1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/sdt.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <crypto/sha2/sha512.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_private.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #include <netinet/sctp_header.h> 115 #include <netinet/sctp_crc32.h> 116 117 #include <machine/in_cksum.h> 118 #include <security/mac/mac_framework.h> 119 120 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 121 122 SDT_PROVIDER_DEFINE(pf); 123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int"); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 140 "struct pf_krule *", "struct mbuf *", "int"); 141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 142 "struct pf_sctp_source *"); 143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 144 "struct pf_kstate *", "struct pf_sctp_source *"); 145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int", 146 "int", "struct pf_pdesc *", "int"); 147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t"); 148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *", 149 "int"); 150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *", 151 "int"); 152 153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 154 "struct mbuf *"); 155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 157 "int", "struct pf_keth_rule *", "char *"); 158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 160 "int", "struct pf_keth_rule *"); 161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 162 163 /* 164 * Global variables 165 */ 166 167 /* state tables */ 168 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 169 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]); 170 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 171 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 172 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 173 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 174 VNET_DEFINE(struct pf_kstatus, pf_status); 175 176 VNET_DEFINE(u_int32_t, ticket_altqs_active); 177 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 178 VNET_DEFINE(int, altqs_inactive_open); 179 VNET_DEFINE(u_int32_t, ticket_pabuf); 180 181 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx); 182 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 183 VNET_DEFINE(u_char, pf_tcp_secret[16]); 184 #define V_pf_tcp_secret VNET(pf_tcp_secret) 185 VNET_DEFINE(int, pf_tcp_secret_init); 186 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 187 VNET_DEFINE(int, pf_tcp_iss_off); 188 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 189 VNET_DECLARE(int, pf_vnet_active); 190 #define V_pf_vnet_active VNET(pf_vnet_active) 191 192 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 193 #define V_pf_purge_idx VNET(pf_purge_idx) 194 195 #ifdef PF_WANT_32_TO_64_COUNTER 196 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 197 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 198 199 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 200 VNET_DEFINE(size_t, pf_allrulecount); 201 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 202 #endif 203 204 struct pf_sctp_endpoint; 205 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 206 struct pf_sctp_source { 207 sa_family_t af; 208 struct pf_addr addr; 209 TAILQ_ENTRY(pf_sctp_source) entry; 210 }; 211 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 212 struct pf_sctp_endpoint 213 { 214 uint32_t v_tag; 215 struct pf_sctp_sources sources; 216 RB_ENTRY(pf_sctp_endpoint) entry; 217 }; 218 static int 219 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 220 { 221 return (a->v_tag - b->v_tag); 222 } 223 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 224 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 225 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 226 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 227 static struct mtx_padalign pf_sctp_endpoints_mtx; 228 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 229 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 230 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 231 232 /* 233 * Queue for pf_intr() sends. 234 */ 235 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 236 struct pf_send_entry { 237 STAILQ_ENTRY(pf_send_entry) pfse_next; 238 struct mbuf *pfse_m; 239 enum { 240 PFSE_IP, 241 PFSE_IP6, 242 PFSE_ICMP, 243 PFSE_ICMP6, 244 } pfse_type; 245 struct { 246 int type; 247 int code; 248 int mtu; 249 } icmpopts; 250 }; 251 252 STAILQ_HEAD(pf_send_head, pf_send_entry); 253 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 254 #define V_pf_sendqueue VNET(pf_sendqueue) 255 256 static struct mtx_padalign pf_sendqueue_mtx; 257 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 258 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 259 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 260 261 /* 262 * Queue for pf_overload_task() tasks. 263 */ 264 struct pf_overload_entry { 265 SLIST_ENTRY(pf_overload_entry) next; 266 struct pf_addr addr; 267 sa_family_t af; 268 uint8_t dir; 269 struct pf_krule *rule; 270 }; 271 272 SLIST_HEAD(pf_overload_head, pf_overload_entry); 273 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 274 #define V_pf_overloadqueue VNET(pf_overloadqueue) 275 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 276 #define V_pf_overloadtask VNET(pf_overloadtask) 277 278 static struct mtx_padalign pf_overloadqueue_mtx; 279 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 280 "pf overload/flush queue", MTX_DEF); 281 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 282 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 283 284 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 285 struct mtx_padalign pf_unlnkdrules_mtx; 286 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 287 MTX_DEF); 288 289 struct sx pf_config_lock; 290 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 291 292 struct mtx_padalign pf_table_stats_lock; 293 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 294 MTX_DEF); 295 296 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 297 #define V_pf_sources_z VNET(pf_sources_z) 298 uma_zone_t pf_mtag_z; 299 VNET_DEFINE(uma_zone_t, pf_state_z); 300 VNET_DEFINE(uma_zone_t, pf_state_key_z); 301 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 302 303 VNET_DEFINE(struct unrhdr64, pf_stateid); 304 305 static void pf_src_tree_remove_state(struct pf_kstate *); 306 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 307 u_int32_t); 308 static void pf_add_threshold(struct pf_threshold *); 309 static int pf_check_threshold(struct pf_threshold *); 310 311 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *, 312 u_int16_t *, u_int16_t *, struct pf_addr *, 313 u_int16_t, u_int8_t); 314 static int pf_modulate_sack(struct pf_pdesc *, 315 struct tcphdr *, struct pf_state_peer *); 316 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 317 u_int16_t *, u_int16_t *); 318 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 319 struct pf_addr *, struct pf_addr *, u_int16_t, 320 u_int16_t *, u_int16_t *, u_int16_t *, 321 u_int16_t *, u_int8_t, sa_family_t); 322 int pf_change_icmp_af(struct mbuf *, int, 323 struct pf_pdesc *, struct pf_pdesc *, 324 struct pf_addr *, struct pf_addr *, sa_family_t, 325 sa_family_t); 326 int pf_translate_icmp_af(int, void *); 327 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 328 sa_family_t, struct pf_krule *, int); 329 static void pf_detach_state(struct pf_kstate *); 330 static int pf_state_key_attach(struct pf_state_key *, 331 struct pf_state_key *, struct pf_kstate *); 332 static void pf_state_key_detach(struct pf_kstate *, int); 333 static int pf_state_key_ctor(void *, int, void *, int); 334 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 335 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 336 struct pf_mtag *pf_mtag); 337 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 338 struct pf_krule *, struct mbuf **); 339 static int pf_dummynet_route(struct pf_pdesc *, 340 struct pf_kstate *, struct pf_krule *, 341 struct ifnet *, const struct sockaddr *, struct mbuf **); 342 static int pf_test_eth_rule(int, struct pfi_kkif *, 343 struct mbuf **); 344 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 345 struct pf_pdesc *, struct pf_krule **, 346 struct pf_kruleset **, u_short *, struct inpcb *); 347 static int pf_create_state(struct pf_krule *, struct pf_krule *, 348 struct pf_krule *, struct pf_pdesc *, 349 struct pf_state_key *, struct pf_state_key *, int *, 350 struct pf_kstate **, int, u_int16_t, u_int16_t, 351 struct pf_krule_slist *, struct pf_udp_mapping *, 352 u_short *); 353 static int pf_state_key_addr_setup(struct pf_pdesc *, 354 struct pf_state_key_cmp *, int); 355 static int pf_tcp_track_full(struct pf_kstate *, 356 struct pf_pdesc *, u_short *, int *, 357 struct pf_state_peer *, struct pf_state_peer *, 358 u_int8_t, u_int8_t); 359 static int pf_tcp_track_sloppy(struct pf_kstate *, 360 struct pf_pdesc *, u_short *, 361 struct pf_state_peer *, struct pf_state_peer *, 362 u_int8_t, u_int8_t); 363 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *, 364 u_short *); 365 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 366 struct pf_pdesc *, struct pf_kstate **, 367 u_int16_t, u_int16_t, int, int *, int, int); 368 static int pf_test_state_icmp(struct pf_kstate **, 369 struct pf_pdesc *, u_short *); 370 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *, 371 u_short *); 372 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 373 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 374 struct pfi_kkif *, struct pf_kstate *, int); 375 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 376 int, u_int16_t); 377 static int pf_check_proto_cksum(struct mbuf *, int, int, 378 u_int8_t, sa_family_t); 379 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *, 380 int, int, u_short *); 381 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *, 382 u_short *); 383 static void pf_print_state_parts(struct pf_kstate *, 384 struct pf_state_key *, struct pf_state_key *); 385 static void pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t, 386 bool); 387 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 388 const struct pf_state_key_cmp *, u_int); 389 static bool pf_src_connlimit(struct pf_kstate *); 390 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 391 static void pf_counters_inc(int, struct pf_pdesc *, 392 struct pf_kstate *, struct pf_krule *, 393 struct pf_krule *); 394 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *, 395 struct pf_krule *, struct pf_kruleset *, 396 struct pf_krule_slist *); 397 static void pf_overload_task(void *v, int pending); 398 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX], 399 struct pf_srchash *[PF_SN_MAX], struct pf_krule *, 400 struct pf_addr *, sa_family_t, struct pf_addr *, 401 struct pfi_kkif *, pf_sn_types_t); 402 static u_int pf_purge_expired_states(u_int, int); 403 static void pf_purge_unlinked_rules(void); 404 static int pf_mtag_uminit(void *, int, int); 405 static void pf_mtag_free(struct m_tag *); 406 static void pf_packet_rework_nat(struct pf_pdesc *, int, 407 struct pf_state_key *); 408 #ifdef INET 409 static void pf_route(struct mbuf **, struct pf_krule *, 410 struct ifnet *, struct pf_kstate *, 411 struct pf_pdesc *, struct inpcb *); 412 #endif /* INET */ 413 #ifdef INET6 414 static void pf_change_a6(struct pf_addr *, u_int16_t *, 415 struct pf_addr *, u_int8_t); 416 static void pf_route6(struct mbuf **, struct pf_krule *, 417 struct ifnet *, struct pf_kstate *, 418 struct pf_pdesc *, struct inpcb *); 419 #endif /* INET6 */ 420 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 421 422 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 423 424 extern int pf_end_threads; 425 extern struct proc *pf_purge_proc; 426 427 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 428 429 #define PACKET_UNDO_NAT(_pd, _off, _s) \ 430 do { \ 431 struct pf_state_key *nk; \ 432 if ((pd->dir) == PF_OUT) \ 433 nk = (_s)->key[PF_SK_STACK]; \ 434 else \ 435 nk = (_s)->key[PF_SK_WIRE]; \ 436 pf_packet_rework_nat(_pd, _off, nk); \ 437 } while (0) 438 439 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 440 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 441 442 #define STATE_LOOKUP(k, s, pd) \ 443 do { \ 444 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 445 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 446 if ((s) == NULL) \ 447 return (PF_DROP); \ 448 if (PACKET_LOOPED(pd)) \ 449 return (PF_PASS); \ 450 } while (0) 451 452 static struct pfi_kkif * 453 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd) 454 { 455 struct pfi_kkif *k = pd->kif; 456 457 SDT_PROBE2(pf, ip, , bound_iface, st, k); 458 459 /* Floating unless otherwise specified. */ 460 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 461 return (V_pfi_all); 462 463 /* 464 * Initially set to all, because we don't know what interface we'll be 465 * sending this out when we create the state. 466 */ 467 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN)) 468 return (V_pfi_all); 469 470 /* 471 * If this state is created based on another state (e.g. SCTP 472 * multihome) always set it floating initially. We can't know for sure 473 * what interface the actual traffic for this state will come in on. 474 */ 475 if (pd->related_rule) 476 return (V_pfi_all); 477 478 /* Don't overrule the interface for states created on incoming packets. */ 479 if (st->direction == PF_IN) 480 return (k); 481 482 /* No route-to, so don't overrule. */ 483 if (st->act.rt != PF_ROUTETO) 484 return (k); 485 486 /* Bind to the route-to interface. */ 487 return (st->act.rt_kif); 488 } 489 490 #define STATE_INC_COUNTERS(s) \ 491 do { \ 492 struct pf_krule_item *mrm; \ 493 counter_u64_add(s->rule->states_cur, 1); \ 494 counter_u64_add(s->rule->states_tot, 1); \ 495 if (s->anchor != NULL) { \ 496 counter_u64_add(s->anchor->states_cur, 1); \ 497 counter_u64_add(s->anchor->states_tot, 1); \ 498 } \ 499 if (s->nat_rule != NULL) { \ 500 counter_u64_add(s->nat_rule->states_cur, 1);\ 501 counter_u64_add(s->nat_rule->states_tot, 1);\ 502 } \ 503 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 504 counter_u64_add(mrm->r->states_cur, 1); \ 505 counter_u64_add(mrm->r->states_tot, 1); \ 506 } \ 507 } while (0) 508 509 #define STATE_DEC_COUNTERS(s) \ 510 do { \ 511 struct pf_krule_item *mrm; \ 512 if (s->nat_rule != NULL) \ 513 counter_u64_add(s->nat_rule->states_cur, -1);\ 514 if (s->anchor != NULL) \ 515 counter_u64_add(s->anchor->states_cur, -1); \ 516 counter_u64_add(s->rule->states_cur, -1); \ 517 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 518 counter_u64_add(mrm->r->states_cur, -1); \ 519 } while (0) 520 521 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 522 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 523 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 524 VNET_DEFINE(struct pf_idhash *, pf_idhash); 525 VNET_DEFINE(struct pf_srchash *, pf_srchash); 526 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 527 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 528 529 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 530 "pf(4)"); 531 532 VNET_DEFINE(u_long, pf_hashmask); 533 VNET_DEFINE(u_long, pf_srchashmask); 534 VNET_DEFINE(u_long, pf_udpendpointhashmask); 535 VNET_DEFINE_STATIC(u_long, pf_hashsize); 536 #define V_pf_hashsize VNET(pf_hashsize) 537 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 538 #define V_pf_srchashsize VNET(pf_srchashsize) 539 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 540 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 541 u_long pf_ioctl_maxcount = 65535; 542 543 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 544 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 545 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 546 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 547 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 548 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 549 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 550 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 551 552 VNET_DEFINE(void *, pf_swi_cookie); 553 VNET_DEFINE(struct intr_event *, pf_swi_ie); 554 555 VNET_DEFINE(uint32_t, pf_hashseed); 556 #define V_pf_hashseed VNET(pf_hashseed) 557 558 static void 559 pf_sctp_checksum(struct mbuf *m, int off) 560 { 561 uint32_t sum = 0; 562 563 /* Zero out the checksum, to enable recalculation. */ 564 m_copyback(m, off + offsetof(struct sctphdr, checksum), 565 sizeof(sum), (caddr_t)&sum); 566 567 sum = sctp_calculate_cksum(m, off); 568 569 m_copyback(m, off + offsetof(struct sctphdr, checksum), 570 sizeof(sum), (caddr_t)&sum); 571 } 572 573 int 574 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 575 { 576 577 switch (af) { 578 #ifdef INET 579 case AF_INET: 580 if (a->addr32[0] > b->addr32[0]) 581 return (1); 582 if (a->addr32[0] < b->addr32[0]) 583 return (-1); 584 break; 585 #endif /* INET */ 586 #ifdef INET6 587 case AF_INET6: 588 if (a->addr32[3] > b->addr32[3]) 589 return (1); 590 if (a->addr32[3] < b->addr32[3]) 591 return (-1); 592 if (a->addr32[2] > b->addr32[2]) 593 return (1); 594 if (a->addr32[2] < b->addr32[2]) 595 return (-1); 596 if (a->addr32[1] > b->addr32[1]) 597 return (1); 598 if (a->addr32[1] < b->addr32[1]) 599 return (-1); 600 if (a->addr32[0] > b->addr32[0]) 601 return (1); 602 if (a->addr32[0] < b->addr32[0]) 603 return (-1); 604 break; 605 #endif /* INET6 */ 606 default: 607 unhandled_af(af); 608 } 609 return (0); 610 } 611 612 static bool 613 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 614 { 615 switch (af) { 616 #ifdef INET 617 case AF_INET: 618 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 619 #endif /* INET */ 620 case AF_INET6: 621 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 622 default: 623 unhandled_af(af); 624 } 625 } 626 627 static void 628 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk) 629 { 630 631 switch (pd->proto) { 632 case IPPROTO_TCP: { 633 struct tcphdr *th = &pd->hdr.tcp; 634 635 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 636 pf_change_ap(pd, pd->src, &th->th_sport, pd->ip_sum, 637 &th->th_sum, &nk->addr[pd->sidx], 638 nk->port[pd->sidx], 0); 639 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 640 pf_change_ap(pd, pd->dst, &th->th_dport, pd->ip_sum, 641 &th->th_sum, &nk->addr[pd->didx], 642 nk->port[pd->didx], 0); 643 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th); 644 break; 645 } 646 case IPPROTO_UDP: { 647 struct udphdr *uh = &pd->hdr.udp; 648 649 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 650 pf_change_ap(pd, pd->src, &uh->uh_sport, pd->ip_sum, 651 &uh->uh_sum, &nk->addr[pd->sidx], 652 nk->port[pd->sidx], 1); 653 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 654 pf_change_ap(pd, pd->dst, &uh->uh_dport, pd->ip_sum, 655 &uh->uh_sum, &nk->addr[pd->didx], 656 nk->port[pd->didx], 1); 657 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh); 658 break; 659 } 660 case IPPROTO_SCTP: { 661 struct sctphdr *sh = &pd->hdr.sctp; 662 uint16_t checksum = 0; 663 664 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 665 pf_change_ap(pd, pd->src, &sh->src_port, pd->ip_sum, 666 &checksum, &nk->addr[pd->sidx], 667 nk->port[pd->sidx], 1); 668 } 669 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 670 pf_change_ap(pd, pd->dst, &sh->dest_port, pd->ip_sum, 671 &checksum, &nk->addr[pd->didx], 672 nk->port[pd->didx], 1); 673 } 674 675 break; 676 } 677 case IPPROTO_ICMP: { 678 struct icmp *ih = &pd->hdr.icmp; 679 680 if (nk->port[pd->sidx] != ih->icmp_id) { 681 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 682 ih->icmp_cksum, ih->icmp_id, 683 nk->port[pd->sidx], 0); 684 ih->icmp_id = nk->port[pd->sidx]; 685 pd->sport = &ih->icmp_id; 686 687 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih); 688 } 689 /* FALLTHROUGH */ 690 } 691 default: 692 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 693 switch (pd->af) { 694 case AF_INET: 695 pf_change_a(&pd->src->v4.s_addr, 696 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 697 0); 698 break; 699 case AF_INET6: 700 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 701 break; 702 default: 703 unhandled_af(pd->af); 704 } 705 } 706 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 707 switch (pd->af) { 708 case AF_INET: 709 pf_change_a(&pd->dst->v4.s_addr, 710 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 711 0); 712 break; 713 case AF_INET6: 714 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 715 break; 716 default: 717 unhandled_af(pd->af); 718 } 719 } 720 break; 721 } 722 } 723 724 static __inline uint32_t 725 pf_hashkey(const struct pf_state_key *sk) 726 { 727 uint32_t h; 728 729 h = murmur3_32_hash32((const uint32_t *)sk, 730 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 731 V_pf_hashseed); 732 733 return (h & V_pf_hashmask); 734 } 735 736 __inline uint32_t 737 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 738 { 739 uint32_t h; 740 741 switch (af) { 742 case AF_INET: 743 h = murmur3_32_hash32((uint32_t *)&addr->v4, 744 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 745 break; 746 case AF_INET6: 747 h = murmur3_32_hash32((uint32_t *)&addr->v6, 748 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 749 break; 750 default: 751 unhandled_af(af); 752 } 753 754 return (h & V_pf_srchashmask); 755 } 756 757 static inline uint32_t 758 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 759 { 760 uint32_t h; 761 762 h = murmur3_32_hash32((uint32_t *)endpoint, 763 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 764 V_pf_hashseed); 765 return (h & V_pf_udpendpointhashmask); 766 } 767 768 #ifdef ALTQ 769 static int 770 pf_state_hash(struct pf_kstate *s) 771 { 772 u_int32_t hv = (intptr_t)s / sizeof(*s); 773 774 hv ^= crc32(&s->src, sizeof(s->src)); 775 hv ^= crc32(&s->dst, sizeof(s->dst)); 776 if (hv == 0) 777 hv = 1; 778 return (hv); 779 } 780 #endif /* ALTQ */ 781 782 static __inline void 783 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 784 { 785 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 786 s->dst.state = newstate; 787 if (which == PF_PEER_DST) 788 return; 789 if (s->src.state == newstate) 790 return; 791 if (s->creatorid == V_pf_status.hostid && 792 s->key[PF_SK_STACK] != NULL && 793 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 794 !(TCPS_HAVEESTABLISHED(s->src.state) || 795 s->src.state == TCPS_CLOSED) && 796 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 797 atomic_add_32(&V_pf_status.states_halfopen, -1); 798 799 s->src.state = newstate; 800 } 801 802 static void 803 pf_init_threshold(struct pf_threshold *threshold, 804 u_int32_t limit, u_int32_t seconds) 805 { 806 threshold->limit = limit * PF_THRESHOLD_MULT; 807 threshold->seconds = seconds; 808 threshold->count = 0; 809 threshold->last = time_uptime; 810 } 811 812 static void 813 pf_add_threshold(struct pf_threshold *threshold) 814 { 815 u_int32_t t = time_uptime, diff = t - threshold->last; 816 817 if (diff >= threshold->seconds) 818 threshold->count = 0; 819 else 820 threshold->count -= threshold->count * diff / 821 threshold->seconds; 822 threshold->count += PF_THRESHOLD_MULT; 823 threshold->last = t; 824 } 825 826 static int 827 pf_check_threshold(struct pf_threshold *threshold) 828 { 829 return (threshold->count > threshold->limit); 830 } 831 832 static bool 833 pf_src_connlimit(struct pf_kstate *state) 834 { 835 struct pf_overload_entry *pfoe; 836 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT]; 837 bool limited = false; 838 839 PF_STATE_LOCK_ASSERT(state); 840 PF_SRC_NODE_LOCK(src_node); 841 842 src_node->conn++; 843 state->src.tcp_est = 1; 844 pf_add_threshold(&src_node->conn_rate); 845 846 if (state->rule->max_src_conn && 847 state->rule->max_src_conn < 848 src_node->conn) { 849 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 850 limited = true; 851 } 852 853 if (state->rule->max_src_conn_rate.limit && 854 pf_check_threshold(&src_node->conn_rate)) { 855 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 856 limited = true; 857 } 858 859 if (!limited) 860 goto done; 861 862 /* Kill this state. */ 863 state->timeout = PFTM_PURGE; 864 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 865 866 if (state->rule->overload_tbl == NULL) 867 goto done; 868 869 /* Schedule overloading and flushing task. */ 870 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 871 if (pfoe == NULL) 872 goto done; /* too bad :( */ 873 874 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 875 pfoe->af = state->key[PF_SK_WIRE]->af; 876 pfoe->rule = state->rule; 877 pfoe->dir = state->direction; 878 PF_OVERLOADQ_LOCK(); 879 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 880 PF_OVERLOADQ_UNLOCK(); 881 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 882 883 done: 884 PF_SRC_NODE_UNLOCK(src_node); 885 return (limited); 886 } 887 888 static void 889 pf_overload_task(void *v, int pending) 890 { 891 struct pf_overload_head queue; 892 struct pfr_addr p; 893 struct pf_overload_entry *pfoe, *pfoe1; 894 uint32_t killed = 0; 895 896 CURVNET_SET((struct vnet *)v); 897 898 PF_OVERLOADQ_LOCK(); 899 queue = V_pf_overloadqueue; 900 SLIST_INIT(&V_pf_overloadqueue); 901 PF_OVERLOADQ_UNLOCK(); 902 903 bzero(&p, sizeof(p)); 904 SLIST_FOREACH(pfoe, &queue, next) { 905 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 906 if (V_pf_status.debug >= PF_DEBUG_MISC) { 907 printf("%s: blocking address ", __func__); 908 pf_print_host(&pfoe->addr, 0, pfoe->af); 909 printf("\n"); 910 } 911 912 p.pfra_af = pfoe->af; 913 switch (pfoe->af) { 914 #ifdef INET 915 case AF_INET: 916 p.pfra_net = 32; 917 p.pfra_ip4addr = pfoe->addr.v4; 918 break; 919 #endif /* INET */ 920 #ifdef INET6 921 case AF_INET6: 922 p.pfra_net = 128; 923 p.pfra_ip6addr = pfoe->addr.v6; 924 break; 925 #endif /* INET6 */ 926 default: 927 unhandled_af(pfoe->af); 928 } 929 930 PF_RULES_WLOCK(); 931 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 932 PF_RULES_WUNLOCK(); 933 } 934 935 /* 936 * Remove those entries, that don't need flushing. 937 */ 938 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 939 if (pfoe->rule->flush == 0) { 940 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 941 free(pfoe, M_PFTEMP); 942 } else 943 counter_u64_add( 944 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 945 946 /* If nothing to flush, return. */ 947 if (SLIST_EMPTY(&queue)) { 948 CURVNET_RESTORE(); 949 return; 950 } 951 952 for (int i = 0; i <= V_pf_hashmask; i++) { 953 struct pf_idhash *ih = &V_pf_idhash[i]; 954 struct pf_state_key *sk; 955 struct pf_kstate *s; 956 957 PF_HASHROW_LOCK(ih); 958 LIST_FOREACH(s, &ih->states, entry) { 959 sk = s->key[PF_SK_WIRE]; 960 SLIST_FOREACH(pfoe, &queue, next) 961 if (sk->af == pfoe->af && 962 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 963 pfoe->rule == s->rule) && 964 ((pfoe->dir == PF_OUT && 965 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 966 (pfoe->dir == PF_IN && 967 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 968 s->timeout = PFTM_PURGE; 969 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 970 killed++; 971 } 972 } 973 PF_HASHROW_UNLOCK(ih); 974 } 975 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 976 free(pfoe, M_PFTEMP); 977 if (V_pf_status.debug >= PF_DEBUG_MISC) 978 printf("%s: %u states killed", __func__, killed); 979 980 CURVNET_RESTORE(); 981 } 982 983 /* 984 * On node found always returns locked. On not found its configurable. 985 */ 986 struct pf_ksrc_node * 987 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 988 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked) 989 { 990 struct pf_ksrc_node *n; 991 992 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 993 994 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 995 PF_HASHROW_LOCK(*sh); 996 LIST_FOREACH(n, &(*sh)->nodes, entry) 997 if (n->rule == rule && n->af == af && n->type == sn_type && 998 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 999 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 1000 break; 1001 1002 if (n == NULL && !returnlocked) 1003 PF_HASHROW_UNLOCK(*sh); 1004 1005 return (n); 1006 } 1007 1008 bool 1009 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 1010 { 1011 struct pf_ksrc_node *cur; 1012 1013 if ((*sn) == NULL) 1014 return (false); 1015 1016 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 1017 1018 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 1019 PF_HASHROW_LOCK(sh); 1020 LIST_FOREACH(cur, &(sh->nodes), entry) { 1021 if (cur == (*sn) && 1022 cur->expire != 1) /* Ignore nodes being killed */ 1023 return (true); 1024 } 1025 PF_HASHROW_UNLOCK(sh); 1026 (*sn) = NULL; 1027 return (false); 1028 } 1029 1030 static void 1031 pf_free_src_node(struct pf_ksrc_node *sn) 1032 { 1033 1034 for (int i = 0; i < 2; i++) { 1035 counter_u64_free(sn->bytes[i]); 1036 counter_u64_free(sn->packets[i]); 1037 } 1038 uma_zfree(V_pf_sources_z, sn); 1039 } 1040 1041 static u_short 1042 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX], 1043 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule, 1044 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr, 1045 struct pfi_kkif *rkif, pf_sn_types_t sn_type) 1046 { 1047 u_short reason = 0; 1048 struct pf_krule *r_track = rule; 1049 struct pf_ksrc_node **sn = &(sns[sn_type]); 1050 struct pf_srchash **sh = &(snhs[sn_type]); 1051 1052 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL), 1053 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__)); 1054 1055 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK), 1056 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__)); 1057 1058 /* 1059 * XXX: There could be a KASSERT for 1060 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR) 1061 * but we'd need to pass pool *only* for this KASSERT. 1062 */ 1063 1064 if ( (rule->rule_flag & PFRULE_SRCTRACK) && 1065 !(rule->rule_flag & PFRULE_RULESRCTRACK)) 1066 r_track = &V_pf_default_rule; 1067 1068 /* 1069 * Request the sh to always be locked, as we might insert a new sn. 1070 */ 1071 if (*sn == NULL) 1072 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true); 1073 1074 if (*sn == NULL) { 1075 PF_HASHROW_ASSERT(*sh); 1076 1077 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes && 1078 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) { 1079 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1080 reason = PFRES_SRCLIMIT; 1081 goto done; 1082 } 1083 1084 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1085 if ((*sn) == NULL) { 1086 reason = PFRES_MEMORY; 1087 goto done; 1088 } 1089 1090 for (int i = 0; i < 2; i++) { 1091 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1092 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1093 1094 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1095 pf_free_src_node(*sn); 1096 reason = PFRES_MEMORY; 1097 goto done; 1098 } 1099 } 1100 1101 if (sn_type == PF_SN_LIMIT) 1102 pf_init_threshold(&(*sn)->conn_rate, 1103 rule->max_src_conn_rate.limit, 1104 rule->max_src_conn_rate.seconds); 1105 1106 MPASS((*sn)->lock == NULL); 1107 (*sn)->lock = &(*sh)->lock; 1108 1109 (*sn)->af = af; 1110 (*sn)->rule = r_track; 1111 PF_ACPY(&(*sn)->addr, src, af); 1112 if (raddr != NULL) 1113 PF_ACPY(&(*sn)->raddr, raddr, af); 1114 (*sn)->rkif = rkif; 1115 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1116 (*sn)->creation = time_uptime; 1117 (*sn)->ruletype = rule->action; 1118 (*sn)->type = sn_type; 1119 counter_u64_add(r_track->src_nodes[sn_type], 1); 1120 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1121 } else { 1122 if (sn_type == PF_SN_LIMIT && rule->max_src_states && 1123 (*sn)->states >= rule->max_src_states) { 1124 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1125 1); 1126 reason = PFRES_SRCLIMIT; 1127 goto done; 1128 } 1129 } 1130 done: 1131 if (reason == 0) 1132 (*sn)->states++; 1133 else 1134 (*sn) = NULL; 1135 1136 PF_HASHROW_UNLOCK(*sh); 1137 return (reason); 1138 } 1139 1140 void 1141 pf_unlink_src_node(struct pf_ksrc_node *src) 1142 { 1143 PF_SRC_NODE_LOCK_ASSERT(src); 1144 1145 LIST_REMOVE(src, entry); 1146 if (src->rule) 1147 counter_u64_add(src->rule->src_nodes[src->type], -1); 1148 } 1149 1150 u_int 1151 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1152 { 1153 struct pf_ksrc_node *sn, *tmp; 1154 u_int count = 0; 1155 1156 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1157 pf_free_src_node(sn); 1158 count++; 1159 } 1160 1161 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1162 1163 return (count); 1164 } 1165 1166 void 1167 pf_mtag_initialize(void) 1168 { 1169 1170 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1171 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1172 UMA_ALIGN_PTR, 0); 1173 } 1174 1175 /* Per-vnet data storage structures initialization. */ 1176 void 1177 pf_initialize(void) 1178 { 1179 struct pf_keyhash *kh; 1180 struct pf_idhash *ih; 1181 struct pf_srchash *sh; 1182 struct pf_udpendpointhash *uh; 1183 u_int i; 1184 1185 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1186 V_pf_hashsize = PF_HASHSIZ; 1187 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1188 V_pf_srchashsize = PF_SRCHASHSIZ; 1189 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1190 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1191 1192 V_pf_hashseed = arc4random(); 1193 1194 /* States and state keys storage. */ 1195 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1196 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1197 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1198 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1199 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1200 1201 V_pf_state_key_z = uma_zcreate("pf state keys", 1202 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1203 UMA_ALIGN_PTR, 0); 1204 1205 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1206 M_PFHASH, M_NOWAIT | M_ZERO); 1207 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1208 M_PFHASH, M_NOWAIT | M_ZERO); 1209 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1210 printf("pf: Unable to allocate memory for " 1211 "state_hashsize %lu.\n", V_pf_hashsize); 1212 1213 free(V_pf_keyhash, M_PFHASH); 1214 free(V_pf_idhash, M_PFHASH); 1215 1216 V_pf_hashsize = PF_HASHSIZ; 1217 V_pf_keyhash = mallocarray(V_pf_hashsize, 1218 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1219 V_pf_idhash = mallocarray(V_pf_hashsize, 1220 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1221 } 1222 1223 V_pf_hashmask = V_pf_hashsize - 1; 1224 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1225 i++, kh++, ih++) { 1226 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1227 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1228 } 1229 1230 /* Source nodes. */ 1231 V_pf_sources_z = uma_zcreate("pf source nodes", 1232 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1233 0); 1234 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1235 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1236 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1237 1238 V_pf_srchash = mallocarray(V_pf_srchashsize, 1239 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1240 if (V_pf_srchash == NULL) { 1241 printf("pf: Unable to allocate memory for " 1242 "source_hashsize %lu.\n", V_pf_srchashsize); 1243 1244 V_pf_srchashsize = PF_SRCHASHSIZ; 1245 V_pf_srchash = mallocarray(V_pf_srchashsize, 1246 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1247 } 1248 1249 V_pf_srchashmask = V_pf_srchashsize - 1; 1250 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1251 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1252 1253 1254 /* UDP endpoint mappings. */ 1255 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1256 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1257 UMA_ALIGN_PTR, 0); 1258 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1259 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1260 if (V_pf_udpendpointhash == NULL) { 1261 printf("pf: Unable to allocate memory for " 1262 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1263 1264 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1265 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1266 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1267 } 1268 1269 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1270 for (i = 0, uh = V_pf_udpendpointhash; 1271 i <= V_pf_udpendpointhashmask; 1272 i++, uh++) { 1273 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1274 MTX_DEF | MTX_DUPOK); 1275 } 1276 1277 /* ALTQ */ 1278 TAILQ_INIT(&V_pf_altqs[0]); 1279 TAILQ_INIT(&V_pf_altqs[1]); 1280 TAILQ_INIT(&V_pf_altqs[2]); 1281 TAILQ_INIT(&V_pf_altqs[3]); 1282 TAILQ_INIT(&V_pf_pabuf[0]); 1283 TAILQ_INIT(&V_pf_pabuf[1]); 1284 TAILQ_INIT(&V_pf_pabuf[2]); 1285 V_pf_altqs_active = &V_pf_altqs[0]; 1286 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1287 V_pf_altqs_inactive = &V_pf_altqs[2]; 1288 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1289 1290 /* Send & overload+flush queues. */ 1291 STAILQ_INIT(&V_pf_sendqueue); 1292 SLIST_INIT(&V_pf_overloadqueue); 1293 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1294 1295 /* Unlinked, but may be referenced rules. */ 1296 TAILQ_INIT(&V_pf_unlinked_rules); 1297 } 1298 1299 void 1300 pf_mtag_cleanup(void) 1301 { 1302 1303 uma_zdestroy(pf_mtag_z); 1304 } 1305 1306 void 1307 pf_cleanup(void) 1308 { 1309 struct pf_keyhash *kh; 1310 struct pf_idhash *ih; 1311 struct pf_srchash *sh; 1312 struct pf_udpendpointhash *uh; 1313 struct pf_send_entry *pfse, *next; 1314 u_int i; 1315 1316 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1317 i <= V_pf_hashmask; 1318 i++, kh++, ih++) { 1319 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1320 __func__)); 1321 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1322 __func__)); 1323 mtx_destroy(&kh->lock); 1324 mtx_destroy(&ih->lock); 1325 } 1326 free(V_pf_keyhash, M_PFHASH); 1327 free(V_pf_idhash, M_PFHASH); 1328 1329 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1330 KASSERT(LIST_EMPTY(&sh->nodes), 1331 ("%s: source node hash not empty", __func__)); 1332 mtx_destroy(&sh->lock); 1333 } 1334 free(V_pf_srchash, M_PFHASH); 1335 1336 for (i = 0, uh = V_pf_udpendpointhash; 1337 i <= V_pf_udpendpointhashmask; 1338 i++, uh++) { 1339 KASSERT(LIST_EMPTY(&uh->endpoints), 1340 ("%s: udp endpoint hash not empty", __func__)); 1341 mtx_destroy(&uh->lock); 1342 } 1343 free(V_pf_udpendpointhash, M_PFHASH); 1344 1345 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1346 m_freem(pfse->pfse_m); 1347 free(pfse, M_PFTEMP); 1348 } 1349 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1350 1351 uma_zdestroy(V_pf_sources_z); 1352 uma_zdestroy(V_pf_state_z); 1353 uma_zdestroy(V_pf_state_key_z); 1354 uma_zdestroy(V_pf_udp_mapping_z); 1355 } 1356 1357 static int 1358 pf_mtag_uminit(void *mem, int size, int how) 1359 { 1360 struct m_tag *t; 1361 1362 t = (struct m_tag *)mem; 1363 t->m_tag_cookie = MTAG_ABI_COMPAT; 1364 t->m_tag_id = PACKET_TAG_PF; 1365 t->m_tag_len = sizeof(struct pf_mtag); 1366 t->m_tag_free = pf_mtag_free; 1367 1368 return (0); 1369 } 1370 1371 static void 1372 pf_mtag_free(struct m_tag *t) 1373 { 1374 1375 uma_zfree(pf_mtag_z, t); 1376 } 1377 1378 struct pf_mtag * 1379 pf_get_mtag(struct mbuf *m) 1380 { 1381 struct m_tag *mtag; 1382 1383 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1384 return ((struct pf_mtag *)(mtag + 1)); 1385 1386 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1387 if (mtag == NULL) 1388 return (NULL); 1389 bzero(mtag + 1, sizeof(struct pf_mtag)); 1390 m_tag_prepend(m, mtag); 1391 1392 return ((struct pf_mtag *)(mtag + 1)); 1393 } 1394 1395 static int 1396 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1397 struct pf_kstate *s) 1398 { 1399 struct pf_keyhash *khs, *khw, *kh; 1400 struct pf_state_key *sk, *cur; 1401 struct pf_kstate *si, *olds = NULL; 1402 int idx; 1403 1404 NET_EPOCH_ASSERT(); 1405 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1406 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1407 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1408 1409 /* 1410 * We need to lock hash slots of both keys. To avoid deadlock 1411 * we always lock the slot with lower address first. Unlock order 1412 * isn't important. 