1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/sdt.h>
61 #include <sys/socket.h>
62 #include <sys/sysctl.h>
63 #include <sys/taskqueue.h>
64 #include <sys/ucred.h>
65
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_private.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 #include <net/route.h>
72 #include <net/route/nhop.h>
73 #include <net/vnet.h>
74
75 #include <net/pfil.h>
76 #include <net/pfvar.h>
77 #include <net/if_pflog.h>
78 #include <net/if_pfsync.h>
79
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_fib.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_fw.h>
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/udp.h>
94 #include <netinet/udp_var.h>
95
96 /* dummynet */
97 #include <netinet/ip_dummynet.h>
98 #include <netinet/ip_fw.h>
99 #include <netpfil/ipfw/dn_heap.h>
100 #include <netpfil/ipfw/ip_fw_private.h>
101 #include <netpfil/ipfw/ip_dn_private.h>
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet6/in6_fib.h>
110 #include <netinet6/scope6_var.h>
111 #endif /* INET6 */
112
113 #include <netinet/sctp_header.h>
114 #include <netinet/sctp_crc32.h>
115
116 #include <machine/in_cksum.h>
117 #include <security/mac/mac_framework.h>
118
119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
120
121 SDT_PROVIDER_DEFINE(pf);
122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
123 "struct pf_kstate *");
124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
126 "struct pf_kstate *");
127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
128 "struct pfi_kkif *");
129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
138 "struct pf_krule *", "struct mbuf *", "int");
139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
140 "struct pf_sctp_source *");
141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
142 "struct pf_kstate *", "struct pf_sctp_source *");
143
144 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
145 "struct mbuf *");
146 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
147 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
148 "int", "struct pf_keth_rule *", "char *");
149 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
150 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
151 "int", "struct pf_keth_rule *");
152 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
153
154 /*
155 * Global variables
156 */
157
158 /* state tables */
159 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
160 VNET_DEFINE(struct pf_kpalist, pf_pabuf[2]);
161 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
162 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
163 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
164 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
165 VNET_DEFINE(struct pf_kstatus, pf_status);
166
167 VNET_DEFINE(u_int32_t, ticket_altqs_active);
168 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
169 VNET_DEFINE(int, altqs_inactive_open);
170 VNET_DEFINE(u_int32_t, ticket_pabuf);
171
172 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx);
173 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
174 VNET_DEFINE(u_char, pf_tcp_secret[16]);
175 #define V_pf_tcp_secret VNET(pf_tcp_secret)
176 VNET_DEFINE(int, pf_tcp_secret_init);
177 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
178 VNET_DEFINE(int, pf_tcp_iss_off);
179 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
180 VNET_DECLARE(int, pf_vnet_active);
181 #define V_pf_vnet_active VNET(pf_vnet_active)
182
183 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
184 #define V_pf_purge_idx VNET(pf_purge_idx)
185
186 #ifdef PF_WANT_32_TO_64_COUNTER
187 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
188 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
189
190 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
191 VNET_DEFINE(size_t, pf_allrulecount);
192 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
193 #endif
194
195 struct pf_sctp_endpoint;
196 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
197 struct pf_sctp_source {
198 sa_family_t af;
199 struct pf_addr addr;
200 TAILQ_ENTRY(pf_sctp_source) entry;
201 };
202 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
203 struct pf_sctp_endpoint
204 {
205 uint32_t v_tag;
206 struct pf_sctp_sources sources;
207 RB_ENTRY(pf_sctp_endpoint) entry;
208 };
209 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)210 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
211 {
212 return (a->v_tag - b->v_tag);
213 }
214 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
215 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
216 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
217 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
218 static struct mtx_padalign pf_sctp_endpoints_mtx;
219 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
220 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
221 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
222
223 /*
224 * Queue for pf_intr() sends.
225 */
226 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
227 struct pf_send_entry {
228 STAILQ_ENTRY(pf_send_entry) pfse_next;
229 struct mbuf *pfse_m;
230 enum {
231 PFSE_IP,
232 PFSE_IP6,
233 PFSE_ICMP,
234 PFSE_ICMP6,
235 } pfse_type;
236 struct {
237 int type;
238 int code;
239 int mtu;
240 } icmpopts;
241 };
242
243 STAILQ_HEAD(pf_send_head, pf_send_entry);
244 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
245 #define V_pf_sendqueue VNET(pf_sendqueue)
246
247 static struct mtx_padalign pf_sendqueue_mtx;
248 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
249 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
250 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
251
252 /*
253 * Queue for pf_overload_task() tasks.
254 */
255 struct pf_overload_entry {
256 SLIST_ENTRY(pf_overload_entry) next;
257 struct pf_addr addr;
258 sa_family_t af;
259 uint8_t dir;
260 struct pf_krule *rule;
261 };
262
263 SLIST_HEAD(pf_overload_head, pf_overload_entry);
264 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
265 #define V_pf_overloadqueue VNET(pf_overloadqueue)
266 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
267 #define V_pf_overloadtask VNET(pf_overloadtask)
268
269 static struct mtx_padalign pf_overloadqueue_mtx;
270 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
271 "pf overload/flush queue", MTX_DEF);
272 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
273 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
274
275 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
276 struct mtx_padalign pf_unlnkdrules_mtx;
277 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
278 MTX_DEF);
279
280 struct sx pf_config_lock;
281 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
282
283 struct mtx_padalign pf_table_stats_lock;
284 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
285 MTX_DEF);
286
287 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
288 #define V_pf_sources_z VNET(pf_sources_z)
289 uma_zone_t pf_mtag_z;
290 VNET_DEFINE(uma_zone_t, pf_state_z);
291 VNET_DEFINE(uma_zone_t, pf_state_key_z);
292 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
293
294 VNET_DEFINE(struct unrhdr64, pf_stateid);
295
296 static void pf_src_tree_remove_state(struct pf_kstate *);
297 static void pf_init_threshold(struct pf_threshold *, u_int32_t,
298 u_int32_t);
299 static void pf_add_threshold(struct pf_threshold *);
300 static int pf_check_threshold(struct pf_threshold *);
301
302 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
303 u_int16_t *, u_int16_t *, struct pf_addr *,
304 u_int16_t, u_int8_t, sa_family_t, sa_family_t);
305 static int pf_modulate_sack(struct pf_pdesc *,
306 struct tcphdr *, struct pf_state_peer *);
307 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
308 int *, u_int16_t *, u_int16_t *);
309 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
310 struct pf_addr *, struct pf_addr *, u_int16_t,
311 u_int16_t *, u_int16_t *, u_int16_t *,
312 u_int16_t *, u_int8_t, sa_family_t);
313 int pf_change_icmp_af(struct mbuf *, int,
314 struct pf_pdesc *, struct pf_pdesc *,
315 struct pf_addr *, struct pf_addr *, sa_family_t,
316 sa_family_t);
317 int pf_translate_icmp_af(int, void *);
318 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
319 sa_family_t, struct pf_krule *, int);
320 static void pf_detach_state(struct pf_kstate *);
321 static int pf_state_key_attach(struct pf_state_key *,
322 struct pf_state_key *, struct pf_kstate *);
323 static void pf_state_key_detach(struct pf_kstate *, int);
324 static int pf_state_key_ctor(void *, int, void *, int);
325 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
326 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
327 struct pf_mtag *pf_mtag);
328 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
329 struct pf_krule *, struct mbuf **);
330 static int pf_dummynet_route(struct pf_pdesc *,
331 struct pf_kstate *, struct pf_krule *,
332 struct ifnet *, struct sockaddr *, struct mbuf **);
333 static int pf_test_eth_rule(int, struct pfi_kkif *,
334 struct mbuf **);
335 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
336 struct pf_pdesc *, struct pf_krule **,
337 struct pf_kruleset **, struct inpcb *);
338 static int pf_create_state(struct pf_krule *, struct pf_krule *,
339 struct pf_krule *, struct pf_pdesc *,
340 struct pf_state_key *, struct pf_state_key *, int *,
341 struct pf_kstate **, int, u_int16_t, u_int16_t,
342 struct pf_krule_slist *, struct pf_udp_mapping *);
343 static int pf_state_key_addr_setup(struct pf_pdesc *,
344 struct pf_state_key_cmp *, int);
345 static int pf_tcp_track_full(struct pf_kstate **,
346 struct pf_pdesc *, u_short *, int *);
347 static int pf_tcp_track_sloppy(struct pf_kstate **,
348 struct pf_pdesc *, u_short *);
349 static int pf_test_state_tcp(struct pf_kstate **,
350 struct pf_pdesc *, u_short *);
351 static int pf_test_state_udp(struct pf_kstate **,
352 struct pf_pdesc *);
353 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
354 struct pf_pdesc *, struct pf_kstate **,
355 int, u_int16_t, u_int16_t,
356 int, int *, int, int);
357 static int pf_test_state_icmp(struct pf_kstate **,
358 struct pf_pdesc *, u_short *);
359 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
360 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
361 struct pfi_kkif *, struct pf_kstate *, int);
362 static int pf_test_state_sctp(struct pf_kstate **,
363 struct pf_pdesc *, u_short *);
364 static int pf_test_state_other(struct pf_kstate **,
365 struct pf_pdesc *);
366 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
367 int, u_int16_t);
368 static int pf_check_proto_cksum(struct mbuf *, int, int,
369 u_int8_t, sa_family_t);
370 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *,
371 u_short *);
372 static void pf_print_state_parts(struct pf_kstate *,
373 struct pf_state_key *, struct pf_state_key *);
374 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
375 bool, u_int8_t);
376 static struct pf_kstate *pf_find_state(struct pfi_kkif *,
377 const struct pf_state_key_cmp *, u_int);
378 static bool pf_src_connlimit(struct pf_kstate *);
379 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
380 static void pf_counters_inc(int, struct pf_pdesc *,
381 struct pf_kstate *, struct pf_krule *,
382 struct pf_krule *);
383 static void pf_overload_task(void *v, int pending);
384 static u_short pf_insert_src_node(struct pf_ksrc_node **,
385 struct pf_srchash **, struct pf_krule *,
386 struct pf_addr *, sa_family_t, struct pf_addr *,
387 struct pfi_kkif *);
388 static u_int pf_purge_expired_states(u_int, int);
389 static void pf_purge_unlinked_rules(void);
390 static int pf_mtag_uminit(void *, int, int);
391 static void pf_mtag_free(struct m_tag *);
392 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
393 int, struct pf_state_key *);
394 #ifdef INET
395 static void pf_route(struct mbuf **, struct pf_krule *,
396 struct ifnet *, struct pf_kstate *,
397 struct pf_pdesc *, struct inpcb *);
398 #endif /* INET */
399 #ifdef INET6
400 static void pf_change_a6(struct pf_addr *, u_int16_t *,
401 struct pf_addr *, u_int8_t);
402 static void pf_route6(struct mbuf **, struct pf_krule *,
403 struct ifnet *, struct pf_kstate *,
404 struct pf_pdesc *, struct inpcb *);
405 #endif /* INET6 */
406 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
407
408 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
409
410 extern int pf_end_threads;
411 extern struct proc *pf_purge_proc;
412
413 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
414
415 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK };
416
417 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \
418 do { \
419 struct pf_state_key *nk; \
420 if ((pd->dir) == PF_OUT) \
421 nk = (_s)->key[PF_SK_STACK]; \
422 else \
423 nk = (_s)->key[PF_SK_WIRE]; \
424 pf_packet_rework_nat(_m, _pd, _off, nk); \
425 } while (0)
426
427 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
428 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
429
430 #define STATE_LOOKUP(k, s, pd) \
431 do { \
432 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \
433 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \
434 if ((s) == NULL) \
435 return (PF_DROP); \
436 if (PACKET_LOOPED(pd)) \
437 return (PF_PASS); \
438 } while (0)
439
440 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)441 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
442 {
443 struct pfi_kkif *k = pd->kif;
444
445 SDT_PROBE2(pf, ip, , bound_iface, st, k);
446
447 /* Floating unless otherwise specified. */
448 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
449 return (V_pfi_all);
450
451 /*
452 * Initially set to all, because we don't know what interface we'll be
453 * sending this out when we create the state.
454 */
455 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf))
456 return (V_pfi_all);
457
458 /* Don't overrule the interface for states created on incoming packets. */
459 if (st->direction == PF_IN)
460 return (k);
461
462 /* No route-to, so don't overrule. */
463 if (st->act.rt != PF_ROUTETO)
464 return (k);
465
466 /* Bind to the route-to interface. */
467 return (st->act.rt_kif);
468 }
469
470 #define STATE_INC_COUNTERS(s) \
471 do { \
472 struct pf_krule_item *mrm; \
473 counter_u64_add(s->rule->states_cur, 1); \
474 counter_u64_add(s->rule->states_tot, 1); \
475 if (s->anchor != NULL) { \
476 counter_u64_add(s->anchor->states_cur, 1); \
477 counter_u64_add(s->anchor->states_tot, 1); \
478 } \
479 if (s->nat_rule != NULL) { \
480 counter_u64_add(s->nat_rule->states_cur, 1);\
481 counter_u64_add(s->nat_rule->states_tot, 1);\
482 } \
483 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
484 counter_u64_add(mrm->r->states_cur, 1); \
485 counter_u64_add(mrm->r->states_tot, 1); \
486 } \
487 } while (0)
488
489 #define STATE_DEC_COUNTERS(s) \
490 do { \
491 struct pf_krule_item *mrm; \
492 if (s->nat_rule != NULL) \
493 counter_u64_add(s->nat_rule->states_cur, -1);\
494 if (s->anchor != NULL) \
495 counter_u64_add(s->anchor->states_cur, -1); \
496 counter_u64_add(s->rule->states_cur, -1); \
497 SLIST_FOREACH(mrm, &s->match_rules, entry) \
498 counter_u64_add(mrm->r->states_cur, -1); \
499 } while (0)
500
501 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
502 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
503 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
504 VNET_DEFINE(struct pf_idhash *, pf_idhash);
505 VNET_DEFINE(struct pf_srchash *, pf_srchash);
506 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
507 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
508
509 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
510 "pf(4)");
511
512 VNET_DEFINE(u_long, pf_hashmask);
513 VNET_DEFINE(u_long, pf_srchashmask);
514 VNET_DEFINE(u_long, pf_udpendpointhashmask);
515 VNET_DEFINE_STATIC(u_long, pf_hashsize);
516 #define V_pf_hashsize VNET(pf_hashsize)
517 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
518 #define V_pf_srchashsize VNET(pf_srchashsize)
519 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
520 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
521 u_long pf_ioctl_maxcount = 65535;
522
523 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
524 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
525 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
526 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
527 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
528 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
529 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
530 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
531
532 VNET_DEFINE(void *, pf_swi_cookie);
533 VNET_DEFINE(struct intr_event *, pf_swi_ie);
534
535 VNET_DEFINE(uint32_t, pf_hashseed);
536 #define V_pf_hashseed VNET(pf_hashseed)
537
538 static void
pf_sctp_checksum(struct mbuf * m,int off)539 pf_sctp_checksum(struct mbuf *m, int off)
540 {
541 uint32_t sum = 0;
542
543 /* Zero out the checksum, to enable recalculation. */
544 m_copyback(m, off + offsetof(struct sctphdr, checksum),
545 sizeof(sum), (caddr_t)&sum);
546
547 sum = sctp_calculate_cksum(m, off);
548
549 m_copyback(m, off + offsetof(struct sctphdr, checksum),
550 sizeof(sum), (caddr_t)&sum);
551 }
552
553 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)554 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
555 {
556
557 switch (af) {
558 #ifdef INET
559 case AF_INET:
560 if (a->addr32[0] > b->addr32[0])
561 return (1);
562 if (a->addr32[0] < b->addr32[0])
563 return (-1);
564 break;
565 #endif /* INET */
566 #ifdef INET6
567 case AF_INET6:
568 if (a->addr32[3] > b->addr32[3])
569 return (1);
570 if (a->addr32[3] < b->addr32[3])
571 return (-1);
572 if (a->addr32[2] > b->addr32[2])
573 return (1);
574 if (a->addr32[2] < b->addr32[2])
575 return (-1);
576 if (a->addr32[1] > b->addr32[1])
577 return (1);
578 if (a->addr32[1] < b->addr32[1])
579 return (-1);
580 if (a->addr32[0] > b->addr32[0])
581 return (1);
582 if (a->addr32[0] < b->addr32[0])
583 return (-1);
584 break;
585 #endif /* INET6 */
586 }
587 return (0);
588 }
589
590 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)591 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
592 {
593 switch (af) {
594 #ifdef INET
595 case AF_INET:
596 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
597 #endif
598 case AF_INET6:
599 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
600 default:
601 panic("Unknown af %d", af);
602 }
603 }
604
605 static void
pf_packet_rework_nat(struct mbuf * m,struct pf_pdesc * pd,int off,struct pf_state_key * nk)606 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
607 struct pf_state_key *nk)
608 {
609
610 switch (pd->proto) {
611 case IPPROTO_TCP: {
612 struct tcphdr *th = &pd->hdr.tcp;
613
614 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
615 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
616 &th->th_sum, &nk->addr[pd->sidx],
617 nk->port[pd->sidx], 0, pd->af, pd->naf);
618 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
619 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
620 &th->th_sum, &nk->addr[pd->didx],
621 nk->port[pd->didx], 0, pd->af, pd->naf);
622 m_copyback(m, off, sizeof(*th), (caddr_t)th);
623 break;
624 }
625 case IPPROTO_UDP: {
626 struct udphdr *uh = &pd->hdr.udp;
627
628 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
629 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
630 &uh->uh_sum, &nk->addr[pd->sidx],
631 nk->port[pd->sidx], 1, pd->af, pd->naf);
632 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
633 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
634 &uh->uh_sum, &nk->addr[pd->didx],
635 nk->port[pd->didx], 1, pd->af, pd->naf);
636 m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
637 break;
638 }
639 case IPPROTO_SCTP: {
640 struct sctphdr *sh = &pd->hdr.sctp;
641 uint16_t checksum = 0;
642
643 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
644 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum,
645 &checksum, &nk->addr[pd->sidx],
646 nk->port[pd->sidx], 1, pd->af, pd->naf);
647 }
648 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
649 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum,
650 &checksum, &nk->addr[pd->didx],
651 nk->port[pd->didx], 1, pd->af, pd->naf);
652 }
653
654 break;
655 }
656 case IPPROTO_ICMP: {
657 struct icmp *ih = &pd->hdr.icmp;
658
659 if (nk->port[pd->sidx] != ih->icmp_id) {
660 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
661 ih->icmp_cksum, ih->icmp_id,
662 nk->port[pd->sidx], 0);
663 ih->icmp_id = nk->port[pd->sidx];
664 pd->sport = &ih->icmp_id;
665
666 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
667 }
668 /* FALLTHROUGH */
669 }
670 default:
671 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
672 switch (pd->af) {
673 case AF_INET:
674 pf_change_a(&pd->src->v4.s_addr,
675 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
676 0);
677 break;
678 case AF_INET6:
679 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
680 break;
681 }
682 }
683 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
684 switch (pd->af) {
685 case AF_INET:
686 pf_change_a(&pd->dst->v4.s_addr,
687 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
688 0);
689 break;
690 case AF_INET6:
691 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
692 break;
693 }
694 }
695 break;
696 }
697 }
698
699 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)700 pf_hashkey(const struct pf_state_key *sk)
701 {
702 uint32_t h;
703
704 h = murmur3_32_hash32((const uint32_t *)sk,
705 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
706 V_pf_hashseed);
707
708 return (h & V_pf_hashmask);
709 }
710
711 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)712 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
713 {
714 uint32_t h;
715
716 switch (af) {
717 case AF_INET:
718 h = murmur3_32_hash32((uint32_t *)&addr->v4,
719 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
720 break;
721 case AF_INET6:
722 h = murmur3_32_hash32((uint32_t *)&addr->v6,
723 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
724 break;
725 }
726
727 return (h & V_pf_srchashmask);
728 }
729
730 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)731 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
732 {
733 uint32_t h;
734
735 h = murmur3_32_hash32((uint32_t *)endpoint,
736 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
737 V_pf_hashseed);
738 return (h & V_pf_udpendpointhashmask);
739 }
740
741 #ifdef ALTQ
742 static int
pf_state_hash(struct pf_kstate * s)743 pf_state_hash(struct pf_kstate *s)
744 {
745 u_int32_t hv = (intptr_t)s / sizeof(*s);
746
747 hv ^= crc32(&s->src, sizeof(s->src));
748 hv ^= crc32(&s->dst, sizeof(s->dst));
749 if (hv == 0)
750 hv = 1;
751 return (hv);
752 }
753 #endif
754
755 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)756 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
757 {
758 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
759 s->dst.state = newstate;
760 if (which == PF_PEER_DST)
761 return;
762 if (s->src.state == newstate)
763 return;
764 if (s->creatorid == V_pf_status.hostid &&
765 s->key[PF_SK_STACK] != NULL &&
766 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
767 !(TCPS_HAVEESTABLISHED(s->src.state) ||
768 s->src.state == TCPS_CLOSED) &&
769 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
770 atomic_add_32(&V_pf_status.states_halfopen, -1);
771
772 s->src.state = newstate;
773 }
774
775 #ifdef INET6
776 void
pf_addrcpy(struct pf_addr * dst,const struct pf_addr * src,sa_family_t af)777 pf_addrcpy(struct pf_addr *dst, const struct pf_addr *src, sa_family_t af)
778 {
779 switch (af) {
780 #ifdef INET
781 case AF_INET:
782 memcpy(&dst->v4, &src->v4, sizeof(dst->v4));
783 break;
784 #endif /* INET */
785 case AF_INET6:
786 memcpy(&dst->v6, &src->v6, sizeof(dst->v6));
787 break;
788 }
789 }
790 #endif /* INET6 */
791
792 static void
pf_init_threshold(struct pf_threshold * threshold,u_int32_t limit,u_int32_t seconds)793 pf_init_threshold(struct pf_threshold *threshold,
794 u_int32_t limit, u_int32_t seconds)
795 {
796 threshold->limit = limit * PF_THRESHOLD_MULT;
797 threshold->seconds = seconds;
798 threshold->count = 0;
799 threshold->last = time_uptime;
800 }
801
802 static void
pf_add_threshold(struct pf_threshold * threshold)803 pf_add_threshold(struct pf_threshold *threshold)
804 {
805 u_int32_t t = time_uptime, diff = t - threshold->last;
806
807 if (diff >= threshold->seconds)
808 threshold->count = 0;
809 else
810 threshold->count -= threshold->count * diff /
811 threshold->seconds;
812 threshold->count += PF_THRESHOLD_MULT;
813 threshold->last = t;
814 }
815
816 static int
pf_check_threshold(struct pf_threshold * threshold)817 pf_check_threshold(struct pf_threshold *threshold)
818 {
819 return (threshold->count > threshold->limit);
820 }
821
822 static bool
pf_src_connlimit(struct pf_kstate * state)823 pf_src_connlimit(struct pf_kstate *state)
824 {
825 struct pf_overload_entry *pfoe;
826 bool limited = false;
827
828 PF_STATE_LOCK_ASSERT(state);
829 PF_SRC_NODE_LOCK(state->src_node);
830
831 state->src_node->conn++;
832 state->src.tcp_est = 1;
833 pf_add_threshold(&state->src_node->conn_rate);
834
835 if (state->rule->max_src_conn &&
836 state->rule->max_src_conn <
837 state->src_node->conn) {
838 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
839 limited = true;
840 }
841
842 if (state->rule->max_src_conn_rate.limit &&
843 pf_check_threshold(&state->src_node->conn_rate)) {
844 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
845 limited = true;
846 }
847
848 if (!limited)
849 goto done;
850
851 /* Kill this state. */
852 state->timeout = PFTM_PURGE;
853 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
854
855 if (state->rule->overload_tbl == NULL)
856 goto done;
857
858 /* Schedule overloading and flushing task. */
859 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
860 if (pfoe == NULL)
861 goto done; /* too bad :( */
862
863 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
864 pfoe->af = state->key[PF_SK_WIRE]->af;
865 pfoe->rule = state->rule;
866 pfoe->dir = state->direction;
867 PF_OVERLOADQ_LOCK();
868 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
869 PF_OVERLOADQ_UNLOCK();
870 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
871
872 done:
873 PF_SRC_NODE_UNLOCK(state->src_node);
874 return (limited);
875 }
876
877 static void
pf_overload_task(void * v,int pending)878 pf_overload_task(void *v, int pending)
879 {
880 struct pf_overload_head queue;
881 struct pfr_addr p;
882 struct pf_overload_entry *pfoe, *pfoe1;
883 uint32_t killed = 0;
884
885 CURVNET_SET((struct vnet *)v);
886
887 PF_OVERLOADQ_LOCK();
888 queue = V_pf_overloadqueue;
889 SLIST_INIT(&V_pf_overloadqueue);
890 PF_OVERLOADQ_UNLOCK();
891
892 bzero(&p, sizeof(p));
893 SLIST_FOREACH(pfoe, &queue, next) {
894 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
895 if (V_pf_status.debug >= PF_DEBUG_MISC) {
896 printf("%s: blocking address ", __func__);
897 pf_print_host(&pfoe->addr, 0, pfoe->af);
898 printf("\n");
899 }
900
901 p.pfra_af = pfoe->af;
902 switch (pfoe->af) {
903 #ifdef INET
904 case AF_INET:
905 p.pfra_net = 32;
906 p.pfra_ip4addr = pfoe->addr.v4;
907 break;
908 #endif
909 #ifdef INET6
910 case AF_INET6:
911 p.pfra_net = 128;
912 p.pfra_ip6addr = pfoe->addr.v6;
913 break;
914 #endif
915 }
916
917 PF_RULES_WLOCK();
918 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
919 PF_RULES_WUNLOCK();
920 }
921
922 /*
923 * Remove those entries, that don't need flushing.
924 */
925 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
926 if (pfoe->rule->flush == 0) {
927 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
928 free(pfoe, M_PFTEMP);
929 } else
930 counter_u64_add(
931 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
932
933 /* If nothing to flush, return. */
934 if (SLIST_EMPTY(&queue)) {
935 CURVNET_RESTORE();
936 return;
937 }
938
939 for (int i = 0; i <= V_pf_hashmask; i++) {
940 struct pf_idhash *ih = &V_pf_idhash[i];
941 struct pf_state_key *sk;
942 struct pf_kstate *s;
943
944 PF_HASHROW_LOCK(ih);
945 LIST_FOREACH(s, &ih->states, entry) {
946 sk = s->key[PF_SK_WIRE];
947 SLIST_FOREACH(pfoe, &queue, next)
948 if (sk->af == pfoe->af &&
949 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
950 pfoe->rule == s->rule) &&
951 ((pfoe->dir == PF_OUT &&
952 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
953 (pfoe->dir == PF_IN &&
954 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
955 s->timeout = PFTM_PURGE;
956 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
957 killed++;
958 }
959 }
960 PF_HASHROW_UNLOCK(ih);
961 }
962 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
963 free(pfoe, M_PFTEMP);
964 if (V_pf_status.debug >= PF_DEBUG_MISC)
965 printf("%s: %u states killed", __func__, killed);
966
967 CURVNET_RESTORE();
968 }
969
970 /*
971 * On node found always returns locked. On not found its configurable.
972 */
973 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,bool returnlocked)974 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
975 struct pf_srchash **sh, bool returnlocked)
976 {
977 struct pf_ksrc_node *n;
978
979 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
980
981 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
982 PF_HASHROW_LOCK(*sh);
983 LIST_FOREACH(n, &(*sh)->nodes, entry)
984 if (n->rule == rule && n->af == af &&
985 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
986 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
987 break;
988
989 if (n == NULL && !returnlocked)
990 PF_HASHROW_UNLOCK(*sh);
991
992 return (n);
993 }
994
995 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)996 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
997 {
998 struct pf_ksrc_node *cur;
999
1000 if ((*sn) == NULL)
1001 return (false);
1002
1003 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
1004
1005 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
1006 PF_HASHROW_LOCK(sh);
1007 LIST_FOREACH(cur, &(sh->nodes), entry) {
1008 if (cur == (*sn) &&
1009 cur->expire != 1) /* Ignore nodes being killed */
1010 return (true);
1011 }
1012 PF_HASHROW_UNLOCK(sh);
1013 (*sn) = NULL;
1014 return (false);
1015 }
1016
1017 static void
pf_free_src_node(struct pf_ksrc_node * sn)1018 pf_free_src_node(struct pf_ksrc_node *sn)
1019 {
1020
1021 for (int i = 0; i < 2; i++) {
1022 counter_u64_free(sn->bytes[i]);
1023 counter_u64_free(sn->packets[i]);
1024 }
1025 uma_zfree(V_pf_sources_z, sn);
1026 }
1027
1028 static u_short
pf_insert_src_node(struct pf_ksrc_node ** sn,struct pf_srchash ** sh,struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif)1029 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh,
1030 struct pf_krule *rule, struct pf_addr *src, sa_family_t af,
1031 struct pf_addr *raddr, struct pfi_kkif *rkif)
1032 {
1033 u_short reason = 0;
1034
1035 KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
1036 rule->rdr.opts & PF_POOL_STICKYADDR),
1037 ("%s for non-tracking rule %p", __func__, rule));
1038
1039 /*
1040 * Request the sh to always be locked, as we might insert a new sn.
