1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/radix_mpath.h> 67 #include <net/vnet.h> 68 69 #include <net/pfvar.h> 70 #include <net/pf_mtag.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 191 #define V_pf_mtag_z VNET(pf_mtag_z) 192 VNET_DEFINE(uma_zone_t, pf_state_z); 193 VNET_DEFINE(uma_zone_t, pf_state_key_z); 194 195 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 196 #define PFID_CPUBITS 8 197 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 198 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 199 #define PFID_MAXID (~PFID_CPUMASK) 200 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 201 202 static void pf_src_tree_remove_state(struct pf_state *); 203 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 204 u_int32_t); 205 static void pf_add_threshold(struct pf_threshold *); 206 static int pf_check_threshold(struct pf_threshold *); 207 208 static void pf_change_ap(struct pf_addr *, u_int16_t *, 209 u_int16_t *, u_int16_t *, struct pf_addr *, 210 u_int16_t, u_int8_t, sa_family_t); 211 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 212 struct tcphdr *, struct pf_state_peer *); 213 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 214 struct pf_addr *, struct pf_addr *, u_int16_t, 215 u_int16_t *, u_int16_t *, u_int16_t *, 216 u_int16_t *, u_int8_t, sa_family_t); 217 static void pf_send_tcp(struct mbuf *, 218 const struct pf_rule *, sa_family_t, 219 const struct pf_addr *, const struct pf_addr *, 220 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 221 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 222 u_int16_t, struct ifnet *); 223 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 224 sa_family_t, struct pf_rule *); 225 static void pf_detach_state(struct pf_state *); 226 static int pf_state_key_attach(struct pf_state_key *, 227 struct pf_state_key *, struct pf_state *); 228 static void pf_state_key_detach(struct pf_state *, int); 229 static int pf_state_key_ctor(void *, int, void *, int); 230 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 231 static int pf_test_rule(struct pf_rule **, struct pf_state **, 232 int, struct pfi_kif *, struct mbuf *, int, 233 struct pf_pdesc *, struct pf_rule **, 234 struct pf_ruleset **, struct inpcb *); 235 static int pf_create_state(struct pf_rule *, struct pf_rule *, 236 struct pf_rule *, struct pf_pdesc *, 237 struct pf_src_node *, struct pf_state_key *, 238 struct pf_state_key *, struct mbuf *, int, 239 u_int16_t, u_int16_t, int *, struct pfi_kif *, 240 struct pf_state **, int, u_int16_t, u_int16_t, 241 int); 242 static int pf_test_fragment(struct pf_rule **, int, 243 struct pfi_kif *, struct mbuf *, void *, 244 struct pf_pdesc *, struct pf_rule **, 245 struct pf_ruleset **); 246 static int pf_tcp_track_full(struct pf_state_peer *, 247 struct pf_state_peer *, struct pf_state **, 248 struct pfi_kif *, struct mbuf *, int, 249 struct pf_pdesc *, u_short *, int *); 250 static int pf_tcp_track_sloppy(struct pf_state_peer *, 251 struct pf_state_peer *, struct pf_state **, 252 struct pf_pdesc *, u_short *); 253 static int pf_test_state_tcp(struct pf_state **, int, 254 struct pfi_kif *, struct mbuf *, int, 255 void *, struct pf_pdesc *, u_short *); 256 static int pf_test_state_udp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *); 259 static int pf_test_state_icmp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *, u_short *); 262 static int pf_test_state_other(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 264 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 265 sa_family_t); 266 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 267 sa_family_t); 268 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 269 int, u_int16_t); 270 static void pf_set_rt_ifp(struct pf_state *, 271 struct pf_addr *); 272 static int pf_check_proto_cksum(struct mbuf *, int, int, 273 u_int8_t, sa_family_t); 274 static void pf_print_state_parts(struct pf_state *, 275 struct pf_state_key *, struct pf_state_key *); 276 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 277 struct pf_addr_wrap *); 278 static struct pf_state *pf_find_state(struct pfi_kif *, 279 struct pf_state_key_cmp *, u_int); 280 static int pf_src_connlimit(struct pf_state **); 281 static void pf_overload_task(void *c, int pending); 282 static int pf_insert_src_node(struct pf_src_node **, 283 struct pf_rule *, struct pf_addr *, sa_family_t); 284 static u_int pf_purge_expired_states(u_int, int); 285 static void pf_purge_unlinked_rules(void); 286 static int pf_mtag_init(void *, int, int); 287 static void pf_mtag_free(struct m_tag *); 288 #ifdef INET 289 static void pf_route(struct mbuf **, struct pf_rule *, int, 290 struct ifnet *, struct pf_state *, 291 struct pf_pdesc *); 292 #endif /* INET */ 293 #ifdef INET6 294 static void pf_change_a6(struct pf_addr *, u_int16_t *, 295 struct pf_addr *, u_int8_t); 296 static void pf_route6(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *); 299 #endif /* INET6 */ 300 301 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 302 303 VNET_DECLARE(int, pf_end_threads); 304 305 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 306 307 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 308 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 309 310 #define STATE_LOOKUP(i, k, d, s, pd) \ 311 do { \ 312 (s) = pf_find_state((i), (k), (d)); \ 313 if ((s) == NULL || (s)->timeout == PFTM_PURGE) \ 314 return (PF_DROP); \ 315 if (PACKET_LOOPED(pd)) \ 316 return (PF_PASS); \ 317 if ((d) == PF_OUT && \ 318 (((s)->rule.ptr->rt == PF_ROUTETO && \ 319 (s)->rule.ptr->direction == PF_OUT) || \ 320 ((s)->rule.ptr->rt == PF_REPLYTO && \ 321 (s)->rule.ptr->direction == PF_IN)) && \ 322 (s)->rt_kif != NULL && \ 323 (s)->rt_kif != (i)) \ 324 return (PF_PASS); \ 325 } while (0) 326 327 #define BOUND_IFACE(r, k) \ 328 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 329 330 #define STATE_INC_COUNTERS(s) \ 331 do { \ 332 s->rule.ptr->states_cur++; \ 333 s->rule.ptr->states_tot++; \ 334 if (s->anchor.ptr != NULL) { \ 335 s->anchor.ptr->states_cur++; \ 336 s->anchor.ptr->states_tot++; \ 337 } \ 338 if (s->nat_rule.ptr != NULL) { \ 339 s->nat_rule.ptr->states_cur++; \ 340 s->nat_rule.ptr->states_tot++; \ 341 } \ 342 } while (0) 343 344 #define STATE_DEC_COUNTERS(s) \ 345 do { \ 346 if (s->nat_rule.ptr != NULL) \ 347 s->nat_rule.ptr->states_cur--; \ 348 if (s->anchor.ptr != NULL) \ 349 s->anchor.ptr->states_cur--; \ 350 s->rule.ptr->states_cur--; \ 351 } while (0) 352 353 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 354 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 355 VNET_DEFINE(struct pf_idhash *, pf_idhash); 356 VNET_DEFINE(u_long, pf_hashmask); 357 VNET_DEFINE(struct pf_srchash *, pf_srchash); 358 VNET_DEFINE(u_long, pf_srchashmask); 359 360 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 361 362 VNET_DEFINE(u_long, pf_hashsize); 363 #define V_pf_hashsize VNET(pf_hashsize) 364 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 365 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 366 367 VNET_DEFINE(u_long, pf_srchashsize); 368 #define V_pf_srchashsize VNET(pf_srchashsize) 369 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 370 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 371 372 VNET_DEFINE(void *, pf_swi_cookie); 373 374 VNET_DEFINE(uint32_t, pf_hashseed); 375 #define V_pf_hashseed VNET(pf_hashseed) 376 377 static __inline uint32_t 378 pf_hashkey(struct pf_state_key *sk) 379 { 380 uint32_t h; 381 382 h = jenkins_hash32((uint32_t *)sk, 383 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 384 V_pf_hashseed); 385 386 return (h & V_pf_hashmask); 387 } 388 389 static __inline uint32_t 390 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 391 { 392 uint32_t h; 393 394 switch (af) { 395 case AF_INET: 396 h = jenkins_hash32((uint32_t *)&addr->v4, 397 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 398 break; 399 case AF_INET6: 400 h = jenkins_hash32((uint32_t *)&addr->v6, 401 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 402 break; 403 default: 404 panic("%s: unknown address family %u", __func__, af); 405 } 406 407 return (h & V_pf_srchashmask); 408 } 409 410 #ifdef INET6 411 void 412 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 413 { 414 switch (af) { 415 #ifdef INET 416 case AF_INET: 417 dst->addr32[0] = src->addr32[0]; 418 break; 419 #endif /* INET */ 420 case AF_INET6: 421 dst->addr32[0] = src->addr32[0]; 422 dst->addr32[1] = src->addr32[1]; 423 dst->addr32[2] = src->addr32[2]; 424 dst->addr32[3] = src->addr32[3]; 425 break; 426 } 427 } 428 #endif /* INET6 */ 429 430 static void 431 pf_init_threshold(struct pf_threshold *threshold, 432 u_int32_t limit, u_int32_t seconds) 433 { 434 threshold->limit = limit * PF_THRESHOLD_MULT; 435 threshold->seconds = seconds; 436 threshold->count = 0; 437 threshold->last = time_uptime; 438 } 439 440 static void 441 pf_add_threshold(struct pf_threshold *threshold) 442 { 443 u_int32_t t = time_uptime, diff = t - threshold->last; 444 445 if (diff >= threshold->seconds) 446 threshold->count = 0; 447 else 448 threshold->count -= threshold->count * diff / 449 threshold->seconds; 450 threshold->count += PF_THRESHOLD_MULT; 451 threshold->last = t; 452 } 453 454 static int 455 pf_check_threshold(struct pf_threshold *threshold) 456 { 457 return (threshold->count > threshold->limit); 458 } 459 460 static int 461 pf_src_connlimit(struct pf_state **state) 462 { 463 struct pf_overload_entry *pfoe; 464 int bad = 0; 465 466 PF_STATE_LOCK_ASSERT(*state); 467 468 (*state)->src_node->conn++; 469 (*state)->src.tcp_est = 1; 470 pf_add_threshold(&(*state)->src_node->conn_rate); 471 472 if ((*state)->rule.ptr->max_src_conn && 473 (*state)->rule.ptr->max_src_conn < 474 (*state)->src_node->conn) { 475 V_pf_status.lcounters[LCNT_SRCCONN]++; 476 bad++; 477 } 478 479 if ((*state)->rule.ptr->max_src_conn_rate.limit && 480 pf_check_threshold(&(*state)->src_node->conn_rate)) { 481 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 482 bad++; 483 } 484 485 if (!bad) 486 return (0); 487 488 /* Kill this state. */ 489 (*state)->timeout = PFTM_PURGE; 490 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 491 492 if ((*state)->rule.ptr->overload_tbl == NULL) 493 return (1); 494 495 /* Schedule overloading and flushing task. */ 496 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 497 if (pfoe == NULL) 498 return (1); /* too bad :( */ 499 500 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 501 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 502 pfoe->rule = (*state)->rule.ptr; 503 pfoe->dir = (*state)->direction; 504 PF_OVERLOADQ_LOCK(); 505 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 506 PF_OVERLOADQ_UNLOCK(); 507 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 508 509 return (1); 510 } 511 512 static void 513 pf_overload_task(void *c, int pending) 514 { 515 struct pf_overload_head queue; 516 struct pfr_addr p; 517 struct pf_overload_entry *pfoe, *pfoe1; 518 uint32_t killed = 0; 519 520 PF_OVERLOADQ_LOCK(); 521 queue = *(struct pf_overload_head *)c; 522 SLIST_INIT((struct pf_overload_head *)c); 523 PF_OVERLOADQ_UNLOCK(); 524 525 bzero(&p, sizeof(p)); 526 SLIST_FOREACH(pfoe, &queue, next) { 527 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 528 if (V_pf_status.debug >= PF_DEBUG_MISC) { 529 printf("%s: blocking address ", __func__); 530 pf_print_host(&pfoe->addr, 0, pfoe->af); 531 printf("\n"); 532 } 533 534 p.pfra_af = pfoe->af; 535 switch (pfoe->af) { 536 #ifdef INET 537 case AF_INET: 538 p.pfra_net = 32; 539 p.pfra_ip4addr = pfoe->addr.v4; 540 break; 541 #endif 542 #ifdef INET6 543 case AF_INET6: 544 p.pfra_net = 128; 545 p.pfra_ip6addr = pfoe->addr.v6; 546 break; 547 #endif 548 } 549 550 PF_RULES_WLOCK(); 551 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 552 PF_RULES_WUNLOCK(); 553 } 554 555 /* 556 * Remove those entries, that don't need flushing. 557 */ 558 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 559 if (pfoe->rule->flush == 0) { 560 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 561 free(pfoe, M_PFTEMP); 562 } else 563 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 564 565 /* If nothing to flush, return. */ 566 if (SLIST_EMPTY(&queue)) 567 return; 568 569 for (int i = 0; i <= V_pf_hashmask; i++) { 570 struct pf_idhash *ih = &V_pf_idhash[i]; 571 struct pf_state_key *sk; 572 struct pf_state *s; 573 574 PF_HASHROW_LOCK(ih); 575 LIST_FOREACH(s, &ih->states, entry) { 576 sk = s->key[PF_SK_WIRE]; 577 SLIST_FOREACH(pfoe, &queue, next) 578 if (sk->af == pfoe->af && 579 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 580 pfoe->rule == s->rule.ptr) && 581 ((pfoe->dir == PF_OUT && 582 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 583 (pfoe->dir == PF_IN && 584 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 585 s->timeout = PFTM_PURGE; 586 s->src.state = s->dst.state = TCPS_CLOSED; 587 killed++; 588 } 589 } 590 PF_HASHROW_UNLOCK(ih); 591 } 592 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 593 free(pfoe, M_PFTEMP); 594 if (V_pf_status.debug >= PF_DEBUG_MISC) 595 printf("%s: %u states killed", __func__, killed); 596 } 597 598 /* 599 * Can return locked on failure, so that we can consistently 600 * allocate and insert a new one. 601 */ 602 struct pf_src_node * 603 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 604 int returnlocked) 605 { 606 struct pf_srchash *sh; 607 struct pf_src_node *n; 608 609 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 610 611 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 612 PF_HASHROW_LOCK(sh); 613 LIST_FOREACH(n, &sh->nodes, entry) 614 if (n->rule.ptr == rule && n->af == af && 615 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 616 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 617 break; 618 if (n != NULL || returnlocked == 0) 619 PF_HASHROW_UNLOCK(sh); 620 621 return (n); 622 } 623 624 static int 625 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 626 struct pf_addr *src, sa_family_t af) 627 { 628 629 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 630 rule->rpool.opts & PF_POOL_STICKYADDR), 631 ("%s for non-tracking rule %p", __func__, rule)); 632 633 if (*sn == NULL) 634 *sn = pf_find_src_node(src, rule, af, 1); 635 636 if (*sn == NULL) { 637 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 638 639 PF_HASHROW_ASSERT(sh); 640 641 if (!rule->max_src_nodes || 642 rule->src_nodes < rule->max_src_nodes) 643 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 644 else 645 V_pf_status.lcounters[LCNT_SRCNODES]++; 646 if ((*sn) == NULL) { 647 PF_HASHROW_UNLOCK(sh); 648 return (-1); 649 } 650 651 pf_init_threshold(&(*sn)->conn_rate, 652 rule->max_src_conn_rate.limit, 653 rule->max_src_conn_rate.seconds); 654 655 (*sn)->af = af; 656 (*sn)->rule.ptr = rule; 657 PF_ACPY(&(*sn)->addr, src, af); 658 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 659 (*sn)->creation = time_uptime; 660 (*sn)->ruletype = rule->action; 661 if ((*sn)->rule.ptr != NULL) 662 (*sn)->rule.ptr->src_nodes++; 663 PF_HASHROW_UNLOCK(sh); 664 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 665 V_pf_status.src_nodes++; 666 } else { 667 if (rule->max_src_states && 668 (*sn)->states >= rule->max_src_states) { 669 V_pf_status.lcounters[LCNT_SRCSTATES]++; 670 return (-1); 671 } 672 } 673 return (0); 674 } 675 676 static void 677 pf_remove_src_node(struct pf_src_node *src) 678 { 679 struct pf_srchash *sh; 680 681 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 682 PF_HASHROW_LOCK(sh); 683 LIST_REMOVE(src, entry); 684 PF_HASHROW_UNLOCK(sh); 685 686 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 687 V_pf_status.src_nodes--; 688 689 uma_zfree(V_pf_sources_z, src); 690 } 691 692 /* Data storage structures initialization. */ 693 void 694 pf_initialize() 695 { 696 struct pf_keyhash *kh; 697 struct pf_idhash *ih; 698 struct pf_srchash *sh; 699 u_int i; 700 701 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 702 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 703 V_pf_hashsize = PF_HASHSIZ; 704 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 705 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 706 V_pf_srchashsize = PF_HASHSIZ / 4; 707 708 V_pf_hashseed = arc4random(); 709 710 /* States and state keys storage. */ 711 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 712 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 713 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 714 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 715 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 716 717 V_pf_state_key_z = uma_zcreate("pf state keys", 718 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 719 UMA_ALIGN_PTR, 0); 720 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 721 M_PFHASH, M_WAITOK | M_ZERO); 722 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 723 M_PFHASH, M_WAITOK | M_ZERO); 724 V_pf_hashmask = V_pf_hashsize - 1; 725 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 726 i++, kh++, ih++) { 727 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 728 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 729 } 730 731 /* Source nodes. */ 732 V_pf_sources_z = uma_zcreate("pf source nodes", 733 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 734 0); 735 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 736 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 737 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 738 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 739 M_PFHASH, M_WAITOK|M_ZERO); 740 V_pf_srchashmask = V_pf_srchashsize - 1; 741 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 742 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 743 744 /* ALTQ */ 745 TAILQ_INIT(&V_pf_altqs[0]); 746 TAILQ_INIT(&V_pf_altqs[1]); 747 TAILQ_INIT(&V_pf_pabuf); 748 V_pf_altqs_active = &V_pf_altqs[0]; 749 V_pf_altqs_inactive = &V_pf_altqs[1]; 750 751 /* Mbuf tags */ 752 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 753 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 754 UMA_ALIGN_PTR, 0); 755 756 /* Send & overload+flush queues. */ 757 STAILQ_INIT(&V_pf_sendqueue); 758 SLIST_INIT(&V_pf_overloadqueue); 759 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 760 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 761 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 762 MTX_DEF); 763 764 /* Unlinked, but may be referenced rules. */ 765 TAILQ_INIT(&V_pf_unlinked_rules); 766 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 767 } 768 769 void 770 pf_cleanup() 771 { 772 struct pf_keyhash *kh; 773 struct pf_idhash *ih; 774 struct pf_srchash *sh; 775 struct pf_send_entry *pfse, *next; 776 u_int i; 777 778 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 779 i++, kh++, ih++) { 780 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 781 __func__)); 782 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 783 __func__)); 784 mtx_destroy(&kh->lock); 785 mtx_destroy(&ih->lock); 786 } 787 free(V_pf_keyhash, M_PFHASH); 788 free(V_pf_idhash, M_PFHASH); 789 790 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 791 KASSERT(LIST_EMPTY(&sh->nodes), 792 ("%s: source node hash not empty", __func__)); 793 mtx_destroy(&sh->lock); 794 } 795 free(V_pf_srchash, M_PFHASH); 796 797 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 798 m_freem(pfse->pfse_m); 799 free(pfse, M_PFTEMP); 800 } 801 802 mtx_destroy(&pf_sendqueue_mtx); 803 mtx_destroy(&pf_overloadqueue_mtx); 804 mtx_destroy(&pf_unlnkdrules_mtx); 805 806 uma_zdestroy(V_pf_mtag_z); 807 uma_zdestroy(V_pf_sources_z); 808 uma_zdestroy(V_pf_state_z); 809 uma_zdestroy(V_pf_state_key_z); 810 } 811 812 static int 813 pf_mtag_init(void *mem, int size, int how) 814 { 815 struct m_tag *t; 816 817 t = (struct m_tag *)mem; 818 t->m_tag_cookie = MTAG_ABI_COMPAT; 819 t->m_tag_id = PACKET_TAG_PF; 820 t->m_tag_len = sizeof(struct pf_mtag); 821 t->m_tag_free = pf_mtag_free; 822 823 return (0); 824 } 825 826 static void 827 pf_mtag_free(struct m_tag *t) 828 { 829 830 uma_zfree(V_pf_mtag_z, t); 831 } 832 833 struct pf_mtag * 834 pf_get_mtag(struct mbuf *m) 835 { 836 struct m_tag *mtag; 837 838 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 839 return ((struct pf_mtag *)(mtag + 1)); 840 841 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 842 if (mtag == NULL) 843 return (NULL); 844 bzero(mtag + 1, sizeof(struct pf_mtag)); 845 m_tag_prepend(m, mtag); 846 847 return ((struct pf_mtag *)(mtag + 1)); 848 } 849 850 static int 851 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 852 struct pf_state *s) 853 { 854 struct pf_keyhash *khs, *khw, *kh; 855 struct pf_state_key *sk, *cur; 856 struct pf_state *si, *olds = NULL; 857 int idx; 858 859 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 860 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 861 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 862 863 /* 864 * We need to lock hash slots of both keys. To avoid deadlock 865 * we always lock the slot with lower address first. Unlock order 866 * isn't important. 867 * 868 * We also need to lock ID hash slot before dropping key 869 * locks. On success we return with ID hash slot locked. 870 */ 871 872 if (skw == sks) { 873 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 874 PF_HASHROW_LOCK(khs); 875 } else { 876 khs = &V_pf_keyhash[pf_hashkey(sks)]; 877 khw = &V_pf_keyhash[pf_hashkey(skw)]; 878 if (khs == khw) { 879 PF_HASHROW_LOCK(khs); 880 } else if (khs < khw) { 881 PF_HASHROW_LOCK(khs); 882 PF_HASHROW_LOCK(khw); 883 } else { 884 PF_HASHROW_LOCK(khw); 885 PF_HASHROW_LOCK(khs); 886 } 887 } 888 889 #define KEYS_UNLOCK() do { \ 890 if (khs != khw) { \ 891 PF_HASHROW_UNLOCK(khs); \ 892 PF_HASHROW_UNLOCK(khw); \ 893 } else \ 894 PF_HASHROW_UNLOCK(khs); \ 895 } while (0) 896 897 /* 898 * First run: start with wire key. 899 */ 900 sk = skw; 901 kh = khw; 902 idx = PF_SK_WIRE; 903 904 keyattach: 905 LIST_FOREACH(cur, &kh->keys, entry) 906 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 907 break; 908 909 if (cur != NULL) { 910 /* Key exists. Check for same kif, if none, add to key. */ 911 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 912 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 913 914 PF_HASHROW_LOCK(ih); 915 if (si->kif == s->kif && 916 si->direction == s->direction) { 917 if (sk->proto == IPPROTO_TCP && 918 si->src.state >= TCPS_FIN_WAIT_2 && 919 si->dst.state >= TCPS_FIN_WAIT_2) { 920 /* 921 * New state matches an old >FIN_WAIT_2 922 * state. We can't drop key hash locks, 923 * thus we can't unlink it properly. 