1413 * 1414 * We also need to lock ID hash slot before dropping key 1415 * locks. On success we return with ID hash slot locked. 1416 */ 1417 1418 if (skw == sks) { 1419 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1420 PF_HASHROW_LOCK(khs); 1421 } else { 1422 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1423 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1424 if (khs == khw) { 1425 PF_HASHROW_LOCK(khs); 1426 } else if (khs < khw) { 1427 PF_HASHROW_LOCK(khs); 1428 PF_HASHROW_LOCK(khw); 1429 } else { 1430 PF_HASHROW_LOCK(khw); 1431 PF_HASHROW_LOCK(khs); 1432 } 1433 } 1434 1435 #define KEYS_UNLOCK() do { \ 1436 if (khs != khw) { \ 1437 PF_HASHROW_UNLOCK(khs); \ 1438 PF_HASHROW_UNLOCK(khw); \ 1439 } else \ 1440 PF_HASHROW_UNLOCK(khs); \ 1441 } while (0) 1442 1443 /* 1444 * First run: start with wire key. 1445 */ 1446 sk = skw; 1447 kh = khw; 1448 idx = PF_SK_WIRE; 1449 1450 MPASS(s->lock == NULL); 1451 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1452 1453 keyattach: 1454 LIST_FOREACH(cur, &kh->keys, entry) 1455 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1456 break; 1457 1458 if (cur != NULL) { 1459 /* Key exists. Check for same kif, if none, add to key. */ 1460 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1461 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1462 1463 PF_HASHROW_LOCK(ih); 1464 if (si->kif == s->kif && 1465 ((si->key[PF_SK_WIRE]->af == sk->af && 1466 si->direction == s->direction) || 1467 (si->key[PF_SK_WIRE]->af != 1468 si->key[PF_SK_STACK]->af && 1469 sk->af == si->key[PF_SK_STACK]->af && 1470 si->direction != s->direction))) { 1471 bool reuse = false; 1472 1473 if (sk->proto == IPPROTO_TCP && 1474 si->src.state >= TCPS_FIN_WAIT_2 && 1475 si->dst.state >= TCPS_FIN_WAIT_2) 1476 reuse = true; 1477 1478 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1479 printf("pf: %s key attach " 1480 "%s on %s: ", 1481 (idx == PF_SK_WIRE) ? 1482 "wire" : "stack", 1483 reuse ? "reuse" : "failed", 1484 s->kif->pfik_name); 1485 pf_print_state_parts(s, 1486 (idx == PF_SK_WIRE) ? 1487 sk : NULL, 1488 (idx == PF_SK_STACK) ? 1489 sk : NULL); 1490 printf(", existing: "); 1491 pf_print_state_parts(si, 1492 (idx == PF_SK_WIRE) ? 1493 sk : NULL, 1494 (idx == PF_SK_STACK) ? 1495 sk : NULL); 1496 printf("\n"); 1497 } 1498 1499 if (reuse) { 1500 /* 1501 * New state matches an old >FIN_WAIT_2 1502 * state. We can't drop key hash locks, 1503 * thus we can't unlink it properly. 1504 * 1505 * As a workaround we drop it into 1506 * TCPS_CLOSED state, schedule purge 1507 * ASAP and push it into the very end 1508 * of the slot TAILQ, so that it won't 1509 * conflict with our new state. 1510 */ 1511 pf_set_protostate(si, PF_PEER_BOTH, 1512 TCPS_CLOSED); 1513 si->timeout = PFTM_PURGE; 1514 olds = si; 1515 } else { 1516 s->timeout = PFTM_UNLINKED; 1517 if (idx == PF_SK_STACK) 1518 /* 1519 * Remove the wire key from 1520 * the hash. Other threads 1521 * can't be referencing it 1522 * because we still hold the 1523 * hash lock. 1524 */ 1525 pf_state_key_detach(s, 1526 PF_SK_WIRE); 1527 PF_HASHROW_UNLOCK(ih); 1528 KEYS_UNLOCK(); 1529 if (idx == PF_SK_WIRE) 1530 /* 1531 * We've not inserted either key. 1532 * Free both. 1533 */ 1534 uma_zfree(V_pf_state_key_z, skw); 1535 if (skw != sks) 1536 uma_zfree( 1537 V_pf_state_key_z, 1538 sks); 1539 return (EEXIST); /* collision! */ 1540 } 1541 } 1542 PF_HASHROW_UNLOCK(ih); 1543 } 1544 uma_zfree(V_pf_state_key_z, sk); 1545 s->key[idx] = cur; 1546 } else { 1547 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1548 s->key[idx] = sk; 1549 } 1550 1551 stateattach: 1552 /* List is sorted, if-bound states before floating. */ 1553 if (s->kif == V_pfi_all) 1554 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1555 else 1556 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1557 1558 if (olds) { 1559 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1560 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1561 key_list[idx]); 1562 olds = NULL; 1563 } 1564 1565 /* 1566 * Attach done. See how should we (or should not?) 1567 * attach a second key. 1568 */ 1569 if (sks == skw) { 1570 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1571 idx = PF_SK_STACK; 1572 sks = NULL; 1573 goto stateattach; 1574 } else if (sks != NULL) { 1575 /* 1576 * Continue attaching with stack key. 1577 */ 1578 sk = sks; 1579 kh = khs; 1580 idx = PF_SK_STACK; 1581 sks = NULL; 1582 goto keyattach; 1583 } 1584 1585 PF_STATE_LOCK(s); 1586 KEYS_UNLOCK(); 1587 1588 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1589 ("%s failure", __func__)); 1590 1591 return (0); 1592 #undef KEYS_UNLOCK 1593 } 1594 1595 static void 1596 pf_detach_state(struct pf_kstate *s) 1597 { 1598 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1599 struct pf_keyhash *kh; 1600 1601 NET_EPOCH_ASSERT(); 1602 MPASS(s->timeout >= PFTM_MAX); 1603 1604 pf_sctp_multihome_detach_addr(s); 1605 1606 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1607 V_pflow_export_state_ptr(s); 1608 1609 if (sks != NULL) { 1610 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1611 PF_HASHROW_LOCK(kh); 1612 if (s->key[PF_SK_STACK] != NULL) 1613 pf_state_key_detach(s, PF_SK_STACK); 1614 /* 1615 * If both point to same key, then we are done. 1616 */ 1617 if (sks == s->key[PF_SK_WIRE]) { 1618 pf_state_key_detach(s, PF_SK_WIRE); 1619 PF_HASHROW_UNLOCK(kh); 1620 return; 1621 } 1622 PF_HASHROW_UNLOCK(kh); 1623 } 1624 1625 if (s->key[PF_SK_WIRE] != NULL) { 1626 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1627 PF_HASHROW_LOCK(kh); 1628 if (s->key[PF_SK_WIRE] != NULL) 1629 pf_state_key_detach(s, PF_SK_WIRE); 1630 PF_HASHROW_UNLOCK(kh); 1631 } 1632 } 1633 1634 static void 1635 pf_state_key_detach(struct pf_kstate *s, int idx) 1636 { 1637 struct pf_state_key *sk = s->key[idx]; 1638 #ifdef INVARIANTS 1639 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1640 1641 PF_HASHROW_ASSERT(kh); 1642 #endif /* INVARIANTS */ 1643 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1644 s->key[idx] = NULL; 1645 1646 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1647 LIST_REMOVE(sk, entry); 1648 uma_zfree(V_pf_state_key_z, sk); 1649 } 1650 } 1651 1652 static int 1653 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1654 { 1655 struct pf_state_key *sk = mem; 1656 1657 bzero(sk, sizeof(struct pf_state_key_cmp)); 1658 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1659 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1660 1661 return (0); 1662 } 1663 1664 static int 1665 pf_state_key_addr_setup(struct pf_pdesc *pd, 1666 struct pf_state_key_cmp *key, int multi) 1667 { 1668 struct pf_addr *saddr = pd->src; 1669 struct pf_addr *daddr = pd->dst; 1670 #ifdef INET6 1671 struct nd_neighbor_solicit nd; 1672 struct pf_addr *target; 1673 u_short action, reason; 1674 1675 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1676 goto copy; 1677 1678 switch (pd->hdr.icmp6.icmp6_type) { 1679 case ND_NEIGHBOR_SOLICIT: 1680 if (multi) 1681 return (-1); 1682 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1683 return (-1); 1684 target = (struct pf_addr *)&nd.nd_ns_target; 1685 daddr = target; 1686 break; 1687 case ND_NEIGHBOR_ADVERT: 1688 if (multi) 1689 return (-1); 1690 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1691 return (-1); 1692 target = (struct pf_addr *)&nd.nd_ns_target; 1693 saddr = target; 1694 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1695 key->addr[pd->didx].addr32[0] = 0; 1696 key->addr[pd->didx].addr32[1] = 0; 1697 key->addr[pd->didx].addr32[2] = 0; 1698 key->addr[pd->didx].addr32[3] = 0; 1699 daddr = NULL; /* overwritten */ 1700 } 1701 break; 1702 default: 1703 if (multi) { 1704 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1705 key->addr[pd->sidx].addr32[1] = 0; 1706 key->addr[pd->sidx].addr32[2] = 0; 1707 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1708 saddr = NULL; /* overwritten */ 1709 } 1710 } 1711 copy: 1712 #endif /* INET6 */ 1713 if (saddr) 1714 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1715 if (daddr) 1716 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1717 1718 return (0); 1719 } 1720 1721 int 1722 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1723 struct pf_state_key **sk, struct pf_state_key **nk) 1724 { 1725 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1726 if (*sk == NULL) 1727 return (ENOMEM); 1728 1729 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1730 0)) { 1731 uma_zfree(V_pf_state_key_z, *sk); 1732 *sk = NULL; 1733 return (ENOMEM); 1734 } 1735 1736 (*sk)->port[pd->sidx] = sport; 1737 (*sk)->port[pd->didx] = dport; 1738 (*sk)->proto = pd->proto; 1739 (*sk)->af = pd->af; 1740 1741 *nk = pf_state_key_clone(*sk); 1742 if (*nk == NULL) { 1743 uma_zfree(V_pf_state_key_z, *sk); 1744 *sk = NULL; 1745 return (ENOMEM); 1746 } 1747 1748 if (pd->af != pd->naf) { 1749 (*sk)->port[pd->sidx] = pd->osport; 1750 (*sk)->port[pd->didx] = pd->odport; 1751 1752 (*nk)->af = pd->naf; 1753 1754 /* 1755 * We're overwriting an address here, so potentially there's bits of an IPv6 1756 * address left in here. Clear that out first. 1757 */ 1758 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1759 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1760 if (pd->dir == PF_IN) { 1761 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf); 1762 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf); 1763 (*nk)->port[pd->didx] = pd->nsport; 1764 (*nk)->port[pd->sidx] = pd->ndport; 1765 } else { 1766 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->nsaddr, pd->naf); 1767 PF_ACPY(&(*nk)->addr[pd->didx], &pd->ndaddr, pd->naf); 1768 (*nk)->port[pd->sidx] = pd->nsport; 1769 (*nk)->port[pd->didx] = pd->ndport; 1770 } 1771 1772 switch (pd->proto) { 1773 case IPPROTO_ICMP: 1774 (*nk)->proto = IPPROTO_ICMPV6; 1775 break; 1776 case IPPROTO_ICMPV6: 1777 (*nk)->proto = IPPROTO_ICMP; 1778 break; 1779 default: 1780 (*nk)->proto = pd->proto; 1781 } 1782 } 1783 1784 return (0); 1785 } 1786 1787 struct pf_state_key * 1788 pf_state_key_clone(const struct pf_state_key *orig) 1789 { 1790 struct pf_state_key *sk; 1791 1792 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1793 if (sk == NULL) 1794 return (NULL); 1795 1796 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1797 1798 return (sk); 1799 } 1800 1801 int 1802 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1803 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1804 { 1805 struct pf_idhash *ih; 1806 struct pf_kstate *cur; 1807 int error; 1808 1809 NET_EPOCH_ASSERT(); 1810 1811 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1812 ("%s: sks not pristine", __func__)); 1813 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1814 ("%s: skw not pristine", __func__)); 1815 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1816 1817 s->kif = kif; 1818 s->orig_kif = orig_kif; 1819 1820 if (s->id == 0 && s->creatorid == 0) { 1821 s->id = alloc_unr64(&V_pf_stateid); 1822 s->id = htobe64(s->id); 1823 s->creatorid = V_pf_status.hostid; 1824 } 1825 1826 /* Returns with ID locked on success. */ 1827 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1828 return (error); 1829 skw = sks = NULL; 1830 1831 ih = &V_pf_idhash[PF_IDHASH(s)]; 1832 PF_HASHROW_ASSERT(ih); 1833 LIST_FOREACH(cur, &ih->states, entry) 1834 if (cur->id == s->id && cur->creatorid == s->creatorid) 1835 break; 1836 1837 if (cur != NULL) { 1838 s->timeout = PFTM_UNLINKED; 1839 PF_HASHROW_UNLOCK(ih); 1840 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1841 printf("pf: state ID collision: " 1842 "id: %016llx creatorid: %08x\n", 1843 (unsigned long long)be64toh(s->id), 1844 ntohl(s->creatorid)); 1845 } 1846 pf_detach_state(s); 1847 return (EEXIST); 1848 } 1849 LIST_INSERT_HEAD(&ih->states, s, entry); 1850 /* One for keys, one for ID hash. */ 1851 refcount_init(&s->refs, 2); 1852 1853 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1854 if (V_pfsync_insert_state_ptr != NULL) 1855 V_pfsync_insert_state_ptr(s); 1856 1857 /* Returns locked. */ 1858 return (0); 1859 } 1860 1861 /* 1862 * Find state by ID: returns with locked row on success. 1863 */ 1864 struct pf_kstate * 1865 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1866 { 1867 struct pf_idhash *ih; 1868 struct pf_kstate *s; 1869 1870 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1871 1872 ih = &V_pf_idhash[PF_IDHASHID(id)]; 1873 1874 PF_HASHROW_LOCK(ih); 1875 LIST_FOREACH(s, &ih->states, entry) 1876 if (s->id == id && s->creatorid == creatorid) 1877 break; 1878 1879 if (s == NULL) 1880 PF_HASHROW_UNLOCK(ih); 1881 1882 return (s); 1883 } 1884 1885 /* 1886 * Find state by key. 1887 * Returns with ID hash slot locked on success. 1888 */ 1889 static struct pf_kstate * 1890 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1891 u_int dir) 1892 { 1893 struct pf_keyhash *kh; 1894 struct pf_state_key *sk; 1895 struct pf_kstate *s; 1896 int idx; 1897 1898 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1899 1900 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1901 1902 PF_HASHROW_LOCK(kh); 1903 LIST_FOREACH(sk, &kh->keys, entry) 1904 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1905 break; 1906 if (sk == NULL) { 1907 PF_HASHROW_UNLOCK(kh); 1908 return (NULL); 1909 } 1910 1911 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1912 1913 /* List is sorted, if-bound states before floating ones. */ 1914 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1915 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1916 PF_STATE_LOCK(s); 1917 PF_HASHROW_UNLOCK(kh); 1918 if (__predict_false(s->timeout >= PFTM_MAX)) { 1919 /* 1920 * State is either being processed by 1921 * pf_remove_state() in an other thread, or 1922 * is scheduled for immediate expiry. 1923 */ 1924 PF_STATE_UNLOCK(s); 1925 return (NULL); 1926 } 1927 return (s); 1928 } 1929 1930 /* Look through the other list, in case of AF-TO */ 1931 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1932 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1933 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1934 continue; 1935 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1936 PF_STATE_LOCK(s); 1937 PF_HASHROW_UNLOCK(kh); 1938 if (__predict_false(s->timeout >= PFTM_MAX)) { 1939 /* 1940 * State is either being processed by 1941 * pf_remove_state() in an other thread, or 1942 * is scheduled for immediate expiry. 1943 */ 1944 PF_STATE_UNLOCK(s); 1945 return (NULL); 1946 } 1947 return (s); 1948 } 1949 } 1950 1951 PF_HASHROW_UNLOCK(kh); 1952 1953 return (NULL); 1954 } 1955 1956 /* 1957 * Returns with ID hash slot locked on success. 1958 */ 1959 struct pf_kstate * 1960 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1961 { 1962 struct pf_keyhash *kh; 1963 struct pf_state_key *sk; 1964 struct pf_kstate *s, *ret = NULL; 1965 int idx, inout = 0; 1966 1967 if (more != NULL) 1968 *more = 0; 1969 1970 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1971 1972 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1973 1974 PF_HASHROW_LOCK(kh); 1975 LIST_FOREACH(sk, &kh->keys, entry) 1976 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1977 break; 1978 if (sk == NULL) { 1979 PF_HASHROW_UNLOCK(kh); 1980 return (NULL); 1981 } 1982 switch (dir) { 1983 case PF_IN: 1984 idx = PF_SK_WIRE; 1985 break; 1986 case PF_OUT: 1987 idx = PF_SK_STACK; 1988 break; 1989 case PF_INOUT: 1990 idx = PF_SK_WIRE; 1991 inout = 1; 1992 break; 1993 default: 1994 panic("%s: dir %u", __func__, dir); 1995 } 1996 second_run: 1997 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1998 if (more == NULL) { 1999 PF_STATE_LOCK(s); 2000 PF_HASHROW_UNLOCK(kh); 2001 return (s); 2002 } 2003 2004 if (ret) 2005 (*more)++; 2006 else { 2007 ret = s; 2008 PF_STATE_LOCK(s); 2009 } 2010 } 2011 if (inout == 1) { 2012 inout = 0; 2013 idx = PF_SK_STACK; 2014 goto second_run; 2015 } 2016 PF_HASHROW_UNLOCK(kh); 2017 2018 return (ret); 2019 } 2020 2021 /* 2022 * FIXME 2023 * This routine is inefficient -- locks the state only to unlock immediately on 2024 * return. 2025 * It is racy -- after the state is unlocked nothing stops other threads from 2026 * removing it. 2027 */ 2028 bool 2029 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 2030 { 2031 struct pf_kstate *s; 2032 2033 s = pf_find_state_all(key, dir, NULL); 2034 if (s != NULL) { 2035 PF_STATE_UNLOCK(s); 2036 return (true); 2037 } 2038 return (false); 2039 } 2040 2041 struct pf_udp_mapping * 2042 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 2043 struct pf_addr *nat_addr, uint16_t nat_port) 2044 { 2045 struct pf_udp_mapping *mapping; 2046 2047 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 2048 if (mapping == NULL) 2049 return (NULL); 2050 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 2051 mapping->endpoints[0].port = src_port; 2052 mapping->endpoints[0].af = af; 2053 mapping->endpoints[0].mapping = mapping; 2054 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 2055 mapping->endpoints[1].port = nat_port; 2056 mapping->endpoints[1].af = af; 2057 mapping->endpoints[1].mapping = mapping; 2058 refcount_init(&mapping->refs, 1); 2059 return (mapping); 2060 } 2061 2062 int 2063 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2064 { 2065 struct pf_udpendpointhash *h0, *h1; 2066 struct pf_udp_endpoint *endpoint; 2067 int ret = EEXIST; 2068 2069 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2070 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2071 if (h0 == h1) { 2072 PF_HASHROW_LOCK(h0); 2073 } else if (h0 < h1) { 2074 PF_HASHROW_LOCK(h0); 2075 PF_HASHROW_LOCK(h1); 2076 } else { 2077 PF_HASHROW_LOCK(h1); 2078 PF_HASHROW_LOCK(h0); 2079 } 2080 2081 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2082 if (bcmp(endpoint, &mapping->endpoints[0], 2083 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2084 break; 2085 } 2086 if (endpoint != NULL) 2087 goto cleanup; 2088 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2089 if (bcmp(endpoint, &mapping->endpoints[1], 2090 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2091 break; 2092 } 2093 if (endpoint != NULL) 2094 goto cleanup; 2095 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2096 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2097 ret = 0; 2098 2099 cleanup: 2100 if (h0 != h1) { 2101 PF_HASHROW_UNLOCK(h0); 2102 PF_HASHROW_UNLOCK(h1); 2103 } else { 2104 PF_HASHROW_UNLOCK(h0); 2105 } 2106 return (ret); 2107 } 2108 2109 void 2110 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2111 { 2112 /* refcount is synchronized on the source endpoint's row lock */ 2113 struct pf_udpendpointhash *h0, *h1; 2114 2115 if (mapping == NULL) 2116 return; 2117 2118 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2119 PF_HASHROW_LOCK(h0); 2120 if (refcount_release(&mapping->refs)) { 2121 LIST_REMOVE(&mapping->endpoints[0], entry); 2122 PF_HASHROW_UNLOCK(h0); 2123 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2124 PF_HASHROW_LOCK(h1); 2125 LIST_REMOVE(&mapping->endpoints[1], entry); 2126 PF_HASHROW_UNLOCK(h1); 2127 2128 uma_zfree(V_pf_udp_mapping_z, mapping); 2129 } else { 2130 PF_HASHROW_UNLOCK(h0); 2131 } 2132 } 2133 2134 2135 struct pf_udp_mapping * 2136 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2137 { 2138 struct pf_udpendpointhash *uh; 2139 struct pf_udp_endpoint *endpoint; 2140 2141 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2142 2143 PF_HASHROW_LOCK(uh); 2144 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2145 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2146 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2147 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2148 break; 2149 } 2150 if (endpoint == NULL) { 2151 PF_HASHROW_UNLOCK(uh); 2152 return (NULL); 2153 } 2154 refcount_acquire(&endpoint->mapping->refs); 2155 PF_HASHROW_UNLOCK(uh); 2156 return (endpoint->mapping); 2157 } 2158 /* END state table stuff */ 2159 2160 static void 2161 pf_send(struct pf_send_entry *pfse) 2162 { 2163 2164 PF_SENDQ_LOCK(); 2165 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2166 PF_SENDQ_UNLOCK(); 2167 swi_sched(V_pf_swi_cookie, 0); 2168 } 2169 2170 static bool 2171 pf_isforlocal(struct mbuf *m, int af) 2172 { 2173 switch (af) { 2174 #ifdef INET 2175 case AF_INET: { 2176 struct ip *ip = mtod(m, struct ip *); 2177 2178 return (in_localip(ip->ip_dst)); 2179 } 2180 #endif /* INET */ 2181 #ifdef INET6 2182 case AF_INET6: { 2183 struct ip6_hdr *ip6; 2184 struct in6_ifaddr *ia; 2185 ip6 = mtod(m, struct ip6_hdr *); 2186 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2187 if (ia == NULL) 2188 return (false); 2189 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2190 } 2191 #endif /* INET6 */ 2192 default: 2193 unhandled_af(af); 2194 } 2195 2196 return (false); 2197 } 2198 2199 int 2200 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2201 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type) 2202 { 2203 /* 2204 * ICMP types marked with PF_OUT are typically responses to 2205 * PF_IN, and will match states in the opposite direction. 2206 * PF_IN ICMP types need to match a state with that type. 2207 */ 2208 *icmp_dir = PF_OUT; 2209 2210 /* Queries (and responses) */ 2211 switch (pd->af) { 2212 #ifdef INET 2213 case AF_INET: 2214 switch (type) { 2215 case ICMP_ECHO: 2216 *icmp_dir = PF_IN; 2217 /* FALLTHROUGH */ 2218 case ICMP_ECHOREPLY: 2219 *virtual_type = ICMP_ECHO; 2220 *virtual_id = pd->hdr.icmp.icmp_id; 2221 break; 2222 2223 case ICMP_TSTAMP: 2224 *icmp_dir = PF_IN; 2225 /* FALLTHROUGH */ 2226 case ICMP_TSTAMPREPLY: 2227 *virtual_type = ICMP_TSTAMP; 2228 *virtual_id = pd->hdr.icmp.icmp_id; 2229 break; 2230 2231 case ICMP_IREQ: 2232 *icmp_dir = PF_IN; 2233 /* FALLTHROUGH */ 2234 case ICMP_IREQREPLY: 2235 *virtual_type = ICMP_IREQ; 2236 *virtual_id = pd->hdr.icmp.icmp_id; 2237 break; 2238 2239 case ICMP_MASKREQ: 2240 *icmp_dir = PF_IN; 2241 /* FALLTHROUGH */ 2242 case ICMP_MASKREPLY: 2243 *virtual_type = ICMP_MASKREQ; 2244 *virtual_id = pd->hdr.icmp.icmp_id; 2245 break; 2246 2247 case ICMP_IPV6_WHEREAREYOU: 2248 *icmp_dir = PF_IN; 2249 /* FALLTHROUGH */ 2250 case ICMP_IPV6_IAMHERE: 2251 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2252 *virtual_id = 0; /* Nothing sane to match on! */ 2253 break; 2254 2255 case ICMP_MOBILE_REGREQUEST: 2256 *icmp_dir = PF_IN; 2257 /* FALLTHROUGH */ 2258 case ICMP_MOBILE_REGREPLY: 2259 *virtual_type = ICMP_MOBILE_REGREQUEST; 2260 *virtual_id = 0; /* Nothing sane to match on! */ 2261 break; 2262 2263 case ICMP_ROUTERSOLICIT: 2264 *icmp_dir = PF_IN; 2265 /* FALLTHROUGH */ 2266 case ICMP_ROUTERADVERT: 2267 *virtual_type = ICMP_ROUTERSOLICIT; 2268 *virtual_id = 0; /* Nothing sane to match on! */ 2269 break; 2270 2271 /* These ICMP types map to other connections */ 2272 case ICMP_UNREACH: 2273 case ICMP_SOURCEQUENCH: 2274 case ICMP_REDIRECT: 2275 case ICMP_TIMXCEED: 2276 case ICMP_PARAMPROB: 2277 /* These will not be used, but set them anyway */ 2278 *icmp_dir = PF_IN; 2279 *virtual_type = type; 2280 *virtual_id = 0; 2281 *virtual_type = htons(*virtual_type); 2282 return (1); /* These types match to another state */ 2283 2284 /* 2285 * All remaining ICMP types get their own states, 2286 * and will only match in one direction. 2287 */ 2288 default: 2289 *icmp_dir = PF_IN; 2290 *virtual_type = type; 2291 *virtual_id = 0; 2292 break; 2293 } 2294 break; 2295 #endif /* INET */ 2296 #ifdef INET6 2297 case AF_INET6: 2298 switch (type) { 2299 case ICMP6_ECHO_REQUEST: 2300 *icmp_dir = PF_IN; 2301 /* FALLTHROUGH */ 2302 case ICMP6_ECHO_REPLY: 2303 *virtual_type = ICMP6_ECHO_REQUEST; 2304 *virtual_id = pd->hdr.icmp6.icmp6_id; 2305 break; 2306 2307 case MLD_LISTENER_QUERY: 2308 case MLD_LISTENER_REPORT: { 2309 /* 2310 * Listener Report can be sent by clients 2311 * without an associated Listener Query. 2312 * In addition to that, when Report is sent as a 2313 * reply to a Query its source and destination 2314 * address are different. 2315 */ 2316 *icmp_dir = PF_IN; 2317 *virtual_type = MLD_LISTENER_QUERY; 2318 *virtual_id = 0; 2319 break; 2320 } 2321 case MLD_MTRACE: 2322 *icmp_dir = PF_IN; 2323 /* FALLTHROUGH */ 2324 case MLD_MTRACE_RESP: 2325 *virtual_type = MLD_MTRACE; 2326 *virtual_id = 0; /* Nothing sane to match on! */ 2327 break; 2328 2329 case ND_NEIGHBOR_SOLICIT: 2330 *icmp_dir = PF_IN; 2331 /* FALLTHROUGH */ 2332 case ND_NEIGHBOR_ADVERT: { 2333 *virtual_type = ND_NEIGHBOR_SOLICIT; 2334 *virtual_id = 0; 2335 break; 2336 } 2337 2338 /* 2339 * These ICMP types map to other connections. 2340 * ND_REDIRECT can't be in this list because the triggering 2341 * packet header is optional. 2342 */ 2343 case ICMP6_DST_UNREACH: 2344 case ICMP6_PACKET_TOO_BIG: 2345 case ICMP6_TIME_EXCEEDED: 2346 case ICMP6_PARAM_PROB: 2347 /* These will not be used, but set them anyway */ 2348 *icmp_dir = PF_IN; 2349 *virtual_type = type; 2350 *virtual_id = 0; 2351 *virtual_type = htons(*virtual_type); 2352 return (1); /* These types match to another state */ 2353 /* 2354 * All remaining ICMP6 types get their own states, 2355 * and will only match in one direction. 2356 */ 2357 default: 2358 *icmp_dir = PF_IN; 2359 *virtual_type = type; 2360 *virtual_id = 0; 2361 break; 2362 } 2363 break; 2364 #endif /* INET6 */ 2365 default: 2366 unhandled_af(pd->af); 2367 } 2368 *virtual_type = htons(*virtual_type); 2369 return (0); /* These types match to their own state */ 2370 } 2371 2372 void 2373 pf_intr(void *v) 2374 { 2375 struct epoch_tracker et; 2376 struct pf_send_head queue; 2377 struct pf_send_entry *pfse, *next; 2378 2379 CURVNET_SET((struct vnet *)v); 2380 2381 PF_SENDQ_LOCK(); 2382 queue = V_pf_sendqueue; 2383 STAILQ_INIT(&V_pf_sendqueue); 2384 PF_SENDQ_UNLOCK(); 2385 2386 NET_EPOCH_ENTER(et); 2387 2388 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2389 switch (pfse->pfse_type) { 2390 #ifdef INET 2391 case PFSE_IP: { 2392 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2393 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2394 ("%s: rcvif != loif", __func__)); 2395 2396 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2397 pfse->pfse_m->m_pkthdr.csum_flags |= 2398 CSUM_IP_VALID | CSUM_IP_CHECKED | 2399 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2400 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2401 ip_input(pfse->pfse_m); 2402 } else { 2403 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2404 NULL); 2405 } 2406 break; 2407 } 2408 case PFSE_ICMP: 2409 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2410 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2411 break; 2412 #endif /* INET */ 2413 #ifdef INET6 2414 case PFSE_IP6: 2415 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2416 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2417 ("%s: rcvif != loif", __func__)); 2418 2419 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2420 M_LOOP; 2421 pfse->pfse_m->m_pkthdr.csum_flags |= 2422 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2423 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2424 ip6_input(pfse->pfse_m); 2425 } else { 2426 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2427 NULL, NULL); 2428 } 2429 break; 2430 case PFSE_ICMP6: 2431 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2432 pfse->icmpopts.code, pfse->icmpopts.mtu); 2433 break; 2434 #endif /* INET6 */ 2435 default: 2436 panic("%s: unknown type", __func__); 2437 } 2438 free(pfse, M_PFTEMP); 2439 } 2440 NET_EPOCH_EXIT(et); 2441 CURVNET_RESTORE(); 2442 } 2443 2444 #define pf_purge_thread_period (hz / 10) 2445 2446 #ifdef PF_WANT_32_TO_64_COUNTER 2447 static void 2448 pf_status_counter_u64_periodic(void) 2449 { 2450 2451 PF_RULES_RASSERT(); 2452 2453 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2454 return; 2455 } 2456 2457 for (int i = 0; i < FCNT_MAX; i++) { 2458 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2459 } 2460 } 2461 2462 static void 2463 pf_kif_counter_u64_periodic(void) 2464 { 2465 struct pfi_kkif *kif; 2466 size_t r, run; 2467 2468 PF_RULES_RASSERT(); 2469 2470 if (__predict_false(V_pf_allkifcount == 0)) { 2471 return; 2472 } 2473 2474 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2475 return; 2476 } 2477 2478 run = V_pf_allkifcount / 10; 2479 if (run < 5) 2480 run = 5; 2481 2482 for (r = 0; r < run; r++) { 2483 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2484 if (kif == NULL) { 2485 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2486 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2487 break; 2488 } 2489 2490 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2491 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2492 2493 for (int i = 0; i < 2; i++) { 2494 for (int j = 0; j < 2; j++) { 2495 for (int k = 0; k < 2; k++) { 2496 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2497 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2498 } 2499 } 2500 } 2501 } 2502 } 2503 2504 static void 2505 pf_rule_counter_u64_periodic(void) 2506 { 2507 struct pf_krule *rule; 2508 size_t r, run; 2509 2510 PF_RULES_RASSERT(); 2511 2512 if (__predict_false(V_pf_allrulecount == 0)) { 2513 return; 2514 } 2515 2516 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2517 return; 2518 } 2519 2520 run = V_pf_allrulecount / 10; 2521 if (run < 5) 2522 run = 5; 2523 2524 for (r = 0; r < run; r++) { 2525 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2526 if (rule == NULL) { 2527 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2528 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2529 break; 2530 } 2531 2532 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2533 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2534 2535 pf_counter_u64_periodic(&rule->evaluations); 2536 for (int i = 0; i < 2; i++) { 2537 pf_counter_u64_periodic(&rule->packets[i]); 2538 pf_counter_u64_periodic(&rule->bytes[i]); 2539 } 2540 } 2541 } 2542 2543 static void 2544 pf_counter_u64_periodic_main(void) 2545 { 2546 PF_RULES_RLOCK_TRACKER; 2547 2548 V_pf_counter_periodic_iter++; 2549 2550 PF_RULES_RLOCK(); 2551 pf_counter_u64_critical_enter(); 2552 pf_status_counter_u64_periodic(); 2553 pf_kif_counter_u64_periodic(); 2554 pf_rule_counter_u64_periodic(); 2555 pf_counter_u64_critical_exit(); 2556 PF_RULES_RUNLOCK(); 2557 } 2558 #else 2559 #define pf_counter_u64_periodic_main() do { } while (0) 2560 #endif 2561 2562 void 2563 pf_purge_thread(void *unused __unused) 2564 { 2565 struct epoch_tracker et; 2566 2567 VNET_ITERATOR_DECL(vnet_iter); 2568 2569 sx_xlock(&pf_end_lock); 2570 while (pf_end_threads == 0) { 2571 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2572 2573 VNET_LIST_RLOCK(); 2574 NET_EPOCH_ENTER(et); 2575 VNET_FOREACH(vnet_iter) { 2576 CURVNET_SET(vnet_iter); 2577 2578 /* Wait until V_pf_default_rule is initialized. */ 2579 if (V_pf_vnet_active == 0) { 2580 CURVNET_RESTORE(); 2581 continue; 2582 } 2583 2584 pf_counter_u64_periodic_main(); 2585 2586 /* 2587 * Process 1/interval fraction of the state 2588 * table every run. 2589 */ 2590 V_pf_purge_idx = 2591 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2592 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2593 2594 /* 2595 * Purge other expired types every 2596 * PFTM_INTERVAL seconds. 2597 */ 2598 if (V_pf_purge_idx == 0) { 2599 /* 2600 * Order is important: 2601 * - states and src nodes reference rules 2602 * - states and rules reference kifs 2603 */ 2604 pf_purge_expired_fragments(); 2605 pf_purge_expired_src_nodes(); 2606 pf_purge_unlinked_rules(); 2607 pfi_kkif_purge(); 2608 } 2609 CURVNET_RESTORE(); 2610 } 2611 NET_EPOCH_EXIT(et); 2612 VNET_LIST_RUNLOCK(); 2613 } 2614 2615 pf_end_threads++; 2616 sx_xunlock(&pf_end_lock); 2617 kproc_exit(0); 2618 } 2619 2620 void 2621 pf_unload_vnet_purge(void) 2622 { 2623 2624 /* 2625 * To cleanse up all kifs and rules we need 2626 * two runs: first one clears reference flags, 2627 * then pf_purge_expired_states() doesn't 2628 * raise them, and then second run frees. 2629 */ 2630 pf_purge_unlinked_rules(); 2631 pfi_kkif_purge(); 2632 2633 /* 2634 * Now purge everything. 2635 */ 2636 pf_purge_expired_states(0, V_pf_hashmask); 2637 pf_purge_fragments(UINT_MAX); 2638 pf_purge_expired_src_nodes(); 2639 2640 /* 2641 * Now all kifs & rules should be unreferenced, 2642 * thus should be successfully freed. 2643 */ 2644 pf_purge_unlinked_rules(); 2645 pfi_kkif_purge(); 2646 } 2647 2648 u_int32_t 2649 pf_state_expires(const struct pf_kstate *state) 2650 { 2651 u_int32_t timeout; 2652 u_int32_t start; 2653 u_int32_t end; 2654 u_int32_t states; 2655 2656 /* handle all PFTM_* > PFTM_MAX here */ 2657 if (state->timeout == PFTM_PURGE) 2658 return (time_uptime); 2659 KASSERT(state->timeout != PFTM_UNLINKED, 2660 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2661 KASSERT((state->timeout < PFTM_MAX), 2662 ("pf_state_expires: timeout > PFTM_MAX")); 2663 timeout = state->rule->timeout[state->timeout]; 2664 if (!timeout) 2665 timeout = V_pf_default_rule.timeout[state->timeout]; 2666 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2667 if (start && state->rule != &V_pf_default_rule) { 2668 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2669 states = counter_u64_fetch(state->rule->states_cur); 2670 } else { 2671 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2672 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2673 states = V_pf_status.states; 2674 } 2675 if (end && states > start && start < end) { 2676 if (states < end) { 2677 timeout = (u_int64_t)timeout * (end - states) / 2678 (end - start); 2679 return ((state->expire / 1000) + timeout); 2680 } 2681 else 2682 return (time_uptime); 2683 } 2684 return ((state->expire / 1000) + timeout); 2685 } 2686 2687 void 2688 pf_purge_expired_src_nodes(void) 2689 { 2690 struct pf_ksrc_node_list freelist; 2691 struct pf_srchash *sh; 2692 struct pf_ksrc_node *cur, *next; 2693 int i; 2694 2695 LIST_INIT(&freelist); 2696 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2697 PF_HASHROW_LOCK(sh); 2698 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2699 if (cur->states == 0 && cur->expire <= time_uptime) { 2700 pf_unlink_src_node(cur); 2701 LIST_INSERT_HEAD(&freelist, cur, entry); 2702 } else if (cur->rule != NULL) 2703 cur->rule->rule_ref |= PFRULE_REFS; 2704 PF_HASHROW_UNLOCK(sh); 2705 } 2706 2707 pf_free_src_nodes(&freelist); 2708 2709 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2710 } 2711 2712 static void 2713 pf_src_tree_remove_state(struct pf_kstate *s) 2714 { 2715 uint32_t timeout; 2716 2717 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2718 s->rule->timeout[PFTM_SRC_NODE] : 2719 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2720 2721 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 2722 if (s->sns[sn_type] == NULL) 2723 continue; 2724 PF_SRC_NODE_LOCK(s->sns[sn_type]); 2725 if (sn_type == PF_SN_LIMIT && s->src.tcp_est) 2726 --(s->sns[sn_type]->conn); 2727 if (--(s->sns[sn_type]->states) == 0) 2728 s->sns[sn_type]->expire = time_uptime + timeout; 2729 PF_SRC_NODE_UNLOCK(s->sns[sn_type]); 2730 s->sns[sn_type] = NULL; 2731 } 2732 2733 } 2734 2735 /* 2736 * Unlink and potentilly free a state. Function may be 2737 * called with ID hash row locked, but always returns 2738 * unlocked, since it needs to go through key hash locking. 2739 */ 2740 int 2741 pf_remove_state(struct pf_kstate *s) 2742 { 2743 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2744 2745 NET_EPOCH_ASSERT(); 2746 PF_HASHROW_ASSERT(ih); 2747 2748 if (s->timeout == PFTM_UNLINKED) { 2749 /* 2750 * State is being processed 2751 * by pf_remove_state() in 2752 * an other thread. 