1041 */
1042 if (*sn == NULL)
1043 *sn = pf_find_src_node(src, rule, af, sh, true);
1044
1045 if (*sn == NULL) {
1046 PF_HASHROW_ASSERT(*sh);
1047
1048 if (rule->max_src_nodes &&
1049 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) {
1050 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1051 reason = PFRES_SRCLIMIT;
1052 goto done;
1053 }
1054
1055 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1056 if ((*sn) == NULL) {
1057 reason = PFRES_MEMORY;
1058 goto done;
1059 }
1060
1061 for (int i = 0; i < 2; i++) {
1062 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1063 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1064
1065 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1066 pf_free_src_node(*sn);
1067 reason = PFRES_MEMORY;
1068 goto done;
1069 }
1070 }
1071
1072 pf_init_threshold(&(*sn)->conn_rate,
1073 rule->max_src_conn_rate.limit,
1074 rule->max_src_conn_rate.seconds);
1075
1076 MPASS((*sn)->lock == NULL);
1077 (*sn)->lock = &(*sh)->lock;
1078
1079 (*sn)->af = af;
1080 (*sn)->rule = rule;
1081 PF_ACPY(&(*sn)->addr, src, af);
1082 PF_ACPY(&(*sn)->raddr, raddr, af);
1083 (*sn)->rkif = rkif;
1084 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1085 (*sn)->creation = time_uptime;
1086 (*sn)->ruletype = rule->action;
1087 if ((*sn)->rule != NULL)
1088 counter_u64_add((*sn)->rule->src_nodes, 1);
1089 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1090 } else {
1091 if (rule->max_src_states &&
1092 (*sn)->states >= rule->max_src_states) {
1093 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1094 1);
1095 reason = PFRES_SRCLIMIT;
1096 goto done;
1097 }
1098 }
1099 done:
1100 if (reason == 0)
1101 (*sn)->states++;
1102 else
1103 (*sn) = NULL;
1104
1105 PF_HASHROW_UNLOCK(*sh);
1106 return (reason);
1107 }
1108
1109 void
pf_unlink_src_node(struct pf_ksrc_node * src)1110 pf_unlink_src_node(struct pf_ksrc_node *src)
1111 {
1112 PF_SRC_NODE_LOCK_ASSERT(src);
1113
1114 LIST_REMOVE(src, entry);
1115 if (src->rule)
1116 counter_u64_add(src->rule->src_nodes, -1);
1117 }
1118
1119 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1120 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1121 {
1122 struct pf_ksrc_node *sn, *tmp;
1123 u_int count = 0;
1124
1125 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1126 pf_free_src_node(sn);
1127 count++;
1128 }
1129
1130 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1131
1132 return (count);
1133 }
1134
1135 void
pf_mtag_initialize(void)1136 pf_mtag_initialize(void)
1137 {
1138
1139 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1140 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1141 UMA_ALIGN_PTR, 0);
1142 }
1143
1144 /* Per-vnet data storage structures initialization. */
1145 void
pf_initialize(void)1146 pf_initialize(void)
1147 {
1148 struct pf_keyhash *kh;
1149 struct pf_idhash *ih;
1150 struct pf_srchash *sh;
1151 struct pf_udpendpointhash *uh;
1152 u_int i;
1153
1154 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1155 V_pf_hashsize = PF_HASHSIZ;
1156 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1157 V_pf_srchashsize = PF_SRCHASHSIZ;
1158 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1159 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1160
1161 V_pf_hashseed = arc4random();
1162
1163 /* States and state keys storage. */
1164 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1165 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1166 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1167 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1168 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1169
1170 V_pf_state_key_z = uma_zcreate("pf state keys",
1171 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1172 UMA_ALIGN_PTR, 0);
1173
1174 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1175 M_PFHASH, M_NOWAIT | M_ZERO);
1176 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1177 M_PFHASH, M_NOWAIT | M_ZERO);
1178 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1179 printf("pf: Unable to allocate memory for "
1180 "state_hashsize %lu.\n", V_pf_hashsize);
1181
1182 free(V_pf_keyhash, M_PFHASH);
1183 free(V_pf_idhash, M_PFHASH);
1184
1185 V_pf_hashsize = PF_HASHSIZ;
1186 V_pf_keyhash = mallocarray(V_pf_hashsize,
1187 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1188 V_pf_idhash = mallocarray(V_pf_hashsize,
1189 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1190 }
1191
1192 V_pf_hashmask = V_pf_hashsize - 1;
1193 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1194 i++, kh++, ih++) {
1195 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1196 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1197 }
1198
1199 /* Source nodes. */
1200 V_pf_sources_z = uma_zcreate("pf source nodes",
1201 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1202 0);
1203 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1204 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1205 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1206
1207 V_pf_srchash = mallocarray(V_pf_srchashsize,
1208 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1209 if (V_pf_srchash == NULL) {
1210 printf("pf: Unable to allocate memory for "
1211 "source_hashsize %lu.\n", V_pf_srchashsize);
1212
1213 V_pf_srchashsize = PF_SRCHASHSIZ;
1214 V_pf_srchash = mallocarray(V_pf_srchashsize,
1215 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1216 }
1217
1218 V_pf_srchashmask = V_pf_srchashsize - 1;
1219 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1220 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1221
1222
1223 /* UDP endpoint mappings. */
1224 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1225 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1226 UMA_ALIGN_PTR, 0);
1227 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1228 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1229 if (V_pf_udpendpointhash == NULL) {
1230 printf("pf: Unable to allocate memory for "
1231 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1232
1233 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1234 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1235 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1236 }
1237
1238 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1239 for (i = 0, uh = V_pf_udpendpointhash;
1240 i <= V_pf_udpendpointhashmask;
1241 i++, uh++) {
1242 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1243 MTX_DEF | MTX_DUPOK);
1244 }
1245
1246 /* ALTQ */
1247 TAILQ_INIT(&V_pf_altqs[0]);
1248 TAILQ_INIT(&V_pf_altqs[1]);
1249 TAILQ_INIT(&V_pf_altqs[2]);
1250 TAILQ_INIT(&V_pf_altqs[3]);
1251 TAILQ_INIT(&V_pf_pabuf[0]);
1252 TAILQ_INIT(&V_pf_pabuf[1]);
1253 V_pf_altqs_active = &V_pf_altqs[0];
1254 V_pf_altq_ifs_active = &V_pf_altqs[1];
1255 V_pf_altqs_inactive = &V_pf_altqs[2];
1256 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1257
1258 /* Send & overload+flush queues. */
1259 STAILQ_INIT(&V_pf_sendqueue);
1260 SLIST_INIT(&V_pf_overloadqueue);
1261 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1262
1263 /* Unlinked, but may be referenced rules. */
1264 TAILQ_INIT(&V_pf_unlinked_rules);
1265 }
1266
1267 void
pf_mtag_cleanup(void)1268 pf_mtag_cleanup(void)
1269 {
1270
1271 uma_zdestroy(pf_mtag_z);
1272 }
1273
1274 void
pf_cleanup(void)1275 pf_cleanup(void)
1276 {
1277 struct pf_keyhash *kh;
1278 struct pf_idhash *ih;
1279 struct pf_srchash *sh;
1280 struct pf_udpendpointhash *uh;
1281 struct pf_send_entry *pfse, *next;
1282 u_int i;
1283
1284 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1285 i <= V_pf_hashmask;
1286 i++, kh++, ih++) {
1287 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1288 __func__));
1289 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1290 __func__));
1291 mtx_destroy(&kh->lock);
1292 mtx_destroy(&ih->lock);
1293 }
1294 free(V_pf_keyhash, M_PFHASH);
1295 free(V_pf_idhash, M_PFHASH);
1296
1297 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1298 KASSERT(LIST_EMPTY(&sh->nodes),
1299 ("%s: source node hash not empty", __func__));
1300 mtx_destroy(&sh->lock);
1301 }
1302 free(V_pf_srchash, M_PFHASH);
1303
1304 for (i = 0, uh = V_pf_udpendpointhash;
1305 i <= V_pf_udpendpointhashmask;
1306 i++, uh++) {
1307 KASSERT(LIST_EMPTY(&uh->endpoints),
1308 ("%s: udp endpoint hash not empty", __func__));
1309 mtx_destroy(&uh->lock);
1310 }
1311 free(V_pf_udpendpointhash, M_PFHASH);
1312
1313 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1314 m_freem(pfse->pfse_m);
1315 free(pfse, M_PFTEMP);
1316 }
1317 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1318
1319 uma_zdestroy(V_pf_sources_z);
1320 uma_zdestroy(V_pf_state_z);
1321 uma_zdestroy(V_pf_state_key_z);
1322 uma_zdestroy(V_pf_udp_mapping_z);
1323 }
1324
1325 static int
pf_mtag_uminit(void * mem,int size,int how)1326 pf_mtag_uminit(void *mem, int size, int how)
1327 {
1328 struct m_tag *t;
1329
1330 t = (struct m_tag *)mem;
1331 t->m_tag_cookie = MTAG_ABI_COMPAT;
1332 t->m_tag_id = PACKET_TAG_PF;
1333 t->m_tag_len = sizeof(struct pf_mtag);
1334 t->m_tag_free = pf_mtag_free;
1335
1336 return (0);
1337 }
1338
1339 static void
pf_mtag_free(struct m_tag * t)1340 pf_mtag_free(struct m_tag *t)
1341 {
1342
1343 uma_zfree(pf_mtag_z, t);
1344 }
1345
1346 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1347 pf_get_mtag(struct mbuf *m)
1348 {
1349 struct m_tag *mtag;
1350
1351 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1352 return ((struct pf_mtag *)(mtag + 1));
1353
1354 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1355 if (mtag == NULL)
1356 return (NULL);
1357 bzero(mtag + 1, sizeof(struct pf_mtag));
1358 m_tag_prepend(m, mtag);
1359
1360 return ((struct pf_mtag *)(mtag + 1));
1361 }
1362
1363 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1364 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1365 struct pf_kstate *s)
1366 {
1367 struct pf_keyhash *khs, *khw, *kh;
1368 struct pf_state_key *sk, *cur;
1369 struct pf_kstate *si, *olds = NULL;
1370 int idx;
1371
1372 NET_EPOCH_ASSERT();
1373 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1374 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1375 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1376
1377 /*
1378 * We need to lock hash slots of both keys. To avoid deadlock
1379 * we always lock the slot with lower address first. Unlock order
1380 * isn't important.
1381 *
1382 * We also need to lock ID hash slot before dropping key
1383 * locks. On success we return with ID hash slot locked.
1384 */
1385
1386 if (skw == sks) {
1387 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1388 PF_HASHROW_LOCK(khs);
1389 } else {
1390 khs = &V_pf_keyhash[pf_hashkey(sks)];
1391 khw = &V_pf_keyhash[pf_hashkey(skw)];
1392 if (khs == khw) {
1393 PF_HASHROW_LOCK(khs);
1394 } else if (khs < khw) {
1395 PF_HASHROW_LOCK(khs);
1396 PF_HASHROW_LOCK(khw);
1397 } else {
1398 PF_HASHROW_LOCK(khw);
1399 PF_HASHROW_LOCK(khs);
1400 }
1401 }
1402
1403 #define KEYS_UNLOCK() do { \
1404 if (khs != khw) { \
1405 PF_HASHROW_UNLOCK(khs); \
1406 PF_HASHROW_UNLOCK(khw); \
1407 } else \
1408 PF_HASHROW_UNLOCK(khs); \
1409 } while (0)
1410
1411 /*
1412 * First run: start with wire key.
1413 */
1414 sk = skw;
1415 kh = khw;
1416 idx = PF_SK_WIRE;
1417
1418 MPASS(s->lock == NULL);
1419 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1420
1421 keyattach:
1422 LIST_FOREACH(cur, &kh->keys, entry)
1423 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1424 break;
1425
1426 if (cur != NULL) {
1427 /* Key exists. Check for same kif, if none, add to key. */
1428 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1429 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1430
1431 PF_HASHROW_LOCK(ih);
1432 if (si->kif == s->kif &&
1433 ((si->key[PF_SK_WIRE]->af == sk->af &&
1434 si->direction == s->direction) ||
1435 (si->key[PF_SK_WIRE]->af !=
1436 si->key[PF_SK_STACK]->af &&
1437 sk->af == si->key[PF_SK_STACK]->af &&
1438 si->direction != s->direction))) {
1439 if (sk->proto == IPPROTO_TCP &&
1440 si->src.state >= TCPS_FIN_WAIT_2 &&
1441 si->dst.state >= TCPS_FIN_WAIT_2) {
1442 /*
1443 * New state matches an old >FIN_WAIT_2
1444 * state. We can't drop key hash locks,
1445 * thus we can't unlink it properly.
1446 *
1447 * As a workaround we drop it into
1448 * TCPS_CLOSED state, schedule purge
1449 * ASAP and push it into the very end
1450 * of the slot TAILQ, so that it won't
1451 * conflict with our new state.
1452 */
1453 pf_set_protostate(si, PF_PEER_BOTH,
1454 TCPS_CLOSED);
1455 si->timeout = PFTM_PURGE;
1456 olds = si;
1457 } else {
1458 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1459 printf("pf: %s key attach "
1460 "failed on %s: ",
1461 (idx == PF_SK_WIRE) ?
1462 "wire" : "stack",
1463 s->kif->pfik_name);
1464 pf_print_state_parts(s,
1465 (idx == PF_SK_WIRE) ?
1466 sk : NULL,
1467 (idx == PF_SK_STACK) ?
1468 sk : NULL);
1469 printf(", existing: ");
1470 pf_print_state_parts(si,
1471 (idx == PF_SK_WIRE) ?
1472 sk : NULL,
1473 (idx == PF_SK_STACK) ?
1474 sk : NULL);
1475 printf("\n");
1476 }
1477 s->timeout = PFTM_UNLINKED;
1478 PF_HASHROW_UNLOCK(ih);
1479 KEYS_UNLOCK();
1480 if (idx == PF_SK_WIRE) {
1481 uma_zfree(V_pf_state_key_z, skw);
1482 if (skw != sks)
1483 uma_zfree(V_pf_state_key_z, sks);
1484 } else {
1485 pf_detach_state(s);
1486 }
1487 return (EEXIST); /* collision! */
1488 }
1489 }
1490 PF_HASHROW_UNLOCK(ih);
1491 }
1492 uma_zfree(V_pf_state_key_z, sk);
1493 s->key[idx] = cur;
1494 } else {
1495 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1496 s->key[idx] = sk;
1497 }
1498
1499 stateattach:
1500 /* List is sorted, if-bound states before floating. */
1501 if (s->kif == V_pfi_all)
1502 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1503 else
1504 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1505
1506 if (olds) {
1507 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1508 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1509 key_list[idx]);
1510 olds = NULL;
1511 }
1512
1513 /*
1514 * Attach done. See how should we (or should not?)
1515 * attach a second key.
1516 */
1517 if (sks == skw) {
1518 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1519 idx = PF_SK_STACK;
1520 sks = NULL;
1521 goto stateattach;
1522 } else if (sks != NULL) {
1523 /*
1524 * Continue attaching with stack key.
1525 */
1526 sk = sks;
1527 kh = khs;
1528 idx = PF_SK_STACK;
1529 sks = NULL;
1530 goto keyattach;
1531 }
1532
1533 PF_STATE_LOCK(s);
1534 KEYS_UNLOCK();
1535
1536 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1537 ("%s failure", __func__));
1538
1539 return (0);
1540 #undef KEYS_UNLOCK
1541 }
1542
1543 static void
pf_detach_state(struct pf_kstate * s)1544 pf_detach_state(struct pf_kstate *s)
1545 {
1546 struct pf_state_key *sks = s->key[PF_SK_STACK];
1547 struct pf_keyhash *kh;
1548
1549 NET_EPOCH_ASSERT();
1550 MPASS(s->timeout >= PFTM_MAX);
1551
1552 pf_sctp_multihome_detach_addr(s);
1553
1554 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1555 V_pflow_export_state_ptr(s);
1556
1557 if (sks != NULL) {
1558 kh = &V_pf_keyhash[pf_hashkey(sks)];
1559 PF_HASHROW_LOCK(kh);
1560 if (s->key[PF_SK_STACK] != NULL)
1561 pf_state_key_detach(s, PF_SK_STACK);
1562 /*
1563 * If both point to same key, then we are done.
1564 */
1565 if (sks == s->key[PF_SK_WIRE]) {
1566 pf_state_key_detach(s, PF_SK_WIRE);
1567 PF_HASHROW_UNLOCK(kh);
1568 return;
1569 }
1570 PF_HASHROW_UNLOCK(kh);
1571 }
1572
1573 if (s->key[PF_SK_WIRE] != NULL) {
1574 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1575 PF_HASHROW_LOCK(kh);
1576 if (s->key[PF_SK_WIRE] != NULL)
1577 pf_state_key_detach(s, PF_SK_WIRE);
1578 PF_HASHROW_UNLOCK(kh);
1579 }
1580 }
1581
1582 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1583 pf_state_key_detach(struct pf_kstate *s, int idx)
1584 {
1585 struct pf_state_key *sk = s->key[idx];
1586 #ifdef INVARIANTS
1587 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1588
1589 PF_HASHROW_ASSERT(kh);
1590 #endif
1591 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1592 s->key[idx] = NULL;
1593
1594 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1595 LIST_REMOVE(sk, entry);
1596 uma_zfree(V_pf_state_key_z, sk);
1597 }
1598 }
1599
1600 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1601 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1602 {
1603 struct pf_state_key *sk = mem;
1604
1605 bzero(sk, sizeof(struct pf_state_key_cmp));
1606 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1607 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1608
1609 return (0);
1610 }
1611
1612 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1613 pf_state_key_addr_setup(struct pf_pdesc *pd,
1614 struct pf_state_key_cmp *key, int multi)
1615 {
1616 struct pf_addr *saddr = pd->src;
1617 struct pf_addr *daddr = pd->dst;
1618 #ifdef INET6
1619 struct nd_neighbor_solicit nd;
1620 struct pf_addr *target;
1621 u_short action, reason;
1622
1623 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1624 goto copy;
1625
1626 switch (pd->hdr.icmp6.icmp6_type) {
1627 case ND_NEIGHBOR_SOLICIT:
1628 if (multi)
1629 return (-1);
1630 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1631 return (-1);
1632 target = (struct pf_addr *)&nd.nd_ns_target;
1633 daddr = target;
1634 break;
1635 case ND_NEIGHBOR_ADVERT:
1636 if (multi)
1637 return (-1);
1638 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1639 return (-1);
1640 target = (struct pf_addr *)&nd.nd_ns_target;
1641 saddr = target;
1642 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1643 key->addr[pd->didx].addr32[0] = 0;
1644 key->addr[pd->didx].addr32[1] = 0;
1645 key->addr[pd->didx].addr32[2] = 0;
1646 key->addr[pd->didx].addr32[3] = 0;
1647 daddr = NULL; /* overwritten */
1648 }
1649 break;
1650 default:
1651 if (multi == PF_ICMP_MULTI_LINK) {
1652 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1653 key->addr[pd->sidx].addr32[1] = 0;
1654 key->addr[pd->sidx].addr32[2] = 0;
1655 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1656 saddr = NULL; /* overwritten */
1657 }
1658 }
1659 copy:
1660 #endif
1661 if (saddr)
1662 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1663 if (daddr)
1664 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1665
1666 return (0);
1667 }
1668
1669 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1670 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1671 struct pf_state_key **sk, struct pf_state_key **nk)
1672 {
1673 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1674 if (*sk == NULL)
1675 return (ENOMEM);
1676
1677 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1678 0)) {
1679 uma_zfree(V_pf_state_key_z, *sk);
1680 *sk = NULL;
1681 return (ENOMEM);
1682 }
1683
1684 (*sk)->port[pd->sidx] = sport;
1685 (*sk)->port[pd->didx] = dport;
1686 (*sk)->proto = pd->proto;
1687 (*sk)->af = pd->af;
1688
1689 *nk = pf_state_key_clone(*sk);
1690 if (*nk == NULL) {
1691 uma_zfree(V_pf_state_key_z, *sk);
1692 *sk = NULL;
1693 return (ENOMEM);
1694 }
1695
1696 if (pd->af != pd->naf) {
1697 (*sk)->port[pd->sidx] = pd->osport;
1698 (*sk)->port[pd->didx] = pd->odport;
1699
1700 (*nk)->af = pd->naf;
1701
1702 /*
1703 * We're overwriting an address here, so potentially there's bits of an IPv6
1704 * address left in here. Clear that out first.
1705 */
1706 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1707 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1708
1709 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf);
1710 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf);
1711 (*nk)->port[pd->didx] = pd->nsport;
1712 (*nk)->port[pd->sidx] = pd->ndport;
1713 switch (pd->proto) {
1714 case IPPROTO_ICMP:
1715 (*nk)->proto = IPPROTO_ICMPV6;
1716 break;
1717 case IPPROTO_ICMPV6:
1718 (*nk)->proto = IPPROTO_ICMP;
1719 break;
1720 default:
1721 (*nk)->proto = pd->proto;
1722 }
1723 }
1724
1725 return (0);
1726 }
1727
1728 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1729 pf_state_key_clone(const struct pf_state_key *orig)
1730 {
1731 struct pf_state_key *sk;
1732
1733 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1734 if (sk == NULL)
1735 return (NULL);
1736
1737 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1738
1739 return (sk);
1740 }
1741
1742 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1743 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1744 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1745 {
1746 struct pf_idhash *ih;
1747 struct pf_kstate *cur;
1748 int error;
1749
1750 NET_EPOCH_ASSERT();
1751
1752 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1753 ("%s: sks not pristine", __func__));
1754 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1755 ("%s: skw not pristine", __func__));
1756 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1757
1758 s->kif = kif;
1759 s->orig_kif = orig_kif;
1760
1761 if (s->id == 0 && s->creatorid == 0) {
1762 s->id = alloc_unr64(&V_pf_stateid);
1763 s->id = htobe64(s->id);
1764 s->creatorid = V_pf_status.hostid;
1765 }
1766
1767 /* Returns with ID locked on success. */
1768 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1769 return (error);
1770
1771 ih = &V_pf_idhash[PF_IDHASH(s)];
1772 PF_HASHROW_ASSERT(ih);
1773 LIST_FOREACH(cur, &ih->states, entry)
1774 if (cur->id == s->id && cur->creatorid == s->creatorid)
1775 break;
1776
1777 if (cur != NULL) {
1778 s->timeout = PFTM_UNLINKED;
1779 PF_HASHROW_UNLOCK(ih);
1780 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1781 printf("pf: state ID collision: "
1782 "id: %016llx creatorid: %08x\n",
1783 (unsigned long long)be64toh(s->id),
1784 ntohl(s->creatorid));
1785 }
1786 pf_detach_state(s);
1787 return (EEXIST);
1788 }
1789 LIST_INSERT_HEAD(&ih->states, s, entry);
1790 /* One for keys, one for ID hash. */
1791 refcount_init(&s->refs, 2);
1792
1793 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1794 if (V_pfsync_insert_state_ptr != NULL)
1795 V_pfsync_insert_state_ptr(s);
1796
1797 /* Returns locked. */
1798 return (0);
1799 }
1800
1801 /*
1802 * Find state by ID: returns with locked row on success.
1803 */
1804 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1805 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1806 {
1807 struct pf_idhash *ih;
1808 struct pf_kstate *s;
1809
1810 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1811
1812 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))];
1813
1814 PF_HASHROW_LOCK(ih);
1815 LIST_FOREACH(s, &ih->states, entry)
1816 if (s->id == id && s->creatorid == creatorid)
1817 break;
1818
1819 if (s == NULL)
1820 PF_HASHROW_UNLOCK(ih);
1821
1822 return (s);
1823 }
1824
1825 /*
1826 * Find state by key.
1827 * Returns with ID hash slot locked on success.
1828 */
1829 static struct pf_kstate *
pf_find_state(struct pfi_kkif * kif,const struct pf_state_key_cmp * key,u_int dir)1830 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1831 u_int dir)
1832 {
1833 struct pf_keyhash *kh;
1834 struct pf_state_key *sk;
1835 struct pf_kstate *s;
1836 int idx;
1837
1838 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1839
1840 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1841
1842 PF_HASHROW_LOCK(kh);
1843 LIST_FOREACH(sk, &kh->keys, entry)
1844 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1845 break;
1846 if (sk == NULL) {
1847 PF_HASHROW_UNLOCK(kh);
1848 return (NULL);
1849 }
1850
1851 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1852
1853 /* List is sorted, if-bound states before floating ones. */
1854 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1855 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1856 PF_STATE_LOCK(s);
1857 PF_HASHROW_UNLOCK(kh);
1858 if (__predict_false(s->timeout >= PFTM_MAX)) {
1859 /*
1860 * State is either being processed by
1861 * pf_unlink_state() in an other thread, or
1862 * is scheduled for immediate expiry.
1863 */
1864 PF_STATE_UNLOCK(s);
1865 return (NULL);
1866 }
1867 return (s);
1868 }
1869
1870 /* Look through the other list, in case of AF-TO */
1871 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1872 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1873 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1874 continue;
1875 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1876 PF_STATE_LOCK(s);
1877 PF_HASHROW_UNLOCK(kh);
1878 if (__predict_false(s->timeout >= PFTM_MAX)) {
1879 /*
1880 * State is either being processed by
1881 * pf_unlink_state() in an other thread, or
1882 * is scheduled for immediate expiry.
1883 */
1884 PF_STATE_UNLOCK(s);
1885 return (NULL);
1886 }
1887 return (s);
1888 }
1889 }
1890
1891 PF_HASHROW_UNLOCK(kh);
1892
1893 return (NULL);
1894 }
1895
1896 /*
1897 * Returns with ID hash slot locked on success.
1898 */
1899 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1900 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1901 {
1902 struct pf_keyhash *kh;
1903 struct pf_state_key *sk;
1904 struct pf_kstate *s, *ret = NULL;
1905 int idx, inout = 0;
1906
1907 if (more != NULL)
1908 *more = 0;
1909
1910 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1911
1912 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1913
1914 PF_HASHROW_LOCK(kh);
1915 LIST_FOREACH(sk, &kh->keys, entry)
1916 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1917 break;
1918 if (sk == NULL) {
1919 PF_HASHROW_UNLOCK(kh);
1920 return (NULL);
1921 }
1922 switch (dir) {
1923 case PF_IN:
1924 idx = PF_SK_WIRE;
1925 break;
1926 case PF_OUT:
1927 idx = PF_SK_STACK;
1928 break;
1929 case PF_INOUT:
1930 idx = PF_SK_WIRE;
1931 inout = 1;
1932 break;
1933 default:
1934 panic("%s: dir %u", __func__, dir);
1935 }
1936 second_run:
1937 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1938 if (more == NULL) {
1939 PF_STATE_LOCK(s);
1940 PF_HASHROW_UNLOCK(kh);
1941 return (s);
1942 }
1943
1944 if (ret)
1945 (*more)++;
1946 else {
1947 ret = s;
1948 PF_STATE_LOCK(s);
1949 }
1950 }
1951 if (inout == 1) {
1952 inout = 0;
1953 idx = PF_SK_STACK;
1954 goto second_run;
1955 }
1956 PF_HASHROW_UNLOCK(kh);
1957
1958 return (ret);
1959 }
1960
1961 /*
1962 * FIXME
1963 * This routine is inefficient -- locks the state only to unlock immediately on
1964 * return.
1965 * It is racy -- after the state is unlocked nothing stops other threads from
1966 * removing it.
1967 */
1968 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)1969 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
1970 {
1971 struct pf_kstate *s;
1972
1973 s = pf_find_state_all(key, dir, NULL);
1974 if (s != NULL) {
1975 PF_STATE_UNLOCK(s);
1976 return (true);
1977 }
1978 return (false);
1979 }
1980
1981 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)1982 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
1983 struct pf_addr *nat_addr, uint16_t nat_port)
1984 {
1985 struct pf_udp_mapping *mapping;
1986
1987 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
1988 if (mapping == NULL)
1989 return (NULL);
1990 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
1991 mapping->endpoints[0].port = src_port;
1992 mapping->endpoints[0].af = af;
1993 mapping->endpoints[0].mapping = mapping;
1994 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
1995 mapping->endpoints[1].port = nat_port;
1996 mapping->endpoints[1].af = af;
1997 mapping->endpoints[1].mapping = mapping;
1998 refcount_init(&mapping->refs, 1);
1999 return (mapping);
2000 }
2001
2002 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2003 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2004 {
2005 struct pf_udpendpointhash *h0, *h1;
2006 struct pf_udp_endpoint *endpoint;
2007 int ret = EEXIST;
2008
2009 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2010 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2011 if (h0 == h1) {
2012 PF_HASHROW_LOCK(h0);
2013 } else if (h0 < h1) {
2014 PF_HASHROW_LOCK(h0);
2015 PF_HASHROW_LOCK(h1);
2016 } else {
2017 PF_HASHROW_LOCK(h1);
2018 PF_HASHROW_LOCK(h0);
2019 }
2020
2021 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2022 if (bcmp(endpoint, &mapping->endpoints[0],
2023 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2024 break;
2025 }
2026 if (endpoint != NULL)
2027 goto cleanup;
2028 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2029 if (bcmp(endpoint, &mapping->endpoints[1],
2030 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2031 break;
2032 }
2033 if (endpoint != NULL)
2034 goto cleanup;
2035 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2036 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2037 ret = 0;
2038
2039 cleanup:
2040 if (h0 != h1) {
2041 PF_HASHROW_UNLOCK(h0);
2042 PF_HASHROW_UNLOCK(h1);
2043 } else {
2044 PF_HASHROW_UNLOCK(h0);
2045 }
2046 return (ret);
2047 }
2048
2049 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2050 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2051 {
2052 /* refcount is synchronized on the source endpoint's row lock */
2053 struct pf_udpendpointhash *h0, *h1;
2054
2055 if (mapping == NULL)
2056 return;
2057
2058 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2059 PF_HASHROW_LOCK(h0);
2060 if (refcount_release(&mapping->refs)) {
2061 LIST_REMOVE(&mapping->endpoints[0], entry);
2062 PF_HASHROW_UNLOCK(h0);
2063 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2064 PF_HASHROW_LOCK(h1);
2065 LIST_REMOVE(&mapping->endpoints[1], entry);
2066 PF_HASHROW_UNLOCK(h1);
2067
2068 uma_zfree(V_pf_udp_mapping_z, mapping);
2069 } else {
2070 PF_HASHROW_UNLOCK(h0);
2071 }
2072 }
2073
2074
2075 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2076 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2077 {
2078 struct pf_udpendpointhash *uh;
2079 struct pf_udp_endpoint *endpoint;
2080
2081 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2082
2083 PF_HASHROW_LOCK(uh);
2084 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2085 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2086 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2087 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2088 break;
2089 }
2090 if (endpoint == NULL) {
2091 PF_HASHROW_UNLOCK(uh);
2092 return (NULL);
2093 }
2094 refcount_acquire(&endpoint->mapping->refs);
2095 PF_HASHROW_UNLOCK(uh);
2096 return (endpoint->mapping);
2097 }
2098 /* END state table stuff */
2099
2100 static void
pf_send(struct pf_send_entry * pfse)2101 pf_send(struct pf_send_entry *pfse)
2102 {
2103
2104 PF_SENDQ_LOCK();
2105 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2106 PF_SENDQ_UNLOCK();
2107 swi_sched(V_pf_swi_cookie, 0);
2108 }
2109
2110 static bool
pf_isforlocal(struct mbuf * m,int af)2111 pf_isforlocal(struct mbuf *m, int af)
2112 {
2113 switch (af) {
2114 #ifdef INET
2115 case AF_INET: {
2116 struct ip *ip = mtod(m, struct ip *);
2117
2118 return (in_localip(ip->ip_dst));
2119 }
2120 #endif
2121 #ifdef INET6
2122 case AF_INET6: {
2123 struct ip6_hdr *ip6;
2124 struct in6_ifaddr *ia;
2125 ip6 = mtod(m, struct ip6_hdr *);
2126 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2127 if (ia == NULL)
2128 return (false);
2129 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2130 }
2131 #endif
2132 }
2133
2134 return (false);
2135 }
2136
2137 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,int * multi,u_int16_t * virtual_id,u_int16_t * virtual_type)2138 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2139 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type)
2140 {
2141 /*
2142 * ICMP types marked with PF_OUT are typically responses to
2143 * PF_IN, and will match states in the opposite direction.
2144 * PF_IN ICMP types need to match a state with that type.