924 * 925 * As a workaround we drop it into 926 * TCPS_CLOSED state, schedule purge 927 * ASAP and push it into the very end 928 * of the slot TAILQ, so that it won't 929 * conflict with our new state. 930 */ 931 si->src.state = si->dst.state = 932 TCPS_CLOSED; 933 si->timeout = PFTM_PURGE; 934 olds = si; 935 } else { 936 if (V_pf_status.debug >= PF_DEBUG_MISC) { 937 printf("pf: %s key attach " 938 "failed on %s: ", 939 (idx == PF_SK_WIRE) ? 940 "wire" : "stack", 941 s->kif->pfik_name); 942 pf_print_state_parts(s, 943 (idx == PF_SK_WIRE) ? 944 sk : NULL, 945 (idx == PF_SK_STACK) ? 946 sk : NULL); 947 printf(", existing: "); 948 pf_print_state_parts(si, 949 (idx == PF_SK_WIRE) ? 950 sk : NULL, 951 (idx == PF_SK_STACK) ? 952 sk : NULL); 953 printf("\n"); 954 } 955 PF_HASHROW_UNLOCK(ih); 956 KEYS_UNLOCK(); 957 uma_zfree(V_pf_state_key_z, sk); 958 if (idx == PF_SK_STACK) 959 pf_detach_state(s); 960 return (EEXIST); /* collision! */ 961 } 962 } 963 PF_HASHROW_UNLOCK(ih); 964 } 965 uma_zfree(V_pf_state_key_z, sk); 966 s->key[idx] = cur; 967 } else { 968 LIST_INSERT_HEAD(&kh->keys, sk, entry); 969 s->key[idx] = sk; 970 } 971 972 stateattach: 973 /* List is sorted, if-bound states before floating. */ 974 if (s->kif == V_pfi_all) 975 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 976 else 977 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 978 979 if (olds) { 980 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 981 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 982 key_list[idx]); 983 olds = NULL; 984 } 985 986 /* 987 * Attach done. See how should we (or should not?) 988 * attach a second key. 989 */ 990 if (sks == skw) { 991 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 992 idx = PF_SK_STACK; 993 sks = NULL; 994 goto stateattach; 995 } else if (sks != NULL) { 996 /* 997 * Continue attaching with stack key. 998 */ 999 sk = sks; 1000 kh = khs; 1001 idx = PF_SK_STACK; 1002 sks = NULL; 1003 goto keyattach; 1004 } 1005 1006 PF_STATE_LOCK(s); 1007 KEYS_UNLOCK(); 1008 1009 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1010 ("%s failure", __func__)); 1011 1012 return (0); 1013 #undef KEYS_UNLOCK 1014 } 1015 1016 static void 1017 pf_detach_state(struct pf_state *s) 1018 { 1019 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1020 struct pf_keyhash *kh; 1021 1022 if (sks != NULL) { 1023 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1024 PF_HASHROW_LOCK(kh); 1025 if (s->key[PF_SK_STACK] != NULL) 1026 pf_state_key_detach(s, PF_SK_STACK); 1027 /* 1028 * If both point to same key, then we are done. 1029 */ 1030 if (sks == s->key[PF_SK_WIRE]) { 1031 pf_state_key_detach(s, PF_SK_WIRE); 1032 PF_HASHROW_UNLOCK(kh); 1033 return; 1034 } 1035 PF_HASHROW_UNLOCK(kh); 1036 } 1037 1038 if (s->key[PF_SK_WIRE] != NULL) { 1039 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1040 PF_HASHROW_LOCK(kh); 1041 if (s->key[PF_SK_WIRE] != NULL) 1042 pf_state_key_detach(s, PF_SK_WIRE); 1043 PF_HASHROW_UNLOCK(kh); 1044 } 1045 } 1046 1047 static void 1048 pf_state_key_detach(struct pf_state *s, int idx) 1049 { 1050 struct pf_state_key *sk = s->key[idx]; 1051 #ifdef INVARIANTS 1052 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1053 1054 PF_HASHROW_ASSERT(kh); 1055 #endif 1056 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1057 s->key[idx] = NULL; 1058 1059 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1060 LIST_REMOVE(sk, entry); 1061 uma_zfree(V_pf_state_key_z, sk); 1062 } 1063 } 1064 1065 static int 1066 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1067 { 1068 struct pf_state_key *sk = mem; 1069 1070 bzero(sk, sizeof(struct pf_state_key_cmp)); 1071 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1072 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1073 1074 return (0); 1075 } 1076 1077 struct pf_state_key * 1078 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1079 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1080 { 1081 struct pf_state_key *sk; 1082 1083 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1084 if (sk == NULL) 1085 return (NULL); 1086 1087 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1088 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1089 sk->port[pd->sidx] = sport; 1090 sk->port[pd->didx] = dport; 1091 sk->proto = pd->proto; 1092 sk->af = pd->af; 1093 1094 return (sk); 1095 } 1096 1097 struct pf_state_key * 1098 pf_state_key_clone(struct pf_state_key *orig) 1099 { 1100 struct pf_state_key *sk; 1101 1102 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1103 if (sk == NULL) 1104 return (NULL); 1105 1106 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1107 1108 return (sk); 1109 } 1110 1111 int 1112 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1113 struct pf_state_key *sks, struct pf_state *s) 1114 { 1115 struct pf_idhash *ih; 1116 struct pf_state *cur; 1117 int error; 1118 1119 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1120 ("%s: sks not pristine", __func__)); 1121 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1122 ("%s: skw not pristine", __func__)); 1123 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1124 1125 s->kif = kif; 1126 1127 if (s->id == 0 && s->creatorid == 0) { 1128 /* XXX: should be atomic, but probability of collision low */ 1129 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1130 V_pf_stateid[curcpu] = 1; 1131 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1132 s->id = htobe64(s->id); 1133 s->creatorid = V_pf_status.hostid; 1134 } 1135 1136 /* Returns with ID locked on success. */ 1137 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1138 return (error); 1139 1140 ih = &V_pf_idhash[PF_IDHASH(s)]; 1141 PF_HASHROW_ASSERT(ih); 1142 LIST_FOREACH(cur, &ih->states, entry) 1143 if (cur->id == s->id && cur->creatorid == s->creatorid) 1144 break; 1145 1146 if (cur != NULL) { 1147 PF_HASHROW_UNLOCK(ih); 1148 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1149 printf("pf: state ID collision: " 1150 "id: %016llx creatorid: %08x\n", 1151 (unsigned long long)be64toh(s->id), 1152 ntohl(s->creatorid)); 1153 } 1154 pf_detach_state(s); 1155 return (EEXIST); 1156 } 1157 LIST_INSERT_HEAD(&ih->states, s, entry); 1158 /* One for keys, one for ID hash. */ 1159 refcount_init(&s->refs, 2); 1160 1161 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1162 if (pfsync_insert_state_ptr != NULL) 1163 pfsync_insert_state_ptr(s); 1164 1165 /* Returns locked. */ 1166 return (0); 1167 } 1168 1169 /* 1170 * Find state by ID: returns with locked row on success. 1171 */ 1172 struct pf_state * 1173 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1174 { 1175 struct pf_idhash *ih; 1176 struct pf_state *s; 1177 1178 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1179 1180 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1181 1182 PF_HASHROW_LOCK(ih); 1183 LIST_FOREACH(s, &ih->states, entry) 1184 if (s->id == id && s->creatorid == creatorid) 1185 break; 1186 1187 if (s == NULL) 1188 PF_HASHROW_UNLOCK(ih); 1189 1190 return (s); 1191 } 1192 1193 /* 1194 * Find state by key. 1195 * Returns with ID hash slot locked on success. 1196 */ 1197 static struct pf_state * 1198 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1199 { 1200 struct pf_keyhash *kh; 1201 struct pf_state_key *sk; 1202 struct pf_state *s; 1203 int idx; 1204 1205 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1206 1207 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1208 1209 PF_HASHROW_LOCK(kh); 1210 LIST_FOREACH(sk, &kh->keys, entry) 1211 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1212 break; 1213 if (sk == NULL) { 1214 PF_HASHROW_UNLOCK(kh); 1215 return (NULL); 1216 } 1217 1218 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1219 1220 /* List is sorted, if-bound states before floating ones. */ 1221 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1222 if (s->kif == V_pfi_all || s->kif == kif) { 1223 PF_STATE_LOCK(s); 1224 PF_HASHROW_UNLOCK(kh); 1225 if (s->timeout == PFTM_UNLINKED) { 1226 /* 1227 * State is being processed 1228 * by pf_unlink_state() in 1229 * an other thread. 1230 */ 1231 PF_STATE_UNLOCK(s); 1232 return (NULL); 1233 } 1234 return (s); 1235 } 1236 PF_HASHROW_UNLOCK(kh); 1237 1238 return (NULL); 1239 } 1240 1241 struct pf_state * 1242 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1243 { 1244 struct pf_keyhash *kh; 1245 struct pf_state_key *sk; 1246 struct pf_state *s, *ret = NULL; 1247 int idx, inout = 0; 1248 1249 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1250 1251 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1252 1253 PF_HASHROW_LOCK(kh); 1254 LIST_FOREACH(sk, &kh->keys, entry) 1255 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1256 break; 1257 if (sk == NULL) { 1258 PF_HASHROW_UNLOCK(kh); 1259 return (NULL); 1260 } 1261 switch (dir) { 1262 case PF_IN: 1263 idx = PF_SK_WIRE; 1264 break; 1265 case PF_OUT: 1266 idx = PF_SK_STACK; 1267 break; 1268 case PF_INOUT: 1269 idx = PF_SK_WIRE; 1270 inout = 1; 1271 break; 1272 default: 1273 panic("%s: dir %u", __func__, dir); 1274 } 1275 second_run: 1276 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1277 if (more == NULL) { 1278 PF_HASHROW_UNLOCK(kh); 1279 return (s); 1280 } 1281 1282 if (ret) 1283 (*more)++; 1284 else 1285 ret = s; 1286 } 1287 if (inout == 1) { 1288 inout = 0; 1289 idx = PF_SK_STACK; 1290 goto second_run; 1291 } 1292 PF_HASHROW_UNLOCK(kh); 1293 1294 return (ret); 1295 } 1296 1297 /* END state table stuff */ 1298 1299 static void 1300 pf_send(struct pf_send_entry *pfse) 1301 { 1302 1303 PF_SENDQ_LOCK(); 1304 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1305 PF_SENDQ_UNLOCK(); 1306 swi_sched(V_pf_swi_cookie, 0); 1307 } 1308 1309 void 1310 pf_intr(void *v) 1311 { 1312 struct pf_send_head queue; 1313 struct pf_send_entry *pfse, *next; 1314 1315 CURVNET_SET((struct vnet *)v); 1316 1317 PF_SENDQ_LOCK(); 1318 queue = V_pf_sendqueue; 1319 STAILQ_INIT(&V_pf_sendqueue); 1320 PF_SENDQ_UNLOCK(); 1321 1322 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1323 switch (pfse->pfse_type) { 1324 #ifdef INET 1325 case PFSE_IP: 1326 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1327 break; 1328 case PFSE_ICMP: 1329 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1330 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1331 break; 1332 #endif /* INET */ 1333 #ifdef INET6 1334 case PFSE_IP6: 1335 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1336 NULL); 1337 break; 1338 case PFSE_ICMP6: 1339 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1340 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1341 break; 1342 #endif /* INET6 */ 1343 default: 1344 panic("%s: unknown type", __func__); 1345 } 1346 free(pfse, M_PFTEMP); 1347 } 1348 CURVNET_RESTORE(); 1349 } 1350 1351 void 1352 pf_purge_thread(void *v) 1353 { 1354 u_int idx = 0; 1355 1356 CURVNET_SET((struct vnet *)v); 1357 1358 for (;;) { 1359 PF_RULES_RLOCK(); 1360 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1361 1362 if (V_pf_end_threads) { 1363 /* 1364 * To cleanse up all kifs and rules we need 1365 * two runs: first one clears reference flags, 1366 * then pf_purge_expired_states() doesn't 1367 * raise them, and then second run frees. 1368 */ 1369 PF_RULES_RUNLOCK(); 1370 pf_purge_unlinked_rules(); 1371 pfi_kif_purge(); 1372 1373 /* 1374 * Now purge everything. 1375 */ 1376 pf_purge_expired_states(0, V_pf_hashmask); 1377 pf_purge_expired_fragments(); 1378 pf_purge_expired_src_nodes(); 1379 1380 /* 1381 * Now all kifs & rules should be unreferenced, 1382 * thus should be successfully freed. 1383 */ 1384 pf_purge_unlinked_rules(); 1385 pfi_kif_purge(); 1386 1387 /* 1388 * Announce success and exit. 1389 */ 1390 PF_RULES_RLOCK(); 1391 V_pf_end_threads++; 1392 PF_RULES_RUNLOCK(); 1393 wakeup(pf_purge_thread); 1394 kproc_exit(0); 1395 } 1396 PF_RULES_RUNLOCK(); 1397 1398 /* Process 1/interval fraction of the state table every run. */ 1399 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1400 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1401 1402 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1403 if (idx == 0) { 1404 /* 1405 * Order is important: 1406 * - states and src nodes reference rules 1407 * - states and rules reference kifs 1408 */ 1409 pf_purge_expired_fragments(); 1410 pf_purge_expired_src_nodes(); 1411 pf_purge_unlinked_rules(); 1412 pfi_kif_purge(); 1413 } 1414 } 1415 /* not reached */ 1416 CURVNET_RESTORE(); 1417 } 1418 1419 u_int32_t 1420 pf_state_expires(const struct pf_state *state) 1421 { 1422 u_int32_t timeout; 1423 u_int32_t start; 1424 u_int32_t end; 1425 u_int32_t states; 1426 1427 /* handle all PFTM_* > PFTM_MAX here */ 1428 if (state->timeout == PFTM_PURGE) 1429 return (time_uptime); 1430 if (state->timeout == PFTM_UNTIL_PACKET) 1431 return (0); 1432 KASSERT(state->timeout != PFTM_UNLINKED, 1433 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1434 KASSERT((state->timeout < PFTM_MAX), 1435 ("pf_state_expires: timeout > PFTM_MAX")); 1436 timeout = state->rule.ptr->timeout[state->timeout]; 1437 if (!timeout) 1438 timeout = V_pf_default_rule.timeout[state->timeout]; 1439 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1440 if (start) { 1441 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1442 states = state->rule.ptr->states_cur; /* XXXGL */ 1443 } else { 1444 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1445 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1446 states = V_pf_status.states; 1447 } 1448 if (end && states > start && start < end) { 1449 if (states < end) 1450 return (state->expire + timeout * (end - states) / 1451 (end - start)); 1452 else 1453 return (time_uptime); 1454 } 1455 return (state->expire + timeout); 1456 } 1457 1458 void 1459 pf_purge_expired_src_nodes() 1460 { 1461 struct pf_srchash *sh; 1462 struct pf_src_node *cur, *next; 1463 int i; 1464 1465 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1466 PF_HASHROW_LOCK(sh); 1467 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1468 if (cur->states <= 0 && cur->expire <= time_uptime) { 1469 if (cur->rule.ptr != NULL) 1470 cur->rule.ptr->src_nodes--; 1471 LIST_REMOVE(cur, entry); 1472 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 1473 V_pf_status.src_nodes--; 1474 uma_zfree(V_pf_sources_z, cur); 1475 } else if (cur->rule.ptr != NULL) 1476 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1477 PF_HASHROW_UNLOCK(sh); 1478 } 1479 } 1480 1481 static void 1482 pf_src_tree_remove_state(struct pf_state *s) 1483 { 1484 u_int32_t timeout; 1485 1486 if (s->src_node != NULL) { 1487 if (s->src.tcp_est) 1488 --s->src_node->conn; 1489 if (--s->src_node->states <= 0) { 1490 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1491 if (!timeout) 1492 timeout = 1493 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1494 s->src_node->expire = time_uptime + timeout; 1495 } 1496 } 1497 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1498 if (--s->nat_src_node->states <= 0) { 1499 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1500 if (!timeout) 1501 timeout = 1502 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1503 s->nat_src_node->expire = time_uptime + timeout; 1504 } 1505 } 1506 s->src_node = s->nat_src_node = NULL; 1507 } 1508 1509 /* 1510 * Unlink and potentilly free a state. Function may be 1511 * called with ID hash row locked, but always returns 1512 * unlocked, since it needs to go through key hash locking. 1513 */ 1514 int 1515 pf_unlink_state(struct pf_state *s, u_int flags) 1516 { 1517 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1518 1519 if ((flags & PF_ENTER_LOCKED) == 0) 1520 PF_HASHROW_LOCK(ih); 1521 else 1522 PF_HASHROW_ASSERT(ih); 1523 1524 if (s->timeout == PFTM_UNLINKED) { 1525 /* 1526 * State is being processed 1527 * by pf_unlink_state() in 1528 * an other thread. 1529 */ 1530 PF_HASHROW_UNLOCK(ih); 1531 return (0); /* XXXGL: undefined actually */ 1532 } 1533 1534 if (s->src.state == PF_TCPS_PROXY_DST) { 1535 /* XXX wire key the right one? */ 1536 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1537 &s->key[PF_SK_WIRE]->addr[1], 1538 &s->key[PF_SK_WIRE]->addr[0], 1539 s->key[PF_SK_WIRE]->port[1], 1540 s->key[PF_SK_WIRE]->port[0], 1541 s->src.seqhi, s->src.seqlo + 1, 1542 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1543 } 1544 1545 LIST_REMOVE(s, entry); 1546 pf_src_tree_remove_state(s); 1547 1548 if (pfsync_delete_state_ptr != NULL) 1549 pfsync_delete_state_ptr(s); 1550 1551 --s->rule.ptr->states_cur; 1552 if (s->nat_rule.ptr != NULL) 1553 --s->nat_rule.ptr->states_cur; 1554 if (s->anchor.ptr != NULL) 1555 --s->anchor.ptr->states_cur; 1556 1557 s->timeout = PFTM_UNLINKED; 1558 1559 PF_HASHROW_UNLOCK(ih); 1560 1561 pf_detach_state(s); 1562 refcount_release(&s->refs); 1563 1564 return (pf_release_state(s)); 1565 } 1566 1567 void 1568 pf_free_state(struct pf_state *cur) 1569 { 1570 1571 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1572 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1573 cur->timeout)); 1574 1575 pf_normalize_tcp_cleanup(cur); 1576 uma_zfree(V_pf_state_z, cur); 1577 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1578 } 1579 1580 /* 1581 * Called only from pf_purge_thread(), thus serialized. 1582 */ 1583 static u_int 1584 pf_purge_expired_states(u_int i, int maxcheck) 1585 { 1586 struct pf_idhash *ih; 1587 struct pf_state *s; 1588 1589 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1590 1591 /* 1592 * Go through hash and unlink states that expire now. 1593 */ 1594 while (maxcheck > 0) { 1595 1596 ih = &V_pf_idhash[i]; 1597 relock: 1598 PF_HASHROW_LOCK(ih); 1599 LIST_FOREACH(s, &ih->states, entry) { 1600 if (pf_state_expires(s) <= time_uptime) { 1601 V_pf_status.states -= 1602 pf_unlink_state(s, PF_ENTER_LOCKED); 1603 goto relock; 1604 } 1605 s->rule.ptr->rule_flag |= PFRULE_REFS; 1606 if (s->nat_rule.ptr != NULL) 1607 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1608 if (s->anchor.ptr != NULL) 1609 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1610 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1611 if (s->rt_kif) 1612 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1613 } 1614 PF_HASHROW_UNLOCK(ih); 1615 1616 /* Return when we hit end of hash. */ 1617 if (++i > V_pf_hashmask) { 1618 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1619 return (0); 1620 } 1621 1622 maxcheck--; 1623 } 1624 1625 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1626 1627 return (i); 1628 } 1629 1630 static void 1631 pf_purge_unlinked_rules() 1632 { 1633 struct pf_rulequeue tmpq; 1634 struct pf_rule *r, *r1; 1635 1636 /* 1637 * If we have overloading task pending, then we'd 1638 * better skip purging this time. There is a tiny 1639 * probability that overloading task references 1640 * an already unlinked rule. 1641 */ 1642 PF_OVERLOADQ_LOCK(); 1643 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1644 PF_OVERLOADQ_UNLOCK(); 1645 return; 1646 } 1647 PF_OVERLOADQ_UNLOCK(); 1648 1649 /* 1650 * Do naive mark-and-sweep garbage collecting of old rules. 1651 * Reference flag is raised by pf_purge_expired_states() 1652 * and pf_purge_expired_src_nodes(). 1653 * 1654 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1655 * use a temporary queue. 1656 */ 1657 TAILQ_INIT(&tmpq); 1658 PF_UNLNKDRULES_LOCK(); 1659 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1660 if (!