1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/ip.h> 78 #include <netinet/ip_fw.h> 79 #include <netinet/ip_icmp.h> 80 #include <netinet/icmp_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/tcp.h> 83 #include <netinet/tcp_fsm.h> 84 #include <netinet/tcp_seq.h> 85 #include <netinet/tcp_timer.h> 86 #include <netinet/tcp_var.h> 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 91 92 #ifdef INET6 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/nd6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/in6_pcb.h> 98 #include <netinet6/in6_fib.h> 99 #include <netinet6/scope6_var.h> 100 #endif /* INET6 */ 101 102 #include <machine/in_cksum.h> 103 #include <security/mac/mac_framework.h> 104 105 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 106 107 /* 108 * Global variables 109 */ 110 111 /* state tables */ 112 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 113 VNET_DEFINE(struct pf_palist, pf_pabuf); 114 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 116 VNET_DEFINE(struct pf_kstatus, pf_status); 117 118 VNET_DEFINE(u_int32_t, ticket_altqs_active); 119 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 120 VNET_DEFINE(int, altqs_inactive_open); 121 VNET_DEFINE(u_int32_t, ticket_pabuf); 122 123 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 124 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 125 VNET_DEFINE(u_char, pf_tcp_secret[16]); 126 #define V_pf_tcp_secret VNET(pf_tcp_secret) 127 VNET_DEFINE(int, pf_tcp_secret_init); 128 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 129 VNET_DEFINE(int, pf_tcp_iss_off); 130 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 131 132 /* 133 * Queue for pf_intr() sends. 134 */ 135 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 136 struct pf_send_entry { 137 STAILQ_ENTRY(pf_send_entry) pfse_next; 138 struct mbuf *pfse_m; 139 enum { 140 PFSE_IP, 141 PFSE_IP6, 142 PFSE_ICMP, 143 PFSE_ICMP6, 144 } pfse_type; 145 struct { 146 int type; 147 int code; 148 int mtu; 149 } icmpopts; 150 }; 151 152 STAILQ_HEAD(pf_send_head, pf_send_entry); 153 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 154 #define V_pf_sendqueue VNET(pf_sendqueue) 155 156 static struct mtx pf_sendqueue_mtx; 157 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 158 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 159 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 160 161 /* 162 * Queue for pf_overload_task() tasks. 163 */ 164 struct pf_overload_entry { 165 SLIST_ENTRY(pf_overload_entry) next; 166 struct pf_addr addr; 167 sa_family_t af; 168 uint8_t dir; 169 struct pf_rule *rule; 170 }; 171 172 SLIST_HEAD(pf_overload_head, pf_overload_entry); 173 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 174 #define V_pf_overloadqueue VNET(pf_overloadqueue) 175 static VNET_DEFINE(struct task, pf_overloadtask); 176 #define V_pf_overloadtask VNET(pf_overloadtask) 177 178 static struct mtx pf_overloadqueue_mtx; 179 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 180 "pf overload/flush queue", MTX_DEF); 181 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 182 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 183 184 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 185 struct mtx pf_unlnkdrules_mtx; 186 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 187 MTX_DEF); 188 189 static VNET_DEFINE(uma_zone_t, pf_sources_z); 190 #define V_pf_sources_z VNET(pf_sources_z) 191 uma_zone_t pf_mtag_z; 192 VNET_DEFINE(uma_zone_t, pf_state_z); 193 VNET_DEFINE(uma_zone_t, pf_state_key_z); 194 195 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 196 #define PFID_CPUBITS 8 197 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 198 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 199 #define PFID_MAXID (~PFID_CPUMASK) 200 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 201 202 static void pf_src_tree_remove_state(struct pf_state *); 203 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 204 u_int32_t); 205 static void pf_add_threshold(struct pf_threshold *); 206 static int pf_check_threshold(struct pf_threshold *); 207 208 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 209 u_int16_t *, u_int16_t *, struct pf_addr *, 210 u_int16_t, u_int8_t, sa_family_t); 211 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 212 struct tcphdr *, struct pf_state_peer *); 213 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 214 struct pf_addr *, struct pf_addr *, u_int16_t, 215 u_int16_t *, u_int16_t *, u_int16_t *, 216 u_int16_t *, u_int8_t, sa_family_t); 217 static void pf_send_tcp(struct mbuf *, 218 const struct pf_rule *, sa_family_t, 219 const struct pf_addr *, const struct pf_addr *, 220 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 221 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 222 u_int16_t, struct ifnet *); 223 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 224 sa_family_t, struct pf_rule *); 225 static void pf_detach_state(struct pf_state *); 226 static int pf_state_key_attach(struct pf_state_key *, 227 struct pf_state_key *, struct pf_state *); 228 static void pf_state_key_detach(struct pf_state *, int); 229 static int pf_state_key_ctor(void *, int, void *, int); 230 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 231 static int pf_test_rule(struct pf_rule **, struct pf_state **, 232 int, struct pfi_kif *, struct mbuf *, int, 233 struct pf_pdesc *, struct pf_rule **, 234 struct pf_ruleset **, struct inpcb *); 235 static int pf_create_state(struct pf_rule *, struct pf_rule *, 236 struct pf_rule *, struct pf_pdesc *, 237 struct pf_src_node *, struct pf_state_key *, 238 struct pf_state_key *, struct mbuf *, int, 239 u_int16_t, u_int16_t, int *, struct pfi_kif *, 240 struct pf_state **, int, u_int16_t, u_int16_t, 241 int); 242 static int pf_test_fragment(struct pf_rule **, int, 243 struct pfi_kif *, struct mbuf *, void *, 244 struct pf_pdesc *, struct pf_rule **, 245 struct pf_ruleset **); 246 static int pf_tcp_track_full(struct pf_state_peer *, 247 struct pf_state_peer *, struct pf_state **, 248 struct pfi_kif *, struct mbuf *, int, 249 struct pf_pdesc *, u_short *, int *); 250 static int pf_tcp_track_sloppy(struct pf_state_peer *, 251 struct pf_state_peer *, struct pf_state **, 252 struct pf_pdesc *, u_short *); 253 static int pf_test_state_tcp(struct pf_state **, int, 254 struct pfi_kif *, struct mbuf *, int, 255 void *, struct pf_pdesc *, u_short *); 256 static int pf_test_state_udp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *); 259 static int pf_test_state_icmp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *, u_short *); 262 static int pf_test_state_other(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 264 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 265 sa_family_t); 266 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 267 sa_family_t); 268 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 269 int, u_int16_t); 270 static int pf_check_proto_cksum(struct mbuf *, int, int, 271 u_int8_t, sa_family_t); 272 static void pf_print_state_parts(struct pf_state *, 273 struct pf_state_key *, struct pf_state_key *); 274 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 275 struct pf_addr_wrap *); 276 static struct pf_state *pf_find_state(struct pfi_kif *, 277 struct pf_state_key_cmp *, u_int); 278 static int pf_src_connlimit(struct pf_state **); 279 static void pf_overload_task(void *v, int pending); 280 static int pf_insert_src_node(struct pf_src_node **, 281 struct pf_rule *, struct pf_addr *, sa_family_t); 282 static u_int pf_purge_expired_states(u_int, int); 283 static void pf_purge_unlinked_rules(void); 284 static int pf_mtag_uminit(void *, int, int); 285 static void pf_mtag_free(struct m_tag *); 286 #ifdef INET 287 static void pf_route(struct mbuf **, struct pf_rule *, int, 288 struct ifnet *, struct pf_state *, 289 struct pf_pdesc *); 290 #endif /* INET */ 291 #ifdef INET6 292 static void pf_change_a6(struct pf_addr *, u_int16_t *, 293 struct pf_addr *, u_int8_t); 294 static void pf_route6(struct mbuf **, struct pf_rule *, int, 295 struct ifnet *, struct pf_state *, 296 struct pf_pdesc *); 297 #endif /* INET6 */ 298 299 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 300 301 VNET_DECLARE(int, pf_end_threads); 302 303 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 304 305 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 306 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 307 308 #define STATE_LOOKUP(i, k, d, s, pd) \ 309 do { \ 310 (s) = pf_find_state((i), (k), (d)); \ 311 if ((s) == NULL) \ 312 return (PF_DROP); \ 313 if (PACKET_LOOPED(pd)) \ 314 return (PF_PASS); \ 315 if ((d) == PF_OUT && \ 316 (((s)->rule.ptr->rt == PF_ROUTETO && \ 317 (s)->rule.ptr->direction == PF_OUT) || \ 318 ((s)->rule.ptr->rt == PF_REPLYTO && \ 319 (s)->rule.ptr->direction == PF_IN)) && \ 320 (s)->rt_kif != NULL && \ 321 (s)->rt_kif != (i)) \ 322 return (PF_PASS); \ 323 } while (0) 324 325 #define BOUND_IFACE(r, k) \ 326 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 327 328 #define STATE_INC_COUNTERS(s) \ 329 do { \ 330 counter_u64_add(s->rule.ptr->states_cur, 1); \ 331 counter_u64_add(s->rule.ptr->states_tot, 1); \ 332 if (s->anchor.ptr != NULL) { \ 333 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 334 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 335 } \ 336 if (s->nat_rule.ptr != NULL) { \ 337 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 338 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 339 } \ 340 } while (0) 341 342 #define STATE_DEC_COUNTERS(s) \ 343 do { \ 344 if (s->nat_rule.ptr != NULL) \ 345 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 346 if (s->anchor.ptr != NULL) \ 347 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 348 counter_u64_add(s->rule.ptr->states_cur, -1); \ 349 } while (0) 350 351 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 352 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 353 VNET_DEFINE(struct pf_idhash *, pf_idhash); 354 VNET_DEFINE(struct pf_srchash *, pf_srchash); 355 356 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 357 358 u_long pf_hashmask; 359 u_long pf_srchashmask; 360 static u_long pf_hashsize; 361 static u_long pf_srchashsize; 362 363 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 364 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 365 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 366 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 367 368 VNET_DEFINE(void *, pf_swi_cookie); 369 370 VNET_DEFINE(uint32_t, pf_hashseed); 371 #define V_pf_hashseed VNET(pf_hashseed) 372 373 int 374 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 375 { 376 377 switch (af) { 378 #ifdef INET 379 case AF_INET: 380 if (a->addr32[0] > b->addr32[0]) 381 return (1); 382 if (a->addr32[0] < b->addr32[0]) 383 return (-1); 384 break; 385 #endif /* INET */ 386 #ifdef INET6 387 case AF_INET6: 388 if (a->addr32[3] > b->addr32[3]) 389 return (1); 390 if (a->addr32[3] < b->addr32[3]) 391 return (-1); 392 if (a->addr32[2] > b->addr32[2]) 393 return (1); 394 if (a->addr32[2] < b->addr32[2]) 395 return (-1); 396 if (a->addr32[1] > b->addr32[1]) 397 return (1); 398 if (a->addr32[1] < b->addr32[1]) 399 return (-1); 400 if (a->addr32[0] > b->addr32[0]) 401 return (1); 402 if (a->addr32[0] < b->addr32[0]) 403 return (-1); 404 break; 405 #endif /* INET6 */ 406 default: 407 panic("%s: unknown address family %u", __func__, af); 408 } 409 return (0); 410 } 411 412 static __inline uint32_t 413 pf_hashkey(struct pf_state_key *sk) 414 { 415 uint32_t h; 416 417 h = murmur3_32_hash32((uint32_t *)sk, 418 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 419 V_pf_hashseed); 420 421 return (h & pf_hashmask); 422 } 423 424 static __inline uint32_t 425 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 426 { 427 uint32_t h; 428 429 switch (af) { 430 case AF_INET: 431 h = murmur3_32_hash32((uint32_t *)&addr->v4, 432 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 433 break; 434 case AF_INET6: 435 h = murmur3_32_hash32((uint32_t *)&addr->v6, 436 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 437 break; 438 default: 439 panic("%s: unknown address family %u", __func__, af); 440 } 441 442 return (h & pf_srchashmask); 443 } 444 445 #ifdef ALTQ 446 static int 447 pf_state_hash(struct pf_state *s) 448 { 449 u_int32_t hv = (intptr_t)s / sizeof(*s); 450 451 hv ^= crc32(&s->src, sizeof(s->src)); 452 hv ^= crc32(&s->dst, sizeof(s->dst)); 453 if (hv == 0) 454 hv = 1; 455 return (hv); 456 } 457 #endif 458 459 #ifdef INET6 460 void 461 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 462 { 463 switch (af) { 464 #ifdef INET 465 case AF_INET: 466 dst->addr32[0] = src->addr32[0]; 467 break; 468 #endif /* INET */ 469 case AF_INET6: 470 dst->addr32[0] = src->addr32[0]; 471 dst->addr32[1] = src->addr32[1]; 472 dst->addr32[2] = src->addr32[2]; 473 dst->addr32[3] = src->addr32[3]; 474 break; 475 } 476 } 477 #endif /* INET6 */ 478 479 static void 480 pf_init_threshold(struct pf_threshold *threshold, 481 u_int32_t limit, u_int32_t seconds) 482 { 483 threshold->limit = limit * PF_THRESHOLD_MULT; 484 threshold->seconds = seconds; 485 threshold->count = 0; 486 threshold->last = time_uptime; 487 } 488 489 static void 490 pf_add_threshold(struct pf_threshold *threshold) 491 { 492 u_int32_t t = time_uptime, diff = t - threshold->last; 493 494 if (diff >= threshold->seconds) 495 threshold->count = 0; 496 else 497 threshold->count -= threshold->count * diff / 498 threshold->seconds; 499 threshold->count += PF_THRESHOLD_MULT; 500 threshold->last = t; 501 } 502 503 static int 504 pf_check_threshold(struct pf_threshold *threshold) 505 { 506 return (threshold->count > threshold->limit); 507 } 508 509 static int 510 pf_src_connlimit(struct pf_state **state) 511 { 512 struct pf_overload_entry *pfoe; 513 int bad = 0; 514 515 PF_STATE_LOCK_ASSERT(*state); 516 517 (*state)->src_node->conn++; 518 (*state)->src.tcp_est = 1; 519 pf_add_threshold(&(*state)->src_node->conn_rate); 520 521 if ((*state)->rule.ptr->max_src_conn && 522 (*state)->rule.ptr->max_src_conn < 523 (*state)->src_node->conn) { 524 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 525 bad++; 526 } 527 528 if ((*state)->rule.ptr->max_src_conn_rate.limit && 529 pf_check_threshold(&(*state)->src_node->conn_rate)) { 530 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 531 bad++; 532 } 533 534 if (!bad) 535 return (0); 536 537 /* Kill this state. */ 538 (*state)->timeout = PFTM_PURGE; 539 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 540 541 if ((*state)->rule.ptr->overload_tbl == NULL) 542 return (1); 543 544 /* Schedule overloading and flushing task. */ 545 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 546 if (pfoe == NULL) 547 return (1); /* too bad :( */ 548 549 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 550 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 551 pfoe->rule = (*state)->rule.ptr; 552 pfoe->dir = (*state)->direction; 553 PF_OVERLOADQ_LOCK(); 554 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 555 PF_OVERLOADQ_UNLOCK(); 556 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 557 558 return (1); 559 } 560 561 static void 562 pf_overload_task(void *v, int pending) 563 { 564 struct pf_overload_head queue; 565 struct pfr_addr p; 566 struct pf_overload_entry *pfoe, *pfoe1; 567 uint32_t killed = 0; 568 569 CURVNET_SET((struct vnet *)v); 570 571 PF_OVERLOADQ_LOCK(); 572 queue = V_pf_overloadqueue; 573 SLIST_INIT(&V_pf_overloadqueue); 574 PF_OVERLOADQ_UNLOCK(); 575 576 bzero(&p, sizeof(p)); 577 SLIST_FOREACH(pfoe, &queue, next) { 578 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 579 if (V_pf_status.debug >= PF_DEBUG_MISC) { 580 printf("%s: blocking address ", __func__); 581 pf_print_host(&pfoe->addr, 0, pfoe->af); 582 printf("\n"); 583 } 584 585 p.pfra_af = pfoe->af; 586 switch (pfoe->af) { 587 #ifdef INET 588 case AF_INET: 589 p.pfra_net = 32; 590 p.pfra_ip4addr = pfoe->addr.v4; 591 break; 592 #endif 593 #ifdef INET6 594 case AF_INET6: 595 p.pfra_net = 128; 596 p.pfra_ip6addr = pfoe->addr.v6; 597 break; 598 #endif 599 } 600 601 PF_RULES_WLOCK(); 602 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 603 PF_RULES_WUNLOCK(); 604 } 605 606 /* 607 * Remove those entries, that don't need flushing. 608 */ 609 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 610 if (pfoe->rule->flush == 0) { 611 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 612 free(pfoe, M_PFTEMP); 613 } else 614 counter_u64_add( 615 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 616 617 /* If nothing to flush, return. */ 618 if (SLIST_EMPTY(&queue)) { 619 CURVNET_RESTORE(); 620 return; 621 } 622 623 for (int i = 0; i <= pf_hashmask; i++) { 624 struct pf_idhash *ih = &V_pf_idhash[i]; 625 struct pf_state_key *sk; 626 struct pf_state *s; 627 628 PF_HASHROW_LOCK(ih); 629 LIST_FOREACH(s, &ih->states, entry) { 630 sk = s->key[PF_SK_WIRE]; 631 SLIST_FOREACH(pfoe, &queue, next) 632 if (sk->af == pfoe->af && 633 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 634 pfoe->rule == s->rule.ptr) && 635 ((pfoe->dir == PF_OUT && 636 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 637 (pfoe->dir == PF_IN && 638 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 639 s->timeout = PFTM_PURGE; 640 s->src.state = s->dst.state = TCPS_CLOSED; 641 killed++; 642 } 643 } 644 PF_HASHROW_UNLOCK(ih); 645 } 646 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 647 free(pfoe, M_PFTEMP); 648 if (V_pf_status.debug >= PF_DEBUG_MISC) 649 printf("%s: %u states killed", __func__, killed); 650 651 CURVNET_RESTORE(); 652 } 653 654 /* 655 * Can return locked on failure, so that we can consistently 656 * allocate and insert a new one. 657 */ 658 struct pf_src_node * 659 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 660 int returnlocked) 661 { 662 struct pf_srchash *sh; 663 struct pf_src_node *n; 664 665 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 666 667 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 668 PF_HASHROW_LOCK(sh); 669 LIST_FOREACH(n, &sh->nodes, entry) 670 if (n->rule.ptr == rule && n->af == af && 671 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 672 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 673 break; 674 if (n != NULL) { 675 n->states++; 676 PF_HASHROW_UNLOCK(sh); 677 } else if (returnlocked == 0) 678 PF_HASHROW_UNLOCK(sh); 679 680 return (n); 681 } 682 683 static int 684 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 685 struct pf_addr *src, sa_family_t af) 686 { 687 688 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 689 rule->rpool.opts & PF_POOL_STICKYADDR), 690 ("%s for non-tracking rule %p", __func__, rule)); 691 692 if (*sn == NULL) 693 *sn = pf_find_src_node(src, rule, af, 1); 694 695 if (*sn == NULL) { 696 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 697 698 PF_HASHROW_ASSERT(sh); 699 700 if (!rule->max_src_nodes || 701 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 702 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 703 else 704 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 705 1); 706 if ((*sn) == NULL) { 707 PF_HASHROW_UNLOCK(sh); 708 return (-1); 709 } 710 711 pf_init_threshold(&(*sn)->conn_rate, 712 rule->max_src_conn_rate.limit, 713 rule->max_src_conn_rate.seconds); 714 715 (*sn)->af = af; 716 (*sn)->rule.ptr = rule; 717 PF_ACPY(&(*sn)->addr, src, af); 718 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 719 (*sn)->creation = time_uptime; 720 (*sn)->ruletype = rule->action; 721 (*sn)->states = 1; 722 if ((*sn)->rule.ptr != NULL) 723 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 724 PF_HASHROW_UNLOCK(sh); 725 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 726 } else { 727 if (rule->max_src_states && 728 (*sn)->states >= rule->max_src_states) { 729 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 730 1); 731 return (-1); 732 } 733 } 734 return (0); 735 } 736 737 void 738 pf_unlink_src_node(struct pf_src_node *src) 739 { 740 741 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 742 LIST_REMOVE(src, entry); 743 if (src->rule.ptr) 744 counter_u64_add(src->rule.ptr->src_nodes, -1); 745 } 746 747 u_int 748 pf_free_src_nodes(struct pf_src_node_list *head) 749 { 750 struct pf_src_node *sn, *tmp; 751 u_int count = 0; 752 753 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 754 uma_zfree(V_pf_sources_z, sn); 755 count++; 756 } 757 758 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 759 760 return (count); 761 } 762 763 void 764 pf_mtag_initialize() 765 { 766 767 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 768 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 769 UMA_ALIGN_PTR, 0); 770 } 771 772 /* Per-vnet data storage structures initialization. */ 773 void 774 pf_initialize() 775 { 776 struct pf_keyhash *kh; 777 struct pf_idhash *ih; 778 struct pf_srchash *sh; 779 u_int i; 780 781 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 782 pf_hashsize = PF_HASHSIZ; 783 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 784 pf_srchashsize = PF_HASHSIZ / 4; 785 786 V_pf_hashseed = arc4random(); 787 788 /* States and state keys storage. */ 789 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 790 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 791 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 792 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 793 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 794 795 V_pf_state_key_z = uma_zcreate("pf state keys", 796 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 797 UMA_ALIGN_PTR, 0); 798 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 799 M_PFHASH, M_WAITOK | M_ZERO); 800 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 801 M_PFHASH, M_WAITOK | M_ZERO); 802 pf_hashmask = pf_hashsize - 1; 803 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 804 i++, kh++, ih++) { 805 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 806 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 807 } 808 809 /* Source nodes. */ 810 V_pf_sources_z = uma_zcreate("pf source nodes", 811 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 812 0); 813 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 814 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 815 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 816 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 817 M_PFHASH, M_WAITOK|M_ZERO); 818 pf_srchashmask = pf_srchashsize - 1; 819 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 820 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 821 822 /* ALTQ */ 823 TAILQ_INIT(&V_pf_altqs[0]); 824 TAILQ_INIT(&V_pf_altqs[1]); 825 TAILQ_INIT(&V_pf_pabuf); 826 V_pf_altqs_active = &V_pf_altqs[0]; 827 V_pf_altqs_inactive = &V_pf_altqs[1]; 828 829 /* Send & overload+flush queues. */ 830 STAILQ_INIT(&V_pf_sendqueue); 831 SLIST_INIT(&V_pf_overloadqueue); 832 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 833 834 /* Unlinked, but may be referenced rules. */ 835 TAILQ_INIT(&V_pf_unlinked_rules); 836 } 837 838 void 839 pf_mtag_cleanup() 840 { 841 842 uma_zdestroy(pf_mtag_z); 843 } 844 845 void 846 pf_cleanup() 847 { 848 struct pf_keyhash *kh; 849 struct pf_idhash *ih; 850 struct pf_srchash *sh; 851 struct pf_send_entry *pfse, *next; 852 u_int i; 853 854 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 855 i++, kh++, ih++) { 856 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 857 __func__)); 858 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 859 __func__)); 860 mtx_destroy(&kh->lock); 861 mtx_destroy(&ih->lock); 862 } 863 free(V_pf_keyhash, M_PFHASH); 864 free(V_pf_idhash, M_PFHASH); 865 866 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 867 KASSERT(LIST_EMPTY(&sh->nodes), 868 ("%s: source node hash not empty", __func__)); 869 mtx_destroy(&sh->lock); 870 } 871 free(V_pf_srchash, M_PFHASH); 872 873 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 874 m_freem(pfse->pfse_m); 875 free(pfse, M_PFTEMP); 876 } 877 878 uma_zdestroy(V_pf_sources_z); 879 uma_zdestroy(V_pf_state_z); 880 uma_zdestroy(V_pf_state_key_z); 881 } 882 883 static int 884 pf_mtag_uminit(void *mem, int size, int how) 885 { 886 struct m_tag *t; 887 888 t = (struct m_tag *)mem; 889 t->m_tag_cookie = MTAG_ABI_COMPAT; 890 t->m_tag_id = PACKET_TAG_PF; 891 t->m_tag_len = sizeof(struct pf_mtag); 892 t->m_tag_free = pf_mtag_free; 893 894 return (0); 895 } 896 897 static void 898 pf_mtag_free(struct m_tag *t) 899 { 900 901 uma_zfree(pf_mtag_z, t); 902 } 903 904 struct pf_mtag * 905 pf_get_mtag(struct mbuf *m) 906 { 907 struct m_tag *mtag; 908 909 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 910 return ((struct pf_mtag *)(mtag + 1)); 911 912 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 913 if (mtag == NULL) 914 return (NULL); 915 bzero(mtag + 1, sizeof(struct pf_mtag)); 916 m_tag_prepend(m, mtag); 917 918 return ((struct pf_mtag *)(mtag + 1)); 919 } 920 921 static int 922 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 923 struct pf_state *s) 924 { 925 struct pf_keyhash *khs, *khw, *kh; 926 struct pf_state_key *sk, *cur; 927 struct pf_state *si, *olds = NULL; 928 int idx; 929 930 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 931 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 932 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 933 934 /* 935 * We need to lock hash slots of both keys. To avoid deadlock 936 * we always lock the slot with lower address first. Unlock order 937 * isn't important. 