2145 */
2146 *icmp_dir = PF_OUT;
2147 *multi = PF_ICMP_MULTI_LINK;
2148 /* Queries (and responses) */
2149 switch (pd->af) {
2150 #ifdef INET
2151 case AF_INET:
2152 switch (type) {
2153 case ICMP_ECHO:
2154 *icmp_dir = PF_IN;
2155 case ICMP_ECHOREPLY:
2156 *virtual_type = ICMP_ECHO;
2157 *virtual_id = pd->hdr.icmp.icmp_id;
2158 break;
2159
2160 case ICMP_TSTAMP:
2161 *icmp_dir = PF_IN;
2162 case ICMP_TSTAMPREPLY:
2163 *virtual_type = ICMP_TSTAMP;
2164 *virtual_id = pd->hdr.icmp.icmp_id;
2165 break;
2166
2167 case ICMP_IREQ:
2168 *icmp_dir = PF_IN;
2169 case ICMP_IREQREPLY:
2170 *virtual_type = ICMP_IREQ;
2171 *virtual_id = pd->hdr.icmp.icmp_id;
2172 break;
2173
2174 case ICMP_MASKREQ:
2175 *icmp_dir = PF_IN;
2176 case ICMP_MASKREPLY:
2177 *virtual_type = ICMP_MASKREQ;
2178 *virtual_id = pd->hdr.icmp.icmp_id;
2179 break;
2180
2181 case ICMP_IPV6_WHEREAREYOU:
2182 *icmp_dir = PF_IN;
2183 case ICMP_IPV6_IAMHERE:
2184 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2185 *virtual_id = 0; /* Nothing sane to match on! */
2186 break;
2187
2188 case ICMP_MOBILE_REGREQUEST:
2189 *icmp_dir = PF_IN;
2190 case ICMP_MOBILE_REGREPLY:
2191 *virtual_type = ICMP_MOBILE_REGREQUEST;
2192 *virtual_id = 0; /* Nothing sane to match on! */
2193 break;
2194
2195 case ICMP_ROUTERSOLICIT:
2196 *icmp_dir = PF_IN;
2197 case ICMP_ROUTERADVERT:
2198 *virtual_type = ICMP_ROUTERSOLICIT;
2199 *virtual_id = 0; /* Nothing sane to match on! */
2200 break;
2201
2202 /* These ICMP types map to other connections */
2203 case ICMP_UNREACH:
2204 case ICMP_SOURCEQUENCH:
2205 case ICMP_REDIRECT:
2206 case ICMP_TIMXCEED:
2207 case ICMP_PARAMPROB:
2208 /* These will not be used, but set them anyway */
2209 *icmp_dir = PF_IN;
2210 *virtual_type = type;
2211 *virtual_id = 0;
2212 HTONS(*virtual_type);
2213 return (1); /* These types match to another state */
2214
2215 /*
2216 * All remaining ICMP types get their own states,
2217 * and will only match in one direction.
2218 */
2219 default:
2220 *icmp_dir = PF_IN;
2221 *virtual_type = type;
2222 *virtual_id = 0;
2223 break;
2224 }
2225 break;
2226 #endif /* INET */
2227 #ifdef INET6
2228 case AF_INET6:
2229 switch (type) {
2230 case ICMP6_ECHO_REQUEST:
2231 *icmp_dir = PF_IN;
2232 case ICMP6_ECHO_REPLY:
2233 *virtual_type = ICMP6_ECHO_REQUEST;
2234 *virtual_id = pd->hdr.icmp6.icmp6_id;
2235 break;
2236
2237 case MLD_LISTENER_QUERY:
2238 case MLD_LISTENER_REPORT: {
2239 /*
2240 * Listener Report can be sent by clients
2241 * without an associated Listener Query.
2242 * In addition to that, when Report is sent as a
2243 * reply to a Query its source and destination
2244 * address are different.
2245 */
2246 *icmp_dir = PF_IN;
2247 *virtual_type = MLD_LISTENER_QUERY;
2248 *virtual_id = 0;
2249 break;
2250 }
2251 case MLD_MTRACE:
2252 *icmp_dir = PF_IN;
2253 case MLD_MTRACE_RESP:
2254 *virtual_type = MLD_MTRACE;
2255 *virtual_id = 0; /* Nothing sane to match on! */
2256 break;
2257
2258 case ND_NEIGHBOR_SOLICIT:
2259 *icmp_dir = PF_IN;
2260 case ND_NEIGHBOR_ADVERT: {
2261 *virtual_type = ND_NEIGHBOR_SOLICIT;
2262 *virtual_id = 0;
2263 break;
2264 }
2265
2266 /*
2267 * These ICMP types map to other connections.
2268 * ND_REDIRECT can't be in this list because the triggering
2269 * packet header is optional.
2270 */
2271 case ICMP6_DST_UNREACH:
2272 case ICMP6_PACKET_TOO_BIG:
2273 case ICMP6_TIME_EXCEEDED:
2274 case ICMP6_PARAM_PROB:
2275 /* These will not be used, but set them anyway */
2276 *icmp_dir = PF_IN;
2277 *virtual_type = type;
2278 *virtual_id = 0;
2279 HTONS(*virtual_type);
2280 return (1); /* These types match to another state */
2281 /*
2282 * All remaining ICMP6 types get their own states,
2283 * and will only match in one direction.
2284 */
2285 default:
2286 *icmp_dir = PF_IN;
2287 *virtual_type = type;
2288 *virtual_id = 0;
2289 break;
2290 }
2291 break;
2292 #endif /* INET6 */
2293 }
2294 HTONS(*virtual_type);
2295 return (0); /* These types match to their own state */
2296 }
2297
2298 void
pf_intr(void * v)2299 pf_intr(void *v)
2300 {
2301 struct epoch_tracker et;
2302 struct pf_send_head queue;
2303 struct pf_send_entry *pfse, *next;
2304
2305 CURVNET_SET((struct vnet *)v);
2306
2307 PF_SENDQ_LOCK();
2308 queue = V_pf_sendqueue;
2309 STAILQ_INIT(&V_pf_sendqueue);
2310 PF_SENDQ_UNLOCK();
2311
2312 NET_EPOCH_ENTER(et);
2313
2314 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2315 switch (pfse->pfse_type) {
2316 #ifdef INET
2317 case PFSE_IP: {
2318 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2319 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2320 ("%s: rcvif != loif", __func__));
2321
2322 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2323 pfse->pfse_m->m_pkthdr.csum_flags |=
2324 CSUM_IP_VALID | CSUM_IP_CHECKED;
2325 ip_input(pfse->pfse_m);
2326 } else {
2327 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2328 NULL);
2329 }
2330 break;
2331 }
2332 case PFSE_ICMP:
2333 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2334 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2335 break;
2336 #endif /* INET */
2337 #ifdef INET6
2338 case PFSE_IP6:
2339 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2340 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2341 ("%s: rcvif != loif", __func__));
2342
2343 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2344 M_LOOP;
2345 ip6_input(pfse->pfse_m);
2346 } else {
2347 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2348 NULL, NULL);
2349 }
2350 break;
2351 case PFSE_ICMP6:
2352 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2353 pfse->icmpopts.code, pfse->icmpopts.mtu);
2354 break;
2355 #endif /* INET6 */
2356 default:
2357 panic("%s: unknown type", __func__);
2358 }
2359 free(pfse, M_PFTEMP);
2360 }
2361 NET_EPOCH_EXIT(et);
2362 CURVNET_RESTORE();
2363 }
2364
2365 #define pf_purge_thread_period (hz / 10)
2366
2367 #ifdef PF_WANT_32_TO_64_COUNTER
2368 static void
pf_status_counter_u64_periodic(void)2369 pf_status_counter_u64_periodic(void)
2370 {
2371
2372 PF_RULES_RASSERT();
2373
2374 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2375 return;
2376 }
2377
2378 for (int i = 0; i < FCNT_MAX; i++) {
2379 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2380 }
2381 }
2382
2383 static void
pf_kif_counter_u64_periodic(void)2384 pf_kif_counter_u64_periodic(void)
2385 {
2386 struct pfi_kkif *kif;
2387 size_t r, run;
2388
2389 PF_RULES_RASSERT();
2390
2391 if (__predict_false(V_pf_allkifcount == 0)) {
2392 return;
2393 }
2394
2395 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2396 return;
2397 }
2398
2399 run = V_pf_allkifcount / 10;
2400 if (run < 5)
2401 run = 5;
2402
2403 for (r = 0; r < run; r++) {
2404 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2405 if (kif == NULL) {
2406 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2407 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2408 break;
2409 }
2410
2411 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2412 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2413
2414 for (int i = 0; i < 2; i++) {
2415 for (int j = 0; j < 2; j++) {
2416 for (int k = 0; k < 2; k++) {
2417 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2418 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2419 }
2420 }
2421 }
2422 }
2423 }
2424
2425 static void
pf_rule_counter_u64_periodic(void)2426 pf_rule_counter_u64_periodic(void)
2427 {
2428 struct pf_krule *rule;
2429 size_t r, run;
2430
2431 PF_RULES_RASSERT();
2432
2433 if (__predict_false(V_pf_allrulecount == 0)) {
2434 return;
2435 }
2436
2437 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2438 return;
2439 }
2440
2441 run = V_pf_allrulecount / 10;
2442 if (run < 5)
2443 run = 5;
2444
2445 for (r = 0; r < run; r++) {
2446 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2447 if (rule == NULL) {
2448 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2449 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2450 break;
2451 }
2452
2453 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2454 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2455
2456 pf_counter_u64_periodic(&rule->evaluations);
2457 for (int i = 0; i < 2; i++) {
2458 pf_counter_u64_periodic(&rule->packets[i]);
2459 pf_counter_u64_periodic(&rule->bytes[i]);
2460 }
2461 }
2462 }
2463
2464 static void
pf_counter_u64_periodic_main(void)2465 pf_counter_u64_periodic_main(void)
2466 {
2467 PF_RULES_RLOCK_TRACKER;
2468
2469 V_pf_counter_periodic_iter++;
2470
2471 PF_RULES_RLOCK();
2472 pf_counter_u64_critical_enter();
2473 pf_status_counter_u64_periodic();
2474 pf_kif_counter_u64_periodic();
2475 pf_rule_counter_u64_periodic();
2476 pf_counter_u64_critical_exit();
2477 PF_RULES_RUNLOCK();
2478 }
2479 #else
2480 #define pf_counter_u64_periodic_main() do { } while (0)
2481 #endif
2482
2483 void
pf_purge_thread(void * unused __unused)2484 pf_purge_thread(void *unused __unused)
2485 {
2486 struct epoch_tracker et;
2487
2488 VNET_ITERATOR_DECL(vnet_iter);
2489
2490 sx_xlock(&pf_end_lock);
2491 while (pf_end_threads == 0) {
2492 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2493
2494 VNET_LIST_RLOCK();
2495 NET_EPOCH_ENTER(et);
2496 VNET_FOREACH(vnet_iter) {
2497 CURVNET_SET(vnet_iter);
2498
2499 /* Wait until V_pf_default_rule is initialized. */
2500 if (V_pf_vnet_active == 0) {
2501 CURVNET_RESTORE();
2502 continue;
2503 }
2504
2505 pf_counter_u64_periodic_main();
2506
2507 /*
2508 * Process 1/interval fraction of the state
2509 * table every run.
2510 */
2511 V_pf_purge_idx =
2512 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2513 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2514
2515 /*
2516 * Purge other expired types every
2517 * PFTM_INTERVAL seconds.
2518 */
2519 if (V_pf_purge_idx == 0) {
2520 /*
2521 * Order is important:
2522 * - states and src nodes reference rules
2523 * - states and rules reference kifs
2524 */
2525 pf_purge_expired_fragments();
2526 pf_purge_expired_src_nodes();
2527 pf_purge_unlinked_rules();
2528 pfi_kkif_purge();
2529 }
2530 CURVNET_RESTORE();
2531 }
2532 NET_EPOCH_EXIT(et);
2533 VNET_LIST_RUNLOCK();
2534 }
2535
2536 pf_end_threads++;
2537 sx_xunlock(&pf_end_lock);
2538 kproc_exit(0);
2539 }
2540
2541 void
pf_unload_vnet_purge(void)2542 pf_unload_vnet_purge(void)
2543 {
2544
2545 /*
2546 * To cleanse up all kifs and rules we need
2547 * two runs: first one clears reference flags,
2548 * then pf_purge_expired_states() doesn't
2549 * raise them, and then second run frees.
2550 */
2551 pf_purge_unlinked_rules();
2552 pfi_kkif_purge();
2553
2554 /*
2555 * Now purge everything.
2556 */
2557 pf_purge_expired_states(0, V_pf_hashmask);
2558 pf_purge_fragments(UINT_MAX);
2559 pf_purge_expired_src_nodes();
2560
2561 /*
2562 * Now all kifs & rules should be unreferenced,
2563 * thus should be successfully freed.
2564 */
2565 pf_purge_unlinked_rules();
2566 pfi_kkif_purge();
2567 }
2568
2569 u_int32_t
pf_state_expires(const struct pf_kstate * state)2570 pf_state_expires(const struct pf_kstate *state)
2571 {
2572 u_int32_t timeout;
2573 u_int32_t start;
2574 u_int32_t end;
2575 u_int32_t states;
2576
2577 /* handle all PFTM_* > PFTM_MAX here */
2578 if (state->timeout == PFTM_PURGE)
2579 return (time_uptime);
2580 KASSERT(state->timeout != PFTM_UNLINKED,
2581 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2582 KASSERT((state->timeout < PFTM_MAX),
2583 ("pf_state_expires: timeout > PFTM_MAX"));
2584 timeout = state->rule->timeout[state->timeout];
2585 if (!timeout)
2586 timeout = V_pf_default_rule.timeout[state->timeout];
2587 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2588 if (start && state->rule != &V_pf_default_rule) {
2589 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2590 states = counter_u64_fetch(state->rule->states_cur);
2591 } else {
2592 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2593 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2594 states = V_pf_status.states;
2595 }
2596 if (end && states > start && start < end) {
2597 if (states < end) {
2598 timeout = (u_int64_t)timeout * (end - states) /
2599 (end - start);
2600 return ((state->expire / 1000) + timeout);
2601 }
2602 else
2603 return (time_uptime);
2604 }
2605 return ((state->expire / 1000) + timeout);
2606 }
2607
2608 void
pf_purge_expired_src_nodes(void)2609 pf_purge_expired_src_nodes(void)
2610 {
2611 struct pf_ksrc_node_list freelist;
2612 struct pf_srchash *sh;
2613 struct pf_ksrc_node *cur, *next;
2614 int i;
2615
2616 LIST_INIT(&freelist);
2617 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2618 PF_HASHROW_LOCK(sh);
2619 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2620 if (cur->states == 0 && cur->expire <= time_uptime) {
2621 pf_unlink_src_node(cur);
2622 LIST_INSERT_HEAD(&freelist, cur, entry);
2623 } else if (cur->rule != NULL)
2624 cur->rule->rule_ref |= PFRULE_REFS;
2625 PF_HASHROW_UNLOCK(sh);
2626 }
2627
2628 pf_free_src_nodes(&freelist);
2629
2630 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2631 }
2632
2633 static void
pf_src_tree_remove_state(struct pf_kstate * s)2634 pf_src_tree_remove_state(struct pf_kstate *s)
2635 {
2636 struct pf_ksrc_node *sn;
2637 uint32_t timeout;
2638
2639 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2640 s->rule->timeout[PFTM_SRC_NODE] :
2641 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2642
2643 if (s->src_node != NULL) {
2644 sn = s->src_node;
2645 PF_SRC_NODE_LOCK(sn);
2646 if (s->src.tcp_est)
2647 --sn->conn;
2648 if (--sn->states == 0)
2649 sn->expire = time_uptime + timeout;
2650 PF_SRC_NODE_UNLOCK(sn);
2651 }
2652 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
2653 sn = s->nat_src_node;
2654 PF_SRC_NODE_LOCK(sn);
2655 if (--sn->states == 0)
2656 sn->expire = time_uptime + timeout;
2657 PF_SRC_NODE_UNLOCK(sn);
2658 }
2659 s->src_node = s->nat_src_node = NULL;
2660 }
2661
2662 /*
2663 * Unlink and potentilly free a state. Function may be
2664 * called with ID hash row locked, but always returns
2665 * unlocked, since it needs to go through key hash locking.
2666 */
2667 int
pf_unlink_state(struct pf_kstate * s)2668 pf_unlink_state(struct pf_kstate *s)
2669 {
2670 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2671
2672 NET_EPOCH_ASSERT();
2673 PF_HASHROW_ASSERT(ih);
2674
2675 if (s->timeout == PFTM_UNLINKED) {
2676 /*
2677 * State is being processed
2678 * by pf_unlink_state() in
2679 * an other thread.
2680 */
2681 PF_HASHROW_UNLOCK(ih);
2682 return (0); /* XXXGL: undefined actually */
2683 }
2684
2685 if (s->src.state == PF_TCPS_PROXY_DST) {
2686 /* XXX wire key the right one? */
2687 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2688 &s->key[PF_SK_WIRE]->addr[1],
2689 &s->key[PF_SK_WIRE]->addr[0],
2690 s->key[PF_SK_WIRE]->port[1],
2691 s->key[PF_SK_WIRE]->port[0],
2692 s->src.seqhi, s->src.seqlo + 1,
2693 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2694 s->act.rtableid);
2695 }
2696
2697 LIST_REMOVE(s, entry);
2698 pf_src_tree_remove_state(s);
2699
2700 if (V_pfsync_delete_state_ptr != NULL)
2701 V_pfsync_delete_state_ptr(s);
2702
2703 STATE_DEC_COUNTERS(s);
2704
2705 s->timeout = PFTM_UNLINKED;
2706
2707 /* Ensure we remove it from the list of halfopen states, if needed. */
2708 if (s->key[PF_SK_STACK] != NULL &&
2709 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2710 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2711
2712 PF_HASHROW_UNLOCK(ih);
2713
2714 pf_detach_state(s);
2715
2716 pf_udp_mapping_release(s->udp_mapping);
2717
2718 /* pf_state_insert() initialises refs to 2 */
2719 return (pf_release_staten(s, 2));
2720 }
2721
2722 struct pf_kstate *
pf_alloc_state(int flags)2723 pf_alloc_state(int flags)
2724 {
2725
2726 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2727 }
2728
2729 void
pf_free_state(struct pf_kstate * cur)2730 pf_free_state(struct pf_kstate *cur)
2731 {
2732 struct pf_krule_item *ri;
2733
2734 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2735 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2736 cur->timeout));
2737
2738 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2739 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2740 free(ri, M_PF_RULE_ITEM);
2741 }
2742
2743 pf_normalize_tcp_cleanup(cur);
2744 uma_zfree(V_pf_state_z, cur);
2745 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2746 }
2747
2748 /*
2749 * Called only from pf_purge_thread(), thus serialized.
2750 */
2751 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2752 pf_purge_expired_states(u_int i, int maxcheck)
2753 {
2754 struct pf_idhash *ih;
2755 struct pf_kstate *s;
2756 struct pf_krule_item *mrm;
2757 size_t count __unused;
2758
2759 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2760
2761 /*
2762 * Go through hash and unlink states that expire now.
2763 */
2764 while (maxcheck > 0) {
2765 count = 0;
2766 ih = &V_pf_idhash[i];
2767
2768 /* only take the lock if we expect to do work */
2769 if (!LIST_EMPTY(&ih->states)) {
2770 relock:
2771 PF_HASHROW_LOCK(ih);
2772 LIST_FOREACH(s, &ih->states, entry) {
2773 if (pf_state_expires(s) <= time_uptime) {
2774 V_pf_status.states -=
2775 pf_unlink_state(s);
2776 goto relock;
2777 }
2778 s->rule->rule_ref |= PFRULE_REFS;
2779 if (s->nat_rule != NULL)
2780 s->nat_rule->rule_ref |= PFRULE_REFS;
2781 if (s->anchor != NULL)
2782 s->anchor->rule_ref |= PFRULE_REFS;
2783 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2784 SLIST_FOREACH(mrm, &s->match_rules, entry)
2785 mrm->r->rule_ref |= PFRULE_REFS;
2786 if (s->act.rt_kif)
2787 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2788 count++;
2789 }
2790 PF_HASHROW_UNLOCK(ih);
2791 }
2792
2793 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2794
2795 /* Return when we hit end of hash. */
2796 if (++i > V_pf_hashmask) {
2797 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2798 return (0);
2799 }
2800
2801 maxcheck--;
2802 }
2803
2804 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2805
2806 return (i);
2807 }
2808
2809 static void
pf_purge_unlinked_rules(void)2810 pf_purge_unlinked_rules(void)
2811 {
2812 struct pf_krulequeue tmpq;
2813 struct pf_krule *r, *r1;
2814
2815 /*
2816 * If we have overloading task pending, then we'd
2817 * better skip purging this time. There is a tiny
2818 * probability that overloading task references
2819 * an already unlinked rule.
2820 */
2821 PF_OVERLOADQ_LOCK();
2822 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2823 PF_OVERLOADQ_UNLOCK();
2824 return;
2825 }
2826 PF_OVERLOADQ_UNLOCK();
2827
2828 /*
2829 * Do naive mark-and-sweep garbage collecting of old rules.
2830 * Reference flag is raised by pf_purge_expired_states()
2831 * and pf_purge_expired_src_nodes().
2832 *
2833 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2834 * use a temporary queue.
2835 */
2836 TAILQ_INIT(&tmpq);
2837 PF_UNLNKDRULES_LOCK();
2838 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2839 if (!(r->rule_ref & PFRULE_REFS)) {
2840 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2841 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2842 } else
2843 r->rule_ref &= ~PFRULE_REFS;
2844 }
2845 PF_UNLNKDRULES_UNLOCK();
2846
2847 if (!TAILQ_EMPTY(&tmpq)) {
2848 PF_CONFIG_LOCK();
2849 PF_RULES_WLOCK();
2850 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2851 TAILQ_REMOVE(&tmpq, r, entries);
2852 pf_free_rule(r);
2853 }
2854 PF_RULES_WUNLOCK();
2855 PF_CONFIG_UNLOCK();
2856 }
2857 }
2858
2859 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2860 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2861 {
2862 switch (af) {
2863 #ifdef INET
2864 case AF_INET: {
2865 u_int32_t a = ntohl(addr->addr32[0]);
2866 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2867 (a>>8)&255, a&255);
2868 if (p) {
2869 p = ntohs(p);
2870 printf(":%u", p);
2871 }
2872 break;
2873 }
2874 #endif /* INET */
2875 #ifdef INET6
2876 case AF_INET6: {
2877 u_int16_t b;
2878 u_int8_t i, curstart, curend, maxstart, maxend;
2879 curstart = curend = maxstart = maxend = 255;
2880 for (i = 0; i < 8; i++) {
2881 if (!addr->addr16[i]) {
2882 if (curstart == 255)
2883 curstart = i;
2884 curend = i;
2885 } else {
2886 if ((curend - curstart) >
2887 (maxend - maxstart)) {
2888 maxstart = curstart;
2889 maxend = curend;
2890 }
2891 curstart = curend = 255;
2892 }
2893 }
2894 if ((curend - curstart) >
2895 (maxend - maxstart)) {
2896 maxstart = curstart;
2897 maxend = curend;
2898 }
2899 for (i = 0; i < 8; i++) {
2900 if (i >= maxstart && i <= maxend) {
2901 if (i == 0)
2902 printf(":");
2903 if (i == maxend)
2904 printf(":");
2905 } else {
2906 b = ntohs(addr->addr16[i]);
2907 printf("%x", b);
2908 if (i < 7)
2909 printf(":");
2910 }
2911 }
2912 if (p) {
2913 p = ntohs(p);
2914 printf("[%u]", p);
2915 }
2916 break;
2917 }
2918 #endif /* INET6 */
2919 }
2920 }
2921
2922 void
pf_print_state(struct pf_kstate * s)2923 pf_print_state(struct pf_kstate *s)
2924 {
2925 pf_print_state_parts(s, NULL, NULL);
2926 }
2927
2928 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)2929 pf_print_state_parts(struct pf_kstate *s,
2930 struct pf_state_key *skwp, struct pf_state_key *sksp)
2931 {
2932 struct pf_state_key *skw, *sks;
2933 u_int8_t proto, dir;
2934
2935 /* Do our best to fill these, but they're skipped if NULL */
2936 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2937 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2938 proto = skw ? skw->proto : (sks ? sks->proto : 0);
2939 dir = s ? s->direction : 0;
2940
2941 switch (proto) {
2942 case IPPROTO_IPV4:
2943 printf("IPv4");
2944 break;
2945 case IPPROTO_IPV6:
2946 printf("IPv6");
2947 break;
2948 case IPPROTO_TCP:
2949 printf("TCP");
2950 break;
2951 case IPPROTO_UDP:
2952 printf("UDP");
2953 break;
2954 case IPPROTO_ICMP:
2955 printf("ICMP");
2956 break;
2957 case IPPROTO_ICMPV6:
2958 printf("ICMPv6");
2959 break;
2960 default:
2961 printf("%u", proto);
2962 break;
2963 }
2964 switch (dir) {
2965 case PF_IN:
2966 printf(" in");
2967 break;
2968 case PF_OUT:
2969 printf(" out");
2970 break;
2971 }
2972 if (skw) {
2973 printf(" wire: ");
2974 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2975 printf(" ");
2976 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2977 }
2978 if (sks) {
2979 printf(" stack: ");
2980 if (sks != skw) {
2981 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
2982 printf(" ");
2983 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
2984 } else
2985 printf("-");
2986 }
2987 if (s) {
2988 if (proto == IPPROTO_TCP) {
2989 printf(" [lo=%u high=%u win=%u modulator=%u",
2990 s->src.seqlo, s->src.seqhi,
2991 s->src.max_win, s->src.seqdiff);
2992 if (s->src.wscale && s->dst.wscale)
2993 printf(" wscale=%u",
2994 s->src.wscale & PF_WSCALE_MASK);
2995 printf("]");
2996 printf(" [lo=%u high=%u win=%u modulator=%u",
2997 s->dst.seqlo, s->dst.seqhi,
2998 s->dst.max_win, s->dst.seqdiff);
2999 if (s->src.wscale && s->dst.wscale)
3000 printf(" wscale=%u",
3001 s->dst.wscale & PF_WSCALE_MASK);
3002 printf("]");
3003 }
3004 printf(" %u:%u", s->src.state, s->dst.state);
3005 if (s->rule)
3006 printf(" @%d", s->rule->nr);
3007 }
3008 }
3009
3010 void
pf_print_flags(uint16_t f)3011 pf_print_flags(uint16_t f)
3012 {
3013 if (f)
3014 printf(" ");
3015 if (f & TH_FIN)
3016 printf("F");
3017 if (f & TH_SYN)
3018 printf("S");
3019 if (f & TH_RST)
3020 printf("R");
3021 if (f & TH_PUSH)
3022 printf("P");
3023 if (f & TH_ACK)
3024 printf("A");
3025 if (f & TH_URG)
3026 printf("U");
3027 if (f & TH_ECE)
3028 printf("E");
3029 if (f & TH_CWR)
3030 printf("W");
3031 if (f & TH_AE)
3032 printf("e");
3033 }
3034
3035 #define PF_SET_SKIP_STEPS(i) \
3036 do { \
3037 while (head[i] != cur) { \
3038 head[i]->skip[i] = cur; \
3039 head[i] = TAILQ_NEXT(head[i], entries); \
3040 } \
3041 } while (0)
3042
3043 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3044 pf_calc_skip_steps(struct pf_krulequeue *rules)
3045 {
3046 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3047 int i;
3048
3049 cur = TAILQ_FIRST(rules);
3050 prev = cur;
3051 for (i = 0; i < PF_SKIP_COUNT; ++i)
3052 head[i] = cur;
3053 while (cur != NULL) {
3054 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3055 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3056 if (cur->direction != prev->direction)
3057 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3058 if (cur->af != prev->af)
3059 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3060 if (cur->proto != prev->proto)
3061 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3062 if (cur->src.neg != prev->src.neg ||
3063 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3064 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3065 if (cur->dst.neg != prev->dst.neg ||
3066 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3067 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3068 if (cur->src.port[0] != prev->src.port[0] ||
3069 cur->src.port[1] != prev->src.port[1] ||
3070 cur->src.port_op != prev->src.port_op)
3071 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3072 if (cur->dst.port[0] != prev->dst.port[0] ||
3073 cur->dst.port[1] != prev->dst.port[1] ||
3074 cur->dst.port_op != prev->dst.port_op)
3075 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3076
3077 prev = cur;
3078 cur = TAILQ_NEXT(cur, entries);
3079 }
3080 for (i = 0; i < PF_SKIP_COUNT; ++i)
3081 PF_SET_SKIP_STEPS(i);
3082 }
3083
3084 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3085 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3086 {
3087 if (aw1->type != aw2->type)
3088 return (1);
3089 switch (aw1->type) {
3090 case PF_ADDR_ADDRMASK:
3091 case PF_ADDR_RANGE:
3092 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3093 return (1);
3094 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3095 return (1);
3096 return (0);
3097 case PF_ADDR_DYNIFTL:
3098 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3099 case PF_ADDR_NONE:
3100 case PF_ADDR_NOROUTE:
3101 case PF_ADDR_URPFFAILED:
3102 return (0);
3103 case PF_ADDR_TABLE:
3104 return (aw1->p.tbl != aw2->p.tbl);
3105 default:
3106 printf("invalid address type: %d\n", aw1->type);
3107 return (1);
3108 }
3109 }
3110
3111 /**
3112 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3113 * header isn't always a full checksum. In some cases (i.e. output) it's a
3114 * pseudo-header checksum, which is a partial checksum over src/dst IP
3115 * addresses, protocol number and length.
3116 *
3117 * That means we have the following cases:
3118 * * Input or forwarding: we don't have TSO, the checksum fields are full
3119 * checksums, we need to update the checksum whenever we change anything.
3120 * * Output (i.e. the checksum is a pseudo-header checksum):
3121 * x The field being updated is src/dst address or affects the length of
3122 * the packet. We need to update the pseudo-header checksum (note that this
3123 * checksum is not ones' complement).
3124 * x Some other field is being modified (e.g. src/dst port numbers): We
3125 * don't have to update anything.