(r->rule_flag & PFRULE_REFS)) { 1661 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1662 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1663 } else 1664 r->rule_flag &= ~PFRULE_REFS; 1665 } 1666 PF_UNLNKDRULES_UNLOCK(); 1667 1668 if (!TAILQ_EMPTY(&tmpq)) { 1669 PF_RULES_WLOCK(); 1670 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1671 TAILQ_REMOVE(&tmpq, r, entries); 1672 pf_free_rule(r); 1673 } 1674 PF_RULES_WUNLOCK(); 1675 } 1676 } 1677 1678 void 1679 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1680 { 1681 switch (af) { 1682 #ifdef INET 1683 case AF_INET: { 1684 u_int32_t a = ntohl(addr->addr32[0]); 1685 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1686 (a>>8)&255, a&255); 1687 if (p) { 1688 p = ntohs(p); 1689 printf(":%u", p); 1690 } 1691 break; 1692 } 1693 #endif /* INET */ 1694 #ifdef INET6 1695 case AF_INET6: { 1696 u_int16_t b; 1697 u_int8_t i, curstart, curend, maxstart, maxend; 1698 curstart = curend = maxstart = maxend = 255; 1699 for (i = 0; i < 8; i++) { 1700 if (!addr->addr16[i]) { 1701 if (curstart == 255) 1702 curstart = i; 1703 curend = i; 1704 } else { 1705 if ((curend - curstart) > 1706 (maxend - maxstart)) { 1707 maxstart = curstart; 1708 maxend = curend; 1709 } 1710 curstart = curend = 255; 1711 } 1712 } 1713 if ((curend - curstart) > 1714 (maxend - maxstart)) { 1715 maxstart = curstart; 1716 maxend = curend; 1717 } 1718 for (i = 0; i < 8; i++) { 1719 if (i >= maxstart && i <= maxend) { 1720 if (i == 0) 1721 printf(":"); 1722 if (i == maxend) 1723 printf(":"); 1724 } else { 1725 b = ntohs(addr->addr16[i]); 1726 printf("%x", b); 1727 if (i < 7) 1728 printf(":"); 1729 } 1730 } 1731 if (p) { 1732 p = ntohs(p); 1733 printf("[%u]", p); 1734 } 1735 break; 1736 } 1737 #endif /* INET6 */ 1738 } 1739 } 1740 1741 void 1742 pf_print_state(struct pf_state *s) 1743 { 1744 pf_print_state_parts(s, NULL, NULL); 1745 } 1746 1747 static void 1748 pf_print_state_parts(struct pf_state *s, 1749 struct pf_state_key *skwp, struct pf_state_key *sksp) 1750 { 1751 struct pf_state_key *skw, *sks; 1752 u_int8_t proto, dir; 1753 1754 /* Do our best to fill these, but they're skipped if NULL */ 1755 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1756 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1757 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1758 dir = s ? s->direction : 0; 1759 1760 switch (proto) { 1761 case IPPROTO_IPV4: 1762 printf("IPv4"); 1763 break; 1764 case IPPROTO_IPV6: 1765 printf("IPv6"); 1766 break; 1767 case IPPROTO_TCP: 1768 printf("TCP"); 1769 break; 1770 case IPPROTO_UDP: 1771 printf("UDP"); 1772 break; 1773 case IPPROTO_ICMP: 1774 printf("ICMP"); 1775 break; 1776 case IPPROTO_ICMPV6: 1777 printf("ICMPv6"); 1778 break; 1779 default: 1780 printf("%u", skw->proto); 1781 break; 1782 } 1783 switch (dir) { 1784 case PF_IN: 1785 printf(" in"); 1786 break; 1787 case PF_OUT: 1788 printf(" out"); 1789 break; 1790 } 1791 if (skw) { 1792 printf(" wire: "); 1793 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1794 printf(" "); 1795 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1796 } 1797 if (sks) { 1798 printf(" stack: "); 1799 if (sks != skw) { 1800 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1801 printf(" "); 1802 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1803 } else 1804 printf("-"); 1805 } 1806 if (s) { 1807 if (proto == IPPROTO_TCP) { 1808 printf(" [lo=%u high=%u win=%u modulator=%u", 1809 s->src.seqlo, s->src.seqhi, 1810 s->src.max_win, s->src.seqdiff); 1811 if (s->src.wscale && s->dst.wscale) 1812 printf(" wscale=%u", 1813 s->src.wscale & PF_WSCALE_MASK); 1814 printf("]"); 1815 printf(" [lo=%u high=%u win=%u modulator=%u", 1816 s->dst.seqlo, s->dst.seqhi, 1817 s->dst.max_win, s->dst.seqdiff); 1818 if (s->src.wscale && s->dst.wscale) 1819 printf(" wscale=%u", 1820 s->dst.wscale & PF_WSCALE_MASK); 1821 printf("]"); 1822 } 1823 printf(" %u:%u", s->src.state, s->dst.state); 1824 } 1825 } 1826 1827 void 1828 pf_print_flags(u_int8_t f) 1829 { 1830 if (f) 1831 printf(" "); 1832 if (f & TH_FIN) 1833 printf("F"); 1834 if (f & TH_SYN) 1835 printf("S"); 1836 if (f & TH_RST) 1837 printf("R"); 1838 if (f & TH_PUSH) 1839 printf("P"); 1840 if (f & TH_ACK) 1841 printf("A"); 1842 if (f & TH_URG) 1843 printf("U"); 1844 if (f & TH_ECE) 1845 printf("E"); 1846 if (f & TH_CWR) 1847 printf("W"); 1848 } 1849 1850 #define PF_SET_SKIP_STEPS(i) \ 1851 do { \ 1852 while (head[i] != cur) { \ 1853 head[i]->skip[i].ptr = cur; \ 1854 head[i] = TAILQ_NEXT(head[i], entries); \ 1855 } \ 1856 } while (0) 1857 1858 void 1859 pf_calc_skip_steps(struct pf_rulequeue *rules) 1860 { 1861 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1862 int i; 1863 1864 cur = TAILQ_FIRST(rules); 1865 prev = cur; 1866 for (i = 0; i < PF_SKIP_COUNT; ++i) 1867 head[i] = cur; 1868 while (cur != NULL) { 1869 1870 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1871 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1872 if (cur->direction != prev->direction) 1873 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1874 if (cur->af != prev->af) 1875 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1876 if (cur->proto != prev->proto) 1877 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1878 if (cur->src.neg != prev->src.neg || 1879 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1880 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1881 if (cur->src.port[0] != prev->src.port[0] || 1882 cur->src.port[1] != prev->src.port[1] || 1883 cur->src.port_op != prev->src.port_op) 1884 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1885 if (cur->dst.neg != prev->dst.neg || 1886 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1887 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1888 if (cur->dst.port[0] != prev->dst.port[0] || 1889 cur->dst.port[1] != prev->dst.port[1] || 1890 cur->dst.port_op != prev->dst.port_op) 1891 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1892 1893 prev = cur; 1894 cur = TAILQ_NEXT(cur, entries); 1895 } 1896 for (i = 0; i < PF_SKIP_COUNT; ++i) 1897 PF_SET_SKIP_STEPS(i); 1898 } 1899 1900 static int 1901 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1902 { 1903 if (aw1->type != aw2->type) 1904 return (1); 1905 switch (aw1->type) { 1906 case PF_ADDR_ADDRMASK: 1907 case PF_ADDR_RANGE: 1908 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1909 return (1); 1910 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1911 return (1); 1912 return (0); 1913 case PF_ADDR_DYNIFTL: 1914 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1915 case PF_ADDR_NOROUTE: 1916 case PF_ADDR_URPFFAILED: 1917 return (0); 1918 case PF_ADDR_TABLE: 1919 return (aw1->p.tbl != aw2->p.tbl); 1920 default: 1921 printf("invalid address type: %d\n", aw1->type); 1922 return (1); 1923 } 1924 } 1925 1926 u_int16_t 1927 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1928 { 1929 u_int32_t l; 1930 1931 if (udp && !cksum) 1932 return (0x0000); 1933 l = cksum + old - new; 1934 l = (l >> 16) + (l & 65535); 1935 l = l & 65535; 1936 if (udp && !l) 1937 return (0xFFFF); 1938 return (l); 1939 } 1940 1941 static void 1942 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1943 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1944 { 1945 struct pf_addr ao; 1946 u_int16_t po = *p; 1947 1948 PF_ACPY(&ao, a, af); 1949 PF_ACPY(a, an, af); 1950 1951 *p = pn; 1952 1953 switch (af) { 1954 #ifdef INET 1955 case AF_INET: 1956 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1957 ao.addr16[0], an->addr16[0], 0), 1958 ao.addr16[1], an->addr16[1], 0); 1959 *p = pn; 1960 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1961 ao.addr16[0], an->addr16[0], u), 1962 ao.addr16[1], an->addr16[1], u), 1963 po, pn, u); 1964 break; 1965 #endif /* INET */ 1966 #ifdef INET6 1967 case AF_INET6: 1968 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1969 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1970 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1971 ao.addr16[0], an->addr16[0], u), 1972 ao.addr16[1], an->addr16[1], u), 1973 ao.addr16[2], an->addr16[2], u), 1974 ao.addr16[3], an->addr16[3], u), 1975 ao.addr16[4], an->addr16[4], u), 1976 ao.addr16[5], an->addr16[5], u), 1977 ao.addr16[6], an->addr16[6], u), 1978 ao.addr16[7], an->addr16[7], u), 1979 po, pn, u); 1980 break; 1981 #endif /* INET6 */ 1982 } 1983 } 1984 1985 1986 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1987 void 1988 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1989 { 1990 u_int32_t ao; 1991 1992 memcpy(&ao, a, sizeof(ao)); 1993 memcpy(a, &an, sizeof(u_int32_t)); 1994 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 1995 ao % 65536, an % 65536, u); 1996 } 1997 1998 #ifdef INET6 1999 static void 2000 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2001 { 2002 struct pf_addr ao; 2003 2004 PF_ACPY(&ao, a, AF_INET6); 2005 PF_ACPY(a, an, AF_INET6); 2006 2007 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2008 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2009 pf_cksum_fixup(pf_cksum_fixup(*c, 2010 ao.addr16[0], an->addr16[0], u), 2011 ao.addr16[1], an->addr16[1], u), 2012 ao.addr16[2], an->addr16[2], u), 2013 ao.addr16[3], an->addr16[3], u), 2014 ao.addr16[4], an->addr16[4], u), 2015 ao.addr16[5], an->addr16[5], u), 2016 ao.addr16[6], an->addr16[6], u), 2017 ao.addr16[7], an->addr16[7], u); 2018 } 2019 #endif /* INET6 */ 2020 2021 static void 2022 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2023 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2024 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2025 { 2026 struct pf_addr oia, ooa; 2027 2028 PF_ACPY(&oia, ia, af); 2029 if (oa) 2030 PF_ACPY(&ooa, oa, af); 2031 2032 /* Change inner protocol port, fix inner protocol checksum. */ 2033 if (ip != NULL) { 2034 u_int16_t oip = *ip; 2035 u_int32_t opc; 2036 2037 if (pc != NULL) 2038 opc = *pc; 2039 *ip = np; 2040 if (pc != NULL) 2041 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2042 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2043 if (pc != NULL) 2044 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2045 } 2046 /* Change inner ip address, fix inner ip and icmp checksums. */ 2047 PF_ACPY(ia, na, af); 2048 switch (af) { 2049 #ifdef INET 2050 case AF_INET: { 2051 u_int32_t oh2c = *h2c; 2052 2053 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2054 oia.addr16[0], ia->addr16[0], 0), 2055 oia.addr16[1], ia->addr16[1], 0); 2056 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2057 oia.addr16[0], ia->addr16[0], 0), 2058 oia.addr16[1], ia->addr16[1], 0); 2059 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2060 break; 2061 } 2062 #endif /* INET */ 2063 #ifdef INET6 2064 case AF_INET6: 2065 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2066 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2067 pf_cksum_fixup(pf_cksum_fixup(*ic, 2068 oia.addr16[0], ia->addr16[0], u), 2069 oia.addr16[1], ia->addr16[1], u), 2070 oia.addr16[2], ia->addr16[2], u), 2071 oia.addr16[3], ia->addr16[3], u), 2072 oia.addr16[4], ia->addr16[4], u), 2073 oia.addr16[5], ia->addr16[5], u), 2074 oia.addr16[6], ia->addr16[6], u), 2075 oia.addr16[7], ia->addr16[7], u); 2076 break; 2077 #endif /* INET6 */ 2078 } 2079 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2080 if (oa) { 2081 PF_ACPY(oa, na, af); 2082 switch (af) { 2083 #ifdef INET 2084 case AF_INET: 2085 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2086 ooa.addr16[0], oa->addr16[0], 0), 2087 ooa.addr16[1], oa->addr16[1], 0); 2088 break; 2089 #endif /* INET */ 2090 #ifdef INET6 2091 case AF_INET6: 2092 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2093 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2094 pf_cksum_fixup(pf_cksum_fixup(*ic, 2095 ooa.addr16[0], oa->addr16[0], u), 2096 ooa.addr16[1], oa->addr16[1], u), 2097 ooa.addr16[2], oa->addr16[2], u), 2098 ooa.addr16[3], oa->addr16[3], u), 2099 ooa.addr16[4], oa->addr16[4], u), 2100 ooa.addr16[5], oa->addr16[5], u), 2101 ooa.addr16[6], oa->addr16[6], u), 2102 ooa.addr16[7], oa->addr16[7], u); 2103 break; 2104 #endif /* INET6 */ 2105 } 2106 } 2107 } 2108 2109 2110 /* 2111 * Need to modulate the sequence numbers in the TCP SACK option 2112 * (credits to Krzysztof Pfaff for report and patch) 2113 */ 2114 static int 2115 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2116 struct tcphdr *th, struct pf_state_peer *dst) 2117 { 2118 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2119 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2120 int copyback = 0, i, olen; 2121 struct sackblk sack; 2122 2123 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2124 if (hlen < TCPOLEN_SACKLEN || 2125 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2126 return 0; 2127 2128 while (hlen >= TCPOLEN_SACKLEN) { 2129 olen = opt[1]; 2130 switch (*opt) { 2131 case TCPOPT_EOL: /* FALLTHROUGH */ 2132 case TCPOPT_NOP: 2133 opt++; 2134 hlen--; 2135 break; 2136 case TCPOPT_SACK: 2137 if (olen > hlen) 2138 olen = hlen; 2139 if (olen >= TCPOLEN_SACKLEN) { 2140 for (i = 2; i + TCPOLEN_SACK <= olen; 2141 i += TCPOLEN_SACK) { 2142 memcpy(&sack, &opt[i], sizeof(sack)); 2143 pf_change_a(&sack.start, &th->th_sum, 2144 htonl(ntohl(sack.start) - 2145 dst->seqdiff), 0); 2146 pf_change_a(&sack.end, &th->th_sum, 2147 htonl(ntohl(sack.end) - 2148 dst->seqdiff), 0); 2149 memcpy(&opt[i], &sack, sizeof(sack)); 2150 } 2151 copyback = 1; 2152 } 2153 /* FALLTHROUGH */ 2154 default: 2155 if (olen < 2) 2156 olen = 2; 2157 hlen -= olen; 2158 opt += olen; 2159 } 2160 } 2161 2162 if (copyback) 2163 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2164 return (copyback); 2165 } 2166 2167 static void 2168 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2169 const struct pf_addr *saddr, const struct pf_addr *daddr, 2170 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2171 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2172 u_int16_t rtag, struct ifnet *ifp) 2173 { 2174 struct pf_send_entry *pfse; 2175 struct mbuf *m; 2176 int len, tlen; 2177 #ifdef INET 2178 struct ip *h = NULL; 2179 #endif /* INET */ 2180 #ifdef INET6 2181 struct ip6_hdr *h6 = NULL; 2182 #endif /* INET6 */ 2183 struct tcphdr *th; 2184 char *opt; 2185 struct pf_mtag *pf_mtag; 2186 2187 len = 0; 2188 th = NULL; 2189 2190 /* maximum segment size tcp option */ 2191 tlen = sizeof(struct tcphdr); 2192 if (mss) 2193 tlen += 4; 2194 2195 switch (af) { 2196 #ifdef INET 2197 case AF_INET: 2198 len = sizeof(struct ip) + tlen; 2199 break; 2200 #endif /* INET */ 2201 #ifdef INET6 2202 case AF_INET6: 2203 len = sizeof(struct ip6_hdr) + tlen; 2204 break; 2205 #endif /* INET6 */ 2206 default: 2207 panic("%s: unsupported af %d", __func__, af); 2208 } 2209 2210 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2211 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2212 if (pfse == NULL) 2213 return; 2214 m = m_gethdr(M_NOWAIT, MT_DATA); 2215 if (m == NULL) { 2216 free(pfse, M_PFTEMP); 2217 return; 2218 } 2219 #ifdef MAC 2220 mac_netinet_firewall_send(m); 2221 #endif 2222 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2223 free(pfse, M_PFTEMP); 2224 m_freem(m); 2225 return; 2226 } 2227 if (tag) 2228 m->m_flags |= M_SKIP_FIREWALL; 2229 pf_mtag->tag = rtag; 2230 2231 if (r != NULL && r->rtableid >= 0) 2232 M_SETFIB(m, r->rtableid); 2233 2234 #ifdef ALTQ 2235 if (r != NULL && r->qid) { 2236 pf_mtag->qid = r->qid; 2237 2238 /* add hints for ecn */ 2239 pf_mtag->hdr = mtod(m, struct ip *); 2240 } 2241 #endif /* ALTQ */ 2242 m->m_data += max_linkhdr; 2243 m->m_pkthdr.len = m->m_len = len; 2244 m->m_pkthdr.rcvif = NULL; 2245 bzero(m->m_data, len); 2246 switch (af) { 2247 #ifdef INET 2248 case AF_INET: 2249 h = mtod(m, struct ip *); 2250 2251 /* IP header fields included in the TCP checksum */ 2252 h->ip_p = IPPROTO_TCP; 2253 h->ip_len = htons(tlen); 2254 h->ip_src.s_addr = saddr->v4.s_addr; 2255 h->ip_dst.s_addr = daddr->v4.s_addr; 2256 2257 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2258 break; 2259 #endif /* INET */ 2260 #ifdef INET6 2261 case AF_INET6: 2262 h6 = mtod(m, struct ip6_hdr *); 2263 2264 /* IP header fields included in the TCP checksum */ 2265 h6->ip6_nxt = IPPROTO_TCP; 2266 h6->ip6_plen = htons(tlen); 2267 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2268 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2269 2270 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2271 break; 2272 #endif /* INET6 */ 2273 } 2274 2275 /* TCP header */ 2276 th->th_sport = sport; 2277 th->th_dport = dport; 2278 th->th_seq = htonl(seq); 2279 th->th_ack = htonl(ack); 2280 th->th_off = tlen >> 2; 2281 th->th_flags = flags; 2282 th->th_win = htons(win); 2283 2284 if (mss) { 2285 opt = (char *)(th + 1); 2286 opt[0] = TCPOPT_MAXSEG; 2287 opt[1] = 4; 2288 HTONS(mss); 2289 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2290 } 2291 2292 switch (af) { 2293 #ifdef INET 2294 case AF_INET: 2295 /* TCP checksum */ 2296 th->th_sum = in_cksum(m, len); 2297 2298 /* Finish the IP header */ 2299 h->ip_v = 4; 2300 h->ip_hl = sizeof(*h) >> 2; 2301 h->ip_tos = IPTOS_LOWDELAY; 2302 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2303 h->ip_len = htons(len); 2304 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2305 h->ip_sum = 0; 2306 2307 pfse->pfse_type = PFSE_IP; 2308 break; 2309 #endif /* INET */ 2310 #ifdef INET6 2311 case AF_INET6: 2312 /* TCP checksum */ 2313 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2314 sizeof(struct ip6_hdr), tlen); 2315 2316 h6->ip6_vfc |= IPV6_VERSION; 2317 h6->ip6_hlim = IPV6_DEFHLIM; 2318 2319 pfse->pfse_type = PFSE_IP6; 2320 break; 2321 #endif /* INET6 */ 2322 } 2323 pfse->pfse_m = m; 2324 pf_send(pfse); 2325 } 2326 2327 static void 2328 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2329 struct pf_rule *r) 2330 { 2331 struct pf_send_entry *pfse; 2332 struct mbuf *m0; 2333 struct pf_mtag *pf_mtag; 2334 2335 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2336 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2337 if (pfse == NULL) 2338 return; 2339 2340 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2341 free(pfse, M_PFTEMP); 2342 return; 2343 } 2344 2345 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2346 free(pfse, M_PFTEMP); 2347 return; 2348 } 2349 /* XXX: revisit */ 2350 m0->m_flags |= M_SKIP_FIREWALL; 2351 2352 if (r->rtableid >= 0) 2353 M_SETFIB(m0, r->rtableid); 2354 2355 #ifdef ALTQ 2356 if (r->qid) { 2357 pf_mtag->qid = r->qid; 2358 /* add hints for ecn */ 2359 pf_mtag->hdr = mtod(m0, struct ip *); 2360 } 2361 #endif /* ALTQ */ 2362 2363 switch (af) { 2364 #ifdef INET 2365 case AF_INET: 2366 pfse->pfse_type = PFSE_ICMP; 2367 break; 2368 #endif /* INET */ 2369 #ifdef INET6 2370 case AF_INET6: 2371 pfse->pfse_type = PFSE_ICMP6; 2372 break; 2373 #endif /* INET6 */ 2374 } 2375 pfse->pfse_m = m0; 2376 pfse->pfse_icmp_type = type; 2377 pfse->pfse_icmp_code = code; 2378 pf_send(pfse); 2379 } 2380 2381 /* 2382 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2383 * If n is 0, they match if they are equal. If n is != 0, they match if they 2384 * are different. 2385 */ 2386 int 2387 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2388 struct pf_addr *b, sa_family_t af) 2389 { 2390 int match = 0; 2391 2392 switch (af) { 2393 #ifdef INET 2394 case AF_INET: 2395 if ((a->addr32[0] & m->addr32[0]) == 2396 (b->addr32[0] & m->addr32[0])) 2397 match++; 2398 break; 2399 #endif /* INET */ 2400 #ifdef INET6 2401 case AF_INET6: 2402 if (((a->addr32[0] & m->addr32[0]) == 2403 (b->addr32[0] & m->addr32[0])) && 2404 ((a->addr32[1] & m->addr32[1]) == 2405 (b->addr32[1] & m->addr32[1])) && 2406 ((a->addr32[2] & m->addr32[2]) == 2407 (b->addr32[2] & m->addr32[2])) && 2408 ((a->addr32[3] & m->addr32[3]) == 2409 (b->addr32[3] & m->addr32[3]))) 2410 match++; 2411 break; 2412 #endif /* INET6 */ 2413 } 2414 if (match) { 2415 if (n) 2416 return (0); 2417 else 2418 return (1); 2419 } else { 2420 if (n) 2421 return (1); 2422 else 2423 return (0); 2424 } 2425 } 2426 2427 /* 2428 * Return 1 if b <= a <= e, otherwise return 0. 2429 */ 2430 int 2431 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2432 struct pf_addr *a, sa_family_t af) 2433 { 2434 switch (af) { 2435 #ifdef INET 2436 case AF_INET: 2437 if ((a->addr32[0] < b->addr32[0]) || 2438 (a->addr32[0] > e->addr32[0])) 2439 return (0); 2440 break; 2441 #endif /* INET */ 2442 #ifdef INET6 2443 case AF_INET6: { 2444 int i; 2445 2446 /* check a >= b */ 2447 for (i = 0; i < 4; ++i) 2448 if (a->addr32[i] > b->addr32[i]) 2449 break; 2450 else if (a->addr32[i] < b->addr32[i]) 2451 return (0); 2452 /* check a <= e */ 2453 for (i = 0; i < 4; ++i) 2454 if (a->addr32[i] < e->addr32[i]) 2455 break; 2456 else if (a->addr32[i] > e->addr32[i]) 2457 return (0); 2458 break; 2459 } 2460 #endif /* INET6 */ 2461 } 2462 return (1); 2463 } 2464 2465 static int 2466 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2467 { 2468 switch (op) { 2469 case PF_OP_IRG: 2470 return ((p > a1) && (p < a2)); 2471 case PF_OP_XRG: 2472 return ((p < a1) || (p > a2)); 2473 case PF_OP_RRG: 2474 return ((p >= a1) && (p <= a2)); 2475 case PF_OP_EQ: 2476 return (p == a1); 2477 case PF_OP_NE: 2478 return (p != a1); 2479 case PF_OP_LT: 2480 return (p < a1); 2481 case PF_OP_LE: 2482 return (p <= a1); 2483 case PF_OP_GT: 2484 return (p > a1); 2485 case PF_OP_GE: 2486 return (p >= a1); 2487 } 2488 return (0); /* never reached */ 2489 } 2490 2491 int 2492 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2493 { 2494 NTOHS(a1); 2495 NTOHS(a2); 2496 NTOHS(p); 2497 return (pf_match(op, a1, a2, p)); 2498 } 2499 2500 static int 2501 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2502 { 2503 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2504 return (0); 2505 return (pf_match(op, a1, a2, u)); 2506 } 2507 2508 static int 2509 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2510 { 2511 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2512 return (0); 2513 return (pf_match(op, a1, a2, g)); 2514 } 2515 2516 int 2517 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2518 { 2519 if (*tag == -1) 2520 *tag = mtag; 2521 2522 return ((!r->match_tag_not && r->match_tag == *tag) || 2523 (r->match_tag_not && r->match_tag != *tag)); 2524 } 2525 2526 int 2527 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2528 { 2529 2530 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2531 2532 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2533 return (ENOMEM); 2534 2535 pd->pf_mtag->tag = tag; 2536 2537 return (0); 2538 } 2539 2540 #define PF_ANCHOR_STACKSIZE 32 2541 struct pf_anchor_stackframe { 2542 struct pf_ruleset *rs; 2543 struct pf_rule *r; /* XXX: + match bit */ 2544 struct pf_anchor *child; 2545 }; 2546 2547 /* 2548 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2549 */ 2550 #define PF_ANCHORSTACK_MATCH 0x00000001 2551 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2552 2553 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2554 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2555 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2556 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2557 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2558 } while (0) 2559 2560 void 2561 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2562 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2563 int *match) 2564 { 2565 struct pf_anchor_stackframe *f; 2566 2567 PF_RULES_RASSERT(); 2568 2569 if (match) 2570 *match = 0; 2571 if (*depth >= PF_ANCHOR_STACKSIZE) { 2572 printf("%s: anchor stack overflow on %s\n", 2573 __func__, (*r)->anchor->name); 2574 *r = TAILQ_NEXT(*r, entries); 2575 return; 2576 } else if (*depth == 0 && a != NULL) 2577 *a = *r; 2578 f = stack + (*depth)++; 2579 f->rs = *rs; 2580 f->r = *r; 2581 if ((*r)->anchor_wildcard) { 2582 struct pf_anchor_node *parent = &(*r)->anchor->children; 2583 2584 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2585 *r = NULL; 2586 return; 2587 } 2588 *rs = &f->child->ruleset; 2589 } else { 2590 f->child = NULL; 2591 *rs = &(*r)->anchor->ruleset; 2592 } 2593 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2594 } 2595 2596 int 2597 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2598 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2599 int *match) 2600 { 2601 struct pf_anchor_stackframe *f; 2602 struct pf_rule *fr; 2603 int quick = 0; 2604 2605 PF_RULES_RASSERT(); 2606 2607 do { 2608 if (*depth <= 0) 2609 break; 2610 f = stack + *depth - 1; 2611 fr = PF_ANCHOR_RULE(f); 2612 if (f->child != NULL) { 2613 struct pf_anchor_node *parent; 2614 2615 /* 2616 * This block traverses through 2617 * a wildcard anchor. 