1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 191 #define V_pf_mtag_z VNET(pf_mtag_z) 192 VNET_DEFINE(uma_zone_t, pf_state_z); 193 VNET_DEFINE(uma_zone_t, pf_state_key_z); 194 195 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 196 #define PFID_CPUBITS 8 197 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 198 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 199 #define PFID_MAXID (~PFID_CPUMASK) 200 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 201 202 static void pf_src_tree_remove_state(struct pf_state *); 203 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 204 u_int32_t); 205 static void pf_add_threshold(struct pf_threshold *); 206 static int pf_check_threshold(struct pf_threshold *); 207 208 static void pf_change_ap(struct pf_addr *, u_int16_t *, 209 u_int16_t *, u_int16_t *, struct pf_addr *, 210 u_int16_t, u_int8_t, sa_family_t); 211 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 212 struct tcphdr *, struct pf_state_peer *); 213 static int pf_icmp_mapping(struct pf_pdesc *, uint8_t, int *, 214 int *, uint16_t *, uint16_t *); 215 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 216 struct pf_addr *, struct pf_addr *, u_int16_t, 217 u_int16_t *, u_int16_t *, u_int16_t *, 218 u_int16_t *, u_int8_t, sa_family_t); 219 static void pf_send_tcp(struct mbuf *, 220 const struct pf_rule *, sa_family_t, 221 const struct pf_addr *, const struct pf_addr *, 222 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 223 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 224 u_int16_t, struct ifnet *); 225 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 226 sa_family_t, struct pf_rule *); 227 static void pf_detach_state(struct pf_state *); 228 static int pf_state_key_attach(struct pf_state_key *, 229 struct pf_state_key *, struct pf_state *); 230 static void pf_state_key_detach(struct pf_state *, int); 231 static int pf_state_key_ctor(void *, int, void *, int); 232 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 233 static int pf_test_rule(struct pf_rule **, struct pf_state **, 234 int, struct pfi_kif *, struct mbuf *, int, 235 struct pf_pdesc *, struct pf_rule **, 236 struct pf_ruleset **, struct inpcb *); 237 static int pf_create_state(struct pf_rule *, struct pf_rule *, 238 struct pf_rule *, struct pf_pdesc *, 239 struct pf_src_node *, struct pf_state_key *, 240 struct pf_state_key *, struct mbuf *, int, 241 u_int16_t, u_int16_t, int *, struct pfi_kif *, 242 struct pf_state **, int, u_int16_t, u_int16_t, 243 int); 244 static int pf_test_fragment(struct pf_rule **, int, 245 struct pfi_kif *, struct mbuf *, void *, 246 struct pf_pdesc *, struct pf_rule **, 247 struct pf_ruleset **); 248 static int pf_tcp_track_full(struct pf_state_peer *, 249 struct pf_state_peer *, struct pf_state **, 250 struct pfi_kif *, struct mbuf *, int, 251 struct pf_pdesc *, u_short *, int *); 252 static int pf_tcp_track_sloppy(struct pf_state_peer *, 253 struct pf_state_peer *, struct pf_state **, 254 struct pf_pdesc *, u_short *); 255 static int pf_test_state_tcp(struct pf_state **, int, 256 struct pfi_kif *, struct mbuf *, int, 257 void *, struct pf_pdesc *, u_short *); 258 static int pf_test_state_udp(struct pf_state **, int, 259 struct pfi_kif *, struct mbuf *, int, 260 void *, struct pf_pdesc *); 261 static int pf_icmp_state_lookup(struct pf_state_key_cmp *, 262 struct pf_pdesc *, struct pf_state **, struct mbuf *, 263 int, struct pfi_kif *, uint16_t, uint16_t, 264 int, int *, int); 265 static int pf_test_state_icmp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *, u_short *); 268 static int pf_test_state_other(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 270 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 271 sa_family_t); 272 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 273 sa_family_t); 274 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 275 int, u_int16_t); 276 static void pf_set_rt_ifp(struct pf_state *, 277 struct pf_addr *); 278 static int pf_check_proto_cksum(struct mbuf *, int, int, 279 u_int8_t, sa_family_t); 280 static void pf_print_state_parts(struct pf_state *, 281 struct pf_state_key *, struct pf_state_key *); 282 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 283 struct pf_addr_wrap *); 284 static struct pf_state *pf_find_state(struct pfi_kif *, 285 struct pf_state_key_cmp *, u_int); 286 static int pf_src_connlimit(struct pf_state **); 287 static void pf_overload_task(void *c, int pending); 288 static int pf_insert_src_node(struct pf_src_node **, 289 struct pf_rule *, struct pf_addr *, sa_family_t); 290 static u_int pf_purge_expired_states(u_int, int); 291 static void pf_purge_unlinked_rules(void); 292 static int pf_mtag_init(void *, int, int); 293 static void pf_mtag_free(struct m_tag *); 294 #ifdef INET 295 static void pf_route(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET */ 299 #ifdef INET6 300 static void pf_change_a6(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, u_int8_t); 302 static void pf_route6(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *); 305 #endif /* INET6 */ 306 307 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 308 309 VNET_DECLARE(int, pf_end_threads); 310 311 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 312 313 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_SOLICITED, PF_ICMP_MULTI_LINK }; 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 s->rule.ptr->states_cur++; \ 341 s->rule.ptr->states_tot++; \ 342 if (s->anchor.ptr != NULL) { \ 343 s->anchor.ptr->states_cur++; \ 344 s->anchor.ptr->states_tot++; \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 s->nat_rule.ptr->states_cur++; \ 348 s->nat_rule.ptr->states_tot++; \ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 s->nat_rule.ptr->states_cur--; \ 356 if (s->anchor.ptr != NULL) \ 357 s->anchor.ptr->states_cur--; \ 358 s->rule.ptr->states_cur--; \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(u_long, pf_hashmask); 365 VNET_DEFINE(struct pf_srchash *, pf_srchash); 366 VNET_DEFINE(u_long, pf_srchashmask); 367 368 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 369 370 VNET_DEFINE(u_long, pf_hashsize); 371 #define V_pf_hashsize VNET(pf_hashsize) 372 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 373 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 374 375 VNET_DEFINE(u_long, pf_srchashsize); 376 #define V_pf_srchashsize VNET(pf_srchashsize) 377 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 378 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 379 380 VNET_DEFINE(void *, pf_swi_cookie); 381 382 VNET_DEFINE(uint32_t, pf_hashseed); 383 #define V_pf_hashseed VNET(pf_hashseed) 384 385 static __inline uint32_t 386 pf_hashkey(struct pf_state_key *sk) 387 { 388 uint32_t h; 389 390 h = jenkins_hash32((uint32_t *)sk, 391 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 392 V_pf_hashseed); 393 394 return (h & V_pf_hashmask); 395 } 396 397 static __inline uint32_t 398 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 399 { 400 uint32_t h; 401 402 switch (af) { 403 case AF_INET: 404 h = jenkins_hash32((uint32_t *)&addr->v4, 405 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 406 break; 407 case AF_INET6: 408 h = jenkins_hash32((uint32_t *)&addr->v6, 409 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 410 break; 411 default: 412 panic("%s: unknown address family %u", __func__, af); 413 } 414 415 return (h & V_pf_srchashmask); 416 } 417 418 #ifdef INET6 419 void 420 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 421 { 422 switch (af) { 423 #ifdef INET 424 case AF_INET: 425 dst->addr32[0] = src->addr32[0]; 426 break; 427 #endif /* INET */ 428 case AF_INET6: 429 dst->addr32[0] = src->addr32[0]; 430 dst->addr32[1] = src->addr32[1]; 431 dst->addr32[2] = src->addr32[2]; 432 dst->addr32[3] = src->addr32[3]; 433 break; 434 } 435 } 436 #endif /* INET6 */ 437 438 static void 439 pf_init_threshold(struct pf_threshold *threshold, 440 u_int32_t limit, u_int32_t seconds) 441 { 442 threshold->limit = limit * PF_THRESHOLD_MULT; 443 threshold->seconds = seconds; 444 threshold->count = 0; 445 threshold->last = time_uptime; 446 } 447 448 static void 449 pf_add_threshold(struct pf_threshold *threshold) 450 { 451 u_int32_t t = time_uptime, diff = t - threshold->last; 452 453 if (diff >= threshold->seconds) 454 threshold->count = 0; 455 else 456 threshold->count -= threshold->count * diff / 457 threshold->seconds; 458 threshold->count += PF_THRESHOLD_MULT; 459 threshold->last = t; 460 } 461 462 static int 463 pf_check_threshold(struct pf_threshold *threshold) 464 { 465 return (threshold->count > threshold->limit); 466 } 467 468 static int 469 pf_src_connlimit(struct pf_state **state) 470 { 471 struct pf_overload_entry *pfoe; 472 int bad = 0; 473 474 PF_STATE_LOCK_ASSERT(*state); 475 476 (*state)->src_node->conn++; 477 (*state)->src.tcp_est = 1; 478 pf_add_threshold(&(*state)->src_node->conn_rate); 479 480 if ((*state)->rule.ptr->max_src_conn && 481 (*state)->rule.ptr->max_src_conn < 482 (*state)->src_node->conn) { 483 V_pf_status.lcounters[LCNT_SRCCONN]++; 484 bad++; 485 } 486 487 if ((*state)->rule.ptr->max_src_conn_rate.limit && 488 pf_check_threshold(&(*state)->src_node->conn_rate)) { 489 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 490 bad++; 491 } 492 493 if (!bad) 494 return (0); 495 496 /* Kill this state. */ 497 (*state)->timeout = PFTM_PURGE; 498 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 499 500 if ((*state)->rule.ptr->overload_tbl == NULL) 501 return (1); 502 503 /* Schedule overloading and flushing task. */ 504 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 505 if (pfoe == NULL) 506 return (1); /* too bad :( */ 507 508 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 509 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 510 pfoe->rule = (*state)->rule.ptr; 511 pfoe->dir = (*state)->direction; 512 PF_OVERLOADQ_LOCK(); 513 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 514 PF_OVERLOADQ_UNLOCK(); 515 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 516 517 return (1); 518 } 519 520 static void 521 pf_overload_task(void *c, int pending) 522 { 523 struct pf_overload_head queue; 524 struct pfr_addr p; 525 struct pf_overload_entry *pfoe, *pfoe1; 526 uint32_t killed = 0; 527 528 PF_OVERLOADQ_LOCK(); 529 queue = *(struct pf_overload_head *)c; 530 SLIST_INIT((struct pf_overload_head *)c); 531 PF_OVERLOADQ_UNLOCK(); 532 533 bzero(&p, sizeof(p)); 534 SLIST_FOREACH(pfoe, &queue, next) { 535 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 536 if (V_pf_status.debug >= PF_DEBUG_MISC) { 537 printf("%s: blocking address ", __func__); 538 pf_print_host(&pfoe->addr, 0, pfoe->af); 539 printf("\n"); 540 } 541 542 p.pfra_af = pfoe->af; 543 switch (pfoe->af) { 544 #ifdef INET 545 case AF_INET: 546 p.pfra_net = 32; 547 p.pfra_ip4addr = pfoe->addr.v4; 548 break; 549 #endif 550 #ifdef INET6 551 case AF_INET6: 552 p.pfra_net = 128; 553 p.pfra_ip6addr = pfoe->addr.v6; 554 break; 555 #endif 556 } 557 558 PF_RULES_WLOCK(); 559 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 560 PF_RULES_WUNLOCK(); 561 } 562 563 /* 564 * Remove those entries, that don't need flushing. 565 */ 566 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 567 if (pfoe->rule->flush == 0) { 568 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 569 free(pfoe, M_PFTEMP); 570 } else 571 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 572 573 /* If nothing to flush, return. */ 574 if (SLIST_EMPTY(&queue)) 575 return; 576 577 for (int i = 0; i <= V_pf_hashmask; i++) { 578 struct pf_idhash *ih = &V_pf_idhash[i]; 579 struct pf_state_key *sk; 580 struct pf_state *s; 581 582 PF_HASHROW_LOCK(ih); 583 LIST_FOREACH(s, &ih->states, entry) { 584 sk = s->key[PF_SK_WIRE]; 585 SLIST_FOREACH(pfoe, &queue, next) 586 if (sk->af == pfoe->af && 587 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 588 pfoe->rule == s->rule.ptr) && 589 ((pfoe->dir == PF_OUT && 590 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 591 (pfoe->dir == PF_IN && 592 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 593 s->timeout = PFTM_PURGE; 594 s->src.state = s->dst.state = TCPS_CLOSED; 595 killed++; 596 } 597 } 598 PF_HASHROW_UNLOCK(ih); 599 } 600 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 601 free(pfoe, M_PFTEMP); 602 if (V_pf_status.debug >= PF_DEBUG_MISC) 603 printf("%s: %u states killed", __func__, killed); 604 } 605 606 /* 607 * Can return locked on failure, so that we can consistently 608 * allocate and insert a new one. 609 */ 610 struct pf_src_node * 611 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 612 int returnlocked) 613 { 614 struct pf_srchash *sh; 615 struct pf_src_node *n; 616 617 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 618 619 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 620 PF_HASHROW_LOCK(sh); 621 LIST_FOREACH(n, &sh->nodes, entry) 622 if (n->rule.ptr == rule && n->af == af && 623 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 624 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 625 break; 626 if (n != NULL || returnlocked == 0) 627 PF_HASHROW_UNLOCK(sh); 628 629 return (n); 630 } 631 632 static int 633 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 634 struct pf_addr *src, sa_family_t af) 635 { 636 637 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 638 rule->rpool.opts & PF_POOL_STICKYADDR), 639 ("%s for non-tracking rule %p", __func__, rule)); 640 641 if (*sn == NULL) 642 *sn = pf_find_src_node(src, rule, af, 1); 643 644 if (*sn == NULL) { 645 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 646 647 PF_HASHROW_ASSERT(sh); 648 649 if (!rule->max_src_nodes || 650 rule->src_nodes < rule->max_src_nodes) 651 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 652 else 653 V_pf_status.lcounters[LCNT_SRCNODES]++; 654 if ((*sn) == NULL) { 655 PF_HASHROW_UNLOCK(sh); 656 return (-1); 657 } 658 659 pf_init_threshold(&(*sn)->conn_rate, 660 rule->max_src_conn_rate.limit, 661 rule->max_src_conn_rate.seconds); 662 663 (*sn)->af = af; 664 (*sn)->rule.ptr = rule; 665 PF_ACPY(&(*sn)->addr, src, af); 666 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 667 (*sn)->creation = time_uptime; 668 (*sn)->ruletype = rule->action; 669 if ((*sn)->rule.ptr != NULL) 670 (*sn)->rule.ptr->src_nodes++; 671 PF_HASHROW_UNLOCK(sh); 672 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 673 V_pf_status.src_nodes++; 674 } else { 675 if (rule->max_src_states && 676 (*sn)->states >= rule->max_src_states) { 677 V_pf_status.lcounters[LCNT_SRCSTATES]++; 678 return (-1); 679 } 680 } 681 return (0); 682 } 683 684 void 685 pf_unlink_src_node_locked(struct pf_src_node *src) 686 { 687 #ifdef INVARIANTS 688 struct pf_srchash *sh; 689 690 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 691 PF_HASHROW_ASSERT(sh); 692 #endif 693 LIST_REMOVE(src, entry); 694 if (src->rule.ptr) 695 src->rule.ptr->src_nodes--; 696 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 697 V_pf_status.src_nodes--; 698 } 699 700 void 701 pf_unlink_src_node(struct pf_src_node *src) 702 { 703 struct pf_srchash *sh; 704 705 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 706 PF_HASHROW_LOCK(sh); 707 pf_unlink_src_node_locked(src); 708 PF_HASHROW_UNLOCK(sh); 709 } 710 711 static void 712 pf_free_src_node(struct pf_src_node *sn) 713 { 714 715 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 716 LIST_REMOVE(sn, entry); 717 uma_zfree(V_pf_sources_z, sn); 718 } 719 720 u_int 721 pf_free_src_nodes(struct pf_src_node_list *head) 722 { 723 struct pf_src_node *sn, *tmp; 724 u_int count = 0; 725 726 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 727 pf_free_src_node(sn); 728 count++; 729 } 730 731 return (count); 732 } 733 734 /* Data storage structures initialization. */ 735 void 736 pf_initialize() 737 { 738 struct pf_keyhash *kh; 739 struct pf_idhash *ih; 740 struct pf_srchash *sh; 741 u_int i; 742 743 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 744 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 745 V_pf_hashsize = PF_HASHSIZ; 746 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 747 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 748 V_pf_srchashsize = PF_HASHSIZ / 4; 749 750 V_pf_hashseed = arc4random(); 751 752 /* States and state keys storage. */ 753 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 754 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 755 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 756 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 757 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 758 759 V_pf_state_key_z = uma_zcreate("pf state keys", 760 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 761 UMA_ALIGN_PTR, 0); 762 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 763 M_PFHASH, M_WAITOK | M_ZERO); 764 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 765 M_PFHASH, M_WAITOK | M_ZERO); 766 V_pf_hashmask = V_pf_hashsize - 1; 767 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 768 i++, kh++, ih++) { 769 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 770 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 771 } 772 773 /* Source nodes. */ 774 V_pf_sources_z = uma_zcreate("pf source nodes", 775 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 776 0); 777 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 778 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 779 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 780 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 781 M_PFHASH, M_WAITOK|M_ZERO); 782 V_pf_srchashmask = V_pf_srchashsize - 1; 783 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 784 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 785 786 /* ALTQ */ 787 TAILQ_INIT(&V_pf_altqs[0]); 788 TAILQ_INIT(&V_pf_altqs[1]); 789 TAILQ_INIT(&V_pf_pabuf); 790 V_pf_altqs_active = &V_pf_altqs[0]; 791 V_pf_altqs_inactive = &V_pf_altqs[1]; 792 793 /* Mbuf tags */ 794 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 795 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 796 UMA_ALIGN_PTR, 0); 797 798 /* Send & overload+flush queues. */ 799 STAILQ_INIT(&V_pf_sendqueue); 800 SLIST_INIT(&V_pf_overloadqueue); 801 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 802 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 803 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 804 MTX_DEF); 805 806 /* Unlinked, but may be referenced rules. */ 807 TAILQ_INIT(&V_pf_unlinked_rules); 808 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 809 } 810 811 void 812 pf_cleanup() 813 { 814 struct pf_keyhash *kh; 815 struct pf_idhash *ih; 816 struct pf_srchash *sh; 817 struct pf_send_entry *pfse, *next; 818 u_int i; 819 820 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 821 i++, kh++, ih++) { 822 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 823 __func__)); 824 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 825 __func__)); 826 mtx_destroy(&kh->lock); 827 mtx_destroy(&ih->lock); 828 } 829 free(V_pf_keyhash, M_PFHASH); 830 free(V_pf_idhash, M_PFHASH); 831 832 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 833 KASSERT(LIST_EMPTY(&sh->nodes), 834 ("%s: source node hash not empty", __func__)); 835 mtx_destroy(&sh->lock); 836 } 837 free(V_pf_srchash, M_PFHASH); 838 839 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 840 m_freem(pfse->pfse_m); 841 free(pfse, M_PFTEMP); 842 } 843 844 mtx_destroy(&pf_sendqueue_mtx); 845 mtx_destroy(&pf_overloadqueue_mtx); 846 mtx_destroy(&pf_unlnkdrules_mtx); 847 848 uma_zdestroy(V_pf_mtag_z); 849 uma_zdestroy(V_pf_sources_z); 850 uma_zdestroy(V_pf_state_z); 851 uma_zdestroy(V_pf_state_key_z); 852 } 853 854 static int 855 pf_mtag_init(void *mem, int size, int how) 856 { 857 struct m_tag *t; 858 859 t = (struct m_tag *)mem; 860 t->m_tag_cookie = MTAG_ABI_COMPAT; 861 t->m_tag_id = PACKET_TAG_PF; 862 t->m_tag_len = sizeof(struct pf_mtag); 863 t->m_tag_free = pf_mtag_free; 864 865 return (0); 866 } 867 868 static void 869 pf_mtag_free(struct m_tag *t) 870 { 871 872 uma_zfree(V_pf_mtag_z, t); 873 } 874 875 struct pf_mtag * 876 pf_get_mtag(struct mbuf *m) 877 { 878 struct m_tag *mtag; 879 880 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 881 return ((struct pf_mtag *)(mtag + 1)); 882 883 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 884 if (mtag == NULL) 885 return (NULL); 886 bzero(mtag + 1, sizeof(struct pf_mtag)); 887 m_tag_prepend(m, mtag); 888 889 return ((struct pf_mtag *)(mtag + 1)); 890 } 891 892 static int 893 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 894 struct pf_state *s) 895 { 896 struct pf_keyhash *khs, *khw, *kh; 897 struct pf_state_key *sk, *cur; 898 struct pf_state *si, *olds = NULL; 899 int idx; 900 901 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 902 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 903 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 904 905 /* 906 * We need to lock hash slots of both keys. To avoid deadlock 907 * we always lock the slot with lower address first. Unlock order 908 * isn't important. 909 * 910 * We also need to lock ID hash slot before dropping key 911 * locks. On success we return with ID hash slot locked. 912 */ 913 914 if (skw == sks) { 915 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 916 PF_HASHROW_LOCK(khs); 917 } else { 918 khs = &V_pf_keyhash[pf_hashkey(sks)]; 919 khw = &V_pf_keyhash[pf_hashkey(skw)]; 920 if (khs == khw) { 921 PF_HASHROW_LOCK(khs); 922 } else if (khs < khw) { 923 PF_HASHROW_LOCK(khs); 924 PF_HASHROW_LOCK(khw); 925 } else { 926 PF_HASHROW_LOCK(khw); 927 PF_HASHROW_LOCK(khs); 928 } 929 } 930 931 #define KEYS_UNLOCK() do { \ 932 if (khs != khw) { \ 933 PF_HASHROW_UNLOCK(khs); \ 934 PF_HASHROW_UNLOCK(khw); \ 935 } else \ 936 PF_HASHROW_UNLOCK(khs); \ 937 } while (0) 938 939 /* 940 * First run: start with wire key. 941 */ 942 sk = skw; 943 kh = khw; 944 idx = PF_SK_WIRE; 945 946 keyattach: 947 LIST_FOREACH(cur, &kh->keys, entry) 948 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 949 break; 950 951 if (cur != NULL) { 952 /* Key exists. Check for same kif, if none, add to key. */ 953 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 954 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 955 956 PF_HASHROW_LOCK(ih); 957 if (si->kif == s->kif && 958 si->direction == s->direction) { 959 if (sk->proto == IPPROTO_TCP && 960 si->src.state >= TCPS_FIN_WAIT_2 && 961 si->dst.state >= TCPS_FIN_WAIT_2) { 962 /* 963 * New state matches an old >FIN_WAIT_2 964 * state. We can't drop key hash locks, 965 * thus we can't unlink it properly. 966 * 967 * As a workaround we drop it into 968 * TCPS_CLOSED state, schedule purge 969 * ASAP and push it into the very end 970 * of the slot TAILQ, so that it won't 971 * conflict with our new state. 