1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/sdt.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <crypto/sha2/sha512.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_private.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #include <netinet/sctp_header.h> 115 #include <netinet/sctp_crc32.h> 116 117 #include <machine/in_cksum.h> 118 #include <security/mac/mac_framework.h> 119 120 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 121 122 SDT_PROVIDER_DEFINE(pf); 123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int"); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 140 "struct pf_krule *", "struct mbuf *", "int"); 141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 142 "struct pf_sctp_source *"); 143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 144 "struct pf_kstate *", "struct pf_sctp_source *"); 145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int", 146 "int", "struct pf_pdesc *", "int"); 147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t"); 148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *", 149 "int"); 150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *", 151 "int"); 152 153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 154 "struct mbuf *"); 155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 157 "int", "struct pf_keth_rule *", "char *"); 158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 160 "int", "struct pf_keth_rule *"); 161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 162 163 /* 164 * Global variables 165 */ 166 167 /* state tables */ 168 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 169 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]); 170 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 171 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 172 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 173 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 174 VNET_DEFINE(struct pf_kstatus, pf_status); 175 176 VNET_DEFINE(u_int32_t, ticket_altqs_active); 177 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 178 VNET_DEFINE(int, altqs_inactive_open); 179 VNET_DEFINE(u_int32_t, ticket_pabuf); 180 181 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx); 182 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 183 VNET_DEFINE(u_char, pf_tcp_secret[16]); 184 #define V_pf_tcp_secret VNET(pf_tcp_secret) 185 VNET_DEFINE(int, pf_tcp_secret_init); 186 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 187 VNET_DEFINE(int, pf_tcp_iss_off); 188 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 189 VNET_DECLARE(int, pf_vnet_active); 190 #define V_pf_vnet_active VNET(pf_vnet_active) 191 192 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 193 #define V_pf_purge_idx VNET(pf_purge_idx) 194 195 #ifdef PF_WANT_32_TO_64_COUNTER 196 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 197 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 198 199 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 200 VNET_DEFINE(size_t, pf_allrulecount); 201 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 202 #endif 203 204 struct pf_sctp_endpoint; 205 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 206 struct pf_sctp_source { 207 sa_family_t af; 208 struct pf_addr addr; 209 TAILQ_ENTRY(pf_sctp_source) entry; 210 }; 211 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 212 struct pf_sctp_endpoint 213 { 214 uint32_t v_tag; 215 struct pf_sctp_sources sources; 216 RB_ENTRY(pf_sctp_endpoint) entry; 217 }; 218 static int 219 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 220 { 221 return (a->v_tag - b->v_tag); 222 } 223 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 224 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 225 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 226 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 227 static struct mtx_padalign pf_sctp_endpoints_mtx; 228 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 229 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 230 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 231 232 /* 233 * Queue for pf_intr() sends. 234 */ 235 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 236 struct pf_send_entry { 237 STAILQ_ENTRY(pf_send_entry) pfse_next; 238 struct mbuf *pfse_m; 239 enum { 240 PFSE_IP, 241 PFSE_IP6, 242 PFSE_ICMP, 243 PFSE_ICMP6, 244 } pfse_type; 245 struct { 246 int type; 247 int code; 248 int mtu; 249 } icmpopts; 250 }; 251 252 STAILQ_HEAD(pf_send_head, pf_send_entry); 253 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 254 #define V_pf_sendqueue VNET(pf_sendqueue) 255 256 static struct mtx_padalign pf_sendqueue_mtx; 257 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 258 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 259 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 260 261 /* 262 * Queue for pf_overload_task() tasks. 263 */ 264 struct pf_overload_entry { 265 SLIST_ENTRY(pf_overload_entry) next; 266 struct pf_addr addr; 267 sa_family_t af; 268 uint8_t dir; 269 struct pf_krule *rule; 270 }; 271 272 SLIST_HEAD(pf_overload_head, pf_overload_entry); 273 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 274 #define V_pf_overloadqueue VNET(pf_overloadqueue) 275 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 276 #define V_pf_overloadtask VNET(pf_overloadtask) 277 278 static struct mtx_padalign pf_overloadqueue_mtx; 279 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 280 "pf overload/flush queue", MTX_DEF); 281 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 282 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 283 284 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 285 struct mtx_padalign pf_unlnkdrules_mtx; 286 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 287 MTX_DEF); 288 289 struct sx pf_config_lock; 290 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 291 292 struct mtx_padalign pf_table_stats_lock; 293 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 294 MTX_DEF); 295 296 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 297 #define V_pf_sources_z VNET(pf_sources_z) 298 uma_zone_t pf_mtag_z; 299 VNET_DEFINE(uma_zone_t, pf_state_z); 300 VNET_DEFINE(uma_zone_t, pf_state_key_z); 301 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 302 303 VNET_DEFINE(struct unrhdr64, pf_stateid); 304 305 static void pf_src_tree_remove_state(struct pf_kstate *); 306 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 307 u_int32_t); 308 static void pf_add_threshold(struct pf_threshold *); 309 static int pf_check_threshold(struct pf_threshold *); 310 311 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *, 312 struct pf_addr *, u_int16_t); 313 static int pf_modulate_sack(struct pf_pdesc *, 314 struct tcphdr *, struct pf_state_peer *); 315 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 316 u_int16_t *, u_int16_t *); 317 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 318 struct pf_addr *, struct pf_addr *, u_int16_t, 319 u_int16_t *, u_int16_t *, u_int16_t *, 320 u_int16_t *, u_int8_t, sa_family_t); 321 int pf_change_icmp_af(struct mbuf *, int, 322 struct pf_pdesc *, struct pf_pdesc *, 323 struct pf_addr *, struct pf_addr *, sa_family_t, 324 sa_family_t); 325 int pf_translate_icmp_af(int, void *); 326 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 327 sa_family_t, struct pf_krule *, int); 328 static void pf_detach_state(struct pf_kstate *); 329 static int pf_state_key_attach(struct pf_state_key *, 330 struct pf_state_key *, struct pf_kstate *); 331 static void pf_state_key_detach(struct pf_kstate *, int); 332 static int pf_state_key_ctor(void *, int, void *, int); 333 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 334 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 335 struct pf_mtag *pf_mtag); 336 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 337 struct pf_krule *, struct mbuf **); 338 static int pf_dummynet_route(struct pf_pdesc *, 339 struct pf_kstate *, struct pf_krule *, 340 struct ifnet *, const struct sockaddr *, struct mbuf **); 341 static int pf_test_eth_rule(int, struct pfi_kkif *, 342 struct mbuf **); 343 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 344 struct pf_pdesc *, struct pf_krule **, 345 struct pf_kruleset **, u_short *, struct inpcb *); 346 static int pf_create_state(struct pf_krule *, struct pf_krule *, 347 struct pf_krule *, struct pf_pdesc *, 348 struct pf_state_key *, struct pf_state_key *, int *, 349 struct pf_kstate **, int, u_int16_t, u_int16_t, 350 struct pf_krule_slist *, struct pf_udp_mapping *, 351 struct pf_kpool *, u_short *); 352 static int pf_state_key_addr_setup(struct pf_pdesc *, 353 struct pf_state_key_cmp *, int); 354 static int pf_tcp_track_full(struct pf_kstate *, 355 struct pf_pdesc *, u_short *, int *, 356 struct pf_state_peer *, struct pf_state_peer *, 357 u_int8_t, u_int8_t); 358 static int pf_tcp_track_sloppy(struct pf_kstate *, 359 struct pf_pdesc *, u_short *, 360 struct pf_state_peer *, struct pf_state_peer *, 361 u_int8_t, u_int8_t); 362 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *, 363 u_short *); 364 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 365 struct pf_pdesc *, struct pf_kstate **, 366 u_int16_t, u_int16_t, int, int *, int, int); 367 static int pf_test_state_icmp(struct pf_kstate **, 368 struct pf_pdesc *, u_short *); 369 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *, 370 u_short *); 371 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 372 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 373 struct pfi_kkif *, struct pf_kstate *, int); 374 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 375 int, u_int16_t); 376 static int pf_check_proto_cksum(struct mbuf *, int, int, 377 u_int8_t, sa_family_t); 378 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *, 379 int, int, u_short *); 380 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *, 381 u_short *); 382 static void pf_print_state_parts(struct pf_kstate *, 383 struct pf_state_key *, struct pf_state_key *); 384 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t, 385 bool); 386 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 387 const struct pf_state_key_cmp *, u_int); 388 static bool pf_src_connlimit(struct pf_kstate *); 389 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 390 static void pf_counters_inc(int, struct pf_pdesc *, 391 struct pf_kstate *, struct pf_krule *, 392 struct pf_krule *); 393 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *, 394 struct pf_krule *, struct pf_kruleset *, 395 struct pf_krule_slist *); 396 static void pf_overload_task(void *v, int pending); 397 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX], 398 struct pf_srchash *[PF_SN_MAX], struct pf_krule *, 399 struct pf_addr *, sa_family_t, struct pf_addr *, 400 struct pfi_kkif *, pf_sn_types_t); 401 static u_int pf_purge_expired_states(u_int, int); 402 static void pf_purge_unlinked_rules(void); 403 static int pf_mtag_uminit(void *, int, int); 404 static void pf_mtag_free(struct m_tag *); 405 static void pf_packet_rework_nat(struct pf_pdesc *, int, 406 struct pf_state_key *); 407 #ifdef INET 408 static void pf_route(struct pf_krule *, 409 struct ifnet *, struct pf_kstate *, 410 struct pf_pdesc *, struct inpcb *); 411 #endif /* INET */ 412 #ifdef INET6 413 static void pf_change_a6(struct pf_addr *, u_int16_t *, 414 struct pf_addr *, u_int8_t); 415 static void pf_route6(struct pf_krule *, 416 struct ifnet *, struct pf_kstate *, 417 struct pf_pdesc *, struct inpcb *); 418 #endif /* INET6 */ 419 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 420 421 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 422 423 extern int pf_end_threads; 424 extern struct proc *pf_purge_proc; 425 426 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 427 428 #define PACKET_UNDO_NAT(_pd, _off, _s) \ 429 do { \ 430 struct pf_state_key *nk; \ 431 if ((pd->dir) == PF_OUT) \ 432 nk = (_s)->key[PF_SK_STACK]; \ 433 else \ 434 nk = (_s)->key[PF_SK_WIRE]; \ 435 pf_packet_rework_nat(_pd, _off, nk); \ 436 } while (0) 437 438 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 439 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 440 441 #define STATE_LOOKUP(k, s, pd) \ 442 do { \ 443 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 444 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 445 if ((s) == NULL) \ 446 return (PF_DROP); \ 447 if (PACKET_LOOPED(pd)) \ 448 return (PF_PASS); \ 449 } while (0) 450 451 static struct pfi_kkif * 452 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd) 453 { 454 struct pfi_kkif *k = pd->kif; 455 456 SDT_PROBE2(pf, ip, , bound_iface, st, k); 457 458 /* Floating unless otherwise specified. */ 459 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 460 return (V_pfi_all); 461 462 /* 463 * Initially set to all, because we don't know what interface we'll be 464 * sending this out when we create the state. 465 */ 466 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN)) 467 return (V_pfi_all); 468 469 /* 470 * If this state is created based on another state (e.g. SCTP 471 * multihome) always set it floating initially. We can't know for sure 472 * what interface the actual traffic for this state will come in on. 473 */ 474 if (pd->related_rule) 475 return (V_pfi_all); 476 477 /* Don't overrule the interface for states created on incoming packets. */ 478 if (st->direction == PF_IN) 479 return (k); 480 481 /* No route-to, so don't overrule. */ 482 if (st->act.rt != PF_ROUTETO) 483 return (k); 484 485 /* Bind to the route-to interface. */ 486 return (st->act.rt_kif); 487 } 488 489 #define STATE_INC_COUNTERS(s) \ 490 do { \ 491 struct pf_krule_item *mrm; \ 492 counter_u64_add(s->rule->states_cur, 1); \ 493 counter_u64_add(s->rule->states_tot, 1); \ 494 if (s->anchor != NULL) { \ 495 counter_u64_add(s->anchor->states_cur, 1); \ 496 counter_u64_add(s->anchor->states_tot, 1); \ 497 } \ 498 if (s->nat_rule != NULL) { \ 499 counter_u64_add(s->nat_rule->states_cur, 1);\ 500 counter_u64_add(s->nat_rule->states_tot, 1);\ 501 } \ 502 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 503 counter_u64_add(mrm->r->states_cur, 1); \ 504 counter_u64_add(mrm->r->states_tot, 1); \ 505 } \ 506 } while (0) 507 508 #define STATE_DEC_COUNTERS(s) \ 509 do { \ 510 struct pf_krule_item *mrm; \ 511 if (s->nat_rule != NULL) \ 512 counter_u64_add(s->nat_rule->states_cur, -1);\ 513 if (s->anchor != NULL) \ 514 counter_u64_add(s->anchor->states_cur, -1); \ 515 counter_u64_add(s->rule->states_cur, -1); \ 516 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 517 counter_u64_add(mrm->r->states_cur, -1); \ 518 } while (0) 519 520 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 521 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 522 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 523 VNET_DEFINE(struct pf_idhash *, pf_idhash); 524 VNET_DEFINE(struct pf_srchash *, pf_srchash); 525 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 526 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 527 528 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 529 "pf(4)"); 530 531 VNET_DEFINE(u_long, pf_hashmask); 532 VNET_DEFINE(u_long, pf_srchashmask); 533 VNET_DEFINE(u_long, pf_udpendpointhashmask); 534 VNET_DEFINE_STATIC(u_long, pf_hashsize); 535 #define V_pf_hashsize VNET(pf_hashsize) 536 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 537 #define V_pf_srchashsize VNET(pf_srchashsize) 538 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 539 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 540 u_long pf_ioctl_maxcount = 65535; 541 542 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 543 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 544 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 545 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 546 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 547 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 548 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 549 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 550 551 VNET_DEFINE(void *, pf_swi_cookie); 552 VNET_DEFINE(struct intr_event *, pf_swi_ie); 553 554 VNET_DEFINE(uint32_t, pf_hashseed); 555 #define V_pf_hashseed VNET(pf_hashseed) 556 557 static void 558 pf_sctp_checksum(struct mbuf *m, int off) 559 { 560 uint32_t sum = 0; 561 562 /* Zero out the checksum, to enable recalculation. */ 563 m_copyback(m, off + offsetof(struct sctphdr, checksum), 564 sizeof(sum), (caddr_t)&sum); 565 566 sum = sctp_calculate_cksum(m, off); 567 568 m_copyback(m, off + offsetof(struct sctphdr, checksum), 569 sizeof(sum), (caddr_t)&sum); 570 } 571 572 int 573 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 574 { 575 576 switch (af) { 577 #ifdef INET 578 case AF_INET: 579 if (a->addr32[0] > b->addr32[0]) 580 return (1); 581 if (a->addr32[0] < b->addr32[0]) 582 return (-1); 583 break; 584 #endif /* INET */ 585 #ifdef INET6 586 case AF_INET6: 587 if (a->addr32[3] > b->addr32[3]) 588 return (1); 589 if (a->addr32[3] < b->addr32[3]) 590 return (-1); 591 if (a->addr32[2] > b->addr32[2]) 592 return (1); 593 if (a->addr32[2] < b->addr32[2]) 594 return (-1); 595 if (a->addr32[1] > b->addr32[1]) 596 return (1); 597 if (a->addr32[1] < b->addr32[1]) 598 return (-1); 599 if (a->addr32[0] > b->addr32[0]) 600 return (1); 601 if (a->addr32[0] < b->addr32[0]) 602 return (-1); 603 break; 604 #endif /* INET6 */ 605 default: 606 unhandled_af(af); 607 } 608 return (0); 609 } 610 611 static bool 612 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 613 { 614 switch (af) { 615 #ifdef INET 616 case AF_INET: 617 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 618 #endif /* INET */ 619 case AF_INET6: 620 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 621 default: 622 unhandled_af(af); 623 } 624 } 625 626 static void 627 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk) 628 { 629 630 switch (pd->proto) { 631 case IPPROTO_TCP: { 632 struct tcphdr *th = &pd->hdr.tcp; 633 634 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 635 pf_change_ap(pd, pd->src, &th->th_sport, 636 &nk->addr[pd->sidx], nk->port[pd->sidx]); 637 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 638 pf_change_ap(pd, pd->dst, &th->th_dport, 639 &nk->addr[pd->didx], nk->port[pd->didx]); 640 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th); 641 break; 642 } 643 case IPPROTO_UDP: { 644 struct udphdr *uh = &pd->hdr.udp; 645 646 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 647 pf_change_ap(pd, pd->src, &uh->uh_sport, 648 &nk->addr[pd->sidx], nk->port[pd->sidx]); 649 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 650 pf_change_ap(pd, pd->dst, &uh->uh_dport, 651 &nk->addr[pd->didx], nk->port[pd->didx]); 652 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh); 653 break; 654 } 655 case IPPROTO_SCTP: { 656 struct sctphdr *sh = &pd->hdr.sctp; 657 658 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 659 pf_change_ap(pd, pd->src, &sh->src_port, 660 &nk->addr[pd->sidx], nk->port[pd->sidx]); 661 } 662 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 663 pf_change_ap(pd, pd->dst, &sh->dest_port, 664 &nk->addr[pd->didx], nk->port[pd->didx]); 665 } 666 667 break; 668 } 669 case IPPROTO_ICMP: { 670 struct icmp *ih = &pd->hdr.icmp; 671 672 if (nk->port[pd->sidx] != ih->icmp_id) { 673 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 674 ih->icmp_cksum, ih->icmp_id, 675 nk->port[pd->sidx], 0); 676 ih->icmp_id = nk->port[pd->sidx]; 677 pd->sport = &ih->icmp_id; 678 679 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih); 680 } 681 /* FALLTHROUGH */ 682 } 683 default: 684 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 685 switch (pd->af) { 686 case AF_INET: 687 pf_change_a(&pd->src->v4.s_addr, 688 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 689 0); 690 break; 691 case AF_INET6: 692 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 693 break; 694 default: 695 unhandled_af(pd->af); 696 } 697 } 698 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 699 switch (pd->af) { 700 case AF_INET: 701 pf_change_a(&pd->dst->v4.s_addr, 702 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 703 0); 704 break; 705 case AF_INET6: 706 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 707 break; 708 default: 709 unhandled_af(pd->af); 710 } 711 } 712 break; 713 } 714 } 715 716 static __inline uint32_t 717 pf_hashkey(const struct pf_state_key *sk) 718 { 719 uint32_t h; 720 721 h = murmur3_32_hash32((const uint32_t *)sk, 722 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 723 V_pf_hashseed); 724 725 return (h & V_pf_hashmask); 726 } 727 728 __inline uint32_t 729 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 730 { 731 uint32_t h; 732 733 switch (af) { 734 case AF_INET: 735 h = murmur3_32_hash32((uint32_t *)&addr->v4, 736 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 737 break; 738 case AF_INET6: 739 h = murmur3_32_hash32((uint32_t *)&addr->v6, 740 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 741 break; 742 default: 743 unhandled_af(af); 744 } 745 746 return (h & V_pf_srchashmask); 747 } 748 749 static inline uint32_t 750 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 751 { 752 uint32_t h; 753 754 h = murmur3_32_hash32((uint32_t *)endpoint, 755 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 756 V_pf_hashseed); 757 return (h & V_pf_udpendpointhashmask); 758 } 759 760 #ifdef ALTQ 761 static int 762 pf_state_hash(struct pf_kstate *s) 763 { 764 u_int32_t hv = (intptr_t)s / sizeof(*s); 765 766 hv ^= crc32(&s->src, sizeof(s->src)); 767 hv ^= crc32(&s->dst, sizeof(s->dst)); 768 if (hv == 0) 769 hv = 1; 770 return (hv); 771 } 772 #endif /* ALTQ */ 773 774 static __inline void 775 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 776 { 777 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 778 s->dst.state = newstate; 779 if (which == PF_PEER_DST) 780 return; 781 if (s->src.state == newstate) 782 return; 783 if (s->creatorid == V_pf_status.hostid && 784 s->key[PF_SK_STACK] != NULL && 785 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 786 !(TCPS_HAVEESTABLISHED(s->src.state) || 787 s->src.state == TCPS_CLOSED) && 788 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 789 atomic_add_32(&V_pf_status.states_halfopen, -1); 790 791 s->src.state = newstate; 792 } 793 794 static void 795 pf_init_threshold(struct pf_threshold *threshold, 796 u_int32_t limit, u_int32_t seconds) 797 { 798 threshold->limit = limit * PF_THRESHOLD_MULT; 799 threshold->seconds = seconds; 800 threshold->count = 0; 801 threshold->last = time_uptime; 802 } 803 804 static void 805 pf_add_threshold(struct pf_threshold *threshold) 806 { 807 u_int32_t t = time_uptime, diff = t - threshold->last; 808 809 if (diff >= threshold->seconds) 810 threshold->count = 0; 811 else 812 threshold->count -= threshold->count * diff / 813 threshold->seconds; 814 threshold->count += PF_THRESHOLD_MULT; 815 threshold->last = t; 816 } 817 818 static int 819 pf_check_threshold(struct pf_threshold *threshold) 820 { 821 return (threshold->count > threshold->limit); 822 } 823 824 static bool 825 pf_src_connlimit(struct pf_kstate *state) 826 { 827 struct pf_overload_entry *pfoe; 828 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT]; 829 bool limited = false; 830 831 PF_STATE_LOCK_ASSERT(state); 832 PF_SRC_NODE_LOCK(src_node); 833 834 src_node->conn++; 835 state->src.tcp_est = 1; 836 pf_add_threshold(&src_node->conn_rate); 837 838 if (state->rule->max_src_conn && 839 state->rule->max_src_conn < 840 src_node->conn) { 841 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 842 limited = true; 843 } 844 845 if (state->rule->max_src_conn_rate.limit && 846 pf_check_threshold(&src_node->conn_rate)) { 847 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 848 limited = true; 849 } 850 851 if (!limited) 852 goto done; 853 854 /* Kill this state. */ 855 state->timeout = PFTM_PURGE; 856 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 857 858 if (state->rule->overload_tbl == NULL) 859 goto done; 860 861 /* Schedule overloading and flushing task. */ 862 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 863 if (pfoe == NULL) 864 goto done; /* too bad :( */ 865 866 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 867 pfoe->af = state->key[PF_SK_WIRE]->af; 868 pfoe->rule = state->rule; 869 pfoe->dir = state->direction; 870 PF_OVERLOADQ_LOCK(); 871 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 872 PF_OVERLOADQ_UNLOCK(); 873 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 874 875 done: 876 PF_SRC_NODE_UNLOCK(src_node); 877 return (limited); 878 } 879 880 static void 881 pf_overload_task(void *v, int pending) 882 { 883 struct pf_overload_head queue; 884 struct pfr_addr p; 885 struct pf_overload_entry *pfoe, *pfoe1; 886 uint32_t killed = 0; 887 888 CURVNET_SET((struct vnet *)v); 889 890 PF_OVERLOADQ_LOCK(); 891 queue = V_pf_overloadqueue; 892 SLIST_INIT(&V_pf_overloadqueue); 893 PF_OVERLOADQ_UNLOCK(); 894 895 bzero(&p, sizeof(p)); 896 SLIST_FOREACH(pfoe, &queue, next) { 897 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 898 if (V_pf_status.debug >= PF_DEBUG_MISC) { 899 printf("%s: blocking address ", __func__); 900 pf_print_host(&pfoe->addr, 0, pfoe->af); 901 printf("\n"); 902 } 903 904 p.pfra_af = pfoe->af; 905 switch (pfoe->af) { 906 #ifdef INET 907 case AF_INET: 908 p.pfra_net = 32; 909 p.pfra_ip4addr = pfoe->addr.v4; 910 break; 911 #endif /* INET */ 912 #ifdef INET6 913 case AF_INET6: 914 p.pfra_net = 128; 915 p.pfra_ip6addr = pfoe->addr.v6; 916 break; 917 #endif /* INET6 */ 918 default: 919 unhandled_af(pfoe->af); 920 } 921 922 PF_RULES_WLOCK(); 923 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 924 PF_RULES_WUNLOCK(); 925 } 926 927 /* 928 * Remove those entries, that don't need flushing. 929 */ 930 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 931 if (pfoe->rule->flush == 0) { 932 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 933 free(pfoe, M_PFTEMP); 934 } else 935 counter_u64_add( 936 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 937 938 /* If nothing to flush, return. */ 939 if (SLIST_EMPTY(&queue)) { 940 CURVNET_RESTORE(); 941 return; 942 } 943 944 for (int i = 0; i <= V_pf_hashmask; i++) { 945 struct pf_idhash *ih = &V_pf_idhash[i]; 946 struct pf_state_key *sk; 947 struct pf_kstate *s; 948 949 PF_HASHROW_LOCK(ih); 950 LIST_FOREACH(s, &ih->states, entry) { 951 sk = s->key[PF_SK_WIRE]; 952 SLIST_FOREACH(pfoe, &queue, next) 953 if (sk->af == pfoe->af && 954 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 955 pfoe->rule == s->rule) && 956 ((pfoe->dir == PF_OUT && 957 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 958 (pfoe->dir == PF_IN && 959 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 960 s->timeout = PFTM_PURGE; 961 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 962 killed++; 963 } 964 } 965 PF_HASHROW_UNLOCK(ih); 966 } 967 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 968 free(pfoe, M_PFTEMP); 969 if (V_pf_status.debug >= PF_DEBUG_MISC) 970 printf("%s: %u states killed", __func__, killed); 971 972 CURVNET_RESTORE(); 973 } 974 975 /* 976 * On node found always returns locked. On not found its configurable. 977 */ 978 struct pf_ksrc_node * 979 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 980 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked) 981 { 982 struct pf_ksrc_node *n; 983 984 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 985 986 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 987 PF_HASHROW_LOCK(*sh); 988 LIST_FOREACH(n, &(*sh)->nodes, entry) 989 if (n->rule == rule && n->af == af && n->type == sn_type && 990 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 991 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 992 break; 993 994 if (n == NULL && !returnlocked) 995 PF_HASHROW_UNLOCK(*sh); 996 997 return (n); 998 } 999 1000 bool 1001 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 1002 { 1003 struct pf_ksrc_node *cur; 1004 1005 if ((*sn) == NULL) 1006 return (false); 1007 1008 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 1009 1010 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 1011 PF_HASHROW_LOCK(sh); 1012 LIST_FOREACH(cur, &(sh->nodes), entry) { 1013 if (cur == (*sn) && 1014 cur->expire != 1) /* Ignore nodes being killed */ 1015 return (true); 1016 } 1017 PF_HASHROW_UNLOCK(sh); 1018 (*sn) = NULL; 1019 return (false); 1020 } 1021 1022 static void 1023 pf_free_src_node(struct pf_ksrc_node *sn) 1024 { 1025 1026 for (int i = 0; i < 2; i++) { 1027 counter_u64_free(sn->bytes[i]); 1028 counter_u64_free(sn->packets[i]); 1029 } 1030 uma_zfree(V_pf_sources_z, sn); 1031 } 1032 1033 static u_short 1034 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX], 1035 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule, 1036 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr, 1037 struct pfi_kkif *rkif, pf_sn_types_t sn_type) 1038 { 1039 u_short reason = 0; 1040 struct pf_krule *r_track = rule; 1041 struct pf_ksrc_node **sn = &(sns[sn_type]); 1042 struct pf_srchash **sh = &(snhs[sn_type]); 1043 1044 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL), 1045 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__)); 1046 1047 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK), 1048 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__)); 1049 1050 /* 1051 * XXX: There could be a KASSERT for 1052 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR) 1053 * but we'd need to pass pool *only* for this KASSERT. 1054 */ 1055 1056 if ( (rule->rule_flag & PFRULE_SRCTRACK) && 1057 !(rule->rule_flag & PFRULE_RULESRCTRACK)) 1058 r_track = &V_pf_default_rule; 1059 1060 /* 1061 * Request the sh to always be locked, as we might insert a new sn. 1062 */ 1063 if (*sn == NULL) 1064 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true); 1065 1066 if (*sn == NULL) { 1067 PF_HASHROW_ASSERT(*sh); 1068 1069 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes && 1070 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) { 1071 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1072 reason = PFRES_SRCLIMIT; 1073 goto done; 1074 } 1075 1076 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1077 if ((*sn) == NULL) { 1078 reason = PFRES_MEMORY; 1079 goto done; 1080 } 1081 1082 for (int i = 0; i < 2; i++) { 1083 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1084 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1085 1086 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1087 pf_free_src_node(*sn); 1088 reason = PFRES_MEMORY; 1089 goto done; 1090 } 1091 } 1092 1093 if (sn_type == PF_SN_LIMIT) 1094 pf_init_threshold(&(*sn)->conn_rate, 1095 rule->max_src_conn_rate.limit, 1096 rule->max_src_conn_rate.seconds); 1097 1098 MPASS((*sn)->lock == NULL); 1099 (*sn)->lock = &(*sh)->lock; 1100 1101 (*sn)->af = af; 1102 (*sn)->rule = r_track; 1103 PF_ACPY(&(*sn)->addr, src, af); 1104 if (raddr != NULL) 1105 PF_ACPY(&(*sn)->raddr, raddr, af); 1106 (*sn)->rkif = rkif; 1107 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1108 (*sn)->creation = time_uptime; 1109 (*sn)->ruletype = rule->action; 1110 (*sn)->type = sn_type; 1111 counter_u64_add(r_track->src_nodes[sn_type], 1); 1112 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1113 } else { 1114 if (sn_type == PF_SN_LIMIT && rule->max_src_states && 1115 (*sn)->states >= rule->max_src_states) { 1116 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1117 1); 1118 reason = PFRES_SRCLIMIT; 1119 goto done; 1120 } 1121 } 1122 done: 1123 if (reason == 0) 1124 (*sn)->states++; 1125 else 1126 (*sn) = NULL; 1127 1128 PF_HASHROW_UNLOCK(*sh); 1129 return (reason); 1130 } 1131 1132 void 1133 pf_unlink_src_node(struct pf_ksrc_node *src) 1134 { 1135 PF_SRC_NODE_LOCK_ASSERT(src); 1136 1137 LIST_REMOVE(src, entry); 1138 if (src->rule) 1139 counter_u64_add(src->rule->src_nodes[src->type], -1); 1140 } 1141 1142 u_int 1143 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1144 { 1145 struct pf_ksrc_node *sn, *tmp; 1146 u_int count = 0; 1147 1148 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1149 pf_free_src_node(sn); 1150 count++; 1151 } 1152 1153 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1154 1155 return (count); 1156 } 1157 1158 void 1159 pf_mtag_initialize(void) 1160 { 1161 1162 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1163 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1164 UMA_ALIGN_PTR, 0); 1165 } 1166 1167 /* Per-vnet data storage structures initialization. */ 1168 void 1169 pf_initialize(void) 1170 { 1171 struct pf_keyhash *kh; 1172 struct pf_idhash *ih; 1173 struct pf_srchash *sh; 1174 struct pf_udpendpointhash *uh; 1175 u_int i; 1176 1177 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1178 V_pf_hashsize = PF_HASHSIZ; 1179 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1180 V_pf_srchashsize = PF_SRCHASHSIZ; 1181 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1182 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1183 1184 V_pf_hashseed = arc4random(); 1185 1186 /* States and state keys storage. */ 1187 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1188 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1189 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1190 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1191 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1192 1193 V_pf_state_key_z = uma_zcreate("pf state keys", 1194 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1195 UMA_ALIGN_PTR, 0); 1196 1197 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1198 M_PFHASH, M_NOWAIT | M_ZERO); 1199 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1200 M_PFHASH, M_NOWAIT | M_ZERO); 1201 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1202 printf("pf: Unable to allocate memory for " 1203 "state_hashsize %lu.\n", V_pf_hashsize); 1204 1205 free(V_pf_keyhash, M_PFHASH); 1206 free(V_pf_idhash, M_PFHASH); 1207 1208 V_pf_hashsize = PF_HASHSIZ; 1209 V_pf_keyhash = mallocarray(V_pf_hashsize, 1210 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1211 V_pf_idhash = mallocarray(V_pf_hashsize, 1212 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1213 } 1214 1215 V_pf_hashmask = V_pf_hashsize - 1; 1216 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1217 i++, kh++, ih++) { 1218 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1219 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1220 } 1221 1222 /* Source nodes. */ 1223 V_pf_sources_z = uma_zcreate("pf source nodes", 1224 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1225 0); 1226 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1227 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1228 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1229 1230 V_pf_srchash = mallocarray(V_pf_srchashsize, 1231 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1232 if (V_pf_srchash == NULL) { 1233 printf("pf: Unable to allocate memory for " 1234 "source_hashsize %lu.\n", V_pf_srchashsize); 1235 1236 V_pf_srchashsize = PF_SRCHASHSIZ; 1237 V_pf_srchash = mallocarray(V_pf_srchashsize, 1238 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1239 } 1240 1241 V_pf_srchashmask = V_pf_srchashsize - 1; 1242 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1243 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1244 1245 1246 /* UDP endpoint mappings. */ 1247 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1248 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1249 UMA_ALIGN_PTR, 0); 1250 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1251 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1252 if (V_pf_udpendpointhash == NULL) { 1253 printf("pf: Unable to allocate memory for " 1254 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1255 1256 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1257 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1258 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1259 } 1260 1261 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1262 for (i = 0, uh = V_pf_udpendpointhash; 1263 i <= V_pf_udpendpointhashmask; 1264 i++, uh++) { 1265 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1266 MTX_DEF | MTX_DUPOK); 1267 } 1268 1269 /* ALTQ */ 1270 TAILQ_INIT(&V_pf_altqs[0]); 1271 TAILQ_INIT(&V_pf_altqs[1]); 1272 TAILQ_INIT(&V_pf_altqs[2]); 1273 TAILQ_INIT(&V_pf_altqs[3]); 1274 TAILQ_INIT(&V_pf_pabuf[0]); 1275 TAILQ_INIT(&V_pf_pabuf[1]); 1276 TAILQ_INIT(&V_pf_pabuf[2]); 1277 V_pf_altqs_active = &V_pf_altqs[0]; 1278 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1279 V_pf_altqs_inactive = &V_pf_altqs[2]; 1280 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1281 1282 /* Send & overload+flush queues. */ 1283 STAILQ_INIT(&V_pf_sendqueue); 1284 SLIST_INIT(&V_pf_overloadqueue); 1285 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1286 1287 /* Unlinked, but may be referenced rules. */ 1288 TAILQ_INIT(&V_pf_unlinked_rules); 1289 } 1290 1291 void 1292 pf_mtag_cleanup(void) 1293 { 1294 1295 uma_zdestroy(pf_mtag_z); 1296 } 1297 1298 void 1299 pf_cleanup(void) 1300 { 1301 struct pf_keyhash *kh; 1302 struct pf_idhash *ih; 1303 struct pf_srchash *sh; 1304 struct pf_udpendpointhash *uh; 1305 struct pf_send_entry *pfse, *next; 1306 u_int i; 1307 1308 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1309 i <= V_pf_hashmask; 1310 i++, kh++, ih++) { 1311 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1312 __func__)); 1313 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1314 __func__)); 1315 mtx_destroy(&kh->lock); 1316 mtx_destroy(&ih->lock); 1317 } 1318 free(V_pf_keyhash, M_PFHASH); 1319 free(V_pf_idhash, M_PFHASH); 1320 1321 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1322 KASSERT(LIST_EMPTY(&sh->nodes), 1323 ("%s: source node hash not empty", __func__)); 1324 mtx_destroy(&sh->lock); 1325 } 1326 free(V_pf_srchash, M_PFHASH); 1327 1328 for (i = 0, uh = V_pf_udpendpointhash; 1329 i <= V_pf_udpendpointhashmask; 1330 i++, uh++) { 1331 KASSERT(LIST_EMPTY(&uh->endpoints), 1332 ("%s: udp endpoint hash not empty", __func__)); 1333 mtx_destroy(&uh->lock); 1334 } 1335 free(V_pf_udpendpointhash, M_PFHASH); 1336 1337 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1338 m_freem(pfse->pfse_m); 1339 free(pfse, M_PFTEMP); 1340 } 1341 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1342 1343 uma_zdestroy(V_pf_sources_z); 1344 uma_zdestroy(V_pf_state_z); 1345 uma_zdestroy(V_pf_state_key_z); 1346 uma_zdestroy(V_pf_udp_mapping_z); 1347 } 1348 1349 static int 1350 pf_mtag_uminit(void *mem, int size, int how) 1351 { 1352 struct m_tag *t; 1353 1354 t = (struct m_tag *)mem; 1355 t->m_tag_cookie = MTAG_ABI_COMPAT; 1356 t->m_tag_id = PACKET_TAG_PF; 1357 t->m_tag_len = sizeof(struct pf_mtag); 1358 t->m_tag_free = pf_mtag_free; 1359 1360 return (0); 1361 } 1362 1363 static void 1364 pf_mtag_free(struct m_tag *t) 1365 { 1366 1367 uma_zfree(pf_mtag_z, t); 1368 } 1369 1370 struct pf_mtag * 1371 pf_get_mtag(struct mbuf *m) 1372 { 1373 struct m_tag *mtag; 1374 1375 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1376 return ((struct pf_mtag *)(mtag + 1)); 1377 1378 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1379 if (mtag == NULL) 1380 return (NULL); 1381 bzero(mtag + 1, sizeof(struct pf_mtag)); 1382 m_tag_prepend(m, mtag); 1383 1384 return ((struct pf_mtag *)(mtag + 1)); 1385 } 1386 1387 static int 1388 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1389 struct pf_kstate *s) 1390 { 1391 struct pf_keyhash *khs, *khw, *kh; 1392 struct pf_state_key *sk, *cur; 1393 struct pf_kstate *si, *olds = NULL; 1394 int idx; 1395 1396 NET_EPOCH_ASSERT(); 1397 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1398 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1399 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1400 1401 /* 1402 * We need to lock hash slots of both keys. To avoid deadlock 1403 * we always lock the slot with lower address first. Unlock order 1404 * isn't important. 