2618 */ 2619 parent = &fr->anchor->children; 2620 if (match != NULL && *match) { 2621 /* 2622 * If any of "*" matched, then 2623 * "foo/ *" matched, mark frame 2624 * appropriately. 2625 */ 2626 PF_ANCHOR_SET_MATCH(f); 2627 *match = 0; 2628 } 2629 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2630 if (f->child != NULL) { 2631 *rs = &f->child->ruleset; 2632 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2633 if (*r == NULL) 2634 continue; 2635 else 2636 break; 2637 } 2638 } 2639 (*depth)--; 2640 if (*depth == 0 && a != NULL) 2641 *a = NULL; 2642 *rs = f->rs; 2643 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2644 quick = fr->quick; 2645 *r = TAILQ_NEXT(fr, entries); 2646 } while (*r == NULL); 2647 2648 return (quick); 2649 } 2650 2651 #ifdef INET6 2652 void 2653 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2654 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2655 { 2656 switch (af) { 2657 #ifdef INET 2658 case AF_INET: 2659 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2660 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2661 break; 2662 #endif /* INET */ 2663 case AF_INET6: 2664 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2665 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2666 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2667 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2668 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2669 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2670 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2671 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2672 break; 2673 } 2674 } 2675 2676 void 2677 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2678 { 2679 switch (af) { 2680 #ifdef INET 2681 case AF_INET: 2682 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2683 break; 2684 #endif /* INET */ 2685 case AF_INET6: 2686 if (addr->addr32[3] == 0xffffffff) { 2687 addr->addr32[3] = 0; 2688 if (addr->addr32[2] == 0xffffffff) { 2689 addr->addr32[2] = 0; 2690 if (addr->addr32[1] == 0xffffffff) { 2691 addr->addr32[1] = 0; 2692 addr->addr32[0] = 2693 htonl(ntohl(addr->addr32[0]) + 1); 2694 } else 2695 addr->addr32[1] = 2696 htonl(ntohl(addr->addr32[1]) + 1); 2697 } else 2698 addr->addr32[2] = 2699 htonl(ntohl(addr->addr32[2]) + 1); 2700 } else 2701 addr->addr32[3] = 2702 htonl(ntohl(addr->addr32[3]) + 1); 2703 break; 2704 } 2705 } 2706 #endif /* INET6 */ 2707 2708 int 2709 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2710 { 2711 struct pf_addr *saddr, *daddr; 2712 u_int16_t sport, dport; 2713 struct inpcbinfo *pi; 2714 struct inpcb *inp; 2715 2716 pd->lookup.uid = UID_MAX; 2717 pd->lookup.gid = GID_MAX; 2718 2719 switch (pd->proto) { 2720 case IPPROTO_TCP: 2721 if (pd->hdr.tcp == NULL) 2722 return (-1); 2723 sport = pd->hdr.tcp->th_sport; 2724 dport = pd->hdr.tcp->th_dport; 2725 pi = &V_tcbinfo; 2726 break; 2727 case IPPROTO_UDP: 2728 if (pd->hdr.udp == NULL) 2729 return (-1); 2730 sport = pd->hdr.udp->uh_sport; 2731 dport = pd->hdr.udp->uh_dport; 2732 pi = &V_udbinfo; 2733 break; 2734 default: 2735 return (-1); 2736 } 2737 if (direction == PF_IN) { 2738 saddr = pd->src; 2739 daddr = pd->dst; 2740 } else { 2741 u_int16_t p; 2742 2743 p = sport; 2744 sport = dport; 2745 dport = p; 2746 saddr = pd->dst; 2747 daddr = pd->src; 2748 } 2749 switch (pd->af) { 2750 #ifdef INET 2751 case AF_INET: 2752 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2753 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2754 if (inp == NULL) { 2755 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2756 daddr->v4, dport, INPLOOKUP_WILDCARD | 2757 INPLOOKUP_RLOCKPCB, NULL, m); 2758 if (inp == NULL) 2759 return (-1); 2760 } 2761 break; 2762 #endif /* INET */ 2763 #ifdef INET6 2764 case AF_INET6: 2765 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2766 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2767 if (inp == NULL) { 2768 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2769 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2770 INPLOOKUP_RLOCKPCB, NULL, m); 2771 if (inp == NULL) 2772 return (-1); 2773 } 2774 break; 2775 #endif /* INET6 */ 2776 2777 default: 2778 return (-1); 2779 } 2780 INP_RLOCK_ASSERT(inp); 2781 pd->lookup.uid = inp->inp_cred->cr_uid; 2782 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2783 INP_RUNLOCK(inp); 2784 2785 return (1); 2786 } 2787 2788 static u_int8_t 2789 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2790 { 2791 int hlen; 2792 u_int8_t hdr[60]; 2793 u_int8_t *opt, optlen; 2794 u_int8_t wscale = 0; 2795 2796 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2797 if (hlen <= sizeof(struct tcphdr)) 2798 return (0); 2799 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2800 return (0); 2801 opt = hdr + sizeof(struct tcphdr); 2802 hlen -= sizeof(struct tcphdr); 2803 while (hlen >= 3) { 2804 switch (*opt) { 2805 case TCPOPT_EOL: 2806 case TCPOPT_NOP: 2807 ++opt; 2808 --hlen; 2809 break; 2810 case TCPOPT_WINDOW: 2811 wscale = opt[2]; 2812 if (wscale > TCP_MAX_WINSHIFT) 2813 wscale = TCP_MAX_WINSHIFT; 2814 wscale |= PF_WSCALE_FLAG; 2815 /* FALLTHROUGH */ 2816 default: 2817 optlen = opt[1]; 2818 if (optlen < 2) 2819 optlen = 2; 2820 hlen -= optlen; 2821 opt += optlen; 2822 break; 2823 } 2824 } 2825 return (wscale); 2826 } 2827 2828 static u_int16_t 2829 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2830 { 2831 int hlen; 2832 u_int8_t hdr[60]; 2833 u_int8_t *opt, optlen; 2834 u_int16_t mss = V_tcp_mssdflt; 2835 2836 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2837 if (hlen <= sizeof(struct tcphdr)) 2838 return (0); 2839 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2840 return (0); 2841 opt = hdr + sizeof(struct tcphdr); 2842 hlen -= sizeof(struct tcphdr); 2843 while (hlen >= TCPOLEN_MAXSEG) { 2844 switch (*opt) { 2845 case TCPOPT_EOL: 2846 case TCPOPT_NOP: 2847 ++opt; 2848 --hlen; 2849 break; 2850 case TCPOPT_MAXSEG: 2851 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2852 NTOHS(mss); 2853 /* FALLTHROUGH */ 2854 default: 2855 optlen = opt[1]; 2856 if (optlen < 2) 2857 optlen = 2; 2858 hlen -= optlen; 2859 opt += optlen; 2860 break; 2861 } 2862 } 2863 return (mss); 2864 } 2865 2866 static u_int16_t 2867 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2868 { 2869 #ifdef INET 2870 struct sockaddr_in *dst; 2871 struct route ro; 2872 #endif /* INET */ 2873 #ifdef INET6 2874 struct sockaddr_in6 *dst6; 2875 struct route_in6 ro6; 2876 #endif /* INET6 */ 2877 struct rtentry *rt = NULL; 2878 int hlen = 0; 2879 u_int16_t mss = V_tcp_mssdflt; 2880 2881 switch (af) { 2882 #ifdef INET 2883 case AF_INET: 2884 hlen = sizeof(struct ip); 2885 bzero(&ro, sizeof(ro)); 2886 dst = (struct sockaddr_in *)&ro.ro_dst; 2887 dst->sin_family = AF_INET; 2888 dst->sin_len = sizeof(*dst); 2889 dst->sin_addr = addr->v4; 2890 in_rtalloc_ign(&ro, 0, rtableid); 2891 rt = ro.ro_rt; 2892 break; 2893 #endif /* INET */ 2894 #ifdef INET6 2895 case AF_INET6: 2896 hlen = sizeof(struct ip6_hdr); 2897 bzero(&ro6, sizeof(ro6)); 2898 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2899 dst6->sin6_family = AF_INET6; 2900 dst6->sin6_len = sizeof(*dst6); 2901 dst6->sin6_addr = addr->v6; 2902 in6_rtalloc_ign(&ro6, 0, rtableid); 2903 rt = ro6.ro_rt; 2904 break; 2905 #endif /* INET6 */ 2906 } 2907 2908 if (rt && rt->rt_ifp) { 2909 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2910 mss = max(V_tcp_mssdflt, mss); 2911 RTFREE(rt); 2912 } 2913 mss = min(mss, offer); 2914 mss = max(mss, 64); /* sanity - at least max opt space */ 2915 return (mss); 2916 } 2917 2918 static void 2919 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2920 { 2921 struct pf_rule *r = s->rule.ptr; 2922 struct pf_src_node *sn = NULL; 2923 2924 s->rt_kif = NULL; 2925 if (!r->rt || r->rt == PF_FASTROUTE) 2926 return; 2927 switch (s->key[PF_SK_WIRE]->af) { 2928 #ifdef INET 2929 case AF_INET: 2930 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2931 s->rt_kif = r->rpool.cur->kif; 2932 break; 2933 #endif /* INET */ 2934 #ifdef INET6 2935 case AF_INET6: 2936 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2937 s->rt_kif = r->rpool.cur->kif; 2938 break; 2939 #endif /* INET6 */ 2940 } 2941 } 2942 2943 static u_int32_t 2944 pf_tcp_iss(struct pf_pdesc *pd) 2945 { 2946 MD5_CTX ctx; 2947 u_int32_t digest[4]; 2948 2949 if (V_pf_tcp_secret_init == 0) { 2950 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2951 MD5Init(&V_pf_tcp_secret_ctx); 2952 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2953 sizeof(V_pf_tcp_secret)); 2954 V_pf_tcp_secret_init = 1; 2955 } 2956 2957 ctx = V_pf_tcp_secret_ctx; 2958 2959 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2960 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2961 if (pd->af == AF_INET6) { 2962 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2963 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2964 } else { 2965 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2966 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2967 } 2968 MD5Final((u_char *)digest, &ctx); 2969 V_pf_tcp_iss_off += 4096; 2970 #define ISN_RANDOM_INCREMENT (4096 - 1) 2971 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2972 V_pf_tcp_iss_off); 2973 #undef ISN_RANDOM_INCREMENT 2974 } 2975 2976 static int 2977 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2978 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2979 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2980 { 2981 struct pf_rule *nr = NULL; 2982 struct pf_addr * const saddr = pd->src; 2983 struct pf_addr * const daddr = pd->dst; 2984 sa_family_t af = pd->af; 2985 struct pf_rule *r, *a = NULL; 2986 struct pf_ruleset *ruleset = NULL; 2987 struct pf_src_node *nsn = NULL; 2988 struct tcphdr *th = pd->hdr.tcp; 2989 struct pf_state_key *sk = NULL, *nk = NULL; 2990 u_short reason; 2991 int rewrite = 0, hdrlen = 0; 2992 int tag = -1, rtableid = -1; 2993 int asd = 0; 2994 int match = 0; 2995 int state_icmp = 0; 2996 u_int16_t sport = 0, dport = 0; 2997 u_int16_t bproto_sum = 0, bip_sum = 0; 2998 u_int8_t icmptype = 0, icmpcode = 0; 2999 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3000 3001 PF_RULES_RASSERT(); 3002 3003 if (inp != NULL) { 3004 INP_LOCK_ASSERT(inp); 3005 pd->lookup.uid = inp->inp_cred->cr_uid; 3006 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3007 pd->lookup.done = 1; 3008 } 3009 3010 switch (pd->proto) { 3011 case IPPROTO_TCP: 3012 sport = th->th_sport; 3013 dport = th->th_dport; 3014 hdrlen = sizeof(*th); 3015 break; 3016 case IPPROTO_UDP: 3017 sport = pd->hdr.udp->uh_sport; 3018 dport = pd->hdr.udp->uh_dport; 3019 hdrlen = sizeof(*pd->hdr.udp); 3020 break; 3021 #ifdef INET 3022 case IPPROTO_ICMP: 3023 if (pd->af != AF_INET) 3024 break; 3025 sport = dport = pd->hdr.icmp->icmp_id; 3026 hdrlen = sizeof(*pd->hdr.icmp); 3027 icmptype = pd->hdr.icmp->icmp_type; 3028 icmpcode = pd->hdr.icmp->icmp_code; 3029 3030 if (icmptype == ICMP_UNREACH || 3031 icmptype == ICMP_SOURCEQUENCH || 3032 icmptype == ICMP_REDIRECT || 3033 icmptype == ICMP_TIMXCEED || 3034 icmptype == ICMP_PARAMPROB) 3035 state_icmp++; 3036 break; 3037 #endif /* INET */ 3038 #ifdef INET6 3039 case IPPROTO_ICMPV6: 3040 if (af != AF_INET6) 3041 break; 3042 sport = dport = pd->hdr.icmp6->icmp6_id; 3043 hdrlen = sizeof(*pd->hdr.icmp6); 3044 icmptype = pd->hdr.icmp6->icmp6_type; 3045 icmpcode = pd->hdr.icmp6->icmp6_code; 3046 3047 if (icmptype == ICMP6_DST_UNREACH || 3048 icmptype == ICMP6_PACKET_TOO_BIG || 3049 icmptype == ICMP6_TIME_EXCEEDED || 3050 icmptype == ICMP6_PARAM_PROB) 3051 state_icmp++; 3052 break; 3053 #endif /* INET6 */ 3054 default: 3055 sport = dport = hdrlen = 0; 3056 break; 3057 } 3058 3059 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3060 3061 /* check packet for BINAT/NAT/RDR */ 3062 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3063 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3064 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3065 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3066 3067 if (pd->ip_sum) 3068 bip_sum = *pd->ip_sum; 3069 3070 switch (pd->proto) { 3071 case IPPROTO_TCP: 3072 bproto_sum = th->th_sum; 3073 pd->proto_sum = &th->th_sum; 3074 3075 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3076 nk->port[pd->sidx] != sport) { 3077 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3078 &th->th_sum, &nk->addr[pd->sidx], 3079 nk->port[pd->sidx], 0, af); 3080 pd->sport = &th->th_sport; 3081 sport = th->th_sport; 3082 } 3083 3084 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3085 nk->port[pd->didx] != dport) { 3086 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3087 &th->th_sum, &nk->addr[pd->didx], 3088 nk->port[pd->didx], 0, af); 3089 dport = th->th_dport; 3090 pd->dport = &th->th_dport; 3091 } 3092 rewrite++; 3093 break; 3094 case IPPROTO_UDP: 3095 bproto_sum = pd->hdr.udp->uh_sum; 3096 pd->proto_sum = &pd->hdr.udp->uh_sum; 3097 3098 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3099 nk->port[pd->sidx] != sport) { 3100 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3101 pd->ip_sum, &pd->hdr.udp->uh_sum, 3102 &nk->addr[pd->sidx], 3103 nk->port[pd->sidx], 1, af); 3104 sport = pd->hdr.udp->uh_sport; 3105 pd->sport = &pd->hdr.udp->uh_sport; 3106 } 3107 3108 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3109 nk->port[pd->didx] != dport) { 3110 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3111 pd->ip_sum, &pd->hdr.udp->uh_sum, 3112 &nk->addr[pd->didx], 3113 nk->port[pd->didx], 1, af); 3114 dport = pd->hdr.udp->uh_dport; 3115 pd->dport = &pd->hdr.udp->uh_dport; 3116 } 3117 rewrite++; 3118 break; 3119 #ifdef INET 3120 case IPPROTO_ICMP: 3121 nk->port[0] = nk->port[1]; 3122 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3123 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3124 nk->addr[pd->sidx].v4.s_addr, 0); 3125 3126 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3127 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3128 nk->addr[pd->didx].v4.s_addr, 0); 3129 3130 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3131 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3132 pd->hdr.icmp->icmp_cksum, sport, 3133 nk->port[1], 0); 3134 pd->hdr.icmp->icmp_id = nk->port[1]; 3135 pd->sport = &pd->hdr.icmp->icmp_id; 3136 } 3137 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3138 break; 3139 #endif /* INET */ 3140 #ifdef INET6 3141 case IPPROTO_ICMPV6: 3142 nk->port[0] = nk->port[1]; 3143 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3144 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3145 &nk->addr[pd->sidx], 0); 3146 3147 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3148 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3149 &nk->addr[pd->didx], 0); 3150 rewrite++; 3151 break; 3152 #endif /* INET */ 3153 default: 3154 switch (af) { 3155 #ifdef INET 3156 case AF_INET: 3157 if (PF_ANEQ(saddr, 3158 &nk->addr[pd->sidx], AF_INET)) 3159 pf_change_a(&saddr->v4.s_addr, 3160 pd->ip_sum, 3161 nk->addr[pd->sidx].v4.s_addr, 0); 3162 3163 if (PF_ANEQ(daddr, 3164 &nk->addr[pd->didx], AF_INET)) 3165 pf_change_a(&daddr->v4.s_addr, 3166 pd->ip_sum, 3167 nk->addr[pd->didx].v4.s_addr, 0); 3168 break; 3169 #endif /* INET */ 3170 #ifdef INET6 3171 case AF_INET6: 3172 if (PF_ANEQ(saddr, 3173 &nk->addr[pd->sidx], AF_INET6)) 3174 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3175 3176 if (PF_ANEQ(daddr, 3177 &nk->addr[pd->didx], AF_INET6)) 3178 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3179 break; 3180 #endif /* INET */ 3181 } 3182 break; 3183 } 3184 if (nr->natpass) 3185 r = NULL; 3186 pd->nat_rule = nr; 3187 } 3188 3189 while (r != NULL) { 3190 r->evaluations++; 3191 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3192 r = r->skip[PF_SKIP_IFP].ptr; 3193 else if (r->direction && r->direction != direction) 3194 r = r->skip[PF_SKIP_DIR].ptr; 3195 else if (r->af && r->af != af) 3196 r = r->skip[PF_SKIP_AF].ptr; 3197 else if (r->proto && r->proto != pd->proto) 3198 r = r->skip[PF_SKIP_PROTO].ptr; 3199 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3200 r->src.neg, kif, M_GETFIB(m))) 3201 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3202 /* tcp/udp only. port_op always 0 in other cases */ 3203 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3204 r->src.port[0], r->src.port[1], sport)) 3205 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3206 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3207 r->dst.neg, NULL, M_GETFIB(m))) 3208 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3209 /* tcp/udp only. port_op always 0 in other cases */ 3210 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3211 r->dst.port[0], r->dst.port[1], dport)) 3212 r = r->skip[PF_SKIP_DST_PORT].ptr; 3213 /* icmp only. type always 0 in other cases */ 3214 else if (r->type && r->type != icmptype + 1) 3215 r = TAILQ_NEXT(r, entries); 3216 /* icmp only. type always 0 in other cases */ 3217 else if (r->code && r->code != icmpcode + 1) 3218 r = TAILQ_NEXT(r, entries); 3219 else if (r->tos && !(r->tos == pd->tos)) 3220 r = TAILQ_NEXT(r, entries); 3221 else if (r->rule_flag & PFRULE_FRAGMENT) 3222 r = TAILQ_NEXT(r, entries); 3223 else if (pd->proto == IPPROTO_TCP && 3224 (r->flagset & th->th_flags) != r->flags) 3225 r = TAILQ_NEXT(r, entries); 3226 /* tcp/udp only. uid.op always 0 in other cases */ 3227 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3228 pf_socket_lookup(direction, pd, m), 1)) && 3229 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3230 pd->lookup.uid)) 3231 r = TAILQ_NEXT(r, entries); 3232 /* tcp/udp only. gid.op always 0 in other cases */ 3233 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3234 pf_socket_lookup(direction, pd, m), 1)) && 3235 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3236 pd->lookup.gid)) 3237 r = TAILQ_NEXT(r, entries); 3238 else if (r->prob && 3239 r->prob <= arc4random()) 3240 r = TAILQ_NEXT(r, entries); 3241 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3242 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3243 r = TAILQ_NEXT(r, entries); 3244 else if (r->os_fingerprint != PF_OSFP_ANY && 3245 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3246 pf_osfp_fingerprint(pd, m, off, th), 3247 r->os_fingerprint))) 3248 r = TAILQ_NEXT(r, entries); 3249 else { 3250 if (r->tag) 3251 tag = r->tag; 3252 if (r->rtableid >= 0) 3253 rtableid = r->rtableid; 3254 if (r->anchor == NULL) { 3255 match = 1; 3256 *rm = r; 3257 *am = a; 3258 *rsm = ruleset; 3259 if ((*rm)->quick) 3260 break; 3261 r = TAILQ_NEXT(r, entries); 3262 } else 3263 pf_step_into_anchor(anchor_stack, &asd, 3264 &ruleset, PF_RULESET_FILTER, &r, &a, 3265 &match); 3266 } 3267 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3268 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3269 break; 3270 } 3271 r = *rm; 3272 a = *am; 3273 ruleset = *rsm; 3274 3275 REASON_SET(&reason, PFRES_MATCH); 3276 3277 if (r->log || (nr != NULL && nr->log)) { 3278 if (rewrite) 3279 m_copyback(m, off, hdrlen, pd->hdr.any); 3280 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3281 ruleset, pd, 1); 3282 } 3283 3284 if ((r->action == PF_DROP) && 3285 ((r->rule_flag & PFRULE_RETURNRST) || 3286 (r->rule_flag & PFRULE_RETURNICMP) || 3287 (r->rule_flag & PFRULE_RETURN))) { 3288 /* undo NAT changes, if they have taken place */ 3289 if (nr != NULL) { 3290 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3291 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3292 if (pd->sport) 3293 *pd->sport = sk->port[pd->sidx]; 3294 if (pd->dport) 3295 *pd->dport = sk->port[pd->didx]; 3296 if (pd->proto_sum) 3297 *pd->proto_sum = bproto_sum; 3298 if (pd->ip_sum) 3299 *pd->ip_sum = bip_sum; 3300 m_copyback(m, off, hdrlen, pd->hdr.any); 3301 } 3302 if (pd->proto == IPPROTO_TCP && 3303 ((r->rule_flag & PFRULE_RETURNRST) || 3304 (r->rule_flag & PFRULE_RETURN)) && 3305 !