972 */ 973 si->src.state = si->dst.state = 974 TCPS_CLOSED; 975 si->timeout = PFTM_PURGE; 976 olds = si; 977 } else { 978 if (V_pf_status.debug >= PF_DEBUG_MISC) { 979 printf("pf: %s key attach " 980 "failed on %s: ", 981 (idx == PF_SK_WIRE) ? 982 "wire" : "stack", 983 s->kif->pfik_name); 984 pf_print_state_parts(s, 985 (idx == PF_SK_WIRE) ? 986 sk : NULL, 987 (idx == PF_SK_STACK) ? 988 sk : NULL); 989 printf(", existing: "); 990 pf_print_state_parts(si, 991 (idx == PF_SK_WIRE) ? 992 sk : NULL, 993 (idx == PF_SK_STACK) ? 994 sk : NULL); 995 printf("\n"); 996 } 997 PF_HASHROW_UNLOCK(ih); 998 KEYS_UNLOCK(); 999 uma_zfree(V_pf_state_key_z, sk); 1000 if (idx == PF_SK_STACK) 1001 pf_detach_state(s); 1002 return (EEXIST); /* collision! */ 1003 } 1004 } 1005 PF_HASHROW_UNLOCK(ih); 1006 } 1007 uma_zfree(V_pf_state_key_z, sk); 1008 s->key[idx] = cur; 1009 } else { 1010 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1011 s->key[idx] = sk; 1012 } 1013 1014 stateattach: 1015 /* List is sorted, if-bound states before floating. */ 1016 if (s->kif == V_pfi_all) 1017 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1018 else 1019 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1020 1021 if (olds) { 1022 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1023 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1024 key_list[idx]); 1025 olds = NULL; 1026 } 1027 1028 /* 1029 * Attach done. See how should we (or should not?) 1030 * attach a second key. 1031 */ 1032 if (sks == skw) { 1033 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1034 idx = PF_SK_STACK; 1035 sks = NULL; 1036 goto stateattach; 1037 } else if (sks != NULL) { 1038 /* 1039 * Continue attaching with stack key. 1040 */ 1041 sk = sks; 1042 kh = khs; 1043 idx = PF_SK_STACK; 1044 sks = NULL; 1045 goto keyattach; 1046 } 1047 1048 PF_STATE_LOCK(s); 1049 KEYS_UNLOCK(); 1050 1051 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1052 ("%s failure", __func__)); 1053 1054 return (0); 1055 #undef KEYS_UNLOCK 1056 } 1057 1058 static void 1059 pf_detach_state(struct pf_state *s) 1060 { 1061 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1062 struct pf_keyhash *kh; 1063 1064 if (sks != NULL) { 1065 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1066 PF_HASHROW_LOCK(kh); 1067 if (s->key[PF_SK_STACK] != NULL) 1068 pf_state_key_detach(s, PF_SK_STACK); 1069 /* 1070 * If both point to same key, then we are done. 1071 */ 1072 if (sks == s->key[PF_SK_WIRE]) { 1073 pf_state_key_detach(s, PF_SK_WIRE); 1074 PF_HASHROW_UNLOCK(kh); 1075 return; 1076 } 1077 PF_HASHROW_UNLOCK(kh); 1078 } 1079 1080 if (s->key[PF_SK_WIRE] != NULL) { 1081 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1082 PF_HASHROW_LOCK(kh); 1083 if (s->key[PF_SK_WIRE] != NULL) 1084 pf_state_key_detach(s, PF_SK_WIRE); 1085 PF_HASHROW_UNLOCK(kh); 1086 } 1087 } 1088 1089 static void 1090 pf_state_key_detach(struct pf_state *s, int idx) 1091 { 1092 struct pf_state_key *sk = s->key[idx]; 1093 #ifdef INVARIANTS 1094 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1095 1096 PF_HASHROW_ASSERT(kh); 1097 #endif 1098 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1099 s->key[idx] = NULL; 1100 1101 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1102 LIST_REMOVE(sk, entry); 1103 uma_zfree(V_pf_state_key_z, sk); 1104 } 1105 } 1106 1107 static int 1108 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1109 { 1110 struct pf_state_key *sk = mem; 1111 1112 bzero(sk, sizeof(struct pf_state_key_cmp)); 1113 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1114 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1115 1116 return (0); 1117 } 1118 1119 struct pf_state_key * 1120 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1121 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1122 { 1123 struct pf_state_key *sk; 1124 1125 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1126 if (sk == NULL) 1127 return (NULL); 1128 1129 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1130 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1131 sk->port[pd->sidx] = sport; 1132 sk->port[pd->didx] = dport; 1133 sk->proto = pd->proto; 1134 sk->af = pd->af; 1135 1136 return (sk); 1137 } 1138 1139 struct pf_state_key * 1140 pf_state_key_clone(struct pf_state_key *orig) 1141 { 1142 struct pf_state_key *sk; 1143 1144 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1145 if (sk == NULL) 1146 return (NULL); 1147 1148 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1149 1150 return (sk); 1151 } 1152 1153 int 1154 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1155 struct pf_state_key *sks, struct pf_state *s) 1156 { 1157 struct pf_idhash *ih; 1158 struct pf_state *cur; 1159 int error; 1160 1161 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1162 ("%s: sks not pristine", __func__)); 1163 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1164 ("%s: skw not pristine", __func__)); 1165 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1166 1167 s->kif = kif; 1168 1169 if (s->id == 0 && s->creatorid == 0) { 1170 /* XXX: should be atomic, but probability of collision low */ 1171 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1172 V_pf_stateid[curcpu] = 1; 1173 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1174 s->id = htobe64(s->id); 1175 s->creatorid = V_pf_status.hostid; 1176 } 1177 1178 /* Returns with ID locked on success. */ 1179 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1180 return (error); 1181 1182 ih = &V_pf_idhash[PF_IDHASH(s)]; 1183 PF_HASHROW_ASSERT(ih); 1184 LIST_FOREACH(cur, &ih->states, entry) 1185 if (cur->id == s->id && cur->creatorid == s->creatorid) 1186 break; 1187 1188 if (cur != NULL) { 1189 PF_HASHROW_UNLOCK(ih); 1190 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1191 printf("pf: state ID collision: " 1192 "id: %016llx creatorid: %08x\n", 1193 (unsigned long long)be64toh(s->id), 1194 ntohl(s->creatorid)); 1195 } 1196 pf_detach_state(s); 1197 return (EEXIST); 1198 } 1199 LIST_INSERT_HEAD(&ih->states, s, entry); 1200 /* One for keys, one for ID hash. */ 1201 refcount_init(&s->refs, 2); 1202 1203 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1204 if (pfsync_insert_state_ptr != NULL) 1205 pfsync_insert_state_ptr(s); 1206 1207 /* Returns locked. */ 1208 return (0); 1209 } 1210 1211 /* 1212 * Find state by ID: returns with locked row on success. 1213 */ 1214 struct pf_state * 1215 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1216 { 1217 struct pf_idhash *ih; 1218 struct pf_state *s; 1219 1220 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1221 1222 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1223 1224 PF_HASHROW_LOCK(ih); 1225 LIST_FOREACH(s, &ih->states, entry) 1226 if (s->id == id && s->creatorid == creatorid) 1227 break; 1228 1229 if (s == NULL) 1230 PF_HASHROW_UNLOCK(ih); 1231 1232 return (s); 1233 } 1234 1235 /* 1236 * Find state by key. 1237 * Returns with ID hash slot locked on success. 1238 */ 1239 static struct pf_state * 1240 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1241 { 1242 struct pf_keyhash *kh; 1243 struct pf_state_key *sk; 1244 struct pf_state *s; 1245 int idx; 1246 1247 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1248 1249 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1250 1251 PF_HASHROW_LOCK(kh); 1252 LIST_FOREACH(sk, &kh->keys, entry) 1253 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1254 break; 1255 if (sk == NULL) { 1256 PF_HASHROW_UNLOCK(kh); 1257 return (NULL); 1258 } 1259 1260 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1261 1262 /* List is sorted, if-bound states before floating ones. */ 1263 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1264 if (s->kif == V_pfi_all || s->kif == kif) { 1265 PF_STATE_LOCK(s); 1266 PF_HASHROW_UNLOCK(kh); 1267 if (s->timeout >= PFTM_MAX) { 1268 /* 1269 * State is either being processed by 1270 * pf_unlink_state() in an other thread, or 1271 * is scheduled for immediate expiry. 1272 */ 1273 PF_STATE_UNLOCK(s); 1274 return (NULL); 1275 } 1276 return (s); 1277 } 1278 PF_HASHROW_UNLOCK(kh); 1279 1280 return (NULL); 1281 } 1282 1283 struct pf_state * 1284 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1285 { 1286 struct pf_keyhash *kh; 1287 struct pf_state_key *sk; 1288 struct pf_state *s, *ret = NULL; 1289 int idx, inout = 0; 1290 1291 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1292 1293 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1294 1295 PF_HASHROW_LOCK(kh); 1296 LIST_FOREACH(sk, &kh->keys, entry) 1297 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1298 break; 1299 if (sk == NULL) { 1300 PF_HASHROW_UNLOCK(kh); 1301 return (NULL); 1302 } 1303 switch (dir) { 1304 case PF_IN: 1305 idx = PF_SK_WIRE; 1306 break; 1307 case PF_OUT: 1308 idx = PF_SK_STACK; 1309 break; 1310 case PF_INOUT: 1311 idx = PF_SK_WIRE; 1312 inout = 1; 1313 break; 1314 default: 1315 panic("%s: dir %u", __func__, dir); 1316 } 1317 second_run: 1318 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1319 if (more == NULL) { 1320 PF_HASHROW_UNLOCK(kh); 1321 return (s); 1322 } 1323 1324 if (ret) 1325 (*more)++; 1326 else 1327 ret = s; 1328 } 1329 if (inout == 1) { 1330 inout = 0; 1331 idx = PF_SK_STACK; 1332 goto second_run; 1333 } 1334 PF_HASHROW_UNLOCK(kh); 1335 1336 return (ret); 1337 } 1338 1339 /* END state table stuff */ 1340 1341 static void 1342 pf_send(struct pf_send_entry *pfse) 1343 { 1344 1345 PF_SENDQ_LOCK(); 1346 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1347 PF_SENDQ_UNLOCK(); 1348 swi_sched(V_pf_swi_cookie, 0); 1349 } 1350 1351 void 1352 pf_intr(void *v) 1353 { 1354 struct pf_send_head queue; 1355 struct pf_send_entry *pfse, *next; 1356 1357 CURVNET_SET((struct vnet *)v); 1358 1359 PF_SENDQ_LOCK(); 1360 queue = V_pf_sendqueue; 1361 STAILQ_INIT(&V_pf_sendqueue); 1362 PF_SENDQ_UNLOCK(); 1363 1364 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1365 switch (pfse->pfse_type) { 1366 #ifdef INET 1367 case PFSE_IP: 1368 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1369 break; 1370 case PFSE_ICMP: 1371 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1372 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1373 break; 1374 #endif /* INET */ 1375 #ifdef INET6 1376 case PFSE_IP6: 1377 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1378 NULL); 1379 break; 1380 case PFSE_ICMP6: 1381 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1382 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1383 break; 1384 #endif /* INET6 */ 1385 default: 1386 panic("%s: unknown type", __func__); 1387 } 1388 free(pfse, M_PFTEMP); 1389 } 1390 CURVNET_RESTORE(); 1391 } 1392 1393 void 1394 pf_purge_thread(void *v) 1395 { 1396 u_int idx = 0; 1397 1398 CURVNET_SET((struct vnet *)v); 1399 1400 for (;;) { 1401 PF_RULES_RLOCK(); 1402 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1403 1404 if (V_pf_end_threads) { 1405 /* 1406 * To cleanse up all kifs and rules we need 1407 * two runs: first one clears reference flags, 1408 * then pf_purge_expired_states() doesn't 1409 * raise them, and then second run frees. 1410 */ 1411 PF_RULES_RUNLOCK(); 1412 pf_purge_unlinked_rules(); 1413 pfi_kif_purge(); 1414 1415 /* 1416 * Now purge everything. 1417 */ 1418 pf_purge_expired_states(0, V_pf_hashmask); 1419 pf_purge_expired_fragments(); 1420 pf_purge_expired_src_nodes(); 1421 1422 /* 1423 * Now all kifs & rules should be unreferenced, 1424 * thus should be successfully freed. 1425 */ 1426 pf_purge_unlinked_rules(); 1427 pfi_kif_purge(); 1428 1429 /* 1430 * Announce success and exit. 1431 */ 1432 PF_RULES_RLOCK(); 1433 V_pf_end_threads++; 1434 PF_RULES_RUNLOCK(); 1435 wakeup(pf_purge_thread); 1436 kproc_exit(0); 1437 } 1438 PF_RULES_RUNLOCK(); 1439 1440 /* Process 1/interval fraction of the state table every run. */ 1441 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1442 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1443 1444 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1445 if (idx == 0) { 1446 /* 1447 * Order is important: 1448 * - states and src nodes reference rules 1449 * - states and rules reference kifs 1450 */ 1451 pf_purge_expired_fragments(); 1452 pf_purge_expired_src_nodes(); 1453 pf_purge_unlinked_rules(); 1454 pfi_kif_purge(); 1455 } 1456 } 1457 /* not reached */ 1458 CURVNET_RESTORE(); 1459 } 1460 1461 u_int32_t 1462 pf_state_expires(const struct pf_state *state) 1463 { 1464 u_int32_t timeout; 1465 u_int32_t start; 1466 u_int32_t end; 1467 u_int32_t states; 1468 1469 /* handle all PFTM_* > PFTM_MAX here */ 1470 if (state->timeout == PFTM_PURGE) 1471 return (time_uptime); 1472 KASSERT(state->timeout != PFTM_UNLINKED, 1473 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1474 KASSERT((state->timeout < PFTM_MAX), 1475 ("pf_state_expires: timeout > PFTM_MAX")); 1476 timeout = state->rule.ptr->timeout[state->timeout]; 1477 if (!timeout) 1478 timeout = V_pf_default_rule.timeout[state->timeout]; 1479 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1480 if (start) { 1481 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1482 states = state->rule.ptr->states_cur; /* XXXGL */ 1483 } else { 1484 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1485 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1486 states = V_pf_status.states; 1487 } 1488 if (end && states > start && start < end) { 1489 if (states < end) 1490 return (state->expire + timeout * (end - states) / 1491 (end - start)); 1492 else 1493 return (time_uptime); 1494 } 1495 return (state->expire + timeout); 1496 } 1497 1498 void 1499 pf_purge_expired_src_nodes() 1500 { 1501 struct pf_src_node_list freelist; 1502 struct pf_srchash *sh; 1503 struct pf_src_node *cur, *next; 1504 int i; 1505 1506 LIST_INIT(&freelist); 1507 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1508 PF_HASHROW_LOCK(sh); 1509 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1510 if (cur->states == 0 && cur->expire <= time_uptime) { 1511 pf_unlink_src_node_locked(cur); 1512 LIST_INSERT_HEAD(&freelist, cur, entry); 1513 } else if (cur->rule.ptr != NULL) 1514 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1515 PF_HASHROW_UNLOCK(sh); 1516 } 1517 1518 pf_free_src_nodes(&freelist); 1519 } 1520 1521 static void 1522 pf_src_tree_remove_state(struct pf_state *s) 1523 { 1524 u_int32_t timeout; 1525 1526 if (s->src_node != NULL) { 1527 if (s->src.tcp_est) 1528 --s->src_node->conn; 1529 if (--s->src_node->states == 0) { 1530 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1531 if (!timeout) 1532 timeout = 1533 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1534 s->src_node->expire = time_uptime + timeout; 1535 } 1536 } 1537 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1538 if (--s->nat_src_node->states == 0) { 1539 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1540 if (!timeout) 1541 timeout = 1542 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1543 s->nat_src_node->expire = time_uptime + timeout; 1544 } 1545 } 1546 s->src_node = s->nat_src_node = NULL; 1547 } 1548 1549 /* 1550 * Unlink and potentilly free a state. Function may be 1551 * called with ID hash row locked, but always returns 1552 * unlocked, since it needs to go through key hash locking. 1553 */ 1554 int 1555 pf_unlink_state(struct pf_state *s, u_int flags) 1556 { 1557 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1558 1559 if ((flags & PF_ENTER_LOCKED) == 0) 1560 PF_HASHROW_LOCK(ih); 1561 else 1562 PF_HASHROW_ASSERT(ih); 1563 1564 if (s->timeout == PFTM_UNLINKED) { 1565 /* 1566 * State is being processed 1567 * by pf_unlink_state() in 1568 * an other thread. 1569 */ 1570 PF_HASHROW_UNLOCK(ih); 1571 return (0); /* XXXGL: undefined actually */ 1572 } 1573 1574 if (s->src.state == PF_TCPS_PROXY_DST) { 1575 /* XXX wire key the right one? */ 1576 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1577 &s->key[PF_SK_WIRE]->addr[1], 1578 &s->key[PF_SK_WIRE]->addr[0], 1579 s->key[PF_SK_WIRE]->port[1], 1580 s->key[PF_SK_WIRE]->port[0], 1581 s->src.seqhi, s->src.seqlo + 1, 1582 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1583 } 1584 1585 LIST_REMOVE(s, entry); 1586 pf_src_tree_remove_state(s); 1587 1588 if (pfsync_delete_state_ptr != NULL) 1589 pfsync_delete_state_ptr(s); 1590 1591 --s->rule.ptr->states_cur; 1592 if (s->nat_rule.ptr != NULL) 1593 --s->nat_rule.ptr->states_cur; 1594 if (s->anchor.ptr != NULL) 1595 --s->anchor.ptr->states_cur; 1596 1597 s->timeout = PFTM_UNLINKED; 1598 1599 PF_HASHROW_UNLOCK(ih); 1600 1601 pf_detach_state(s); 1602 refcount_release(&s->refs); 1603 1604 return (pf_release_state(s)); 1605 } 1606 1607 void 1608 pf_free_state(struct pf_state *cur) 1609 { 1610 1611 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1612 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1613 cur->timeout)); 1614 1615 pf_normalize_tcp_cleanup(cur); 1616 uma_zfree(V_pf_state_z, cur); 1617 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1618 } 1619 1620 /* 1621 * Called only from pf_purge_thread(), thus serialized. 1622 */ 1623 static u_int 1624 pf_purge_expired_states(u_int i, int maxcheck) 1625 { 1626 struct pf_idhash *ih; 1627 struct pf_state *s; 1628 1629 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1630 1631 /* 1632 * Go through hash and unlink states that expire now. 1633 */ 1634 while (maxcheck > 0) { 1635 1636 ih = &V_pf_idhash[i]; 1637 relock: 1638 PF_HASHROW_LOCK(ih); 1639 LIST_FOREACH(s, &ih->states, entry) { 1640 if (pf_state_expires(s) <= time_uptime) { 1641 V_pf_status.states -= 1642 pf_unlink_state(s, PF_ENTER_LOCKED); 1643 goto relock; 1644 } 1645 s->rule.ptr->rule_flag |= PFRULE_REFS; 1646 if (s->nat_rule.ptr != NULL) 1647 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1648 if (s->anchor.ptr != NULL) 1649 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1650 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1651 if (s->rt_kif) 1652 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1653 } 1654 PF_HASHROW_UNLOCK(ih); 1655 1656 /* Return when we hit end of hash. */ 1657 if (++i > V_pf_hashmask) { 1658 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1659 return (0); 1660 } 1661 1662 maxcheck--; 1663 } 1664 1665 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1666 1667 return (i); 1668 } 1669 1670 static void 1671 pf_purge_unlinked_rules() 1672 { 1673 struct pf_rulequeue tmpq; 1674 struct pf_rule *r, *r1; 1675 1676 /* 1677 * If we have overloading task pending, then we'd 1678 * better skip purging this time. There is a tiny 1679 * probability that overloading task references 1680 * an already unlinked rule. 1681 */ 1682 PF_OVERLOADQ_LOCK(); 1683 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1684 PF_OVERLOADQ_UNLOCK(); 1685 return; 1686 } 1687 PF_OVERLOADQ_UNLOCK(); 1688 1689 /* 1690 * Do naive mark-and-sweep garbage collecting of old rules. 1691 * Reference flag is raised by pf_purge_expired_states() 1692 * and pf_purge_expired_src_nodes(). 1693 * 1694 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1695 * use a temporary queue. 1696 */ 1697 TAILQ_INIT(&tmpq); 1698 PF_UNLNKDRULES_LOCK(); 1699 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1700 if (!(r->rule_flag & PFRULE_REFS)) { 1701 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1702 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1703 } else 1704 r->rule_flag &= ~PFRULE_REFS; 1705 } 1706 PF_UNLNKDRULES_UNLOCK(); 1707 1708 if (!TAILQ_EMPTY(&tmpq)) { 1709 PF_RULES_WLOCK(); 1710 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1711 TAILQ_REMOVE(&tmpq, r, entries); 1712 pf_free_rule(r); 1713 } 1714 PF_RULES_WUNLOCK(); 1715 } 1716 } 1717 1718 void 1719 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1720 { 1721 switch (af) { 1722 #ifdef INET 1723 case AF_INET: { 1724 u_int32_t a = ntohl(addr->addr32[0]); 1725 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1726 (a>>8)&255, a&255); 1727 if (p) { 1728 p = ntohs(p); 1729 printf(":%u", p); 1730 } 1731 break; 1732 } 1733 #endif /* INET */ 1734 #ifdef INET6 1735 case AF_INET6: { 1736 u_int16_t b; 1737 u_int8_t i, curstart, curend, maxstart, maxend; 1738 curstart = curend = maxstart = maxend = 255; 1739 for (i = 0; i < 8; i++) { 1740 if (!addr->addr16[i]) { 1741 if (curstart == 255) 1742 curstart = i; 1743 curend = i; 1744 } else { 1745 if ((curend - curstart) > 1746 (maxend - maxstart)) { 1747 maxstart = curstart; 1748 maxend = curend; 1749 } 1750 curstart = curend = 255; 1751 } 1752 } 1753 if ((curend - curstart) > 1754 (maxend - maxstart)) { 1755 maxstart = curstart; 1756 maxend = curend; 1757 } 1758 for (i = 0; i < 8; i++) { 1759 if (i >= maxstart && i <= maxend) { 1760 if (i == 0) 1761 printf(":"); 1762 if (i == maxend) 1763 printf(":"); 1764 } else { 1765 b = ntohs(addr->addr16[i]); 1766 printf("%x", b); 1767 if (i < 7) 1768 printf(":"); 1769 } 1770 } 1771 if (p) { 1772 p = ntohs(p); 1773 printf("[%u]", p); 1774 } 1775 break; 1776 } 1777 #endif /* INET6 */ 1778 } 1779 } 1780 1781 void 1782 pf_print_state(struct pf_state *s) 1783 { 1784 pf_print_state_parts(s, NULL, NULL); 1785 } 1786 1787 static void 1788 pf_print_state_parts(struct pf_state *s, 1789 struct pf_state_key *skwp, struct pf_state_key *sksp) 1790 { 1791 struct pf_state_key *skw, *sks; 1792 u_int8_t proto, dir; 1793 1794 /* Do our best to fill these, but they're skipped if NULL */ 1795 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1796 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1797 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1798 dir = s ? s->direction : 0; 1799 1800 switch (proto) { 1801 case IPPROTO_IPV4: 1802 printf("IPv4"); 1803 break; 1804 case IPPROTO_IPV6: 1805 printf("IPv6"); 1806 break; 1807 case IPPROTO_TCP: 1808 printf("TCP"); 1809 break; 1810 case IPPROTO_UDP: 1811 printf("UDP"); 1812 break; 1813 case IPPROTO_ICMP: 1814 printf("ICMP"); 1815 break; 1816 case IPPROTO_ICMPV6: 1817 printf("ICMPv6"); 1818 break; 1819 default: 1820 printf("%u", skw->proto); 1821 break; 1822 } 1823 switch (dir) { 1824 case PF_IN: 1825 printf(" in"); 1826 break; 1827 case PF_OUT: 1828 printf(" out"); 1829 break; 1830 } 1831 if (skw) { 1832 printf(" wire: "); 1833 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1834 printf(" "); 1835 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1836 } 1837 if (sks) { 1838 printf(" stack: "); 1839 if (sks != skw) { 1840 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1841 printf(" "); 1842 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1843 } else 1844 printf("-"); 1845 } 1846 if (s) { 1847 if (proto == IPPROTO_TCP) { 1848 printf(" [lo=%u high=%u win=%u modulator=%u", 1849 s->src.seqlo, s->src.seqhi, 1850 s->src.max_win, s->src.seqdiff); 1851 if (s->src.wscale && s->dst.wscale) 1852 printf(" wscale=%u", 1853 s->src.wscale & PF_WSCALE_MASK); 1854 printf("]"); 1855 printf(" [lo=%u high=%u win=%u modulator=%u", 1856 