3126 **/
3127 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3128 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3129 {
3130 u_int32_t x;
3131
3132 x = cksum + old - new;
3133 x = (x + (x >> 16)) & 0xffff;
3134
3135 /* optimise: eliminate a branch when not udp */
3136 if (udp && cksum == 0x0000)
3137 return cksum;
3138 if (udp && x == 0x0000)
3139 x = 0xffff;
3140
3141 return (u_int16_t)(x);
3142 }
3143
3144 static void
pf_patch_8(struct mbuf * m,u_int16_t * cksum,u_int8_t * f,u_int8_t v,bool hi,u_int8_t udp)3145 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3146 u_int8_t udp)
3147 {
3148 u_int16_t old = htons(hi ? (*f << 8) : *f);
3149 u_int16_t new = htons(hi ? ( v << 8) : v);
3150
3151 if (*f == v)
3152 return;
3153
3154 *f = v;
3155
3156 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3157 return;
3158
3159 *cksum = pf_cksum_fixup(*cksum, old, new, udp);
3160 }
3161
3162 void
pf_patch_16_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int16_t v,bool hi,u_int8_t udp)3163 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3164 bool hi, u_int8_t udp)
3165 {
3166 u_int8_t *fb = (u_int8_t *)f;
3167 u_int8_t *vb = (u_int8_t *)&v;
3168
3169 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3170 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3171 }
3172
3173 void
pf_patch_32_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int32_t v,bool hi,u_int8_t udp)3174 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3175 bool hi, u_int8_t udp)
3176 {
3177 u_int8_t *fb = (u_int8_t *)f;
3178 u_int8_t *vb = (u_int8_t *)&v;
3179
3180 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3181 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3182 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3183 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3184 }
3185
3186 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3187 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3188 u_int16_t new, u_int8_t udp)
3189 {
3190 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3191 return (cksum);
3192
3193 return (pf_cksum_fixup(cksum, old, new, udp));
3194 }
3195
3196 static void
pf_change_ap(struct mbuf * m,struct pf_addr * a,u_int16_t * p,u_int16_t * ic,u_int16_t * pc,struct pf_addr * an,u_int16_t pn,u_int8_t u,sa_family_t af,sa_family_t naf)3197 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3198 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3199 sa_family_t af, sa_family_t naf)
3200 {
3201 struct pf_addr ao;
3202 u_int16_t po = *p;
3203
3204 PF_ACPY(&ao, a, af);
3205 if (af == naf)
3206 PF_ACPY(a, an, af);
3207
3208 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3209 *pc = ~*pc;
3210
3211 *p = pn;
3212
3213 switch (af) {
3214 #ifdef INET
3215 case AF_INET:
3216 switch (naf) {
3217 case AF_INET:
3218 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3219 ao.addr16[0], an->addr16[0], 0),
3220 ao.addr16[1], an->addr16[1], 0);
3221 *p = pn;
3222
3223 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3224 ao.addr16[0], an->addr16[0], u),
3225 ao.addr16[1], an->addr16[1], u);
3226
3227 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3228 break;
3229 #ifdef INET6
3230 case AF_INET6:
3231 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3232 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3233 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3234 ao.addr16[0], an->addr16[0], u),
3235 ao.addr16[1], an->addr16[1], u),
3236 0, an->addr16[2], u),
3237 0, an->addr16[3], u),
3238 0, an->addr16[4], u),
3239 0, an->addr16[5], u),
3240 0, an->addr16[6], u),
3241 0, an->addr16[7], u),
3242 po, pn, u);
3243
3244 /* XXXKP TODO *ic checksum? */
3245 break;
3246 #endif /* INET6 */
3247 }
3248 break;
3249 #endif /* INET */
3250 #ifdef INET6
3251 case AF_INET6:
3252 switch (naf) {
3253 #ifdef INET
3254 case AF_INET:
3255 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3256 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3257 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3258 ao.addr16[0], an->addr16[0], u),
3259 ao.addr16[1], an->addr16[1], u),
3260 ao.addr16[2], 0, u),
3261 ao.addr16[3], 0, u),
3262 ao.addr16[4], 0, u),
3263 ao.addr16[5], 0, u),
3264 ao.addr16[6], 0, u),
3265 ao.addr16[7], 0, u),
3266 po, pn, u);
3267
3268 /* XXXKP TODO *ic checksum? */
3269 break;
3270 #endif /* INET */
3271 case AF_INET6:
3272 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3273 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3274 pf_cksum_fixup(pf_cksum_fixup(*pc,
3275 ao.addr16[0], an->addr16[0], u),
3276 ao.addr16[1], an->addr16[1], u),
3277 ao.addr16[2], an->addr16[2], u),
3278 ao.addr16[3], an->addr16[3], u),
3279 ao.addr16[4], an->addr16[4], u),
3280 ao.addr16[5], an->addr16[5], u),
3281 ao.addr16[6], an->addr16[6], u),
3282 ao.addr16[7], an->addr16[7], u);
3283
3284 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3285 break;
3286 }
3287 break;
3288 #endif /* INET6 */
3289 }
3290
3291 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3292 CSUM_DELAY_DATA_IPV6)) {
3293 *pc = ~*pc;
3294 if (! *pc)
3295 *pc = 0xffff;
3296 }
3297 }
3298
3299 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3300 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3301 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3302 {
3303 u_int32_t ao;
3304
3305 memcpy(&ao, a, sizeof(ao));
3306 memcpy(a, &an, sizeof(u_int32_t));
3307 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3308 ao % 65536, an % 65536, u);
3309 }
3310
3311 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3312 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3313 {
3314 u_int32_t ao;
3315
3316 memcpy(&ao, a, sizeof(ao));
3317 memcpy(a, &an, sizeof(u_int32_t));
3318
3319 *c = pf_proto_cksum_fixup(m,
3320 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3321 ao % 65536, an % 65536, udp);
3322 }
3323
3324 #ifdef INET6
3325 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3326 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3327 {
3328 struct pf_addr ao;
3329
3330 PF_ACPY(&ao, a, AF_INET6);
3331 PF_ACPY(a, an, AF_INET6);
3332
3333 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3334 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3335 pf_cksum_fixup(pf_cksum_fixup(*c,
3336 ao.addr16[0], an->addr16[0], u),
3337 ao.addr16[1], an->addr16[1], u),
3338 ao.addr16[2], an->addr16[2], u),
3339 ao.addr16[3], an->addr16[3], u),
3340 ao.addr16[4], an->addr16[4], u),
3341 ao.addr16[5], an->addr16[5], u),
3342 ao.addr16[6], an->addr16[6], u),
3343 ao.addr16[7], an->addr16[7], u);
3344 }
3345 #endif /* INET6 */
3346
3347 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3348 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3349 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3350 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3351 {
3352 struct pf_addr oia, ooa;
3353
3354 PF_ACPY(&oia, ia, af);
3355 if (oa)
3356 PF_ACPY(&ooa, oa, af);
3357
3358 /* Change inner protocol port, fix inner protocol checksum. */
3359 if (ip != NULL) {
3360 u_int16_t oip = *ip;
3361 u_int32_t opc;
3362
3363 if (pc != NULL)
3364 opc = *pc;
3365 *ip = np;
3366 if (pc != NULL)
3367 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3368 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3369 if (pc != NULL)
3370 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3371 }
3372 /* Change inner ip address, fix inner ip and icmp checksums. */
3373 PF_ACPY(ia, na, af);
3374 switch (af) {
3375 #ifdef INET
3376 case AF_INET: {
3377 u_int32_t oh2c = *h2c;
3378
3379 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3380 oia.addr16[0], ia->addr16[0], 0),
3381 oia.addr16[1], ia->addr16[1], 0);
3382 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3383 oia.addr16[0], ia->addr16[0], 0),
3384 oia.addr16[1], ia->addr16[1], 0);
3385 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3386 break;
3387 }
3388 #endif /* INET */
3389 #ifdef INET6
3390 case AF_INET6:
3391 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3392 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3393 pf_cksum_fixup(pf_cksum_fixup(*ic,
3394 oia.addr16[0], ia->addr16[0], u),
3395 oia.addr16[1], ia->addr16[1], u),
3396 oia.addr16[2], ia->addr16[2], u),
3397 oia.addr16[3], ia->addr16[3], u),
3398 oia.addr16[4], ia->addr16[4], u),
3399 oia.addr16[5], ia->addr16[5], u),
3400 oia.addr16[6], ia->addr16[6], u),
3401 oia.addr16[7], ia->addr16[7], u);
3402 break;
3403 #endif /* INET6 */
3404 }
3405 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3406 if (oa) {
3407 PF_ACPY(oa, na, af);
3408 switch (af) {
3409 #ifdef INET
3410 case AF_INET:
3411 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3412 ooa.addr16[0], oa->addr16[0], 0),
3413 ooa.addr16[1], oa->addr16[1], 0);
3414 break;
3415 #endif /* INET */
3416 #ifdef INET6
3417 case AF_INET6:
3418 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3419 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3420 pf_cksum_fixup(pf_cksum_fixup(*ic,
3421 ooa.addr16[0], oa->addr16[0], u),
3422 ooa.addr16[1], oa->addr16[1], u),
3423 ooa.addr16[2], oa->addr16[2], u),
3424 ooa.addr16[3], oa->addr16[3], u),
3425 ooa.addr16[4], oa->addr16[4], u),
3426 ooa.addr16[5], oa->addr16[5], u),
3427 ooa.addr16[6], oa->addr16[6], u),
3428 ooa.addr16[7], oa->addr16[7], u);
3429 break;
3430 #endif /* INET6 */
3431 }
3432 }
3433 }
3434
3435 int
pf_translate_af(struct pf_pdesc * pd)3436 pf_translate_af(struct pf_pdesc *pd)
3437 {
3438 #if defined(INET) && defined(INET6)
3439 struct mbuf *mp;
3440 struct ip *ip4;
3441 struct ip6_hdr *ip6;
3442 struct icmp6_hdr *icmp;
3443 struct m_tag *mtag;
3444 struct pf_fragment_tag *ftag;
3445 int hlen;
3446
3447 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3448
3449 /* trim the old header */
3450 m_adj(pd->m, pd->off);
3451
3452 /* prepend a new one */
3453 M_PREPEND(pd->m, hlen, M_NOWAIT);
3454 if (pd->m == NULL)
3455 return (-1);
3456
3457 switch (pd->naf) {
3458 case AF_INET:
3459 ip4 = mtod(pd->m, struct ip *);
3460 bzero(ip4, hlen);
3461 ip4->ip_v = IPVERSION;
3462 ip4->ip_hl = hlen >> 2;
3463 ip4->ip_tos = pd->tos;
3464 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3465 ip_fillid(ip4);
3466 ip4->ip_ttl = pd->ttl;
3467 ip4->ip_p = pd->proto;
3468 ip4->ip_src = pd->nsaddr.v4;
3469 ip4->ip_dst = pd->ndaddr.v4;
3470 pd->src = (struct pf_addr *)&ip4->ip_src;
3471 pd->dst = (struct pf_addr *)&ip4->ip_dst;
3472 pd->off = sizeof(struct ip);
3473 break;
3474 case AF_INET6:
3475 ip6 = mtod(pd->m, struct ip6_hdr *);
3476 bzero(ip6, hlen);
3477 ip6->ip6_vfc = IPV6_VERSION;
3478 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3479 ip6->ip6_plen = htons(pd->tot_len - pd->off);
3480 ip6->ip6_nxt = pd->proto;
3481 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3482 ip6->ip6_hlim = IPV6_DEFHLIM;
3483 else
3484 ip6->ip6_hlim = pd->ttl;
3485 ip6->ip6_src = pd->nsaddr.v6;
3486 ip6->ip6_dst = pd->ndaddr.v6;
3487 pd->src = (struct pf_addr *)&ip6->ip6_src;
3488 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3489 pd->off = sizeof(struct ip6_hdr);
3490
3491 /*
3492 * If we're dealing with a reassembled packet we need to adjust
3493 * the header length from the IPv4 header size to IPv6 header
3494 * size.
3495 */
3496 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3497 if (mtag) {
3498 ftag = (struct pf_fragment_tag *)(mtag + 1);
3499 ftag->ft_hdrlen = sizeof(*ip6);
3500 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3501 sizeof(struct ip) + sizeof(struct ip6_frag);
3502 }
3503 break;
3504 default:
3505 return (-1);
3506 }
3507
3508 /* recalculate icmp/icmp6 checksums */
3509 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3510 int off;
3511 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3512 NULL) {
3513 pd->m = NULL;
3514 return (-1);
3515 }
3516 icmp = (struct icmp6_hdr *)(mp->m_data + off);
3517 icmp->icmp6_cksum = 0;
3518 icmp->icmp6_cksum = pd->naf == AF_INET ?
3519 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3520 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3521 ntohs(ip6->ip6_plen));
3522 }
3523 #endif /* INET && INET6 */
3524
3525 return (0);
3526 }
3527
3528 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3529 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3530 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3531 sa_family_t af, sa_family_t naf)
3532 {
3533 #if defined(INET) && defined(INET6)
3534 struct mbuf *n = NULL;
3535 struct ip *ip4;
3536 struct ip6_hdr *ip6;
3537 int hlen, olen, mlen;
3538
3539 if (af == naf || (af != AF_INET && af != AF_INET6) ||
3540 (naf != AF_INET && naf != AF_INET6))
3541 return (-1);
3542
3543 /* split the mbuf chain on the inner ip/ip6 header boundary */
3544 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3545 return (-1);
3546
3547 /* old header */
3548 olen = pd2->off - off;
3549 /* new header */
3550 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3551 /* data lenght */
3552 mlen = m->m_pkthdr.len - pd2->off;
3553
3554 /* trim old header */
3555 m_adj(n, olen);
3556
3557 /* prepend a new one */
3558 M_PREPEND(n, hlen, M_NOWAIT);
3559 if (n == NULL)
3560 return (-1);
3561
3562 /* translate inner ip/ip6 header */
3563 switch (naf) {
3564 case AF_INET:
3565 ip4 = mtod(n, struct ip *);
3566 bzero(ip4, sizeof(*ip4));
3567 ip4->ip_v = IPVERSION;
3568 ip4->ip_hl = sizeof(*ip4) >> 2;
3569 ip4->ip_len = htons(sizeof(*ip4) + mlen);
3570 ip_fillid(ip4);
3571 ip4->ip_off = htons(IP_DF);
3572 ip4->ip_ttl = pd2->ttl;
3573 if (pd2->proto == IPPROTO_ICMPV6)
3574 ip4->ip_p = IPPROTO_ICMP;
3575 else
3576 ip4->ip_p = pd2->proto;
3577 ip4->ip_src = src->v4;
3578 ip4->ip_dst = dst->v4;
3579 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3580 break;
3581 case AF_INET6:
3582 ip6 = mtod(n, struct ip6_hdr *);
3583 bzero(ip6, sizeof(*ip6));
3584 ip6->ip6_vfc = IPV6_VERSION;
3585 ip6->ip6_plen = htons(mlen);
3586 if (pd2->proto == IPPROTO_ICMP)
3587 ip6->ip6_nxt = IPPROTO_ICMPV6;
3588 else
3589 ip6->ip6_nxt = pd2->proto;
3590 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3591 ip6->ip6_hlim = IPV6_DEFHLIM;
3592 else
3593 ip6->ip6_hlim = pd2->ttl;
3594 ip6->ip6_src = src->v6;
3595 ip6->ip6_dst = dst->v6;
3596 break;
3597 }
3598
3599 /* adjust payload offset and total packet length */
3600 pd2->off += hlen - olen;
3601 pd->tot_len += hlen - olen;
3602
3603 /* merge modified inner packet with the original header */
3604 mlen = n->m_pkthdr.len;
3605 m_cat(m, n);
3606 m->m_pkthdr.len += mlen;
3607 #endif /* INET && INET6 */
3608
3609 return (0);
3610 }
3611
3612 #define PTR_IP(field) (offsetof(struct ip, field))
3613 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
3614
3615 int
pf_translate_icmp_af(int af,void * arg)3616 pf_translate_icmp_af(int af, void *arg)
3617 {
3618 #if defined(INET) && defined(INET6)
3619 struct icmp *icmp4;
3620 struct icmp6_hdr *icmp6;
3621 u_int32_t mtu;
3622 int32_t ptr = -1;
3623 u_int8_t type;
3624 u_int8_t code;
3625
3626 switch (af) {
3627 case AF_INET:
3628 icmp6 = arg;
3629 type = icmp6->icmp6_type;
3630 code = icmp6->icmp6_code;
3631 mtu = ntohl(icmp6->icmp6_mtu);
3632
3633 switch (type) {
3634 case ICMP6_ECHO_REQUEST:
3635 type = ICMP_ECHO;
3636 break;
3637 case ICMP6_ECHO_REPLY:
3638 type = ICMP_ECHOREPLY;
3639 break;
3640 case ICMP6_DST_UNREACH:
3641 type = ICMP_UNREACH;
3642 switch (code) {
3643 case ICMP6_DST_UNREACH_NOROUTE:
3644 case ICMP6_DST_UNREACH_BEYONDSCOPE:
3645 case ICMP6_DST_UNREACH_ADDR:
3646 code = ICMP_UNREACH_HOST;
3647 break;
3648 case ICMP6_DST_UNREACH_ADMIN:
3649 code = ICMP_UNREACH_HOST_PROHIB;
3650 break;
3651 case ICMP6_DST_UNREACH_NOPORT:
3652 code = ICMP_UNREACH_PORT;
3653 break;
3654 default:
3655 return (-1);
3656 }
3657 break;
3658 case ICMP6_PACKET_TOO_BIG:
3659 type = ICMP_UNREACH;
3660 code = ICMP_UNREACH_NEEDFRAG;
3661 mtu -= 20;
3662 break;
3663 case ICMP6_TIME_EXCEEDED:
3664 type = ICMP_TIMXCEED;
3665 break;
3666 case ICMP6_PARAM_PROB:
3667 switch (code) {
3668 case ICMP6_PARAMPROB_HEADER:
3669 type = ICMP_PARAMPROB;
3670 code = ICMP_PARAMPROB_ERRATPTR;
3671 ptr = ntohl(icmp6->icmp6_pptr);
3672
3673 if (ptr == PTR_IP6(ip6_vfc))
3674 ; /* preserve */
3675 else if (ptr == PTR_IP6(ip6_vfc) + 1)
3676 ptr = PTR_IP(ip_tos);
3677 else if (ptr == PTR_IP6(ip6_plen) ||
3678 ptr == PTR_IP6(ip6_plen) + 1)
3679 ptr = PTR_IP(ip_len);
3680 else if (ptr == PTR_IP6(ip6_nxt))
3681 ptr = PTR_IP(ip_p);
3682 else if (ptr == PTR_IP6(ip6_hlim))
3683 ptr = PTR_IP(ip_ttl);
3684 else if (ptr >= PTR_IP6(ip6_src) &&
3685 ptr < PTR_IP6(ip6_dst))
3686 ptr = PTR_IP(ip_src);
3687 else if (ptr >= PTR_IP6(ip6_dst) &&
3688 ptr < sizeof(struct ip6_hdr))
3689 ptr = PTR_IP(ip_dst);
3690 else {
3691 return (-1);
3692 }
3693 break;
3694 case ICMP6_PARAMPROB_NEXTHEADER:
3695 type = ICMP_UNREACH;
3696 code = ICMP_UNREACH_PROTOCOL;
3697 break;
3698 default:
3699 return (-1);
3700 }
3701 break;
3702 default:
3703 return (-1);
3704 }
3705 if (icmp6->icmp6_type != type) {
3706 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3707 icmp6->icmp6_type, type, 0);
3708 icmp6->icmp6_type = type;
3709 }
3710 if (icmp6->icmp6_code != code) {
3711 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3712 icmp6->icmp6_code, code, 0);
3713 icmp6->icmp6_code = code;
3714 }
3715 if (icmp6->icmp6_mtu != htonl(mtu)) {
3716 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3717 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3718 /* aligns well with a icmpv4 nextmtu */
3719 icmp6->icmp6_mtu = htonl(mtu);
3720 }
3721 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3722 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3723 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3724 /* icmpv4 pptr is a one most significant byte */
3725 icmp6->icmp6_pptr = htonl(ptr << 24);
3726 }
3727 break;
3728 case AF_INET6:
3729 icmp4 = arg;
3730 type = icmp4->icmp_type;
3731 code = icmp4->icmp_code;
3732 mtu = ntohs(icmp4->icmp_nextmtu);
3733
3734 switch (type) {
3735 case ICMP_ECHO:
3736 type = ICMP6_ECHO_REQUEST;
3737 break;
3738 case ICMP_ECHOREPLY:
3739 type = ICMP6_ECHO_REPLY;
3740 break;
3741 case ICMP_UNREACH:
3742 type = ICMP6_DST_UNREACH;
3743 switch (code) {
3744 case ICMP_UNREACH_NET:
3745 case ICMP_UNREACH_HOST:
3746 case ICMP_UNREACH_NET_UNKNOWN:
3747 case ICMP_UNREACH_HOST_UNKNOWN:
3748 case ICMP_UNREACH_ISOLATED:
3749 case ICMP_UNREACH_TOSNET:
3750 case ICMP_UNREACH_TOSHOST:
3751 code = ICMP6_DST_UNREACH_NOROUTE;
3752 break;
3753 case ICMP_UNREACH_PORT:
3754 code = ICMP6_DST_UNREACH_NOPORT;
3755 break;
3756 case ICMP_UNREACH_NET_PROHIB:
3757 case ICMP_UNREACH_HOST_PROHIB:
3758 case ICMP_UNREACH_FILTER_PROHIB:
3759 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3760 code = ICMP6_DST_UNREACH_ADMIN;
3761 break;
3762 case ICMP_UNREACH_PROTOCOL:
3763 type = ICMP6_PARAM_PROB;
3764 code = ICMP6_PARAMPROB_NEXTHEADER;
3765 ptr = offsetof(struct ip6_hdr, ip6_nxt);
3766 break;
3767 case ICMP_UNREACH_NEEDFRAG:
3768 type = ICMP6_PACKET_TOO_BIG;
3769 code = 0;
3770 mtu += 20;
3771 break;
3772 default:
3773 return (-1);
3774 }
3775 break;
3776 case ICMP_TIMXCEED:
3777 type = ICMP6_TIME_EXCEEDED;
3778 break;
3779 case ICMP_PARAMPROB:
3780 type = ICMP6_PARAM_PROB;
3781 switch (code) {
3782 case ICMP_PARAMPROB_ERRATPTR:
3783 code = ICMP6_PARAMPROB_HEADER;
3784 break;
3785 case ICMP_PARAMPROB_LENGTH:
3786 code = ICMP6_PARAMPROB_HEADER;
3787 break;
3788 default:
3789 return (-1);
3790 }
3791
3792 ptr = icmp4->icmp_pptr;
3793 if (ptr == 0 || ptr == PTR_IP(ip_tos))
3794 ; /* preserve */
3795 else if (ptr == PTR_IP(ip_len) ||
3796 ptr == PTR_IP(ip_len) + 1)
3797 ptr = PTR_IP6(ip6_plen);
3798 else if (ptr == PTR_IP(ip_ttl))
3799 ptr = PTR_IP6(ip6_hlim);
3800 else if (ptr == PTR_IP(ip_p))
3801 ptr = PTR_IP6(ip6_nxt);
3802 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3803 ptr = PTR_IP6(ip6_src);
3804 else if (ptr >= PTR_IP(ip_dst) &&
3805 ptr < sizeof(struct ip))
3806 ptr = PTR_IP6(ip6_dst);
3807 else {
3808 return (-1);
3809 }
3810 break;
3811 default:
3812 return (-1);
3813 }
3814 if (icmp4->icmp_type != type) {
3815 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3816 icmp4->icmp_type, type, 0);
3817 icmp4->icmp_type = type;
3818 }
3819 if (icmp4->icmp_code != code) {
3820 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3821 icmp4->icmp_code, code, 0);
3822 icmp4->icmp_code = code;
3823 }
3824 if (icmp4->icmp_nextmtu != htons(mtu)) {
3825 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3826 icmp4->icmp_nextmtu, htons(mtu), 0);
3827 icmp4->icmp_nextmtu = htons(mtu);
3828 }
3829 if (ptr >= 0 && icmp4->icmp_void != ptr) {
3830 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3831 htons(icmp4->icmp_pptr), htons(ptr), 0);
3832 icmp4->icmp_void = htonl(ptr);
3833 }
3834 break;
3835 }
3836 #endif /* INET && INET6 */
3837
3838 return (0);
3839 }
3840
3841 /*
3842 * Need to modulate the sequence numbers in the TCP SACK option
3843 * (credits to Krzysztof Pfaff for report and patch)
3844 */
3845 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3846 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3847 struct pf_state_peer *dst)
3848 {
3849 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3850 u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3851 int copyback = 0, i, olen;
3852 struct sackblk sack;
3853
3854 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2)
3855 if (hlen < TCPOLEN_SACKLEN ||
3856 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3857 return 0;
3858
3859 while (hlen >= TCPOLEN_SACKLEN) {
3860 size_t startoff = opt - opts;
3861 olen = opt[1];
3862 switch (*opt) {
3863 case TCPOPT_EOL: /* FALLTHROUGH */
3864 case TCPOPT_NOP:
3865 opt++;
3866 hlen--;
3867 break;
3868 case TCPOPT_SACK:
3869 if (olen > hlen)
3870 olen = hlen;
3871 if (olen >= TCPOLEN_SACKLEN) {
3872 for (i = 2; i + TCPOLEN_SACK <= olen;
3873 i += TCPOLEN_SACK) {
3874 memcpy(&sack, &opt[i], sizeof(sack));
3875 pf_patch_32_unaligned(pd->m,
3876 &th->th_sum, &sack.start,
3877 htonl(ntohl(sack.start) - dst->seqdiff),
3878 PF_ALGNMNT(startoff),
3879 0);
3880 pf_patch_32_unaligned(pd->m, &th->th_sum,
3881 &sack.end,
3882 htonl(ntohl(sack.end) - dst->seqdiff),
3883 PF_ALGNMNT(startoff),
3884 0);
3885 memcpy(&opt[i], &sack, sizeof(sack));
3886 }
3887 copyback = 1;
3888 }
3889 /* FALLTHROUGH */
3890 default:
3891 if (olen < 2)
3892 olen = 2;
3893 hlen -= olen;
3894 opt += olen;
3895 }
3896 }
3897
3898 if (copyback)
3899 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3900 return (copyback);
3901 }
3902
3903 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3904 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3905 const struct pf_addr *saddr, const struct pf_addr *daddr,
3906 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3907 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3908 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3909 {
3910 struct mbuf *m;
3911 int len, tlen;
3912 #ifdef INET
3913 struct ip *h = NULL;
3914 #endif /* INET */
3915 #ifdef INET6
3916 struct ip6_hdr *h6 = NULL;
3917 #endif /* INET6 */
3918 struct tcphdr *th;
3919 char *opt;
3920 struct pf_mtag *pf_mtag;
3921
3922 len = 0;
3923 th = NULL;
3924
3925 /* maximum segment size tcp option */
3926 tlen = sizeof(struct tcphdr);
3927 if (mss)
3928 tlen += 4;
3929
3930 switch (af) {
3931 #ifdef INET
3932 case AF_INET:
3933 len = sizeof(struct ip) + tlen;
3934 break;
3935 #endif /* INET */
3936 #ifdef INET6
3937 case AF_INET6:
3938 len = sizeof(struct ip6_hdr) + tlen;
3939 break;
3940 #endif /* INET6 */
3941 }
3942
3943 m = m_gethdr(M_NOWAIT, MT_DATA);
3944 if (m == NULL)
3945 return (NULL);
3946
3947 #ifdef MAC
3948 mac_netinet_firewall_send(m);
3949 #endif
3950 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
3951 m_freem(m);
3952 return (NULL);
3953 }
3954 m->m_flags |= mbuf_flags;
3955 pf_mtag->tag = mtag_tag;
3956 pf_mtag->flags = mtag_flags;
3957
3958 if (rtableid >= 0)
3959 M_SETFIB(m, rtableid);
3960
3961 #ifdef ALTQ
3962 if (r != NULL && r->qid) {
3963 pf_mtag->qid = r->qid;
3964
3965 /* add hints for ecn */
3966 pf_mtag->hdr = mtod(m, struct ip *);
3967 }
3968 #endif /* ALTQ */
3969 m->m_data += max_linkhdr;
3970 m->m_pkthdr.len = m->m_len = len;
3971 /* The rest of the stack assumes a rcvif, so provide one.
3972 * This is a locally generated packet, so .. close enough. */
3973 m->m_pkthdr.rcvif = V_loif;
3974 bzero(m->m_data, len);
3975 switch (af) {
3976 #ifdef INET
3977 case AF_INET:
3978 h = mtod(m, struct ip *);
3979
3980 /* IP header fields included in the TCP checksum */
3981 h->ip_p = IPPROTO_TCP;
3982 h->ip_len = htons(tlen);
3983 h->ip_src.s_addr = saddr->v4.s_addr;
3984 h->ip_dst.s_addr = daddr->v4.s_addr;
3985
3986 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
3987 break;
3988 #endif /* INET */
3989 #ifdef INET6
3990 case AF_INET6:
3991 h6 = mtod(m, struct ip6_hdr *);
3992
3993 /* IP header fields included in the TCP checksum */
3994 h6->ip6_nxt = IPPROTO_TCP;
3995 h6->ip6_plen = htons(tlen);
3996 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
3997 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
3998
3999 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4000 break;
4001 #endif /* INET6 */
4002 }
4003
4004 /* TCP header */
4005 th->th_sport = sport;
4006 th->th_dport = dport;
4007 th->th_seq = htonl(seq);
4008 th->th_ack = htonl(ack);
4009 th->th_off = tlen >> 2;
4010 tcp_set_flags(th, tcp_flags);
4011 th->th_win = htons(win);
4012
4013 if (mss) {
4014 opt = (char *)(th + 1);
4015 opt[0] = TCPOPT_MAXSEG;
4016 opt[1] = 4;
4017 HTONS(mss);
4018 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
4019 }
4020
4021 switch (af) {
4022 #ifdef INET
4023 case AF_INET:
4024 /* TCP checksum */
4025 th->th_sum = in_cksum(m, len);
4026
4027 /* Finish the IP header */
4028 h->ip_v = 4;
4029 h->ip_hl = sizeof(*h) >> 2;
4030 h->ip_tos = IPTOS_LOWDELAY;
4031 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4032 h->ip_len = htons(len);
4033 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4034 h->ip_sum = 0;
4035 break;
4036 #endif /* INET */
4037 #ifdef INET6
4038 case AF_INET6:
4039 /* TCP checksum */
4040 th->th_sum = in6_cksum(m, IPPROTO_TCP,
4041 sizeof(struct ip6_hdr), tlen);
4042
4043 h6->ip6_vfc |= IPV6_VERSION;
4044 h6->ip6_hlim = IPV6_DEFHLIM;
4045 break;
4046 #endif /* INET6 */
4047 }
4048
4049 return (m);
4050 }
4051
4052 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4053 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4054 uint8_t ttl, int rtableid)
4055 {
4056 struct mbuf *m;
4057 #ifdef INET
4058 struct ip *h = NULL;
4059 #endif /* INET */
4060 #ifdef INET6
4061 struct ip6_hdr *h6 = NULL;
4062 #endif /* INET6 */
4063 struct sctphdr *hdr;
4064 struct sctp_chunkhdr *chunk;
4065 struct pf_send_entry *pfse;
4066 int off = 0;
4067
4068 MPASS(af == pd->af);
4069
4070 m = m_gethdr(M_NOWAIT, MT_DATA);
4071 if (m == NULL)
4072 return;
4073
4074 m->m_data += max_linkhdr;
4075 m->m_flags |= M_SKIP_FIREWALL;
4076 /* The rest of the stack assumes a rcvif, so provide one.