(th->th_flags & TH_RST)) { 3306 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3307 int len = 0; 3308 #ifdef INET 3309 struct ip *h4; 3310 #endif 3311 #ifdef INET6 3312 struct ip6_hdr *h6; 3313 #endif 3314 3315 switch (af) { 3316 #ifdef INET 3317 case AF_INET: 3318 h4 = mtod(m, struct ip *); 3319 len = ntohs(h4->ip_len) - off; 3320 break; 3321 #endif 3322 #ifdef INET6 3323 case AF_INET6: 3324 h6 = mtod(m, struct ip6_hdr *); 3325 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3326 break; 3327 #endif 3328 } 3329 3330 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3331 REASON_SET(&reason, PFRES_PROTCKSUM); 3332 else { 3333 if (th->th_flags & TH_SYN) 3334 ack++; 3335 if (th->th_flags & TH_FIN) 3336 ack++; 3337 pf_send_tcp(m, r, af, pd->dst, 3338 pd->src, th->th_dport, th->th_sport, 3339 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3340 r->return_ttl, 1, 0, kif->pfik_ifp); 3341 } 3342 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3343 r->return_icmp) 3344 pf_send_icmp(m, r->return_icmp >> 8, 3345 r->return_icmp & 255, af, r); 3346 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3347 r->return_icmp6) 3348 pf_send_icmp(m, r->return_icmp6 >> 8, 3349 r->return_icmp6 & 255, af, r); 3350 } 3351 3352 if (r->action == PF_DROP) 3353 goto cleanup; 3354 3355 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3356 REASON_SET(&reason, PFRES_MEMORY); 3357 goto cleanup; 3358 } 3359 if (rtableid >= 0) 3360 M_SETFIB(m, rtableid); 3361 3362 if (!state_icmp && (r->keep_state || nr != NULL || 3363 (pd->flags & PFDESC_TCP_NORM))) { 3364 int action; 3365 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3366 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3367 hdrlen); 3368 if (action != PF_PASS) 3369 return (action); 3370 } else { 3371 if (sk != NULL) 3372 uma_zfree(V_pf_state_key_z, sk); 3373 if (nk != NULL) 3374 uma_zfree(V_pf_state_key_z, nk); 3375 } 3376 3377 /* copy back packet headers if we performed NAT operations */ 3378 if (rewrite) 3379 m_copyback(m, off, hdrlen, pd->hdr.any); 3380 3381 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3382 direction == PF_OUT && 3383 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3384 /* 3385 * We want the state created, but we dont 3386 * want to send this in case a partner 3387 * firewall has to know about it to allow 3388 * replies through it. 3389 */ 3390 return (PF_DEFER); 3391 3392 return (PF_PASS); 3393 3394 cleanup: 3395 if (sk != NULL) 3396 uma_zfree(V_pf_state_key_z, sk); 3397 if (nk != NULL) 3398 uma_zfree(V_pf_state_key_z, nk); 3399 return (PF_DROP); 3400 } 3401 3402 static int 3403 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3404 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3405 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3406 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3407 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3408 { 3409 struct pf_state *s = NULL; 3410 struct pf_src_node *sn = NULL; 3411 struct tcphdr *th = pd->hdr.tcp; 3412 u_int16_t mss = V_tcp_mssdflt; 3413 u_short reason; 3414 3415 /* check maximums */ 3416 if (r->max_states && (r->states_cur >= r->max_states)) { 3417 V_pf_status.lcounters[LCNT_STATES]++; 3418 REASON_SET(&reason, PFRES_MAXSTATES); 3419 return (PF_DROP); 3420 } 3421 /* src node for filter rule */ 3422 if ((r->rule_flag & PFRULE_SRCTRACK || 3423 r->rpool.opts & PF_POOL_STICKYADDR) && 3424 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3425 REASON_SET(&reason, PFRES_SRCLIMIT); 3426 goto csfailed; 3427 } 3428 /* src node for translation rule */ 3429 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3430 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3431 REASON_SET(&reason, PFRES_SRCLIMIT); 3432 goto csfailed; 3433 } 3434 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3435 if (s == NULL) { 3436 REASON_SET(&reason, PFRES_MEMORY); 3437 goto csfailed; 3438 } 3439 s->rule.ptr = r; 3440 s->nat_rule.ptr = nr; 3441 s->anchor.ptr = a; 3442 STATE_INC_COUNTERS(s); 3443 if (r->allow_opts) 3444 s->state_flags |= PFSTATE_ALLOWOPTS; 3445 if (r->rule_flag & PFRULE_STATESLOPPY) 3446 s->state_flags |= PFSTATE_SLOPPY; 3447 s->log = r->log & PF_LOG_ALL; 3448 s->sync_state = PFSYNC_S_NONE; 3449 if (nr != NULL) 3450 s->log |= nr->log & PF_LOG_ALL; 3451 switch (pd->proto) { 3452 case IPPROTO_TCP: 3453 s->src.seqlo = ntohl(th->th_seq); 3454 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3455 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3456 r->keep_state == PF_STATE_MODULATE) { 3457 /* Generate sequence number modulator */ 3458 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3459 0) 3460 s->src.seqdiff = 1; 3461 pf_change_a(&th->th_seq, &th->th_sum, 3462 htonl(s->src.seqlo + s->src.seqdiff), 0); 3463 *rewrite = 1; 3464 } else 3465 s->src.seqdiff = 0; 3466 if (th->th_flags & TH_SYN) { 3467 s->src.seqhi++; 3468 s->src.wscale = pf_get_wscale(m, off, 3469 th->th_off, pd->af); 3470 } 3471 s->src.max_win = MAX(ntohs(th->th_win), 1); 3472 if (s->src.wscale & PF_WSCALE_MASK) { 3473 /* Remove scale factor from initial window */ 3474 int win = s->src.max_win; 3475 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3476 s->src.max_win = (win - 1) >> 3477 (s->src.wscale & PF_WSCALE_MASK); 3478 } 3479 if (th->th_flags & TH_FIN) 3480 s->src.seqhi++; 3481 s->dst.seqhi = 1; 3482 s->dst.max_win = 1; 3483 s->src.state = TCPS_SYN_SENT; 3484 s->dst.state = TCPS_CLOSED; 3485 s->timeout = PFTM_TCP_FIRST_PACKET; 3486 break; 3487 case IPPROTO_UDP: 3488 s->src.state = PFUDPS_SINGLE; 3489 s->dst.state = PFUDPS_NO_TRAFFIC; 3490 s->timeout = PFTM_UDP_FIRST_PACKET; 3491 break; 3492 case IPPROTO_ICMP: 3493 #ifdef INET6 3494 case IPPROTO_ICMPV6: 3495 #endif 3496 s->timeout = PFTM_ICMP_FIRST_PACKET; 3497 break; 3498 default: 3499 s->src.state = PFOTHERS_SINGLE; 3500 s->dst.state = PFOTHERS_NO_TRAFFIC; 3501 s->timeout = PFTM_OTHER_FIRST_PACKET; 3502 } 3503 3504 s->creation = time_uptime; 3505 s->expire = time_uptime; 3506 3507 if (sn != NULL) { 3508 s->src_node = sn; 3509 s->src_node->states++; 3510 } 3511 if (nsn != NULL) { 3512 /* XXX We only modify one side for now. */ 3513 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3514 s->nat_src_node = nsn; 3515 s->nat_src_node->states++; 3516 } 3517 if (pd->proto == IPPROTO_TCP) { 3518 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3519 off, pd, th, &s->src, &s->dst)) { 3520 REASON_SET(&reason, PFRES_MEMORY); 3521 pf_src_tree_remove_state(s); 3522 STATE_DEC_COUNTERS(s); 3523 uma_zfree(V_pf_state_z, s); 3524 return (PF_DROP); 3525 } 3526 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3527 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3528 &s->src, &s->dst, rewrite)) { 3529 /* This really shouldn't happen!!! */ 3530 DPFPRINTF(PF_DEBUG_URGENT, 3531 ("pf_normalize_tcp_stateful failed on first pkt")); 3532 pf_normalize_tcp_cleanup(s); 3533 pf_src_tree_remove_state(s); 3534 STATE_DEC_COUNTERS(s); 3535 uma_zfree(V_pf_state_z, s); 3536 return (PF_DROP); 3537 } 3538 } 3539 s->direction = pd->dir; 3540 3541 /* 3542 * sk/nk could already been setup by pf_get_translation(). 3543 */ 3544 if (nr == NULL) { 3545 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3546 __func__, nr, sk, nk)); 3547 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3548 if (sk == NULL) 3549 goto csfailed; 3550 nk = sk; 3551 } else 3552 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3553 __func__, nr, sk, nk)); 3554 3555 /* Swap sk/nk for PF_OUT. */ 3556 if (pf_state_insert(BOUND_IFACE(r, kif), 3557 (pd->dir == PF_IN) ? sk : nk, 3558 (pd->dir == PF_IN) ? nk : sk, s)) { 3559 if (pd->proto == IPPROTO_TCP) 3560 pf_normalize_tcp_cleanup(s); 3561 REASON_SET(&reason, PFRES_STATEINS); 3562 pf_src_tree_remove_state(s); 3563 STATE_DEC_COUNTERS(s); 3564 uma_zfree(V_pf_state_z, s); 3565 return (PF_DROP); 3566 } else 3567 *sm = s; 3568 3569 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3570 if (tag > 0) 3571 s->tag = tag; 3572 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3573 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3574 s->src.state = PF_TCPS_PROXY_SRC; 3575 /* undo NAT changes, if they have taken place */ 3576 if (nr != NULL) { 3577 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3578 if (pd->dir == PF_OUT) 3579 skt = s->key[PF_SK_STACK]; 3580 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3581 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3582 if (pd->sport) 3583 *pd->sport = skt->port[pd->sidx]; 3584 if (pd->dport) 3585 *pd->dport = skt->port[pd->didx]; 3586 if (pd->proto_sum) 3587 *pd->proto_sum = bproto_sum; 3588 if (pd->ip_sum) 3589 *pd->ip_sum = bip_sum; 3590 m_copyback(m, off, hdrlen, pd->hdr.any); 3591 } 3592 s->src.seqhi = htonl(arc4random()); 3593 /* Find mss option */ 3594 int rtid = M_GETFIB(m); 3595 mss = pf_get_mss(m, off, th->th_off, pd->af); 3596 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3597 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3598 s->src.mss = mss; 3599 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3600 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3601 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3602 REASON_SET(&reason, PFRES_SYNPROXY); 3603 return (PF_SYNPROXY_DROP); 3604 } 3605 3606 return (PF_PASS); 3607 3608 csfailed: 3609 if (sk != NULL) 3610 uma_zfree(V_pf_state_key_z, sk); 3611 if (nk != NULL) 3612 uma_zfree(V_pf_state_key_z, nk); 3613 3614 if (sn != NULL && sn->states == 0 && sn->expire == 0) 3615 pf_remove_src_node(sn); 3616 3617 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) 3618 pf_remove_src_node(nsn); 3619 3620 return (PF_DROP); 3621 } 3622 3623 static int 3624 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3625 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3626 struct pf_ruleset **rsm) 3627 { 3628 struct pf_rule *r, *a = NULL; 3629 struct pf_ruleset *ruleset = NULL; 3630 sa_family_t af = pd->af; 3631 u_short reason; 3632 int tag = -1; 3633 int asd = 0; 3634 int match = 0; 3635 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3636 3637 PF_RULES_RASSERT(); 3638 3639 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3640 while (r != NULL) { 3641 r->evaluations++; 3642 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3643 r = r->skip[PF_SKIP_IFP].ptr; 3644 else if (r->direction && r->direction != direction) 3645 r = r->skip[PF_SKIP_DIR].ptr; 3646 else if (r->af && r->af != af) 3647 r = r->skip[PF_SKIP_AF].ptr; 3648 else if (r->proto && r->proto != pd->proto) 3649 r = r->skip[PF_SKIP_PROTO].ptr; 3650 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3651 r->src.neg, kif, M_GETFIB(m))) 3652 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3653 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3654 r->dst.neg, NULL, M_GETFIB(m))) 3655 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3656 else if (r->tos && !(r->tos == pd->tos)) 3657 r = TAILQ_NEXT(r, entries); 3658 else if (r->os_fingerprint != PF_OSFP_ANY) 3659 r = TAILQ_NEXT(r, entries); 3660 else if (pd->proto == IPPROTO_UDP && 3661 (r->src.port_op || r->dst.port_op)) 3662 r = TAILQ_NEXT(r, entries); 3663 else if (pd->proto == IPPROTO_TCP && 3664 (r->src.port_op || r->dst.port_op || r->flagset)) 3665 r = TAILQ_NEXT(r, entries); 3666 else if ((pd->proto == IPPROTO_ICMP || 3667 pd->proto == IPPROTO_ICMPV6) && 3668 (r->type || r->code)) 3669 r = TAILQ_NEXT(r, entries); 3670 else if (r->prob && r->prob <= 3671 (arc4random() % (UINT_MAX - 1) + 1)) 3672 r = TAILQ_NEXT(r, entries); 3673 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3674 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3675 r = TAILQ_NEXT(r, entries); 3676 else { 3677 if (r->anchor == NULL) { 3678 match = 1; 3679 *rm = r; 3680 *am = a; 3681 *rsm = ruleset; 3682 if ((*rm)->quick) 3683 break; 3684 r = TAILQ_NEXT(r, entries); 3685 } else 3686 pf_step_into_anchor(anchor_stack, &asd, 3687 &ruleset, PF_RULESET_FILTER, &r, &a, 3688 &match); 3689 } 3690 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3691 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3692 break; 3693 } 3694 r = *rm; 3695 a = *am; 3696 ruleset = *rsm; 3697 3698 REASON_SET(&reason, PFRES_MATCH); 3699 3700 if (r->log) 3701 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3702 1); 3703 3704 if (r->action != PF_PASS) 3705 return (PF_DROP); 3706 3707 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3708 REASON_SET(&reason, PFRES_MEMORY); 3709 return (PF_DROP); 3710 } 3711 3712 return (PF_PASS); 3713 } 3714 3715 static int 3716 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3717 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3718 struct pf_pdesc *pd, u_short *reason, int *copyback) 3719 { 3720 struct tcphdr *th = pd->hdr.tcp; 3721 u_int16_t win = ntohs(th->th_win); 3722 u_int32_t ack, end, seq, orig_seq; 3723 u_int8_t sws, dws; 3724 int ackskew; 3725 3726 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3727 sws = src->wscale & PF_WSCALE_MASK; 3728 dws = dst->wscale & PF_WSCALE_MASK; 3729 } else 3730 sws = dws = 0; 3731 3732 /* 3733 * Sequence tracking algorithm from Guido van Rooij's paper: 3734 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3735 * tcp_filtering.ps 3736 */ 3737 3738 orig_seq = seq = ntohl(th->th_seq); 3739 if (src->seqlo == 0) { 3740 /* First packet from this end. Set its state */ 3741 3742 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3743 src->scrub == NULL) { 3744 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3745 REASON_SET(reason, PFRES_MEMORY); 3746 return (PF_DROP); 3747 } 3748 } 3749 3750 /* Deferred generation of sequence number modulator */ 3751 if (dst->seqdiff && !src->seqdiff) { 3752 /* use random iss for the TCP server */ 3753 while ((src->seqdiff = arc4random() - seq) == 0) 3754 ; 3755 ack = ntohl(th->th_ack) - dst->seqdiff; 3756 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3757 src->seqdiff), 0); 3758 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3759 *copyback = 1; 3760 } else { 3761 ack = ntohl(th->th_ack); 3762 } 3763 3764 end = seq + pd->p_len; 3765 if (th->th_flags & TH_SYN) { 3766 end++; 3767 if (dst->wscale & PF_WSCALE_FLAG) { 3768 src->wscale = pf_get_wscale(m, off, th->th_off, 3769 pd->af); 3770 if (src->wscale & PF_WSCALE_FLAG) { 3771 /* Remove scale factor from initial 3772 * window */ 3773 sws = src->wscale & PF_WSCALE_MASK; 3774 win = ((u_int32_t)win + (1 << sws) - 1) 3775 >> sws; 3776 dws = dst->wscale & PF_WSCALE_MASK; 3777 } else { 3778 /* fixup other window */ 3779 dst->max_win <<= dst->wscale & 3780 PF_WSCALE_MASK; 3781 /* in case of a retrans SYN|ACK */ 3782 dst->wscale = 0; 3783 } 3784 } 3785 } 3786 if (th->th_flags & TH_FIN) 3787 end++; 3788 3789 src->seqlo = seq; 3790 if (src->state < TCPS_SYN_SENT) 3791 src->state = TCPS_SYN_SENT; 3792 3793 /* 3794 * May need to slide the window (seqhi may have been set by 3795 * the crappy stack check or if we picked up the connection 3796 * after establishment) 3797 */ 3798 if (src->seqhi == 1 || 3799 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3800 src->seqhi = end + MAX(1, dst->max_win << dws); 3801 if (win > src->max_win) 3802 src->max_win = win; 3803 3804 } else { 3805 ack = ntohl(th->th_ack) - dst->seqdiff; 3806 if (src->seqdiff) { 3807 /* Modulate sequence numbers */ 3808 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3809 src->seqdiff), 0); 3810 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3811 *copyback = 1; 3812 } 3813 end = seq + pd->p_len; 3814 if (th->th_flags & TH_SYN) 3815 end++; 3816 if (th->th_flags & TH_FIN) 3817 end++; 3818 } 3819 3820 if ((th->th_flags & TH_ACK) == 0) { 3821 /* Let it pass through the ack skew check */ 3822 ack = dst->seqlo; 3823 } else if ((ack == 0 && 3824 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3825 /* broken tcp stacks do not set ack */ 3826 (dst->state < TCPS_SYN_SENT)) { 3827 /* 3828 * Many stacks (ours included) will set the ACK number in an 3829 * FIN|ACK if the SYN times out -- no sequence to ACK. 3830 */ 3831 ack = dst->seqlo; 3832 } 3833 3834 if (seq == end) { 3835 /* Ease sequencing restrictions on no data packets */ 3836 seq = src->seqlo; 3837 end = seq; 3838 } 3839 3840 ackskew = dst->seqlo - ack; 3841 3842 3843 /* 3844 * Need to demodulate the sequence numbers in any TCP SACK options 3845 * (Selective ACK). We could optionally validate the SACK values 3846 * against the current ACK window, either forwards or backwards, but 3847 * I'm not confident that SACK has been implemented properly 3848 * everywhere. It wouldn't surprise me if several stacks accidently 3849 * SACK too far backwards of previously ACKed data. There really aren't 3850 * any security implications of bad SACKing unless the target stack 3851 * doesn't validate the option length correctly. Someone trying to 3852 * spoof into a TCP connection won't bother blindly sending SACK 3853 * options anyway. 3854 */ 3855 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3856 if (pf_modulate_sack(m, off, pd, th, dst)) 3857 *copyback = 1; 3858 } 3859 3860 3861 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3862 if (SEQ_GEQ(src->seqhi, end) && 3863 /* Last octet inside other's window space */ 3864 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3865 /* Retrans: not more than one window back */ 3866 (ackskew >= -MAXACKWINDOW) && 3867 /* Acking not more than one reassembled fragment backwards */ 3868 (ackskew <= (MAXACKWINDOW << sws)) && 3869 /* Acking not more than one window forward */ 3870 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3871 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3872 (pd->flags & PFDESC_IP_REAS) == 0)) { 3873 /* Require an exact/+1 sequence match on resets when possible */ 3874 3875 if (dst->scrub || src->scrub) { 3876 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3877 *state, src, dst, copyback)) 3878 return (PF_DROP); 3879 } 3880 3881 /* update max window */ 3882 if (src->max_win < win) 3883 src->max_win = win; 3884 /* synchronize sequencing */ 3885 if (SEQ_GT(end, src->seqlo)) 3886 src->seqlo = end; 3887 /* slide the window of what the other end can send */ 3888 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3889 dst->seqhi = ack + MAX((win << sws), 1); 3890 3891 3892 /* update states */ 3893 if (th->th_flags & TH_SYN) 3894 if (src->state < TCPS_SYN_SENT) 3895 src->state = TCPS_SYN_SENT; 3896 if (th->th_flags & TH_FIN) 3897 if (src->state < TCPS_CLOSING) 3898 src->state = TCPS_CLOSING; 3899 if (th->th_flags & TH_ACK) { 3900 if (dst->state == TCPS_SYN_SENT) { 3901 dst->state = TCPS_ESTABLISHED; 3902 if (src->state == TCPS_ESTABLISHED && 3903 (*state)->src_node != NULL && 3904 pf_src_connlimit(state)) { 3905 REASON_SET(reason, PFRES_SRCLIMIT); 3906 return (PF_DROP); 3907 } 3908 } else if (dst->state == TCPS_CLOSING) 3909 dst->state = TCPS_FIN_WAIT_2; 3910 } 3911 if (th->th_flags & TH_RST) 3912 src->state = dst->state = TCPS_TIME_WAIT; 3913 3914 /* update expire time */ 3915 (*state)->expire = time_uptime; 3916 if (src->state >= TCPS_FIN_WAIT_2 && 3917 dst->state >= TCPS_FIN_WAIT_2) 3918 (*state)->timeout = PFTM_TCP_CLOSED; 3919 else if (src->state >= TCPS_CLOSING && 3920 dst->state >= TCPS_CLOSING) 3921 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3922 else if (src->state < TCPS_ESTABLISHED || 3923 dst->state < TCPS_ESTABLISHED) 3924 (*state)->timeout = PFTM_TCP_OPENING; 3925 else if (src->state >= TCPS_CLOSING || 3926 dst->state >= TCPS_CLOSING) 3927 (*state)->timeout = PFTM_TCP_CLOSING; 3928 else 3929 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3930 3931 /* Fall through to PASS packet */ 3932 3933 } else if ((dst->state < TCPS_SYN_SENT || 3934 dst->state >= TCPS_FIN_WAIT_2 || 3935 src->state >= TCPS_FIN_WAIT_2) && 3936 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3937 /* Within a window forward of the originating packet */ 3938 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3939 /* Within a window backward of the originating packet */ 3940 3941 /* 3942 * This currently handles three situations: 3943 * 1) Stupid stacks will shotgun SYNs before their peer 3944 * replies. 3945 * 2) When PF catches an already established stream (the 3946 * firewall rebooted, the state table was flushed, routes 3947 * changed...) 3948 * 3) Packets get funky immediately after the connection 3949 * closes (this should catch Solaris spurious ACK|FINs 3950 * that web servers like to spew after a close) 3951 * 3952 * This must be a little more careful than the above code 3953 * since packet floods will also be caught here. We don't 3954 * update the TTL here to mitigate the damage of a packet 3955 * flood and so the same code can handle awkward establishment 3956 * and a loosened connection close. 3957 * In the establishment case, a correct peer response will 3958 * validate the connection, go through the normal state code 3959 * and keep updating the state TTL. 3960 */ 3961 3962 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3963 printf("pf: loose state match: "); 3964 pf_print_state(*state); 3965 pf_print_flags(th->th_flags); 3966 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3967 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3968 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3969 (unsigned long long)(*state)->packets[1], 3970 pd->dir == PF_IN ? "in" : "out", 3971 pd->dir == (*state)->direction ? "fwd" : "rev"); 3972 } 3973 3974 if (dst->scrub || src->scrub) { 3975 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3976 *state, src, dst, copyback)) 3977 return (PF_DROP); 3978 } 3979 3980 /* update max window */ 3981 if (src->max_win < win) 3982 src->max_win = win; 3983 /* synchronize sequencing */ 3984 if (SEQ_GT(end, src->seqlo)) 3985 src->seqlo = end; 3986 /* slide the window of what the other end can send */ 3987 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3988 dst->seqhi = ack + MAX((win << sws), 1); 3989 3990 /* 3991 * Cannot set dst->seqhi here since this could be a shotgunned 3992 * SYN and not an already established connection. 3993 */ 3994 3995 if (th->th_flags & TH_FIN) 3996 if (src->state < TCPS_CLOSING) 3997 src->state = TCPS_CLOSING; 3998 if (th->th_flags & TH_RST) 3999 src->state = dst->state = TCPS_TIME_WAIT; 4000 4001 /* Fall through to PASS packet */ 4002 4003 } else { 4004 if ((*state)->dst.state == TCPS_SYN_SENT && 4005 (*state)->src.state == TCPS_SYN_SENT) { 4006 /* Send RST for state mismatches during handshake */ 4007 if (!