938 * 939 * We also need to lock ID hash slot before dropping key 940 * locks. On success we return with ID hash slot locked. 941 */ 942 943 if (skw == sks) { 944 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 945 PF_HASHROW_LOCK(khs); 946 } else { 947 khs = &V_pf_keyhash[pf_hashkey(sks)]; 948 khw = &V_pf_keyhash[pf_hashkey(skw)]; 949 if (khs == khw) { 950 PF_HASHROW_LOCK(khs); 951 } else if (khs < khw) { 952 PF_HASHROW_LOCK(khs); 953 PF_HASHROW_LOCK(khw); 954 } else { 955 PF_HASHROW_LOCK(khw); 956 PF_HASHROW_LOCK(khs); 957 } 958 } 959 960 #define KEYS_UNLOCK() do { \ 961 if (khs != khw) { \ 962 PF_HASHROW_UNLOCK(khs); \ 963 PF_HASHROW_UNLOCK(khw); \ 964 } else \ 965 PF_HASHROW_UNLOCK(khs); \ 966 } while (0) 967 968 /* 969 * First run: start with wire key. 970 */ 971 sk = skw; 972 kh = khw; 973 idx = PF_SK_WIRE; 974 975 keyattach: 976 LIST_FOREACH(cur, &kh->keys, entry) 977 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 978 break; 979 980 if (cur != NULL) { 981 /* Key exists. Check for same kif, if none, add to key. */ 982 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 983 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 984 985 PF_HASHROW_LOCK(ih); 986 if (si->kif == s->kif && 987 si->direction == s->direction) { 988 if (sk->proto == IPPROTO_TCP && 989 si->src.state >= TCPS_FIN_WAIT_2 && 990 si->dst.state >= TCPS_FIN_WAIT_2) { 991 /* 992 * New state matches an old >FIN_WAIT_2 993 * state. We can't drop key hash locks, 994 * thus we can't unlink it properly. 995 * 996 * As a workaround we drop it into 997 * TCPS_CLOSED state, schedule purge 998 * ASAP and push it into the very end 999 * of the slot TAILQ, so that it won't 1000 * conflict with our new state. 1001 */ 1002 si->src.state = si->dst.state = 1003 TCPS_CLOSED; 1004 si->timeout = PFTM_PURGE; 1005 olds = si; 1006 } else { 1007 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1008 printf("pf: %s key attach " 1009 "failed on %s: ", 1010 (idx == PF_SK_WIRE) ? 1011 "wire" : "stack", 1012 s->kif->pfik_name); 1013 pf_print_state_parts(s, 1014 (idx == PF_SK_WIRE) ? 1015 sk : NULL, 1016 (idx == PF_SK_STACK) ? 1017 sk : NULL); 1018 printf(", existing: "); 1019 pf_print_state_parts(si, 1020 (idx == PF_SK_WIRE) ? 1021 sk : NULL, 1022 (idx == PF_SK_STACK) ? 1023 sk : NULL); 1024 printf("\n"); 1025 } 1026 PF_HASHROW_UNLOCK(ih); 1027 KEYS_UNLOCK(); 1028 uma_zfree(V_pf_state_key_z, sk); 1029 if (idx == PF_SK_STACK) 1030 pf_detach_state(s); 1031 return (EEXIST); /* collision! */ 1032 } 1033 } 1034 PF_HASHROW_UNLOCK(ih); 1035 } 1036 uma_zfree(V_pf_state_key_z, sk); 1037 s->key[idx] = cur; 1038 } else { 1039 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1040 s->key[idx] = sk; 1041 } 1042 1043 stateattach: 1044 /* List is sorted, if-bound states before floating. */ 1045 if (s->kif == V_pfi_all) 1046 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1047 else 1048 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1049 1050 if (olds) { 1051 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1052 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1053 key_list[idx]); 1054 olds = NULL; 1055 } 1056 1057 /* 1058 * Attach done. See how should we (or should not?) 1059 * attach a second key. 1060 */ 1061 if (sks == skw) { 1062 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1063 idx = PF_SK_STACK; 1064 sks = NULL; 1065 goto stateattach; 1066 } else if (sks != NULL) { 1067 /* 1068 * Continue attaching with stack key. 1069 */ 1070 sk = sks; 1071 kh = khs; 1072 idx = PF_SK_STACK; 1073 sks = NULL; 1074 goto keyattach; 1075 } 1076 1077 PF_STATE_LOCK(s); 1078 KEYS_UNLOCK(); 1079 1080 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1081 ("%s failure", __func__)); 1082 1083 return (0); 1084 #undef KEYS_UNLOCK 1085 } 1086 1087 static void 1088 pf_detach_state(struct pf_state *s) 1089 { 1090 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1091 struct pf_keyhash *kh; 1092 1093 if (sks != NULL) { 1094 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1095 PF_HASHROW_LOCK(kh); 1096 if (s->key[PF_SK_STACK] != NULL) 1097 pf_state_key_detach(s, PF_SK_STACK); 1098 /* 1099 * If both point to same key, then we are done. 1100 */ 1101 if (sks == s->key[PF_SK_WIRE]) { 1102 pf_state_key_detach(s, PF_SK_WIRE); 1103 PF_HASHROW_UNLOCK(kh); 1104 return; 1105 } 1106 PF_HASHROW_UNLOCK(kh); 1107 } 1108 1109 if (s->key[PF_SK_WIRE] != NULL) { 1110 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1111 PF_HASHROW_LOCK(kh); 1112 if (s->key[PF_SK_WIRE] != NULL) 1113 pf_state_key_detach(s, PF_SK_WIRE); 1114 PF_HASHROW_UNLOCK(kh); 1115 } 1116 } 1117 1118 static void 1119 pf_state_key_detach(struct pf_state *s, int idx) 1120 { 1121 struct pf_state_key *sk = s->key[idx]; 1122 #ifdef INVARIANTS 1123 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1124 1125 PF_HASHROW_ASSERT(kh); 1126 #endif 1127 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1128 s->key[idx] = NULL; 1129 1130 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1131 LIST_REMOVE(sk, entry); 1132 uma_zfree(V_pf_state_key_z, sk); 1133 } 1134 } 1135 1136 static int 1137 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1138 { 1139 struct pf_state_key *sk = mem; 1140 1141 bzero(sk, sizeof(struct pf_state_key_cmp)); 1142 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1143 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1144 1145 return (0); 1146 } 1147 1148 struct pf_state_key * 1149 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1150 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1151 { 1152 struct pf_state_key *sk; 1153 1154 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1155 if (sk == NULL) 1156 return (NULL); 1157 1158 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1159 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1160 sk->port[pd->sidx] = sport; 1161 sk->port[pd->didx] = dport; 1162 sk->proto = pd->proto; 1163 sk->af = pd->af; 1164 1165 return (sk); 1166 } 1167 1168 struct pf_state_key * 1169 pf_state_key_clone(struct pf_state_key *orig) 1170 { 1171 struct pf_state_key *sk; 1172 1173 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1174 if (sk == NULL) 1175 return (NULL); 1176 1177 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1178 1179 return (sk); 1180 } 1181 1182 int 1183 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1184 struct pf_state_key *sks, struct pf_state *s) 1185 { 1186 struct pf_idhash *ih; 1187 struct pf_state *cur; 1188 int error; 1189 1190 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1191 ("%s: sks not pristine", __func__)); 1192 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1193 ("%s: skw not pristine", __func__)); 1194 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1195 1196 s->kif = kif; 1197 1198 if (s->id == 0 && s->creatorid == 0) { 1199 /* XXX: should be atomic, but probability of collision low */ 1200 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1201 V_pf_stateid[curcpu] = 1; 1202 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1203 s->id = htobe64(s->id); 1204 s->creatorid = V_pf_status.hostid; 1205 } 1206 1207 /* Returns with ID locked on success. */ 1208 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1209 return (error); 1210 1211 ih = &V_pf_idhash[PF_IDHASH(s)]; 1212 PF_HASHROW_ASSERT(ih); 1213 LIST_FOREACH(cur, &ih->states, entry) 1214 if (cur->id == s->id && cur->creatorid == s->creatorid) 1215 break; 1216 1217 if (cur != NULL) { 1218 PF_HASHROW_UNLOCK(ih); 1219 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1220 printf("pf: state ID collision: " 1221 "id: %016llx creatorid: %08x\n", 1222 (unsigned long long)be64toh(s->id), 1223 ntohl(s->creatorid)); 1224 } 1225 pf_detach_state(s); 1226 return (EEXIST); 1227 } 1228 LIST_INSERT_HEAD(&ih->states, s, entry); 1229 /* One for keys, one for ID hash. */ 1230 refcount_init(&s->refs, 2); 1231 1232 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1233 if (pfsync_insert_state_ptr != NULL) 1234 pfsync_insert_state_ptr(s); 1235 1236 /* Returns locked. */ 1237 return (0); 1238 } 1239 1240 /* 1241 * Find state by ID: returns with locked row on success. 1242 */ 1243 struct pf_state * 1244 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1245 { 1246 struct pf_idhash *ih; 1247 struct pf_state *s; 1248 1249 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1250 1251 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1252 1253 PF_HASHROW_LOCK(ih); 1254 LIST_FOREACH(s, &ih->states, entry) 1255 if (s->id == id && s->creatorid == creatorid) 1256 break; 1257 1258 if (s == NULL) 1259 PF_HASHROW_UNLOCK(ih); 1260 1261 return (s); 1262 } 1263 1264 /* 1265 * Find state by key. 1266 * Returns with ID hash slot locked on success. 1267 */ 1268 static struct pf_state * 1269 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1270 { 1271 struct pf_keyhash *kh; 1272 struct pf_state_key *sk; 1273 struct pf_state *s; 1274 int idx; 1275 1276 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1277 1278 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1279 1280 PF_HASHROW_LOCK(kh); 1281 LIST_FOREACH(sk, &kh->keys, entry) 1282 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1283 break; 1284 if (sk == NULL) { 1285 PF_HASHROW_UNLOCK(kh); 1286 return (NULL); 1287 } 1288 1289 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1290 1291 /* List is sorted, if-bound states before floating ones. */ 1292 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1293 if (s->kif == V_pfi_all || s->kif == kif) { 1294 PF_STATE_LOCK(s); 1295 PF_HASHROW_UNLOCK(kh); 1296 if (s->timeout >= PFTM_MAX) { 1297 /* 1298 * State is either being processed by 1299 * pf_unlink_state() in an other thread, or 1300 * is scheduled for immediate expiry. 1301 */ 1302 PF_STATE_UNLOCK(s); 1303 return (NULL); 1304 } 1305 return (s); 1306 } 1307 PF_HASHROW_UNLOCK(kh); 1308 1309 return (NULL); 1310 } 1311 1312 struct pf_state * 1313 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1314 { 1315 struct pf_keyhash *kh; 1316 struct pf_state_key *sk; 1317 struct pf_state *s, *ret = NULL; 1318 int idx, inout = 0; 1319 1320 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1321 1322 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1323 1324 PF_HASHROW_LOCK(kh); 1325 LIST_FOREACH(sk, &kh->keys, entry) 1326 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1327 break; 1328 if (sk == NULL) { 1329 PF_HASHROW_UNLOCK(kh); 1330 return (NULL); 1331 } 1332 switch (dir) { 1333 case PF_IN: 1334 idx = PF_SK_WIRE; 1335 break; 1336 case PF_OUT: 1337 idx = PF_SK_STACK; 1338 break; 1339 case PF_INOUT: 1340 idx = PF_SK_WIRE; 1341 inout = 1; 1342 break; 1343 default: 1344 panic("%s: dir %u", __func__, dir); 1345 } 1346 second_run: 1347 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1348 if (more == NULL) { 1349 PF_HASHROW_UNLOCK(kh); 1350 return (s); 1351 } 1352 1353 if (ret) 1354 (*more)++; 1355 else 1356 ret = s; 1357 } 1358 if (inout == 1) { 1359 inout = 0; 1360 idx = PF_SK_STACK; 1361 goto second_run; 1362 } 1363 PF_HASHROW_UNLOCK(kh); 1364 1365 return (ret); 1366 } 1367 1368 /* END state table stuff */ 1369 1370 static void 1371 pf_send(struct pf_send_entry *pfse) 1372 { 1373 1374 PF_SENDQ_LOCK(); 1375 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1376 PF_SENDQ_UNLOCK(); 1377 swi_sched(V_pf_swi_cookie, 0); 1378 } 1379 1380 void 1381 pf_intr(void *v) 1382 { 1383 struct pf_send_head queue; 1384 struct pf_send_entry *pfse, *next; 1385 1386 CURVNET_SET((struct vnet *)v); 1387 1388 PF_SENDQ_LOCK(); 1389 queue = V_pf_sendqueue; 1390 STAILQ_INIT(&V_pf_sendqueue); 1391 PF_SENDQ_UNLOCK(); 1392 1393 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1394 switch (pfse->pfse_type) { 1395 #ifdef INET 1396 case PFSE_IP: 1397 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1398 break; 1399 case PFSE_ICMP: 1400 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1401 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1402 break; 1403 #endif /* INET */ 1404 #ifdef INET6 1405 case PFSE_IP6: 1406 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1407 NULL); 1408 break; 1409 case PFSE_ICMP6: 1410 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1411 pfse->icmpopts.code, pfse->icmpopts.mtu); 1412 break; 1413 #endif /* INET6 */ 1414 default: 1415 panic("%s: unknown type", __func__); 1416 } 1417 free(pfse, M_PFTEMP); 1418 } 1419 CURVNET_RESTORE(); 1420 } 1421 1422 void 1423 pf_purge_thread(void *v) 1424 { 1425 u_int idx = 0; 1426 1427 CURVNET_SET((struct vnet *)v); 1428 1429 for (;;) { 1430 PF_RULES_RLOCK(); 1431 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1432 1433 if (V_pf_end_threads) { 1434 /* 1435 * To cleanse up all kifs and rules we need 1436 * two runs: first one clears reference flags, 1437 * then pf_purge_expired_states() doesn't 1438 * raise them, and then second run frees. 1439 */ 1440 PF_RULES_RUNLOCK(); 1441 pf_purge_unlinked_rules(); 1442 pfi_kif_purge(); 1443 1444 /* 1445 * Now purge everything. 1446 */ 1447 pf_purge_expired_states(0, pf_hashmask); 1448 pf_purge_expired_fragments(); 1449 pf_purge_expired_src_nodes(); 1450 1451 /* 1452 * Now all kifs & rules should be unreferenced, 1453 * thus should be successfully freed. 1454 */ 1455 pf_purge_unlinked_rules(); 1456 pfi_kif_purge(); 1457 1458 /* 1459 * Announce success and exit. 1460 */ 1461 PF_RULES_RLOCK(); 1462 V_pf_end_threads++; 1463 PF_RULES_RUNLOCK(); 1464 wakeup(pf_purge_thread); 1465 kproc_exit(0); 1466 } 1467 PF_RULES_RUNLOCK(); 1468 1469 /* Process 1/interval fraction of the state table every run. */ 1470 idx = pf_purge_expired_states(idx, pf_hashmask / 1471 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1472 1473 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1474 if (idx == 0) { 1475 /* 1476 * Order is important: 1477 * - states and src nodes reference rules 1478 * - states and rules reference kifs 1479 */ 1480 pf_purge_expired_fragments(); 1481 pf_purge_expired_src_nodes(); 1482 pf_purge_unlinked_rules(); 1483 pfi_kif_purge(); 1484 } 1485 } 1486 /* not reached */ 1487 CURVNET_RESTORE(); 1488 } 1489 1490 u_int32_t 1491 pf_state_expires(const struct pf_state *state) 1492 { 1493 u_int32_t timeout; 1494 u_int32_t start; 1495 u_int32_t end; 1496 u_int32_t states; 1497 1498 /* handle all PFTM_* > PFTM_MAX here */ 1499 if (state->timeout == PFTM_PURGE) 1500 return (time_uptime); 1501 KASSERT(state->timeout != PFTM_UNLINKED, 1502 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1503 KASSERT((state->timeout < PFTM_MAX), 1504 ("pf_state_expires: timeout > PFTM_MAX")); 1505 timeout = state->rule.ptr->timeout[state->timeout]; 1506 if (!timeout) 1507 timeout = V_pf_default_rule.timeout[state->timeout]; 1508 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1509 if (start) { 1510 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1511 states = counter_u64_fetch(state->rule.ptr->states_cur); 1512 } else { 1513 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1514 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1515 states = V_pf_status.states; 1516 } 1517 if (end && states > start && start < end) { 1518 if (states < end) 1519 return (state->expire + timeout * (end - states) / 1520 (end - start)); 1521 else 1522 return (time_uptime); 1523 } 1524 return (state->expire + timeout); 1525 } 1526 1527 void 1528 pf_purge_expired_src_nodes() 1529 { 1530 struct pf_src_node_list freelist; 1531 struct pf_srchash *sh; 1532 struct pf_src_node *cur, *next; 1533 int i; 1534 1535 LIST_INIT(&freelist); 1536 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1537 PF_HASHROW_LOCK(sh); 1538 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1539 if (cur->states == 0 && cur->expire <= time_uptime) { 1540 pf_unlink_src_node(cur); 1541 LIST_INSERT_HEAD(&freelist, cur, entry); 1542 } else if (cur->rule.ptr != NULL) 1543 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1544 PF_HASHROW_UNLOCK(sh); 1545 } 1546 1547 pf_free_src_nodes(&freelist); 1548 1549 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1550 } 1551 1552 static void 1553 pf_src_tree_remove_state(struct pf_state *s) 1554 { 1555 struct pf_src_node *sn; 1556 struct pf_srchash *sh; 1557 uint32_t timeout; 1558 1559 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1560 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1561 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1562 1563 if (s->src_node != NULL) { 1564 sn = s->src_node; 1565 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1566 PF_HASHROW_LOCK(sh); 1567 if (s->src.tcp_est) 1568 --sn->conn; 1569 if (--sn->states == 0) 1570 sn->expire = time_uptime + timeout; 1571 PF_HASHROW_UNLOCK(sh); 1572 } 1573 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1574 sn = s->nat_src_node; 1575 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1576 PF_HASHROW_LOCK(sh); 1577 if (--sn->states == 0) 1578 sn->expire = time_uptime + timeout; 1579 PF_HASHROW_UNLOCK(sh); 1580 } 1581 s->src_node = s->nat_src_node = NULL; 1582 } 1583 1584 /* 1585 * Unlink and potentilly free a state. Function may be 1586 * called with ID hash row locked, but always returns 1587 * unlocked, since it needs to go through key hash locking. 1588 */ 1589 int 1590 pf_unlink_state(struct pf_state *s, u_int flags) 1591 { 1592 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1593 1594 if ((flags & PF_ENTER_LOCKED) == 0) 1595 PF_HASHROW_LOCK(ih); 1596 else 1597 PF_HASHROW_ASSERT(ih); 1598 1599 if (s->timeout == PFTM_UNLINKED) { 1600 /* 1601 * State is being processed 1602 * by pf_unlink_state() in 1603 * an other thread. 1604 */ 1605 PF_HASHROW_UNLOCK(ih); 1606 return (0); /* XXXGL: undefined actually */ 1607 } 1608 1609 if (s->src.state == PF_TCPS_PROXY_DST) { 1610 /* XXX wire key the right one? */ 1611 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1612 &s->key[PF_SK_WIRE]->addr[1], 1613 &s->key[PF_SK_WIRE]->addr[0], 1614 s->key[PF_SK_WIRE]->port[1], 1615 s->key[PF_SK_WIRE]->port[0], 1616 s->src.seqhi, s->src.seqlo + 1, 1617 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1618 } 1619 1620 LIST_REMOVE(s, entry); 1621 pf_src_tree_remove_state(s); 1622 1623 if (pfsync_delete_state_ptr != NULL) 1624 pfsync_delete_state_ptr(s); 1625 1626 STATE_DEC_COUNTERS(s); 1627 1628 s->timeout = PFTM_UNLINKED; 1629 1630 PF_HASHROW_UNLOCK(ih); 1631 1632 pf_detach_state(s); 1633 refcount_release(&s->refs); 1634 1635 return (pf_release_state(s)); 1636 } 1637 1638 void 1639 pf_free_state(struct pf_state *cur) 1640 { 1641 1642 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1643 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1644 cur->timeout)); 1645 1646 pf_normalize_tcp_cleanup(cur); 1647 uma_zfree(V_pf_state_z, cur); 1648 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1649 } 1650 1651 /* 1652 * Called only from pf_purge_thread(), thus serialized. 1653 */ 1654 static u_int 1655 pf_purge_expired_states(u_int i, int maxcheck) 1656 { 1657 struct pf_idhash *ih; 1658 struct pf_state *s; 1659 1660 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1661 1662 /* 1663 * Go through hash and unlink states that expire now. 1664 */ 1665 while (maxcheck > 0) { 1666 1667 ih = &V_pf_idhash[i]; 1668 relock: 1669 PF_HASHROW_LOCK(ih); 1670 LIST_FOREACH(s, &ih->states, entry) { 1671 if (pf_state_expires(s) <= time_uptime) { 1672 V_pf_status.states -= 1673 pf_unlink_state(s, PF_ENTER_LOCKED); 1674 goto relock; 1675 } 1676 s->rule.ptr->rule_flag |= PFRULE_REFS; 1677 if (s->nat_rule.ptr != NULL) 1678 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1679 if (s->anchor.ptr != NULL) 1680 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1681 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1682 if (s->rt_kif) 1683 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1684 } 1685 PF_HASHROW_UNLOCK(ih); 1686 1687 /* Return when we hit end of hash. */ 1688 if (++i > pf_hashmask) { 1689 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1690 return (0); 1691 } 1692 1693 maxcheck--; 1694 } 1695 1696 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1697 1698 return (i); 1699 } 1700 1701 static void 1702 pf_purge_unlinked_rules() 1703 { 1704 struct pf_rulequeue tmpq; 1705 struct pf_rule *r, *r1; 1706 1707 /* 1708 * If we have overloading task pending, then we'd 1709 * better skip purging this time. There is a tiny 1710 * probability that overloading task references 1711 * an already unlinked rule. 1712 */ 1713 PF_OVERLOADQ_LOCK(); 1714 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1715 PF_OVERLOADQ_UNLOCK(); 1716 return; 1717 } 1718 PF_OVERLOADQ_UNLOCK(); 1719 1720 /* 1721 * Do naive mark-and-sweep garbage collecting of old rules. 