2753 */ 2754 PF_HASHROW_UNLOCK(ih); 2755 return (0); /* XXXGL: undefined actually */ 2756 } 2757 2758 if (s->src.state == PF_TCPS_PROXY_DST) { 2759 /* XXX wire key the right one? */ 2760 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2761 &s->key[PF_SK_WIRE]->addr[1], 2762 &s->key[PF_SK_WIRE]->addr[0], 2763 s->key[PF_SK_WIRE]->port[1], 2764 s->key[PF_SK_WIRE]->port[0], 2765 s->src.seqhi, s->src.seqlo + 1, 2766 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2767 s->act.rtableid); 2768 } 2769 2770 LIST_REMOVE(s, entry); 2771 pf_src_tree_remove_state(s); 2772 2773 if (V_pfsync_delete_state_ptr != NULL) 2774 V_pfsync_delete_state_ptr(s); 2775 2776 STATE_DEC_COUNTERS(s); 2777 2778 s->timeout = PFTM_UNLINKED; 2779 2780 /* Ensure we remove it from the list of halfopen states, if needed. */ 2781 if (s->key[PF_SK_STACK] != NULL && 2782 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2783 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2784 2785 PF_HASHROW_UNLOCK(ih); 2786 2787 pf_detach_state(s); 2788 2789 pf_udp_mapping_release(s->udp_mapping); 2790 2791 /* pf_state_insert() initialises refs to 2 */ 2792 return (pf_release_staten(s, 2)); 2793 } 2794 2795 struct pf_kstate * 2796 pf_alloc_state(int flags) 2797 { 2798 2799 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2800 } 2801 2802 void 2803 pf_free_state(struct pf_kstate *cur) 2804 { 2805 struct pf_krule_item *ri; 2806 2807 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2808 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2809 cur->timeout)); 2810 2811 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2812 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2813 free(ri, M_PF_RULE_ITEM); 2814 } 2815 2816 pf_normalize_tcp_cleanup(cur); 2817 uma_zfree(V_pf_state_z, cur); 2818 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2819 } 2820 2821 /* 2822 * Called only from pf_purge_thread(), thus serialized. 2823 */ 2824 static u_int 2825 pf_purge_expired_states(u_int i, int maxcheck) 2826 { 2827 struct pf_idhash *ih; 2828 struct pf_kstate *s; 2829 struct pf_krule_item *mrm; 2830 size_t count __unused; 2831 2832 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2833 2834 /* 2835 * Go through hash and unlink states that expire now. 2836 */ 2837 while (maxcheck > 0) { 2838 count = 0; 2839 ih = &V_pf_idhash[i]; 2840 2841 /* only take the lock if we expect to do work */ 2842 if (!LIST_EMPTY(&ih->states)) { 2843 relock: 2844 PF_HASHROW_LOCK(ih); 2845 LIST_FOREACH(s, &ih->states, entry) { 2846 if (pf_state_expires(s) <= time_uptime) { 2847 V_pf_status.states -= 2848 pf_remove_state(s); 2849 goto relock; 2850 } 2851 s->rule->rule_ref |= PFRULE_REFS; 2852 if (s->nat_rule != NULL) 2853 s->nat_rule->rule_ref |= PFRULE_REFS; 2854 if (s->anchor != NULL) 2855 s->anchor->rule_ref |= PFRULE_REFS; 2856 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2857 SLIST_FOREACH(mrm, &s->match_rules, entry) 2858 mrm->r->rule_ref |= PFRULE_REFS; 2859 if (s->act.rt_kif) 2860 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2861 count++; 2862 } 2863 PF_HASHROW_UNLOCK(ih); 2864 } 2865 2866 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2867 2868 /* Return when we hit end of hash. */ 2869 if (++i > V_pf_hashmask) { 2870 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2871 return (0); 2872 } 2873 2874 maxcheck--; 2875 } 2876 2877 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2878 2879 return (i); 2880 } 2881 2882 static void 2883 pf_purge_unlinked_rules(void) 2884 { 2885 struct pf_krulequeue tmpq; 2886 struct pf_krule *r, *r1; 2887 2888 /* 2889 * If we have overloading task pending, then we'd 2890 * better skip purging this time. There is a tiny 2891 * probability that overloading task references 2892 * an already unlinked rule. 2893 */ 2894 PF_OVERLOADQ_LOCK(); 2895 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2896 PF_OVERLOADQ_UNLOCK(); 2897 return; 2898 } 2899 PF_OVERLOADQ_UNLOCK(); 2900 2901 /* 2902 * Do naive mark-and-sweep garbage collecting of old rules. 2903 * Reference flag is raised by pf_purge_expired_states() 2904 * and pf_purge_expired_src_nodes(). 2905 * 2906 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2907 * use a temporary queue. 2908 */ 2909 TAILQ_INIT(&tmpq); 2910 PF_UNLNKDRULES_LOCK(); 2911 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2912 if (!(r->rule_ref & PFRULE_REFS)) { 2913 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2914 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2915 } else 2916 r->rule_ref &= ~PFRULE_REFS; 2917 } 2918 PF_UNLNKDRULES_UNLOCK(); 2919 2920 if (!TAILQ_EMPTY(&tmpq)) { 2921 PF_CONFIG_LOCK(); 2922 PF_RULES_WLOCK(); 2923 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2924 TAILQ_REMOVE(&tmpq, r, entries); 2925 pf_free_rule(r); 2926 } 2927 PF_RULES_WUNLOCK(); 2928 PF_CONFIG_UNLOCK(); 2929 } 2930 } 2931 2932 void 2933 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2934 { 2935 switch (af) { 2936 #ifdef INET 2937 case AF_INET: { 2938 u_int32_t a = ntohl(addr->addr32[0]); 2939 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2940 (a>>8)&255, a&255); 2941 if (p) { 2942 p = ntohs(p); 2943 printf(":%u", p); 2944 } 2945 break; 2946 } 2947 #endif /* INET */ 2948 #ifdef INET6 2949 case AF_INET6: { 2950 u_int16_t b; 2951 u_int8_t i, curstart, curend, maxstart, maxend; 2952 curstart = curend = maxstart = maxend = 255; 2953 for (i = 0; i < 8; i++) { 2954 if (!addr->addr16[i]) { 2955 if (curstart == 255) 2956 curstart = i; 2957 curend = i; 2958 } else { 2959 if ((curend - curstart) > 2960 (maxend - maxstart)) { 2961 maxstart = curstart; 2962 maxend = curend; 2963 } 2964 curstart = curend = 255; 2965 } 2966 } 2967 if ((curend - curstart) > 2968 (maxend - maxstart)) { 2969 maxstart = curstart; 2970 maxend = curend; 2971 } 2972 for (i = 0; i < 8; i++) { 2973 if (i >= maxstart && i <= maxend) { 2974 if (i == 0) 2975 printf(":"); 2976 if (i == maxend) 2977 printf(":"); 2978 } else { 2979 b = ntohs(addr->addr16[i]); 2980 printf("%x", b); 2981 if (i < 7) 2982 printf(":"); 2983 } 2984 } 2985 if (p) { 2986 p = ntohs(p); 2987 printf("[%u]", p); 2988 } 2989 break; 2990 } 2991 #endif /* INET6 */ 2992 default: 2993 unhandled_af(af); 2994 } 2995 } 2996 2997 void 2998 pf_print_state(struct pf_kstate *s) 2999 { 3000 pf_print_state_parts(s, NULL, NULL); 3001 } 3002 3003 static void 3004 pf_print_state_parts(struct pf_kstate *s, 3005 struct pf_state_key *skwp, struct pf_state_key *sksp) 3006 { 3007 struct pf_state_key *skw, *sks; 3008 u_int8_t proto, dir; 3009 3010 /* Do our best to fill these, but they're skipped if NULL */ 3011 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 3012 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 3013 proto = skw ? skw->proto : (sks ? sks->proto : 0); 3014 dir = s ? s->direction : 0; 3015 3016 switch (proto) { 3017 case IPPROTO_IPV4: 3018 printf("IPv4"); 3019 break; 3020 case IPPROTO_IPV6: 3021 printf("IPv6"); 3022 break; 3023 case IPPROTO_TCP: 3024 printf("TCP"); 3025 break; 3026 case IPPROTO_UDP: 3027 printf("UDP"); 3028 break; 3029 case IPPROTO_ICMP: 3030 printf("ICMP"); 3031 break; 3032 case IPPROTO_ICMPV6: 3033 printf("ICMPv6"); 3034 break; 3035 default: 3036 printf("%u", proto); 3037 break; 3038 } 3039 switch (dir) { 3040 case PF_IN: 3041 printf(" in"); 3042 break; 3043 case PF_OUT: 3044 printf(" out"); 3045 break; 3046 } 3047 if (skw) { 3048 printf(" wire: "); 3049 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 3050 printf(" "); 3051 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 3052 } 3053 if (sks) { 3054 printf(" stack: "); 3055 if (sks != skw) { 3056 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 3057 printf(" "); 3058 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 3059 } else 3060 printf("-"); 3061 } 3062 if (s) { 3063 if (proto == IPPROTO_TCP) { 3064 printf(" [lo=%u high=%u win=%u modulator=%u", 3065 s->src.seqlo, s->src.seqhi, 3066 s->src.max_win, s->src.seqdiff); 3067 if (s->src.wscale && s->dst.wscale) 3068 printf(" wscale=%u", 3069 s->src.wscale & PF_WSCALE_MASK); 3070 printf("]"); 3071 printf(" [lo=%u high=%u win=%u modulator=%u", 3072 s->dst.seqlo, s->dst.seqhi, 3073 s->dst.max_win, s->dst.seqdiff); 3074 if (s->src.wscale && s->dst.wscale) 3075 printf(" wscale=%u", 3076 s->dst.wscale & PF_WSCALE_MASK); 3077 printf("]"); 3078 } 3079 printf(" %u:%u", s->src.state, s->dst.state); 3080 if (s->rule) 3081 printf(" @%d", s->rule->nr); 3082 } 3083 } 3084 3085 void 3086 pf_print_flags(uint16_t f) 3087 { 3088 if (f) 3089 printf(" "); 3090 if (f & TH_FIN) 3091 printf("F"); 3092 if (f & TH_SYN) 3093 printf("S"); 3094 if (f & TH_RST) 3095 printf("R"); 3096 if (f & TH_PUSH) 3097 printf("P"); 3098 if (f & TH_ACK) 3099 printf("A"); 3100 if (f & TH_URG) 3101 printf("U"); 3102 if (f & TH_ECE) 3103 printf("E"); 3104 if (f & TH_CWR) 3105 printf("W"); 3106 if (f & TH_AE) 3107 printf("e"); 3108 } 3109 3110 #define PF_SET_SKIP_STEPS(i) \ 3111 do { \ 3112 while (head[i] != cur) { \ 3113 head[i]->skip[i] = cur; \ 3114 head[i] = TAILQ_NEXT(head[i], entries); \ 3115 } \ 3116 } while (0) 3117 3118 void 3119 pf_calc_skip_steps(struct pf_krulequeue *rules) 3120 { 3121 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3122 int i; 3123 3124 cur = TAILQ_FIRST(rules); 3125 prev = cur; 3126 for (i = 0; i < PF_SKIP_COUNT; ++i) 3127 head[i] = cur; 3128 while (cur != NULL) { 3129 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3130 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3131 if (cur->direction != prev->direction) 3132 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3133 if (cur->af != prev->af) 3134 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3135 if (cur->proto != prev->proto) 3136 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3137 if (cur->src.neg != prev->src.neg || 3138 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3139 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3140 if (cur->dst.neg != prev->dst.neg || 3141 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3142 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3143 if (cur->src.port[0] != prev->src.port[0] || 3144 cur->src.port[1] != prev->src.port[1] || 3145 cur->src.port_op != prev->src.port_op) 3146 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3147 if (cur->dst.port[0] != prev->dst.port[0] || 3148 cur->dst.port[1] != prev->dst.port[1] || 3149 cur->dst.port_op != prev->dst.port_op) 3150 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3151 3152 prev = cur; 3153 cur = TAILQ_NEXT(cur, entries); 3154 } 3155 for (i = 0; i < PF_SKIP_COUNT; ++i) 3156 PF_SET_SKIP_STEPS(i); 3157 } 3158 3159 int 3160 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3161 { 3162 if (aw1->type != aw2->type) 3163 return (1); 3164 switch (aw1->type) { 3165 case PF_ADDR_ADDRMASK: 3166 case PF_ADDR_RANGE: 3167 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3168 return (1); 3169 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3170 return (1); 3171 return (0); 3172 case PF_ADDR_DYNIFTL: 3173 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3174 case PF_ADDR_NONE: 3175 case PF_ADDR_NOROUTE: 3176 case PF_ADDR_URPFFAILED: 3177 return (0); 3178 case PF_ADDR_TABLE: 3179 return (aw1->p.tbl != aw2->p.tbl); 3180 default: 3181 printf("invalid address type: %d\n", aw1->type); 3182 return (1); 3183 } 3184 } 3185 3186 /** 3187 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3188 * header isn't always a full checksum. In some cases (i.e. output) it's a 3189 * pseudo-header checksum, which is a partial checksum over src/dst IP 3190 * addresses, protocol number and length. 3191 * 3192 * That means we have the following cases: 3193 * * Input or forwarding: we don't have TSO, the checksum fields are full 3194 * checksums, we need to update the checksum whenever we change anything. 3195 * * Output (i.e. the checksum is a pseudo-header checksum): 3196 * x The field being updated is src/dst address or affects the length of 3197 * the packet. We need to update the pseudo-header checksum (note that this 3198 * checksum is not ones' complement). 3199 * x Some other field is being modified (e.g. src/dst port numbers): We 3200 * don't have to update anything. 3201 **/ 3202 u_int16_t 3203 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3204 { 3205 u_int32_t x; 3206 3207 x = cksum + old - new; 3208 x = (x + (x >> 16)) & 0xffff; 3209 3210 /* optimise: eliminate a branch when not udp */ 3211 if (udp && cksum == 0x0000) 3212 return cksum; 3213 if (udp && x == 0x0000) 3214 x = 0xffff; 3215 3216 return (u_int16_t)(x); 3217 } 3218 3219 static void 3220 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi) 3221 { 3222 u_int16_t old = htons(hi ? (*f << 8) : *f); 3223 u_int16_t new = htons(hi ? ( v << 8) : v); 3224 3225 if (*f == v) 3226 return; 3227 3228 *f = v; 3229 3230 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3231 return; 3232 3233 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new, 3234 pd->proto == IPPROTO_UDP); 3235 } 3236 3237 void 3238 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi) 3239 { 3240 u_int8_t *fb = (u_int8_t *)f; 3241 u_int8_t *vb = (u_int8_t *)&v; 3242 3243 pf_patch_8(pd, fb++, *vb++, hi); 3244 pf_patch_8(pd, fb++, *vb++, !hi); 3245 } 3246 3247 void 3248 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi) 3249 { 3250 u_int8_t *fb = (u_int8_t *)f; 3251 u_int8_t *vb = (u_int8_t *)&v; 3252 3253 pf_patch_8(pd, fb++, *vb++, hi); 3254 pf_patch_8(pd, fb++, *vb++, !hi); 3255 pf_patch_8(pd, fb++, *vb++, hi); 3256 pf_patch_8(pd, fb++, *vb++, !hi); 3257 } 3258 3259 u_int16_t 3260 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3261 u_int16_t new, u_int8_t udp) 3262 { 3263 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3264 return (cksum); 3265 3266 return (pf_cksum_fixup(cksum, old, new, udp)); 3267 } 3268 3269 static void 3270 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3271 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u) 3272 { 3273 struct pf_addr ao; 3274 u_int16_t po; 3275 3276 PF_ACPY(&ao, a, pd->af); 3277 if (pd->af == pd->naf) 3278 PF_ACPY(a, an, pd->af); 3279 3280 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3281 *pc = ~*pc; 3282 3283 if (p == NULL) /* no port -> done. no cksum to worry about. */ 3284 return; 3285 po = *p; 3286 *p = pn; 3287 3288 switch (pd->af) { 3289 #ifdef INET 3290 case AF_INET: 3291 switch (pd->naf) { 3292 case AF_INET: 3293 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3294 ao.addr16[0], an->addr16[0], 0), 3295 ao.addr16[1], an->addr16[1], 0); 3296 *p = pn; 3297 3298 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3299 ao.addr16[0], an->addr16[0], u), 3300 ao.addr16[1], an->addr16[1], u); 3301 3302 *pc = pf_proto_cksum_fixup(pd->m, *pc, po, pn, u); 3303 break; 3304 #ifdef INET6 3305 case AF_INET6: 3306 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3307 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3308 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3309 ao.addr16[0], an->addr16[0], u), 3310 ao.addr16[1], an->addr16[1], u), 3311 0, an->addr16[2], u), 3312 0, an->addr16[3], u), 3313 0, an->addr16[4], u), 3314 0, an->addr16[5], u), 3315 0, an->addr16[6], u), 3316 0, an->addr16[7], u), 3317 po, pn, u); 3318 3319 /* XXXKP TODO *ic checksum? */ 3320 break; 3321 #endif /* INET6 */ 3322 } 3323 break; 3324 #endif /* INET */ 3325 #ifdef INET6 3326 case AF_INET6: 3327 switch (pd->naf) { 3328 #ifdef INET 3329 case AF_INET: 3330 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3331 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3332 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3333 ao.addr16[0], an->addr16[0], u), 3334 ao.addr16[1], an->addr16[1], u), 3335 ao.addr16[2], 0, u), 3336 ao.addr16[3], 0, u), 3337 ao.addr16[4], 0, u), 3338 ao.addr16[5], 0, u), 3339 ao.addr16[6], 0, u), 3340 ao.addr16[7], 0, u), 3341 po, pn, u); 3342 3343 /* XXXKP TODO *ic checksum? */ 3344 break; 3345 #endif /* INET */ 3346 case AF_INET6: 3347 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3348 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3349 pf_cksum_fixup(pf_cksum_fixup(*pc, 3350 ao.addr16[0], an->addr16[0], u), 3351 ao.addr16[1], an->addr16[1], u), 3352 ao.addr16[2], an->addr16[2], u), 3353 ao.addr16[3], an->addr16[3], u), 3354 ao.addr16[4], an->addr16[4], u), 3355 ao.addr16[5], an->addr16[5], u), 3356 ao.addr16[6], an->addr16[6], u), 3357 ao.addr16[7], an->addr16[7], u); 3358 3359 *pc = pf_proto_cksum_fixup(pd->m, *pc, po, pn, u); 3360 break; 3361 } 3362 break; 3363 #endif /* INET6 */ 3364 default: 3365 unhandled_af(pd->af); 3366 } 3367 3368 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3369 CSUM_DELAY_DATA_IPV6)) { 3370 *pc = ~*pc; 3371 if (! *pc) 3372 *pc = 0xffff; 3373 } 3374 } 3375 3376 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3377 void 3378 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3379 { 3380 u_int32_t ao; 3381 3382 memcpy(&ao, a, sizeof(ao)); 3383 memcpy(a, &an, sizeof(u_int32_t)); 3384 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3385 ao % 65536, an % 65536, u); 3386 } 3387 3388 void 3389 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3390 { 3391 u_int32_t ao; 3392 3393 memcpy(&ao, a, sizeof(ao)); 3394 memcpy(a, &an, sizeof(u_int32_t)); 3395 3396 *c = pf_proto_cksum_fixup(m, 3397 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3398 ao % 65536, an % 65536, udp); 3399 } 3400 3401 #ifdef INET6 3402 static void 3403 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3404 { 3405 struct pf_addr ao; 3406 3407 PF_ACPY(&ao, a, AF_INET6); 3408 PF_ACPY(a, an, AF_INET6); 3409 3410 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3411 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3412 pf_cksum_fixup(pf_cksum_fixup(*c, 3413 ao.addr16[0], an->addr16[0], u), 3414 ao.addr16[1], an->addr16[1], u), 3415 ao.addr16[2], an->addr16[2], u), 3416 ao.addr16[3], an->addr16[3], u), 3417 ao.addr16[4], an->addr16[4], u), 3418 ao.addr16[5], an->addr16[5], u), 3419 ao.addr16[6], an->addr16[6], u), 3420 ao.addr16[7], an->addr16[7], u); 3421 } 3422 #endif /* INET6 */ 3423 3424 static void 3425 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3426 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3427 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3428 { 3429 struct pf_addr oia, ooa; 3430 3431 PF_ACPY(&oia, ia, af); 3432 if (oa) 3433 PF_ACPY(&ooa, oa, af); 3434 3435 /* Change inner protocol port, fix inner protocol checksum. */ 3436 if (ip != NULL) { 3437 u_int16_t oip = *ip; 3438 u_int32_t opc; 3439 3440 if (pc != NULL) 3441 opc = *pc; 3442 *ip = np; 3443 if (pc != NULL) 3444 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3445 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3446 if (pc != NULL) 3447 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3448 } 3449 /* Change inner ip address, fix inner ip and icmp checksums. */ 3450 PF_ACPY(ia, na, af); 3451 switch (af) { 3452 #ifdef INET 3453 case AF_INET: { 3454 u_int32_t oh2c = *h2c; 3455 3456 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3457 oia.addr16[0], ia->addr16[0], 0), 3458 oia.addr16[1], ia->addr16[1], 0); 3459 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3460 oia.addr16[0], ia->addr16[0], 0), 3461 oia.addr16[1], ia->addr16[1], 0); 3462 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3463 break; 3464 } 3465 #endif /* INET */ 3466 #ifdef INET6 3467 case AF_INET6: 3468 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3469 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3470 pf_cksum_fixup(pf_cksum_fixup(*ic, 3471 oia.addr16[0], ia->addr16[0], u), 3472 oia.addr16[1], ia->addr16[1], u), 3473 oia.addr16[2], ia->addr16[2], u), 3474 oia.addr16[3], ia->addr16[3], u), 3475 oia.addr16[4], ia->addr16[4], u), 3476 oia.addr16[5], ia->addr16[5], u), 3477 oia.addr16[6], ia->addr16[6], u), 3478 oia.addr16[7], ia->addr16[7], u); 3479 break; 3480 #endif /* INET6 */ 3481 } 3482 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3483 if (oa) { 3484 PF_ACPY(oa, na, af); 3485 switch (af) { 3486 #ifdef INET 3487 case AF_INET: 3488 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3489 ooa.addr16[0], oa->addr16[0], 0), 3490 ooa.addr16[1], oa->addr16[1], 0); 3491 break; 3492 #endif /* INET */ 3493 #ifdef INET6 3494 case AF_INET6: 3495 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3496 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3497 pf_cksum_fixup(pf_cksum_fixup(*ic, 3498 ooa.addr16[0], oa->addr16[0], u), 3499 ooa.addr16[1], oa->addr16[1], u), 3500 ooa.addr16[2], oa->addr16[2], u), 3501 ooa.addr16[3], oa->addr16[3], u), 3502 ooa.addr16[4], oa->addr16[4], u), 3503 ooa.addr16[5], oa->addr16[5], u), 3504 ooa.addr16[6], oa->addr16[6], u), 3505 ooa.addr16[7], oa->addr16[7], u); 3506 break; 3507 #endif /* INET6 */ 3508 } 3509 } 3510 } 3511 3512 int 3513 pf_translate_af(struct pf_pdesc *pd) 3514 { 3515 #if defined(INET) && defined(INET6) 3516 struct mbuf *mp; 3517 struct ip *ip4; 3518 struct ip6_hdr *ip6; 3519 struct icmp6_hdr *icmp; 3520 struct m_tag *mtag; 3521 struct pf_fragment_tag *ftag; 3522 int hlen; 3523 3524 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3525 3526 /* trim the old header */ 3527 m_adj(pd->m, pd->off); 3528 3529 /* prepend a new one */ 3530 M_PREPEND(pd->m, hlen, M_NOWAIT); 3531 if (pd->m == NULL) 3532 return (-1); 3533 3534 switch (pd->naf) { 3535 case AF_INET: 3536 ip4 = mtod(pd->m, struct ip *); 3537 bzero(ip4, hlen); 3538 ip4->ip_v = IPVERSION; 3539 ip4->ip_hl = hlen >> 2; 3540 ip4->ip_tos = pd->tos; 3541 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3542 ip_fillid(ip4, V_ip_random_id); 3543 ip4->ip_ttl = pd->ttl; 3544 ip4->ip_p = pd->proto; 3545 ip4->ip_src = pd->nsaddr.v4; 3546 ip4->ip_dst = pd->ndaddr.v4; 3547 pd->src = (struct pf_addr *)&ip4->ip_src; 3548 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3549 pd->off = sizeof(struct ip); 3550 break; 3551 case AF_INET6: 3552 ip6 = mtod(pd->m, struct ip6_hdr *); 3553 bzero(ip6, hlen); 3554 ip6->ip6_vfc = IPV6_VERSION; 3555 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20); 3556 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3557 ip6->ip6_nxt = pd->proto; 3558 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3559 ip6->ip6_hlim = IPV6_DEFHLIM; 3560 else 3561 ip6->ip6_hlim = pd->ttl; 3562 ip6->ip6_src = pd->nsaddr.v6; 3563 ip6->ip6_dst = pd->ndaddr.v6; 3564 pd->src = (struct pf_addr *)&ip6->ip6_src; 3565 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3566 pd->off = sizeof(struct ip6_hdr); 3567 3568 /* 3569 * If we're dealing with a reassembled packet we need to adjust 3570 * the header length from the IPv4 header size to IPv6 header 3571 * size. 3572 */ 3573 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL); 3574 if (mtag) { 3575 ftag = (struct pf_fragment_tag *)(mtag + 1); 3576 ftag->ft_hdrlen = sizeof(*ip6); 3577 ftag->ft_maxlen -= sizeof(struct ip6_hdr) - 3578 sizeof(struct ip) + sizeof(struct ip6_frag); 3579 } 3580 break; 3581 default: 3582 return (-1); 3583 } 3584 3585 /* recalculate icmp/icmp6 checksums */ 3586 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3587 int off; 3588 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3589 NULL) { 3590 pd->m = NULL; 3591 return (-1); 3592 } 3593 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3594 icmp->icmp6_cksum = 0; 3595 icmp->icmp6_cksum = pd->naf == AF_INET ? 3596 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3597 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3598 ntohs(ip6->ip6_plen)); 3599 } 3600 #endif /* INET && INET6 */ 3601 3602 return (0); 3603 } 3604 3605 int 3606 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3607 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3608 sa_family_t af, sa_family_t naf) 3609 { 3610 #if defined(INET) && defined(INET6) 3611 struct mbuf *n = NULL; 3612 struct ip *ip4; 3613 struct ip6_hdr *ip6; 3614 int hlen, olen, mlen; 3615 3616 if (af == naf || (af != AF_INET && af != AF_INET6) || 3617 (naf != AF_INET && naf != AF_INET6)) 3618 return (-1); 3619 3620 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3621 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3622 return (-1); 3623 3624 /* old header */ 3625 olen = pd2->off - off; 3626 /* new header */ 3627 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3628 3629 /* trim old header */ 3630 m_adj(n, olen); 3631 3632 /* prepend a new one */ 3633 M_PREPEND(n, hlen, M_NOWAIT); 3634 if (n == NULL) 3635 return (-1); 3636 3637 /* translate inner ip/ip6 header */ 3638 switch (naf) { 3639 case AF_INET: 3640 ip4 = mtod(n, struct ip *); 3641 bzero(ip4, sizeof(*ip4)); 3642 ip4->ip_v = IPVERSION; 3643 ip4->ip_hl = sizeof(*ip4) >> 2; 3644 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen); 3645 ip_fillid(ip4, V_ip_random_id); 3646 ip4->ip_off = htons(IP_DF); 3647 ip4->ip_ttl = pd2->ttl; 3648 if (pd2->proto == IPPROTO_ICMPV6) 3649 ip4->ip_p = IPPROTO_ICMP; 3650 else 3651 ip4->ip_p = pd2->proto; 3652 ip4->ip_src = src->v4; 3653 ip4->ip_dst = dst->v4; 3654 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3655 break; 3656 case AF_INET6: 3657 ip6 = mtod(n, struct ip6_hdr *); 3658 bzero(ip6, sizeof(*ip6)); 3659 ip6->ip6_vfc = IPV6_VERSION; 3660 ip6->ip6_plen = htons(pd2->tot_len - olen); 3661 if (pd2->proto == IPPROTO_ICMP) 3662 ip6->ip6_nxt = IPPROTO_ICMPV6; 3663 else 3664 ip6->ip6_nxt = pd2->proto; 3665 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3666 ip6->ip6_hlim = IPV6_DEFHLIM; 3667 else 3668 ip6->ip6_hlim = pd2->ttl; 3669 ip6->ip6_src = src->v6; 3670 ip6->ip6_dst = dst->v6; 3671 break; 3672 default: 3673 unhandled_af(naf); 3674 } 3675 3676 /* adjust payload offset and total packet length */ 3677 pd2->off += hlen - olen; 3678 pd->tot_len += hlen - olen; 3679 3680 /* merge modified inner packet with the original header */ 3681 mlen = n->m_pkthdr.len; 3682 m_cat(m, n); 3683 m->m_pkthdr.len += mlen; 3684 #endif /* INET && INET6 */ 3685 3686 return (0); 3687 } 3688 3689 #define PTR_IP(field) (offsetof(struct ip, field)) 3690 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3691 3692 int 3693 pf_translate_icmp_af(int af, void *arg) 3694 { 3695 #if defined(INET) && defined(INET6) 3696 struct icmp *icmp4; 3697 struct icmp6_hdr *icmp6; 3698 u_int32_t mtu; 3699 int32_t ptr = -1; 3700 u_int8_t type; 3701 u_int8_t code; 3702 3703 switch (af) { 3704 case AF_INET: 3705 icmp6 = arg; 3706 type = icmp6->icmp6_type; 3707 code = icmp6->icmp6_code; 3708 mtu = ntohl(icmp6->icmp6_mtu); 3709 3710 switch (type) { 3711 case ICMP6_ECHO_REQUEST: 3712 type = ICMP_ECHO; 3713 break; 3714 case ICMP6_ECHO_REPLY: 3715 type = ICMP_ECHOREPLY; 3716 break; 3717 case ICMP6_DST_UNREACH: 3718 type = ICMP_UNREACH; 3719 switch (code) { 3720 case ICMP6_DST_UNREACH_NOROUTE: 3721 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3722 case ICMP6_DST_UNREACH_ADDR: 3723 code = ICMP_UNREACH_HOST; 3724 break; 3725 case ICMP6_DST_UNREACH_ADMIN: 3726 code = ICMP_UNREACH_HOST_PROHIB; 3727 break; 3728 case ICMP6_DST_UNREACH_NOPORT: 3729 code = ICMP_UNREACH_PORT; 3730 break; 3731 default: 3732 return (-1); 3733 } 3734 break; 3735 case ICMP6_PACKET_TOO_BIG: 3736 type = ICMP_UNREACH; 3737 code = ICMP_UNREACH_NEEDFRAG; 3738 mtu -= 20; 3739 break; 3740 case ICMP6_TIME_EXCEEDED: 3741 type = ICMP_TIMXCEED; 3742 break; 3743 case ICMP6_PARAM_PROB: 3744 switch (code) { 3745 case ICMP6_PARAMPROB_HEADER: 3746 type = ICMP_PARAMPROB; 3747 code = ICMP_PARAMPROB_ERRATPTR; 3748 ptr = ntohl(icmp6->icmp6_pptr); 3749 3750 if (ptr == PTR_IP6(ip6_vfc)) 3751 ; /* preserve */ 3752 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3753 ptr = PTR_IP(ip_tos); 3754 else if (ptr == PTR_IP6(ip6_plen) || 3755 ptr == PTR_IP6(ip6_plen) + 1) 3756 ptr = PTR_IP(ip_len); 3757 else if (ptr == PTR_IP6(ip6_nxt)) 3758 ptr = PTR_IP(ip_p); 3759 else if (ptr == PTR_IP6(ip6_hlim)) 3760 ptr = PTR_IP(ip_ttl); 3761 else if (ptr >= PTR_IP6(ip6_src) && 3762 ptr < PTR_IP6(ip6_dst)) 3763 ptr = PTR_IP(ip_src); 3764 else if (ptr >= PTR_IP6(ip6_dst) && 3765 ptr < sizeof(struct ip6_hdr)) 3766 ptr = PTR_IP(ip_dst); 3767 else { 3768 return (-1); 3769 } 3770 break; 3771 case ICMP6_PARAMPROB_NEXTHEADER: 3772 type = ICMP_UNREACH; 3773 code = ICMP_UNREACH_PROTOCOL; 3774 break; 3775 default: 3776 return (-1); 3777 } 3778 break; 3779 default: 3780 return (-1); 3781 } 3782 if (icmp6->icmp6_type != type) { 3783 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3784 icmp6->icmp6_type, type, 0); 3785 icmp6->icmp6_type = type; 3786 } 3787 if (icmp6->icmp6_code != code) { 3788 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3789 icmp6->icmp6_code, code, 0); 3790 icmp6->icmp6_code = code; 3791 } 3792 if (icmp6->icmp6_mtu != htonl(mtu)) { 3793 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3794 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3795 /* aligns well with a icmpv4 nextmtu */ 3796 icmp6->icmp6_mtu = htonl(mtu); 3797 } 3798 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3799 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3800 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3801 /* icmpv4 pptr is a one most significant byte */ 3802 icmp6->icmp6_pptr = htonl(ptr << 24); 3803 } 3804 break; 3805 case AF_INET6: 3806 icmp4 = arg; 3807 type = icmp4->icmp_type; 3808 code = icmp4->icmp_code; 3809 mtu = ntohs(icmp4->icmp_nextmtu); 3810 3811 switch (type) { 3812 case ICMP_ECHO: 3813 type = ICMP6_ECHO_REQUEST; 3814 break; 3815 case ICMP_ECHOREPLY: 3816 type = ICMP6_ECHO_REPLY; 3817 break; 3818 case ICMP_UNREACH: 3819 type = ICMP6_DST_UNREACH; 3820 switch (code) { 3821 case ICMP_UNREACH_NET: 3822 case ICMP_UNREACH_HOST: 3823 case ICMP_UNREACH_NET_UNKNOWN: 3824 case ICMP_UNREACH_HOST_UNKNOWN: 3825 case ICMP_UNREACH_ISOLATED: 3826 case ICMP_UNREACH_TOSNET: 3827 case ICMP_UNREACH_TOSHOST: 3828 code = ICMP6_DST_UNREACH_NOROUTE; 3829 break; 3830 case ICMP_UNREACH_PORT: 3831 code = ICMP6_DST_UNREACH_NOPORT; 3832 break; 3833 case ICMP_UNREACH_NET_PROHIB: 3834 case ICMP_UNREACH_HOST_PROHIB: 3835 case ICMP_UNREACH_FILTER_PROHIB: 3836 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3837 code = ICMP6_DST_UNREACH_ADMIN; 3838 break; 3839 case ICMP_UNREACH_PROTOCOL: 3840 type = ICMP6_PARAM_PROB; 3841 code = ICMP6_PARAMPROB_NEXTHEADER; 3842 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3843 break; 3844 case ICMP_UNREACH_NEEDFRAG: 3845 type = ICMP6_PACKET_TOO_BIG; 3846 code = 0; 3847 mtu += 20; 3848 break; 3849 default: 3850 return (-1); 3851 } 3852 break; 3853 case ICMP_TIMXCEED: 3854 type = ICMP6_TIME_EXCEEDED; 3855 break; 3856 case ICMP_PARAMPROB: 3857 type = ICMP6_PARAM_PROB; 3858 switch (code) { 3859 case ICMP_PARAMPROB_ERRATPTR: 3860 code = ICMP6_PARAMPROB_HEADER; 3861 break; 3862 case ICMP_PARAMPROB_LENGTH: 3863 code = ICMP6_PARAMPROB_HEADER; 3864 break; 3865 default: 3866 return (-1); 3867 } 3868 3869 ptr = icmp4->icmp_pptr; 3870 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3871 ; /* preserve */ 3872 else if (ptr == PTR_IP(ip_len) || 3873 ptr == PTR_IP(ip_len) + 1) 3874 ptr = PTR_IP6(ip6_plen); 3875 else if (ptr == PTR_IP(ip_ttl)) 3876 ptr = PTR_IP6(ip6_hlim); 3877 else if (ptr == PTR_IP(ip_p)) 3878 ptr = PTR_IP6(ip6_nxt); 3879 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3880 ptr = PTR_IP6(ip6_src); 3881 else if (ptr >= PTR_IP(ip_dst) && 3882 ptr < sizeof(struct ip)) 3883 ptr = PTR_IP6(ip6_dst); 3884 else { 3885 return (-1); 3886 } 3887 break; 3888 default: 3889 return (-1); 3890 } 3891 if (icmp4->icmp_type != type) { 3892 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3893 icmp4->icmp_type, type, 0); 3894 icmp4->icmp_type = type; 3895 } 3896 if (icmp4->icmp_code != code) { 3897 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3898 icmp4->icmp_code, code, 0); 3899 icmp4->icmp_code = code; 3900 } 3901 if (icmp4->icmp_nextmtu != htons(mtu)) { 3902 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3903 icmp4->icmp_nextmtu, htons(mtu), 0); 3904 icmp4->icmp_nextmtu = htons(mtu); 3905 } 3906 if (ptr >= 0 && icmp4->icmp_void != ptr) { 3907 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3908 htons(icmp4->icmp_pptr), htons(ptr), 0); 3909 icmp4->icmp_void = htonl(ptr); 3910 } 3911 break; 3912 default: 3913 unhandled_af(af); 3914 } 3915 #endif /* INET && INET6 */ 3916 3917 return (0); 3918 } 3919 3920 /* 3921 * Need to modulate the sequence numbers in the TCP SACK option 3922 * (credits to Krzysztof Pfaff for report and patch) 3923 */ 3924 static int 3925 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3926 struct pf_state_peer *dst) 3927 { 3928 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3929 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3930 int copyback = 0, i, olen; 3931 struct sackblk sack; 3932 3933 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3934 if (hlen < TCPOLEN_SACKLEN || hlen > MAX_TCPOPTLEN || 3935 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3936 return 0; 3937 3938 while (hlen >= TCPOLEN_SACKLEN) { 3939 size_t startoff = opt - opts; 3940 olen = opt[1]; 3941 switch (*opt) { 3942 case TCPOPT_EOL: /* FALLTHROUGH */ 3943 case TCPOPT_NOP: 3944 opt++; 3945 hlen--; 3946 break; 3947 case TCPOPT_SACK: 3948 if (olen > hlen) 3949 olen = hlen; 3950 if (olen >= TCPOLEN_SACKLEN) { 3951 for (i = 2; i + TCPOLEN_SACK <= olen; 3952 i += TCPOLEN_SACK) { 3953 memcpy(&sack, &opt[i], sizeof(sack)); 3954 pf_patch_32(pd, 3955 &sack.start, 3956 htonl(ntohl(sack.start) - dst->seqdiff), 3957 PF_ALGNMNT(startoff)); 3958 pf_patch_32(pd, 3959 &sack.end, 3960 htonl(ntohl(sack.end) - dst->seqdiff), 3961 PF_ALGNMNT(startoff)); 3962 memcpy(&opt[i], &sack, sizeof(sack)); 3963 } 3964 copyback = 1; 3965 } 3966 /* FALLTHROUGH */ 3967 default: 3968 if (olen < 2) 3969 olen = 2; 3970 hlen -= olen; 3971 opt += olen; 3972 } 3973 } 3974 3975 if (copyback) 3976 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3977 return (copyback); 3978 } 3979 3980 struct mbuf * 3981 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3982 const struct pf_addr *saddr, const struct pf_addr *daddr, 3983 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3984 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3985 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3986 { 3987 struct mbuf *m; 3988 int len, tlen; 3989 #ifdef INET 3990 struct ip *h = NULL; 3991 #endif /* INET */ 3992 #ifdef INET6 3993 struct ip6_hdr *h6 = NULL; 3994 #endif /* INET6 */ 3995 struct tcphdr *th; 3996 char *opt; 3997 struct pf_mtag *pf_mtag; 3998 3999 len = 0; 4000 th = NULL; 4001 4002 /* maximum segment size tcp option */ 4003 tlen = sizeof(struct tcphdr); 4004 if (mss) 4005 tlen += 4; 4006 4007 switch (af) { 4008 #ifdef INET 4009 case AF_INET: 4010 len = sizeof(struct ip) + tlen; 4011 break; 4012 #endif /* INET */ 4013 #ifdef INET6 4014 case AF_INET6: 4015 len = sizeof(struct ip6_hdr) + tlen; 4016 break; 4017 #endif /* INET6 */ 4018 default: 4019 unhandled_af(af); 4020 } 4021 4022 m = m_gethdr(M_NOWAIT, MT_DATA); 4023 if (m == NULL) 4024 return (NULL); 4025 4026 #ifdef MAC 4027 mac_netinet_firewall_send(m); 4028 #endif 4029 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 4030 m_freem(m); 4031 return (NULL); 4032 } 4033 m->m_flags |= mbuf_flags; 4034 pf_mtag->tag = mtag_tag; 4035 pf_mtag->flags = mtag_flags; 4036 4037 if (rtableid >= 0) 4038 M_SETFIB(m, rtableid); 4039 4040 #ifdef ALTQ 4041 if (r != NULL && r->qid) { 4042 pf_mtag->qid = r->qid; 4043 4044 /* add hints for ecn */ 4045 pf_mtag->hdr = mtod(m, struct ip *); 4046 } 4047 #endif /* ALTQ */ 4048 m->m_data += max_linkhdr; 4049 m->m_pkthdr.len = m->m_len = len; 4050 /* The rest of the stack assumes a rcvif, so provide one. 4051 * This is a locally generated packet, so .. close enough. */ 4052 m->m_pkthdr.rcvif = V_loif; 4053 bzero(m->m_data, len); 4054 switch (af) { 4055 #ifdef INET 4056 case AF_INET: 4057 m->m_pkthdr.csum_flags |= CSUM_TCP; 4058 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4059 4060 h = mtod(m, struct ip *); 4061 4062 h->ip_p = IPPROTO_TCP; 4063 h->ip_len = htons(tlen); 4064 h->ip_v = 4; 4065 h->ip_hl = sizeof(*h) >> 2; 4066 h->ip_tos = IPTOS_LOWDELAY; 4067 h->ip_len = htons(len); 4068 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4069 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4070 h->ip_sum = 0; 4071 h->ip_src.s_addr = saddr->v4.s_addr; 4072 h->ip_dst.s_addr = daddr->v4.s_addr; 4073 4074 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 4075 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr, 4076 htons(len - sizeof(struct ip) + IPPROTO_TCP)); 4077 break; 4078 #endif /* INET */ 4079 #ifdef INET6 4080 case AF_INET6: 4081 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6; 4082 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4083 4084 h6 = mtod(m, struct ip6_hdr *); 4085 4086 /* IP header fields included in the TCP checksum */ 4087 h6->ip6_nxt = IPPROTO_TCP; 4088 h6->ip6_plen = htons(tlen); 4089 h6->ip6_vfc |= IPV6_VERSION; 4090 h6->ip6_hlim = V_ip6_defhlim; 4091 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 4092 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 4093 4094 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 4095 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr), 4096 IPPROTO_TCP, 0); 4097 break; 4098 #endif /* INET6 */ 4099 } 4100 4101 /* TCP header */ 4102 th->th_sport = sport; 4103 th->th_dport = dport; 4104 th->th_seq = htonl(seq); 4105 th->th_ack = htonl(ack); 4106 th->th_off = tlen >> 2; 4107 tcp_set_flags(th, tcp_flags); 4108 th->th_win = htons(win); 4109 4110 if (mss) { 4111 opt = (char *)(th + 1); 4112 opt[0] = TCPOPT_MAXSEG; 4113 opt[1] = 4; 4114 mss = htons(mss); 4115 memcpy((opt + 2), &mss, 2); 4116 } 4117 4118 return (m); 4119 } 4120 4121 static void 4122 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4123 uint8_t ttl, int rtableid) 4124 { 4125 struct mbuf *m; 4126 #ifdef INET 4127 struct ip *h = NULL; 4128 #endif /* INET */ 4129 #ifdef INET6 4130 struct ip6_hdr *h6 = NULL; 4131 #endif /* INET6 */ 4132 struct sctphdr *hdr; 4133 struct sctp_chunkhdr *chunk; 4134 struct pf_send_entry *pfse; 4135 int off = 0; 4136 4137 MPASS(af == pd->af); 4138 4139 m = m_gethdr(M_NOWAIT, MT_DATA); 4140 if (m == NULL) 4141 return; 4142 4143 m->m_data += max_linkhdr; 4144 m->m_flags |= M_SKIP_FIREWALL; 4145 /* The rest of the stack assumes a rcvif, so provide one. 4146 * This is a locally generated packet, so .. close enough. */ 4147 m->m_pkthdr.rcvif = V_loif; 4148 4149 /* IPv4|6 header */ 4150 switch (af) { 4151 #ifdef INET 4152 case AF_INET: 4153 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4154 4155 h = mtod(m, struct ip *); 4156 4157 /* IP header fields included in the TCP checksum */ 4158 4159 h->ip_p = IPPROTO_SCTP; 4160 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4161 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4162 h->ip_src = pd->dst->v4; 4163 h->ip_dst = pd->src->v4; 4164 4165 off += sizeof(struct ip); 4166 break; 4167 #endif /* INET */ 4168 #ifdef INET6 4169 case AF_INET6: 4170 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4171 4172 h6 = mtod(m, struct ip6_hdr *); 4173 4174 /* IP header fields included in the TCP checksum */ 4175 h6->ip6_vfc |= IPV6_VERSION; 4176 h6->ip6_nxt = IPPROTO_SCTP; 4177 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4178 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4179 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4180 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4181 4182 off += sizeof(struct ip6_hdr); 4183 break; 4184 #endif /* INET6 */ 4185 default: 4186 unhandled_af(af); 4187 } 4188 4189 /* SCTP header */ 4190 hdr = mtodo(m, off); 4191 4192 hdr->src_port = pd->hdr.sctp.dest_port; 4193 hdr->dest_port = pd->hdr.sctp.src_port; 4194 hdr->v_tag = pd->sctp_initiate_tag; 4195 hdr->checksum = 0; 4196 4197 /* Abort chunk. */ 4198 off += sizeof(struct sctphdr); 4199 chunk = mtodo(m, off); 4200 4201 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4202 chunk->chunk_length = htons(sizeof(*chunk)); 4203 4204 /* SCTP checksum */ 4205 off += sizeof(*chunk); 4206 m->m_pkthdr.len = m->m_len = off; 4207 4208 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4209 4210 if (rtableid >= 0) 4211 M_SETFIB(m, rtableid); 4212 4213 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4214 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4215 if (pfse == NULL) { 4216 m_freem(m); 4217 return; 4218 } 4219 4220 switch (af) { 4221 #ifdef INET 4222 case AF_INET: 4223 pfse->pfse_type = PFSE_IP; 4224 break; 4225 #endif /* INET */ 4226 #ifdef INET6 4227 case AF_INET6: 4228 pfse->pfse_type = PFSE_IP6; 4229 break; 4230 #endif /* INET6 */ 4231 } 4232 4233 pfse->pfse_m = m; 4234 pf_send(pfse); 4235 } 4236 4237 void 4238 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4239 const struct pf_addr *saddr, const struct pf_addr *daddr, 4240 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4241 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4242 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4243 { 4244 struct pf_send_entry *pfse; 4245 struct mbuf *m; 4246 4247 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4248 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 4249 if (m == NULL) 4250 return; 4251 4252 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4253 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4254 if (pfse == NULL) { 4255 m_freem(m); 4256 return; 4257 } 4258 4259 switch (af) { 4260 #ifdef INET 4261 case AF_INET: 4262 pfse->pfse_type = PFSE_IP; 4263 break; 4264 #endif /* INET */ 4265 #ifdef INET6 4266 case AF_INET6: 4267 pfse->pfse_type = PFSE_IP6; 4268 break; 4269 #endif /* INET6 */ 4270 default: 4271 unhandled_af(af); 4272 } 4273 4274 pfse->pfse_m = m; 4275 pf_send(pfse); 4276 } 4277 4278 static void 4279 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum) 4280 { 4281 /* undo NAT changes, if they have taken place */ 4282 if (nr != NULL) { 4283 PF_ACPY(pd->src, &pd->osrc, pd->af); 4284 PF_ACPY(pd->dst, &pd->odst, pd->af); 4285 if (pd->sport) 4286 *pd->sport = pd->osport; 4287 if (pd->dport) 4288 *pd->dport = pd->odport; 4289 if (pd->ip_sum) 4290 *pd->ip_sum = bip_sum; 4291 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4292 } 4293 } 4294 4295 static void 4296 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4297 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum, 4298 u_short *reason, int rtableid) 4299 { 4300 pf_undo_nat(nr, pd, bip_sum); 4301 4302 if (pd->proto == IPPROTO_TCP && 4303 ((r->rule_flag & PFRULE_RETURNRST) || 4304 (r->rule_flag & PFRULE_RETURN)) && 4305 !