1405 * 1406 * We also need to lock ID hash slot before dropping key 1407 * locks. On success we return with ID hash slot locked. 1408 */ 1409 1410 if (skw == sks) { 1411 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1412 PF_HASHROW_LOCK(khs); 1413 } else { 1414 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1415 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1416 if (khs == khw) { 1417 PF_HASHROW_LOCK(khs); 1418 } else if (khs < khw) { 1419 PF_HASHROW_LOCK(khs); 1420 PF_HASHROW_LOCK(khw); 1421 } else { 1422 PF_HASHROW_LOCK(khw); 1423 PF_HASHROW_LOCK(khs); 1424 } 1425 } 1426 1427 #define KEYS_UNLOCK() do { \ 1428 if (khs != khw) { \ 1429 PF_HASHROW_UNLOCK(khs); \ 1430 PF_HASHROW_UNLOCK(khw); \ 1431 } else \ 1432 PF_HASHROW_UNLOCK(khs); \ 1433 } while (0) 1434 1435 /* 1436 * First run: start with wire key. 1437 */ 1438 sk = skw; 1439 kh = khw; 1440 idx = PF_SK_WIRE; 1441 1442 MPASS(s->lock == NULL); 1443 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1444 1445 keyattach: 1446 LIST_FOREACH(cur, &kh->keys, entry) 1447 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1448 break; 1449 1450 if (cur != NULL) { 1451 /* Key exists. Check for same kif, if none, add to key. */ 1452 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1453 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1454 1455 PF_HASHROW_LOCK(ih); 1456 if (si->kif == s->kif && 1457 ((si->key[PF_SK_WIRE]->af == sk->af && 1458 si->direction == s->direction) || 1459 (si->key[PF_SK_WIRE]->af != 1460 si->key[PF_SK_STACK]->af && 1461 sk->af == si->key[PF_SK_STACK]->af && 1462 si->direction != s->direction))) { 1463 bool reuse = false; 1464 1465 if (sk->proto == IPPROTO_TCP && 1466 si->src.state >= TCPS_FIN_WAIT_2 && 1467 si->dst.state >= TCPS_FIN_WAIT_2) 1468 reuse = true; 1469 1470 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1471 printf("pf: %s key attach " 1472 "%s on %s: ", 1473 (idx == PF_SK_WIRE) ? 1474 "wire" : "stack", 1475 reuse ? "reuse" : "failed", 1476 s->kif->pfik_name); 1477 pf_print_state_parts(s, 1478 (idx == PF_SK_WIRE) ? 1479 sk : NULL, 1480 (idx == PF_SK_STACK) ? 1481 sk : NULL); 1482 printf(", existing: "); 1483 pf_print_state_parts(si, 1484 (idx == PF_SK_WIRE) ? 1485 sk : NULL, 1486 (idx == PF_SK_STACK) ? 1487 sk : NULL); 1488 printf("\n"); 1489 } 1490 1491 if (reuse) { 1492 /* 1493 * New state matches an old >FIN_WAIT_2 1494 * state. We can't drop key hash locks, 1495 * thus we can't unlink it properly. 1496 * 1497 * As a workaround we drop it into 1498 * TCPS_CLOSED state, schedule purge 1499 * ASAP and push it into the very end 1500 * of the slot TAILQ, so that it won't 1501 * conflict with our new state. 1502 */ 1503 pf_set_protostate(si, PF_PEER_BOTH, 1504 TCPS_CLOSED); 1505 si->timeout = PFTM_PURGE; 1506 olds = si; 1507 } else { 1508 s->timeout = PFTM_UNLINKED; 1509 if (idx == PF_SK_STACK) 1510 /* 1511 * Remove the wire key from 1512 * the hash. Other threads 1513 * can't be referencing it 1514 * because we still hold the 1515 * hash lock. 1516 */ 1517 pf_state_key_detach(s, 1518 PF_SK_WIRE); 1519 PF_HASHROW_UNLOCK(ih); 1520 KEYS_UNLOCK(); 1521 if (idx == PF_SK_WIRE) 1522 /* 1523 * We've not inserted either key. 1524 * Free both. 1525 */ 1526 uma_zfree(V_pf_state_key_z, skw); 1527 if (skw != sks) 1528 uma_zfree( 1529 V_pf_state_key_z, 1530 sks); 1531 return (EEXIST); /* collision! */ 1532 } 1533 } 1534 PF_HASHROW_UNLOCK(ih); 1535 } 1536 uma_zfree(V_pf_state_key_z, sk); 1537 s->key[idx] = cur; 1538 } else { 1539 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1540 s->key[idx] = sk; 1541 } 1542 1543 stateattach: 1544 /* List is sorted, if-bound states before floating. */ 1545 if (s->kif == V_pfi_all) 1546 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1547 else 1548 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1549 1550 if (olds) { 1551 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1552 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1553 key_list[idx]); 1554 olds = NULL; 1555 } 1556 1557 /* 1558 * Attach done. See how should we (or should not?) 1559 * attach a second key. 1560 */ 1561 if (sks == skw) { 1562 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1563 idx = PF_SK_STACK; 1564 sks = NULL; 1565 goto stateattach; 1566 } else if (sks != NULL) { 1567 /* 1568 * Continue attaching with stack key. 1569 */ 1570 sk = sks; 1571 kh = khs; 1572 idx = PF_SK_STACK; 1573 sks = NULL; 1574 goto keyattach; 1575 } 1576 1577 PF_STATE_LOCK(s); 1578 KEYS_UNLOCK(); 1579 1580 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1581 ("%s failure", __func__)); 1582 1583 return (0); 1584 #undef KEYS_UNLOCK 1585 } 1586 1587 static void 1588 pf_detach_state(struct pf_kstate *s) 1589 { 1590 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1591 struct pf_keyhash *kh; 1592 1593 NET_EPOCH_ASSERT(); 1594 MPASS(s->timeout >= PFTM_MAX); 1595 1596 pf_sctp_multihome_detach_addr(s); 1597 1598 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1599 V_pflow_export_state_ptr(s); 1600 1601 if (sks != NULL) { 1602 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1603 PF_HASHROW_LOCK(kh); 1604 if (s->key[PF_SK_STACK] != NULL) 1605 pf_state_key_detach(s, PF_SK_STACK); 1606 /* 1607 * If both point to same key, then we are done. 1608 */ 1609 if (sks == s->key[PF_SK_WIRE]) { 1610 pf_state_key_detach(s, PF_SK_WIRE); 1611 PF_HASHROW_UNLOCK(kh); 1612 return; 1613 } 1614 PF_HASHROW_UNLOCK(kh); 1615 } 1616 1617 if (s->key[PF_SK_WIRE] != NULL) { 1618 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1619 PF_HASHROW_LOCK(kh); 1620 if (s->key[PF_SK_WIRE] != NULL) 1621 pf_state_key_detach(s, PF_SK_WIRE); 1622 PF_HASHROW_UNLOCK(kh); 1623 } 1624 } 1625 1626 static void 1627 pf_state_key_detach(struct pf_kstate *s, int idx) 1628 { 1629 struct pf_state_key *sk = s->key[idx]; 1630 #ifdef INVARIANTS 1631 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1632 1633 PF_HASHROW_ASSERT(kh); 1634 #endif /* INVARIANTS */ 1635 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1636 s->key[idx] = NULL; 1637 1638 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1639 LIST_REMOVE(sk, entry); 1640 uma_zfree(V_pf_state_key_z, sk); 1641 } 1642 } 1643 1644 static int 1645 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1646 { 1647 struct pf_state_key *sk = mem; 1648 1649 bzero(sk, sizeof(struct pf_state_key_cmp)); 1650 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1651 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1652 1653 return (0); 1654 } 1655 1656 static int 1657 pf_state_key_addr_setup(struct pf_pdesc *pd, 1658 struct pf_state_key_cmp *key, int multi) 1659 { 1660 struct pf_addr *saddr = pd->src; 1661 struct pf_addr *daddr = pd->dst; 1662 #ifdef INET6 1663 struct nd_neighbor_solicit nd; 1664 struct pf_addr *target; 1665 u_short action, reason; 1666 1667 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1668 goto copy; 1669 1670 switch (pd->hdr.icmp6.icmp6_type) { 1671 case ND_NEIGHBOR_SOLICIT: 1672 if (multi) 1673 return (-1); 1674 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1675 return (-1); 1676 target = (struct pf_addr *)&nd.nd_ns_target; 1677 daddr = target; 1678 break; 1679 case ND_NEIGHBOR_ADVERT: 1680 if (multi) 1681 return (-1); 1682 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1683 return (-1); 1684 target = (struct pf_addr *)&nd.nd_ns_target; 1685 saddr = target; 1686 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1687 key->addr[pd->didx].addr32[0] = 0; 1688 key->addr[pd->didx].addr32[1] = 0; 1689 key->addr[pd->didx].addr32[2] = 0; 1690 key->addr[pd->didx].addr32[3] = 0; 1691 daddr = NULL; /* overwritten */ 1692 } 1693 break; 1694 default: 1695 if (multi) { 1696 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1697 key->addr[pd->sidx].addr32[1] = 0; 1698 key->addr[pd->sidx].addr32[2] = 0; 1699 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1700 saddr = NULL; /* overwritten */ 1701 } 1702 } 1703 copy: 1704 #endif /* INET6 */ 1705 if (saddr) 1706 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1707 if (daddr) 1708 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1709 1710 return (0); 1711 } 1712 1713 int 1714 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1715 struct pf_state_key **sk, struct pf_state_key **nk) 1716 { 1717 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1718 if (*sk == NULL) 1719 return (ENOMEM); 1720 1721 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1722 0)) { 1723 uma_zfree(V_pf_state_key_z, *sk); 1724 *sk = NULL; 1725 return (ENOMEM); 1726 } 1727 1728 (*sk)->port[pd->sidx] = sport; 1729 (*sk)->port[pd->didx] = dport; 1730 (*sk)->proto = pd->proto; 1731 (*sk)->af = pd->af; 1732 1733 *nk = pf_state_key_clone(*sk); 1734 if (*nk == NULL) { 1735 uma_zfree(V_pf_state_key_z, *sk); 1736 *sk = NULL; 1737 return (ENOMEM); 1738 } 1739 1740 if (pd->af != pd->naf) { 1741 (*sk)->port[pd->sidx] = pd->osport; 1742 (*sk)->port[pd->didx] = pd->odport; 1743 1744 (*nk)->af = pd->naf; 1745 1746 /* 1747 * We're overwriting an address here, so potentially there's bits of an IPv6 1748 * address left in here. Clear that out first. 1749 */ 1750 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1751 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1752 if (pd->dir == PF_IN) { 1753 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf); 1754 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf); 1755 (*nk)->port[pd->didx] = pd->nsport; 1756 (*nk)->port[pd->sidx] = pd->ndport; 1757 } else { 1758 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->nsaddr, pd->naf); 1759 PF_ACPY(&(*nk)->addr[pd->didx], &pd->ndaddr, pd->naf); 1760 (*nk)->port[pd->sidx] = pd->nsport; 1761 (*nk)->port[pd->didx] = pd->ndport; 1762 } 1763 1764 switch (pd->proto) { 1765 case IPPROTO_ICMP: 1766 (*nk)->proto = IPPROTO_ICMPV6; 1767 break; 1768 case IPPROTO_ICMPV6: 1769 (*nk)->proto = IPPROTO_ICMP; 1770 break; 1771 default: 1772 (*nk)->proto = pd->proto; 1773 } 1774 } 1775 1776 return (0); 1777 } 1778 1779 struct pf_state_key * 1780 pf_state_key_clone(const struct pf_state_key *orig) 1781 { 1782 struct pf_state_key *sk; 1783 1784 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1785 if (sk == NULL) 1786 return (NULL); 1787 1788 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1789 1790 return (sk); 1791 } 1792 1793 int 1794 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1795 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1796 { 1797 struct pf_idhash *ih; 1798 struct pf_kstate *cur; 1799 int error; 1800 1801 NET_EPOCH_ASSERT(); 1802 1803 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1804 ("%s: sks not pristine", __func__)); 1805 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1806 ("%s: skw not pristine", __func__)); 1807 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1808 1809 s->kif = kif; 1810 s->orig_kif = orig_kif; 1811 1812 if (s->id == 0 && s->creatorid == 0) { 1813 s->id = alloc_unr64(&V_pf_stateid); 1814 s->id = htobe64(s->id); 1815 s->creatorid = V_pf_status.hostid; 1816 } 1817 1818 /* Returns with ID locked on success. */ 1819 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1820 return (error); 1821 skw = sks = NULL; 1822 1823 ih = &V_pf_idhash[PF_IDHASH(s)]; 1824 PF_HASHROW_ASSERT(ih); 1825 LIST_FOREACH(cur, &ih->states, entry) 1826 if (cur->id == s->id && cur->creatorid == s->creatorid) 1827 break; 1828 1829 if (cur != NULL) { 1830 s->timeout = PFTM_UNLINKED; 1831 PF_HASHROW_UNLOCK(ih); 1832 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1833 printf("pf: state ID collision: " 1834 "id: %016llx creatorid: %08x\n", 1835 (unsigned long long)be64toh(s->id), 1836 ntohl(s->creatorid)); 1837 } 1838 pf_detach_state(s); 1839 return (EEXIST); 1840 } 1841 LIST_INSERT_HEAD(&ih->states, s, entry); 1842 /* One for keys, one for ID hash. */ 1843 refcount_init(&s->refs, 2); 1844 1845 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1846 if (V_pfsync_insert_state_ptr != NULL) 1847 V_pfsync_insert_state_ptr(s); 1848 1849 /* Returns locked. */ 1850 return (0); 1851 } 1852 1853 /* 1854 * Find state by ID: returns with locked row on success. 1855 */ 1856 struct pf_kstate * 1857 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1858 { 1859 struct pf_idhash *ih; 1860 struct pf_kstate *s; 1861 1862 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1863 1864 ih = &V_pf_idhash[PF_IDHASHID(id)]; 1865 1866 PF_HASHROW_LOCK(ih); 1867 LIST_FOREACH(s, &ih->states, entry) 1868 if (s->id == id && s->creatorid == creatorid) 1869 break; 1870 1871 if (s == NULL) 1872 PF_HASHROW_UNLOCK(ih); 1873 1874 return (s); 1875 } 1876 1877 /* 1878 * Find state by key. 1879 * Returns with ID hash slot locked on success. 1880 */ 1881 static struct pf_kstate * 1882 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1883 u_int dir) 1884 { 1885 struct pf_keyhash *kh; 1886 struct pf_state_key *sk; 1887 struct pf_kstate *s; 1888 int idx; 1889 1890 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1891 1892 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1893 1894 PF_HASHROW_LOCK(kh); 1895 LIST_FOREACH(sk, &kh->keys, entry) 1896 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1897 break; 1898 if (sk == NULL) { 1899 PF_HASHROW_UNLOCK(kh); 1900 return (NULL); 1901 } 1902 1903 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1904 1905 /* List is sorted, if-bound states before floating ones. */ 1906 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1907 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1908 PF_STATE_LOCK(s); 1909 PF_HASHROW_UNLOCK(kh); 1910 if (__predict_false(s->timeout >= PFTM_MAX)) { 1911 /* 1912 * State is either being processed by 1913 * pf_remove_state() in an other thread, or 1914 * is scheduled for immediate expiry. 1915 */ 1916 PF_STATE_UNLOCK(s); 1917 return (NULL); 1918 } 1919 return (s); 1920 } 1921 1922 /* Look through the other list, in case of AF-TO */ 1923 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1924 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1925 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1926 continue; 1927 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1928 PF_STATE_LOCK(s); 1929 PF_HASHROW_UNLOCK(kh); 1930 if (__predict_false(s->timeout >= PFTM_MAX)) { 1931 /* 1932 * State is either being processed by 1933 * pf_remove_state() in an other thread, or 1934 * is scheduled for immediate expiry. 1935 */ 1936 PF_STATE_UNLOCK(s); 1937 return (NULL); 1938 } 1939 return (s); 1940 } 1941 } 1942 1943 PF_HASHROW_UNLOCK(kh); 1944 1945 return (NULL); 1946 } 1947 1948 /* 1949 * Returns with ID hash slot locked on success. 1950 */ 1951 struct pf_kstate * 1952 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1953 { 1954 struct pf_keyhash *kh; 1955 struct pf_state_key *sk; 1956 struct pf_kstate *s, *ret = NULL; 1957 int idx, inout = 0; 1958 1959 if (more != NULL) 1960 *more = 0; 1961 1962 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1963 1964 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1965 1966 PF_HASHROW_LOCK(kh); 1967 LIST_FOREACH(sk, &kh->keys, entry) 1968 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1969 break; 1970 if (sk == NULL) { 1971 PF_HASHROW_UNLOCK(kh); 1972 return (NULL); 1973 } 1974 switch (dir) { 1975 case PF_IN: 1976 idx = PF_SK_WIRE; 1977 break; 1978 case PF_OUT: 1979 idx = PF_SK_STACK; 1980 break; 1981 case PF_INOUT: 1982 idx = PF_SK_WIRE; 1983 inout = 1; 1984 break; 1985 default: 1986 panic("%s: dir %u", __func__, dir); 1987 } 1988 second_run: 1989 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1990 if (more == NULL) { 1991 PF_STATE_LOCK(s); 1992 PF_HASHROW_UNLOCK(kh); 1993 return (s); 1994 } 1995 1996 if (ret) 1997 (*more)++; 1998 else { 1999 ret = s; 2000 PF_STATE_LOCK(s); 2001 } 2002 } 2003 if (inout == 1) { 2004 inout = 0; 2005 idx = PF_SK_STACK; 2006 goto second_run; 2007 } 2008 PF_HASHROW_UNLOCK(kh); 2009 2010 return (ret); 2011 } 2012 2013 /* 2014 * FIXME 2015 * This routine is inefficient -- locks the state only to unlock immediately on 2016 * return. 2017 * It is racy -- after the state is unlocked nothing stops other threads from 2018 * removing it. 2019 */ 2020 bool 2021 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 2022 { 2023 struct pf_kstate *s; 2024 2025 s = pf_find_state_all(key, dir, NULL); 2026 if (s != NULL) { 2027 PF_STATE_UNLOCK(s); 2028 return (true); 2029 } 2030 return (false); 2031 } 2032 2033 struct pf_udp_mapping * 2034 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 2035 struct pf_addr *nat_addr, uint16_t nat_port) 2036 { 2037 struct pf_udp_mapping *mapping; 2038 2039 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 2040 if (mapping == NULL) 2041 return (NULL); 2042 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 2043 mapping->endpoints[0].port = src_port; 2044 mapping->endpoints[0].af = af; 2045 mapping->endpoints[0].mapping = mapping; 2046 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 2047 mapping->endpoints[1].port = nat_port; 2048 mapping->endpoints[1].af = af; 2049 mapping->endpoints[1].mapping = mapping; 2050 refcount_init(&mapping->refs, 1); 2051 return (mapping); 2052 } 2053 2054 int 2055 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2056 { 2057 struct pf_udpendpointhash *h0, *h1; 2058 struct pf_udp_endpoint *endpoint; 2059 int ret = EEXIST; 2060 2061 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2062 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2063 if (h0 == h1) { 2064 PF_HASHROW_LOCK(h0); 2065 } else if (h0 < h1) { 2066 PF_HASHROW_LOCK(h0); 2067 PF_HASHROW_LOCK(h1); 2068 } else { 2069 PF_HASHROW_LOCK(h1); 2070 PF_HASHROW_LOCK(h0); 2071 } 2072 2073 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2074 if (bcmp(endpoint, &mapping->endpoints[0], 2075 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2076 break; 2077 } 2078 if (endpoint != NULL) 2079 goto cleanup; 2080 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2081 if (bcmp(endpoint, &mapping->endpoints[1], 2082 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2083 break; 2084 } 2085 if (endpoint != NULL) 2086 goto cleanup; 2087 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2088 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2089 ret = 0; 2090 2091 cleanup: 2092 if (h0 != h1) { 2093 PF_HASHROW_UNLOCK(h0); 2094 PF_HASHROW_UNLOCK(h1); 2095 } else { 2096 PF_HASHROW_UNLOCK(h0); 2097 } 2098 return (ret); 2099 } 2100 2101 void 2102 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2103 { 2104 /* refcount is synchronized on the source endpoint's row lock */ 2105 struct pf_udpendpointhash *h0, *h1; 2106 2107 if (mapping == NULL) 2108 return; 2109 2110 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2111 PF_HASHROW_LOCK(h0); 2112 if (refcount_release(&mapping->refs)) { 2113 LIST_REMOVE(&mapping->endpoints[0], entry); 2114 PF_HASHROW_UNLOCK(h0); 2115 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2116 PF_HASHROW_LOCK(h1); 2117 LIST_REMOVE(&mapping->endpoints[1], entry); 2118 PF_HASHROW_UNLOCK(h1); 2119 2120 uma_zfree(V_pf_udp_mapping_z, mapping); 2121 } else { 2122 PF_HASHROW_UNLOCK(h0); 2123 } 2124 } 2125 2126 2127 struct pf_udp_mapping * 2128 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2129 { 2130 struct pf_udpendpointhash *uh; 2131 struct pf_udp_endpoint *endpoint; 2132 2133 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2134 2135 PF_HASHROW_LOCK(uh); 2136 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2137 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2138 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2139 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2140 break; 2141 } 2142 if (endpoint == NULL) { 2143 PF_HASHROW_UNLOCK(uh); 2144 return (NULL); 2145 } 2146 refcount_acquire(&endpoint->mapping->refs); 2147 PF_HASHROW_UNLOCK(uh); 2148 return (endpoint->mapping); 2149 } 2150 /* END state table stuff */ 2151 2152 static void 2153 pf_send(struct pf_send_entry *pfse) 2154 { 2155 2156 PF_SENDQ_LOCK(); 2157 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2158 PF_SENDQ_UNLOCK(); 2159 swi_sched(V_pf_swi_cookie, 0); 2160 } 2161 2162 static bool 2163 pf_isforlocal(struct mbuf *m, int af) 2164 { 2165 switch (af) { 2166 #ifdef INET 2167 case AF_INET: { 2168 struct ip *ip = mtod(m, struct ip *); 2169 2170 return (in_localip(ip->ip_dst)); 2171 } 2172 #endif /* INET */ 2173 #ifdef INET6 2174 case AF_INET6: { 2175 struct ip6_hdr *ip6; 2176 struct in6_ifaddr *ia; 2177 ip6 = mtod(m, struct ip6_hdr *); 2178 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2179 if (ia == NULL) 2180 return (false); 2181 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2182 } 2183 #endif /* INET6 */ 2184 default: 2185 unhandled_af(af); 2186 } 2187 2188 return (false); 2189 } 2190 2191 int 2192 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2193 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type) 2194 { 2195 /* 2196 * ICMP types marked with PF_OUT are typically responses to 2197 * PF_IN, and will match states in the opposite direction. 2198 * PF_IN ICMP types need to match a state with that type. 2199 */ 2200 *icmp_dir = PF_OUT; 2201 2202 /* Queries (and responses) */ 2203 switch (pd->af) { 2204 #ifdef INET 2205 case AF_INET: 2206 switch (type) { 2207 case ICMP_ECHO: 2208 *icmp_dir = PF_IN; 2209 /* FALLTHROUGH */ 2210 case ICMP_ECHOREPLY: 2211 *virtual_type = ICMP_ECHO; 2212 *virtual_id = pd->hdr.icmp.icmp_id; 2213 break; 2214 2215 case ICMP_TSTAMP: 2216 *icmp_dir = PF_IN; 2217 /* FALLTHROUGH */ 2218 case ICMP_TSTAMPREPLY: 2219 *virtual_type = ICMP_TSTAMP; 2220 *virtual_id = pd->hdr.icmp.icmp_id; 2221 break; 2222 2223 case ICMP_IREQ: 2224 *icmp_dir = PF_IN; 2225 /* FALLTHROUGH */ 2226 case ICMP_IREQREPLY: 2227 *virtual_type = ICMP_IREQ; 2228 *virtual_id = pd->hdr.icmp.icmp_id; 2229 break; 2230 2231 case ICMP_MASKREQ: 2232 *icmp_dir = PF_IN; 2233 /* FALLTHROUGH */ 2234 case ICMP_MASKREPLY: 2235 *virtual_type = ICMP_MASKREQ; 2236 *virtual_id = pd->hdr.icmp.icmp_id; 2237 break; 2238 2239 case ICMP_IPV6_WHEREAREYOU: 2240 *icmp_dir = PF_IN; 2241 /* FALLTHROUGH */ 2242 case ICMP_IPV6_IAMHERE: 2243 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2244 *virtual_id = 0; /* Nothing sane to match on! */ 2245 break; 2246 2247 case ICMP_MOBILE_REGREQUEST: 2248 *icmp_dir = PF_IN; 2249 /* FALLTHROUGH */ 2250 case ICMP_MOBILE_REGREPLY: 2251 *virtual_type = ICMP_MOBILE_REGREQUEST; 2252 *virtual_id = 0; /* Nothing sane to match on! */ 2253 break; 2254 2255 case ICMP_ROUTERSOLICIT: 2256 *icmp_dir = PF_IN; 2257 /* FALLTHROUGH */ 2258 case ICMP_ROUTERADVERT: 2259 *virtual_type = ICMP_ROUTERSOLICIT; 2260 *virtual_id = 0; /* Nothing sane to match on! */ 2261 break; 2262 2263 /* These ICMP types map to other connections */ 2264 case ICMP_UNREACH: 2265 case ICMP_SOURCEQUENCH: 2266 case ICMP_REDIRECT: 2267 case ICMP_TIMXCEED: 2268 case ICMP_PARAMPROB: 2269 /* These will not be used, but set them anyway */ 2270 *icmp_dir = PF_IN; 2271 *virtual_type = type; 2272 *virtual_id = 0; 2273 *virtual_type = htons(*virtual_type); 2274 return (1); /* These types match to another state */ 2275 2276 /* 2277 * All remaining ICMP types get their own states, 2278 * and will only match in one direction. 2279 */ 2280 default: 2281 *icmp_dir = PF_IN; 2282 *virtual_type = type; 2283 *virtual_id = 0; 2284 break; 2285 } 2286 break; 2287 #endif /* INET */ 2288 #ifdef INET6 2289 case AF_INET6: 2290 switch (type) { 2291 case ICMP6_ECHO_REQUEST: 2292 *icmp_dir = PF_IN; 2293 /* FALLTHROUGH */ 2294 case ICMP6_ECHO_REPLY: 2295 *virtual_type = ICMP6_ECHO_REQUEST; 2296 *virtual_id = pd->hdr.icmp6.icmp6_id; 2297 break; 2298 2299 case MLD_LISTENER_QUERY: 2300 case MLD_LISTENER_REPORT: { 2301 /* 2302 * Listener Report can be sent by clients 2303 * without an associated Listener Query. 2304 * In addition to that, when Report is sent as a 2305 * reply to a Query its source and destination 2306 * address are different. 2307 */ 2308 *icmp_dir = PF_IN; 2309 *virtual_type = MLD_LISTENER_QUERY; 2310 *virtual_id = 0; 2311 break; 2312 } 2313 case MLD_MTRACE: 2314 *icmp_dir = PF_IN; 2315 /* FALLTHROUGH */ 2316 case MLD_MTRACE_RESP: 2317 *virtual_type = MLD_MTRACE; 2318 *virtual_id = 0; /* Nothing sane to match on! */ 2319 break; 2320 2321 case ND_NEIGHBOR_SOLICIT: 2322 *icmp_dir = PF_IN; 2323 /* FALLTHROUGH */ 2324 case ND_NEIGHBOR_ADVERT: { 2325 *virtual_type = ND_NEIGHBOR_SOLICIT; 2326 *virtual_id = 0; 2327 break; 2328 } 2329 2330 /* 2331 * These ICMP types map to other connections. 2332 * ND_REDIRECT can't be in this list because the triggering 2333 * packet header is optional. 2334 */ 2335 case ICMP6_DST_UNREACH: 2336 case ICMP6_PACKET_TOO_BIG: 2337 case ICMP6_TIME_EXCEEDED: 2338 case ICMP6_PARAM_PROB: 2339 /* These will not be used, but set them anyway */ 2340 *icmp_dir = PF_IN; 2341 *virtual_type = type; 2342 *virtual_id = 0; 2343 *virtual_type = htons(*virtual_type); 2344 return (1); /* These types match to another state */ 2345 /* 2346 * All remaining ICMP6 types get their own states, 2347 * and will only match in one direction. 2348 */ 2349 default: 2350 *icmp_dir = PF_IN; 2351 *virtual_type = type; 2352 *virtual_id = 0; 2353 break; 2354 } 2355 break; 2356 #endif /* INET6 */ 2357 default: 2358 unhandled_af(pd->af); 2359 } 2360 *virtual_type = htons(*virtual_type); 2361 return (0); /* These types match to their own state */ 2362 } 2363 2364 void 2365 pf_intr(void *v) 2366 { 2367 struct epoch_tracker et; 2368 struct pf_send_head queue; 2369 struct pf_send_entry *pfse, *next; 2370 2371 CURVNET_SET((struct vnet *)v); 2372 2373 PF_SENDQ_LOCK(); 2374 queue = V_pf_sendqueue; 2375 STAILQ_INIT(&V_pf_sendqueue); 2376 PF_SENDQ_UNLOCK(); 2377 2378 NET_EPOCH_ENTER(et); 2379 2380 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2381 switch (pfse->pfse_type) { 2382 #ifdef INET 2383 case PFSE_IP: { 2384 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2385 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2386 ("%s: rcvif != loif", __func__)); 2387 2388 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2389 pfse->pfse_m->m_pkthdr.csum_flags |= 2390 CSUM_IP_VALID | CSUM_IP_CHECKED | 2391 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2392 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2393 ip_input(pfse->pfse_m); 2394 } else { 2395 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2396 NULL); 2397 } 2398 break; 2399 } 2400 case PFSE_ICMP: 2401 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2402 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2403 break; 2404 #endif /* INET */ 2405 #ifdef INET6 2406 case PFSE_IP6: 2407 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2408 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2409 ("%s: rcvif != loif", __func__)); 2410 2411 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2412 M_LOOP; 2413 pfse->pfse_m->m_pkthdr.csum_flags |= 2414 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2415 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2416 ip6_input(pfse->pfse_m); 2417 } else { 2418 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2419 NULL, NULL); 2420 } 2421 break; 2422 case PFSE_ICMP6: 2423 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2424 pfse->icmpopts.code, pfse->icmpopts.mtu); 2425 break; 2426 #endif /* INET6 */ 2427 default: 2428 panic("%s: unknown type", __func__); 2429 } 2430 free(pfse, M_PFTEMP); 2431 } 2432 NET_EPOCH_EXIT(et); 2433 CURVNET_RESTORE(); 2434 } 2435 2436 #define pf_purge_thread_period (hz / 10) 2437 2438 #ifdef PF_WANT_32_TO_64_COUNTER 2439 static void 2440 pf_status_counter_u64_periodic(void) 2441 { 2442 2443 PF_RULES_RASSERT(); 2444 2445 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2446 return; 2447 } 2448 2449 for (int i = 0; i < FCNT_MAX; i++) { 2450 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2451 } 2452 } 2453 2454 static void 2455 pf_kif_counter_u64_periodic(void) 2456 { 2457 struct pfi_kkif *kif; 2458 size_t r, run; 2459 2460 PF_RULES_RASSERT(); 2461 2462 if (__predict_false(V_pf_allkifcount == 0)) { 2463 return; 2464 } 2465 2466 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2467 return; 2468 } 2469 2470 run = V_pf_allkifcount / 10; 2471 if (run < 5) 2472 run = 5; 2473 2474 for (r = 0; r < run; r++) { 2475 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2476 if (kif == NULL) { 2477 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2478 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2479 break; 2480 } 2481 2482 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2483 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2484 2485 for (int i = 0; i < 2; i++) { 2486 for (int j = 0; j < 2; j++) { 2487 for (int k = 0; k < 2; k++) { 2488 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2489 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2490 } 2491 } 2492 } 2493 } 2494 } 2495 2496 static void 2497 pf_rule_counter_u64_periodic(void) 2498 { 2499 struct pf_krule *rule; 2500 size_t r, run; 2501 2502 PF_RULES_RASSERT(); 2503 2504 if (__predict_false(V_pf_allrulecount == 0)) { 2505 return; 2506 } 2507 2508 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2509 return; 2510 } 2511 2512 run = V_pf_allrulecount / 10; 2513 if (run < 5) 2514 run = 5; 2515 2516 for (r = 0; r < run; r++) { 2517 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2518 if (rule == NULL) { 2519 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2520 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2521 break; 2522 } 2523 2524 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2525 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2526 2527 pf_counter_u64_periodic(&rule->evaluations); 2528 for (int i = 0; i < 2; i++) { 2529 pf_counter_u64_periodic(&rule->packets[i]); 2530 pf_counter_u64_periodic(&rule->bytes[i]); 2531 } 2532 } 2533 } 2534 2535 static void 2536 pf_counter_u64_periodic_main(void) 2537 { 2538 PF_RULES_RLOCK_TRACKER; 2539 2540 V_pf_counter_periodic_iter++; 2541 2542 PF_RULES_RLOCK(); 2543 pf_counter_u64_critical_enter(); 2544 pf_status_counter_u64_periodic(); 2545 pf_kif_counter_u64_periodic(); 2546 pf_rule_counter_u64_periodic(); 2547 pf_counter_u64_critical_exit(); 2548 PF_RULES_RUNLOCK(); 2549 } 2550 #else 2551 #define pf_counter_u64_periodic_main() do { } while (0) 2552 #endif 2553 2554 void 2555 pf_purge_thread(void *unused __unused) 2556 { 2557 struct epoch_tracker et; 2558 2559 VNET_ITERATOR_DECL(vnet_iter); 2560 2561 sx_xlock(&pf_end_lock); 2562 while (pf_end_threads == 0) { 2563 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2564 2565 VNET_LIST_RLOCK(); 2566 NET_EPOCH_ENTER(et); 2567 VNET_FOREACH(vnet_iter) { 2568 CURVNET_SET(vnet_iter); 2569 2570 /* Wait until V_pf_default_rule is initialized. */ 2571 if (V_pf_vnet_active == 0) { 2572 CURVNET_RESTORE(); 2573 continue; 2574 } 2575 2576 pf_counter_u64_periodic_main(); 2577 2578 /* 2579 * Process 1/interval fraction of the state 2580 * table every run. 2581 */ 2582 V_pf_purge_idx = 2583 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2584 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2585 2586 /* 2587 * Purge other expired types every 2588 * PFTM_INTERVAL seconds. 2589 */ 2590 if (V_pf_purge_idx == 0) { 2591 /* 2592 * Order is important: 2593 * - states and src nodes reference rules 2594 * - states and rules reference kifs 2595 */ 2596 pf_purge_expired_fragments(); 2597 pf_purge_expired_src_nodes(); 2598 pf_purge_unlinked_rules(); 2599 pfi_kkif_purge(); 2600 } 2601 CURVNET_RESTORE(); 2602 } 2603 NET_EPOCH_EXIT(et); 2604 VNET_LIST_RUNLOCK(); 2605 } 2606 2607 pf_end_threads++; 2608 sx_xunlock(&pf_end_lock); 2609 kproc_exit(0); 2610 } 2611 2612 void 2613 pf_unload_vnet_purge(void) 2614 { 2615 2616 /* 2617 * To cleanse up all kifs and rules we need 2618 * two runs: first one clears reference flags, 2619 * then pf_purge_expired_states() doesn't 2620 * raise them, and then second run frees. 2621 */ 2622 pf_purge_unlinked_rules(); 2623 pfi_kkif_purge(); 2624 2625 /* 2626 * Now purge everything. 2627 */ 2628 pf_purge_expired_states(0, V_pf_hashmask); 2629 pf_purge_fragments(UINT_MAX); 2630 pf_purge_expired_src_nodes(); 2631 2632 /* 2633 * Now all kifs & rules should be unreferenced, 2634 * thus should be successfully freed. 2635 */ 2636 pf_purge_unlinked_rules(); 2637 pfi_kkif_purge(); 2638 } 2639 2640 u_int32_t 2641 pf_state_expires(const struct pf_kstate *state) 2642 { 2643 u_int32_t timeout; 2644 u_int32_t start; 2645 u_int32_t end; 2646 u_int32_t states; 2647 2648 /* handle all PFTM_* > PFTM_MAX here */ 2649 if (state->timeout == PFTM_PURGE) 2650 return (time_uptime); 2651 KASSERT(state->timeout != PFTM_UNLINKED, 2652 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2653 KASSERT((state->timeout < PFTM_MAX), 2654 ("pf_state_expires: timeout > PFTM_MAX")); 2655 timeout = state->rule->timeout[state->timeout]; 2656 if (!timeout) 2657 timeout = V_pf_default_rule.timeout[state->timeout]; 2658 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2659 if (start && state->rule != &V_pf_default_rule) { 2660 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2661 states = counter_u64_fetch(state->rule->states_cur); 2662 } else { 2663 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2664 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2665 states = V_pf_status.states; 2666 } 2667 if (end && states > start && start < end) { 2668 if (states < end) { 2669 timeout = (u_int64_t)timeout * (end - states) / 2670 (end - start); 2671 return ((state->expire / 1000) + timeout); 2672 } 2673 else 2674 return (time_uptime); 2675 } 2676 return ((state->expire / 1000) + timeout); 2677 } 2678 2679 void 2680 pf_purge_expired_src_nodes(void) 2681 { 2682 struct pf_ksrc_node_list freelist; 2683 struct pf_srchash *sh; 2684 struct pf_ksrc_node *cur, *next; 2685 int i; 2686 2687 LIST_INIT(&freelist); 2688 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2689 PF_HASHROW_LOCK(sh); 2690 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2691 if (cur->states == 0 && cur->expire <= time_uptime) { 2692 pf_unlink_src_node(cur); 2693 LIST_INSERT_HEAD(&freelist, cur, entry); 2694 } else if (cur->rule != NULL) 2695 cur->rule->rule_ref |= PFRULE_REFS; 2696 PF_HASHROW_UNLOCK(sh); 2697 } 2698 2699 pf_free_src_nodes(&freelist); 2700 2701 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2702 } 2703 2704 static void 2705 pf_src_tree_remove_state(struct pf_kstate *s) 2706 { 2707 uint32_t timeout; 2708 2709 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2710 s->rule->timeout[PFTM_SRC_NODE] : 2711 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2712 2713 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 2714 if (s->sns[sn_type] == NULL) 2715 continue; 2716 PF_SRC_NODE_LOCK(s->sns[sn_type]); 2717 if (sn_type == PF_SN_LIMIT && s->src.tcp_est) 2718 --(s->sns[sn_type]->conn); 2719 if (--(s->sns[sn_type]->states) == 0) 2720 s->sns[sn_type]->expire = time_uptime + timeout; 2721 PF_SRC_NODE_UNLOCK(s->sns[sn_type]); 2722 s->sns[sn_type] = NULL; 2723 } 2724 2725 } 2726 2727 /* 2728 * Unlink and potentilly free a state. Function may be 2729 * called with ID hash row locked, but always returns 2730 * unlocked, since it needs to go through key hash locking. 2731 */ 2732 int 2733 pf_remove_state(struct pf_kstate *s) 2734 { 2735 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2736 2737 NET_EPOCH_ASSERT(); 2738 PF_HASHROW_ASSERT(ih); 2739 2740 if (s->timeout == PFTM_UNLINKED) { 2741 /* 2742 * State is being processed 2743 * by pf_remove_state() in 2744 * an other thread. 2745 */ 2746 PF_HASHROW_UNLOCK(ih); 2747 return (0); /* XXXGL: undefined actually */ 2748 } 2749 2750 if (s->src.state == PF_TCPS_PROXY_DST) { 2751 /* XXX wire key the right one? */ 2752 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2753 &s->key[PF_SK_WIRE]->addr[1], 2754 &s->key[PF_SK_WIRE]->addr[0], 2755 s->key[PF_SK_WIRE]->port[1], 2756 s->key[PF_SK_WIRE]->port[0], 2757 s->src.seqhi, s->src.seqlo + 1, 2758 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2759 s->act.rtableid); 2760 } 2761 2762 LIST_REMOVE(s, entry); 2763 pf_src_tree_remove_state(s); 2764 2765 if (V_pfsync_delete_state_ptr != NULL) 2766 V_pfsync_delete_state_ptr(s); 2767 2768 STATE_DEC_COUNTERS(s); 2769 2770 s->timeout = PFTM_UNLINKED; 2771 2772 /* Ensure we remove it from the list of halfopen states, if needed. */ 2773 if (s->key[PF_SK_STACK] != NULL && 2774 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2775 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2776 2777 PF_HASHROW_UNLOCK(ih); 2778 2779 pf_detach_state(s); 2780 2781 pf_udp_mapping_release(s->udp_mapping); 2782 2783 /* pf_state_insert() initialises refs to 2 */ 2784 return (pf_release_staten(s, 2)); 2785 } 2786 2787 struct pf_kstate * 2788 pf_alloc_state(int flags) 2789 { 2790 2791 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2792 } 2793 2794 void 2795 pf_free_state(struct pf_kstate *cur) 2796 { 2797 struct pf_krule_item *ri; 2798 2799 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2800 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2801 cur->timeout)); 2802 2803 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2804 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2805 free(ri, M_PF_RULE_ITEM); 2806 } 2807 2808 pf_normalize_tcp_cleanup(cur); 2809 uma_zfree(V_pf_state_z, cur); 2810 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2811 } 2812 2813 /* 2814 * Called only from pf_purge_thread(), thus serialized. 