s->dst.seqlo, s->dst.seqhi, 1857 s->dst.max_win, s->dst.seqdiff); 1858 if (s->src.wscale && s->dst.wscale) 1859 printf(" wscale=%u", 1860 s->dst.wscale & PF_WSCALE_MASK); 1861 printf("]"); 1862 } 1863 printf(" %u:%u", s->src.state, s->dst.state); 1864 } 1865 } 1866 1867 void 1868 pf_print_flags(u_int8_t f) 1869 { 1870 if (f) 1871 printf(" "); 1872 if (f & TH_FIN) 1873 printf("F"); 1874 if (f & TH_SYN) 1875 printf("S"); 1876 if (f & TH_RST) 1877 printf("R"); 1878 if (f & TH_PUSH) 1879 printf("P"); 1880 if (f & TH_ACK) 1881 printf("A"); 1882 if (f & TH_URG) 1883 printf("U"); 1884 if (f & TH_ECE) 1885 printf("E"); 1886 if (f & TH_CWR) 1887 printf("W"); 1888 } 1889 1890 #define PF_SET_SKIP_STEPS(i) \ 1891 do { \ 1892 while (head[i] != cur) { \ 1893 head[i]->skip[i].ptr = cur; \ 1894 head[i] = TAILQ_NEXT(head[i], entries); \ 1895 } \ 1896 } while (0) 1897 1898 void 1899 pf_calc_skip_steps(struct pf_rulequeue *rules) 1900 { 1901 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1902 int i; 1903 1904 cur = TAILQ_FIRST(rules); 1905 prev = cur; 1906 for (i = 0; i < PF_SKIP_COUNT; ++i) 1907 head[i] = cur; 1908 while (cur != NULL) { 1909 1910 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1911 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1912 if (cur->direction != prev->direction) 1913 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1914 if (cur->af != prev->af) 1915 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1916 if (cur->proto != prev->proto) 1917 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1918 if (cur->src.neg != prev->src.neg || 1919 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1920 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1921 if (cur->src.port[0] != prev->src.port[0] || 1922 cur->src.port[1] != prev->src.port[1] || 1923 cur->src.port_op != prev->src.port_op) 1924 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1925 if (cur->dst.neg != prev->dst.neg || 1926 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1927 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1928 if (cur->dst.port[0] != prev->dst.port[0] || 1929 cur->dst.port[1] != prev->dst.port[1] || 1930 cur->dst.port_op != prev->dst.port_op) 1931 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1932 1933 prev = cur; 1934 cur = TAILQ_NEXT(cur, entries); 1935 } 1936 for (i = 0; i < PF_SKIP_COUNT; ++i) 1937 PF_SET_SKIP_STEPS(i); 1938 } 1939 1940 static int 1941 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1942 { 1943 if (aw1->type != aw2->type) 1944 return (1); 1945 switch (aw1->type) { 1946 case PF_ADDR_ADDRMASK: 1947 case PF_ADDR_RANGE: 1948 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1949 return (1); 1950 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1951 return (1); 1952 return (0); 1953 case PF_ADDR_DYNIFTL: 1954 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1955 case PF_ADDR_NOROUTE: 1956 case PF_ADDR_URPFFAILED: 1957 return (0); 1958 case PF_ADDR_TABLE: 1959 return (aw1->p.tbl != aw2->p.tbl); 1960 default: 1961 printf("invalid address type: %d\n", aw1->type); 1962 return (1); 1963 } 1964 } 1965 1966 u_int16_t 1967 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1968 { 1969 u_int32_t l; 1970 1971 if (udp && !cksum) 1972 return (0x0000); 1973 l = cksum + old - new; 1974 l = (l >> 16) + (l & 65535); 1975 l = l & 65535; 1976 if (udp && !l) 1977 return (0xFFFF); 1978 return (l); 1979 } 1980 1981 static void 1982 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1983 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1984 { 1985 struct pf_addr ao; 1986 u_int16_t po = *p; 1987 1988 PF_ACPY(&ao, a, af); 1989 PF_ACPY(a, an, af); 1990 1991 *p = pn; 1992 1993 switch (af) { 1994 #ifdef INET 1995 case AF_INET: 1996 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1997 ao.addr16[0], an->addr16[0], 0), 1998 ao.addr16[1], an->addr16[1], 0); 1999 *p = pn; 2000 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2001 ao.addr16[0], an->addr16[0], u), 2002 ao.addr16[1], an->addr16[1], u), 2003 po, pn, u); 2004 break; 2005 #endif /* INET */ 2006 #ifdef INET6 2007 case AF_INET6: 2008 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2009 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2010 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2011 ao.addr16[0], an->addr16[0], u), 2012 ao.addr16[1], an->addr16[1], u), 2013 ao.addr16[2], an->addr16[2], u), 2014 ao.addr16[3], an->addr16[3], u), 2015 ao.addr16[4], an->addr16[4], u), 2016 ao.addr16[5], an->addr16[5], u), 2017 ao.addr16[6], an->addr16[6], u), 2018 ao.addr16[7], an->addr16[7], u), 2019 po, pn, u); 2020 break; 2021 #endif /* INET6 */ 2022 } 2023 } 2024 2025 2026 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2027 void 2028 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2029 { 2030 u_int32_t ao; 2031 2032 memcpy(&ao, a, sizeof(ao)); 2033 memcpy(a, &an, sizeof(u_int32_t)); 2034 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2035 ao % 65536, an % 65536, u); 2036 } 2037 2038 #ifdef INET6 2039 static void 2040 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2041 { 2042 struct pf_addr ao; 2043 2044 PF_ACPY(&ao, a, AF_INET6); 2045 PF_ACPY(a, an, AF_INET6); 2046 2047 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2048 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2049 pf_cksum_fixup(pf_cksum_fixup(*c, 2050 ao.addr16[0], an->addr16[0], u), 2051 ao.addr16[1], an->addr16[1], u), 2052 ao.addr16[2], an->addr16[2], u), 2053 ao.addr16[3], an->addr16[3], u), 2054 ao.addr16[4], an->addr16[4], u), 2055 ao.addr16[5], an->addr16[5], u), 2056 ao.addr16[6], an->addr16[6], u), 2057 ao.addr16[7], an->addr16[7], u); 2058 } 2059 #endif /* INET6 */ 2060 2061 static int 2062 pf_icmp_mapping(struct pf_pdesc *pd, uint8_t type, 2063 int *icmp_dir, int *multi, uint16_t *icmpid, uint16_t *icmptype) 2064 { 2065 /* 2066 * ICMP types marked with PF_OUT are typically responses to 2067 * PF_IN, and will match states in the opposite direction. 2068 * PF_IN ICMP types need to match a state with that type. 2069 */ 2070 *icmp_dir = PF_OUT; 2071 *multi = PF_ICMP_MULTI_LINK; 2072 /* Queries (and responses) */ 2073 switch (type) { 2074 case ICMP_ECHO: 2075 *icmp_dir = PF_IN; 2076 case ICMP_ECHOREPLY: 2077 *icmptype = ICMP_ECHO; 2078 *icmpid = pd->hdr.icmp->icmp_id; 2079 break; 2080 2081 case ICMP_TSTAMP: 2082 *icmp_dir = PF_IN; 2083 case ICMP_TSTAMPREPLY: 2084 *icmptype = ICMP_TSTAMP; 2085 *icmpid = pd->hdr.icmp->icmp_id; 2086 break; 2087 2088 case ICMP_IREQ: 2089 *icmp_dir = PF_IN; 2090 case ICMP_IREQREPLY: 2091 *icmptype = ICMP_IREQ; 2092 *icmpid = pd->hdr.icmp->icmp_id; 2093 break; 2094 2095 case ICMP_MASKREQ: 2096 *icmp_dir = PF_IN; 2097 case ICMP_MASKREPLY: 2098 *icmptype = ICMP_MASKREQ; 2099 *icmpid = pd->hdr.icmp->icmp_id; 2100 break; 2101 2102 case ICMP_IPV6_WHEREAREYOU: 2103 *icmp_dir = PF_IN; 2104 case ICMP_IPV6_IAMHERE: 2105 *icmptype = ICMP_IPV6_WHEREAREYOU; 2106 *icmpid = 0; /* Nothing sane to match on! */ 2107 break; 2108 2109 case ICMP_MOBILE_REGREQUEST: 2110 *icmp_dir = PF_IN; 2111 case ICMP_MOBILE_REGREPLY: 2112 *icmptype = ICMP_MOBILE_REGREQUEST; 2113 *icmpid = 0; /* Nothing sane to match on! */ 2114 break; 2115 2116 case ICMP_ROUTERSOLICIT: 2117 *icmp_dir = PF_IN; 2118 case ICMP_ROUTERADVERT: 2119 *icmptype = ICMP_MOBILE_REGREQUEST; 2120 *icmpid = 0; /* Nothing sane to match on! */ 2121 break; 2122 2123 #ifdef INET6 2124 case ICMP6_ECHO_REQUEST: 2125 *icmp_dir = PF_IN; 2126 case ICMP6_ECHO_REPLY: 2127 *icmptype = ICMP6_ECHO_REPLY; 2128 *icmpid = 0; /* Nothing sane to match on! */ 2129 break; 2130 2131 case MLD_LISTENER_QUERY: 2132 *icmp_dir = PF_IN; 2133 case MLD_LISTENER_REPORT: { 2134 struct mld_hdr *mld = (void *)pd->hdr.icmp6; 2135 2136 *icmptype = MLD_LISTENER_QUERY; 2137 /* generate fake id for these messages */ 2138 *icmpid = (mld->mld_addr.s6_addr32[0] ^ 2139 mld->mld_addr.s6_addr32[1] ^ 2140 mld->mld_addr.s6_addr32[2] ^ 2141 mld->mld_addr.s6_addr32[3]) & 0xffff; 2142 break; 2143 } 2144 2145 /* ICMP6_FQDN and ICMP6_NI query/reply are the same type as ICMP6_WRU */ 2146 case ICMP6_WRUREQUEST: 2147 *icmp_dir = PF_IN; 2148 case ICMP6_WRUREPLY: 2149 *icmptype = ICMP6_WRUREQUEST; 2150 *icmpid = 0; /* Nothing sane to match on! */ 2151 break; 2152 2153 case MLD_MTRACE: 2154 *icmp_dir = PF_IN; 2155 case MLD_MTRACE_RESP: 2156 *icmptype = MLD_MTRACE; 2157 *icmpid = 0; /* Nothing sane to match on! */ 2158 break; 2159 2160 case ND_NEIGHBOR_SOLICIT: 2161 *icmp_dir = PF_IN; 2162 case ND_NEIGHBOR_ADVERT: { 2163 struct nd_neighbor_solicit *nd = (void *)pd->hdr.icmp6; 2164 2165 *icmptype = ND_NEIGHBOR_SOLICIT; 2166 *multi = PF_ICMP_MULTI_SOLICITED; 2167 /* generate fake id for these messages */ 2168 *icmpid = (nd->nd_ns_target.s6_addr32[0] ^ 2169 nd->nd_ns_target.s6_addr32[1] ^ 2170 nd->nd_ns_target.s6_addr32[2] ^ 2171 nd->nd_ns_target.s6_addr32[3]) & 0xffff; 2172 break; 2173 } 2174 2175 #endif /* INET6 */ 2176 /* These ICMP types map to other connections */ 2177 case ICMP_UNREACH: 2178 case ICMP_SOURCEQUENCH: 2179 case ICMP_REDIRECT: 2180 case ICMP_TIMXCEED: 2181 case ICMP_PARAMPROB: 2182 #ifdef INET6 2183 /* 2184 * ICMP6_TIME_EXCEEDED is the same type as ICMP_UNREACH 2185 * ND_REDIRECT can't be in this list because the triggering packet 2186 * header is optional. 2187 */ 2188 case ICMP6_PACKET_TOO_BIG: 2189 #endif /* INET6 */ 2190 /* These will not be used, but set them anyways */ 2191 *icmp_dir = PF_IN; 2192 *icmptype = htons(type); 2193 *icmpid = 0; 2194 return (1); /* These types are matched to other state */ 2195 /* 2196 * All remaining ICMP types get their own states, 2197 * and will only match in one direction. 2198 */ 2199 default: 2200 *icmp_dir = PF_IN; 2201 *icmptype = type; 2202 *icmpid = 0; 2203 break; 2204 } 2205 *icmptype = htons(*icmptype); 2206 2207 return (0); 2208 } 2209 2210 static void 2211 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2212 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2213 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2214 { 2215 struct pf_addr oia, ooa; 2216 2217 PF_ACPY(&oia, ia, af); 2218 if (oa) 2219 PF_ACPY(&ooa, oa, af); 2220 2221 /* Change inner protocol port, fix inner protocol checksum. */ 2222 if (ip != NULL) { 2223 u_int16_t oip = *ip; 2224 u_int32_t opc; 2225 2226 if (pc != NULL) 2227 opc = *pc; 2228 *ip = np; 2229 if (pc != NULL) 2230 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2231 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2232 if (pc != NULL) 2233 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2234 } 2235 /* Change inner ip address, fix inner ip and icmp checksums. */ 2236 PF_ACPY(ia, na, af); 2237 switch (af) { 2238 #ifdef INET 2239 case AF_INET: { 2240 u_int32_t oh2c = *h2c; 2241 2242 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2243 oia.addr16[0], ia->addr16[0], 0), 2244 oia.addr16[1], ia->addr16[1], 0); 2245 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2246 oia.addr16[0], ia->addr16[0], 0), 2247 oia.addr16[1], ia->addr16[1], 0); 2248 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2249 break; 2250 } 2251 #endif /* INET */ 2252 #ifdef INET6 2253 case AF_INET6: 2254 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2255 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2256 pf_cksum_fixup(pf_cksum_fixup(*ic, 2257 oia.addr16[0], ia->addr16[0], u), 2258 oia.addr16[1], ia->addr16[1], u), 2259 oia.addr16[2], ia->addr16[2], u), 2260 oia.addr16[3], ia->addr16[3], u), 2261 oia.addr16[4], ia->addr16[4], u), 2262 oia.addr16[5], ia->addr16[5], u), 2263 oia.addr16[6], ia->addr16[6], u), 2264 oia.addr16[7], ia->addr16[7], u); 2265 break; 2266 #endif /* INET6 */ 2267 } 2268 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2269 if (oa) { 2270 PF_ACPY(oa, na, af); 2271 switch (af) { 2272 #ifdef INET 2273 case AF_INET: 2274 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2275 ooa.addr16[0], oa->addr16[0], 0), 2276 ooa.addr16[1], oa->addr16[1], 0); 2277 break; 2278 #endif /* INET */ 2279 #ifdef INET6 2280 case AF_INET6: 2281 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2282 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2283 pf_cksum_fixup(pf_cksum_fixup(*ic, 2284 ooa.addr16[0], oa->addr16[0], u), 2285 ooa.addr16[1], oa->addr16[1], u), 2286 ooa.addr16[2], oa->addr16[2], u), 2287 ooa.addr16[3], oa->addr16[3], u), 2288 ooa.addr16[4], oa->addr16[4], u), 2289 ooa.addr16[5], oa->addr16[5], u), 2290 ooa.addr16[6], oa->addr16[6], u), 2291 ooa.addr16[7], oa->addr16[7], u); 2292 break; 2293 #endif /* INET6 */ 2294 } 2295 } 2296 } 2297 2298 2299 /* 2300 * Need to modulate the sequence numbers in the TCP SACK option 2301 * (credits to Krzysztof Pfaff for report and patch) 2302 */ 2303 static int 2304 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2305 struct tcphdr *th, struct pf_state_peer *dst) 2306 { 2307 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2308 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2309 int copyback = 0, i, olen; 2310 struct sackblk sack; 2311 2312 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2313 if (hlen < TCPOLEN_SACKLEN || 2314 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2315 return 0; 2316 2317 while (hlen >= TCPOLEN_SACKLEN) { 2318 olen = opt[1]; 2319 switch (*opt) { 2320 case TCPOPT_EOL: /* FALLTHROUGH */ 2321 case TCPOPT_NOP: 2322 opt++; 2323 hlen--; 2324 break; 2325 case TCPOPT_SACK: 2326 if (olen > hlen) 2327 olen = hlen; 2328 if (olen >= TCPOLEN_SACKLEN) { 2329 for (i = 2; i + TCPOLEN_SACK <= olen; 2330 i += TCPOLEN_SACK) { 2331 memcpy(&sack, &opt[i], sizeof(sack)); 2332 pf_change_a(&sack.start, &th->th_sum, 2333 htonl(ntohl(sack.start) - 2334 dst->seqdiff), 0); 2335 pf_change_a(&sack.end, &th->th_sum, 2336 htonl(ntohl(sack.end) - 2337 dst->seqdiff), 0); 2338 memcpy(&opt[i], &sack, sizeof(sack)); 2339 } 2340 copyback = 1; 2341 } 2342 /* FALLTHROUGH */ 2343 default: 2344 if (olen < 2) 2345 olen = 2; 2346 hlen -= olen; 2347 opt += olen; 2348 } 2349 } 2350 2351 if (copyback) 2352 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2353 return (copyback); 2354 } 2355 2356 static void 2357 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2358 const struct pf_addr *saddr, const struct pf_addr *daddr, 2359 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2360 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2361 u_int16_t rtag, struct ifnet *ifp) 2362 { 2363 struct pf_send_entry *pfse; 2364 struct mbuf *m; 2365 int len, tlen; 2366 #ifdef INET 2367 struct ip *h = NULL; 2368 #endif /* INET */ 2369 #ifdef INET6 2370 struct ip6_hdr *h6 = NULL; 2371 #endif /* INET6 */ 2372 struct tcphdr *th; 2373 char *opt; 2374 struct pf_mtag *pf_mtag; 2375 2376 len = 0; 2377 th = NULL; 2378 2379 /* maximum segment size tcp option */ 2380 tlen = sizeof(struct tcphdr); 2381 if (mss) 2382 tlen += 4; 2383 2384 switch (af) { 2385 #ifdef INET 2386 case AF_INET: 2387 len = sizeof(struct ip) + tlen; 2388 break; 2389 #endif /* INET */ 2390 #ifdef INET6 2391 case AF_INET6: 2392 len = sizeof(struct ip6_hdr) + tlen; 2393 break; 2394 #endif /* INET6 */ 2395 default: 2396 panic("%s: unsupported af %d", __func__, af); 2397 } 2398 2399 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2400 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2401 if (pfse == NULL) 2402 return; 2403 m = m_gethdr(M_NOWAIT, MT_DATA); 2404 if (m == NULL) { 2405 free(pfse, M_PFTEMP); 2406 return; 2407 } 2408 #ifdef MAC 2409 mac_netinet_firewall_send(m); 2410 #endif 2411 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2412 free(pfse, M_PFTEMP); 2413 m_freem(m); 2414 return; 2415 } 2416 if (tag) 2417 m->m_flags |= M_SKIP_FIREWALL; 2418 pf_mtag->tag = rtag; 2419 2420 if (r != NULL && r->rtableid >= 0) 2421 M_SETFIB(m, r->rtableid); 2422 2423 #ifdef ALTQ 2424 if (r != NULL && r->qid) { 2425 pf_mtag->qid = r->qid; 2426 2427 /* add hints for ecn */ 2428 pf_mtag->hdr = mtod(m, struct ip *); 2429 } 2430 #endif /* ALTQ */ 2431 m->m_data += max_linkhdr; 2432 m->m_pkthdr.len = m->m_len = len; 2433 m->m_pkthdr.rcvif = NULL; 2434 bzero(m->m_data, len); 2435 switch (af) { 2436 #ifdef INET 2437 case AF_INET: 2438 h = mtod(m, struct ip *); 2439 2440 /* IP header fields included in the TCP checksum */ 2441 h->ip_p = IPPROTO_TCP; 2442 h->ip_len = htons(tlen); 2443 h->ip_src.s_addr = saddr->v4.s_addr; 2444 h->ip_dst.s_addr = daddr->v4.s_addr; 2445 2446 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2447 break; 2448 #endif /* INET */ 2449 #ifdef INET6 2450 case AF_INET6: 2451 h6 = mtod(m, struct ip6_hdr *); 2452 2453 /* IP header fields included in the TCP checksum */ 2454 h6->ip6_nxt = IPPROTO_TCP; 2455 h6->ip6_plen = htons(tlen); 2456 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2457 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2458 2459 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2460 break; 2461 #endif /* INET6 */ 2462 } 2463 2464 /* TCP header */ 2465 th->th_sport = sport; 2466 th->th_dport = dport; 2467 th->th_seq = htonl(seq); 2468 th->th_ack = htonl(ack); 2469 th->th_off = tlen >> 2; 2470 th->th_flags = flags; 2471 th->th_win = htons(win); 2472 2473 if (mss) { 2474 opt = (char *)(th + 1); 2475 opt[0] = TCPOPT_MAXSEG; 2476 opt[1] = 4; 2477 HTONS(mss); 2478 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2479 } 2480 2481 switch (af) { 2482 #ifdef INET 2483 case AF_INET: 2484 /* TCP checksum */ 2485 th->th_sum = in_cksum(m, len); 2486 2487 /* Finish the IP header */ 2488 h->ip_v = 4; 2489 h->ip_hl = sizeof(*h) >> 2; 2490 h->ip_tos = IPTOS_LOWDELAY; 2491 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2492 h->ip_len = htons(len); 2493 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2494 h->ip_sum = 0; 2495 2496 pfse->pfse_type = PFSE_IP; 2497 break; 2498 #endif /* INET */ 2499 #ifdef INET6 2500 case AF_INET6: 2501 /* TCP checksum */ 2502 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2503 sizeof(struct ip6_hdr), tlen); 2504 2505 h6->ip6_vfc |= IPV6_VERSION; 2506 h6->ip6_hlim = IPV6_DEFHLIM; 2507 2508 pfse->pfse_type = PFSE_IP6; 2509 break; 2510 #endif /* INET6 */ 2511 } 2512 pfse->pfse_m = m; 2513 pf_send(pfse); 2514 } 2515 2516 static void 2517 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2518 struct pf_rule *r) 2519 { 2520 struct pf_send_entry *pfse; 2521 struct mbuf *m0; 2522 struct pf_mtag *pf_mtag; 2523 2524 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2525 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2526 if (pfse == NULL) 2527 return; 2528 2529 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2530 free(pfse, M_PFTEMP); 2531 return; 2532 } 2533 2534 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2535 free(pfse, M_PFTEMP); 2536 return; 2537 } 2538 /* XXX: revisit */ 2539 m0->m_flags |= M_SKIP_FIREWALL; 2540 2541 if (r->rtableid >= 0) 2542 M_SETFIB(m0, r->rtableid); 2543 2544 #ifdef ALTQ 2545 if (r->qid) { 2546 pf_mtag->qid = r->qid; 2547 /* add hints for ecn */ 2548 pf_mtag->hdr = mtod(m0, struct ip *); 2549 } 2550 #endif /* ALTQ */ 2551 2552 switch (af) { 2553 #ifdef INET 2554 case AF_INET: 2555 pfse->pfse_type = PFSE_ICMP; 2556 break; 2557 #endif /* INET */ 2558 #ifdef INET6 2559 case AF_INET6: 2560 pfse->pfse_type = PFSE_ICMP6; 2561 break; 2562 #endif /* INET6 */ 2563 } 2564 pfse->pfse_m = m0; 2565 pfse->pfse_icmp_type = type; 2566 pfse->pfse_icmp_code = code; 2567 pf_send(pfse); 2568 } 2569 2570 /* 2571 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2572 * If n is 0, they match if they are equal. If n is != 0, they match if they 2573 * are different. 2574 */ 2575 int 2576 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2577 struct pf_addr *b, sa_family_t af) 2578 { 2579 int match = 0; 2580 2581 switch (af) { 2582 #ifdef INET 2583 case AF_INET: 2584 if ((a->addr32[0] & m->addr32[0]) == 2585 (b->addr32[0] & m->addr32[0])) 2586 match++; 2587 break; 2588 #endif /* INET */ 2589 #ifdef INET6 2590 case AF_INET6: 2591 if (((a->addr32[0] & m->addr32[0]) == 2592 (b->addr32[0] & m->addr32[0])) && 2593 ((a->addr32[1] & m->addr32[1]) == 2594 (b->addr32[1] & m->addr32[1])) && 2595 ((a->addr32[2] & m->addr32[2]) == 2596 (b->addr32[2] & m->addr32[2])) && 2597 ((a->addr32[3] & m->addr32[3]) == 2598 (b->addr32[3] & m->addr32[3]))) 2599 match++; 2600 break; 2601 #endif /* INET6 */ 2602 } 2603 if (match) { 2604 if (n) 2605 return (0); 2606 else 2607 return (1); 2608 } else { 2609 if (n) 2610 return (1); 2611 else 2612 return (0); 2613 } 2614 } 2615 2616 /* 2617 * Return 1 if b <= a <= e, otherwise return 0. 2618 */ 2619 int 2620 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2621 struct pf_addr *a, sa_family_t af) 2622 { 2623 switch (af) { 2624 #ifdef INET 2625 case AF_INET: 2626 if ((a->addr32[0] < b->addr32[0]) || 2627 (a->addr32[0] > e->addr32[0])) 2628 return (0); 2629 break; 2630 #endif /* INET */ 2631 #ifdef INET6 2632 case AF_INET6: { 2633 int i; 2634 2635 /* check a >= b */ 2636 for (i = 0; i < 4; ++i) 2637 if (a->addr32[i] > b->addr32[i]) 2638 break; 2639 else if (a->addr32[i] < b->addr32[i]) 2640 return (0); 2641 /* check a <= e */ 2642 for (i = 0; i < 4; ++i) 2643 if (a->addr32[i] < e->addr32[i]) 2644 break; 2645 else if (a->addr32[i] > e->addr32[i]) 2646 return (0); 2647 break; 2648 } 2649 #endif /* INET6 */ 2650 } 2651 return (1); 2652 } 2653 2654 static int 2655 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2656 { 2657 switch (op) { 2658 case PF_OP_IRG: 2659 return ((p > a1) && (p < a2)); 2660 case PF_OP_XRG: 2661 return ((p < a1) || (p > a2)); 2662 case PF_OP_RRG: 2663 return ((p >= a1) && (p <= a2)); 2664 case PF_OP_EQ: 2665 return (p == a1); 2666 case PF_OP_NE: 2667 return (p != a1); 2668 case PF_OP_LT: 2669 return (p < a1); 2670 case PF_OP_LE: 2671 return (p <= a1); 2672 case PF_OP_GT: 2673 return (p > a1); 2674 case PF_OP_GE: 2675 return (p >= a1); 2676 } 2677 return (0); /* never reached */ 2678 } 2679 2680 int 2681 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2682 { 2683 NTOHS(a1); 2684 NTOHS(a2); 2685 NTOHS(p); 2686 return (pf_match(op, a1, a2, p)); 2687 } 2688 2689 static int 2690 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2691 { 2692 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2693 return (0); 2694 return (pf_match(op, a1, a2, u)); 2695 } 2696 2697 static int 2698 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2699 { 2700 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2701 return (0); 2702 return (pf_match(op, a1, a2, g)); 2703 } 2704 2705 int 2706 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2707 { 2708 if (*tag == -1) 2709 *tag = mtag; 2710 2711 return ((!r->match_tag_not && r->match_tag == *tag) || 2712 (r->match_tag_not && r->match_tag != *tag)); 2713 } 2714 2715 int 2716 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2717 { 2718 2719 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2720 2721 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2722 return (ENOMEM); 2723 2724 pd->pf_mtag->tag = tag; 2725 2726 return (0); 2727 } 2728 2729 #define PF_ANCHOR_STACKSIZE 32 2730 struct pf_anchor_stackframe { 2731 struct pf_ruleset *rs; 2732 struct pf_rule *r; /* XXX: + match bit */ 2733 struct pf_anchor *child; 2734 }; 2735 2736 /* 2737 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2738 */ 2739 #define PF_ANCHORSTACK_MATCH 0x00000001 2740 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2741 2742 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2743 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2744 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2745 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2746 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2747 } while (0) 2748 2749 void 2750 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2751 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2752 int *match) 2753 { 2754 struct pf_anchor_stackframe *f; 2755 2756 PF_RULES_RASSERT(); 2757 2758 if (match) 2759 *match = 0; 2760 if (*depth >= PF_ANCHOR_STACKSIZE) { 2761 printf("%s: anchor stack overflow on %s\n", 2762 __func__, (*r)->anchor->name); 2763 *r = TAILQ_NEXT(*r, entries); 2764 return; 2765 } else if (*depth == 0 && a != NULL) 2766 *a = *r; 2767 f = stack + (*depth)++; 2768 f->rs = *rs; 2769 f->r = *r; 2770 if ((*r)->anchor_wildcard) { 2771 struct pf_anchor_node *parent = &(*r)->anchor->children; 2772 2773 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2774 *r = NULL; 2775 return; 2776 } 2777 *rs = &f->child->ruleset; 2778 } else { 2779 f->child = NULL; 2780 *rs = &(*r)->anchor->ruleset; 2781 } 2782 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2783 } 2784 2785 int 2786 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2787 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2788 int *match) 2789 { 2790 struct pf_anchor_stackframe *f; 2791 struct pf_rule *fr; 2792 int quick = 0; 2793 2794 PF_RULES_RASSERT(); 2795 2796 do { 2797 if (*depth <= 0) 2798 break; 2799 f = stack + *depth - 1; 2800 fr = PF_ANCHOR_RULE(f); 2801 if (f->child != NULL) { 2802 struct pf_anchor_node *parent; 2803 2804 /* 2805 * This block traverses through 2806 * a wildcard anchor. 