1722 * Reference flag is raised by pf_purge_expired_states() 1723 * and pf_purge_expired_src_nodes(). 1724 * 1725 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1726 * use a temporary queue. 1727 */ 1728 TAILQ_INIT(&tmpq); 1729 PF_UNLNKDRULES_LOCK(); 1730 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1731 if (!(r->rule_flag & PFRULE_REFS)) { 1732 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1733 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1734 } else 1735 r->rule_flag &= ~PFRULE_REFS; 1736 } 1737 PF_UNLNKDRULES_UNLOCK(); 1738 1739 if (!TAILQ_EMPTY(&tmpq)) { 1740 PF_RULES_WLOCK(); 1741 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1742 TAILQ_REMOVE(&tmpq, r, entries); 1743 pf_free_rule(r); 1744 } 1745 PF_RULES_WUNLOCK(); 1746 } 1747 } 1748 1749 void 1750 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1751 { 1752 switch (af) { 1753 #ifdef INET 1754 case AF_INET: { 1755 u_int32_t a = ntohl(addr->addr32[0]); 1756 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1757 (a>>8)&255, a&255); 1758 if (p) { 1759 p = ntohs(p); 1760 printf(":%u", p); 1761 } 1762 break; 1763 } 1764 #endif /* INET */ 1765 #ifdef INET6 1766 case AF_INET6: { 1767 u_int16_t b; 1768 u_int8_t i, curstart, curend, maxstart, maxend; 1769 curstart = curend = maxstart = maxend = 255; 1770 for (i = 0; i < 8; i++) { 1771 if (!addr->addr16[i]) { 1772 if (curstart == 255) 1773 curstart = i; 1774 curend = i; 1775 } else { 1776 if ((curend - curstart) > 1777 (maxend - maxstart)) { 1778 maxstart = curstart; 1779 maxend = curend; 1780 } 1781 curstart = curend = 255; 1782 } 1783 } 1784 if ((curend - curstart) > 1785 (maxend - maxstart)) { 1786 maxstart = curstart; 1787 maxend = curend; 1788 } 1789 for (i = 0; i < 8; i++) { 1790 if (i >= maxstart && i <= maxend) { 1791 if (i == 0) 1792 printf(":"); 1793 if (i == maxend) 1794 printf(":"); 1795 } else { 1796 b = ntohs(addr->addr16[i]); 1797 printf("%x", b); 1798 if (i < 7) 1799 printf(":"); 1800 } 1801 } 1802 if (p) { 1803 p = ntohs(p); 1804 printf("[%u]", p); 1805 } 1806 break; 1807 } 1808 #endif /* INET6 */ 1809 } 1810 } 1811 1812 void 1813 pf_print_state(struct pf_state *s) 1814 { 1815 pf_print_state_parts(s, NULL, NULL); 1816 } 1817 1818 static void 1819 pf_print_state_parts(struct pf_state *s, 1820 struct pf_state_key *skwp, struct pf_state_key *sksp) 1821 { 1822 struct pf_state_key *skw, *sks; 1823 u_int8_t proto, dir; 1824 1825 /* Do our best to fill these, but they're skipped if NULL */ 1826 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1827 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1828 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1829 dir = s ? s->direction : 0; 1830 1831 switch (proto) { 1832 case IPPROTO_IPV4: 1833 printf("IPv4"); 1834 break; 1835 case IPPROTO_IPV6: 1836 printf("IPv6"); 1837 break; 1838 case IPPROTO_TCP: 1839 printf("TCP"); 1840 break; 1841 case IPPROTO_UDP: 1842 printf("UDP"); 1843 break; 1844 case IPPROTO_ICMP: 1845 printf("ICMP"); 1846 break; 1847 case IPPROTO_ICMPV6: 1848 printf("ICMPv6"); 1849 break; 1850 default: 1851 printf("%u", proto); 1852 break; 1853 } 1854 switch (dir) { 1855 case PF_IN: 1856 printf(" in"); 1857 break; 1858 case PF_OUT: 1859 printf(" out"); 1860 break; 1861 } 1862 if (skw) { 1863 printf(" wire: "); 1864 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1865 printf(" "); 1866 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1867 } 1868 if (sks) { 1869 printf(" stack: "); 1870 if (sks != skw) { 1871 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1872 printf(" "); 1873 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1874 } else 1875 printf("-"); 1876 } 1877 if (s) { 1878 if (proto == IPPROTO_TCP) { 1879 printf(" [lo=%u high=%u win=%u modulator=%u", 1880 s->src.seqlo, s->src.seqhi, 1881 s->src.max_win, s->src.seqdiff); 1882 if (s->src.wscale && s->dst.wscale) 1883 printf(" wscale=%u", 1884 s->src.wscale & PF_WSCALE_MASK); 1885 printf("]"); 1886 printf(" [lo=%u high=%u win=%u modulator=%u", 1887 s->dst.seqlo, s->dst.seqhi, 1888 s->dst.max_win, s->dst.seqdiff); 1889 if (s->src.wscale && s->dst.wscale) 1890 printf(" wscale=%u", 1891 s->dst.wscale & PF_WSCALE_MASK); 1892 printf("]"); 1893 } 1894 printf(" %u:%u", s->src.state, s->dst.state); 1895 } 1896 } 1897 1898 void 1899 pf_print_flags(u_int8_t f) 1900 { 1901 if (f) 1902 printf(" "); 1903 if (f & TH_FIN) 1904 printf("F"); 1905 if (f & TH_SYN) 1906 printf("S"); 1907 if (f & TH_RST) 1908 printf("R"); 1909 if (f & TH_PUSH) 1910 printf("P"); 1911 if (f & TH_ACK) 1912 printf("A"); 1913 if (f & TH_URG) 1914 printf("U"); 1915 if (f & TH_ECE) 1916 printf("E"); 1917 if (f & TH_CWR) 1918 printf("W"); 1919 } 1920 1921 #define PF_SET_SKIP_STEPS(i) \ 1922 do { \ 1923 while (head[i] != cur) { \ 1924 head[i]->skip[i].ptr = cur; \ 1925 head[i] = TAILQ_NEXT(head[i], entries); \ 1926 } \ 1927 } while (0) 1928 1929 void 1930 pf_calc_skip_steps(struct pf_rulequeue *rules) 1931 { 1932 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1933 int i; 1934 1935 cur = TAILQ_FIRST(rules); 1936 prev = cur; 1937 for (i = 0; i < PF_SKIP_COUNT; ++i) 1938 head[i] = cur; 1939 while (cur != NULL) { 1940 1941 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1942 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1943 if (cur->direction != prev->direction) 1944 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1945 if (cur->af != prev->af) 1946 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1947 if (cur->proto != prev->proto) 1948 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1949 if (cur->src.neg != prev->src.neg || 1950 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1951 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1952 if (cur->src.port[0] != prev->src.port[0] || 1953 cur->src.port[1] != prev->src.port[1] || 1954 cur->src.port_op != prev->src.port_op) 1955 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1956 if (cur->dst.neg != prev->dst.neg || 1957 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1958 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1959 if (cur->dst.port[0] != prev->dst.port[0] || 1960 cur->dst.port[1] != prev->dst.port[1] || 1961 cur->dst.port_op != prev->dst.port_op) 1962 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1963 1964 prev = cur; 1965 cur = TAILQ_NEXT(cur, entries); 1966 } 1967 for (i = 0; i < PF_SKIP_COUNT; ++i) 1968 PF_SET_SKIP_STEPS(i); 1969 } 1970 1971 static int 1972 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1973 { 1974 if (aw1->type != aw2->type) 1975 return (1); 1976 switch (aw1->type) { 1977 case PF_ADDR_ADDRMASK: 1978 case PF_ADDR_RANGE: 1979 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 1980 return (1); 1981 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 1982 return (1); 1983 return (0); 1984 case PF_ADDR_DYNIFTL: 1985 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1986 case PF_ADDR_NOROUTE: 1987 case PF_ADDR_URPFFAILED: 1988 return (0); 1989 case PF_ADDR_TABLE: 1990 return (aw1->p.tbl != aw2->p.tbl); 1991 default: 1992 printf("invalid address type: %d\n", aw1->type); 1993 return (1); 1994 } 1995 } 1996 1997 /** 1998 * Checksum updates are a little complicated because the checksum in the TCP/UDP 1999 * header isn't always a full checksum. In some cases (i.e. output) it's a 2000 * pseudo-header checksum, which is a partial checksum over src/dst IP 2001 * addresses, protocol number and length. 2002 * 2003 * That means we have the following cases: 2004 * * Input or forwarding: we don't have TSO, the checksum fields are full 2005 * checksums, we need to update the checksum whenever we change anything. 2006 * * Output (i.e. the checksum is a pseudo-header checksum): 2007 * x The field being updated is src/dst address or affects the length of 2008 * the packet. We need to update the pseudo-header checksum (note that this 2009 * checksum is not ones' complement). 2010 * x Some other field is being modified (e.g. src/dst port numbers): We 2011 * don't have to update anything. 2012 **/ 2013 u_int16_t 2014 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2015 { 2016 u_int32_t l; 2017 2018 if (udp && !cksum) 2019 return (0x0000); 2020 l = cksum + old - new; 2021 l = (l >> 16) + (l & 65535); 2022 l = l & 65535; 2023 if (udp && !l) 2024 return (0xFFFF); 2025 return (l); 2026 } 2027 2028 u_int16_t 2029 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2030 u_int16_t new, u_int8_t udp) 2031 { 2032 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2033 return (cksum); 2034 2035 return (pf_cksum_fixup(cksum, old, new, udp)); 2036 } 2037 2038 static void 2039 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2040 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2041 sa_family_t af) 2042 { 2043 struct pf_addr ao; 2044 u_int16_t po = *p; 2045 2046 PF_ACPY(&ao, a, af); 2047 PF_ACPY(a, an, af); 2048 2049 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2050 *pc = ~*pc; 2051 2052 *p = pn; 2053 2054 switch (af) { 2055 #ifdef INET 2056 case AF_INET: 2057 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2058 ao.addr16[0], an->addr16[0], 0), 2059 ao.addr16[1], an->addr16[1], 0); 2060 *p = pn; 2061 2062 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2063 ao.addr16[0], an->addr16[0], u), 2064 ao.addr16[1], an->addr16[1], u); 2065 2066 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2067 break; 2068 #endif /* INET */ 2069 #ifdef INET6 2070 case AF_INET6: 2071 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2072 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2073 pf_cksum_fixup(pf_cksum_fixup(*pc, 2074 ao.addr16[0], an->addr16[0], u), 2075 ao.addr16[1], an->addr16[1], u), 2076 ao.addr16[2], an->addr16[2], u), 2077 ao.addr16[3], an->addr16[3], u), 2078 ao.addr16[4], an->addr16[4], u), 2079 ao.addr16[5], an->addr16[5], u), 2080 ao.addr16[6], an->addr16[6], u), 2081 ao.addr16[7], an->addr16[7], u); 2082 2083 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2084 break; 2085 #endif /* INET6 */ 2086 } 2087 2088 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2089 CSUM_DELAY_DATA_IPV6)) { 2090 *pc = ~*pc; 2091 if (! *pc) 2092 *pc = 0xffff; 2093 } 2094 } 2095 2096 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2097 void 2098 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2099 { 2100 u_int32_t ao; 2101 2102 memcpy(&ao, a, sizeof(ao)); 2103 memcpy(a, &an, sizeof(u_int32_t)); 2104 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2105 ao % 65536, an % 65536, u); 2106 } 2107 2108 void 2109 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2110 { 2111 u_int32_t ao; 2112 2113 memcpy(&ao, a, sizeof(ao)); 2114 memcpy(a, &an, sizeof(u_int32_t)); 2115 2116 *c = pf_proto_cksum_fixup(m, 2117 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2118 ao % 65536, an % 65536, udp); 2119 } 2120 2121 #ifdef INET6 2122 static void 2123 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2124 { 2125 struct pf_addr ao; 2126 2127 PF_ACPY(&ao, a, AF_INET6); 2128 PF_ACPY(a, an, AF_INET6); 2129 2130 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2131 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2132 pf_cksum_fixup(pf_cksum_fixup(*c, 2133 ao.addr16[0], an->addr16[0], u), 2134 ao.addr16[1], an->addr16[1], u), 2135 ao.addr16[2], an->addr16[2], u), 2136 ao.addr16[3], an->addr16[3], u), 2137 ao.addr16[4], an->addr16[4], u), 2138 ao.addr16[5], an->addr16[5], u), 2139 ao.addr16[6], an->addr16[6], u), 2140 ao.addr16[7], an->addr16[7], u); 2141 } 2142 #endif /* INET6 */ 2143 2144 static void 2145 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2146 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2147 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2148 { 2149 struct pf_addr oia, ooa; 2150 2151 PF_ACPY(&oia, ia, af); 2152 if (oa) 2153 PF_ACPY(&ooa, oa, af); 2154 2155 /* Change inner protocol port, fix inner protocol checksum. */ 2156 if (ip != NULL) { 2157 u_int16_t oip = *ip; 2158 u_int32_t opc; 2159 2160 if (pc != NULL) 2161 opc = *pc; 2162 *ip = np; 2163 if (pc != NULL) 2164 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2165 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2166 if (pc != NULL) 2167 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2168 } 2169 /* Change inner ip address, fix inner ip and icmp checksums. */ 2170 PF_ACPY(ia, na, af); 2171 switch (af) { 2172 #ifdef INET 2173 case AF_INET: { 2174 u_int32_t oh2c = *h2c; 2175 2176 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2177 oia.addr16[0], ia->addr16[0], 0), 2178 oia.addr16[1], ia->addr16[1], 0); 2179 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2180 oia.addr16[0], ia->addr16[0], 0), 2181 oia.addr16[1], ia->addr16[1], 0); 2182 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2183 break; 2184 } 2185 #endif /* INET */ 2186 #ifdef INET6 2187 case AF_INET6: 2188 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2189 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2190 pf_cksum_fixup(pf_cksum_fixup(*ic, 2191 oia.addr16[0], ia->addr16[0], u), 2192 oia.addr16[1], ia->addr16[1], u), 2193 oia.addr16[2], ia->addr16[2], u), 2194 oia.addr16[3], ia->addr16[3], u), 2195 oia.addr16[4], ia->addr16[4], u), 2196 oia.addr16[5], ia->addr16[5], u), 2197 oia.addr16[6], ia->addr16[6], u), 2198 oia.addr16[7], ia->addr16[7], u); 2199 break; 2200 #endif /* INET6 */ 2201 } 2202 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2203 if (oa) { 2204 PF_ACPY(oa, na, af); 2205 switch (af) { 2206 #ifdef INET 2207 case AF_INET: 2208 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2209 ooa.addr16[0], oa->addr16[0], 0), 2210 ooa.addr16[1], oa->addr16[1], 0); 2211 break; 2212 #endif /* INET */ 2213 #ifdef INET6 2214 case AF_INET6: 2215 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2216 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2217 pf_cksum_fixup(pf_cksum_fixup(*ic, 2218 ooa.addr16[0], oa->addr16[0], u), 2219 ooa.addr16[1], oa->addr16[1], u), 2220 ooa.addr16[2], oa->addr16[2], u), 2221 ooa.addr16[3], oa->addr16[3], u), 2222 ooa.addr16[4], oa->addr16[4], u), 2223 ooa.addr16[5], oa->addr16[5], u), 2224 ooa.addr16[6], oa->addr16[6], u), 2225 ooa.addr16[7], oa->addr16[7], u); 2226 break; 2227 #endif /* INET6 */ 2228 } 2229 } 2230 } 2231 2232 2233 /* 2234 * Need to modulate the sequence numbers in the TCP SACK option 2235 * (credits to Krzysztof Pfaff for report and patch) 2236 */ 2237 static int 2238 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2239 struct tcphdr *th, struct pf_state_peer *dst) 2240 { 2241 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2242 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2243 int copyback = 0, i, olen; 2244 struct sackblk sack; 2245 2246 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2247 if (hlen < TCPOLEN_SACKLEN || 2248 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2249 return 0; 2250 2251 while (hlen >= TCPOLEN_SACKLEN) { 2252 olen = opt[1]; 2253 switch (*opt) { 2254 case TCPOPT_EOL: /* FALLTHROUGH */ 2255 case TCPOPT_NOP: 2256 opt++; 2257 hlen--; 2258 break; 2259 case TCPOPT_SACK: 2260 if (olen > hlen) 2261 olen = hlen; 2262 if (olen >= TCPOLEN_SACKLEN) { 2263 for (i = 2; i + TCPOLEN_SACK <= olen; 2264 i += TCPOLEN_SACK) { 2265 memcpy(&sack, &opt[i], sizeof(sack)); 2266 pf_change_proto_a(m, &sack.start, &th->th_sum, 2267 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2268 pf_change_proto_a(m, &sack.end, &th->th_sum, 2269 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2270 memcpy(&opt[i], &sack, sizeof(sack)); 2271 } 2272 copyback = 1; 2273 } 2274 /* FALLTHROUGH */ 2275 default: 2276 if (olen < 2) 2277 olen = 2; 2278 hlen -= olen; 2279 opt += olen; 2280 } 2281 } 2282 2283 if (copyback) 2284 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2285 return (copyback); 2286 } 2287 2288 static void 2289 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2290 const struct pf_addr *saddr, const struct pf_addr *daddr, 2291 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2292 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2293 u_int16_t rtag, struct ifnet *ifp) 2294 { 2295 struct pf_send_entry *pfse; 2296 struct mbuf *m; 2297 int len, tlen; 2298 #ifdef INET 2299 struct ip *h = NULL; 2300 #endif /* INET */ 2301 #ifdef INET6 2302 struct ip6_hdr *h6 = NULL; 2303 #endif /* INET6 */ 2304 struct tcphdr *th; 2305 char *opt; 2306 struct pf_mtag *pf_mtag; 2307 2308 len = 0; 2309 th = NULL; 2310 2311 /* maximum segment size tcp option */ 2312 tlen = sizeof(struct tcphdr); 2313 if (mss) 2314 tlen += 4; 2315 2316 switch (af) { 2317 #ifdef INET 2318 case AF_INET: 2319 len = sizeof(struct ip) + tlen; 2320 break; 2321 #endif /* INET */ 2322 #ifdef INET6 2323 case AF_INET6: 2324 len = sizeof(struct ip6_hdr) + tlen; 2325 break; 2326 #endif /* INET6 */ 2327 default: 2328 panic("%s: unsupported af %d", __func__, af); 2329 } 2330 2331 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2332 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2333 if (pfse == NULL) 2334 return; 2335 m = m_gethdr(M_NOWAIT, MT_DATA); 2336 if (m == NULL) { 2337 free(pfse, M_PFTEMP); 2338 return; 2339 } 2340 #ifdef MAC 2341 mac_netinet_firewall_send(m); 2342 #endif 2343 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2344 free(pfse, M_PFTEMP); 2345 m_freem(m); 2346 return; 2347 } 2348 if (tag) 2349 m->m_flags |= M_SKIP_FIREWALL; 2350 pf_mtag->tag = rtag; 2351 2352 if (r != NULL && r->rtableid >= 0) 2353 M_SETFIB(m, r->rtableid); 2354 2355 #ifdef ALTQ 2356 if (r != NULL && r->qid) { 2357 pf_mtag->qid = r->qid; 2358 2359 /* add hints for ecn */ 2360 pf_mtag->hdr = mtod(m, struct ip *); 2361 } 2362 #endif /* ALTQ */ 2363 m->m_data += max_linkhdr; 2364 m->m_pkthdr.len = m->m_len = len; 2365 m->m_pkthdr.rcvif = NULL; 2366 bzero(m->m_data, len); 2367 switch (af) { 2368 #ifdef INET 2369 case AF_INET: 2370 h = mtod(m, struct ip *); 2371 2372 /* IP header fields included in the TCP checksum */ 2373 h->ip_p = IPPROTO_TCP; 2374 h->ip_len = htons(tlen); 2375 h->ip_src.s_addr = saddr->v4.s_addr; 2376 h->ip_dst.s_addr = daddr->v4.s_addr; 2377 2378 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2379 break; 2380 #endif /* INET */ 2381 #ifdef INET6 2382 case AF_INET6: 2383 h6 = mtod(m, struct ip6_hdr *); 2384 2385 /* IP header fields included in the TCP checksum */ 2386 h6->ip6_nxt = IPPROTO_TCP; 2387 h6->ip6_plen = htons(tlen); 2388 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2389 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2390 2391 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2392 break; 2393 #endif /* INET6 */ 2394 } 2395 2396 /* TCP header */ 2397 th->th_sport = sport; 2398 th->th_dport = dport; 2399 th->th_seq = htonl(seq); 2400 th->th_ack = htonl(ack); 2401 th->th_off = tlen >> 2; 2402 th->th_flags = flags; 2403 th->th_win = htons(win); 2404 2405 if (mss) { 2406 opt = (char *)(th + 1); 2407 opt[0] = TCPOPT_MAXSEG; 2408 opt[1] = 4; 2409 HTONS(mss); 2410 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2411 } 2412 2413 switch (af) { 2414 #ifdef INET 2415 case AF_INET: 2416 /* TCP checksum */ 2417 th->th_sum = in_cksum(m, len); 2418 2419 /* Finish the IP header */ 2420 h->ip_v = 4; 2421 h->ip_hl = sizeof(*h) >> 2; 2422 h->ip_tos = IPTOS_LOWDELAY; 2423 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2424 h->ip_len = htons(len); 2425 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2426 h->ip_sum = 0; 2427 2428 pfse->pfse_type = PFSE_IP; 2429 break; 2430 #endif /* INET */ 2431 #ifdef INET6 2432 case AF_INET6: 2433 /* TCP checksum */ 2434 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2435 sizeof(struct ip6_hdr), tlen); 2436 2437 h6->ip6_vfc |= IPV6_VERSION; 2438 h6->ip6_hlim = IPV6_DEFHLIM; 2439 2440 pfse->pfse_type = PFSE_IP6; 2441 break; 2442 #endif /* INET6 */ 2443 } 2444 pfse->pfse_m = m; 2445 pf_send(pfse); 2446 } 2447 2448 static void 2449 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2450 struct pf_rule *r) 2451 { 2452 struct pf_send_entry *pfse; 2453 struct mbuf *m0; 2454 struct pf_mtag *pf_mtag; 2455 2456 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2457 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2458 if (pfse == NULL) 2459 return; 2460 2461 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2462 free(pfse, M_PFTEMP); 2463 return; 2464 } 2465 2466 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2467 free(pfse, M_PFTEMP); 2468 return; 2469 } 2470 /* XXX: revisit */ 2471 m0->m_flags |= M_SKIP_FIREWALL; 2472 2473 if (r->rtableid >= 0) 2474 M_SETFIB(m0, r->rtableid); 2475 2476 #ifdef ALTQ 2477 if (r->qid) { 2478 pf_mtag->qid = r->qid; 2479 /* add hints for ecn */ 2480 pf_mtag->hdr = mtod(m0, struct ip *); 2481 } 2482 #endif /* ALTQ */ 2483 2484 switch (af) { 2485 #ifdef INET 2486 case AF_INET: 2487 pfse->pfse_type = PFSE_ICMP; 2488 break; 2489 #endif /* INET */ 2490 #ifdef INET6 2491 case AF_INET6: 2492 pfse->pfse_type = PFSE_ICMP6; 2493 break; 2494 #endif /* INET6 */ 2495 } 2496 pfse->pfse_m = m0; 2497 pfse->icmpopts.type = type; 2498 pfse->icmpopts.code = code; 2499 pf_send(pfse); 2500 } 2501 2502 /* 2503 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2504 * If n is 0, they match if they are equal. If n is != 0, they match if they 2505 * are different. 2506 */ 2507 int 2508 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2509 struct pf_addr *b, sa_family_t af) 2510 { 2511 int match = 0; 2512 2513 switch (af) { 2514 #ifdef INET 2515 case AF_INET: 2516 if ((a->addr32[0] & m->addr32[0]) == 2517 (b->addr32[0] & m->addr32[0])) 2518 match++; 2519 break; 2520 #endif /* INET */ 2521 #ifdef INET6 2522 case AF_INET6: 2523 if (((a->addr32[0] & m->addr32[0]) == 2524 (b->addr32[0] & m->addr32[0])) && 2525 ((a->addr32[1] & m->addr32[1]) == 2526 (b->addr32[1] & m->addr32[1])) && 2527 ((a->addr32[2] & m->addr32[2]) == 2528 (b->addr32[2] & m->addr32[2])) && 2529 ((a->addr32[3] & m->addr32[3]) == 2530 (b->addr32[3] & m->addr32[3]))) 2531 match++; 2532 break; 2533 #endif /* INET6 */ 2534 } 2535 if (match) { 2536 if (n) 2537 return (0); 2538 else 2539 return (1); 2540 } else { 2541 if (n) 2542 return (1); 2543 else 2544 return (0); 2545 } 2546 } 2547 2548 /* 2549 * Return 1 if b <= a <= e, otherwise return 0. 