2815 */ 2816 static u_int 2817 pf_purge_expired_states(u_int i, int maxcheck) 2818 { 2819 struct pf_idhash *ih; 2820 struct pf_kstate *s; 2821 struct pf_krule_item *mrm; 2822 size_t count __unused; 2823 2824 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2825 2826 /* 2827 * Go through hash and unlink states that expire now. 2828 */ 2829 while (maxcheck > 0) { 2830 count = 0; 2831 ih = &V_pf_idhash[i]; 2832 2833 /* only take the lock if we expect to do work */ 2834 if (!LIST_EMPTY(&ih->states)) { 2835 relock: 2836 PF_HASHROW_LOCK(ih); 2837 LIST_FOREACH(s, &ih->states, entry) { 2838 if (pf_state_expires(s) <= time_uptime) { 2839 V_pf_status.states -= 2840 pf_remove_state(s); 2841 goto relock; 2842 } 2843 s->rule->rule_ref |= PFRULE_REFS; 2844 if (s->nat_rule != NULL) 2845 s->nat_rule->rule_ref |= PFRULE_REFS; 2846 if (s->anchor != NULL) 2847 s->anchor->rule_ref |= PFRULE_REFS; 2848 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2849 SLIST_FOREACH(mrm, &s->match_rules, entry) 2850 mrm->r->rule_ref |= PFRULE_REFS; 2851 if (s->act.rt_kif) 2852 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2853 count++; 2854 } 2855 PF_HASHROW_UNLOCK(ih); 2856 } 2857 2858 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2859 2860 /* Return when we hit end of hash. */ 2861 if (++i > V_pf_hashmask) { 2862 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2863 return (0); 2864 } 2865 2866 maxcheck--; 2867 } 2868 2869 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2870 2871 return (i); 2872 } 2873 2874 static void 2875 pf_purge_unlinked_rules(void) 2876 { 2877 struct pf_krulequeue tmpq; 2878 struct pf_krule *r, *r1; 2879 2880 /* 2881 * If we have overloading task pending, then we'd 2882 * better skip purging this time. There is a tiny 2883 * probability that overloading task references 2884 * an already unlinked rule. 2885 */ 2886 PF_OVERLOADQ_LOCK(); 2887 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2888 PF_OVERLOADQ_UNLOCK(); 2889 return; 2890 } 2891 PF_OVERLOADQ_UNLOCK(); 2892 2893 /* 2894 * Do naive mark-and-sweep garbage collecting of old rules. 2895 * Reference flag is raised by pf_purge_expired_states() 2896 * and pf_purge_expired_src_nodes(). 2897 * 2898 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2899 * use a temporary queue. 2900 */ 2901 TAILQ_INIT(&tmpq); 2902 PF_UNLNKDRULES_LOCK(); 2903 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2904 if (!(r->rule_ref & PFRULE_REFS)) { 2905 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2906 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2907 } else 2908 r->rule_ref &= ~PFRULE_REFS; 2909 } 2910 PF_UNLNKDRULES_UNLOCK(); 2911 2912 if (!TAILQ_EMPTY(&tmpq)) { 2913 PF_CONFIG_LOCK(); 2914 PF_RULES_WLOCK(); 2915 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2916 TAILQ_REMOVE(&tmpq, r, entries); 2917 pf_free_rule(r); 2918 } 2919 PF_RULES_WUNLOCK(); 2920 PF_CONFIG_UNLOCK(); 2921 } 2922 } 2923 2924 void 2925 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2926 { 2927 switch (af) { 2928 #ifdef INET 2929 case AF_INET: { 2930 u_int32_t a = ntohl(addr->addr32[0]); 2931 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2932 (a>>8)&255, a&255); 2933 if (p) { 2934 p = ntohs(p); 2935 printf(":%u", p); 2936 } 2937 break; 2938 } 2939 #endif /* INET */ 2940 #ifdef INET6 2941 case AF_INET6: { 2942 u_int16_t b; 2943 u_int8_t i, curstart, curend, maxstart, maxend; 2944 curstart = curend = maxstart = maxend = 255; 2945 for (i = 0; i < 8; i++) { 2946 if (!addr->addr16[i]) { 2947 if (curstart == 255) 2948 curstart = i; 2949 curend = i; 2950 } else { 2951 if ((curend - curstart) > 2952 (maxend - maxstart)) { 2953 maxstart = curstart; 2954 maxend = curend; 2955 } 2956 curstart = curend = 255; 2957 } 2958 } 2959 if ((curend - curstart) > 2960 (maxend - maxstart)) { 2961 maxstart = curstart; 2962 maxend = curend; 2963 } 2964 for (i = 0; i < 8; i++) { 2965 if (i >= maxstart && i <= maxend) { 2966 if (i == 0) 2967 printf(":"); 2968 if (i == maxend) 2969 printf(":"); 2970 } else { 2971 b = ntohs(addr->addr16[i]); 2972 printf("%x", b); 2973 if (i < 7) 2974 printf(":"); 2975 } 2976 } 2977 if (p) { 2978 p = ntohs(p); 2979 printf("[%u]", p); 2980 } 2981 break; 2982 } 2983 #endif /* INET6 */ 2984 default: 2985 unhandled_af(af); 2986 } 2987 } 2988 2989 void 2990 pf_print_state(struct pf_kstate *s) 2991 { 2992 pf_print_state_parts(s, NULL, NULL); 2993 } 2994 2995 static void 2996 pf_print_state_parts(struct pf_kstate *s, 2997 struct pf_state_key *skwp, struct pf_state_key *sksp) 2998 { 2999 struct pf_state_key *skw, *sks; 3000 u_int8_t proto, dir; 3001 3002 /* Do our best to fill these, but they're skipped if NULL */ 3003 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 3004 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 3005 proto = skw ? skw->proto : (sks ? sks->proto : 0); 3006 dir = s ? s->direction : 0; 3007 3008 switch (proto) { 3009 case IPPROTO_IPV4: 3010 printf("IPv4"); 3011 break; 3012 case IPPROTO_IPV6: 3013 printf("IPv6"); 3014 break; 3015 case IPPROTO_TCP: 3016 printf("TCP"); 3017 break; 3018 case IPPROTO_UDP: 3019 printf("UDP"); 3020 break; 3021 case IPPROTO_ICMP: 3022 printf("ICMP"); 3023 break; 3024 case IPPROTO_ICMPV6: 3025 printf("ICMPv6"); 3026 break; 3027 default: 3028 printf("%u", proto); 3029 break; 3030 } 3031 switch (dir) { 3032 case PF_IN: 3033 printf(" in"); 3034 break; 3035 case PF_OUT: 3036 printf(" out"); 3037 break; 3038 } 3039 if (skw) { 3040 printf(" wire: "); 3041 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 3042 printf(" "); 3043 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 3044 } 3045 if (sks) { 3046 printf(" stack: "); 3047 if (sks != skw) { 3048 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 3049 printf(" "); 3050 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 3051 } else 3052 printf("-"); 3053 } 3054 if (s) { 3055 if (proto == IPPROTO_TCP) { 3056 printf(" [lo=%u high=%u win=%u modulator=%u", 3057 s->src.seqlo, s->src.seqhi, 3058 s->src.max_win, s->src.seqdiff); 3059 if (s->src.wscale && s->dst.wscale) 3060 printf(" wscale=%u", 3061 s->src.wscale & PF_WSCALE_MASK); 3062 printf("]"); 3063 printf(" [lo=%u high=%u win=%u modulator=%u", 3064 s->dst.seqlo, s->dst.seqhi, 3065 s->dst.max_win, s->dst.seqdiff); 3066 if (s->src.wscale && s->dst.wscale) 3067 printf(" wscale=%u", 3068 s->dst.wscale & PF_WSCALE_MASK); 3069 printf("]"); 3070 } 3071 printf(" %u:%u", s->src.state, s->dst.state); 3072 if (s->rule) 3073 printf(" @%d", s->rule->nr); 3074 } 3075 } 3076 3077 void 3078 pf_print_flags(uint16_t f) 3079 { 3080 if (f) 3081 printf(" "); 3082 if (f & TH_FIN) 3083 printf("F"); 3084 if (f & TH_SYN) 3085 printf("S"); 3086 if (f & TH_RST) 3087 printf("R"); 3088 if (f & TH_PUSH) 3089 printf("P"); 3090 if (f & TH_ACK) 3091 printf("A"); 3092 if (f & TH_URG) 3093 printf("U"); 3094 if (f & TH_ECE) 3095 printf("E"); 3096 if (f & TH_CWR) 3097 printf("W"); 3098 if (f & TH_AE) 3099 printf("e"); 3100 } 3101 3102 #define PF_SET_SKIP_STEPS(i) \ 3103 do { \ 3104 while (head[i] != cur) { \ 3105 head[i]->skip[i] = cur; \ 3106 head[i] = TAILQ_NEXT(head[i], entries); \ 3107 } \ 3108 } while (0) 3109 3110 void 3111 pf_calc_skip_steps(struct pf_krulequeue *rules) 3112 { 3113 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3114 int i; 3115 3116 cur = TAILQ_FIRST(rules); 3117 prev = cur; 3118 for (i = 0; i < PF_SKIP_COUNT; ++i) 3119 head[i] = cur; 3120 while (cur != NULL) { 3121 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3122 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3123 if (cur->direction != prev->direction) 3124 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3125 if (cur->af != prev->af) 3126 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3127 if (cur->proto != prev->proto) 3128 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3129 if (cur->src.neg != prev->src.neg || 3130 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3131 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3132 if (cur->dst.neg != prev->dst.neg || 3133 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3134 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3135 if (cur->src.port[0] != prev->src.port[0] || 3136 cur->src.port[1] != prev->src.port[1] || 3137 cur->src.port_op != prev->src.port_op) 3138 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3139 if (cur->dst.port[0] != prev->dst.port[0] || 3140 cur->dst.port[1] != prev->dst.port[1] || 3141 cur->dst.port_op != prev->dst.port_op) 3142 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3143 3144 prev = cur; 3145 cur = TAILQ_NEXT(cur, entries); 3146 } 3147 for (i = 0; i < PF_SKIP_COUNT; ++i) 3148 PF_SET_SKIP_STEPS(i); 3149 } 3150 3151 int 3152 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3153 { 3154 if (aw1->type != aw2->type) 3155 return (1); 3156 switch (aw1->type) { 3157 case PF_ADDR_ADDRMASK: 3158 case PF_ADDR_RANGE: 3159 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3160 return (1); 3161 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3162 return (1); 3163 return (0); 3164 case PF_ADDR_DYNIFTL: 3165 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3166 case PF_ADDR_NONE: 3167 case PF_ADDR_NOROUTE: 3168 case PF_ADDR_URPFFAILED: 3169 return (0); 3170 case PF_ADDR_TABLE: 3171 return (aw1->p.tbl != aw2->p.tbl); 3172 default: 3173 printf("invalid address type: %d\n", aw1->type); 3174 return (1); 3175 } 3176 } 3177 3178 /** 3179 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3180 * header isn't always a full checksum. In some cases (i.e. output) it's a 3181 * pseudo-header checksum, which is a partial checksum over src/dst IP 3182 * addresses, protocol number and length. 3183 * 3184 * That means we have the following cases: 3185 * * Input or forwarding: we don't have TSO, the checksum fields are full 3186 * checksums, we need to update the checksum whenever we change anything. 3187 * * Output (i.e. the checksum is a pseudo-header checksum): 3188 * x The field being updated is src/dst address or affects the length of 3189 * the packet. We need to update the pseudo-header checksum (note that this 3190 * checksum is not ones' complement). 3191 * x Some other field is being modified (e.g. src/dst port numbers): We 3192 * don't have to update anything. 3193 **/ 3194 u_int16_t 3195 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3196 { 3197 u_int32_t x; 3198 3199 x = cksum + old - new; 3200 x = (x + (x >> 16)) & 0xffff; 3201 3202 /* optimise: eliminate a branch when not udp */ 3203 if (udp && cksum == 0x0000) 3204 return cksum; 3205 if (udp && x == 0x0000) 3206 x = 0xffff; 3207 3208 return (u_int16_t)(x); 3209 } 3210 3211 static int 3212 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi) 3213 { 3214 int rewrite = 0; 3215 3216 if (*f != v) { 3217 uint16_t old = htons(hi ? (*f << 8) : *f); 3218 uint16_t new = htons(hi ? ( v << 8) : v); 3219 3220 *f = v; 3221 3222 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3223 CSUM_DELAY_DATA_IPV6))) 3224 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new, 3225 pd->proto == IPPROTO_UDP); 3226 3227 rewrite = 1; 3228 } 3229 3230 return (rewrite); 3231 } 3232 3233 int 3234 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi) 3235 { 3236 int rewrite = 0; 3237 u_int8_t *fb = (u_int8_t *)f; 3238 u_int8_t *vb = (u_int8_t *)&v; 3239 3240 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3241 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3242 3243 return (rewrite); 3244 } 3245 3246 int 3247 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi) 3248 { 3249 int rewrite = 0; 3250 u_int8_t *fb = (u_int8_t *)f; 3251 u_int8_t *vb = (u_int8_t *)&v; 3252 3253 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3254 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3255 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3256 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3257 3258 return (rewrite); 3259 } 3260 3261 u_int16_t 3262 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3263 u_int16_t new, u_int8_t udp) 3264 { 3265 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3266 return (cksum); 3267 3268 return (pf_cksum_fixup(cksum, old, new, udp)); 3269 } 3270 3271 static void 3272 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p, 3273 struct pf_addr *an, u_int16_t pn) 3274 { 3275 struct pf_addr ao; 3276 u_int16_t po; 3277 uint8_t u = pd->virtual_proto == IPPROTO_UDP; 3278 3279 MPASS(pd->pcksum); 3280 if (pd->af == AF_INET) { 3281 MPASS(pd->ip_sum); 3282 } 3283 3284 PF_ACPY(&ao, a, pd->af); 3285 if (pd->af == pd->naf) 3286 PF_ACPY(a, an, pd->af); 3287 3288 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3289 *pd->pcksum = ~*pd->pcksum; 3290 3291 if (p == NULL) /* no port -> done. no cksum to worry about. */ 3292 return; 3293 po = *p; 3294 *p = pn; 3295 3296 switch (pd->af) { 3297 #ifdef INET 3298 case AF_INET: 3299 switch (pd->naf) { 3300 case AF_INET: 3301 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum, 3302 ao.addr16[0], an->addr16[0], 0), 3303 ao.addr16[1], an->addr16[1], 0); 3304 *p = pn; 3305 3306 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3307 ao.addr16[0], an->addr16[0], u), 3308 ao.addr16[1], an->addr16[1], u); 3309 3310 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3311 break; 3312 #ifdef INET6 3313 case AF_INET6: 3314 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3315 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3316 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3317 ao.addr16[0], an->addr16[0], u), 3318 ao.addr16[1], an->addr16[1], u), 3319 0, an->addr16[2], u), 3320 0, an->addr16[3], u), 3321 0, an->addr16[4], u), 3322 0, an->addr16[5], u), 3323 0, an->addr16[6], u), 3324 0, an->addr16[7], u), 3325 po, pn, u); 3326 break; 3327 #endif /* INET6 */ 3328 default: 3329 unhandled_af(pd->naf); 3330 } 3331 break; 3332 #endif /* INET */ 3333 #ifdef INET6 3334 case AF_INET6: 3335 switch (pd->naf) { 3336 #ifdef INET 3337 case AF_INET: 3338 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3339 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3340 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3341 ao.addr16[0], an->addr16[0], u), 3342 ao.addr16[1], an->addr16[1], u), 3343 ao.addr16[2], 0, u), 3344 ao.addr16[3], 0, u), 3345 ao.addr16[4], 0, u), 3346 ao.addr16[5], 0, u), 3347 ao.addr16[6], 0, u), 3348 ao.addr16[7], 0, u), 3349 po, pn, u); 3350 break; 3351 #endif /* INET */ 3352 case AF_INET6: 3353 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3354 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3355 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3356 ao.addr16[0], an->addr16[0], u), 3357 ao.addr16[1], an->addr16[1], u), 3358 ao.addr16[2], an->addr16[2], u), 3359 ao.addr16[3], an->addr16[3], u), 3360 ao.addr16[4], an->addr16[4], u), 3361 ao.addr16[5], an->addr16[5], u), 3362 ao.addr16[6], an->addr16[6], u), 3363 ao.addr16[7], an->addr16[7], u); 3364 3365 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3366 break; 3367 default: 3368 unhandled_af(pd->naf); 3369 } 3370 break; 3371 #endif /* INET6 */ 3372 default: 3373 unhandled_af(pd->af); 3374 } 3375 3376 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3377 CSUM_DELAY_DATA_IPV6)) { 3378 *pd->pcksum = ~*pd->pcksum; 3379 if (! *pd->pcksum) 3380 *pd->pcksum = 0xffff; 3381 } 3382 } 3383 3384 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3385 void 3386 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3387 { 3388 u_int32_t ao; 3389 3390 memcpy(&ao, a, sizeof(ao)); 3391 memcpy(a, &an, sizeof(u_int32_t)); 3392 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3393 ao % 65536, an % 65536, u); 3394 } 3395 3396 void 3397 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3398 { 3399 u_int32_t ao; 3400 3401 memcpy(&ao, a, sizeof(ao)); 3402 memcpy(a, &an, sizeof(u_int32_t)); 3403 3404 *c = pf_proto_cksum_fixup(m, 3405 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3406 ao % 65536, an % 65536, udp); 3407 } 3408 3409 #ifdef INET6 3410 static void 3411 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3412 { 3413 struct pf_addr ao; 3414 3415 PF_ACPY(&ao, a, AF_INET6); 3416 PF_ACPY(a, an, AF_INET6); 3417 3418 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3419 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3420 pf_cksum_fixup(pf_cksum_fixup(*c, 3421 ao.addr16[0], an->addr16[0], u), 3422 ao.addr16[1], an->addr16[1], u), 3423 ao.addr16[2], an->addr16[2], u), 3424 ao.addr16[3], an->addr16[3], u), 3425 ao.addr16[4], an->addr16[4], u), 3426 ao.addr16[5], an->addr16[5], u), 3427 ao.addr16[6], an->addr16[6], u), 3428 ao.addr16[7], an->addr16[7], u); 3429 } 3430 #endif /* INET6 */ 3431 3432 static void 3433 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3434 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3435 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3436 { 3437 struct pf_addr oia, ooa; 3438 3439 PF_ACPY(&oia, ia, af); 3440 if (oa) 3441 PF_ACPY(&ooa, oa, af); 3442 3443 /* Change inner protocol port, fix inner protocol checksum. */ 3444 if (ip != NULL) { 3445 u_int16_t oip = *ip; 3446 u_int32_t opc; 3447 3448 if (pc != NULL) 3449 opc = *pc; 3450 *ip = np; 3451 if (pc != NULL) 3452 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3453 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3454 if (pc != NULL) 3455 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3456 } 3457 /* Change inner ip address, fix inner ip and icmp checksums. */ 3458 PF_ACPY(ia, na, af); 3459 switch (af) { 3460 #ifdef INET 3461 case AF_INET: { 3462 u_int32_t oh2c = *h2c; 3463 3464 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3465 oia.addr16[0], ia->addr16[0], 0), 3466 oia.addr16[1], ia->addr16[1], 0); 3467 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3468 oia.addr16[0], ia->addr16[0], 0), 3469 oia.addr16[1], ia->addr16[1], 0); 3470 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3471 break; 3472 } 3473 #endif /* INET */ 3474 #ifdef INET6 3475 case AF_INET6: 3476 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3477 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3478 pf_cksum_fixup(pf_cksum_fixup(*ic, 3479 oia.addr16[0], ia->addr16[0], u), 3480 oia.addr16[1], ia->addr16[1], u), 3481 oia.addr16[2], ia->addr16[2], u), 3482 oia.addr16[3], ia->addr16[3], u), 3483 oia.addr16[4], ia->addr16[4], u), 3484 oia.addr16[5], ia->addr16[5], u), 3485 oia.addr16[6], ia->addr16[6], u), 3486 oia.addr16[7], ia->addr16[7], u); 3487 break; 3488 #endif /* INET6 */ 3489 } 3490 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3491 if (oa) { 3492 PF_ACPY(oa, na, af); 3493 switch (af) { 3494 #ifdef INET 3495 case AF_INET: 3496 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3497 ooa.addr16[0], oa->addr16[0], 0), 3498 ooa.addr16[1], oa->addr16[1], 0); 3499 break; 3500 #endif /* INET */ 3501 #ifdef INET6 3502 case AF_INET6: 3503 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3504 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3505 pf_cksum_fixup(pf_cksum_fixup(*ic, 3506 ooa.addr16[0], oa->addr16[0], u), 3507 ooa.addr16[1], oa->addr16[1], u), 3508 ooa.addr16[2], oa->addr16[2], u), 3509 ooa.addr16[3], oa->addr16[3], u), 3510 ooa.addr16[4], oa->addr16[4], u), 3511 ooa.addr16[5], oa->addr16[5], u), 3512 ooa.addr16[6], oa->addr16[6], u), 3513 ooa.addr16[7], oa->addr16[7], u); 3514 break; 3515 #endif /* INET6 */ 3516 } 3517 } 3518 } 3519 3520 int 3521 pf_translate_af(struct pf_pdesc *pd) 3522 { 3523 #if defined(INET) && defined(INET6) 3524 struct mbuf *mp; 3525 struct ip *ip4; 3526 struct ip6_hdr *ip6; 3527 struct icmp6_hdr *icmp; 3528 struct m_tag *mtag; 3529 struct pf_fragment_tag *ftag; 3530 int hlen; 3531 3532 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3533 3534 /* trim the old header */ 3535 m_adj(pd->m, pd->off); 3536 3537 /* prepend a new one */ 3538 M_PREPEND(pd->m, hlen, M_NOWAIT); 3539 if (pd->m == NULL) 3540 return (-1); 3541 3542 switch (pd->naf) { 3543 case AF_INET: 3544 ip4 = mtod(pd->m, struct ip *); 3545 bzero(ip4, hlen); 3546 ip4->ip_v = IPVERSION; 3547 ip4->ip_hl = hlen >> 2; 3548 ip4->ip_tos = pd->tos; 3549 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3550 ip_fillid(ip4, V_ip_random_id); 3551 ip4->ip_ttl = pd->ttl; 3552 ip4->ip_p = pd->proto; 3553 ip4->ip_src = pd->nsaddr.v4; 3554 ip4->ip_dst = pd->ndaddr.v4; 3555 pd->src = (struct pf_addr *)&ip4->ip_src; 3556 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3557 pd->off = sizeof(struct ip); 3558 break; 3559 case AF_INET6: 3560 ip6 = mtod(pd->m, struct ip6_hdr *); 3561 bzero(ip6, hlen); 3562 ip6->ip6_vfc = IPV6_VERSION; 3563 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20); 3564 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3565 ip6->ip6_nxt = pd->proto; 3566 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3567 ip6->ip6_hlim = IPV6_DEFHLIM; 3568 else 3569 ip6->ip6_hlim = pd->ttl; 3570 ip6->ip6_src = pd->nsaddr.v6; 3571 ip6->ip6_dst = pd->ndaddr.v6; 3572 pd->src = (struct pf_addr *)&ip6->ip6_src; 3573 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3574 pd->off = sizeof(struct ip6_hdr); 3575 3576 /* 3577 * If we're dealing with a reassembled packet we need to adjust 3578 * the header length from the IPv4 header size to IPv6 header 3579 * size. 3580 */ 3581 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL); 3582 if (mtag) { 3583 ftag = (struct pf_fragment_tag *)(mtag + 1); 3584 ftag->ft_hdrlen = sizeof(*ip6); 3585 ftag->ft_maxlen -= sizeof(struct ip6_hdr) - 3586 sizeof(struct ip) + sizeof(struct ip6_frag); 3587 } 3588 break; 3589 default: 3590 return (-1); 3591 } 3592 3593 /* recalculate icmp/icmp6 checksums */ 3594 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3595 int off; 3596 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3597 NULL) { 3598 pd->m = NULL; 3599 return (-1); 3600 } 3601 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3602 icmp->icmp6_cksum = 0; 3603 icmp->icmp6_cksum = pd->naf == AF_INET ? 3604 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3605 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3606 ntohs(ip6->ip6_plen)); 3607 } 3608 #endif /* INET && INET6 */ 3609 3610 return (0); 3611 } 3612 3613 int 3614 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3615 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3616 sa_family_t af, sa_family_t naf) 3617 { 3618 #if defined(INET) && defined(INET6) 3619 struct mbuf *n = NULL; 3620 struct ip *ip4; 3621 struct ip6_hdr *ip6; 3622 int hlen, olen, mlen; 3623 3624 if (af == naf || (af != AF_INET && af != AF_INET6) || 3625 (naf != AF_INET && naf != AF_INET6)) 3626 return (-1); 3627 3628 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3629 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3630 return (-1); 3631 3632 /* old header */ 3633 olen = pd2->off - off; 3634 /* new header */ 3635 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3636 3637 /* trim old header */ 3638 m_adj(n, olen); 3639 3640 /* prepend a new one */ 3641 M_PREPEND(n, hlen, M_NOWAIT); 3642 if (n == NULL) 3643 return (-1); 3644 3645 /* translate inner ip/ip6 header */ 3646 switch (naf) { 3647 case AF_INET: 3648 ip4 = mtod(n, struct ip *); 3649 bzero(ip4, sizeof(*ip4)); 3650 ip4->ip_v = IPVERSION; 3651 ip4->ip_hl = sizeof(*ip4) >> 2; 3652 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen); 3653 ip_fillid(ip4, V_ip_random_id); 3654 ip4->ip_off = htons(IP_DF); 3655 ip4->ip_ttl = pd2->ttl; 3656 if (pd2->proto == IPPROTO_ICMPV6) 3657 ip4->ip_p = IPPROTO_ICMP; 3658 else 3659 ip4->ip_p = pd2->proto; 3660 ip4->ip_src = src->v4; 3661 ip4->ip_dst = dst->v4; 3662 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3663 break; 3664 case AF_INET6: 3665 ip6 = mtod(n, struct ip6_hdr *); 3666 bzero(ip6, sizeof(*ip6)); 3667 ip6->ip6_vfc = IPV6_VERSION; 3668 ip6->ip6_plen = htons(pd2->tot_len - olen); 3669 if (pd2->proto == IPPROTO_ICMP) 3670 ip6->ip6_nxt = IPPROTO_ICMPV6; 3671 else 3672 ip6->ip6_nxt = pd2->proto; 3673 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3674 ip6->ip6_hlim = IPV6_DEFHLIM; 3675 else 3676 ip6->ip6_hlim = pd2->ttl; 3677 ip6->ip6_src = src->v6; 3678 ip6->ip6_dst = dst->v6; 3679 break; 3680 default: 3681 unhandled_af(naf); 3682 } 3683 3684 /* adjust payload offset and total packet length */ 3685 pd2->off += hlen - olen; 3686 pd->tot_len += hlen - olen; 3687 3688 /* merge modified inner packet with the original header */ 3689 mlen = n->m_pkthdr.len; 3690 m_cat(m, n); 3691 m->m_pkthdr.len += mlen; 3692 #endif /* INET && INET6 */ 3693 3694 return (0); 3695 } 3696 3697 #define PTR_IP(field) (offsetof(struct ip, field)) 3698 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3699 3700 int 3701 pf_translate_icmp_af(int af, void *arg) 3702 { 3703 #if defined(INET) && defined(INET6) 3704 struct icmp *icmp4; 3705 struct icmp6_hdr *icmp6; 3706 u_int32_t mtu; 3707 int32_t ptr = -1; 3708 u_int8_t type; 3709 u_int8_t code; 3710 3711 switch (af) { 3712 case AF_INET: 3713 icmp6 = arg; 3714 type = icmp6->icmp6_type; 3715 code = icmp6->icmp6_code; 3716 mtu = ntohl(icmp6->icmp6_mtu); 3717 3718 switch (type) { 3719 case ICMP6_ECHO_REQUEST: 3720 type = ICMP_ECHO; 3721 break; 3722 case ICMP6_ECHO_REPLY: 3723 type = ICMP_ECHOREPLY; 3724 break; 3725 case ICMP6_DST_UNREACH: 3726 type = ICMP_UNREACH; 3727 switch (code) { 3728 case ICMP6_DST_UNREACH_NOROUTE: 3729 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3730 case ICMP6_DST_UNREACH_ADDR: 3731 code = ICMP_UNREACH_HOST; 3732 break; 3733 case ICMP6_DST_UNREACH_ADMIN: 3734 code = ICMP_UNREACH_HOST_PROHIB; 3735 break; 3736 case ICMP6_DST_UNREACH_NOPORT: 3737 code = ICMP_UNREACH_PORT; 3738 break; 3739 default: 3740 return (-1); 3741 } 3742 break; 3743 case ICMP6_PACKET_TOO_BIG: 3744 type = ICMP_UNREACH; 3745 code = ICMP_UNREACH_NEEDFRAG; 3746 mtu -= 20; 3747 break; 3748 case ICMP6_TIME_EXCEEDED: 3749 type = ICMP_TIMXCEED; 3750 break; 3751 case ICMP6_PARAM_PROB: 3752 switch (code) { 3753 case ICMP6_PARAMPROB_HEADER: 3754 type = ICMP_PARAMPROB; 3755 code = ICMP_PARAMPROB_ERRATPTR; 3756 ptr = ntohl(icmp6->icmp6_pptr); 3757 3758 if (ptr == PTR_IP6(ip6_vfc)) 3759 ; /* preserve */ 3760 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3761 ptr = PTR_IP(ip_tos); 3762 else if (ptr == PTR_IP6(ip6_plen) || 3763 ptr == PTR_IP6(ip6_plen) + 1) 3764 ptr = PTR_IP(ip_len); 3765 else if (ptr == PTR_IP6(ip6_nxt)) 3766 ptr = PTR_IP(ip_p); 3767 else if (ptr == PTR_IP6(ip6_hlim)) 3768 ptr = PTR_IP(ip_ttl); 3769 else if (ptr >= PTR_IP6(ip6_src) && 3770 ptr < PTR_IP6(ip6_dst)) 3771 ptr = PTR_IP(ip_src); 3772 else if (ptr >= PTR_IP6(ip6_dst) && 3773 ptr < sizeof(struct ip6_hdr)) 3774 ptr = PTR_IP(ip_dst); 3775 else { 3776 return (-1); 3777 } 3778 break; 3779 case ICMP6_PARAMPROB_NEXTHEADER: 3780 type = ICMP_UNREACH; 3781 code = ICMP_UNREACH_PROTOCOL; 3782 break; 3783 default: 3784 return (-1); 3785 } 3786 break; 3787 default: 3788 return (-1); 3789 } 3790 if (icmp6->icmp6_type != type) { 3791 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3792 icmp6->icmp6_type, type, 0); 3793 icmp6->icmp6_type = type; 3794 } 3795 if (icmp6->icmp6_code != code) { 3796 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3797 icmp6->icmp6_code, code, 0); 3798 icmp6->icmp6_code = code; 3799 } 3800 if (icmp6->icmp6_mtu != htonl(mtu)) { 3801 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3802 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3803 /* aligns well with a icmpv4 nextmtu */ 3804 icmp6->icmp6_mtu = htonl(mtu); 3805 } 3806 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3807 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3808 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3809 /* icmpv4 pptr is a one most significant byte */ 3810 icmp6->icmp6_pptr = htonl(ptr << 24); 3811 } 3812 break; 3813 case AF_INET6: 3814 icmp4 = arg; 3815 type = icmp4->icmp_type; 3816 code = icmp4->icmp_code; 3817 mtu = ntohs(icmp4->icmp_nextmtu); 3818 3819 switch (type) { 3820 case ICMP_ECHO: 3821 type = ICMP6_ECHO_REQUEST; 3822 break; 3823 case ICMP_ECHOREPLY: 3824 type = ICMP6_ECHO_REPLY; 3825 break; 3826 case ICMP_UNREACH: 3827 type = ICMP6_DST_UNREACH; 3828 switch (code) { 3829 case ICMP_UNREACH_NET: 3830 case ICMP_UNREACH_HOST: 3831 case ICMP_UNREACH_NET_UNKNOWN: 3832 case ICMP_UNREACH_HOST_UNKNOWN: 3833 case ICMP_UNREACH_ISOLATED: 3834 case ICMP_UNREACH_TOSNET: 3835 case ICMP_UNREACH_TOSHOST: 3836 code = ICMP6_DST_UNREACH_NOROUTE; 3837 break; 3838 case ICMP_UNREACH_PORT: 3839 code = ICMP6_DST_UNREACH_NOPORT; 3840 break; 3841 case ICMP_UNREACH_NET_PROHIB: 3842 case ICMP_UNREACH_HOST_PROHIB: 3843 case ICMP_UNREACH_FILTER_PROHIB: 3844 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3845 code = ICMP6_DST_UNREACH_ADMIN; 3846 break; 3847 case ICMP_UNREACH_PROTOCOL: 3848 type = ICMP6_PARAM_PROB; 3849 code = ICMP6_PARAMPROB_NEXTHEADER; 3850 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3851 break; 3852 case ICMP_UNREACH_NEEDFRAG: 3853 type = ICMP6_PACKET_TOO_BIG; 3854 code = 0; 3855 mtu += 20; 3856 break; 3857 default: 3858 return (-1); 3859 } 3860 break; 3861 case ICMP_TIMXCEED: 3862 type = ICMP6_TIME_EXCEEDED; 3863 break; 3864 case ICMP_PARAMPROB: 3865 type = ICMP6_PARAM_PROB; 3866 switch (code) { 3867 case ICMP_PARAMPROB_ERRATPTR: 3868 code = ICMP6_PARAMPROB_HEADER; 3869 break; 3870 case ICMP_PARAMPROB_LENGTH: 3871 code = ICMP6_PARAMPROB_HEADER; 3872 break; 3873 default: 3874 return (-1); 3875 } 3876 3877 ptr = icmp4->icmp_pptr; 3878 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3879 ; /* preserve */ 3880 else if (ptr == PTR_IP(ip_len) || 3881 ptr == PTR_IP(ip_len) + 1) 3882 ptr = PTR_IP6(ip6_plen); 3883 else if (ptr == PTR_IP(ip_ttl)) 3884 ptr = PTR_IP6(ip6_hlim); 3885 else if (ptr == PTR_IP(ip_p)) 3886 ptr = PTR_IP6(ip6_nxt); 3887 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3888 ptr = PTR_IP6(ip6_src); 3889 else if (ptr >= PTR_IP(ip_dst) && 3890 ptr < sizeof(struct ip)) 3891 ptr = PTR_IP6(ip6_dst); 3892 else { 3893 return (-1); 3894 } 3895 break; 3896 default: 3897 return (-1); 3898 } 3899 if (icmp4->icmp_type != type) { 3900 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3901 icmp4->icmp_type, type, 0); 3902 icmp4->icmp_type = type; 3903 } 3904 if (icmp4->icmp_code != code) { 3905 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3906 icmp4->icmp_code, code, 0); 3907 icmp4->icmp_code = code; 3908 } 3909 if (icmp4->icmp_nextmtu != htons(mtu)) { 3910 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3911 icmp4->icmp_nextmtu, htons(mtu), 0); 3912 icmp4->icmp_nextmtu = htons(mtu); 3913 } 3914 if (ptr >= 0 && icmp4->icmp_void != ptr) { 3915 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3916 htons(icmp4->icmp_pptr), htons(ptr), 0); 3917 icmp4->icmp_void = htonl(ptr); 3918 } 3919 break; 3920 default: 3921 unhandled_af(af); 3922 } 3923 #endif /* INET && INET6 */ 3924 3925 return (0); 3926 } 3927 3928 /* 3929 * Need to modulate the sequence numbers in the TCP SACK option 3930 * (credits to Krzysztof Pfaff for report and patch) 3931 */ 3932 static int 3933 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3934 struct pf_state_peer *dst) 3935 { 3936 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3937 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3938 int copyback = 0, i, olen; 3939 struct sackblk sack; 3940 3941 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3942 if (hlen < TCPOLEN_SACKLEN || hlen > MAX_TCPOPTLEN || 3943 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3944 return 0; 3945 3946 while (hlen >= TCPOLEN_SACKLEN) { 3947 size_t startoff = opt - opts; 3948 olen = opt[1]; 3949 switch (*opt) { 3950 case TCPOPT_EOL: /* FALLTHROUGH */ 3951 case TCPOPT_NOP: 3952 opt++; 3953 hlen--; 3954 break; 3955 case TCPOPT_SACK: 3956 if (olen > hlen) 3957 olen = hlen; 3958 if (olen >= TCPOLEN_SACKLEN) { 3959 for (i = 2; i + TCPOLEN_SACK <= olen; 3960 i += TCPOLEN_SACK) { 3961 memcpy(&sack, &opt[i], sizeof(sack)); 3962 pf_patch_32(pd, 3963 &sack.start, 3964 htonl(ntohl(sack.start) - dst->seqdiff), 3965 PF_ALGNMNT(startoff)); 3966 pf_patch_32(pd, 3967 &sack.end, 3968 htonl(ntohl(sack.end) - dst->seqdiff), 3969 PF_ALGNMNT(startoff)); 3970 memcpy(&opt[i], &sack, sizeof(sack)); 3971 copyback = 1; 3972 } 3973 } 3974 /* FALLTHROUGH */ 3975 default: 3976 if (olen < 2) 3977 olen = 2; 3978 hlen -= olen; 3979 opt += olen; 3980 } 3981 } 3982 3983 if (copyback) 3984 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3985 return (copyback); 3986 } 3987 3988 struct mbuf * 3989 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3990 const struct pf_addr *saddr, const struct pf_addr *daddr, 3991 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3992 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3993 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack, 3994 int rtableid) 3995 { 3996 struct mbuf *m; 3997 int len, tlen; 3998 #ifdef INET 3999 struct ip *h = NULL; 4000 #endif /* INET */ 4001 #ifdef INET6 4002 struct ip6_hdr *h6 = NULL; 4003 #endif /* INET6 */ 4004 struct tcphdr *th; 4005 char *opt; 4006 struct pf_mtag *pf_mtag; 4007 4008 len = 0; 4009 th = NULL; 4010 4011 /* maximum segment size tcp option */ 4012 tlen = sizeof(struct tcphdr); 4013 if (mss) 4014 tlen += 4; 4015 if (sack) 4016 tlen += 2; 4017 4018 switch (af) { 4019 #ifdef INET 4020 case AF_INET: 4021 len = sizeof(struct ip) + tlen; 4022 break; 4023 #endif /* INET */ 4024 #ifdef INET6 4025 case AF_INET6: 4026 len = sizeof(struct ip6_hdr) + tlen; 4027 break; 4028 #endif /* INET6 */ 4029 default: 4030 unhandled_af(af); 4031 } 4032 4033 m = m_gethdr(M_NOWAIT, MT_DATA); 4034 if (m == NULL) 4035 return (NULL); 4036 4037 #ifdef MAC 4038 mac_netinet_firewall_send(m); 4039 #endif 4040 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 4041 m_freem(m); 4042 return (NULL); 4043 } 4044 m->m_flags |= mbuf_flags; 4045 pf_mtag->tag = mtag_tag; 4046 pf_mtag->flags = mtag_flags; 4047 4048 if (rtableid >= 0) 4049 M_SETFIB(m, rtableid); 4050 4051 #ifdef ALTQ 4052 if (r != NULL && r->qid) { 4053 pf_mtag->qid = r->qid; 4054 4055 /* add hints for ecn */ 4056 pf_mtag->hdr = mtod(m, struct ip *); 4057 } 4058 #endif /* ALTQ */ 4059 m->m_data += max_linkhdr; 4060 m->m_pkthdr.len = m->m_len = len; 4061 /* The rest of the stack assumes a rcvif, so provide one. 4062 * This is a locally generated packet, so .. close enough. */ 4063 m->m_pkthdr.rcvif = V_loif; 4064 bzero(m->m_data, len); 4065 switch (af) { 4066 #ifdef INET 4067 case AF_INET: 4068 m->m_pkthdr.csum_flags |= CSUM_TCP; 4069 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4070 4071 h = mtod(m, struct ip *); 4072 4073 h->ip_p = IPPROTO_TCP; 4074 h->ip_len = htons(tlen); 4075 h->ip_v = 4; 4076 h->ip_hl = sizeof(*h) >> 2; 4077 h->ip_tos = IPTOS_LOWDELAY; 4078 h->ip_len = htons(len); 4079 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4080 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4081 h->ip_sum = 0; 4082 h->ip_src.s_addr = saddr->v4.s_addr; 4083 h->ip_dst.s_addr = daddr->v4.s_addr; 4084 4085 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 4086 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr, 4087 htons(len - sizeof(struct ip) + IPPROTO_TCP)); 4088 break; 4089 #endif /* INET */ 4090 #ifdef INET6 4091 case AF_INET6: 4092 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6; 4093 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4094 4095 h6 = mtod(m, struct ip6_hdr *); 4096 4097 /* IP header fields included in the TCP checksum */ 4098 h6->ip6_nxt = IPPROTO_TCP; 4099 h6->ip6_plen = htons(tlen); 4100 h6->ip6_vfc |= IPV6_VERSION; 4101 h6->ip6_hlim = V_ip6_defhlim; 4102 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 4103 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 4104 4105 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 4106 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr), 4107 IPPROTO_TCP, 0); 4108 break; 4109 #endif /* INET6 */ 4110 } 4111 4112 /* TCP header */ 4113 th->th_sport = sport; 4114 th->th_dport = dport; 4115 th->th_seq = htonl(seq); 4116 th->th_ack = htonl(ack); 4117 th->th_off = tlen >> 2; 4118 tcp_set_flags(th, tcp_flags); 4119 th->th_win = htons(win); 4120 4121 opt = (char *)(th + 1); 4122 if (mss) { 4123 opt = (char *)(th + 1); 4124 opt[0] = TCPOPT_MAXSEG; 4125 opt[1] = 4; 4126 mss = htons(mss); 4127 memcpy((opt + 2), &mss, 2); 4128 opt += 4; 4129 } 4130 if (sack) { 4131 opt[0] = TCPOPT_SACK_PERMITTED; 4132 opt[1] = 2; 4133 opt += 2; 4134 } 4135 4136 return (m); 4137 } 4138 4139 static void 4140 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4141 uint8_t ttl, int rtableid) 4142 { 4143 struct mbuf *m; 4144 #ifdef INET 4145 struct ip *h = NULL; 4146 #endif /* INET */ 4147 #ifdef INET6 4148 struct ip6_hdr *h6 = NULL; 4149 #endif /* INET6 */ 4150 struct sctphdr *hdr; 4151 struct sctp_chunkhdr *chunk; 4152 struct pf_send_entry *pfse; 4153 int off = 0; 4154 4155 MPASS(af == pd->af); 4156 4157 m = m_gethdr(M_NOWAIT, MT_DATA); 4158 if (m == NULL) 4159 return; 4160 4161 m->m_data += max_linkhdr; 4162 m->m_flags |= M_SKIP_FIREWALL; 4163 /* The rest of the stack assumes a rcvif, so provide one. 4164 * This is a locally generated packet, so .. close enough. */ 4165 m->m_pkthdr.rcvif = V_loif; 4166 4167 /* IPv4|6 header */ 4168 switch (af) { 4169 #ifdef INET 4170 case AF_INET: 4171 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4172 4173 h = mtod(m, struct ip *); 4174 4175 /* IP header fields included in the TCP checksum */ 4176 4177 h->ip_p = IPPROTO_SCTP; 4178 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4179 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4180 h->ip_src = pd->dst->v4; 4181 h->ip_dst = pd->src->v4; 4182 4183 off += sizeof(struct ip); 4184 break; 4185 #endif /* INET */ 4186 #ifdef INET6 4187 case AF_INET6: 4188 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4189 4190 h6 = mtod(m, struct ip6_hdr *); 4191 4192 /* IP header fields included in the TCP checksum */ 4193 h6->ip6_vfc |= IPV6_VERSION; 4194 h6->ip6_nxt = IPPROTO_SCTP; 4195 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4196 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4197 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4198 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4199 4200 off += sizeof(struct ip6_hdr); 4201 break; 4202 #endif /* INET6 */ 4203 default: 4204 unhandled_af(af); 4205 } 4206 4207 /* SCTP header */ 4208 hdr = mtodo(m, off); 4209 4210 hdr->src_port = pd->hdr.sctp.dest_port; 4211 hdr->dest_port = pd->hdr.sctp.src_port; 4212 hdr->v_tag = pd->sctp_initiate_tag; 4213 hdr->checksum = 0; 4214 4215 /* Abort chunk. */ 4216 off += sizeof(struct sctphdr); 4217 chunk = mtodo(m, off); 4218 4219 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4220 chunk->chunk_length = htons(sizeof(*chunk)); 4221 4222 /* SCTP checksum */ 4223 off += sizeof(*chunk); 4224 m->m_pkthdr.len = m->m_len = off; 4225 4226 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4227 4228 if (rtableid >= 0) 4229 M_SETFIB(m, rtableid); 4230 4231 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4232 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4233 if (pfse == NULL) { 4234 m_freem(m); 4235 return; 4236 } 4237 4238 switch (af) { 4239 #ifdef INET 4240 case AF_INET: 4241 pfse->pfse_type = PFSE_IP; 4242 break; 4243 #endif /* INET */ 4244 #ifdef INET6 4245 case AF_INET6: 4246 pfse->pfse_type = PFSE_IP6; 4247 break; 4248 #endif /* INET6 */ 4249 } 4250 4251 pfse->pfse_m = m; 4252 pf_send(pfse); 4253 } 4254 4255 void 4256 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4257 const struct pf_addr *saddr, const struct pf_addr *daddr, 4258 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4259 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4260 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4261 { 4262 struct pf_send_entry *pfse; 4263 struct mbuf *m; 4264 4265 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4266 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid); 4267 if (m == NULL) 4268 return; 4269 4270 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4271 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4272 if (pfse == NULL) { 4273 m_freem(m); 4274 return; 4275 } 4276 4277 switch (af) { 4278 #ifdef INET 4279 case AF_INET: 4280 pfse->pfse_type = PFSE_IP; 4281 break; 4282 #endif /* INET */ 4283 #ifdef INET6 4284 case AF_INET6: 4285 pfse->pfse_type = PFSE_IP6; 4286 break; 4287 #endif /* INET6 */ 4288 default: 4289 unhandled_af(af); 4290 } 4291 4292 pfse->pfse_m = m; 4293 pf_send(pfse); 4294 } 4295 4296 static void 4297 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum) 4298 { 4299 /* undo NAT changes, if they have taken place */ 4300 if (nr != NULL) { 4301 PF_ACPY(pd->src, &pd->osrc, pd->af); 4302 PF_ACPY(pd->dst, &pd->odst, pd->af); 4303 if (pd->sport) 4304 *pd->sport = pd->osport; 4305 if (pd->dport) 4306 *pd->dport = pd->odport; 4307 if (pd->ip_sum) 4308 *pd->ip_sum = bip_sum; 4309 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4310 } 4311 } 4312 4313 static void 4314 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4315 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum, 4316 u_short *reason, int rtableid) 4317 { 4318 pf_undo_nat(nr, pd, bip_sum); 4319 4320 if (pd->proto == IPPROTO_TCP && 4321 ((r->rule_flag & PFRULE_RETURNRST) || 4322 (r->rule_flag & PFRULE_RETURN)) && 4323 !