat_rule.ptr->packets[dirndx]++; 6570 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6571 } 6572 if (s->src_node != NULL) { 6573 s->src_node->packets[dirndx]++; 6574 s->src_node->bytes[dirndx] += pd.tot_len; 6575 } 6576 if (s->nat_src_node != NULL) { 6577 s->nat_src_node->packets[dirndx]++; 6578 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6579 } 6580 dirndx = (dir == s->direction) ? 0 : 1; 6581 s->packets[dirndx]++; 6582 s->bytes[dirndx] += pd.tot_len; 6583 } 6584 tr = r; 6585 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6586 if (nr != NULL && r == &V_pf_default_rule) 6587 tr = nr; 6588 if (tr->src.addr.type == PF_ADDR_TABLE) 6589 pfr_update_stats(tr->src.addr.p.tbl, 6590 (s == NULL) ? pd.src : 6591 &s->key[(s->direction == PF_IN)]->addr[0], 6592 pd.af, pd.tot_len, dir == PF_OUT, 6593 r->action == PF_PASS, tr->src.neg); 6594 if (tr->dst.addr.type == PF_ADDR_TABLE) 6595 pfr_update_stats(tr->dst.addr.p.tbl, 6596 (s == NULL) ? pd.dst : 6597 &s->key[(s->direction == PF_IN)]->addr[1], 6598 pd.af, pd.tot_len, dir == PF_OUT, 6599 r->action == PF_PASS, tr->dst.neg); 6600 } 6601 6602 switch (action) { 6603 case PF_SYNPROXY_DROP: 6604 m_freem(*m0); 6605 case PF_DEFER: 6606 *m0 = NULL; 6607 action = PF_PASS; 6608 break; 6609 case PF_DROP: 6610 m_freem(*m0); 6611 *m0 = NULL; 6612 break; 6613 default: 6614 /* pf_route6() returns unlocked. */ 6615 if (r->rt) { 6616 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6617 return (action); 6618 } 6619 break; 6620 } 6621 6622 if (s) 6623 PF_STATE_UNLOCK(s); 6624 6625 /* If reassembled packet passed, create new fragments. */ 6626 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6627 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6628 action = pf_refragment6(ifp, m0, mtag); 6629 6630 return (action); 6631 } 6632 #endif /* INET6 */ 6633