2550 */ 2551 int 2552 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2553 struct pf_addr *a, sa_family_t af) 2554 { 2555 switch (af) { 2556 #ifdef INET 2557 case AF_INET: 2558 if ((a->addr32[0] < b->addr32[0]) || 2559 (a->addr32[0] > e->addr32[0])) 2560 return (0); 2561 break; 2562 #endif /* INET */ 2563 #ifdef INET6 2564 case AF_INET6: { 2565 int i; 2566 2567 /* check a >= b */ 2568 for (i = 0; i < 4; ++i) 2569 if (a->addr32[i] > b->addr32[i]) 2570 break; 2571 else if (a->addr32[i] < b->addr32[i]) 2572 return (0); 2573 /* check a <= e */ 2574 for (i = 0; i < 4; ++i) 2575 if (a->addr32[i] < e->addr32[i]) 2576 break; 2577 else if (a->addr32[i] > e->addr32[i]) 2578 return (0); 2579 break; 2580 } 2581 #endif /* INET6 */ 2582 } 2583 return (1); 2584 } 2585 2586 static int 2587 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2588 { 2589 switch (op) { 2590 case PF_OP_IRG: 2591 return ((p > a1) && (p < a2)); 2592 case PF_OP_XRG: 2593 return ((p < a1) || (p > a2)); 2594 case PF_OP_RRG: 2595 return ((p >= a1) && (p <= a2)); 2596 case PF_OP_EQ: 2597 return (p == a1); 2598 case PF_OP_NE: 2599 return (p != a1); 2600 case PF_OP_LT: 2601 return (p < a1); 2602 case PF_OP_LE: 2603 return (p <= a1); 2604 case PF_OP_GT: 2605 return (p > a1); 2606 case PF_OP_GE: 2607 return (p >= a1); 2608 } 2609 return (0); /* never reached */ 2610 } 2611 2612 int 2613 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2614 { 2615 NTOHS(a1); 2616 NTOHS(a2); 2617 NTOHS(p); 2618 return (pf_match(op, a1, a2, p)); 2619 } 2620 2621 static int 2622 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2623 { 2624 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2625 return (0); 2626 return (pf_match(op, a1, a2, u)); 2627 } 2628 2629 static int 2630 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2631 { 2632 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2633 return (0); 2634 return (pf_match(op, a1, a2, g)); 2635 } 2636 2637 int 2638 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2639 { 2640 if (*tag == -1) 2641 *tag = mtag; 2642 2643 return ((!r->match_tag_not && r->match_tag == *tag) || 2644 (r->match_tag_not && r->match_tag != *tag)); 2645 } 2646 2647 int 2648 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2649 { 2650 2651 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2652 2653 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2654 return (ENOMEM); 2655 2656 pd->pf_mtag->tag = tag; 2657 2658 return (0); 2659 } 2660 2661 #define PF_ANCHOR_STACKSIZE 32 2662 struct pf_anchor_stackframe { 2663 struct pf_ruleset *rs; 2664 struct pf_rule *r; /* XXX: + match bit */ 2665 struct pf_anchor *child; 2666 }; 2667 2668 /* 2669 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2670 */ 2671 #define PF_ANCHORSTACK_MATCH 0x00000001 2672 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2673 2674 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2675 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2676 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2677 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2678 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2679 } while (0) 2680 2681 void 2682 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2683 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2684 int *match) 2685 { 2686 struct pf_anchor_stackframe *f; 2687 2688 PF_RULES_RASSERT(); 2689 2690 if (match) 2691 *match = 0; 2692 if (*depth >= PF_ANCHOR_STACKSIZE) { 2693 printf("%s: anchor stack overflow on %s\n", 2694 __func__, (*r)->anchor->name); 2695 *r = TAILQ_NEXT(*r, entries); 2696 return; 2697 } else if (*depth == 0 && a != NULL) 2698 *a = *r; 2699 f = stack + (*depth)++; 2700 f->rs = *rs; 2701 f->r = *r; 2702 if ((*r)->anchor_wildcard) { 2703 struct pf_anchor_node *parent = &(*r)->anchor->children; 2704 2705 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2706 *r = NULL; 2707 return; 2708 } 2709 *rs = &f->child->ruleset; 2710 } else { 2711 f->child = NULL; 2712 *rs = &(*r)->anchor->ruleset; 2713 } 2714 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2715 } 2716 2717 int 2718 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2719 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2720 int *match) 2721 { 2722 struct pf_anchor_stackframe *f; 2723 struct pf_rule *fr; 2724 int quick = 0; 2725 2726 PF_RULES_RASSERT(); 2727 2728 do { 2729 if (*depth <= 0) 2730 break; 2731 f = stack + *depth - 1; 2732 fr = PF_ANCHOR_RULE(f); 2733 if (f->child != NULL) { 2734 struct pf_anchor_node *parent; 2735 2736 /* 2737 * This block traverses through 2738 * a wildcard anchor. 2739 */ 2740 parent = &fr->anchor->children; 2741 if (match != NULL && *match) { 2742 /* 2743 * If any of "*" matched, then 2744 * "foo/ *" matched, mark frame 2745 * appropriately. 2746 */ 2747 PF_ANCHOR_SET_MATCH(f); 2748 *match = 0; 2749 } 2750 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2751 if (f->child != NULL) { 2752 *rs = &f->child->ruleset; 2753 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2754 if (*r == NULL) 2755 continue; 2756 else 2757 break; 2758 } 2759 } 2760 (*depth)--; 2761 if (*depth == 0 && a != NULL) 2762 *a = NULL; 2763 *rs = f->rs; 2764 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2765 quick = fr->quick; 2766 *r = TAILQ_NEXT(fr, entries); 2767 } while (*r == NULL); 2768 2769 return (quick); 2770 } 2771 2772 #ifdef INET6 2773 void 2774 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2775 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2776 { 2777 switch (af) { 2778 #ifdef INET 2779 case AF_INET: 2780 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2781 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2782 break; 2783 #endif /* INET */ 2784 case AF_INET6: 2785 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2786 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2787 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2788 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2789 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2790 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2791 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2792 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2793 break; 2794 } 2795 } 2796 2797 void 2798 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2799 { 2800 switch (af) { 2801 #ifdef INET 2802 case AF_INET: 2803 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2804 break; 2805 #endif /* INET */ 2806 case AF_INET6: 2807 if (addr->addr32[3] == 0xffffffff) { 2808 addr->addr32[3] = 0; 2809 if (addr->addr32[2] == 0xffffffff) { 2810 addr->addr32[2] = 0; 2811 if (addr->addr32[1] == 0xffffffff) { 2812 addr->addr32[1] = 0; 2813 addr->addr32[0] = 2814 htonl(ntohl(addr->addr32[0]) + 1); 2815 } else 2816 addr->addr32[1] = 2817 htonl(ntohl(addr->addr32[1]) + 1); 2818 } else 2819 addr->addr32[2] = 2820 htonl(ntohl(addr->addr32[2]) + 1); 2821 } else 2822 addr->addr32[3] = 2823 htonl(ntohl(addr->addr32[3]) + 1); 2824 break; 2825 } 2826 } 2827 #endif /* INET6 */ 2828 2829 int 2830 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2831 { 2832 struct pf_addr *saddr, *daddr; 2833 u_int16_t sport, dport; 2834 struct inpcbinfo *pi; 2835 struct inpcb *inp; 2836 2837 pd->lookup.uid = UID_MAX; 2838 pd->lookup.gid = GID_MAX; 2839 2840 switch (pd->proto) { 2841 case IPPROTO_TCP: 2842 if (pd->hdr.tcp == NULL) 2843 return (-1); 2844 sport = pd->hdr.tcp->th_sport; 2845 dport = pd->hdr.tcp->th_dport; 2846 pi = &V_tcbinfo; 2847 break; 2848 case IPPROTO_UDP: 2849 if (pd->hdr.udp == NULL) 2850 return (-1); 2851 sport = pd->hdr.udp->uh_sport; 2852 dport = pd->hdr.udp->uh_dport; 2853 pi = &V_udbinfo; 2854 break; 2855 default: 2856 return (-1); 2857 } 2858 if (direction == PF_IN) { 2859 saddr = pd->src; 2860 daddr = pd->dst; 2861 } else { 2862 u_int16_t p; 2863 2864 p = sport; 2865 sport = dport; 2866 dport = p; 2867 saddr = pd->dst; 2868 daddr = pd->src; 2869 } 2870 switch (pd->af) { 2871 #ifdef INET 2872 case AF_INET: 2873 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2874 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2875 if (inp == NULL) { 2876 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2877 daddr->v4, dport, INPLOOKUP_WILDCARD | 2878 INPLOOKUP_RLOCKPCB, NULL, m); 2879 if (inp == NULL) 2880 return (-1); 2881 } 2882 break; 2883 #endif /* INET */ 2884 #ifdef INET6 2885 case AF_INET6: 2886 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2887 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2888 if (inp == NULL) { 2889 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2890 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2891 INPLOOKUP_RLOCKPCB, NULL, m); 2892 if (inp == NULL) 2893 return (-1); 2894 } 2895 break; 2896 #endif /* INET6 */ 2897 2898 default: 2899 return (-1); 2900 } 2901 INP_RLOCK_ASSERT(inp); 2902 pd->lookup.uid = inp->inp_cred->cr_uid; 2903 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2904 INP_RUNLOCK(inp); 2905 2906 return (1); 2907 } 2908 2909 static u_int8_t 2910 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2911 { 2912 int hlen; 2913 u_int8_t hdr[60]; 2914 u_int8_t *opt, optlen; 2915 u_int8_t wscale = 0; 2916 2917 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2918 if (hlen <= sizeof(struct tcphdr)) 2919 return (0); 2920 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2921 return (0); 2922 opt = hdr + sizeof(struct tcphdr); 2923 hlen -= sizeof(struct tcphdr); 2924 while (hlen >= 3) { 2925 switch (*opt) { 2926 case TCPOPT_EOL: 2927 case TCPOPT_NOP: 2928 ++opt; 2929 --hlen; 2930 break; 2931 case TCPOPT_WINDOW: 2932 wscale = opt[2]; 2933 if (wscale > TCP_MAX_WINSHIFT) 2934 wscale = TCP_MAX_WINSHIFT; 2935 wscale |= PF_WSCALE_FLAG; 2936 /* FALLTHROUGH */ 2937 default: 2938 optlen = opt[1]; 2939 if (optlen < 2) 2940 optlen = 2; 2941 hlen -= optlen; 2942 opt += optlen; 2943 break; 2944 } 2945 } 2946 return (wscale); 2947 } 2948 2949 static u_int16_t 2950 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2951 { 2952 int hlen; 2953 u_int8_t hdr[60]; 2954 u_int8_t *opt, optlen; 2955 u_int16_t mss = V_tcp_mssdflt; 2956 2957 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2958 if (hlen <= sizeof(struct tcphdr)) 2959 return (0); 2960 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2961 return (0); 2962 opt = hdr + sizeof(struct tcphdr); 2963 hlen -= sizeof(struct tcphdr); 2964 while (hlen >= TCPOLEN_MAXSEG) { 2965 switch (*opt) { 2966 case TCPOPT_EOL: 2967 case TCPOPT_NOP: 2968 ++opt; 2969 --hlen; 2970 break; 2971 case TCPOPT_MAXSEG: 2972 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2973 NTOHS(mss); 2974 /* FALLTHROUGH */ 2975 default: 2976 optlen = opt[1]; 2977 if (optlen < 2) 2978 optlen = 2; 2979 hlen -= optlen; 2980 opt += optlen; 2981 break; 2982 } 2983 } 2984 return (mss); 2985 } 2986 2987 static u_int16_t 2988 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2989 { 2990 #ifdef INET 2991 struct nhop4_basic nh4; 2992 #endif /* INET */ 2993 #ifdef INET6 2994 struct nhop6_basic nh6; 2995 struct in6_addr dst6; 2996 uint32_t scopeid; 2997 #endif /* INET6 */ 2998 int hlen = 0; 2999 uint16_t mss = 0; 3000 3001 switch (af) { 3002 #ifdef INET 3003 case AF_INET: 3004 hlen = sizeof(struct ip); 3005 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3006 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3007 break; 3008 #endif /* INET */ 3009 #ifdef INET6 3010 case AF_INET6: 3011 hlen = sizeof(struct ip6_hdr); 3012 in6_splitscope(&addr->v6, &dst6, &scopeid); 3013 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3014 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3015 break; 3016 #endif /* INET6 */ 3017 } 3018 3019 mss = max(V_tcp_mssdflt, mss); 3020 mss = min(mss, offer); 3021 mss = max(mss, 64); /* sanity - at least max opt space */ 3022 return (mss); 3023 } 3024 3025 static u_int32_t 3026 pf_tcp_iss(struct pf_pdesc *pd) 3027 { 3028 MD5_CTX ctx; 3029 u_int32_t digest[4]; 3030 3031 if (V_pf_tcp_secret_init == 0) { 3032 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3033 MD5Init(&V_pf_tcp_secret_ctx); 3034 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3035 sizeof(V_pf_tcp_secret)); 3036 V_pf_tcp_secret_init = 1; 3037 } 3038 3039 ctx = V_pf_tcp_secret_ctx; 3040 3041 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3042 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3043 if (pd->af == AF_INET6) { 3044 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3045 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3046 } else { 3047 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3048 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3049 } 3050 MD5Final((u_char *)digest, &ctx); 3051 V_pf_tcp_iss_off += 4096; 3052 #define ISN_RANDOM_INCREMENT (4096 - 1) 3053 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3054 V_pf_tcp_iss_off); 3055 #undef ISN_RANDOM_INCREMENT 3056 } 3057 3058 static int 3059 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3060 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3061 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3062 { 3063 struct pf_rule *nr = NULL; 3064 struct pf_addr * const saddr = pd->src; 3065 struct pf_addr * const daddr = pd->dst; 3066 sa_family_t af = pd->af; 3067 struct pf_rule *r, *a = NULL; 3068 struct pf_ruleset *ruleset = NULL; 3069 struct pf_src_node *nsn = NULL; 3070 struct tcphdr *th = pd->hdr.tcp; 3071 struct pf_state_key *sk = NULL, *nk = NULL; 3072 u_short reason; 3073 int rewrite = 0, hdrlen = 0; 3074 int tag = -1, rtableid = -1; 3075 int asd = 0; 3076 int match = 0; 3077 int state_icmp = 0; 3078 u_int16_t sport = 0, dport = 0; 3079 u_int16_t bproto_sum = 0, bip_sum = 0; 3080 u_int8_t icmptype = 0, icmpcode = 0; 3081 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3082 3083 PF_RULES_RASSERT(); 3084 3085 if (inp != NULL) { 3086 INP_LOCK_ASSERT(inp); 3087 pd->lookup.uid = inp->inp_cred->cr_uid; 3088 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3089 pd->lookup.done = 1; 3090 } 3091 3092 switch (pd->proto) { 3093 case IPPROTO_TCP: 3094 sport = th->th_sport; 3095 dport = th->th_dport; 3096 hdrlen = sizeof(*th); 3097 break; 3098 case IPPROTO_UDP: 3099 sport = pd->hdr.udp->uh_sport; 3100 dport = pd->hdr.udp->uh_dport; 3101 hdrlen = sizeof(*pd->hdr.udp); 3102 break; 3103 #ifdef INET 3104 case IPPROTO_ICMP: 3105 if (pd->af != AF_INET) 3106 break; 3107 sport = dport = pd->hdr.icmp->icmp_id; 3108 hdrlen = sizeof(*pd->hdr.icmp); 3109 icmptype = pd->hdr.icmp->icmp_type; 3110 icmpcode = pd->hdr.icmp->icmp_code; 3111 3112 if (icmptype == ICMP_UNREACH || 3113 icmptype == ICMP_SOURCEQUENCH || 3114 icmptype == ICMP_REDIRECT || 3115 icmptype == ICMP_TIMXCEED || 3116 icmptype == ICMP_PARAMPROB) 3117 state_icmp++; 3118 break; 3119 #endif /* INET */ 3120 #ifdef INET6 3121 case IPPROTO_ICMPV6: 3122 if (af != AF_INET6) 3123 break; 3124 sport = dport = pd->hdr.icmp6->icmp6_id; 3125 hdrlen = sizeof(*pd->hdr.icmp6); 3126 icmptype = pd->hdr.icmp6->icmp6_type; 3127 icmpcode = pd->hdr.icmp6->icmp6_code; 3128 3129 if (icmptype == ICMP6_DST_UNREACH || 3130 icmptype == ICMP6_PACKET_TOO_BIG || 3131 icmptype == ICMP6_TIME_EXCEEDED || 3132 icmptype == ICMP6_PARAM_PROB) 3133 state_icmp++; 3134 break; 3135 #endif /* INET6 */ 3136 default: 3137 sport = dport = hdrlen = 0; 3138 break; 3139 } 3140 3141 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3142 3143 /* check packet for BINAT/NAT/RDR */ 3144 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3145 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3146 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3147 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3148 3149 if (pd->ip_sum) 3150 bip_sum = *pd->ip_sum; 3151 3152 switch (pd->proto) { 3153 case IPPROTO_TCP: 3154 bproto_sum = th->th_sum; 3155 pd->proto_sum = &th->th_sum; 3156 3157 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3158 nk->port[pd->sidx] != sport) { 3159 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3160 &th->th_sum, &nk->addr[pd->sidx], 3161 nk->port[pd->sidx], 0, af); 3162 pd->sport = &th->th_sport; 3163 sport = th->th_sport; 3164 } 3165 3166 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3167 nk->port[pd->didx] != dport) { 3168 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3169 &th->th_sum, &nk->addr[pd->didx], 3170 nk->port[pd->didx], 0, af); 3171 dport = th->th_dport; 3172 pd->dport = &th->th_dport; 3173 } 3174 rewrite++; 3175 break; 3176 case IPPROTO_UDP: 3177 bproto_sum = pd->hdr.udp->uh_sum; 3178 pd->proto_sum = &pd->hdr.udp->uh_sum; 3179 3180 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3181 nk->port[pd->sidx] != sport) { 3182 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3183 pd->ip_sum, &pd->hdr.udp->uh_sum, 3184 &nk->addr[pd->sidx], 3185 nk->port[pd->sidx], 1, af); 3186 sport = pd->hdr.udp->uh_sport; 3187 pd->sport = &pd->hdr.udp->uh_sport; 3188 } 3189 3190 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3191 nk->port[pd->didx] != dport) { 3192 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3193 pd->ip_sum, &pd->hdr.udp->uh_sum, 3194 &nk->addr[pd->didx], 3195 nk->port[pd->didx], 1, af); 3196 dport = pd->hdr.udp->uh_dport; 3197 pd->dport = &pd->hdr.udp->uh_dport; 3198 } 3199 rewrite++; 3200 break; 3201 #ifdef INET 3202 case IPPROTO_ICMP: 3203 nk->port[0] = nk->port[1]; 3204 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3205 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3206 nk->addr[pd->sidx].v4.s_addr, 0); 3207 3208 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3209 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3210 nk->addr[pd->didx].v4.s_addr, 0); 3211 3212 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3213 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3214 pd->hdr.icmp->icmp_cksum, sport, 3215 nk->port[1], 0); 3216 pd->hdr.icmp->icmp_id = nk->port[1]; 3217 pd->sport = &pd->hdr.icmp->icmp_id; 3218 } 3219 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3220 break; 3221 #endif /* INET */ 3222 #ifdef INET6 3223 case IPPROTO_ICMPV6: 3224 nk->port[0] = nk->port[1]; 3225 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3226 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3227 &nk->addr[pd->sidx], 0); 3228 3229 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3230 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3231 &nk->addr[pd->didx], 0); 3232 rewrite++; 3233 break; 3234 #endif /* INET */ 3235 default: 3236 switch (af) { 3237 #ifdef INET 3238 case AF_INET: 3239 if (PF_ANEQ(saddr, 3240 &nk->addr[pd->sidx], AF_INET)) 3241 pf_change_a(&saddr->v4.s_addr, 3242 pd->ip_sum, 3243 nk->addr[pd->sidx].v4.s_addr, 0); 3244 3245 if (PF_ANEQ(daddr, 3246 &nk->addr[pd->didx], AF_INET)) 3247 pf_change_a(&daddr->v4.s_addr, 3248 pd->ip_sum, 3249 nk->addr[pd->didx].v4.s_addr, 0); 3250 break; 3251 #endif /* INET */ 3252 #ifdef INET6 3253 case AF_INET6: 3254 if (PF_ANEQ(saddr, 3255 &nk->addr[pd->sidx], AF_INET6)) 3256 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3257 3258 if (PF_ANEQ(daddr, 3259 &nk->addr[pd->didx], AF_INET6)) 3260 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3261 break; 3262 #endif /* INET */ 3263 } 3264 break; 3265 } 3266 if (nr->natpass) 3267 r = NULL; 3268 pd->nat_rule = nr; 3269 } 3270 3271 while (r != NULL) { 3272 r->evaluations++; 3273 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3274 r = r->skip[PF_SKIP_IFP].ptr; 3275 else if (r->direction && r->direction != direction) 3276 r = r->skip[PF_SKIP_DIR].ptr; 3277 else if (r->af && r->af != af) 3278 r = r->skip[PF_SKIP_AF].ptr; 3279 else if (r->proto && r->proto != pd->proto) 3280 r = r->skip[PF_SKIP_PROTO].ptr; 3281 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3282 r->src.neg, kif, M_GETFIB(m))) 3283 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3284 /* tcp/udp only. port_op always 0 in other cases */ 3285 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3286 r->src.port[0], r->src.port[1], sport)) 3287 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3288 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3289 r->dst.neg, NULL, M_GETFIB(m))) 3290 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3291 /* tcp/udp only. port_op always 0 in other cases */ 3292 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3293 r->dst.port[0], r->dst.port[1], dport)) 3294 r = r->skip[PF_SKIP_DST_PORT].ptr; 3295 /* icmp only. type always 0 in other cases */ 3296 else if (r->type && r->type != icmptype + 1) 3297 r = TAILQ_NEXT(r, entries); 3298 /* icmp only. type always 0 in other cases */ 3299 else if (r->code && r->code != icmpcode + 1) 3300 r = TAILQ_NEXT(r, entries); 3301 else if (r->tos && !(r->tos == pd->tos)) 3302 r = TAILQ_NEXT(r, entries); 3303 else if (r->rule_flag & PFRULE_FRAGMENT) 3304 r = TAILQ_NEXT(r, entries); 3305 else if (pd->proto == IPPROTO_TCP && 3306 (r->flagset & th->th_flags) != r->flags) 3307 r = TAILQ_NEXT(r, entries); 3308 /* tcp/udp only. uid.op always 0 in other cases */ 3309 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3310 pf_socket_lookup(direction, pd, m), 1)) && 3311 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3312 pd->lookup.uid)) 3313 r = TAILQ_NEXT(r, entries); 3314 /* tcp/udp only. gid.op always 0 in other cases */ 3315 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3316 pf_socket_lookup(direction, pd, m), 1)) && 3317 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3318 pd->lookup.gid)) 3319 r = TAILQ_NEXT(r, entries); 3320 else if (r->prob && 3321 r->prob <= arc4random()) 3322 r = TAILQ_NEXT(r, entries); 3323 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3324 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3325 r = TAILQ_NEXT(r, entries); 3326 else if (r->os_fingerprint != PF_OSFP_ANY && 3327 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3328 pf_osfp_fingerprint(pd, m, off, th), 3329 r->os_fingerprint))) 3330 r = TAILQ_NEXT(r, entries); 3331 else { 3332 if (r->tag) 3333 tag = r->tag; 3334 if (r->rtableid >= 0) 3335 rtableid = r->rtableid; 3336 if (r->anchor == NULL) { 3337 match = 1; 3338 *rm = r; 3339 *am = a; 3340 *rsm = ruleset; 3341 if ((*rm)->quick) 3342 break; 3343 r = TAILQ_NEXT(r, entries); 3344 } else 3345 pf_step_into_anchor(anchor_stack, &asd, 3346 &ruleset, PF_RULESET_FILTER, &r, &a, 3347 &match); 3348 } 3349 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3350 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3351 break; 3352 } 3353 r = *rm; 3354 a = *am; 3355 ruleset = *rsm; 3356 3357 REASON_SET(&reason, PFRES_MATCH); 3358 3359 if (r->log || (nr != NULL && nr->log)) { 3360 if (rewrite) 3361 m_copyback(m, off, hdrlen, pd->hdr.any); 3362 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3363 ruleset, pd, 1); 3364 } 3365 3366 if ((r->action == PF_DROP) && 3367 ((r->rule_flag & PFRULE_RETURNRST) || 3368 (r->rule_flag & PFRULE_RETURNICMP) || 3369 (r->rule_flag & PFRULE_RETURN))) { 3370 /* undo NAT changes, if they have taken place */ 3371 if (nr != NULL) { 3372 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3373 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3374 if (pd->sport) 3375 *pd->sport = sk->port[pd->sidx]; 3376 if (pd->dport) 3377 *pd->dport = sk->port[pd->didx]; 3378 if (pd->proto_sum) 3379 *pd->proto_sum = bproto_sum; 3380 if (pd->ip_sum) 3381 *pd->ip_sum = bip_sum; 3382 m_copyback(m, off, hdrlen, pd->hdr.any); 3383 } 3384 if (pd->proto == IPPROTO_TCP && 3385 ((r->rule_flag & PFRULE_RETURNRST) || 3386 (r->rule_flag & PFRULE_RETURN)) && 3387 !