(tcp_get_flags(th) & TH_RST)) { 4324 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4325 4326 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4327 IPPROTO_TCP, pd->af)) 4328 REASON_SET(reason, PFRES_PROTCKSUM); 4329 else { 4330 if (tcp_get_flags(th) & TH_SYN) 4331 ack++; 4332 if (tcp_get_flags(th) & TH_FIN) 4333 ack++; 4334 pf_send_tcp(r, pd->af, pd->dst, 4335 pd->src, th->th_dport, th->th_sport, 4336 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4337 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4338 } 4339 } else if (pd->proto == IPPROTO_SCTP && 4340 (r->rule_flag & PFRULE_RETURN)) { 4341 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4342 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4343 r->return_icmp) 4344 pf_send_icmp(pd->m, r->return_icmp >> 8, 4345 r->return_icmp & 255, pd->af, r, rtableid); 4346 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4347 r->return_icmp6) 4348 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4349 r->return_icmp6 & 255, pd->af, r, rtableid); 4350 } 4351 4352 static int 4353 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4354 { 4355 struct m_tag *mtag; 4356 u_int8_t mpcp; 4357 4358 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4359 if (mtag == NULL) 4360 return (0); 4361 4362 if (prio == PF_PRIO_ZERO) 4363 prio = 0; 4364 4365 mpcp = *(uint8_t *)(mtag + 1); 4366 4367 return (mpcp == prio); 4368 } 4369 4370 static int 4371 pf_icmp_to_bandlim(uint8_t type) 4372 { 4373 switch (type) { 4374 case ICMP_ECHO: 4375 case ICMP_ECHOREPLY: 4376 return (BANDLIM_ICMP_ECHO); 4377 case ICMP_TSTAMP: 4378 case ICMP_TSTAMPREPLY: 4379 return (BANDLIM_ICMP_TSTAMP); 4380 case ICMP_UNREACH: 4381 default: 4382 return (BANDLIM_ICMP_UNREACH); 4383 } 4384 } 4385 4386 static void 4387 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s, 4388 struct pf_state_peer *src, struct pf_state_peer *dst) 4389 { 4390 /* 4391 * We are sending challenge ACK as a response to SYN packet, which 4392 * matches existing state (modulo TCP window check). Therefore packet 4393 * must be sent on behalf of destination. 4394 * 4395 * We expect sender to remain either silent, or send RST packet 4396 * so both, firewall and remote peer, can purge dead state from 4397 * memory. 4398 */ 4399 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src, 4400 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo, 4401 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0, 4402 s->rule->rtableid); 4403 } 4404 4405 static void 4406 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 4407 struct pf_krule *r, int rtableid) 4408 { 4409 struct pf_send_entry *pfse; 4410 struct mbuf *m0; 4411 struct pf_mtag *pf_mtag; 4412 4413 /* ICMP packet rate limitation. */ 4414 switch (af) { 4415 #ifdef INET6 4416 case AF_INET6: 4417 if (icmp6_ratelimit(NULL, type, code)) 4418 return; 4419 break; 4420 #endif /* INET6 */ 4421 #ifdef INET 4422 case AF_INET: 4423 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4424 return; 4425 break; 4426 #endif /* INET */ 4427 } 4428 4429 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4430 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4431 if (pfse == NULL) 4432 return; 4433 4434 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4435 free(pfse, M_PFTEMP); 4436 return; 4437 } 4438 4439 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4440 free(pfse, M_PFTEMP); 4441 return; 4442 } 4443 /* XXX: revisit */ 4444 m0->m_flags |= M_SKIP_FIREWALL; 4445 4446 if (rtableid >= 0) 4447 M_SETFIB(m0, rtableid); 4448 4449 #ifdef ALTQ 4450 if (r->qid) { 4451 pf_mtag->qid = r->qid; 4452 /* add hints for ecn */ 4453 pf_mtag->hdr = mtod(m0, struct ip *); 4454 } 4455 #endif /* ALTQ */ 4456 4457 switch (af) { 4458 #ifdef INET 4459 case AF_INET: 4460 pfse->pfse_type = PFSE_ICMP; 4461 break; 4462 #endif /* INET */ 4463 #ifdef INET6 4464 case AF_INET6: 4465 pfse->pfse_type = PFSE_ICMP6; 4466 break; 4467 #endif /* INET6 */ 4468 } 4469 pfse->pfse_m = m0; 4470 pfse->icmpopts.type = type; 4471 pfse->icmpopts.code = code; 4472 pf_send(pfse); 4473 } 4474 4475 /* 4476 * Return ((n = 0) == (a = b [with mask m])) 4477 * Note: n != 0 => returns (a != b [with mask m]) 4478 */ 4479 int 4480 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m, 4481 const struct pf_addr *b, sa_family_t af) 4482 { 4483 switch (af) { 4484 #ifdef INET 4485 case AF_INET: 4486 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4487 return (n == 0); 4488 break; 4489 #endif /* INET */ 4490 #ifdef INET6 4491 case AF_INET6: 4492 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4493 return (n == 0); 4494 break; 4495 #endif /* INET6 */ 4496 } 4497 4498 return (n != 0); 4499 } 4500 4501 /* 4502 * Return 1 if b <= a <= e, otherwise return 0. 4503 */ 4504 int 4505 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e, 4506 const struct pf_addr *a, sa_family_t af) 4507 { 4508 switch (af) { 4509 #ifdef INET 4510 case AF_INET: 4511 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4512 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4513 return (0); 4514 break; 4515 #endif /* INET */ 4516 #ifdef INET6 4517 case AF_INET6: { 4518 int i; 4519 4520 /* check a >= b */ 4521 for (i = 0; i < 4; ++i) 4522 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4523 break; 4524 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4525 return (0); 4526 /* check a <= e */ 4527 for (i = 0; i < 4; ++i) 4528 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4529 break; 4530 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4531 return (0); 4532 break; 4533 } 4534 #endif /* INET6 */ 4535 } 4536 return (1); 4537 } 4538 4539 static int 4540 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4541 { 4542 switch (op) { 4543 case PF_OP_IRG: 4544 return ((p > a1) && (p < a2)); 4545 case PF_OP_XRG: 4546 return ((p < a1) || (p > a2)); 4547 case PF_OP_RRG: 4548 return ((p >= a1) && (p <= a2)); 4549 case PF_OP_EQ: 4550 return (p == a1); 4551 case PF_OP_NE: 4552 return (p != a1); 4553 case PF_OP_LT: 4554 return (p < a1); 4555 case PF_OP_LE: 4556 return (p <= a1); 4557 case PF_OP_GT: 4558 return (p > a1); 4559 case PF_OP_GE: 4560 return (p >= a1); 4561 } 4562 return (0); /* never reached */ 4563 } 4564 4565 int 4566 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4567 { 4568 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p))); 4569 } 4570 4571 static int 4572 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4573 { 4574 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4575 return (0); 4576 return (pf_match(op, a1, a2, u)); 4577 } 4578 4579 static int 4580 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4581 { 4582 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4583 return (0); 4584 return (pf_match(op, a1, a2, g)); 4585 } 4586 4587 int 4588 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4589 { 4590 if (*tag == -1) 4591 *tag = mtag; 4592 4593 return ((!r->match_tag_not && r->match_tag == *tag) || 4594 (r->match_tag_not && r->match_tag != *tag)); 4595 } 4596 4597 static int 4598 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4599 { 4600 struct ifnet *ifp = m->m_pkthdr.rcvif; 4601 struct pfi_kkif *kif; 4602 4603 if (ifp == NULL) 4604 return (0); 4605 4606 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4607 4608 if (kif == NULL) { 4609 DPFPRINTF(PF_DEBUG_URGENT, 4610 ("%s: kif == NULL, @%d via %s\n", __func__, r->nr, 4611 r->rcv_ifname)); 4612 return (0); 4613 } 4614 4615 return (pfi_kkif_match(r->rcv_kif, kif)); 4616 } 4617 4618 int 4619 pf_tag_packet(struct pf_pdesc *pd, int tag) 4620 { 4621 4622 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4623 4624 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4625 return (ENOMEM); 4626 4627 pd->pf_mtag->tag = tag; 4628 4629 return (0); 4630 } 4631 4632 #define PF_ANCHOR_STACKSIZE 32 4633 struct pf_kanchor_stackframe { 4634 struct pf_kruleset *rs; 4635 struct pf_krule *r; /* XXX: + match bit */ 4636 struct pf_kanchor *child; 4637 }; 4638 4639 /* 4640 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4641 */ 4642 #define PF_ANCHORSTACK_MATCH 0x00000001 4643 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4644 4645 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4646 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4647 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4648 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4649 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4650 } while (0) 4651 4652 void 4653 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4654 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a) 4655 { 4656 struct pf_kanchor_stackframe *f; 4657 4658 PF_RULES_RASSERT(); 4659 4660 if (*depth >= PF_ANCHOR_STACKSIZE) { 4661 printf("%s: anchor stack overflow on %s\n", 4662 __func__, (*r)->anchor->name); 4663 *r = TAILQ_NEXT(*r, entries); 4664 return; 4665 } else if (*depth == 0 && a != NULL) 4666 *a = *r; 4667 f = stack + (*depth)++; 4668 f->rs = *rs; 4669 f->r = *r; 4670 if ((*r)->anchor_wildcard) { 4671 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4672 4673 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4674 *r = NULL; 4675 return; 4676 } 4677 *rs = &f->child->ruleset; 4678 } else { 4679 f->child = NULL; 4680 *rs = &(*r)->anchor->ruleset; 4681 } 4682 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4683 } 4684 4685 int 4686 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4687 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4688 int *match) 4689 { 4690 struct pf_kanchor_stackframe *f; 4691 struct pf_krule *fr; 4692 int quick = 0; 4693 4694 PF_RULES_RASSERT(); 4695 4696 do { 4697 if (*depth <= 0) 4698 break; 4699 f = stack + *depth - 1; 4700 fr = PF_ANCHOR_RULE(f); 4701 if (f->child != NULL) { 4702 f->child = RB_NEXT(pf_kanchor_node, 4703 &fr->anchor->children, f->child); 4704 if (f->child != NULL) { 4705 *rs = &f->child->ruleset; 4706 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4707 if (*r == NULL) 4708 continue; 4709 else 4710 break; 4711 } 4712 } 4713 (*depth)--; 4714 if (*depth == 0 && a != NULL) 4715 *a = NULL; 4716 *rs = f->rs; 4717 if (match != NULL && *match > *depth) { 4718 *match = *depth; 4719 if (f->r->quick) 4720 quick = 1; 4721 } 4722 *r = TAILQ_NEXT(fr, entries); 4723 } while (*r == NULL); 4724 4725 return (quick); 4726 } 4727 4728 struct pf_keth_anchor_stackframe { 4729 struct pf_keth_ruleset *rs; 4730 struct pf_keth_rule *r; /* XXX: + match bit */ 4731 struct pf_keth_anchor *child; 4732 }; 4733 4734 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4735 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4736 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4737 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4738 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4739 } while (0) 4740 4741 void 4742 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4743 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4744 struct pf_keth_rule **a, int *match) 4745 { 4746 struct pf_keth_anchor_stackframe *f; 4747 4748 NET_EPOCH_ASSERT(); 4749 4750 if (match) 4751 *match = 0; 4752 if (*depth >= PF_ANCHOR_STACKSIZE) { 4753 printf("%s: anchor stack overflow on %s\n", 4754 __func__, (*r)->anchor->name); 4755 *r = TAILQ_NEXT(*r, entries); 4756 return; 4757 } else if (*depth == 0 && a != NULL) 4758 *a = *r; 4759 f = stack + (*depth)++; 4760 f->rs = *rs; 4761 f->r = *r; 4762 if ((*r)->anchor_wildcard) { 4763 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4764 4765 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4766 *r = NULL; 4767 return; 4768 } 4769 *rs = &f->child->ruleset; 4770 } else { 4771 f->child = NULL; 4772 *rs = &(*r)->anchor->ruleset; 4773 } 4774 *r = TAILQ_FIRST((*rs)->active.rules); 4775 } 4776 4777 int 4778 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4779 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4780 struct pf_keth_rule **a, int *match) 4781 { 4782 struct pf_keth_anchor_stackframe *f; 4783 struct pf_keth_rule *fr; 4784 int quick = 0; 4785 4786 NET_EPOCH_ASSERT(); 4787 4788 do { 4789 if (*depth <= 0) 4790 break; 4791 f = stack + *depth - 1; 4792 fr = PF_ETH_ANCHOR_RULE(f); 4793 if (f->child != NULL) { 4794 /* 4795 * This block traverses through 4796 * a wildcard anchor. 4797 */ 4798 if (match != NULL && *match) { 4799 /* 4800 * If any of "*" matched, then 4801 * "foo/ *" matched, mark frame 4802 * appropriately. 4803 */ 4804 PF_ETH_ANCHOR_SET_MATCH(f); 4805 *match = 0; 4806 } 4807 f->child = RB_NEXT(pf_keth_anchor_node, 4808 &fr->anchor->children, f->child); 4809 if (f->child != NULL) { 4810 *rs = &f->child->ruleset; 4811 *r = TAILQ_FIRST((*rs)->active.rules); 4812 if (*r == NULL) 4813 continue; 4814 else 4815 break; 4816 } 4817 } 4818 (*depth)--; 4819 if (*depth == 0 && a != NULL) 4820 *a = NULL; 4821 *rs = f->rs; 4822 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4823 quick = fr->quick; 4824 *r = TAILQ_NEXT(fr, entries); 4825 } while (*r == NULL); 4826 4827 return (quick); 4828 } 4829 4830 #ifdef INET6 4831 void 4832 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4833 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4834 { 4835 switch (af) { 4836 #ifdef INET 4837 case AF_INET: 4838 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4839 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4840 break; 4841 #endif /* INET */ 4842 case AF_INET6: 4843 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4844 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4845 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4846 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4847 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4848 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4849 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4850 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4851 break; 4852 } 4853 } 4854 4855 void 4856 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4857 { 4858 switch (af) { 4859 #ifdef INET 4860 case AF_INET: 4861 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4862 break; 4863 #endif /* INET */ 4864 case AF_INET6: 4865 if (addr->addr32[3] == 0xffffffff) { 4866 addr->addr32[3] = 0; 4867 if (addr->addr32[2] == 0xffffffff) { 4868 addr->addr32[2] = 0; 4869 if (addr->addr32[1] == 0xffffffff) { 4870 addr->addr32[1] = 0; 4871 addr->addr32[0] = 4872 htonl(ntohl(addr->addr32[0]) + 1); 4873 } else 4874 addr->addr32[1] = 4875 htonl(ntohl(addr->addr32[1]) + 1); 4876 } else 4877 addr->addr32[2] = 4878 htonl(ntohl(addr->addr32[2]) + 1); 4879 } else 4880 addr->addr32[3] = 4881 htonl(ntohl(addr->addr32[3]) + 1); 4882 break; 4883 } 4884 } 4885 #endif /* INET6 */ 4886 4887 void 4888 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4889 { 4890 /* 4891 * Modern rules use the same flags in rules as they do in states. 4892 */ 4893 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4894 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4895 4896 /* 4897 * Old-style scrub rules have different flags which need to be translated. 4898 */ 4899 if (r->rule_flag & PFRULE_RANDOMID) 4900 a->flags |= PFSTATE_RANDOMID; 4901 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4902 a->flags |= PFSTATE_SETTOS; 4903 a->set_tos = r->set_tos; 4904 } 4905 4906 if (r->qid) 4907 a->qid = r->qid; 4908 if (r->pqid) 4909 a->pqid = r->pqid; 4910 if (r->rtableid >= 0) 4911 a->rtableid = r->rtableid; 4912 a->log |= r->log; 4913 if (r->min_ttl) 4914 a->min_ttl = r->min_ttl; 4915 if (r->max_mss) 4916 a->max_mss = r->max_mss; 4917 if (r->dnpipe) 4918 a->dnpipe = r->dnpipe; 4919 if (r->dnrpipe) 4920 a->dnrpipe = r->dnrpipe; 4921 if (r->dnpipe || r->dnrpipe) { 4922 if (r->free_flags & PFRULE_DN_IS_PIPE) 4923 a->flags |= PFSTATE_DN_IS_PIPE; 4924 else 4925 a->flags &= ~PFSTATE_DN_IS_PIPE; 4926 } 4927 if (r->scrub_flags & PFSTATE_SETPRIO) { 4928 a->set_prio[0] = r->set_prio[0]; 4929 a->set_prio[1] = r->set_prio[1]; 4930 } 4931 if (r->allow_opts) 4932 a->allow_opts = r->allow_opts; 4933 } 4934 4935 int 4936 pf_socket_lookup(struct pf_pdesc *pd) 4937 { 4938 struct pf_addr *saddr, *daddr; 4939 u_int16_t sport, dport; 4940 struct inpcbinfo *pi; 4941 struct inpcb *inp; 4942 4943 pd->lookup.uid = UID_MAX; 4944 pd->lookup.gid = GID_MAX; 4945 4946 switch (pd->proto) { 4947 case IPPROTO_TCP: 4948 sport = pd->hdr.tcp.th_sport; 4949 dport = pd->hdr.tcp.th_dport; 4950 pi = &V_tcbinfo; 4951 break; 4952 case IPPROTO_UDP: 4953 sport = pd->hdr.udp.uh_sport; 4954 dport = pd->hdr.udp.uh_dport; 4955 pi = &V_udbinfo; 4956 break; 4957 default: 4958 return (-1); 4959 } 4960 if (pd->dir == PF_IN) { 4961 saddr = pd->src; 4962 daddr = pd->dst; 4963 } else { 4964 u_int16_t p; 4965 4966 p = sport; 4967 sport = dport; 4968 dport = p; 4969 saddr = pd->dst; 4970 daddr = pd->src; 4971 } 4972 switch (pd->af) { 4973 #ifdef INET 4974 case AF_INET: 4975 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4976 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4977 if (inp == NULL) { 4978 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4979 daddr->v4, dport, INPLOOKUP_WILDCARD | 4980 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4981 if (inp == NULL) 4982 return (-1); 4983 } 4984 break; 4985 #endif /* INET */ 4986 #ifdef INET6 4987 case AF_INET6: 4988 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4989 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4990 if (inp == NULL) { 4991 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4992 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4993 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4994 if (inp == NULL) 4995 return (-1); 4996 } 4997 break; 4998 #endif /* INET6 */ 4999 default: 5000 unhandled_af(pd->af); 5001 } 5002 INP_RLOCK_ASSERT(inp); 5003 pd->lookup.uid = inp->inp_cred->cr_uid; 5004 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 5005 INP_RUNLOCK(inp); 5006 5007 return (1); 5008 } 5009 5010 u_int8_t 5011 pf_get_wscale(struct pf_pdesc *pd) 5012 { 5013 struct tcphdr *th = &pd->hdr.tcp; 5014 int hlen; 5015 u_int8_t hdr[60]; 5016 u_int8_t *opt, optlen; 5017 u_int8_t wscale = 0; 5018 5019 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 5020 if (hlen <= sizeof(struct tcphdr)) 5021 return (0); 5022 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 5023 return (0); 5024 opt = hdr + sizeof(struct tcphdr); 5025 hlen -= sizeof(struct tcphdr); 5026 while (hlen >= 3) { 5027 switch (*opt) { 5028 case TCPOPT_EOL: 5029 case TCPOPT_NOP: 5030 ++opt; 5031 --hlen; 5032 break; 5033 case TCPOPT_WINDOW: 5034 wscale = opt[2]; 5035 if (wscale > TCP_MAX_WINSHIFT) 5036 wscale = TCP_MAX_WINSHIFT; 5037 wscale |= PF_WSCALE_FLAG; 5038 /* FALLTHROUGH */ 5039 default: 5040 optlen = opt[1]; 5041 if (optlen < 2) 5042 optlen = 2; 5043 hlen -= optlen; 5044 opt += optlen; 5045 break; 5046 } 5047 } 5048 return (wscale); 5049 } 5050 5051 u_int16_t 5052 pf_get_mss(struct pf_pdesc *pd) 5053 { 5054 struct tcphdr *th = &pd->hdr.tcp; 5055 int hlen; 5056 u_int8_t hdr[60]; 5057 u_int8_t *opt, optlen; 5058 u_int16_t mss = V_tcp_mssdflt; 5059 5060 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 5061 if (hlen <= sizeof(struct tcphdr)) 5062 return (0); 5063 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 5064 return (0); 5065 opt = hdr + sizeof(struct tcphdr); 5066 hlen -= sizeof(struct tcphdr); 5067 while (hlen >= TCPOLEN_MAXSEG) { 5068 switch (*opt) { 5069 case TCPOPT_EOL: 5070 case TCPOPT_NOP: 5071 ++opt; 5072 --hlen; 5073 break; 5074 case TCPOPT_MAXSEG: 5075 memcpy(&mss, (opt + 2), 2); 5076 mss = ntohs(mss); 5077 /* FALLTHROUGH */ 5078 default: 5079 optlen = opt[1]; 5080 if (optlen < 2) 5081 optlen = 2; 5082 hlen -= optlen; 5083 opt += optlen; 5084 break; 5085 } 5086 } 5087 return (mss); 5088 } 5089 5090 static u_int16_t 5091 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 5092 { 5093 struct nhop_object *nh; 5094 #ifdef INET6 5095 struct in6_addr dst6; 5096 uint32_t scopeid; 5097 #endif /* INET6 */ 5098 int hlen = 0; 5099 uint16_t mss = 0; 5100 5101 NET_EPOCH_ASSERT(); 5102 5103 switch (af) { 5104 #ifdef INET 5105 case AF_INET: 5106 hlen = sizeof(struct ip); 5107 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 5108 if (nh != NULL) 5109 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5110 break; 5111 #endif /* INET */ 5112 #ifdef INET6 5113 case AF_INET6: 5114 hlen = sizeof(struct ip6_hdr); 5115 in6_splitscope(&addr->v6, &dst6, &scopeid); 5116 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5117 if (nh != NULL) 5118 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5119 break; 5120 #endif /* INET6 */ 5121 } 5122 5123 mss = max(V_tcp_mssdflt, mss); 5124 mss = min(mss, offer); 5125 mss = max(mss, 64); /* sanity - at least max opt space */ 5126 return (mss); 5127 } 5128 5129 static u_int32_t 5130 pf_tcp_iss(struct pf_pdesc *pd) 5131 { 5132 SHA512_CTX ctx; 5133 union { 5134 uint8_t bytes[SHA512_DIGEST_LENGTH]; 5135 uint32_t words[1]; 5136 } digest; 5137 5138 if (V_pf_tcp_secret_init == 0) { 5139 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5140 SHA512_Init(&V_pf_tcp_secret_ctx); 5141 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5142 sizeof(V_pf_tcp_secret)); 5143 V_pf_tcp_secret_init = 1; 5144 } 5145 5146 ctx = V_pf_tcp_secret_ctx; 5147 5148 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short)); 5149 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short)); 5150 switch (pd->af) { 5151 case AF_INET6: 5152 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr)); 5153 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr)); 5154 break; 5155 case AF_INET: 5156 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr)); 5157 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr)); 5158 break; 5159 } 5160 SHA512_Final(digest.bytes, &ctx); 5161 V_pf_tcp_iss_off += 4096; 5162 #define ISN_RANDOM_INCREMENT (4096 - 1) 5163 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5164 V_pf_tcp_iss_off); 5165 #undef ISN_RANDOM_INCREMENT 5166 } 5167 5168 static bool 5169 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5170 { 5171 bool match = true; 5172 5173 /* Always matches if not set */ 5174 if (! r->isset) 5175 return (!r->neg); 5176 5177 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5178 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5179 match = false; 5180 break; 5181 } 5182 } 5183 5184 return (match ^ r->neg); 5185 } 5186 5187 static int 5188 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5189 { 5190 if (*tag == -1) 5191 *tag = mtag; 5192 5193 return ((!r->match_tag_not && r->match_tag == *tag) || 5194 (r->match_tag_not && r->match_tag != *tag)); 5195 } 5196 5197 static void 5198 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5199 { 5200 /* If we don't have the interface drop the packet. */ 5201 if (ifp == NULL) { 5202 m_freem(m); 5203 return; 5204 } 5205 5206 switch (ifp->if_type) { 5207 case IFT_ETHER: 5208 case IFT_XETHER: 5209 case IFT_L2VLAN: 5210 case IFT_BRIDGE: 5211 case IFT_IEEE8023ADLAG: 5212 break; 5213 default: 5214 m_freem(m); 5215 return; 5216 } 5217 5218 ifp->if_transmit(ifp, m); 5219 } 5220 5221 static int 5222 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5223 { 5224 #ifdef INET 5225 struct ip ip; 5226 #endif /* INET */ 5227 #ifdef INET6 5228 struct ip6_hdr ip6; 5229 #endif /* INET6 */ 5230 struct mbuf *m = *m0; 5231 struct ether_header *e; 5232 struct pf_keth_rule *r, *rm, *a = NULL; 5233 struct pf_keth_ruleset *ruleset = NULL; 5234 struct pf_mtag *mtag; 5235 struct pf_keth_ruleq *rules; 5236 struct pf_addr *src = NULL, *dst = NULL; 5237 struct pfi_kkif *bridge_to; 5238 sa_family_t af = 0; 5239 uint16_t proto; 5240 int asd = 0, match = 0; 5241 int tag = -1; 5242 uint8_t action; 5243 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5244 5245 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5246 NET_EPOCH_ASSERT(); 5247 5248 PF_RULES_RLOCK_TRACKER; 5249 5250 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5251 5252 mtag = pf_find_mtag(m); 5253 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5254 /* Dummynet re-injects packets after they've 5255 * completed their delay. We've already 5256 * processed them, so pass unconditionally. */ 5257 5258 /* But only once. We may see the packet multiple times (e.g. 5259 * PFIL_IN/PFIL_OUT). */ 5260 pf_dummynet_flag_remove(m, mtag); 5261 5262 return (PF_PASS); 5263 } 5264 5265 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5266 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5267 DPFPRINTF(PF_DEBUG_URGENT, 5268 ("%s: m_len < sizeof(struct ether_header)" 5269 ", pullup failed\n", __func__)); 5270 return (PF_DROP); 5271 } 5272 e = mtod(m, struct ether_header *); 5273 proto = ntohs(e->ether_type); 5274 5275 switch (proto) { 5276 #ifdef INET 5277 case ETHERTYPE_IP: { 5278 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5279 sizeof(ip))) 5280 return (PF_DROP); 5281 5282 af = AF_INET; 5283 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5284 (caddr_t)&ip); 5285 src = (struct pf_addr *)&ip.ip_src; 5286 dst = (struct pf_addr *)&ip.ip_dst; 5287 break; 5288 } 5289 #endif /* INET */ 5290 #ifdef INET6 5291 case ETHERTYPE_IPV6: { 5292 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5293 sizeof(ip6))) 5294 return (PF_DROP); 5295 5296 af = AF_INET6; 5297 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5298 (caddr_t)&ip6); 5299 src = (struct pf_addr *)&ip6.ip6_src; 5300 dst = (struct pf_addr *)&ip6.ip6_dst; 5301 break; 5302 } 5303 #endif /* INET6 */ 5304 } 5305 5306 PF_RULES_RLOCK(); 5307 5308 ruleset = V_pf_keth; 5309 rules = atomic_load_ptr(&ruleset->active.rules); 5310 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) { 5311 counter_u64_add(r->evaluations, 1); 5312 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5313 5314 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5315 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5316 "kif"); 5317 r = r->skip[PFE_SKIP_IFP].ptr; 5318 } 5319 else if (r->direction && r->direction != dir) { 5320 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5321 "dir"); 5322 r = r->skip[PFE_SKIP_DIR].ptr; 5323 } 5324 else if (r->proto && r->proto != proto) { 5325 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5326 "proto"); 5327 r = r->skip[PFE_SKIP_PROTO].ptr; 5328 } 5329 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5330 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5331 "src"); 5332 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5333 } 5334 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5335 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5336 "dst"); 5337 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5338 } 5339 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5340 r->ipsrc.neg, kif, M_GETFIB(m))) { 5341 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5342 "ip_src"); 5343 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5344 } 5345 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5346 r->ipdst.neg, kif, M_GETFIB(m))) { 5347 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5348 "ip_dst"); 5349 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5350 } 5351 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5352 mtag ? mtag->tag : 0)) { 5353 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5354 "match_tag"); 5355 r = TAILQ_NEXT(r, entries); 5356 } 5357 else { 5358 if (r->tag) 5359 tag = r->tag; 5360 if (r->anchor == NULL) { 5361 /* Rule matches */ 5362 rm = r; 5363 5364 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5365 5366 if (r->quick) 5367 break; 5368 5369 r = TAILQ_NEXT(r, entries); 5370 } else { 5371 pf_step_into_keth_anchor(anchor_stack, &asd, 5372 &ruleset, &r, &a, &match); 5373 } 5374 } 5375 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5376 &ruleset, &r, &a, &match)) 5377 break; 5378 } 5379 5380 r = rm; 5381 5382 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5383 5384 /* Default to pass. */ 5385 if (r == NULL) { 5386 PF_RULES_RUNLOCK(); 5387 return (PF_PASS); 5388 } 5389 5390 /* Execute action. */ 5391 counter_u64_add(r->packets[dir == PF_OUT], 1); 5392 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5393 pf_update_timestamp(r); 5394 5395 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5396 if (r->action == PF_DROP) { 5397 PF_RULES_RUNLOCK(); 5398 return (PF_DROP); 5399 } 5400 5401 if (tag > 0) { 5402 if (mtag == NULL) 5403 mtag = pf_get_mtag(m); 5404 if (mtag == NULL) { 5405 PF_RULES_RUNLOCK(); 5406 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5407 return (PF_DROP); 5408 } 5409 mtag->tag = tag; 5410 } 5411 5412 if (r->qid != 0) { 5413 if (mtag == NULL) 5414 mtag = pf_get_mtag(m); 5415 if (mtag == NULL) { 5416 PF_RULES_RUNLOCK(); 5417 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5418 return (PF_DROP); 5419 } 5420 mtag->qid = r->qid; 5421 } 5422 5423 action = r->action; 5424 bridge_to = r->bridge_to; 5425 5426 /* Dummynet */ 5427 if (r->dnpipe) { 5428 struct ip_fw_args dnflow; 5429 5430 /* Drop packet if dummynet is not loaded. */ 5431 if (ip_dn_io_ptr == NULL) { 5432 PF_RULES_RUNLOCK(); 5433 m_freem(m); 5434 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5435 return (PF_DROP); 5436 } 5437 if (mtag == NULL) 5438 mtag = pf_get_mtag(m); 5439 if (mtag == NULL) { 5440 PF_RULES_RUNLOCK(); 5441 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5442 return (PF_DROP); 5443 } 5444 5445 bzero(&dnflow, sizeof(dnflow)); 5446 5447 /* We don't have port numbers here, so we set 0. That means 5448 * that we'll be somewhat limited in distinguishing flows (i.e. 5449 * only based on IP addresses, not based on port numbers), but 5450 * it's better than nothing. */ 5451 dnflow.f_id.dst_port = 0; 5452 dnflow.f_id.src_port = 0; 5453 dnflow.f_id.proto = 0; 5454 5455 dnflow.rule.info = r->dnpipe; 5456 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5457 if (r->dnflags & PFRULE_DN_IS_PIPE) 5458 dnflow.rule.info |= IPFW_IS_PIPE; 5459 5460 dnflow.f_id.extra = dnflow.rule.info; 5461 5462 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5463 dnflow.flags |= IPFW_ARGS_ETHER; 5464 dnflow.ifp = kif->pfik_ifp; 5465 5466 switch (af) { 5467 case AF_INET: 5468 dnflow.f_id.addr_type = 4; 5469 dnflow.f_id.src_ip = src->v4.s_addr; 5470 dnflow.f_id.dst_ip = dst->v4.s_addr; 5471 break; 5472 case AF_INET6: 5473 dnflow.flags |= IPFW_ARGS_IP6; 5474 dnflow.f_id.addr_type = 6; 5475 dnflow.f_id.src_ip6 = src->v6; 5476 dnflow.f_id.dst_ip6 = dst->v6; 5477 break; 5478 } 5479 5480 PF_RULES_RUNLOCK(); 5481 5482 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5483 ip_dn_io_ptr(m0, &dnflow); 5484 if (*m0 != NULL) 5485 pf_dummynet_flag_remove(m, mtag); 5486 } else { 5487 PF_RULES_RUNLOCK(); 5488 } 5489 5490 if (action == PF_PASS && bridge_to) { 5491 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5492 *m0 = NULL; /* We've eaten the packet. */ 5493 } 5494 5495 return (action); 5496 } 5497 5498 #define PF_TEST_ATTRIB(t, a)\ 5499 do { \ 5500 if (t) { \ 5501 r = a; \ 5502 goto nextrule; \ 5503 } \ 5504 } while (0) 5505 5506 static __inline u_short 5507 pf_rule_apply_nat(struct pf_pdesc *pd, struct pf_state_key **skp, 5508 struct pf_state_key **nkp, struct pf_krule *r, struct pf_krule **nr, 5509 struct pf_udp_mapping **udp_mapping, u_int16_t virtual_type, int *rewrite, 5510 struct pf_kpool **nat_pool) 5511 { 5512 u_short transerror; 5513 u_int8_t nat_action; 5514 5515 if (r->rule_flag & PFRULE_AFTO) { 5516 /* Don't translate if there was an old style NAT rule */ 5517 if (*nr != NULL) 5518 return (PFRES_TRANSLATE); 5519 5520 /* pass af-to rules, unsupported on match rules */ 5521 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__)); 5522 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */ 5523 *nat_pool = &(r->nat); 5524 (*nr) = r; 5525 pd->naf = r->naf; 5526 if (pf_get_transaddr_af(*nr, pd) == -1) { 5527 return (PFRES_TRANSLATE); 5528 } 5529 return (PFRES_MATCH); 5530 } else if (r->rdr.cur || r->nat.cur) { 5531 /* Don't translate if there was an old style NAT rule */ 5532 if (*nr != NULL) 5533 return (PFRES_TRANSLATE); 5534 5535 /* match/pass nat-to/rdr-to rules */ 5536 (*nr) = r; 5537 if (r->nat.cur) { 5538 nat_action = PF_NAT; 5539 *nat_pool = &(r->nat); 5540 } else { 5541 nat_action = PF_RDR; 5542 *nat_pool = &(r->rdr); 5543 } 5544 5545 transerror = pf_get_transaddr(pd, skp, nkp, *nr, udp_mapping, 5546 nat_action, *nat_pool); 5547 if (transerror == PFRES_MATCH) { 5548 (*rewrite) += pf_translate_compat(pd, *skp, *nkp, *nr, 5549 virtual_type); 5550 return(PFRES_MATCH); 5551 } 5552 return (transerror); 5553 } 5554 5555 return (PFRES_MAX); 5556 } 5557 5558 static int 5559 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5560 struct pf_pdesc *pd, struct pf_krule **am, 5561 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp) 5562 { 5563 struct pf_krule *nr = NULL; 5564 struct pf_krule *r, *a = NULL; 5565 struct pf_kruleset *ruleset = NULL; 5566 struct pf_krule_slist match_rules; 5567 struct pf_krule_item *ri; 5568 struct tcphdr *th = &pd->hdr.tcp; 5569 struct pf_state_key *sk = NULL, *nk = NULL; 5570 u_short transerror; 5571 int rewrite = 0; 5572 int tag = -1; 5573 int asd = 0; 5574 int match = 0; 5575 int state_icmp = 0, icmp_dir; 5576 int action = PF_PASS; 5577 u_int16_t virtual_type, virtual_id; 5578 u_int16_t bproto_sum = 0, bip_sum = 0; 5579 u_int8_t icmptype = 0, icmpcode = 0; 5580 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5581 struct pf_udp_mapping *udp_mapping = NULL; 5582 struct pf_kpool *nat_pool = NULL; 5583 5584 PF_RULES_RASSERT(); 5585 5586 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5587 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5588 5589 SLIST_INIT(&match_rules); 5590 5591 if (inp != NULL) { 5592 INP_LOCK_ASSERT(inp); 5593 pd->lookup.uid = inp->inp_cred->cr_uid; 5594 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 5595 pd->lookup.done = 1; 5596 } 5597 5598 if (pd->ip_sum) 5599 bip_sum = *pd->ip_sum; 5600 5601 switch (pd->virtual_proto) { 5602 case IPPROTO_TCP: 5603 bproto_sum = th->th_sum; 5604 pd->nsport = th->th_sport; 5605 pd->ndport = th->th_dport; 5606 break; 5607 case IPPROTO_UDP: 5608 bproto_sum = pd->hdr.udp.uh_sum; 5609 pd->nsport = pd->hdr.udp.uh_sport; 5610 pd->ndport = pd->hdr.udp.uh_dport; 5611 break; 5612 case IPPROTO_SCTP: 5613 pd->nsport = pd->hdr.sctp.src_port; 5614 pd->ndport = pd->hdr.sctp.dest_port; 5615 break; 5616 #ifdef INET 5617 case IPPROTO_ICMP: 5618 MPASS(pd->af == AF_INET); 5619 icmptype = pd->hdr.icmp.icmp_type; 5620 icmpcode = pd->hdr.icmp.icmp_code; 5621 state_icmp = pf_icmp_mapping(pd, icmptype, 5622 &icmp_dir, &virtual_id, &virtual_type); 5623 if (icmp_dir == PF_IN) { 5624 pd->nsport = virtual_id; 5625 pd->ndport = virtual_type; 5626 } else { 5627 pd->nsport = virtual_type; 5628 pd->ndport = virtual_id; 5629 } 5630 break; 5631 #endif /* INET */ 5632 #ifdef INET6 5633 case IPPROTO_ICMPV6: 5634 MPASS(pd->af == AF_INET6); 5635 icmptype = pd->hdr.icmp6.icmp6_type; 5636 icmpcode = pd->hdr.icmp6.icmp6_code; 5637 state_icmp = pf_icmp_mapping(pd, icmptype, 5638 &icmp_dir, &virtual_id, &virtual_type); 5639 if (icmp_dir == PF_IN) { 5640 pd->nsport = virtual_id; 5641 pd->ndport = virtual_type; 5642 } else { 5643 pd->nsport = virtual_type; 5644 pd->ndport = virtual_id; 5645 } 5646 5647 break; 5648 #endif /* INET6 */ 5649 default: 5650 pd->nsport = pd->ndport = 0; 5651 break; 5652 } 5653 pd->osport = pd->nsport; 5654 pd->odport = pd->ndport; 5655 5656 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5657 5658 /* check packet for BINAT/NAT/RDR */ 5659 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack, 5660 &nr, &udp_mapping); 5661 switch (transerror) { 5662 default: 5663 /* A translation error occurred. */ 5664 REASON_SET(reason, transerror); 5665 goto cleanup; 5666 case PFRES_MAX: 5667 /* No match. */ 5668 break; 5669 case PFRES_MATCH: 5670 KASSERT(sk != NULL, ("%s: null sk", __func__)); 5671 KASSERT(nk != NULL, ("%s: null nk", __func__)); 5672 if (nr->log) { 5673 PFLOG_PACKET(nr->action, PFRES_MATCH, nr, a, 5674 ruleset, pd, 1, NULL); 5675 } 5676 5677 rewrite += pf_translate_compat(pd, sk, nk, nr, virtual_type); 5678 nat_pool = &(nr->rdr); 5679 } 5680 5681 while (r != NULL) { 5682 if (pd->related_rule) { 5683 *rm = pd->related_rule; 5684 break; 5685 } 5686 pf_counter_u64_add(&r->evaluations, 1); 5687 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5688 r->skip[PF_SKIP_IFP]); 5689 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5690 r->skip[PF_SKIP_DIR]); 5691 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5692 r->skip[PF_SKIP_AF]); 5693 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5694 r->skip[PF_SKIP_PROTO]); 5695 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5696 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5697 r->skip[PF_SKIP_SRC_ADDR]); 5698 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5699 r->dst.neg, NULL, M_GETFIB(pd->m)), 5700 r->skip[PF_SKIP_DST_ADDR]); 5701 switch (pd->virtual_proto) { 5702 case PF_VPROTO_FRAGMENT: 5703 /* tcp/udp only. port_op always 0 in other cases */ 5704 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5705 TAILQ_NEXT(r, entries)); 5706 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5707 TAILQ_NEXT(r, entries)); 5708 /* icmp only. type/code always 0 in other cases */ 5709 PF_TEST_ATTRIB((r->type || r->code), 5710 TAILQ_NEXT(r, entries)); 5711 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5712 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5713 TAILQ_NEXT(r, entries)); 5714 break; 5715 5716 case IPPROTO_TCP: 5717 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags, 5718 TAILQ_NEXT(r, entries)); 5719 /* FALLTHROUGH */ 5720 case IPPROTO_SCTP: 5721 case IPPROTO_UDP: 5722 /* tcp/udp only. port_op always 0 in other cases */ 5723 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5724 r->src.port[0], r->src.port[1], pd->nsport), 5725 r->skip[PF_SKIP_SRC_PORT]); 5726 /* tcp/udp only. port_op always 0 in other cases */ 5727 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5728 r->dst.port[0], r->dst.port[1], pd->ndport), 5729 r->skip[PF_SKIP_DST_PORT]); 5730 /* tcp/udp only. uid.op always 0 in other cases */ 5731 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5732 pf_socket_lookup(pd), 1)) && 5733 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5734 pd->lookup.uid), 5735 TAILQ_NEXT(r, entries)); 5736 /* tcp/udp only. gid.op always 0 in other cases */ 5737 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5738 pf_socket_lookup(pd), 1)) && 5739 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5740 pd->lookup.gid), 5741 TAILQ_NEXT(r, entries)); 5742 break; 5743 5744 case IPPROTO_ICMP: 5745 case IPPROTO_ICMPV6: 5746 /* icmp only. type always 0 in other cases */ 5747 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5748 TAILQ_NEXT(r, entries)); 5749 /* icmp only. type always 0 in other cases */ 5750 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5751 TAILQ_NEXT(r, entries)); 5752 break; 5753 5754 default: 5755 break; 5756 } 5757 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5758 TAILQ_NEXT(r, entries)); 5759 PF_TEST_ATTRIB(r->prio && 5760 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5761 TAILQ_NEXT(r, entries)); 5762 PF_TEST_ATTRIB(r->prob && 5763 r->prob <= arc4random(), 5764 TAILQ_NEXT(r, entries)); 5765 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5766 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5767 TAILQ_NEXT(r, entries)); 5768 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) == 5769 r->rcvifnot), 5770 TAILQ_NEXT(r, entries)); 5771 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5772 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5773 TAILQ_NEXT(r, entries)); 5774 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5775 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5776 pf_osfp_fingerprint(pd, th), 5777 r->os_fingerprint)), 5778 TAILQ_NEXT(r, entries)); 5779 /* FALLTHROUGH */ 5780 if (r->tag) 5781 tag = r->tag; 5782 if (r->anchor == NULL) { 5783 if (r->action == PF_MATCH) { 5784 /* 5785 * Apply translations before increasing counters, 5786 * in case it fails. 