2807 */ 2808 parent = &fr->anchor->children; 2809 if (match != NULL && *match) { 2810 /* 2811 * If any of "*" matched, then 2812 * "foo/ *" matched, mark frame 2813 * appropriately. 2814 */ 2815 PF_ANCHOR_SET_MATCH(f); 2816 *match = 0; 2817 } 2818 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2819 if (f->child != NULL) { 2820 *rs = &f->child->ruleset; 2821 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2822 if (*r == NULL) 2823 continue; 2824 else 2825 break; 2826 } 2827 } 2828 (*depth)--; 2829 if (*depth == 0 && a != NULL) 2830 *a = NULL; 2831 *rs = f->rs; 2832 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2833 quick = fr->quick; 2834 *r = TAILQ_NEXT(fr, entries); 2835 } while (*r == NULL); 2836 2837 return (quick); 2838 } 2839 2840 #ifdef INET6 2841 void 2842 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2843 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2844 { 2845 switch (af) { 2846 #ifdef INET 2847 case AF_INET: 2848 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2849 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2850 break; 2851 #endif /* INET */ 2852 case AF_INET6: 2853 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2854 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2855 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2856 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2857 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2858 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2859 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2860 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2861 break; 2862 } 2863 } 2864 2865 void 2866 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2867 { 2868 switch (af) { 2869 #ifdef INET 2870 case AF_INET: 2871 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2872 break; 2873 #endif /* INET */ 2874 case AF_INET6: 2875 if (addr->addr32[3] == 0xffffffff) { 2876 addr->addr32[3] = 0; 2877 if (addr->addr32[2] == 0xffffffff) { 2878 addr->addr32[2] = 0; 2879 if (addr->addr32[1] == 0xffffffff) { 2880 addr->addr32[1] = 0; 2881 addr->addr32[0] = 2882 htonl(ntohl(addr->addr32[0]) + 1); 2883 } else 2884 addr->addr32[1] = 2885 htonl(ntohl(addr->addr32[1]) + 1); 2886 } else 2887 addr->addr32[2] = 2888 htonl(ntohl(addr->addr32[2]) + 1); 2889 } else 2890 addr->addr32[3] = 2891 htonl(ntohl(addr->addr32[3]) + 1); 2892 break; 2893 } 2894 } 2895 #endif /* INET6 */ 2896 2897 int 2898 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2899 { 2900 struct pf_addr *saddr, *daddr; 2901 u_int16_t sport, dport; 2902 struct inpcbinfo *pi; 2903 struct inpcb *inp; 2904 2905 pd->lookup.uid = UID_MAX; 2906 pd->lookup.gid = GID_MAX; 2907 2908 switch (pd->proto) { 2909 case IPPROTO_TCP: 2910 if (pd->hdr.tcp == NULL) 2911 return (-1); 2912 sport = pd->hdr.tcp->th_sport; 2913 dport = pd->hdr.tcp->th_dport; 2914 pi = &V_tcbinfo; 2915 break; 2916 case IPPROTO_UDP: 2917 if (pd->hdr.udp == NULL) 2918 return (-1); 2919 sport = pd->hdr.udp->uh_sport; 2920 dport = pd->hdr.udp->uh_dport; 2921 pi = &V_udbinfo; 2922 break; 2923 default: 2924 return (-1); 2925 } 2926 if (direction == PF_IN) { 2927 saddr = pd->src; 2928 daddr = pd->dst; 2929 } else { 2930 u_int16_t p; 2931 2932 p = sport; 2933 sport = dport; 2934 dport = p; 2935 saddr = pd->dst; 2936 daddr = pd->src; 2937 } 2938 switch (pd->af) { 2939 #ifdef INET 2940 case AF_INET: 2941 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2942 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2943 if (inp == NULL) { 2944 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2945 daddr->v4, dport, INPLOOKUP_WILDCARD | 2946 INPLOOKUP_RLOCKPCB, NULL, m); 2947 if (inp == NULL) 2948 return (-1); 2949 } 2950 break; 2951 #endif /* INET */ 2952 #ifdef INET6 2953 case AF_INET6: 2954 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2955 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2956 if (inp == NULL) { 2957 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2958 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2959 INPLOOKUP_RLOCKPCB, NULL, m); 2960 if (inp == NULL) 2961 return (-1); 2962 } 2963 break; 2964 #endif /* INET6 */ 2965 2966 default: 2967 return (-1); 2968 } 2969 INP_RLOCK_ASSERT(inp); 2970 pd->lookup.uid = inp->inp_cred->cr_uid; 2971 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2972 INP_RUNLOCK(inp); 2973 2974 return (1); 2975 } 2976 2977 static u_int8_t 2978 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2979 { 2980 int hlen; 2981 u_int8_t hdr[60]; 2982 u_int8_t *opt, optlen; 2983 u_int8_t wscale = 0; 2984 2985 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2986 if (hlen <= sizeof(struct tcphdr)) 2987 return (0); 2988 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2989 return (0); 2990 opt = hdr + sizeof(struct tcphdr); 2991 hlen -= sizeof(struct tcphdr); 2992 while (hlen >= 3) { 2993 switch (*opt) { 2994 case TCPOPT_EOL: 2995 case TCPOPT_NOP: 2996 ++opt; 2997 --hlen; 2998 break; 2999 case TCPOPT_WINDOW: 3000 wscale = opt[2]; 3001 if (wscale > TCP_MAX_WINSHIFT) 3002 wscale = TCP_MAX_WINSHIFT; 3003 wscale |= PF_WSCALE_FLAG; 3004 /* FALLTHROUGH */ 3005 default: 3006 optlen = opt[1]; 3007 if (optlen < 2) 3008 optlen = 2; 3009 hlen -= optlen; 3010 opt += optlen; 3011 break; 3012 } 3013 } 3014 return (wscale); 3015 } 3016 3017 static u_int16_t 3018 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3019 { 3020 int hlen; 3021 u_int8_t hdr[60]; 3022 u_int8_t *opt, optlen; 3023 u_int16_t mss = V_tcp_mssdflt; 3024 3025 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3026 if (hlen <= sizeof(struct tcphdr)) 3027 return (0); 3028 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3029 return (0); 3030 opt = hdr + sizeof(struct tcphdr); 3031 hlen -= sizeof(struct tcphdr); 3032 while (hlen >= TCPOLEN_MAXSEG) { 3033 switch (*opt) { 3034 case TCPOPT_EOL: 3035 case TCPOPT_NOP: 3036 ++opt; 3037 --hlen; 3038 break; 3039 case TCPOPT_MAXSEG: 3040 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3041 NTOHS(mss); 3042 /* FALLTHROUGH */ 3043 default: 3044 optlen = opt[1]; 3045 if (optlen < 2) 3046 optlen = 2; 3047 hlen -= optlen; 3048 opt += optlen; 3049 break; 3050 } 3051 } 3052 return (mss); 3053 } 3054 3055 static u_int16_t 3056 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3057 { 3058 #ifdef INET 3059 struct sockaddr_in *dst; 3060 struct route ro; 3061 #endif /* INET */ 3062 #ifdef INET6 3063 struct sockaddr_in6 *dst6; 3064 struct route_in6 ro6; 3065 #endif /* INET6 */ 3066 struct rtentry *rt = NULL; 3067 int hlen = 0; 3068 u_int16_t mss = V_tcp_mssdflt; 3069 3070 switch (af) { 3071 #ifdef INET 3072 case AF_INET: 3073 hlen = sizeof(struct ip); 3074 bzero(&ro, sizeof(ro)); 3075 dst = (struct sockaddr_in *)&ro.ro_dst; 3076 dst->sin_family = AF_INET; 3077 dst->sin_len = sizeof(*dst); 3078 dst->sin_addr = addr->v4; 3079 in_rtalloc_ign(&ro, 0, rtableid); 3080 rt = ro.ro_rt; 3081 break; 3082 #endif /* INET */ 3083 #ifdef INET6 3084 case AF_INET6: 3085 hlen = sizeof(struct ip6_hdr); 3086 bzero(&ro6, sizeof(ro6)); 3087 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 3088 dst6->sin6_family = AF_INET6; 3089 dst6->sin6_len = sizeof(*dst6); 3090 dst6->sin6_addr = addr->v6; 3091 in6_rtalloc_ign(&ro6, 0, rtableid); 3092 rt = ro6.ro_rt; 3093 break; 3094 #endif /* INET6 */ 3095 } 3096 3097 if (rt && rt->rt_ifp) { 3098 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 3099 mss = max(V_tcp_mssdflt, mss); 3100 RTFREE(rt); 3101 } 3102 mss = min(mss, offer); 3103 mss = max(mss, 64); /* sanity - at least max opt space */ 3104 return (mss); 3105 } 3106 3107 static void 3108 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 3109 { 3110 struct pf_rule *r = s->rule.ptr; 3111 struct pf_src_node *sn = NULL; 3112 3113 s->rt_kif = NULL; 3114 if (!r->rt || r->rt == PF_FASTROUTE) 3115 return; 3116 switch (s->key[PF_SK_WIRE]->af) { 3117 #ifdef INET 3118 case AF_INET: 3119 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 3120 s->rt_kif = r->rpool.cur->kif; 3121 break; 3122 #endif /* INET */ 3123 #ifdef INET6 3124 case AF_INET6: 3125 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 3126 s->rt_kif = r->rpool.cur->kif; 3127 break; 3128 #endif /* INET6 */ 3129 } 3130 } 3131 3132 static u_int32_t 3133 pf_tcp_iss(struct pf_pdesc *pd) 3134 { 3135 MD5_CTX ctx; 3136 u_int32_t digest[4]; 3137 3138 if (V_pf_tcp_secret_init == 0) { 3139 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3140 MD5Init(&V_pf_tcp_secret_ctx); 3141 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3142 sizeof(V_pf_tcp_secret)); 3143 V_pf_tcp_secret_init = 1; 3144 } 3145 3146 ctx = V_pf_tcp_secret_ctx; 3147 3148 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3149 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3150 if (pd->af == AF_INET6) { 3151 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3152 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3153 } else { 3154 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3155 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3156 } 3157 MD5Final((u_char *)digest, &ctx); 3158 V_pf_tcp_iss_off += 4096; 3159 #define ISN_RANDOM_INCREMENT (4096 - 1) 3160 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3161 V_pf_tcp_iss_off); 3162 #undef ISN_RANDOM_INCREMENT 3163 } 3164 3165 static int 3166 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3167 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3168 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3169 { 3170 struct pf_rule *nr = NULL; 3171 struct pf_addr * const saddr = pd->src; 3172 struct pf_addr * const daddr = pd->dst; 3173 sa_family_t af = pd->af; 3174 struct pf_rule *r, *a = NULL; 3175 struct pf_ruleset *ruleset = NULL; 3176 struct pf_src_node *nsn = NULL; 3177 struct tcphdr *th = pd->hdr.tcp; 3178 struct pf_state_key *sk = NULL, *nk = NULL; 3179 u_short reason; 3180 int rewrite = 0, hdrlen = 0; 3181 int tag = -1, rtableid = -1; 3182 int asd = 0; 3183 int match = 0; 3184 int state_icmp = 0, icmp_dir, multi; 3185 uint16_t sport = 0 , dport = 0, virtual_type = 0, virtual_id = 0; 3186 u_int16_t bproto_sum = 0, bip_sum = 0; 3187 u_int8_t icmptype = 0, icmpcode = 0; 3188 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3189 3190 PF_RULES_RASSERT(); 3191 3192 if (inp != NULL) { 3193 INP_LOCK_ASSERT(inp); 3194 pd->lookup.uid = inp->inp_cred->cr_uid; 3195 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3196 pd->lookup.done = 1; 3197 } 3198 3199 switch (pd->proto) { 3200 case IPPROTO_TCP: 3201 sport = th->th_sport; 3202 dport = th->th_dport; 3203 hdrlen = sizeof(*th); 3204 break; 3205 case IPPROTO_UDP: 3206 sport = pd->hdr.udp->uh_sport; 3207 dport = pd->hdr.udp->uh_dport; 3208 hdrlen = sizeof(*pd->hdr.udp); 3209 break; 3210 #ifdef INET 3211 case IPPROTO_ICMP: 3212 if (pd->af != AF_INET) 3213 break; 3214 hdrlen = sizeof(*pd->hdr.icmp); 3215 icmptype = pd->hdr.icmp->icmp_type; 3216 icmpcode = pd->hdr.icmp->icmp_code; 3217 3218 state_icmp = pf_icmp_mapping(pd, icmptype, 3219 &icmp_dir, &multi, &virtual_id, &virtual_type); 3220 if (icmp_dir == PF_IN) { 3221 sport = virtual_id; 3222 dport = virtual_type; 3223 } else { 3224 sport = virtual_type; 3225 dport = virtual_id; 3226 } 3227 break; 3228 #endif /* INET */ 3229 #ifdef INET6 3230 case IPPROTO_ICMPV6: 3231 if (af != AF_INET6) 3232 break; 3233 hdrlen = sizeof(*pd->hdr.icmp6); 3234 icmptype = pd->hdr.icmp6->icmp6_type; 3235 icmpcode = pd->hdr.icmp6->icmp6_code; 3236 3237 state_icmp = pf_icmp_mapping(pd, icmptype, 3238 &icmp_dir, &multi, &virtual_id, &virtual_type); 3239 if (icmp_dir == PF_IN) { 3240 sport = virtual_id; 3241 dport = virtual_type; 3242 } else { 3243 sport = virtual_type; 3244 dport = virtual_id; 3245 } 3246 break; 3247 #endif /* INET6 */ 3248 default: 3249 sport = dport = hdrlen = 0; 3250 break; 3251 } 3252 3253 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3254 3255 /* check packet for BINAT/NAT/RDR */ 3256 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3257 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3258 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3259 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3260 3261 if (pd->ip_sum) 3262 bip_sum = *pd->ip_sum; 3263 3264 switch (pd->proto) { 3265 case IPPROTO_TCP: 3266 bproto_sum = th->th_sum; 3267 pd->proto_sum = &th->th_sum; 3268 3269 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3270 nk->port[pd->sidx] != sport) { 3271 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3272 &th->th_sum, &nk->addr[pd->sidx], 3273 nk->port[pd->sidx], 0, af); 3274 pd->sport = &th->th_sport; 3275 sport = th->th_sport; 3276 } 3277 3278 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3279 nk->port[pd->didx] != dport) { 3280 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3281 &th->th_sum, &nk->addr[pd->didx], 3282 nk->port[pd->didx], 0, af); 3283 dport = th->th_dport; 3284 pd->dport = &th->th_dport; 3285 } 3286 rewrite++; 3287 break; 3288 case IPPROTO_UDP: 3289 bproto_sum = pd->hdr.udp->uh_sum; 3290 pd->proto_sum = &pd->hdr.udp->uh_sum; 3291 3292 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3293 nk->port[pd->sidx] != sport) { 3294 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3295 pd->ip_sum, &pd->hdr.udp->uh_sum, 3296 &nk->addr[pd->sidx], 3297 nk->port[pd->sidx], 1, af); 3298 sport = pd->hdr.udp->uh_sport; 3299 pd->sport = &pd->hdr.udp->uh_sport; 3300 } 3301 3302 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3303 nk->port[pd->didx] != dport) { 3304 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3305 pd->ip_sum, &pd->hdr.udp->uh_sum, 3306 &nk->addr[pd->didx], 3307 nk->port[pd->didx], 1, af); 3308 dport = pd->hdr.udp->uh_dport; 3309 pd->dport = &pd->hdr.udp->uh_dport; 3310 } 3311 rewrite++; 3312 break; 3313 #ifdef INET 3314 case IPPROTO_ICMP: 3315 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3316 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3317 nk->addr[pd->sidx].v4.s_addr, 0); 3318 3319 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3320 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3321 nk->addr[pd->didx].v4.s_addr, 0); 3322 3323 if (virtual_type == ICMP_ECHO && 3324 nk->port[pd->sidx] != pd->hdr.icmp->icmp_id) { 3325 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3326 pd->hdr.icmp->icmp_cksum, sport, 3327 nk->port[pd->sidx], 0); 3328 pd->hdr.icmp->icmp_id = nk->port[pd->sidx]; 3329 pd->sport = &pd->hdr.icmp->icmp_id; 3330 } 3331 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3332 break; 3333 #endif /* INET */ 3334 #ifdef INET6 3335 case IPPROTO_ICMPV6: 3336 nk->port[0] = nk->port[1]; 3337 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3338 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3339 &nk->addr[pd->sidx], 0); 3340 3341 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3342 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3343 &nk->addr[pd->didx], 0); 3344 rewrite++; 3345 break; 3346 #endif /* INET */ 3347 default: 3348 switch (af) { 3349 #ifdef INET 3350 case AF_INET: 3351 if (PF_ANEQ(saddr, 3352 &nk->addr[pd->sidx], AF_INET)) 3353 pf_change_a(&saddr->v4.s_addr, 3354 pd->ip_sum, 3355 nk->addr[pd->sidx].v4.s_addr, 0); 3356 3357 if (PF_ANEQ(daddr, 3358 &nk->addr[pd->didx], AF_INET)) 3359 pf_change_a(&daddr->v4.s_addr, 3360 pd->ip_sum, 3361 nk->addr[pd->didx].v4.s_addr, 0); 3362 break; 3363 #endif /* INET */ 3364 #ifdef INET6 3365 case AF_INET6: 3366 if (PF_ANEQ(saddr, 3367 &nk->addr[pd->sidx], AF_INET6)) 3368 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3369 3370 if (PF_ANEQ(daddr, 3371 &nk->addr[pd->didx], AF_INET6)) 3372 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3373 break; 3374 #endif /* INET */ 3375 } 3376 break; 3377 } 3378 if (nr->natpass) 3379 r = NULL; 3380 pd->nat_rule = nr; 3381 } 3382 3383 while (r != NULL) { 3384 r->evaluations++; 3385 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3386 r = r->skip[PF_SKIP_IFP].ptr; 3387 else if (r->direction && r->direction != direction) 3388 r = r->skip[PF_SKIP_DIR].ptr; 3389 else if (r->af && r->af != af) 3390 r = r->skip[PF_SKIP_AF].ptr; 3391 else if (r->proto && r->proto != pd->proto) 3392 r = r->skip[PF_SKIP_PROTO].ptr; 3393 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3394 r->src.neg, kif, M_GETFIB(m))) 3395 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3396 /* tcp/udp only. port_op always 0 in other cases */ 3397 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3398 r->src.port[0], r->src.port[1], sport)) 3399 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3400 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3401 r->dst.neg, NULL, M_GETFIB(m))) 3402 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3403 /* tcp/udp only. port_op always 0 in other cases */ 3404 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3405 r->dst.port[0], r->dst.port[1], dport)) 3406 r = r->skip[PF_SKIP_DST_PORT].ptr; 3407 /* icmp only. type always 0 in other cases */ 3408 else if (r->type && r->type != icmptype + 1) 3409 r = TAILQ_NEXT(r, entries); 3410 /* icmp only. type always 0 in other cases */ 3411 else if (r->code && r->code != icmpcode + 1) 3412 r = TAILQ_NEXT(r, entries); 3413 else if (r->tos && !(r->tos == pd->tos)) 3414 r = TAILQ_NEXT(r, entries); 3415 else if (r->rule_flag & PFRULE_FRAGMENT) 3416 r = TAILQ_NEXT(r, entries); 3417 else if (pd->proto == IPPROTO_TCP && 3418 (r->flagset & th->th_flags) != r->flags) 3419 r = TAILQ_NEXT(r, entries); 3420 /* tcp/udp only. uid.op always 0 in other cases */ 3421 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3422 pf_socket_lookup(direction, pd, m), 1)) && 3423 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3424 pd->lookup.uid)) 3425 r = TAILQ_NEXT(r, entries); 3426 /* tcp/udp only. gid.op always 0 in other cases */ 3427 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3428 pf_socket_lookup(direction, pd, m), 1)) && 3429 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3430 pd->lookup.gid)) 3431 r = TAILQ_NEXT(r, entries); 3432 else if (r->prob && 3433 r->prob <= arc4random()) 3434 r = TAILQ_NEXT(r, entries); 3435 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3436 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3437 r = TAILQ_NEXT(r, entries); 3438 else if (r->os_fingerprint != PF_OSFP_ANY && 3439 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3440 pf_osfp_fingerprint(pd, m, off, th), 3441 r->os_fingerprint))) 3442 r = TAILQ_NEXT(r, entries); 3443 else { 3444 if (r->tag) 3445 tag = r->tag; 3446 if (r->rtableid >= 0) 3447 rtableid = r->rtableid; 3448 if (r->anchor == NULL) { 3449 match = 1; 3450 *rm = r; 3451 *am = a; 3452 *rsm = ruleset; 3453 if ((*rm)->quick) 3454 break; 3455 r = TAILQ_NEXT(r, entries); 3456 } else 3457 pf_step_into_anchor(anchor_stack, &asd, 3458 &ruleset, PF_RULESET_FILTER, &r, &a, 3459 &match); 3460 } 3461 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3462 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3463 break; 3464 } 3465 r = *rm; 3466 a = *am; 3467 ruleset = *rsm; 3468 3469 REASON_SET(&reason, PFRES_MATCH); 3470 3471 if (r->log || (nr != NULL && nr->log)) { 3472 if (rewrite) 3473 m_copyback(m, off, hdrlen, pd->hdr.any); 3474 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3475 ruleset, pd, 1); 3476 } 3477 3478 if ((r->action == PF_DROP) && 3479 ((r->rule_flag & PFRULE_RETURNRST) || 3480 (r->rule_flag & PFRULE_RETURNICMP) || 3481 (r->rule_flag & PFRULE_RETURN))) { 3482 /* undo NAT changes, if they have taken place */ 3483 if (nr != NULL) { 3484 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3485 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3486 if (pd->sport) 3487 *pd->sport = sk->port[pd->sidx]; 3488 if (pd->dport) 3489 *pd->dport = sk->port[pd->didx]; 3490 if (pd->proto_sum) 3491 *pd->proto_sum = bproto_sum; 3492 if (pd->ip_sum) 3493 *pd->ip_sum = bip_sum; 3494 m_copyback(m, off, hdrlen, pd->hdr.any); 3495 } 3496 if (pd->proto == IPPROTO_TCP && 3497 ((r->rule_flag & PFRULE_RETURNRST) || 3498 (r->rule_flag & PFRULE_RETURN)) && 3499 !