4077 * This is a locally generated packet, so .. close enough. */
4078 m->m_pkthdr.rcvif = V_loif;
4079
4080 /* IPv4|6 header */
4081 switch (af) {
4082 #ifdef INET
4083 case AF_INET:
4084 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4085
4086 h = mtod(m, struct ip *);
4087
4088 /* IP header fields included in the TCP checksum */
4089
4090 h->ip_p = IPPROTO_SCTP;
4091 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4092 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4093 h->ip_src = pd->dst->v4;
4094 h->ip_dst = pd->src->v4;
4095
4096 off += sizeof(struct ip);
4097 break;
4098 #endif /* INET */
4099 #ifdef INET6
4100 case AF_INET6:
4101 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4102
4103 h6 = mtod(m, struct ip6_hdr *);
4104
4105 /* IP header fields included in the TCP checksum */
4106 h6->ip6_vfc |= IPV6_VERSION;
4107 h6->ip6_nxt = IPPROTO_SCTP;
4108 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4109 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4110 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4111 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4112
4113 off += sizeof(struct ip6_hdr);
4114 break;
4115 #endif /* INET6 */
4116 }
4117
4118 /* SCTP header */
4119 hdr = mtodo(m, off);
4120
4121 hdr->src_port = pd->hdr.sctp.dest_port;
4122 hdr->dest_port = pd->hdr.sctp.src_port;
4123 hdr->v_tag = pd->sctp_initiate_tag;
4124 hdr->checksum = 0;
4125
4126 /* Abort chunk. */
4127 off += sizeof(struct sctphdr);
4128 chunk = mtodo(m, off);
4129
4130 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4131 chunk->chunk_length = htons(sizeof(*chunk));
4132
4133 /* SCTP checksum */
4134 off += sizeof(*chunk);
4135 m->m_pkthdr.len = m->m_len = off;
4136
4137 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4138
4139 if (rtableid >= 0)
4140 M_SETFIB(m, rtableid);
4141
4142 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4143 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4144 if (pfse == NULL) {
4145 m_freem(m);
4146 return;
4147 }
4148
4149 switch (af) {
4150 #ifdef INET
4151 case AF_INET:
4152 pfse->pfse_type = PFSE_IP;
4153 break;
4154 #endif /* INET */
4155 #ifdef INET6
4156 case AF_INET6:
4157 pfse->pfse_type = PFSE_IP6;
4158 break;
4159 #endif /* INET6 */
4160 }
4161
4162 pfse->pfse_m = m;
4163 pf_send(pfse);
4164 }
4165
4166 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4167 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4168 const struct pf_addr *saddr, const struct pf_addr *daddr,
4169 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4170 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4171 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4172 {
4173 struct pf_send_entry *pfse;
4174 struct mbuf *m;
4175
4176 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4177 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
4178 if (m == NULL)
4179 return;
4180
4181 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4182 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4183 if (pfse == NULL) {
4184 m_freem(m);
4185 return;
4186 }
4187
4188 switch (af) {
4189 #ifdef INET
4190 case AF_INET:
4191 pfse->pfse_type = PFSE_IP;
4192 break;
4193 #endif /* INET */
4194 #ifdef INET6
4195 case AF_INET6:
4196 pfse->pfse_type = PFSE_IP6;
4197 break;
4198 #endif /* INET6 */
4199 }
4200
4201 pfse->pfse_m = m;
4202 pf_send(pfse);
4203 }
4204
4205 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct pf_state_key * sk,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4206 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4207 struct pf_state_key *sk, struct tcphdr *th,
4208 u_int16_t bproto_sum, u_int16_t bip_sum,
4209 u_short *reason, int rtableid)
4210 {
4211 struct pf_addr * const saddr = pd->src;
4212 struct pf_addr * const daddr = pd->dst;
4213
4214 /* undo NAT changes, if they have taken place */
4215 if (nr != NULL) {
4216 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af);
4217 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af);
4218 if (pd->sport)
4219 *pd->sport = sk->port[pd->sidx];
4220 if (pd->dport)
4221 *pd->dport = sk->port[pd->didx];
4222 if (pd->ip_sum)
4223 *pd->ip_sum = bip_sum;
4224 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4225 }
4226 if (pd->proto == IPPROTO_TCP &&
4227 ((r->rule_flag & PFRULE_RETURNRST) ||
4228 (r->rule_flag & PFRULE_RETURN)) &&
4229 !(tcp_get_flags(th) & TH_RST)) {
4230 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4231
4232 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4233 IPPROTO_TCP, pd->af))
4234 REASON_SET(reason, PFRES_PROTCKSUM);
4235 else {
4236 if (tcp_get_flags(th) & TH_SYN)
4237 ack++;
4238 if (tcp_get_flags(th) & TH_FIN)
4239 ack++;
4240 pf_send_tcp(r, pd->af, pd->dst,
4241 pd->src, th->th_dport, th->th_sport,
4242 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4243 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4244 }
4245 } else if (pd->proto == IPPROTO_SCTP &&
4246 (r->rule_flag & PFRULE_RETURN)) {
4247 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4248 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4249 r->return_icmp)
4250 pf_send_icmp(pd->m, r->return_icmp >> 8,
4251 r->return_icmp & 255, pd->af, r, rtableid);
4252 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4253 r->return_icmp6)
4254 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4255 r->return_icmp6 & 255, pd->af, r, rtableid);
4256 }
4257
4258 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4259 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4260 {
4261 struct m_tag *mtag;
4262 u_int8_t mpcp;
4263
4264 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4265 if (mtag == NULL)
4266 return (0);
4267
4268 if (prio == PF_PRIO_ZERO)
4269 prio = 0;
4270
4271 mpcp = *(uint8_t *)(mtag + 1);
4272
4273 return (mpcp == prio);
4274 }
4275
4276 static int
pf_icmp_to_bandlim(uint8_t type)4277 pf_icmp_to_bandlim(uint8_t type)
4278 {
4279 switch (type) {
4280 case ICMP_ECHO:
4281 case ICMP_ECHOREPLY:
4282 return (BANDLIM_ICMP_ECHO);
4283 case ICMP_TSTAMP:
4284 case ICMP_TSTAMPREPLY:
4285 return (BANDLIM_ICMP_TSTAMP);
4286 case ICMP_UNREACH:
4287 default:
4288 return (BANDLIM_ICMP_UNREACH);
4289 }
4290 }
4291
4292 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,sa_family_t af,struct pf_krule * r,int rtableid)4293 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
4294 struct pf_krule *r, int rtableid)
4295 {
4296 struct pf_send_entry *pfse;
4297 struct mbuf *m0;
4298 struct pf_mtag *pf_mtag;
4299
4300 /* ICMP packet rate limitation. */
4301 switch (af) {
4302 #ifdef INET6
4303 case AF_INET6:
4304 if (icmp6_ratelimit(NULL, type, code))
4305 return;
4306 break;
4307 #endif
4308 #ifdef INET
4309 case AF_INET:
4310 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4311 return;
4312 break;
4313 #endif
4314 }
4315
4316 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4317 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4318 if (pfse == NULL)
4319 return;
4320
4321 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4322 free(pfse, M_PFTEMP);
4323 return;
4324 }
4325
4326 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4327 free(pfse, M_PFTEMP);
4328 return;
4329 }
4330 /* XXX: revisit */
4331 m0->m_flags |= M_SKIP_FIREWALL;
4332
4333 if (rtableid >= 0)
4334 M_SETFIB(m0, rtableid);
4335
4336 #ifdef ALTQ
4337 if (r->qid) {
4338 pf_mtag->qid = r->qid;
4339 /* add hints for ecn */
4340 pf_mtag->hdr = mtod(m0, struct ip *);
4341 }
4342 #endif /* ALTQ */
4343
4344 switch (af) {
4345 #ifdef INET
4346 case AF_INET:
4347 pfse->pfse_type = PFSE_ICMP;
4348 break;
4349 #endif /* INET */
4350 #ifdef INET6
4351 case AF_INET6:
4352 pfse->pfse_type = PFSE_ICMP6;
4353 break;
4354 #endif /* INET6 */
4355 }
4356 pfse->pfse_m = m0;
4357 pfse->icmpopts.type = type;
4358 pfse->icmpopts.code = code;
4359 pf_send(pfse);
4360 }
4361
4362 /*
4363 * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
4364 * If n is 0, they match if they are equal. If n is != 0, they match if they
4365 * are different.
4366 */
4367 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4368 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4369 const struct pf_addr *b, sa_family_t af)
4370 {
4371 int match = 0;
4372
4373 switch (af) {
4374 #ifdef INET
4375 case AF_INET:
4376 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4377 match++;
4378 break;
4379 #endif /* INET */
4380 #ifdef INET6
4381 case AF_INET6:
4382 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4383 match++;
4384 break;
4385 #endif /* INET6 */
4386 }
4387 if (match) {
4388 if (n)
4389 return (0);
4390 else
4391 return (1);
4392 } else {
4393 if (n)
4394 return (1);
4395 else
4396 return (0);
4397 }
4398 }
4399
4400 /*
4401 * Return 1 if b <= a <= e, otherwise return 0.
4402 */
4403 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4404 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4405 const struct pf_addr *a, sa_family_t af)
4406 {
4407 switch (af) {
4408 #ifdef INET
4409 case AF_INET:
4410 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4411 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4412 return (0);
4413 break;
4414 #endif /* INET */
4415 #ifdef INET6
4416 case AF_INET6: {
4417 int i;
4418
4419 /* check a >= b */
4420 for (i = 0; i < 4; ++i)
4421 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4422 break;
4423 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4424 return (0);
4425 /* check a <= e */
4426 for (i = 0; i < 4; ++i)
4427 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4428 break;
4429 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4430 return (0);
4431 break;
4432 }
4433 #endif /* INET6 */
4434 }
4435 return (1);
4436 }
4437
4438 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4439 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4440 {
4441 switch (op) {
4442 case PF_OP_IRG:
4443 return ((p > a1) && (p < a2));
4444 case PF_OP_XRG:
4445 return ((p < a1) || (p > a2));
4446 case PF_OP_RRG:
4447 return ((p >= a1) && (p <= a2));
4448 case PF_OP_EQ:
4449 return (p == a1);
4450 case PF_OP_NE:
4451 return (p != a1);
4452 case PF_OP_LT:
4453 return (p < a1);
4454 case PF_OP_LE:
4455 return (p <= a1);
4456 case PF_OP_GT:
4457 return (p > a1);
4458 case PF_OP_GE:
4459 return (p >= a1);
4460 }
4461 return (0); /* never reached */
4462 }
4463
4464 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4465 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4466 {
4467 NTOHS(a1);
4468 NTOHS(a2);
4469 NTOHS(p);
4470 return (pf_match(op, a1, a2, p));
4471 }
4472
4473 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4474 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4475 {
4476 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4477 return (0);
4478 return (pf_match(op, a1, a2, u));
4479 }
4480
4481 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4482 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4483 {
4484 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4485 return (0);
4486 return (pf_match(op, a1, a2, g));
4487 }
4488
4489 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4490 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4491 {
4492 if (*tag == -1)
4493 *tag = mtag;
4494
4495 return ((!r->match_tag_not && r->match_tag == *tag) ||
4496 (r->match_tag_not && r->match_tag != *tag));
4497 }
4498
4499 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4500 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4501 {
4502 struct ifnet *ifp = m->m_pkthdr.rcvif;
4503 struct pfi_kkif *kif;
4504
4505 if (ifp == NULL)
4506 return (0);
4507
4508 kif = (struct pfi_kkif *)ifp->if_pf_kif;
4509
4510 if (kif == NULL) {
4511 DPFPRINTF(PF_DEBUG_URGENT,
4512 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
4513 r->rcv_ifname));
4514 return (0);
4515 }
4516
4517 return (pfi_kkif_match(r->rcv_kif, kif));
4518 }
4519
4520 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4521 pf_tag_packet(struct pf_pdesc *pd, int tag)
4522 {
4523
4524 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4525
4526 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4527 return (ENOMEM);
4528
4529 pd->pf_mtag->tag = tag;
4530
4531 return (0);
4532 }
4533
4534 #define PF_ANCHOR_STACKSIZE 32
4535 struct pf_kanchor_stackframe {
4536 struct pf_kruleset *rs;
4537 struct pf_krule *r; /* XXX: + match bit */
4538 struct pf_kanchor *child;
4539 };
4540
4541 /*
4542 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4543 */
4544 #define PF_ANCHORSTACK_MATCH 0x00000001
4545 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4546
4547 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4548 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4549 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4550 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4551 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4552 } while (0)
4553
4554 void
pf_step_into_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4555 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4556 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4557 int *match)
4558 {
4559 struct pf_kanchor_stackframe *f;
4560
4561 PF_RULES_RASSERT();
4562
4563 if (match)
4564 *match = 0;
4565 if (*depth >= PF_ANCHOR_STACKSIZE) {
4566 printf("%s: anchor stack overflow on %s\n",
4567 __func__, (*r)->anchor->name);
4568 *r = TAILQ_NEXT(*r, entries);
4569 return;
4570 } else if (*depth == 0 && a != NULL)
4571 *a = *r;
4572 f = stack + (*depth)++;
4573 f->rs = *rs;
4574 f->r = *r;
4575 if ((*r)->anchor_wildcard) {
4576 struct pf_kanchor_node *parent = &(*r)->anchor->children;
4577
4578 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4579 *r = NULL;
4580 return;
4581 }
4582 *rs = &f->child->ruleset;
4583 } else {
4584 f->child = NULL;
4585 *rs = &(*r)->anchor->ruleset;
4586 }
4587 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4588 }
4589
4590 int
pf_step_out_of_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4591 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4592 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4593 int *match)
4594 {
4595 struct pf_kanchor_stackframe *f;
4596 struct pf_krule *fr;
4597 int quick = 0;
4598
4599 PF_RULES_RASSERT();
4600
4601 do {
4602 if (*depth <= 0)
4603 break;
4604 f = stack + *depth - 1;
4605 fr = PF_ANCHOR_RULE(f);
4606 if (f->child != NULL) {
4607 /*
4608 * This block traverses through
4609 * a wildcard anchor.
4610 */
4611 if (match != NULL && *match) {
4612 /*
4613 * If any of "*" matched, then
4614 * "foo/ *" matched, mark frame
4615 * appropriately.
4616 */
4617 PF_ANCHOR_SET_MATCH(f);
4618 *match = 0;
4619 }
4620 f->child = RB_NEXT(pf_kanchor_node,
4621 &fr->anchor->children, f->child);
4622 if (f->child != NULL) {
4623 *rs = &f->child->ruleset;
4624 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4625 if (*r == NULL)
4626 continue;
4627 else
4628 break;
4629 }
4630 }
4631 (*depth)--;
4632 if (*depth == 0 && a != NULL)
4633 *a = NULL;
4634 *rs = f->rs;
4635 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
4636 quick = fr->quick;
4637 *r = TAILQ_NEXT(fr, entries);
4638 } while (*r == NULL);
4639
4640 return (quick);
4641 }
4642
4643 struct pf_keth_anchor_stackframe {
4644 struct pf_keth_ruleset *rs;
4645 struct pf_keth_rule *r; /* XXX: + match bit */
4646 struct pf_keth_anchor *child;
4647 };
4648
4649 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4650 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4651 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4652 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4653 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4654 } while (0)
4655
4656 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4657 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4658 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4659 struct pf_keth_rule **a, int *match)
4660 {
4661 struct pf_keth_anchor_stackframe *f;
4662
4663 NET_EPOCH_ASSERT();
4664
4665 if (match)
4666 *match = 0;
4667 if (*depth >= PF_ANCHOR_STACKSIZE) {
4668 printf("%s: anchor stack overflow on %s\n",
4669 __func__, (*r)->anchor->name);
4670 *r = TAILQ_NEXT(*r, entries);
4671 return;
4672 } else if (*depth == 0 && a != NULL)
4673 *a = *r;
4674 f = stack + (*depth)++;
4675 f->rs = *rs;
4676 f->r = *r;
4677 if ((*r)->anchor_wildcard) {
4678 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4679
4680 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4681 *r = NULL;
4682 return;
4683 }
4684 *rs = &f->child->ruleset;
4685 } else {
4686 f->child = NULL;
4687 *rs = &(*r)->anchor->ruleset;
4688 }
4689 *r = TAILQ_FIRST((*rs)->active.rules);
4690 }
4691
4692 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4693 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4694 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4695 struct pf_keth_rule **a, int *match)
4696 {
4697 struct pf_keth_anchor_stackframe *f;
4698 struct pf_keth_rule *fr;
4699 int quick = 0;
4700
4701 NET_EPOCH_ASSERT();
4702
4703 do {
4704 if (*depth <= 0)
4705 break;
4706 f = stack + *depth - 1;
4707 fr = PF_ETH_ANCHOR_RULE(f);
4708 if (f->child != NULL) {
4709 /*
4710 * This block traverses through
4711 * a wildcard anchor.
4712 */
4713 if (match != NULL && *match) {
4714 /*
4715 * If any of "*" matched, then
4716 * "foo/ *" matched, mark frame
4717 * appropriately.
4718 */
4719 PF_ETH_ANCHOR_SET_MATCH(f);
4720 *match = 0;
4721 }
4722 f->child = RB_NEXT(pf_keth_anchor_node,
4723 &fr->anchor->children, f->child);
4724 if (f->child != NULL) {
4725 *rs = &f->child->ruleset;
4726 *r = TAILQ_FIRST((*rs)->active.rules);
4727 if (*r == NULL)
4728 continue;
4729 else
4730 break;
4731 }
4732 }
4733 (*depth)--;
4734 if (*depth == 0 && a != NULL)
4735 *a = NULL;
4736 *rs = f->rs;
4737 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4738 quick = fr->quick;
4739 *r = TAILQ_NEXT(fr, entries);
4740 } while (*r == NULL);
4741
4742 return (quick);
4743 }
4744
4745 #ifdef INET6
4746 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4747 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4748 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4749 {
4750 switch (af) {
4751 #ifdef INET
4752 case AF_INET:
4753 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4754 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4755 break;
4756 #endif /* INET */
4757 case AF_INET6:
4758 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4759 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4760 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4761 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4762 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4763 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4764 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4765 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4766 break;
4767 }
4768 }
4769
4770 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4771 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4772 {
4773 switch (af) {
4774 #ifdef INET
4775 case AF_INET:
4776 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4777 break;
4778 #endif /* INET */
4779 case AF_INET6:
4780 if (addr->addr32[3] == 0xffffffff) {
4781 addr->addr32[3] = 0;
4782 if (addr->addr32[2] == 0xffffffff) {
4783 addr->addr32[2] = 0;
4784 if (addr->addr32[1] == 0xffffffff) {
4785 addr->addr32[1] = 0;
4786 addr->addr32[0] =
4787 htonl(ntohl(addr->addr32[0]) + 1);
4788 } else
4789 addr->addr32[1] =
4790 htonl(ntohl(addr->addr32[1]) + 1);
4791 } else
4792 addr->addr32[2] =
4793 htonl(ntohl(addr->addr32[2]) + 1);
4794 } else
4795 addr->addr32[3] =
4796 htonl(ntohl(addr->addr32[3]) + 1);
4797 break;
4798 }
4799 }
4800 #endif /* INET6 */
4801
4802 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4803 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4804 {
4805 /*
4806 * Modern rules use the same flags in rules as they do in states.
4807 */
4808 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4809 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4810
4811 /*
4812 * Old-style scrub rules have different flags which need to be translated.
4813 */
4814 if (r->rule_flag & PFRULE_RANDOMID)
4815 a->flags |= PFSTATE_RANDOMID;
4816 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4817 a->flags |= PFSTATE_SETTOS;
4818 a->set_tos = r->set_tos;
4819 }
4820
4821 if (r->qid)
4822 a->qid = r->qid;
4823 if (r->pqid)
4824 a->pqid = r->pqid;
4825 if (r->rtableid >= 0)
4826 a->rtableid = r->rtableid;
4827 a->log |= r->log;
4828 if (r->min_ttl)
4829 a->min_ttl = r->min_ttl;
4830 if (r->max_mss)
4831 a->max_mss = r->max_mss;
4832 if (r->dnpipe)
4833 a->dnpipe = r->dnpipe;
4834 if (r->dnrpipe)
4835 a->dnrpipe = r->dnrpipe;
4836 if (r->dnpipe || r->dnrpipe) {
4837 if (r->free_flags & PFRULE_DN_IS_PIPE)
4838 a->flags |= PFSTATE_DN_IS_PIPE;
4839 else
4840 a->flags &= ~PFSTATE_DN_IS_PIPE;
4841 }
4842 if (r->scrub_flags & PFSTATE_SETPRIO) {
4843 a->set_prio[0] = r->set_prio[0];
4844 a->set_prio[1] = r->set_prio[1];
4845 }
4846 }
4847
4848 int
pf_socket_lookup(struct pf_pdesc * pd)4849 pf_socket_lookup(struct pf_pdesc *pd)
4850 {
4851 struct pf_addr *saddr, *daddr;
4852 u_int16_t sport, dport;
4853 struct inpcbinfo *pi;
4854 struct inpcb *inp;
4855
4856 pd->lookup.uid = UID_MAX;
4857 pd->lookup.gid = GID_MAX;
4858
4859 switch (pd->proto) {
4860 case IPPROTO_TCP:
4861 sport = pd->hdr.tcp.th_sport;
4862 dport = pd->hdr.tcp.th_dport;
4863 pi = &V_tcbinfo;
4864 break;
4865 case IPPROTO_UDP:
4866 sport = pd->hdr.udp.uh_sport;
4867 dport = pd->hdr.udp.uh_dport;
4868 pi = &V_udbinfo;
4869 break;
4870 default:
4871 return (-1);
4872 }
4873 if (pd->dir == PF_IN) {
4874 saddr = pd->src;
4875 daddr = pd->dst;
4876 } else {
4877 u_int16_t p;
4878
4879 p = sport;
4880 sport = dport;
4881 dport = p;
4882 saddr = pd->dst;
4883 daddr = pd->src;
4884 }
4885 switch (pd->af) {
4886 #ifdef INET
4887 case AF_INET:
4888 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4889 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4890 if (inp == NULL) {
4891 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4892 daddr->v4, dport, INPLOOKUP_WILDCARD |
4893 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4894 if (inp == NULL)
4895 return (-1);
4896 }
4897 break;
4898 #endif /* INET */
4899 #ifdef INET6
4900 case AF_INET6:
4901 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4902 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4903 if (inp == NULL) {
4904 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4905 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4906 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4907 if (inp == NULL)
4908 return (-1);
4909 }
4910 break;
4911 #endif /* INET6 */
4912 }
4913 INP_RLOCK_ASSERT(inp);
4914 pd->lookup.uid = inp->inp_cred->cr_uid;
4915 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4916 INP_RUNLOCK(inp);
4917
4918 return (1);
4919 }
4920
4921 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)4922 pf_get_wscale(struct pf_pdesc *pd)
4923 {
4924 struct tcphdr *th = &pd->hdr.tcp;
4925 int hlen;
4926 u_int8_t hdr[60];
4927 u_int8_t *opt, optlen;
4928 u_int8_t wscale = 0;
4929
4930 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4931 if (hlen <= sizeof(struct tcphdr))
4932 return (0);
4933 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4934 return (0);
4935 opt = hdr + sizeof(struct tcphdr);
4936 hlen -= sizeof(struct tcphdr);
4937 while (hlen >= 3) {
4938 switch (*opt) {
4939 case TCPOPT_EOL:
4940 case TCPOPT_NOP:
4941 ++opt;
4942 --hlen;
4943 break;
4944 case TCPOPT_WINDOW:
4945 wscale = opt[2];
4946 if (wscale > TCP_MAX_WINSHIFT)
4947 wscale = TCP_MAX_WINSHIFT;
4948 wscale |= PF_WSCALE_FLAG;
4949 /* FALLTHROUGH */
4950 default:
4951 optlen = opt[1];
4952 if (optlen < 2)
4953 optlen = 2;
4954 hlen -= optlen;
4955 opt += optlen;
4956 break;
4957 }
4958 }
4959 return (wscale);
4960 }
4961
4962 u_int16_t
pf_get_mss(struct pf_pdesc * pd)4963 pf_get_mss(struct pf_pdesc *pd)
4964 {
4965 struct tcphdr *th = &pd->hdr.tcp;
4966 int hlen;
4967 u_int8_t hdr[60];
4968 u_int8_t *opt, optlen;
4969 u_int16_t mss = V_tcp_mssdflt;
4970
4971 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4972 if (hlen <= sizeof(struct tcphdr))
4973 return (0);
4974 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4975 return (0);
4976 opt = hdr + sizeof(struct tcphdr);
4977 hlen -= sizeof(struct tcphdr);
4978 while (hlen >= TCPOLEN_MAXSEG) {
4979 switch (*opt) {
4980 case TCPOPT_EOL:
4981 case TCPOPT_NOP:
4982 ++opt;
4983 --hlen;
4984 break;
4985 case TCPOPT_MAXSEG:
4986 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
4987 NTOHS(mss);
4988 /* FALLTHROUGH */
4989 default:
4990 optlen = opt[1];
4991 if (optlen < 2)
4992 optlen = 2;
4993 hlen -= optlen;
4994 opt += optlen;
4995 break;
4996 }
4997 }
4998 return (mss);
4999 }
5000
5001 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5002 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5003 {
5004 struct nhop_object *nh;
5005 #ifdef INET6
5006 struct in6_addr dst6;
5007 uint32_t scopeid;
5008 #endif /* INET6 */
5009 int hlen = 0;
5010 uint16_t mss = 0;
5011
5012 NET_EPOCH_ASSERT();
5013
5014 switch (af) {
5015 #ifdef INET
5016 case AF_INET:
5017 hlen = sizeof(struct ip);
5018 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5019 if (nh != NULL)
5020 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5021 break;
5022 #endif /* INET */
5023 #ifdef INET6
5024 case AF_INET6:
5025 hlen = sizeof(struct ip6_hdr);
5026 in6_splitscope(&addr->v6, &dst6, &scopeid);
5027 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5028 if (nh != NULL)
5029 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5030 break;
5031 #endif /* INET6 */
5032 }
5033
5034 mss = max(V_tcp_mssdflt, mss);
5035 mss = min(mss, offer);
5036 mss = max(mss, 64); /* sanity - at least max opt space */
5037 return (mss);
5038 }
5039
5040 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5041 pf_tcp_iss(struct pf_pdesc *pd)
5042 {
5043 MD5_CTX ctx;
5044 u_int32_t digest[4];
5045
5046 if (V_pf_tcp_secret_init == 0) {
5047 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5048 MD5Init(&V_pf_tcp_secret_ctx);
5049 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5050 sizeof(V_pf_tcp_secret));
5051 V_pf_tcp_secret_init = 1;
5052 }
5053
5054 ctx = V_pf_tcp_secret_ctx;
5055
5056 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
5057 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
5058 switch (pd->af) {
5059 case AF_INET6:
5060 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
5061 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
5062 break;
5063 case AF_INET:
5064 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
5065 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
5066 break;
5067 }
5068 MD5Final((u_char *)digest, &ctx);
5069 V_pf_tcp_iss_off += 4096;
5070 #define ISN_RANDOM_INCREMENT (4096 - 1)
5071 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5072 V_pf_tcp_iss_off);
5073 #undef ISN_RANDOM_INCREMENT
5074 }
5075
5076 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5077 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5078 {
5079 bool match = true;
5080
5081 /* Always matches if not set */
5082 if (! r->isset)
5083 return (!r->neg);
5084
5085 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5086 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5087 match = false;
5088 break;
5089 }
5090 }
5091
5092 return (match ^ r->neg);
5093 }
5094
5095 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5096 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5097 {
5098 if (*tag == -1)
5099 *tag = mtag;
5100
5101 return ((!r->match_tag_not && r->match_tag == *tag) ||
5102 (r->match_tag_not && r->match_tag != *tag));
5103 }
5104
5105 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5106 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5107 {
5108 /* If we don't have the interface drop the packet. */
5109 if (ifp == NULL) {
5110 m_freem(m);
5111 return;
5112 }
5113
5114 switch (ifp->if_type) {
5115 case IFT_ETHER:
5116 case IFT_XETHER:
5117 case IFT_L2VLAN:
5118 case IFT_BRIDGE:
5119 case IFT_IEEE8023ADLAG:
5120 break;
5121 default:
5122 m_freem(m);
5123 return;
5124 }
5125
5126 ifp->if_transmit(ifp, m);
5127 }
5128
5129 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5130 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5131 {
5132 #ifdef INET
5133 struct ip ip;
5134 #endif
5135 #ifdef INET6
5136 struct ip6_hdr ip6;
5137 #endif
5138 struct mbuf *m = *m0;
5139 struct ether_header *e;
5140 struct pf_keth_rule *r, *rm, *a = NULL;
5141 struct pf_keth_ruleset *ruleset = NULL;
5142 struct pf_mtag *mtag;
5143 struct pf_keth_ruleq *rules;
5144 struct pf_addr *src = NULL, *dst = NULL;
5145 struct pfi_kkif *bridge_to;
5146 sa_family_t af = 0;
5147 uint16_t proto;
5148 int asd = 0, match = 0;
5149 int tag = -1;
5150 uint8_t action;
5151 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
5152
5153 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5154 NET_EPOCH_ASSERT();
5155
5156 PF_RULES_RLOCK_TRACKER;
5157
5158 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5159
5160 mtag = pf_find_mtag(m);
5161 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5162 /* Dummynet re-injects packets after they've
5163 * completed their delay. We've already
5164 * processed them, so pass unconditionally. */
5165
5166 /* But only once. We may see the packet multiple times (e.g.