(th->th_flags & TH_RST)) 4008 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4009 pd->dst, pd->src, th->th_dport, 4010 th->th_sport, ntohl(th->th_ack), 0, 4011 TH_RST, 0, 0, 4012 (*state)->rule.ptr->return_ttl, 1, 0, 4013 kif->pfik_ifp); 4014 src->seqlo = 0; 4015 src->seqhi = 1; 4016 src->max_win = 1; 4017 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4018 printf("pf: BAD state: "); 4019 pf_print_state(*state); 4020 pf_print_flags(th->th_flags); 4021 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4022 "pkts=%llu:%llu dir=%s,%s\n", 4023 seq, orig_seq, ack, pd->p_len, ackskew, 4024 (unsigned long long)(*state)->packets[0], 4025 (unsigned long long)(*state)->packets[1], 4026 pd->dir == PF_IN ? "in" : "out", 4027 pd->dir == (*state)->direction ? "fwd" : "rev"); 4028 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4029 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4030 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4031 ' ': '2', 4032 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4033 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4034 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4035 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4036 } 4037 REASON_SET(reason, PFRES_BADSTATE); 4038 return (PF_DROP); 4039 } 4040 4041 return (PF_PASS); 4042 } 4043 4044 static int 4045 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4046 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4047 { 4048 struct tcphdr *th = pd->hdr.tcp; 4049 4050 if (th->th_flags & TH_SYN) 4051 if (src->state < TCPS_SYN_SENT) 4052 src->state = TCPS_SYN_SENT; 4053 if (th->th_flags & TH_FIN) 4054 if (src->state < TCPS_CLOSING) 4055 src->state = TCPS_CLOSING; 4056 if (th->th_flags & TH_ACK) { 4057 if (dst->state == TCPS_SYN_SENT) { 4058 dst->state = TCPS_ESTABLISHED; 4059 if (src->state == TCPS_ESTABLISHED && 4060 (*state)->src_node != NULL && 4061 pf_src_connlimit(state)) { 4062 REASON_SET(reason, PFRES_SRCLIMIT); 4063 return (PF_DROP); 4064 } 4065 } else if (dst->state == TCPS_CLOSING) { 4066 dst->state = TCPS_FIN_WAIT_2; 4067 } else if (src->state == TCPS_SYN_SENT && 4068 dst->state < TCPS_SYN_SENT) { 4069 /* 4070 * Handle a special sloppy case where we only see one 4071 * half of the connection. If there is a ACK after 4072 * the initial SYN without ever seeing a packet from 4073 * the destination, set the connection to established. 4074 */ 4075 dst->state = src->state = TCPS_ESTABLISHED; 4076 if ((*state)->src_node != NULL && 4077 pf_src_connlimit(state)) { 4078 REASON_SET(reason, PFRES_SRCLIMIT); 4079 return (PF_DROP); 4080 } 4081 } else if (src->state == TCPS_CLOSING && 4082 dst->state == TCPS_ESTABLISHED && 4083 dst->seqlo == 0) { 4084 /* 4085 * Handle the closing of half connections where we 4086 * don't see the full bidirectional FIN/ACK+ACK 4087 * handshake. 4088 */ 4089 dst->state = TCPS_CLOSING; 4090 } 4091 } 4092 if (th->th_flags & TH_RST) 4093 src->state = dst->state = TCPS_TIME_WAIT; 4094 4095 /* update expire time */ 4096 (*state)->expire = time_uptime; 4097 if (src->state >= TCPS_FIN_WAIT_2 && 4098 dst->state >= TCPS_FIN_WAIT_2) 4099 (*state)->timeout = PFTM_TCP_CLOSED; 4100 else if (src->state >= TCPS_CLOSING && 4101 dst->state >= TCPS_CLOSING) 4102 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4103 else if (src->state < TCPS_ESTABLISHED || 4104 dst->state < TCPS_ESTABLISHED) 4105 (*state)->timeout = PFTM_TCP_OPENING; 4106 else if (src->state >= TCPS_CLOSING || 4107 dst->state >= TCPS_CLOSING) 4108 (*state)->timeout = PFTM_TCP_CLOSING; 4109 else 4110 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4111 4112 return (PF_PASS); 4113 } 4114 4115 static int 4116 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4117 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4118 u_short *reason) 4119 { 4120 struct pf_state_key_cmp key; 4121 struct tcphdr *th = pd->hdr.tcp; 4122 int copyback = 0; 4123 struct pf_state_peer *src, *dst; 4124 struct pf_state_key *sk; 4125 4126 bzero(&key, sizeof(key)); 4127 key.af = pd->af; 4128 key.proto = IPPROTO_TCP; 4129 if (direction == PF_IN) { /* wire side, straight */ 4130 PF_ACPY(&key.addr[0], pd->src, key.af); 4131 PF_ACPY(&key.addr[1], pd->dst, key.af); 4132 key.port[0] = th->th_sport; 4133 key.port[1] = th->th_dport; 4134 } else { /* stack side, reverse */ 4135 PF_ACPY(&key.addr[1], pd->src, key.af); 4136 PF_ACPY(&key.addr[0], pd->dst, key.af); 4137 key.port[1] = th->th_sport; 4138 key.port[0] = th->th_dport; 4139 } 4140 4141 STATE_LOOKUP(kif, &key, direction, *state, pd); 4142 4143 if (direction == (*state)->direction) { 4144 src = &(*state)->src; 4145 dst = &(*state)->dst; 4146 } else { 4147 src = &(*state)->dst; 4148 dst = &(*state)->src; 4149 } 4150 4151 sk = (*state)->key[pd->didx]; 4152 4153 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4154 if (direction != (*state)->direction) { 4155 REASON_SET(reason, PFRES_SYNPROXY); 4156 return (PF_SYNPROXY_DROP); 4157 } 4158 if (th->th_flags & TH_SYN) { 4159 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4160 REASON_SET(reason, PFRES_SYNPROXY); 4161 return (PF_DROP); 4162 } 4163 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4164 pd->src, th->th_dport, th->th_sport, 4165 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4166 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4167 REASON_SET(reason, PFRES_SYNPROXY); 4168 return (PF_SYNPROXY_DROP); 4169 } else if (!(th->th_flags & TH_ACK) || 4170 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4171 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4172 REASON_SET(reason, PFRES_SYNPROXY); 4173 return (PF_DROP); 4174 } else if ((*state)->src_node != NULL && 4175 pf_src_connlimit(state)) { 4176 REASON_SET(reason, PFRES_SRCLIMIT); 4177 return (PF_DROP); 4178 } else 4179 (*state)->src.state = PF_TCPS_PROXY_DST; 4180 } 4181 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4182 if (direction == (*state)->direction) { 4183 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4184 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4185 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4186 REASON_SET(reason, PFRES_SYNPROXY); 4187 return (PF_DROP); 4188 } 4189 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4190 if ((*state)->dst.seqhi == 1) 4191 (*state)->dst.seqhi = htonl(arc4random()); 4192 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4193 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4194 sk->port[pd->sidx], sk->port[pd->didx], 4195 (*state)->dst.seqhi, 0, TH_SYN, 0, 4196 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4197 REASON_SET(reason, PFRES_SYNPROXY); 4198 return (PF_SYNPROXY_DROP); 4199 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4200 (TH_SYN|TH_ACK)) || 4201 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4202 REASON_SET(reason, PFRES_SYNPROXY); 4203 return (PF_DROP); 4204 } else { 4205 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4206 (*state)->dst.seqlo = ntohl(th->th_seq); 4207 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4208 pd->src, th->th_dport, th->th_sport, 4209 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4210 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4211 (*state)->tag, NULL); 4212 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4213 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4214 sk->port[pd->sidx], sk->port[pd->didx], 4215 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4216 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4217 (*state)->src.seqdiff = (*state)->dst.seqhi - 4218 (*state)->src.seqlo; 4219 (*state)->dst.seqdiff = (*state)->src.seqhi - 4220 (*state)->dst.seqlo; 4221 (*state)->src.seqhi = (*state)->src.seqlo + 4222 (*state)->dst.max_win; 4223 (*state)->dst.seqhi = (*state)->dst.seqlo + 4224 (*state)->src.max_win; 4225 (*state)->src.wscale = (*state)->dst.wscale = 0; 4226 (*state)->src.state = (*state)->dst.state = 4227 TCPS_ESTABLISHED; 4228 REASON_SET(reason, PFRES_SYNPROXY); 4229 return (PF_SYNPROXY_DROP); 4230 } 4231 } 4232 4233 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4234 dst->state >= TCPS_FIN_WAIT_2 && 4235 src->state >= TCPS_FIN_WAIT_2) { 4236 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4237 printf("pf: state reuse "); 4238 pf_print_state(*state); 4239 pf_print_flags(th->th_flags); 4240 printf("\n"); 4241 } 4242 /* XXX make sure it's the same direction ?? */ 4243 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4244 pf_unlink_state(*state, PF_ENTER_LOCKED); 4245 *state = NULL; 4246 return (PF_DROP); 4247 } 4248 4249 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4250 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4251 return (PF_DROP); 4252 } else { 4253 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4254 ©back) == PF_DROP) 4255 return (PF_DROP); 4256 } 4257 4258 /* translate source/destination address, if necessary */ 4259 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4260 struct pf_state_key *nk = (*state)->key[pd->didx]; 4261 4262 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4263 nk->port[pd->sidx] != th->th_sport) 4264 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4265 &th->th_sum, &nk->addr[pd->sidx], 4266 nk->port[pd->sidx], 0, pd->af); 4267 4268 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4269 nk->port[pd->didx] != th->th_dport) 4270 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4271 &th->th_sum, &nk->addr[pd->didx], 4272 nk->port[pd->didx], 0, pd->af); 4273 copyback = 1; 4274 } 4275 4276 /* Copyback sequence modulation or stateful scrub changes if needed */ 4277 if (copyback) 4278 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4279 4280 return (PF_PASS); 4281 } 4282 4283 static int 4284 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4285 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4286 { 4287 struct pf_state_peer *src, *dst; 4288 struct pf_state_key_cmp key; 4289 struct udphdr *uh = pd->hdr.udp; 4290 4291 bzero(&key, sizeof(key)); 4292 key.af = pd->af; 4293 key.proto = IPPROTO_UDP; 4294 if (direction == PF_IN) { /* wire side, straight */ 4295 PF_ACPY(&key.addr[0], pd->src, key.af); 4296 PF_ACPY(&key.addr[1], pd->dst, key.af); 4297 key.port[0] = uh->uh_sport; 4298 key.port[1] = uh->uh_dport; 4299 } else { /* stack side, reverse */ 4300 PF_ACPY(&key.addr[1], pd->src, key.af); 4301 PF_ACPY(&key.addr[0], pd->dst, key.af); 4302 key.port[1] = uh->uh_sport; 4303 key.port[0] = uh->uh_dport; 4304 } 4305 4306 STATE_LOOKUP(kif, &key, direction, *state, pd); 4307 4308 if (direction == (*state)->direction) { 4309 src = &(*state)->src; 4310 dst = &(*state)->dst; 4311 } else { 4312 src = &(*state)->dst; 4313 dst = &(*state)->src; 4314 } 4315 4316 /* update states */ 4317 if (src->state < PFUDPS_SINGLE) 4318 src->state = PFUDPS_SINGLE; 4319 if (dst->state == PFUDPS_SINGLE) 4320 dst->state = PFUDPS_MULTIPLE; 4321 4322 /* update expire time */ 4323 (*state)->expire = time_uptime; 4324 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4325 (*state)->timeout = PFTM_UDP_MULTIPLE; 4326 else 4327 (*state)->timeout = PFTM_UDP_SINGLE; 4328 4329 /* translate source/destination address, if necessary */ 4330 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4331 struct pf_state_key *nk = (*state)->key[pd->didx]; 4332 4333 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4334 nk->port[pd->sidx] != uh->uh_sport) 4335 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4336 &uh->uh_sum, &nk->addr[pd->sidx], 4337 nk->port[pd->sidx], 1, pd->af); 4338 4339 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4340 nk->port[pd->didx] != uh->uh_dport) 4341 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4342 &uh->uh_sum, &nk->addr[pd->didx], 4343 nk->port[pd->didx], 1, pd->af); 4344 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4345 } 4346 4347 return (PF_PASS); 4348 } 4349 4350 static int 4351 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4352 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4353 { 4354 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4355 u_int16_t icmpid = 0, *icmpsum; 4356 u_int8_t icmptype; 4357 int state_icmp = 0; 4358 struct pf_state_key_cmp key; 4359 4360 bzero(&key, sizeof(key)); 4361 switch (pd->proto) { 4362 #ifdef INET 4363 case IPPROTO_ICMP: 4364 icmptype = pd->hdr.icmp->icmp_type; 4365 icmpid = pd->hdr.icmp->icmp_id; 4366 icmpsum = &pd->hdr.icmp->icmp_cksum; 4367 4368 if (icmptype == ICMP_UNREACH || 4369 icmptype == ICMP_SOURCEQUENCH || 4370 icmptype == ICMP_REDIRECT || 4371 icmptype == ICMP_TIMXCEED || 4372 icmptype == ICMP_PARAMPROB) 4373 state_icmp++; 4374 break; 4375 #endif /* INET */ 4376 #ifdef INET6 4377 case IPPROTO_ICMPV6: 4378 icmptype = pd->hdr.icmp6->icmp6_type; 4379 icmpid = pd->hdr.icmp6->icmp6_id; 4380 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4381 4382 if (icmptype == ICMP6_DST_UNREACH || 4383 icmptype == ICMP6_PACKET_TOO_BIG || 4384 icmptype == ICMP6_TIME_EXCEEDED || 4385 icmptype == ICMP6_PARAM_PROB) 4386 state_icmp++; 4387 break; 4388 #endif /* INET6 */ 4389 } 4390 4391 if (!state_icmp) { 4392 4393 /* 4394 * ICMP query/reply message not related to a TCP/UDP packet. 4395 * Search for an ICMP state. 4396 */ 4397 key.af = pd->af; 4398 key.proto = pd->proto; 4399 key.port[0] = key.port[1] = icmpid; 4400 if (direction == PF_IN) { /* wire side, straight */ 4401 PF_ACPY(&key.addr[0], pd->src, key.af); 4402 PF_ACPY(&key.addr[1], pd->dst, key.af); 4403 } else { /* stack side, reverse */ 4404 PF_ACPY(&key.addr[1], pd->src, key.af); 4405 PF_ACPY(&key.addr[0], pd->dst, key.af); 4406 } 4407 4408 STATE_LOOKUP(kif, &key, direction, *state, pd); 4409 4410 (*state)->expire = time_uptime; 4411 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4412 4413 /* translate source/destination address, if necessary */ 4414 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4415 struct pf_state_key *nk = (*state)->key[pd->didx]; 4416 4417 switch (pd->af) { 4418 #ifdef INET 4419 case AF_INET: 4420 if (PF_ANEQ(pd->src, 4421 &nk->addr[pd->sidx], AF_INET)) 4422 pf_change_a(&saddr->v4.s_addr, 4423 pd->ip_sum, 4424 nk->addr[pd->sidx].v4.s_addr, 0); 4425 4426 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4427 AF_INET)) 4428 pf_change_a(&daddr->v4.s_addr, 4429 pd->ip_sum, 4430 nk->addr[pd->didx].v4.s_addr, 0); 4431 4432 if (nk->port[0] != 4433 pd->hdr.icmp->icmp_id) { 4434 pd->hdr.icmp->icmp_cksum = 4435 pf_cksum_fixup( 4436 pd->hdr.icmp->icmp_cksum, icmpid, 4437 nk->port[pd->sidx], 0); 4438 pd->hdr.icmp->icmp_id = 4439 nk->port[pd->sidx]; 4440 } 4441 4442 m_copyback(m, off, ICMP_MINLEN, 4443 (caddr_t )pd->hdr.icmp); 4444 break; 4445 #endif /* INET */ 4446 #ifdef INET6 4447 case AF_INET6: 4448 if (PF_ANEQ(pd->src, 4449 &nk->addr[pd->sidx], AF_INET6)) 4450 pf_change_a6(saddr, 4451 &pd->hdr.icmp6->icmp6_cksum, 4452 &nk->addr[pd->sidx], 0); 4453 4454 if (PF_ANEQ(pd->dst, 4455 &nk->addr[pd->didx], AF_INET6)) 4456 pf_change_a6(daddr, 4457 &pd->hdr.icmp6->icmp6_cksum, 4458 &nk->addr[pd->didx], 0); 4459 4460 m_copyback(m, off, sizeof(struct icmp6_hdr), 4461 (caddr_t )pd->hdr.icmp6); 4462 break; 4463 #endif /* INET6 */ 4464 } 4465 } 4466 return (PF_PASS); 4467 4468 } else { 4469 /* 4470 * ICMP error message in response to a TCP/UDP packet. 4471 * Extract the inner TCP/UDP header and search for that state. 4472 */ 4473 4474 struct pf_pdesc pd2; 4475 bzero(&pd2, sizeof pd2); 4476 #ifdef INET 4477 struct ip h2; 4478 #endif /* INET */ 4479 #ifdef INET6 4480 struct ip6_hdr h2_6; 4481 int terminal = 0; 4482 #endif /* INET6 */ 4483 int ipoff2 = 0; 4484 int off2 = 0; 4485 4486 pd2.af = pd->af; 4487 /* Payload packet is from the opposite direction. */ 4488 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4489 pd2.didx = (direction == PF_IN) ? 0 : 1; 4490 switch (pd->af) { 4491 #ifdef INET 4492 case AF_INET: 4493 /* offset of h2 in mbuf chain */ 4494 ipoff2 = off + ICMP_MINLEN; 4495 4496 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4497 NULL, reason, pd2.af)) { 4498 DPFPRINTF(PF_DEBUG_MISC, 4499 ("pf: ICMP error message too short " 4500 "(ip)\n")); 4501 return (PF_DROP); 4502 } 4503 /* 4504 * ICMP error messages don't refer to non-first 4505 * fragments 4506 */ 4507 if (h2.ip_off & htons(IP_OFFMASK)) { 4508 REASON_SET(reason, PFRES_FRAG); 4509 return (PF_DROP); 4510 } 4511 4512 /* offset of protocol header that follows h2 */ 4513 off2 = ipoff2 + (h2.ip_hl << 2); 4514 4515 pd2.proto = h2.ip_p; 4516 pd2.src = (struct pf_addr *)&h2.ip_src; 4517 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4518 pd2.ip_sum = &h2.ip_sum; 4519 break; 4520 #endif /* INET */ 4521 #ifdef INET6 4522 case AF_INET6: 4523 ipoff2 = off + sizeof(struct icmp6_hdr); 4524 4525 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4526 NULL, reason, pd2.af)) { 4527 DPFPRINTF(PF_DEBUG_MISC, 4528 ("pf: ICMP error message too short " 4529 "(ip6)\n")); 4530 return (PF_DROP); 4531 } 4532 pd2.proto = h2_6.ip6_nxt; 4533 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4534 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4535 pd2.ip_sum = NULL; 4536 off2 = ipoff2 + sizeof(h2_6); 4537 do { 4538 switch (pd2.proto) { 4539 case IPPROTO_FRAGMENT: 4540 /* 4541 * ICMPv6 error messages for 4542 * non-first fragments 4543 */ 4544 REASON_SET(reason, PFRES_FRAG); 4545 return (PF_DROP); 4546 case IPPROTO_AH: 4547 case IPPROTO_HOPOPTS: 4548 case IPPROTO_ROUTING: 4549 case IPPROTO_DSTOPTS: { 4550 /* get next header and header length */ 4551 struct ip6_ext opt6; 4552 4553 if (!pf_pull_hdr(m, off2, &opt6, 4554 sizeof(opt6), NULL, reason, 4555 pd2.af)) { 4556 DPFPRINTF(PF_DEBUG_MISC, 4557 ("pf: ICMPv6 short opt\n")); 4558 return (PF_DROP); 4559 } 4560 if (pd2.proto == IPPROTO_AH) 4561 off2 += (opt6.ip6e_len + 2) * 4; 4562 else 4563 off2 += (opt6.ip6e_len + 1) * 8; 4564 pd2.proto = opt6.ip6e_nxt; 4565 /* goto the next header */ 4566 break; 4567 } 4568 default: 4569 terminal++; 4570 break; 4571 } 4572 } while (!terminal); 4573 break; 4574 #endif /* INET6 */ 4575 } 4576 4577 switch (pd2.proto) { 4578 case IPPROTO_TCP: { 4579 struct tcphdr th; 4580 u_int32_t seq; 4581 struct pf_state_peer *src, *dst; 4582 u_int8_t dws; 4583 int copyback = 0; 4584 4585 /* 4586 * Only the first 8 bytes of the TCP header can be 4587 * expected. Don't access any TCP header fields after 4588 * th_seq, an ackskew test is not possible. 4589 */ 4590 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4591 pd2.af)) { 4592 DPFPRINTF(PF_DEBUG_MISC, 4593 ("pf: ICMP error message too short " 4594 "(tcp)\n")); 4595 return (PF_DROP); 4596 } 4597 4598 key.af = pd2.af; 4599 key.proto = IPPROTO_TCP; 4600 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4601 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4602 key.port[pd2.sidx] = th.th_sport; 4603 key.port[pd2.didx] = th.th_dport; 4604 4605 STATE_LOOKUP(kif, &key, direction, *state, pd); 4606 4607 if (direction == (*state)->direction) { 4608 src = &(*state)->dst; 4609 dst = &(*state)->src; 4610 } else { 4611 src = &(*state)->src; 4612 dst = &(*state)->dst; 4613 } 4614 4615 if (src->wscale && dst->wscale) 4616 dws = dst->wscale & PF_WSCALE_MASK; 4617 else 4618 dws = 0; 4619 4620 /* Demodulate sequence number */ 4621 seq = ntohl(th.th_seq) - src->seqdiff; 4622 if (src->seqdiff) { 4623 pf_change_a(&th.th_seq, icmpsum, 4624 htonl(seq), 0); 4625 copyback = 1; 4626 } 4627 4628 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4629 (!SEQ_GEQ(src->seqhi, seq) || 4630 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4631 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4632 printf("pf: BAD ICMP %d:%d ", 4633 icmptype, pd->hdr.icmp->icmp_code); 4634 pf_print_host(pd->src, 0, pd->af); 4635 printf(" -> "); 4636 pf_print_host(pd->dst, 0, pd->af); 4637 printf(" state: "); 4638 pf_print_state(*state); 4639 printf(" seq=%u\n", seq); 4640 } 4641 REASON_SET(reason, PFRES_BADSTATE); 4642 return (PF_DROP); 4643 } else { 4644 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4645 printf("pf: OK ICMP %d:%d ", 4646 icmptype, pd->hdr.icmp->icmp_code); 4647 pf_print_host(pd->src, 0, pd->af); 4648 printf(" -> "); 4649 pf_print_host(pd->dst, 0, pd->af); 4650 printf(" state: "); 4651 pf_print_state(*state); 4652 printf(" seq=%u\n", seq); 4653 } 4654 } 4655 4656 /* translate source/destination address, if necessary */ 4657 if ((*state)->key[PF_SK_WIRE] != 4658 (*state)->key[PF_SK_STACK]) { 4659 struct pf_state_key *nk = 4660 (*state)->key[pd->didx]; 4661 4662 if (PF_ANEQ(pd2.src, 4663 &nk->addr[pd2.sidx], pd2.af) || 4664 nk->port[pd2.sidx] != th.th_sport) 4665 pf_change_icmp(pd2.src, &th.th_sport, 4666 daddr, &nk->addr[pd2.sidx], 4667 nk->port[pd2.sidx], NULL, 4668 pd2.ip_sum, icmpsum, 4669 pd->ip_sum, 0, pd2.af); 4670 4671 if (PF_ANEQ(pd2.dst, 4672 &nk->addr[pd2.didx], pd2.af) || 4673 nk->port[pd2.didx] != th.th_dport) 4674 pf_change_icmp(pd2.dst, &th.th_dport, 4675 NULL, /* XXX Inbound NAT? */ 4676 &nk->addr[pd2.didx], 4677 nk->port[pd2.didx], NULL, 4678 pd2.ip_sum, icmpsum, 4679 pd->ip_sum, 0, pd2.af); 4680 copyback = 1; 4681 } 4682 4683 if (copyback) { 4684 switch (pd2.af) { 4685 #ifdef INET 4686 case AF_INET: 4687 m_copyback(m, off, ICMP_MINLEN, 4688 (caddr_t )pd->hdr.icmp); 4689 m_copyback(m, ipoff2, sizeof(h2), 4690 (caddr_t )&h2); 4691 break; 4692 #endif /* INET */ 4693 #ifdef INET6 4694 case AF_INET6: 4695 m_copyback(m, off, 4696 sizeof(struct icmp6_hdr), 4697 (caddr_t )pd->hdr.icmp6); 4698 m_copyback(m, ipoff2, sizeof(h2_6), 4699 (caddr_t )&h2_6); 4700 break; 4701 #endif /* INET6 */ 4702 } 4703 m_copyback(m, off2, 8, (caddr_t)&th); 4704 } 4705 4706 return (PF_PASS); 4707 break; 4708 } 4709 case IPPROTO_UDP: { 4710 struct udphdr uh; 4711 4712 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4713 NULL, reason, pd2.af)) { 4714 DPFPRINTF(PF_DEBUG_MISC, 4715 ("pf: ICMP error message too short " 4716 "(udp)\n")); 4717 return (PF_DROP); 4718 } 4719 4720 key.af = pd2.af; 4721 key.proto = IPPROTO_UDP; 4722 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4723 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4724 key.port[pd2.sidx] = uh.uh_sport; 4725 key.port[pd2.didx] = uh.uh_dport; 4726 4727 STATE_LOOKUP(kif, &key, direction, *state, pd); 4728 4729 /* translate source/destination address, if necessary */ 4730 if ((*state)->key[PF_SK_WIRE] != 4731 (*state)->key[PF_SK_STACK]) { 4732 struct pf_state_key *nk = 4733 (*state)->key[pd->didx]; 4734 4735 if (PF_ANEQ(pd2.src, 4736 &nk->addr[pd2.sidx], pd2.af) || 4737 nk->port[pd2.sidx] != uh.uh_sport) 4738 pf_change_icmp(pd2.src, &uh.uh_sport, 4739 daddr, &nk->addr[pd2.sidx], 4740 nk->port[pd2.sidx], &uh.uh_sum, 4741 pd2.ip_sum, icmpsum, 4742 pd->ip_sum, 1, pd2.af); 4743 4744 if (PF_ANEQ(pd2.dst, 4745 &nk->addr[pd2.didx], pd2.af) || 4746 nk->port[pd2.didx] != uh.uh_dport) 4747 pf_change_icmp(pd2.dst, &uh.uh_dport, 4748 NULL, /* XXX Inbound NAT? */ 4749 &nk->addr[pd2.didx], 4750 nk->port[pd2.didx], &uh.uh_sum, 4751 pd2.ip_sum, icmpsum, 4752 pd->ip_sum, 1, pd2.af); 4753 4754 switch (pd2.af) { 4755 #ifdef INET 4756 case AF_INET: 4757 m_copyback(m, off, ICMP_MINLEN, 4758 (caddr_t )pd->hdr.icmp); 4759 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4760 break; 4761 #endif /* INET */ 4762 #ifdef INET6 4763 case AF_INET6: 4764 m_copyback(m, off, 4765 sizeof(struct icmp6_hdr), 4766 (caddr_t )pd->hdr.icmp6); 4767 m_copyback(m, ipoff2, sizeof(h2_6), 4768 (caddr_t )&h2_6); 4769 break; 4770 #endif /* INET6 */ 4771 } 4772 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4773 } 4774 return (PF_PASS); 4775 break; 4776 } 4777 #ifdef INET 4778 case IPPROTO_ICMP: { 4779 struct icmp iih; 4780 4781 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4782 NULL, reason, pd2.af)) { 4783 DPFPRINTF(PF_DEBUG_MISC, 4784 ("pf: ICMP error message too short i" 4785 "(icmp)\n")); 4786 return (PF_DROP); 4787 } 4788 4789 key.af = pd2.af; 4790 key.proto = IPPROTO_ICMP; 4791 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4792 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4793 key.port[0] = key.port[1] = iih.icmp_id; 4794 4795 STATE_LOOKUP(kif, &key, direction, *state, pd); 4796 4797 /* translate source/destination address, if necessary */ 4798 if ((*state)->key[PF_SK_WIRE] != 4799 (*state)->key[PF_SK_STACK]) { 4800 struct pf_state_key *nk = 4801 (*state)->key[pd->didx]; 4802 4803 if (PF_ANEQ(pd2.src, 4804 &nk->addr[pd2.sidx], pd2.af) || 4805 nk->port[pd2.sidx] != iih.icmp_id) 4806 pf_change_icmp(pd2.src, &iih.icmp_id, 4807 daddr, &nk->addr[pd2.sidx], 4808 nk->port[pd2.sidx], NULL, 4809 pd2.ip_sum, icmpsum, 4810 pd->ip_sum, 0, AF_INET); 4811 4812 if (PF_ANEQ(pd2.dst, 4813 &nk->addr[pd2.didx], pd2.af) || 4814 nk->port[pd2.didx] != iih.icmp_id) 4815 pf_change_icmp(pd2.dst, &iih.icmp_id, 4816 NULL, /* XXX Inbound NAT? */ 4817 &nk->addr[pd2.didx], 4818 nk->port[pd2.didx], NULL, 4819 pd2.ip_sum, icmpsum, 4820 pd->ip_sum, 0, AF_INET); 4821 4822 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4823 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4824 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4825 } 4826 return (PF_PASS); 4827 break; 4828 } 4829 #endif /* INET */ 4830 #ifdef INET6 4831 case IPPROTO_ICMPV6: { 4832 struct icmp6_hdr iih; 4833 4834 if (!pf_pull_hdr(m, off2, &iih, 4835 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4836 DPFPRINTF(PF_DEBUG_MISC, 4837 ("pf: ICMP error message too short " 4838 "(icmp6)\n")); 4839 return (PF_DROP); 4840 } 4841 4842 key.af = pd2.af; 4843 key.proto = IPPROTO_ICMPV6; 4844 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4845 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4846 key.port[0] = key.port[1] = iih.icmp6_id; 4847 4848 STATE_LOOKUP(kif, &key, direction, *state, pd); 4849 4850 /* translate source/destination address, if necessary */ 4851 if ((*state)->key[PF_SK_WIRE] != 4852 (*state)->key[PF_SK_STACK]) { 4853 struct pf_state_key *nk = 4854 (*state)->key[pd->didx]; 4855 4856 if (PF_ANEQ(pd2.src, 4857 &nk->addr[pd2.sidx], pd2.af) || 4858 nk->port[pd2.sidx] != iih.icmp6_id) 4859 pf_change_icmp(pd2.src, &iih.icmp6_id, 4860 daddr, &nk->addr[pd2.sidx], 4861 nk->port[pd2.sidx], NULL, 4862 pd2.ip_sum, icmpsum, 4863 pd->ip_sum, 0, AF_INET6); 4864 4865 if (PF_ANEQ(pd2.dst, 4866 &nk->addr[pd2.didx], pd2.af) || 4867 nk->port[pd2.didx] != iih.icmp6_id) 4868 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4869 NULL, /* XXX Inbound NAT? */ 4870 &nk->addr[pd2.didx], 4871 nk->port[pd2.didx], NULL, 4872 pd2.ip_sum, icmpsum, 4873 pd->ip_sum, 0, AF_INET6); 4874 4875 m_copyback(m, off, sizeof(struct icmp6_hdr), 4876 (caddr_t)pd->hdr.icmp6); 4877 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4878 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4879 (caddr_t)&iih); 4880 } 4881 return (PF_PASS); 4882 break; 4883 } 4884 #endif /* INET6 */ 4885 default: { 4886 key.af = pd2.af; 4887 key.proto = pd2.proto; 4888 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4889 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4890 key.port[0] = key.port[1] = 0; 4891 4892 STATE_LOOKUP(kif, &key, direction, *state, pd); 4893 4894 /* translate source/destination address, if necessary */ 4895 if ((*state)->key[PF_SK_WIRE] != 4896 (*state)->key[PF_SK_STACK]) { 4897 struct pf_state_key *nk = 4898 (*state)->key[pd->didx]; 4899 4900 if (PF_ANEQ(pd2.src, 4901 &nk->addr[pd2.sidx], pd2.af)) 4902 pf_change_icmp(pd2.src, NULL, daddr, 4903 &nk->addr[pd2.sidx], 0, NULL, 4904 pd2.ip_sum, icmpsum, 4905 pd->ip_sum, 0, pd2.af); 4906 4907 if (PF_ANEQ(pd2.dst, 4908 &nk->addr[pd2.didx], pd2.af)) 4909 pf_change_icmp(pd2.src, NULL, 4910 NULL, /* XXX Inbound NAT? */ 4911 &nk->addr[pd2.didx], 0, NULL, 4912 pd2.ip_sum, icmpsum, 4913 pd->ip_sum, 0, pd2.af); 4914 4915 switch (pd2.af) { 4916 #ifdef INET 4917 case AF_INET: 4918 m_copyback(m, off, ICMP_MINLEN, 4919 (caddr_t)pd->hdr.icmp); 4920 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4921 break; 4922 #endif /* INET */ 4923 #ifdef INET6 4924 case AF_INET6: 4925 m_copyback(m, off, 4926 sizeof(struct icmp6_hdr), 4927 (caddr_t )pd->hdr.icmp6); 4928 m_copyback(m, ipoff2, sizeof(h2_6), 4929 (caddr_t )&h2_6); 4930 break; 4931 #endif /* INET6 */ 4932 } 4933 } 4934 return (PF_PASS); 4935 break; 4936 } 4937 } 4938 } 4939 } 4940 4941 static int 4942 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4943 struct mbuf *m, struct pf_pdesc *pd) 4944 { 4945 struct pf_state_peer *src, *dst; 4946 struct pf_state_key_cmp key; 4947 4948 bzero(&key, sizeof(key)); 4949 key.af = pd->af; 4950 key.proto = pd->proto; 4951 if (direction == PF_IN) { 4952 PF_ACPY(&key.addr[0], pd->src, key.af); 4953 PF_ACPY(&key.addr[1], pd->dst, key.af); 4954 key.port[0] = key.port[1] = 0; 4955 } else { 4956 PF_ACPY(&key.addr[1], pd->src, key.af); 4957 PF_ACPY(&key.addr[0], pd->dst, key.af); 4958 key.port[1] = key.port[0] = 0; 4959 } 4960 4961 STATE_LOOKUP(kif, &key, direction, *state, pd); 4962 4963 if (direction == (*state)->direction) { 4964 src = &(*state)->src; 4965 dst = &(*state)->dst; 4966 } else { 4967 src = &(*state)->dst; 4968 dst = &(*state)->src; 4969 } 4970 4971 /* update states */ 4972 if (src->state < PFOTHERS_SINGLE) 4973 src->state = PFOTHERS_SINGLE; 4974 if (dst->state == PFOTHERS_SINGLE) 4975 dst->state = PFOTHERS_MULTIPLE; 4976 4977 /* update expire time */ 4978 (*state)->expire = time_uptime; 4979 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 4980 (*state)->timeout = PFTM_OTHER_MULTIPLE; 4981 else 4982 (*state)->timeout = PFTM_OTHER_SINGLE; 4983 4984 /* translate source/destination address, if necessary */ 4985 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4986 struct pf_state_key *nk = (*state)->key[pd->didx]; 4987 4988 KASSERT(nk, ("%s: nk is null", __func__)); 4989 KASSERT(pd, ("%s: pd is null", __func__)); 4990 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 4991 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 4992 switch (pd->af) { 4993 #ifdef INET 4994 case AF_INET: 4995 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4996 pf_change_a(&pd->src->v4.s_addr, 4997 pd->ip_sum, 4998 nk->addr[pd->sidx].v4.s_addr, 4999 0); 5000 5001 5002 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5003 pf_change_a(&pd->dst->v4.s_addr, 5004 pd->ip_sum, 5005 nk->addr[pd->didx].v4.s_addr, 5006 0); 5007 5008 break; 5009 #endif /* INET */ 5010 #ifdef INET6 5011 case AF_INET6: 5012 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5013 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5014 5015 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5016 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5017 #endif /* INET6 */ 5018 } 5019 } 5020 return (PF_PASS); 5021 } 5022 5023 /* 5024 * ipoff and off are measured from the start of the mbuf chain. 5025 * h must be at "ipoff" on the mbuf chain. 5026 */ 5027 void * 5028 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5029 u_short *actionp, u_short *reasonp, sa_family_t af) 5030 { 5031 switch (af) { 5032 #ifdef INET 5033 case AF_INET: { 5034 struct ip *h = mtod(m, struct ip *); 5035 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5036 5037 if (fragoff) { 5038 if (fragoff >= len) 5039 ACTION_SET(actionp, PF_PASS); 5040 else { 5041 ACTION_SET(actionp, PF_DROP); 5042 REASON_SET(reasonp, PFRES_FRAG); 5043 } 5044 return (NULL); 5045 } 5046 if (m->m_pkthdr.len < off + len || 5047 ntohs(h->ip_len) < off + len) { 5048 ACTION_SET(actionp, PF_DROP); 5049 REASON_SET(reasonp, PFRES_SHORT); 5050 return (NULL); 5051 } 5052 break; 5053 } 5054 #endif /* INET */ 5055 #ifdef INET6 5056 case AF_INET6: { 5057 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5058 5059 if (m->m_pkthdr.len < off + len || 5060 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5061 (unsigned)(off + len)) { 5062 ACTION_SET(actionp, PF_DROP); 5063 REASON_SET(reasonp, PFRES_SHORT); 5064 return (NULL); 5065 } 5066 break; 5067 } 5068 #endif /* INET6 */ 5069 } 5070 m_copydata(m, off, len, p); 5071 return (p); 5072 } 5073 5074 int 5075 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5076 int rtableid) 5077 { 5078 #ifdef RADIX_MPATH 5079 struct radix_node_head *rnh; 5080 #endif 5081 struct sockaddr_in *dst; 5082 int ret = 1; 5083 int check_mpath; 5084 #ifdef INET6 5085 struct sockaddr_in6 *dst6; 5086 struct route_in6 ro; 5087 #else 5088 struct route ro; 5089 #endif 5090 struct radix_node *rn; 5091 struct rtentry *rt; 5092 struct ifnet *ifp; 5093 5094 check_mpath = 0; 5095 #ifdef RADIX_MPATH 5096 /* XXX: stick to table 0 for now */ 5097 rnh = rt_tables_get_rnh(0, af); 5098 if (rnh != NULL && rn_mpath_capable(rnh)) 5099 check_mpath = 1; 5100 #endif 5101 bzero(&ro, sizeof(ro)); 5102 switch (af) { 5103 case AF_INET: 5104 dst = satosin(&ro.ro_dst); 5105 dst->sin_family = AF_INET; 5106 dst->sin_len = sizeof(*dst); 5107 dst->sin_addr = addr->v4; 5108 break; 5109 #ifdef INET6 5110 case AF_INET6: 5111 /* 5112 * Skip check for addresses with embedded interface scope, 5113 * as they would always match anyway. 5114 */ 5115 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5116 goto out; 5117 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5118 dst6->sin6_family = AF_INET6; 5119 dst6->sin6_len = sizeof(*dst6); 5120 dst6->sin6_addr = addr->v6; 5121 break; 5122 #endif /* INET6 */ 5123 default: 5124 return (0); 5125 } 5126 5127 /* Skip checks for ipsec interfaces */ 5128 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5129 goto out; 5130 5131 switch (af) { 5132 #ifdef INET6 5133 case AF_INET6: 5134 in6_rtalloc_ign(&ro, 0, rtableid); 5135 break; 5136 #endif 5137 #ifdef INET 5138 case AF_INET: 5139 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5140 break; 5141 #endif 5142 default: 5143 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5144 break; 5145 } 5146 5147 if (ro.ro_rt != NULL) { 5148 /* No interface given, this is a no-route check */ 5149 if (kif == NULL) 5150 goto out; 5151 5152 if (kif->pfik_ifp == NULL) { 5153 ret = 0; 5154 goto out; 5155 } 5156 5157 /* Perform uRPF check if passed input interface */ 5158 ret = 0; 5159 rn = (struct radix_node *)ro.ro_rt; 5160 do { 5161 rt = (struct rtentry *)rn; 5162 ifp = rt->rt_ifp; 5163 5164 if (kif->pfik_ifp == ifp) 5165 ret = 1; 5166 #ifdef RADIX_MPATH 5167 rn = rn_mpath_next(rn); 5168 #endif 5169 } while (check_mpath == 1 && rn != NULL && ret == 0); 5170 } else 5171 ret = 0; 5172 out: 5173 if (ro.ro_rt != NULL) 5174 RTFREE(ro.ro_rt); 5175 return (ret); 5176 } 5177 5178 #ifdef INET 5179 static void 5180 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5181 struct pf_state *s, struct pf_pdesc *pd) 5182 { 5183 struct mbuf *m0, *m1; 5184 struct sockaddr_in dst; 5185 struct ip *ip; 5186 struct ifnet *ifp = NULL; 5187 struct pf_addr naddr; 5188 struct pf_src_node *sn = NULL; 5189 int error = 0; 5190 uint16_t ip_len, ip_off; 5191 5192 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5193 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5194 __func__)); 5195 5196 if ((pd->pf_mtag == NULL && 5197 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5198 pd->pf_mtag->routed++ > 3) { 5199 m0 = *m; 5200 *m = NULL; 5201 goto bad_locked; 5202 } 5203 5204 if (r->rt == PF_DUPTO) { 5205 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5206 if (s) 5207 PF_STATE_UNLOCK(s); 5208 return; 5209 } 5210 } else { 5211 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5212 if (s) 5213 PF_STATE_UNLOCK(s); 5214 return; 5215 } 5216 m0 = *m; 5217 } 5218 5219 ip = mtod(m0, struct ip *); 5220 5221 bzero(&dst, sizeof(dst)); 5222 dst.sin_family = AF_INET; 5223 dst.sin_len = sizeof(dst); 5224 dst.sin_addr = ip->ip_dst; 5225 5226 if (r->rt == PF_FASTROUTE) { 5227 struct rtentry *rt; 5228 5229 if (s) 5230 PF_STATE_UNLOCK(s); 5231 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5232 if (rt == NULL) { 5233 RTFREE_LOCKED(rt); 5234 KMOD_IPSTAT_INC(ips_noroute); 5235 error = EHOSTUNREACH; 5236 goto bad; 5237 } 5238 5239 ifp = rt->rt_ifp; 5240 rt->rt_rmx.rmx_pksent++; 5241 5242 if (rt->rt_flags & RTF_GATEWAY) 5243 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5244 RTFREE_LOCKED(rt); 5245 } else { 5246 if (TAILQ_EMPTY(&r->rpool.list)) { 5247 DPFPRINTF(PF_DEBUG_URGENT, 5248 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5249 goto bad_locked; 5250 } 5251 if (s == NULL) { 5252 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5253 &naddr, NULL, &sn); 5254 if (!PF_AZERO(&naddr, AF_INET)) 5255 dst.sin_addr.s_addr = naddr.v4.s_addr; 5256 ifp = r->rpool.cur->kif ? 5257 r->rpool.cur->kif->pfik_ifp : NULL; 5258 } else { 5259 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5260 dst.sin_addr.s_addr = 5261 s->rt_addr.v4.s_addr; 5262 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5263 PF_STATE_UNLOCK(s); 5264 } 5265 } 5266 if (ifp == NULL) 5267 goto bad; 5268 5269 if (oifp != ifp) { 5270 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5271 goto bad; 5272 else if (m0 == NULL) 5273 goto done; 5274 if (m0->m_len < sizeof(struct ip)) { 5275 DPFPRINTF(PF_DEBUG_URGENT, 5276 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5277 goto bad; 5278 } 5279 ip = mtod(m0, struct ip *); 5280 } 5281 5282 if (ifp->if_flags & IFF_LOOPBACK) 5283 m0->m_flags |= M_SKIP_FIREWALL; 5284 5285 ip_len = ntohs(ip->ip_len); 5286 ip_off = ntohs(ip->ip_off); 5287 5288 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5289 m0->m_pkthdr.csum_flags |= CSUM_IP; 5290 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5291 in_delayed_cksum(m0); 5292 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5293 } 5294 #ifdef SCTP 5295 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5296 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5297 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5298 } 5299 #endif 5300 5301 /* 5302 * If small enough for interface, or the interface will take 5303 * care of the fragmentation for us, we can just send directly. 5304 */ 5305 if (ip_len <= ifp->if_mtu || 5306 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5307 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5308 ip->ip_sum = 0; 5309 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5310 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5311 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5312 } 5313 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5314 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5315 goto done; 5316 } 5317 5318 /* Balk when DF bit is set or the interface didn't support TSO. */ 5319 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5320 error = EMSGSIZE; 5321 KMOD_IPSTAT_INC(ips_cantfrag); 5322 if (r->rt != PF_DUPTO) { 5323 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5324 ifp->if_mtu); 5325 goto done; 5326 } else 5327 goto bad; 5328 } 5329 5330 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5331 if (error) 5332 goto bad; 5333 5334 for (; m0; m0 = m1) { 5335 m1 = m0->m_nextpkt; 5336 m0->m_nextpkt = NULL; 5337 if (error == 0) { 5338 m_clrprotoflags(m0); 5339 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5340 } else 5341 m_freem(m0); 5342 } 5343 5344 if (error == 0) 5345 KMOD_IPSTAT_INC(ips_fragmented); 5346 5347 done: 5348 if (r->rt != PF_DUPTO) 5349 *m = NULL; 5350 return; 5351 5352 bad_locked: 5353 if (s) 5354 PF_STATE_UNLOCK(s); 5355 bad: 5356 m_freem(m0); 5357 goto done; 5358 } 5359 #endif /* INET */ 5360 5361 #ifdef INET6 5362 static void 5363 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5364 struct pf_state *s, struct pf_pdesc *pd) 5365 { 5366 struct mbuf *m0; 5367 struct sockaddr_in6 dst; 5368 struct ip6_hdr *ip6; 5369 struct ifnet *ifp = NULL; 5370 struct pf_addr naddr; 5371 struct pf_src_node *sn = NULL; 5372 5373 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5374 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5375 __func__)); 5376 5377 if ((pd->pf_mtag == NULL && 5378 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5379 pd->pf_mtag->routed++ > 3) { 5380 m0 = *m; 5381 *m = NULL; 5382 goto bad_locked; 5383 } 5384 5385 if (r->rt == PF_DUPTO) { 5386 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5387 if (s) 5388 PF_STATE_UNLOCK(s); 5389 return; 5390 } 5391 } else { 5392 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5393 if (s) 5394 PF_STATE_UNLOCK(s); 5395 return; 5396 } 5397 m0 = *m; 5398 } 5399 5400 ip6 = mtod(m0, struct ip6_hdr *); 5401 5402 bzero(&dst, sizeof(dst)); 5403 dst.sin6_family = AF_INET6; 5404 dst.sin6_len = sizeof(dst); 5405 dst.sin6_addr = ip6->ip6_dst; 5406 5407 /* Cheat. XXX why only in the v6 case??? */ 5408 if (r->rt == PF_FASTROUTE) { 5409 if (s) 5410 PF_STATE_UNLOCK(s); 5411 m0->m_flags |= M_SKIP_FIREWALL; 5412 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5413 return; 5414 } 5415 5416 if (TAILQ_EMPTY(&r->rpool.list)) { 5417 DPFPRINTF(PF_DEBUG_URGENT, 5418 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5419 goto bad_locked; 5420 } 5421 if (s == NULL) { 5422 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5423 &naddr, NULL, &sn); 5424 if (!PF_AZERO(&naddr, AF_INET6)) 5425 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5426 &naddr, AF_INET6); 5427 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5428 } else { 5429 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5430 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5431 &s->rt_addr, AF_INET6); 5432 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5433 } 5434 5435 if (s) 5436 PF_STATE_UNLOCK(s); 5437 5438 if (ifp == NULL) 5439 goto bad; 5440 5441 if (oifp != ifp) { 5442 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5443 goto bad; 5444 else if (m0 == NULL) 5445 goto done; 5446 if (m0->m_len < sizeof(struct ip6_hdr)) { 5447 DPFPRINTF(PF_DEBUG_URGENT, 5448 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5449 __func__)); 5450 goto bad; 5451 } 5452 ip6 = mtod(m0, struct ip6_hdr *); 5453 } 5454 5455 if (ifp->if_flags & IFF_LOOPBACK) 5456 m0->m_flags |= M_SKIP_FIREWALL; 5457 5458 /* 5459 * If the packet is too large for the outgoing interface, 5460 * send back an icmp6 error. 5461 */ 5462 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5463 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5464 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5465 nd6_output(ifp, ifp, m0, &dst, NULL); 5466 else { 5467 in6_ifstat_inc(ifp, ifs6_in_toobig); 5468 if (r->rt != PF_DUPTO) 5469 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5470 else 5471 goto bad; 5472 } 5473 5474 done: 5475 if (r->rt != PF_DUPTO) 5476 *m = NULL; 5477 return; 5478 5479 bad_locked: 5480 if (s) 5481 PF_STATE_UNLOCK(s); 5482 bad: 5483 m_freem(m0); 5484 goto done; 5485 } 5486 #endif /* INET6 */ 5487 5488 /* 5489 * FreeBSD supports cksum offloads for the following drivers. 5490 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5491 * ti(4), txp(4), xl(4) 5492 * 5493 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5494 * network driver performed cksum including pseudo header, need to verify 5495 * csum_data 5496 * CSUM_DATA_VALID : 5497 * network driver performed cksum, needs to additional pseudo header 5498 * cksum computation with partial csum_data(i.e. lack of H/W support for 5499 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5500 * 5501 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5502 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5503 * TCP/UDP layer. 5504 * Also, set csum_data to 0xffff to force cksum validation. 