(th->th_flags & TH_RST)) { 3500 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3501 int len = 0; 3502 #ifdef INET 3503 struct ip *h4; 3504 #endif 3505 #ifdef INET6 3506 struct ip6_hdr *h6; 3507 #endif 3508 3509 switch (af) { 3510 #ifdef INET 3511 case AF_INET: 3512 h4 = mtod(m, struct ip *); 3513 len = ntohs(h4->ip_len) - off; 3514 break; 3515 #endif 3516 #ifdef INET6 3517 case AF_INET6: 3518 h6 = mtod(m, struct ip6_hdr *); 3519 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3520 break; 3521 #endif 3522 } 3523 3524 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3525 REASON_SET(&reason, PFRES_PROTCKSUM); 3526 else { 3527 if (th->th_flags & TH_SYN) 3528 ack++; 3529 if (th->th_flags & TH_FIN) 3530 ack++; 3531 pf_send_tcp(m, r, af, pd->dst, 3532 pd->src, th->th_dport, th->th_sport, 3533 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3534 r->return_ttl, 1, 0, kif->pfik_ifp); 3535 } 3536 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3537 r->return_icmp) 3538 pf_send_icmp(m, r->return_icmp >> 8, 3539 r->return_icmp & 255, af, r); 3540 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3541 r->return_icmp6) 3542 pf_send_icmp(m, r->return_icmp6 >> 8, 3543 r->return_icmp6 & 255, af, r); 3544 } 3545 3546 if (r->action == PF_DROP) 3547 goto cleanup; 3548 3549 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3550 REASON_SET(&reason, PFRES_MEMORY); 3551 goto cleanup; 3552 } 3553 if (rtableid >= 0) 3554 M_SETFIB(m, rtableid); 3555 3556 if (!state_icmp && (r->keep_state || nr != NULL || 3557 (pd->flags & PFDESC_TCP_NORM))) { 3558 int action; 3559 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3560 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3561 hdrlen); 3562 if (action != PF_PASS) 3563 return (action); 3564 } else { 3565 if (sk != NULL) 3566 uma_zfree(V_pf_state_key_z, sk); 3567 if (nk != NULL) 3568 uma_zfree(V_pf_state_key_z, nk); 3569 } 3570 3571 /* copy back packet headers if we performed NAT operations */ 3572 if (rewrite) 3573 m_copyback(m, off, hdrlen, pd->hdr.any); 3574 3575 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3576 direction == PF_OUT && 3577 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3578 /* 3579 * We want the state created, but we dont 3580 * want to send this in case a partner 3581 * firewall has to know about it to allow 3582 * replies through it. 3583 */ 3584 return (PF_DEFER); 3585 3586 return (PF_PASS); 3587 3588 cleanup: 3589 if (sk != NULL) 3590 uma_zfree(V_pf_state_key_z, sk); 3591 if (nk != NULL) 3592 uma_zfree(V_pf_state_key_z, nk); 3593 return (PF_DROP); 3594 } 3595 3596 static int 3597 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3598 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3599 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3600 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3601 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3602 { 3603 struct pf_state *s = NULL; 3604 struct pf_src_node *sn = NULL; 3605 struct tcphdr *th = pd->hdr.tcp; 3606 u_int16_t mss = V_tcp_mssdflt; 3607 u_short reason; 3608 3609 /* check maximums */ 3610 if (r->max_states && (r->states_cur >= r->max_states)) { 3611 V_pf_status.lcounters[LCNT_STATES]++; 3612 REASON_SET(&reason, PFRES_MAXSTATES); 3613 return (PF_DROP); 3614 } 3615 /* src node for filter rule */ 3616 if ((r->rule_flag & PFRULE_SRCTRACK || 3617 r->rpool.opts & PF_POOL_STICKYADDR) && 3618 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3619 REASON_SET(&reason, PFRES_SRCLIMIT); 3620 goto csfailed; 3621 } 3622 /* src node for translation rule */ 3623 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3624 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3625 REASON_SET(&reason, PFRES_SRCLIMIT); 3626 goto csfailed; 3627 } 3628 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3629 if (s == NULL) { 3630 REASON_SET(&reason, PFRES_MEMORY); 3631 goto csfailed; 3632 } 3633 s->rule.ptr = r; 3634 s->nat_rule.ptr = nr; 3635 s->anchor.ptr = a; 3636 STATE_INC_COUNTERS(s); 3637 if (r->allow_opts) 3638 s->state_flags |= PFSTATE_ALLOWOPTS; 3639 if (r->rule_flag & PFRULE_STATESLOPPY) 3640 s->state_flags |= PFSTATE_SLOPPY; 3641 s->log = r->log & PF_LOG_ALL; 3642 s->sync_state = PFSYNC_S_NONE; 3643 if (nr != NULL) 3644 s->log |= nr->log & PF_LOG_ALL; 3645 switch (pd->proto) { 3646 case IPPROTO_TCP: 3647 s->src.seqlo = ntohl(th->th_seq); 3648 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3649 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3650 r->keep_state == PF_STATE_MODULATE) { 3651 /* Generate sequence number modulator */ 3652 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3653 0) 3654 s->src.seqdiff = 1; 3655 pf_change_a(&th->th_seq, &th->th_sum, 3656 htonl(s->src.seqlo + s->src.seqdiff), 0); 3657 *rewrite = 1; 3658 } else 3659 s->src.seqdiff = 0; 3660 if (th->th_flags & TH_SYN) { 3661 s->src.seqhi++; 3662 s->src.wscale = pf_get_wscale(m, off, 3663 th->th_off, pd->af); 3664 } 3665 s->src.max_win = MAX(ntohs(th->th_win), 1); 3666 if (s->src.wscale & PF_WSCALE_MASK) { 3667 /* Remove scale factor from initial window */ 3668 int win = s->src.max_win; 3669 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3670 s->src.max_win = (win - 1) >> 3671 (s->src.wscale & PF_WSCALE_MASK); 3672 } 3673 if (th->th_flags & TH_FIN) 3674 s->src.seqhi++; 3675 s->dst.seqhi = 1; 3676 s->dst.max_win = 1; 3677 s->src.state = TCPS_SYN_SENT; 3678 s->dst.state = TCPS_CLOSED; 3679 s->timeout = PFTM_TCP_FIRST_PACKET; 3680 break; 3681 case IPPROTO_UDP: 3682 s->src.state = PFUDPS_SINGLE; 3683 s->dst.state = PFUDPS_NO_TRAFFIC; 3684 s->timeout = PFTM_UDP_FIRST_PACKET; 3685 break; 3686 case IPPROTO_ICMP: 3687 #ifdef INET6 3688 case IPPROTO_ICMPV6: 3689 #endif 3690 s->timeout = PFTM_ICMP_FIRST_PACKET; 3691 break; 3692 default: 3693 s->src.state = PFOTHERS_SINGLE; 3694 s->dst.state = PFOTHERS_NO_TRAFFIC; 3695 s->timeout = PFTM_OTHER_FIRST_PACKET; 3696 } 3697 3698 s->creation = time_uptime; 3699 s->expire = time_uptime; 3700 3701 if (sn != NULL) { 3702 s->src_node = sn; 3703 s->src_node->states++; 3704 } 3705 if (nsn != NULL) { 3706 /* XXX We only modify one side for now. */ 3707 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3708 s->nat_src_node = nsn; 3709 s->nat_src_node->states++; 3710 } 3711 if (pd->proto == IPPROTO_TCP) { 3712 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3713 off, pd, th, &s->src, &s->dst)) { 3714 REASON_SET(&reason, PFRES_MEMORY); 3715 pf_src_tree_remove_state(s); 3716 STATE_DEC_COUNTERS(s); 3717 uma_zfree(V_pf_state_z, s); 3718 return (PF_DROP); 3719 } 3720 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3721 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3722 &s->src, &s->dst, rewrite)) { 3723 /* This really shouldn't happen!!! */ 3724 DPFPRINTF(PF_DEBUG_URGENT, 3725 ("pf_normalize_tcp_stateful failed on first pkt")); 3726 pf_normalize_tcp_cleanup(s); 3727 pf_src_tree_remove_state(s); 3728 STATE_DEC_COUNTERS(s); 3729 uma_zfree(V_pf_state_z, s); 3730 return (PF_DROP); 3731 } 3732 } 3733 s->direction = pd->dir; 3734 3735 /* 3736 * sk/nk could already been setup by pf_get_translation(). 3737 */ 3738 if (nr == NULL) { 3739 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3740 __func__, nr, sk, nk)); 3741 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3742 if (sk == NULL) 3743 goto csfailed; 3744 nk = sk; 3745 } else 3746 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3747 __func__, nr, sk, nk)); 3748 3749 /* Swap sk/nk for PF_OUT. */ 3750 if (pf_state_insert(BOUND_IFACE(r, kif), 3751 (pd->dir == PF_IN) ? sk : nk, 3752 (pd->dir == PF_IN) ? nk : sk, s)) { 3753 if (pd->proto == IPPROTO_TCP) 3754 pf_normalize_tcp_cleanup(s); 3755 REASON_SET(&reason, PFRES_STATEINS); 3756 pf_src_tree_remove_state(s); 3757 STATE_DEC_COUNTERS(s); 3758 uma_zfree(V_pf_state_z, s); 3759 return (PF_DROP); 3760 } else 3761 *sm = s; 3762 3763 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3764 if (tag > 0) 3765 s->tag = tag; 3766 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3767 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3768 s->src.state = PF_TCPS_PROXY_SRC; 3769 /* undo NAT changes, if they have taken place */ 3770 if (nr != NULL) { 3771 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3772 if (pd->dir == PF_OUT) 3773 skt = s->key[PF_SK_STACK]; 3774 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3775 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3776 if (pd->sport) 3777 *pd->sport = skt->port[pd->sidx]; 3778 if (pd->dport) 3779 *pd->dport = skt->port[pd->didx]; 3780 if (pd->proto_sum) 3781 *pd->proto_sum = bproto_sum; 3782 if (pd->ip_sum) 3783 *pd->ip_sum = bip_sum; 3784 m_copyback(m, off, hdrlen, pd->hdr.any); 3785 } 3786 s->src.seqhi = htonl(arc4random()); 3787 /* Find mss option */ 3788 int rtid = M_GETFIB(m); 3789 mss = pf_get_mss(m, off, th->th_off, pd->af); 3790 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3791 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3792 s->src.mss = mss; 3793 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3794 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3795 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3796 REASON_SET(&reason, PFRES_SYNPROXY); 3797 return (PF_SYNPROXY_DROP); 3798 } 3799 3800 return (PF_PASS); 3801 3802 csfailed: 3803 if (sk != NULL) 3804 uma_zfree(V_pf_state_key_z, sk); 3805 if (nk != NULL) 3806 uma_zfree(V_pf_state_key_z, nk); 3807 3808 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3809 pf_unlink_src_node(sn); 3810 pf_free_src_node(sn); 3811 } 3812 3813 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3814 pf_unlink_src_node(nsn); 3815 pf_free_src_node(nsn); 3816 } 3817 3818 return (PF_DROP); 3819 } 3820 3821 static int 3822 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3823 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3824 struct pf_ruleset **rsm) 3825 { 3826 struct pf_rule *r, *a = NULL; 3827 struct pf_ruleset *ruleset = NULL; 3828 sa_family_t af = pd->af; 3829 u_short reason; 3830 int tag = -1; 3831 int asd = 0; 3832 int match = 0; 3833 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3834 3835 PF_RULES_RASSERT(); 3836 3837 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3838 while (r != NULL) { 3839 r->evaluations++; 3840 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3841 r = r->skip[PF_SKIP_IFP].ptr; 3842 else if (r->direction && r->direction != direction) 3843 r = r->skip[PF_SKIP_DIR].ptr; 3844 else if (r->af && r->af != af) 3845 r = r->skip[PF_SKIP_AF].ptr; 3846 else if (r->proto && r->proto != pd->proto) 3847 r = r->skip[PF_SKIP_PROTO].ptr; 3848 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3849 r->src.neg, kif, M_GETFIB(m))) 3850 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3851 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3852 r->dst.neg, NULL, M_GETFIB(m))) 3853 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3854 else if (r->tos && !(r->tos == pd->tos)) 3855 r = TAILQ_NEXT(r, entries); 3856 else if (r->os_fingerprint != PF_OSFP_ANY) 3857 r = TAILQ_NEXT(r, entries); 3858 else if (pd->proto == IPPROTO_UDP && 3859 (r->src.port_op || r->dst.port_op)) 3860 r = TAILQ_NEXT(r, entries); 3861 else if (pd->proto == IPPROTO_TCP && 3862 (r->src.port_op || r->dst.port_op || r->flagset)) 3863 r = TAILQ_NEXT(r, entries); 3864 else if ((pd->proto == IPPROTO_ICMP || 3865 pd->proto == IPPROTO_ICMPV6) && 3866 (r->type || r->code)) 3867 r = TAILQ_NEXT(r, entries); 3868 else if (r->prob && r->prob <= 3869 (arc4random() % (UINT_MAX - 1) + 1)) 3870 r = TAILQ_NEXT(r, entries); 3871 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3872 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3873 r = TAILQ_NEXT(r, entries); 3874 else { 3875 if (r->anchor == NULL) { 3876 match = 1; 3877 *rm = r; 3878 *am = a; 3879 *rsm = ruleset; 3880 if ((*rm)->quick) 3881 break; 3882 r = TAILQ_NEXT(r, entries); 3883 } else 3884 pf_step_into_anchor(anchor_stack, &asd, 3885 &ruleset, PF_RULESET_FILTER, &r, &a, 3886 &match); 3887 } 3888 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3889 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3890 break; 3891 } 3892 r = *rm; 3893 a = *am; 3894 ruleset = *rsm; 3895 3896 REASON_SET(&reason, PFRES_MATCH); 3897 3898 if (r->log) 3899 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3900 1); 3901 3902 if (r->action != PF_PASS) 3903 return (PF_DROP); 3904 3905 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3906 REASON_SET(&reason, PFRES_MEMORY); 3907 return (PF_DROP); 3908 } 3909 3910 return (PF_PASS); 3911 } 3912 3913 static int 3914 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3915 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3916 struct pf_pdesc *pd, u_short *reason, int *copyback) 3917 { 3918 struct tcphdr *th = pd->hdr.tcp; 3919 u_int16_t win = ntohs(th->th_win); 3920 u_int32_t ack, end, seq, orig_seq; 3921 u_int8_t sws, dws; 3922 int ackskew; 3923 3924 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3925 sws = src->wscale & PF_WSCALE_MASK; 3926 dws = dst->wscale & PF_WSCALE_MASK; 3927 } else 3928 sws = dws = 0; 3929 3930 /* 3931 * Sequence tracking algorithm from Guido van Rooij's paper: 3932 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3933 * tcp_filtering.ps 3934 */ 3935 3936 orig_seq = seq = ntohl(th->th_seq); 3937 if (src->seqlo == 0) { 3938 /* First packet from this end. Set its state */ 3939 3940 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3941 src->scrub == NULL) { 3942 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3943 REASON_SET(reason, PFRES_MEMORY); 3944 return (PF_DROP); 3945 } 3946 } 3947 3948 /* Deferred generation of sequence number modulator */ 3949 if (dst->seqdiff && !src->seqdiff) { 3950 /* use random iss for the TCP server */ 3951 while ((src->seqdiff = arc4random() - seq) == 0) 3952 ; 3953 ack = ntohl(th->th_ack) - dst->seqdiff; 3954 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3955 src->seqdiff), 0); 3956 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3957 *copyback = 1; 3958 } else { 3959 ack = ntohl(th->th_ack); 3960 } 3961 3962 end = seq + pd->p_len; 3963 if (th->th_flags & TH_SYN) { 3964 end++; 3965 if (dst->wscale & PF_WSCALE_FLAG) { 3966 src->wscale = pf_get_wscale(m, off, th->th_off, 3967 pd->af); 3968 if (src->wscale & PF_WSCALE_FLAG) { 3969 /* Remove scale factor from initial 3970 * window */ 3971 sws = src->wscale & PF_WSCALE_MASK; 3972 win = ((u_int32_t)win + (1 << sws) - 1) 3973 >> sws; 3974 dws = dst->wscale & PF_WSCALE_MASK; 3975 } else { 3976 /* fixup other window */ 3977 dst->max_win <<= dst->wscale & 3978 PF_WSCALE_MASK; 3979 /* in case of a retrans SYN|ACK */ 3980 dst->wscale = 0; 3981 } 3982 } 3983 } 3984 if (th->th_flags & TH_FIN) 3985 end++; 3986 3987 src->seqlo = seq; 3988 if (src->state < TCPS_SYN_SENT) 3989 src->state = TCPS_SYN_SENT; 3990 3991 /* 3992 * May need to slide the window (seqhi may have been set by 3993 * the crappy stack check or if we picked up the connection 3994 * after establishment) 3995 */ 3996 if (src->seqhi == 1 || 3997 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3998 src->seqhi = end + MAX(1, dst->max_win << dws); 3999 if (win > src->max_win) 4000 src->max_win = win; 4001 4002 } else { 4003 ack = ntohl(th->th_ack) - dst->seqdiff; 4004 if (src->seqdiff) { 4005 /* Modulate sequence numbers */ 4006 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 4007 src->seqdiff), 0); 4008 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 4009 *copyback = 1; 4010 } 4011 end = seq + pd->p_len; 4012 if (th->th_flags & TH_SYN) 4013 end++; 4014 if (th->th_flags & TH_FIN) 4015 end++; 4016 } 4017 4018 if ((th->th_flags & TH_ACK) == 0) { 4019 /* Let it pass through the ack skew check */ 4020 ack = dst->seqlo; 4021 } else if ((ack == 0 && 4022 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4023 /* broken tcp stacks do not set ack */ 4024 (dst->state < TCPS_SYN_SENT)) { 4025 /* 4026 * Many stacks (ours included) will set the ACK number in an 4027 * FIN|ACK if the SYN times out -- no sequence to ACK. 4028 */ 4029 ack = dst->seqlo; 4030 } 4031 4032 if (seq == end) { 4033 /* Ease sequencing restrictions on no data packets */ 4034 seq = src->seqlo; 4035 end = seq; 4036 } 4037 4038 ackskew = dst->seqlo - ack; 4039 4040 4041 /* 4042 * Need to demodulate the sequence numbers in any TCP SACK options 4043 * (Selective ACK). We could optionally validate the SACK values 4044 * against the current ACK window, either forwards or backwards, but 4045 * I'm not confident that SACK has been implemented properly 4046 * everywhere. It wouldn't surprise me if several stacks accidently 4047 * SACK too far backwards of previously ACKed data. There really aren't 4048 * any security implications of bad SACKing unless the target stack 4049 * doesn't validate the option length correctly. Someone trying to 4050 * spoof into a TCP connection won't bother blindly sending SACK 4051 * options anyway. 4052 */ 4053 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4054 if (pf_modulate_sack(m, off, pd, th, dst)) 4055 *copyback = 1; 4056 } 4057 4058 4059 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4060 if (SEQ_GEQ(src->seqhi, end) && 4061 /* Last octet inside other's window space */ 4062 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4063 /* Retrans: not more than one window back */ 4064 (ackskew >= -MAXACKWINDOW) && 4065 /* Acking not more than one reassembled fragment backwards */ 4066 (ackskew <= (MAXACKWINDOW << sws)) && 4067 /* Acking not more than one window forward */ 4068 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4069 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4070 (pd->flags & PFDESC_IP_REAS) == 0)) { 4071 /* Require an exact/+1 sequence match on resets when possible */ 4072 4073 if (dst->scrub || src->scrub) { 4074 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4075 *state, src, dst, copyback)) 4076 return (PF_DROP); 4077 } 4078 4079 /* update max window */ 4080 if (src->max_win < win) 4081 src->max_win = win; 4082 /* synchronize sequencing */ 4083 if (SEQ_GT(end, src->seqlo)) 4084 src->seqlo = end; 4085 /* slide the window of what the other end can send */ 4086 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4087 dst->seqhi = ack + MAX((win << sws), 1); 4088 4089 4090 /* update states */ 4091 if (th->th_flags & TH_SYN) 4092 if (src->state < TCPS_SYN_SENT) 4093 src->state = TCPS_SYN_SENT; 4094 if (th->th_flags & TH_FIN) 4095 if (src->state < TCPS_CLOSING) 4096 src->state = TCPS_CLOSING; 4097 if (th->th_flags & TH_ACK) { 4098 if (dst->state == TCPS_SYN_SENT) { 4099 dst->state = TCPS_ESTABLISHED; 4100 if (src->state == TCPS_ESTABLISHED && 4101 (*state)->src_node != NULL && 4102 pf_src_connlimit(state)) { 4103 REASON_SET(reason, PFRES_SRCLIMIT); 4104 return (PF_DROP); 4105 } 4106 } else if (dst->state == TCPS_CLOSING) 4107 dst->state = TCPS_FIN_WAIT_2; 4108 } 4109 if (th->th_flags & TH_RST) 4110 src->state = dst->state = TCPS_TIME_WAIT; 4111 4112 /* update expire time */ 4113 (*state)->expire = time_uptime; 4114 if (src->state >= TCPS_FIN_WAIT_2 && 4115 dst->state >= TCPS_FIN_WAIT_2) 4116 (*state)->timeout = PFTM_TCP_CLOSED; 4117 else if (src->state >= TCPS_CLOSING && 4118 dst->state >= TCPS_CLOSING) 4119 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4120 else if (src->state < TCPS_ESTABLISHED || 4121 dst->state < TCPS_ESTABLISHED) 4122 (*state)->timeout = PFTM_TCP_OPENING; 4123 else if (src->state >= TCPS_CLOSING || 4124 dst->state >= TCPS_CLOSING) 4125 (*state)->timeout = PFTM_TCP_CLOSING; 4126 else 4127 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4128 4129 /* Fall through to PASS packet */ 4130 4131 } else if ((dst->state < TCPS_SYN_SENT || 4132 dst->state >= TCPS_FIN_WAIT_2 || 4133 src->state >= TCPS_FIN_WAIT_2) && 4134 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4135 /* Within a window forward of the originating packet */ 4136 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4137 /* Within a window backward of the originating packet */ 4138 4139 /* 4140 * This currently handles three situations: 4141 * 1) Stupid stacks will shotgun SYNs before their peer 4142 * replies. 4143 * 2) When PF catches an already established stream (the 4144 * firewall rebooted, the state table was flushed, routes 4145 * changed...) 4146 * 3) Packets get funky immediately after the connection 4147 * closes (this should catch Solaris spurious ACK|FINs 4148 * that web servers like to spew after a close) 4149 * 4150 * This must be a little more careful than the above code 4151 * since packet floods will also be caught here. We don't 4152 * update the TTL here to mitigate the damage of a packet 4153 * flood and so the same code can handle awkward establishment 4154 * and a loosened connection close. 4155 * In the establishment case, a correct peer response will 4156 * validate the connection, go through the normal state code 4157 * and keep updating the state TTL. 4158 */ 4159 4160 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4161 printf("pf: loose state match: "); 4162 pf_print_state(*state); 4163 pf_print_flags(th->th_flags); 4164 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4165 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4166 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4167 (unsigned long long)(*state)->packets[1], 4168 pd->dir == PF_IN ? "in" : "out", 4169 pd->dir == (*state)->direction ? "fwd" : "rev"); 4170 } 4171 4172 if (dst->scrub || src->scrub) { 4173 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4174 *state, src, dst, copyback)) 4175 return (PF_DROP); 4176 } 4177 4178 /* update max window */ 4179 if (src->max_win < win) 4180 src->max_win = win; 4181 /* synchronize sequencing */ 4182 if (SEQ_GT(end, src->seqlo)) 4183 src->seqlo = end; 4184 /* slide the window of what the other end can send */ 4185 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4186 dst->seqhi = ack + MAX((win << sws), 1); 4187 4188 /* 4189 * Cannot set dst->seqhi here since this could be a shotgunned 4190 * SYN and not an already established connection. 4191 */ 4192 4193 if (th->th_flags & TH_FIN) 4194 if (src->state < TCPS_CLOSING) 4195 src->state = TCPS_CLOSING; 4196 if (th->th_flags & TH_RST) 4197 src->state = dst->state = TCPS_TIME_WAIT; 4198 4199 /* Fall through to PASS packet */ 4200 4201 } else { 4202 if ((*state)->dst.state == TCPS_SYN_SENT && 4203 (*state)->src.state == TCPS_SYN_SENT) { 4204 /* Send RST for state mismatches during handshake */ 4205 if (!