5787 */ 5788 transerror = pf_rule_apply_nat(pd, &sk, &nk, r, 5789 &nr, &udp_mapping, virtual_type, &rewrite, 5790 &nat_pool); 5791 switch (transerror) { 5792 case PFRES_MATCH: 5793 /* Translation action found in rule and applied successfully */ 5794 case PFRES_MAX: 5795 /* No translation action found in rule */ 5796 break; 5797 default: 5798 /* Translation action found in rule but failed to apply */ 5799 REASON_SET(reason, transerror); 5800 goto cleanup; 5801 } 5802 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5803 if (ri == NULL) { 5804 REASON_SET(reason, PFRES_MEMORY); 5805 goto cleanup; 5806 } 5807 ri->r = r; 5808 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5809 pf_counter_u64_critical_enter(); 5810 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5811 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5812 pf_counter_u64_critical_exit(); 5813 pf_rule_to_actions(r, &pd->act); 5814 if (r->log) 5815 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5816 a, ruleset, pd, 1, NULL); 5817 } else { 5818 match = asd; 5819 *rm = r; 5820 *am = a; 5821 *rsm = ruleset; 5822 } 5823 if (pd->act.log & PF_LOG_MATCHES) 5824 pf_log_matches(pd, r, a, ruleset, &match_rules); 5825 if (r->quick) 5826 break; 5827 r = TAILQ_NEXT(r, entries); 5828 } else 5829 pf_step_into_anchor(anchor_stack, &asd, 5830 &ruleset, PF_RULESET_FILTER, &r, &a); 5831 nextrule: 5832 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5833 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5834 break; 5835 } 5836 r = *rm; 5837 a = *am; 5838 ruleset = *rsm; 5839 5840 REASON_SET(reason, PFRES_MATCH); 5841 5842 /* apply actions for last matching pass/block rule */ 5843 pf_rule_to_actions(r, &pd->act); 5844 transerror = pf_rule_apply_nat(pd, &sk, &nk, r, &nr, &udp_mapping, 5845 virtual_type, &rewrite, &nat_pool); 5846 switch (transerror) { 5847 case PFRES_MATCH: 5848 /* Translation action found in rule and applied successfully */ 5849 case PFRES_MAX: 5850 /* No translation action found in rule */ 5851 break; 5852 default: 5853 /* Translation action found in rule but failed to apply */ 5854 REASON_SET(reason, transerror); 5855 goto cleanup; 5856 } 5857 5858 if (r->log) { 5859 if (rewrite) 5860 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5861 PFLOG_PACKET(r->action, *reason, r, a, ruleset, pd, 1, NULL); 5862 } 5863 if (pd->act.log & PF_LOG_MATCHES) 5864 pf_log_matches(pd, r, a, ruleset, &match_rules); 5865 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5866 (r->action == PF_DROP) && 5867 ((r->rule_flag & PFRULE_RETURNRST) || 5868 (r->rule_flag & PFRULE_RETURNICMP) || 5869 (r->rule_flag & PFRULE_RETURN))) { 5870 pf_return(r, nr, pd, th, bproto_sum, 5871 bip_sum, reason, r->rtableid); 5872 } 5873 5874 if (r->action == PF_DROP) 5875 goto cleanup; 5876 5877 if (tag > 0 && pf_tag_packet(pd, tag)) { 5878 REASON_SET(reason, PFRES_MEMORY); 5879 goto cleanup; 5880 } 5881 if (pd->act.rtableid >= 0) 5882 M_SETFIB(pd->m, pd->act.rtableid); 5883 5884 if (r->rt) { 5885 struct pf_ksrc_node *sn = NULL; 5886 struct pf_srchash *snh = NULL; 5887 /* 5888 * Set act.rt here instead of in pf_rule_to_actions() because 5889 * it is applied only from the last pass rule. 5890 */ 5891 pd->act.rt = r->rt; 5892 /* Don't use REASON_SET, pf_map_addr increases the reason counters */ 5893 *reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr, 5894 &pd->act.rt_kif, NULL, &sn, &snh, &(r->route), PF_SN_ROUTE); 5895 if (*reason != 0) 5896 goto cleanup; 5897 } 5898 5899 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5900 (!state_icmp && (r->keep_state || nr != NULL || 5901 (pd->flags & PFDESC_TCP_NORM)))) { 5902 bool nat64; 5903 5904 action = pf_create_state(r, nr, a, pd, nk, sk, 5905 &rewrite, sm, tag, bproto_sum, bip_sum, 5906 &match_rules, udp_mapping, nat_pool, reason); 5907 sk = nk = NULL; 5908 if (action != PF_PASS) { 5909 pf_udp_mapping_release(udp_mapping); 5910 if (r->log || (nr != NULL && nr->log) || 5911 *reason == PFRES_MEMORY) 5912 pd->act.log |= PF_LOG_FORCE; 5913 if (action == PF_DROP && 5914 (r->rule_flag & PFRULE_RETURN)) 5915 pf_return(r, nr, pd, th, 5916 bproto_sum, bip_sum, reason, 5917 pd->act.rtableid); 5918 return (action); 5919 } 5920 5921 nat64 = pd->af != pd->naf; 5922 if (nat64) { 5923 int ret; 5924 5925 if (sk == NULL) 5926 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 5927 if (nk == NULL) 5928 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 5929 5930 if (pd->dir == PF_IN) { 5931 ret = pf_translate(pd, &sk->addr[pd->didx], 5932 sk->port[pd->didx], &sk->addr[pd->sidx], 5933 sk->port[pd->sidx], virtual_type, 5934 icmp_dir); 5935 } else { 5936 ret = pf_translate(pd, &sk->addr[pd->sidx], 5937 sk->port[pd->sidx], &sk->addr[pd->didx], 5938 sk->port[pd->didx], virtual_type, 5939 icmp_dir); 5940 } 5941 5942 if (ret < 0) 5943 goto cleanup; 5944 5945 rewrite += ret; 5946 5947 if (rewrite && sk->af != nk->af) 5948 action = PF_AFRT; 5949 } 5950 } else { 5951 while ((ri = SLIST_FIRST(&match_rules))) { 5952 SLIST_REMOVE_HEAD(&match_rules, entry); 5953 free(ri, M_PF_RULE_ITEM); 5954 } 5955 5956 uma_zfree(V_pf_state_key_z, sk); 5957 uma_zfree(V_pf_state_key_z, nk); 5958 sk = nk = NULL; 5959 pf_udp_mapping_release(udp_mapping); 5960 } 5961 5962 /* copy back packet headers if we performed NAT operations */ 5963 if (rewrite) 5964 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5965 5966 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5967 pd->dir == PF_OUT && 5968 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5969 /* 5970 * We want the state created, but we dont 5971 * want to send this in case a partner 5972 * firewall has to know about it to allow 5973 * replies through it. 5974 */ 5975 return (PF_DEFER); 5976 5977 return (action); 5978 5979 cleanup: 5980 while ((ri = SLIST_FIRST(&match_rules))) { 5981 SLIST_REMOVE_HEAD(&match_rules, entry); 5982 free(ri, M_PF_RULE_ITEM); 5983 } 5984 5985 uma_zfree(V_pf_state_key_z, sk); 5986 uma_zfree(V_pf_state_key_z, nk); 5987 pf_udp_mapping_release(udp_mapping); 5988 5989 return (PF_DROP); 5990 } 5991 5992 static int 5993 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5994 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk, 5995 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum, 5996 u_int16_t bip_sum, struct pf_krule_slist *match_rules, 5997 struct pf_udp_mapping *udp_mapping, struct pf_kpool *nat_pool, 5998 u_short *reason) 5999 { 6000 struct pf_kstate *s = NULL; 6001 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL }; 6002 /* 6003 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same 6004 * but for PF_SN_NAT it is different. Don't try optimizing it, 6005 * just store all 3 hashes. 6006 */ 6007 struct pf_srchash *snhs[PF_SN_MAX] = { NULL }; 6008 struct tcphdr *th = &pd->hdr.tcp; 6009 u_int16_t mss = V_tcp_mssdflt; 6010 u_short sn_reason; 6011 struct pf_krule_item *ri; 6012 6013 /* check maximums */ 6014 if (r->max_states && 6015 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 6016 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 6017 REASON_SET(reason, PFRES_MAXSTATES); 6018 goto csfailed; 6019 } 6020 /* src node for limits */ 6021 if ((r->rule_flag & PFRULE_SRCTRACK) && 6022 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af, 6023 NULL, NULL, PF_SN_LIMIT)) != 0) { 6024 REASON_SET(reason, sn_reason); 6025 goto csfailed; 6026 } 6027 /* src node for route-to rule */ 6028 if (r->rt) { 6029 if ((r->route.opts & PF_POOL_STICKYADDR) && 6030 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, 6031 pd->af, &pd->act.rt_addr, pd->act.rt_kif, 6032 PF_SN_ROUTE)) != 0) { 6033 REASON_SET(reason, sn_reason); 6034 goto csfailed; 6035 } 6036 } 6037 /* src node for translation rule */ 6038 if (nr != NULL) { 6039 KASSERT(nat_pool != NULL, ("%s: nat_pool is NULL", __func__)); 6040 if ((nat_pool->opts & PF_POOL_STICKYADDR) && 6041 (sn_reason = pf_insert_src_node(sns, snhs, nr, 6042 &sk->addr[pd->sidx], pd->af, &nk->addr[1], NULL, 6043 PF_SN_NAT)) != 0 ) { 6044 REASON_SET(reason, sn_reason); 6045 goto csfailed; 6046 } 6047 } 6048 s = pf_alloc_state(M_NOWAIT); 6049 if (s == NULL) { 6050 REASON_SET(reason, PFRES_MEMORY); 6051 goto csfailed; 6052 } 6053 s->rule = r; 6054 s->nat_rule = nr; 6055 s->anchor = a; 6056 memcpy(&s->match_rules, match_rules, sizeof(s->match_rules)); 6057 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6058 6059 if (pd->act.allow_opts) 6060 s->state_flags |= PFSTATE_ALLOWOPTS; 6061 if (r->rule_flag & PFRULE_STATESLOPPY) 6062 s->state_flags |= PFSTATE_SLOPPY; 6063 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6064 s->state_flags |= PFSTATE_SCRUB_TCP; 6065 if ((r->rule_flag & PFRULE_PFLOW) || 6066 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 6067 s->state_flags |= PFSTATE_PFLOW; 6068 6069 s->act.log = pd->act.log & PF_LOG_ALL; 6070 s->sync_state = PFSYNC_S_NONE; 6071 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6072 6073 if (nr != NULL) 6074 s->act.log |= nr->log & PF_LOG_ALL; 6075 switch (pd->proto) { 6076 case IPPROTO_TCP: 6077 s->src.seqlo = ntohl(th->th_seq); 6078 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6079 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6080 r->keep_state == PF_STATE_MODULATE) { 6081 /* Generate sequence number modulator */ 6082 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6083 0) 6084 s->src.seqdiff = 1; 6085 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6086 htonl(s->src.seqlo + s->src.seqdiff), 0); 6087 *rewrite = 1; 6088 } else 6089 s->src.seqdiff = 0; 6090 if (tcp_get_flags(th) & TH_SYN) { 6091 s->src.seqhi++; 6092 s->src.wscale = pf_get_wscale(pd); 6093 } 6094 s->src.max_win = MAX(ntohs(th->th_win), 1); 6095 if (s->src.wscale & PF_WSCALE_MASK) { 6096 /* Remove scale factor from initial window */ 6097 int win = s->src.max_win; 6098 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6099 s->src.max_win = (win - 1) >> 6100 (s->src.wscale & PF_WSCALE_MASK); 6101 } 6102 if (tcp_get_flags(th) & TH_FIN) 6103 s->src.seqhi++; 6104 s->dst.seqhi = 1; 6105 s->dst.max_win = 1; 6106 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6107 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6108 s->timeout = PFTM_TCP_FIRST_PACKET; 6109 atomic_add_32(&V_pf_status.states_halfopen, 1); 6110 break; 6111 case IPPROTO_UDP: 6112 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6113 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6114 s->timeout = PFTM_UDP_FIRST_PACKET; 6115 break; 6116 case IPPROTO_SCTP: 6117 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6118 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6119 s->timeout = PFTM_SCTP_FIRST_PACKET; 6120 break; 6121 case IPPROTO_ICMP: 6122 #ifdef INET6 6123 case IPPROTO_ICMPV6: 6124 #endif /* INET6 */ 6125 s->timeout = PFTM_ICMP_FIRST_PACKET; 6126 break; 6127 default: 6128 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6129 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6130 s->timeout = PFTM_OTHER_FIRST_PACKET; 6131 } 6132 6133 s->creation = s->expire = pf_get_uptime(); 6134 6135 if (pd->proto == IPPROTO_TCP) { 6136 if (s->state_flags & PFSTATE_SCRUB_TCP && 6137 pf_normalize_tcp_init(pd, th, &s->src)) { 6138 REASON_SET(reason, PFRES_MEMORY); 6139 goto csfailed; 6140 } 6141 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6142 pf_normalize_tcp_stateful(pd, reason, th, s, 6143 &s->src, &s->dst, rewrite)) { 6144 /* This really shouldn't happen!!! */ 6145 DPFPRINTF(PF_DEBUG_URGENT, 6146 ("%s: tcp normalize failed on first " 6147 "pkt\n", __func__)); 6148 goto csfailed; 6149 } 6150 } else if (pd->proto == IPPROTO_SCTP) { 6151 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6152 goto csfailed; 6153 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6154 goto csfailed; 6155 } 6156 s->direction = pd->dir; 6157 6158 /* 6159 * sk/nk could already been setup by pf_get_translation(). 6160 */ 6161 if (sk == NULL && nk == NULL) { 6162 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6163 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6164 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) { 6165 goto csfailed; 6166 } 6167 } else 6168 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 6169 __func__, nr, sk, nk)); 6170 6171 /* Swap sk/nk for PF_OUT. */ 6172 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif, 6173 (pd->dir == PF_IN) ? sk : nk, 6174 (pd->dir == PF_IN) ? nk : sk, s)) { 6175 REASON_SET(reason, PFRES_STATEINS); 6176 goto drop; 6177 } else 6178 *sm = s; 6179 sk = nk = NULL; 6180 6181 STATE_INC_COUNTERS(s); 6182 6183 /* 6184 * Lock order is important: first state, then source node. 6185 */ 6186 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6187 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6188 s->sns[sn_type] = sns[sn_type]; 6189 PF_HASHROW_UNLOCK(snhs[sn_type]); 6190 } 6191 } 6192 6193 if (tag > 0) 6194 s->tag = tag; 6195 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6196 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 6197 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6198 pf_undo_nat(nr, pd, bip_sum); 6199 s->src.seqhi = arc4random(); 6200 /* Find mss option */ 6201 int rtid = M_GETFIB(pd->m); 6202 mss = pf_get_mss(pd); 6203 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6204 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6205 s->src.mss = mss; 6206 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6207 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6208 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6209 pd->act.rtableid); 6210 REASON_SET(reason, PFRES_SYNPROXY); 6211 return (PF_SYNPROXY_DROP); 6212 } 6213 6214 s->udp_mapping = udp_mapping; 6215 6216 return (PF_PASS); 6217 6218 csfailed: 6219 while ((ri = SLIST_FIRST(match_rules))) { 6220 SLIST_REMOVE_HEAD(match_rules, entry); 6221 free(ri, M_PF_RULE_ITEM); 6222 } 6223 6224 uma_zfree(V_pf_state_key_z, sk); 6225 uma_zfree(V_pf_state_key_z, nk); 6226 6227 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6228 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6229 if (--sns[sn_type]->states == 0 && 6230 sns[sn_type]->expire == 0) { 6231 pf_unlink_src_node(sns[sn_type]); 6232 pf_free_src_node(sns[sn_type]); 6233 counter_u64_add( 6234 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6235 } 6236 PF_HASHROW_UNLOCK(snhs[sn_type]); 6237 } 6238 } 6239 6240 drop: 6241 if (s != NULL) { 6242 pf_src_tree_remove_state(s); 6243 s->timeout = PFTM_UNLINKED; 6244 pf_free_state(s); 6245 } 6246 6247 return (PF_DROP); 6248 } 6249 6250 int 6251 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6252 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6253 int icmp_dir) 6254 { 6255 /* 6256 * pf_translate() implements OpenBSD's "new" NAT approach. 6257 * We don't follow it, because it involves a breaking syntax change 6258 * (removing nat/rdr rules, moving it into regular pf rules.) 6259 * It also moves NAT processing to be done after normal rules evaluation 6260 * whereas in FreeBSD that's done before rules processing. 6261 * 6262 * We adopt the function only for nat64, and keep other NAT processing 6263 * before rules processing. 6264 */ 6265 int rewrite = 0; 6266 int afto = pd->af != pd->naf; 6267 6268 MPASS(afto); 6269 6270 switch (pd->proto) { 6271 case IPPROTO_TCP: 6272 case IPPROTO_UDP: 6273 case IPPROTO_SCTP: 6274 if (afto || *pd->sport != sport) { 6275 pf_change_ap(pd, pd->src, pd->sport, 6276 saddr, sport); 6277 rewrite = 1; 6278 } 6279 if (afto || *pd->dport != dport) { 6280 pf_change_ap(pd, pd->dst, pd->dport, 6281 daddr, dport); 6282 rewrite = 1; 6283 } 6284 break; 6285 6286 #ifdef INET 6287 case IPPROTO_ICMP: 6288 /* pf_translate() is also used when logging invalid packets */ 6289 if (pd->af != AF_INET) 6290 return (0); 6291 6292 if (afto) { 6293 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6294 return (-1); 6295 pd->proto = IPPROTO_ICMPV6; 6296 rewrite = 1; 6297 } 6298 if (virtual_type == htons(ICMP_ECHO)) { 6299 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6300 6301 if (icmpid != pd->hdr.icmp.icmp_id) { 6302 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6303 pd->hdr.icmp.icmp_cksum, 6304 pd->hdr.icmp.icmp_id, icmpid, 0); 6305 pd->hdr.icmp.icmp_id = icmpid; 6306 /* XXX TODO copyback. */ 6307 rewrite = 1; 6308 } 6309 } 6310 break; 6311 #endif /* INET */ 6312 6313 #ifdef INET6 6314 case IPPROTO_ICMPV6: 6315 /* pf_translate() is also used when logging invalid packets */ 6316 if (pd->af != AF_INET6) 6317 return (0); 6318 6319 if (afto) { 6320 /* ip_sum will be recalculated in pf_translate_af */ 6321 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6322 return (0); 6323 pd->proto = IPPROTO_ICMP; 6324 rewrite = 1; 6325 } 6326 break; 6327 #endif /* INET6 */ 6328 6329 default: 6330 break; 6331 } 6332 6333 return (rewrite); 6334 } 6335 6336 int 6337 pf_translate_compat(struct pf_pdesc *pd, struct pf_state_key *sk, 6338 struct pf_state_key *nk, struct pf_krule *nr, u_int16_t virtual_type) 6339 { 6340 struct tcphdr *th = &pd->hdr.tcp; 6341 int rewrite = 0; 6342 6343 KASSERT(sk != NULL, ("%s: null sk", __func__)); 6344 KASSERT(nk != NULL, ("%s: null nk", __func__)); 6345 6346 switch (pd->proto) { 6347 case IPPROTO_TCP: 6348 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6349 nk->port[pd->sidx] != pd->nsport) { 6350 pf_change_ap(pd, pd->src, &th->th_sport, 6351 &nk->addr[pd->sidx], nk->port[pd->sidx]); 6352 pd->sport = &th->th_sport; 6353 pd->nsport = th->th_sport; 6354 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6355 } 6356 6357 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6358 nk->port[pd->didx] != pd->ndport) { 6359 pf_change_ap(pd, pd->dst, &th->th_dport, 6360 &nk->addr[pd->didx], nk->port[pd->didx]); 6361 pd->dport = &th->th_dport; 6362 pd->ndport = th->th_dport; 6363 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6364 } 6365 rewrite++; 6366 break; 6367 case IPPROTO_UDP: 6368 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6369 nk->port[pd->sidx] != pd->nsport) { 6370 pf_change_ap(pd, pd->src, 6371 &pd->hdr.udp.uh_sport, 6372 &nk->addr[pd->sidx], 6373 nk->port[pd->sidx]); 6374 pd->sport = &pd->hdr.udp.uh_sport; 6375 pd->nsport = pd->hdr.udp.uh_sport; 6376 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6377 } 6378 6379 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6380 nk->port[pd->didx] != pd->ndport) { 6381 pf_change_ap(pd, pd->dst, 6382 &pd->hdr.udp.uh_dport, 6383 &nk->addr[pd->didx], 6384 nk->port[pd->didx]); 6385 pd->dport = &pd->hdr.udp.uh_dport; 6386 pd->ndport = pd->hdr.udp.uh_dport; 6387 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6388 } 6389 rewrite++; 6390 break; 6391 case IPPROTO_SCTP: { 6392 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6393 nk->port[pd->sidx] != pd->nsport) { 6394 pf_change_ap(pd, pd->src, 6395 &pd->hdr.sctp.src_port, 6396 &nk->addr[pd->sidx], 6397 nk->port[pd->sidx]); 6398 pd->sport = &pd->hdr.sctp.src_port; 6399 pd->nsport = pd->hdr.sctp.src_port; 6400 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6401 } 6402 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6403 nk->port[pd->didx] != pd->ndport) { 6404 pf_change_ap(pd, pd->dst, 6405 &pd->hdr.sctp.dest_port, 6406 &nk->addr[pd->didx], 6407 nk->port[pd->didx]); 6408 pd->dport = &pd->hdr.sctp.dest_port; 6409 pd->ndport = pd->hdr.sctp.dest_port; 6410 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6411 } 6412 break; 6413 } 6414 #ifdef INET 6415 case IPPROTO_ICMP: 6416 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 6417 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 6418 nk->addr[pd->sidx].v4.s_addr, 0); 6419 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6420 } 6421 6422 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 6423 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 6424 nk->addr[pd->didx].v4.s_addr, 0); 6425 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6426 } 6427 6428 if (virtual_type == htons(ICMP_ECHO) && 6429 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 6430 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6431 pd->hdr.icmp.icmp_cksum, pd->nsport, 6432 nk->port[pd->sidx], 0); 6433 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 6434 pd->sport = &pd->hdr.icmp.icmp_id; 6435 } 6436 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6437 break; 6438 #endif /* INET */ 6439 #ifdef INET6 6440 case IPPROTO_ICMPV6: 6441 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 6442 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 6443 &nk->addr[pd->sidx], 0); 6444 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6445 } 6446 6447 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 6448 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 6449 &nk->addr[pd->didx], 0); 6450 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6451 } 6452 rewrite++; 6453 break; 6454 #endif /* INET */ 6455 default: 6456 switch (pd->af) { 6457 #ifdef INET 6458 case AF_INET: 6459 if (PF_ANEQ(&pd->nsaddr, 6460 &nk->addr[pd->sidx], AF_INET)) { 6461 pf_change_a(&pd->src->v4.s_addr, 6462 pd->ip_sum, 6463 nk->addr[pd->sidx].v4.s_addr, 0); 6464 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6465 } 6466 6467 if (PF_ANEQ(&pd->ndaddr, 6468 &nk->addr[pd->didx], AF_INET)) { 6469 pf_change_a(&pd->dst->v4.s_addr, 6470 pd->ip_sum, 6471 nk->addr[pd->didx].v4.s_addr, 0); 6472 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6473 } 6474 break; 6475 #endif /* INET */ 6476 #ifdef INET6 6477 case AF_INET6: 6478 if (PF_ANEQ(&pd->nsaddr, 6479 &nk->addr[pd->sidx], AF_INET6)) { 6480 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af); 6481 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6482 } 6483 6484 if (PF_ANEQ(&pd->ndaddr, 6485 &nk->addr[pd->didx], AF_INET6)) { 6486 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af); 6487 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6488 } 6489 break; 6490 #endif /* INET6 */ 6491 } 6492 break; 6493 } 6494 return (rewrite); 6495 } 6496 6497 static int 6498 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd, 6499 u_short *reason, int *copyback, struct pf_state_peer *src, 6500 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst) 6501 { 6502 struct tcphdr *th = &pd->hdr.tcp; 6503 u_int16_t win = ntohs(th->th_win); 6504 u_int32_t ack, end, data_end, seq, orig_seq; 6505 u_int8_t sws, dws; 6506 int ackskew; 6507 6508 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6509 sws = src->wscale & PF_WSCALE_MASK; 6510 dws = dst->wscale & PF_WSCALE_MASK; 6511 } else 6512 sws = dws = 0; 6513 6514 /* 6515 * Sequence tracking algorithm from Guido van Rooij's paper: 6516 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6517 * tcp_filtering.ps 6518 */ 6519 6520 orig_seq = seq = ntohl(th->th_seq); 6521 if (src->seqlo == 0) { 6522 /* First packet from this end. Set its state */ 6523 6524 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6525 src->scrub == NULL) { 6526 if (pf_normalize_tcp_init(pd, th, src)) { 6527 REASON_SET(reason, PFRES_MEMORY); 6528 return (PF_DROP); 6529 } 6530 } 6531 6532 /* Deferred generation of sequence number modulator */ 6533 if (dst->seqdiff && !src->seqdiff) { 6534 /* use random iss for the TCP server */ 6535 while ((src->seqdiff = arc4random() - seq) == 0) 6536 ; 6537 ack = ntohl(th->th_ack) - dst->seqdiff; 6538 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6539 src->seqdiff), 0); 6540 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6541 *copyback = 1; 6542 } else { 6543 ack = ntohl(th->th_ack); 6544 } 6545 6546 end = seq + pd->p_len; 6547 if (tcp_get_flags(th) & TH_SYN) { 6548 end++; 6549 if (dst->wscale & PF_WSCALE_FLAG) { 6550 src->wscale = pf_get_wscale(pd); 6551 if (src->wscale & PF_WSCALE_FLAG) { 6552 /* Remove scale factor from initial 6553 * window */ 6554 sws = src->wscale & PF_WSCALE_MASK; 6555 win = ((u_int32_t)win + (1 << sws) - 1) 6556 >> sws; 6557 dws = dst->wscale & PF_WSCALE_MASK; 6558 } else { 6559 /* fixup other window */ 6560 dst->max_win = MIN(TCP_MAXWIN, 6561 (u_int32_t)dst->max_win << 6562 (dst->wscale & PF_WSCALE_MASK)); 6563 /* in case of a retrans SYN|ACK */ 6564 dst->wscale = 0; 6565 } 6566 } 6567 } 6568 data_end = end; 6569 if (tcp_get_flags(th) & TH_FIN) 6570 end++; 6571 6572 src->seqlo = seq; 6573 if (src->state < TCPS_SYN_SENT) 6574 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6575 6576 /* 6577 * May need to slide the window (seqhi may have been set by 6578 * the crappy stack check or if we picked up the connection 6579 * after establishment) 6580 */ 6581 if (src->seqhi == 1 || 6582 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6583 src->seqhi = end + MAX(1, dst->max_win << dws); 6584 if (win > src->max_win) 6585 src->max_win = win; 6586 6587 } else { 6588 ack = ntohl(th->th_ack) - dst->seqdiff; 6589 if (src->seqdiff) { 6590 /* Modulate sequence numbers */ 6591 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6592 src->seqdiff), 0); 6593 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6594 *copyback = 1; 6595 } 6596 end = seq + pd->p_len; 6597 if (tcp_get_flags(th) & TH_SYN) 6598 end++; 6599 data_end = end; 6600 if (tcp_get_flags(th) & TH_FIN) 6601 end++; 6602 } 6603 6604 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6605 /* Let it pass through the ack skew check */ 6606 ack = dst->seqlo; 6607 } else if ((ack == 0 && 6608 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6609 /* broken tcp stacks do not set ack */ 6610 (dst->state < TCPS_SYN_SENT)) { 6611 /* 6612 * Many stacks (ours included) will set the ACK number in an 6613 * FIN|ACK if the SYN times out -- no sequence to ACK. 6614 */ 6615 ack = dst->seqlo; 6616 } 6617 6618 if (seq == end) { 6619 /* Ease sequencing restrictions on no data packets */ 6620 seq = src->seqlo; 6621 data_end = end = seq; 6622 } 6623 6624 ackskew = dst->seqlo - ack; 6625 6626 /* 6627 * Need to demodulate the sequence numbers in any TCP SACK options 6628 * (Selective ACK). We could optionally validate the SACK values 6629 * against the current ACK window, either forwards or backwards, but 6630 * I'm not confident that SACK has been implemented properly 6631 * everywhere. It wouldn't surprise me if several stacks accidentally 6632 * SACK too far backwards of previously ACKed data. There really aren't 6633 * any security implications of bad SACKing unless the target stack 6634 * doesn't validate the option length correctly. Someone trying to 6635 * spoof into a TCP connection won't bother blindly sending SACK 6636 * options anyway. 6637 */ 6638 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6639 if (pf_modulate_sack(pd, th, dst)) 6640 *copyback = 1; 6641 } 6642 6643 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6644 if (SEQ_GEQ(src->seqhi, data_end) && 6645 /* Last octet inside other's window space */ 6646 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6647 /* Retrans: not more than one window back */ 6648 (ackskew >= -MAXACKWINDOW) && 6649 /* Acking not more than one reassembled fragment backwards */ 6650 (ackskew <= (MAXACKWINDOW << sws)) && 6651 /* Acking not more than one window forward */ 6652 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6653 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6654 /* Require an exact/+1 sequence match on resets when possible */ 6655 6656 if (dst->scrub || src->scrub) { 6657 if (pf_normalize_tcp_stateful(pd, reason, th, 6658 state, src, dst, copyback)) 6659 return (PF_DROP); 6660 } 6661 6662 /* update max window */ 6663 if (src->max_win < win) 6664 src->max_win = win; 6665 /* synchronize sequencing */ 6666 if (SEQ_GT(end, src->seqlo)) 6667 src->seqlo = end; 6668 /* slide the window of what the other end can send */ 6669 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6670 dst->seqhi = ack + MAX((win << sws), 1); 6671 6672 /* update states */ 6673 if (tcp_get_flags(th) & TH_SYN) 6674 if (src->state < TCPS_SYN_SENT) 6675 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6676 if (tcp_get_flags(th) & TH_FIN) 6677 if (src->state < TCPS_CLOSING) 6678 pf_set_protostate(state, psrc, TCPS_CLOSING); 6679 if (tcp_get_flags(th) & TH_ACK) { 6680 if (dst->state == TCPS_SYN_SENT) { 6681 pf_set_protostate(state, pdst, 6682 TCPS_ESTABLISHED); 6683 if (src->state == TCPS_ESTABLISHED && 6684 state->sns[PF_SN_LIMIT] != NULL && 6685 pf_src_connlimit(state)) { 6686 REASON_SET(reason, PFRES_SRCLIMIT); 6687 return (PF_DROP); 6688 } 6689 } else if (dst->state == TCPS_CLOSING) 6690 pf_set_protostate(state, pdst, 6691 TCPS_FIN_WAIT_2); 6692 } 6693 if (tcp_get_flags(th) & TH_RST) 6694 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6695 6696 /* update expire time */ 6697 state->expire = pf_get_uptime(); 6698 if (src->state >= TCPS_FIN_WAIT_2 && 6699 dst->state >= TCPS_FIN_WAIT_2) 6700 state->timeout = PFTM_TCP_CLOSED; 6701 else if (src->state >= TCPS_CLOSING && 6702 dst->state >= TCPS_CLOSING) 6703 state->timeout = PFTM_TCP_FIN_WAIT; 6704 else if (src->state < TCPS_ESTABLISHED || 6705 dst->state < TCPS_ESTABLISHED) 6706 state->timeout = PFTM_TCP_OPENING; 6707 else if (src->state >= TCPS_CLOSING || 6708 dst->state >= TCPS_CLOSING) 6709 state->timeout = PFTM_TCP_CLOSING; 6710 else 6711 state->timeout = PFTM_TCP_ESTABLISHED; 6712 6713 /* Fall through to PASS packet */ 6714 6715 } else if ((dst->state < TCPS_SYN_SENT || 6716 dst->state >= TCPS_FIN_WAIT_2 || 6717 src->state >= TCPS_FIN_WAIT_2) && 6718 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6719 /* Within a window forward of the originating packet */ 6720 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6721 /* Within a window backward of the originating packet */ 6722 6723 /* 6724 * This currently handles three situations: 6725 * 1) Stupid stacks will shotgun SYNs before their peer 6726 * replies. 6727 * 2) When PF catches an already established stream (the 6728 * firewall rebooted, the state table was flushed, routes 6729 * changed...) 6730 * 3) Packets get funky immediately after the connection 6731 * closes (this should catch Solaris spurious ACK|FINs 6732 * that web servers like to spew after a close) 6733 * 6734 * This must be a little more careful than the above code 6735 * since packet floods will also be caught here. We don't 6736 * update the TTL here to mitigate the damage of a packet 6737 * flood and so the same code can handle awkward establishment 6738 * and a loosened connection close. 6739 * In the establishment case, a correct peer response will 6740 * validate the connection, go through the normal state code 6741 * and keep updating the state TTL. 6742 */ 6743 6744 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6745 printf("pf: loose state match: "); 6746 pf_print_state(state); 6747 pf_print_flags(tcp_get_flags(th)); 6748 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6749 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6750 pd->p_len, ackskew, (unsigned long long)state->packets[0], 6751 (unsigned long long)state->packets[1], 6752 pd->dir == PF_IN ? "in" : "out", 6753 pd->dir == state->direction ? "fwd" : "rev"); 6754 } 6755 6756 if (dst->scrub || src->scrub) { 6757 if (pf_normalize_tcp_stateful(pd, reason, th, 6758 state, src, dst, copyback)) 6759 return (PF_DROP); 6760 } 6761 6762 /* update max window */ 6763 if (src->max_win < win) 6764 src->max_win = win; 6765 /* synchronize sequencing */ 6766 if (SEQ_GT(end, src->seqlo)) 6767 src->seqlo = end; 6768 /* slide the window of what the other end can send */ 6769 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6770 dst->seqhi = ack + MAX((win << sws), 1); 6771 6772 /* 6773 * Cannot set dst->seqhi here since this could be a shotgunned 6774 * SYN and not an already established connection. 6775 */ 6776 6777 if (tcp_get_flags(th) & TH_FIN) 6778 if (src->state < TCPS_CLOSING) 6779 pf_set_protostate(state, psrc, TCPS_CLOSING); 6780 if (tcp_get_flags(th) & TH_RST) 6781 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6782 6783 /* Fall through to PASS packet */ 6784 6785 } else { 6786 if (state->dst.state == TCPS_SYN_SENT && 6787 state->src.state == TCPS_SYN_SENT) { 6788 /* Send RST for state mismatches during handshake */ 6789 if (!