(tcp_get_flags(th) & TH_RST)) { 4306 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4307 4308 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4309 IPPROTO_TCP, pd->af)) 4310 REASON_SET(reason, PFRES_PROTCKSUM); 4311 else { 4312 if (tcp_get_flags(th) & TH_SYN) 4313 ack++; 4314 if (tcp_get_flags(th) & TH_FIN) 4315 ack++; 4316 pf_send_tcp(r, pd->af, pd->dst, 4317 pd->src, th->th_dport, th->th_sport, 4318 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4319 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4320 } 4321 } else if (pd->proto == IPPROTO_SCTP && 4322 (r->rule_flag & PFRULE_RETURN)) { 4323 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4324 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4325 r->return_icmp) 4326 pf_send_icmp(pd->m, r->return_icmp >> 8, 4327 r->return_icmp & 255, pd->af, r, rtableid); 4328 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4329 r->return_icmp6) 4330 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4331 r->return_icmp6 & 255, pd->af, r, rtableid); 4332 } 4333 4334 static int 4335 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4336 { 4337 struct m_tag *mtag; 4338 u_int8_t mpcp; 4339 4340 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4341 if (mtag == NULL) 4342 return (0); 4343 4344 if (prio == PF_PRIO_ZERO) 4345 prio = 0; 4346 4347 mpcp = *(uint8_t *)(mtag + 1); 4348 4349 return (mpcp == prio); 4350 } 4351 4352 static int 4353 pf_icmp_to_bandlim(uint8_t type) 4354 { 4355 switch (type) { 4356 case ICMP_ECHO: 4357 case ICMP_ECHOREPLY: 4358 return (BANDLIM_ICMP_ECHO); 4359 case ICMP_TSTAMP: 4360 case ICMP_TSTAMPREPLY: 4361 return (BANDLIM_ICMP_TSTAMP); 4362 case ICMP_UNREACH: 4363 default: 4364 return (BANDLIM_ICMP_UNREACH); 4365 } 4366 } 4367 4368 static void 4369 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 4370 struct pf_krule *r, int rtableid) 4371 { 4372 struct pf_send_entry *pfse; 4373 struct mbuf *m0; 4374 struct pf_mtag *pf_mtag; 4375 4376 /* ICMP packet rate limitation. */ 4377 switch (af) { 4378 #ifdef INET6 4379 case AF_INET6: 4380 if (icmp6_ratelimit(NULL, type, code)) 4381 return; 4382 break; 4383 #endif /* INET6 */ 4384 #ifdef INET 4385 case AF_INET: 4386 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4387 return; 4388 break; 4389 #endif /* INET */ 4390 } 4391 4392 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4393 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4394 if (pfse == NULL) 4395 return; 4396 4397 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4398 free(pfse, M_PFTEMP); 4399 return; 4400 } 4401 4402 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4403 free(pfse, M_PFTEMP); 4404 return; 4405 } 4406 /* XXX: revisit */ 4407 m0->m_flags |= M_SKIP_FIREWALL; 4408 4409 if (rtableid >= 0) 4410 M_SETFIB(m0, rtableid); 4411 4412 #ifdef ALTQ 4413 if (r->qid) { 4414 pf_mtag->qid = r->qid; 4415 /* add hints for ecn */ 4416 pf_mtag->hdr = mtod(m0, struct ip *); 4417 } 4418 #endif /* ALTQ */ 4419 4420 switch (af) { 4421 #ifdef INET 4422 case AF_INET: 4423 pfse->pfse_type = PFSE_ICMP; 4424 break; 4425 #endif /* INET */ 4426 #ifdef INET6 4427 case AF_INET6: 4428 pfse->pfse_type = PFSE_ICMP6; 4429 break; 4430 #endif /* INET6 */ 4431 } 4432 pfse->pfse_m = m0; 4433 pfse->icmpopts.type = type; 4434 pfse->icmpopts.code = code; 4435 pf_send(pfse); 4436 } 4437 4438 /* 4439 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 4440 * If n is 0, they match if they are equal. If n is != 0, they match if they 4441 * are different. 4442 */ 4443 int 4444 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m, 4445 const struct pf_addr *b, sa_family_t af) 4446 { 4447 int match = 0; 4448 4449 switch (af) { 4450 #ifdef INET 4451 case AF_INET: 4452 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4453 match++; 4454 break; 4455 #endif /* INET */ 4456 #ifdef INET6 4457 case AF_INET6: 4458 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4459 match++; 4460 break; 4461 #endif /* INET6 */ 4462 } 4463 if (match) { 4464 if (n) 4465 return (0); 4466 else 4467 return (1); 4468 } else { 4469 if (n) 4470 return (1); 4471 else 4472 return (0); 4473 } 4474 } 4475 4476 /* 4477 * Return 1 if b <= a <= e, otherwise return 0. 4478 */ 4479 int 4480 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e, 4481 const struct pf_addr *a, sa_family_t af) 4482 { 4483 switch (af) { 4484 #ifdef INET 4485 case AF_INET: 4486 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4487 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4488 return (0); 4489 break; 4490 #endif /* INET */ 4491 #ifdef INET6 4492 case AF_INET6: { 4493 int i; 4494 4495 /* check a >= b */ 4496 for (i = 0; i < 4; ++i) 4497 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4498 break; 4499 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4500 return (0); 4501 /* check a <= e */ 4502 for (i = 0; i < 4; ++i) 4503 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4504 break; 4505 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4506 return (0); 4507 break; 4508 } 4509 #endif /* INET6 */ 4510 } 4511 return (1); 4512 } 4513 4514 static int 4515 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4516 { 4517 switch (op) { 4518 case PF_OP_IRG: 4519 return ((p > a1) && (p < a2)); 4520 case PF_OP_XRG: 4521 return ((p < a1) || (p > a2)); 4522 case PF_OP_RRG: 4523 return ((p >= a1) && (p <= a2)); 4524 case PF_OP_EQ: 4525 return (p == a1); 4526 case PF_OP_NE: 4527 return (p != a1); 4528 case PF_OP_LT: 4529 return (p < a1); 4530 case PF_OP_LE: 4531 return (p <= a1); 4532 case PF_OP_GT: 4533 return (p > a1); 4534 case PF_OP_GE: 4535 return (p >= a1); 4536 } 4537 return (0); /* never reached */ 4538 } 4539 4540 int 4541 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4542 { 4543 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p))); 4544 } 4545 4546 static int 4547 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4548 { 4549 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4550 return (0); 4551 return (pf_match(op, a1, a2, u)); 4552 } 4553 4554 static int 4555 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4556 { 4557 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4558 return (0); 4559 return (pf_match(op, a1, a2, g)); 4560 } 4561 4562 int 4563 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4564 { 4565 if (*tag == -1) 4566 *tag = mtag; 4567 4568 return ((!r->match_tag_not && r->match_tag == *tag) || 4569 (r->match_tag_not && r->match_tag != *tag)); 4570 } 4571 4572 static int 4573 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4574 { 4575 struct ifnet *ifp = m->m_pkthdr.rcvif; 4576 struct pfi_kkif *kif; 4577 4578 if (ifp == NULL) 4579 return (0); 4580 4581 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4582 4583 if (kif == NULL) { 4584 DPFPRINTF(PF_DEBUG_URGENT, 4585 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 4586 r->rcv_ifname)); 4587 return (0); 4588 } 4589 4590 return (pfi_kkif_match(r->rcv_kif, kif)); 4591 } 4592 4593 int 4594 pf_tag_packet(struct pf_pdesc *pd, int tag) 4595 { 4596 4597 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4598 4599 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4600 return (ENOMEM); 4601 4602 pd->pf_mtag->tag = tag; 4603 4604 return (0); 4605 } 4606 4607 #define PF_ANCHOR_STACKSIZE 32 4608 struct pf_kanchor_stackframe { 4609 struct pf_kruleset *rs; 4610 struct pf_krule *r; /* XXX: + match bit */ 4611 struct pf_kanchor *child; 4612 }; 4613 4614 /* 4615 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4616 */ 4617 #define PF_ANCHORSTACK_MATCH 0x00000001 4618 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4619 4620 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4621 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4622 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4623 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4624 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4625 } while (0) 4626 4627 void 4628 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4629 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a) 4630 { 4631 struct pf_kanchor_stackframe *f; 4632 4633 PF_RULES_RASSERT(); 4634 4635 if (*depth >= PF_ANCHOR_STACKSIZE) { 4636 printf("%s: anchor stack overflow on %s\n", 4637 __func__, (*r)->anchor->name); 4638 *r = TAILQ_NEXT(*r, entries); 4639 return; 4640 } else if (*depth == 0 && a != NULL) 4641 *a = *r; 4642 f = stack + (*depth)++; 4643 f->rs = *rs; 4644 f->r = *r; 4645 if ((*r)->anchor_wildcard) { 4646 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4647 4648 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4649 *r = NULL; 4650 return; 4651 } 4652 *rs = &f->child->ruleset; 4653 } else { 4654 f->child = NULL; 4655 *rs = &(*r)->anchor->ruleset; 4656 } 4657 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4658 } 4659 4660 int 4661 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4662 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4663 int *match) 4664 { 4665 struct pf_kanchor_stackframe *f; 4666 struct pf_krule *fr; 4667 int quick = 0; 4668 4669 PF_RULES_RASSERT(); 4670 4671 do { 4672 if (*depth <= 0) 4673 break; 4674 f = stack + *depth - 1; 4675 fr = PF_ANCHOR_RULE(f); 4676 if (f->child != NULL) { 4677 f->child = RB_NEXT(pf_kanchor_node, 4678 &fr->anchor->children, f->child); 4679 if (f->child != NULL) { 4680 *rs = &f->child->ruleset; 4681 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4682 if (*r == NULL) 4683 continue; 4684 else 4685 break; 4686 } 4687 } 4688 (*depth)--; 4689 if (*depth == 0 && a != NULL) 4690 *a = NULL; 4691 *rs = f->rs; 4692 if (match != NULL && *match > *depth) { 4693 *match = *depth; 4694 if (f->r->quick) 4695 quick = 1; 4696 } 4697 *r = TAILQ_NEXT(fr, entries); 4698 } while (*r == NULL); 4699 4700 return (quick); 4701 } 4702 4703 struct pf_keth_anchor_stackframe { 4704 struct pf_keth_ruleset *rs; 4705 struct pf_keth_rule *r; /* XXX: + match bit */ 4706 struct pf_keth_anchor *child; 4707 }; 4708 4709 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4710 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4711 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4712 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4713 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4714 } while (0) 4715 4716 void 4717 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4718 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4719 struct pf_keth_rule **a, int *match) 4720 { 4721 struct pf_keth_anchor_stackframe *f; 4722 4723 NET_EPOCH_ASSERT(); 4724 4725 if (match) 4726 *match = 0; 4727 if (*depth >= PF_ANCHOR_STACKSIZE) { 4728 printf("%s: anchor stack overflow on %s\n", 4729 __func__, (*r)->anchor->name); 4730 *r = TAILQ_NEXT(*r, entries); 4731 return; 4732 } else if (*depth == 0 && a != NULL) 4733 *a = *r; 4734 f = stack + (*depth)++; 4735 f->rs = *rs; 4736 f->r = *r; 4737 if ((*r)->anchor_wildcard) { 4738 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4739 4740 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4741 *r = NULL; 4742 return; 4743 } 4744 *rs = &f->child->ruleset; 4745 } else { 4746 f->child = NULL; 4747 *rs = &(*r)->anchor->ruleset; 4748 } 4749 *r = TAILQ_FIRST((*rs)->active.rules); 4750 } 4751 4752 int 4753 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4754 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4755 struct pf_keth_rule **a, int *match) 4756 { 4757 struct pf_keth_anchor_stackframe *f; 4758 struct pf_keth_rule *fr; 4759 int quick = 0; 4760 4761 NET_EPOCH_ASSERT(); 4762 4763 do { 4764 if (*depth <= 0) 4765 break; 4766 f = stack + *depth - 1; 4767 fr = PF_ETH_ANCHOR_RULE(f); 4768 if (f->child != NULL) { 4769 /* 4770 * This block traverses through 4771 * a wildcard anchor. 4772 */ 4773 if (match != NULL && *match) { 4774 /* 4775 * If any of "*" matched, then 4776 * "foo/ *" matched, mark frame 4777 * appropriately. 4778 */ 4779 PF_ETH_ANCHOR_SET_MATCH(f); 4780 *match = 0; 4781 } 4782 f->child = RB_NEXT(pf_keth_anchor_node, 4783 &fr->anchor->children, f->child); 4784 if (f->child != NULL) { 4785 *rs = &f->child->ruleset; 4786 *r = TAILQ_FIRST((*rs)->active.rules); 4787 if (*r == NULL) 4788 continue; 4789 else 4790 break; 4791 } 4792 } 4793 (*depth)--; 4794 if (*depth == 0 && a != NULL) 4795 *a = NULL; 4796 *rs = f->rs; 4797 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4798 quick = fr->quick; 4799 *r = TAILQ_NEXT(fr, entries); 4800 } while (*r == NULL); 4801 4802 return (quick); 4803 } 4804 4805 #ifdef INET6 4806 void 4807 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4808 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4809 { 4810 switch (af) { 4811 #ifdef INET 4812 case AF_INET: 4813 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4814 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4815 break; 4816 #endif /* INET */ 4817 case AF_INET6: 4818 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4819 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4820 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4821 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4822 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4823 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4824 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4825 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4826 break; 4827 } 4828 } 4829 4830 void 4831 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4832 { 4833 switch (af) { 4834 #ifdef INET 4835 case AF_INET: 4836 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4837 break; 4838 #endif /* INET */ 4839 case AF_INET6: 4840 if (addr->addr32[3] == 0xffffffff) { 4841 addr->addr32[3] = 0; 4842 if (addr->addr32[2] == 0xffffffff) { 4843 addr->addr32[2] = 0; 4844 if (addr->addr32[1] == 0xffffffff) { 4845 addr->addr32[1] = 0; 4846 addr->addr32[0] = 4847 htonl(ntohl(addr->addr32[0]) + 1); 4848 } else 4849 addr->addr32[1] = 4850 htonl(ntohl(addr->addr32[1]) + 1); 4851 } else 4852 addr->addr32[2] = 4853 htonl(ntohl(addr->addr32[2]) + 1); 4854 } else 4855 addr->addr32[3] = 4856 htonl(ntohl(addr->addr32[3]) + 1); 4857 break; 4858 } 4859 } 4860 #endif /* INET6 */ 4861 4862 void 4863 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4864 { 4865 /* 4866 * Modern rules use the same flags in rules as they do in states. 4867 */ 4868 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4869 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4870 4871 /* 4872 * Old-style scrub rules have different flags which need to be translated. 4873 */ 4874 if (r->rule_flag & PFRULE_RANDOMID) 4875 a->flags |= PFSTATE_RANDOMID; 4876 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4877 a->flags |= PFSTATE_SETTOS; 4878 a->set_tos = r->set_tos; 4879 } 4880 4881 if (r->qid) 4882 a->qid = r->qid; 4883 if (r->pqid) 4884 a->pqid = r->pqid; 4885 if (r->rtableid >= 0) 4886 a->rtableid = r->rtableid; 4887 a->log |= r->log; 4888 if (r->min_ttl) 4889 a->min_ttl = r->min_ttl; 4890 if (r->max_mss) 4891 a->max_mss = r->max_mss; 4892 if (r->dnpipe) 4893 a->dnpipe = r->dnpipe; 4894 if (r->dnrpipe) 4895 a->dnrpipe = r->dnrpipe; 4896 if (r->dnpipe || r->dnrpipe) { 4897 if (r->free_flags & PFRULE_DN_IS_PIPE) 4898 a->flags |= PFSTATE_DN_IS_PIPE; 4899 else 4900 a->flags &= ~PFSTATE_DN_IS_PIPE; 4901 } 4902 if (r->scrub_flags & PFSTATE_SETPRIO) { 4903 a->set_prio[0] = r->set_prio[0]; 4904 a->set_prio[1] = r->set_prio[1]; 4905 } 4906 if (r->allow_opts) 4907 a->allow_opts = r->allow_opts; 4908 } 4909 4910 int 4911 pf_socket_lookup(struct pf_pdesc *pd) 4912 { 4913 struct pf_addr *saddr, *daddr; 4914 u_int16_t sport, dport; 4915 struct inpcbinfo *pi; 4916 struct inpcb *inp; 4917 4918 pd->lookup.uid = UID_MAX; 4919 pd->lookup.gid = GID_MAX; 4920 4921 switch (pd->proto) { 4922 case IPPROTO_TCP: 4923 sport = pd->hdr.tcp.th_sport; 4924 dport = pd->hdr.tcp.th_dport; 4925 pi = &V_tcbinfo; 4926 break; 4927 case IPPROTO_UDP: 4928 sport = pd->hdr.udp.uh_sport; 4929 dport = pd->hdr.udp.uh_dport; 4930 pi = &V_udbinfo; 4931 break; 4932 default: 4933 return (-1); 4934 } 4935 if (pd->dir == PF_IN) { 4936 saddr = pd->src; 4937 daddr = pd->dst; 4938 } else { 4939 u_int16_t p; 4940 4941 p = sport; 4942 sport = dport; 4943 dport = p; 4944 saddr = pd->dst; 4945 daddr = pd->src; 4946 } 4947 switch (pd->af) { 4948 #ifdef INET 4949 case AF_INET: 4950 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4951 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4952 if (inp == NULL) { 4953 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4954 daddr->v4, dport, INPLOOKUP_WILDCARD | 4955 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4956 if (inp == NULL) 4957 return (-1); 4958 } 4959 break; 4960 #endif /* INET */ 4961 #ifdef INET6 4962 case AF_INET6: 4963 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4964 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4965 if (inp == NULL) { 4966 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4967 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4968 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4969 if (inp == NULL) 4970 return (-1); 4971 } 4972 break; 4973 #endif /* INET6 */ 4974 default: 4975 unhandled_af(pd->af); 4976 } 4977 INP_RLOCK_ASSERT(inp); 4978 pd->lookup.uid = inp->inp_cred->cr_uid; 4979 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4980 INP_RUNLOCK(inp); 4981 4982 return (1); 4983 } 4984 4985 u_int8_t 4986 pf_get_wscale(struct pf_pdesc *pd) 4987 { 4988 struct tcphdr *th = &pd->hdr.tcp; 4989 int hlen; 4990 u_int8_t hdr[60]; 4991 u_int8_t *opt, optlen; 4992 u_int8_t wscale = 0; 4993 4994 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4995 if (hlen <= sizeof(struct tcphdr)) 4996 return (0); 4997 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4998 return (0); 4999 opt = hdr + sizeof(struct tcphdr); 5000 hlen -= sizeof(struct tcphdr); 5001 while (hlen >= 3) { 5002 switch (*opt) { 5003 case TCPOPT_EOL: 5004 case TCPOPT_NOP: 5005 ++opt; 5006 --hlen; 5007 break; 5008 case TCPOPT_WINDOW: 5009 wscale = opt[2]; 5010 if (wscale > TCP_MAX_WINSHIFT) 5011 wscale = TCP_MAX_WINSHIFT; 5012 wscale |= PF_WSCALE_FLAG; 5013 /* FALLTHROUGH */ 5014 default: 5015 optlen = opt[1]; 5016 if (optlen < 2) 5017 optlen = 2; 5018 hlen -= optlen; 5019 opt += optlen; 5020 break; 5021 } 5022 } 5023 return (wscale); 5024 } 5025 5026 u_int16_t 5027 pf_get_mss(struct pf_pdesc *pd) 5028 { 5029 struct tcphdr *th = &pd->hdr.tcp; 5030 int hlen; 5031 u_int8_t hdr[60]; 5032 u_int8_t *opt, optlen; 5033 u_int16_t mss = V_tcp_mssdflt; 5034 5035 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 5036 if (hlen <= sizeof(struct tcphdr)) 5037 return (0); 5038 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 5039 return (0); 5040 opt = hdr + sizeof(struct tcphdr); 5041 hlen -= sizeof(struct tcphdr); 5042 while (hlen >= TCPOLEN_MAXSEG) { 5043 switch (*opt) { 5044 case TCPOPT_EOL: 5045 case TCPOPT_NOP: 5046 ++opt; 5047 --hlen; 5048 break; 5049 case TCPOPT_MAXSEG: 5050 memcpy(&mss, (opt + 2), 2); 5051 mss = ntohs(mss); 5052 /* FALLTHROUGH */ 5053 default: 5054 optlen = opt[1]; 5055 if (optlen < 2) 5056 optlen = 2; 5057 hlen -= optlen; 5058 opt += optlen; 5059 break; 5060 } 5061 } 5062 return (mss); 5063 } 5064 5065 static u_int16_t 5066 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 5067 { 5068 struct nhop_object *nh; 5069 #ifdef INET6 5070 struct in6_addr dst6; 5071 uint32_t scopeid; 5072 #endif /* INET6 */ 5073 int hlen = 0; 5074 uint16_t mss = 0; 5075 5076 NET_EPOCH_ASSERT(); 5077 5078 switch (af) { 5079 #ifdef INET 5080 case AF_INET: 5081 hlen = sizeof(struct ip); 5082 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 5083 if (nh != NULL) 5084 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5085 break; 5086 #endif /* INET */ 5087 #ifdef INET6 5088 case AF_INET6: 5089 hlen = sizeof(struct ip6_hdr); 5090 in6_splitscope(&addr->v6, &dst6, &scopeid); 5091 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5092 if (nh != NULL) 5093 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5094 break; 5095 #endif /* INET6 */ 5096 } 5097 5098 mss = max(V_tcp_mssdflt, mss); 5099 mss = min(mss, offer); 5100 mss = max(mss, 64); /* sanity - at least max opt space */ 5101 return (mss); 5102 } 5103 5104 static u_int32_t 5105 pf_tcp_iss(struct pf_pdesc *pd) 5106 { 5107 SHA512_CTX ctx; 5108 union { 5109 uint8_t bytes[SHA512_DIGEST_LENGTH]; 5110 uint32_t words[1]; 5111 } digest; 5112 5113 if (V_pf_tcp_secret_init == 0) { 5114 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5115 SHA512_Init(&V_pf_tcp_secret_ctx); 5116 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5117 sizeof(V_pf_tcp_secret)); 5118 V_pf_tcp_secret_init = 1; 5119 } 5120 5121 ctx = V_pf_tcp_secret_ctx; 5122 5123 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short)); 5124 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short)); 5125 switch (pd->af) { 5126 case AF_INET6: 5127 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr)); 5128 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr)); 5129 break; 5130 case AF_INET: 5131 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr)); 5132 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr)); 5133 break; 5134 } 5135 SHA512_Final(digest.bytes, &ctx); 5136 V_pf_tcp_iss_off += 4096; 5137 #define ISN_RANDOM_INCREMENT (4096 - 1) 5138 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5139 V_pf_tcp_iss_off); 5140 #undef ISN_RANDOM_INCREMENT 5141 } 5142 5143 static bool 5144 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5145 { 5146 bool match = true; 5147 5148 /* Always matches if not set */ 5149 if (! r->isset) 5150 return (!r->neg); 5151 5152 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5153 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5154 match = false; 5155 break; 5156 } 5157 } 5158 5159 return (match ^ r->neg); 5160 } 5161 5162 static int 5163 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5164 { 5165 if (*tag == -1) 5166 *tag = mtag; 5167 5168 return ((!r->match_tag_not && r->match_tag == *tag) || 5169 (r->match_tag_not && r->match_tag != *tag)); 5170 } 5171 5172 static void 5173 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5174 { 5175 /* If we don't have the interface drop the packet. */ 5176 if (ifp == NULL) { 5177 m_freem(m); 5178 return; 5179 } 5180 5181 switch (ifp->if_type) { 5182 case IFT_ETHER: 5183 case IFT_XETHER: 5184 case IFT_L2VLAN: 5185 case IFT_BRIDGE: 5186 case IFT_IEEE8023ADLAG: 5187 break; 5188 default: 5189 m_freem(m); 5190 return; 5191 } 5192 5193 ifp->if_transmit(ifp, m); 5194 } 5195 5196 static int 5197 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5198 { 5199 #ifdef INET 5200 struct ip ip; 5201 #endif /* INET */ 5202 #ifdef INET6 5203 struct ip6_hdr ip6; 5204 #endif /* INET6 */ 5205 struct mbuf *m = *m0; 5206 struct ether_header *e; 5207 struct pf_keth_rule *r, *rm, *a = NULL; 5208 struct pf_keth_ruleset *ruleset = NULL; 5209 struct pf_mtag *mtag; 5210 struct pf_keth_ruleq *rules; 5211 struct pf_addr *src = NULL, *dst = NULL; 5212 struct pfi_kkif *bridge_to; 5213 sa_family_t af = 0; 5214 uint16_t proto; 5215 int asd = 0, match = 0; 5216 int tag = -1; 5217 uint8_t action; 5218 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5219 5220 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5221 NET_EPOCH_ASSERT(); 5222 5223 PF_RULES_RLOCK_TRACKER; 5224 5225 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5226 5227 mtag = pf_find_mtag(m); 5228 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5229 /* Dummynet re-injects packets after they've 5230 * completed their delay. We've already 5231 * processed them, so pass unconditionally. */ 5232 5233 /* But only once. We may see the packet multiple times (e.g. 5234 * PFIL_IN/PFIL_OUT). */ 5235 pf_dummynet_flag_remove(m, mtag); 5236 5237 return (PF_PASS); 5238 } 5239 5240 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5241 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5242 DPFPRINTF(PF_DEBUG_URGENT, 5243 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 5244 ", pullup failed\n")); 5245 return (PF_DROP); 5246 } 5247 e = mtod(m, struct ether_header *); 5248 proto = ntohs(e->ether_type); 5249 5250 switch (proto) { 5251 #ifdef INET 5252 case ETHERTYPE_IP: { 5253 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5254 sizeof(ip))) 5255 return (PF_DROP); 5256 5257 af = AF_INET; 5258 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5259 (caddr_t)&ip); 5260 src = (struct pf_addr *)&ip.ip_src; 5261 dst = (struct pf_addr *)&ip.ip_dst; 5262 break; 5263 } 5264 #endif /* INET */ 5265 #ifdef INET6 5266 case ETHERTYPE_IPV6: { 5267 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5268 sizeof(ip6))) 5269 return (PF_DROP); 5270 5271 af = AF_INET6; 5272 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5273 (caddr_t)&ip6); 5274 src = (struct pf_addr *)&ip6.ip6_src; 5275 dst = (struct pf_addr *)&ip6.ip6_dst; 5276 break; 5277 } 5278 #endif /* INET6 */ 5279 } 5280 5281 PF_RULES_RLOCK(); 5282 5283 ruleset = V_pf_keth; 5284 rules = atomic_load_ptr(&ruleset->active.rules); 5285 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) { 5286 counter_u64_add(r->evaluations, 1); 5287 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5288 5289 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5290 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5291 "kif"); 5292 r = r->skip[PFE_SKIP_IFP].ptr; 5293 } 5294 else if (r->direction && r->direction != dir) { 5295 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5296 "dir"); 5297 r = r->skip[PFE_SKIP_DIR].ptr; 5298 } 5299 else if (r->proto && r->proto != proto) { 5300 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5301 "proto"); 5302 r = r->skip[PFE_SKIP_PROTO].ptr; 5303 } 5304 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5305 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5306 "src"); 5307 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5308 } 5309 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5310 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5311 "dst"); 5312 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5313 } 5314 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5315 r->ipsrc.neg, kif, M_GETFIB(m))) { 5316 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5317 "ip_src"); 5318 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5319 } 5320 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5321 r->ipdst.neg, kif, M_GETFIB(m))) { 5322 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5323 "ip_dst"); 5324 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5325 } 5326 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5327 mtag ? mtag->tag : 0)) { 5328 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5329 "match_tag"); 5330 r = TAILQ_NEXT(r, entries); 5331 } 5332 else { 5333 if (r->tag) 5334 tag = r->tag; 5335 if (r->anchor == NULL) { 5336 /* Rule matches */ 5337 rm = r; 5338 5339 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5340 5341 if (r->quick) 5342 break; 5343 5344 r = TAILQ_NEXT(r, entries); 5345 } else { 5346 pf_step_into_keth_anchor(anchor_stack, &asd, 5347 &ruleset, &r, &a, &match); 5348 } 5349 } 5350 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5351 &ruleset, &r, &a, &match)) 5352 break; 5353 } 5354 5355 r = rm; 5356 5357 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5358 5359 /* Default to pass. */ 5360 if (r == NULL) { 5361 PF_RULES_RUNLOCK(); 5362 return (PF_PASS); 5363 } 5364 5365 /* Execute action. */ 5366 counter_u64_add(r->packets[dir == PF_OUT], 1); 5367 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5368 pf_update_timestamp(r); 5369 5370 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5371 if (r->action == PF_DROP) { 5372 PF_RULES_RUNLOCK(); 5373 return (PF_DROP); 5374 } 5375 5376 if (tag > 0) { 5377 if (mtag == NULL) 5378 mtag = pf_get_mtag(m); 5379 if (mtag == NULL) { 5380 PF_RULES_RUNLOCK(); 5381 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5382 return (PF_DROP); 5383 } 5384 mtag->tag = tag; 5385 } 5386 5387 if (r->qid != 0) { 5388 if (mtag == NULL) 5389 mtag = pf_get_mtag(m); 5390 if (mtag == NULL) { 5391 PF_RULES_RUNLOCK(); 5392 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5393 return (PF_DROP); 5394 } 5395 mtag->qid = r->qid; 5396 } 5397 5398 action = r->action; 5399 bridge_to = r->bridge_to; 5400 5401 /* Dummynet */ 5402 if (r->dnpipe) { 5403 struct ip_fw_args dnflow; 5404 5405 /* Drop packet if dummynet is not loaded. */ 5406 if (ip_dn_io_ptr == NULL) { 5407 PF_RULES_RUNLOCK(); 5408 m_freem(m); 5409 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5410 return (PF_DROP); 5411 } 5412 if (mtag == NULL) 5413 mtag = pf_get_mtag(m); 5414 if (mtag == NULL) { 5415 PF_RULES_RUNLOCK(); 5416 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5417 return (PF_DROP); 5418 } 5419 5420 bzero(&dnflow, sizeof(dnflow)); 5421 5422 /* We don't have port numbers here, so we set 0. That means 5423 * that we'll be somewhat limited in distinguishing flows (i.e. 5424 * only based on IP addresses, not based on port numbers), but 5425 * it's better than nothing. */ 5426 dnflow.f_id.dst_port = 0; 5427 dnflow.f_id.src_port = 0; 5428 dnflow.f_id.proto = 0; 5429 5430 dnflow.rule.info = r->dnpipe; 5431 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5432 if (r->dnflags & PFRULE_DN_IS_PIPE) 5433 dnflow.rule.info |= IPFW_IS_PIPE; 5434 5435 dnflow.f_id.extra = dnflow.rule.info; 5436 5437 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5438 dnflow.flags |= IPFW_ARGS_ETHER; 5439 dnflow.ifp = kif->pfik_ifp; 5440 5441 switch (af) { 5442 case AF_INET: 5443 dnflow.f_id.addr_type = 4; 5444 dnflow.f_id.src_ip = src->v4.s_addr; 5445 dnflow.f_id.dst_ip = dst->v4.s_addr; 5446 break; 5447 case AF_INET6: 5448 dnflow.flags |= IPFW_ARGS_IP6; 5449 dnflow.f_id.addr_type = 6; 5450 dnflow.f_id.src_ip6 = src->v6; 5451 dnflow.f_id.dst_ip6 = dst->v6; 5452 break; 5453 } 5454 5455 PF_RULES_RUNLOCK(); 5456 5457 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5458 ip_dn_io_ptr(m0, &dnflow); 5459 if (*m0 != NULL) 5460 pf_dummynet_flag_remove(m, mtag); 5461 } else { 5462 PF_RULES_RUNLOCK(); 5463 } 5464 5465 if (action == PF_PASS && bridge_to) { 5466 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5467 *m0 = NULL; /* We've eaten the packet. */ 5468 } 5469 5470 return (action); 5471 } 5472 5473 #define PF_TEST_ATTRIB(t, a)\ 5474 do { \ 5475 if (t) { \ 5476 r = a; \ 5477 goto nextrule; \ 5478 } \ 5479 } while (0) 5480 5481 static int 5482 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5483 struct pf_pdesc *pd, struct pf_krule **am, 5484 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp) 5485 { 5486 struct pf_krule *nr = NULL; 5487 struct pf_krule *r, *a = NULL; 5488 struct pf_kruleset *ruleset = NULL; 5489 struct pf_krule_slist match_rules; 5490 struct pf_krule_item *ri; 5491 struct tcphdr *th = &pd->hdr.tcp; 5492 struct pf_state_key *sk = NULL, *nk = NULL; 5493 u_short transerror; 5494 int rewrite = 0; 5495 int tag = -1; 5496 int asd = 0; 5497 int match = 0; 5498 int state_icmp = 0, icmp_dir; 5499 int action = PF_PASS; 5500 u_int16_t virtual_type, virtual_id; 5501 u_int16_t bproto_sum = 0, bip_sum = 0; 5502 u_int8_t icmptype = 0, icmpcode = 0; 5503 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5504 struct pf_udp_mapping *udp_mapping = NULL; 5505 5506 PF_RULES_RASSERT(); 5507 5508 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5509 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5510 5511 SLIST_INIT(&match_rules); 5512 5513 if (inp != NULL) { 5514 INP_LOCK_ASSERT(inp); 5515 pd->lookup.uid = inp->inp_cred->cr_uid; 5516 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 5517 pd->lookup.done = 1; 5518 } 5519 5520 switch (pd->virtual_proto) { 5521 case IPPROTO_TCP: 5522 pd->nsport = th->th_sport; 5523 pd->ndport = th->th_dport; 5524 break; 5525 case IPPROTO_UDP: 5526 pd->nsport = pd->hdr.udp.uh_sport; 5527 pd->ndport = pd->hdr.udp.uh_dport; 5528 break; 5529 case IPPROTO_SCTP: 5530 pd->nsport = pd->hdr.sctp.src_port; 5531 pd->ndport = pd->hdr.sctp.dest_port; 5532 break; 5533 #ifdef INET 5534 case IPPROTO_ICMP: 5535 MPASS(pd->af == AF_INET); 5536 icmptype = pd->hdr.icmp.icmp_type; 5537 icmpcode = pd->hdr.icmp.icmp_code; 5538 state_icmp = pf_icmp_mapping(pd, icmptype, 5539 &icmp_dir, &virtual_id, &virtual_type); 5540 if (icmp_dir == PF_IN) { 5541 pd->nsport = virtual_id; 5542 pd->ndport = virtual_type; 5543 } else { 5544 pd->nsport = virtual_type; 5545 pd->ndport = virtual_id; 5546 } 5547 break; 5548 #endif /* INET */ 5549 #ifdef INET6 5550 case IPPROTO_ICMPV6: 5551 MPASS(pd->af == AF_INET6); 5552 icmptype = pd->hdr.icmp6.icmp6_type; 5553 icmpcode = pd->hdr.icmp6.icmp6_code; 5554 state_icmp = pf_icmp_mapping(pd, icmptype, 5555 &icmp_dir, &virtual_id, &virtual_type); 5556 if (icmp_dir == PF_IN) { 5557 pd->nsport = virtual_id; 5558 pd->ndport = virtual_type; 5559 } else { 5560 pd->nsport = virtual_type; 5561 pd->ndport = virtual_id; 5562 } 5563 5564 break; 5565 #endif /* INET6 */ 5566 default: 5567 pd->nsport = pd->ndport = 0; 5568 break; 5569 } 5570 pd->osport = pd->nsport; 5571 pd->odport = pd->ndport; 5572 5573 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5574 5575 /* check packet for BINAT/NAT/RDR */ 5576 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack, 5577 &nr, &udp_mapping); 5578 switch (transerror) { 5579 default: 5580 /* A translation error occurred. */ 5581 REASON_SET(reason, transerror); 5582 goto cleanup; 5583 case PFRES_MAX: 5584 /* No match. */ 5585 break; 5586 case PFRES_MATCH: 5587 KASSERT(sk != NULL, ("%s: null sk", __func__)); 5588 KASSERT(nk != NULL, ("%s: null nk", __func__)); 5589 5590 if (nr->log) { 5591 PFLOG_PACKET(nr->action, PFRES_MATCH, nr, a, 5592 ruleset, pd, 1, NULL); 5593 } 5594 5595 if (pd->ip_sum) 5596 bip_sum = *pd->ip_sum; 5597 5598 switch (pd->proto) { 5599 case IPPROTO_TCP: 5600 bproto_sum = th->th_sum; 5601 5602 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5603 nk->port[pd->sidx] != pd->nsport) { 5604 pf_change_ap(pd, pd->src, &th->th_sport, 5605 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5606 nk->port[pd->sidx], 0); 5607 pd->sport = &th->th_sport; 5608 pd->nsport = th->th_sport; 5609 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5610 } 5611 5612 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5613 nk->port[pd->didx] != pd->ndport) { 5614 pf_change_ap(pd, pd->dst, &th->th_dport, 5615 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5616 nk->port[pd->didx], 0); 5617 pd->dport = &th->th_dport; 5618 pd->ndport = th->th_dport; 5619 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5620 } 5621 rewrite++; 5622 break; 5623 case IPPROTO_UDP: 5624 bproto_sum = pd->hdr.udp.uh_sum; 5625 5626 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5627 nk->port[pd->sidx] != pd->nsport) { 5628 pf_change_ap(pd, pd->src, 5629 &pd->hdr.udp.uh_sport, 5630 pd->ip_sum, &pd->hdr.udp.uh_sum, 5631 &nk->addr[pd->sidx], 5632 nk->port[pd->sidx], 1); 5633 pd->sport = &pd->hdr.udp.uh_sport; 5634 pd->nsport = pd->hdr.udp.uh_sport; 5635 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5636 } 5637 5638 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5639 nk->port[pd->didx] != pd->ndport) { 5640 pf_change_ap(pd, pd->dst, 5641 &pd->hdr.udp.uh_dport, 5642 pd->ip_sum, &pd->hdr.udp.uh_sum, 5643 &nk->addr[pd->didx], 5644 nk->port[pd->didx], 1); 5645 pd->dport = &pd->hdr.udp.uh_dport; 5646 pd->ndport = pd->hdr.udp.uh_dport; 5647 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5648 } 5649 rewrite++; 5650 break; 5651 case IPPROTO_SCTP: { 5652 uint16_t checksum = 0; 5653 5654 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5655 nk->port[pd->sidx] != pd->nsport) { 5656 pf_change_ap(pd, pd->src, 5657 &pd->hdr.sctp.src_port, pd->ip_sum, &checksum, 5658 &nk->addr[pd->sidx], 5659 nk->port[pd->sidx], 1); 5660 pd->sport = &pd->hdr.sctp.src_port; 5661 pd->nsport = pd->hdr.sctp.src_port; 5662 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5663 } 5664 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5665 nk->port[pd->didx] != pd->ndport) { 5666 pf_change_ap(pd, pd->dst, 5667 &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum, 5668 &nk->addr[pd->didx], 5669 nk->port[pd->didx], 1); 5670 pd->dport = &pd->hdr.sctp.dest_port; 5671 pd->ndport = pd->hdr.sctp.dest_port; 5672 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5673 } 5674 break; 5675 } 5676 #ifdef INET 5677 case IPPROTO_ICMP: 5678 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 5679 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 5680 nk->addr[pd->sidx].v4.s_addr, 0); 5681 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5682 } 5683 5684 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 5685 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 5686 nk->addr[pd->didx].v4.s_addr, 0); 5687 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5688 } 5689 5690 if (virtual_type == htons(ICMP_ECHO) && 5691 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5692 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5693 pd->hdr.icmp.icmp_cksum, pd->nsport, 5694 nk->port[pd->sidx], 0); 5695 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5696 pd->sport = &pd->hdr.icmp.icmp_id; 5697 } 5698 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5699 break; 5700 #endif /* INET */ 5701 #ifdef INET6 5702 case IPPROTO_ICMPV6: 5703 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 5704 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 5705 &nk->addr[pd->sidx], 0); 5706 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5707 } 5708 5709 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 5710 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 5711 &nk->addr[pd->didx], 0); 5712 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5713 } 5714 rewrite++; 5715 break; 5716 #endif /* INET */ 5717 default: 5718 switch (pd->af) { 5719 #ifdef INET 5720 case AF_INET: 5721 if (PF_ANEQ(&pd->nsaddr, 5722 &nk->addr[pd->sidx], AF_INET)) { 5723 pf_change_a(&pd->src->v4.s_addr, 5724 pd->ip_sum, 5725 nk->addr[pd->sidx].v4.s_addr, 0); 5726 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5727 } 5728 5729 if (PF_ANEQ(&pd->ndaddr, 5730 &nk->addr[pd->didx], AF_INET)) { 5731 pf_change_a(&pd->dst->v4.s_addr, 5732 pd->ip_sum, 5733 nk->addr[pd->didx].v4.s_addr, 0); 5734 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5735 } 5736 break; 5737 #endif /* INET */ 5738 #ifdef INET6 5739 case AF_INET6: 5740 if (PF_ANEQ(&pd->nsaddr, 5741 &nk->addr[pd->sidx], AF_INET6)) { 5742 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af); 5743 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5744 } 5745 5746 if (PF_ANEQ(&pd->ndaddr, 5747 &nk->addr[pd->didx], AF_INET6)) { 5748 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af); 5749 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5750 } 5751 break; 5752 #endif /* INET6 */ 5753 } 5754 break; 5755 } 5756 if (nr->natpass) 5757 r = NULL; 5758 } 5759 5760 while (r != NULL) { 5761 if (pd->related_rule) { 5762 *rm = pd->related_rule; 5763 break; 5764 } 5765 pf_counter_u64_add(&r->evaluations, 1); 5766 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5767 r->skip[PF_SKIP_IFP]); 5768 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5769 r->skip[PF_SKIP_DIR]); 5770 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5771 r->skip[PF_SKIP_AF]); 5772 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5773 r->skip[PF_SKIP_PROTO]); 5774 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5775 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5776 r->skip[PF_SKIP_SRC_ADDR]); 5777 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5778 r->dst.neg, NULL, M_GETFIB(pd->m)), 5779 r->skip[PF_SKIP_DST_ADDR]); 5780 switch (pd->virtual_proto) { 5781 case PF_VPROTO_FRAGMENT: 5782 /* tcp/udp only. port_op always 0 in other cases */ 5783 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5784 TAILQ_NEXT(r, entries)); 5785 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5786 TAILQ_NEXT(r, entries)); 5787 /* icmp only. type/code always 0 in other cases */ 5788 PF_TEST_ATTRIB((r->type || r->code), 5789 TAILQ_NEXT(r, entries)); 5790 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5791 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5792 TAILQ_NEXT(r, entries)); 5793 break; 5794 5795 case IPPROTO_TCP: 5796 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags, 5797 TAILQ_NEXT(r, entries)); 5798 /* FALLTHROUGH */ 5799 case IPPROTO_SCTP: 5800 case IPPROTO_UDP: 5801 /* tcp/udp only. port_op always 0 in other cases */ 5802 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5803 r->src.port[0], r->src.port[1], pd->nsport), 5804 r->skip[PF_SKIP_SRC_PORT]); 5805 /* tcp/udp only. port_op always 0 in other cases */ 5806 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5807 r->dst.port[0], r->dst.port[1], pd->ndport), 5808 r->skip[PF_SKIP_DST_PORT]); 5809 /* tcp/udp only. uid.op always 0 in other cases */ 5810 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5811 pf_socket_lookup(pd), 1)) && 5812 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5813 pd->lookup.uid), 5814 TAILQ_NEXT(r, entries)); 5815 /* tcp/udp only. gid.op always 0 in other cases */ 5816 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5817 pf_socket_lookup(pd), 1)) && 5818 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5819 pd->lookup.gid), 5820 TAILQ_NEXT(r, entries)); 5821 break; 5822 5823 case IPPROTO_ICMP: 5824 case IPPROTO_ICMPV6: 5825 /* icmp only. type always 0 in other cases */ 5826 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5827 TAILQ_NEXT(r, entries)); 5828 /* icmp only. type always 0 in other cases */ 5829 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5830 TAILQ_NEXT(r, entries)); 5831 break; 5832 5833 default: 5834 break; 5835 } 5836 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5837 TAILQ_NEXT(r, entries)); 5838 PF_TEST_ATTRIB(r->prio && 5839 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5840 TAILQ_NEXT(r, entries)); 5841 PF_TEST_ATTRIB(r->prob && 5842 r->prob <= arc4random(), 5843 TAILQ_NEXT(r, entries)); 5844 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5845 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5846 TAILQ_NEXT(r, entries)); 5847 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) == 5848 r->rcvifnot), 5849 TAILQ_NEXT(r, entries)); 5850 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5851 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5852 TAILQ_NEXT(r, entries)); 5853 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5854 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5855 pf_osfp_fingerprint(pd, th), 5856 r->os_fingerprint)), 5857 TAILQ_NEXT(r, entries)); 5858 /* FALLTHROUGH */ 5859 if (r->tag) 5860 tag = r->tag; 5861 if (r->anchor == NULL) { 5862 if (r->action == PF_MATCH) { 5863 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5864 if (ri == NULL) { 5865 REASON_SET(reason, PFRES_MEMORY); 5866 goto cleanup; 5867 } 5868 ri->r = r; 5869 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5870 pf_counter_u64_critical_enter(); 5871 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5872 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5873 pf_counter_u64_critical_exit(); 5874 pf_rule_to_actions(r, &pd->act); 5875 if (r->rule_flag & PFRULE_AFTO) 5876 pd->naf = r->naf; 5877 if (pd->af != pd->naf) { 5878 if (pf_get_transaddr_af(r, pd) == -1) { 5879 REASON_SET(reason, PFRES_TRANSLATE); 5880 goto cleanup; 5881 } 5882 } 5883 if (r->log) 5884 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5885 a, ruleset, pd, 1, NULL); 5886 } else { 5887 match = asd; 5888 *rm = r; 5889 *am = a; 5890 *rsm = ruleset; 5891 } 5892 if (pd->act.log & PF_LOG_MATCHES) 5893 pf_log_matches(pd, r, a, ruleset, &match_rules); 5894 if (r->quick) 5895 break; 5896 r = TAILQ_NEXT(r, entries); 5897 } else 5898 pf_step_into_anchor(anchor_stack, &asd, 5899 &ruleset, PF_RULESET_FILTER, &r, &a); 5900 nextrule: 5901 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5902 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5903 break; 5904 } 5905 r = *rm; 5906 a = *am; 5907 ruleset = *rsm; 5908 5909 REASON_SET(reason, PFRES_MATCH); 5910 5911 /* apply actions for last matching pass/block rule */ 5912 pf_rule_to_actions(r, &pd->act); 5913 if (r->rule_flag & PFRULE_AFTO) 5914 pd->naf = r->naf; 5915 if (pd->af != pd->naf) { 5916 if (pf_get_transaddr_af(r, pd) == -1) { 5917 REASON_SET(reason, PFRES_TRANSLATE); 5918 goto cleanup; 5919 } 5920 } 5921 5922 if (r->log) { 5923 if (rewrite) 5924 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5925 PFLOG_PACKET(r->action, *reason, r, a, ruleset, pd, 1, NULL); 5926 } 5927 if (pd->act.log & PF_LOG_MATCHES) 5928 pf_log_matches(pd, r, a, ruleset, &match_rules); 5929 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5930 (r->action == PF_DROP) && 5931 ((r->rule_flag & PFRULE_RETURNRST) || 5932 (r->rule_flag & PFRULE_RETURNICMP) || 5933 (r->rule_flag & PFRULE_RETURN))) { 5934 pf_return(r, nr, pd, th, bproto_sum, 5935 bip_sum, reason, r->rtableid); 5936 } 5937 5938 if (r->action == PF_DROP) 5939 goto cleanup; 5940 5941 if (tag > 0 && pf_tag_packet(pd, tag)) { 5942 REASON_SET(reason, PFRES_MEMORY); 5943 goto cleanup; 5944 } 5945 if (pd->act.rtableid >= 0) 5946 M_SETFIB(pd->m, pd->act.rtableid); 5947 5948 if (r->rt) { 5949 struct pf_ksrc_node *sn = NULL; 5950 struct pf_srchash *snh = NULL; 5951 struct pf_kpool *pool = &r->route; 5952 5953 /* Backwards compatibility. */ 5954 if (TAILQ_EMPTY(&pool->list)) 5955 pool = &r->rdr; 5956 5957 /* 5958 * Set act.rt here instead of in pf_rule_to_actions() because 5959 * it is applied only from the last pass rule. 5960 */ 5961 pd->act.rt = r->rt; 5962 /* Don't use REASON_SET, pf_map_addr increases the reason counters */ 5963 *reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr, 5964 &pd->act.rt_kif, NULL, &sn, &snh, pool, PF_SN_ROUTE); 5965 if (*reason != 0) 5966 goto cleanup; 5967 } 5968 5969 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5970 (!state_icmp && (r->keep_state || nr != NULL || 5971 (pd->flags & PFDESC_TCP_NORM)))) { 5972 bool nat64; 5973 5974 action = pf_create_state(r, nr, a, pd, nk, sk, 5975 &rewrite, sm, tag, bproto_sum, bip_sum, 5976 &match_rules, udp_mapping, reason); 5977 sk = nk = NULL; 5978 if (action != PF_PASS) { 5979 pf_udp_mapping_release(udp_mapping); 5980 if (r->log || (nr != NULL && nr->log) || 5981 *reason == PFRES_MEMORY) 5982 pd->act.log |= PF_LOG_FORCE; 5983 if (action == PF_DROP && 5984 (r->rule_flag & PFRULE_RETURN)) 5985 pf_return(r, nr, pd, th, 5986 bproto_sum, bip_sum, reason, 5987 pd->act.rtableid); 5988 return (action); 5989 } 5990 5991 nat64 = pd->af != pd->naf; 5992 if (nat64) { 5993 int ret; 5994 5995 if (sk == NULL) 5996 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 5997 if (nk == NULL) 5998 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 5999 6000 if (pd->dir == PF_IN) { 6001 ret = pf_translate(pd, &sk->addr[pd->didx], 6002 sk->port[pd->didx], &sk->addr[pd->sidx], 6003 sk->port[pd->sidx], virtual_type, 6004 icmp_dir); 6005 } else { 6006 ret = pf_translate(pd, &sk->addr[pd->sidx], 6007 sk->port[pd->sidx], &sk->addr[pd->didx], 6008 sk->port[pd->didx], virtual_type, 6009 icmp_dir); 6010 } 6011 6012 if (ret < 0) 6013 goto cleanup; 6014 6015 rewrite += ret; 6016 6017 if (rewrite && sk->af != nk->af) 6018 action = PF_AFRT; 6019 } 6020 } else { 6021 while ((ri = SLIST_FIRST(&match_rules))) { 6022 SLIST_REMOVE_HEAD(&match_rules, entry); 6023 free(ri, M_PF_RULE_ITEM); 6024 } 6025 6026 uma_zfree(V_pf_state_key_z, sk); 6027 uma_zfree(V_pf_state_key_z, nk); 6028 sk = nk = NULL; 6029 pf_udp_mapping_release(udp_mapping); 6030 } 6031 6032 /* copy back packet headers if we performed NAT operations */ 6033 if (rewrite) 6034 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 6035 6036 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 6037 pd->dir == PF_OUT && 6038 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 6039 /* 6040 * We want the state created, but we dont 6041 * want to send this in case a partner 6042 * firewall has to know about it to allow 6043 * replies through it. 6044 */ 6045 return (PF_DEFER); 6046 6047 return (action); 6048 6049 cleanup: 6050 while ((ri = SLIST_FIRST(&match_rules))) { 6051 SLIST_REMOVE_HEAD(&match_rules, entry); 6052 free(ri, M_PF_RULE_ITEM); 6053 } 6054 6055 uma_zfree(V_pf_state_key_z, sk); 6056 uma_zfree(V_pf_state_key_z, nk); 6057 pf_udp_mapping_release(udp_mapping); 6058 6059 return (PF_DROP); 6060 } 6061 6062 static int 6063 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 6064 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk, 6065 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum, 6066 u_int16_t bip_sum, struct pf_krule_slist *match_rules, 6067 struct pf_udp_mapping *udp_mapping, u_short *reason) 6068 { 6069 struct pf_kstate *s = NULL; 6070 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL }; 6071 /* 6072 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same 6073 * but for PF_SN_NAT it is different. Don't try optimizing it, 6074 * just store all 3 hashes. 6075 */ 6076 struct pf_srchash *snhs[PF_SN_MAX] = { NULL }; 6077 struct tcphdr *th = &pd->hdr.tcp; 6078 u_int16_t mss = V_tcp_mssdflt; 6079 u_short sn_reason; 6080 struct pf_krule_item *ri; 6081 struct pf_kpool *pool_route = &r->route; 6082 6083 /* check maximums */ 6084 if (r->max_states && 6085 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 6086 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 6087 REASON_SET(reason, PFRES_MAXSTATES); 6088 goto csfailed; 6089 } 6090 /* src node for limits */ 6091 if ((r->rule_flag & PFRULE_SRCTRACK) && 6092 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af, 6093 NULL, NULL, PF_SN_LIMIT)) != 0) { 6094 REASON_SET(reason, sn_reason); 6095 goto csfailed; 6096 } 6097 /* src node for route-to rule */ 6098 if (TAILQ_EMPTY(&pool_route->list)) /* Backwards compatibility. */ 6099 pool_route = &r->rdr; 6100 if ((pool_route->opts & PF_POOL_STICKYADDR) && 6101 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af, 6102 &pd->act.rt_addr, pd->act.rt_kif, PF_SN_ROUTE)) != 0) { 6103 REASON_SET(reason, sn_reason); 6104 goto csfailed; 6105 } 6106 /* src node for translation rule */ 6107 if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) && 6108 (sn_reason = pf_insert_src_node(sns, snhs, nr, &sk->addr[pd->sidx], 6109 pd->af, &nk->addr[1], NULL, PF_SN_NAT)) != 0 ) { 6110 REASON_SET(reason, sn_reason); 6111 goto csfailed; 6112 } 6113 s = pf_alloc_state(M_NOWAIT); 6114 if (s == NULL) { 6115 REASON_SET(reason, PFRES_MEMORY); 6116 goto csfailed; 6117 } 6118 s->rule = r; 6119 s->nat_rule = nr; 6120 s->anchor = a; 6121 memcpy(&s->match_rules, match_rules, sizeof(s->match_rules)); 6122 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6123 6124 if (pd->act.allow_opts) 6125 s->state_flags |= PFSTATE_ALLOWOPTS; 6126 if (r->rule_flag & PFRULE_STATESLOPPY) 6127 s->state_flags |= PFSTATE_SLOPPY; 6128 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6129 s->state_flags |= PFSTATE_SCRUB_TCP; 6130 if ((r->rule_flag & PFRULE_PFLOW) || 6131 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 6132 s->state_flags |= PFSTATE_PFLOW; 6133 6134 s->act.log = pd->act.log & PF_LOG_ALL; 6135 s->sync_state = PFSYNC_S_NONE; 6136 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6137 6138 if (nr != NULL) 6139 s->act.log |= nr->log & PF_LOG_ALL; 6140 switch (pd->proto) { 6141 case IPPROTO_TCP: 6142 s->src.seqlo = ntohl(th->th_seq); 6143 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6144 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6145 r->keep_state == PF_STATE_MODULATE) { 6146 /* Generate sequence number modulator */ 6147 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6148 0) 6149 s->src.seqdiff = 1; 6150 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6151 htonl(s->src.seqlo + s->src.seqdiff), 0); 6152 *rewrite = 1; 6153 } else 6154 s->src.seqdiff = 0; 6155 if (tcp_get_flags(th) & TH_SYN) { 6156 s->src.seqhi++; 6157 s->src.wscale = pf_get_wscale(pd); 6158 } 6159 s->src.max_win = MAX(ntohs(th->th_win), 1); 6160 if (s->src.wscale & PF_WSCALE_MASK) { 6161 /* Remove scale factor from initial window */ 6162 int win = s->src.max_win; 6163 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6164 s->src.max_win = (win - 1) >> 6165 (s->src.wscale & PF_WSCALE_MASK); 6166 } 6167 if (tcp_get_flags(th) & TH_FIN) 6168 s->src.seqhi++; 6169 s->dst.seqhi = 1; 6170 s->dst.max_win = 1; 6171 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6172 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6173 s->timeout = PFTM_TCP_FIRST_PACKET; 6174 atomic_add_32(&V_pf_status.states_halfopen, 1); 6175 break; 6176 case IPPROTO_UDP: 6177 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6178 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6179 s->timeout = PFTM_UDP_FIRST_PACKET; 6180 break; 6181 case IPPROTO_SCTP: 6182 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6183 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6184 s->timeout = PFTM_SCTP_FIRST_PACKET; 6185 break; 6186 case IPPROTO_ICMP: 6187 #ifdef INET6 6188 case IPPROTO_ICMPV6: 6189 #endif /* INET6 */ 6190 s->timeout = PFTM_ICMP_FIRST_PACKET; 6191 break; 6192 default: 6193 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6194 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6195 s->timeout = PFTM_OTHER_FIRST_PACKET; 6196 } 6197 6198 s->creation = s->expire = pf_get_uptime(); 6199 6200 if (pd->proto == IPPROTO_TCP) { 6201 if (s->state_flags & PFSTATE_SCRUB_TCP && 6202 pf_normalize_tcp_init(pd, th, &s->src)) { 6203 REASON_SET(reason, PFRES_MEMORY); 6204 goto csfailed; 6205 } 6206 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6207 pf_normalize_tcp_stateful(pd, reason, th, s, 6208 &s->src, &s->dst, rewrite)) { 6209 /* This really shouldn't happen!!! */ 6210 DPFPRINTF(PF_DEBUG_URGENT, 6211 ("pf_normalize_tcp_stateful failed on first " 6212 "pkt\n")); 6213 goto csfailed; 6214 } 6215 } else if (pd->proto == IPPROTO_SCTP) { 6216 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6217 goto csfailed; 6218 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6219 goto csfailed; 6220 } 6221 s->direction = pd->dir; 6222 6223 /* 6224 * sk/nk could already been setup by pf_get_translation(). 6225 */ 6226 if (nr == NULL) { 6227 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 6228 __func__, nr, sk, nk)); 6229 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6230 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6231 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) { 6232 goto csfailed; 6233 } 6234 } else 6235 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 6236 __func__, nr, sk, nk)); 6237 6238 /* Swap sk/nk for PF_OUT. */ 6239 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif, 6240 (pd->dir == PF_IN) ? sk : nk, 6241 (pd->dir == PF_IN) ? nk : sk, s)) { 6242 REASON_SET(reason, PFRES_STATEINS); 6243 goto drop; 6244 } else 6245 *sm = s; 6246 sk = nk = NULL; 6247 6248 STATE_INC_COUNTERS(s); 6249 6250 /* 6251 * Lock order is important: first state, then source node. 6252 */ 6253 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6254 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6255 s->sns[sn_type] = sns[sn_type]; 6256 PF_HASHROW_UNLOCK(snhs[sn_type]); 6257 } 6258 } 6259 6260 if (tag > 0) 6261 s->tag = tag; 6262 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6263 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 6264 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6265 pf_undo_nat(nr, pd, bip_sum); 6266 s->src.seqhi = arc4random(); 6267 /* Find mss option */ 6268 int rtid = M_GETFIB(pd->m); 6269 mss = pf_get_mss(pd); 6270 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6271 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6272 s->src.mss = mss; 6273 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6274 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6275 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6276 pd->act.rtableid); 6277 REASON_SET(reason, PFRES_SYNPROXY); 6278 return (PF_SYNPROXY_DROP); 6279 } 6280 6281 s->udp_mapping = udp_mapping; 6282 6283 return (PF_PASS); 6284 6285 csfailed: 6286 while ((ri = SLIST_FIRST(match_rules))) { 6287 SLIST_REMOVE_HEAD(match_rules, entry); 6288 free(ri, M_PF_RULE_ITEM); 6289 } 6290 6291 uma_zfree(V_pf_state_key_z, sk); 6292 uma_zfree(V_pf_state_key_z, nk); 6293 6294 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6295 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6296 if (--sns[sn_type]->states == 0 && 6297 sns[sn_type]->expire == 0) { 6298 pf_unlink_src_node(sns[sn_type]); 6299 pf_free_src_node(sns[sn_type]); 6300 counter_u64_add( 6301 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6302 } 6303 PF_HASHROW_UNLOCK(snhs[sn_type]); 6304 } 6305 } 6306 6307 drop: 6308 if (s != NULL) { 6309 pf_src_tree_remove_state(s); 6310 s->timeout = PFTM_UNLINKED; 6311 pf_free_state(s); 6312 } 6313 6314 return (PF_DROP); 6315 } 6316 6317 int 6318 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6319 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6320 int icmp_dir) 6321 { 6322 /* 6323 * pf_translate() implements OpenBSD's "new" NAT approach. 6324 * We don't follow it, because it involves a breaking syntax change 6325 * (removing nat/rdr rules, moving it into regular pf rules.) 6326 * It also moves NAT processing to be done after normal rules evaluation 6327 * whereas in FreeBSD that's done before rules processing. 6328 * 6329 * We adopt the function only for nat64, and keep other NAT processing 6330 * before rules processing. 6331 */ 6332 int rewrite = 0; 6333 int afto = pd->af != pd->naf; 6334 6335 MPASS(afto); 6336 6337 switch (pd->proto) { 6338 case IPPROTO_TCP: 6339 if (afto || *pd->sport != sport) { 6340 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6341 saddr, sport, 0); 6342 rewrite = 1; 6343 } 6344 if (afto || *pd->dport != dport) { 6345 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6346 daddr, dport, 0); 6347 rewrite = 1; 6348 } 6349 break; 6350 6351 case IPPROTO_UDP: 6352 if (afto || *pd->sport != sport) { 6353 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6354 saddr, sport, 1); 6355 rewrite = 1; 6356 } 6357 if (afto || *pd->dport != dport) { 6358 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6359 daddr, dport, 1); 6360 rewrite = 1; 6361 } 6362 break; 6363 6364 case IPPROTO_SCTP: { 6365 uint16_t checksum = 0; 6366 if (afto || *pd->sport != sport) { 6367 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum, &checksum, 6368 saddr, sport, 1); 6369 rewrite = 1; 6370 } 6371 if (afto || *pd->dport != dport) { 6372 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum, &checksum, 6373 daddr, dport, 1); 6374 rewrite = 1; 6375 } 6376 break; 6377 } 6378 6379 #ifdef INET 6380 case IPPROTO_ICMP: 6381 /* pf_translate() is also used when logging invalid packets */ 6382 if (pd->af != AF_INET) 6383 return (0); 6384 6385 if (afto) { 6386 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6387 return (-1); 6388 pd->proto = IPPROTO_ICMPV6; 6389 rewrite = 1; 6390 } 6391 if (virtual_type == htons(ICMP_ECHO)) { 6392 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6393 6394 if (icmpid != pd->hdr.icmp.icmp_id) { 6395 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6396 pd->hdr.icmp.icmp_cksum, 6397 pd->hdr.icmp.icmp_id, icmpid, 0); 6398 pd->hdr.icmp.icmp_id = icmpid; 6399 /* XXX TODO copyback. */ 6400 rewrite = 1; 6401 } 6402 } 6403 break; 6404 #endif /* INET */ 6405 6406 #ifdef INET6 6407 case IPPROTO_ICMPV6: 6408 /* pf_translate() is also used when logging invalid packets */ 6409 if (pd->af != AF_INET6) 6410 return (0); 6411 6412 if (afto) { 6413 /* ip_sum will be recalculated in pf_translate_af */ 6414 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6415 return (0); 6416 pd->proto = IPPROTO_ICMP; 6417 rewrite = 1; 6418 } 6419 break; 6420 #endif /* INET6 */ 6421 6422 default: 6423 break; 6424 } 6425 6426 return (rewrite); 6427 } 6428 6429 static int 6430 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd, 6431 u_short *reason, int *copyback, struct pf_state_peer *src, 6432 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst) 6433 { 6434 struct tcphdr *th = &pd->hdr.tcp; 6435 u_int16_t win = ntohs(th->th_win); 6436 u_int32_t ack, end, data_end, seq, orig_seq; 6437 u_int8_t sws, dws; 6438 int ackskew; 6439 6440 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6441 sws = src->wscale & PF_WSCALE_MASK; 6442 dws = dst->wscale & PF_WSCALE_MASK; 6443 } else 6444 sws = dws = 0; 6445 6446 /* 6447 * Sequence tracking algorithm from Guido van Rooij's paper: 6448 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6449 * tcp_filtering.ps 6450 */ 6451 6452 orig_seq = seq = ntohl(th->th_seq); 6453 if (src->seqlo == 0) { 6454 /* First packet from this end. Set its state */ 6455 6456 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6457 src->scrub == NULL) { 6458 if (pf_normalize_tcp_init(pd, th, src)) { 6459 REASON_SET(reason, PFRES_MEMORY); 6460 return (PF_DROP); 6461 } 6462 } 6463 6464 /* Deferred generation of sequence number modulator */ 6465 if (dst->seqdiff && !src->seqdiff) { 6466 /* use random iss for the TCP server */ 6467 while ((src->seqdiff = arc4random() - seq) == 0) 6468 ; 6469 ack = ntohl(th->th_ack) - dst->seqdiff; 6470 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6471 src->seqdiff), 0); 6472 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6473 *copyback = 1; 6474 } else { 6475 ack = ntohl(th->th_ack); 6476 } 6477 6478 end = seq + pd->p_len; 6479 if (tcp_get_flags(th) & TH_SYN) { 6480 end++; 6481 if (dst->wscale & PF_WSCALE_FLAG) { 6482 src->wscale = pf_get_wscale(pd); 6483 if (src->wscale & PF_WSCALE_FLAG) { 6484 /* Remove scale factor from initial 6485 * window */ 6486 sws = src->wscale & PF_WSCALE_MASK; 6487 win = ((u_int32_t)win + (1 << sws) - 1) 6488 >> sws; 6489 dws = dst->wscale & PF_WSCALE_MASK; 6490 } else { 6491 /* fixup other window */ 6492 dst->max_win = MIN(TCP_MAXWIN, 6493 (u_int32_t)dst->max_win << 6494 (dst->wscale & PF_WSCALE_MASK)); 6495 /* in case of a retrans SYN|ACK */ 6496 dst->wscale = 0; 6497 } 6498 } 6499 } 6500 data_end = end; 6501 if (tcp_get_flags(th) & TH_FIN) 6502 end++; 6503 6504 src->seqlo = seq; 6505 if (src->state < TCPS_SYN_SENT) 6506 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6507 6508 /* 6509 * May need to slide the window (seqhi may have been set by 6510 * the crappy stack check or if we picked up the connection 6511 * after establishment) 6512 */ 6513 if (src->seqhi == 1 || 6514 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6515 src->seqhi = end + MAX(1, dst->max_win << dws); 6516 if (win > src->max_win) 6517 src->max_win = win; 6518 6519 } else { 6520 ack = ntohl(th->th_ack) - dst->seqdiff; 6521 if (src->seqdiff) { 6522 /* Modulate sequence numbers */ 6523 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6524 src->seqdiff), 0); 6525 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6526 *copyback = 1; 6527 } 6528 end = seq + pd->p_len; 6529 if (tcp_get_flags(th) & TH_SYN) 6530 end++; 6531 data_end = end; 6532 if (tcp_get_flags(th) & TH_FIN) 6533 end++; 6534 } 6535 6536 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6537 /* Let it pass through the ack skew check */ 6538 ack = dst->seqlo; 6539 } else if ((ack == 0 && 6540 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6541 /* broken tcp stacks do not set ack */ 6542 (dst->state < TCPS_SYN_SENT)) { 6543 /* 6544 * Many stacks (ours included) will set the ACK number in an 6545 * FIN|ACK if the SYN times out -- no sequence to ACK. 6546 */ 6547 ack = dst->seqlo; 6548 } 6549 6550 if (seq == end) { 6551 /* Ease sequencing restrictions on no data packets */ 6552 seq = src->seqlo; 6553 data_end = end = seq; 6554 } 6555 6556 ackskew = dst->seqlo - ack; 6557 6558 /* 6559 * Need to demodulate the sequence numbers in any TCP SACK options 6560 * (Selective ACK). We could optionally validate the SACK values 6561 * against the current ACK window, either forwards or backwards, but 6562 * I'm not confident that SACK has been implemented properly 6563 * everywhere. It wouldn't surprise me if several stacks accidentally 6564 * SACK too far backwards of previously ACKed data. There really aren't 6565 * any security implications of bad SACKing unless the target stack 6566 * doesn't validate the option length correctly. Someone trying to 6567 * spoof into a TCP connection won't bother blindly sending SACK 6568 * options anyway. 6569 */ 6570 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6571 if (pf_modulate_sack(pd, th, dst)) 6572 *copyback = 1; 6573 } 6574 6575 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6576 if (SEQ_GEQ(src->seqhi, data_end) && 6577 /* Last octet inside other's window space */ 6578 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6579 /* Retrans: not more than one window back */ 6580 (ackskew >= -MAXACKWINDOW) && 6581 /* Acking not more than one reassembled fragment backwards */ 6582 (ackskew <= (MAXACKWINDOW << sws)) && 6583 /* Acking not more than one window forward */ 6584 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6585 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6586 /* Require an exact/+1 sequence match on resets when possible */ 6587 6588 if (dst->scrub || src->scrub) { 6589 if (pf_normalize_tcp_stateful(pd, reason, th, 6590 state, src, dst, copyback)) 6591 return (PF_DROP); 6592 } 6593 6594 /* update max window */ 6595 if (src->max_win < win) 6596 src->max_win = win; 6597 /* synchronize sequencing */ 6598 if (SEQ_GT(end, src->seqlo)) 6599 src->seqlo = end; 6600 /* slide the window of what the other end can send */ 6601 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6602 dst->seqhi = ack + MAX((win << sws), 1); 6603 6604 /* update states */ 6605 if (tcp_get_flags(th) & TH_SYN) 6606 if (src->state < TCPS_SYN_SENT) 6607 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6608 if (tcp_get_flags(th) & TH_FIN) 6609 if (src->state < TCPS_CLOSING) 6610 pf_set_protostate(state, psrc, TCPS_CLOSING); 6611 if (tcp_get_flags(th) & TH_ACK) { 6612 if (dst->state == TCPS_SYN_SENT) { 6613 pf_set_protostate(state, pdst, 6614 TCPS_ESTABLISHED); 6615 if (src->state == TCPS_ESTABLISHED && 6616 state->sns[PF_SN_LIMIT] != NULL && 6617 pf_src_connlimit(state)) { 6618 REASON_SET(reason, PFRES_SRCLIMIT); 6619 return (PF_DROP); 6620 } 6621 } else if (dst->state == TCPS_CLOSING) 6622 pf_set_protostate(state, pdst, 6623 TCPS_FIN_WAIT_2); 6624 } 6625 if (tcp_get_flags(th) & TH_RST) 6626 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6627 6628 /* update expire time */ 6629 state->expire = pf_get_uptime(); 6630 if (src->state >= TCPS_FIN_WAIT_2 && 6631 dst->state >= TCPS_FIN_WAIT_2) 6632 state->timeout = PFTM_TCP_CLOSED; 6633 else if (src->state >= TCPS_CLOSING && 6634 dst->state >= TCPS_CLOSING) 6635 state->timeout = PFTM_TCP_FIN_WAIT; 6636 else if (src->state < TCPS_ESTABLISHED || 6637 dst->state < TCPS_ESTABLISHED) 6638 state->timeout = PFTM_TCP_OPENING; 6639 else if (src->state >= TCPS_CLOSING || 6640 dst->state >= TCPS_CLOSING) 6641 state->timeout = PFTM_TCP_CLOSING; 6642 else 6643 state->timeout = PFTM_TCP_ESTABLISHED; 6644 6645 /* Fall through to PASS packet */ 6646 6647 } else if ((dst->state < TCPS_SYN_SENT || 6648 dst->state >= TCPS_FIN_WAIT_2 || 6649 src->state >= TCPS_FIN_WAIT_2) && 6650 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6651 /* Within a window forward of the originating packet */ 6652 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6653 /* Within a window backward of the originating packet */ 6654 6655 /* 6656 * This currently handles three situations: 6657 * 1) Stupid stacks will shotgun SYNs before their peer 6658 * replies. 6659 * 2) When PF catches an already established stream (the 6660 * firewall rebooted, the state table was flushed, routes 6661 * changed...) 6662 * 3) Packets get funky immediately after the connection 6663 * closes (this should catch Solaris spurious ACK|FINs 6664 * that web servers like to spew after a close) 6665 * 6666 * This must be a little more careful than the above code 6667 * since packet floods will also be caught here. We don't 6668 * update the TTL here to mitigate the damage of a packet 6669 * flood and so the same code can handle awkward establishment 6670 * and a loosened connection close. 6671 * In the establishment case, a correct peer response will 6672 * validate the connection, go through the normal state code 6673 * and keep updating the state TTL. 6674 */ 6675 6676 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6677 printf("pf: loose state match: "); 6678 pf_print_state(state); 6679 pf_print_flags(tcp_get_flags(th)); 6680 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6681 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6682 pd->p_len, ackskew, (unsigned long long)state->packets[0], 6683 (unsigned long long)state->packets[1], 6684 pd->dir == PF_IN ? "in" : "out", 6685 pd->dir == state->direction ? "fwd" : "rev"); 6686 } 6687 6688 if (dst->scrub || src->scrub) { 6689 if (pf_normalize_tcp_stateful(pd, reason, th, 6690 state, src, dst, copyback)) 6691 return (PF_DROP); 6692 } 6693 6694 /* update max window */ 6695 if (src->max_win < win) 6696 src->max_win = win; 6697 /* synchronize sequencing */ 6698 if (SEQ_GT(end, src->seqlo)) 6699 src->seqlo = end; 6700 /* slide the window of what the other end can send */ 6701 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6702 dst->seqhi = ack + MAX((win << sws), 1); 6703 6704 /* 6705 * Cannot set dst->seqhi here since this could be a shotgunned 6706 * SYN and not an already established connection. 6707 */ 6708 6709 if (tcp_get_flags(th) & TH_FIN) 6710 if (src->state < TCPS_CLOSING) 6711 pf_set_protostate(state, psrc, TCPS_CLOSING); 6712 if (tcp_get_flags(th) & TH_RST) 6713 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6714 6715 /* Fall through to PASS packet */ 6716 6717 } else { 6718 if (state->dst.state == TCPS_SYN_SENT && 6719 state->src.state == TCPS_SYN_SENT) { 6720 /* Send RST for state mismatches during handshake */ 6721 if (!