(th->th_flags & TH_RST)) 4206 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4207 pd->dst, pd->src, th->th_dport, 4208 th->th_sport, ntohl(th->th_ack), 0, 4209 TH_RST, 0, 0, 4210 (*state)->rule.ptr->return_ttl, 1, 0, 4211 kif->pfik_ifp); 4212 src->seqlo = 0; 4213 src->seqhi = 1; 4214 src->max_win = 1; 4215 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4216 printf("pf: BAD state: "); 4217 pf_print_state(*state); 4218 pf_print_flags(th->th_flags); 4219 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4220 "pkts=%llu:%llu dir=%s,%s\n", 4221 seq, orig_seq, ack, pd->p_len, ackskew, 4222 (unsigned long long)(*state)->packets[0], 4223 (unsigned long long)(*state)->packets[1], 4224 pd->dir == PF_IN ? "in" : "out", 4225 pd->dir == (*state)->direction ? "fwd" : "rev"); 4226 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4227 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4228 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4229 ' ': '2', 4230 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4231 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4232 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4233 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4234 } 4235 REASON_SET(reason, PFRES_BADSTATE); 4236 return (PF_DROP); 4237 } 4238 4239 return (PF_PASS); 4240 } 4241 4242 static int 4243 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4244 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4245 { 4246 struct tcphdr *th = pd->hdr.tcp; 4247 4248 if (th->th_flags & TH_SYN) 4249 if (src->state < TCPS_SYN_SENT) 4250 src->state = TCPS_SYN_SENT; 4251 if (th->th_flags & TH_FIN) 4252 if (src->state < TCPS_CLOSING) 4253 src->state = TCPS_CLOSING; 4254 if (th->th_flags & TH_ACK) { 4255 if (dst->state == TCPS_SYN_SENT) { 4256 dst->state = TCPS_ESTABLISHED; 4257 if (src->state == TCPS_ESTABLISHED && 4258 (*state)->src_node != NULL && 4259 pf_src_connlimit(state)) { 4260 REASON_SET(reason, PFRES_SRCLIMIT); 4261 return (PF_DROP); 4262 } 4263 } else if (dst->state == TCPS_CLOSING) { 4264 dst->state = TCPS_FIN_WAIT_2; 4265 } else if (src->state == TCPS_SYN_SENT && 4266 dst->state < TCPS_SYN_SENT) { 4267 /* 4268 * Handle a special sloppy case where we only see one 4269 * half of the connection. If there is a ACK after 4270 * the initial SYN without ever seeing a packet from 4271 * the destination, set the connection to established. 4272 */ 4273 dst->state = src->state = TCPS_ESTABLISHED; 4274 if ((*state)->src_node != NULL && 4275 pf_src_connlimit(state)) { 4276 REASON_SET(reason, PFRES_SRCLIMIT); 4277 return (PF_DROP); 4278 } 4279 } else if (src->state == TCPS_CLOSING && 4280 dst->state == TCPS_ESTABLISHED && 4281 dst->seqlo == 0) { 4282 /* 4283 * Handle the closing of half connections where we 4284 * don't see the full bidirectional FIN/ACK+ACK 4285 * handshake. 4286 */ 4287 dst->state = TCPS_CLOSING; 4288 } 4289 } 4290 if (th->th_flags & TH_RST) 4291 src->state = dst->state = TCPS_TIME_WAIT; 4292 4293 /* update expire time */ 4294 (*state)->expire = time_uptime; 4295 if (src->state >= TCPS_FIN_WAIT_2 && 4296 dst->state >= TCPS_FIN_WAIT_2) 4297 (*state)->timeout = PFTM_TCP_CLOSED; 4298 else if (src->state >= TCPS_CLOSING && 4299 dst->state >= TCPS_CLOSING) 4300 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4301 else if (src->state < TCPS_ESTABLISHED || 4302 dst->state < TCPS_ESTABLISHED) 4303 (*state)->timeout = PFTM_TCP_OPENING; 4304 else if (src->state >= TCPS_CLOSING || 4305 dst->state >= TCPS_CLOSING) 4306 (*state)->timeout = PFTM_TCP_CLOSING; 4307 else 4308 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4309 4310 return (PF_PASS); 4311 } 4312 4313 static int 4314 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4315 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4316 u_short *reason) 4317 { 4318 struct pf_state_key_cmp key; 4319 struct tcphdr *th = pd->hdr.tcp; 4320 int copyback = 0; 4321 struct pf_state_peer *src, *dst; 4322 struct pf_state_key *sk; 4323 4324 bzero(&key, sizeof(key)); 4325 key.af = pd->af; 4326 key.proto = IPPROTO_TCP; 4327 if (direction == PF_IN) { /* wire side, straight */ 4328 PF_ACPY(&key.addr[0], pd->src, key.af); 4329 PF_ACPY(&key.addr[1], pd->dst, key.af); 4330 key.port[0] = th->th_sport; 4331 key.port[1] = th->th_dport; 4332 } else { /* stack side, reverse */ 4333 PF_ACPY(&key.addr[1], pd->src, key.af); 4334 PF_ACPY(&key.addr[0], pd->dst, key.af); 4335 key.port[1] = th->th_sport; 4336 key.port[0] = th->th_dport; 4337 } 4338 4339 STATE_LOOKUP(kif, &key, direction, *state, pd); 4340 4341 if (direction == (*state)->direction) { 4342 src = &(*state)->src; 4343 dst = &(*state)->dst; 4344 } else { 4345 src = &(*state)->dst; 4346 dst = &(*state)->src; 4347 } 4348 4349 sk = (*state)->key[pd->didx]; 4350 4351 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4352 if (direction != (*state)->direction) { 4353 REASON_SET(reason, PFRES_SYNPROXY); 4354 return (PF_SYNPROXY_DROP); 4355 } 4356 if (th->th_flags & TH_SYN) { 4357 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4358 REASON_SET(reason, PFRES_SYNPROXY); 4359 return (PF_DROP); 4360 } 4361 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4362 pd->src, th->th_dport, th->th_sport, 4363 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4364 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4365 REASON_SET(reason, PFRES_SYNPROXY); 4366 return (PF_SYNPROXY_DROP); 4367 } else if (!(th->th_flags & TH_ACK) || 4368 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4369 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4370 REASON_SET(reason, PFRES_SYNPROXY); 4371 return (PF_DROP); 4372 } else if ((*state)->src_node != NULL && 4373 pf_src_connlimit(state)) { 4374 REASON_SET(reason, PFRES_SRCLIMIT); 4375 return (PF_DROP); 4376 } else 4377 (*state)->src.state = PF_TCPS_PROXY_DST; 4378 } 4379 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4380 if (direction == (*state)->direction) { 4381 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4382 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4383 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4384 REASON_SET(reason, PFRES_SYNPROXY); 4385 return (PF_DROP); 4386 } 4387 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4388 if ((*state)->dst.seqhi == 1) 4389 (*state)->dst.seqhi = htonl(arc4random()); 4390 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4391 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4392 sk->port[pd->sidx], sk->port[pd->didx], 4393 (*state)->dst.seqhi, 0, TH_SYN, 0, 4394 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4395 REASON_SET(reason, PFRES_SYNPROXY); 4396 return (PF_SYNPROXY_DROP); 4397 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4398 (TH_SYN|TH_ACK)) || 4399 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4400 REASON_SET(reason, PFRES_SYNPROXY); 4401 return (PF_DROP); 4402 } else { 4403 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4404 (*state)->dst.seqlo = ntohl(th->th_seq); 4405 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4406 pd->src, th->th_dport, th->th_sport, 4407 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4408 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4409 (*state)->tag, NULL); 4410 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4411 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4412 sk->port[pd->sidx], sk->port[pd->didx], 4413 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4414 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4415 (*state)->src.seqdiff = (*state)->dst.seqhi - 4416 (*state)->src.seqlo; 4417 (*state)->dst.seqdiff = (*state)->src.seqhi - 4418 (*state)->dst.seqlo; 4419 (*state)->src.seqhi = (*state)->src.seqlo + 4420 (*state)->dst.max_win; 4421 (*state)->dst.seqhi = (*state)->dst.seqlo + 4422 (*state)->src.max_win; 4423 (*state)->src.wscale = (*state)->dst.wscale = 0; 4424 (*state)->src.state = (*state)->dst.state = 4425 TCPS_ESTABLISHED; 4426 REASON_SET(reason, PFRES_SYNPROXY); 4427 return (PF_SYNPROXY_DROP); 4428 } 4429 } 4430 4431 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4432 dst->state >= TCPS_FIN_WAIT_2 && 4433 src->state >= TCPS_FIN_WAIT_2) { 4434 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4435 printf("pf: state reuse "); 4436 pf_print_state(*state); 4437 pf_print_flags(th->th_flags); 4438 printf("\n"); 4439 } 4440 /* XXX make sure it's the same direction ?? */ 4441 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4442 pf_unlink_state(*state, PF_ENTER_LOCKED); 4443 *state = NULL; 4444 return (PF_DROP); 4445 } 4446 4447 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4448 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4449 return (PF_DROP); 4450 } else { 4451 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4452 ©back) == PF_DROP) 4453 return (PF_DROP); 4454 } 4455 4456 /* translate source/destination address, if necessary */ 4457 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4458 struct pf_state_key *nk = (*state)->key[pd->didx]; 4459 4460 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4461 nk->port[pd->sidx] != th->th_sport) 4462 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4463 &th->th_sum, &nk->addr[pd->sidx], 4464 nk->port[pd->sidx], 0, pd->af); 4465 4466 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4467 nk->port[pd->didx] != th->th_dport) 4468 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4469 &th->th_sum, &nk->addr[pd->didx], 4470 nk->port[pd->didx], 0, pd->af); 4471 copyback = 1; 4472 } 4473 4474 /* Copyback sequence modulation or stateful scrub changes if needed */ 4475 if (copyback) 4476 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4477 4478 return (PF_PASS); 4479 } 4480 4481 static int 4482 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4483 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4484 { 4485 struct pf_state_peer *src, *dst; 4486 struct pf_state_key_cmp key; 4487 struct udphdr *uh = pd->hdr.udp; 4488 4489 bzero(&key, sizeof(key)); 4490 key.af = pd->af; 4491 key.proto = IPPROTO_UDP; 4492 if (direction == PF_IN) { /* wire side, straight */ 4493 PF_ACPY(&key.addr[0], pd->src, key.af); 4494 PF_ACPY(&key.addr[1], pd->dst, key.af); 4495 key.port[0] = uh->uh_sport; 4496 key.port[1] = uh->uh_dport; 4497 } else { /* stack side, reverse */ 4498 PF_ACPY(&key.addr[1], pd->src, key.af); 4499 PF_ACPY(&key.addr[0], pd->dst, key.af); 4500 key.port[1] = uh->uh_sport; 4501 key.port[0] = uh->uh_dport; 4502 } 4503 4504 STATE_LOOKUP(kif, &key, direction, *state, pd); 4505 4506 if (direction == (*state)->direction) { 4507 src = &(*state)->src; 4508 dst = &(*state)->dst; 4509 } else { 4510 src = &(*state)->dst; 4511 dst = &(*state)->src; 4512 } 4513 4514 /* update states */ 4515 if (src->state < PFUDPS_SINGLE) 4516 src->state = PFUDPS_SINGLE; 4517 if (dst->state == PFUDPS_SINGLE) 4518 dst->state = PFUDPS_MULTIPLE; 4519 4520 /* update expire time */ 4521 (*state)->expire = time_uptime; 4522 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4523 (*state)->timeout = PFTM_UDP_MULTIPLE; 4524 else 4525 (*state)->timeout = PFTM_UDP_SINGLE; 4526 4527 /* translate source/destination address, if necessary */ 4528 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4529 struct pf_state_key *nk = (*state)->key[pd->didx]; 4530 4531 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4532 nk->port[pd->sidx] != uh->uh_sport) 4533 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4534 &uh->uh_sum, &nk->addr[pd->sidx], 4535 nk->port[pd->sidx], 1, pd->af); 4536 4537 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4538 nk->port[pd->didx] != uh->uh_dport) 4539 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4540 &uh->uh_sum, &nk->addr[pd->didx], 4541 nk->port[pd->didx], 1, pd->af); 4542 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4543 } 4544 4545 return (PF_PASS); 4546 } 4547 4548 static int 4549 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 4550 struct pf_state **state, struct mbuf *m, int direction, struct pfi_kif *kif, 4551 uint16_t icmpid, uint16_t type, int icmp_dir, int *iidx, int multi) 4552 { 4553 4554 key->af = pd->af; 4555 key->proto = pd->proto; 4556 if (icmp_dir == PF_IN) { 4557 *iidx = pd->sidx; 4558 key->port[pd->sidx] = icmpid; 4559 key->port[pd->didx] = type; 4560 } else { 4561 *iidx = pd->didx; 4562 key->port[pd->sidx] = type; 4563 key->port[pd->didx] = icmpid; 4564 } 4565 #ifdef INET6 4566 if (pd->af == AF_INET6 && multi != PF_ICMP_MULTI_NONE) { 4567 switch (multi) { 4568 case PF_ICMP_MULTI_SOLICITED: 4569 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 4570 key->addr[pd->sidx].addr32[1] = 0; 4571 key->addr[pd->sidx].addr32[2] = IPV6_ADDR_INT32_ONE; 4572 key->addr[pd->sidx].addr32[3] = pd->src->addr32[3]; 4573 key->addr[pd->sidx].addr8[12] = 0xff; 4574 break; 4575 case PF_ICMP_MULTI_LINK: 4576 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 4577 key->addr[pd->sidx].addr32[1] = 0; 4578 key->addr[pd->sidx].addr32[2] = 0; 4579 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 4580 break; 4581 } 4582 } else 4583 #endif 4584 PF_ACPY(&key->addr[pd->sidx], pd->src, key->af); 4585 PF_ACPY(&key->addr[pd->didx], pd->dst, key->af); 4586 4587 STATE_LOOKUP(kif, key, direction, *state, pd); 4588 4589 /* Is this ICMP message flowing in right direction? */ 4590 if ((*state)->rule.ptr->type && 4591 (((*state)->direction == direction) ? 4592 PF_IN : PF_OUT) != icmp_dir) { 4593 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4594 printf("pf: icmp type %d in wrong direction (%d): ", 4595 icmp_dir, direction); 4596 pf_print_state(*state); 4597 printf("\n"); 4598 } 4599 return (PF_DROP); 4600 } 4601 return (-1); 4602 } 4603 4604 static int 4605 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4606 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4607 { 4608 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4609 u_int16_t icmpid = 0, *icmpsum, virtual_id, virtual_type; 4610 u_int8_t icmptype; 4611 int icmp_dir, iidx, ret, multi; 4612 struct pf_state_key_cmp key; 4613 4614 bzero(&key, sizeof(key)); 4615 switch (pd->proto) { 4616 #ifdef INET 4617 case IPPROTO_ICMP: 4618 icmptype = pd->hdr.icmp->icmp_type; 4619 icmpid = pd->hdr.icmp->icmp_id; 4620 icmpsum = &pd->hdr.icmp->icmp_cksum; 4621 4622 break; 4623 #endif /* INET */ 4624 #ifdef INET6 4625 case IPPROTO_ICMPV6: 4626 icmptype = pd->hdr.icmp6->icmp6_type; 4627 icmpid = pd->hdr.icmp6->icmp6_id; 4628 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4629 4630 break; 4631 #endif /* INET6 */ 4632 default: 4633 panic("%s: proto %d\n", __func__, pd->proto); 4634 } 4635 4636 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 4637 &virtual_id, &virtual_type) == 0) { 4638 /* 4639 * ICMP query/reply message not related to a TCP/UDP packet. 4640 * Search for an ICMP state. 4641 */ 4642 ret = pf_icmp_state_lookup(&key, pd, state, m, direction, 4643 kif, virtual_id, virtual_type, icmp_dir, &iidx, 4644 PF_ICMP_MULTI_NONE); 4645 if (ret >= 0) { 4646 if (ret == PF_DROP && pd->af == AF_INET6 && 4647 icmp_dir == PF_OUT) { 4648 if (*state) 4649 PF_STATE_UNLOCK(*state); 4650 ret = pf_icmp_state_lookup(&key, pd, state, m, 4651 direction, kif, virtual_id, virtual_type, 4652 icmp_dir, &iidx, multi); 4653 if (ret >= 0) 4654 return (ret); 4655 } else 4656 return (ret); 4657 } 4658 4659 (*state)->expire = time_uptime; 4660 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4661 4662 /* translate source/destination address, if necessary */ 4663 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4664 struct pf_state_key *nk = (*state)->key[pd->didx]; 4665 4666 switch (pd->af) { 4667 #ifdef INET 4668 case AF_INET: 4669 if (PF_ANEQ(pd->src, 4670 &nk->addr[pd->sidx], AF_INET)) 4671 pf_change_a(&saddr->v4.s_addr, 4672 pd->ip_sum, 4673 nk->addr[pd->sidx].v4.s_addr, 0); 4674 4675 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4676 AF_INET)) 4677 pf_change_a(&daddr->v4.s_addr, 4678 pd->ip_sum, 4679 nk->addr[pd->didx].v4.s_addr, 0); 4680 4681 if (nk->port[iidx] != 4682 pd->hdr.icmp->icmp_id) { 4683 pd->hdr.icmp->icmp_cksum = 4684 pf_cksum_fixup( 4685 pd->hdr.icmp->icmp_cksum, icmpid, 4686 nk->port[iidx], 0); 4687 pd->hdr.icmp->icmp_id = nk->port[iidx]; 4688 } 4689 4690 m_copyback(m, off, ICMP_MINLEN, 4691 (caddr_t )pd->hdr.icmp); 4692 break; 4693 #endif /* INET */ 4694 #ifdef INET6 4695 case AF_INET6: 4696 if (PF_ANEQ(pd->src, 4697 &nk->addr[pd->sidx], AF_INET6)) 4698 pf_change_a6(saddr, 4699 &pd->hdr.icmp6->icmp6_cksum, 4700 &nk->addr[pd->sidx], 0); 4701 4702 if (PF_ANEQ(pd->dst, 4703 &nk->addr[pd->didx], AF_INET6)) 4704 pf_change_a6(daddr, 4705 &pd->hdr.icmp6->icmp6_cksum, 4706 &nk->addr[pd->didx], 0); 4707 4708 m_copyback(m, off, sizeof(struct icmp6_hdr), 4709 (caddr_t )pd->hdr.icmp6); 4710 break; 4711 #endif /* INET6 */ 4712 } 4713 } 4714 return (PF_PASS); 4715 4716 } else { 4717 /* 4718 * ICMP error message in response to a TCP/UDP packet. 4719 * Extract the inner TCP/UDP header and search for that state. 4720 */ 4721 4722 struct pf_pdesc pd2; 4723 bzero(&pd2, sizeof pd2); 4724 #ifdef INET 4725 struct ip h2; 4726 #endif /* INET */ 4727 #ifdef INET6 4728 struct ip6_hdr h2_6; 4729 int terminal = 0; 4730 #endif /* INET6 */ 4731 int ipoff2 = 0; 4732 int off2 = 0; 4733 4734 pd2.af = pd->af; 4735 /* Payload packet is from the opposite direction. */ 4736 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4737 pd2.didx = (direction == PF_IN) ? 0 : 1; 4738 switch (pd->af) { 4739 #ifdef INET 4740 case AF_INET: 4741 /* offset of h2 in mbuf chain */ 4742 ipoff2 = off + ICMP_MINLEN; 4743 4744 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4745 NULL, reason, pd2.af)) { 4746 DPFPRINTF(PF_DEBUG_MISC, 4747 ("pf: ICMP error message too short " 4748 "(ip)\n")); 4749 return (PF_DROP); 4750 } 4751 /* 4752 * ICMP error messages don't refer to non-first 4753 * fragments 4754 */ 4755 if (h2.ip_off & htons(IP_OFFMASK)) { 4756 REASON_SET(reason, PFRES_FRAG); 4757 return (PF_DROP); 4758 } 4759 4760 /* offset of protocol header that follows h2 */ 4761 off2 = ipoff2 + (h2.ip_hl << 2); 4762 4763 pd2.proto = h2.ip_p; 4764 pd2.src = (struct pf_addr *)&h2.ip_src; 4765 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4766 pd2.ip_sum = &h2.ip_sum; 4767 break; 4768 #endif /* INET */ 4769 #ifdef INET6 4770 case AF_INET6: 4771 ipoff2 = off + sizeof(struct icmp6_hdr); 4772 4773 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4774 NULL, reason, pd2.af)) { 4775 DPFPRINTF(PF_DEBUG_MISC, 4776 ("pf: ICMP error message too short " 4777 "(ip6)\n")); 4778 return (PF_DROP); 4779 } 4780 pd2.proto = h2_6.ip6_nxt; 4781 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4782 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4783 pd2.ip_sum = NULL; 4784 off2 = ipoff2 + sizeof(h2_6); 4785 do { 4786 switch (pd2.proto) { 4787 case IPPROTO_FRAGMENT: 4788 /* 4789 * ICMPv6 error messages for 4790 * non-first fragments 4791 */ 4792 REASON_SET(reason, PFRES_FRAG); 4793 return (PF_DROP); 4794 case IPPROTO_AH: 4795 case IPPROTO_HOPOPTS: 4796 case IPPROTO_ROUTING: 4797 case IPPROTO_DSTOPTS: { 4798 /* get next header and header length */ 4799 struct ip6_ext opt6; 4800 4801 if (!pf_pull_hdr(m, off2, &opt6, 4802 sizeof(opt6), NULL, reason, 4803 pd2.af)) { 4804 DPFPRINTF(PF_DEBUG_MISC, 4805 ("pf: ICMPv6 short opt\n")); 4806 return (PF_DROP); 4807 } 4808 if (pd2.proto == IPPROTO_AH) 4809 off2 += (opt6.ip6e_len + 2) * 4; 4810 else 4811 off2 += (opt6.ip6e_len + 1) * 8; 4812 pd2.proto = opt6.ip6e_nxt; 4813 /* goto the next header */ 4814 break; 4815 } 4816 default: 4817 terminal++; 4818 break; 4819 } 4820 } while (!terminal); 4821 break; 4822 #endif /* INET6 */ 4823 } 4824 4825 switch (pd2.proto) { 4826 case IPPROTO_TCP: { 4827 struct tcphdr th; 4828 u_int32_t seq; 4829 struct pf_state_peer *src, *dst; 4830 u_int8_t dws; 4831 int copyback = 0; 4832 4833 /* 4834 * Only the first 8 bytes of the TCP header can be 4835 * expected. Don't access any TCP header fields after 4836 * th_seq, an ackskew test is not possible. 4837 */ 4838 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4839 pd2.af)) { 4840 DPFPRINTF(PF_DEBUG_MISC, 4841 ("pf: ICMP error message too short " 4842 "(tcp)\n")); 4843 return (PF_DROP); 4844 } 4845 4846 key.af = pd2.af; 4847 key.proto = IPPROTO_TCP; 4848 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4849 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4850 key.port[pd2.sidx] = th.th_sport; 4851 key.port[pd2.didx] = th.th_dport; 4852 4853 STATE_LOOKUP(kif, &key, direction, *state, pd); 4854 4855 if (direction == (*state)->direction) { 4856 src = &(*state)->dst; 4857 dst = &(*state)->src; 4858 } else { 4859 src = &(*state)->src; 4860 dst = &(*state)->dst; 4861 } 4862 4863 if (src->wscale && dst->wscale) 4864 dws = dst->wscale & PF_WSCALE_MASK; 4865 else 4866 dws = 0; 4867 4868 /* Demodulate sequence number */ 4869 seq = ntohl(th.th_seq) - src->seqdiff; 4870 if (src->seqdiff) { 4871 pf_change_a(&th.th_seq, icmpsum, 4872 htonl(seq), 0); 4873 copyback = 1; 4874 } 4875 4876 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4877 (!SEQ_GEQ(src->seqhi, seq) || 4878 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4879 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4880 printf("pf: BAD ICMP %d:%d ", 4881 icmptype, pd->hdr.icmp->icmp_code); 4882 pf_print_host(pd->src, 0, pd->af); 4883 printf(" -> "); 4884 pf_print_host(pd->dst, 0, pd->af); 4885 printf(" state: "); 4886 pf_print_state(*state); 4887 printf(" seq=%u\n", seq); 4888 } 4889 REASON_SET(reason, PFRES_BADSTATE); 4890 return (PF_DROP); 4891 } else { 4892 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4893 printf("pf: OK ICMP %d:%d ", 4894 icmptype, pd->hdr.icmp->icmp_code); 4895 pf_print_host(pd->src, 0, pd->af); 4896 printf(" -> "); 4897 pf_print_host(pd->dst, 0, pd->af); 4898 printf(" state: "); 4899 pf_print_state(*state); 4900 printf(" seq=%u\n", seq); 4901 } 4902 } 4903 4904 /* translate source/destination address, if necessary */ 4905 if ((*state)->key[PF_SK_WIRE] != 4906 (*state)->key[PF_SK_STACK]) { 4907 struct pf_state_key *nk = 4908 (*state)->key[pd->didx]; 4909 4910 if (PF_ANEQ(pd2.src, 4911 &nk->addr[pd2.sidx], pd2.af) || 4912 nk->port[pd2.sidx] != th.th_sport) 4913 pf_change_icmp(pd2.src, &th.th_sport, 4914 daddr, &nk->addr[pd2.sidx], 4915 nk->port[pd2.sidx], NULL, 4916 pd2.ip_sum, icmpsum, 4917 pd->ip_sum, 0, pd2.af); 4918 4919 if (PF_ANEQ(pd2.dst, 4920 &nk->addr[pd2.didx], pd2.af) || 4921 nk->port[pd2.didx] != th.th_dport) 4922 pf_change_icmp(pd2.dst, &th.th_dport, 4923 NULL, /* XXX Inbound NAT? */ 4924 &nk->addr[pd2.didx], 4925 nk->port[pd2.didx], NULL, 4926 pd2.ip_sum, icmpsum, 4927 pd->ip_sum, 0, pd2.af); 4928 copyback = 1; 4929 } 4930 4931 if (copyback) { 4932 switch (pd2.af) { 4933 #ifdef INET 4934 case AF_INET: 4935 m_copyback(m, off, ICMP_MINLEN, 4936 (caddr_t )pd->hdr.icmp); 4937 m_copyback(m, ipoff2, sizeof(h2), 4938 (caddr_t )&h2); 4939 break; 4940 #endif /* INET */ 4941 #ifdef INET6 4942 case AF_INET6: 4943 m_copyback(m, off, 4944 sizeof(struct icmp6_hdr), 4945 (caddr_t )pd->hdr.icmp6); 4946 m_copyback(m, ipoff2, sizeof(h2_6), 4947 (caddr_t )&h2_6); 4948 break; 4949 #endif /* INET6 */ 4950 } 4951 m_copyback(m, off2, 8, (caddr_t)&th); 4952 } 4953 4954 return (PF_PASS); 4955 break; 4956 } 4957 case IPPROTO_UDP: { 4958 struct udphdr uh; 4959 4960 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4961 NULL, reason, pd2.af)) { 4962 DPFPRINTF(PF_DEBUG_MISC, 4963 ("pf: ICMP error message too short " 4964 "(udp)\n")); 4965 return (PF_DROP); 4966 } 4967 4968 key.af = pd2.af; 4969 key.proto = IPPROTO_UDP; 4970 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4971 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4972 key.port[pd2.sidx] = uh.uh_sport; 4973 key.port[pd2.didx] = uh.uh_dport; 4974 4975 STATE_LOOKUP(kif, &key, direction, *state, pd); 4976 4977 /* translate source/destination address, if necessary */ 4978 if ((*state)->key[PF_SK_WIRE] != 4979 (*state)->key[PF_SK_STACK]) { 4980 struct pf_state_key *nk = 4981 (*state)->key[pd->didx]; 4982 4983 if (PF_ANEQ(pd2.src, 4984 &nk->addr[pd2.sidx], pd2.af) || 4985 nk->port[pd2.sidx] != uh.uh_sport) 4986 pf_change_icmp(pd2.src, &uh.uh_sport, 4987 daddr, &nk->addr[pd2.sidx], 4988 nk->port[pd2.sidx], &uh.uh_sum, 4989 pd2.ip_sum, icmpsum, 4990 pd->ip_sum, 1, pd2.af); 4991 4992 if (PF_ANEQ(pd2.dst, 4993 &nk->addr[pd2.didx], pd2.af) || 4994 nk->port[pd2.didx] != uh.uh_dport) 4995 pf_change_icmp(pd2.dst, &uh.uh_dport, 4996 NULL, /* XXX Inbound NAT? */ 4997 &nk->addr[pd2.didx], 4998 nk->port[pd2.didx], &uh.uh_sum, 4999 pd2.ip_sum, icmpsum, 5000 pd->ip_sum, 1, pd2.af); 5001 5002 switch (pd2.af) { 5003 #ifdef INET 5004 case AF_INET: 5005 m_copyback(m, off, ICMP_MINLEN, 5006 (caddr_t )pd->hdr.icmp); 5007 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5008 break; 5009 #endif /* INET */ 5010 #ifdef INET6 5011 case AF_INET6: 5012 m_copyback(m, off, 5013 sizeof(struct icmp6_hdr), 5014 (caddr_t )pd->hdr.icmp6); 5015 m_copyback(m, ipoff2, sizeof(h2_6), 5016 (caddr_t )&h2_6); 5017 break; 5018 #endif /* INET6 */ 5019 } 5020 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5021 } 5022 return (PF_PASS); 5023 break; 5024 } 5025 #ifdef INET 5026 case IPPROTO_ICMP: { 5027 struct icmp iih; 5028 5029 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5030 NULL, reason, pd2.af)) { 5031 DPFPRINTF(PF_DEBUG_MISC, 5032 ("pf: ICMP error message too short i" 5033 "(icmp)\n")); 5034 return (PF_DROP); 5035 } 5036 5037 pd2.hdr.icmp = &iih; 5038 pf_icmp_mapping(&pd2, iih.icmp_type, 5039 &icmp_dir, &multi, &virtual_id, &virtual_type); 5040 5041 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 5042 direction, kif, virtual_id, virtual_type, 5043 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 5044 if (ret >= 0) 5045 return (ret); 5046 5047 /* translate source/destination address, if necessary */ 5048 if ((*state)->key[PF_SK_WIRE] != 5049 (*state)->key[PF_SK_STACK]) { 5050 struct pf_state_key *nk = 5051 (*state)->key[pd->didx]; 5052 5053 if (PF_ANEQ(pd2.src, 5054 &nk->addr[pd2.sidx], pd2.af) || 5055 (virtual_type == ICMP_ECHO && 5056 nk->port[iidx] != iih.icmp_id)) 5057 pf_change_icmp(pd2.src, 5058 (virtual_type == ICMP_ECHO) ? 