5167 * PFIL_IN/PFIL_OUT). */
5168 pf_dummynet_flag_remove(m, mtag);
5169
5170 return (PF_PASS);
5171 }
5172
5173 ruleset = V_pf_keth;
5174 rules = ck_pr_load_ptr(&ruleset->active.rules);
5175 r = TAILQ_FIRST(rules);
5176 rm = NULL;
5177
5178 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5179 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5180 DPFPRINTF(PF_DEBUG_URGENT,
5181 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
5182 ", pullup failed\n"));
5183 return (PF_DROP);
5184 }
5185 e = mtod(m, struct ether_header *);
5186 proto = ntohs(e->ether_type);
5187
5188 switch (proto) {
5189 #ifdef INET
5190 case ETHERTYPE_IP: {
5191 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5192 sizeof(ip)))
5193 return (PF_DROP);
5194
5195 af = AF_INET;
5196 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5197 (caddr_t)&ip);
5198 src = (struct pf_addr *)&ip.ip_src;
5199 dst = (struct pf_addr *)&ip.ip_dst;
5200 break;
5201 }
5202 #endif /* INET */
5203 #ifdef INET6
5204 case ETHERTYPE_IPV6: {
5205 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5206 sizeof(ip6)))
5207 return (PF_DROP);
5208
5209 af = AF_INET6;
5210 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5211 (caddr_t)&ip6);
5212 src = (struct pf_addr *)&ip6.ip6_src;
5213 dst = (struct pf_addr *)&ip6.ip6_dst;
5214 break;
5215 }
5216 #endif /* INET6 */
5217 }
5218
5219 PF_RULES_RLOCK();
5220
5221 while (r != NULL) {
5222 counter_u64_add(r->evaluations, 1);
5223 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5224
5225 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5226 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5227 "kif");
5228 r = r->skip[PFE_SKIP_IFP].ptr;
5229 }
5230 else if (r->direction && r->direction != dir) {
5231 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5232 "dir");
5233 r = r->skip[PFE_SKIP_DIR].ptr;
5234 }
5235 else if (r->proto && r->proto != proto) {
5236 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5237 "proto");
5238 r = r->skip[PFE_SKIP_PROTO].ptr;
5239 }
5240 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5241 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5242 "src");
5243 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5244 }
5245 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5246 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5247 "dst");
5248 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5249 }
5250 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5251 r->ipsrc.neg, kif, M_GETFIB(m))) {
5252 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5253 "ip_src");
5254 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5255 }
5256 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5257 r->ipdst.neg, kif, M_GETFIB(m))) {
5258 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5259 "ip_dst");
5260 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5261 }
5262 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5263 mtag ? mtag->tag : 0)) {
5264 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5265 "match_tag");
5266 r = TAILQ_NEXT(r, entries);
5267 }
5268 else {
5269 if (r->tag)
5270 tag = r->tag;
5271 if (r->anchor == NULL) {
5272 /* Rule matches */
5273 rm = r;
5274
5275 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5276
5277 if (r->quick)
5278 break;
5279
5280 r = TAILQ_NEXT(r, entries);
5281 } else {
5282 pf_step_into_keth_anchor(anchor_stack, &asd,
5283 &ruleset, &r, &a, &match);
5284 }
5285 }
5286 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5287 &ruleset, &r, &a, &match))
5288 break;
5289 }
5290
5291 r = rm;
5292
5293 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5294
5295 /* Default to pass. */
5296 if (r == NULL) {
5297 PF_RULES_RUNLOCK();
5298 return (PF_PASS);
5299 }
5300
5301 /* Execute action. */
5302 counter_u64_add(r->packets[dir == PF_OUT], 1);
5303 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5304 pf_update_timestamp(r);
5305
5306 /* Shortcut. Don't tag if we're just going to drop anyway. */
5307 if (r->action == PF_DROP) {
5308 PF_RULES_RUNLOCK();
5309 return (PF_DROP);
5310 }
5311
5312 if (tag > 0) {
5313 if (mtag == NULL)
5314 mtag = pf_get_mtag(m);
5315 if (mtag == NULL) {
5316 PF_RULES_RUNLOCK();
5317 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5318 return (PF_DROP);
5319 }
5320 mtag->tag = tag;
5321 }
5322
5323 if (r->qid != 0) {
5324 if (mtag == NULL)
5325 mtag = pf_get_mtag(m);
5326 if (mtag == NULL) {
5327 PF_RULES_RUNLOCK();
5328 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5329 return (PF_DROP);
5330 }
5331 mtag->qid = r->qid;
5332 }
5333
5334 action = r->action;
5335 bridge_to = r->bridge_to;
5336
5337 /* Dummynet */
5338 if (r->dnpipe) {
5339 struct ip_fw_args dnflow;
5340
5341 /* Drop packet if dummynet is not loaded. */
5342 if (ip_dn_io_ptr == NULL) {
5343 PF_RULES_RUNLOCK();
5344 m_freem(m);
5345 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5346 return (PF_DROP);
5347 }
5348 if (mtag == NULL)
5349 mtag = pf_get_mtag(m);
5350 if (mtag == NULL) {
5351 PF_RULES_RUNLOCK();
5352 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5353 return (PF_DROP);
5354 }
5355
5356 bzero(&dnflow, sizeof(dnflow));
5357
5358 /* We don't have port numbers here, so we set 0. That means
5359 * that we'll be somewhat limited in distinguishing flows (i.e.
5360 * only based on IP addresses, not based on port numbers), but
5361 * it's better than nothing. */
5362 dnflow.f_id.dst_port = 0;
5363 dnflow.f_id.src_port = 0;
5364 dnflow.f_id.proto = 0;
5365
5366 dnflow.rule.info = r->dnpipe;
5367 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5368 if (r->dnflags & PFRULE_DN_IS_PIPE)
5369 dnflow.rule.info |= IPFW_IS_PIPE;
5370
5371 dnflow.f_id.extra = dnflow.rule.info;
5372
5373 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5374 dnflow.flags |= IPFW_ARGS_ETHER;
5375 dnflow.ifp = kif->pfik_ifp;
5376
5377 switch (af) {
5378 case AF_INET:
5379 dnflow.f_id.addr_type = 4;
5380 dnflow.f_id.src_ip = src->v4.s_addr;
5381 dnflow.f_id.dst_ip = dst->v4.s_addr;
5382 break;
5383 case AF_INET6:
5384 dnflow.flags |= IPFW_ARGS_IP6;
5385 dnflow.f_id.addr_type = 6;
5386 dnflow.f_id.src_ip6 = src->v6;
5387 dnflow.f_id.dst_ip6 = dst->v6;
5388 break;
5389 }
5390
5391 PF_RULES_RUNLOCK();
5392
5393 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5394 ip_dn_io_ptr(m0, &dnflow);
5395 if (*m0 != NULL)
5396 pf_dummynet_flag_remove(m, mtag);
5397 } else {
5398 PF_RULES_RUNLOCK();
5399 }
5400
5401 if (action == PF_PASS && bridge_to) {
5402 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5403 *m0 = NULL; /* We've eaten the packet. */
5404 }
5405
5406 return (action);
5407 }
5408
5409 #define PF_TEST_ATTRIB(t, a)\
5410 do { \
5411 if (t) { \
5412 r = a; \
5413 goto nextrule; \
5414 } \
5415 } while (0)
5416
5417 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,struct inpcb * inp)5418 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5419 struct pf_pdesc *pd, struct pf_krule **am,
5420 struct pf_kruleset **rsm, struct inpcb *inp)
5421 {
5422 struct pf_krule *nr = NULL;
5423 struct pf_krule *r, *a = NULL;
5424 struct pf_kruleset *ruleset = NULL;
5425 struct pf_krule_slist match_rules;
5426 struct pf_krule_item *ri;
5427 struct tcphdr *th = &pd->hdr.tcp;
5428 struct pf_state_key *sk = NULL, *nk = NULL;
5429 u_short reason, transerror;
5430 int rewrite = 0;
5431 int tag = -1;
5432 int asd = 0;
5433 int match = 0;
5434 int state_icmp = 0, icmp_dir, multi;
5435 u_int16_t virtual_type, virtual_id;
5436 u_int16_t bproto_sum = 0, bip_sum = 0;
5437 u_int8_t icmptype = 0, icmpcode = 0;
5438 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
5439 struct pf_udp_mapping *udp_mapping = NULL;
5440
5441 PF_RULES_RASSERT();
5442
5443 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5444 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5445
5446 SLIST_INIT(&match_rules);
5447
5448 if (inp != NULL) {
5449 INP_LOCK_ASSERT(inp);
5450 pd->lookup.uid = inp->inp_cred->cr_uid;
5451 pd->lookup.gid = inp->inp_cred->cr_groups[0];
5452 pd->lookup.done = 1;
5453 }
5454
5455 switch (pd->virtual_proto) {
5456 case IPPROTO_TCP:
5457 pd->nsport = th->th_sport;
5458 pd->ndport = th->th_dport;
5459 break;
5460 case IPPROTO_UDP:
5461 pd->nsport = pd->hdr.udp.uh_sport;
5462 pd->ndport = pd->hdr.udp.uh_dport;
5463 break;
5464 case IPPROTO_SCTP:
5465 pd->nsport = pd->hdr.sctp.src_port;
5466 pd->ndport = pd->hdr.sctp.dest_port;
5467 break;
5468 #ifdef INET
5469 case IPPROTO_ICMP:
5470 MPASS(pd->af == AF_INET);
5471 icmptype = pd->hdr.icmp.icmp_type;
5472 icmpcode = pd->hdr.icmp.icmp_code;
5473 state_icmp = pf_icmp_mapping(pd, icmptype,
5474 &icmp_dir, &multi, &virtual_id, &virtual_type);
5475 if (icmp_dir == PF_IN) {
5476 pd->nsport = virtual_id;
5477 pd->ndport = virtual_type;
5478 } else {
5479 pd->nsport = virtual_type;
5480 pd->ndport = virtual_id;
5481 }
5482 break;
5483 #endif /* INET */
5484 #ifdef INET6
5485 case IPPROTO_ICMPV6:
5486 MPASS(pd->af == AF_INET6);
5487 icmptype = pd->hdr.icmp6.icmp6_type;
5488 icmpcode = pd->hdr.icmp6.icmp6_code;
5489 state_icmp = pf_icmp_mapping(pd, icmptype,
5490 &icmp_dir, &multi, &virtual_id, &virtual_type);
5491 if (icmp_dir == PF_IN) {
5492 pd->nsport = virtual_id;
5493 pd->ndport = virtual_type;
5494 } else {
5495 pd->nsport = virtual_type;
5496 pd->ndport = virtual_id;
5497 }
5498
5499 break;
5500 #endif /* INET6 */
5501 default:
5502 pd->nsport = pd->ndport = 0;
5503 break;
5504 }
5505 pd->osport = pd->nsport;
5506 pd->odport = pd->ndport;
5507
5508 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
5509
5510 /* check packet for BINAT/NAT/RDR */
5511 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack,
5512 &nr, &udp_mapping);
5513 switch (transerror) {
5514 default:
5515 /* A translation error occurred. */
5516 REASON_SET(&reason, transerror);
5517 goto cleanup;
5518 case PFRES_MAX:
5519 /* No match. */
5520 break;
5521 case PFRES_MATCH:
5522 KASSERT(sk != NULL, ("%s: null sk", __func__));
5523 KASSERT(nk != NULL, ("%s: null nk", __func__));
5524
5525 if (nr->log) {
5526 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a,
5527 ruleset, pd, 1);
5528 }
5529
5530 if (pd->ip_sum)
5531 bip_sum = *pd->ip_sum;
5532
5533 switch (pd->proto) {
5534 case IPPROTO_TCP:
5535 bproto_sum = th->th_sum;
5536
5537 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5538 nk->port[pd->sidx] != pd->nsport) {
5539 pf_change_ap(pd->m, pd->src, &th->th_sport,
5540 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
5541 nk->port[pd->sidx], 0, pd->af, pd->naf);
5542 pd->sport = &th->th_sport;
5543 pd->nsport = th->th_sport;
5544 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5545 }
5546
5547 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5548 nk->port[pd->didx] != pd->ndport) {
5549 pf_change_ap(pd->m, pd->dst, &th->th_dport,
5550 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
5551 nk->port[pd->didx], 0, pd->af, pd->naf);
5552 pd->dport = &th->th_dport;
5553 pd->ndport = th->th_dport;
5554 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5555 }
5556 rewrite++;
5557 break;
5558 case IPPROTO_UDP:
5559 bproto_sum = pd->hdr.udp.uh_sum;
5560
5561 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5562 nk->port[pd->sidx] != pd->nsport) {
5563 pf_change_ap(pd->m, pd->src,
5564 &pd->hdr.udp.uh_sport,
5565 pd->ip_sum, &pd->hdr.udp.uh_sum,
5566 &nk->addr[pd->sidx],
5567 nk->port[pd->sidx], 1, pd->af, pd->naf);
5568 pd->sport = &pd->hdr.udp.uh_sport;
5569 pd->nsport = pd->hdr.udp.uh_sport;
5570 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5571 }
5572
5573 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5574 nk->port[pd->didx] != pd->ndport) {
5575 pf_change_ap(pd->m, pd->dst,
5576 &pd->hdr.udp.uh_dport,
5577 pd->ip_sum, &pd->hdr.udp.uh_sum,
5578 &nk->addr[pd->didx],
5579 nk->port[pd->didx], 1, pd->af, pd->naf);
5580 pd->dport = &pd->hdr.udp.uh_dport;
5581 pd->ndport = pd->hdr.udp.uh_dport;
5582 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5583 }
5584 rewrite++;
5585 break;
5586 case IPPROTO_SCTP: {
5587 uint16_t checksum = 0;
5588
5589 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5590 nk->port[pd->sidx] != pd->nsport) {
5591 pf_change_ap(pd->m, pd->src,
5592 &pd->hdr.sctp.src_port, pd->ip_sum, &checksum,
5593 &nk->addr[pd->sidx],
5594 nk->port[pd->sidx], 1, pd->af, pd->naf);
5595 pd->sport = &pd->hdr.sctp.src_port;
5596 pd->nsport = pd->hdr.sctp.src_port;
5597 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5598 }
5599 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5600 nk->port[pd->didx] != pd->ndport) {
5601 pf_change_ap(pd->m, pd->dst,
5602 &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum,
5603 &nk->addr[pd->didx],
5604 nk->port[pd->didx], 1, pd->af, pd->naf);
5605 pd->dport = &pd->hdr.sctp.dest_port;
5606 pd->ndport = pd->hdr.sctp.dest_port;
5607 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5608 }
5609 break;
5610 }
5611 #ifdef INET
5612 case IPPROTO_ICMP:
5613 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
5614 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
5615 nk->addr[pd->sidx].v4.s_addr, 0);
5616 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5617 }
5618
5619 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
5620 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
5621 nk->addr[pd->didx].v4.s_addr, 0);
5622 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5623 }
5624
5625 if (virtual_type == htons(ICMP_ECHO) &&
5626 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5627 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5628 pd->hdr.icmp.icmp_cksum, pd->nsport,
5629 nk->port[pd->sidx], 0);
5630 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5631 pd->sport = &pd->hdr.icmp.icmp_id;
5632 }
5633 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5634 break;
5635 #endif /* INET */
5636 #ifdef INET6
5637 case IPPROTO_ICMPV6:
5638 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
5639 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
5640 &nk->addr[pd->sidx], 0);
5641 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5642 }
5643
5644 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
5645 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
5646 &nk->addr[pd->didx], 0);
5647 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5648 }
5649 rewrite++;
5650 break;
5651 #endif /* INET */
5652 default:
5653 switch (pd->af) {
5654 #ifdef INET
5655 case AF_INET:
5656 if (PF_ANEQ(&pd->nsaddr,
5657 &nk->addr[pd->sidx], AF_INET)) {
5658 pf_change_a(&pd->src->v4.s_addr,
5659 pd->ip_sum,
5660 nk->addr[pd->sidx].v4.s_addr, 0);
5661 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5662 }
5663
5664 if (PF_ANEQ(&pd->ndaddr,
5665 &nk->addr[pd->didx], AF_INET)) {
5666 pf_change_a(&pd->dst->v4.s_addr,
5667 pd->ip_sum,
5668 nk->addr[pd->didx].v4.s_addr, 0);
5669 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5670 }
5671 break;
5672 #endif /* INET */
5673 #ifdef INET6
5674 case AF_INET6:
5675 if (PF_ANEQ(&pd->nsaddr,
5676 &nk->addr[pd->sidx], AF_INET6)) {
5677 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af);
5678 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
5679 }
5680
5681 if (PF_ANEQ(&pd->ndaddr,
5682 &nk->addr[pd->didx], AF_INET6)) {
5683 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af);
5684 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
5685 }
5686 break;
5687 #endif /* INET */
5688 }
5689 break;
5690 }
5691 if (nr->natpass)
5692 r = NULL;
5693 }
5694
5695 while (r != NULL) {
5696 pf_counter_u64_add(&r->evaluations, 1);
5697 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5698 r->skip[PF_SKIP_IFP]);
5699 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5700 r->skip[PF_SKIP_DIR]);
5701 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5702 r->skip[PF_SKIP_AF]);
5703 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5704 r->skip[PF_SKIP_PROTO]);
5705 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5706 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5707 r->skip[PF_SKIP_SRC_ADDR]);
5708 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5709 r->dst.neg, NULL, M_GETFIB(pd->m)),
5710 r->skip[PF_SKIP_DST_ADDR]);
5711 switch (pd->virtual_proto) {
5712 case PF_VPROTO_FRAGMENT:
5713 /* tcp/udp only. port_op always 0 in other cases */
5714 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5715 TAILQ_NEXT(r, entries));
5716 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5717 TAILQ_NEXT(r, entries));
5718 /* icmp only. type/code always 0 in other cases */
5719 PF_TEST_ATTRIB((r->type || r->code),
5720 TAILQ_NEXT(r, entries));
5721 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5722 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5723 TAILQ_NEXT(r, entries));
5724 break;
5725
5726 case IPPROTO_TCP:
5727 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags,
5728 TAILQ_NEXT(r, entries));
5729 /* FALLTHROUGH */
5730 case IPPROTO_SCTP:
5731 case IPPROTO_UDP:
5732 /* tcp/udp only. port_op always 0 in other cases */
5733 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5734 r->src.port[0], r->src.port[1], pd->nsport),
5735 r->skip[PF_SKIP_SRC_PORT]);
5736 /* tcp/udp only. port_op always 0 in other cases */
5737 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5738 r->dst.port[0], r->dst.port[1], pd->ndport),
5739 r->skip[PF_SKIP_DST_PORT]);
5740 /* tcp/udp only. uid.op always 0 in other cases */
5741 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5742 pf_socket_lookup(pd), 1)) &&
5743 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5744 pd->lookup.uid),
5745 TAILQ_NEXT(r, entries));
5746 /* tcp/udp only. gid.op always 0 in other cases */
5747 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5748 pf_socket_lookup(pd), 1)) &&
5749 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5750 pd->lookup.gid),
5751 TAILQ_NEXT(r, entries));
5752 break;
5753
5754 case IPPROTO_ICMP:
5755 case IPPROTO_ICMPV6:
5756 /* icmp only. type always 0 in other cases */
5757 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5758 TAILQ_NEXT(r, entries));
5759 /* icmp only. type always 0 in other cases */
5760 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5761 TAILQ_NEXT(r, entries));
5762 break;
5763
5764 default:
5765 break;
5766 }
5767 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5768 TAILQ_NEXT(r, entries));
5769 PF_TEST_ATTRIB(r->prio &&
5770 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5771 TAILQ_NEXT(r, entries));
5772 PF_TEST_ATTRIB(r->prob &&
5773 r->prob <= arc4random(),
5774 TAILQ_NEXT(r, entries));
5775 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5776 pd->pf_mtag ? pd->pf_mtag->tag : 0),
5777 TAILQ_NEXT(r, entries));
5778 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r),
5779 TAILQ_NEXT(r, entries));
5780 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5781 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5782 TAILQ_NEXT(r, entries));
5783 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5784 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5785 pf_osfp_fingerprint(pd, th),
5786 r->os_fingerprint)),
5787 TAILQ_NEXT(r, entries));
5788 /* FALLTHROUGH */
5789 if (r->tag)
5790 tag = r->tag;
5791 if (r->anchor == NULL) {
5792 if (r->action == PF_MATCH) {
5793 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5794 if (ri == NULL) {
5795 REASON_SET(&reason, PFRES_MEMORY);
5796 goto cleanup;
5797 }
5798 ri->r = r;
5799 SLIST_INSERT_HEAD(&match_rules, ri, entry);
5800 pf_counter_u64_critical_enter();
5801 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5802 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5803 pf_counter_u64_critical_exit();
5804 pf_rule_to_actions(r, &pd->act);
5805 if (r->naf)
5806 pd->naf = r->naf;
5807 if (pd->af != pd->naf) {
5808 if (pf_get_transaddr_af(r, pd) == -1) {
5809 REASON_SET(&reason, PFRES_MEMORY);
5810 goto cleanup;
5811 }
5812 }
5813 if (r->log || pd->act.log & PF_LOG_MATCHES)
5814 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5815 a, ruleset, pd, 1);
5816 } else {
5817 match = 1;
5818 *rm = r;
5819 *am = a;
5820 *rsm = ruleset;
5821 if (pd->act.log & PF_LOG_MATCHES)
5822 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5823 a, ruleset, pd, 1);
5824 }
5825 if ((*rm)->quick)
5826 break;
5827 r = TAILQ_NEXT(r, entries);
5828 } else
5829 pf_step_into_anchor(anchor_stack, &asd,
5830 &ruleset, PF_RULESET_FILTER, &r, &a,
5831 &match);
5832 nextrule:
5833 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5834 &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5835 break;
5836 }
5837 r = *rm;
5838 a = *am;
5839 ruleset = *rsm;
5840
5841 REASON_SET(&reason, PFRES_MATCH);
5842
5843 /* apply actions for last matching pass/block rule */
5844 pf_rule_to_actions(r, &pd->act);
5845 if (r->naf)
5846 pd->naf = r->naf;
5847 if (pd->af != pd->naf) {
5848 if (pf_get_transaddr_af(r, pd) == -1) {
5849 REASON_SET(&reason, PFRES_MEMORY);
5850 goto cleanup;
5851 }
5852 }
5853
5854 if (r->log || pd->act.log & PF_LOG_MATCHES) {
5855 if (rewrite)
5856 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5857 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1);
5858 }
5859
5860 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5861 (r->action == PF_DROP) &&
5862 ((r->rule_flag & PFRULE_RETURNRST) ||
5863 (r->rule_flag & PFRULE_RETURNICMP) ||
5864 (r->rule_flag & PFRULE_RETURN))) {
5865 pf_return(r, nr, pd, sk, th, bproto_sum,
5866 bip_sum, &reason, r->rtableid);
5867 }
5868
5869 if (r->action == PF_DROP)
5870 goto cleanup;
5871
5872 if (tag > 0 && pf_tag_packet(pd, tag)) {
5873 REASON_SET(&reason, PFRES_MEMORY);
5874 goto cleanup;
5875 }
5876 if (pd->act.rtableid >= 0)
5877 M_SETFIB(pd->m, pd->act.rtableid);
5878
5879 if (r->rt) {
5880 struct pf_ksrc_node *sn = NULL;
5881 struct pf_srchash *snh = NULL;
5882 /*
5883 * Set act.rt here instead of in pf_rule_to_actions() because
5884 * it is applied only from the last pass rule.
5885 */
5886 pd->act.rt = r->rt;
5887 /* Don't use REASON_SET, pf_map_addr increases the reason counters */
5888 reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr,
5889 &pd->act.rt_kif, NULL, &sn, &snh, &r->rdr);
5890 if (reason != 0)
5891 goto cleanup;
5892 }
5893
5894 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5895 (!state_icmp && (r->keep_state || nr != NULL ||
5896 (pd->flags & PFDESC_TCP_NORM)))) {
5897 int action;
5898 bool nat64;
5899
5900 action = pf_create_state(r, nr, a, pd, nk, sk,
5901 &rewrite, sm, tag, bproto_sum, bip_sum,
5902 &match_rules, udp_mapping);
5903 if (action != PF_PASS) {
5904 pf_udp_mapping_release(udp_mapping);
5905 if (action == PF_DROP &&
5906 (r->rule_flag & PFRULE_RETURN))
5907 pf_return(r, nr, pd, sk, th,
5908 bproto_sum, bip_sum, &reason,
5909 pd->act.rtableid);
5910 return (action);
5911 }
5912
5913 nat64 = pd->af != pd->naf;
5914 if (nat64) {
5915 struct pf_state_key *_sk;
5916 int ret;
5917
5918 if (sk == NULL)
5919 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
5920 if (nk == NULL)
5921 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
5922 if (pd->dir == PF_IN)
5923 _sk = sk;
5924 else
5925 _sk = nk;
5926
5927 ret = pf_translate(pd,
5928 &_sk->addr[pd->didx],
5929 _sk->port[pd->didx],
5930 &_sk->addr[pd->sidx],
5931 _sk->port[pd->sidx],
5932 virtual_type, icmp_dir);
5933 if (ret < 0)
5934 goto cleanup;
5935
5936 rewrite += ret;
5937 }
5938 } else {
5939 while ((ri = SLIST_FIRST(&match_rules))) {
5940 SLIST_REMOVE_HEAD(&match_rules, entry);
5941 free(ri, M_PF_RULE_ITEM);
5942 }
5943
5944 uma_zfree(V_pf_state_key_z, sk);
5945 uma_zfree(V_pf_state_key_z, nk);
5946 pf_udp_mapping_release(udp_mapping);
5947 }
5948
5949 /* copy back packet headers if we performed NAT operations */
5950 if (rewrite)
5951 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5952
5953 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5954 pd->dir == PF_OUT &&
5955 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
5956 /*
5957 * We want the state created, but we dont
5958 * want to send this in case a partner
5959 * firewall has to know about it to allow
5960 * replies through it.
5961 */
5962 return (PF_DEFER);
5963
5964 if (rewrite && sk != NULL && nk != NULL && sk->af != nk->af) {
5965 return (PF_AFRT);
5966 } else
5967 return (PF_PASS);
5968
5969 cleanup:
5970 while ((ri = SLIST_FIRST(&match_rules))) {
5971 SLIST_REMOVE_HEAD(&match_rules, entry);
5972 free(ri, M_PF_RULE_ITEM);
5973 }
5974
5975 uma_zfree(V_pf_state_key_z, sk);
5976 uma_zfree(V_pf_state_key_z, nk);
5977 pf_udp_mapping_release(udp_mapping);
5978
5979 return (PF_DROP);
5980 }
5981
5982 static int
pf_create_state(struct pf_krule * r,struct pf_krule * nr,struct pf_krule * a,struct pf_pdesc * pd,struct pf_state_key * nk,struct pf_state_key * sk,int * rewrite,struct pf_kstate ** sm,int tag,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules,struct pf_udp_mapping * udp_mapping)5983 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
5984 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk,
5985 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum,
5986 u_int16_t bip_sum, struct pf_krule_slist *match_rules,
5987 struct pf_udp_mapping *udp_mapping)
5988 {
5989 struct pf_kstate *s = NULL;
5990 struct pf_ksrc_node *sn = NULL;
5991 struct pf_srchash *snh = NULL;
5992 struct pf_ksrc_node *nsn = NULL;
5993 struct pf_srchash *nsnh = NULL;
5994 struct tcphdr *th = &pd->hdr.tcp;
5995 u_int16_t mss = V_tcp_mssdflt;
5996 u_short reason, sn_reason;
5997 struct pf_krule_item *ri;
5998
5999 /* check maximums */
6000 if (r->max_states &&
6001 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6002 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6003 REASON_SET(&reason, PFRES_MAXSTATES);
6004 goto csfailed;
6005 }
6006 /* src node for filter rule */
6007 if ((r->rule_flag & PFRULE_SRCTRACK ||
6008 r->rdr.opts & PF_POOL_STICKYADDR) &&
6009 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af,
6010 &pd->act.rt_addr, pd->act.rt_kif)) != 0) {
6011 REASON_SET(&reason, sn_reason);
6012 goto csfailed;
6013 }
6014 /* src node for translation rule */
6015 if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) &&
6016 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx],
6017 pd->af, &nk->addr[1], NULL)) != 0 ) {
6018 REASON_SET(&reason, sn_reason);
6019 goto csfailed;
6020 }
6021 s = pf_alloc_state(M_NOWAIT);
6022 if (s == NULL) {
6023 REASON_SET(&reason, PFRES_MEMORY);
6024 goto csfailed;
6025 }
6026 s->rule = r;
6027 s->nat_rule = nr;
6028 s->anchor = a;
6029 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules));
6030 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6031
6032 STATE_INC_COUNTERS(s);
6033 if (r->allow_opts)
6034 s->state_flags |= PFSTATE_ALLOWOPTS;
6035 if (r->rule_flag & PFRULE_STATESLOPPY)
6036 s->state_flags |= PFSTATE_SLOPPY;
6037 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6038 s->state_flags |= PFSTATE_SCRUB_TCP;
6039 if ((r->rule_flag & PFRULE_PFLOW) ||
6040 (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
6041 s->state_flags |= PFSTATE_PFLOW;
6042
6043 s->act.log = pd->act.log & PF_LOG_ALL;
6044 s->sync_state = PFSYNC_S_NONE;
6045 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6046
6047 if (nr != NULL)
6048 s->act.log |= nr->log & PF_LOG_ALL;
6049 switch (pd->proto) {
6050 case IPPROTO_TCP:
6051 s->src.seqlo = ntohl(th->th_seq);
6052 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6053 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6054 r->keep_state == PF_STATE_MODULATE) {
6055 /* Generate sequence number modulator */
6056 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6057 0)
6058 s->src.seqdiff = 1;
6059 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6060 htonl(s->src.seqlo + s->src.seqdiff), 0);
6061 *rewrite = 1;
6062 } else
6063 s->src.seqdiff = 0;
6064 if (tcp_get_flags(th) & TH_SYN) {
6065 s->src.seqhi++;
6066 s->src.wscale = pf_get_wscale(pd);
6067 }
6068 s->src.max_win = MAX(ntohs(th->th_win), 1);
6069 if (s->src.wscale & PF_WSCALE_MASK) {
6070 /* Remove scale factor from initial window */
6071 int win = s->src.max_win;
6072 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6073 s->src.max_win = (win - 1) >>
6074 (s->src.wscale & PF_WSCALE_MASK);
6075 }
6076 if (tcp_get_flags(th) & TH_FIN)
6077 s->src.seqhi++;
6078 s->dst.seqhi = 1;
6079 s->dst.max_win = 1;
6080 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6081 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6082 s->timeout = PFTM_TCP_FIRST_PACKET;
6083 atomic_add_32(&V_pf_status.states_halfopen, 1);
6084 break;
6085 case IPPROTO_UDP:
6086 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6087 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6088 s->timeout = PFTM_UDP_FIRST_PACKET;
6089 break;
6090 case IPPROTO_SCTP:
6091 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6092 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6093 s->timeout = PFTM_SCTP_FIRST_PACKET;
6094 break;
6095 case IPPROTO_ICMP:
6096 #ifdef INET6
6097 case IPPROTO_ICMPV6:
6098 #endif
6099 s->timeout = PFTM_ICMP_FIRST_PACKET;
6100 break;
6101 default:
6102 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6103 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6104 s->timeout = PFTM_OTHER_FIRST_PACKET;
6105 }
6106
6107 s->creation = s->expire = pf_get_uptime();
6108
6109 if (pd->proto == IPPROTO_TCP) {
6110 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6111 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) {
6112 REASON_SET(&reason, PFRES_MEMORY);
6113 goto csfailed;
6114 }
6115 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6116 pf_normalize_tcp_stateful(pd, &reason, th, s,
6117 &s->src, &s->dst, rewrite)) {
6118 /* This really shouldn't happen!!! */
6119 DPFPRINTF(PF_DEBUG_URGENT,
6120 ("pf_normalize_tcp_stateful failed on first "
6121 "pkt\n"));
6122 goto csfailed;
6123 }
6124 } else if (pd->proto == IPPROTO_SCTP) {
6125 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6126 goto csfailed;
6127 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6128 goto csfailed;
6129 }
6130 s->direction = pd->dir;
6131
6132 /*
6133 * sk/nk could already been setup by pf_get_translation().