(tcp_get_flags(th) & TH_RST)) 6722 pf_send_tcp(state->rule, pd->af, 6723 pd->dst, pd->src, th->th_dport, 6724 th->th_sport, ntohl(th->th_ack), 0, 6725 TH_RST, 0, 0, 6726 state->rule->return_ttl, M_SKIP_FIREWALL, 6727 0, 0, state->act.rtableid); 6728 src->seqlo = 0; 6729 src->seqhi = 1; 6730 src->max_win = 1; 6731 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6732 printf("pf: BAD state: "); 6733 pf_print_state(state); 6734 pf_print_flags(tcp_get_flags(th)); 6735 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6736 "pkts=%llu:%llu dir=%s,%s\n", 6737 seq, orig_seq, ack, pd->p_len, ackskew, 6738 (unsigned long long)state->packets[0], 6739 (unsigned long long)state->packets[1], 6740 pd->dir == PF_IN ? "in" : "out", 6741 pd->dir == state->direction ? "fwd" : "rev"); 6742 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6743 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6744 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6745 ' ': '2', 6746 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6747 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6748 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6749 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6750 } 6751 REASON_SET(reason, PFRES_BADSTATE); 6752 return (PF_DROP); 6753 } 6754 6755 return (PF_PASS); 6756 } 6757 6758 static int 6759 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd, 6760 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst, 6761 u_int8_t psrc, u_int8_t pdst) 6762 { 6763 struct tcphdr *th = &pd->hdr.tcp; 6764 6765 if (tcp_get_flags(th) & TH_SYN) 6766 if (src->state < TCPS_SYN_SENT) 6767 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6768 if (tcp_get_flags(th) & TH_FIN) 6769 if (src->state < TCPS_CLOSING) 6770 pf_set_protostate(state, psrc, TCPS_CLOSING); 6771 if (tcp_get_flags(th) & TH_ACK) { 6772 if (dst->state == TCPS_SYN_SENT) { 6773 pf_set_protostate(state, pdst, TCPS_ESTABLISHED); 6774 if (src->state == TCPS_ESTABLISHED && 6775 state->sns[PF_SN_LIMIT] != NULL && 6776 pf_src_connlimit(state)) { 6777 REASON_SET(reason, PFRES_SRCLIMIT); 6778 return (PF_DROP); 6779 } 6780 } else if (dst->state == TCPS_CLOSING) { 6781 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2); 6782 } else if (src->state == TCPS_SYN_SENT && 6783 dst->state < TCPS_SYN_SENT) { 6784 /* 6785 * Handle a special sloppy case where we only see one 6786 * half of the connection. If there is a ACK after 6787 * the initial SYN without ever seeing a packet from 6788 * the destination, set the connection to established. 6789 */ 6790 pf_set_protostate(state, PF_PEER_BOTH, 6791 TCPS_ESTABLISHED); 6792 dst->state = src->state = TCPS_ESTABLISHED; 6793 if (state->sns[PF_SN_LIMIT] != NULL && 6794 pf_src_connlimit(state)) { 6795 REASON_SET(reason, PFRES_SRCLIMIT); 6796 return (PF_DROP); 6797 } 6798 } else if (src->state == TCPS_CLOSING && 6799 dst->state == TCPS_ESTABLISHED && 6800 dst->seqlo == 0) { 6801 /* 6802 * Handle the closing of half connections where we 6803 * don't see the full bidirectional FIN/ACK+ACK 6804 * handshake. 6805 */ 6806 pf_set_protostate(state, pdst, TCPS_CLOSING); 6807 } 6808 } 6809 if (tcp_get_flags(th) & TH_RST) 6810 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6811 6812 /* update expire time */ 6813 state->expire = pf_get_uptime(); 6814 if (src->state >= TCPS_FIN_WAIT_2 && 6815 dst->state >= TCPS_FIN_WAIT_2) 6816 state->timeout = PFTM_TCP_CLOSED; 6817 else if (src->state >= TCPS_CLOSING && 6818 dst->state >= TCPS_CLOSING) 6819 state->timeout = PFTM_TCP_FIN_WAIT; 6820 else if (src->state < TCPS_ESTABLISHED || 6821 dst->state < TCPS_ESTABLISHED) 6822 state->timeout = PFTM_TCP_OPENING; 6823 else if (src->state >= TCPS_CLOSING || 6824 dst->state >= TCPS_CLOSING) 6825 state->timeout = PFTM_TCP_CLOSING; 6826 else 6827 state->timeout = PFTM_TCP_ESTABLISHED; 6828 6829 return (PF_PASS); 6830 } 6831 6832 static int 6833 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason) 6834 { 6835 struct pf_state_key *sk = state->key[pd->didx]; 6836 struct tcphdr *th = &pd->hdr.tcp; 6837 6838 if (state->src.state == PF_TCPS_PROXY_SRC) { 6839 if (pd->dir != state->direction) { 6840 REASON_SET(reason, PFRES_SYNPROXY); 6841 return (PF_SYNPROXY_DROP); 6842 } 6843 if (tcp_get_flags(th) & TH_SYN) { 6844 if (ntohl(th->th_seq) != state->src.seqlo) { 6845 REASON_SET(reason, PFRES_SYNPROXY); 6846 return (PF_DROP); 6847 } 6848 pf_send_tcp(state->rule, pd->af, pd->dst, 6849 pd->src, th->th_dport, th->th_sport, 6850 state->src.seqhi, ntohl(th->th_seq) + 1, 6851 TH_SYN|TH_ACK, 0, state->src.mss, 0, 6852 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 6853 REASON_SET(reason, PFRES_SYNPROXY); 6854 return (PF_SYNPROXY_DROP); 6855 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6856 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6857 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6858 REASON_SET(reason, PFRES_SYNPROXY); 6859 return (PF_DROP); 6860 } else if (state->sns[PF_SN_LIMIT] != NULL && 6861 pf_src_connlimit(state)) { 6862 REASON_SET(reason, PFRES_SRCLIMIT); 6863 return (PF_DROP); 6864 } else 6865 pf_set_protostate(state, PF_PEER_SRC, 6866 PF_TCPS_PROXY_DST); 6867 } 6868 if (state->src.state == PF_TCPS_PROXY_DST) { 6869 if (pd->dir == state->direction) { 6870 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6871 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6872 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6873 REASON_SET(reason, PFRES_SYNPROXY); 6874 return (PF_DROP); 6875 } 6876 state->src.max_win = MAX(ntohs(th->th_win), 1); 6877 if (state->dst.seqhi == 1) 6878 state->dst.seqhi = arc4random(); 6879 pf_send_tcp(state->rule, pd->af, 6880 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6881 sk->port[pd->sidx], sk->port[pd->didx], 6882 state->dst.seqhi, 0, TH_SYN, 0, 6883 state->src.mss, 0, 6884 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6885 state->tag, 0, state->act.rtableid); 6886 REASON_SET(reason, PFRES_SYNPROXY); 6887 return (PF_SYNPROXY_DROP); 6888 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6889 (TH_SYN|TH_ACK)) || 6890 (ntohl(th->th_ack) != state->dst.seqhi + 1)) { 6891 REASON_SET(reason, PFRES_SYNPROXY); 6892 return (PF_DROP); 6893 } else { 6894 state->dst.max_win = MAX(ntohs(th->th_win), 1); 6895 state->dst.seqlo = ntohl(th->th_seq); 6896 pf_send_tcp(state->rule, pd->af, pd->dst, 6897 pd->src, th->th_dport, th->th_sport, 6898 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6899 TH_ACK, state->src.max_win, 0, 0, 0, 6900 state->tag, 0, state->act.rtableid); 6901 pf_send_tcp(state->rule, pd->af, 6902 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6903 sk->port[pd->sidx], sk->port[pd->didx], 6904 state->src.seqhi + 1, state->src.seqlo + 1, 6905 TH_ACK, state->dst.max_win, 0, 0, 6906 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 6907 state->src.seqdiff = state->dst.seqhi - 6908 state->src.seqlo; 6909 state->dst.seqdiff = state->src.seqhi - 6910 state->dst.seqlo; 6911 state->src.seqhi = state->src.seqlo + 6912 state->dst.max_win; 6913 state->dst.seqhi = state->dst.seqlo + 6914 state->src.max_win; 6915 state->src.wscale = state->dst.wscale = 0; 6916 pf_set_protostate(state, PF_PEER_BOTH, 6917 TCPS_ESTABLISHED); 6918 REASON_SET(reason, PFRES_SYNPROXY); 6919 return (PF_SYNPROXY_DROP); 6920 } 6921 } 6922 6923 return (PF_PASS); 6924 } 6925 6926 static int 6927 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6928 { 6929 struct pf_state_key_cmp key; 6930 int copyback = 0; 6931 struct pf_state_peer *src, *dst; 6932 uint8_t psrc, pdst; 6933 int action = PF_PASS; 6934 6935 bzero(&key, sizeof(key)); 6936 key.af = pd->af; 6937 key.proto = pd->virtual_proto; 6938 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af); 6939 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af); 6940 key.port[pd->sidx] = pd->osport; 6941 key.port[pd->didx] = pd->odport; 6942 6943 STATE_LOOKUP(&key, *state, pd); 6944 6945 if (pd->dir == (*state)->direction) { 6946 if (PF_REVERSED_KEY(*state, pd->af)) { 6947 src = &(*state)->dst; 6948 dst = &(*state)->src; 6949 psrc = PF_PEER_DST; 6950 pdst = PF_PEER_SRC; 6951 } else { 6952 src = &(*state)->src; 6953 dst = &(*state)->dst; 6954 psrc = PF_PEER_SRC; 6955 pdst = PF_PEER_DST; 6956 } 6957 } else { 6958 if (PF_REVERSED_KEY(*state, pd->af)) { 6959 src = &(*state)->src; 6960 dst = &(*state)->dst; 6961 psrc = PF_PEER_SRC; 6962 pdst = PF_PEER_DST; 6963 } else { 6964 src = &(*state)->dst; 6965 dst = &(*state)->src; 6966 psrc = PF_PEER_DST; 6967 pdst = PF_PEER_SRC; 6968 } 6969 } 6970 6971 switch (pd->virtual_proto) { 6972 case IPPROTO_TCP: { 6973 struct tcphdr *th = &pd->hdr.tcp; 6974 6975 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS) 6976 return (action); 6977 if ((*state)->src.state >= TCPS_FIN_WAIT_2 && 6978 (*state)->dst.state >= TCPS_FIN_WAIT_2 && 6979 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) || 6980 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6981 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6982 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6983 printf("pf: state reuse "); 6984 pf_print_state(*state); 6985 pf_print_flags(tcp_get_flags(th)); 6986 printf("\n"); 6987 } 6988 /* XXX make sure it's the same direction ?? */ 6989 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6990 pf_remove_state(*state); 6991 *state = NULL; 6992 return (PF_DROP); 6993 } 6994 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6995 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst, 6996 psrc, pdst) == PF_DROP) 6997 return (PF_DROP); 6998 } else { 6999 int ret; 7000 7001 ret = pf_tcp_track_full(*state, pd, reason, 7002 ©back, src, dst, psrc, pdst); 7003 if (ret == PF_DROP) 7004 return (PF_DROP); 7005 } 7006 break; 7007 } 7008 case IPPROTO_UDP: 7009 /* update states */ 7010 if (src->state < PFUDPS_SINGLE) 7011 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7012 if (dst->state == PFUDPS_SINGLE) 7013 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7014 7015 /* update expire time */ 7016 (*state)->expire = pf_get_uptime(); 7017 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7018 (*state)->timeout = PFTM_UDP_MULTIPLE; 7019 else 7020 (*state)->timeout = PFTM_UDP_SINGLE; 7021 break; 7022 case IPPROTO_SCTP: 7023 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7024 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7025 pd->sctp_flags & PFDESC_SCTP_INIT) { 7026 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7027 pf_remove_state(*state); 7028 *state = NULL; 7029 return (PF_DROP); 7030 } 7031 7032 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7033 return (PF_DROP); 7034 7035 /* Track state. */ 7036 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7037 if (src->state < SCTP_COOKIE_WAIT) { 7038 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7039 (*state)->timeout = PFTM_SCTP_OPENING; 7040 } 7041 } 7042 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7043 MPASS(dst->scrub != NULL); 7044 if (dst->scrub->pfss_v_tag == 0) 7045 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7046 } 7047 7048 /* 7049 * Bind to the correct interface if we're if-bound. For multihomed 7050 * extra associations we don't know which interface that will be until 7051 * here, so we've inserted the state on V_pf_all. Fix that now. 7052 */ 7053 if ((*state)->kif == V_pfi_all && 7054 (*state)->rule->rule_flag & PFRULE_IFBOUND) 7055 (*state)->kif = pd->kif; 7056 7057 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7058 if (src->state < SCTP_ESTABLISHED) { 7059 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7060 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7061 } 7062 } 7063 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | 7064 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7065 if (src->state < SCTP_SHUTDOWN_PENDING) { 7066 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7067 (*state)->timeout = PFTM_SCTP_CLOSING; 7068 } 7069 } 7070 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) { 7071 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7072 (*state)->timeout = PFTM_SCTP_CLOSED; 7073 } 7074 7075 (*state)->expire = pf_get_uptime(); 7076 break; 7077 default: 7078 /* update states */ 7079 if (src->state < PFOTHERS_SINGLE) 7080 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7081 if (dst->state == PFOTHERS_SINGLE) 7082 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7083 7084 /* update expire time */ 7085 (*state)->expire = pf_get_uptime(); 7086 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7087 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7088 else 7089 (*state)->timeout = PFTM_OTHER_SINGLE; 7090 break; 7091 } 7092 7093 /* translate source/destination address, if necessary */ 7094 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7095 struct pf_state_key *nk; 7096 int afto, sidx, didx; 7097 7098 if (PF_REVERSED_KEY(*state, pd->af)) 7099 nk = (*state)->key[pd->sidx]; 7100 else 7101 nk = (*state)->key[pd->didx]; 7102 7103 afto = pd->af != nk->af; 7104 7105 if (afto && (*state)->direction == PF_IN) { 7106 sidx = pd->didx; 7107 didx = pd->sidx; 7108 } else { 7109 sidx = pd->sidx; 7110 didx = pd->didx; 7111 } 7112 7113 if (afto) { 7114 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7115 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7116 pd->naf = nk->af; 7117 action = PF_AFRT; 7118 } 7119 7120 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7121 nk->port[sidx] != pd->osport) 7122 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum, 7123 pd->pcksum, &nk->addr[sidx], 7124 nk->port[sidx], pd->virtual_proto == IPPROTO_UDP); 7125 7126 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7127 nk->port[didx] != pd->odport) 7128 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum, 7129 pd->pcksum, &nk->addr[didx], 7130 nk->port[didx], pd->virtual_proto == IPPROTO_UDP); 7131 7132 copyback = 1; 7133 } 7134 7135 if (copyback && pd->hdrlen > 0) 7136 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 7137 7138 return (action); 7139 } 7140 7141 static int 7142 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7143 u_short *reason) 7144 { 7145 struct pf_state_peer *src; 7146 if (pd->dir == state->direction) { 7147 if (PF_REVERSED_KEY(state, pd->af)) 7148 src = &state->dst; 7149 else 7150 src = &state->src; 7151 } else { 7152 if (PF_REVERSED_KEY(state, pd->af)) 7153 src = &state->src; 7154 else 7155 src = &state->dst; 7156 } 7157 7158 if (src->scrub != NULL) { 7159 if (src->scrub->pfss_v_tag == 0) 7160 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7161 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7162 return (PF_DROP); 7163 } 7164 7165 return (PF_PASS); 7166 } 7167 7168 static void 7169 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7170 { 7171 struct pf_sctp_endpoint key; 7172 struct pf_sctp_endpoint *ep; 7173 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7174 struct pf_sctp_source *i, *tmp; 7175 7176 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7177 return; 7178 7179 PF_SCTP_ENDPOINTS_LOCK(); 7180 7181 key.v_tag = s->dst.scrub->pfss_v_tag; 7182 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7183 if (ep != NULL) { 7184 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7185 if (pf_addr_cmp(&i->addr, 7186 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7187 s->key[PF_SK_WIRE]->af) == 0) { 7188 SDT_PROBE3(pf, sctp, multihome, remove, 7189 key.v_tag, s, i); 7190 TAILQ_REMOVE(&ep->sources, i, entry); 7191 free(i, M_PFTEMP); 7192 break; 7193 } 7194 } 7195 7196 if (TAILQ_EMPTY(&ep->sources)) { 7197 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7198 free(ep, M_PFTEMP); 7199 } 7200 } 7201 7202 /* Other direction. */ 7203 key.v_tag = s->src.scrub->pfss_v_tag; 7204 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7205 if (ep != NULL) { 7206 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7207 if (pf_addr_cmp(&i->addr, 7208 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7209 s->key[PF_SK_WIRE]->af) == 0) { 7210 SDT_PROBE3(pf, sctp, multihome, remove, 7211 key.v_tag, s, i); 7212 TAILQ_REMOVE(&ep->sources, i, entry); 7213 free(i, M_PFTEMP); 7214 break; 7215 } 7216 } 7217 7218 if (TAILQ_EMPTY(&ep->sources)) { 7219 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7220 free(ep, M_PFTEMP); 7221 } 7222 } 7223 7224 PF_SCTP_ENDPOINTS_UNLOCK(); 7225 } 7226 7227 static void 7228 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7229 { 7230 struct pf_sctp_endpoint key = { 7231 .v_tag = v_tag, 7232 }; 7233 struct pf_sctp_source *i; 7234 struct pf_sctp_endpoint *ep; 7235 7236 PF_SCTP_ENDPOINTS_LOCK(); 7237 7238 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7239 if (ep == NULL) { 7240 ep = malloc(sizeof(struct pf_sctp_endpoint), 7241 M_PFTEMP, M_NOWAIT); 7242 if (ep == NULL) { 7243 PF_SCTP_ENDPOINTS_UNLOCK(); 7244 return; 7245 } 7246 7247 ep->v_tag = v_tag; 7248 TAILQ_INIT(&ep->sources); 7249 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7250 } 7251 7252 /* Avoid inserting duplicates. */ 7253 TAILQ_FOREACH(i, &ep->sources, entry) { 7254 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7255 PF_SCTP_ENDPOINTS_UNLOCK(); 7256 return; 7257 } 7258 } 7259 7260 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7261 if (i == NULL) { 7262 PF_SCTP_ENDPOINTS_UNLOCK(); 7263 return; 7264 } 7265 7266 i->af = pd->af; 7267 memcpy(&i->addr, a, sizeof(*a)); 7268 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7269 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7270 7271 PF_SCTP_ENDPOINTS_UNLOCK(); 7272 } 7273 7274 static void 7275 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7276 struct pf_kstate *s, int action) 7277 { 7278 struct pf_sctp_multihome_job *j, *tmp; 7279 struct pf_sctp_source *i; 7280 int ret __unused; 7281 struct pf_kstate *sm = NULL; 7282 struct pf_krule *ra = NULL; 7283 struct pf_krule *r = &V_pf_default_rule; 7284 struct pf_kruleset *rs = NULL; 7285 u_short reason; 7286 bool do_extra = true; 7287 7288 PF_RULES_RLOCK_TRACKER; 7289 7290 again: 7291 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7292 if (s == NULL || action != PF_PASS) 7293 goto free; 7294 7295 /* Confirm we don't recurse here. */ 7296 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7297 7298 switch (j->op) { 7299 case SCTP_ADD_IP_ADDRESS: { 7300 uint32_t v_tag = pd->sctp_initiate_tag; 7301 7302 if (v_tag == 0) { 7303 if (s->direction == pd->dir) 7304 v_tag = s->src.scrub->pfss_v_tag; 7305 else 7306 v_tag = s->dst.scrub->pfss_v_tag; 7307 } 7308 7309 /* 7310 * Avoid duplicating states. We'll already have 7311 * created a state based on the source address of 7312 * the packet, but SCTP endpoints may also list this 7313 * address again in the INIT(_ACK) parameters. 7314 */ 7315 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7316 break; 7317 } 7318 7319 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7320 PF_RULES_RLOCK(); 7321 sm = NULL; 7322 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) { 7323 j->pd.related_rule = s->rule; 7324 } 7325 ret = pf_test_rule(&r, &sm, 7326 &j->pd, &ra, &rs, &reason, NULL); 7327 PF_RULES_RUNLOCK(); 7328 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7329 if (ret != PF_DROP && sm != NULL) { 7330 /* Inherit v_tag values. */ 7331 if (sm->direction == s->direction) { 7332 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7333 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7334 } else { 7335 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7336 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7337 } 7338 PF_STATE_UNLOCK(sm); 7339 } else { 7340 /* If we try duplicate inserts? */ 7341 break; 7342 } 7343 7344 /* Only add the address if we've actually allowed the state. */ 7345 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7346 7347 if (! do_extra) { 7348 break; 7349 } 7350 /* 7351 * We need to do this for each of our source addresses. 7352 * Find those based on the verification tag. 7353 */ 7354 struct pf_sctp_endpoint key = { 7355 .v_tag = pd->hdr.sctp.v_tag, 7356 }; 7357 struct pf_sctp_endpoint *ep; 7358 7359 PF_SCTP_ENDPOINTS_LOCK(); 7360 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7361 if (ep == NULL) { 7362 PF_SCTP_ENDPOINTS_UNLOCK(); 7363 break; 7364 } 7365 MPASS(ep != NULL); 7366 7367 TAILQ_FOREACH(i, &ep->sources, entry) { 7368 struct pf_sctp_multihome_job *nj; 7369 7370 /* SCTP can intermingle IPv4 and IPv6. */ 7371 if (i->af != pd->af) 7372 continue; 7373 7374 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7375 if (! nj) { 7376 continue; 7377 } 7378 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7379 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7380 nj->pd.src = &nj->src; 7381 // New destination address! 7382 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7383 nj->pd.dst = &nj->dst; 7384 nj->pd.m = j->pd.m; 7385 nj->op = j->op; 7386 7387 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7388 } 7389 PF_SCTP_ENDPOINTS_UNLOCK(); 7390 7391 break; 7392 } 7393 case SCTP_DEL_IP_ADDRESS: { 7394 struct pf_state_key_cmp key; 7395 uint8_t psrc; 7396 7397 bzero(&key, sizeof(key)); 7398 key.af = j->pd.af; 7399 key.proto = IPPROTO_SCTP; 7400 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7401 PF_ACPY(&key.addr[0], j->pd.src, key.af); 7402 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 7403 key.port[0] = j->pd.hdr.sctp.src_port; 7404 key.port[1] = j->pd.hdr.sctp.dest_port; 7405 } else { /* stack side, reverse */ 7406 PF_ACPY(&key.addr[1], j->pd.src, key.af); 7407 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 7408 key.port[1] = j->pd.hdr.sctp.src_port; 7409 key.port[0] = j->pd.hdr.sctp.dest_port; 7410 } 7411 7412 sm = pf_find_state(kif, &key, j->pd.dir); 7413 if (sm != NULL) { 7414 PF_STATE_LOCK_ASSERT(sm); 7415 if (j->pd.dir == sm->direction) { 7416 psrc = PF_PEER_SRC; 7417 } else { 7418 psrc = PF_PEER_DST; 7419 } 7420 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7421 sm->timeout = PFTM_SCTP_CLOSING; 7422 PF_STATE_UNLOCK(sm); 7423 } 7424 break; 7425 default: 7426 panic("Unknown op %#x", j->op); 7427 } 7428 } 7429 7430 free: 7431 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7432 free(j, M_PFTEMP); 7433 } 7434 7435 /* We may have inserted extra work while processing the list. */ 7436 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7437 do_extra = false; 7438 goto again; 7439 } 7440 } 7441 7442 static int 7443 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7444 { 7445 int off = 0; 7446 struct pf_sctp_multihome_job *job; 7447 7448 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op); 7449 7450 while (off < len) { 7451 struct sctp_paramhdr h; 7452 7453 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7454 pd->af)) 7455 return (PF_DROP); 7456 7457 /* Parameters are at least 4 bytes. */ 7458 if (ntohs(h.param_length) < 4) 7459 return (PF_DROP); 7460 7461 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type), 7462 ntohs(h.param_length)); 7463 7464 switch (ntohs(h.param_type)) { 7465 case SCTP_IPV4_ADDRESS: { 7466 struct in_addr t; 7467 7468 if (ntohs(h.param_length) != 7469 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7470 return (PF_DROP); 7471 7472 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7473 NULL, NULL, pd->af)) 7474 return (PF_DROP); 7475 7476 if (in_nullhost(t)) 7477 t.s_addr = pd->src->v4.s_addr; 7478 7479 /* 7480 * We hold the state lock (idhash) here, which means 7481 * that we can't acquire the keyhash, or we'll get a 7482 * LOR (and potentially double-lock things too). We also 7483 * can't release the state lock here, so instead we'll 7484 * enqueue this for async handling. 7485 * There's a relatively small race here, in that a 7486 * packet using the new addresses could arrive already, 7487 * but that's just though luck for it. 7488 */ 7489 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7490 if (! job) 7491 return (PF_DROP); 7492 7493 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op); 7494 7495 memcpy(&job->pd, pd, sizeof(*pd)); 7496 7497 // New source address! 7498 memcpy(&job->src, &t, sizeof(t)); 7499 job->pd.src = &job->src; 7500 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7501 job->pd.dst = &job->dst; 7502 job->pd.m = pd->m; 7503 job->op = op; 7504 7505 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7506 break; 7507 } 7508 #ifdef INET6 7509 case SCTP_IPV6_ADDRESS: { 7510 struct in6_addr t; 7511 7512 if (ntohs(h.param_length) != 7513 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7514 return (PF_DROP); 7515 7516 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7517 NULL, NULL, pd->af)) 7518 return (PF_DROP); 7519 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7520 break; 7521 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7522 memcpy(&t, &pd->src->v6, sizeof(t)); 7523 7524 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7525 if (! job) 7526 return (PF_DROP); 7527 7528 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op); 7529 7530 memcpy(&job->pd, pd, sizeof(*pd)); 7531 memcpy(&job->src, &t, sizeof(t)); 7532 job->pd.src = &job->src; 7533 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7534 job->pd.dst = &job->dst; 7535 job->pd.m = pd->m; 7536 job->op = op; 7537 7538 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7539 break; 7540 } 7541 #endif /* INET6 */ 7542 case SCTP_ADD_IP_ADDRESS: { 7543 int ret; 7544 struct sctp_asconf_paramhdr ah; 7545 7546 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7547 NULL, NULL, pd->af)) 7548 return (PF_DROP); 7549 7550 ret = pf_multihome_scan(start + off + sizeof(ah), 7551 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7552 SCTP_ADD_IP_ADDRESS); 7553 if (ret != PF_PASS) 7554 return (ret); 7555 break; 7556 } 7557 case SCTP_DEL_IP_ADDRESS: { 7558 int ret; 7559 struct sctp_asconf_paramhdr ah; 7560 7561 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7562 NULL, NULL, pd->af)) 7563 return (PF_DROP); 7564 ret = pf_multihome_scan(start + off + sizeof(ah), 7565 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7566 SCTP_DEL_IP_ADDRESS); 7567 if (ret != PF_PASS) 7568 return (ret); 7569 break; 7570 } 7571 default: 7572 break; 7573 } 7574 7575 off += roundup(ntohs(h.param_length), 4); 7576 } 7577 7578 return (PF_PASS); 7579 } 7580 7581 int 7582 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7583 { 7584 start += sizeof(struct sctp_init_chunk); 7585 len -= sizeof(struct sctp_init_chunk); 7586 7587 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7588 } 7589 7590 int 7591 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7592 { 7593 start += sizeof(struct sctp_asconf_chunk); 7594 len -= sizeof(struct sctp_asconf_chunk); 7595 7596 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7597 } 7598 7599 int 7600 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7601 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir, 7602 int *iidx, int multi, int inner) 7603 { 7604 int direction = pd->dir; 7605 7606 key->af = pd->af; 7607 key->proto = pd->proto; 7608 if (icmp_dir == PF_IN) { 7609 *iidx = pd->sidx; 7610 key->port[pd->sidx] = icmpid; 7611 key->port[pd->didx] = type; 7612 } else { 7613 *iidx = pd->didx; 7614 key->port[pd->sidx] = type; 7615 key->port[pd->didx] = icmpid; 7616 } 7617 if (pf_state_key_addr_setup(pd, key, multi)) 7618 return (PF_DROP); 7619 7620 STATE_LOOKUP(key, *state, pd); 7621 7622 if ((*state)->state_flags & PFSTATE_SLOPPY) 7623 return (-1); 7624 7625 /* Is this ICMP message flowing in right direction? */ 7626 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af) 7627 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ? 7628 PF_IN : PF_OUT; 7629 else 7630 direction = (*state)->direction; 7631 if ((*state)->rule->type && 7632 (((!inner && direction == pd->dir) || 7633 (inner && direction != pd->dir)) ? 7634 PF_IN : PF_OUT) != icmp_dir) { 7635 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7636 printf("pf: icmp type %d in wrong direction (%d): ", 7637 ntohs(type), icmp_dir); 7638 pf_print_state(*state); 7639 printf("\n"); 7640 } 7641 PF_STATE_UNLOCK(*state); 7642 *state = NULL; 7643 return (PF_DROP); 7644 } 7645 return (-1); 7646 } 7647 7648 static int 7649 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7650 u_short *reason) 7651 { 7652 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7653 u_int16_t *icmpsum, virtual_id, virtual_type; 7654 u_int8_t icmptype, icmpcode; 7655 int icmp_dir, iidx, ret; 7656 struct pf_state_key_cmp key; 7657 #ifdef INET 7658 u_int16_t icmpid; 7659 #endif /* INET*/ 7660 7661 MPASS(*state == NULL); 7662 7663 bzero(&key, sizeof(key)); 7664 switch (pd->proto) { 7665 #ifdef INET 7666 case IPPROTO_ICMP: 7667 icmptype = pd->hdr.icmp.icmp_type; 7668 icmpcode = pd->hdr.icmp.icmp_code; 7669 icmpid = pd->hdr.icmp.icmp_id; 7670 icmpsum = &pd->hdr.icmp.icmp_cksum; 7671 break; 7672 #endif /* INET */ 7673 #ifdef INET6 7674 case IPPROTO_ICMPV6: 7675 icmptype = pd->hdr.icmp6.icmp6_type; 7676 icmpcode = pd->hdr.icmp6.icmp6_code; 7677 #ifdef INET 7678 icmpid = pd->hdr.icmp6.icmp6_id; 7679 #endif /* INET */ 7680 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7681 break; 7682 #endif /* INET6 */ 7683 default: 7684 panic("unhandled proto %d", pd->proto); 7685 } 7686 7687 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id, 7688 &virtual_type) == 0) { 7689 /* 7690 * ICMP query/reply message not related to a TCP/UDP/SCTP 7691 * packet. Search for an ICMP state. 7692 */ 7693 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id, 7694 virtual_type, icmp_dir, &iidx, 0, 0); 7695 /* IPv6? try matching a multicast address */ 7696 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) { 7697 MPASS(*state == NULL); 7698 ret = pf_icmp_state_lookup(&key, pd, state, 7699 virtual_id, virtual_type, 7700 icmp_dir, &iidx, 1, 0); 7701 } 7702 if (ret >= 0) { 7703 MPASS(*state == NULL); 7704 return (ret); 7705 } 7706 7707 (*state)->expire = pf_get_uptime(); 7708 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7709 7710 /* translate source/destination address, if necessary */ 7711 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7712 struct pf_state_key *nk; 7713 int afto, sidx, didx; 7714 7715 if (PF_REVERSED_KEY(*state, pd->af)) 7716 nk = (*state)->key[pd->sidx]; 7717 else 7718 nk = (*state)->key[pd->didx]; 7719 7720 afto = pd->af != nk->af; 7721 7722 if (afto && (*state)->direction == PF_IN) { 7723 sidx = pd->didx; 7724 didx = pd->sidx; 7725 iidx = !iidx; 7726 } else { 7727 sidx = pd->sidx; 7728 didx = pd->didx; 7729 } 7730 7731 switch (pd->af) { 7732 #ifdef INET 7733 case AF_INET: 7734 #ifdef INET6 7735 if (afto) { 7736 if (pf_translate_icmp_af(AF_INET6, 7737 &pd->hdr.icmp)) 7738 return (PF_DROP); 7739 pd->proto = IPPROTO_ICMPV6; 7740 } 7741 #endif /* INET6 */ 7742 if (!afto && 7743 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7744 pf_change_a(&saddr->v4.s_addr, 7745 pd->ip_sum, 7746 nk->addr[sidx].v4.s_addr, 7747 0); 7748 7749 if (!afto && PF_ANEQ(pd->dst, 7750 &nk->addr[didx], AF_INET)) 7751 pf_change_a(&daddr->v4.s_addr, 7752 pd->ip_sum, 7753 nk->addr[didx].v4.s_addr, 0); 7754 7755 if (nk->port[iidx] != 7756 pd->hdr.icmp.icmp_id) { 7757 pd->hdr.icmp.icmp_cksum = 7758 pf_cksum_fixup( 7759 pd->hdr.icmp.icmp_cksum, icmpid, 7760 nk->port[iidx], 0); 7761 pd->hdr.icmp.icmp_id = 7762 nk->port[iidx]; 7763 } 7764 7765 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7766 (caddr_t )&pd->hdr.icmp); 7767 break; 7768 #endif /* INET */ 7769 #ifdef INET6 7770 case AF_INET6: 7771 #ifdef INET 7772 if (afto) { 7773 if (pf_translate_icmp_af(AF_INET, 7774 &pd->hdr.icmp6)) 7775 return (PF_DROP); 7776 pd->proto = IPPROTO_ICMP; 7777 } 7778 #endif /* INET */ 7779 if (!afto && 7780 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7781 pf_change_a6(saddr, 7782 &pd->hdr.icmp6.icmp6_cksum, 7783 &nk->addr[sidx], 0); 7784 7785 if (!afto && PF_ANEQ(pd->dst, 7786 &nk->addr[didx], AF_INET6)) 7787 pf_change_a6(daddr, 7788 &pd->hdr.icmp6.icmp6_cksum, 7789 &nk->addr[didx], 0); 7790 7791 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id) 7792 pd->hdr.icmp6.icmp6_id = 7793 nk->port[iidx]; 7794 7795 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7796 (caddr_t )&pd->hdr.icmp6); 7797 break; 7798 #endif /* INET6 */ 7799 } 7800 if (afto) { 7801 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7802 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7803 pd->naf = nk->af; 7804 return (PF_AFRT); 7805 } 7806 } 7807 return (PF_PASS); 7808 7809 } else { 7810 /* 7811 * ICMP error message in response to a TCP/UDP packet. 7812 * Extract the inner TCP/UDP header and search for that state. 7813 */ 7814 7815 struct pf_pdesc pd2; 7816 bzero(&pd2, sizeof pd2); 7817 #ifdef INET 7818 struct ip h2; 7819 #endif /* INET */ 7820 #ifdef INET6 7821 struct ip6_hdr h2_6; 7822 #endif /* INET6 */ 7823 int ipoff2 = 0; 7824 7825 pd2.af = pd->af; 7826 pd2.dir = pd->dir; 7827 /* Payload packet is from the opposite direction. */ 7828 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7829 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7830 pd2.m = pd->m; 7831 pd2.kif = pd->kif; 7832 switch (pd->af) { 7833 #ifdef INET 7834 case AF_INET: 7835 /* offset of h2 in mbuf chain */ 7836 ipoff2 = pd->off + ICMP_MINLEN; 7837 7838 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7839 NULL, reason, pd2.af)) { 7840 DPFPRINTF(PF_DEBUG_MISC, 7841 ("pf: ICMP error message too short " 7842 "(ip)\n")); 7843 return (PF_DROP); 7844 } 7845 /* 7846 * ICMP error messages don't refer to non-first 7847 * fragments 7848 */ 7849 if (h2.ip_off & htons(IP_OFFMASK)) { 7850 REASON_SET(reason, PFRES_FRAG); 7851 return (PF_DROP); 7852 } 7853 7854 /* offset of protocol header that follows h2 */ 7855 pd2.off = ipoff2 + (h2.ip_hl << 2); 7856 7857 pd2.proto = h2.ip_p; 7858 pd2.tot_len = ntohs(h2.ip_len); 7859 pd2.src = (struct pf_addr *)&h2.ip_src; 7860 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7861 pd2.ip_sum = &h2.ip_sum; 7862 break; 7863 #endif /* INET */ 7864 #ifdef INET6 7865 case AF_INET6: 7866 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7867 7868 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7869 NULL, reason, pd2.af)) { 7870 DPFPRINTF(PF_DEBUG_MISC, 7871 ("pf: ICMP error message too short " 7872 "(ip6)\n")); 7873 return (PF_DROP); 7874 } 7875 pd2.off = ipoff2; 7876 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS) 7877 return (PF_DROP); 7878 7879 pd2.tot_len = ntohs(h2_6.ip6_plen) + 7880 sizeof(struct ip6_hdr); 7881 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7882 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7883 pd2.ip_sum = NULL; 7884 break; 7885 #endif /* INET6 */ 7886 default: 7887 unhandled_af(pd->af); 7888 } 7889 7890 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7891 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7892 printf("pf: BAD ICMP %d:%d outer dst: ", 7893 icmptype, icmpcode); 7894 pf_print_host(pd->src, 0, pd->af); 7895 printf(" -> "); 7896 pf_print_host(pd->dst, 0, pd->af); 7897 printf(" inner src: "); 7898 pf_print_host(pd2.src, 0, pd2.af); 7899 printf(" -> "); 7900 pf_print_host(pd2.dst, 0, pd2.af); 7901 printf("\n"); 7902 } 7903 REASON_SET(reason, PFRES_BADSTATE); 7904 return (PF_DROP); 7905 } 7906 7907 switch (pd2.proto) { 7908 case IPPROTO_TCP: { 7909 struct tcphdr th; 7910 u_int32_t seq; 7911 struct pf_state_peer *src, *dst; 7912 u_int8_t dws; 7913 int copyback = 0; 7914 7915 /* 7916 * Only the first 8 bytes of the TCP header can be 7917 * expected. Don't access any TCP header fields after 7918 * th_seq, an ackskew test is not possible. 7919 */ 7920 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7921 pd2.af)) { 7922 DPFPRINTF(PF_DEBUG_MISC, 7923 ("pf: ICMP error message too short " 7924 "(tcp)\n")); 7925 return (PF_DROP); 7926 } 7927 7928 key.af = pd2.af; 7929 key.proto = IPPROTO_TCP; 7930 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7931 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7932 key.port[pd2.sidx] = th.th_sport; 7933 key.port[pd2.didx] = th.th_dport; 7934 7935 STATE_LOOKUP(&key, *state, pd); 7936 7937 if (pd->dir == (*state)->direction) { 7938 if (PF_REVERSED_KEY(*state, pd->af)) { 7939 src = &(*state)->src; 7940 dst = &(*state)->dst; 7941 } else { 7942 src = &(*state)->dst; 7943 dst = &(*state)->src; 7944 } 7945 } else { 7946 if (PF_REVERSED_KEY(*state, pd->af)) { 7947 src = &(*state)->dst; 7948 dst = &(*state)->src; 7949 } else { 7950 src = &(*state)->src; 7951 dst = &(*state)->dst; 7952 } 7953 } 7954 7955 if (src->wscale && dst->wscale) 7956 dws = dst->wscale & PF_WSCALE_MASK; 7957 else 7958 dws = 0; 7959 7960 /* Demodulate sequence number */ 7961 seq = ntohl(th.th_seq) - src->seqdiff; 7962 if (src->seqdiff) { 7963 pf_change_a(&th.th_seq, icmpsum, 7964 htonl(seq), 0); 7965 copyback = 1; 7966 } 7967 7968 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7969 (!SEQ_GEQ(src->seqhi, seq) || 7970 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7971 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7972 printf("pf: BAD ICMP %d:%d ", 7973 icmptype, icmpcode); 7974 pf_print_host(pd->src, 0, pd->af); 7975 printf(" -> "); 7976 pf_print_host(pd->dst, 0, pd->af); 7977 printf(" state: "); 7978 pf_print_state(*state); 7979 printf(" seq=%u\n", seq); 7980 } 7981 REASON_SET(reason, PFRES_BADSTATE); 7982 return (PF_DROP); 7983 } else { 7984 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7985 printf("pf: OK ICMP %d:%d ", 7986 icmptype, icmpcode); 7987 pf_print_host(pd->src, 0, pd->af); 7988 printf(" -> "); 7989 pf_print_host(pd->dst, 0, pd->af); 7990 printf(" state: "); 7991 pf_print_state(*state); 7992 printf(" seq=%u\n", seq); 7993 } 7994 } 7995 7996 /* translate source/destination address, if necessary */ 7997 if ((*state)->key[PF_SK_WIRE] != 7998 (*state)->key[PF_SK_STACK]) { 7999 8000 struct pf_state_key *nk; 8001 8002 if (PF_REVERSED_KEY(*state, pd->af)) 8003 nk = (*state)->key[pd->sidx]; 8004 else 8005 nk = (*state)->key[pd->didx]; 8006 8007 #if defined(INET) && defined(INET6) 8008 int afto, sidx, didx; 8009 u_int16_t dummy_cksum = 0; 8010 8011 afto = pd->af != nk->af; 8012 8013 if (afto && (*state)->direction == PF_IN) { 8014 sidx = pd2.didx; 8015 didx = pd2.sidx; 8016 } else { 8017 sidx = pd2.sidx; 8018 didx = pd2.didx; 8019 } 8020 8021 if (afto) { 8022 if (pf_translate_icmp_af(nk->af, 8023 &pd->hdr.icmp)) 8024 return (PF_DROP); 8025 m_copyback(pd->m, pd->off, 8026 sizeof(struct icmp6_hdr), 8027 (c_caddr_t)&pd->hdr.icmp6); 8028 PF_ACPY(&pd->nsaddr, &nk->addr[pd2.sidx], 8029 nk->af); 8030 PF_ACPY(&pd->ndaddr, 8031 &nk->addr[pd2.didx], nk->af); 8032 if (nk->af == AF_INET) { 8033 pd->proto = IPPROTO_ICMP; 8034 } else { 8035 pd->proto = IPPROTO_ICMPV6; 8036 /* 8037 * IPv4 becomes IPv6 so we must 8038 * copy IPv4 src addr to least 8039 * 32bits in IPv6 address to 8040 * keep traceroute/icmp 8041 * working. 