5059 &iih.icmp_id : NULL, 5060 daddr, &nk->addr[pd2.sidx], 5061 nk->port[pd2.sidx], NULL, 5062 pd2.ip_sum, icmpsum, 5063 pd->ip_sum, 0, AF_INET); 5064 5065 if (PF_ANEQ(pd2.dst, 5066 &nk->addr[pd2.didx], pd2.af)) 5067 pf_change_icmp(pd2.dst, NULL, NULL, 5068 &nk->addr[pd2.didx], 0, NULL, 5069 pd2.ip_sum, icmpsum, 5070 pd->ip_sum, 0, AF_INET); 5071 5072 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5073 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5074 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5075 } 5076 return (PF_PASS); 5077 break; 5078 } 5079 #endif /* INET */ 5080 #ifdef INET6 5081 case IPPROTO_ICMPV6: { 5082 struct icmp6_hdr iih; 5083 5084 if (!pf_pull_hdr(m, off2, &iih, 5085 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5086 DPFPRINTF(PF_DEBUG_MISC, 5087 ("pf: ICMP error message too short " 5088 "(icmp6)\n")); 5089 return (PF_DROP); 5090 } 5091 5092 pd2.hdr.icmp6 = &iih; 5093 pf_icmp_mapping(&pd2, iih.icmp6_type, 5094 &icmp_dir, &multi, &virtual_id, &virtual_type); 5095 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 5096 direction, kif, virtual_id, virtual_type, 5097 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 5098 if (ret >= 0) { 5099 if (ret == PF_DROP && pd->af == AF_INET6 && 5100 icmp_dir == PF_OUT) { 5101 if (*state) 5102 PF_STATE_UNLOCK(*state); 5103 ret = pf_icmp_state_lookup(&key, pd, 5104 state, m, direction, kif, 5105 virtual_id, virtual_type, 5106 icmp_dir, &iidx, multi); 5107 if (ret >= 0) 5108 return (ret); 5109 } else 5110 return (ret); 5111 } 5112 5113 /* translate source/destination address, if necessary */ 5114 if ((*state)->key[PF_SK_WIRE] != 5115 (*state)->key[PF_SK_STACK]) { 5116 struct pf_state_key *nk = 5117 (*state)->key[pd->didx]; 5118 5119 if (PF_ANEQ(pd2.src, 5120 &nk->addr[pd2.sidx], pd2.af) || 5121 ((virtual_type == ICMP6_ECHO_REQUEST) && 5122 nk->port[pd2.sidx] != iih.icmp6_id)) 5123 pf_change_icmp(pd2.src, 5124 (virtual_type == ICMP6_ECHO_REQUEST) 5125 ? &iih.icmp6_id : NULL, 5126 daddr, &nk->addr[pd2.sidx], 5127 (virtual_type == ICMP6_ECHO_REQUEST) 5128 ? nk->port[iidx] : 0, NULL, 5129 pd2.ip_sum, icmpsum, 5130 pd->ip_sum, 0, AF_INET6); 5131 5132 if (PF_ANEQ(pd2.dst, 5133 &nk->addr[pd2.didx], pd2.af)) 5134 pf_change_icmp(pd2.dst, NULL, NULL, 5135 &nk->addr[pd2.didx], 0, NULL, 5136 pd2.ip_sum, icmpsum, 5137 pd->ip_sum, 0, AF_INET6); 5138 5139 m_copyback(m, off, sizeof(struct icmp6_hdr), 5140 (caddr_t)pd->hdr.icmp6); 5141 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5142 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5143 (caddr_t)&iih); 5144 } 5145 return (PF_PASS); 5146 break; 5147 } 5148 #endif /* INET6 */ 5149 default: { 5150 key.af = pd2.af; 5151 key.proto = pd2.proto; 5152 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5153 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5154 key.port[0] = key.port[1] = 0; 5155 5156 STATE_LOOKUP(kif, &key, direction, *state, pd); 5157 5158 /* translate source/destination address, if necessary */ 5159 if ((*state)->key[PF_SK_WIRE] != 5160 (*state)->key[PF_SK_STACK]) { 5161 struct pf_state_key *nk = 5162 (*state)->key[pd->didx]; 5163 5164 if (PF_ANEQ(pd2.src, 5165 &nk->addr[pd2.sidx], pd2.af)) 5166 pf_change_icmp(pd2.src, NULL, daddr, 5167 &nk->addr[pd2.sidx], 0, NULL, 5168 pd2.ip_sum, icmpsum, 5169 pd->ip_sum, 0, pd2.af); 5170 5171 if (PF_ANEQ(pd2.dst, 5172 &nk->addr[pd2.didx], pd2.af)) 5173 pf_change_icmp(pd2.src, NULL, 5174 NULL, /* XXX Inbound NAT? */ 5175 &nk->addr[pd2.didx], 0, NULL, 5176 pd2.ip_sum, icmpsum, 5177 pd->ip_sum, 0, pd2.af); 5178 5179 switch (pd2.af) { 5180 #ifdef INET 5181 case AF_INET: 5182 m_copyback(m, off, ICMP_MINLEN, 5183 (caddr_t)pd->hdr.icmp); 5184 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5185 break; 5186 #endif /* INET */ 5187 #ifdef INET6 5188 case AF_INET6: 5189 m_copyback(m, off, 5190 sizeof(struct icmp6_hdr), 5191 (caddr_t )pd->hdr.icmp6); 5192 m_copyback(m, ipoff2, sizeof(h2_6), 5193 (caddr_t )&h2_6); 5194 break; 5195 #endif /* INET6 */ 5196 } 5197 } 5198 return (PF_PASS); 5199 break; 5200 } 5201 } 5202 } 5203 } 5204 5205 static int 5206 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5207 struct mbuf *m, struct pf_pdesc *pd) 5208 { 5209 struct pf_state_peer *src, *dst; 5210 struct pf_state_key_cmp key; 5211 5212 bzero(&key, sizeof(key)); 5213 key.af = pd->af; 5214 key.proto = pd->proto; 5215 if (direction == PF_IN) { 5216 PF_ACPY(&key.addr[0], pd->src, key.af); 5217 PF_ACPY(&key.addr[1], pd->dst, key.af); 5218 key.port[0] = key.port[1] = 0; 5219 } else { 5220 PF_ACPY(&key.addr[1], pd->src, key.af); 5221 PF_ACPY(&key.addr[0], pd->dst, key.af); 5222 key.port[1] = key.port[0] = 0; 5223 } 5224 5225 STATE_LOOKUP(kif, &key, direction, *state, pd); 5226 5227 if (direction == (*state)->direction) { 5228 src = &(*state)->src; 5229 dst = &(*state)->dst; 5230 } else { 5231 src = &(*state)->dst; 5232 dst = &(*state)->src; 5233 } 5234 5235 /* update states */ 5236 if (src->state < PFOTHERS_SINGLE) 5237 src->state = PFOTHERS_SINGLE; 5238 if (dst->state == PFOTHERS_SINGLE) 5239 dst->state = PFOTHERS_MULTIPLE; 5240 5241 /* update expire time */ 5242 (*state)->expire = time_uptime; 5243 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5244 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5245 else 5246 (*state)->timeout = PFTM_OTHER_SINGLE; 5247 5248 /* translate source/destination address, if necessary */ 5249 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5250 struct pf_state_key *nk = (*state)->key[pd->didx]; 5251 5252 KASSERT(nk, ("%s: nk is null", __func__)); 5253 KASSERT(pd, ("%s: pd is null", __func__)); 5254 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5255 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5256 switch (pd->af) { 5257 #ifdef INET 5258 case AF_INET: 5259 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5260 pf_change_a(&pd->src->v4.s_addr, 5261 pd->ip_sum, 5262 nk->addr[pd->sidx].v4.s_addr, 5263 0); 5264 5265 5266 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5267 pf_change_a(&pd->dst->v4.s_addr, 5268 pd->ip_sum, 5269 nk->addr[pd->didx].v4.s_addr, 5270 0); 5271 5272 break; 5273 #endif /* INET */ 5274 #ifdef INET6 5275 case AF_INET6: 5276 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5277 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5278 5279 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5280 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5281 #endif /* INET6 */ 5282 } 5283 } 5284 return (PF_PASS); 5285 } 5286 5287 /* 5288 * ipoff and off are measured from the start of the mbuf chain. 5289 * h must be at "ipoff" on the mbuf chain. 5290 */ 5291 void * 5292 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5293 u_short *actionp, u_short *reasonp, sa_family_t af) 5294 { 5295 switch (af) { 5296 #ifdef INET 5297 case AF_INET: { 5298 struct ip *h = mtod(m, struct ip *); 5299 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5300 5301 if (fragoff) { 5302 if (fragoff >= len) 5303 ACTION_SET(actionp, PF_PASS); 5304 else { 5305 ACTION_SET(actionp, PF_DROP); 5306 REASON_SET(reasonp, PFRES_FRAG); 5307 } 5308 return (NULL); 5309 } 5310 if (m->m_pkthdr.len < off + len || 5311 ntohs(h->ip_len) < off + len) { 5312 ACTION_SET(actionp, PF_DROP); 5313 REASON_SET(reasonp, PFRES_SHORT); 5314 return (NULL); 5315 } 5316 break; 5317 } 5318 #endif /* INET */ 5319 #ifdef INET6 5320 case AF_INET6: { 5321 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5322 5323 if (m->m_pkthdr.len < off + len || 5324 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5325 (unsigned)(off + len)) { 5326 ACTION_SET(actionp, PF_DROP); 5327 REASON_SET(reasonp, PFRES_SHORT); 5328 return (NULL); 5329 } 5330 break; 5331 } 5332 #endif /* INET6 */ 5333 } 5334 m_copydata(m, off, len, p); 5335 return (p); 5336 } 5337 5338 int 5339 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5340 int rtableid) 5341 { 5342 #ifdef RADIX_MPATH 5343 struct radix_node_head *rnh; 5344 #endif 5345 struct sockaddr_in *dst; 5346 int ret = 1; 5347 int check_mpath; 5348 #ifdef INET6 5349 struct sockaddr_in6 *dst6; 5350 struct route_in6 ro; 5351 #else 5352 struct route ro; 5353 #endif 5354 struct radix_node *rn; 5355 struct rtentry *rt; 5356 struct ifnet *ifp; 5357 5358 check_mpath = 0; 5359 #ifdef RADIX_MPATH 5360 /* XXX: stick to table 0 for now */ 5361 rnh = rt_tables_get_rnh(0, af); 5362 if (rnh != NULL && rn_mpath_capable(rnh)) 5363 check_mpath = 1; 5364 #endif 5365 bzero(&ro, sizeof(ro)); 5366 switch (af) { 5367 case AF_INET: 5368 dst = satosin(&ro.ro_dst); 5369 dst->sin_family = AF_INET; 5370 dst->sin_len = sizeof(*dst); 5371 dst->sin_addr = addr->v4; 5372 break; 5373 #ifdef INET6 5374 case AF_INET6: 5375 /* 5376 * Skip check for addresses with embedded interface scope, 5377 * as they would always match anyway. 5378 */ 5379 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5380 goto out; 5381 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5382 dst6->sin6_family = AF_INET6; 5383 dst6->sin6_len = sizeof(*dst6); 5384 dst6->sin6_addr = addr->v6; 5385 break; 5386 #endif /* INET6 */ 5387 default: 5388 return (0); 5389 } 5390 5391 /* Skip checks for ipsec interfaces */ 5392 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5393 goto out; 5394 5395 switch (af) { 5396 #ifdef INET6 5397 case AF_INET6: 5398 in6_rtalloc_ign(&ro, 0, rtableid); 5399 break; 5400 #endif 5401 #ifdef INET 5402 case AF_INET: 5403 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5404 break; 5405 #endif 5406 default: 5407 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5408 break; 5409 } 5410 5411 if (ro.ro_rt != NULL) { 5412 /* No interface given, this is a no-route check */ 5413 if (kif == NULL) 5414 goto out; 5415 5416 if (kif->pfik_ifp == NULL) { 5417 ret = 0; 5418 goto out; 5419 } 5420 5421 /* Perform uRPF check if passed input interface */ 5422 ret = 0; 5423 rn = (struct radix_node *)ro.ro_rt; 5424 do { 5425 rt = (struct rtentry *)rn; 5426 ifp = rt->rt_ifp; 5427 5428 if (kif->pfik_ifp == ifp) 5429 ret = 1; 5430 #ifdef RADIX_MPATH 5431 rn = rn_mpath_next(rn); 5432 #endif 5433 } while (check_mpath == 1 && rn != NULL && ret == 0); 5434 } else 5435 ret = 0; 5436 out: 5437 if (ro.ro_rt != NULL) 5438 RTFREE(ro.ro_rt); 5439 return (ret); 5440 } 5441 5442 #ifdef INET 5443 static void 5444 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5445 struct pf_state *s, struct pf_pdesc *pd) 5446 { 5447 struct mbuf *m0, *m1; 5448 struct sockaddr_in dst; 5449 struct ip *ip; 5450 struct ifnet *ifp = NULL; 5451 struct pf_addr naddr; 5452 struct pf_src_node *sn = NULL; 5453 int error = 0; 5454 uint16_t ip_len, ip_off; 5455 5456 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5457 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5458 __func__)); 5459 5460 if ((pd->pf_mtag == NULL && 5461 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5462 pd->pf_mtag->routed++ > 3) { 5463 m0 = *m; 5464 *m = NULL; 5465 goto bad_locked; 5466 } 5467 5468 if (r->rt == PF_DUPTO) { 5469 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5470 if (s) 5471 PF_STATE_UNLOCK(s); 5472 return; 5473 } 5474 } else { 5475 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5476 if (s) 5477 PF_STATE_UNLOCK(s); 5478 return; 5479 } 5480 m0 = *m; 5481 } 5482 5483 ip = mtod(m0, struct ip *); 5484 5485 bzero(&dst, sizeof(dst)); 5486 dst.sin_family = AF_INET; 5487 dst.sin_len = sizeof(dst); 5488 dst.sin_addr = ip->ip_dst; 5489 5490 if (r->rt == PF_FASTROUTE) { 5491 struct rtentry *rt; 5492 5493 if (s) 5494 PF_STATE_UNLOCK(s); 5495 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5496 if (rt == NULL) { 5497 RTFREE_LOCKED(rt); 5498 KMOD_IPSTAT_INC(ips_noroute); 5499 error = EHOSTUNREACH; 5500 goto bad; 5501 } 5502 5503 ifp = rt->rt_ifp; 5504 rt->rt_rmx.rmx_pksent++; 5505 5506 if (rt->rt_flags & RTF_GATEWAY) 5507 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5508 RTFREE_LOCKED(rt); 5509 } else { 5510 if (TAILQ_EMPTY(&r->rpool.list)) { 5511 DPFPRINTF(PF_DEBUG_URGENT, 5512 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5513 goto bad_locked; 5514 } 5515 if (s == NULL) { 5516 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5517 &naddr, NULL, &sn); 5518 if (!PF_AZERO(&naddr, AF_INET)) 5519 dst.sin_addr.s_addr = naddr.v4.s_addr; 5520 ifp = r->rpool.cur->kif ? 5521 r->rpool.cur->kif->pfik_ifp : NULL; 5522 } else { 5523 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5524 dst.sin_addr.s_addr = 5525 s->rt_addr.v4.s_addr; 5526 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5527 PF_STATE_UNLOCK(s); 5528 } 5529 } 5530 if (ifp == NULL) 5531 goto bad; 5532 5533 if (oifp != ifp) { 5534 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5535 goto bad; 5536 else if (m0 == NULL) 5537 goto done; 5538 if (m0->m_len < sizeof(struct ip)) { 5539 DPFPRINTF(PF_DEBUG_URGENT, 5540 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5541 goto bad; 5542 } 5543 ip = mtod(m0, struct ip *); 5544 } 5545 5546 if (ifp->if_flags & IFF_LOOPBACK) 5547 m0->m_flags |= M_SKIP_FIREWALL; 5548 5549 ip_len = ntohs(ip->ip_len); 5550 ip_off = ntohs(ip->ip_off); 5551 5552 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5553 m0->m_pkthdr.csum_flags |= CSUM_IP; 5554 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5555 in_delayed_cksum(m0); 5556 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5557 } 5558 #ifdef SCTP 5559 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5560 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5561 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5562 } 5563 #endif 5564 5565 /* 5566 * If small enough for interface, or the interface will take 5567 * care of the fragmentation for us, we can just send directly. 5568 */ 5569 if (ip_len <= ifp->if_mtu || 5570 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5571 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5572 ip->ip_sum = 0; 5573 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5574 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5575 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5576 } 5577 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5578 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5579 goto done; 5580 } 5581 5582 /* Balk when DF bit is set or the interface didn't support TSO. */ 5583 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5584 error = EMSGSIZE; 5585 KMOD_IPSTAT_INC(ips_cantfrag); 5586 if (r->rt != PF_DUPTO) { 5587 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5588 ifp->if_mtu); 5589 goto done; 5590 } else 5591 goto bad; 5592 } 5593 5594 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5595 if (error) 5596 goto bad; 5597 5598 for (; m0; m0 = m1) { 5599 m1 = m0->m_nextpkt; 5600 m0->m_nextpkt = NULL; 5601 if (error == 0) { 5602 m_clrprotoflags(m0); 5603 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5604 } else 5605 m_freem(m0); 5606 } 5607 5608 if (error == 0) 5609 KMOD_IPSTAT_INC(ips_fragmented); 5610 5611 done: 5612 if (r->rt != PF_DUPTO) 5613 *m = NULL; 5614 return; 5615 5616 bad_locked: 5617 if (s) 5618 PF_STATE_UNLOCK(s); 5619 bad: 5620 m_freem(m0); 5621 goto done; 5622 } 5623 #endif /* INET */ 5624 5625 #ifdef INET6 5626 static void 5627 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5628 struct pf_state *s, struct pf_pdesc *pd) 5629 { 5630 struct mbuf *m0; 5631 struct sockaddr_in6 dst; 5632 struct ip6_hdr *ip6; 5633 struct ifnet *ifp = NULL; 5634 struct pf_addr naddr; 5635 struct pf_src_node *sn = NULL; 5636 5637 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5638 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5639 __func__)); 5640 5641 if ((pd->pf_mtag == NULL && 5642 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5643 pd->pf_mtag->routed++ > 3) { 5644 m0 = *m; 5645 *m = NULL; 5646 goto bad_locked; 5647 } 5648 5649 if (r->rt == PF_DUPTO) { 5650 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5651 if (s) 5652 PF_STATE_UNLOCK(s); 5653 return; 5654 } 5655 } else { 5656 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5657 if (s) 5658 PF_STATE_UNLOCK(s); 5659 return; 5660 } 5661 m0 = *m; 5662 } 5663 5664 ip6 = mtod(m0, struct ip6_hdr *); 5665 5666 bzero(&dst, sizeof(dst)); 5667 dst.sin6_family = AF_INET6; 5668 dst.sin6_len = sizeof(dst); 5669 dst.sin6_addr = ip6->ip6_dst; 5670 5671 /* Cheat. XXX why only in the v6 case??? */ 5672 if (r->rt == PF_FASTROUTE) { 5673 if (s) 5674 PF_STATE_UNLOCK(s); 5675 m0->m_flags |= M_SKIP_FIREWALL; 5676 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5677 return; 5678 } 5679 5680 if (TAILQ_EMPTY(&r->rpool.list)) { 5681 DPFPRINTF(PF_DEBUG_URGENT, 5682 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5683 goto bad_locked; 5684 } 5685 if (s == NULL) { 5686 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5687 &naddr, NULL, &sn); 5688 if (!PF_AZERO(&naddr, AF_INET6)) 5689 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5690 &naddr, AF_INET6); 5691 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5692 } else { 5693 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5694 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5695 &s->rt_addr, AF_INET6); 5696 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5697 } 5698 5699 if (s) 5700 PF_STATE_UNLOCK(s); 5701 5702 if (ifp == NULL) 5703 goto bad; 5704 5705 if (oifp != ifp) { 5706 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5707 goto bad; 5708 else if (m0 == NULL) 5709 goto done; 5710 if (m0->m_len < sizeof(struct ip6_hdr)) { 5711 DPFPRINTF(PF_DEBUG_URGENT, 5712 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5713 __func__)); 5714 goto bad; 5715 } 5716 ip6 = mtod(m0, struct ip6_hdr *); 5717 } 5718 5719 if (ifp->if_flags & IFF_LOOPBACK) 5720 m0->m_flags |= M_SKIP_FIREWALL; 5721 5722 /* 5723 * If the packet is too large for the outgoing interface, 5724 * send back an icmp6 error. 5725 */ 5726 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5727 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5728 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5729 nd6_output(ifp, ifp, m0, &dst, NULL); 5730 else { 5731 in6_ifstat_inc(ifp, ifs6_in_toobig); 5732 if (r->rt != PF_DUPTO) 5733 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5734 else 5735 goto bad; 5736 } 5737 5738 done: 5739 if (r->rt != PF_DUPTO) 5740 *m = NULL; 5741 return; 5742 5743 bad_locked: 5744 if (s) 5745 PF_STATE_UNLOCK(s); 5746 bad: 5747 m_freem(m0); 5748 goto done; 5749 } 5750 #endif /* INET6 */ 5751 5752 /* 5753 * FreeBSD supports cksum offloads for the following drivers. 5754 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5755 * ti(4), txp(4), xl(4) 5756 * 5757 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5758 * network driver performed cksum including pseudo header, need to verify 5759 * csum_data 5760 * CSUM_DATA_VALID : 5761 * network driver performed cksum, needs to additional pseudo header 5762 * cksum computation with partial csum_data(i.e. lack of H/W support for 5763 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5764 * 5765 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5766 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5767 * TCP/UDP layer. 5768 * Also, set csum_data to 0xffff to force cksum validation. 