(th->th_flags & TH_RST)) { 3388 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3389 int len = 0; 3390 #ifdef INET 3391 struct ip *h4; 3392 #endif 3393 #ifdef INET6 3394 struct ip6_hdr *h6; 3395 #endif 3396 3397 switch (af) { 3398 #ifdef INET 3399 case AF_INET: 3400 h4 = mtod(m, struct ip *); 3401 len = ntohs(h4->ip_len) - off; 3402 break; 3403 #endif 3404 #ifdef INET6 3405 case AF_INET6: 3406 h6 = mtod(m, struct ip6_hdr *); 3407 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3408 break; 3409 #endif 3410 } 3411 3412 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3413 REASON_SET(&reason, PFRES_PROTCKSUM); 3414 else { 3415 if (th->th_flags & TH_SYN) 3416 ack++; 3417 if (th->th_flags & TH_FIN) 3418 ack++; 3419 pf_send_tcp(m, r, af, pd->dst, 3420 pd->src, th->th_dport, th->th_sport, 3421 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3422 r->return_ttl, 1, 0, kif->pfik_ifp); 3423 } 3424 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3425 r->return_icmp) 3426 pf_send_icmp(m, r->return_icmp >> 8, 3427 r->return_icmp & 255, af, r); 3428 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3429 r->return_icmp6) 3430 pf_send_icmp(m, r->return_icmp6 >> 8, 3431 r->return_icmp6 & 255, af, r); 3432 } 3433 3434 if (r->action == PF_DROP) 3435 goto cleanup; 3436 3437 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3438 REASON_SET(&reason, PFRES_MEMORY); 3439 goto cleanup; 3440 } 3441 if (rtableid >= 0) 3442 M_SETFIB(m, rtableid); 3443 3444 if (!state_icmp && (r->keep_state || nr != NULL || 3445 (pd->flags & PFDESC_TCP_NORM))) { 3446 int action; 3447 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3448 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3449 hdrlen); 3450 if (action != PF_PASS) 3451 return (action); 3452 } else { 3453 if (sk != NULL) 3454 uma_zfree(V_pf_state_key_z, sk); 3455 if (nk != NULL) 3456 uma_zfree(V_pf_state_key_z, nk); 3457 } 3458 3459 /* copy back packet headers if we performed NAT operations */ 3460 if (rewrite) 3461 m_copyback(m, off, hdrlen, pd->hdr.any); 3462 3463 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3464 direction == PF_OUT && 3465 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3466 /* 3467 * We want the state created, but we dont 3468 * want to send this in case a partner 3469 * firewall has to know about it to allow 3470 * replies through it. 3471 */ 3472 return (PF_DEFER); 3473 3474 return (PF_PASS); 3475 3476 cleanup: 3477 if (sk != NULL) 3478 uma_zfree(V_pf_state_key_z, sk); 3479 if (nk != NULL) 3480 uma_zfree(V_pf_state_key_z, nk); 3481 return (PF_DROP); 3482 } 3483 3484 static int 3485 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3486 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3487 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3488 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3489 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3490 { 3491 struct pf_state *s = NULL; 3492 struct pf_src_node *sn = NULL; 3493 struct tcphdr *th = pd->hdr.tcp; 3494 u_int16_t mss = V_tcp_mssdflt; 3495 u_short reason; 3496 3497 /* check maximums */ 3498 if (r->max_states && 3499 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3500 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3501 REASON_SET(&reason, PFRES_MAXSTATES); 3502 return (PF_DROP); 3503 } 3504 /* src node for filter rule */ 3505 if ((r->rule_flag & PFRULE_SRCTRACK || 3506 r->rpool.opts & PF_POOL_STICKYADDR) && 3507 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3508 REASON_SET(&reason, PFRES_SRCLIMIT); 3509 goto csfailed; 3510 } 3511 /* src node for translation rule */ 3512 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3513 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3514 REASON_SET(&reason, PFRES_SRCLIMIT); 3515 goto csfailed; 3516 } 3517 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3518 if (s == NULL) { 3519 REASON_SET(&reason, PFRES_MEMORY); 3520 goto csfailed; 3521 } 3522 s->rule.ptr = r; 3523 s->nat_rule.ptr = nr; 3524 s->anchor.ptr = a; 3525 STATE_INC_COUNTERS(s); 3526 if (r->allow_opts) 3527 s->state_flags |= PFSTATE_ALLOWOPTS; 3528 if (r->rule_flag & PFRULE_STATESLOPPY) 3529 s->state_flags |= PFSTATE_SLOPPY; 3530 s->log = r->log & PF_LOG_ALL; 3531 s->sync_state = PFSYNC_S_NONE; 3532 if (nr != NULL) 3533 s->log |= nr->log & PF_LOG_ALL; 3534 switch (pd->proto) { 3535 case IPPROTO_TCP: 3536 s->src.seqlo = ntohl(th->th_seq); 3537 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3538 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3539 r->keep_state == PF_STATE_MODULATE) { 3540 /* Generate sequence number modulator */ 3541 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3542 0) 3543 s->src.seqdiff = 1; 3544 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3545 htonl(s->src.seqlo + s->src.seqdiff), 0); 3546 *rewrite = 1; 3547 } else 3548 s->src.seqdiff = 0; 3549 if (th->th_flags & TH_SYN) { 3550 s->src.seqhi++; 3551 s->src.wscale = pf_get_wscale(m, off, 3552 th->th_off, pd->af); 3553 } 3554 s->src.max_win = MAX(ntohs(th->th_win), 1); 3555 if (s->src.wscale & PF_WSCALE_MASK) { 3556 /* Remove scale factor from initial window */ 3557 int win = s->src.max_win; 3558 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3559 s->src.max_win = (win - 1) >> 3560 (s->src.wscale & PF_WSCALE_MASK); 3561 } 3562 if (th->th_flags & TH_FIN) 3563 s->src.seqhi++; 3564 s->dst.seqhi = 1; 3565 s->dst.max_win = 1; 3566 s->src.state = TCPS_SYN_SENT; 3567 s->dst.state = TCPS_CLOSED; 3568 s->timeout = PFTM_TCP_FIRST_PACKET; 3569 break; 3570 case IPPROTO_UDP: 3571 s->src.state = PFUDPS_SINGLE; 3572 s->dst.state = PFUDPS_NO_TRAFFIC; 3573 s->timeout = PFTM_UDP_FIRST_PACKET; 3574 break; 3575 case IPPROTO_ICMP: 3576 #ifdef INET6 3577 case IPPROTO_ICMPV6: 3578 #endif 3579 s->timeout = PFTM_ICMP_FIRST_PACKET; 3580 break; 3581 default: 3582 s->src.state = PFOTHERS_SINGLE; 3583 s->dst.state = PFOTHERS_NO_TRAFFIC; 3584 s->timeout = PFTM_OTHER_FIRST_PACKET; 3585 } 3586 3587 if (r->rt && r->rt != PF_FASTROUTE) { 3588 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3589 REASON_SET(&reason, PFRES_MAPFAILED); 3590 pf_src_tree_remove_state(s); 3591 STATE_DEC_COUNTERS(s); 3592 uma_zfree(V_pf_state_z, s); 3593 goto csfailed; 3594 } 3595 s->rt_kif = r->rpool.cur->kif; 3596 } 3597 3598 s->creation = time_uptime; 3599 s->expire = time_uptime; 3600 3601 if (sn != NULL) 3602 s->src_node = sn; 3603 if (nsn != NULL) { 3604 /* XXX We only modify one side for now. */ 3605 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3606 s->nat_src_node = nsn; 3607 } 3608 if (pd->proto == IPPROTO_TCP) { 3609 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3610 off, pd, th, &s->src, &s->dst)) { 3611 REASON_SET(&reason, PFRES_MEMORY); 3612 pf_src_tree_remove_state(s); 3613 STATE_DEC_COUNTERS(s); 3614 uma_zfree(V_pf_state_z, s); 3615 return (PF_DROP); 3616 } 3617 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3618 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3619 &s->src, &s->dst, rewrite)) { 3620 /* This really shouldn't happen!!! */ 3621 DPFPRINTF(PF_DEBUG_URGENT, 3622 ("pf_normalize_tcp_stateful failed on first pkt")); 3623 pf_normalize_tcp_cleanup(s); 3624 pf_src_tree_remove_state(s); 3625 STATE_DEC_COUNTERS(s); 3626 uma_zfree(V_pf_state_z, s); 3627 return (PF_DROP); 3628 } 3629 } 3630 s->direction = pd->dir; 3631 3632 /* 3633 * sk/nk could already been setup by pf_get_translation(). 3634 */ 3635 if (nr == NULL) { 3636 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3637 __func__, nr, sk, nk)); 3638 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3639 if (sk == NULL) 3640 goto csfailed; 3641 nk = sk; 3642 } else 3643 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3644 __func__, nr, sk, nk)); 3645 3646 /* Swap sk/nk for PF_OUT. */ 3647 if (pf_state_insert(BOUND_IFACE(r, kif), 3648 (pd->dir == PF_IN) ? sk : nk, 3649 (pd->dir == PF_IN) ? nk : sk, s)) { 3650 if (pd->proto == IPPROTO_TCP) 3651 pf_normalize_tcp_cleanup(s); 3652 REASON_SET(&reason, PFRES_STATEINS); 3653 pf_src_tree_remove_state(s); 3654 STATE_DEC_COUNTERS(s); 3655 uma_zfree(V_pf_state_z, s); 3656 return (PF_DROP); 3657 } else 3658 *sm = s; 3659 3660 if (tag > 0) 3661 s->tag = tag; 3662 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3663 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3664 s->src.state = PF_TCPS_PROXY_SRC; 3665 /* undo NAT changes, if they have taken place */ 3666 if (nr != NULL) { 3667 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3668 if (pd->dir == PF_OUT) 3669 skt = s->key[PF_SK_STACK]; 3670 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3671 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3672 if (pd->sport) 3673 *pd->sport = skt->port[pd->sidx]; 3674 if (pd->dport) 3675 *pd->dport = skt->port[pd->didx]; 3676 if (pd->proto_sum) 3677 *pd->proto_sum = bproto_sum; 3678 if (pd->ip_sum) 3679 *pd->ip_sum = bip_sum; 3680 m_copyback(m, off, hdrlen, pd->hdr.any); 3681 } 3682 s->src.seqhi = htonl(arc4random()); 3683 /* Find mss option */ 3684 int rtid = M_GETFIB(m); 3685 mss = pf_get_mss(m, off, th->th_off, pd->af); 3686 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3687 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3688 s->src.mss = mss; 3689 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3690 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3691 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3692 REASON_SET(&reason, PFRES_SYNPROXY); 3693 return (PF_SYNPROXY_DROP); 3694 } 3695 3696 return (PF_PASS); 3697 3698 csfailed: 3699 if (sk != NULL) 3700 uma_zfree(V_pf_state_key_z, sk); 3701 if (nk != NULL) 3702 uma_zfree(V_pf_state_key_z, nk); 3703 3704 if (sn != NULL) { 3705 struct pf_srchash *sh; 3706 3707 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3708 PF_HASHROW_LOCK(sh); 3709 if (--sn->states == 0 && sn->expire == 0) { 3710 pf_unlink_src_node(sn); 3711 uma_zfree(V_pf_sources_z, sn); 3712 counter_u64_add( 3713 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3714 } 3715 PF_HASHROW_UNLOCK(sh); 3716 } 3717 3718 if (nsn != sn && nsn != NULL) { 3719 struct pf_srchash *sh; 3720 3721 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3722 PF_HASHROW_LOCK(sh); 3723 if (--nsn->states == 0 && nsn->expire == 0) { 3724 pf_unlink_src_node(nsn); 3725 uma_zfree(V_pf_sources_z, nsn); 3726 counter_u64_add( 3727 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3728 } 3729 PF_HASHROW_UNLOCK(sh); 3730 } 3731 3732 return (PF_DROP); 3733 } 3734 3735 static int 3736 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3737 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3738 struct pf_ruleset **rsm) 3739 { 3740 struct pf_rule *r, *a = NULL; 3741 struct pf_ruleset *ruleset = NULL; 3742 sa_family_t af = pd->af; 3743 u_short reason; 3744 int tag = -1; 3745 int asd = 0; 3746 int match = 0; 3747 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3748 3749 PF_RULES_RASSERT(); 3750 3751 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3752 while (r != NULL) { 3753 r->evaluations++; 3754 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3755 r = r->skip[PF_SKIP_IFP].ptr; 3756 else if (r->direction && r->direction != direction) 3757 r = r->skip[PF_SKIP_DIR].ptr; 3758 else if (r->af && r->af != af) 3759 r = r->skip[PF_SKIP_AF].ptr; 3760 else if (r->proto && r->proto != pd->proto) 3761 r = r->skip[PF_SKIP_PROTO].ptr; 3762 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3763 r->src.neg, kif, M_GETFIB(m))) 3764 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3765 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3766 r->dst.neg, NULL, M_GETFIB(m))) 3767 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3768 else if (r->tos && !(r->tos == pd->tos)) 3769 r = TAILQ_NEXT(r, entries); 3770 else if (r->os_fingerprint != PF_OSFP_ANY) 3771 r = TAILQ_NEXT(r, entries); 3772 else if (pd->proto == IPPROTO_UDP && 3773 (r->src.port_op || r->dst.port_op)) 3774 r = TAILQ_NEXT(r, entries); 3775 else if (pd->proto == IPPROTO_TCP && 3776 (r->src.port_op || r->dst.port_op || r->flagset)) 3777 r = TAILQ_NEXT(r, entries); 3778 else if ((pd->proto == IPPROTO_ICMP || 3779 pd->proto == IPPROTO_ICMPV6) && 3780 (r->type || r->code)) 3781 r = TAILQ_NEXT(r, entries); 3782 else if (r->prob && r->prob <= 3783 (arc4random() % (UINT_MAX - 1) + 1)) 3784 r = TAILQ_NEXT(r, entries); 3785 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3786 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3787 r = TAILQ_NEXT(r, entries); 3788 else { 3789 if (r->anchor == NULL) { 3790 match = 1; 3791 *rm = r; 3792 *am = a; 3793 *rsm = ruleset; 3794 if ((*rm)->quick) 3795 break; 3796 r = TAILQ_NEXT(r, entries); 3797 } else 3798 pf_step_into_anchor(anchor_stack, &asd, 3799 &ruleset, PF_RULESET_FILTER, &r, &a, 3800 &match); 3801 } 3802 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3803 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3804 break; 3805 } 3806 r = *rm; 3807 a = *am; 3808 ruleset = *rsm; 3809 3810 REASON_SET(&reason, PFRES_MATCH); 3811 3812 if (r->log) 3813 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3814 1); 3815 3816 if (r->action != PF_PASS) 3817 return (PF_DROP); 3818 3819 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3820 REASON_SET(&reason, PFRES_MEMORY); 3821 return (PF_DROP); 3822 } 3823 3824 return (PF_PASS); 3825 } 3826 3827 static int 3828 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3829 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3830 struct pf_pdesc *pd, u_short *reason, int *copyback) 3831 { 3832 struct tcphdr *th = pd->hdr.tcp; 3833 u_int16_t win = ntohs(th->th_win); 3834 u_int32_t ack, end, seq, orig_seq; 3835 u_int8_t sws, dws; 3836 int ackskew; 3837 3838 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3839 sws = src->wscale & PF_WSCALE_MASK; 3840 dws = dst->wscale & PF_WSCALE_MASK; 3841 } else 3842 sws = dws = 0; 3843 3844 /* 3845 * Sequence tracking algorithm from Guido van Rooij's paper: 3846 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3847 * tcp_filtering.ps 3848 */ 3849 3850 orig_seq = seq = ntohl(th->th_seq); 3851 if (src->seqlo == 0) { 3852 /* First packet from this end. Set its state */ 3853 3854 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3855 src->scrub == NULL) { 3856 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3857 REASON_SET(reason, PFRES_MEMORY); 3858 return (PF_DROP); 3859 } 3860 } 3861 3862 /* Deferred generation of sequence number modulator */ 3863 if (dst->seqdiff && !src->seqdiff) { 3864 /* use random iss for the TCP server */ 3865 while ((src->seqdiff = arc4random() - seq) == 0) 3866 ; 3867 ack = ntohl(th->th_ack) - dst->seqdiff; 3868 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3869 src->seqdiff), 0); 3870 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3871 *copyback = 1; 3872 } else { 3873 ack = ntohl(th->th_ack); 3874 } 3875 3876 end = seq + pd->p_len; 3877 if (th->th_flags & TH_SYN) { 3878 end++; 3879 if (dst->wscale & PF_WSCALE_FLAG) { 3880 src->wscale = pf_get_wscale(m, off, th->th_off, 3881 pd->af); 3882 if (src->wscale & PF_WSCALE_FLAG) { 3883 /* Remove scale factor from initial 3884 * window */ 3885 sws = src->wscale & PF_WSCALE_MASK; 3886 win = ((u_int32_t)win + (1 << sws) - 1) 3887 >> sws; 3888 dws = dst->wscale & PF_WSCALE_MASK; 3889 } else { 3890 /* fixup other window */ 3891 dst->max_win <<= dst->wscale & 3892 PF_WSCALE_MASK; 3893 /* in case of a retrans SYN|ACK */ 3894 dst->wscale = 0; 3895 } 3896 } 3897 } 3898 if (th->th_flags & TH_FIN) 3899 end++; 3900 3901 src->seqlo = seq; 3902 if (src->state < TCPS_SYN_SENT) 3903 src->state = TCPS_SYN_SENT; 3904 3905 /* 3906 * May need to slide the window (seqhi may have been set by 3907 * the crappy stack check or if we picked up the connection 3908 * after establishment) 3909 */ 3910 if (src->seqhi == 1 || 3911 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3912 src->seqhi = end + MAX(1, dst->max_win << dws); 3913 if (win > src->max_win) 3914 src->max_win = win; 3915 3916 } else { 3917 ack = ntohl(th->th_ack) - dst->seqdiff; 3918 if (src->seqdiff) { 3919 /* Modulate sequence numbers */ 3920 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3921 src->seqdiff), 0); 3922 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3923 *copyback = 1; 3924 } 3925 end = seq + pd->p_len; 3926 if (th->th_flags & TH_SYN) 3927 end++; 3928 if (th->th_flags & TH_FIN) 3929 end++; 3930 } 3931 3932 if ((th->th_flags & TH_ACK) == 0) { 3933 /* Let it pass through the ack skew check */ 3934 ack = dst->seqlo; 3935 } else if ((ack == 0 && 3936 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3937 /* broken tcp stacks do not set ack */ 3938 (dst->state < TCPS_SYN_SENT)) { 3939 /* 3940 * Many stacks (ours included) will set the ACK number in an 3941 * FIN|ACK if the SYN times out -- no sequence to ACK. 3942 */ 3943 ack = dst->seqlo; 3944 } 3945 3946 if (seq == end) { 3947 /* Ease sequencing restrictions on no data packets */ 3948 seq = src->seqlo; 3949 end = seq; 3950 } 3951 3952 ackskew = dst->seqlo - ack; 3953 3954 3955 /* 3956 * Need to demodulate the sequence numbers in any TCP SACK options 3957 * (Selective ACK). We could optionally validate the SACK values 3958 * against the current ACK window, either forwards or backwards, but 3959 * I'm not confident that SACK has been implemented properly 3960 * everywhere. It wouldn't surprise me if several stacks accidently 3961 * SACK too far backwards of previously ACKed data. There really aren't 3962 * any security implications of bad SACKing unless the target stack 3963 * doesn't validate the option length correctly. Someone trying to 3964 * spoof into a TCP connection won't bother blindly sending SACK 3965 * options anyway. 3966 */ 3967 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3968 if (pf_modulate_sack(m, off, pd, th, dst)) 3969 *copyback = 1; 3970 } 3971 3972 3973 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3974 if (SEQ_GEQ(src->seqhi, end) && 3975 /* Last octet inside other's window space */ 3976 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3977 /* Retrans: not more than one window back */ 3978 (ackskew >= -MAXACKWINDOW) && 3979 /* Acking not more than one reassembled fragment backwards */ 3980 (ackskew <= (MAXACKWINDOW << sws)) && 3981 /* Acking not more than one window forward */ 3982 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3983 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3984 (pd->flags & PFDESC_IP_REAS) == 0)) { 3985 /* Require an exact/+1 sequence match on resets when possible */ 3986 3987 if (dst->scrub || src->scrub) { 3988 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3989 *state, src, dst, copyback)) 3990 return (PF_DROP); 3991 } 3992 3993 /* update max window */ 3994 if (src->max_win < win) 3995 src->max_win = win; 3996 /* synchronize sequencing */ 3997 if (SEQ_GT(end, src->seqlo)) 3998 src->seqlo = end; 3999 /* slide the window of what the other end can send */ 4000 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4001 dst->seqhi = ack + MAX((win << sws), 1); 4002 4003 4004 /* update states */ 4005 if (th->th_flags & TH_SYN) 4006 if (src->state < TCPS_SYN_SENT) 4007 src->state = TCPS_SYN_SENT; 4008 if (th->th_flags & TH_FIN) 4009 if (src->state < TCPS_CLOSING) 4010 src->state = TCPS_CLOSING; 4011 if (th->th_flags & TH_ACK) { 4012 if (dst->state == TCPS_SYN_SENT) { 4013 dst->state = TCPS_ESTABLISHED; 4014 if (src->state == TCPS_ESTABLISHED && 4015 (*state)->src_node != NULL && 4016 pf_src_connlimit(state)) { 4017 REASON_SET(reason, PFRES_SRCLIMIT); 4018 return (PF_DROP); 4019 } 4020 } else if (dst->state == TCPS_CLOSING) 4021 dst->state = TCPS_FIN_WAIT_2; 4022 } 4023 if (th->th_flags & TH_RST) 4024 src->state = dst->state = TCPS_TIME_WAIT; 4025 4026 /* update expire time */ 4027 (*state)->expire = time_uptime; 4028 if (src->state >= TCPS_FIN_WAIT_2 && 4029 dst->state >= TCPS_FIN_WAIT_2) 4030 (*state)->timeout = PFTM_TCP_CLOSED; 4031 else if (src->state >= TCPS_CLOSING && 4032 dst->state >= TCPS_CLOSING) 4033 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4034 else if (src->state < TCPS_ESTABLISHED || 4035 dst->state < TCPS_ESTABLISHED) 4036 (*state)->timeout = PFTM_TCP_OPENING; 4037 else if (src->state >= TCPS_CLOSING || 4038 dst->state >= TCPS_CLOSING) 4039 (*state)->timeout = PFTM_TCP_CLOSING; 4040 else 4041 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4042 4043 /* Fall through to PASS packet */ 4044 4045 } else if ((dst->state < TCPS_SYN_SENT || 4046 dst->state >= TCPS_FIN_WAIT_2 || 4047 src->state >= TCPS_FIN_WAIT_2) && 4048 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4049 /* Within a window forward of the originating packet */ 4050 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4051 /* Within a window backward of the originating packet */ 4052 4053 /* 4054 * This currently handles three situations: 4055 * 1) Stupid stacks will shotgun SYNs before their peer 4056 * replies. 4057 * 2) When PF catches an already established stream (the 4058 * firewall rebooted, the state table was flushed, routes 4059 * changed...) 4060 * 3) Packets get funky immediately after the connection 4061 * closes (this should catch Solaris spurious ACK|FINs 4062 * that web servers like to spew after a close) 4063 * 4064 * This must be a little more careful than the above code 4065 * since packet floods will also be caught here. We don't 4066 * update the TTL here to mitigate the damage of a packet 4067 * flood and so the same code can handle awkward establishment 4068 * and a loosened connection close. 4069 * In the establishment case, a correct peer response will 4070 * validate the connection, go through the normal state code 4071 * and keep updating the state TTL. 4072 */ 4073 4074 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4075 printf("pf: loose state match: "); 4076 pf_print_state(*state); 4077 pf_print_flags(th->th_flags); 4078 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4079 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4080 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4081 (unsigned long long)(*state)->packets[1], 4082 pd->dir == PF_IN ? "in" : "out", 4083 pd->dir == (*state)->direction ? "fwd" : "rev"); 4084 } 4085 4086 if (dst->scrub || src->scrub) { 4087 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4088 *state, src, dst, copyback)) 4089 return (PF_DROP); 4090 } 4091 4092 /* update max window */ 4093 if (src->max_win < win) 4094 src->max_win = win; 4095 /* synchronize sequencing */ 4096 if (SEQ_GT(end, src->seqlo)) 4097 src->seqlo = end; 4098 /* slide the window of what the other end can send */ 4099 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4100 dst->seqhi = ack + MAX((win << sws), 1); 4101 4102 /* 4103 * Cannot set dst->seqhi here since this could be a shotgunned 4104 * SYN and not an already established connection. 4105 */ 4106 4107 if (th->th_flags & TH_FIN) 4108 if (src->state < TCPS_CLOSING) 4109 src->state = TCPS_CLOSING; 4110 if (th->th_flags & TH_RST) 4111 src->state = dst->state = TCPS_TIME_WAIT; 4112 4113 /* Fall through to PASS packet */ 4114 4115 } else { 4116 if ((*state)->dst.state == TCPS_SYN_SENT && 4117 (*state)->src.state == TCPS_SYN_SENT) { 4118 /* Send RST for state mismatches during handshake */ 4119 if (!