8042 */ 8043 pd->nsaddr.addr32[3] = 8044 pd->src->addr32[0]; 8045 } 8046 pd->naf = nk->af; 8047 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8048 &pd2, &nk->addr[sidx], 8049 &nk->addr[didx], pd->af, 8050 nk->af)) 8051 return (PF_DROP); 8052 pf_change_ap(pd, pd2.src, &th.th_sport, 8053 pd->ip_sum, &dummy_cksum, &nk->addr[pd2.sidx], 8054 nk->port[sidx], 1); 8055 pf_change_ap(pd, pd2.dst, &th.th_dport, 8056 pd->ip_sum, &dummy_cksum, &nk->addr[pd2.didx], 8057 nk->port[didx], 1); 8058 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th); 8059 return (PF_AFRT); 8060 } 8061 #endif /* INET && INET6 */ 8062 8063 if (PF_ANEQ(pd2.src, 8064 &nk->addr[pd2.sidx], pd2.af) || 8065 nk->port[pd2.sidx] != th.th_sport) 8066 pf_change_icmp(pd2.src, &th.th_sport, 8067 daddr, &nk->addr[pd2.sidx], 8068 nk->port[pd2.sidx], NULL, 8069 pd2.ip_sum, icmpsum, 8070 pd->ip_sum, 0, pd2.af); 8071 8072 if (PF_ANEQ(pd2.dst, 8073 &nk->addr[pd2.didx], pd2.af) || 8074 nk->port[pd2.didx] != th.th_dport) 8075 pf_change_icmp(pd2.dst, &th.th_dport, 8076 saddr, &nk->addr[pd2.didx], 8077 nk->port[pd2.didx], NULL, 8078 pd2.ip_sum, icmpsum, 8079 pd->ip_sum, 0, pd2.af); 8080 copyback = 1; 8081 } 8082 8083 if (copyback) { 8084 switch (pd2.af) { 8085 #ifdef INET 8086 case AF_INET: 8087 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8088 (caddr_t )&pd->hdr.icmp); 8089 m_copyback(pd->m, ipoff2, sizeof(h2), 8090 (caddr_t )&h2); 8091 break; 8092 #endif /* INET */ 8093 #ifdef INET6 8094 case AF_INET6: 8095 m_copyback(pd->m, pd->off, 8096 sizeof(struct icmp6_hdr), 8097 (caddr_t )&pd->hdr.icmp6); 8098 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8099 (caddr_t )&h2_6); 8100 break; 8101 #endif /* INET6 */ 8102 default: 8103 unhandled_af(pd->af); 8104 } 8105 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 8106 } 8107 8108 return (PF_PASS); 8109 break; 8110 } 8111 case IPPROTO_UDP: { 8112 struct udphdr uh; 8113 8114 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 8115 NULL, reason, pd2.af)) { 8116 DPFPRINTF(PF_DEBUG_MISC, 8117 ("pf: ICMP error message too short " 8118 "(udp)\n")); 8119 return (PF_DROP); 8120 } 8121 8122 key.af = pd2.af; 8123 key.proto = IPPROTO_UDP; 8124 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8125 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8126 key.port[pd2.sidx] = uh.uh_sport; 8127 key.port[pd2.didx] = uh.uh_dport; 8128 8129 STATE_LOOKUP(&key, *state, pd); 8130 8131 /* translate source/destination address, if necessary */ 8132 if ((*state)->key[PF_SK_WIRE] != 8133 (*state)->key[PF_SK_STACK]) { 8134 struct pf_state_key *nk; 8135 8136 if (PF_REVERSED_KEY(*state, pd->af)) 8137 nk = (*state)->key[pd->sidx]; 8138 else 8139 nk = (*state)->key[pd->didx]; 8140 8141 #if defined(INET) && defined(INET6) 8142 int afto, sidx, didx; 8143 8144 afto = pd->af != nk->af; 8145 8146 if (afto && (*state)->direction == PF_IN) { 8147 sidx = pd2.didx; 8148 didx = pd2.sidx; 8149 } else { 8150 sidx = pd2.sidx; 8151 didx = pd2.didx; 8152 } 8153 8154 if (afto) { 8155 if (pf_translate_icmp_af(nk->af, 8156 &pd->hdr.icmp)) 8157 return (PF_DROP); 8158 m_copyback(pd->m, pd->off, 8159 sizeof(struct icmp6_hdr), 8160 (c_caddr_t)&pd->hdr.icmp6); 8161 PF_ACPY(&pd->nsaddr, 8162 &nk->addr[pd2.sidx], nk->af); 8163 PF_ACPY(&pd->ndaddr, 8164 &nk->addr[pd2.didx], nk->af); 8165 if (nk->af == AF_INET) { 8166 pd->proto = IPPROTO_ICMP; 8167 } else { 8168 pd->proto = IPPROTO_ICMPV6; 8169 /* 8170 * IPv4 becomes IPv6 so we must 8171 * copy IPv4 src addr to least 8172 * 32bits in IPv6 address to 8173 * keep traceroute/icmp 8174 * working. 8175 */ 8176 pd->nsaddr.addr32[3] = 8177 pd->src->addr32[0]; 8178 } 8179 pd->naf = nk->af; 8180 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8181 &pd2, &nk->addr[sidx], 8182 &nk->addr[didx], pd->af, 8183 nk->af)) 8184 return (PF_DROP); 8185 pf_change_ap(pd, pd2.src, &uh.uh_sport, 8186 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx], 8187 nk->port[sidx], 1); 8188 pf_change_ap(pd, pd2.dst, &uh.uh_dport, 8189 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx], 8190 nk->port[didx], 1); 8191 m_copyback(pd2.m, pd2.off, sizeof(uh), 8192 (c_caddr_t)&uh); 8193 return (PF_AFRT); 8194 } 8195 #endif /* INET && INET6 */ 8196 8197 if (PF_ANEQ(pd2.src, 8198 &nk->addr[pd2.sidx], pd2.af) || 8199 nk->port[pd2.sidx] != uh.uh_sport) 8200 pf_change_icmp(pd2.src, &uh.uh_sport, 8201 daddr, &nk->addr[pd2.sidx], 8202 nk->port[pd2.sidx], &uh.uh_sum, 8203 pd2.ip_sum, icmpsum, 8204 pd->ip_sum, 1, pd2.af); 8205 8206 if (PF_ANEQ(pd2.dst, 8207 &nk->addr[pd2.didx], pd2.af) || 8208 nk->port[pd2.didx] != uh.uh_dport) 8209 pf_change_icmp(pd2.dst, &uh.uh_dport, 8210 saddr, &nk->addr[pd2.didx], 8211 nk->port[pd2.didx], &uh.uh_sum, 8212 pd2.ip_sum, icmpsum, 8213 pd->ip_sum, 1, pd2.af); 8214 8215 switch (pd2.af) { 8216 #ifdef INET 8217 case AF_INET: 8218 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8219 (caddr_t )&pd->hdr.icmp); 8220 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8221 break; 8222 #endif /* INET */ 8223 #ifdef INET6 8224 case AF_INET6: 8225 m_copyback(pd->m, pd->off, 8226 sizeof(struct icmp6_hdr), 8227 (caddr_t )&pd->hdr.icmp6); 8228 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8229 (caddr_t )&h2_6); 8230 break; 8231 #endif /* INET6 */ 8232 } 8233 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 8234 } 8235 return (PF_PASS); 8236 break; 8237 } 8238 #ifdef INET 8239 case IPPROTO_SCTP: { 8240 struct sctphdr sh; 8241 struct pf_state_peer *src; 8242 int copyback = 0; 8243 8244 if (! pf_pull_hdr(pd->m, pd2.off, &sh, sizeof(sh), NULL, reason, 8245 pd2.af)) { 8246 DPFPRINTF(PF_DEBUG_MISC, 8247 ("pf: ICMP error message too short " 8248 "(sctp)\n")); 8249 return (PF_DROP); 8250 } 8251 8252 key.af = pd2.af; 8253 key.proto = IPPROTO_SCTP; 8254 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8255 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8256 key.port[pd2.sidx] = sh.src_port; 8257 key.port[pd2.didx] = sh.dest_port; 8258 8259 STATE_LOOKUP(&key, *state, pd); 8260 8261 if (pd->dir == (*state)->direction) { 8262 if (PF_REVERSED_KEY(*state, pd->af)) 8263 src = &(*state)->src; 8264 else 8265 src = &(*state)->dst; 8266 } else { 8267 if (PF_REVERSED_KEY(*state, pd->af)) 8268 src = &(*state)->dst; 8269 else 8270 src = &(*state)->src; 8271 } 8272 8273 if (src->scrub->pfss_v_tag != sh.v_tag) { 8274 DPFPRINTF(PF_DEBUG_MISC, 8275 ("pf: ICMP error message has incorrect " 8276 "SCTP v_tag\n")); 8277 return (PF_DROP); 8278 } 8279 8280 /* translate source/destination address, if necessary */ 8281 if ((*state)->key[PF_SK_WIRE] != 8282 (*state)->key[PF_SK_STACK]) { 8283 8284 struct pf_state_key *nk; 8285 8286 if (PF_REVERSED_KEY(*state, pd->af)) 8287 nk = (*state)->key[pd->sidx]; 8288 else 8289 nk = (*state)->key[pd->didx]; 8290 8291 #if defined(INET) && defined(INET6) 8292 int afto, sidx, didx; 8293 8294 afto = pd->af != nk->af; 8295 8296 if (afto && (*state)->direction == PF_IN) { 8297 sidx = pd2.didx; 8298 didx = pd2.sidx; 8299 } else { 8300 sidx = pd2.sidx; 8301 didx = pd2.didx; 8302 } 8303 8304 if (afto) { 8305 if (pf_translate_icmp_af(nk->af, 8306 &pd->hdr.icmp)) 8307 return (PF_DROP); 8308 m_copyback(pd->m, pd->off, 8309 sizeof(struct icmp6_hdr), 8310 (c_caddr_t)&pd->hdr.icmp6); 8311 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8312 &pd2, &nk->addr[sidx], 8313 &nk->addr[didx], pd->af, 8314 nk->af)) 8315 return (PF_DROP); 8316 sh.src_port = nk->port[sidx]; 8317 sh.dest_port = nk->port[didx]; 8318 m_copyback(pd2.m, pd2.off, sizeof(sh), (c_caddr_t)&sh); 8319 PF_ACPY(&pd->nsaddr, 8320 &nk->addr[pd2.sidx], nk->af); 8321 PF_ACPY(&pd->ndaddr, 8322 &nk->addr[pd2.didx], nk->af); 8323 if (nk->af == AF_INET) { 8324 pd->proto = IPPROTO_ICMP; 8325 } else { 8326 pd->proto = IPPROTO_ICMPV6; 8327 /* 8328 * IPv4 becomes IPv6 so we must 8329 * copy IPv4 src addr to least 8330 * 32bits in IPv6 address to 8331 * keep traceroute/icmp 8332 * working. 8333 */ 8334 pd->nsaddr.addr32[3] = 8335 pd->src->addr32[0]; 8336 } 8337 pd->naf = nk->af; 8338 return (PF_AFRT); 8339 } 8340 #endif /* INET && INET6 */ 8341 8342 if (PF_ANEQ(pd2.src, 8343 &nk->addr[pd2.sidx], pd2.af) || 8344 nk->port[pd2.sidx] != sh.src_port) 8345 pf_change_icmp(pd2.src, &sh.src_port, 8346 daddr, &nk->addr[pd2.sidx], 8347 nk->port[pd2.sidx], NULL, 8348 pd2.ip_sum, icmpsum, 8349 pd->ip_sum, 0, pd2.af); 8350 8351 if (PF_ANEQ(pd2.dst, 8352 &nk->addr[pd2.didx], pd2.af) || 8353 nk->port[pd2.didx] != sh.dest_port) 8354 pf_change_icmp(pd2.dst, &sh.dest_port, 8355 saddr, &nk->addr[pd2.didx], 8356 nk->port[pd2.didx], NULL, 8357 pd2.ip_sum, icmpsum, 8358 pd->ip_sum, 0, pd2.af); 8359 copyback = 1; 8360 } 8361 8362 if (copyback) { 8363 switch (pd2.af) { 8364 #ifdef INET 8365 case AF_INET: 8366 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8367 (caddr_t )&pd->hdr.icmp); 8368 m_copyback(pd->m, ipoff2, sizeof(h2), 8369 (caddr_t )&h2); 8370 break; 8371 #endif /* INET */ 8372 #ifdef INET6 8373 case AF_INET6: 8374 m_copyback(pd->m, pd->off, 8375 sizeof(struct icmp6_hdr), 8376 (caddr_t )&pd->hdr.icmp6); 8377 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8378 (caddr_t )&h2_6); 8379 break; 8380 #endif /* INET6 */ 8381 } 8382 m_copyback(pd->m, pd2.off, sizeof(sh), (caddr_t)&sh); 8383 } 8384 8385 return (PF_PASS); 8386 break; 8387 } 8388 case IPPROTO_ICMP: { 8389 struct icmp *iih = &pd2.hdr.icmp; 8390 8391 if (pd2.af != AF_INET) { 8392 REASON_SET(reason, PFRES_NORM); 8393 return (PF_DROP); 8394 } 8395 8396 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8397 NULL, reason, pd2.af)) { 8398 DPFPRINTF(PF_DEBUG_MISC, 8399 ("pf: ICMP error message too short i" 8400 "(icmp)\n")); 8401 return (PF_DROP); 8402 } 8403 8404 icmpid = iih->icmp_id; 8405 pf_icmp_mapping(&pd2, iih->icmp_type, 8406 &icmp_dir, &virtual_id, &virtual_type); 8407 8408 ret = pf_icmp_state_lookup(&key, &pd2, state, 8409 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8410 if (ret >= 0) { 8411 MPASS(*state == NULL); 8412 return (ret); 8413 } 8414 8415 /* translate source/destination address, if necessary */ 8416 if ((*state)->key[PF_SK_WIRE] != 8417 (*state)->key[PF_SK_STACK]) { 8418 struct pf_state_key *nk; 8419 8420 if (PF_REVERSED_KEY(*state, pd->af)) 8421 nk = (*state)->key[pd->sidx]; 8422 else 8423 nk = (*state)->key[pd->didx]; 8424 8425 #if defined(INET) && defined(INET6) 8426 int afto, sidx, didx; 8427 8428 afto = pd->af != nk->af; 8429 8430 if (afto && (*state)->direction == PF_IN) { 8431 sidx = pd2.didx; 8432 didx = pd2.sidx; 8433 iidx = !iidx; 8434 } else { 8435 sidx = pd2.sidx; 8436 didx = pd2.didx; 8437 } 8438 8439 if (afto) { 8440 if (nk->af != AF_INET6) 8441 return (PF_DROP); 8442 if (pf_translate_icmp_af(nk->af, 8443 &pd->hdr.icmp)) 8444 return (PF_DROP); 8445 m_copyback(pd->m, pd->off, 8446 sizeof(struct icmp6_hdr), 8447 (c_caddr_t)&pd->hdr.icmp6); 8448 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8449 &pd2, &nk->addr[sidx], 8450 &nk->addr[didx], pd->af, 8451 nk->af)) 8452 return (PF_DROP); 8453 pd->proto = IPPROTO_ICMPV6; 8454 if (pf_translate_icmp_af(nk->af, iih)) 8455 return (PF_DROP); 8456 if (virtual_type == htons(ICMP_ECHO) && 8457 nk->port[iidx] != iih->icmp_id) 8458 iih->icmp_id = nk->port[iidx]; 8459 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8460 (c_caddr_t)iih); 8461 PF_ACPY(&pd->nsaddr, 8462 &nk->addr[pd2.sidx], nk->af); 8463 PF_ACPY(&pd->ndaddr, 8464 &nk->addr[pd2.didx], nk->af); 8465 /* 8466 * IPv4 becomes IPv6 so we must copy 8467 * IPv4 src addr to least 32bits in 8468 * IPv6 address to keep traceroute 8469 * working. 8470 */ 8471 pd->nsaddr.addr32[3] = 8472 pd->src->addr32[0]; 8473 pd->naf = nk->af; 8474 return (PF_AFRT); 8475 } 8476 #endif /* INET && INET6 */ 8477 8478 if (PF_ANEQ(pd2.src, 8479 &nk->addr[pd2.sidx], pd2.af) || 8480 (virtual_type == htons(ICMP_ECHO) && 8481 nk->port[iidx] != iih->icmp_id)) 8482 pf_change_icmp(pd2.src, 8483 (virtual_type == htons(ICMP_ECHO)) ? 8484 &iih->icmp_id : NULL, 8485 daddr, &nk->addr[pd2.sidx], 8486 (virtual_type == htons(ICMP_ECHO)) ? 8487 nk->port[iidx] : 0, NULL, 8488 pd2.ip_sum, icmpsum, 8489 pd->ip_sum, 0, AF_INET); 8490 8491 if (PF_ANEQ(pd2.dst, 8492 &nk->addr[pd2.didx], pd2.af)) 8493 pf_change_icmp(pd2.dst, NULL, NULL, 8494 &nk->addr[pd2.didx], 0, NULL, 8495 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8496 AF_INET); 8497 8498 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8499 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8500 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8501 } 8502 return (PF_PASS); 8503 break; 8504 } 8505 #endif /* INET */ 8506 #ifdef INET6 8507 case IPPROTO_ICMPV6: { 8508 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8509 8510 if (pd2.af != AF_INET6) { 8511 REASON_SET(reason, PFRES_NORM); 8512 return (PF_DROP); 8513 } 8514 8515 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8516 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8517 DPFPRINTF(PF_DEBUG_MISC, 8518 ("pf: ICMP error message too short " 8519 "(icmp6)\n")); 8520 return (PF_DROP); 8521 } 8522 8523 pf_icmp_mapping(&pd2, iih->icmp6_type, 8524 &icmp_dir, &virtual_id, &virtual_type); 8525 8526 ret = pf_icmp_state_lookup(&key, &pd2, state, 8527 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8528 /* IPv6? try matching a multicast address */ 8529 if (ret == PF_DROP && pd2.af == AF_INET6 && 8530 icmp_dir == PF_OUT) { 8531 MPASS(*state == NULL); 8532 ret = pf_icmp_state_lookup(&key, &pd2, 8533 state, virtual_id, virtual_type, 8534 icmp_dir, &iidx, 1, 1); 8535 } 8536 if (ret >= 0) { 8537 MPASS(*state == NULL); 8538 return (ret); 8539 } 8540 8541 /* translate source/destination address, if necessary */ 8542 if ((*state)->key[PF_SK_WIRE] != 8543 (*state)->key[PF_SK_STACK]) { 8544 struct pf_state_key *nk; 8545 8546 if (PF_REVERSED_KEY(*state, pd->af)) 8547 nk = (*state)->key[pd->sidx]; 8548 else 8549 nk = (*state)->key[pd->didx]; 8550 8551 #if defined(INET) && defined(INET6) 8552 int afto, sidx, didx; 8553 8554 afto = pd->af != nk->af; 8555 8556 if (afto && (*state)->direction == PF_IN) { 8557 sidx = pd2.didx; 8558 didx = pd2.sidx; 8559 iidx = !iidx; 8560 } else { 8561 sidx = pd2.sidx; 8562 didx = pd2.didx; 8563 } 8564 8565 if (afto) { 8566 if (nk->af != AF_INET) 8567 return (PF_DROP); 8568 if (pf_translate_icmp_af(nk->af, 8569 &pd->hdr.icmp)) 8570 return (PF_DROP); 8571 m_copyback(pd->m, pd->off, 8572 sizeof(struct icmp6_hdr), 8573 (c_caddr_t)&pd->hdr.icmp6); 8574 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8575 &pd2, &nk->addr[sidx], 8576 &nk->addr[didx], pd->af, 8577 nk->af)) 8578 return (PF_DROP); 8579 pd->proto = IPPROTO_ICMP; 8580 if (pf_translate_icmp_af(nk->af, iih)) 8581 return (PF_DROP); 8582 if (virtual_type == 8583 htons(ICMP6_ECHO_REQUEST) && 8584 nk->port[iidx] != iih->icmp6_id) 8585 iih->icmp6_id = nk->port[iidx]; 8586 m_copyback(pd2.m, pd2.off, 8587 sizeof(struct icmp6_hdr), (c_caddr_t)iih); 8588 PF_ACPY(&pd->nsaddr, 8589 &nk->addr[pd2.sidx], nk->af); 8590 PF_ACPY(&pd->ndaddr, 8591 &nk->addr[pd2.didx], nk->af); 8592 pd->naf = nk->af; 8593 return (PF_AFRT); 8594 } 8595 #endif /* INET && INET6 */ 8596 8597 if (PF_ANEQ(pd2.src, 8598 &nk->addr[pd2.sidx], pd2.af) || 8599 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8600 nk->port[pd2.sidx] != iih->icmp6_id)) 8601 pf_change_icmp(pd2.src, 8602 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8603 ? &iih->icmp6_id : NULL, 8604 daddr, &nk->addr[pd2.sidx], 8605 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8606 ? nk->port[iidx] : 0, NULL, 8607 pd2.ip_sum, icmpsum, 8608 pd->ip_sum, 0, AF_INET6); 8609 8610 if (PF_ANEQ(pd2.dst, 8611 &nk->addr[pd2.didx], pd2.af)) 8612 pf_change_icmp(pd2.dst, NULL, NULL, 8613 &nk->addr[pd2.didx], 0, NULL, 8614 pd2.ip_sum, icmpsum, 8615 pd->ip_sum, 0, AF_INET6); 8616 8617 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8618 (caddr_t)&pd->hdr.icmp6); 8619 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8620 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8621 (caddr_t)iih); 8622 } 8623 return (PF_PASS); 8624 break; 8625 } 8626 #endif /* INET6 */ 8627 default: { 8628 key.af = pd2.af; 8629 key.proto = pd2.proto; 8630 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8631 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8632 key.port[0] = key.port[1] = 0; 8633 8634 STATE_LOOKUP(&key, *state, pd); 8635 8636 /* translate source/destination address, if necessary */ 8637 if ((*state)->key[PF_SK_WIRE] != 8638 (*state)->key[PF_SK_STACK]) { 8639 struct pf_state_key *nk = 8640 (*state)->key[pd->didx]; 8641 8642 if (PF_ANEQ(pd2.src, 8643 &nk->addr[pd2.sidx], pd2.af)) 8644 pf_change_icmp(pd2.src, NULL, daddr, 8645 &nk->addr[pd2.sidx], 0, NULL, 8646 pd2.ip_sum, icmpsum, 8647 pd->ip_sum, 0, pd2.af); 8648 8649 if (PF_ANEQ(pd2.dst, 8650 &nk->addr[pd2.didx], pd2.af)) 8651 pf_change_icmp(pd2.dst, NULL, saddr, 8652 &nk->addr[pd2.didx], 0, NULL, 8653 pd2.ip_sum, icmpsum, 8654 pd->ip_sum, 0, pd2.af); 8655 8656 switch (pd2.af) { 8657 #ifdef INET 8658 case AF_INET: 8659 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8660 (caddr_t)&pd->hdr.icmp); 8661 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8662 break; 8663 #endif /* INET */ 8664 #ifdef INET6 8665 case AF_INET6: 8666 m_copyback(pd->m, pd->off, 8667 sizeof(struct icmp6_hdr), 8668 (caddr_t )&pd->hdr.icmp6); 8669 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8670 (caddr_t )&h2_6); 8671 break; 8672 #endif /* INET6 */ 8673 } 8674 } 8675 return (PF_PASS); 8676 break; 8677 } 8678 } 8679 } 8680 } 8681 8682 /* 8683 * ipoff and off are measured from the start of the mbuf chain. 8684 * h must be at "ipoff" on the mbuf chain. 8685 */ 8686 void * 8687 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8688 u_short *actionp, u_short *reasonp, sa_family_t af) 8689 { 8690 switch (af) { 8691 #ifdef INET 8692 case AF_INET: { 8693 const struct ip *h = mtod(m, struct ip *); 8694 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8695 8696 if (fragoff) { 8697 if (fragoff >= len) 8698 ACTION_SET(actionp, PF_PASS); 8699 else { 8700 ACTION_SET(actionp, PF_DROP); 8701 REASON_SET(reasonp, PFRES_FRAG); 8702 } 8703 return (NULL); 8704 } 8705 if (m->m_pkthdr.len < off + len || 8706 ntohs(h->ip_len) < off + len) { 8707 ACTION_SET(actionp, PF_DROP); 8708 REASON_SET(reasonp, PFRES_SHORT); 8709 return (NULL); 8710 } 8711 break; 8712 } 8713 #endif /* INET */ 8714 #ifdef INET6 8715 case AF_INET6: { 8716 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8717 8718 if (m->m_pkthdr.len < off + len || 8719 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 8720 (unsigned)(off + len)) { 8721 ACTION_SET(actionp, PF_DROP); 8722 REASON_SET(reasonp, PFRES_SHORT); 8723 return (NULL); 8724 } 8725 break; 8726 } 8727 #endif /* INET6 */ 8728 } 8729 m_copydata(m, off, len, p); 8730 return (p); 8731 } 8732 8733 int 8734 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8735 int rtableid) 8736 { 8737 struct ifnet *ifp; 8738 8739 /* 8740 * Skip check for addresses with embedded interface scope, 8741 * as they would always match anyway. 8742 */ 8743 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8744 return (1); 8745 8746 if (af != AF_INET && af != AF_INET6) 8747 return (0); 8748 8749 if (kif == V_pfi_all) 8750 return (1); 8751 8752 /* Skip checks for ipsec interfaces */ 8753 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8754 return (1); 8755 8756 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8757 8758 switch (af) { 8759 #ifdef INET6 8760 case AF_INET6: 8761 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8762 ifp)); 8763 #endif /* INET6 */ 8764 #ifdef INET 8765 case AF_INET: 8766 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8767 ifp)); 8768 #endif /* INET */ 8769 } 8770 8771 return (0); 8772 } 8773 8774 #ifdef INET 8775 static void 8776 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8777 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8778 { 8779 struct mbuf *m0, *m1, *md; 8780 struct route ro; 8781 const struct sockaddr *gw = &ro.ro_dst; 8782 struct sockaddr_in *dst; 8783 struct ip *ip; 8784 struct ifnet *ifp = NULL; 8785 int error = 0; 8786 uint16_t ip_len, ip_off; 8787 uint16_t tmp; 8788 int r_dir; 8789 bool skip_test = false; 8790 8791 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8792 8793 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp); 8794 8795 if (s) { 8796 r_dir = s->direction; 8797 } else { 8798 r_dir = r->direction; 8799 } 8800 8801 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8802 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8803 __func__)); 8804 8805 if ((pd->pf_mtag == NULL && 8806 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8807 pd->pf_mtag->routed++ > 3) { 8808 m0 = *m; 8809 *m = NULL; 8810 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8811 goto bad_locked; 8812 } 8813 8814 if (pd->act.rt_kif != NULL) 8815 ifp = pd->act.rt_kif->pfik_ifp; 8816 8817 if (pd->act.rt == PF_DUPTO) { 8818 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8819 if (s != NULL) { 8820 PF_STATE_UNLOCK(s); 8821 } 8822 if (ifp == oifp) { 8823 /* When the 2nd interface is not skipped */ 8824 return; 8825 } else { 8826 m0 = *m; 8827 *m = NULL; 8828 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8829 goto bad; 8830 } 8831 } else { 8832 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8833 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8834 if (s) 8835 PF_STATE_UNLOCK(s); 8836 return; 8837 } 8838 } 8839 } else { 8840 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8841 if (pd->af == pd->naf) { 8842 pf_dummynet(pd, s, r, m); 8843 if (s) 8844 PF_STATE_UNLOCK(s); 8845 return; 8846 } else { 8847 if (r_dir == PF_IN) { 8848 skip_test = true; 8849 } 8850 } 8851 } 8852 8853 /* 8854 * If we're actually doing route-to and af-to and are in the 8855 * reply direction. 8856 */ 8857 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 8858 pd->af != pd->naf) { 8859 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) { 8860 /* Un-set ifp so we do a plain route lookup. */ 8861 ifp = NULL; 8862 } 8863 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) { 8864 /* Un-set ifp so we do a plain route lookup. */ 8865 ifp = NULL; 8866 } 8867 } 8868 m0 = *m; 8869 } 8870 8871 ip = mtod(m0, struct ip *); 8872 8873 bzero(&ro, sizeof(ro)); 8874 dst = (struct sockaddr_in *)&ro.ro_dst; 8875 dst->sin_family = AF_INET; 8876 dst->sin_len = sizeof(struct sockaddr_in); 8877 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 8878 8879 if (s != NULL){ 8880 if (ifp == NULL && (pd->af != pd->naf)) { 8881 /* We're in the AFTO case. Do a route lookup. */ 8882 const struct nhop_object *nh; 8883 nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0); 8884 if (nh) { 8885 ifp = nh->nh_ifp; 8886 8887 /* Use the gateway if needed. */ 8888 if (nh->nh_flags & NHF_GATEWAY) { 8889 gw = &nh->gw_sa; 8890 ro.ro_flags |= RT_HAS_GW; 8891 } else { 8892 dst->sin_addr = ip->ip_dst; 8893 } 8894 8895 /* 8896 * Bind to the correct interface if we're 8897 * if-bound. We don't know which interface 8898 * that will be until here, so we've inserted 8899 * the state on V_pf_all. Fix that now. 8900 */ 8901 if (s->kif == V_pfi_all && ifp != NULL && 8902 r->rule_flag & PFRULE_IFBOUND) 8903 s->kif = ifp->if_pf_kif; 8904 } 8905 } 8906 8907 if (r->rule_flag & PFRULE_IFBOUND && 8908 pd->act.rt == PF_REPLYTO && 8909 s->kif == V_pfi_all) { 8910 s->kif = pd->act.rt_kif; 8911 s->orig_kif = oifp->if_pf_kif; 8912 } 8913 8914 PF_STATE_UNLOCK(s); 8915 } 8916 8917 if (ifp == NULL) { 8918 m0 = *m; 8919 *m = NULL; 8920 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8921 goto bad; 8922 } 8923 8924 if (pd->dir == PF_IN && !skip_test) { 8925 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8926 &pd->act) != PF_PASS) { 8927 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8928 goto bad; 8929 } else if (m0 == NULL) { 8930 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8931 goto done; 8932 } 8933 if (m0->m_len < sizeof(struct ip)) { 8934 DPFPRINTF(PF_DEBUG_URGENT, 8935 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 8936 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8937 goto bad; 8938 } 8939 ip = mtod(m0, struct ip *); 8940 } 8941 8942 if (ifp->if_flags & IFF_LOOPBACK) 8943 m0->m_flags |= M_SKIP_FIREWALL; 8944 8945 ip_len = ntohs(ip->ip_len); 8946 ip_off = ntohs(ip->ip_off); 8947 8948 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 8949 m0->m_pkthdr.csum_flags |= CSUM_IP; 8950 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 8951 in_delayed_cksum(m0); 8952 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 8953 } 8954 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 8955 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 8956 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 8957 } 8958 8959 if (pd->dir == PF_IN) { 8960 /* 8961 * Make sure dummynet gets the correct direction, in case it needs to 8962 * re-inject later. 8963 */ 8964 pd->dir = PF_OUT; 8965 8966 /* 8967 * The following processing is actually the rest of the inbound processing, even 8968 * though we've marked it as outbound (so we don't look through dummynet) and it 8969 * happens after the outbound processing (pf_test(PF_OUT) above). 8970 * Swap the dummynet pipe numbers, because it's going to come to the wrong 8971 * conclusion about what direction it's processing, and we can't fix it or it 8972 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 8973 * decision will pick the right pipe, and everything will mostly work as expected. 8974 */ 8975 tmp = pd->act.dnrpipe; 8976 pd->act.dnrpipe = pd->act.dnpipe; 8977 pd->act.dnpipe = tmp; 8978 } 8979 8980 /* 8981 * If small enough for interface, or the interface will take 8982 * care of the fragmentation for us, we can just send directly. 8983 */ 8984 if (ip_len <= ifp->if_mtu || 8985 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 8986 ip->ip_sum = 0; 8987 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 8988 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 8989 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 8990 } 8991 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 8992 8993 md = m0; 8994 error = pf_dummynet_route(pd, s, r, ifp, gw, &md); 8995 if (md != NULL) { 8996 error = (*ifp->if_output)(ifp, md, gw, &ro); 8997 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 8998 } 8999 goto done; 9000 } 9001 9002 /* Balk when DF bit is set or the interface didn't support TSO. */ 9003 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 9004 error = EMSGSIZE; 9005 KMOD_IPSTAT_INC(ips_cantfrag); 9006 if (pd->act.rt != PF_DUPTO) { 9007 if (s && s->nat_rule != NULL) 9008 MPASS(m0 == pd->m); 9009 PACKET_UNDO_NAT(pd, 9010 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 9011 s); 9012 9013 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 9014 ifp->if_mtu); 9015 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9016 goto done; 9017 } else { 9018 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9019 goto bad; 9020 } 9021 } 9022 9023 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 9024 if (error) { 9025 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9026 goto bad; 9027 } 9028 9029 for (; m0; m0 = m1) { 9030 m1 = m0->m_nextpkt; 9031 m0->m_nextpkt = NULL; 9032 if (error == 0) { 9033 m_clrprotoflags(m0); 9034 md = m0; 9035 pd->pf_mtag = pf_find_mtag(md); 9036 error = pf_dummynet_route(pd, s, r, ifp, 9037 gw, &md); 9038 if (md != NULL) { 9039 error = (*ifp->if_output)(ifp, md, gw, &ro); 9040 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9041 } 9042 } else 9043 m_freem(m0); 9044 } 9045 9046 if (error == 0) 9047 KMOD_IPSTAT_INC(ips_fragmented); 9048 9049 done: 9050 if (pd->act.rt != PF_DUPTO) 9051 *m = NULL; 9052 return; 9053 9054 bad_locked: 9055 if (s) 9056 PF_STATE_UNLOCK(s); 9057 bad: 9058 m_freem(m0); 9059 goto done; 9060 } 9061 #endif /* INET */ 9062 9063 #ifdef INET6 9064 static void 9065 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 9066 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 9067 { 9068 struct mbuf *m0, *md; 9069 struct m_tag *mtag; 9070 struct sockaddr_in6 dst; 9071 struct ip6_hdr *ip6; 9072 struct ifnet *ifp = NULL; 9073 int r_dir; 9074 bool skip_test = false; 9075 9076 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 9077 9078 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp); 9079 9080 if (s) { 9081 r_dir = s->direction; 9082 } else { 9083 r_dir = r->direction; 9084 } 9085 9086 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9087 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9088 __func__)); 9089 9090 if ((pd->pf_mtag == NULL && 9091 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 9092 pd->pf_mtag->routed++ > 3) { 9093 m0 = *m; 9094 *m = NULL; 9095 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9096 goto bad_locked; 9097 } 9098 9099 if (pd->act.rt_kif != NULL) 9100 ifp = pd->act.rt_kif->pfik_ifp; 9101 9102 if (pd->act.rt == PF_DUPTO) { 9103 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9104 if (s != NULL) { 9105 PF_STATE_UNLOCK(s); 9106 } 9107 if (ifp == oifp) { 9108 /* When the 2nd interface is not skipped */ 9109 return; 9110 } else { 9111 m0 = *m; 9112 *m = NULL; 9113 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9114 goto bad; 9115 } 9116 } else { 9117 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9118 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 9119 if (s) 9120 PF_STATE_UNLOCK(s); 9121 return; 9122 } 9123 } 9124 } else { 9125 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9126 if (pd->af == pd->naf) { 9127 pf_dummynet(pd, s, r, m); 9128 if (s) 9129 PF_STATE_UNLOCK(s); 9130 return; 9131 } else { 9132 if (r_dir == PF_IN) { 9133 skip_test = true; 9134 } 9135 } 9136 } 9137 9138 /* 9139 * If we're actually doing route-to and af-to and are in the 9140 * reply direction. 9141 */ 9142 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 9143 pd->af != pd->naf) { 9144 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) { 9145 /* Un-set ifp so we do a plain route lookup. */ 9146 ifp = NULL; 9147 } 9148 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) { 9149 /* Un-set ifp so we do a plain route lookup. */ 9150 ifp = NULL; 9151 } 9152 } 9153 m0 = *m; 9154 } 9155 9156 ip6 = mtod(m0, struct ip6_hdr *); 9157 9158 bzero(&dst, sizeof(dst)); 9159 dst.sin6_family = AF_INET6; 9160 dst.sin6_len = sizeof(dst); 9161 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6); 9162 9163 if (s != NULL) { 9164 if (ifp == NULL && (pd->af != pd->naf)) { 9165 const struct nhop_object *nh; 9166 nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0); 9167 if (nh) { 9168 ifp = nh->nh_ifp; 9169 9170 /* Use the gateway if needed. */ 9171 if (nh->nh_flags & NHF_GATEWAY) 9172 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr, 9173 sizeof(dst.sin6_addr)); 9174 else 9175 dst.sin6_addr = ip6->ip6_dst; 9176 9177 /* 9178 * Bind to the correct interface if we're 9179 * if-bound. We don't know which interface 9180 * that will be until here, so we've inserted 9181 * the state on V_pf_all. Fix that now. 9182 */ 9183 if (s->kif == V_pfi_all && ifp != NULL && 9184 r->rule_flag & PFRULE_IFBOUND) 9185 s->kif = ifp->if_pf_kif; 9186 } 9187 } 9188 9189 if (r->rule_flag & PFRULE_IFBOUND && 9190 pd->act.rt == PF_REPLYTO && 9191 s->kif == V_pfi_all) { 9192 s->kif = pd->act.rt_kif; 9193 s->orig_kif = oifp->if_pf_kif; 9194 } 9195 9196 PF_STATE_UNLOCK(s); 9197 } 9198 9199 if (pd->af != pd->naf) { 9200 struct udphdr *uh = &pd->hdr.udp; 9201 9202 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) { 9203 uh->uh_sum = in6_cksum_pseudo(ip6, 9204 ntohs(uh->uh_ulen), IPPROTO_UDP, 0); 9205 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any); 9206 } 9207 } 9208 9209 if (ifp == NULL) { 9210 m0 = *m; 9211 *m = NULL; 9212 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9213 goto bad; 9214 } 9215 9216 if (pd->dir == PF_IN && !skip_test) { 9217 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9218 ifp, &m0, inp, &pd->act) != PF_PASS) { 9219 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9220 goto bad; 9221 } else if (m0 == NULL) { 9222 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9223 goto done; 9224 } 9225 if (m0->m_len < sizeof(struct ip6_hdr)) { 9226 DPFPRINTF(PF_DEBUG_URGENT, 9227 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 9228 __func__)); 9229 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9230 goto bad; 9231 } 9232 ip6 = mtod(m0, struct ip6_hdr *); 9233 } 9234 9235 if (ifp->if_flags & IFF_LOOPBACK) 9236 m0->m_flags |= M_SKIP_FIREWALL; 9237 9238 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9239 ~ifp->if_hwassist) { 9240 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9241 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9242 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9243 } 9244 9245 if (pd->dir == PF_IN) { 9246 uint16_t tmp; 9247 /* 9248 * Make sure dummynet gets the correct direction, in case it needs to 9249 * re-inject later. 9250 */ 9251 pd->dir = PF_OUT; 9252 9253 /* 9254 * The following processing is actually the rest of the inbound processing, even 9255 * though we've marked it as outbound (so we don't look through dummynet) and it 9256 * happens after the outbound processing (pf_test(PF_OUT) above). 9257 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9258 * conclusion about what direction it's processing, and we can't fix it or it 9259 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9260 * decision will pick the right pipe, and everything will mostly work as expected. 9261 */ 9262 tmp = pd->act.dnrpipe; 9263 pd->act.dnrpipe = pd->act.dnpipe; 9264 pd->act.dnpipe = tmp; 9265 } 9266 9267 /* 9268 * If the packet is too large for the outgoing interface, 9269 * send back an icmp6 error. 9270 */ 9271 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9272 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9273 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9274 if (mtag != NULL) { 9275 int ret __sdt_used; 9276 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9277 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9278 goto done; 9279 } 9280 9281 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9282 md = m0; 9283 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9284 if (md != NULL) { 9285 int ret __sdt_used; 9286 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9287 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9288 } 9289 } 9290 else { 9291 in6_ifstat_inc(ifp, ifs6_in_toobig); 9292 if (pd->act.rt != PF_DUPTO) { 9293 if (s && s->nat_rule != NULL) 9294 MPASS(m0 == pd->m); 9295 PACKET_UNDO_NAT(pd, 9296 ((caddr_t)ip6 - m0->m_data) + 9297 sizeof(struct ip6_hdr), s); 9298 9299 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 9300 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9301 } else { 9302 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9303 goto bad; 9304 } 9305 } 9306 9307 done: 9308 if (pd->act.rt != PF_DUPTO) 9309 *m = NULL; 9310 return; 9311 9312 bad_locked: 9313 if (s) 9314 PF_STATE_UNLOCK(s); 9315 bad: 9316 m_freem(m0); 9317 goto done; 9318 } 9319 #endif /* INET6 */ 9320 9321 /* 9322 * FreeBSD supports cksum offloads for the following drivers. 9323 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9324 * 9325 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9326 * network driver performed cksum including pseudo header, need to verify 9327 * csum_data 9328 * CSUM_DATA_VALID : 9329 * network driver performed cksum, needs to additional pseudo header 9330 * cksum computation with partial csum_data(i.e. lack of H/W support for 9331 * pseudo header, for instance sk(4) and possibly gem(4)) 9332 * 9333 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9334 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9335 * TCP/UDP layer. 9336 * Also, set csum_data to 0xffff to force cksum validation. 