(tcp_get_flags(th) & TH_RST)) 6790 pf_send_tcp(state->rule, pd->af, 6791 pd->dst, pd->src, th->th_dport, 6792 th->th_sport, ntohl(th->th_ack), 0, 6793 TH_RST, 0, 0, 6794 state->rule->return_ttl, M_SKIP_FIREWALL, 6795 0, 0, state->act.rtableid); 6796 src->seqlo = 0; 6797 src->seqhi = 1; 6798 src->max_win = 1; 6799 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6800 printf("pf: BAD state: "); 6801 pf_print_state(state); 6802 pf_print_flags(tcp_get_flags(th)); 6803 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6804 "pkts=%llu:%llu dir=%s,%s\n", 6805 seq, orig_seq, ack, pd->p_len, ackskew, 6806 (unsigned long long)state->packets[0], 6807 (unsigned long long)state->packets[1], 6808 pd->dir == PF_IN ? "in" : "out", 6809 pd->dir == state->direction ? "fwd" : "rev"); 6810 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6811 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6812 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6813 ' ': '2', 6814 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6815 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6816 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6817 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6818 } 6819 REASON_SET(reason, PFRES_BADSTATE); 6820 return (PF_DROP); 6821 } 6822 6823 return (PF_PASS); 6824 } 6825 6826 static int 6827 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd, 6828 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst, 6829 u_int8_t psrc, u_int8_t pdst) 6830 { 6831 struct tcphdr *th = &pd->hdr.tcp; 6832 6833 if (tcp_get_flags(th) & TH_SYN) 6834 if (src->state < TCPS_SYN_SENT) 6835 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6836 if (tcp_get_flags(th) & TH_FIN) 6837 if (src->state < TCPS_CLOSING) 6838 pf_set_protostate(state, psrc, TCPS_CLOSING); 6839 if (tcp_get_flags(th) & TH_ACK) { 6840 if (dst->state == TCPS_SYN_SENT) { 6841 pf_set_protostate(state, pdst, TCPS_ESTABLISHED); 6842 if (src->state == TCPS_ESTABLISHED && 6843 state->sns[PF_SN_LIMIT] != NULL && 6844 pf_src_connlimit(state)) { 6845 REASON_SET(reason, PFRES_SRCLIMIT); 6846 return (PF_DROP); 6847 } 6848 } else if (dst->state == TCPS_CLOSING) { 6849 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2); 6850 } else if (src->state == TCPS_SYN_SENT && 6851 dst->state < TCPS_SYN_SENT) { 6852 /* 6853 * Handle a special sloppy case where we only see one 6854 * half of the connection. If there is a ACK after 6855 * the initial SYN without ever seeing a packet from 6856 * the destination, set the connection to established. 6857 */ 6858 pf_set_protostate(state, PF_PEER_BOTH, 6859 TCPS_ESTABLISHED); 6860 dst->state = src->state = TCPS_ESTABLISHED; 6861 if (state->sns[PF_SN_LIMIT] != NULL && 6862 pf_src_connlimit(state)) { 6863 REASON_SET(reason, PFRES_SRCLIMIT); 6864 return (PF_DROP); 6865 } 6866 } else if (src->state == TCPS_CLOSING && 6867 dst->state == TCPS_ESTABLISHED && 6868 dst->seqlo == 0) { 6869 /* 6870 * Handle the closing of half connections where we 6871 * don't see the full bidirectional FIN/ACK+ACK 6872 * handshake. 6873 */ 6874 pf_set_protostate(state, pdst, TCPS_CLOSING); 6875 } 6876 } 6877 if (tcp_get_flags(th) & TH_RST) 6878 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6879 6880 /* update expire time */ 6881 state->expire = pf_get_uptime(); 6882 if (src->state >= TCPS_FIN_WAIT_2 && 6883 dst->state >= TCPS_FIN_WAIT_2) 6884 state->timeout = PFTM_TCP_CLOSED; 6885 else if (src->state >= TCPS_CLOSING && 6886 dst->state >= TCPS_CLOSING) 6887 state->timeout = PFTM_TCP_FIN_WAIT; 6888 else if (src->state < TCPS_ESTABLISHED || 6889 dst->state < TCPS_ESTABLISHED) 6890 state->timeout = PFTM_TCP_OPENING; 6891 else if (src->state >= TCPS_CLOSING || 6892 dst->state >= TCPS_CLOSING) 6893 state->timeout = PFTM_TCP_CLOSING; 6894 else 6895 state->timeout = PFTM_TCP_ESTABLISHED; 6896 6897 return (PF_PASS); 6898 } 6899 6900 static int 6901 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason) 6902 { 6903 struct pf_state_key *sk = state->key[pd->didx]; 6904 struct tcphdr *th = &pd->hdr.tcp; 6905 6906 if (state->src.state == PF_TCPS_PROXY_SRC) { 6907 if (pd->dir != state->direction) { 6908 REASON_SET(reason, PFRES_SYNPROXY); 6909 return (PF_SYNPROXY_DROP); 6910 } 6911 if (tcp_get_flags(th) & TH_SYN) { 6912 if (ntohl(th->th_seq) != state->src.seqlo) { 6913 REASON_SET(reason, PFRES_SYNPROXY); 6914 return (PF_DROP); 6915 } 6916 pf_send_tcp(state->rule, pd->af, pd->dst, 6917 pd->src, th->th_dport, th->th_sport, 6918 state->src.seqhi, ntohl(th->th_seq) + 1, 6919 TH_SYN|TH_ACK, 0, state->src.mss, 0, 6920 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 6921 REASON_SET(reason, PFRES_SYNPROXY); 6922 return (PF_SYNPROXY_DROP); 6923 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6924 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6925 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6926 REASON_SET(reason, PFRES_SYNPROXY); 6927 return (PF_DROP); 6928 } else if (state->sns[PF_SN_LIMIT] != NULL && 6929 pf_src_connlimit(state)) { 6930 REASON_SET(reason, PFRES_SRCLIMIT); 6931 return (PF_DROP); 6932 } else 6933 pf_set_protostate(state, PF_PEER_SRC, 6934 PF_TCPS_PROXY_DST); 6935 } 6936 if (state->src.state == PF_TCPS_PROXY_DST) { 6937 if (pd->dir == state->direction) { 6938 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6939 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6940 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6941 REASON_SET(reason, PFRES_SYNPROXY); 6942 return (PF_DROP); 6943 } 6944 state->src.max_win = MAX(ntohs(th->th_win), 1); 6945 if (state->dst.seqhi == 1) 6946 state->dst.seqhi = arc4random(); 6947 pf_send_tcp(state->rule, pd->af, 6948 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6949 sk->port[pd->sidx], sk->port[pd->didx], 6950 state->dst.seqhi, 0, TH_SYN, 0, 6951 state->src.mss, 0, 6952 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6953 state->tag, 0, state->act.rtableid); 6954 REASON_SET(reason, PFRES_SYNPROXY); 6955 return (PF_SYNPROXY_DROP); 6956 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6957 (TH_SYN|TH_ACK)) || 6958 (ntohl(th->th_ack) != state->dst.seqhi + 1)) { 6959 REASON_SET(reason, PFRES_SYNPROXY); 6960 return (PF_DROP); 6961 } else { 6962 state->dst.max_win = MAX(ntohs(th->th_win), 1); 6963 state->dst.seqlo = ntohl(th->th_seq); 6964 pf_send_tcp(state->rule, pd->af, pd->dst, 6965 pd->src, th->th_dport, th->th_sport, 6966 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6967 TH_ACK, state->src.max_win, 0, 0, 0, 6968 state->tag, 0, state->act.rtableid); 6969 pf_send_tcp(state->rule, pd->af, 6970 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6971 sk->port[pd->sidx], sk->port[pd->didx], 6972 state->src.seqhi + 1, state->src.seqlo + 1, 6973 TH_ACK, state->dst.max_win, 0, 0, 6974 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 6975 state->src.seqdiff = state->dst.seqhi - 6976 state->src.seqlo; 6977 state->dst.seqdiff = state->src.seqhi - 6978 state->dst.seqlo; 6979 state->src.seqhi = state->src.seqlo + 6980 state->dst.max_win; 6981 state->dst.seqhi = state->dst.seqlo + 6982 state->src.max_win; 6983 state->src.wscale = state->dst.wscale = 0; 6984 pf_set_protostate(state, PF_PEER_BOTH, 6985 TCPS_ESTABLISHED); 6986 REASON_SET(reason, PFRES_SYNPROXY); 6987 return (PF_SYNPROXY_DROP); 6988 } 6989 } 6990 6991 return (PF_PASS); 6992 } 6993 6994 static int 6995 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6996 { 6997 struct pf_state_key_cmp key; 6998 int copyback = 0; 6999 struct pf_state_peer *src, *dst; 7000 uint8_t psrc, pdst; 7001 int action = PF_PASS; 7002 7003 bzero(&key, sizeof(key)); 7004 key.af = pd->af; 7005 key.proto = pd->virtual_proto; 7006 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af); 7007 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af); 7008 key.port[pd->sidx] = pd->osport; 7009 key.port[pd->didx] = pd->odport; 7010 7011 STATE_LOOKUP(&key, *state, pd); 7012 7013 if (pd->dir == (*state)->direction) { 7014 if (PF_REVERSED_KEY(*state, pd->af)) { 7015 src = &(*state)->dst; 7016 dst = &(*state)->src; 7017 psrc = PF_PEER_DST; 7018 pdst = PF_PEER_SRC; 7019 } else { 7020 src = &(*state)->src; 7021 dst = &(*state)->dst; 7022 psrc = PF_PEER_SRC; 7023 pdst = PF_PEER_DST; 7024 } 7025 } else { 7026 if (PF_REVERSED_KEY(*state, pd->af)) { 7027 src = &(*state)->src; 7028 dst = &(*state)->dst; 7029 psrc = PF_PEER_SRC; 7030 pdst = PF_PEER_DST; 7031 } else { 7032 src = &(*state)->dst; 7033 dst = &(*state)->src; 7034 psrc = PF_PEER_DST; 7035 pdst = PF_PEER_SRC; 7036 } 7037 } 7038 7039 switch (pd->virtual_proto) { 7040 case IPPROTO_TCP: { 7041 struct tcphdr *th = &pd->hdr.tcp; 7042 7043 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS) 7044 return (action); 7045 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) || 7046 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK && 7047 pf_syncookie_check(pd) && pd->dir == PF_IN)) { 7048 if ((*state)->src.state >= TCPS_FIN_WAIT_2 && 7049 (*state)->dst.state >= TCPS_FIN_WAIT_2) { 7050 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7051 printf("pf: state reuse "); 7052 pf_print_state(*state); 7053 pf_print_flags(tcp_get_flags(th)); 7054 printf("\n"); 7055 } 7056 /* XXX make sure it's the same direction ?? */ 7057 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 7058 pf_remove_state(*state); 7059 *state = NULL; 7060 return (PF_DROP); 7061 } else if ((*state)->src.state >= TCPS_ESTABLISHED && 7062 (*state)->dst.state >= TCPS_ESTABLISHED) { 7063 /* 7064 * SYN matches existing state??? 7065 * Typically happens when sender boots up after 7066 * sudden panic. Certain protocols (NFSv3) are 7067 * always using same port numbers. Challenge 7068 * ACK enables all parties (firewall and peers) 7069 * to get in sync again. 7070 */ 7071 pf_send_challenge_ack(pd, *state, src, dst); 7072 return (PF_DROP); 7073 } 7074 } 7075 if ((*state)->state_flags & PFSTATE_SLOPPY) { 7076 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst, 7077 psrc, pdst) == PF_DROP) 7078 return (PF_DROP); 7079 } else { 7080 int ret; 7081 7082 ret = pf_tcp_track_full(*state, pd, reason, 7083 ©back, src, dst, psrc, pdst); 7084 if (ret == PF_DROP) 7085 return (PF_DROP); 7086 } 7087 break; 7088 } 7089 case IPPROTO_UDP: 7090 /* update states */ 7091 if (src->state < PFUDPS_SINGLE) 7092 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7093 if (dst->state == PFUDPS_SINGLE) 7094 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7095 7096 /* update expire time */ 7097 (*state)->expire = pf_get_uptime(); 7098 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7099 (*state)->timeout = PFTM_UDP_MULTIPLE; 7100 else 7101 (*state)->timeout = PFTM_UDP_SINGLE; 7102 break; 7103 case IPPROTO_SCTP: 7104 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7105 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7106 pd->sctp_flags & PFDESC_SCTP_INIT) { 7107 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7108 pf_remove_state(*state); 7109 *state = NULL; 7110 return (PF_DROP); 7111 } 7112 7113 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7114 return (PF_DROP); 7115 7116 /* Track state. */ 7117 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7118 if (src->state < SCTP_COOKIE_WAIT) { 7119 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7120 (*state)->timeout = PFTM_SCTP_OPENING; 7121 } 7122 } 7123 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7124 MPASS(dst->scrub != NULL); 7125 if (dst->scrub->pfss_v_tag == 0) 7126 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7127 } 7128 7129 /* 7130 * Bind to the correct interface if we're if-bound. For multihomed 7131 * extra associations we don't know which interface that will be until 7132 * here, so we've inserted the state on V_pf_all. Fix that now. 7133 */ 7134 if ((*state)->kif == V_pfi_all && 7135 (*state)->rule->rule_flag & PFRULE_IFBOUND) 7136 (*state)->kif = pd->kif; 7137 7138 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7139 if (src->state < SCTP_ESTABLISHED) { 7140 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7141 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7142 } 7143 } 7144 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | 7145 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7146 if (src->state < SCTP_SHUTDOWN_PENDING) { 7147 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7148 (*state)->timeout = PFTM_SCTP_CLOSING; 7149 } 7150 } 7151 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) { 7152 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7153 (*state)->timeout = PFTM_SCTP_CLOSED; 7154 } 7155 7156 (*state)->expire = pf_get_uptime(); 7157 break; 7158 default: 7159 /* update states */ 7160 if (src->state < PFOTHERS_SINGLE) 7161 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7162 if (dst->state == PFOTHERS_SINGLE) 7163 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7164 7165 /* update expire time */ 7166 (*state)->expire = pf_get_uptime(); 7167 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7168 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7169 else 7170 (*state)->timeout = PFTM_OTHER_SINGLE; 7171 break; 7172 } 7173 7174 /* translate source/destination address, if necessary */ 7175 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7176 struct pf_state_key *nk; 7177 int afto, sidx, didx; 7178 7179 if (PF_REVERSED_KEY(*state, pd->af)) 7180 nk = (*state)->key[pd->sidx]; 7181 else 7182 nk = (*state)->key[pd->didx]; 7183 7184 afto = pd->af != nk->af; 7185 7186 if (afto && (*state)->direction == PF_IN) { 7187 sidx = pd->didx; 7188 didx = pd->sidx; 7189 } else { 7190 sidx = pd->sidx; 7191 didx = pd->didx; 7192 } 7193 7194 if (afto) { 7195 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7196 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7197 pd->naf = nk->af; 7198 action = PF_AFRT; 7199 } 7200 7201 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7202 nk->port[sidx] != pd->osport) 7203 pf_change_ap(pd, pd->src, pd->sport, 7204 &nk->addr[sidx], nk->port[sidx]); 7205 7206 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7207 nk->port[didx] != pd->odport) 7208 pf_change_ap(pd, pd->dst, pd->dport, 7209 &nk->addr[didx], nk->port[didx]); 7210 7211 copyback = 1; 7212 } 7213 7214 if (copyback && pd->hdrlen > 0) 7215 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 7216 7217 return (action); 7218 } 7219 7220 static int 7221 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7222 u_short *reason) 7223 { 7224 struct pf_state_peer *src; 7225 if (pd->dir == state->direction) { 7226 if (PF_REVERSED_KEY(state, pd->af)) 7227 src = &state->dst; 7228 else 7229 src = &state->src; 7230 } else { 7231 if (PF_REVERSED_KEY(state, pd->af)) 7232 src = &state->src; 7233 else 7234 src = &state->dst; 7235 } 7236 7237 if (src->scrub != NULL) { 7238 if (src->scrub->pfss_v_tag == 0) 7239 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7240 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7241 return (PF_DROP); 7242 } 7243 7244 return (PF_PASS); 7245 } 7246 7247 static void 7248 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7249 { 7250 struct pf_sctp_endpoint key; 7251 struct pf_sctp_endpoint *ep; 7252 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7253 struct pf_sctp_source *i, *tmp; 7254 7255 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7256 return; 7257 7258 PF_SCTP_ENDPOINTS_LOCK(); 7259 7260 key.v_tag = s->dst.scrub->pfss_v_tag; 7261 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7262 if (ep != NULL) { 7263 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7264 if (pf_addr_cmp(&i->addr, 7265 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7266 s->key[PF_SK_WIRE]->af) == 0) { 7267 SDT_PROBE3(pf, sctp, multihome, remove, 7268 key.v_tag, s, i); 7269 TAILQ_REMOVE(&ep->sources, i, entry); 7270 free(i, M_PFTEMP); 7271 break; 7272 } 7273 } 7274 7275 if (TAILQ_EMPTY(&ep->sources)) { 7276 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7277 free(ep, M_PFTEMP); 7278 } 7279 } 7280 7281 /* Other direction. */ 7282 key.v_tag = s->src.scrub->pfss_v_tag; 7283 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7284 if (ep != NULL) { 7285 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7286 if (pf_addr_cmp(&i->addr, 7287 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7288 s->key[PF_SK_WIRE]->af) == 0) { 7289 SDT_PROBE3(pf, sctp, multihome, remove, 7290 key.v_tag, s, i); 7291 TAILQ_REMOVE(&ep->sources, i, entry); 7292 free(i, M_PFTEMP); 7293 break; 7294 } 7295 } 7296 7297 if (TAILQ_EMPTY(&ep->sources)) { 7298 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7299 free(ep, M_PFTEMP); 7300 } 7301 } 7302 7303 PF_SCTP_ENDPOINTS_UNLOCK(); 7304 } 7305 7306 static void 7307 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7308 { 7309 struct pf_sctp_endpoint key = { 7310 .v_tag = v_tag, 7311 }; 7312 struct pf_sctp_source *i; 7313 struct pf_sctp_endpoint *ep; 7314 7315 PF_SCTP_ENDPOINTS_LOCK(); 7316 7317 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7318 if (ep == NULL) { 7319 ep = malloc(sizeof(struct pf_sctp_endpoint), 7320 M_PFTEMP, M_NOWAIT); 7321 if (ep == NULL) { 7322 PF_SCTP_ENDPOINTS_UNLOCK(); 7323 return; 7324 } 7325 7326 ep->v_tag = v_tag; 7327 TAILQ_INIT(&ep->sources); 7328 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7329 } 7330 7331 /* Avoid inserting duplicates. */ 7332 TAILQ_FOREACH(i, &ep->sources, entry) { 7333 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7334 PF_SCTP_ENDPOINTS_UNLOCK(); 7335 return; 7336 } 7337 } 7338 7339 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7340 if (i == NULL) { 7341 PF_SCTP_ENDPOINTS_UNLOCK(); 7342 return; 7343 } 7344 7345 i->af = pd->af; 7346 memcpy(&i->addr, a, sizeof(*a)); 7347 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7348 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7349 7350 PF_SCTP_ENDPOINTS_UNLOCK(); 7351 } 7352 7353 static void 7354 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7355 struct pf_kstate *s, int action) 7356 { 7357 struct pf_sctp_multihome_job *j, *tmp; 7358 struct pf_sctp_source *i; 7359 int ret __unused; 7360 struct pf_kstate *sm = NULL; 7361 struct pf_krule *ra = NULL; 7362 struct pf_krule *r = &V_pf_default_rule; 7363 struct pf_kruleset *rs = NULL; 7364 u_short reason; 7365 bool do_extra = true; 7366 7367 PF_RULES_RLOCK_TRACKER; 7368 7369 again: 7370 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7371 if (s == NULL || action != PF_PASS) 7372 goto free; 7373 7374 /* Confirm we don't recurse here. */ 7375 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7376 7377 switch (j->op) { 7378 case SCTP_ADD_IP_ADDRESS: { 7379 uint32_t v_tag = pd->sctp_initiate_tag; 7380 7381 if (v_tag == 0) { 7382 if (s->direction == pd->dir) 7383 v_tag = s->src.scrub->pfss_v_tag; 7384 else 7385 v_tag = s->dst.scrub->pfss_v_tag; 7386 } 7387 7388 /* 7389 * Avoid duplicating states. We'll already have 7390 * created a state based on the source address of 7391 * the packet, but SCTP endpoints may also list this 7392 * address again in the INIT(_ACK) parameters. 7393 */ 7394 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7395 break; 7396 } 7397 7398 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7399 PF_RULES_RLOCK(); 7400 sm = NULL; 7401 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) { 7402 j->pd.related_rule = s->rule; 7403 } 7404 ret = pf_test_rule(&r, &sm, 7405 &j->pd, &ra, &rs, &reason, NULL); 7406 PF_RULES_RUNLOCK(); 7407 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7408 if (ret != PF_DROP && sm != NULL) { 7409 /* Inherit v_tag values. */ 7410 if (sm->direction == s->direction) { 7411 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7412 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7413 } else { 7414 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7415 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7416 } 7417 PF_STATE_UNLOCK(sm); 7418 } else { 7419 /* If we try duplicate inserts? */ 7420 break; 7421 } 7422 7423 /* Only add the address if we've actually allowed the state. */ 7424 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7425 7426 if (! do_extra) { 7427 break; 7428 } 7429 /* 7430 * We need to do this for each of our source addresses. 7431 * Find those based on the verification tag. 7432 */ 7433 struct pf_sctp_endpoint key = { 7434 .v_tag = pd->hdr.sctp.v_tag, 7435 }; 7436 struct pf_sctp_endpoint *ep; 7437 7438 PF_SCTP_ENDPOINTS_LOCK(); 7439 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7440 if (ep == NULL) { 7441 PF_SCTP_ENDPOINTS_UNLOCK(); 7442 break; 7443 } 7444 MPASS(ep != NULL); 7445 7446 TAILQ_FOREACH(i, &ep->sources, entry) { 7447 struct pf_sctp_multihome_job *nj; 7448 7449 /* SCTP can intermingle IPv4 and IPv6. */ 7450 if (i->af != pd->af) 7451 continue; 7452 7453 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7454 if (! nj) { 7455 continue; 7456 } 7457 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7458 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7459 nj->pd.src = &nj->src; 7460 // New destination address! 7461 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7462 nj->pd.dst = &nj->dst; 7463 nj->pd.m = j->pd.m; 7464 nj->op = j->op; 7465 7466 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7467 } 7468 PF_SCTP_ENDPOINTS_UNLOCK(); 7469 7470 break; 7471 } 7472 case SCTP_DEL_IP_ADDRESS: { 7473 struct pf_state_key_cmp key; 7474 uint8_t psrc; 7475 7476 bzero(&key, sizeof(key)); 7477 key.af = j->pd.af; 7478 key.proto = IPPROTO_SCTP; 7479 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7480 PF_ACPY(&key.addr[0], j->pd.src, key.af); 7481 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 7482 key.port[0] = j->pd.hdr.sctp.src_port; 7483 key.port[1] = j->pd.hdr.sctp.dest_port; 7484 } else { /* stack side, reverse */ 7485 PF_ACPY(&key.addr[1], j->pd.src, key.af); 7486 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 7487 key.port[1] = j->pd.hdr.sctp.src_port; 7488 key.port[0] = j->pd.hdr.sctp.dest_port; 7489 } 7490 7491 sm = pf_find_state(kif, &key, j->pd.dir); 7492 if (sm != NULL) { 7493 PF_STATE_LOCK_ASSERT(sm); 7494 if (j->pd.dir == sm->direction) { 7495 psrc = PF_PEER_SRC; 7496 } else { 7497 psrc = PF_PEER_DST; 7498 } 7499 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7500 sm->timeout = PFTM_SCTP_CLOSING; 7501 PF_STATE_UNLOCK(sm); 7502 } 7503 break; 7504 default: 7505 panic("Unknown op %#x", j->op); 7506 } 7507 } 7508 7509 free: 7510 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7511 free(j, M_PFTEMP); 7512 } 7513 7514 /* We may have inserted extra work while processing the list. */ 7515 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7516 do_extra = false; 7517 goto again; 7518 } 7519 } 7520 7521 static int 7522 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7523 { 7524 int off = 0; 7525 struct pf_sctp_multihome_job *job; 7526 7527 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op); 7528 7529 while (off < len) { 7530 struct sctp_paramhdr h; 7531 7532 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7533 pd->af)) 7534 return (PF_DROP); 7535 7536 /* Parameters are at least 4 bytes. */ 7537 if (ntohs(h.param_length) < 4) 7538 return (PF_DROP); 7539 7540 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type), 7541 ntohs(h.param_length)); 7542 7543 switch (ntohs(h.param_type)) { 7544 case SCTP_IPV4_ADDRESS: { 7545 struct in_addr t; 7546 7547 if (ntohs(h.param_length) != 7548 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7549 return (PF_DROP); 7550 7551 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7552 NULL, NULL, pd->af)) 7553 return (PF_DROP); 7554 7555 if (in_nullhost(t)) 7556 t.s_addr = pd->src->v4.s_addr; 7557 7558 /* 7559 * We hold the state lock (idhash) here, which means 7560 * that we can't acquire the keyhash, or we'll get a 7561 * LOR (and potentially double-lock things too). We also 7562 * can't release the state lock here, so instead we'll 7563 * enqueue this for async handling. 7564 * There's a relatively small race here, in that a 7565 * packet using the new addresses could arrive already, 7566 * but that's just though luck for it. 7567 */ 7568 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7569 if (! job) 7570 return (PF_DROP); 7571 7572 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op); 7573 7574 memcpy(&job->pd, pd, sizeof(*pd)); 7575 7576 // New source address! 7577 memcpy(&job->src, &t, sizeof(t)); 7578 job->pd.src = &job->src; 7579 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7580 job->pd.dst = &job->dst; 7581 job->pd.m = pd->m; 7582 job->op = op; 7583 7584 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7585 break; 7586 } 7587 #ifdef INET6 7588 case SCTP_IPV6_ADDRESS: { 7589 struct in6_addr t; 7590 7591 if (ntohs(h.param_length) != 7592 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7593 return (PF_DROP); 7594 7595 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7596 NULL, NULL, pd->af)) 7597 return (PF_DROP); 7598 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7599 break; 7600 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7601 memcpy(&t, &pd->src->v6, sizeof(t)); 7602 7603 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7604 if (! job) 7605 return (PF_DROP); 7606 7607 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op); 7608 7609 memcpy(&job->pd, pd, sizeof(*pd)); 7610 memcpy(&job->src, &t, sizeof(t)); 7611 job->pd.src = &job->src; 7612 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7613 job->pd.dst = &job->dst; 7614 job->pd.m = pd->m; 7615 job->op = op; 7616 7617 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7618 break; 7619 } 7620 #endif /* INET6 */ 7621 case SCTP_ADD_IP_ADDRESS: { 7622 int ret; 7623 struct sctp_asconf_paramhdr ah; 7624 7625 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7626 NULL, NULL, pd->af)) 7627 return (PF_DROP); 7628 7629 ret = pf_multihome_scan(start + off + sizeof(ah), 7630 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7631 SCTP_ADD_IP_ADDRESS); 7632 if (ret != PF_PASS) 7633 return (ret); 7634 break; 7635 } 7636 case SCTP_DEL_IP_ADDRESS: { 7637 int ret; 7638 struct sctp_asconf_paramhdr ah; 7639 7640 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7641 NULL, NULL, pd->af)) 7642 return (PF_DROP); 7643 ret = pf_multihome_scan(start + off + sizeof(ah), 7644 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7645 SCTP_DEL_IP_ADDRESS); 7646 if (ret != PF_PASS) 7647 return (ret); 7648 break; 7649 } 7650 default: 7651 break; 7652 } 7653 7654 off += roundup(ntohs(h.param_length), 4); 7655 } 7656 7657 return (PF_PASS); 7658 } 7659 7660 int 7661 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7662 { 7663 start += sizeof(struct sctp_init_chunk); 7664 len -= sizeof(struct sctp_init_chunk); 7665 7666 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7667 } 7668 7669 int 7670 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7671 { 7672 start += sizeof(struct sctp_asconf_chunk); 7673 len -= sizeof(struct sctp_asconf_chunk); 7674 7675 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7676 } 7677 7678 int 7679 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7680 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir, 7681 int *iidx, int multi, int inner) 7682 { 7683 int direction = pd->dir; 7684 7685 key->af = pd->af; 7686 key->proto = pd->proto; 7687 if (icmp_dir == PF_IN) { 7688 *iidx = pd->sidx; 7689 key->port[pd->sidx] = icmpid; 7690 key->port[pd->didx] = type; 7691 } else { 7692 *iidx = pd->didx; 7693 key->port[pd->sidx] = type; 7694 key->port[pd->didx] = icmpid; 7695 } 7696 if (pf_state_key_addr_setup(pd, key, multi)) 7697 return (PF_DROP); 7698 7699 STATE_LOOKUP(key, *state, pd); 7700 7701 if ((*state)->state_flags & PFSTATE_SLOPPY) 7702 return (-1); 7703 7704 /* Is this ICMP message flowing in right direction? */ 7705 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af) 7706 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ? 7707 PF_IN : PF_OUT; 7708 else 7709 direction = (*state)->direction; 7710 if ((*state)->rule->type && 7711 (((!inner && direction == pd->dir) || 7712 (inner && direction != pd->dir)) ? 7713 PF_IN : PF_OUT) != icmp_dir) { 7714 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7715 printf("pf: icmp type %d in wrong direction (%d): ", 7716 ntohs(type), icmp_dir); 7717 pf_print_state(*state); 7718 printf("\n"); 7719 } 7720 PF_STATE_UNLOCK(*state); 7721 *state = NULL; 7722 return (PF_DROP); 7723 } 7724 return (-1); 7725 } 7726 7727 static int 7728 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7729 u_short *reason) 7730 { 7731 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7732 u_int16_t *icmpsum, virtual_id, virtual_type; 7733 u_int8_t icmptype, icmpcode; 7734 int icmp_dir, iidx, ret; 7735 struct pf_state_key_cmp key; 7736 #ifdef INET 7737 u_int16_t icmpid; 7738 #endif /* INET*/ 7739 7740 MPASS(*state == NULL); 7741 7742 bzero(&key, sizeof(key)); 7743 switch (pd->proto) { 7744 #ifdef INET 7745 case IPPROTO_ICMP: 7746 icmptype = pd->hdr.icmp.icmp_type; 7747 icmpcode = pd->hdr.icmp.icmp_code; 7748 icmpid = pd->hdr.icmp.icmp_id; 7749 icmpsum = &pd->hdr.icmp.icmp_cksum; 7750 break; 7751 #endif /* INET */ 7752 #ifdef INET6 7753 case IPPROTO_ICMPV6: 7754 icmptype = pd->hdr.icmp6.icmp6_type; 7755 icmpcode = pd->hdr.icmp6.icmp6_code; 7756 #ifdef INET 7757 icmpid = pd->hdr.icmp6.icmp6_id; 7758 #endif /* INET */ 7759 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7760 break; 7761 #endif /* INET6 */ 7762 default: 7763 panic("unhandled proto %d", pd->proto); 7764 } 7765 7766 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id, 7767 &virtual_type) == 0) { 7768 /* 7769 * ICMP query/reply message not related to a TCP/UDP/SCTP 7770 * packet. Search for an ICMP state. 7771 */ 7772 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id, 7773 virtual_type, icmp_dir, &iidx, 0, 0); 7774 /* IPv6? try matching a multicast address */ 7775 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) { 7776 MPASS(*state == NULL); 7777 ret = pf_icmp_state_lookup(&key, pd, state, 7778 virtual_id, virtual_type, 7779 icmp_dir, &iidx, 1, 0); 7780 } 7781 if (ret >= 0) { 7782 MPASS(*state == NULL); 7783 return (ret); 7784 } 7785 7786 (*state)->expire = pf_get_uptime(); 7787 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7788 7789 /* translate source/destination address, if necessary */ 7790 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7791 struct pf_state_key *nk; 7792 int afto, sidx, didx; 7793 7794 if (PF_REVERSED_KEY(*state, pd->af)) 7795 nk = (*state)->key[pd->sidx]; 7796 else 7797 nk = (*state)->key[pd->didx]; 7798 7799 afto = pd->af != nk->af; 7800 7801 if (afto && (*state)->direction == PF_IN) { 7802 sidx = pd->didx; 7803 didx = pd->sidx; 7804 iidx = !iidx; 7805 } else { 7806 sidx = pd->sidx; 7807 didx = pd->didx; 7808 } 7809 7810 switch (pd->af) { 7811 #ifdef INET 7812 case AF_INET: 7813 #ifdef INET6 7814 if (afto) { 7815 if (pf_translate_icmp_af(AF_INET6, 7816 &pd->hdr.icmp)) 7817 return (PF_DROP); 7818 pd->proto = IPPROTO_ICMPV6; 7819 } 7820 #endif /* INET6 */ 7821 if (!afto && 7822 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7823 pf_change_a(&saddr->v4.s_addr, 7824 pd->ip_sum, 7825 nk->addr[sidx].v4.s_addr, 7826 0); 7827 7828 if (!afto && PF_ANEQ(pd->dst, 7829 &nk->addr[didx], AF_INET)) 7830 pf_change_a(&daddr->v4.s_addr, 7831 pd->ip_sum, 7832 nk->addr[didx].v4.s_addr, 0); 7833 7834 if (nk->port[iidx] != 7835 pd->hdr.icmp.icmp_id) { 7836 pd->hdr.icmp.icmp_cksum = 7837 pf_cksum_fixup( 7838 pd->hdr.icmp.icmp_cksum, icmpid, 7839 nk->port[iidx], 0); 7840 pd->hdr.icmp.icmp_id = 7841 nk->port[iidx]; 7842 } 7843 7844 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7845 (caddr_t )&pd->hdr.icmp); 7846 break; 7847 #endif /* INET */ 7848 #ifdef INET6 7849 case AF_INET6: 7850 #ifdef INET 7851 if (afto) { 7852 if (pf_translate_icmp_af(AF_INET, 7853 &pd->hdr.icmp6)) 7854 return (PF_DROP); 7855 pd->proto = IPPROTO_ICMP; 7856 } 7857 #endif /* INET */ 7858 if (!afto && 7859 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7860 pf_change_a6(saddr, 7861 &pd->hdr.icmp6.icmp6_cksum, 7862 &nk->addr[sidx], 0); 7863 7864 if (!afto && PF_ANEQ(pd->dst, 7865 &nk->addr[didx], AF_INET6)) 7866 pf_change_a6(daddr, 7867 &pd->hdr.icmp6.icmp6_cksum, 7868 &nk->addr[didx], 0); 7869 7870 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id) 7871 pd->hdr.icmp6.icmp6_id = 7872 nk->port[iidx]; 7873 7874 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7875 (caddr_t )&pd->hdr.icmp6); 7876 break; 7877 #endif /* INET6 */ 7878 } 7879 if (afto) { 7880 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7881 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7882 pd->naf = nk->af; 7883 return (PF_AFRT); 7884 } 7885 } 7886 return (PF_PASS); 7887 7888 } else { 7889 /* 7890 * ICMP error message in response to a TCP/UDP packet. 7891 * Extract the inner TCP/UDP header and search for that state. 7892 */ 7893 7894 struct pf_pdesc pd2; 7895 bzero(&pd2, sizeof pd2); 7896 #ifdef INET 7897 struct ip h2; 7898 #endif /* INET */ 7899 #ifdef INET6 7900 struct ip6_hdr h2_6; 7901 #endif /* INET6 */ 7902 int ipoff2 = 0; 7903 7904 pd2.af = pd->af; 7905 pd2.dir = pd->dir; 7906 /* Payload packet is from the opposite direction. */ 7907 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7908 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7909 pd2.m = pd->m; 7910 pd2.kif = pd->kif; 7911 switch (pd->af) { 7912 #ifdef INET 7913 case AF_INET: 7914 /* offset of h2 in mbuf chain */ 7915 ipoff2 = pd->off + ICMP_MINLEN; 7916 7917 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7918 NULL, reason, pd2.af)) { 7919 DPFPRINTF(PF_DEBUG_MISC, 7920 ("pf: ICMP error message too short " 7921 "(ip)\n")); 7922 return (PF_DROP); 7923 } 7924 /* 7925 * ICMP error messages don't refer to non-first 7926 * fragments 7927 */ 7928 if (h2.ip_off & htons(IP_OFFMASK)) { 7929 REASON_SET(reason, PFRES_FRAG); 7930 return (PF_DROP); 7931 } 7932 7933 /* offset of protocol header that follows h2 */ 7934 pd2.off = ipoff2 + (h2.ip_hl << 2); 7935 7936 pd2.proto = h2.ip_p; 7937 pd2.tot_len = ntohs(h2.ip_len); 7938 pd2.src = (struct pf_addr *)&h2.ip_src; 7939 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7940 pd2.ip_sum = &h2.ip_sum; 7941 break; 7942 #endif /* INET */ 7943 #ifdef INET6 7944 case AF_INET6: 7945 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7946 7947 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7948 NULL, reason, pd2.af)) { 7949 DPFPRINTF(PF_DEBUG_MISC, 7950 ("pf: ICMP error message too short " 7951 "(ip6)\n")); 7952 return (PF_DROP); 7953 } 7954 pd2.off = ipoff2; 7955 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS) 7956 return (PF_DROP); 7957 7958 pd2.tot_len = ntohs(h2_6.ip6_plen) + 7959 sizeof(struct ip6_hdr); 7960 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7961 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7962 pd2.ip_sum = NULL; 7963 break; 7964 #endif /* INET6 */ 7965 default: 7966 unhandled_af(pd->af); 7967 } 7968 7969 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7970 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7971 printf("pf: BAD ICMP %d:%d outer dst: ", 7972 icmptype, icmpcode); 7973 pf_print_host(pd->src, 0, pd->af); 7974 printf(" -> "); 7975 pf_print_host(pd->dst, 0, pd->af); 7976 printf(" inner src: "); 7977 pf_print_host(pd2.src, 0, pd2.af); 7978 printf(" -> "); 7979 pf_print_host(pd2.dst, 0, pd2.af); 7980 printf("\n"); 7981 } 7982 REASON_SET(reason, PFRES_BADSTATE); 7983 return (PF_DROP); 7984 } 7985 7986 switch (pd2.proto) { 7987 case IPPROTO_TCP: { 7988 struct tcphdr *th = &pd2.hdr.tcp; 7989 u_int32_t seq; 7990 struct pf_state_peer *src, *dst; 7991 u_int8_t dws; 7992 int copyback = 0; 7993 7994 /* 7995 * Only the first 8 bytes of the TCP header can be 7996 * expected. Don't access any TCP header fields after 7997 * th_seq, an ackskew test is not possible. 7998 */ 7999 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason, 8000 pd2.af)) { 8001 DPFPRINTF(PF_DEBUG_MISC, 8002 ("pf: ICMP error message too short " 8003 "(tcp)\n")); 8004 return (PF_DROP); 8005 } 8006 pd2.pcksum = &pd2.hdr.tcp.th_sum; 8007 8008 key.af = pd2.af; 8009 key.proto = IPPROTO_TCP; 8010 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8011 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8012 key.port[pd2.sidx] = th->th_sport; 8013 key.port[pd2.didx] = th->th_dport; 8014 8015 STATE_LOOKUP(&key, *state, pd); 8016 8017 if (pd->dir == (*state)->direction) { 8018 if (PF_REVERSED_KEY(*state, pd->af)) { 8019 src = &(*state)->src; 8020 dst = &(*state)->dst; 8021 } else { 8022 src = &(*state)->dst; 8023 dst = &(*state)->src; 8024 } 8025 } else { 8026 if (PF_REVERSED_KEY(*state, pd->af)) { 8027 src = &(*state)->dst; 8028 dst = &(*state)->src; 8029 } else { 8030 src = &(*state)->src; 8031 dst = &(*state)->dst; 8032 } 8033 } 8034 8035 if (src->wscale && dst->wscale) 8036 dws = dst->wscale & PF_WSCALE_MASK; 8037 else 8038 dws = 0; 8039 8040 /* Demodulate sequence number */ 8041 seq = ntohl(th->th_seq) - src->seqdiff; 8042 if (src->seqdiff) { 8043 pf_change_a(&th->th_seq, icmpsum, 8044 htonl(seq), 0); 8045 copyback = 1; 8046 } 8047 8048 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 8049 (!SEQ_GEQ(src->seqhi, seq) || 8050 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 8051 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8052 printf("pf: BAD ICMP %d:%d ", 8053 icmptype, icmpcode); 8054 pf_print_host(pd->src, 0, pd->af); 8055 printf(" -> "); 8056 pf_print_host(pd->dst, 0, pd->af); 8057 printf(" state: "); 8058 pf_print_state(*state); 8059 printf(" seq=%u\n", seq); 8060 } 8061 REASON_SET(reason, PFRES_BADSTATE); 8062 return (PF_DROP); 8063 } else { 8064 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8065 printf("pf: OK ICMP %d:%d ", 8066 icmptype, icmpcode); 8067 pf_print_host(pd->src, 0, pd->af); 8068 printf(" -> "); 8069 pf_print_host(pd->dst, 0, pd->af); 8070 printf(" state: "); 8071 pf_print_state(*state); 8072 printf(" seq=%u\n", seq); 8073 } 8074 } 8075 8076 /* translate source/destination address, if necessary */ 8077 if ((*state)->key[PF_SK_WIRE] != 8078 (*state)->key[PF_SK_STACK]) { 8079 8080 struct pf_state_key *nk; 8081 8082 if (PF_REVERSED_KEY(*state, pd->af)) 8083 nk = (*state)->key[pd->sidx]; 8084 else 8085 nk = (*state)->key[pd->didx]; 8086 8087 #if defined(INET) && defined(INET6) 8088 int afto, sidx, didx; 8089 8090 afto = pd->af != nk->af; 8091 8092 if (afto && (*state)->direction == PF_IN) { 8093 sidx = pd2.didx; 8094 didx = pd2.sidx; 8095 } else { 8096 sidx = pd2.sidx; 8097 didx = pd2.didx; 8098 } 8099 8100 if (afto) { 8101 if (pf_translate_icmp_af(nk->af, 8102 &pd->hdr.icmp)) 8103 return (PF_DROP); 8104 m_copyback(pd->m, pd->off, 8105 sizeof(struct icmp6_hdr), 8106 (c_caddr_t)&pd->hdr.icmp6); 8107 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8108 &pd2, &nk->addr[sidx], 8109 &nk->addr[didx], pd->af, 8110 nk->af)) 8111 return (PF_DROP); 8112 PF_ACPY(&pd->nsaddr, &nk->addr[pd2.sidx], 8113 nk->af); 8114 PF_ACPY(&pd->ndaddr, 8115 &nk->addr[pd2.didx], nk->af); 8116 if (nk->af == AF_INET) { 8117 pd->proto = IPPROTO_ICMP; 8118 } else { 8119 pd->proto = IPPROTO_ICMPV6; 8120 /* 8121 * IPv4 becomes IPv6 so we must 8122 * copy IPv4 src addr to least 8123 * 32bits in IPv6 address to 8124 * keep traceroute/icmp 8125 * working. 