(th->th_flags & TH_RST)) 4120 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4121 pd->dst, pd->src, th->th_dport, 4122 th->th_sport, ntohl(th->th_ack), 0, 4123 TH_RST, 0, 0, 4124 (*state)->rule.ptr->return_ttl, 1, 0, 4125 kif->pfik_ifp); 4126 src->seqlo = 0; 4127 src->seqhi = 1; 4128 src->max_win = 1; 4129 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4130 printf("pf: BAD state: "); 4131 pf_print_state(*state); 4132 pf_print_flags(th->th_flags); 4133 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4134 "pkts=%llu:%llu dir=%s,%s\n", 4135 seq, orig_seq, ack, pd->p_len, ackskew, 4136 (unsigned long long)(*state)->packets[0], 4137 (unsigned long long)(*state)->packets[1], 4138 pd->dir == PF_IN ? "in" : "out", 4139 pd->dir == (*state)->direction ? "fwd" : "rev"); 4140 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4141 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4142 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4143 ' ': '2', 4144 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4145 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4146 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4147 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4148 } 4149 REASON_SET(reason, PFRES_BADSTATE); 4150 return (PF_DROP); 4151 } 4152 4153 return (PF_PASS); 4154 } 4155 4156 static int 4157 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4158 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4159 { 4160 struct tcphdr *th = pd->hdr.tcp; 4161 4162 if (th->th_flags & TH_SYN) 4163 if (src->state < TCPS_SYN_SENT) 4164 src->state = TCPS_SYN_SENT; 4165 if (th->th_flags & TH_FIN) 4166 if (src->state < TCPS_CLOSING) 4167 src->state = TCPS_CLOSING; 4168 if (th->th_flags & TH_ACK) { 4169 if (dst->state == TCPS_SYN_SENT) { 4170 dst->state = TCPS_ESTABLISHED; 4171 if (src->state == TCPS_ESTABLISHED && 4172 (*state)->src_node != NULL && 4173 pf_src_connlimit(state)) { 4174 REASON_SET(reason, PFRES_SRCLIMIT); 4175 return (PF_DROP); 4176 } 4177 } else if (dst->state == TCPS_CLOSING) { 4178 dst->state = TCPS_FIN_WAIT_2; 4179 } else if (src->state == TCPS_SYN_SENT && 4180 dst->state < TCPS_SYN_SENT) { 4181 /* 4182 * Handle a special sloppy case where we only see one 4183 * half of the connection. If there is a ACK after 4184 * the initial SYN without ever seeing a packet from 4185 * the destination, set the connection to established. 4186 */ 4187 dst->state = src->state = TCPS_ESTABLISHED; 4188 if ((*state)->src_node != NULL && 4189 pf_src_connlimit(state)) { 4190 REASON_SET(reason, PFRES_SRCLIMIT); 4191 return (PF_DROP); 4192 } 4193 } else if (src->state == TCPS_CLOSING && 4194 dst->state == TCPS_ESTABLISHED && 4195 dst->seqlo == 0) { 4196 /* 4197 * Handle the closing of half connections where we 4198 * don't see the full bidirectional FIN/ACK+ACK 4199 * handshake. 4200 */ 4201 dst->state = TCPS_CLOSING; 4202 } 4203 } 4204 if (th->th_flags & TH_RST) 4205 src->state = dst->state = TCPS_TIME_WAIT; 4206 4207 /* update expire time */ 4208 (*state)->expire = time_uptime; 4209 if (src->state >= TCPS_FIN_WAIT_2 && 4210 dst->state >= TCPS_FIN_WAIT_2) 4211 (*state)->timeout = PFTM_TCP_CLOSED; 4212 else if (src->state >= TCPS_CLOSING && 4213 dst->state >= TCPS_CLOSING) 4214 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4215 else if (src->state < TCPS_ESTABLISHED || 4216 dst->state < TCPS_ESTABLISHED) 4217 (*state)->timeout = PFTM_TCP_OPENING; 4218 else if (src->state >= TCPS_CLOSING || 4219 dst->state >= TCPS_CLOSING) 4220 (*state)->timeout = PFTM_TCP_CLOSING; 4221 else 4222 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4223 4224 return (PF_PASS); 4225 } 4226 4227 static int 4228 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4229 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4230 u_short *reason) 4231 { 4232 struct pf_state_key_cmp key; 4233 struct tcphdr *th = pd->hdr.tcp; 4234 int copyback = 0; 4235 struct pf_state_peer *src, *dst; 4236 struct pf_state_key *sk; 4237 4238 bzero(&key, sizeof(key)); 4239 key.af = pd->af; 4240 key.proto = IPPROTO_TCP; 4241 if (direction == PF_IN) { /* wire side, straight */ 4242 PF_ACPY(&key.addr[0], pd->src, key.af); 4243 PF_ACPY(&key.addr[1], pd->dst, key.af); 4244 key.port[0] = th->th_sport; 4245 key.port[1] = th->th_dport; 4246 } else { /* stack side, reverse */ 4247 PF_ACPY(&key.addr[1], pd->src, key.af); 4248 PF_ACPY(&key.addr[0], pd->dst, key.af); 4249 key.port[1] = th->th_sport; 4250 key.port[0] = th->th_dport; 4251 } 4252 4253 STATE_LOOKUP(kif, &key, direction, *state, pd); 4254 4255 if (direction == (*state)->direction) { 4256 src = &(*state)->src; 4257 dst = &(*state)->dst; 4258 } else { 4259 src = &(*state)->dst; 4260 dst = &(*state)->src; 4261 } 4262 4263 sk = (*state)->key[pd->didx]; 4264 4265 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4266 if (direction != (*state)->direction) { 4267 REASON_SET(reason, PFRES_SYNPROXY); 4268 return (PF_SYNPROXY_DROP); 4269 } 4270 if (th->th_flags & TH_SYN) { 4271 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4272 REASON_SET(reason, PFRES_SYNPROXY); 4273 return (PF_DROP); 4274 } 4275 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4276 pd->src, th->th_dport, th->th_sport, 4277 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4278 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4279 REASON_SET(reason, PFRES_SYNPROXY); 4280 return (PF_SYNPROXY_DROP); 4281 } else if (!(th->th_flags & TH_ACK) || 4282 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4283 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4284 REASON_SET(reason, PFRES_SYNPROXY); 4285 return (PF_DROP); 4286 } else if ((*state)->src_node != NULL && 4287 pf_src_connlimit(state)) { 4288 REASON_SET(reason, PFRES_SRCLIMIT); 4289 return (PF_DROP); 4290 } else 4291 (*state)->src.state = PF_TCPS_PROXY_DST; 4292 } 4293 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4294 if (direction == (*state)->direction) { 4295 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4296 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4297 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4298 REASON_SET(reason, PFRES_SYNPROXY); 4299 return (PF_DROP); 4300 } 4301 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4302 if ((*state)->dst.seqhi == 1) 4303 (*state)->dst.seqhi = htonl(arc4random()); 4304 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4305 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4306 sk->port[pd->sidx], sk->port[pd->didx], 4307 (*state)->dst.seqhi, 0, TH_SYN, 0, 4308 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4309 REASON_SET(reason, PFRES_SYNPROXY); 4310 return (PF_SYNPROXY_DROP); 4311 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4312 (TH_SYN|TH_ACK)) || 4313 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4314 REASON_SET(reason, PFRES_SYNPROXY); 4315 return (PF_DROP); 4316 } else { 4317 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4318 (*state)->dst.seqlo = ntohl(th->th_seq); 4319 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4320 pd->src, th->th_dport, th->th_sport, 4321 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4322 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4323 (*state)->tag, NULL); 4324 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4325 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4326 sk->port[pd->sidx], sk->port[pd->didx], 4327 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4328 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4329 (*state)->src.seqdiff = (*state)->dst.seqhi - 4330 (*state)->src.seqlo; 4331 (*state)->dst.seqdiff = (*state)->src.seqhi - 4332 (*state)->dst.seqlo; 4333 (*state)->src.seqhi = (*state)->src.seqlo + 4334 (*state)->dst.max_win; 4335 (*state)->dst.seqhi = (*state)->dst.seqlo + 4336 (*state)->src.max_win; 4337 (*state)->src.wscale = (*state)->dst.wscale = 0; 4338 (*state)->src.state = (*state)->dst.state = 4339 TCPS_ESTABLISHED; 4340 REASON_SET(reason, PFRES_SYNPROXY); 4341 return (PF_SYNPROXY_DROP); 4342 } 4343 } 4344 4345 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4346 dst->state >= TCPS_FIN_WAIT_2 && 4347 src->state >= TCPS_FIN_WAIT_2) { 4348 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4349 printf("pf: state reuse "); 4350 pf_print_state(*state); 4351 pf_print_flags(th->th_flags); 4352 printf("\n"); 4353 } 4354 /* XXX make sure it's the same direction ?? */ 4355 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4356 pf_unlink_state(*state, PF_ENTER_LOCKED); 4357 *state = NULL; 4358 return (PF_DROP); 4359 } 4360 4361 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4362 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4363 return (PF_DROP); 4364 } else { 4365 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4366 ©back) == PF_DROP) 4367 return (PF_DROP); 4368 } 4369 4370 /* translate source/destination address, if necessary */ 4371 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4372 struct pf_state_key *nk = (*state)->key[pd->didx]; 4373 4374 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4375 nk->port[pd->sidx] != th->th_sport) 4376 pf_change_ap(m, pd->src, &th->th_sport, 4377 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4378 nk->port[pd->sidx], 0, pd->af); 4379 4380 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4381 nk->port[pd->didx] != th->th_dport) 4382 pf_change_ap(m, pd->dst, &th->th_dport, 4383 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4384 nk->port[pd->didx], 0, pd->af); 4385 copyback = 1; 4386 } 4387 4388 /* Copyback sequence modulation or stateful scrub changes if needed */ 4389 if (copyback) 4390 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4391 4392 return (PF_PASS); 4393 } 4394 4395 static int 4396 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4397 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4398 { 4399 struct pf_state_peer *src, *dst; 4400 struct pf_state_key_cmp key; 4401 struct udphdr *uh = pd->hdr.udp; 4402 4403 bzero(&key, sizeof(key)); 4404 key.af = pd->af; 4405 key.proto = IPPROTO_UDP; 4406 if (direction == PF_IN) { /* wire side, straight */ 4407 PF_ACPY(&key.addr[0], pd->src, key.af); 4408 PF_ACPY(&key.addr[1], pd->dst, key.af); 4409 key.port[0] = uh->uh_sport; 4410 key.port[1] = uh->uh_dport; 4411 } else { /* stack side, reverse */ 4412 PF_ACPY(&key.addr[1], pd->src, key.af); 4413 PF_ACPY(&key.addr[0], pd->dst, key.af); 4414 key.port[1] = uh->uh_sport; 4415 key.port[0] = uh->uh_dport; 4416 } 4417 4418 STATE_LOOKUP(kif, &key, direction, *state, pd); 4419 4420 if (direction == (*state)->direction) { 4421 src = &(*state)->src; 4422 dst = &(*state)->dst; 4423 } else { 4424 src = &(*state)->dst; 4425 dst = &(*state)->src; 4426 } 4427 4428 /* update states */ 4429 if (src->state < PFUDPS_SINGLE) 4430 src->state = PFUDPS_SINGLE; 4431 if (dst->state == PFUDPS_SINGLE) 4432 dst->state = PFUDPS_MULTIPLE; 4433 4434 /* update expire time */ 4435 (*state)->expire = time_uptime; 4436 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4437 (*state)->timeout = PFTM_UDP_MULTIPLE; 4438 else 4439 (*state)->timeout = PFTM_UDP_SINGLE; 4440 4441 /* translate source/destination address, if necessary */ 4442 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4443 struct pf_state_key *nk = (*state)->key[pd->didx]; 4444 4445 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4446 nk->port[pd->sidx] != uh->uh_sport) 4447 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4448 &uh->uh_sum, &nk->addr[pd->sidx], 4449 nk->port[pd->sidx], 1, pd->af); 4450 4451 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4452 nk->port[pd->didx] != uh->uh_dport) 4453 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4454 &uh->uh_sum, &nk->addr[pd->didx], 4455 nk->port[pd->didx], 1, pd->af); 4456 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4457 } 4458 4459 return (PF_PASS); 4460 } 4461 4462 static int 4463 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4464 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4465 { 4466 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4467 u_int16_t icmpid = 0, *icmpsum; 4468 u_int8_t icmptype; 4469 int state_icmp = 0; 4470 struct pf_state_key_cmp key; 4471 4472 bzero(&key, sizeof(key)); 4473 switch (pd->proto) { 4474 #ifdef INET 4475 case IPPROTO_ICMP: 4476 icmptype = pd->hdr.icmp->icmp_type; 4477 icmpid = pd->hdr.icmp->icmp_id; 4478 icmpsum = &pd->hdr.icmp->icmp_cksum; 4479 4480 if (icmptype == ICMP_UNREACH || 4481 icmptype == ICMP_SOURCEQUENCH || 4482 icmptype == ICMP_REDIRECT || 4483 icmptype == ICMP_TIMXCEED || 4484 icmptype == ICMP_PARAMPROB) 4485 state_icmp++; 4486 break; 4487 #endif /* INET */ 4488 #ifdef INET6 4489 case IPPROTO_ICMPV6: 4490 icmptype = pd->hdr.icmp6->icmp6_type; 4491 icmpid = pd->hdr.icmp6->icmp6_id; 4492 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4493 4494 if (icmptype == ICMP6_DST_UNREACH || 4495 icmptype == ICMP6_PACKET_TOO_BIG || 4496 icmptype == ICMP6_TIME_EXCEEDED || 4497 icmptype == ICMP6_PARAM_PROB) 4498 state_icmp++; 4499 break; 4500 #endif /* INET6 */ 4501 } 4502 4503 if (!state_icmp) { 4504 4505 /* 4506 * ICMP query/reply message not related to a TCP/UDP packet. 4507 * Search for an ICMP state. 4508 */ 4509 key.af = pd->af; 4510 key.proto = pd->proto; 4511 key.port[0] = key.port[1] = icmpid; 4512 if (direction == PF_IN) { /* wire side, straight */ 4513 PF_ACPY(&key.addr[0], pd->src, key.af); 4514 PF_ACPY(&key.addr[1], pd->dst, key.af); 4515 } else { /* stack side, reverse */ 4516 PF_ACPY(&key.addr[1], pd->src, key.af); 4517 PF_ACPY(&key.addr[0], pd->dst, key.af); 4518 } 4519 4520 STATE_LOOKUP(kif, &key, direction, *state, pd); 4521 4522 (*state)->expire = time_uptime; 4523 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4524 4525 /* translate source/destination address, if necessary */ 4526 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4527 struct pf_state_key *nk = (*state)->key[pd->didx]; 4528 4529 switch (pd->af) { 4530 #ifdef INET 4531 case AF_INET: 4532 if (PF_ANEQ(pd->src, 4533 &nk->addr[pd->sidx], AF_INET)) 4534 pf_change_a(&saddr->v4.s_addr, 4535 pd->ip_sum, 4536 nk->addr[pd->sidx].v4.s_addr, 0); 4537 4538 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4539 AF_INET)) 4540 pf_change_a(&daddr->v4.s_addr, 4541 pd->ip_sum, 4542 nk->addr[pd->didx].v4.s_addr, 0); 4543 4544 if (nk->port[0] != 4545 pd->hdr.icmp->icmp_id) { 4546 pd->hdr.icmp->icmp_cksum = 4547 pf_cksum_fixup( 4548 pd->hdr.icmp->icmp_cksum, icmpid, 4549 nk->port[pd->sidx], 0); 4550 pd->hdr.icmp->icmp_id = 4551 nk->port[pd->sidx]; 4552 } 4553 4554 m_copyback(m, off, ICMP_MINLEN, 4555 (caddr_t )pd->hdr.icmp); 4556 break; 4557 #endif /* INET */ 4558 #ifdef INET6 4559 case AF_INET6: 4560 if (PF_ANEQ(pd->src, 4561 &nk->addr[pd->sidx], AF_INET6)) 4562 pf_change_a6(saddr, 4563 &pd->hdr.icmp6->icmp6_cksum, 4564 &nk->addr[pd->sidx], 0); 4565 4566 if (PF_ANEQ(pd->dst, 4567 &nk->addr[pd->didx], AF_INET6)) 4568 pf_change_a6(daddr, 4569 &pd->hdr.icmp6->icmp6_cksum, 4570 &nk->addr[pd->didx], 0); 4571 4572 m_copyback(m, off, sizeof(struct icmp6_hdr), 4573 (caddr_t )pd->hdr.icmp6); 4574 break; 4575 #endif /* INET6 */ 4576 } 4577 } 4578 return (PF_PASS); 4579 4580 } else { 4581 /* 4582 * ICMP error message in response to a TCP/UDP packet. 4583 * Extract the inner TCP/UDP header and search for that state. 4584 */ 4585 4586 struct pf_pdesc pd2; 4587 bzero(&pd2, sizeof pd2); 4588 #ifdef INET 4589 struct ip h2; 4590 #endif /* INET */ 4591 #ifdef INET6 4592 struct ip6_hdr h2_6; 4593 int terminal = 0; 4594 #endif /* INET6 */ 4595 int ipoff2 = 0; 4596 int off2 = 0; 4597 4598 pd2.af = pd->af; 4599 /* Payload packet is from the opposite direction. */ 4600 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4601 pd2.didx = (direction == PF_IN) ? 0 : 1; 4602 switch (pd->af) { 4603 #ifdef INET 4604 case AF_INET: 4605 /* offset of h2 in mbuf chain */ 4606 ipoff2 = off + ICMP_MINLEN; 4607 4608 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4609 NULL, reason, pd2.af)) { 4610 DPFPRINTF(PF_DEBUG_MISC, 4611 ("pf: ICMP error message too short " 4612 "(ip)\n")); 4613 return (PF_DROP); 4614 } 4615 /* 4616 * ICMP error messages don't refer to non-first 4617 * fragments 4618 */ 4619 if (h2.ip_off & htons(IP_OFFMASK)) { 4620 REASON_SET(reason, PFRES_FRAG); 4621 return (PF_DROP); 4622 } 4623 4624 /* offset of protocol header that follows h2 */ 4625 off2 = ipoff2 + (h2.ip_hl << 2); 4626 4627 pd2.proto = h2.ip_p; 4628 pd2.src = (struct pf_addr *)&h2.ip_src; 4629 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4630 pd2.ip_sum = &h2.ip_sum; 4631 break; 4632 #endif /* INET */ 4633 #ifdef INET6 4634 case AF_INET6: 4635 ipoff2 = off + sizeof(struct icmp6_hdr); 4636 4637 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4638 NULL, reason, pd2.af)) { 4639 DPFPRINTF(PF_DEBUG_MISC, 4640 ("pf: ICMP error message too short " 4641 "(ip6)\n")); 4642 return (PF_DROP); 4643 } 4644 pd2.proto = h2_6.ip6_nxt; 4645 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4646 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4647 pd2.ip_sum = NULL; 4648 off2 = ipoff2 + sizeof(h2_6); 4649 do { 4650 switch (pd2.proto) { 4651 case IPPROTO_FRAGMENT: 4652 /* 4653 * ICMPv6 error messages for 4654 * non-first fragments 4655 */ 4656 REASON_SET(reason, PFRES_FRAG); 4657 return (PF_DROP); 4658 case IPPROTO_AH: 4659 case IPPROTO_HOPOPTS: 4660 case IPPROTO_ROUTING: 4661 case IPPROTO_DSTOPTS: { 4662 /* get next header and header length */ 4663 struct ip6_ext opt6; 4664 4665 if (!pf_pull_hdr(m, off2, &opt6, 4666 sizeof(opt6), NULL, reason, 4667 pd2.af)) { 4668 DPFPRINTF(PF_DEBUG_MISC, 4669 ("pf: ICMPv6 short opt\n")); 4670 return (PF_DROP); 4671 } 4672 if (pd2.proto == IPPROTO_AH) 4673 off2 += (opt6.ip6e_len + 2) * 4; 4674 else 4675 off2 += (opt6.ip6e_len + 1) * 8; 4676 pd2.proto = opt6.ip6e_nxt; 4677 /* goto the next header */ 4678 break; 4679 } 4680 default: 4681 terminal++; 4682 break; 4683 } 4684 } while (!terminal); 4685 break; 4686 #endif /* INET6 */ 4687 } 4688 4689 switch (pd2.proto) { 4690 case IPPROTO_TCP: { 4691 struct tcphdr th; 4692 u_int32_t seq; 4693 struct pf_state_peer *src, *dst; 4694 u_int8_t dws; 4695 int copyback = 0; 4696 4697 /* 4698 * Only the first 8 bytes of the TCP header can be 4699 * expected. Don't access any TCP header fields after 4700 * th_seq, an ackskew test is not possible. 4701 */ 4702 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4703 pd2.af)) { 4704 DPFPRINTF(PF_DEBUG_MISC, 4705 ("pf: ICMP error message too short " 4706 "(tcp)\n")); 4707 return (PF_DROP); 4708 } 4709 4710 key.af = pd2.af; 4711 key.proto = IPPROTO_TCP; 4712 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4713 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4714 key.port[pd2.sidx] = th.th_sport; 4715 key.port[pd2.didx] = th.th_dport; 4716 4717 STATE_LOOKUP(kif, &key, direction, *state, pd); 4718 4719 if (direction == (*state)->direction) { 4720 src = &(*state)->dst; 4721 dst = &(*state)->src; 4722 } else { 4723 src = &(*state)->src; 4724 dst = &(*state)->dst; 4725 } 4726 4727 if (src->wscale && dst->wscale) 4728 dws = dst->wscale & PF_WSCALE_MASK; 4729 else 4730 dws = 0; 4731 4732 /* Demodulate sequence number */ 4733 seq = ntohl(th.th_seq) - src->seqdiff; 4734 if (src->seqdiff) { 4735 pf_change_a(&th.th_seq, icmpsum, 4736 htonl(seq), 0); 4737 copyback = 1; 4738 } 4739 4740 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4741 (!SEQ_GEQ(src->seqhi, seq) || 4742 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4743 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4744 printf("pf: BAD ICMP %d:%d ", 4745 icmptype, pd->hdr.icmp->icmp_code); 4746 pf_print_host(pd->src, 0, pd->af); 4747 printf(" -> "); 4748 pf_print_host(pd->dst, 0, pd->af); 4749 printf(" state: "); 4750 pf_print_state(*state); 4751 printf(" seq=%u\n", seq); 4752 } 4753 REASON_SET(reason, PFRES_BADSTATE); 4754 return (PF_DROP); 4755 } else { 4756 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4757 printf("pf: OK ICMP %d:%d ", 4758 icmptype, pd->hdr.icmp->icmp_code); 4759 pf_print_host(pd->src, 0, pd->af); 4760 printf(" -> "); 4761 pf_print_host(pd->dst, 0, pd->af); 4762 printf(" state: "); 4763 pf_print_state(*state); 4764 printf(" seq=%u\n", seq); 4765 } 4766 } 4767 4768 /* translate source/destination address, if necessary */ 4769 if ((*state)->key[PF_SK_WIRE] != 4770 (*state)->key[PF_SK_STACK]) { 4771 struct pf_state_key *nk = 4772 (*state)->key[pd->didx]; 4773 4774 if (PF_ANEQ(pd2.src, 4775 &nk->addr[pd2.sidx], pd2.af) || 4776 nk->port[pd2.sidx] != th.th_sport) 4777 pf_change_icmp(pd2.src, &th.th_sport, 4778 daddr, &nk->addr[pd2.sidx], 4779 nk->port[pd2.sidx], NULL, 4780 pd2.ip_sum, icmpsum, 4781 pd->ip_sum, 0, pd2.af); 4782 4783 if (PF_ANEQ(pd2.dst, 4784 &nk->addr[pd2.didx], pd2.af) || 4785 nk->port[pd2.didx] != th.th_dport) 4786 pf_change_icmp(pd2.dst, &th.th_dport, 4787 NULL, /* XXX Inbound NAT? */ 4788 &nk->addr[pd2.didx], 4789 nk->port[pd2.didx], NULL, 4790 pd2.ip_sum, icmpsum, 4791 pd->ip_sum, 0, pd2.af); 4792 copyback = 1; 4793 } 4794 4795 if (copyback) { 4796 switch (pd2.af) { 4797 #ifdef INET 4798 case AF_INET: 4799 m_copyback(m, off, ICMP_MINLEN, 4800 (caddr_t )pd->hdr.icmp); 4801 m_copyback(m, ipoff2, sizeof(h2), 4802 (caddr_t )&h2); 4803 break; 4804 #endif /* INET */ 4805 #ifdef INET6 4806 case AF_INET6: 4807 m_copyback(m, off, 4808 sizeof(struct icmp6_hdr), 4809 (caddr_t )pd->hdr.icmp6); 4810 m_copyback(m, ipoff2, sizeof(h2_6), 4811 (caddr_t )&h2_6); 4812 break; 4813 #endif /* INET6 */ 4814 } 4815 m_copyback(m, off2, 8, (caddr_t)&th); 4816 } 4817 4818 return (PF_PASS); 4819 break; 4820 } 4821 case IPPROTO_UDP: { 4822 struct udphdr uh; 4823 4824 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4825 NULL, reason, pd2.af)) { 4826 DPFPRINTF(PF_DEBUG_MISC, 4827 ("pf: ICMP error message too short " 4828 "(udp)\n")); 4829 return (PF_DROP); 4830 } 4831 4832 key.af = pd2.af; 4833 key.proto = IPPROTO_UDP; 4834 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4835 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4836 key.port[pd2.sidx] = uh.uh_sport; 4837 key.port[pd2.didx] = uh.uh_dport; 4838 4839 STATE_LOOKUP(kif, &key, direction, *state, pd); 4840 4841 /* translate source/destination address, if necessary */ 4842 if ((*state)->key[PF_SK_WIRE] != 4843 (*state)->key[PF_SK_STACK]) { 4844 struct pf_state_key *nk = 4845 (*state)->key[pd->didx]; 4846 4847 if (PF_ANEQ(pd2.src, 4848 &nk->addr[pd2.sidx], pd2.af) || 4849 nk->port[pd2.sidx] != uh.uh_sport) 4850 pf_change_icmp(pd2.src, &uh.uh_sport, 4851 daddr, &nk->addr[pd2.sidx], 4852 nk->port[pd2.sidx], &uh.uh_sum, 4853 pd2.ip_sum, icmpsum, 4854 pd->ip_sum, 1, pd2.af); 4855 4856 if (PF_ANEQ(pd2.dst, 4857 &nk->addr[pd2.didx], pd2.af) || 4858 nk->port[pd2.didx] != uh.uh_dport) 4859 pf_change_icmp(pd2.dst, &uh.uh_dport, 4860 NULL, /* XXX Inbound NAT? */ 4861 &nk->addr[pd2.didx], 4862 nk->port[pd2.didx], &uh.uh_sum, 4863 pd2.ip_sum, icmpsum, 4864 pd->ip_sum, 1, pd2.af); 4865 4866 switch (pd2.af) { 4867 #ifdef INET 4868 case AF_INET: 4869 m_copyback(m, off, ICMP_MINLEN, 4870 (caddr_t )pd->hdr.icmp); 4871 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4872 break; 4873 #endif /* INET */ 4874 #ifdef INET6 4875 case AF_INET6: 4876 m_copyback(m, off, 