9337 */ 9338 static int 9339 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9340 { 9341 u_int16_t sum = 0; 9342 int hw_assist = 0; 9343 struct ip *ip; 9344 9345 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9346 return (1); 9347 if (m->m_pkthdr.len < off + len) 9348 return (1); 9349 9350 switch (p) { 9351 case IPPROTO_TCP: 9352 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9353 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9354 sum = m->m_pkthdr.csum_data; 9355 } else { 9356 ip = mtod(m, struct ip *); 9357 sum = in_pseudo(ip->ip_src.s_addr, 9358 ip->ip_dst.s_addr, htonl((u_short)len + 9359 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9360 } 9361 sum ^= 0xffff; 9362 ++hw_assist; 9363 } 9364 break; 9365 case IPPROTO_UDP: 9366 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9367 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9368 sum = m->m_pkthdr.csum_data; 9369 } else { 9370 ip = mtod(m, struct ip *); 9371 sum = in_pseudo(ip->ip_src.s_addr, 9372 ip->ip_dst.s_addr, htonl((u_short)len + 9373 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9374 } 9375 sum ^= 0xffff; 9376 ++hw_assist; 9377 } 9378 break; 9379 case IPPROTO_ICMP: 9380 #ifdef INET6 9381 case IPPROTO_ICMPV6: 9382 #endif /* INET6 */ 9383 break; 9384 default: 9385 return (1); 9386 } 9387 9388 if (!hw_assist) { 9389 switch (af) { 9390 case AF_INET: 9391 if (m->m_len < sizeof(struct ip)) 9392 return (1); 9393 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len); 9394 break; 9395 #ifdef INET6 9396 case AF_INET6: 9397 if (m->m_len < sizeof(struct ip6_hdr)) 9398 return (1); 9399 sum = in6_cksum(m, p, off, len); 9400 break; 9401 #endif /* INET6 */ 9402 } 9403 } 9404 if (sum) { 9405 switch (p) { 9406 case IPPROTO_TCP: 9407 { 9408 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9409 break; 9410 } 9411 case IPPROTO_UDP: 9412 { 9413 KMOD_UDPSTAT_INC(udps_badsum); 9414 break; 9415 } 9416 #ifdef INET 9417 case IPPROTO_ICMP: 9418 { 9419 KMOD_ICMPSTAT_INC(icps_checksum); 9420 break; 9421 } 9422 #endif 9423 #ifdef INET6 9424 case IPPROTO_ICMPV6: 9425 { 9426 KMOD_ICMP6STAT_INC(icp6s_checksum); 9427 break; 9428 } 9429 #endif /* INET6 */ 9430 } 9431 return (1); 9432 } else { 9433 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9434 m->m_pkthdr.csum_flags |= 9435 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9436 m->m_pkthdr.csum_data = 0xffff; 9437 } 9438 } 9439 return (0); 9440 } 9441 9442 static bool 9443 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9444 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9445 { 9446 int dndir = r->direction; 9447 9448 if (s && dndir == PF_INOUT) { 9449 dndir = s->direction; 9450 } else if (dndir == PF_INOUT) { 9451 /* Assume primary direction. Happens when we've set dnpipe in 9452 * the ethernet level code. */ 9453 dndir = pd->dir; 9454 } 9455 9456 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9457 return (false); 9458 9459 memset(dnflow, 0, sizeof(*dnflow)); 9460 9461 if (pd->dport != NULL) 9462 dnflow->f_id.dst_port = ntohs(*pd->dport); 9463 if (pd->sport != NULL) 9464 dnflow->f_id.src_port = ntohs(*pd->sport); 9465 9466 if (pd->dir == PF_IN) 9467 dnflow->flags |= IPFW_ARGS_IN; 9468 else 9469 dnflow->flags |= IPFW_ARGS_OUT; 9470 9471 if (pd->dir != dndir && pd->act.dnrpipe) { 9472 dnflow->rule.info = pd->act.dnrpipe; 9473 } 9474 else if (pd->dir == dndir && pd->act.dnpipe) { 9475 dnflow->rule.info = pd->act.dnpipe; 9476 } 9477 else { 9478 return (false); 9479 } 9480 9481 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9482 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9483 dnflow->rule.info |= IPFW_IS_PIPE; 9484 9485 dnflow->f_id.proto = pd->proto; 9486 dnflow->f_id.extra = dnflow->rule.info; 9487 switch (pd->naf) { 9488 case AF_INET: 9489 dnflow->f_id.addr_type = 4; 9490 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9491 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9492 break; 9493 case AF_INET6: 9494 dnflow->flags |= IPFW_ARGS_IP6; 9495 dnflow->f_id.addr_type = 6; 9496 dnflow->f_id.src_ip6 = pd->src->v6; 9497 dnflow->f_id.dst_ip6 = pd->dst->v6; 9498 break; 9499 } 9500 9501 return (true); 9502 } 9503 9504 int 9505 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9506 struct inpcb *inp) 9507 { 9508 struct pfi_kkif *kif; 9509 struct mbuf *m = *m0; 9510 9511 M_ASSERTPKTHDR(m); 9512 MPASS(ifp->if_vnet == curvnet); 9513 NET_EPOCH_ASSERT(); 9514 9515 if (!V_pf_status.running) 9516 return (PF_PASS); 9517 9518 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9519 9520 if (kif == NULL) { 9521 DPFPRINTF(PF_DEBUG_URGENT, 9522 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 9523 return (PF_DROP); 9524 } 9525 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9526 return (PF_PASS); 9527 9528 if (m->m_flags & M_SKIP_FIREWALL) 9529 return (PF_PASS); 9530 9531 if (__predict_false(! M_WRITABLE(*m0))) { 9532 m = *m0 = m_unshare(*m0, M_NOWAIT); 9533 if (*m0 == NULL) 9534 return (PF_DROP); 9535 } 9536 9537 /* Stateless! */ 9538 return (pf_test_eth_rule(dir, kif, m0)); 9539 } 9540 9541 static __inline void 9542 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9543 { 9544 struct m_tag *mtag; 9545 9546 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9547 9548 /* dummynet adds this tag, but pf does not need it, 9549 * and keeping it creates unexpected behavior, 9550 * e.g. in case of divert(4) usage right after dummynet. */ 9551 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9552 if (mtag != NULL) 9553 m_tag_delete(m, mtag); 9554 } 9555 9556 static int 9557 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9558 struct pf_krule *r, struct mbuf **m0) 9559 { 9560 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9561 } 9562 9563 static int 9564 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9565 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa, 9566 struct mbuf **m0) 9567 { 9568 struct ip_fw_args dnflow; 9569 9570 NET_EPOCH_ASSERT(); 9571 9572 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9573 return (0); 9574 9575 if (ip_dn_io_ptr == NULL) { 9576 m_freem(*m0); 9577 *m0 = NULL; 9578 return (ENOMEM); 9579 } 9580 9581 if (pd->pf_mtag == NULL && 9582 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9583 m_freem(*m0); 9584 *m0 = NULL; 9585 return (ENOMEM); 9586 } 9587 9588 if (ifp != NULL) { 9589 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9590 9591 pd->pf_mtag->if_index = ifp->if_index; 9592 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9593 9594 MPASS(sa != NULL); 9595 9596 switch (sa->sa_family) { 9597 case AF_INET: 9598 memcpy(&pd->pf_mtag->dst, sa, 9599 sizeof(struct sockaddr_in)); 9600 break; 9601 case AF_INET6: 9602 memcpy(&pd->pf_mtag->dst, sa, 9603 sizeof(struct sockaddr_in6)); 9604 break; 9605 } 9606 } 9607 9608 if (s != NULL && s->nat_rule != NULL && 9609 s->nat_rule->action == PF_RDR && 9610 ( 9611 #ifdef INET 9612 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9613 #endif /* INET */ 9614 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9615 /* 9616 * If we're redirecting to loopback mark this packet 9617 * as being local. Otherwise it might get dropped 9618 * if dummynet re-injects. 9619 */ 9620 (*m0)->m_pkthdr.rcvif = V_loif; 9621 } 9622 9623 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9624 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9625 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9626 ip_dn_io_ptr(m0, &dnflow); 9627 if (*m0 != NULL) { 9628 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9629 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9630 } 9631 } 9632 9633 return (0); 9634 } 9635 9636 #ifdef INET6 9637 static int 9638 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end, 9639 u_short *reason) 9640 { 9641 struct ip6_opt opt; 9642 struct ip6_opt_jumbo jumbo; 9643 9644 while (off < end) { 9645 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type, 9646 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) { 9647 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 9648 return (PF_DROP); 9649 } 9650 if (opt.ip6o_type == IP6OPT_PAD1) { 9651 off++; 9652 continue; 9653 } 9654 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL, 9655 reason, AF_INET6)) { 9656 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 9657 return (PF_DROP); 9658 } 9659 if (off + sizeof(opt) + opt.ip6o_len > end) { 9660 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 9661 REASON_SET(reason, PFRES_IPOPTIONS); 9662 return (PF_DROP); 9663 } 9664 switch (opt.ip6o_type) { 9665 case IP6OPT_JUMBO: 9666 if (pd->jumbolen != 0) { 9667 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 9668 REASON_SET(reason, PFRES_IPOPTIONS); 9669 return (PF_DROP); 9670 } 9671 if (ntohs(h->ip6_plen) != 0) { 9672 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 9673 REASON_SET(reason, PFRES_IPOPTIONS); 9674 return (PF_DROP); 9675 } 9676 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL, 9677 reason, AF_INET6)) { 9678 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 9679 return (PF_DROP); 9680 } 9681 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len, 9682 sizeof(pd->jumbolen)); 9683 pd->jumbolen = ntohl(pd->jumbolen); 9684 if (pd->jumbolen < IPV6_MAXPACKET) { 9685 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 9686 REASON_SET(reason, PFRES_IPOPTIONS); 9687 return (PF_DROP); 9688 } 9689 break; 9690 default: 9691 break; 9692 } 9693 off += sizeof(opt) + opt.ip6o_len; 9694 } 9695 9696 return (PF_PASS); 9697 } 9698 9699 int 9700 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason) 9701 { 9702 struct ip6_frag frag; 9703 struct ip6_ext ext; 9704 struct ip6_rthdr rthdr; 9705 uint32_t end; 9706 int fraghdr_cnt = 0, rthdr_cnt = 0; 9707 9708 pd->off += sizeof(struct ip6_hdr); 9709 end = pd->off + ntohs(h->ip6_plen); 9710 pd->fragoff = pd->extoff = pd->jumbolen = 0; 9711 pd->proto = h->ip6_nxt; 9712 for (;;) { 9713 switch (pd->proto) { 9714 case IPPROTO_FRAGMENT: 9715 if (fraghdr_cnt++) { 9716 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 9717 REASON_SET(reason, PFRES_FRAG); 9718 return (PF_DROP); 9719 } 9720 /* jumbo payload packets cannot be fragmented */ 9721 if (pd->jumbolen != 0) { 9722 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 9723 REASON_SET(reason, PFRES_FRAG); 9724 return (PF_DROP); 9725 } 9726 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag), 9727 NULL, reason, AF_INET6)) { 9728 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 9729 return (PF_DROP); 9730 } 9731 /* stop walking over non initial fragments */ 9732 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) { 9733 pd->fragoff = pd->off; 9734 return (PF_PASS); 9735 } 9736 /* RFC6946: reassemble only non atomic fragments */ 9737 if (frag.ip6f_offlg & IP6F_MORE_FRAG) 9738 pd->fragoff = pd->off; 9739 pd->off += sizeof(frag); 9740 pd->proto = frag.ip6f_nxt; 9741 break; 9742 case IPPROTO_ROUTING: 9743 if (rthdr_cnt++) { 9744 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 9745 REASON_SET(reason, PFRES_IPOPTIONS); 9746 return (PF_DROP); 9747 } 9748 /* fragments may be short */ 9749 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) { 9750 pd->off = pd->fragoff; 9751 pd->proto = IPPROTO_FRAGMENT; 9752 return (PF_PASS); 9753 } 9754 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr), 9755 NULL, reason, AF_INET6)) { 9756 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 9757 return (PF_DROP); 9758 } 9759 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9760 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 9761 REASON_SET(reason, PFRES_IPOPTIONS); 9762 return (PF_DROP); 9763 } 9764 /* FALLTHROUGH */ 9765 case IPPROTO_AH: 9766 case IPPROTO_HOPOPTS: 9767 case IPPROTO_DSTOPTS: 9768 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 9769 NULL, reason, AF_INET6)) { 9770 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 9771 return (PF_DROP); 9772 } 9773 /* fragments may be short */ 9774 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) { 9775 pd->off = pd->fragoff; 9776 pd->proto = IPPROTO_FRAGMENT; 9777 return (PF_PASS); 9778 } 9779 /* reassembly needs the ext header before the frag */ 9780 if (pd->fragoff == 0) 9781 pd->extoff = pd->off; 9782 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) { 9783 if (pf_walk_option6(pd, h, 9784 pd->off + sizeof(ext), 9785 pd->off + (ext.ip6e_len + 1) * 8, reason) 9786 != PF_PASS) 9787 return (PF_DROP); 9788 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) { 9789 DPFPRINTF(PF_DEBUG_MISC, 9790 ("IPv6 missing jumbo")); 9791 REASON_SET(reason, PFRES_IPOPTIONS); 9792 return (PF_DROP); 9793 } 9794 } 9795 if (pd->proto == IPPROTO_AH) 9796 pd->off += (ext.ip6e_len + 2) * 4; 9797 else 9798 pd->off += (ext.ip6e_len + 1) * 8; 9799 pd->proto = ext.ip6e_nxt; 9800 break; 9801 case IPPROTO_TCP: 9802 case IPPROTO_UDP: 9803 case IPPROTO_SCTP: 9804 case IPPROTO_ICMPV6: 9805 /* fragments may be short, ignore inner header then */ 9806 if (pd->fragoff != 0 && end < pd->off + 9807 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) : 9808 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) : 9809 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) : 9810 sizeof(struct icmp6_hdr))) { 9811 pd->off = pd->fragoff; 9812 pd->proto = IPPROTO_FRAGMENT; 9813 } 9814 /* FALLTHROUGH */ 9815 default: 9816 return (PF_PASS); 9817 } 9818 } 9819 } 9820 #endif /* INET6 */ 9821 9822 static void 9823 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 9824 { 9825 memset(pd, 0, sizeof(*pd)); 9826 pd->pf_mtag = pf_find_mtag(m); 9827 pd->m = m; 9828 } 9829 9830 static int 9831 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 9832 u_short *action, u_short *reason, struct pfi_kkif *kif, 9833 struct pf_rule_actions *default_actions) 9834 { 9835 pd->dir = dir; 9836 pd->kif = kif; 9837 pd->m = *m0; 9838 pd->sidx = (dir == PF_IN) ? 0 : 1; 9839 pd->didx = (dir == PF_IN) ? 1 : 0; 9840 pd->af = pd->naf = af; 9841 9842 TAILQ_INIT(&pd->sctp_multihome_jobs); 9843 if (default_actions != NULL) 9844 memcpy(&pd->act, default_actions, sizeof(pd->act)); 9845 9846 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 9847 pd->act.dnpipe = pd->pf_mtag->dnpipe; 9848 pd->act.flags = pd->pf_mtag->dnflags; 9849 } 9850 9851 switch (af) { 9852 #ifdef INET 9853 case AF_INET: { 9854 struct ip *h; 9855 9856 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 9857 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 9858 DPFPRINTF(PF_DEBUG_URGENT, 9859 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 9860 *action = PF_DROP; 9861 REASON_SET(reason, PFRES_SHORT); 9862 return (-1); 9863 } 9864 9865 if (pf_normalize_ip(reason, pd) != PF_PASS) { 9866 /* We do IP header normalization and packet reassembly here */ 9867 *m0 = pd->m; 9868 *action = PF_DROP; 9869 return (-1); 9870 } 9871 *m0 = pd->m; 9872 9873 h = mtod(pd->m, struct ip *); 9874 pd->off = h->ip_hl << 2; 9875 if (pd->off < (int)sizeof(*h)) { 9876 *action = PF_DROP; 9877 REASON_SET(reason, PFRES_SHORT); 9878 return (-1); 9879 } 9880 pd->src = (struct pf_addr *)&h->ip_src; 9881 pd->dst = (struct pf_addr *)&h->ip_dst; 9882 PF_ACPY(&pd->osrc, pd->src, af); 9883 PF_ACPY(&pd->odst, pd->dst, af); 9884 pd->ip_sum = &h->ip_sum; 9885 pd->virtual_proto = pd->proto = h->ip_p; 9886 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK; 9887 pd->ttl = h->ip_ttl; 9888 pd->tot_len = ntohs(h->ip_len); 9889 pd->act.rtableid = -1; 9890 pd->df = h->ip_off & htons(IP_DF); 9891 9892 if (h->ip_hl > 5) /* has options */ 9893 pd->badopts++; 9894 9895 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 9896 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9897 9898 break; 9899 } 9900 #endif /* INET */ 9901 #ifdef INET6 9902 case AF_INET6: { 9903 struct ip6_hdr *h; 9904 9905 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 9906 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9907 DPFPRINTF(PF_DEBUG_URGENT, 9908 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 9909 ", pullup failed\n")); 9910 *action = PF_DROP; 9911 REASON_SET(reason, PFRES_SHORT); 9912 return (-1); 9913 } 9914 9915 h = mtod(pd->m, struct ip6_hdr *); 9916 pd->off = 0; 9917 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 9918 *action = PF_DROP; 9919 return (-1); 9920 } 9921 9922 h = mtod(pd->m, struct ip6_hdr *); 9923 pd->src = (struct pf_addr *)&h->ip6_src; 9924 pd->dst = (struct pf_addr *)&h->ip6_dst; 9925 PF_ACPY(&pd->osrc, pd->src, af); 9926 PF_ACPY(&pd->odst, pd->dst, af); 9927 pd->ip_sum = NULL; 9928 pd->tos = IPV6_DSCP(h); 9929 pd->ttl = h->ip6_hlim; 9930 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 9931 pd->virtual_proto = pd->proto = h->ip6_nxt; 9932 pd->act.rtableid = -1; 9933 9934 if (pd->fragoff != 0) 9935 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9936 9937 /* 9938 * we do not support jumbogram. if we keep going, zero ip6_plen 9939 * will do something bad, so drop the packet for now. 9940 */ 9941 if (htons(h->ip6_plen) == 0) { 9942 *action = PF_DROP; 9943 return (-1); 9944 } 9945 9946 /* We do IP header normalization and packet reassembly here */ 9947 if (pf_normalize_ip6(pd->fragoff, reason, pd) != 9948 PF_PASS) { 9949 *m0 = pd->m; 9950 *action = PF_DROP; 9951 return (-1); 9952 } 9953 *m0 = pd->m; 9954 if (pd->m == NULL) { 9955 /* packet sits in reassembly queue, no error */ 9956 *action = PF_PASS; 9957 return (-1); 9958 } 9959 9960 /* Update pointers into the packet. */ 9961 h = mtod(pd->m, struct ip6_hdr *); 9962 pd->src = (struct pf_addr *)&h->ip6_src; 9963 pd->dst = (struct pf_addr *)&h->ip6_dst; 9964 9965 pd->off = 0; 9966 9967 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 9968 *action = PF_DROP; 9969 return (-1); 9970 } 9971 9972 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) { 9973 /* 9974 * Reassembly may have changed the next protocol from 9975 * fragment to something else, so update. 9976 */ 9977 pd->virtual_proto = pd->proto; 9978 MPASS(pd->fragoff == 0); 9979 } 9980 9981 if (pd->fragoff != 0) 9982 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9983 9984 break; 9985 } 9986 #endif /* INET6 */ 9987 default: 9988 panic("pf_setup_pdesc called with illegal af %u", af); 9989 } 9990 9991 switch (pd->virtual_proto) { 9992 case IPPROTO_TCP: { 9993 struct tcphdr *th = &pd->hdr.tcp; 9994 9995 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 9996 reason, af)) { 9997 *action = PF_DROP; 9998 REASON_SET(reason, PFRES_SHORT); 9999 return (-1); 10000 } 10001 pd->hdrlen = sizeof(*th); 10002 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 10003 pd->sport = &th->th_sport; 10004 pd->dport = &th->th_dport; 10005 pd->pcksum = &th->th_sum; 10006 break; 10007 } 10008 case IPPROTO_UDP: { 10009 struct udphdr *uh = &pd->hdr.udp; 10010 10011 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 10012 reason, af)) { 10013 *action = PF_DROP; 10014 REASON_SET(reason, PFRES_SHORT); 10015 return (-1); 10016 } 10017 pd->hdrlen = sizeof(*uh); 10018 if (uh->uh_dport == 0 || 10019 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 10020 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 10021 *action = PF_DROP; 10022 REASON_SET(reason, PFRES_SHORT); 10023 return (-1); 10024 } 10025 pd->sport = &uh->uh_sport; 10026 pd->dport = &uh->uh_dport; 10027 pd->pcksum = &uh->uh_sum; 10028 break; 10029 } 10030 case IPPROTO_SCTP: { 10031 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 10032 action, reason, af)) { 10033 *action = PF_DROP; 10034 REASON_SET(reason, PFRES_SHORT); 10035 return (-1); 10036 } 10037 pd->hdrlen = sizeof(pd->hdr.sctp); 10038 pd->p_len = pd->tot_len - pd->off; 10039 10040 pd->sport = &pd->hdr.sctp.src_port; 10041 pd->dport = &pd->hdr.sctp.dest_port; 10042 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 10043 *action = PF_DROP; 10044 REASON_SET(reason, PFRES_SHORT); 10045 return (-1); 10046 } 10047 if (pf_scan_sctp(pd) != PF_PASS) { 10048 *action = PF_DROP; 10049 REASON_SET(reason, PFRES_SHORT); 10050 return (-1); 10051 } 10052 /* 10053 * Placeholder. The SCTP checksum is 32-bits, but 10054 * pf_test_state() expects to update a 16-bit checksum. 10055 * Provide a dummy value which we'll subsequently ignore. 10056 */ 10057 pd->pcksum = &pd->sctp_dummy_sum; 10058 break; 10059 } 10060 case IPPROTO_ICMP: { 10061 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 10062 action, reason, af)) { 10063 *action = PF_DROP; 10064 REASON_SET(reason, PFRES_SHORT); 10065 return (-1); 10066 } 10067 pd->hdrlen = ICMP_MINLEN; 10068 break; 10069 } 10070 #ifdef INET6 10071 case IPPROTO_ICMPV6: { 10072 size_t icmp_hlen = sizeof(struct icmp6_hdr); 10073 10074 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10075 action, reason, af)) { 10076 *action = PF_DROP; 10077 REASON_SET(reason, PFRES_SHORT); 10078 return (-1); 10079 } 10080 /* ICMP headers we look further into to match state */ 10081 switch (pd->hdr.icmp6.icmp6_type) { 10082 case MLD_LISTENER_QUERY: 10083 case MLD_LISTENER_REPORT: 10084 icmp_hlen = sizeof(struct mld_hdr); 10085 break; 10086 case ND_NEIGHBOR_SOLICIT: 10087 case ND_NEIGHBOR_ADVERT: 10088 icmp_hlen = sizeof(struct nd_neighbor_solicit); 10089 break; 10090 } 10091 if (icmp_hlen > sizeof(struct icmp6_hdr) && 10092 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10093 action, reason, af)) { 10094 *action = PF_DROP; 10095 REASON_SET(reason, PFRES_SHORT); 10096 return (-1); 10097 } 10098 pd->hdrlen = icmp_hlen; 10099 pd->pcksum = &pd->hdr.icmp.icmp_cksum; 10100 break; 10101 } 10102 #endif /* INET6 */ 10103 } 10104 10105 if (pd->sport) 10106 pd->osport = pd->nsport = *pd->sport; 10107 if (pd->dport) 10108 pd->odport = pd->ndport = *pd->dport; 10109 10110 return (0); 10111 } 10112 10113 static void 10114 pf_counters_inc(int action, struct pf_pdesc *pd, 10115 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 10116 { 10117 struct pf_krule *tr; 10118 int dir = pd->dir; 10119 int dirndx; 10120 10121 pf_counter_u64_critical_enter(); 10122 pf_counter_u64_add_protected( 10123 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10124 pd->tot_len); 10125 pf_counter_u64_add_protected( 10126 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10127 1); 10128 10129 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 10130 dirndx = (dir == PF_OUT); 10131 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 10132 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 10133 pf_update_timestamp(r); 10134 10135 if (a != NULL) { 10136 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 10137 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 10138 } 10139 if (s != NULL) { 10140 struct pf_krule_item *ri; 10141 10142 if (s->nat_rule != NULL) { 10143 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 10144 1); 10145 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 10146 pd->tot_len); 10147 } 10148 /* 10149 * Source nodes are accessed unlocked here. 10150 * But since we are operating with stateful tracking 10151 * and the state is locked, those SNs could not have 10152 * been freed. 10153 */ 10154 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 10155 if (s->sns[sn_type] != NULL) { 10156 counter_u64_add( 10157 s->sns[sn_type]->packets[dirndx], 10158 1); 10159 counter_u64_add( 10160 s->sns[sn_type]->bytes[dirndx], 10161 pd->tot_len); 10162 } 10163 } 10164 dirndx = (dir == s->direction) ? 0 : 1; 10165 s->packets[dirndx]++; 10166 s->bytes[dirndx] += pd->tot_len; 10167 10168 SLIST_FOREACH(ri, &s->match_rules, entry) { 10169 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 10170 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 10171 10172 if (ri->r->src.addr.type == PF_ADDR_TABLE) 10173 pfr_update_stats(ri->r->src.addr.p.tbl, 10174 (s == NULL) ? pd->src : 10175 &s->key[(s->direction == PF_IN)]-> 10176 addr[(s->direction == PF_OUT)], 10177 pd->af, pd->tot_len, dir == PF_OUT, 10178 r->action == PF_PASS, ri->r->src.neg); 10179 if (ri->r->dst.addr.type == PF_ADDR_TABLE) 10180 pfr_update_stats(ri->r->dst.addr.p.tbl, 10181 (s == NULL) ? pd->dst : 10182 &s->key[(s->direction == PF_IN)]-> 10183 addr[(s->direction == PF_IN)], 10184 pd->af, pd->tot_len, dir == PF_OUT, 10185 r->action == PF_PASS, ri->r->dst.neg); 10186 } 10187 } 10188 10189 tr = r; 10190 if (s != NULL && s->nat_rule != NULL && 10191 r == &V_pf_default_rule) 10192 tr = s->nat_rule; 10193 10194 if (tr->src.addr.type == PF_ADDR_TABLE) 10195 pfr_update_stats(tr->src.addr.p.tbl, 10196 (s == NULL) ? pd->src : 10197 &s->key[(s->direction == PF_IN)]-> 10198 addr[(s->direction == PF_OUT)], 10199 pd->af, pd->tot_len, dir == PF_OUT, 10200 r->action == PF_PASS, tr->src.neg); 10201 if (tr->dst.addr.type == PF_ADDR_TABLE) 10202 pfr_update_stats(tr->dst.addr.p.tbl, 10203 (s == NULL) ? pd->dst : 10204 &s->key[(s->direction == PF_IN)]-> 10205 addr[(s->direction == PF_IN)], 10206 pd->af, pd->tot_len, dir == PF_OUT, 10207 r->action == PF_PASS, tr->dst.neg); 10208 } 10209 pf_counter_u64_critical_exit(); 10210 } 10211 static void 10212 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm, 10213 struct pf_krule *am, struct pf_kruleset *ruleset, 10214 struct pf_krule_slist *matchrules) 10215 { 10216 struct pf_krule_item *ri; 10217 10218 /* if this is the log(matches) rule, packet has been logged already */ 10219 if (rm->log & PF_LOG_MATCHES) 10220 return; 10221 10222 SLIST_FOREACH(ri, matchrules, entry) 10223 if (ri->r->log & PF_LOG_MATCHES) 10224 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am, 10225 ruleset, pd, 1, ri->r); 10226 } 10227 10228 #if defined(INET) || defined(INET6) 10229 int 10230 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10231 struct inpcb *inp, struct pf_rule_actions *default_actions) 10232 { 10233 struct pfi_kkif *kif; 10234 u_short action, reason = 0; 10235 struct m_tag *mtag; 10236 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10237 struct pf_kstate *s = NULL; 10238 struct pf_kruleset *ruleset = NULL; 10239 struct pf_pdesc pd; 10240 int use_2nd_queue = 0; 10241 uint16_t tag; 10242 10243 PF_RULES_RLOCK_TRACKER; 10244 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10245 M_ASSERTPKTHDR(*m0); 10246 10247 if (!V_pf_status.running) 10248 return (PF_PASS); 10249 10250 PF_RULES_RLOCK(); 10251 10252 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10253 10254 if (__predict_false(kif == NULL)) { 10255 DPFPRINTF(PF_DEBUG_URGENT, 10256 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 10257 PF_RULES_RUNLOCK(); 10258 return (PF_DROP); 10259 } 10260 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10261 PF_RULES_RUNLOCK(); 10262 return (PF_PASS); 10263 } 10264 10265 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10266 PF_RULES_RUNLOCK(); 10267 return (PF_PASS); 10268 } 10269 10270 if (__predict_false(! M_WRITABLE(*m0))) { 10271 *m0 = m_unshare(*m0, M_NOWAIT); 10272 if (*m0 == NULL) { 10273 PF_RULES_RUNLOCK(); 10274 return (PF_DROP); 10275 } 10276 } 10277 10278 pf_init_pdesc(&pd, *m0); 10279 10280 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10281 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10282 10283 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10284 pd.pf_mtag->if_idxgen); 10285 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10286 PF_RULES_RUNLOCK(); 10287 m_freem(*m0); 10288 *m0 = NULL; 10289 return (PF_PASS); 10290 } 10291 PF_RULES_RUNLOCK(); 10292 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10293 *m0 = NULL; 10294 return (PF_PASS); 10295 } 10296 10297 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10298 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10299 /* Dummynet re-injects packets after they've 10300 * completed their delay. We've already 10301 * processed them, so pass unconditionally. */ 10302 10303 /* But only once. We may see the packet multiple times (e.g. 10304 * PFIL_IN/PFIL_OUT). */ 10305 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10306 PF_RULES_RUNLOCK(); 10307 10308 return (PF_PASS); 10309 } 10310 10311 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10312 kif, default_actions) == -1) { 10313 if (action != PF_PASS) 10314 pd.act.log |= PF_LOG_FORCE; 10315 goto done; 10316 } 10317 10318 #ifdef INET 10319 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD && 10320 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) { 10321 PF_RULES_RUNLOCK(); 10322 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 10323 0, ifp->if_mtu); 10324 *m0 = NULL; 10325 return (PF_DROP); 10326 } 10327 #endif /* INET */ 10328 #ifdef INET6 10329 /* 10330 * If we end up changing IP addresses (e.g. binat) the stack may get 10331 * confused and fail to send the icmp6 packet too big error. Just send 10332 * it here, before we do any NAT. 10333 */ 10334 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10335 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10336 PF_RULES_RUNLOCK(); 10337 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10338 *m0 = NULL; 10339 return (PF_DROP); 10340 } 10341 #endif /* INET6 */ 10342 10343 if (__predict_false(ip_divert_ptr != NULL) && 10344 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10345 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10346 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10347 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10348 if (pd.pf_mtag == NULL && 10349 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10350 action = PF_DROP; 10351 goto done; 10352 } 10353 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10354 } 10355 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10356 pd.m->m_flags |= M_FASTFWD_OURS; 10357 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10358 } 10359 m_tag_delete(pd.m, mtag); 10360 10361 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10362 if (mtag != NULL) 10363 m_tag_delete(pd.m, mtag); 10364 } 10365 10366 switch (pd.virtual_proto) { 10367 case PF_VPROTO_FRAGMENT: 10368 /* 10369 * handle fragments that aren't reassembled by 10370 * normalization 10371 */ 10372 if (kif == NULL || r == NULL) /* pflog */ 10373 action = PF_DROP; 10374 else 10375 action = pf_test_rule(&r, &s, &pd, &a, 10376 &ruleset, &reason, inp); 10377 if (action != PF_PASS) 10378 REASON_SET(&reason, PFRES_FRAG); 10379 break; 10380 10381 case IPPROTO_TCP: { 10382 /* Respond to SYN with a syncookie. */ 10383 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10384 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10385 pf_syncookie_send(&pd); 10386 action = PF_DROP; 10387 break; 10388 } 10389 10390 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10391 use_2nd_queue = 1; 10392 action = pf_normalize_tcp(&pd); 10393 if (action == PF_DROP) 10394 goto done; 10395 action = pf_test_state(&s, &pd, &reason); 10396 if (action == PF_PASS || action == PF_AFRT) { 10397 if (V_pfsync_update_state_ptr != NULL) 10398 V_pfsync_update_state_ptr(s); 10399 r = s->rule; 10400 a = s->anchor; 10401 } else if (s == NULL) { 10402 /* Validate remote SYN|ACK, re-create original SYN if 10403 * valid. */ 10404 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10405 TH_ACK && pf_syncookie_validate(&pd) && 10406 pd.dir == PF_IN) { 10407 struct mbuf *msyn; 10408 10409 msyn = pf_syncookie_recreate_syn(&pd); 10410 if (msyn == NULL) { 10411 action = PF_DROP; 10412 break; 10413 } 10414 10415 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10416 &pd.act); 10417 m_freem(msyn); 10418 if (action != PF_PASS) 10419 break; 10420 10421 action = pf_test_state(&s, &pd, &reason); 10422 if (action != PF_PASS || s == NULL) { 10423 action = PF_DROP; 10424 break; 10425 } 10426 10427 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10428 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10429 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10430 action = pf_synproxy(&pd, s, &reason); 10431 break; 10432 } else { 10433 action = pf_test_rule(&r, &s, &pd, 10434 &a, &ruleset, &reason, inp); 10435 } 10436 } 10437 break; 10438 } 10439 10440 case IPPROTO_SCTP: 10441 action = pf_normalize_sctp(&pd); 10442 if (action == PF_DROP) 10443 goto done; 10444 /* fallthrough */ 10445 case IPPROTO_UDP: 10446 default: 10447 action = pf_test_state(&s, &pd, &reason); 10448 if (action == PF_PASS || action == PF_AFRT) { 10449 if (V_pfsync_update_state_ptr != NULL) 10450 V_pfsync_update_state_ptr(s); 10451 r = s->rule; 10452 a = s->anchor; 10453 } else if (s == NULL) { 10454 action = pf_test_rule(&r, &s, 10455 &pd, &a, &ruleset, &reason, inp); 10456 } 10457 break; 10458 10459 case IPPROTO_ICMP: 10460 case IPPROTO_ICMPV6: { 10461 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) { 10462 action = PF_DROP; 10463 REASON_SET(&reason, PFRES_NORM); 10464 DPFPRINTF(PF_DEBUG_MISC, 10465 ("dropping IPv6 packet with ICMPv4 payload")); 10466 goto done; 10467 } 10468 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) { 10469 action = PF_DROP; 10470 REASON_SET(&reason, PFRES_NORM); 10471 DPFPRINTF(PF_DEBUG_MISC, 10472 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 10473 goto done; 10474 } 10475 action = pf_test_state_icmp(&s, &pd, &reason); 10476 if (action == PF_PASS || action == PF_AFRT) { 10477 if (V_pfsync_update_state_ptr != NULL) 10478 V_pfsync_update_state_ptr(s); 10479 r = s->rule; 10480 a = s->anchor; 10481 } else if (s == NULL) 10482 action = pf_test_rule(&r, &s, &pd, 10483 &a, &ruleset, &reason, inp); 10484 break; 10485 } 10486 10487 } 10488 10489 done: 10490 PF_RULES_RUNLOCK(); 10491 10492 if (pd.m == NULL) 10493 goto eat_pkt; 10494 10495 if (action == PF_PASS && pd.badopts && 10496 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || pd.act.allow_opts)) { 10497 action = PF_DROP; 10498 REASON_SET(&reason, PFRES_IPOPTIONS); 10499 pd.act.log = PF_LOG_FORCE; 10500 DPFPRINTF(PF_DEBUG_MISC, 10501 ("pf: dropping packet with dangerous headers\n")); 10502 } 10503 10504 if (s) { 10505 uint8_t log = pd.act.log; 10506 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 10507 pd.act.log |= log; 10508 tag = s->tag; 10509 } else { 10510 tag = r->tag; 10511 } 10512 10513 if (tag > 0 && pf_tag_packet(&pd, tag)) { 10514 action = PF_DROP; 10515 REASON_SET(&reason, PFRES_MEMORY); 10516 } 10517 10518 pf_scrub(&pd); 10519 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 10520 pf_normalize_mss(&pd); 10521 10522 if (pd.act.rtableid >= 0) 10523 M_SETFIB(pd.m, pd.act.rtableid); 10524 10525 if (pd.act.flags & PFSTATE_SETPRIO) { 10526 if (pd.tos & IPTOS_LOWDELAY) 10527 use_2nd_queue = 1; 10528 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 10529 action = PF_DROP; 10530 REASON_SET(&reason, PFRES_MEMORY); 10531 pd.act.log = PF_LOG_FORCE; 10532 DPFPRINTF(PF_DEBUG_MISC, 10533 ("pf: failed to allocate 802.1q mtag\n")); 10534 } 10535 } 10536 10537 #ifdef ALTQ 10538 if (action == PF_PASS && pd.act.qid) { 10539 if (pd.pf_mtag == NULL && 10540 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10541 action = PF_DROP; 10542 REASON_SET(&reason, PFRES_MEMORY); 10543 } else { 10544 if (s != NULL) 10545 pd.pf_mtag->qid_hash = pf_state_hash(s); 10546 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 10547 pd.pf_mtag->qid = pd.act.pqid; 10548 else 10549 pd.pf_mtag->qid = pd.act.qid; 10550 /* Add hints for ecn. */ 10551 pd.pf_mtag->hdr = mtod(pd.m, void *); 10552 } 10553 } 10554 #endif /* ALTQ */ 10555 10556 /* 10557 * connections redirected to loopback should not match sockets 10558 * bound specifically to loopback due to security implications, 10559 * see tcp_input() and in_pcblookup_listen(). 10560 */ 10561 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 10562 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 10563 (s->nat_rule->action == PF_RDR || 10564 s->nat_rule->action == PF_BINAT) && 10565 pf_is_loopback(af, pd.dst)) 10566 pd.m->m_flags |= M_SKIP_FIREWALL; 10567 10568 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 10569 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 10570 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 10571 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 10572 if (mtag != NULL) { 10573 ((struct pf_divert_mtag *)(mtag+1))->port = 10574 ntohs(r->divert.port); 10575 ((struct pf_divert_mtag *)(mtag+1))->idir = 10576 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 10577 PF_DIVERT_MTAG_DIR_OUT; 10578 10579 if (s) 10580 PF_STATE_UNLOCK(s); 10581 10582 m_tag_prepend(pd.m, mtag); 10583 if (pd.m->m_flags & M_FASTFWD_OURS) { 10584 if (pd.pf_mtag == NULL && 10585 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10586 action = PF_DROP; 10587 REASON_SET(&reason, PFRES_MEMORY); 10588 pd.act.log = PF_LOG_FORCE; 10589 DPFPRINTF(PF_DEBUG_MISC, 10590 ("pf: failed to allocate tag\n")); 10591 } else { 10592 pd.pf_mtag->flags |= 10593 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10594 pd.m->m_flags &= ~M_FASTFWD_OURS; 10595 } 10596 } 10597 ip_divert_ptr(*m0, dir == PF_IN); 10598 *m0 = NULL; 10599 10600 return (action); 10601 } else { 10602 /* XXX: ipfw has the same behaviour! */ 10603 action = PF_DROP; 10604 REASON_SET(&reason, PFRES_MEMORY); 10605 pd.act.log = PF_LOG_FORCE; 10606 DPFPRINTF(PF_DEBUG_MISC, 10607 ("pf: failed to allocate divert tag\n")); 10608 } 10609 } 10610 /* XXX: Anybody working on it?! */ 10611 if (af == AF_INET6 && r->divert.port) 10612 printf("pf: divert(9) is not supported for IPv6\n"); 10613 10614 /* this flag will need revising if the pkt is forwarded */ 10615 if (pd.pf_mtag) 10616 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 10617 10618 if (pd.act.log) { 10619 struct pf_krule *lr; 10620 struct pf_krule_item *ri; 10621 10622 if (s != NULL && s->nat_rule != NULL && 10623 s->nat_rule->log & PF_LOG_ALL) 10624 lr = s->nat_rule; 10625 else 10626 lr = r; 10627 10628 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 10629 PFLOG_PACKET(action, reason, lr, a, 10630 ruleset, &pd, (s == NULL), NULL); 10631 if (s) { 10632 SLIST_FOREACH(ri, &s->match_rules, entry) 10633 if (ri->r->log & PF_LOG_ALL) 10634 PFLOG_PACKET(action, 10635 reason, ri->r, a, ruleset, &pd, 0, NULL); 10636 } 10637 } 10638 10639 pf_counters_inc(action, &pd, s, r, a); 10640 10641 switch (action) { 10642 case PF_SYNPROXY_DROP: 10643 m_freem(*m0); 10644 case PF_DEFER: 10645 *m0 = NULL; 10646 action = PF_PASS; 10647 break; 10648 case PF_DROP: 10649 m_freem(*m0); 10650 *m0 = NULL; 10651 break; 10652 case PF_AFRT: 10653 if (pf_translate_af(&pd)) { 10654 if (!pd.m) 10655 *m0 = NULL; 10656 action = PF_DROP; 10657 break; 10658 } 10659 *m0 = pd.m; /* pf_translate_af may change pd.m */ 10660 #ifdef INET 10661 if (pd.naf == AF_INET) 10662 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10663 #endif /* INET */ 10664 #ifdef INET6 10665 if (pd.naf == AF_INET6) 10666 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10667 #endif /* INET6 */ 10668 *m0 = NULL; 10669 action = PF_PASS; 10670 goto out; 10671 break; 10672 default: 10673 if (pd.act.rt) { 10674 switch (af) { 10675 #ifdef INET 10676 case AF_INET: 10677 /* pf_route() returns unlocked. */ 10678 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10679 break; 10680 #endif /* INET */ 10681 #ifdef INET6 10682 case AF_INET6: 10683 /* pf_route6() returns unlocked. */ 10684 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10685 break; 10686 #endif /* INET6 */ 10687 } 10688 goto out; 10689 } 10690 if (pf_dummynet(&pd, s, r, m0) != 0) { 10691 action = PF_DROP; 10692 REASON_SET(&reason, PFRES_MEMORY); 10693 } 10694 break; 10695 } 10696 10697 eat_pkt: 10698 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 10699 10700 if (s && action != PF_DROP) { 10701 if (!s->if_index_in && dir == PF_IN) 10702 s->if_index_in = ifp->if_index; 10703 else if (!s->if_index_out && dir == PF_OUT) 10704 s->if_index_out = ifp->if_index; 10705 } 10706 10707 if (s) 10708 PF_STATE_UNLOCK(s); 10709 10710 out: 10711 #ifdef INET6 10712 /* If reassembled packet passed, create new fragments. */ 10713 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 10714 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 10715 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 10716 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 10717 #endif /* INET6 */ 10718 10719 pf_sctp_multihome_delayed(&pd, kif, s, action); 10720 10721 return (action); 10722 } 10723 #endif /* INET || INET6 */ 10724