5505 */ 5506 static int 5507 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5508 { 5509 u_int16_t sum = 0; 5510 int hw_assist = 0; 5511 struct ip *ip; 5512 5513 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5514 return (1); 5515 if (m->m_pkthdr.len < off + len) 5516 return (1); 5517 5518 switch (p) { 5519 case IPPROTO_TCP: 5520 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5521 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5522 sum = m->m_pkthdr.csum_data; 5523 } else { 5524 ip = mtod(m, struct ip *); 5525 sum = in_pseudo(ip->ip_src.s_addr, 5526 ip->ip_dst.s_addr, htonl((u_short)len + 5527 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5528 } 5529 sum ^= 0xffff; 5530 ++hw_assist; 5531 } 5532 break; 5533 case IPPROTO_UDP: 5534 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5535 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5536 sum = m->m_pkthdr.csum_data; 5537 } else { 5538 ip = mtod(m, struct ip *); 5539 sum = in_pseudo(ip->ip_src.s_addr, 5540 ip->ip_dst.s_addr, htonl((u_short)len + 5541 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5542 } 5543 sum ^= 0xffff; 5544 ++hw_assist; 5545 } 5546 break; 5547 case IPPROTO_ICMP: 5548 #ifdef INET6 5549 case IPPROTO_ICMPV6: 5550 #endif /* INET6 */ 5551 break; 5552 default: 5553 return (1); 5554 } 5555 5556 if (!hw_assist) { 5557 switch (af) { 5558 case AF_INET: 5559 if (p == IPPROTO_ICMP) { 5560 if (m->m_len < off) 5561 return (1); 5562 m->m_data += off; 5563 m->m_len -= off; 5564 sum = in_cksum(m, len); 5565 m->m_data -= off; 5566 m->m_len += off; 5567 } else { 5568 if (m->m_len < sizeof(struct ip)) 5569 return (1); 5570 sum = in4_cksum(m, p, off, len); 5571 } 5572 break; 5573 #ifdef INET6 5574 case AF_INET6: 5575 if (m->m_len < sizeof(struct ip6_hdr)) 5576 return (1); 5577 sum = in6_cksum(m, p, off, len); 5578 break; 5579 #endif /* INET6 */ 5580 default: 5581 return (1); 5582 } 5583 } 5584 if (sum) { 5585 switch (p) { 5586 case IPPROTO_TCP: 5587 { 5588 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5589 break; 5590 } 5591 case IPPROTO_UDP: 5592 { 5593 KMOD_UDPSTAT_INC(udps_badsum); 5594 break; 5595 } 5596 #ifdef INET 5597 case IPPROTO_ICMP: 5598 { 5599 KMOD_ICMPSTAT_INC(icps_checksum); 5600 break; 5601 } 5602 #endif 5603 #ifdef INET6 5604 case IPPROTO_ICMPV6: 5605 { 5606 KMOD_ICMP6STAT_INC(icp6s_checksum); 5607 break; 5608 } 5609 #endif /* INET6 */ 5610 } 5611 return (1); 5612 } else { 5613 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5614 m->m_pkthdr.csum_flags |= 5615 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5616 m->m_pkthdr.csum_data = 0xffff; 5617 } 5618 } 5619 return (0); 5620 } 5621 5622 5623 #ifdef INET 5624 int 5625 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5626 { 5627 struct pfi_kif *kif; 5628 u_short action, reason = 0, log = 0; 5629 struct mbuf *m = *m0; 5630 struct ip *h = NULL; 5631 struct m_tag *ipfwtag; 5632 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5633 struct pf_state *s = NULL; 5634 struct pf_ruleset *ruleset = NULL; 5635 struct pf_pdesc pd; 5636 int off, dirndx, pqid = 0; 5637 5638 M_ASSERTPKTHDR(m); 5639 5640 if (!V_pf_status.running) 5641 return (PF_PASS); 5642 5643 memset(&pd, 0, sizeof(pd)); 5644 5645 kif = (struct pfi_kif *)ifp->if_pf_kif; 5646 5647 if (kif == NULL) { 5648 DPFPRINTF(PF_DEBUG_URGENT, 5649 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5650 return (PF_DROP); 5651 } 5652 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5653 return (PF_PASS); 5654 5655 if (m->m_flags & M_SKIP_FIREWALL) 5656 return (PF_PASS); 5657 5658 pd.pf_mtag = pf_find_mtag(m); 5659 5660 PF_RULES_RLOCK(); 5661 5662 if (ip_divert_ptr != NULL && 5663 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5664 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5665 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5666 if (pd.pf_mtag == NULL && 5667 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5668 action = PF_DROP; 5669 goto done; 5670 } 5671 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5672 m_tag_delete(m, ipfwtag); 5673 } 5674 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5675 m->m_flags |= M_FASTFWD_OURS; 5676 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5677 } 5678 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5679 /* We do IP header normalization and packet reassembly here */ 5680 action = PF_DROP; 5681 goto done; 5682 } 5683 m = *m0; /* pf_normalize messes with m0 */ 5684 h = mtod(m, struct ip *); 5685 5686 off = h->ip_hl << 2; 5687 if (off < (int)sizeof(struct ip)) { 5688 action = PF_DROP; 5689 REASON_SET(&reason, PFRES_SHORT); 5690 log = 1; 5691 goto done; 5692 } 5693 5694 pd.src = (struct pf_addr *)&h->ip_src; 5695 pd.dst = (struct pf_addr *)&h->ip_dst; 5696 pd.sport = pd.dport = NULL; 5697 pd.ip_sum = &h->ip_sum; 5698 pd.proto_sum = NULL; 5699 pd.proto = h->ip_p; 5700 pd.dir = dir; 5701 pd.sidx = (dir == PF_IN) ? 0 : 1; 5702 pd.didx = (dir == PF_IN) ? 1 : 0; 5703 pd.af = AF_INET; 5704 pd.tos = h->ip_tos; 5705 pd.tot_len = ntohs(h->ip_len); 5706 5707 /* handle fragments that didn't get reassembled by normalization */ 5708 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5709 action = pf_test_fragment(&r, dir, kif, m, h, 5710 &pd, &a, &ruleset); 5711 goto done; 5712 } 5713 5714 switch (h->ip_p) { 5715 5716 case IPPROTO_TCP: { 5717 struct tcphdr th; 5718 5719 pd.hdr.tcp = &th; 5720 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5721 &action, &reason, AF_INET)) { 5722 log = action != PF_PASS; 5723 goto done; 5724 } 5725 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5726 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5727 pqid = 1; 5728 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5729 if (action == PF_DROP) 5730 goto done; 5731 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5732 &reason); 5733 if (action == PF_PASS) { 5734 if (pfsync_update_state_ptr != NULL) 5735 pfsync_update_state_ptr(s); 5736 r = s->rule.ptr; 5737 a = s->anchor.ptr; 5738 log = s->log; 5739 } else if (s == NULL) 5740 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5741 &a, &ruleset, inp); 5742 break; 5743 } 5744 5745 case IPPROTO_UDP: { 5746 struct udphdr uh; 5747 5748 pd.hdr.udp = &uh; 5749 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5750 &action, &reason, AF_INET)) { 5751 log = action != PF_PASS; 5752 goto done; 5753 } 5754 if (uh.uh_dport == 0 || 5755 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5756 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5757 action = PF_DROP; 5758 REASON_SET(&reason, PFRES_SHORT); 5759 goto done; 5760 } 5761 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5762 if (action == PF_PASS) { 5763 if (pfsync_update_state_ptr != NULL) 5764 pfsync_update_state_ptr(s); 5765 r = s->rule.ptr; 5766 a = s->anchor.ptr; 5767 log = s->log; 5768 } else if (s == NULL) 5769 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5770 &a, &ruleset, inp); 5771 break; 5772 } 5773 5774 case IPPROTO_ICMP: { 5775 struct icmp ih; 5776 5777 pd.hdr.icmp = &ih; 5778 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5779 &action, &reason, AF_INET)) { 5780 log = action != PF_PASS; 5781 goto done; 5782 } 5783 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5784 &reason); 5785 if (action == PF_PASS) { 5786 if (pfsync_update_state_ptr != NULL) 5787 pfsync_update_state_ptr(s); 5788 r = s->rule.ptr; 5789 a = s->anchor.ptr; 5790 log = s->log; 5791 } else if (s == NULL) 5792 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5793 &a, &ruleset, inp); 5794 break; 5795 } 5796 5797 #ifdef INET6 5798 case IPPROTO_ICMPV6: { 5799 action = PF_DROP; 5800 DPFPRINTF(PF_DEBUG_MISC, 5801 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5802 goto done; 5803 } 5804 #endif 5805 5806 default: 5807 action = pf_test_state_other(&s, dir, kif, m, &pd); 5808 if (action == PF_PASS) { 5809 if (pfsync_update_state_ptr != NULL) 5810 pfsync_update_state_ptr(s); 5811 r = s->rule.ptr; 5812 a = s->anchor.ptr; 5813 log = s->log; 5814 } else if (s == NULL) 5815 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5816 &a, &ruleset, inp); 5817 break; 5818 } 5819 5820 done: 5821 PF_RULES_RUNLOCK(); 5822 if (action == PF_PASS && h->ip_hl > 5 && 5823 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5824 action = PF_DROP; 5825 REASON_SET(&reason, PFRES_IPOPTIONS); 5826 log = 1; 5827 DPFPRINTF(PF_DEBUG_MISC, 5828 ("pf: dropping packet with ip options\n")); 5829 } 5830 5831 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5832 action = PF_DROP; 5833 REASON_SET(&reason, PFRES_MEMORY); 5834 } 5835 if (r->rtableid >= 0) 5836 M_SETFIB(m, r->rtableid); 5837 5838 #ifdef ALTQ 5839 if (action == PF_PASS && r->qid) { 5840 if (pd.pf_mtag == NULL && 5841 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5842 action = PF_DROP; 5843 REASON_SET(&reason, PFRES_MEMORY); 5844 } 5845 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5846 pd.pf_mtag->qid = r->pqid; 5847 else 5848 pd.pf_mtag->qid = r->qid; 5849 /* add hints for ecn */ 5850 pd.pf_mtag->hdr = h; 5851 5852 } 5853 #endif /* ALTQ */ 5854 5855 /* 5856 * connections redirected to loopback should not match sockets 5857 * bound specifically to loopback due to security implications, 5858 * see tcp_input() and in_pcblookup_listen(). 5859 */ 5860 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5861 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5862 (s->nat_rule.ptr->action == PF_RDR || 5863 s->nat_rule.ptr->action == PF_BINAT) && 5864 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5865 m->m_flags |= M_SKIP_FIREWALL; 5866 5867 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5868 !PACKET_LOOPED(&pd)) { 5869 5870 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5871 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5872 if (ipfwtag != NULL) { 5873 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5874 ntohs(r->divert.port); 5875 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5876 5877 if (s) 5878 PF_STATE_UNLOCK(s); 5879 5880 m_tag_prepend(m, ipfwtag); 5881 if (m->m_flags & M_FASTFWD_OURS) { 5882 if (pd.pf_mtag == NULL && 5883 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5884 action = PF_DROP; 5885 REASON_SET(&reason, PFRES_MEMORY); 5886 log = 1; 5887 DPFPRINTF(PF_DEBUG_MISC, 5888 ("pf: failed to allocate tag\n")); 5889 } 5890 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5891 m->m_flags &= ~M_FASTFWD_OURS; 5892 } 5893 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5894 *m0 = NULL; 5895 5896 return (action); 5897 } else { 5898 /* XXX: ipfw has the same behaviour! */ 5899 action = PF_DROP; 5900 REASON_SET(&reason, PFRES_MEMORY); 5901 log = 1; 5902 DPFPRINTF(PF_DEBUG_MISC, 5903 ("pf: failed to allocate divert tag\n")); 5904 } 5905 } 5906 5907 if (log) { 5908 struct pf_rule *lr; 5909 5910 if (s != NULL && s->nat_rule.ptr != NULL && 5911 s->nat_rule.ptr->log & PF_LOG_ALL) 5912 lr = s->nat_rule.ptr; 5913 else 5914 lr = r; 5915 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5916 (s == NULL)); 5917 } 5918 5919 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5920 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5921 5922 if (action == PF_PASS || r->action == PF_DROP) { 5923 dirndx = (dir == PF_OUT); 5924 r->packets[dirndx]++; 5925 r->bytes[dirndx] += pd.tot_len; 5926 if (a != NULL) { 5927 a->packets[dirndx]++; 5928 a->bytes[dirndx] += pd.tot_len; 5929 } 5930 if (s != NULL) { 5931 if (s->nat_rule.ptr != NULL) { 5932 s->nat_rule.ptr->packets[dirndx]++; 5933 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5934 } 5935 if (s->src_node != NULL) { 5936 s->src_node->packets[dirndx]++; 5937 s->src_node->bytes[dirndx] += pd.tot_len; 5938 } 5939 if (s->nat_src_node != NULL) { 5940 s->nat_src_node->packets[dirndx]++; 5941 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5942 } 5943 dirndx = (dir == s->direction) ? 0 : 1; 5944 s->packets[dirndx]++; 5945 s->bytes[dirndx] += pd.tot_len; 5946 } 5947 tr = r; 5948 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5949 if (nr != NULL && r == &V_pf_default_rule) 5950 tr = nr; 5951 if (tr->src.addr.type == PF_ADDR_TABLE) 5952 pfr_update_stats(tr->src.addr.p.tbl, 5953 (s == NULL) ? pd.src : 5954 &s->key[(s->direction == PF_IN)]-> 5955 addr[(s->direction == PF_OUT)], 5956 pd.af, pd.tot_len, dir == PF_OUT, 5957 r->action == PF_PASS, tr->src.neg); 5958 if (tr->dst.addr.type == PF_ADDR_TABLE) 5959 pfr_update_stats(tr->dst.addr.p.tbl, 5960 (s == NULL) ? pd.dst : 5961 &s->key[(s->direction == PF_IN)]-> 5962 addr[(s->direction == PF_IN)], 5963 pd.af, pd.tot_len, dir == PF_OUT, 5964 r->action == PF_PASS, tr->dst.neg); 5965 } 5966 5967 switch (action) { 5968 case PF_SYNPROXY_DROP: 5969 m_freem(*m0); 5970 case PF_DEFER: 5971 *m0 = NULL; 5972 action = PF_PASS; 5973 break; 5974 default: 5975 /* pf_route() returns unlocked. */ 5976 if (r->rt) { 5977 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 5978 return (action); 5979 } 5980 break; 5981 } 5982 if (s) 5983 PF_STATE_UNLOCK(s); 5984 5985 return (action); 5986 } 5987 #endif /* INET */ 5988 5989 #ifdef INET6 5990 int 5991 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5992 { 5993 struct pfi_kif *kif; 5994 u_short action, reason = 0, log = 0; 5995 struct mbuf *m = *m0, *n = NULL; 5996 struct ip6_hdr *h = NULL; 5997 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5998 struct pf_state *s = NULL; 5999 struct pf_ruleset *ruleset = NULL; 6000 struct pf_pdesc pd; 6001 int off, terminal = 0, dirndx, rh_cnt = 0; 6002 6003 M_ASSERTPKTHDR(m); 6004 6005 if (!V_pf_status.running) 6006 return (PF_PASS); 6007 6008 memset(&pd, 0, sizeof(pd)); 6009 pd.pf_mtag = pf_find_mtag(m); 6010 6011 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6012 return (PF_PASS); 6013 6014 kif = (struct pfi_kif *)ifp->if_pf_kif; 6015 if (kif == NULL) { 6016 DPFPRINTF(PF_DEBUG_URGENT, 6017 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6018 return (PF_DROP); 6019 } 6020 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6021 return (PF_PASS); 6022 6023 PF_RULES_RLOCK(); 6024 6025 /* We do IP header normalization and packet reassembly here */ 6026 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6027 action = PF_DROP; 6028 goto done; 6029 } 6030 m = *m0; /* pf_normalize messes with m0 */ 6031 h = mtod(m, struct ip6_hdr *); 6032 6033 #if 1 6034 /* 6035 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6036 * will do something bad, so drop the packet for now. 6037 */ 6038 if (htons(h->ip6_plen) == 0) { 6039 action = PF_DROP; 6040 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6041 goto done; 6042 } 6043 #endif 6044 6045 pd.src = (struct pf_addr *)&h->ip6_src; 6046 pd.dst = (struct pf_addr *)&h->ip6_dst; 6047 pd.sport = pd.dport = NULL; 6048 pd.ip_sum = NULL; 6049 pd.proto_sum = NULL; 6050 pd.dir = dir; 6051 pd.sidx = (dir == PF_IN) ? 0 : 1; 6052 pd.didx = (dir == PF_IN) ? 1 : 0; 6053 pd.af = AF_INET6; 6054 pd.tos = 0; 6055 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6056 6057 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6058 pd.proto = h->ip6_nxt; 6059 do { 6060 switch (pd.proto) { 6061 case IPPROTO_FRAGMENT: 6062 action = pf_test_fragment(&r, dir, kif, m, h, 6063 &pd, &a, &ruleset); 6064 if (action == PF_DROP) 6065 REASON_SET(&reason, PFRES_FRAG); 6066 goto done; 6067 case IPPROTO_ROUTING: { 6068 struct ip6_rthdr rthdr; 6069 6070 if (rh_cnt++) { 6071 DPFPRINTF(PF_DEBUG_MISC, 6072 ("pf: IPv6 more than one rthdr\n")); 6073 action = PF_DROP; 6074 REASON_SET(&reason, PFRES_IPOPTIONS); 6075 log = 1; 6076 goto done; 6077 } 6078 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6079 &reason, pd.af)) { 6080 DPFPRINTF(PF_DEBUG_MISC, 6081 ("pf: IPv6 short rthdr\n")); 6082 action = PF_DROP; 6083 REASON_SET(&reason, PFRES_SHORT); 6084 log = 1; 6085 goto done; 6086 } 6087 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6088 DPFPRINTF(PF_DEBUG_MISC, 6089 ("pf: IPv6 rthdr0\n")); 6090 action = PF_DROP; 6091 REASON_SET(&reason, PFRES_IPOPTIONS); 6092 log = 1; 6093 goto done; 6094 } 6095 /* FALLTHROUGH */ 6096 } 6097 case IPPROTO_AH: 6098 case IPPROTO_HOPOPTS: 6099 case IPPROTO_DSTOPTS: { 6100 /* get next header and header length */ 6101 struct ip6_ext opt6; 6102 6103 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6104 NULL, &reason, pd.af)) { 6105 DPFPRINTF(PF_DEBUG_MISC, 6106 ("pf: IPv6 short opt\n")); 6107 action = PF_DROP; 6108 log = 1; 6109 goto done; 6110 } 6111 if (pd.proto == IPPROTO_AH) 6112 off += (opt6.ip6e_len + 2) * 4; 6113 else 6114 off += (opt6.ip6e_len + 1) * 8; 6115 pd.proto = opt6.ip6e_nxt; 6116 /* goto the next header */ 6117 break; 6118 } 6119 default: 6120 terminal++; 6121 break; 6122 } 6123 } while (!terminal); 6124 6125 /* if there's no routing header, use unmodified mbuf for checksumming */ 6126 if (!n) 6127 n = m; 6128 6129 switch (pd.proto) { 6130 6131 case IPPROTO_TCP: { 6132 struct tcphdr th; 6133 6134 pd.hdr.tcp = &th; 6135 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6136 &action, &reason, AF_INET6)) { 6137 log = action != PF_PASS; 6138 goto done; 6139 } 6140 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6141 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6142 if (action == PF_DROP) 6143 goto done; 6144 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6145 &reason); 6146 if (action == PF_PASS) { 6147 if (pfsync_update_state_ptr != NULL) 6148 pfsync_update_state_ptr(s); 6149 r = s->rule.ptr; 6150 a = s->anchor.ptr; 6151 log = s->log; 6152 } else if (s == NULL) 6153 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6154 &a, &ruleset, inp); 6155 break; 6156 } 6157 6158 case IPPROTO_UDP: { 6159 struct udphdr uh; 6160 6161 pd.hdr.udp = &uh; 6162 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6163 &action, &reason, AF_INET6)) { 6164 log = action != PF_PASS; 6165 goto done; 6166 } 6167 if (uh.uh_dport == 0 || 6168 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6169 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6170 action = PF_DROP; 6171 REASON_SET(&reason, PFRES_SHORT); 6172 goto done; 6173 } 6174 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6175 if (action == PF_PASS) { 6176 if (pfsync_update_state_ptr != NULL) 6177 pfsync_update_state_ptr(s); 6178 r = s->rule.ptr; 6179 a = s->anchor.ptr; 6180 log = s->log; 6181 } else if (s == NULL) 6182 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6183 &a, &ruleset, inp); 6184 break; 6185 } 6186 6187 case IPPROTO_ICMP: { 6188 action = PF_DROP; 6189 DPFPRINTF(PF_DEBUG_MISC, 6190 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6191 goto done; 6192 } 6193 6194 case IPPROTO_ICMPV6: { 6195 struct icmp6_hdr ih; 6196 6197 pd.hdr.icmp6 = &ih; 6198 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6199 &action, &reason, AF_INET6)) { 6200 log = action != PF_PASS; 6201 goto done; 6202 } 6203 action = pf_test_state_icmp(&s, dir, kif, 6204 m, off, h, &pd, &reason); 6205 if (action == PF_PASS) { 6206 if (pfsync_update_state_ptr != NULL) 6207 pfsync_update_state_ptr(s); 6208 r = s->rule.ptr; 6209 a = s->anchor.ptr; 6210 log = s->log; 6211 } else if (s == NULL) 6212 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6213 &a, &ruleset, inp); 6214 break; 6215 } 6216 6217 default: 6218 action = pf_test_state_other(&s, dir, kif, m, &pd); 6219 if (action == PF_PASS) { 6220 if (pfsync_update_state_ptr != NULL) 6221 pfsync_update_state_ptr(s); 6222 r = s->rule.ptr; 6223 a = s->anchor.ptr; 6224 log = s->log; 6225 } else if (s == NULL) 6226 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6227 &a, &ruleset, inp); 6228 break; 6229 } 6230 6231 done: 6232 PF_RULES_RUNLOCK(); 6233 if (n != m) { 6234 m_freem(n); 6235 n = NULL; 6236 } 6237 6238 /* handle dangerous IPv6 extension headers. */ 6239 if (action == PF_PASS && rh_cnt && 6240 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6241 action = PF_DROP; 6242 REASON_SET(&reason, PFRES_IPOPTIONS); 6243 log = 1; 6244 DPFPRINTF(PF_DEBUG_MISC, 6245 ("pf: dropping packet with dangerous v6 headers\n")); 6246 } 6247 6248 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6249 action = PF_DROP; 6250 REASON_SET(&reason, PFRES_MEMORY); 6251 } 6252 if (r->rtableid >= 0) 6253 M_SETFIB(m, r->rtableid); 6254 6255 #ifdef ALTQ 6256 if (action == PF_PASS && r->qid) { 6257 if (pd.pf_mtag == NULL && 6258 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6259 action = PF_DROP; 6260 REASON_SET(&reason, PFRES_MEMORY); 6261 } 6262 if (pd.tos & IPTOS_LOWDELAY) 6263 pd.pf_mtag->qid = r->pqid; 6264 else 6265 pd.pf_mtag->qid = r->qid; 6266 /* add hints for ecn */ 6267 pd.pf_mtag->hdr = h; 6268 } 6269 #endif /* ALTQ */ 6270 6271 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6272 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6273 (s->nat_rule.ptr->action == PF_RDR || 6274 s->nat_rule.ptr->action == PF_BINAT) && 6275 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6276 m->m_flags |= M_SKIP_FIREWALL; 6277 6278 /* XXX: Anybody working on it?! */ 6279 if (r->divert.port) 6280 printf("pf: divert(9) is not supported for IPv6\n"); 6281 6282 if (log) { 6283 struct pf_rule *lr; 6284 6285 if (s != NULL && s->nat_rule.ptr != NULL && 6286 s->nat_rule.ptr->log & PF_LOG_ALL) 6287 lr = s->nat_rule.ptr; 6288 else 6289 lr = r; 6290 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6291 &pd, (s == NULL)); 6292 } 6293 6294 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6295 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6296 6297 if (action == PF_PASS || r->action == PF_DROP) { 6298 dirndx = (dir == PF_OUT); 6299 r->packets[dirndx]++; 6300 r->bytes[dirndx] += pd.tot_len; 6301 if (a != NULL) { 6302 a->packets[dirndx]++; 6303 a->bytes[dirndx] += pd.tot_len; 6304 } 6305 if (s != NULL) { 6306 if (s->nat_rule.ptr != NULL) { 6307 s->nat_rule.ptr->packets[dirndx]++; 6308 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6309 } 6310 if (s->src_node != NULL) { 6311 s->src_node->packets[dirndx]++; 6312 s->src_node->bytes[dirndx] += pd.tot_len; 6313 } 6314 if (s->nat_src_node != NULL) { 6315 s->nat_src_node->packets[dirndx]++; 6316 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6317 } 6318 dirndx = (dir == s->direction) ? 0 : 1; 6319 s->packets[dirndx]++; 6320 s->bytes[dirndx] += pd.tot_len; 6321 } 6322 tr = r; 6323 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6324 if (nr != NULL && r == &V_pf_default_rule) 6325 tr = nr; 6326 if (tr->src.addr.type == PF_ADDR_TABLE) 6327 pfr_update_stats(tr->src.addr.p.tbl, 6328 (s == NULL) ? pd.src : 6329 &s->key[(s->direction == PF_IN)]->addr[0], 6330 pd.af, pd.tot_len, dir == PF_OUT, 6331 r->action == PF_PASS, tr->src.neg); 6332 if (tr->dst.addr.type == PF_ADDR_TABLE) 6333 pfr_update_stats(tr->dst.addr.p.tbl, 6334 (s == NULL) ? pd.dst : 6335 &s->key[(s->direction == PF_IN)]->addr[1], 6336 pd.af, pd.tot_len, dir == PF_OUT, 6337 r->action == PF_PASS, tr->dst.neg); 6338 } 6339 6340 switch (action) { 6341 case PF_SYNPROXY_DROP: 6342 m_freem(*m0); 6343 case PF_DEFER: 6344 *m0 = NULL; 6345 action = PF_PASS; 6346 break; 6347 default: 6348 /* pf_route6() returns unlocked. */ 6349 if (r->rt) { 6350 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6351 return (action); 6352 } 6353 break; 6354 } 6355 6356 if (s) 6357 PF_STATE_UNLOCK(s); 6358 6359 return (action); 6360 } 6361 #endif /* INET6 */ 6362