4877 sizeof(struct icmp6_hdr), 4878 (caddr_t )pd->hdr.icmp6); 4879 m_copyback(m, ipoff2, sizeof(h2_6), 4880 (caddr_t )&h2_6); 4881 break; 4882 #endif /* INET6 */ 4883 } 4884 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4885 } 4886 return (PF_PASS); 4887 break; 4888 } 4889 #ifdef INET 4890 case IPPROTO_ICMP: { 4891 struct icmp iih; 4892 4893 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4894 NULL, reason, pd2.af)) { 4895 DPFPRINTF(PF_DEBUG_MISC, 4896 ("pf: ICMP error message too short i" 4897 "(icmp)\n")); 4898 return (PF_DROP); 4899 } 4900 4901 key.af = pd2.af; 4902 key.proto = IPPROTO_ICMP; 4903 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4904 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4905 key.port[0] = key.port[1] = iih.icmp_id; 4906 4907 STATE_LOOKUP(kif, &key, direction, *state, pd); 4908 4909 /* translate source/destination address, if necessary */ 4910 if ((*state)->key[PF_SK_WIRE] != 4911 (*state)->key[PF_SK_STACK]) { 4912 struct pf_state_key *nk = 4913 (*state)->key[pd->didx]; 4914 4915 if (PF_ANEQ(pd2.src, 4916 &nk->addr[pd2.sidx], pd2.af) || 4917 nk->port[pd2.sidx] != iih.icmp_id) 4918 pf_change_icmp(pd2.src, &iih.icmp_id, 4919 daddr, &nk->addr[pd2.sidx], 4920 nk->port[pd2.sidx], NULL, 4921 pd2.ip_sum, icmpsum, 4922 pd->ip_sum, 0, AF_INET); 4923 4924 if (PF_ANEQ(pd2.dst, 4925 &nk->addr[pd2.didx], pd2.af) || 4926 nk->port[pd2.didx] != iih.icmp_id) 4927 pf_change_icmp(pd2.dst, &iih.icmp_id, 4928 NULL, /* XXX Inbound NAT? */ 4929 &nk->addr[pd2.didx], 4930 nk->port[pd2.didx], NULL, 4931 pd2.ip_sum, icmpsum, 4932 pd->ip_sum, 0, AF_INET); 4933 4934 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4935 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4936 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4937 } 4938 return (PF_PASS); 4939 break; 4940 } 4941 #endif /* INET */ 4942 #ifdef INET6 4943 case IPPROTO_ICMPV6: { 4944 struct icmp6_hdr iih; 4945 4946 if (!pf_pull_hdr(m, off2, &iih, 4947 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4948 DPFPRINTF(PF_DEBUG_MISC, 4949 ("pf: ICMP error message too short " 4950 "(icmp6)\n")); 4951 return (PF_DROP); 4952 } 4953 4954 key.af = pd2.af; 4955 key.proto = IPPROTO_ICMPV6; 4956 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4957 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4958 key.port[0] = key.port[1] = iih.icmp6_id; 4959 4960 STATE_LOOKUP(kif, &key, direction, *state, pd); 4961 4962 /* translate source/destination address, if necessary */ 4963 if ((*state)->key[PF_SK_WIRE] != 4964 (*state)->key[PF_SK_STACK]) { 4965 struct pf_state_key *nk = 4966 (*state)->key[pd->didx]; 4967 4968 if (PF_ANEQ(pd2.src, 4969 &nk->addr[pd2.sidx], pd2.af) || 4970 nk->port[pd2.sidx] != iih.icmp6_id) 4971 pf_change_icmp(pd2.src, &iih.icmp6_id, 4972 daddr, &nk->addr[pd2.sidx], 4973 nk->port[pd2.sidx], NULL, 4974 pd2.ip_sum, icmpsum, 4975 pd->ip_sum, 0, AF_INET6); 4976 4977 if (PF_ANEQ(pd2.dst, 4978 &nk->addr[pd2.didx], pd2.af) || 4979 nk->port[pd2.didx] != iih.icmp6_id) 4980 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4981 NULL, /* XXX Inbound NAT? */ 4982 &nk->addr[pd2.didx], 4983 nk->port[pd2.didx], NULL, 4984 pd2.ip_sum, icmpsum, 4985 pd->ip_sum, 0, AF_INET6); 4986 4987 m_copyback(m, off, sizeof(struct icmp6_hdr), 4988 (caddr_t)pd->hdr.icmp6); 4989 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4990 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4991 (caddr_t)&iih); 4992 } 4993 return (PF_PASS); 4994 break; 4995 } 4996 #endif /* INET6 */ 4997 default: { 4998 key.af = pd2.af; 4999 key.proto = pd2.proto; 5000 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5001 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5002 key.port[0] = key.port[1] = 0; 5003 5004 STATE_LOOKUP(kif, &key, direction, *state, pd); 5005 5006 /* translate source/destination address, if necessary */ 5007 if ((*state)->key[PF_SK_WIRE] != 5008 (*state)->key[PF_SK_STACK]) { 5009 struct pf_state_key *nk = 5010 (*state)->key[pd->didx]; 5011 5012 if (PF_ANEQ(pd2.src, 5013 &nk->addr[pd2.sidx], pd2.af)) 5014 pf_change_icmp(pd2.src, NULL, daddr, 5015 &nk->addr[pd2.sidx], 0, NULL, 5016 pd2.ip_sum, icmpsum, 5017 pd->ip_sum, 0, pd2.af); 5018 5019 if (PF_ANEQ(pd2.dst, 5020 &nk->addr[pd2.didx], pd2.af)) 5021 pf_change_icmp(pd2.src, NULL, 5022 NULL, /* XXX Inbound NAT? */ 5023 &nk->addr[pd2.didx], 0, NULL, 5024 pd2.ip_sum, icmpsum, 5025 pd->ip_sum, 0, pd2.af); 5026 5027 switch (pd2.af) { 5028 #ifdef INET 5029 case AF_INET: 5030 m_copyback(m, off, ICMP_MINLEN, 5031 (caddr_t)pd->hdr.icmp); 5032 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5033 break; 5034 #endif /* INET */ 5035 #ifdef INET6 5036 case AF_INET6: 5037 m_copyback(m, off, 5038 sizeof(struct icmp6_hdr), 5039 (caddr_t )pd->hdr.icmp6); 5040 m_copyback(m, ipoff2, sizeof(h2_6), 5041 (caddr_t )&h2_6); 5042 break; 5043 #endif /* INET6 */ 5044 } 5045 } 5046 return (PF_PASS); 5047 break; 5048 } 5049 } 5050 } 5051 } 5052 5053 static int 5054 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5055 struct mbuf *m, struct pf_pdesc *pd) 5056 { 5057 struct pf_state_peer *src, *dst; 5058 struct pf_state_key_cmp key; 5059 5060 bzero(&key, sizeof(key)); 5061 key.af = pd->af; 5062 key.proto = pd->proto; 5063 if (direction == PF_IN) { 5064 PF_ACPY(&key.addr[0], pd->src, key.af); 5065 PF_ACPY(&key.addr[1], pd->dst, key.af); 5066 key.port[0] = key.port[1] = 0; 5067 } else { 5068 PF_ACPY(&key.addr[1], pd->src, key.af); 5069 PF_ACPY(&key.addr[0], pd->dst, key.af); 5070 key.port[1] = key.port[0] = 0; 5071 } 5072 5073 STATE_LOOKUP(kif, &key, direction, *state, pd); 5074 5075 if (direction == (*state)->direction) { 5076 src = &(*state)->src; 5077 dst = &(*state)->dst; 5078 } else { 5079 src = &(*state)->dst; 5080 dst = &(*state)->src; 5081 } 5082 5083 /* update states */ 5084 if (src->state < PFOTHERS_SINGLE) 5085 src->state = PFOTHERS_SINGLE; 5086 if (dst->state == PFOTHERS_SINGLE) 5087 dst->state = PFOTHERS_MULTIPLE; 5088 5089 /* update expire time */ 5090 (*state)->expire = time_uptime; 5091 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5092 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5093 else 5094 (*state)->timeout = PFTM_OTHER_SINGLE; 5095 5096 /* translate source/destination address, if necessary */ 5097 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5098 struct pf_state_key *nk = (*state)->key[pd->didx]; 5099 5100 KASSERT(nk, ("%s: nk is null", __func__)); 5101 KASSERT(pd, ("%s: pd is null", __func__)); 5102 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5103 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5104 switch (pd->af) { 5105 #ifdef INET 5106 case AF_INET: 5107 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5108 pf_change_a(&pd->src->v4.s_addr, 5109 pd->ip_sum, 5110 nk->addr[pd->sidx].v4.s_addr, 5111 0); 5112 5113 5114 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5115 pf_change_a(&pd->dst->v4.s_addr, 5116 pd->ip_sum, 5117 nk->addr[pd->didx].v4.s_addr, 5118 0); 5119 5120 break; 5121 #endif /* INET */ 5122 #ifdef INET6 5123 case AF_INET6: 5124 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5125 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5126 5127 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5128 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5129 #endif /* INET6 */ 5130 } 5131 } 5132 return (PF_PASS); 5133 } 5134 5135 /* 5136 * ipoff and off are measured from the start of the mbuf chain. 5137 * h must be at "ipoff" on the mbuf chain. 5138 */ 5139 void * 5140 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5141 u_short *actionp, u_short *reasonp, sa_family_t af) 5142 { 5143 switch (af) { 5144 #ifdef INET 5145 case AF_INET: { 5146 struct ip *h = mtod(m, struct ip *); 5147 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5148 5149 if (fragoff) { 5150 if (fragoff >= len) 5151 ACTION_SET(actionp, PF_PASS); 5152 else { 5153 ACTION_SET(actionp, PF_DROP); 5154 REASON_SET(reasonp, PFRES_FRAG); 5155 } 5156 return (NULL); 5157 } 5158 if (m->m_pkthdr.len < off + len || 5159 ntohs(h->ip_len) < off + len) { 5160 ACTION_SET(actionp, PF_DROP); 5161 REASON_SET(reasonp, PFRES_SHORT); 5162 return (NULL); 5163 } 5164 break; 5165 } 5166 #endif /* INET */ 5167 #ifdef INET6 5168 case AF_INET6: { 5169 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5170 5171 if (m->m_pkthdr.len < off + len || 5172 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5173 (unsigned)(off + len)) { 5174 ACTION_SET(actionp, PF_DROP); 5175 REASON_SET(reasonp, PFRES_SHORT); 5176 return (NULL); 5177 } 5178 break; 5179 } 5180 #endif /* INET6 */ 5181 } 5182 m_copydata(m, off, len, p); 5183 return (p); 5184 } 5185 5186 #ifdef RADIX_MPATH 5187 static int 5188 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5189 int rtableid) 5190 { 5191 struct radix_node_head *rnh; 5192 struct sockaddr_in *dst; 5193 int ret = 1; 5194 int check_mpath; 5195 #ifdef INET6 5196 struct sockaddr_in6 *dst6; 5197 struct route_in6 ro; 5198 #else 5199 struct route ro; 5200 #endif 5201 struct radix_node *rn; 5202 struct rtentry *rt; 5203 struct ifnet *ifp; 5204 5205 check_mpath = 0; 5206 /* XXX: stick to table 0 for now */ 5207 rnh = rt_tables_get_rnh(0, af); 5208 if (rnh != NULL && rn_mpath_capable(rnh)) 5209 check_mpath = 1; 5210 bzero(&ro, sizeof(ro)); 5211 switch (af) { 5212 case AF_INET: 5213 dst = satosin(&ro.ro_dst); 5214 dst->sin_family = AF_INET; 5215 dst->sin_len = sizeof(*dst); 5216 dst->sin_addr = addr->v4; 5217 break; 5218 #ifdef INET6 5219 case AF_INET6: 5220 /* 5221 * Skip check for addresses with embedded interface scope, 5222 * as they would always match anyway. 5223 */ 5224 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5225 goto out; 5226 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5227 dst6->sin6_family = AF_INET6; 5228 dst6->sin6_len = sizeof(*dst6); 5229 dst6->sin6_addr = addr->v6; 5230 break; 5231 #endif /* INET6 */ 5232 default: 5233 return (0); 5234 } 5235 5236 /* Skip checks for ipsec interfaces */ 5237 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5238 goto out; 5239 5240 switch (af) { 5241 #ifdef INET6 5242 case AF_INET6: 5243 in6_rtalloc_ign(&ro, 0, rtableid); 5244 break; 5245 #endif 5246 #ifdef INET 5247 case AF_INET: 5248 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5249 break; 5250 #endif 5251 } 5252 5253 if (ro.ro_rt != NULL) { 5254 /* No interface given, this is a no-route check */ 5255 if (kif == NULL) 5256 goto out; 5257 5258 if (kif->pfik_ifp == NULL) { 5259 ret = 0; 5260 goto out; 5261 } 5262 5263 /* Perform uRPF check if passed input interface */ 5264 ret = 0; 5265 rn = (struct radix_node *)ro.ro_rt; 5266 do { 5267 rt = (struct rtentry *)rn; 5268 ifp = rt->rt_ifp; 5269 5270 if (kif->pfik_ifp == ifp) 5271 ret = 1; 5272 rn = rn_mpath_next(rn); 5273 } while (check_mpath == 1 && rn != NULL && ret == 0); 5274 } else 5275 ret = 0; 5276 out: 5277 if (ro.ro_rt != NULL) 5278 RTFREE(ro.ro_rt); 5279 return (ret); 5280 } 5281 #endif 5282 5283 int 5284 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5285 int rtableid) 5286 { 5287 #ifdef INET 5288 struct nhop4_basic nh4; 5289 #endif 5290 #ifdef INET6 5291 struct nhop6_basic nh6; 5292 #endif 5293 struct ifnet *ifp; 5294 #ifdef RADIX_MPATH 5295 struct radix_node_head *rnh; 5296 5297 /* XXX: stick to table 0 for now */ 5298 rnh = rt_tables_get_rnh(0, af); 5299 if (rnh != NULL && rn_mpath_capable(rnh)) 5300 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5301 #endif 5302 /* 5303 * Skip check for addresses with embedded interface scope, 5304 * as they would always match anyway. 5305 */ 5306 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5307 return (1); 5308 5309 if (af != AF_INET && af != AF_INET6) 5310 return (0); 5311 5312 /* Skip checks for ipsec interfaces */ 5313 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5314 return (1); 5315 5316 ifp = NULL; 5317 5318 switch (af) { 5319 #ifdef INET6 5320 case AF_INET6: 5321 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5322 return (0); 5323 ifp = nh6.nh_ifp; 5324 break; 5325 #endif 5326 #ifdef INET 5327 case AF_INET: 5328 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5329 return (0); 5330 ifp = nh4.nh_ifp; 5331 break; 5332 #endif 5333 } 5334 5335 /* No interface given, this is a no-route check */ 5336 if (kif == NULL) 5337 return (1); 5338 5339 if (kif->pfik_ifp == NULL) 5340 return (0); 5341 5342 /* Perform uRPF check if passed input interface */ 5343 if (kif->pfik_ifp == ifp) 5344 return (1); 5345 return (0); 5346 } 5347 5348 #ifdef INET 5349 static void 5350 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5351 struct pf_state *s, struct pf_pdesc *pd) 5352 { 5353 struct mbuf *m0, *m1; 5354 struct sockaddr_in dst; 5355 struct ip *ip; 5356 struct ifnet *ifp = NULL; 5357 struct pf_addr naddr; 5358 struct pf_src_node *sn = NULL; 5359 int error = 0; 5360 uint16_t ip_len, ip_off; 5361 5362 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5363 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5364 __func__)); 5365 5366 if ((pd->pf_mtag == NULL && 5367 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5368 pd->pf_mtag->routed++ > 3) { 5369 m0 = *m; 5370 *m = NULL; 5371 goto bad_locked; 5372 } 5373 5374 if (r->rt == PF_DUPTO) { 5375 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5376 if (s) 5377 PF_STATE_UNLOCK(s); 5378 return; 5379 } 5380 } else { 5381 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5382 if (s) 5383 PF_STATE_UNLOCK(s); 5384 return; 5385 } 5386 m0 = *m; 5387 } 5388 5389 ip = mtod(m0, struct ip *); 5390 5391 bzero(&dst, sizeof(dst)); 5392 dst.sin_family = AF_INET; 5393 dst.sin_len = sizeof(dst); 5394 dst.sin_addr = ip->ip_dst; 5395 5396 if (r->rt == PF_FASTROUTE) { 5397 struct nhop4_basic nh4; 5398 5399 if (s) 5400 PF_STATE_UNLOCK(s); 5401 5402 if (fib4_lookup_nh_basic(M_GETFIB(m0), ip->ip_dst, 0, 5403 m0->m_pkthdr.flowid, &nh4) != 0) { 5404 KMOD_IPSTAT_INC(ips_noroute); 5405 error = EHOSTUNREACH; 5406 goto bad; 5407 } 5408 5409 ifp = nh4.nh_ifp; 5410 dst.sin_addr = nh4.nh_addr; 5411 } else { 5412 if (TAILQ_EMPTY(&r->rpool.list)) { 5413 DPFPRINTF(PF_DEBUG_URGENT, 5414 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5415 goto bad_locked; 5416 } 5417 if (s == NULL) { 5418 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5419 &naddr, NULL, &sn); 5420 if (!PF_AZERO(&naddr, AF_INET)) 5421 dst.sin_addr.s_addr = naddr.v4.s_addr; 5422 ifp = r->rpool.cur->kif ? 5423 r->rpool.cur->kif->pfik_ifp : NULL; 5424 } else { 5425 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5426 dst.sin_addr.s_addr = 5427 s->rt_addr.v4.s_addr; 5428 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5429 PF_STATE_UNLOCK(s); 5430 } 5431 } 5432 if (ifp == NULL) 5433 goto bad; 5434 5435 if (oifp != ifp) { 5436 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5437 goto bad; 5438 else if (m0 == NULL) 5439 goto done; 5440 if (m0->m_len < sizeof(struct ip)) { 5441 DPFPRINTF(PF_DEBUG_URGENT, 5442 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5443 goto bad; 5444 } 5445 ip = mtod(m0, struct ip *); 5446 } 5447 5448 if (ifp->if_flags & IFF_LOOPBACK) 5449 m0->m_flags |= M_SKIP_FIREWALL; 5450 5451 ip_len = ntohs(ip->ip_len); 5452 ip_off = ntohs(ip->ip_off); 5453 5454 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5455 m0->m_pkthdr.csum_flags |= CSUM_IP; 5456 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5457 in_delayed_cksum(m0); 5458 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5459 } 5460 #ifdef SCTP 5461 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5462 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5463 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5464 } 5465 #endif 5466 5467 /* 5468 * If small enough for interface, or the interface will take 5469 * care of the fragmentation for us, we can just send directly. 5470 */ 5471 if (ip_len <= ifp->if_mtu || 5472 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5473 ip->ip_sum = 0; 5474 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5475 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5476 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5477 } 5478 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5479 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5480 goto done; 5481 } 5482 5483 /* Balk when DF bit is set or the interface didn't support TSO. */ 5484 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5485 error = EMSGSIZE; 5486 KMOD_IPSTAT_INC(ips_cantfrag); 5487 if (r->rt != PF_DUPTO) { 5488 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5489 ifp->if_mtu); 5490 goto done; 5491 } else 5492 goto bad; 5493 } 5494 5495 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5496 if (error) 5497 goto bad; 5498 5499 for (; m0; m0 = m1) { 5500 m1 = m0->m_nextpkt; 5501 m0->m_nextpkt = NULL; 5502 if (error == 0) { 5503 m_clrprotoflags(m0); 5504 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5505 } else 5506 m_freem(m0); 5507 } 5508 5509 if (error == 0) 5510 KMOD_IPSTAT_INC(ips_fragmented); 5511 5512 done: 5513 if (r->rt != PF_DUPTO) 5514 *m = NULL; 5515 return; 5516 5517 bad_locked: 5518 if (s) 5519 PF_STATE_UNLOCK(s); 5520 bad: 5521 m_freem(m0); 5522 goto done; 5523 } 5524 #endif /* INET */ 5525 5526 #ifdef INET6 5527 static void 5528 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5529 struct pf_state *s, struct pf_pdesc *pd) 5530 { 5531 struct mbuf *m0; 5532 struct sockaddr_in6 dst; 5533 struct ip6_hdr *ip6; 5534 struct ifnet *ifp = NULL; 5535 struct pf_addr naddr; 5536 struct pf_src_node *sn = NULL; 5537 5538 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5539 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5540 __func__)); 5541 5542 if ((pd->pf_mtag == NULL && 5543 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5544 pd->pf_mtag->routed++ > 3) { 5545 m0 = *m; 5546 *m = NULL; 5547 goto bad_locked; 5548 } 5549 5550 if (r->rt == PF_DUPTO) { 5551 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5552 if (s) 5553 PF_STATE_UNLOCK(s); 5554 return; 5555 } 5556 } else { 5557 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5558 if (s) 5559 PF_STATE_UNLOCK(s); 5560 return; 5561 } 5562 m0 = *m; 5563 } 5564 5565 ip6 = mtod(m0, struct ip6_hdr *); 5566 5567 bzero(&dst, sizeof(dst)); 5568 dst.sin6_family = AF_INET6; 5569 dst.sin6_len = sizeof(dst); 5570 dst.sin6_addr = ip6->ip6_dst; 5571 5572 /* Cheat. XXX why only in the v6 case??? */ 5573 if (r->rt == PF_FASTROUTE) { 5574 if (s) 5575 PF_STATE_UNLOCK(s); 5576 m0->m_flags |= M_SKIP_FIREWALL; 5577 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5578 *m = NULL; 5579 return; 5580 } 5581 5582 if (TAILQ_EMPTY(&r->rpool.list)) { 5583 DPFPRINTF(PF_DEBUG_URGENT, 5584 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5585 goto bad_locked; 5586 } 5587 if (s == NULL) { 5588 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5589 &naddr, NULL, &sn); 5590 if (!PF_AZERO(&naddr, AF_INET6)) 5591 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5592 &naddr, AF_INET6); 5593 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5594 } else { 5595 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5596 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5597 &s->rt_addr, AF_INET6); 5598 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5599 } 5600 5601 if (s) 5602 PF_STATE_UNLOCK(s); 5603 5604 if (ifp == NULL) 5605 goto bad; 5606 5607 if (oifp != ifp) { 5608 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5609 goto bad; 5610 else if (m0 == NULL) 5611 goto done; 5612 if (m0->m_len < sizeof(struct ip6_hdr)) { 5613 DPFPRINTF(PF_DEBUG_URGENT, 5614 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5615 __func__)); 5616 goto bad; 5617 } 5618 ip6 = mtod(m0, struct ip6_hdr *); 5619 } 5620 5621 if (ifp->if_flags & IFF_LOOPBACK) 5622 m0->m_flags |= M_SKIP_FIREWALL; 5623 5624 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5625 ~ifp->if_hwassist) { 5626 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5627 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5628 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5629 } 5630 5631 /* 5632 * If the packet is too large for the outgoing interface, 5633 * send back an icmp6 error. 5634 */ 5635 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5636 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5637 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5638 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5639 else { 5640 in6_ifstat_inc(ifp, ifs6_in_toobig); 5641 if (r->rt != PF_DUPTO) 5642 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5643 else 5644 goto bad; 5645 } 5646 5647 done: 5648 if (r->rt != PF_DUPTO) 5649 *m = NULL; 5650 return; 5651 5652 bad_locked: 5653 if (s) 5654 PF_STATE_UNLOCK(s); 5655 bad: 5656 m_freem(m0); 5657 goto done; 5658 } 5659 #endif /* INET6 */ 5660 5661 /* 5662 * FreeBSD supports cksum offloads for the following drivers. 5663 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5664 * ti(4), txp(4), xl(4) 5665 * 5666 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5667 * network driver performed cksum including pseudo header, need to verify 5668 * csum_data 5669 * CSUM_DATA_VALID : 5670 * network driver performed cksum, needs to additional pseudo header 5671 * cksum computation with partial csum_data(i.e. lack of H/W support for 5672 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5673 * 5674 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5675 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5676 * TCP/UDP layer. 5677 * Also, set csum_data to 0xffff to force cksum validation. 