5769 */ 5770 static int 5771 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5772 { 5773 u_int16_t sum = 0; 5774 int hw_assist = 0; 5775 struct ip *ip; 5776 5777 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5778 return (1); 5779 if (m->m_pkthdr.len < off + len) 5780 return (1); 5781 5782 switch (p) { 5783 case IPPROTO_TCP: 5784 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5785 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5786 sum = m->m_pkthdr.csum_data; 5787 } else { 5788 ip = mtod(m, struct ip *); 5789 sum = in_pseudo(ip->ip_src.s_addr, 5790 ip->ip_dst.s_addr, htonl((u_short)len + 5791 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5792 } 5793 sum ^= 0xffff; 5794 ++hw_assist; 5795 } 5796 break; 5797 case IPPROTO_UDP: 5798 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5799 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5800 sum = m->m_pkthdr.csum_data; 5801 } else { 5802 ip = mtod(m, struct ip *); 5803 sum = in_pseudo(ip->ip_src.s_addr, 5804 ip->ip_dst.s_addr, htonl((u_short)len + 5805 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5806 } 5807 sum ^= 0xffff; 5808 ++hw_assist; 5809 } 5810 break; 5811 case IPPROTO_ICMP: 5812 #ifdef INET6 5813 case IPPROTO_ICMPV6: 5814 #endif /* INET6 */ 5815 break; 5816 default: 5817 return (1); 5818 } 5819 5820 if (!hw_assist) { 5821 switch (af) { 5822 case AF_INET: 5823 if (p == IPPROTO_ICMP) { 5824 if (m->m_len < off) 5825 return (1); 5826 m->m_data += off; 5827 m->m_len -= off; 5828 sum = in_cksum(m, len); 5829 m->m_data -= off; 5830 m->m_len += off; 5831 } else { 5832 if (m->m_len < sizeof(struct ip)) 5833 return (1); 5834 sum = in4_cksum(m, p, off, len); 5835 } 5836 break; 5837 #ifdef INET6 5838 case AF_INET6: 5839 if (m->m_len < sizeof(struct ip6_hdr)) 5840 return (1); 5841 sum = in6_cksum(m, p, off, len); 5842 break; 5843 #endif /* INET6 */ 5844 default: 5845 return (1); 5846 } 5847 } 5848 if (sum) { 5849 switch (p) { 5850 case IPPROTO_TCP: 5851 { 5852 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5853 break; 5854 } 5855 case IPPROTO_UDP: 5856 { 5857 KMOD_UDPSTAT_INC(udps_badsum); 5858 break; 5859 } 5860 #ifdef INET 5861 case IPPROTO_ICMP: 5862 { 5863 KMOD_ICMPSTAT_INC(icps_checksum); 5864 break; 5865 } 5866 #endif 5867 #ifdef INET6 5868 case IPPROTO_ICMPV6: 5869 { 5870 KMOD_ICMP6STAT_INC(icp6s_checksum); 5871 break; 5872 } 5873 #endif /* INET6 */ 5874 } 5875 return (1); 5876 } else { 5877 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5878 m->m_pkthdr.csum_flags |= 5879 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5880 m->m_pkthdr.csum_data = 0xffff; 5881 } 5882 } 5883 return (0); 5884 } 5885 5886 5887 #ifdef INET 5888 int 5889 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5890 { 5891 struct pfi_kif *kif; 5892 u_short action, reason = 0, log = 0; 5893 struct mbuf *m = *m0; 5894 struct ip *h = NULL; 5895 struct m_tag *ipfwtag; 5896 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5897 struct pf_state *s = NULL; 5898 struct pf_ruleset *ruleset = NULL; 5899 struct pf_pdesc pd; 5900 int off, dirndx, pqid = 0; 5901 5902 M_ASSERTPKTHDR(m); 5903 5904 if (!V_pf_status.running) 5905 return (PF_PASS); 5906 5907 memset(&pd, 0, sizeof(pd)); 5908 5909 kif = (struct pfi_kif *)ifp->if_pf_kif; 5910 5911 if (kif == NULL) { 5912 DPFPRINTF(PF_DEBUG_URGENT, 5913 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5914 return (PF_DROP); 5915 } 5916 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5917 return (PF_PASS); 5918 5919 if (m->m_flags & M_SKIP_FIREWALL) 5920 return (PF_PASS); 5921 5922 pd.pf_mtag = pf_find_mtag(m); 5923 5924 PF_RULES_RLOCK(); 5925 5926 if (ip_divert_ptr != NULL && 5927 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5928 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5929 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5930 if (pd.pf_mtag == NULL && 5931 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5932 action = PF_DROP; 5933 goto done; 5934 } 5935 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5936 m_tag_delete(m, ipfwtag); 5937 } 5938 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5939 m->m_flags |= M_FASTFWD_OURS; 5940 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5941 } 5942 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5943 /* We do IP header normalization and packet reassembly here */ 5944 action = PF_DROP; 5945 goto done; 5946 } 5947 m = *m0; /* pf_normalize messes with m0 */ 5948 h = mtod(m, struct ip *); 5949 5950 off = h->ip_hl << 2; 5951 if (off < (int)sizeof(struct ip)) { 5952 action = PF_DROP; 5953 REASON_SET(&reason, PFRES_SHORT); 5954 log = 1; 5955 goto done; 5956 } 5957 5958 pd.src = (struct pf_addr *)&h->ip_src; 5959 pd.dst = (struct pf_addr *)&h->ip_dst; 5960 pd.sport = pd.dport = NULL; 5961 pd.ip_sum = &h->ip_sum; 5962 pd.proto_sum = NULL; 5963 pd.proto = h->ip_p; 5964 pd.dir = dir; 5965 pd.sidx = (dir == PF_IN) ? 0 : 1; 5966 pd.didx = (dir == PF_IN) ? 1 : 0; 5967 pd.af = AF_INET; 5968 pd.tos = h->ip_tos; 5969 pd.tot_len = ntohs(h->ip_len); 5970 5971 /* handle fragments that didn't get reassembled by normalization */ 5972 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5973 action = pf_test_fragment(&r, dir, kif, m, h, 5974 &pd, &a, &ruleset); 5975 goto done; 5976 } 5977 5978 switch (h->ip_p) { 5979 5980 case IPPROTO_TCP: { 5981 struct tcphdr th; 5982 5983 pd.hdr.tcp = &th; 5984 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5985 &action, &reason, AF_INET)) { 5986 log = action != PF_PASS; 5987 goto done; 5988 } 5989 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5990 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5991 pqid = 1; 5992 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5993 if (action == PF_DROP) 5994 goto done; 5995 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5996 &reason); 5997 if (action == PF_PASS) { 5998 if (pfsync_update_state_ptr != NULL) 5999 pfsync_update_state_ptr(s); 6000 r = s->rule.ptr; 6001 a = s->anchor.ptr; 6002 log = s->log; 6003 } else if (s == NULL) 6004 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6005 &a, &ruleset, inp); 6006 break; 6007 } 6008 6009 case IPPROTO_UDP: { 6010 struct udphdr uh; 6011 6012 pd.hdr.udp = &uh; 6013 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6014 &action, &reason, AF_INET)) { 6015 log = action != PF_PASS; 6016 goto done; 6017 } 6018 if (uh.uh_dport == 0 || 6019 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6020 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6021 action = PF_DROP; 6022 REASON_SET(&reason, PFRES_SHORT); 6023 goto done; 6024 } 6025 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6026 if (action == PF_PASS) { 6027 if (pfsync_update_state_ptr != NULL) 6028 pfsync_update_state_ptr(s); 6029 r = s->rule.ptr; 6030 a = s->anchor.ptr; 6031 log = s->log; 6032 } else if (s == NULL) 6033 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6034 &a, &ruleset, inp); 6035 break; 6036 } 6037 6038 case IPPROTO_ICMP: { 6039 struct icmp ih; 6040 6041 pd.hdr.icmp = &ih; 6042 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6043 &action, &reason, AF_INET)) { 6044 log = action != PF_PASS; 6045 goto done; 6046 } 6047 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6048 &reason); 6049 if (action == PF_PASS) { 6050 if (pfsync_update_state_ptr != NULL) 6051 pfsync_update_state_ptr(s); 6052 r = s->rule.ptr; 6053 a = s->anchor.ptr; 6054 log = s->log; 6055 } else if (s == NULL) 6056 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6057 &a, &ruleset, inp); 6058 break; 6059 } 6060 6061 #ifdef INET6 6062 case IPPROTO_ICMPV6: { 6063 action = PF_DROP; 6064 DPFPRINTF(PF_DEBUG_MISC, 6065 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6066 goto done; 6067 } 6068 #endif 6069 6070 default: 6071 action = pf_test_state_other(&s, dir, kif, m, &pd); 6072 if (action == PF_PASS) { 6073 if (pfsync_update_state_ptr != NULL) 6074 pfsync_update_state_ptr(s); 6075 r = s->rule.ptr; 6076 a = s->anchor.ptr; 6077 log = s->log; 6078 } else if (s == NULL) 6079 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6080 &a, &ruleset, inp); 6081 break; 6082 } 6083 6084 done: 6085 PF_RULES_RUNLOCK(); 6086 if (action == PF_PASS && h->ip_hl > 5 && 6087 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6088 action = PF_DROP; 6089 REASON_SET(&reason, PFRES_IPOPTIONS); 6090 log = 1; 6091 DPFPRINTF(PF_DEBUG_MISC, 6092 ("pf: dropping packet with ip options\n")); 6093 } 6094 6095 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6096 action = PF_DROP; 6097 REASON_SET(&reason, PFRES_MEMORY); 6098 } 6099 if (r->rtableid >= 0) 6100 M_SETFIB(m, r->rtableid); 6101 6102 #ifdef ALTQ 6103 if (action == PF_PASS && r->qid) { 6104 if (pd.pf_mtag == NULL && 6105 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6106 action = PF_DROP; 6107 REASON_SET(&reason, PFRES_MEMORY); 6108 } 6109 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6110 pd.pf_mtag->qid = r->pqid; 6111 else 6112 pd.pf_mtag->qid = r->qid; 6113 /* add hints for ecn */ 6114 pd.pf_mtag->hdr = h; 6115 6116 } 6117 #endif /* ALTQ */ 6118 6119 /* 6120 * connections redirected to loopback should not match sockets 6121 * bound specifically to loopback due to security implications, 6122 * see tcp_input() and in_pcblookup_listen(). 6123 */ 6124 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6125 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6126 (s->nat_rule.ptr->action == PF_RDR || 6127 s->nat_rule.ptr->action == PF_BINAT) && 6128 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6129 m->m_flags |= M_SKIP_FIREWALL; 6130 6131 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6132 !PACKET_LOOPED(&pd)) { 6133 6134 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6135 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6136 if (ipfwtag != NULL) { 6137 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6138 ntohs(r->divert.port); 6139 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6140 6141 if (s) 6142 PF_STATE_UNLOCK(s); 6143 6144 m_tag_prepend(m, ipfwtag); 6145 if (m->m_flags & M_FASTFWD_OURS) { 6146 if (pd.pf_mtag == NULL && 6147 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6148 action = PF_DROP; 6149 REASON_SET(&reason, PFRES_MEMORY); 6150 log = 1; 6151 DPFPRINTF(PF_DEBUG_MISC, 6152 ("pf: failed to allocate tag\n")); 6153 } 6154 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 6155 m->m_flags &= ~M_FASTFWD_OURS; 6156 } 6157 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6158 *m0 = NULL; 6159 6160 return (action); 6161 } else { 6162 /* XXX: ipfw has the same behaviour! */ 6163 action = PF_DROP; 6164 REASON_SET(&reason, PFRES_MEMORY); 6165 log = 1; 6166 DPFPRINTF(PF_DEBUG_MISC, 6167 ("pf: failed to allocate divert tag\n")); 6168 } 6169 } 6170 6171 if (log) { 6172 struct pf_rule *lr; 6173 6174 if (s != NULL && s->nat_rule.ptr != NULL && 6175 s->nat_rule.ptr->log & PF_LOG_ALL) 6176 lr = s->nat_rule.ptr; 6177 else 6178 lr = r; 6179 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6180 (s == NULL)); 6181 } 6182 6183 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6184 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6185 6186 if (action == PF_PASS || r->action == PF_DROP) { 6187 dirndx = (dir == PF_OUT); 6188 r->packets[dirndx]++; 6189 r->bytes[dirndx] += pd.tot_len; 6190 if (a != NULL) { 6191 a->packets[dirndx]++; 6192 a->bytes[dirndx] += pd.tot_len; 6193 } 6194 if (s != NULL) { 6195 if (s->nat_rule.ptr != NULL) { 6196 s->nat_rule.ptr->packets[dirndx]++; 6197 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6198 } 6199 if (s->src_node != NULL) { 6200 s->src_node->packets[dirndx]++; 6201 s->src_node->bytes[dirndx] += pd.tot_len; 6202 } 6203 if (s->nat_src_node != NULL) { 6204 s->nat_src_node->packets[dirndx]++; 6205 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6206 } 6207 dirndx = (dir == s->direction) ? 0 : 1; 6208 s->packets[dirndx]++; 6209 s->bytes[dirndx] += pd.tot_len; 6210 } 6211 tr = r; 6212 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6213 if (nr != NULL && r == &V_pf_default_rule) 6214 tr = nr; 6215 if (tr->src.addr.type == PF_ADDR_TABLE) 6216 pfr_update_stats(tr->src.addr.p.tbl, 6217 (s == NULL) ? pd.src : 6218 &s->key[(s->direction == PF_IN)]-> 6219 addr[(s->direction == PF_OUT)], 6220 pd.af, pd.tot_len, dir == PF_OUT, 6221 r->action == PF_PASS, tr->src.neg); 6222 if (tr->dst.addr.type == PF_ADDR_TABLE) 6223 pfr_update_stats(tr->dst.addr.p.tbl, 6224 (s == NULL) ? pd.dst : 6225 &s->key[(s->direction == PF_IN)]-> 6226 addr[(s->direction == PF_IN)], 6227 pd.af, pd.tot_len, dir == PF_OUT, 6228 r->action == PF_PASS, tr->dst.neg); 6229 } 6230 6231 switch (action) { 6232 case PF_SYNPROXY_DROP: 6233 m_freem(*m0); 6234 case PF_DEFER: 6235 *m0 = NULL; 6236 action = PF_PASS; 6237 break; 6238 default: 6239 /* pf_route() returns unlocked. */ 6240 if (r->rt) { 6241 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6242 return (action); 6243 } 6244 break; 6245 } 6246 if (s) 6247 PF_STATE_UNLOCK(s); 6248 6249 return (action); 6250 } 6251 #endif /* INET */ 6252 6253 #ifdef INET6 6254 int 6255 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6256 { 6257 struct pfi_kif *kif; 6258 u_short action, reason = 0, log = 0; 6259 struct mbuf *m = *m0, *n = NULL; 6260 struct ip6_hdr *h = NULL; 6261 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6262 struct pf_state *s = NULL; 6263 struct pf_ruleset *ruleset = NULL; 6264 struct pf_pdesc pd; 6265 int off, terminal = 0, dirndx, rh_cnt = 0; 6266 6267 M_ASSERTPKTHDR(m); 6268 6269 if (!V_pf_status.running) 6270 return (PF_PASS); 6271 6272 memset(&pd, 0, sizeof(pd)); 6273 pd.pf_mtag = pf_find_mtag(m); 6274 6275 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6276 return (PF_PASS); 6277 6278 kif = (struct pfi_kif *)ifp->if_pf_kif; 6279 if (kif == NULL) { 6280 DPFPRINTF(PF_DEBUG_URGENT, 6281 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6282 return (PF_DROP); 6283 } 6284 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6285 return (PF_PASS); 6286 6287 PF_RULES_RLOCK(); 6288 6289 /* We do IP header normalization and packet reassembly here */ 6290 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6291 action = PF_DROP; 6292 goto done; 6293 } 6294 m = *m0; /* pf_normalize messes with m0 */ 6295 h = mtod(m, struct ip6_hdr *); 6296 6297 #if 1 6298 /* 6299 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6300 * will do something bad, so drop the packet for now. 6301 */ 6302 if (htons(h->ip6_plen) == 0) { 6303 action = PF_DROP; 6304 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6305 goto done; 6306 } 6307 #endif 6308 6309 pd.src = (struct pf_addr *)&h->ip6_src; 6310 pd.dst = (struct pf_addr *)&h->ip6_dst; 6311 pd.sport = pd.dport = NULL; 6312 pd.ip_sum = NULL; 6313 pd.proto_sum = NULL; 6314 pd.dir = dir; 6315 pd.sidx = (dir == PF_IN) ? 0 : 1; 6316 pd.didx = (dir == PF_IN) ? 1 : 0; 6317 pd.af = AF_INET6; 6318 pd.tos = 0; 6319 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6320 6321 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6322 pd.proto = h->ip6_nxt; 6323 do { 6324 switch (pd.proto) { 6325 case IPPROTO_FRAGMENT: 6326 action = pf_test_fragment(&r, dir, kif, m, h, 6327 &pd, &a, &ruleset); 6328 if (action == PF_DROP) 6329 REASON_SET(&reason, PFRES_FRAG); 6330 goto done; 6331 case IPPROTO_ROUTING: { 6332 struct ip6_rthdr rthdr; 6333 6334 if (rh_cnt++) { 6335 DPFPRINTF(PF_DEBUG_MISC, 6336 ("pf: IPv6 more than one rthdr\n")); 6337 action = PF_DROP; 6338 REASON_SET(&reason, PFRES_IPOPTIONS); 6339 log = 1; 6340 goto done; 6341 } 6342 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6343 &reason, pd.af)) { 6344 DPFPRINTF(PF_DEBUG_MISC, 6345 ("pf: IPv6 short rthdr\n")); 6346 action = PF_DROP; 6347 REASON_SET(&reason, PFRES_SHORT); 6348 log = 1; 6349 goto done; 6350 } 6351 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6352 DPFPRINTF(PF_DEBUG_MISC, 6353 ("pf: IPv6 rthdr0\n")); 6354 action = PF_DROP; 6355 REASON_SET(&reason, PFRES_IPOPTIONS); 6356 log = 1; 6357 goto done; 6358 } 6359 /* FALLTHROUGH */ 6360 } 6361 case IPPROTO_AH: 6362 case IPPROTO_HOPOPTS: 6363 case IPPROTO_DSTOPTS: { 6364 /* get next header and header length */ 6365 struct ip6_ext opt6; 6366 6367 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6368 NULL, &reason, pd.af)) { 6369 DPFPRINTF(PF_DEBUG_MISC, 6370 ("pf: IPv6 short opt\n")); 6371 action = PF_DROP; 6372 log = 1; 6373 goto done; 6374 } 6375 if (pd.proto == IPPROTO_AH) 6376 off += (opt6.ip6e_len + 2) * 4; 6377 else 6378 off += (opt6.ip6e_len + 1) * 8; 6379 pd.proto = opt6.ip6e_nxt; 6380 /* goto the next header */ 6381 break; 6382 } 6383 default: 6384 terminal++; 6385 break; 6386 } 6387 } while (!terminal); 6388 6389 /* if there's no routing header, use unmodified mbuf for checksumming */ 6390 if (!n) 6391 n = m; 6392 6393 switch (pd.proto) { 6394 6395 case IPPROTO_TCP: { 6396 struct tcphdr th; 6397 6398 pd.hdr.tcp = &th; 6399 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6400 &action, &reason, AF_INET6)) { 6401 log = action != PF_PASS; 6402 goto done; 6403 } 6404 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6405 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6406 if (action == PF_DROP) 6407 goto done; 6408 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6409 &reason); 6410 if (action == PF_PASS) { 6411 if (pfsync_update_state_ptr != NULL) 6412 pfsync_update_state_ptr(s); 6413 r = s->rule.ptr; 6414 a = s->anchor.ptr; 6415 log = s->log; 6416 } else if (s == NULL) 6417 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6418 &a, &ruleset, inp); 6419 break; 6420 } 6421 6422 case IPPROTO_UDP: { 6423 struct udphdr uh; 6424 6425 pd.hdr.udp = &uh; 6426 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6427 &action, &reason, AF_INET6)) { 6428 log = action != PF_PASS; 6429 goto done; 6430 } 6431 if (uh.uh_dport == 0 || 6432 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6433 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6434 action = PF_DROP; 6435 REASON_SET(&reason, PFRES_SHORT); 6436 goto done; 6437 } 6438 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6439 if (action == PF_PASS) { 6440 if (pfsync_update_state_ptr != NULL) 6441 pfsync_update_state_ptr(s); 6442 r = s->rule.ptr; 6443 a = s->anchor.ptr; 6444 log = s->log; 6445 } else if (s == NULL) 6446 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6447 &a, &ruleset, inp); 6448 break; 6449 } 6450 6451 case IPPROTO_ICMP: { 6452 action = PF_DROP; 6453 DPFPRINTF(PF_DEBUG_MISC, 6454 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6455 goto done; 6456 } 6457 6458 case IPPROTO_ICMPV6: { 6459 union { 6460 struct icmp6_hdr icmp6; 6461 struct mld_hdr mld; 6462 struct nd_neighbor_solicit nd; 6463 } ih; 6464 size_t icmp_hlen = sizeof(struct icmp6_hdr); 6465 6466 pd.hdr.icmp6 = &ih.icmp6; 6467 if (!pf_pull_hdr(m, off, &ih, icmp_hlen, 6468 &action, &reason, AF_INET6)) { 6469 log = action != PF_PASS; 6470 goto done; 6471 } 6472 /* ICMP headers we look further into to match state */ 6473 switch (ih.icmp6.icmp6_type) { 6474 case MLD_LISTENER_QUERY: 6475 case MLD_LISTENER_REPORT: 6476 icmp_hlen = sizeof(struct mld_hdr); 6477 break; 6478 case ND_NEIGHBOR_SOLICIT: 6479 case ND_NEIGHBOR_ADVERT: 6480 icmp_hlen = sizeof(struct nd_neighbor_solicit); 6481 break; 6482 } 6483 if (icmp_hlen > sizeof(struct icmp6_hdr) && 6484 !pf_pull_hdr(m, off, &ih, icmp_hlen, 6485 &action, &reason, AF_INET6)) { 6486 log = action != PF_PASS; 6487 goto done; 6488 } 6489 action = pf_test_state_icmp(&s, dir, kif, 6490 m, off, h, &pd, &reason); 6491 if (action == PF_PASS) { 6492 if (pfsync_update_state_ptr != NULL) 6493 pfsync_update_state_ptr(s); 6494 r = s->rule.ptr; 6495 a = s->anchor.ptr; 6496 log = s->log; 6497 } else if (s == NULL) 6498 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6499 &a, &ruleset, inp); 6500 break; 6501 } 6502 6503 default: 6504 action = pf_test_state_other(&s, dir, kif, m, &pd); 6505 if (action == PF_PASS) { 6506 if (pfsync_update_state_ptr != NULL) 6507 pfsync_update_state_ptr(s); 6508 r = s->rule.ptr; 6509 a = s->anchor.ptr; 6510 log = s->log; 6511 } else if (s == NULL) 6512 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6513 &a, &ruleset, inp); 6514 break; 6515 } 6516 6517 done: 6518 PF_RULES_RUNLOCK(); 6519 if (n != m) { 6520 m_freem(n); 6521 n = NULL; 6522 } 6523 6524 /* handle dangerous IPv6 extension headers. */ 6525 if (action == PF_PASS && rh_cnt && 6526 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6527 action = PF_DROP; 6528 REASON_SET(&reason, PFRES_IPOPTIONS); 6529 log = 1; 6530 DPFPRINTF(PF_DEBUG_MISC, 6531 ("pf: dropping packet with dangerous v6 headers\n")); 6532 } 6533 6534 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6535 action = PF_DROP; 6536 REASON_SET(&reason, PFRES_MEMORY); 6537 } 6538 if (r->rtableid >= 0) 6539 M_SETFIB(m, r->rtableid); 6540 6541 #ifdef ALTQ 6542 if (action == PF_PASS && r->qid) { 6543 if (pd.pf_mtag == NULL && 6544 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6545 action = PF_DROP; 6546 REASON_SET(&reason, PFRES_MEMORY); 6547 } 6548 if (pd.tos & IPTOS_LOWDELAY) 6549 pd.pf_mtag->qid = r->pqid; 6550 else 6551 pd.pf_mtag->qid = r->qid; 6552 /* add hints for ecn */ 6553 pd.pf_mtag->hdr = h; 6554 } 6555 #endif /* ALTQ */ 6556 6557 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6558 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6559 (s->nat_rule.ptr->action == PF_RDR || 6560 s->nat_rule.ptr->action == PF_BINAT) && 6561 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6562 m->m_flags |= M_SKIP_FIREWALL; 6563 6564 /* XXX: Anybody working on it?! */ 6565 if (r->divert.port) 6566 printf("pf: divert(9) is not supported for IPv6\n"); 6567 6568 if (log) { 6569 struct pf_rule *lr; 6570 6571 if (s != NULL && s->nat_rule.ptr != NULL && 6572 s->nat_rule.ptr->log & PF_LOG_ALL) 6573 lr = s->nat_rule.ptr; 6574 else 6575 lr = r; 6576 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6577 &pd, (s == NULL)); 6578 } 6579 6580 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6581 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6582 6583 if (action == PF_PASS || r->action == PF_DROP) { 6584 dirndx = (dir == PF_OUT); 6585 r->packets[dirndx]++; 6586 r->bytes[dirndx] += pd.tot_len; 6587 if (a != NULL) { 6588 a->packets[dirndx]++; 6589 a->bytes[dirndx] += pd.tot_len; 6590 } 6591 if (s != NULL) { 6592 if (s->nat_rule.ptr != NULL) { 6593 s->nat_rule.ptr->packets[dirndx]++; 6594 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6595 } 6596 if (s->src_node != NULL) { 6597 s->src_node->packets[dirndx]++; 6598 s->src_node->bytes[dirndx] += pd.tot_len; 6599 } 6600 if (s->nat_src_node != NULL) { 6601 s->nat_src_node->packets[dirndx]++; 6602 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6603 } 6604 dirndx = (dir == s->direction) ? 0 : 1; 6605 s->packets[dirndx]++; 6606 s->bytes[dirndx] += pd.tot_len; 6607 } 6608 tr = r; 6609 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6610 if (nr != NULL && r == &V_pf_default_rule) 6611 tr = nr; 6612 if (tr->src.addr.type == PF_ADDR_TABLE) 6613 pfr_update_stats(tr->src.addr.p.tbl, 6614 (s == NULL) ? pd.src : 6615 &s->key[(s->direction == PF_IN)]->addr[0], 6616 pd.af, pd.tot_len, dir == PF_OUT, 6617 r->action == PF_PASS, tr->src.neg); 6618 if (tr->dst.addr.type == PF_ADDR_TABLE) 6619 pfr_update_stats(tr->dst.addr.p.tbl, 6620 (s == NULL) ? pd.dst : 6621 &s->key[(s->direction == PF_IN)]->addr[1], 6622 pd.af, pd.tot_len, dir == PF_OUT, 6623 r->action == PF_PASS, tr->dst.neg); 6624 } 6625 6626 switch (action) { 6627 case PF_SYNPROXY_DROP: 6628 m_freem(*m0); 6629 case PF_DEFER: 6630 *m0 = NULL; 6631 action = PF_PASS; 6632 break; 6633 default: 6634 /* pf_route6() returns unlocked. */ 6635 if (r->rt) { 6636 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6637 return (action); 6638 } 6639 break; 6640 } 6641 6642 if (s) 6643 PF_STATE_UNLOCK(s); 6644 6645 return (action); 6646 } 6647 #endif /* INET6 */ 6648