8126 */ 8127 pd->nsaddr.addr32[3] = 8128 pd->src->addr32[0]; 8129 } 8130 pd->naf = pd2.naf = nk->af; 8131 pf_change_ap(&pd2, pd2.src, &th->th_sport, 8132 &nk->addr[pd2.sidx], nk->port[sidx]); 8133 pf_change_ap(&pd2, pd2.dst, &th->th_dport, 8134 &nk->addr[pd2.didx], nk->port[didx]); 8135 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th); 8136 return (PF_AFRT); 8137 } 8138 #endif /* INET && INET6 */ 8139 8140 if (PF_ANEQ(pd2.src, 8141 &nk->addr[pd2.sidx], pd2.af) || 8142 nk->port[pd2.sidx] != th->th_sport) 8143 pf_change_icmp(pd2.src, &th->th_sport, 8144 daddr, &nk->addr[pd2.sidx], 8145 nk->port[pd2.sidx], NULL, 8146 pd2.ip_sum, icmpsum, 8147 pd->ip_sum, 0, pd2.af); 8148 8149 if (PF_ANEQ(pd2.dst, 8150 &nk->addr[pd2.didx], pd2.af) || 8151 nk->port[pd2.didx] != th->th_dport) 8152 pf_change_icmp(pd2.dst, &th->th_dport, 8153 saddr, &nk->addr[pd2.didx], 8154 nk->port[pd2.didx], NULL, 8155 pd2.ip_sum, icmpsum, 8156 pd->ip_sum, 0, pd2.af); 8157 copyback = 1; 8158 } 8159 8160 if (copyback) { 8161 switch (pd2.af) { 8162 #ifdef INET 8163 case AF_INET: 8164 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8165 (caddr_t )&pd->hdr.icmp); 8166 m_copyback(pd->m, ipoff2, sizeof(h2), 8167 (caddr_t )&h2); 8168 break; 8169 #endif /* INET */ 8170 #ifdef INET6 8171 case AF_INET6: 8172 m_copyback(pd->m, pd->off, 8173 sizeof(struct icmp6_hdr), 8174 (caddr_t )&pd->hdr.icmp6); 8175 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8176 (caddr_t )&h2_6); 8177 break; 8178 #endif /* INET6 */ 8179 default: 8180 unhandled_af(pd->af); 8181 } 8182 m_copyback(pd->m, pd2.off, 8, (caddr_t)th); 8183 } 8184 8185 return (PF_PASS); 8186 break; 8187 } 8188 case IPPROTO_UDP: { 8189 struct udphdr *uh = &pd2.hdr.udp; 8190 8191 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh), 8192 NULL, reason, pd2.af)) { 8193 DPFPRINTF(PF_DEBUG_MISC, 8194 ("pf: ICMP error message too short " 8195 "(udp)\n")); 8196 return (PF_DROP); 8197 } 8198 pd2.pcksum = &pd2.hdr.udp.uh_sum; 8199 8200 key.af = pd2.af; 8201 key.proto = IPPROTO_UDP; 8202 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8203 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8204 key.port[pd2.sidx] = uh->uh_sport; 8205 key.port[pd2.didx] = uh->uh_dport; 8206 8207 STATE_LOOKUP(&key, *state, pd); 8208 8209 /* translate source/destination address, if necessary */ 8210 if ((*state)->key[PF_SK_WIRE] != 8211 (*state)->key[PF_SK_STACK]) { 8212 struct pf_state_key *nk; 8213 8214 if (PF_REVERSED_KEY(*state, pd->af)) 8215 nk = (*state)->key[pd->sidx]; 8216 else 8217 nk = (*state)->key[pd->didx]; 8218 8219 #if defined(INET) && defined(INET6) 8220 int afto, sidx, didx; 8221 8222 afto = pd->af != nk->af; 8223 8224 if (afto && (*state)->direction == PF_IN) { 8225 sidx = pd2.didx; 8226 didx = pd2.sidx; 8227 } else { 8228 sidx = pd2.sidx; 8229 didx = pd2.didx; 8230 } 8231 8232 if (afto) { 8233 if (pf_translate_icmp_af(nk->af, 8234 &pd->hdr.icmp)) 8235 return (PF_DROP); 8236 m_copyback(pd->m, pd->off, 8237 sizeof(struct icmp6_hdr), 8238 (c_caddr_t)&pd->hdr.icmp6); 8239 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8240 &pd2, &nk->addr[sidx], 8241 &nk->addr[didx], pd->af, 8242 nk->af)) 8243 return (PF_DROP); 8244 PF_ACPY(&pd->nsaddr, 8245 &nk->addr[pd2.sidx], nk->af); 8246 PF_ACPY(&pd->ndaddr, 8247 &nk->addr[pd2.didx], nk->af); 8248 if (nk->af == AF_INET) { 8249 pd->proto = IPPROTO_ICMP; 8250 } else { 8251 pd->proto = IPPROTO_ICMPV6; 8252 /* 8253 * IPv4 becomes IPv6 so we must 8254 * copy IPv4 src addr to least 8255 * 32bits in IPv6 address to 8256 * keep traceroute/icmp 8257 * working. 8258 */ 8259 pd->nsaddr.addr32[3] = 8260 pd->src->addr32[0]; 8261 } 8262 pd->naf = pd2.naf = nk->af; 8263 pf_change_ap(&pd2, pd2.src, &uh->uh_sport, 8264 &nk->addr[pd2.sidx], nk->port[sidx]); 8265 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport, 8266 &nk->addr[pd2.didx], nk->port[didx]); 8267 m_copyback(pd2.m, pd2.off, sizeof(*uh), 8268 (c_caddr_t)uh); 8269 return (PF_AFRT); 8270 } 8271 #endif /* INET && INET6 */ 8272 8273 if (PF_ANEQ(pd2.src, 8274 &nk->addr[pd2.sidx], pd2.af) || 8275 nk->port[pd2.sidx] != uh->uh_sport) 8276 pf_change_icmp(pd2.src, &uh->uh_sport, 8277 daddr, &nk->addr[pd2.sidx], 8278 nk->port[pd2.sidx], &uh->uh_sum, 8279 pd2.ip_sum, icmpsum, 8280 pd->ip_sum, 1, pd2.af); 8281 8282 if (PF_ANEQ(pd2.dst, 8283 &nk->addr[pd2.didx], pd2.af) || 8284 nk->port[pd2.didx] != uh->uh_dport) 8285 pf_change_icmp(pd2.dst, &uh->uh_dport, 8286 saddr, &nk->addr[pd2.didx], 8287 nk->port[pd2.didx], &uh->uh_sum, 8288 pd2.ip_sum, icmpsum, 8289 pd->ip_sum, 1, pd2.af); 8290 8291 switch (pd2.af) { 8292 #ifdef INET 8293 case AF_INET: 8294 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8295 (caddr_t )&pd->hdr.icmp); 8296 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8297 break; 8298 #endif /* INET */ 8299 #ifdef INET6 8300 case AF_INET6: 8301 m_copyback(pd->m, pd->off, 8302 sizeof(struct icmp6_hdr), 8303 (caddr_t )&pd->hdr.icmp6); 8304 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8305 (caddr_t )&h2_6); 8306 break; 8307 #endif /* INET6 */ 8308 } 8309 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh); 8310 } 8311 return (PF_PASS); 8312 break; 8313 } 8314 #ifdef INET 8315 case IPPROTO_SCTP: { 8316 struct sctphdr *sh = &pd2.hdr.sctp; 8317 struct pf_state_peer *src; 8318 int copyback = 0; 8319 8320 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason, 8321 pd2.af)) { 8322 DPFPRINTF(PF_DEBUG_MISC, 8323 ("pf: ICMP error message too short " 8324 "(sctp)\n")); 8325 return (PF_DROP); 8326 } 8327 pd2.pcksum = &pd2.sctp_dummy_sum; 8328 8329 key.af = pd2.af; 8330 key.proto = IPPROTO_SCTP; 8331 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8332 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8333 key.port[pd2.sidx] = sh->src_port; 8334 key.port[pd2.didx] = sh->dest_port; 8335 8336 STATE_LOOKUP(&key, *state, pd); 8337 8338 if (pd->dir == (*state)->direction) { 8339 if (PF_REVERSED_KEY(*state, pd->af)) 8340 src = &(*state)->src; 8341 else 8342 src = &(*state)->dst; 8343 } else { 8344 if (PF_REVERSED_KEY(*state, pd->af)) 8345 src = &(*state)->dst; 8346 else 8347 src = &(*state)->src; 8348 } 8349 8350 if (src->scrub->pfss_v_tag != sh->v_tag) { 8351 DPFPRINTF(PF_DEBUG_MISC, 8352 ("pf: ICMP error message has incorrect " 8353 "SCTP v_tag\n")); 8354 return (PF_DROP); 8355 } 8356 8357 /* translate source/destination address, if necessary */ 8358 if ((*state)->key[PF_SK_WIRE] != 8359 (*state)->key[PF_SK_STACK]) { 8360 8361 struct pf_state_key *nk; 8362 8363 if (PF_REVERSED_KEY(*state, pd->af)) 8364 nk = (*state)->key[pd->sidx]; 8365 else 8366 nk = (*state)->key[pd->didx]; 8367 8368 #if defined(INET) && defined(INET6) 8369 int afto, sidx, didx; 8370 8371 afto = pd->af != nk->af; 8372 8373 if (afto && (*state)->direction == PF_IN) { 8374 sidx = pd2.didx; 8375 didx = pd2.sidx; 8376 } else { 8377 sidx = pd2.sidx; 8378 didx = pd2.didx; 8379 } 8380 8381 if (afto) { 8382 if (pf_translate_icmp_af(nk->af, 8383 &pd->hdr.icmp)) 8384 return (PF_DROP); 8385 m_copyback(pd->m, pd->off, 8386 sizeof(struct icmp6_hdr), 8387 (c_caddr_t)&pd->hdr.icmp6); 8388 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8389 &pd2, &nk->addr[sidx], 8390 &nk->addr[didx], pd->af, 8391 nk->af)) 8392 return (PF_DROP); 8393 sh->src_port = nk->port[sidx]; 8394 sh->dest_port = nk->port[didx]; 8395 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh); 8396 PF_ACPY(&pd->nsaddr, 8397 &nk->addr[pd2.sidx], nk->af); 8398 PF_ACPY(&pd->ndaddr, 8399 &nk->addr[pd2.didx], nk->af); 8400 if (nk->af == AF_INET) { 8401 pd->proto = IPPROTO_ICMP; 8402 } else { 8403 pd->proto = IPPROTO_ICMPV6; 8404 /* 8405 * IPv4 becomes IPv6 so we must 8406 * copy IPv4 src addr to least 8407 * 32bits in IPv6 address to 8408 * keep traceroute/icmp 8409 * working. 8410 */ 8411 pd->nsaddr.addr32[3] = 8412 pd->src->addr32[0]; 8413 } 8414 pd->naf = nk->af; 8415 return (PF_AFRT); 8416 } 8417 #endif /* INET && INET6 */ 8418 8419 if (PF_ANEQ(pd2.src, 8420 &nk->addr[pd2.sidx], pd2.af) || 8421 nk->port[pd2.sidx] != sh->src_port) 8422 pf_change_icmp(pd2.src, &sh->src_port, 8423 daddr, &nk->addr[pd2.sidx], 8424 nk->port[pd2.sidx], NULL, 8425 pd2.ip_sum, icmpsum, 8426 pd->ip_sum, 0, pd2.af); 8427 8428 if (PF_ANEQ(pd2.dst, 8429 &nk->addr[pd2.didx], pd2.af) || 8430 nk->port[pd2.didx] != sh->dest_port) 8431 pf_change_icmp(pd2.dst, &sh->dest_port, 8432 saddr, &nk->addr[pd2.didx], 8433 nk->port[pd2.didx], NULL, 8434 pd2.ip_sum, icmpsum, 8435 pd->ip_sum, 0, pd2.af); 8436 copyback = 1; 8437 } 8438 8439 if (copyback) { 8440 switch (pd2.af) { 8441 #ifdef INET 8442 case AF_INET: 8443 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8444 (caddr_t )&pd->hdr.icmp); 8445 m_copyback(pd->m, ipoff2, sizeof(h2), 8446 (caddr_t )&h2); 8447 break; 8448 #endif /* INET */ 8449 #ifdef INET6 8450 case AF_INET6: 8451 m_copyback(pd->m, pd->off, 8452 sizeof(struct icmp6_hdr), 8453 (caddr_t )&pd->hdr.icmp6); 8454 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8455 (caddr_t )&h2_6); 8456 break; 8457 #endif /* INET6 */ 8458 } 8459 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh); 8460 } 8461 8462 return (PF_PASS); 8463 break; 8464 } 8465 case IPPROTO_ICMP: { 8466 struct icmp *iih = &pd2.hdr.icmp; 8467 8468 if (pd2.af != AF_INET) { 8469 REASON_SET(reason, PFRES_NORM); 8470 return (PF_DROP); 8471 } 8472 8473 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8474 NULL, reason, pd2.af)) { 8475 DPFPRINTF(PF_DEBUG_MISC, 8476 ("pf: ICMP error message too short i" 8477 "(icmp)\n")); 8478 return (PF_DROP); 8479 } 8480 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum; 8481 8482 icmpid = iih->icmp_id; 8483 pf_icmp_mapping(&pd2, iih->icmp_type, 8484 &icmp_dir, &virtual_id, &virtual_type); 8485 8486 ret = pf_icmp_state_lookup(&key, &pd2, state, 8487 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8488 if (ret >= 0) { 8489 MPASS(*state == NULL); 8490 return (ret); 8491 } 8492 8493 /* translate source/destination address, if necessary */ 8494 if ((*state)->key[PF_SK_WIRE] != 8495 (*state)->key[PF_SK_STACK]) { 8496 struct pf_state_key *nk; 8497 8498 if (PF_REVERSED_KEY(*state, pd->af)) 8499 nk = (*state)->key[pd->sidx]; 8500 else 8501 nk = (*state)->key[pd->didx]; 8502 8503 #if defined(INET) && defined(INET6) 8504 int afto, sidx, didx; 8505 8506 afto = pd->af != nk->af; 8507 8508 if (afto && (*state)->direction == PF_IN) { 8509 sidx = pd2.didx; 8510 didx = pd2.sidx; 8511 iidx = !iidx; 8512 } else { 8513 sidx = pd2.sidx; 8514 didx = pd2.didx; 8515 } 8516 8517 if (afto) { 8518 if (nk->af != AF_INET6) 8519 return (PF_DROP); 8520 if (pf_translate_icmp_af(nk->af, 8521 &pd->hdr.icmp)) 8522 return (PF_DROP); 8523 m_copyback(pd->m, pd->off, 8524 sizeof(struct icmp6_hdr), 8525 (c_caddr_t)&pd->hdr.icmp6); 8526 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8527 &pd2, &nk->addr[sidx], 8528 &nk->addr[didx], pd->af, 8529 nk->af)) 8530 return (PF_DROP); 8531 pd->proto = IPPROTO_ICMPV6; 8532 if (pf_translate_icmp_af(nk->af, iih)) 8533 return (PF_DROP); 8534 if (virtual_type == htons(ICMP_ECHO) && 8535 nk->port[iidx] != iih->icmp_id) 8536 iih->icmp_id = nk->port[iidx]; 8537 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8538 (c_caddr_t)iih); 8539 PF_ACPY(&pd->nsaddr, 8540 &nk->addr[pd2.sidx], nk->af); 8541 PF_ACPY(&pd->ndaddr, 8542 &nk->addr[pd2.didx], nk->af); 8543 /* 8544 * IPv4 becomes IPv6 so we must copy 8545 * IPv4 src addr to least 32bits in 8546 * IPv6 address to keep traceroute 8547 * working. 8548 */ 8549 pd->nsaddr.addr32[3] = 8550 pd->src->addr32[0]; 8551 pd->naf = nk->af; 8552 return (PF_AFRT); 8553 } 8554 #endif /* INET && INET6 */ 8555 8556 if (PF_ANEQ(pd2.src, 8557 &nk->addr[pd2.sidx], pd2.af) || 8558 (virtual_type == htons(ICMP_ECHO) && 8559 nk->port[iidx] != iih->icmp_id)) 8560 pf_change_icmp(pd2.src, 8561 (virtual_type == htons(ICMP_ECHO)) ? 8562 &iih->icmp_id : NULL, 8563 daddr, &nk->addr[pd2.sidx], 8564 (virtual_type == htons(ICMP_ECHO)) ? 8565 nk->port[iidx] : 0, NULL, 8566 pd2.ip_sum, icmpsum, 8567 pd->ip_sum, 0, AF_INET); 8568 8569 if (PF_ANEQ(pd2.dst, 8570 &nk->addr[pd2.didx], pd2.af)) 8571 pf_change_icmp(pd2.dst, NULL, NULL, 8572 &nk->addr[pd2.didx], 0, NULL, 8573 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8574 AF_INET); 8575 8576 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8577 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8578 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8579 } 8580 return (PF_PASS); 8581 break; 8582 } 8583 #endif /* INET */ 8584 #ifdef INET6 8585 case IPPROTO_ICMPV6: { 8586 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8587 8588 if (pd2.af != AF_INET6) { 8589 REASON_SET(reason, PFRES_NORM); 8590 return (PF_DROP); 8591 } 8592 8593 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8594 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8595 DPFPRINTF(PF_DEBUG_MISC, 8596 ("pf: ICMP error message too short " 8597 "(icmp6)\n")); 8598 return (PF_DROP); 8599 } 8600 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum; 8601 8602 pf_icmp_mapping(&pd2, iih->icmp6_type, 8603 &icmp_dir, &virtual_id, &virtual_type); 8604 8605 ret = pf_icmp_state_lookup(&key, &pd2, state, 8606 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8607 /* IPv6? try matching a multicast address */ 8608 if (ret == PF_DROP && pd2.af == AF_INET6 && 8609 icmp_dir == PF_OUT) { 8610 MPASS(*state == NULL); 8611 ret = pf_icmp_state_lookup(&key, &pd2, 8612 state, virtual_id, virtual_type, 8613 icmp_dir, &iidx, 1, 1); 8614 } 8615 if (ret >= 0) { 8616 MPASS(*state == NULL); 8617 return (ret); 8618 } 8619 8620 /* translate source/destination address, if necessary */ 8621 if ((*state)->key[PF_SK_WIRE] != 8622 (*state)->key[PF_SK_STACK]) { 8623 struct pf_state_key *nk; 8624 8625 if (PF_REVERSED_KEY(*state, pd->af)) 8626 nk = (*state)->key[pd->sidx]; 8627 else 8628 nk = (*state)->key[pd->didx]; 8629 8630 #if defined(INET) && defined(INET6) 8631 int afto, sidx, didx; 8632 8633 afto = pd->af != nk->af; 8634 8635 if (afto && (*state)->direction == PF_IN) { 8636 sidx = pd2.didx; 8637 didx = pd2.sidx; 8638 iidx = !iidx; 8639 } else { 8640 sidx = pd2.sidx; 8641 didx = pd2.didx; 8642 } 8643 8644 if (afto) { 8645 if (nk->af != AF_INET) 8646 return (PF_DROP); 8647 if (pf_translate_icmp_af(nk->af, 8648 &pd->hdr.icmp)) 8649 return (PF_DROP); 8650 m_copyback(pd->m, pd->off, 8651 sizeof(struct icmp6_hdr), 8652 (c_caddr_t)&pd->hdr.icmp6); 8653 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8654 &pd2, &nk->addr[sidx], 8655 &nk->addr[didx], pd->af, 8656 nk->af)) 8657 return (PF_DROP); 8658 pd->proto = IPPROTO_ICMP; 8659 if (pf_translate_icmp_af(nk->af, iih)) 8660 return (PF_DROP); 8661 if (virtual_type == 8662 htons(ICMP6_ECHO_REQUEST) && 8663 nk->port[iidx] != iih->icmp6_id) 8664 iih->icmp6_id = nk->port[iidx]; 8665 m_copyback(pd2.m, pd2.off, 8666 sizeof(struct icmp6_hdr), (c_caddr_t)iih); 8667 PF_ACPY(&pd->nsaddr, 8668 &nk->addr[pd2.sidx], nk->af); 8669 PF_ACPY(&pd->ndaddr, 8670 &nk->addr[pd2.didx], nk->af); 8671 pd->naf = nk->af; 8672 return (PF_AFRT); 8673 } 8674 #endif /* INET && INET6 */ 8675 8676 if (PF_ANEQ(pd2.src, 8677 &nk->addr[pd2.sidx], pd2.af) || 8678 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8679 nk->port[pd2.sidx] != iih->icmp6_id)) 8680 pf_change_icmp(pd2.src, 8681 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8682 ? &iih->icmp6_id : NULL, 8683 daddr, &nk->addr[pd2.sidx], 8684 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8685 ? nk->port[iidx] : 0, NULL, 8686 pd2.ip_sum, icmpsum, 8687 pd->ip_sum, 0, AF_INET6); 8688 8689 if (PF_ANEQ(pd2.dst, 8690 &nk->addr[pd2.didx], pd2.af)) 8691 pf_change_icmp(pd2.dst, NULL, NULL, 8692 &nk->addr[pd2.didx], 0, NULL, 8693 pd2.ip_sum, icmpsum, 8694 pd->ip_sum, 0, AF_INET6); 8695 8696 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8697 (caddr_t)&pd->hdr.icmp6); 8698 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8699 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8700 (caddr_t)iih); 8701 } 8702 return (PF_PASS); 8703 break; 8704 } 8705 #endif /* INET6 */ 8706 default: { 8707 key.af = pd2.af; 8708 key.proto = pd2.proto; 8709 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8710 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8711 key.port[0] = key.port[1] = 0; 8712 8713 STATE_LOOKUP(&key, *state, pd); 8714 8715 /* translate source/destination address, if necessary */ 8716 if ((*state)->key[PF_SK_WIRE] != 8717 (*state)->key[PF_SK_STACK]) { 8718 struct pf_state_key *nk = 8719 (*state)->key[pd->didx]; 8720 8721 if (PF_ANEQ(pd2.src, 8722 &nk->addr[pd2.sidx], pd2.af)) 8723 pf_change_icmp(pd2.src, NULL, daddr, 8724 &nk->addr[pd2.sidx], 0, NULL, 8725 pd2.ip_sum, icmpsum, 8726 pd->ip_sum, 0, pd2.af); 8727 8728 if (PF_ANEQ(pd2.dst, 8729 &nk->addr[pd2.didx], pd2.af)) 8730 pf_change_icmp(pd2.dst, NULL, saddr, 8731 &nk->addr[pd2.didx], 0, NULL, 8732 pd2.ip_sum, icmpsum, 8733 pd->ip_sum, 0, pd2.af); 8734 8735 switch (pd2.af) { 8736 #ifdef INET 8737 case AF_INET: 8738 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8739 (caddr_t)&pd->hdr.icmp); 8740 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8741 break; 8742 #endif /* INET */ 8743 #ifdef INET6 8744 case AF_INET6: 8745 m_copyback(pd->m, pd->off, 8746 sizeof(struct icmp6_hdr), 8747 (caddr_t )&pd->hdr.icmp6); 8748 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8749 (caddr_t )&h2_6); 8750 break; 8751 #endif /* INET6 */ 8752 } 8753 } 8754 return (PF_PASS); 8755 break; 8756 } 8757 } 8758 } 8759 } 8760 8761 /* 8762 * ipoff and off are measured from the start of the mbuf chain. 8763 * h must be at "ipoff" on the mbuf chain. 8764 */ 8765 void * 8766 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8767 u_short *actionp, u_short *reasonp, sa_family_t af) 8768 { 8769 int iplen = 0; 8770 switch (af) { 8771 #ifdef INET 8772 case AF_INET: { 8773 const struct ip *h = mtod(m, struct ip *); 8774 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8775 8776 if (fragoff) { 8777 if (fragoff >= len) 8778 ACTION_SET(actionp, PF_PASS); 8779 else { 8780 ACTION_SET(actionp, PF_DROP); 8781 REASON_SET(reasonp, PFRES_FRAG); 8782 } 8783 return (NULL); 8784 } 8785 iplen = ntohs(h->ip_len); 8786 break; 8787 } 8788 #endif /* INET */ 8789 #ifdef INET6 8790 case AF_INET6: { 8791 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8792 8793 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8794 break; 8795 } 8796 #endif /* INET6 */ 8797 } 8798 if (m->m_pkthdr.len < off + len || iplen < off + len) { 8799 ACTION_SET(actionp, PF_DROP); 8800 REASON_SET(reasonp, PFRES_SHORT); 8801 return (NULL); 8802 } 8803 m_copydata(m, off, len, p); 8804 return (p); 8805 } 8806 8807 int 8808 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8809 int rtableid) 8810 { 8811 struct ifnet *ifp; 8812 8813 /* 8814 * Skip check for addresses with embedded interface scope, 8815 * as they would always match anyway. 8816 */ 8817 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8818 return (1); 8819 8820 if (af != AF_INET && af != AF_INET6) 8821 return (0); 8822 8823 if (kif == V_pfi_all) 8824 return (1); 8825 8826 /* Skip checks for ipsec interfaces */ 8827 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8828 return (1); 8829 8830 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8831 8832 switch (af) { 8833 #ifdef INET6 8834 case AF_INET6: 8835 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8836 ifp)); 8837 #endif /* INET6 */ 8838 #ifdef INET 8839 case AF_INET: 8840 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8841 ifp)); 8842 #endif /* INET */ 8843 } 8844 8845 return (0); 8846 } 8847 8848 #ifdef INET 8849 static void 8850 pf_route(struct pf_krule *r, struct ifnet *oifp, 8851 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8852 { 8853 struct mbuf *m0, *m1, *md; 8854 struct route ro; 8855 const struct sockaddr *gw = &ro.ro_dst; 8856 struct sockaddr_in *dst; 8857 struct ip *ip; 8858 struct ifnet *ifp = NULL; 8859 int error = 0; 8860 uint16_t ip_len, ip_off; 8861 uint16_t tmp; 8862 int r_dir; 8863 bool skip_test = false; 8864 8865 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 8866 8867 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp); 8868 8869 if (s) { 8870 r_dir = s->direction; 8871 } else { 8872 r_dir = r->direction; 8873 } 8874 8875 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8876 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8877 __func__)); 8878 8879 if ((pd->pf_mtag == NULL && 8880 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 8881 pd->pf_mtag->routed++ > 3) { 8882 m0 = pd->m; 8883 pd->m = NULL; 8884 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8885 goto bad_locked; 8886 } 8887 8888 if (pd->act.rt_kif != NULL) 8889 ifp = pd->act.rt_kif->pfik_ifp; 8890 8891 if (pd->act.rt == PF_DUPTO) { 8892 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8893 if (s != NULL) { 8894 PF_STATE_UNLOCK(s); 8895 } 8896 if (ifp == oifp) { 8897 /* When the 2nd interface is not skipped */ 8898 return; 8899 } else { 8900 m0 = pd->m; 8901 pd->m = NULL; 8902 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8903 goto bad; 8904 } 8905 } else { 8906 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8907 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 8908 if (s) 8909 PF_STATE_UNLOCK(s); 8910 return; 8911 } 8912 } 8913 } else { 8914 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8915 if (pd->af == pd->naf) { 8916 pf_dummynet(pd, s, r, &pd->m); 8917 if (s) 8918 PF_STATE_UNLOCK(s); 8919 return; 8920 } else { 8921 if (r_dir == PF_IN) { 8922 skip_test = true; 8923 } 8924 } 8925 } 8926 8927 /* 8928 * If we're actually doing route-to and af-to and are in the 8929 * reply direction. 8930 */ 8931 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 8932 pd->af != pd->naf) { 8933 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) { 8934 /* Un-set ifp so we do a plain route lookup. */ 8935 ifp = NULL; 8936 } 8937 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) { 8938 /* Un-set ifp so we do a plain route lookup. */ 8939 ifp = NULL; 8940 } 8941 } 8942 m0 = pd->m; 8943 } 8944 8945 ip = mtod(m0, struct ip *); 8946 8947 bzero(&ro, sizeof(ro)); 8948 dst = (struct sockaddr_in *)&ro.ro_dst; 8949 dst->sin_family = AF_INET; 8950 dst->sin_len = sizeof(struct sockaddr_in); 8951 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 8952 8953 if (s != NULL){ 8954 if (ifp == NULL && (pd->af != pd->naf)) { 8955 /* We're in the AFTO case. Do a route lookup. */ 8956 const struct nhop_object *nh; 8957 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0); 8958 if (nh) { 8959 ifp = nh->nh_ifp; 8960 8961 /* Use the gateway if needed. */ 8962 if (nh->nh_flags & NHF_GATEWAY) { 8963 gw = &nh->gw_sa; 8964 ro.ro_flags |= RT_HAS_GW; 8965 } else { 8966 dst->sin_addr = ip->ip_dst; 8967 } 8968 8969 /* 8970 * Bind to the correct interface if we're 8971 * if-bound. We don't know which interface 8972 * that will be until here, so we've inserted 8973 * the state on V_pf_all. Fix that now. 8974 */ 8975 if (s->kif == V_pfi_all && ifp != NULL && 8976 r->rule_flag & PFRULE_IFBOUND) 8977 s->kif = ifp->if_pf_kif; 8978 } 8979 } 8980 8981 if (r->rule_flag & PFRULE_IFBOUND && 8982 pd->act.rt == PF_REPLYTO && 8983 s->kif == V_pfi_all) { 8984 s->kif = pd->act.rt_kif; 8985 s->orig_kif = oifp->if_pf_kif; 8986 } 8987 8988 PF_STATE_UNLOCK(s); 8989 } 8990 8991 if (ifp == NULL) { 8992 m0 = pd->m; 8993 pd->m = NULL; 8994 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8995 goto bad; 8996 } 8997 8998 if (pd->dir == PF_IN && !skip_test) { 8999 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 9000 &pd->act) != PF_PASS) { 9001 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9002 goto bad; 9003 } else if (m0 == NULL) { 9004 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9005 goto done; 9006 } 9007 if (m0->m_len < sizeof(struct ip)) { 9008 DPFPRINTF(PF_DEBUG_URGENT, 9009 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 9010 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9011 goto bad; 9012 } 9013 ip = mtod(m0, struct ip *); 9014 } 9015 9016 if (ifp->if_flags & IFF_LOOPBACK) 9017 m0->m_flags |= M_SKIP_FIREWALL; 9018 9019 ip_len = ntohs(ip->ip_len); 9020 ip_off = ntohs(ip->ip_off); 9021 9022 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 9023 m0->m_pkthdr.csum_flags |= CSUM_IP; 9024 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 9025 in_delayed_cksum(m0); 9026 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 9027 } 9028 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 9029 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 9030 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 9031 } 9032 9033 if (pd->dir == PF_IN) { 9034 /* 9035 * Make sure dummynet gets the correct direction, in case it needs to 9036 * re-inject later. 9037 */ 9038 pd->dir = PF_OUT; 9039 9040 /* 9041 * The following processing is actually the rest of the inbound processing, even 9042 * though we've marked it as outbound (so we don't look through dummynet) and it 9043 * happens after the outbound processing (pf_test(PF_OUT) above). 9044 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9045 * conclusion about what direction it's processing, and we can't fix it or it 9046 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9047 * decision will pick the right pipe, and everything will mostly work as expected. 9048 */ 9049 tmp = pd->act.dnrpipe; 9050 pd->act.dnrpipe = pd->act.dnpipe; 9051 pd->act.dnpipe = tmp; 9052 } 9053 9054 /* 9055 * If small enough for interface, or the interface will take 9056 * care of the fragmentation for us, we can just send directly. 9057 */ 9058 if (ip_len <= ifp->if_mtu || 9059 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 9060 ip->ip_sum = 0; 9061 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 9062 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 9063 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 9064 } 9065 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 9066 9067 md = m0; 9068 error = pf_dummynet_route(pd, s, r, ifp, gw, &md); 9069 if (md != NULL) { 9070 error = (*ifp->if_output)(ifp, md, gw, &ro); 9071 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9072 } 9073 goto done; 9074 } 9075 9076 /* Balk when DF bit is set or the interface didn't support TSO. */ 9077 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 9078 error = EMSGSIZE; 9079 KMOD_IPSTAT_INC(ips_cantfrag); 9080 if (pd->act.rt != PF_DUPTO) { 9081 if (s && s->nat_rule != NULL) { 9082 MPASS(m0 == pd->m); 9083 PACKET_UNDO_NAT(pd, 9084 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 9085 s); 9086 } 9087 9088 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 9089 ifp->if_mtu); 9090 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9091 goto done; 9092 } else { 9093 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9094 goto bad; 9095 } 9096 } 9097 9098 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 9099 if (error) { 9100 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9101 goto bad; 9102 } 9103 9104 for (; m0; m0 = m1) { 9105 m1 = m0->m_nextpkt; 9106 m0->m_nextpkt = NULL; 9107 if (error == 0) { 9108 m_clrprotoflags(m0); 9109 md = m0; 9110 pd->pf_mtag = pf_find_mtag(md); 9111 error = pf_dummynet_route(pd, s, r, ifp, 9112 gw, &md); 9113 if (md != NULL) { 9114 error = (*ifp->if_output)(ifp, md, gw, &ro); 9115 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9116 } 9117 } else 9118 m_freem(m0); 9119 } 9120 9121 if (error == 0) 9122 KMOD_IPSTAT_INC(ips_fragmented); 9123 9124 done: 9125 if (pd->act.rt != PF_DUPTO) 9126 pd->m = NULL; 9127 return; 9128 9129 bad_locked: 9130 if (s) 9131 PF_STATE_UNLOCK(s); 9132 bad: 9133 m_freem(m0); 9134 goto done; 9135 } 9136 #endif /* INET */ 9137 9138 #ifdef INET6 9139 static void 9140 pf_route6(struct pf_krule *r, struct ifnet *oifp, 9141 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 9142 { 9143 struct mbuf *m0, *md; 9144 struct m_tag *mtag; 9145 struct sockaddr_in6 dst; 9146 struct ip6_hdr *ip6; 9147 struct ifnet *ifp = NULL; 9148 int r_dir; 9149 bool skip_test = false; 9150 9151 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 9152 9153 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp); 9154 9155 if (s) { 9156 r_dir = s->direction; 9157 } else { 9158 r_dir = r->direction; 9159 } 9160 9161 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9162 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9163 __func__)); 9164 9165 if ((pd->pf_mtag == NULL && 9166 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 9167 pd->pf_mtag->routed++ > 3) { 9168 m0 = pd->m; 9169 pd->m = NULL; 9170 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9171 goto bad_locked; 9172 } 9173 9174 if (pd->act.rt_kif != NULL) 9175 ifp = pd->act.rt_kif->pfik_ifp; 9176 9177 if (pd->act.rt == PF_DUPTO) { 9178 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9179 if (s != NULL) { 9180 PF_STATE_UNLOCK(s); 9181 } 9182 if (ifp == oifp) { 9183 /* When the 2nd interface is not skipped */ 9184 return; 9185 } else { 9186 m0 = pd->m; 9187 pd->m = NULL; 9188 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9189 goto bad; 9190 } 9191 } else { 9192 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9193 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 9194 if (s) 9195 PF_STATE_UNLOCK(s); 9196 return; 9197 } 9198 } 9199 } else { 9200 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9201 if (pd->af == pd->naf) { 9202 pf_dummynet(pd, s, r, &pd->m); 9203 if (s) 9204 PF_STATE_UNLOCK(s); 9205 return; 9206 } else { 9207 if (r_dir == PF_IN) { 9208 skip_test = true; 9209 } 9210 } 9211 } 9212 9213 /* 9214 * If we're actually doing route-to and af-to and are in the 9215 * reply direction. 9216 */ 9217 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 9218 pd->af != pd->naf) { 9219 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) { 9220 /* Un-set ifp so we do a plain route lookup. */ 9221 ifp = NULL; 9222 } 9223 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) { 9224 /* Un-set ifp so we do a plain route lookup. */ 9225 ifp = NULL; 9226 } 9227 } 9228 m0 = pd->m; 9229 } 9230 9231 ip6 = mtod(m0, struct ip6_hdr *); 9232 9233 bzero(&dst, sizeof(dst)); 9234 dst.sin6_family = AF_INET6; 9235 dst.sin6_len = sizeof(dst); 9236 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6); 9237 9238 if (s != NULL) { 9239 if (ifp == NULL && (pd->af != pd->naf)) { 9240 const struct nhop_object *nh; 9241 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0); 9242 if (nh) { 9243 ifp = nh->nh_ifp; 9244 9245 /* Use the gateway if needed. */ 9246 if (nh->nh_flags & NHF_GATEWAY) 9247 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr, 9248 sizeof(dst.sin6_addr)); 9249 else 9250 dst.sin6_addr = ip6->ip6_dst; 9251 9252 /* 9253 * Bind to the correct interface if we're 9254 * if-bound. We don't know which interface 9255 * that will be until here, so we've inserted 9256 * the state on V_pf_all. Fix that now. 9257 */ 9258 if (s->kif == V_pfi_all && ifp != NULL && 9259 r->rule_flag & PFRULE_IFBOUND) 9260 s->kif = ifp->if_pf_kif; 9261 } 9262 } 9263 9264 if (r->rule_flag & PFRULE_IFBOUND && 9265 pd->act.rt == PF_REPLYTO && 9266 s->kif == V_pfi_all) { 9267 s->kif = pd->act.rt_kif; 9268 s->orig_kif = oifp->if_pf_kif; 9269 } 9270 9271 PF_STATE_UNLOCK(s); 9272 } 9273 9274 if (pd->af != pd->naf) { 9275 struct udphdr *uh = &pd->hdr.udp; 9276 9277 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) { 9278 uh->uh_sum = in6_cksum_pseudo(ip6, 9279 ntohs(uh->uh_ulen), IPPROTO_UDP, 0); 9280 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any); 9281 } 9282 } 9283 9284 if (ifp == NULL) { 9285 m0 = pd->m; 9286 pd->m = NULL; 9287 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9288 goto bad; 9289 } 9290 9291 if (pd->dir == PF_IN && !skip_test) { 9292 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9293 ifp, &m0, inp, &pd->act) != PF_PASS) { 9294 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9295 goto bad; 9296 } else if (m0 == NULL) { 9297 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9298 goto done; 9299 } 9300 if (m0->m_len < sizeof(struct ip6_hdr)) { 9301 DPFPRINTF(PF_DEBUG_URGENT, 9302 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 9303 __func__)); 9304 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9305 goto bad; 9306 } 9307 ip6 = mtod(m0, struct ip6_hdr *); 9308 } 9309 9310 if (ifp->if_flags & IFF_LOOPBACK) 9311 m0->m_flags |= M_SKIP_FIREWALL; 9312 9313 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9314 ~ifp->if_hwassist) { 9315 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9316 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9317 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9318 } 9319 9320 if (pd->dir == PF_IN) { 9321 uint16_t tmp; 9322 /* 9323 * Make sure dummynet gets the correct direction, in case it needs to 9324 * re-inject later. 9325 */ 9326 pd->dir = PF_OUT; 9327 9328 /* 9329 * The following processing is actually the rest of the inbound processing, even 9330 * though we've marked it as outbound (so we don't look through dummynet) and it 9331 * happens after the outbound processing (pf_test(PF_OUT) above). 9332 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9333 * conclusion about what direction it's processing, and we can't fix it or it 9334 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9335 * decision will pick the right pipe, and everything will mostly work as expected. 9336 */ 9337 tmp = pd->act.dnrpipe; 9338 pd->act.dnrpipe = pd->act.dnpipe; 9339 pd->act.dnpipe = tmp; 9340 } 9341 9342 /* 9343 * If the packet is too large for the outgoing interface, 9344 * send back an icmp6 error. 9345 */ 9346 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9347 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9348 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9349 if (mtag != NULL) { 9350 int ret __sdt_used; 9351 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9352 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9353 goto done; 9354 } 9355 9356 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9357 md = m0; 9358 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9359 if (md != NULL) { 9360 int ret __sdt_used; 9361 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9362 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9363 } 9364 } 9365 else { 9366 in6_ifstat_inc(ifp, ifs6_in_toobig); 9367 if (pd->act.rt != PF_DUPTO) { 9368 if (s && s->nat_rule != NULL) { 9369 MPASS(m0 == pd->m); 9370 PACKET_UNDO_NAT(pd, 9371 ((caddr_t)ip6 - m0->m_data) + 9372 sizeof(struct ip6_hdr), s); 9373 } 9374 9375 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 9376 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9377 } else { 9378 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9379 goto bad; 9380 } 9381 } 9382 9383 done: 9384 if (pd->act.rt != PF_DUPTO) 9385 pd->m = NULL; 9386 return; 9387 9388 bad_locked: 9389 if (s) 9390 PF_STATE_UNLOCK(s); 9391 bad: 9392 m_freem(m0); 9393 goto done; 9394 } 9395 #endif /* INET6 */ 9396 9397 /* 9398 * FreeBSD supports cksum offloads for the following drivers. 9399 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9400 * 9401 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9402 * network driver performed cksum including pseudo header, need to verify 9403 * csum_data 9404 * CSUM_DATA_VALID : 9405 * network driver performed cksum, needs to additional pseudo header 9406 * cksum computation with partial csum_data(i.e. lack of H/W support for 9407 * pseudo header, for instance sk(4) and possibly gem(4)) 9408 * 9409 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9410 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9411 * TCP/UDP layer. 9412 * Also, set csum_data to 0xffff to force cksum validation. 