5678 */ 5679 static int 5680 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5681 { 5682 u_int16_t sum = 0; 5683 int hw_assist = 0; 5684 struct ip *ip; 5685 5686 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5687 return (1); 5688 if (m->m_pkthdr.len < off + len) 5689 return (1); 5690 5691 switch (p) { 5692 case IPPROTO_TCP: 5693 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5694 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5695 sum = m->m_pkthdr.csum_data; 5696 } else { 5697 ip = mtod(m, struct ip *); 5698 sum = in_pseudo(ip->ip_src.s_addr, 5699 ip->ip_dst.s_addr, htonl((u_short)len + 5700 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5701 } 5702 sum ^= 0xffff; 5703 ++hw_assist; 5704 } 5705 break; 5706 case IPPROTO_UDP: 5707 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5708 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5709 sum = m->m_pkthdr.csum_data; 5710 } else { 5711 ip = mtod(m, struct ip *); 5712 sum = in_pseudo(ip->ip_src.s_addr, 5713 ip->ip_dst.s_addr, htonl((u_short)len + 5714 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5715 } 5716 sum ^= 0xffff; 5717 ++hw_assist; 5718 } 5719 break; 5720 case IPPROTO_ICMP: 5721 #ifdef INET6 5722 case IPPROTO_ICMPV6: 5723 #endif /* INET6 */ 5724 break; 5725 default: 5726 return (1); 5727 } 5728 5729 if (!hw_assist) { 5730 switch (af) { 5731 case AF_INET: 5732 if (p == IPPROTO_ICMP) { 5733 if (m->m_len < off) 5734 return (1); 5735 m->m_data += off; 5736 m->m_len -= off; 5737 sum = in_cksum(m, len); 5738 m->m_data -= off; 5739 m->m_len += off; 5740 } else { 5741 if (m->m_len < sizeof(struct ip)) 5742 return (1); 5743 sum = in4_cksum(m, p, off, len); 5744 } 5745 break; 5746 #ifdef INET6 5747 case AF_INET6: 5748 if (m->m_len < sizeof(struct ip6_hdr)) 5749 return (1); 5750 sum = in6_cksum(m, p, off, len); 5751 break; 5752 #endif /* INET6 */ 5753 default: 5754 return (1); 5755 } 5756 } 5757 if (sum) { 5758 switch (p) { 5759 case IPPROTO_TCP: 5760 { 5761 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5762 break; 5763 } 5764 case IPPROTO_UDP: 5765 { 5766 KMOD_UDPSTAT_INC(udps_badsum); 5767 break; 5768 } 5769 #ifdef INET 5770 case IPPROTO_ICMP: 5771 { 5772 KMOD_ICMPSTAT_INC(icps_checksum); 5773 break; 5774 } 5775 #endif 5776 #ifdef INET6 5777 case IPPROTO_ICMPV6: 5778 { 5779 KMOD_ICMP6STAT_INC(icp6s_checksum); 5780 break; 5781 } 5782 #endif /* INET6 */ 5783 } 5784 return (1); 5785 } else { 5786 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5787 m->m_pkthdr.csum_flags |= 5788 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5789 m->m_pkthdr.csum_data = 0xffff; 5790 } 5791 } 5792 return (0); 5793 } 5794 5795 5796 #ifdef INET 5797 int 5798 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5799 { 5800 struct pfi_kif *kif; 5801 u_short action, reason = 0, log = 0; 5802 struct mbuf *m = *m0; 5803 struct ip *h = NULL; 5804 struct m_tag *ipfwtag; 5805 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5806 struct pf_state *s = NULL; 5807 struct pf_ruleset *ruleset = NULL; 5808 struct pf_pdesc pd; 5809 int off, dirndx, pqid = 0; 5810 5811 M_ASSERTPKTHDR(m); 5812 5813 if (!V_pf_status.running) 5814 return (PF_PASS); 5815 5816 memset(&pd, 0, sizeof(pd)); 5817 5818 kif = (struct pfi_kif *)ifp->if_pf_kif; 5819 5820 if (kif == NULL) { 5821 DPFPRINTF(PF_DEBUG_URGENT, 5822 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5823 return (PF_DROP); 5824 } 5825 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5826 return (PF_PASS); 5827 5828 if (m->m_flags & M_SKIP_FIREWALL) 5829 return (PF_PASS); 5830 5831 pd.pf_mtag = pf_find_mtag(m); 5832 5833 PF_RULES_RLOCK(); 5834 5835 if (ip_divert_ptr != NULL && 5836 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5837 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5838 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5839 if (pd.pf_mtag == NULL && 5840 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5841 action = PF_DROP; 5842 goto done; 5843 } 5844 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5845 m_tag_delete(m, ipfwtag); 5846 } 5847 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5848 m->m_flags |= M_FASTFWD_OURS; 5849 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5850 } 5851 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5852 /* We do IP header normalization and packet reassembly here */ 5853 action = PF_DROP; 5854 goto done; 5855 } 5856 m = *m0; /* pf_normalize messes with m0 */ 5857 h = mtod(m, struct ip *); 5858 5859 off = h->ip_hl << 2; 5860 if (off < (int)sizeof(struct ip)) { 5861 action = PF_DROP; 5862 REASON_SET(&reason, PFRES_SHORT); 5863 log = 1; 5864 goto done; 5865 } 5866 5867 pd.src = (struct pf_addr *)&h->ip_src; 5868 pd.dst = (struct pf_addr *)&h->ip_dst; 5869 pd.sport = pd.dport = NULL; 5870 pd.ip_sum = &h->ip_sum; 5871 pd.proto_sum = NULL; 5872 pd.proto = h->ip_p; 5873 pd.dir = dir; 5874 pd.sidx = (dir == PF_IN) ? 0 : 1; 5875 pd.didx = (dir == PF_IN) ? 1 : 0; 5876 pd.af = AF_INET; 5877 pd.tos = h->ip_tos; 5878 pd.tot_len = ntohs(h->ip_len); 5879 5880 /* handle fragments that didn't get reassembled by normalization */ 5881 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5882 action = pf_test_fragment(&r, dir, kif, m, h, 5883 &pd, &a, &ruleset); 5884 goto done; 5885 } 5886 5887 switch (h->ip_p) { 5888 5889 case IPPROTO_TCP: { 5890 struct tcphdr th; 5891 5892 pd.hdr.tcp = &th; 5893 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5894 &action, &reason, AF_INET)) { 5895 log = action != PF_PASS; 5896 goto done; 5897 } 5898 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5899 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5900 pqid = 1; 5901 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5902 if (action == PF_DROP) 5903 goto done; 5904 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5905 &reason); 5906 if (action == PF_PASS) { 5907 if (pfsync_update_state_ptr != NULL) 5908 pfsync_update_state_ptr(s); 5909 r = s->rule.ptr; 5910 a = s->anchor.ptr; 5911 log = s->log; 5912 } else if (s == NULL) 5913 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5914 &a, &ruleset, inp); 5915 break; 5916 } 5917 5918 case IPPROTO_UDP: { 5919 struct udphdr uh; 5920 5921 pd.hdr.udp = &uh; 5922 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5923 &action, &reason, AF_INET)) { 5924 log = action != PF_PASS; 5925 goto done; 5926 } 5927 if (uh.uh_dport == 0 || 5928 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5929 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5930 action = PF_DROP; 5931 REASON_SET(&reason, PFRES_SHORT); 5932 goto done; 5933 } 5934 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5935 if (action == PF_PASS) { 5936 if (pfsync_update_state_ptr != NULL) 5937 pfsync_update_state_ptr(s); 5938 r = s->rule.ptr; 5939 a = s->anchor.ptr; 5940 log = s->log; 5941 } else if (s == NULL) 5942 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5943 &a, &ruleset, inp); 5944 break; 5945 } 5946 5947 case IPPROTO_ICMP: { 5948 struct icmp ih; 5949 5950 pd.hdr.icmp = &ih; 5951 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5952 &action, &reason, AF_INET)) { 5953 log = action != PF_PASS; 5954 goto done; 5955 } 5956 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5957 &reason); 5958 if (action == PF_PASS) { 5959 if (pfsync_update_state_ptr != NULL) 5960 pfsync_update_state_ptr(s); 5961 r = s->rule.ptr; 5962 a = s->anchor.ptr; 5963 log = s->log; 5964 } else if (s == NULL) 5965 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5966 &a, &ruleset, inp); 5967 break; 5968 } 5969 5970 #ifdef INET6 5971 case IPPROTO_ICMPV6: { 5972 action = PF_DROP; 5973 DPFPRINTF(PF_DEBUG_MISC, 5974 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5975 goto done; 5976 } 5977 #endif 5978 5979 default: 5980 action = pf_test_state_other(&s, dir, kif, m, &pd); 5981 if (action == PF_PASS) { 5982 if (pfsync_update_state_ptr != NULL) 5983 pfsync_update_state_ptr(s); 5984 r = s->rule.ptr; 5985 a = s->anchor.ptr; 5986 log = s->log; 5987 } else if (s == NULL) 5988 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5989 &a, &ruleset, inp); 5990 break; 5991 } 5992 5993 done: 5994 PF_RULES_RUNLOCK(); 5995 if (action == PF_PASS && h->ip_hl > 5 && 5996 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5997 action = PF_DROP; 5998 REASON_SET(&reason, PFRES_IPOPTIONS); 5999 log = r->log; 6000 DPFPRINTF(PF_DEBUG_MISC, 6001 ("pf: dropping packet with ip options\n")); 6002 } 6003 6004 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6005 action = PF_DROP; 6006 REASON_SET(&reason, PFRES_MEMORY); 6007 } 6008 if (r->rtableid >= 0) 6009 M_SETFIB(m, r->rtableid); 6010 6011 #ifdef ALTQ 6012 if (action == PF_PASS && r->qid) { 6013 if (pd.pf_mtag == NULL && 6014 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6015 action = PF_DROP; 6016 REASON_SET(&reason, PFRES_MEMORY); 6017 } else { 6018 if (s != NULL) 6019 pd.pf_mtag->qid_hash = pf_state_hash(s); 6020 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6021 pd.pf_mtag->qid = r->pqid; 6022 else 6023 pd.pf_mtag->qid = r->qid; 6024 /* Add hints for ecn. */ 6025 pd.pf_mtag->hdr = h; 6026 } 6027 6028 } 6029 #endif /* ALTQ */ 6030 6031 /* 6032 * connections redirected to loopback should not match sockets 6033 * bound specifically to loopback due to security implications, 6034 * see tcp_input() and in_pcblookup_listen(). 6035 */ 6036 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6037 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6038 (s->nat_rule.ptr->action == PF_RDR || 6039 s->nat_rule.ptr->action == PF_BINAT) && 6040 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6041 m->m_flags |= M_SKIP_FIREWALL; 6042 6043 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6044 !PACKET_LOOPED(&pd)) { 6045 6046 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6047 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6048 if (ipfwtag != NULL) { 6049 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6050 ntohs(r->divert.port); 6051 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6052 6053 if (s) 6054 PF_STATE_UNLOCK(s); 6055 6056 m_tag_prepend(m, ipfwtag); 6057 if (m->m_flags & M_FASTFWD_OURS) { 6058 if (pd.pf_mtag == NULL && 6059 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6060 action = PF_DROP; 6061 REASON_SET(&reason, PFRES_MEMORY); 6062 log = 1; 6063 DPFPRINTF(PF_DEBUG_MISC, 6064 ("pf: failed to allocate tag\n")); 6065 } else { 6066 pd.pf_mtag->flags |= 6067 PF_FASTFWD_OURS_PRESENT; 6068 m->m_flags &= ~M_FASTFWD_OURS; 6069 } 6070 } 6071 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6072 *m0 = NULL; 6073 6074 return (action); 6075 } else { 6076 /* XXX: ipfw has the same behaviour! */ 6077 action = PF_DROP; 6078 REASON_SET(&reason, PFRES_MEMORY); 6079 log = 1; 6080 DPFPRINTF(PF_DEBUG_MISC, 6081 ("pf: failed to allocate divert tag\n")); 6082 } 6083 } 6084 6085 if (log) { 6086 struct pf_rule *lr; 6087 6088 if (s != NULL && s->nat_rule.ptr != NULL && 6089 s->nat_rule.ptr->log & PF_LOG_ALL) 6090 lr = s->nat_rule.ptr; 6091 else 6092 lr = r; 6093 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6094 (s == NULL)); 6095 } 6096 6097 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6098 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6099 6100 if (action == PF_PASS || r->action == PF_DROP) { 6101 dirndx = (dir == PF_OUT); 6102 r->packets[dirndx]++; 6103 r->bytes[dirndx] += pd.tot_len; 6104 if (a != NULL) { 6105 a->packets[dirndx]++; 6106 a->bytes[dirndx] += pd.tot_len; 6107 } 6108 if (s != NULL) { 6109 if (s->nat_rule.ptr != NULL) { 6110 s->nat_rule.ptr->packets[dirndx]++; 6111 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6112 } 6113 if (s->src_node != NULL) { 6114 s->src_node->packets[dirndx]++; 6115 s->src_node->bytes[dirndx] += pd.tot_len; 6116 } 6117 if (s->nat_src_node != NULL) { 6118 s->nat_src_node->packets[dirndx]++; 6119 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6120 } 6121 dirndx = (dir == s->direction) ? 0 : 1; 6122 s->packets[dirndx]++; 6123 s->bytes[dirndx] += pd.tot_len; 6124 } 6125 tr = r; 6126 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6127 if (nr != NULL && r == &V_pf_default_rule) 6128 tr = nr; 6129 if (tr->src.addr.type == PF_ADDR_TABLE) 6130 pfr_update_stats(tr->src.addr.p.tbl, 6131 (s == NULL) ? pd.src : 6132 &s->key[(s->direction == PF_IN)]-> 6133 addr[(s->direction == PF_OUT)], 6134 pd.af, pd.tot_len, dir == PF_OUT, 6135 r->action == PF_PASS, tr->src.neg); 6136 if (tr->dst.addr.type == PF_ADDR_TABLE) 6137 pfr_update_stats(tr->dst.addr.p.tbl, 6138 (s == NULL) ? pd.dst : 6139 &s->key[(s->direction == PF_IN)]-> 6140 addr[(s->direction == PF_IN)], 6141 pd.af, pd.tot_len, dir == PF_OUT, 6142 r->action == PF_PASS, tr->dst.neg); 6143 } 6144 6145 switch (action) { 6146 case PF_SYNPROXY_DROP: 6147 m_freem(*m0); 6148 case PF_DEFER: 6149 *m0 = NULL; 6150 action = PF_PASS; 6151 break; 6152 case PF_DROP: 6153 m_freem(*m0); 6154 *m0 = NULL; 6155 break; 6156 default: 6157 /* pf_route() returns unlocked. */ 6158 if (r->rt) { 6159 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6160 return (action); 6161 } 6162 break; 6163 } 6164 if (s) 6165 PF_STATE_UNLOCK(s); 6166 6167 return (action); 6168 } 6169 #endif /* INET */ 6170 6171 #ifdef INET6 6172 int 6173 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6174 { 6175 struct pfi_kif *kif; 6176 u_short action, reason = 0, log = 0; 6177 struct mbuf *m = *m0, *n = NULL; 6178 struct m_tag *mtag; 6179 struct ip6_hdr *h = NULL; 6180 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6181 struct pf_state *s = NULL; 6182 struct pf_ruleset *ruleset = NULL; 6183 struct pf_pdesc pd; 6184 int off, terminal = 0, dirndx, rh_cnt = 0; 6185 int fwdir = dir; 6186 6187 M_ASSERTPKTHDR(m); 6188 6189 /* Detect packet forwarding. 6190 * If the input interface is different from the output interface we're 6191 * forwarding. 6192 * We do need to be careful about bridges. If the 6193 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6194 * bridge, so if the input interface is a bridge member and the output 6195 * interface is its bridge we're not actually forwarding but bridging. 6196 */ 6197 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif 6198 && (m->m_pkthdr.rcvif->if_bridge == NULL 6199 || m->m_pkthdr.rcvif->if_bridge != ifp->if_softc)) 6200 fwdir = PF_FWD; 6201 6202 if (!V_pf_status.running) 6203 return (PF_PASS); 6204 6205 memset(&pd, 0, sizeof(pd)); 6206 pd.pf_mtag = pf_find_mtag(m); 6207 6208 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6209 return (PF_PASS); 6210 6211 kif = (struct pfi_kif *)ifp->if_pf_kif; 6212 if (kif == NULL) { 6213 DPFPRINTF(PF_DEBUG_URGENT, 6214 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6215 return (PF_DROP); 6216 } 6217 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6218 return (PF_PASS); 6219 6220 if (m->m_flags & M_SKIP_FIREWALL) 6221 return (PF_PASS); 6222 6223 PF_RULES_RLOCK(); 6224 6225 /* We do IP header normalization and packet reassembly here */ 6226 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6227 action = PF_DROP; 6228 goto done; 6229 } 6230 m = *m0; /* pf_normalize messes with m0 */ 6231 h = mtod(m, struct ip6_hdr *); 6232 6233 #if 1 6234 /* 6235 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6236 * will do something bad, so drop the packet for now. 6237 */ 6238 if (htons(h->ip6_plen) == 0) { 6239 action = PF_DROP; 6240 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6241 goto done; 6242 } 6243 #endif 6244 6245 pd.src = (struct pf_addr *)&h->ip6_src; 6246 pd.dst = (struct pf_addr *)&h->ip6_dst; 6247 pd.sport = pd.dport = NULL; 6248 pd.ip_sum = NULL; 6249 pd.proto_sum = NULL; 6250 pd.dir = dir; 6251 pd.sidx = (dir == PF_IN) ? 0 : 1; 6252 pd.didx = (dir == PF_IN) ? 1 : 0; 6253 pd.af = AF_INET6; 6254 pd.tos = 0; 6255 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6256 6257 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6258 pd.proto = h->ip6_nxt; 6259 do { 6260 switch (pd.proto) { 6261 case IPPROTO_FRAGMENT: 6262 action = pf_test_fragment(&r, dir, kif, m, h, 6263 &pd, &a, &ruleset); 6264 if (action == PF_DROP) 6265 REASON_SET(&reason, PFRES_FRAG); 6266 goto done; 6267 case IPPROTO_ROUTING: { 6268 struct ip6_rthdr rthdr; 6269 6270 if (rh_cnt++) { 6271 DPFPRINTF(PF_DEBUG_MISC, 6272 ("pf: IPv6 more than one rthdr\n")); 6273 action = PF_DROP; 6274 REASON_SET(&reason, PFRES_IPOPTIONS); 6275 log = 1; 6276 goto done; 6277 } 6278 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6279 &reason, pd.af)) { 6280 DPFPRINTF(PF_DEBUG_MISC, 6281 ("pf: IPv6 short rthdr\n")); 6282 action = PF_DROP; 6283 REASON_SET(&reason, PFRES_SHORT); 6284 log = 1; 6285 goto done; 6286 } 6287 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6288 DPFPRINTF(PF_DEBUG_MISC, 6289 ("pf: IPv6 rthdr0\n")); 6290 action = PF_DROP; 6291 REASON_SET(&reason, PFRES_IPOPTIONS); 6292 log = 1; 6293 goto done; 6294 } 6295 /* FALLTHROUGH */ 6296 } 6297 case IPPROTO_AH: 6298 case IPPROTO_HOPOPTS: 6299 case IPPROTO_DSTOPTS: { 6300 /* get next header and header length */ 6301 struct ip6_ext opt6; 6302 6303 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6304 NULL, &reason, pd.af)) { 6305 DPFPRINTF(PF_DEBUG_MISC, 6306 ("pf: IPv6 short opt\n")); 6307 action = PF_DROP; 6308 log = 1; 6309 goto done; 6310 } 6311 if (pd.proto == IPPROTO_AH) 6312 off += (opt6.ip6e_len + 2) * 4; 6313 else 6314 off += (opt6.ip6e_len + 1) * 8; 6315 pd.proto = opt6.ip6e_nxt; 6316 /* goto the next header */ 6317 break; 6318 } 6319 default: 6320 terminal++; 6321 break; 6322 } 6323 } while (!terminal); 6324 6325 /* if there's no routing header, use unmodified mbuf for checksumming */ 6326 if (!n) 6327 n = m; 6328 6329 switch (pd.proto) { 6330 6331 case IPPROTO_TCP: { 6332 struct tcphdr th; 6333 6334 pd.hdr.tcp = &th; 6335 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6336 &action, &reason, AF_INET6)) { 6337 log = action != PF_PASS; 6338 goto done; 6339 } 6340 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6341 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6342 if (action == PF_DROP) 6343 goto done; 6344 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6345 &reason); 6346 if (action == PF_PASS) { 6347 if (pfsync_update_state_ptr != NULL) 6348 pfsync_update_state_ptr(s); 6349 r = s->rule.ptr; 6350 a = s->anchor.ptr; 6351 log = s->log; 6352 } else if (s == NULL) 6353 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6354 &a, &ruleset, inp); 6355 break; 6356 } 6357 6358 case IPPROTO_UDP: { 6359 struct udphdr uh; 6360 6361 pd.hdr.udp = &uh; 6362 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6363 &action, &reason, AF_INET6)) { 6364 log = action != PF_PASS; 6365 goto done; 6366 } 6367 if (uh.uh_dport == 0 || 6368 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6369 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6370 action = PF_DROP; 6371 REASON_SET(&reason, PFRES_SHORT); 6372 goto done; 6373 } 6374 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6375 if (action == PF_PASS) { 6376 if (pfsync_update_state_ptr != NULL) 6377 pfsync_update_state_ptr(s); 6378 r = s->rule.ptr; 6379 a = s->anchor.ptr; 6380 log = s->log; 6381 } else if (s == NULL) 6382 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6383 &a, &ruleset, inp); 6384 break; 6385 } 6386 6387 case IPPROTO_ICMP: { 6388 action = PF_DROP; 6389 DPFPRINTF(PF_DEBUG_MISC, 6390 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6391 goto done; 6392 } 6393 6394 case IPPROTO_ICMPV6: { 6395 struct icmp6_hdr ih; 6396 6397 pd.hdr.icmp6 = &ih; 6398 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6399 &action, &reason, AF_INET6)) { 6400 log = action != PF_PASS; 6401 goto done; 6402 } 6403 action = pf_test_state_icmp(&s, dir, kif, 6404 m, off, h, &pd, &reason); 6405 if (action == PF_PASS) { 6406 if (pfsync_update_state_ptr != NULL) 6407 pfsync_update_state_ptr(s); 6408 r = s->rule.ptr; 6409 a = s->anchor.ptr; 6410 log = s->log; 6411 } else if (s == NULL) 6412 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6413 &a, &ruleset, inp); 6414 break; 6415 } 6416 6417 default: 6418 action = pf_test_state_other(&s, dir, kif, m, &pd); 6419 if (action == PF_PASS) { 6420 if (pfsync_update_state_ptr != NULL) 6421 pfsync_update_state_ptr(s); 6422 r = s->rule.ptr; 6423 a = s->anchor.ptr; 6424 log = s->log; 6425 } else if (s == NULL) 6426 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6427 &a, &ruleset, inp); 6428 break; 6429 } 6430 6431 done: 6432 PF_RULES_RUNLOCK(); 6433 if (n != m) { 6434 m_freem(n); 6435 n = NULL; 6436 } 6437 6438 /* handle dangerous IPv6 extension headers. */ 6439 if (action == PF_PASS && rh_cnt && 6440 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6441 action = PF_DROP; 6442 REASON_SET(&reason, PFRES_IPOPTIONS); 6443 log = r->log; 6444 DPFPRINTF(PF_DEBUG_MISC, 6445 ("pf: dropping packet with dangerous v6 headers\n")); 6446 } 6447 6448 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6449 action = PF_DROP; 6450 REASON_SET(&reason, PFRES_MEMORY); 6451 } 6452 if (r->rtableid >= 0) 6453 M_SETFIB(m, r->rtableid); 6454 6455 #ifdef ALTQ 6456 if (action == PF_PASS && r->qid) { 6457 if (pd.pf_mtag == NULL && 6458 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6459 action = PF_DROP; 6460 REASON_SET(&reason, PFRES_MEMORY); 6461 } else { 6462 if (s != NULL) 6463 pd.pf_mtag->qid_hash = pf_state_hash(s); 6464 if (pd.tos & IPTOS_LOWDELAY) 6465 pd.pf_mtag->qid = r->pqid; 6466 else 6467 pd.pf_mtag->qid = r->qid; 6468 /* Add hints for ecn. */ 6469 pd.pf_mtag->hdr = h; 6470 } 6471 } 6472 #endif /* ALTQ */ 6473 6474 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6475 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6476 (s->nat_rule.ptr->action == PF_RDR || 6477 s->nat_rule.ptr->action == PF_BINAT) && 6478 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6479 m->m_flags |= M_SKIP_FIREWALL; 6480 6481 /* XXX: Anybody working on it?! */ 6482 if (r->divert.port) 6483 printf("pf: divert(9) is not supported for IPv6\n"); 6484 6485 if (log) { 6486 struct pf_rule *lr; 6487 6488 if (s != NULL && s->nat_rule.ptr != NULL && 6489 s->nat_rule.ptr->log & PF_LOG_ALL) 6490 lr = s->nat_rule.ptr; 6491 else 6492 lr = r; 6493 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6494 &pd, (s == NULL)); 6495 } 6496 6497 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6498 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6499 6500 if (action == PF_PASS || r->action == PF_DROP) { 6501 dirndx = (dir == PF_OUT); 6502 r->packets[dirndx]++; 6503 r->bytes[dirndx] += pd.tot_len; 6504 if (a != NULL) { 6505 a->packets[dirndx]++; 6506 a->bytes[dirndx] += pd.tot_len; 6507 } 6508 if (s != NULL) { 6509 if (s->nat_rule.ptr != NULL) { 6510 s->nat_rule.ptr->packets[dirndx]++; 6511 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6512 } 6513 if (s->src_node != NULL) { 6514 s->src_node->packets[dirndx]++; 6515 s->src_node->bytes[dirndx] += pd.tot_len; 6516 } 6517 if (s->nat_src_node != NULL) { 6518 s->nat_src_node->packets[dirndx]++; 6519 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6520 } 6521 dirndx = (dir == s->direction) ? 0 : 1; 6522 s->packets[dirndx]++; 6523 s->bytes[dirndx] += pd.tot_len; 6524 } 6525 tr = r; 6526 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6527 if (nr != NULL && r == &V_pf_default_rule) 6528 tr = nr; 6529 if (tr->src.addr.type == PF_ADDR_TABLE) 6530 pfr_update_stats(tr->src.addr.p.tbl, 6531 (s == NULL) ? pd.src : 6532 &s->key[(s->direction == PF_IN)]->addr[0], 6533 pd.af, pd.tot_len, dir == PF_OUT, 6534 r->action == PF_PASS, tr->src.neg); 6535 if (tr->dst.addr.type == PF_ADDR_TABLE) 6536 pfr_update_stats(tr->dst.addr.p.tbl, 6537 (s == NULL) ? pd.dst : 6538 &s->key[(s->direction == PF_IN)]->addr[1], 6539 pd.af, pd.tot_len, dir == PF_OUT, 6540 r->action == PF_PASS, tr->dst.neg); 6541 } 6542 6543 switch (action) { 6544 case PF_SYNPROXY_DROP: 6545 m_freem(*m0); 6546 case PF_DEFER: 6547 *m0 = NULL; 6548 action = PF_PASS; 6549 break; 6550 case PF_DROP: 6551 m_freem(*m0); 6552 *m0 = NULL; 6553 break; 6554 default: 6555 /* pf_route6() returns unlocked. */ 6556 if (r->rt) { 6557 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6558 return (action); 6559 } 6560 break; 6561 } 6562 6563 if (s) 6564 PF_STATE_UNLOCK(s); 6565 6566 /* If reassembled packet passed, create new fragments. */ 6567 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6568 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6569 action = pf_refragment6(ifp, m0, mtag); 6570 6571 return (action); 6572 } 6573 #endif /* INET6 */ 6574