6134 */
6135 if (nr == NULL) {
6136 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
6137 __func__, nr, sk, nk));
6138 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6139 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6140 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) {
6141 goto csfailed;
6142 }
6143 } else
6144 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
6145 __func__, nr, sk, nk));
6146
6147 /* Swap sk/nk for PF_OUT. */
6148 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6149 (pd->dir == PF_IN) ? sk : nk,
6150 (pd->dir == PF_IN) ? nk : sk, s)) {
6151 REASON_SET(&reason, PFRES_STATEINS);
6152 goto drop;
6153 } else
6154 *sm = s;
6155
6156 /*
6157 * Lock order is important: first state, then source node.
6158 */
6159 if (pf_src_node_exists(&sn, snh)) {
6160 s->src_node = sn;
6161 PF_HASHROW_UNLOCK(snh);
6162 }
6163 if (pf_src_node_exists(&nsn, nsnh)) {
6164 s->nat_src_node = nsn;
6165 PF_HASHROW_UNLOCK(nsnh);
6166 }
6167
6168 if (tag > 0)
6169 s->tag = tag;
6170 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6171 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
6172 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6173 /* undo NAT changes, if they have taken place */
6174 if (nr != NULL) {
6175 struct pf_state_key *skt = s->key[PF_SK_WIRE];
6176 if (pd->dir == PF_OUT)
6177 skt = s->key[PF_SK_STACK];
6178 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
6179 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
6180 if (pd->sport)
6181 *pd->sport = skt->port[pd->sidx];
6182 if (pd->dport)
6183 *pd->dport = skt->port[pd->didx];
6184 if (pd->ip_sum)
6185 *pd->ip_sum = bip_sum;
6186 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6187 }
6188 s->src.seqhi = htonl(arc4random());
6189 /* Find mss option */
6190 int rtid = M_GETFIB(pd->m);
6191 mss = pf_get_mss(pd);
6192 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6193 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6194 s->src.mss = mss;
6195 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6196 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6197 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6198 pd->act.rtableid);
6199 REASON_SET(&reason, PFRES_SYNPROXY);
6200 return (PF_SYNPROXY_DROP);
6201 }
6202
6203 s->udp_mapping = udp_mapping;
6204
6205 return (PF_PASS);
6206
6207 csfailed:
6208 while ((ri = SLIST_FIRST(match_rules))) {
6209 SLIST_REMOVE_HEAD(match_rules, entry);
6210 free(ri, M_PF_RULE_ITEM);
6211 }
6212
6213 uma_zfree(V_pf_state_key_z, sk);
6214 uma_zfree(V_pf_state_key_z, nk);
6215
6216 if (pf_src_node_exists(&sn, snh)) {
6217 if (--sn->states == 0 && sn->expire == 0) {
6218 pf_unlink_src_node(sn);
6219 pf_free_src_node(sn);
6220 counter_u64_add(
6221 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6222 }
6223 PF_HASHROW_UNLOCK(snh);
6224 }
6225
6226 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) {
6227 if (--nsn->states == 0 && nsn->expire == 0) {
6228 pf_unlink_src_node(nsn);
6229 pf_free_src_node(nsn);
6230 counter_u64_add(
6231 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6232 }
6233 PF_HASHROW_UNLOCK(nsnh);
6234 }
6235
6236 drop:
6237 if (s != NULL) {
6238 pf_src_tree_remove_state(s);
6239 s->timeout = PFTM_UNLINKED;
6240 STATE_DEC_COUNTERS(s);
6241 pf_free_state(s);
6242 }
6243
6244 return (PF_DROP);
6245 }
6246
6247 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6248 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6249 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6250 int icmp_dir)
6251 {
6252 /*
6253 * pf_translate() implements OpenBSD's "new" NAT approach.
6254 * We don't follow it, because it involves a breaking syntax change
6255 * (removing nat/rdr rules, moving it into regular pf rules.)
6256 * It also moves NAT processing to be done after normal rules evaluation
6257 * whereas in FreeBSD that's done before rules processing.
6258 *
6259 * We adopt the function only for nat64, and keep other NAT processing
6260 * before rules processing.
6261 */
6262 int rewrite = 0;
6263 int afto = pd->af != pd->naf;
6264
6265 MPASS(afto);
6266
6267 switch (pd->proto) {
6268 case IPPROTO_TCP:
6269 if (afto || *pd->sport != sport) {
6270 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6271 saddr, sport, 0, pd->af, pd->naf);
6272 rewrite = 1;
6273 }
6274 if (afto || *pd->dport != dport) {
6275 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6276 daddr, dport, 0, pd->af, pd->naf);
6277 rewrite = 1;
6278 }
6279 break;
6280
6281 case IPPROTO_UDP:
6282 if (afto || *pd->sport != sport) {
6283 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6284 saddr, sport, 1, pd->af, pd->naf);
6285 rewrite = 1;
6286 }
6287 if (afto || *pd->dport != dport) {
6288 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6289 daddr, dport, 1, pd->af, pd->naf);
6290 rewrite = 1;
6291 }
6292 break;
6293
6294 case IPPROTO_SCTP: {
6295 uint16_t checksum = 0;
6296 if (afto || *pd->sport != sport) {
6297 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &checksum,
6298 saddr, sport, 1, pd->af, pd->naf);
6299 rewrite = 1;
6300 }
6301 if (afto || *pd->dport != dport) {
6302 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &checksum,
6303 daddr, dport, 1, pd->af, pd->naf);
6304 rewrite = 1;
6305 }
6306 break;
6307 }
6308
6309 #ifdef INET
6310 case IPPROTO_ICMP:
6311 /* pf_translate() is also used when logging invalid packets */
6312 if (pd->af != AF_INET)
6313 return (0);
6314
6315 if (afto) {
6316 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6317 return (-1);
6318 pd->proto = IPPROTO_ICMPV6;
6319 rewrite = 1;
6320 }
6321 if (virtual_type == htons(ICMP_ECHO)) {
6322 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6323
6324 if (icmpid != pd->hdr.icmp.icmp_id) {
6325 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6326 pd->hdr.icmp.icmp_cksum,
6327 pd->hdr.icmp.icmp_id, icmpid, 0);
6328 pd->hdr.icmp.icmp_id = icmpid;
6329 /* XXX TODO copyback. */
6330 rewrite = 1;
6331 }
6332 }
6333 break;
6334 #endif /* INET */
6335
6336 #ifdef INET6
6337 case IPPROTO_ICMPV6:
6338 /* pf_translate() is also used when logging invalid packets */
6339 if (pd->af != AF_INET6)
6340 return (0);
6341
6342 if (afto) {
6343 /* ip_sum will be recalculated in pf_translate_af */
6344 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6345 return (0);
6346 pd->proto = IPPROTO_ICMP;
6347 rewrite = 1;
6348 }
6349 break;
6350 #endif /* INET6 */
6351
6352 default:
6353 break;
6354 }
6355
6356 return (rewrite);
6357 }
6358
6359 static int
pf_tcp_track_full(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason,int * copyback)6360 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd,
6361 u_short *reason, int *copyback)
6362 {
6363 struct tcphdr *th = &pd->hdr.tcp;
6364 struct pf_state_peer *src, *dst;
6365 u_int16_t win = ntohs(th->th_win);
6366 u_int32_t ack, end, data_end, seq, orig_seq;
6367 u_int8_t sws, dws, psrc, pdst;
6368 int ackskew;
6369
6370 if (pd->dir == (*state)->direction) {
6371 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
6372 src = &(*state)->dst;
6373 dst = &(*state)->src;
6374 } else {
6375 src = &(*state)->src;
6376 dst = &(*state)->dst;
6377 }
6378 psrc = PF_PEER_SRC;
6379 pdst = PF_PEER_DST;
6380 } else {
6381 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
6382 src = &(*state)->src;
6383 dst = &(*state)->dst;
6384 } else {
6385 src = &(*state)->dst;
6386 dst = &(*state)->src;
6387 }
6388 psrc = PF_PEER_DST;
6389 pdst = PF_PEER_SRC;
6390 }
6391
6392 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6393 sws = src->wscale & PF_WSCALE_MASK;
6394 dws = dst->wscale & PF_WSCALE_MASK;
6395 } else
6396 sws = dws = 0;
6397
6398 /*
6399 * Sequence tracking algorithm from Guido van Rooij's paper:
6400 * http://www.madison-gurkha.com/publications/tcp_filtering/
6401 * tcp_filtering.ps
6402 */
6403
6404 orig_seq = seq = ntohl(th->th_seq);
6405 if (src->seqlo == 0) {
6406 /* First packet from this end. Set its state */
6407
6408 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6409 src->scrub == NULL) {
6410 if (pf_normalize_tcp_init(pd, th, src, dst)) {
6411 REASON_SET(reason, PFRES_MEMORY);
6412 return (PF_DROP);
6413 }
6414 }
6415
6416 /* Deferred generation of sequence number modulator */
6417 if (dst->seqdiff && !src->seqdiff) {
6418 /* use random iss for the TCP server */
6419 while ((src->seqdiff = arc4random() - seq) == 0)
6420 ;
6421 ack = ntohl(th->th_ack) - dst->seqdiff;
6422 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6423 src->seqdiff), 0);
6424 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6425 *copyback = 1;
6426 } else {
6427 ack = ntohl(th->th_ack);
6428 }
6429
6430 end = seq + pd->p_len;
6431 if (tcp_get_flags(th) & TH_SYN) {
6432 end++;
6433 if (dst->wscale & PF_WSCALE_FLAG) {
6434 src->wscale = pf_get_wscale(pd);
6435 if (src->wscale & PF_WSCALE_FLAG) {
6436 /* Remove scale factor from initial
6437 * window */
6438 sws = src->wscale & PF_WSCALE_MASK;
6439 win = ((u_int32_t)win + (1 << sws) - 1)
6440 >> sws;
6441 dws = dst->wscale & PF_WSCALE_MASK;
6442 } else {
6443 /* fixup other window */
6444 dst->max_win = MIN(TCP_MAXWIN,
6445 (u_int32_t)dst->max_win <<
6446 (dst->wscale & PF_WSCALE_MASK));
6447 /* in case of a retrans SYN|ACK */
6448 dst->wscale = 0;
6449 }
6450 }
6451 }
6452 data_end = end;
6453 if (tcp_get_flags(th) & TH_FIN)
6454 end++;
6455
6456 src->seqlo = seq;
6457 if (src->state < TCPS_SYN_SENT)
6458 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6459
6460 /*
6461 * May need to slide the window (seqhi may have been set by
6462 * the crappy stack check or if we picked up the connection
6463 * after establishment)
6464 */
6465 if (src->seqhi == 1 ||
6466 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6467 src->seqhi = end + MAX(1, dst->max_win << dws);
6468 if (win > src->max_win)
6469 src->max_win = win;
6470
6471 } else {
6472 ack = ntohl(th->th_ack) - dst->seqdiff;
6473 if (src->seqdiff) {
6474 /* Modulate sequence numbers */
6475 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6476 src->seqdiff), 0);
6477 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6478 *copyback = 1;
6479 }
6480 end = seq + pd->p_len;
6481 if (tcp_get_flags(th) & TH_SYN)
6482 end++;
6483 data_end = end;
6484 if (tcp_get_flags(th) & TH_FIN)
6485 end++;
6486 }
6487
6488 if ((tcp_get_flags(th) & TH_ACK) == 0) {
6489 /* Let it pass through the ack skew check */
6490 ack = dst->seqlo;
6491 } else if ((ack == 0 &&
6492 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6493 /* broken tcp stacks do not set ack */
6494 (dst->state < TCPS_SYN_SENT)) {
6495 /*
6496 * Many stacks (ours included) will set the ACK number in an
6497 * FIN|ACK if the SYN times out -- no sequence to ACK.
6498 */
6499 ack = dst->seqlo;
6500 }
6501
6502 if (seq == end) {
6503 /* Ease sequencing restrictions on no data packets */
6504 seq = src->seqlo;
6505 data_end = end = seq;
6506 }
6507
6508 ackskew = dst->seqlo - ack;
6509
6510 /*
6511 * Need to demodulate the sequence numbers in any TCP SACK options
6512 * (Selective ACK). We could optionally validate the SACK values
6513 * against the current ACK window, either forwards or backwards, but
6514 * I'm not confident that SACK has been implemented properly
6515 * everywhere. It wouldn't surprise me if several stacks accidentally
6516 * SACK too far backwards of previously ACKed data. There really aren't
6517 * any security implications of bad SACKing unless the target stack
6518 * doesn't validate the option length correctly. Someone trying to
6519 * spoof into a TCP connection won't bother blindly sending SACK
6520 * options anyway.
6521 */
6522 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6523 if (pf_modulate_sack(pd, th, dst))
6524 *copyback = 1;
6525 }
6526
6527 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
6528 if (SEQ_GEQ(src->seqhi, data_end) &&
6529 /* Last octet inside other's window space */
6530 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6531 /* Retrans: not more than one window back */
6532 (ackskew >= -MAXACKWINDOW) &&
6533 /* Acking not more than one reassembled fragment backwards */
6534 (ackskew <= (MAXACKWINDOW << sws)) &&
6535 /* Acking not more than one window forward */
6536 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6537 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6538 /* Require an exact/+1 sequence match on resets when possible */
6539
6540 if (dst->scrub || src->scrub) {
6541 if (pf_normalize_tcp_stateful(pd, reason, th,
6542 *state, src, dst, copyback))
6543 return (PF_DROP);
6544 }
6545
6546 /* update max window */
6547 if (src->max_win < win)
6548 src->max_win = win;
6549 /* synchronize sequencing */
6550 if (SEQ_GT(end, src->seqlo))
6551 src->seqlo = end;
6552 /* slide the window of what the other end can send */
6553 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6554 dst->seqhi = ack + MAX((win << sws), 1);
6555
6556 /* update states */
6557 if (tcp_get_flags(th) & TH_SYN)
6558 if (src->state < TCPS_SYN_SENT)
6559 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6560 if (tcp_get_flags(th) & TH_FIN)
6561 if (src->state < TCPS_CLOSING)
6562 pf_set_protostate(*state, psrc, TCPS_CLOSING);
6563 if (tcp_get_flags(th) & TH_ACK) {
6564 if (dst->state == TCPS_SYN_SENT) {
6565 pf_set_protostate(*state, pdst,
6566 TCPS_ESTABLISHED);
6567 if (src->state == TCPS_ESTABLISHED &&
6568 (*state)->src_node != NULL &&
6569 pf_src_connlimit(*state)) {
6570 REASON_SET(reason, PFRES_SRCLIMIT);
6571 return (PF_DROP);
6572 }
6573 } else if (dst->state == TCPS_CLOSING)
6574 pf_set_protostate(*state, pdst,
6575 TCPS_FIN_WAIT_2);
6576 }
6577 if (tcp_get_flags(th) & TH_RST)
6578 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6579
6580 /* update expire time */
6581 (*state)->expire = pf_get_uptime();
6582 if (src->state >= TCPS_FIN_WAIT_2 &&
6583 dst->state >= TCPS_FIN_WAIT_2)
6584 (*state)->timeout = PFTM_TCP_CLOSED;
6585 else if (src->state >= TCPS_CLOSING &&
6586 dst->state >= TCPS_CLOSING)
6587 (*state)->timeout = PFTM_TCP_FIN_WAIT;
6588 else if (src->state < TCPS_ESTABLISHED ||
6589 dst->state < TCPS_ESTABLISHED)
6590 (*state)->timeout = PFTM_TCP_OPENING;
6591 else if (src->state >= TCPS_CLOSING ||
6592 dst->state >= TCPS_CLOSING)
6593 (*state)->timeout = PFTM_TCP_CLOSING;
6594 else
6595 (*state)->timeout = PFTM_TCP_ESTABLISHED;
6596
6597 /* Fall through to PASS packet */
6598
6599 } else if ((dst->state < TCPS_SYN_SENT ||
6600 dst->state >= TCPS_FIN_WAIT_2 ||
6601 src->state >= TCPS_FIN_WAIT_2) &&
6602 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6603 /* Within a window forward of the originating packet */
6604 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6605 /* Within a window backward of the originating packet */
6606
6607 /*
6608 * This currently handles three situations:
6609 * 1) Stupid stacks will shotgun SYNs before their peer
6610 * replies.
6611 * 2) When PF catches an already established stream (the
6612 * firewall rebooted, the state table was flushed, routes
6613 * changed...)
6614 * 3) Packets get funky immediately after the connection
6615 * closes (this should catch Solaris spurious ACK|FINs
6616 * that web servers like to spew after a close)
6617 *
6618 * This must be a little more careful than the above code
6619 * since packet floods will also be caught here. We don't
6620 * update the TTL here to mitigate the damage of a packet
6621 * flood and so the same code can handle awkward establishment
6622 * and a loosened connection close.
6623 * In the establishment case, a correct peer response will
6624 * validate the connection, go through the normal state code
6625 * and keep updating the state TTL.
6626 */
6627
6628 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6629 printf("pf: loose state match: ");
6630 pf_print_state(*state);
6631 pf_print_flags(tcp_get_flags(th));
6632 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6633 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6634 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
6635 (unsigned long long)(*state)->packets[1],
6636 pd->dir == PF_IN ? "in" : "out",
6637 pd->dir == (*state)->direction ? "fwd" : "rev");
6638 }
6639
6640 if (dst->scrub || src->scrub) {
6641 if (pf_normalize_tcp_stateful(pd, reason, th,
6642 *state, src, dst, copyback))
6643 return (PF_DROP);
6644 }
6645
6646 /* update max window */
6647 if (src->max_win < win)
6648 src->max_win = win;
6649 /* synchronize sequencing */
6650 if (SEQ_GT(end, src->seqlo))
6651 src->seqlo = end;
6652 /* slide the window of what the other end can send */
6653 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6654 dst->seqhi = ack + MAX((win << sws), 1);
6655
6656 /*
6657 * Cannot set dst->seqhi here since this could be a shotgunned
6658 * SYN and not an already established connection.
6659 */
6660
6661 if (tcp_get_flags(th) & TH_FIN)
6662 if (src->state < TCPS_CLOSING)
6663 pf_set_protostate(*state, psrc, TCPS_CLOSING);
6664 if (tcp_get_flags(th) & TH_RST)
6665 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6666
6667 /* Fall through to PASS packet */
6668
6669 } else {
6670 if ((*state)->dst.state == TCPS_SYN_SENT &&
6671 (*state)->src.state == TCPS_SYN_SENT) {
6672 /* Send RST for state mismatches during handshake */
6673 if (!(tcp_get_flags(th) & TH_RST))
6674 pf_send_tcp((*state)->rule, pd->af,
6675 pd->dst, pd->src, th->th_dport,
6676 th->th_sport, ntohl(th->th_ack), 0,
6677 TH_RST, 0, 0,
6678 (*state)->rule->return_ttl, M_SKIP_FIREWALL,
6679 0, 0, (*state)->act.rtableid);
6680 src->seqlo = 0;
6681 src->seqhi = 1;
6682 src->max_win = 1;
6683 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6684 printf("pf: BAD state: ");
6685 pf_print_state(*state);
6686 pf_print_flags(tcp_get_flags(th));
6687 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6688 "pkts=%llu:%llu dir=%s,%s\n",
6689 seq, orig_seq, ack, pd->p_len, ackskew,
6690 (unsigned long long)(*state)->packets[0],
6691 (unsigned long long)(*state)->packets[1],
6692 pd->dir == PF_IN ? "in" : "out",
6693 pd->dir == (*state)->direction ? "fwd" : "rev");
6694 printf("pf: State failure on: %c %c %c %c | %c %c\n",
6695 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6696 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6697 ' ': '2',
6698 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6699 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6700 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6701 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6702 }
6703 REASON_SET(reason, PFRES_BADSTATE);
6704 return (PF_DROP);
6705 }
6706
6707 return (PF_PASS);
6708 }
6709
6710 static int
pf_tcp_track_sloppy(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6711 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
6712 {
6713 struct tcphdr *th = &pd->hdr.tcp;
6714 struct pf_state_peer *src, *dst;
6715 u_int8_t psrc, pdst;
6716
6717 if (pd->dir == (*state)->direction) {
6718 src = &(*state)->src;
6719 dst = &(*state)->dst;
6720 psrc = PF_PEER_SRC;
6721 pdst = PF_PEER_DST;
6722 } else {
6723 src = &(*state)->dst;
6724 dst = &(*state)->src;
6725 psrc = PF_PEER_DST;
6726 pdst = PF_PEER_SRC;
6727 }
6728
6729 if (tcp_get_flags(th) & TH_SYN)
6730 if (src->state < TCPS_SYN_SENT)
6731 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6732 if (tcp_get_flags(th) & TH_FIN)
6733 if (src->state < TCPS_CLOSING)
6734 pf_set_protostate(*state, psrc, TCPS_CLOSING);
6735 if (tcp_get_flags(th) & TH_ACK) {
6736 if (dst->state == TCPS_SYN_SENT) {
6737 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
6738 if (src->state == TCPS_ESTABLISHED &&
6739 (*state)->src_node != NULL &&
6740 pf_src_connlimit(*state)) {
6741 REASON_SET(reason, PFRES_SRCLIMIT);
6742 return (PF_DROP);
6743 }
6744 } else if (dst->state == TCPS_CLOSING) {
6745 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
6746 } else if (src->state == TCPS_SYN_SENT &&
6747 dst->state < TCPS_SYN_SENT) {
6748 /*
6749 * Handle a special sloppy case where we only see one
6750 * half of the connection. If there is a ACK after
6751 * the initial SYN without ever seeing a packet from
6752 * the destination, set the connection to established.
6753 */
6754 pf_set_protostate(*state, PF_PEER_BOTH,
6755 TCPS_ESTABLISHED);
6756 dst->state = src->state = TCPS_ESTABLISHED;
6757 if ((*state)->src_node != NULL &&
6758 pf_src_connlimit(*state)) {
6759 REASON_SET(reason, PFRES_SRCLIMIT);
6760 return (PF_DROP);
6761 }
6762 } else if (src->state == TCPS_CLOSING &&
6763 dst->state == TCPS_ESTABLISHED &&
6764 dst->seqlo == 0) {
6765 /*
6766 * Handle the closing of half connections where we
6767 * don't see the full bidirectional FIN/ACK+ACK
6768 * handshake.