9413 */ 9414 static int 9415 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9416 { 9417 u_int16_t sum = 0; 9418 int hw_assist = 0; 9419 struct ip *ip; 9420 9421 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9422 return (1); 9423 if (m->m_pkthdr.len < off + len) 9424 return (1); 9425 9426 switch (p) { 9427 case IPPROTO_TCP: 9428 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9429 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9430 sum = m->m_pkthdr.csum_data; 9431 } else { 9432 ip = mtod(m, struct ip *); 9433 sum = in_pseudo(ip->ip_src.s_addr, 9434 ip->ip_dst.s_addr, htonl((u_short)len + 9435 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9436 } 9437 sum ^= 0xffff; 9438 ++hw_assist; 9439 } 9440 break; 9441 case IPPROTO_UDP: 9442 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9443 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9444 sum = m->m_pkthdr.csum_data; 9445 } else { 9446 ip = mtod(m, struct ip *); 9447 sum = in_pseudo(ip->ip_src.s_addr, 9448 ip->ip_dst.s_addr, htonl((u_short)len + 9449 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9450 } 9451 sum ^= 0xffff; 9452 ++hw_assist; 9453 } 9454 break; 9455 case IPPROTO_ICMP: 9456 #ifdef INET6 9457 case IPPROTO_ICMPV6: 9458 #endif /* INET6 */ 9459 break; 9460 default: 9461 return (1); 9462 } 9463 9464 if (!hw_assist) { 9465 switch (af) { 9466 case AF_INET: 9467 if (m->m_len < sizeof(struct ip)) 9468 return (1); 9469 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len); 9470 break; 9471 #ifdef INET6 9472 case AF_INET6: 9473 if (m->m_len < sizeof(struct ip6_hdr)) 9474 return (1); 9475 sum = in6_cksum(m, p, off, len); 9476 break; 9477 #endif /* INET6 */ 9478 } 9479 } 9480 if (sum) { 9481 switch (p) { 9482 case IPPROTO_TCP: 9483 { 9484 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9485 break; 9486 } 9487 case IPPROTO_UDP: 9488 { 9489 KMOD_UDPSTAT_INC(udps_badsum); 9490 break; 9491 } 9492 #ifdef INET 9493 case IPPROTO_ICMP: 9494 { 9495 KMOD_ICMPSTAT_INC(icps_checksum); 9496 break; 9497 } 9498 #endif 9499 #ifdef INET6 9500 case IPPROTO_ICMPV6: 9501 { 9502 KMOD_ICMP6STAT_INC(icp6s_checksum); 9503 break; 9504 } 9505 #endif /* INET6 */ 9506 } 9507 return (1); 9508 } else { 9509 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9510 m->m_pkthdr.csum_flags |= 9511 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9512 m->m_pkthdr.csum_data = 0xffff; 9513 } 9514 } 9515 return (0); 9516 } 9517 9518 static bool 9519 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9520 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9521 { 9522 int dndir = r->direction; 9523 9524 if (s && dndir == PF_INOUT) { 9525 dndir = s->direction; 9526 } else if (dndir == PF_INOUT) { 9527 /* Assume primary direction. Happens when we've set dnpipe in 9528 * the ethernet level code. */ 9529 dndir = pd->dir; 9530 } 9531 9532 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9533 return (false); 9534 9535 memset(dnflow, 0, sizeof(*dnflow)); 9536 9537 if (pd->dport != NULL) 9538 dnflow->f_id.dst_port = ntohs(*pd->dport); 9539 if (pd->sport != NULL) 9540 dnflow->f_id.src_port = ntohs(*pd->sport); 9541 9542 if (pd->dir == PF_IN) 9543 dnflow->flags |= IPFW_ARGS_IN; 9544 else 9545 dnflow->flags |= IPFW_ARGS_OUT; 9546 9547 if (pd->dir != dndir && pd->act.dnrpipe) { 9548 dnflow->rule.info = pd->act.dnrpipe; 9549 } 9550 else if (pd->dir == dndir && pd->act.dnpipe) { 9551 dnflow->rule.info = pd->act.dnpipe; 9552 } 9553 else { 9554 return (false); 9555 } 9556 9557 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9558 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9559 dnflow->rule.info |= IPFW_IS_PIPE; 9560 9561 dnflow->f_id.proto = pd->proto; 9562 dnflow->f_id.extra = dnflow->rule.info; 9563 switch (pd->naf) { 9564 case AF_INET: 9565 dnflow->f_id.addr_type = 4; 9566 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9567 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9568 break; 9569 case AF_INET6: 9570 dnflow->flags |= IPFW_ARGS_IP6; 9571 dnflow->f_id.addr_type = 6; 9572 dnflow->f_id.src_ip6 = pd->src->v6; 9573 dnflow->f_id.dst_ip6 = pd->dst->v6; 9574 break; 9575 } 9576 9577 return (true); 9578 } 9579 9580 int 9581 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9582 struct inpcb *inp) 9583 { 9584 struct pfi_kkif *kif; 9585 struct mbuf *m = *m0; 9586 9587 M_ASSERTPKTHDR(m); 9588 MPASS(ifp->if_vnet == curvnet); 9589 NET_EPOCH_ASSERT(); 9590 9591 if (!V_pf_status.running) 9592 return (PF_PASS); 9593 9594 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9595 9596 if (kif == NULL) { 9597 DPFPRINTF(PF_DEBUG_URGENT, 9598 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 9599 return (PF_DROP); 9600 } 9601 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9602 return (PF_PASS); 9603 9604 if (m->m_flags & M_SKIP_FIREWALL) 9605 return (PF_PASS); 9606 9607 if (__predict_false(! M_WRITABLE(*m0))) { 9608 m = *m0 = m_unshare(*m0, M_NOWAIT); 9609 if (*m0 == NULL) 9610 return (PF_DROP); 9611 } 9612 9613 /* Stateless! */ 9614 return (pf_test_eth_rule(dir, kif, m0)); 9615 } 9616 9617 static __inline void 9618 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9619 { 9620 struct m_tag *mtag; 9621 9622 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9623 9624 /* dummynet adds this tag, but pf does not need it, 9625 * and keeping it creates unexpected behavior, 9626 * e.g. in case of divert(4) usage right after dummynet. */ 9627 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9628 if (mtag != NULL) 9629 m_tag_delete(m, mtag); 9630 } 9631 9632 static int 9633 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9634 struct pf_krule *r, struct mbuf **m0) 9635 { 9636 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9637 } 9638 9639 static int 9640 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9641 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa, 9642 struct mbuf **m0) 9643 { 9644 struct ip_fw_args dnflow; 9645 9646 NET_EPOCH_ASSERT(); 9647 9648 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9649 return (0); 9650 9651 if (ip_dn_io_ptr == NULL) { 9652 m_freem(*m0); 9653 *m0 = NULL; 9654 return (ENOMEM); 9655 } 9656 9657 if (pd->pf_mtag == NULL && 9658 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9659 m_freem(*m0); 9660 *m0 = NULL; 9661 return (ENOMEM); 9662 } 9663 9664 if (ifp != NULL) { 9665 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9666 9667 pd->pf_mtag->if_index = ifp->if_index; 9668 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9669 9670 MPASS(sa != NULL); 9671 9672 switch (sa->sa_family) { 9673 case AF_INET: 9674 memcpy(&pd->pf_mtag->dst, sa, 9675 sizeof(struct sockaddr_in)); 9676 break; 9677 case AF_INET6: 9678 memcpy(&pd->pf_mtag->dst, sa, 9679 sizeof(struct sockaddr_in6)); 9680 break; 9681 } 9682 } 9683 9684 if (s != NULL && s->nat_rule != NULL && 9685 s->nat_rule->action == PF_RDR && 9686 ( 9687 #ifdef INET 9688 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9689 #endif /* INET */ 9690 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9691 /* 9692 * If we're redirecting to loopback mark this packet 9693 * as being local. Otherwise it might get dropped 9694 * if dummynet re-injects. 9695 */ 9696 (*m0)->m_pkthdr.rcvif = V_loif; 9697 } 9698 9699 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9700 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9701 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9702 ip_dn_io_ptr(m0, &dnflow); 9703 if (*m0 != NULL) { 9704 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9705 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9706 } 9707 } 9708 9709 return (0); 9710 } 9711 9712 #ifdef INET6 9713 static int 9714 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end, 9715 u_short *reason) 9716 { 9717 struct ip6_opt opt; 9718 struct ip6_opt_jumbo jumbo; 9719 9720 while (off < end) { 9721 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type, 9722 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) { 9723 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 9724 return (PF_DROP); 9725 } 9726 if (opt.ip6o_type == IP6OPT_PAD1) { 9727 off++; 9728 continue; 9729 } 9730 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL, 9731 reason, AF_INET6)) { 9732 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 9733 return (PF_DROP); 9734 } 9735 if (off + sizeof(opt) + opt.ip6o_len > end) { 9736 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 9737 REASON_SET(reason, PFRES_IPOPTIONS); 9738 return (PF_DROP); 9739 } 9740 switch (opt.ip6o_type) { 9741 case IP6OPT_JUMBO: 9742 if (pd->jumbolen != 0) { 9743 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 9744 REASON_SET(reason, PFRES_IPOPTIONS); 9745 return (PF_DROP); 9746 } 9747 if (ntohs(h->ip6_plen) != 0) { 9748 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 9749 REASON_SET(reason, PFRES_IPOPTIONS); 9750 return (PF_DROP); 9751 } 9752 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL, 9753 reason, AF_INET6)) { 9754 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 9755 return (PF_DROP); 9756 } 9757 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len, 9758 sizeof(pd->jumbolen)); 9759 pd->jumbolen = ntohl(pd->jumbolen); 9760 if (pd->jumbolen < IPV6_MAXPACKET) { 9761 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 9762 REASON_SET(reason, PFRES_IPOPTIONS); 9763 return (PF_DROP); 9764 } 9765 break; 9766 default: 9767 break; 9768 } 9769 off += sizeof(opt) + opt.ip6o_len; 9770 } 9771 9772 return (PF_PASS); 9773 } 9774 9775 int 9776 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason) 9777 { 9778 struct ip6_frag frag; 9779 struct ip6_ext ext; 9780 struct ip6_rthdr rthdr; 9781 uint32_t end; 9782 int hdr_cnt = 0, fraghdr_cnt = 0, rthdr_cnt = 0; 9783 9784 pd->off += sizeof(struct ip6_hdr); 9785 end = pd->off + ntohs(h->ip6_plen); 9786 pd->fragoff = pd->extoff = pd->jumbolen = 0; 9787 pd->proto = h->ip6_nxt; 9788 for (;;) { 9789 hdr_cnt++; 9790 switch (pd->proto) { 9791 case IPPROTO_FRAGMENT: 9792 if (fraghdr_cnt++) { 9793 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 9794 REASON_SET(reason, PFRES_FRAG); 9795 return (PF_DROP); 9796 } 9797 /* jumbo payload packets cannot be fragmented */ 9798 if (pd->jumbolen != 0) { 9799 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 9800 REASON_SET(reason, PFRES_FRAG); 9801 return (PF_DROP); 9802 } 9803 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag), 9804 NULL, reason, AF_INET6)) { 9805 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 9806 return (PF_DROP); 9807 } 9808 /* stop walking over non initial fragments */ 9809 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) { 9810 pd->fragoff = pd->off; 9811 return (PF_PASS); 9812 } 9813 /* RFC6946: reassemble only non atomic fragments */ 9814 if (frag.ip6f_offlg & IP6F_MORE_FRAG) 9815 pd->fragoff = pd->off; 9816 pd->off += sizeof(frag); 9817 pd->proto = frag.ip6f_nxt; 9818 break; 9819 case IPPROTO_ROUTING: 9820 if (rthdr_cnt++) { 9821 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 9822 REASON_SET(reason, PFRES_IPOPTIONS); 9823 return (PF_DROP); 9824 } 9825 /* fragments may be short */ 9826 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) { 9827 pd->off = pd->fragoff; 9828 pd->proto = IPPROTO_FRAGMENT; 9829 return (PF_PASS); 9830 } 9831 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr), 9832 NULL, reason, AF_INET6)) { 9833 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 9834 return (PF_DROP); 9835 } 9836 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9837 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 9838 REASON_SET(reason, PFRES_IPOPTIONS); 9839 return (PF_DROP); 9840 } 9841 /* FALLTHROUGH */ 9842 case IPPROTO_HOPOPTS: 9843 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */ 9844 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 1) { 9845 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 hopopts not first")); 9846 REASON_SET(reason, PFRES_IPOPTIONS); 9847 return (PF_DROP); 9848 } 9849 /* FALLTHROUGH */ 9850 case IPPROTO_AH: 9851 case IPPROTO_DSTOPTS: 9852 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 9853 NULL, reason, AF_INET6)) { 9854 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 9855 return (PF_DROP); 9856 } 9857 /* fragments may be short */ 9858 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) { 9859 pd->off = pd->fragoff; 9860 pd->proto = IPPROTO_FRAGMENT; 9861 return (PF_PASS); 9862 } 9863 /* reassembly needs the ext header before the frag */ 9864 if (pd->fragoff == 0) 9865 pd->extoff = pd->off; 9866 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) { 9867 if (pf_walk_option6(pd, h, 9868 pd->off + sizeof(ext), 9869 pd->off + (ext.ip6e_len + 1) * 8, reason) 9870 != PF_PASS) 9871 return (PF_DROP); 9872 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) { 9873 DPFPRINTF(PF_DEBUG_MISC, 9874 ("IPv6 missing jumbo")); 9875 REASON_SET(reason, PFRES_IPOPTIONS); 9876 return (PF_DROP); 9877 } 9878 } 9879 if (pd->proto == IPPROTO_AH) 9880 pd->off += (ext.ip6e_len + 2) * 4; 9881 else 9882 pd->off += (ext.ip6e_len + 1) * 8; 9883 pd->proto = ext.ip6e_nxt; 9884 break; 9885 case IPPROTO_TCP: 9886 case IPPROTO_UDP: 9887 case IPPROTO_SCTP: 9888 case IPPROTO_ICMPV6: 9889 /* fragments may be short, ignore inner header then */ 9890 if (pd->fragoff != 0 && end < pd->off + 9891 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) : 9892 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) : 9893 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) : 9894 sizeof(struct icmp6_hdr))) { 9895 pd->off = pd->fragoff; 9896 pd->proto = IPPROTO_FRAGMENT; 9897 } 9898 /* FALLTHROUGH */ 9899 default: 9900 return (PF_PASS); 9901 } 9902 } 9903 } 9904 #endif /* INET6 */ 9905 9906 static void 9907 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 9908 { 9909 memset(pd, 0, sizeof(*pd)); 9910 pd->pf_mtag = pf_find_mtag(m); 9911 pd->m = m; 9912 } 9913 9914 static int 9915 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 9916 u_short *action, u_short *reason, struct pfi_kkif *kif, 9917 struct pf_rule_actions *default_actions) 9918 { 9919 pd->dir = dir; 9920 pd->kif = kif; 9921 pd->m = *m0; 9922 pd->sidx = (dir == PF_IN) ? 0 : 1; 9923 pd->didx = (dir == PF_IN) ? 1 : 0; 9924 pd->af = pd->naf = af; 9925 9926 TAILQ_INIT(&pd->sctp_multihome_jobs); 9927 if (default_actions != NULL) 9928 memcpy(&pd->act, default_actions, sizeof(pd->act)); 9929 9930 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 9931 pd->act.dnpipe = pd->pf_mtag->dnpipe; 9932 pd->act.flags = pd->pf_mtag->dnflags; 9933 } 9934 9935 switch (af) { 9936 #ifdef INET 9937 case AF_INET: { 9938 struct ip *h; 9939 9940 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 9941 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 9942 DPFPRINTF(PF_DEBUG_URGENT, 9943 ("%s: m_len < sizeof(struct ip), pullup failed\n", 9944 __func__)); 9945 *action = PF_DROP; 9946 REASON_SET(reason, PFRES_SHORT); 9947 return (-1); 9948 } 9949 9950 if (pf_normalize_ip(reason, pd) != PF_PASS) { 9951 /* We do IP header normalization and packet reassembly here */ 9952 *m0 = pd->m; 9953 *action = PF_DROP; 9954 return (-1); 9955 } 9956 *m0 = pd->m; 9957 9958 h = mtod(pd->m, struct ip *); 9959 pd->off = h->ip_hl << 2; 9960 if (pd->off < (int)sizeof(*h)) { 9961 *action = PF_DROP; 9962 REASON_SET(reason, PFRES_SHORT); 9963 return (-1); 9964 } 9965 pd->src = (struct pf_addr *)&h->ip_src; 9966 pd->dst = (struct pf_addr *)&h->ip_dst; 9967 PF_ACPY(&pd->osrc, pd->src, af); 9968 PF_ACPY(&pd->odst, pd->dst, af); 9969 pd->ip_sum = &h->ip_sum; 9970 pd->virtual_proto = pd->proto = h->ip_p; 9971 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK; 9972 pd->ttl = h->ip_ttl; 9973 pd->tot_len = ntohs(h->ip_len); 9974 pd->act.rtableid = -1; 9975 pd->df = h->ip_off & htons(IP_DF); 9976 9977 if (h->ip_hl > 5) /* has options */ 9978 pd->badopts++; 9979 9980 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 9981 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9982 9983 break; 9984 } 9985 #endif /* INET */ 9986 #ifdef INET6 9987 case AF_INET6: { 9988 struct ip6_hdr *h; 9989 9990 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 9991 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9992 DPFPRINTF(PF_DEBUG_URGENT, 9993 ("%s: m_len < sizeof(struct ip6_hdr)" 9994 ", pullup failed\n", __func__)); 9995 *action = PF_DROP; 9996 REASON_SET(reason, PFRES_SHORT); 9997 return (-1); 9998 } 9999 10000 h = mtod(pd->m, struct ip6_hdr *); 10001 pd->off = 0; 10002 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 10003 *action = PF_DROP; 10004 return (-1); 10005 } 10006 10007 h = mtod(pd->m, struct ip6_hdr *); 10008 pd->src = (struct pf_addr *)&h->ip6_src; 10009 pd->dst = (struct pf_addr *)&h->ip6_dst; 10010 PF_ACPY(&pd->osrc, pd->src, af); 10011 PF_ACPY(&pd->odst, pd->dst, af); 10012 pd->ip_sum = NULL; 10013 pd->tos = IPV6_DSCP(h); 10014 pd->ttl = h->ip6_hlim; 10015 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 10016 pd->virtual_proto = pd->proto = h->ip6_nxt; 10017 pd->act.rtableid = -1; 10018 10019 if (pd->fragoff != 0) 10020 pd->virtual_proto = PF_VPROTO_FRAGMENT; 10021 10022 /* 10023 * we do not support jumbogram. if we keep going, zero ip6_plen 10024 * will do something bad, so drop the packet for now. 10025 */ 10026 if (htons(h->ip6_plen) == 0) { 10027 *action = PF_DROP; 10028 return (-1); 10029 } 10030 10031 /* We do IP header normalization and packet reassembly here */ 10032 if (pf_normalize_ip6(pd->fragoff, reason, pd) != 10033 PF_PASS) { 10034 *m0 = pd->m; 10035 *action = PF_DROP; 10036 return (-1); 10037 } 10038 *m0 = pd->m; 10039 if (pd->m == NULL) { 10040 /* packet sits in reassembly queue, no error */ 10041 *action = PF_PASS; 10042 return (-1); 10043 } 10044 10045 /* Update pointers into the packet. */ 10046 h = mtod(pd->m, struct ip6_hdr *); 10047 pd->src = (struct pf_addr *)&h->ip6_src; 10048 pd->dst = (struct pf_addr *)&h->ip6_dst; 10049 10050 pd->off = 0; 10051 10052 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 10053 *action = PF_DROP; 10054 return (-1); 10055 } 10056 10057 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) { 10058 /* 10059 * Reassembly may have changed the next protocol from 10060 * fragment to something else, so update. 10061 */ 10062 pd->virtual_proto = pd->proto; 10063 MPASS(pd->fragoff == 0); 10064 } 10065 10066 if (pd->fragoff != 0) 10067 pd->virtual_proto = PF_VPROTO_FRAGMENT; 10068 10069 break; 10070 } 10071 #endif /* INET6 */ 10072 default: 10073 panic("pf_setup_pdesc called with illegal af %u", af); 10074 } 10075 10076 switch (pd->virtual_proto) { 10077 case IPPROTO_TCP: { 10078 struct tcphdr *th = &pd->hdr.tcp; 10079 10080 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 10081 reason, af)) { 10082 *action = PF_DROP; 10083 REASON_SET(reason, PFRES_SHORT); 10084 return (-1); 10085 } 10086 pd->hdrlen = sizeof(*th); 10087 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 10088 pd->sport = &th->th_sport; 10089 pd->dport = &th->th_dport; 10090 pd->pcksum = &th->th_sum; 10091 break; 10092 } 10093 case IPPROTO_UDP: { 10094 struct udphdr *uh = &pd->hdr.udp; 10095 10096 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 10097 reason, af)) { 10098 *action = PF_DROP; 10099 REASON_SET(reason, PFRES_SHORT); 10100 return (-1); 10101 } 10102 pd->hdrlen = sizeof(*uh); 10103 if (uh->uh_dport == 0 || 10104 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 10105 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 10106 *action = PF_DROP; 10107 REASON_SET(reason, PFRES_SHORT); 10108 return (-1); 10109 } 10110 pd->sport = &uh->uh_sport; 10111 pd->dport = &uh->uh_dport; 10112 pd->pcksum = &uh->uh_sum; 10113 break; 10114 } 10115 case IPPROTO_SCTP: { 10116 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 10117 action, reason, af)) { 10118 *action = PF_DROP; 10119 REASON_SET(reason, PFRES_SHORT); 10120 return (-1); 10121 } 10122 pd->hdrlen = sizeof(pd->hdr.sctp); 10123 pd->p_len = pd->tot_len - pd->off; 10124 10125 pd->sport = &pd->hdr.sctp.src_port; 10126 pd->dport = &pd->hdr.sctp.dest_port; 10127 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 10128 *action = PF_DROP; 10129 REASON_SET(reason, PFRES_SHORT); 10130 return (-1); 10131 } 10132 if (pf_scan_sctp(pd) != PF_PASS) { 10133 *action = PF_DROP; 10134 REASON_SET(reason, PFRES_SHORT); 10135 return (-1); 10136 } 10137 /* 10138 * Placeholder. The SCTP checksum is 32-bits, but 10139 * pf_test_state() expects to update a 16-bit checksum. 10140 * Provide a dummy value which we'll subsequently ignore. 10141 */ 10142 pd->pcksum = &pd->sctp_dummy_sum; 10143 break; 10144 } 10145 case IPPROTO_ICMP: { 10146 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 10147 action, reason, af)) { 10148 *action = PF_DROP; 10149 REASON_SET(reason, PFRES_SHORT); 10150 return (-1); 10151 } 10152 pd->pcksum = &pd->hdr.icmp.icmp_cksum; 10153 pd->hdrlen = ICMP_MINLEN; 10154 break; 10155 } 10156 #ifdef INET6 10157 case IPPROTO_ICMPV6: { 10158 size_t icmp_hlen = sizeof(struct icmp6_hdr); 10159 10160 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10161 action, reason, af)) { 10162 *action = PF_DROP; 10163 REASON_SET(reason, PFRES_SHORT); 10164 return (-1); 10165 } 10166 /* ICMP headers we look further into to match state */ 10167 switch (pd->hdr.icmp6.icmp6_type) { 10168 case MLD_LISTENER_QUERY: 10169 case MLD_LISTENER_REPORT: 10170 icmp_hlen = sizeof(struct mld_hdr); 10171 break; 10172 case ND_NEIGHBOR_SOLICIT: 10173 case ND_NEIGHBOR_ADVERT: 10174 icmp_hlen = sizeof(struct nd_neighbor_solicit); 10175 break; 10176 } 10177 if (icmp_hlen > sizeof(struct icmp6_hdr) && 10178 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10179 action, reason, af)) { 10180 *action = PF_DROP; 10181 REASON_SET(reason, PFRES_SHORT); 10182 return (-1); 10183 } 10184 pd->hdrlen = icmp_hlen; 10185 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum; 10186 break; 10187 } 10188 #endif /* INET6 */ 10189 } 10190 10191 if (pd->sport) 10192 pd->osport = pd->nsport = *pd->sport; 10193 if (pd->dport) 10194 pd->odport = pd->ndport = *pd->dport; 10195 10196 return (0); 10197 } 10198 10199 static void 10200 pf_counters_inc(int action, struct pf_pdesc *pd, 10201 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 10202 { 10203 struct pf_krule *tr; 10204 int dir = pd->dir; 10205 int dirndx; 10206 10207 pf_counter_u64_critical_enter(); 10208 pf_counter_u64_add_protected( 10209 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10210 pd->tot_len); 10211 pf_counter_u64_add_protected( 10212 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10213 1); 10214 10215 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 10216 dirndx = (dir == PF_OUT); 10217 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 10218 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 10219 pf_update_timestamp(r); 10220 10221 if (a != NULL) { 10222 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 10223 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 10224 } 10225 if (s != NULL) { 10226 struct pf_krule_item *ri; 10227 10228 if (s->nat_rule != NULL) { 10229 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 10230 1); 10231 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 10232 pd->tot_len); 10233 } 10234 /* 10235 * Source nodes are accessed unlocked here. 10236 * But since we are operating with stateful tracking 10237 * and the state is locked, those SNs could not have 10238 * been freed. 10239 */ 10240 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 10241 if (s->sns[sn_type] != NULL) { 10242 counter_u64_add( 10243 s->sns[sn_type]->packets[dirndx], 10244 1); 10245 counter_u64_add( 10246 s->sns[sn_type]->bytes[dirndx], 10247 pd->tot_len); 10248 } 10249 } 10250 dirndx = (dir == s->direction) ? 0 : 1; 10251 s->packets[dirndx]++; 10252 s->bytes[dirndx] += pd->tot_len; 10253 10254 SLIST_FOREACH(ri, &s->match_rules, entry) { 10255 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 10256 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 10257 10258 if (ri->r->src.addr.type == PF_ADDR_TABLE) 10259 pfr_update_stats(ri->r->src.addr.p.tbl, 10260 (s == NULL) ? pd->src : 10261 &s->key[(s->direction == PF_IN)]-> 10262 addr[(s->direction == PF_OUT)], 10263 pd->af, pd->tot_len, dir == PF_OUT, 10264 r->action == PF_PASS, ri->r->src.neg); 10265 if (ri->r->dst.addr.type == PF_ADDR_TABLE) 10266 pfr_update_stats(ri->r->dst.addr.p.tbl, 10267 (s == NULL) ? pd->dst : 10268 &s->key[(s->direction == PF_IN)]-> 10269 addr[(s->direction == PF_IN)], 10270 pd->af, pd->tot_len, dir == PF_OUT, 10271 r->action == PF_PASS, ri->r->dst.neg); 10272 } 10273 } 10274 10275 tr = r; 10276 if (s != NULL && s->nat_rule != NULL && 10277 r == &V_pf_default_rule) 10278 tr = s->nat_rule; 10279 10280 if (tr->src.addr.type == PF_ADDR_TABLE) 10281 pfr_update_stats(tr->src.addr.p.tbl, 10282 (s == NULL) ? pd->src : 10283 &s->key[(s->direction == PF_IN)]-> 10284 addr[(s->direction == PF_OUT)], 10285 pd->af, pd->tot_len, dir == PF_OUT, 10286 r->action == PF_PASS, tr->src.neg); 10287 if (tr->dst.addr.type == PF_ADDR_TABLE) 10288 pfr_update_stats(tr->dst.addr.p.tbl, 10289 (s == NULL) ? pd->dst : 10290 &s->key[(s->direction == PF_IN)]-> 10291 addr[(s->direction == PF_IN)], 10292 pd->af, pd->tot_len, dir == PF_OUT, 10293 r->action == PF_PASS, tr->dst.neg); 10294 } 10295 pf_counter_u64_critical_exit(); 10296 } 10297 static void 10298 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm, 10299 struct pf_krule *am, struct pf_kruleset *ruleset, 10300 struct pf_krule_slist *matchrules) 10301 { 10302 struct pf_krule_item *ri; 10303 10304 /* if this is the log(matches) rule, packet has been logged already */ 10305 if (rm->log & PF_LOG_MATCHES) 10306 return; 10307 10308 SLIST_FOREACH(ri, matchrules, entry) 10309 if (ri->r->log & PF_LOG_MATCHES) 10310 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am, 10311 ruleset, pd, 1, ri->r); 10312 } 10313 10314 #if defined(INET) || defined(INET6) 10315 int 10316 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10317 struct inpcb *inp, struct pf_rule_actions *default_actions) 10318 { 10319 struct pfi_kkif *kif; 10320 u_short action, reason = 0; 10321 struct m_tag *mtag; 10322 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10323 struct pf_kstate *s = NULL; 10324 struct pf_kruleset *ruleset = NULL; 10325 struct pf_pdesc pd; 10326 int use_2nd_queue = 0; 10327 uint16_t tag; 10328 10329 PF_RULES_RLOCK_TRACKER; 10330 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10331 M_ASSERTPKTHDR(*m0); 10332 10333 if (!V_pf_status.running) 10334 return (PF_PASS); 10335 10336 PF_RULES_RLOCK(); 10337 10338 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10339 10340 if (__predict_false(kif == NULL)) { 10341 DPFPRINTF(PF_DEBUG_URGENT, 10342 ("%s: kif == NULL, if_xname %s\n", 10343 __func__, ifp->if_xname)); 10344 PF_RULES_RUNLOCK(); 10345 return (PF_DROP); 10346 } 10347 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10348 PF_RULES_RUNLOCK(); 10349 return (PF_PASS); 10350 } 10351 10352 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10353 PF_RULES_RUNLOCK(); 10354 return (PF_PASS); 10355 } 10356 10357 if (__predict_false(! M_WRITABLE(*m0))) { 10358 *m0 = m_unshare(*m0, M_NOWAIT); 10359 if (*m0 == NULL) { 10360 PF_RULES_RUNLOCK(); 10361 return (PF_DROP); 10362 } 10363 } 10364 10365 pf_init_pdesc(&pd, *m0); 10366 10367 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10368 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10369 10370 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10371 pd.pf_mtag->if_idxgen); 10372 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10373 PF_RULES_RUNLOCK(); 10374 m_freem(*m0); 10375 *m0 = NULL; 10376 return (PF_PASS); 10377 } 10378 PF_RULES_RUNLOCK(); 10379 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10380 *m0 = NULL; 10381 return (PF_PASS); 10382 } 10383 10384 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10385 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10386 /* Dummynet re-injects packets after they've 10387 * completed their delay. We've already 10388 * processed them, so pass unconditionally. */ 10389 10390 /* But only once. We may see the packet multiple times (e.g. 10391 * PFIL_IN/PFIL_OUT). */ 10392 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10393 PF_RULES_RUNLOCK(); 10394 10395 return (PF_PASS); 10396 } 10397 10398 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10399 kif, default_actions) == -1) { 10400 if (action != PF_PASS) 10401 pd.act.log |= PF_LOG_FORCE; 10402 goto done; 10403 } 10404 10405 #ifdef INET 10406 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD && 10407 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) { 10408 PF_RULES_RUNLOCK(); 10409 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 10410 0, ifp->if_mtu); 10411 *m0 = NULL; 10412 return (PF_DROP); 10413 } 10414 #endif /* INET */ 10415 #ifdef INET6 10416 /* 10417 * If we end up changing IP addresses (e.g. binat) the stack may get 10418 * confused and fail to send the icmp6 packet too big error. Just send 10419 * it here, before we do any NAT. 10420 */ 10421 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10422 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10423 PF_RULES_RUNLOCK(); 10424 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10425 *m0 = NULL; 10426 return (PF_DROP); 10427 } 10428 #endif /* INET6 */ 10429 10430 if (__predict_false(ip_divert_ptr != NULL) && 10431 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10432 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10433 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10434 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10435 if (pd.pf_mtag == NULL && 10436 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10437 action = PF_DROP; 10438 goto done; 10439 } 10440 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10441 } 10442 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10443 pd.m->m_flags |= M_FASTFWD_OURS; 10444 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10445 } 10446 m_tag_delete(pd.m, mtag); 10447 10448 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10449 if (mtag != NULL) 10450 m_tag_delete(pd.m, mtag); 10451 } 10452 10453 switch (pd.virtual_proto) { 10454 case PF_VPROTO_FRAGMENT: 10455 /* 10456 * handle fragments that aren't reassembled by 10457 * normalization 10458 */ 10459 if (kif == NULL || r == NULL) /* pflog */ 10460 action = PF_DROP; 10461 else 10462 action = pf_test_rule(&r, &s, &pd, &a, 10463 &ruleset, &reason, inp); 10464 if (action != PF_PASS) 10465 REASON_SET(&reason, PFRES_FRAG); 10466 break; 10467 10468 case IPPROTO_TCP: { 10469 /* Respond to SYN with a syncookie. */ 10470 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10471 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10472 pf_syncookie_send(&pd); 10473 action = PF_DROP; 10474 break; 10475 } 10476 10477 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10478 use_2nd_queue = 1; 10479 action = pf_normalize_tcp(&pd); 10480 if (action == PF_DROP) 10481 goto done; 10482 action = pf_test_state(&s, &pd, &reason); 10483 if (action == PF_PASS || action == PF_AFRT) { 10484 if (V_pfsync_update_state_ptr != NULL) 10485 V_pfsync_update_state_ptr(s); 10486 r = s->rule; 10487 a = s->anchor; 10488 } else if (s == NULL) { 10489 /* Validate remote SYN|ACK, re-create original SYN if 10490 * valid. */ 10491 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10492 TH_ACK && pf_syncookie_validate(&pd) && 10493 pd.dir == PF_IN) { 10494 struct mbuf *msyn; 10495 10496 msyn = pf_syncookie_recreate_syn(&pd); 10497 if (msyn == NULL) { 10498 action = PF_DROP; 10499 break; 10500 } 10501 10502 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10503 &pd.act); 10504 m_freem(msyn); 10505 if (action != PF_PASS) 10506 break; 10507 10508 action = pf_test_state(&s, &pd, &reason); 10509 if (action != PF_PASS || s == NULL) { 10510 action = PF_DROP; 10511 break; 10512 } 10513 10514 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10515 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10516 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10517 action = pf_synproxy(&pd, s, &reason); 10518 break; 10519 } else { 10520 action = pf_test_rule(&r, &s, &pd, 10521 &a, &ruleset, &reason, inp); 10522 } 10523 } 10524 break; 10525 } 10526 10527 case IPPROTO_SCTP: 10528 action = pf_normalize_sctp(&pd); 10529 if (action == PF_DROP) 10530 goto done; 10531 /* fallthrough */ 10532 case IPPROTO_UDP: 10533 default: 10534 action = pf_test_state(&s, &pd, &reason); 10535 if (action == PF_PASS || action == PF_AFRT) { 10536 if (V_pfsync_update_state_ptr != NULL) 10537 V_pfsync_update_state_ptr(s); 10538 r = s->rule; 10539 a = s->anchor; 10540 } else if (s == NULL) { 10541 action = pf_test_rule(&r, &s, 10542 &pd, &a, &ruleset, &reason, inp); 10543 } 10544 break; 10545 10546 case IPPROTO_ICMP: 10547 case IPPROTO_ICMPV6: { 10548 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) { 10549 action = PF_DROP; 10550 REASON_SET(&reason, PFRES_NORM); 10551 DPFPRINTF(PF_DEBUG_MISC, 10552 ("dropping IPv6 packet with ICMPv4 payload")); 10553 goto done; 10554 } 10555 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) { 10556 action = PF_DROP; 10557 REASON_SET(&reason, PFRES_NORM); 10558 DPFPRINTF(PF_DEBUG_MISC, 10559 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 10560 goto done; 10561 } 10562 action = pf_test_state_icmp(&s, &pd, &reason); 10563 if (action == PF_PASS || action == PF_AFRT) { 10564 if (V_pfsync_update_state_ptr != NULL) 10565 V_pfsync_update_state_ptr(s); 10566 r = s->rule; 10567 a = s->anchor; 10568 } else if (s == NULL) 10569 action = pf_test_rule(&r, &s, &pd, 10570 &a, &ruleset, &reason, inp); 10571 break; 10572 } 10573 10574 } 10575 10576 done: 10577 PF_RULES_RUNLOCK(); 10578 10579 if (pd.m == NULL) 10580 goto eat_pkt; 10581 10582 if (action == PF_PASS && pd.badopts && 10583 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || pd.act.allow_opts)) { 10584 action = PF_DROP; 10585 REASON_SET(&reason, PFRES_IPOPTIONS); 10586 pd.act.log = PF_LOG_FORCE; 10587 DPFPRINTF(PF_DEBUG_MISC, 10588 ("pf: dropping packet with dangerous headers\n")); 10589 } 10590 10591 if (s) { 10592 uint8_t log = pd.act.log; 10593 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 10594 pd.act.log |= log; 10595 tag = s->tag; 10596 } else { 10597 tag = r->tag; 10598 } 10599 10600 if (tag > 0 && pf_tag_packet(&pd, tag)) { 10601 action = PF_DROP; 10602 REASON_SET(&reason, PFRES_MEMORY); 10603 } 10604 10605 pf_scrub(&pd); 10606 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 10607 pf_normalize_mss(&pd); 10608 10609 if (pd.act.rtableid >= 0) 10610 M_SETFIB(pd.m, pd.act.rtableid); 10611 10612 if (pd.act.flags & PFSTATE_SETPRIO) { 10613 if (pd.tos & IPTOS_LOWDELAY) 10614 use_2nd_queue = 1; 10615 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 10616 action = PF_DROP; 10617 REASON_SET(&reason, PFRES_MEMORY); 10618 pd.act.log = PF_LOG_FORCE; 10619 DPFPRINTF(PF_DEBUG_MISC, 10620 ("pf: failed to allocate 802.1q mtag\n")); 10621 } 10622 } 10623 10624 #ifdef ALTQ 10625 if (action == PF_PASS && pd.act.qid) { 10626 if (pd.pf_mtag == NULL && 10627 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10628 action = PF_DROP; 10629 REASON_SET(&reason, PFRES_MEMORY); 10630 } else { 10631 if (s != NULL) 10632 pd.pf_mtag->qid_hash = pf_state_hash(s); 10633 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 10634 pd.pf_mtag->qid = pd.act.pqid; 10635 else 10636 pd.pf_mtag->qid = pd.act.qid; 10637 /* Add hints for ecn. */ 10638 pd.pf_mtag->hdr = mtod(pd.m, void *); 10639 } 10640 } 10641 #endif /* ALTQ */ 10642 10643 /* 10644 * connections redirected to loopback should not match sockets 10645 * bound specifically to loopback due to security implications, 10646 * see tcp_input() and in_pcblookup_listen(). 10647 */ 10648 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 10649 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 10650 (s->nat_rule->action == PF_RDR || 10651 s->nat_rule->action == PF_BINAT) && 10652 pf_is_loopback(af, pd.dst)) 10653 pd.m->m_flags |= M_SKIP_FIREWALL; 10654 10655 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 10656 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 10657 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 10658 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 10659 if (mtag != NULL) { 10660 ((struct pf_divert_mtag *)(mtag+1))->port = 10661 ntohs(r->divert.port); 10662 ((struct pf_divert_mtag *)(mtag+1))->idir = 10663 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 10664 PF_DIVERT_MTAG_DIR_OUT; 10665 10666 if (s) 10667 PF_STATE_UNLOCK(s); 10668 10669 m_tag_prepend(pd.m, mtag); 10670 if (pd.m->m_flags & M_FASTFWD_OURS) { 10671 if (pd.pf_mtag == NULL && 10672 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10673 action = PF_DROP; 10674 REASON_SET(&reason, PFRES_MEMORY); 10675 pd.act.log = PF_LOG_FORCE; 10676 DPFPRINTF(PF_DEBUG_MISC, 10677 ("pf: failed to allocate tag\n")); 10678 } else { 10679 pd.pf_mtag->flags |= 10680 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10681 pd.m->m_flags &= ~M_FASTFWD_OURS; 10682 } 10683 } 10684 ip_divert_ptr(*m0, dir == PF_IN); 10685 *m0 = NULL; 10686 10687 return (action); 10688 } else { 10689 /* XXX: ipfw has the same behaviour! */ 10690 action = PF_DROP; 10691 REASON_SET(&reason, PFRES_MEMORY); 10692 pd.act.log = PF_LOG_FORCE; 10693 DPFPRINTF(PF_DEBUG_MISC, 10694 ("pf: failed to allocate divert tag\n")); 10695 } 10696 } 10697 /* XXX: Anybody working on it?! */ 10698 if (af == AF_INET6 && r->divert.port) 10699 printf("pf: divert(9) is not supported for IPv6\n"); 10700 10701 /* this flag will need revising if the pkt is forwarded */ 10702 if (pd.pf_mtag) 10703 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 10704 10705 if (pd.act.log) { 10706 struct pf_krule *lr; 10707 struct pf_krule_item *ri; 10708 10709 if (s != NULL && s->nat_rule != NULL && 10710 s->nat_rule->log & PF_LOG_ALL) 10711 lr = s->nat_rule; 10712 else 10713 lr = r; 10714 10715 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 10716 PFLOG_PACKET(action, reason, lr, a, 10717 ruleset, &pd, (s == NULL), NULL); 10718 if (s) { 10719 SLIST_FOREACH(ri, &s->match_rules, entry) 10720 if (ri->r->log & PF_LOG_ALL) 10721 PFLOG_PACKET(action, 10722 reason, ri->r, a, ruleset, &pd, 0, NULL); 10723 } 10724 } 10725 10726 pf_counters_inc(action, &pd, s, r, a); 10727 10728 switch (action) { 10729 case PF_SYNPROXY_DROP: 10730 m_freem(*m0); 10731 case PF_DEFER: 10732 *m0 = NULL; 10733 action = PF_PASS; 10734 break; 10735 case PF_DROP: 10736 m_freem(*m0); 10737 *m0 = NULL; 10738 break; 10739 case PF_AFRT: 10740 if (pf_translate_af(&pd)) { 10741 *m0 = pd.m; 10742 action = PF_DROP; 10743 break; 10744 } 10745 #ifdef INET 10746 if (pd.naf == AF_INET) 10747 pf_route(r, kif->pfik_ifp, s, &pd, inp); 10748 #endif /* INET */ 10749 #ifdef INET6 10750 if (pd.naf == AF_INET6) 10751 pf_route6(r, kif->pfik_ifp, s, &pd, inp); 10752 #endif /* INET6 */ 10753 *m0 = pd.m; 10754 action = PF_PASS; 10755 goto out; 10756 break; 10757 default: 10758 if (pd.act.rt) { 10759 switch (af) { 10760 #ifdef INET 10761 case AF_INET: 10762 /* pf_route() returns unlocked. */ 10763 pf_route(r, kif->pfik_ifp, s, &pd, inp); 10764 break; 10765 #endif /* INET */ 10766 #ifdef INET6 10767 case AF_INET6: 10768 /* pf_route6() returns unlocked. */ 10769 pf_route6(r, kif->pfik_ifp, s, &pd, inp); 10770 break; 10771 #endif /* INET6 */ 10772 } 10773 *m0 = pd.m; 10774 goto out; 10775 } 10776 if (pf_dummynet(&pd, s, r, m0) != 0) { 10777 action = PF_DROP; 10778 REASON_SET(&reason, PFRES_MEMORY); 10779 } 10780 break; 10781 } 10782 10783 eat_pkt: 10784 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 10785 10786 if (s && action != PF_DROP) { 10787 if (!s->if_index_in && dir == PF_IN) 10788 s->if_index_in = ifp->if_index; 10789 else if (!s->if_index_out && dir == PF_OUT) 10790 s->if_index_out = ifp->if_index; 10791 } 10792 10793 if (s) 10794 PF_STATE_UNLOCK(s); 10795 10796 out: 10797 #ifdef INET6 10798 /* If reassembled packet passed, create new fragments. */ 10799 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 10800 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 10801 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 10802 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 10803 #endif /* INET6 */ 10804 10805 pf_sctp_multihome_delayed(&pd, kif, s, action); 10806 10807 return (action); 10808 } 10809 #endif /* INET || INET6 */ 10810