6769 */
6770 pf_set_protostate(*state, pdst, TCPS_CLOSING);
6771 }
6772 }
6773 if (tcp_get_flags(th) & TH_RST)
6774 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6775
6776 /* update expire time */
6777 (*state)->expire = pf_get_uptime();
6778 if (src->state >= TCPS_FIN_WAIT_2 &&
6779 dst->state >= TCPS_FIN_WAIT_2)
6780 (*state)->timeout = PFTM_TCP_CLOSED;
6781 else if (src->state >= TCPS_CLOSING &&
6782 dst->state >= TCPS_CLOSING)
6783 (*state)->timeout = PFTM_TCP_FIN_WAIT;
6784 else if (src->state < TCPS_ESTABLISHED ||
6785 dst->state < TCPS_ESTABLISHED)
6786 (*state)->timeout = PFTM_TCP_OPENING;
6787 else if (src->state >= TCPS_CLOSING ||
6788 dst->state >= TCPS_CLOSING)
6789 (*state)->timeout = PFTM_TCP_CLOSING;
6790 else
6791 (*state)->timeout = PFTM_TCP_ESTABLISHED;
6792
6793 return (PF_PASS);
6794 }
6795
6796 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate ** state,u_short * reason)6797 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
6798 {
6799 struct pf_state_key *sk = (*state)->key[pd->didx];
6800 struct tcphdr *th = &pd->hdr.tcp;
6801
6802 if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
6803 if (pd->dir != (*state)->direction) {
6804 REASON_SET(reason, PFRES_SYNPROXY);
6805 return (PF_SYNPROXY_DROP);
6806 }
6807 if (tcp_get_flags(th) & TH_SYN) {
6808 if (ntohl(th->th_seq) != (*state)->src.seqlo) {
6809 REASON_SET(reason, PFRES_SYNPROXY);
6810 return (PF_DROP);
6811 }
6812 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6813 pd->src, th->th_dport, th->th_sport,
6814 (*state)->src.seqhi, ntohl(th->th_seq) + 1,
6815 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0,
6816 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6817 REASON_SET(reason, PFRES_SYNPROXY);
6818 return (PF_SYNPROXY_DROP);
6819 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6820 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6821 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6822 REASON_SET(reason, PFRES_SYNPROXY);
6823 return (PF_DROP);
6824 } else if ((*state)->src_node != NULL &&
6825 pf_src_connlimit(*state)) {
6826 REASON_SET(reason, PFRES_SRCLIMIT);
6827 return (PF_DROP);
6828 } else
6829 pf_set_protostate(*state, PF_PEER_SRC,
6830 PF_TCPS_PROXY_DST);
6831 }
6832 if ((*state)->src.state == PF_TCPS_PROXY_DST) {
6833 if (pd->dir == (*state)->direction) {
6834 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6835 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6836 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6837 REASON_SET(reason, PFRES_SYNPROXY);
6838 return (PF_DROP);
6839 }
6840 (*state)->src.max_win = MAX(ntohs(th->th_win), 1);
6841 if ((*state)->dst.seqhi == 1)
6842 (*state)->dst.seqhi = htonl(arc4random());
6843 pf_send_tcp((*state)->rule, pd->af,
6844 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6845 sk->port[pd->sidx], sk->port[pd->didx],
6846 (*state)->dst.seqhi, 0, TH_SYN, 0,
6847 (*state)->src.mss, 0,
6848 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6849 (*state)->tag, 0, (*state)->act.rtableid);
6850 REASON_SET(reason, PFRES_SYNPROXY);
6851 return (PF_SYNPROXY_DROP);
6852 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6853 (TH_SYN|TH_ACK)) ||
6854 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
6855 REASON_SET(reason, PFRES_SYNPROXY);
6856 return (PF_DROP);
6857 } else {
6858 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
6859 (*state)->dst.seqlo = ntohl(th->th_seq);
6860 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6861 pd->src, th->th_dport, th->th_sport,
6862 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6863 TH_ACK, (*state)->src.max_win, 0, 0, 0,
6864 (*state)->tag, 0, (*state)->act.rtableid);
6865 pf_send_tcp((*state)->rule, pd->af,
6866 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6867 sk->port[pd->sidx], sk->port[pd->didx],
6868 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
6869 TH_ACK, (*state)->dst.max_win, 0, 0,
6870 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6871 (*state)->src.seqdiff = (*state)->dst.seqhi -
6872 (*state)->src.seqlo;
6873 (*state)->dst.seqdiff = (*state)->src.seqhi -
6874 (*state)->dst.seqlo;
6875 (*state)->src.seqhi = (*state)->src.seqlo +
6876 (*state)->dst.max_win;
6877 (*state)->dst.seqhi = (*state)->dst.seqlo +
6878 (*state)->src.max_win;
6879 (*state)->src.wscale = (*state)->dst.wscale = 0;
6880 pf_set_protostate(*state, PF_PEER_BOTH,
6881 TCPS_ESTABLISHED);
6882 REASON_SET(reason, PFRES_SYNPROXY);
6883 return (PF_SYNPROXY_DROP);
6884 }
6885 }
6886
6887 return (PF_PASS);
6888 }
6889
6890 static int
pf_test_state_tcp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6891 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd,
6892 u_short *reason)
6893 {
6894 struct pf_state_key_cmp key;
6895 struct tcphdr *th = &pd->hdr.tcp;
6896 int copyback = 0;
6897 int action = PF_PASS;
6898 struct pf_state_peer *src, *dst;
6899
6900 bzero(&key, sizeof(key));
6901 key.af = pd->af;
6902 key.proto = IPPROTO_TCP;
6903 if (pd->dir == PF_IN) { /* wire side, straight */
6904 PF_ACPY(&key.addr[0], pd->src, key.af);
6905 PF_ACPY(&key.addr[1], pd->dst, key.af);
6906 key.port[0] = th->th_sport;
6907 key.port[1] = th->th_dport;
6908 } else { /* stack side, reverse */
6909 PF_ACPY(&key.addr[1], pd->src, key.af);
6910 PF_ACPY(&key.addr[0], pd->dst, key.af);
6911 key.port[1] = th->th_sport;
6912 key.port[0] = th->th_dport;
6913 }
6914
6915 STATE_LOOKUP(&key, *state, pd);
6916
6917 if (pd->dir == (*state)->direction) {
6918 src = &(*state)->src;
6919 dst = &(*state)->dst;
6920 } else {
6921 src = &(*state)->dst;
6922 dst = &(*state)->src;
6923 }
6924
6925 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
6926 return (action);
6927
6928 if (dst->state >= TCPS_FIN_WAIT_2 &&
6929 src->state >= TCPS_FIN_WAIT_2 &&
6930 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) ||
6931 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6932 pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6933 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6934 printf("pf: state reuse ");
6935 pf_print_state(*state);
6936 pf_print_flags(tcp_get_flags(th));
6937 printf("\n");
6938 }
6939 /* XXX make sure it's the same direction ?? */
6940 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6941 pf_unlink_state(*state);
6942 *state = NULL;
6943 return (PF_DROP);
6944 }
6945
6946 if ((*state)->state_flags & PFSTATE_SLOPPY) {
6947 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
6948 return (PF_DROP);
6949 } else {
6950 int ret;
6951
6952 ret = pf_tcp_track_full(state, pd, reason,
6953 ©back);
6954 if (ret == PF_DROP)
6955 return (PF_DROP);
6956 }
6957
6958 /* translate source/destination address, if necessary */
6959 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6960 struct pf_state_key *nk;
6961 int afto, sidx, didx;
6962
6963 if (PF_REVERSED_KEY((*state)->key, pd->af))
6964 nk = (*state)->key[pd->sidx];
6965 else
6966 nk = (*state)->key[pd->didx];
6967
6968 afto = pd->af != nk->af;
6969 sidx = afto ? pd->didx : pd->sidx;
6970 didx = afto ? pd->sidx : pd->didx;
6971
6972 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
6973 nk->port[sidx] != th->th_sport)
6974 pf_change_ap(pd->m, pd->src, &th->th_sport,
6975 pd->ip_sum, &th->th_sum, &nk->addr[sidx],
6976 nk->port[sidx], 0, pd->af, nk->af);
6977
6978 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
6979 nk->port[didx] != th->th_dport)
6980 pf_change_ap(pd->m, pd->dst, &th->th_dport,
6981 pd->ip_sum, &th->th_sum, &nk->addr[didx],
6982 nk->port[didx], 0, pd->af, nk->af);
6983
6984 if (afto) {
6985 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
6986 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
6987 pd->naf = nk->af;
6988 action = PF_AFRT;
6989 }
6990
6991 copyback = 1;
6992 }
6993
6994 /* Copyback sequence modulation or stateful scrub changes if needed */
6995 if (copyback)
6996 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
6997
6998 return (action);
6999 }
7000
7001 static int
pf_test_state_udp(struct pf_kstate ** state,struct pf_pdesc * pd)7002 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd)
7003 {
7004 struct pf_state_peer *src, *dst;
7005 struct pf_state_key_cmp key;
7006 struct udphdr *uh = &pd->hdr.udp;
7007 uint8_t psrc, pdst;
7008 int action = PF_PASS;
7009
7010 bzero(&key, sizeof(key));
7011 key.af = pd->af;
7012 key.proto = IPPROTO_UDP;
7013 if (pd->dir == PF_IN) { /* wire side, straight */
7014 PF_ACPY(&key.addr[0], pd->src, key.af);
7015 PF_ACPY(&key.addr[1], pd->dst, key.af);
7016 key.port[0] = uh->uh_sport;
7017 key.port[1] = uh->uh_dport;
7018 } else { /* stack side, reverse */
7019 PF_ACPY(&key.addr[1], pd->src, key.af);
7020 PF_ACPY(&key.addr[0], pd->dst, key.af);
7021 key.port[1] = uh->uh_sport;
7022 key.port[0] = uh->uh_dport;
7023 }
7024
7025 STATE_LOOKUP(&key, *state, pd);
7026
7027 if (pd->dir == (*state)->direction) {
7028 src = &(*state)->src;
7029 dst = &(*state)->dst;
7030 psrc = PF_PEER_SRC;
7031 pdst = PF_PEER_DST;
7032 } else {
7033 src = &(*state)->dst;
7034 dst = &(*state)->src;
7035 psrc = PF_PEER_DST;
7036 pdst = PF_PEER_SRC;
7037 }
7038
7039 /* update states */
7040 if (src->state < PFUDPS_SINGLE)
7041 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7042 if (dst->state == PFUDPS_SINGLE)
7043 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7044
7045 /* update expire time */
7046 (*state)->expire = pf_get_uptime();
7047 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7048 (*state)->timeout = PFTM_UDP_MULTIPLE;
7049 else
7050 (*state)->timeout = PFTM_UDP_SINGLE;
7051
7052 /* translate source/destination address, if necessary */
7053 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7054 struct pf_state_key *nk;
7055 int afto, sidx, didx;
7056
7057 if (PF_REVERSED_KEY((*state)->key, pd->af))
7058 nk = (*state)->key[pd->sidx];
7059 else
7060 nk = (*state)->key[pd->didx];
7061
7062 afto = pd->af != nk->af;
7063 sidx = afto ? pd->didx : pd->sidx;
7064 didx = afto ? pd->sidx : pd->didx;
7065
7066 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7067 nk->port[sidx] != uh->uh_sport)
7068 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum,
7069 &uh->uh_sum, &nk->addr[pd->sidx],
7070 nk->port[sidx], 1, pd->af, nk->af);
7071
7072 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7073 nk->port[didx] != uh->uh_dport)
7074 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum,
7075 &uh->uh_sum, &nk->addr[pd->didx],
7076 nk->port[didx], 1, pd->af, nk->af);
7077
7078 if (afto) {
7079 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7080 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7081 pd->naf = nk->af;
7082 action = PF_AFRT;
7083 }
7084
7085 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh);
7086 }
7087
7088 return (action);
7089 }
7090
7091 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7092 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7093 u_short *reason)
7094 {
7095 struct pf_state_peer *src;
7096 if (pd->dir == state->direction) {
7097 if (PF_REVERSED_KEY(state->key, pd->af))
7098 src = &state->dst;
7099 else
7100 src = &state->src;
7101 } else {
7102 if (PF_REVERSED_KEY(state->key, pd->af))
7103 src = &state->src;
7104 else
7105 src = &state->dst;
7106 }
7107
7108 if (src->scrub != NULL) {
7109 if (src->scrub->pfss_v_tag == 0)
7110 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7111 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7112 return (PF_DROP);
7113 }
7114
7115 return (PF_PASS);
7116 }
7117
7118 static int
pf_test_state_sctp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7119 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd,
7120 u_short *reason)
7121 {
7122 struct pf_state_key_cmp key;
7123 struct pf_state_peer *src, *dst;
7124 struct sctphdr *sh = &pd->hdr.sctp;
7125 u_int8_t psrc; //, pdst;
7126
7127 bzero(&key, sizeof(key));
7128 key.af = pd->af;
7129 key.proto = IPPROTO_SCTP;
7130 if (pd->dir == PF_IN) { /* wire side, straight */
7131 PF_ACPY(&key.addr[0], pd->src, key.af);
7132 PF_ACPY(&key.addr[1], pd->dst, key.af);
7133 key.port[0] = sh->src_port;
7134 key.port[1] = sh->dest_port;
7135 } else { /* stack side, reverse */
7136 PF_ACPY(&key.addr[1], pd->src, key.af);
7137 PF_ACPY(&key.addr[0], pd->dst, key.af);
7138 key.port[1] = sh->src_port;
7139 key.port[0] = sh->dest_port;
7140 }
7141
7142 STATE_LOOKUP(&key, *state, pd);
7143
7144 if (pd->dir == (*state)->direction) {
7145 src = &(*state)->src;
7146 dst = &(*state)->dst;
7147 psrc = PF_PEER_SRC;
7148 } else {
7149 src = &(*state)->dst;
7150 dst = &(*state)->src;
7151 psrc = PF_PEER_DST;
7152 }
7153
7154 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7155 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7156 pd->sctp_flags & PFDESC_SCTP_INIT) {
7157 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7158 pf_unlink_state(*state);
7159 *state = NULL;
7160 return (PF_DROP);
7161 }
7162
7163 /* Track state. */
7164 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7165 if (src->state < SCTP_COOKIE_WAIT) {
7166 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7167 (*state)->timeout = PFTM_SCTP_OPENING;
7168 }
7169 }
7170 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7171 MPASS(dst->scrub != NULL);
7172 if (dst->scrub->pfss_v_tag == 0)
7173 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7174 }
7175
7176 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7177 if (src->state < SCTP_ESTABLISHED) {
7178 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7179 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7180 }
7181 }
7182 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7183 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7184 if (src->state < SCTP_SHUTDOWN_PENDING) {
7185 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7186 (*state)->timeout = PFTM_SCTP_CLOSING;
7187 }
7188 }
7189 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7190 pf_set_protostate(*state, psrc, SCTP_CLOSED);
7191 (*state)->timeout = PFTM_SCTP_CLOSED;
7192 }
7193
7194 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7195 return (PF_DROP);
7196
7197 (*state)->expire = pf_get_uptime();
7198
7199 /* translate source/destination address, if necessary */
7200 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7201 uint16_t checksum = 0;
7202 struct pf_state_key *nk;
7203 int afto, sidx, didx;
7204
7205 if (PF_REVERSED_KEY((*state)->key, pd->af))
7206 nk = (*state)->key[pd->sidx];
7207 else
7208 nk = (*state)->key[pd->didx];
7209
7210 afto = pd->af != nk->af;
7211 sidx = afto ? pd->didx : pd->sidx;
7212 didx = afto ? pd->sidx : pd->didx;
7213
7214 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7215 nk->port[sidx] != pd->hdr.sctp.src_port) {
7216 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port,
7217 pd->ip_sum, &checksum, &nk->addr[sidx],
7218 nk->port[sidx], 1, pd->af, pd->naf);
7219 }
7220
7221 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7222 nk->port[didx] != pd->hdr.sctp.dest_port) {
7223 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port,
7224 pd->ip_sum, &checksum, &nk->addr[didx],
7225 nk->port[didx], 1, pd->af, pd->naf);
7226 }
7227
7228 if (afto) {
7229 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7230 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7231 pd->naf = nk->af;
7232 return (PF_AFRT);
7233 }
7234 }
7235
7236 return (PF_PASS);
7237 }
7238
7239 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7240 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7241 {
7242 struct pf_sctp_endpoint key;
7243 struct pf_sctp_endpoint *ep;
7244 struct pf_state_key *sks = s->key[PF_SK_STACK];
7245 struct pf_sctp_source *i, *tmp;
7246
7247 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7248 return;
7249
7250 PF_SCTP_ENDPOINTS_LOCK();
7251
7252 key.v_tag = s->dst.scrub->pfss_v_tag;
7253 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7254 if (ep != NULL) {
7255 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7256 if (pf_addr_cmp(&i->addr,
7257 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7258 s->key[PF_SK_WIRE]->af) == 0) {
7259 SDT_PROBE3(pf, sctp, multihome, remove,
7260 key.v_tag, s, i);
7261 TAILQ_REMOVE(&ep->sources, i, entry);
7262 free(i, M_PFTEMP);
7263 break;
7264 }
7265 }
7266
7267 if (TAILQ_EMPTY(&ep->sources)) {
7268 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7269 free(ep, M_PFTEMP);
7270 }
7271 }
7272
7273 /* Other direction. */
7274 key.v_tag = s->src.scrub->pfss_v_tag;
7275 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7276 if (ep != NULL) {
7277 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7278 if (pf_addr_cmp(&i->addr,
7279 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7280 s->key[PF_SK_WIRE]->af) == 0) {
7281 SDT_PROBE3(pf, sctp, multihome, remove,
7282 key.v_tag, s, i);
7283 TAILQ_REMOVE(&ep->sources, i, entry);
7284 free(i, M_PFTEMP);
7285 break;
7286 }
7287 }
7288
7289 if (TAILQ_EMPTY(&ep->sources)) {
7290 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7291 free(ep, M_PFTEMP);
7292 }
7293 }
7294
7295 PF_SCTP_ENDPOINTS_UNLOCK();
7296 }
7297
7298 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7299 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7300 {
7301 struct pf_sctp_endpoint key = {
7302 .v_tag = v_tag,
7303 };
7304 struct pf_sctp_source *i;
7305 struct pf_sctp_endpoint *ep;
7306
7307 PF_SCTP_ENDPOINTS_LOCK();
7308
7309 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7310 if (ep == NULL) {
7311 ep = malloc(sizeof(struct pf_sctp_endpoint),
7312 M_PFTEMP, M_NOWAIT);
7313 if (ep == NULL) {
7314 PF_SCTP_ENDPOINTS_UNLOCK();
7315 return;
7316 }
7317
7318 ep->v_tag = v_tag;
7319 TAILQ_INIT(&ep->sources);
7320 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7321 }
7322
7323 /* Avoid inserting duplicates. */
7324 TAILQ_FOREACH(i, &ep->sources, entry) {
7325 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7326 PF_SCTP_ENDPOINTS_UNLOCK();
7327 return;
7328 }
7329 }
7330
7331 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7332 if (i == NULL) {
7333 PF_SCTP_ENDPOINTS_UNLOCK();
7334 return;
7335 }
7336
7337 i->af = pd->af;
7338 memcpy(&i->addr, a, sizeof(*a));
7339 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7340 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7341
7342 PF_SCTP_ENDPOINTS_UNLOCK();
7343 }
7344
7345 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7346 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7347 struct pf_kstate *s, int action)
7348 {
7349 struct pf_sctp_multihome_job *j, *tmp;
7350 struct pf_sctp_source *i;
7351 int ret __unused;
7352 struct pf_kstate *sm = NULL;
7353 struct pf_krule *ra = NULL;
7354 struct pf_krule *r = &V_pf_default_rule;
7355 struct pf_kruleset *rs = NULL;
7356 bool do_extra = true;
7357
7358 PF_RULES_RLOCK_TRACKER;
7359
7360 again:
7361 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7362 if (s == NULL || action != PF_PASS)
7363 goto free;
7364
7365 /* Confirm we don't recurse here. */
7366 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7367
7368 switch (j->op) {
7369 case SCTP_ADD_IP_ADDRESS: {
7370 uint32_t v_tag = pd->sctp_initiate_tag;
7371
7372 if (v_tag == 0) {
7373 if (s->direction == pd->dir)
7374 v_tag = s->src.scrub->pfss_v_tag;
7375 else
7376 v_tag = s->dst.scrub->pfss_v_tag;
7377 }
7378
7379 /*
7380 * Avoid duplicating states. We'll already have
7381 * created a state based on the source address of
7382 * the packet, but SCTP endpoints may also list this
7383 * address again in the INIT(_ACK) parameters.
7384 */
7385 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7386 break;
7387 }
7388
7389 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7390 PF_RULES_RLOCK();
7391 sm = NULL;
7392 ret = pf_test_rule(&r, &sm,
7393 &j->pd, &ra, &rs, NULL);
7394 PF_RULES_RUNLOCK();
7395 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7396 if (ret != PF_DROP && sm != NULL) {
7397 /* Inherit v_tag values. */
7398 if (sm->direction == s->direction) {
7399 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7400 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7401 } else {
7402 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7403 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7404 }
7405 PF_STATE_UNLOCK(sm);
7406 } else {
7407 /* If we try duplicate inserts? */
7408 break;
7409 }
7410
7411 /* Only add the address if we've actually allowed the state. */
7412 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7413
7414 if (! do_extra) {
7415 break;
7416 }
7417 /*
7418 * We need to do this for each of our source addresses.
7419 * Find those based on the verification tag.
7420 */
7421 struct pf_sctp_endpoint key = {
7422 .v_tag = pd->hdr.sctp.v_tag,
7423 };
7424 struct pf_sctp_endpoint *ep;
7425
7426 PF_SCTP_ENDPOINTS_LOCK();
7427 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7428 if (ep == NULL) {
7429 PF_SCTP_ENDPOINTS_UNLOCK();
7430 break;
7431 }
7432 MPASS(ep != NULL);
7433
7434 TAILQ_FOREACH(i, &ep->sources, entry) {
7435 struct pf_sctp_multihome_job *nj;
7436
7437 /* SCTP can intermingle IPv4 and IPv6. */
7438 if (i->af != pd->af)
7439 continue;
7440
7441 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7442 if (! nj) {
7443 continue;
7444 }
7445 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7446 memcpy(&nj->src, &j->src, sizeof(nj->src));
7447 nj->pd.src = &nj->src;
7448 // New destination address!
7449 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7450 nj->pd.dst = &nj->dst;
7451 nj->pd.m = j->pd.m;
7452 nj->op = j->op;
7453
7454 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7455 }
7456 PF_SCTP_ENDPOINTS_UNLOCK();
7457
7458 break;
7459 }
7460 case SCTP_DEL_IP_ADDRESS: {
7461 struct pf_state_key_cmp key;
7462 uint8_t psrc;
7463
7464 bzero(&key, sizeof(key));
7465 key.af = j->pd.af;
7466 key.proto = IPPROTO_SCTP;
7467 if (j->pd.dir == PF_IN) { /* wire side, straight */
7468 PF_ACPY(&key.addr[0], j->pd.src, key.af);
7469 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
7470 key.port[0] = j->pd.hdr.sctp.src_port;
7471 key.port[1] = j->pd.hdr.sctp.dest_port;
7472 } else { /* stack side, reverse */
7473 PF_ACPY(&key.addr[1], j->pd.src, key.af);
7474 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
7475 key.port[1] = j->pd.hdr.sctp.src_port;
7476 key.port[0] = j->pd.hdr.sctp.dest_port;
7477 }
7478
7479 sm = pf_find_state(kif, &key, j->pd.dir);
7480 if (sm != NULL) {
7481 PF_STATE_LOCK_ASSERT(sm);
7482 if (j->pd.dir == sm->direction) {
7483 psrc = PF_PEER_SRC;
7484 } else {
7485 psrc = PF_PEER_DST;
7486 }
7487 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7488 sm->timeout = PFTM_SCTP_CLOSING;
7489 PF_STATE_UNLOCK(sm);
7490 }
7491 break;
7492 default:
7493 panic("Unknown op %#x", j->op);
7494 }
7495 }
7496
7497 free:
7498 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7499 free(j, M_PFTEMP);
7500 }
7501
7502 /* We may have inserted extra work while processing the list. */
7503 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7504 do_extra = false;
7505 goto again;
7506 }
7507 }
7508
7509 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7510 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7511 {
7512 int off = 0;
7513 struct pf_sctp_multihome_job *job;
7514
7515 while (off < len) {
7516 struct sctp_paramhdr h;
7517
7518 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7519 pd->af))
7520 return (PF_DROP);
7521
7522 /* Parameters are at least 4 bytes. */
7523 if (ntohs(h.param_length) < 4)
7524 return (PF_DROP);
7525
7526 switch (ntohs(h.param_type)) {
7527 case SCTP_IPV4_ADDRESS: {
7528 struct in_addr t;
7529
7530 if (ntohs(h.param_length) !=
7531 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7532 return (PF_DROP);
7533
7534 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7535 NULL, NULL, pd->af))
7536 return (PF_DROP);
7537
7538 if (in_nullhost(t))
7539 t.s_addr = pd->src->v4.s_addr;
7540
7541 /*
7542 * We hold the state lock (idhash) here, which means
7543 * that we can't acquire the keyhash, or we'll get a
7544 * LOR (and potentially double-lock things too). We also
7545 * can't release the state lock here, so instead we'll
7546 * enqueue this for async handling.
7547 * There's a relatively small race here, in that a
7548 * packet using the new addresses could arrive already,
7549 * but that's just though luck for it.
7550 */
7551 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7552 if (! job)
7553 return (PF_DROP);
7554
7555 memcpy(&job->pd, pd, sizeof(*pd));
7556
7557 // New source address!
7558 memcpy(&job->src, &t, sizeof(t));
7559 job->pd.src = &job->src;
7560 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7561 job->pd.dst = &job->dst;
7562 job->pd.m = pd->m;
7563 job->op = op;
7564
7565 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7566 break;
7567 }
7568 #ifdef INET6
7569 case SCTP_IPV6_ADDRESS: {
7570 struct in6_addr t;
7571
7572 if (ntohs(h.param_length) !=
7573 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7574 return (PF_DROP);
7575
7576 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7577 NULL, NULL, pd->af))
7578 return (PF_DROP);
7579 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7580 break;
7581 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7582 memcpy(&t, &pd->src->v6, sizeof(t));
7583
7584 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7585 if (! job)
7586 return (PF_DROP);
7587
7588 memcpy(&job->pd, pd, sizeof(*pd));
7589 memcpy(&job->src, &t, sizeof(t));
7590 job->pd.src = &job->src;
7591 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7592 job->pd.dst = &job->dst;
7593 job->pd.m = pd->m;
7594 job->op = op;
7595
7596 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7597 break;
7598 }
7599 #endif
7600 case SCTP_ADD_IP_ADDRESS: {
7601 int ret;
7602 struct sctp_asconf_paramhdr ah;
7603
7604 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7605 NULL, NULL, pd->af))
7606 return (PF_DROP);
7607
7608 ret = pf_multihome_scan(start + off + sizeof(ah),
7609 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7610 SCTP_ADD_IP_ADDRESS);
7611 if (ret != PF_PASS)
7612 return (ret);
7613 break;
7614 }
7615 case SCTP_DEL_IP_ADDRESS: {
7616 int ret;
7617 struct sctp_asconf_paramhdr ah;
7618
7619 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7620 NULL, NULL, pd->af))
7621 return (PF_DROP);
7622 ret = pf_multihome_scan(start + off + sizeof(ah),
7623 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7624 SCTP_DEL_IP_ADDRESS);
7625 if (ret != PF_PASS)
7626 return (ret);
7627 break;
7628 }
7629 default:
7630 break;
7631 }
7632
7633 off += roundup(ntohs(h.param_length), 4);
7634 }
7635
7636 return (PF_PASS);
7637 }
7638 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7639 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7640 {
7641 start += sizeof(struct sctp_init_chunk);
7642 len -= sizeof(struct sctp_init_chunk);
7643
7644 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7645 }
7646
7647 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7648 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7649 {
7650 start += sizeof(struct sctp_asconf_chunk);
7651 len -= sizeof(struct sctp_asconf_chunk);
7652
7653 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7654 }
7655
7656 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,int direction,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7657 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7658 struct pf_kstate **state, int direction,
7659 u_int16_t icmpid, u_int16_t type, int icmp_dir,
7660 int *iidx, int multi, int inner)
7661 {
7662 key->af = pd->af;
7663 key->proto = pd->proto;
7664 if (icmp_dir == PF_IN) {
7665 *iidx = pd->sidx;
7666 key->port[pd->sidx] = icmpid;
7667 key->port[pd->didx] = type;
7668 } else {
7669 *iidx = pd->didx;
7670 key->port[pd->sidx] = type;
7671 key->port[pd->didx] = icmpid;
7672 }
7673 if (pf_state_key_addr_setup(pd, key, multi))
7674 return (PF_DROP);
7675
7676 STATE_LOOKUP(key, *state, pd);
7677
7678 if ((*state)->state_flags & PFSTATE_SLOPPY)
7679 return (-1);
7680
7681 /* Is this ICMP message flowing in right direction? */
7682 if ((*state)->rule->type &&
7683 (((!inner && (*state)->direction == direction) ||
7684 (inner && (*state)->direction != direction)) ?
7685 PF_IN : PF_OUT) != icmp_dir) {
7686 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7687 printf("pf: icmp type %d in wrong direction (%d): ",
7688 ntohs(type), icmp_dir);
7689 pf_print_state(*state);
7690 printf("\n");
7691 }
7692 PF_STATE_UNLOCK(*state);
7693 *state = NULL;
7694 return (PF_DROP);
7695 }
7696 return (-1);
7697 }
7698
7699 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7700 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7701 u_short *reason)
7702 {
7703 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
7704 u_int16_t *icmpsum, virtual_id, virtual_type;
7705 u_int8_t icmptype, icmpcode;
7706 int icmp_dir, iidx, ret, multi;
7707 struct pf_state_key_cmp key;
7708 #ifdef INET
7709 u_int16_t icmpid;
7710 #endif
7711
7712 MPASS(*state == NULL);
7713
7714 bzero(&key, sizeof(key));
7715 switch (pd->proto) {
7716 #ifdef INET
7717 case IPPROTO_ICMP:
7718 icmptype = pd->hdr.icmp.icmp_type;
7719 icmpcode = pd->hdr.icmp.icmp_code;
7720 icmpid = pd->hdr.icmp.icmp_id;
7721 icmpsum = &pd->hdr.icmp.icmp_cksum;
7722 break;
7723 #endif /* INET */
7724 #ifdef INET6
7725 case IPPROTO_ICMPV6:
7726 icmptype = pd->hdr.icmp6.icmp6_type;
7727 icmpcode = pd->hdr.icmp6.icmp6_code;
7728 #ifdef INET
7729 icmpid = pd->hdr.icmp6.icmp6_id;
7730 #endif
7731 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7732 break;
7733 #endif /* INET6 */
7734 }
7735
7736 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi,
7737 &virtual_id, &virtual_type) == 0) {
7738 /*
7739 * ICMP query/reply message not related to a TCP/UDP/SCTP
7740 * packet. Search for an ICMP state.
7741 */
7742 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir,
7743 virtual_id, virtual_type, icmp_dir, &iidx,
7744 PF_ICMP_MULTI_NONE, 0);
7745 if (ret >= 0) {
7746 MPASS(*state == NULL);
7747 if (ret == PF_DROP && pd->af == AF_INET6 &&
7748 icmp_dir == PF_OUT) {
7749 ret = pf_icmp_state_lookup(&key, pd, state,
7750 pd->dir, virtual_id, virtual_type,
7751 icmp_dir, &iidx, multi, 0);
7752 if (ret >= 0) {
7753 MPASS(*state == NULL);
7754 return (ret);
7755 }
7756 } else
7757 return (ret);
7758 }
7759
7760 (*state)->expire = pf_get_uptime();
7761 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7762
7763 /* translate source/destination address, if necessary */
7764 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7765 struct pf_state_key *nk;
7766 int afto, sidx, didx;
7767
7768 if (PF_REVERSED_KEY((*state)->key, pd->af))
7769 nk = (*state)->key[pd->sidx];
7770 else
7771 nk = (*state)->key[pd->didx];
7772
7773 afto = pd->af != nk->af;
7774 sidx = afto ? pd->didx : pd->sidx;
7775 didx = afto ? pd->sidx : pd->didx;
7776 iidx = afto ? !iidx : iidx;
7777
7778 switch (pd->af) {
7779 #ifdef INET
7780 case AF_INET:
7781 #ifdef INET6
7782 if (afto) {
7783 if (pf_translate_icmp_af(AF_INET6,
7784 &pd->hdr.icmp))
7785 return (PF_DROP);
7786 pd->proto = IPPROTO_ICMPV6;
7787 }
7788 #endif
7789 if (!afto &&
7790 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7791 pf_change_a(&saddr->v4.s_addr,
7792 pd->ip_sum,
7793 nk->addr[sidx].v4.s_addr,
7794 0);
7795
7796 if (!afto && PF_ANEQ(pd->dst,
7797 &nk->addr[didx], AF_INET))
7798 pf_change_a(&daddr->v4.s_addr,
7799 pd->ip_sum,
7800 nk->addr[didx].v4.s_addr, 0);
7801
7802 if (nk->port[iidx] !=
7803 pd->hdr.icmp.icmp_id) {
7804 pd->hdr.icmp.icmp_cksum =
7805 pf_cksum_fixup(
7806 pd->hdr.icmp.icmp_cksum, icmpid,
7807 nk->port[iidx], 0);
7808 pd->hdr.icmp.icmp_id =
7809 nk->port[iidx];
7810 }
7811
7812 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7813 (caddr_t )&pd->hdr.icmp);
7814 break;
7815 #endif /* INET */
7816 #ifdef INET6
7817 case AF_INET6:
7818 #ifdef INET
7819 if (afto) {
7820 if (pf_translate_icmp_af(AF_INET,
7821 &pd->hdr.icmp6))
7822 return (PF_DROP);
7823 pd->proto = IPPROTO_ICMP;
7824 }
7825 #endif
7826 if (!afto &&
7827 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7828 pf_change_a6(saddr,
7829 &pd->hdr.icmp6.icmp6_cksum,
7830 &nk->addr[sidx], 0);
7831
7832 if (!afto && PF_ANEQ(pd->dst,
7833 &nk->addr[didx], AF_INET6))
7834 pf_change_a6(daddr,
7835 &pd->hdr.icmp6.icmp6_cksum,
7836 &nk->addr[didx], 0);
7837
7838 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7839 pd->hdr.icmp6.icmp6_id =
7840 nk->port[iidx];
7841
7842 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7843 (caddr_t )&pd->hdr.icmp6);
7844 break;
7845 #endif /* INET6 */
7846 }
7847 if (afto) {
7848 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7849 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7850 pd->naf = nk->af;
7851 return (PF_AFRT);
7852 }
7853 }
7854 return (PF_PASS);
7855
7856 } else {
7857 /*
7858 * ICMP error message in response to a TCP/UDP packet.
7859 * Extract the inner TCP/UDP header and search for that state.
7860 */
7861
7862 struct pf_pdesc pd2;
7863 bzero(&pd2, sizeof pd2);
7864 #ifdef INET
7865 struct ip h2;
7866 #endif /* INET */
7867 #ifdef INET6
7868 struct ip6_hdr h2_6;
7869 int fragoff2, extoff2;
7870 u_int32_t jumbolen;
7871 #endif /* INET6 */
7872 int ipoff2 = 0;
7873
7874 pd2.af = pd->af;
7875 pd2.dir = pd->dir;
7876 /* Payload packet is from the opposite direction. */
7877 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7878 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7879 pd2.m = pd->m;
7880 switch (pd->af) {
7881 #ifdef INET
7882 case AF_INET:
7883 /* offset of h2 in mbuf chain */
7884 ipoff2 = pd->off + ICMP_MINLEN;
7885
7886 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7887 NULL, reason, pd2.af)) {
7888 DPFPRINTF(PF_DEBUG_MISC,
7889 ("pf: ICMP error message too short "
7890 "(ip)\n"));
7891 return (PF_DROP);
7892 }
7893 /*
7894 * ICMP error messages don't refer to non-first
7895 * fragments
7896 */
7897 if (h2.ip_off & htons(IP_OFFMASK)) {
7898 REASON_SET(reason, PFRES_FRAG);
7899 return (PF_DROP);
7900 }
7901
7902 /* offset of protocol header that follows h2 */
7903 pd2.off = ipoff2 + (h2.ip_hl << 2);
7904
7905 pd2.proto = h2.ip_p;
7906 pd2.src = (struct pf_addr *)&h2.ip_src;
7907 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7908 pd2.ip_sum = &h2.ip_sum;
7909 break;
7910 #endif /* INET */
7911 #ifdef INET6
7912 case AF_INET6:
7913 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7914
7915 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7916 NULL, reason, pd2.af)) {
7917 DPFPRINTF(PF_DEBUG_MISC,
7918 ("pf: ICMP error message too short "
7919 "(ip6)\n"));
7920 return (PF_DROP);
7921 }
7922 pd2.off = ipoff2;
7923 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2,
7924 &fragoff2, &pd2.proto, &jumbolen,
7925 reason) != PF_PASS)
7926 return (PF_DROP);
7927
7928 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7929 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7930 pd2.ip_sum = NULL;
7931 break;
7932 #endif /* INET6 */
7933 }
7934
7935 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7936 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7937 printf("pf: BAD ICMP %d:%d outer dst: ",
7938 icmptype, icmpcode);
7939 pf_print_host(pd->src, 0, pd->af);
7940 printf(" -> ");
7941 pf_print_host(pd->dst, 0, pd->af);
7942 printf(" inner src: ");
7943 pf_print_host(pd2.src, 0, pd2.af);
7944 printf(" -> ");
7945 pf_print_host(pd2.dst, 0, pd2.af);
7946 printf("\n");
7947 }
7948 REASON_SET(reason, PFRES_BADSTATE);
7949 return (PF_DROP);
7950 }
7951
7952 switch (pd2.proto) {
7953 case IPPROTO_TCP: {
7954 struct tcphdr th;
7955 u_int32_t seq;
7956 struct pf_state_peer *src, *dst;
7957 u_int8_t dws;
7958 int copyback = 0;
7959
7960 /*
7961 * Only the first 8 bytes of the TCP header can be
7962 * expected. Don't access any TCP header fields after
7963 * th_seq, an ackskew test is not possible.
7964 */
7965 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7966 pd2.af)) {
7967 DPFPRINTF(PF_DEBUG_MISC,
7968 ("pf: ICMP error message too short "
7969 "(tcp)\n"));
7970 return (PF_DROP);
7971 }
7972
7973 key.af = pd2.af;
7974 key.proto = IPPROTO_TCP;
7975 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7976 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7977 key.port[pd2.sidx] = th.th_sport;
7978 key.port[pd2.didx] = th.th_dport;
7979
7980 STATE_LOOKUP(&key, *state, pd);
7981
7982 if (pd->dir == (*state)->direction) {
7983 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
7984 src = &(*state)->src;
7985 dst = &(*state)->dst;
7986 } else {
7987 src = &(*state)->dst;
7988 dst = &(*state)->src;
7989 }
7990 } else {
7991 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
7992 src = &(*state)->dst;
7993 dst = &(*state)->src;
7994 } else {
7995 src = &(*state)->src;
7996 dst = &(*state)->dst;
7997 }
7998 }
7999
8000 if (src->wscale && dst->wscale)
8001 dws = dst->wscale & PF_WSCALE_MASK;
8002 else
8003 dws = 0;
8004
8005 /* Demodulate sequence number */
8006 seq = ntohl(th.th_seq) - src->seqdiff;
8007 if (src->seqdiff) {
8008 pf_change_a(&th.th_seq, icmpsum,
8009 htonl(seq), 0);
8010 copyback = 1;
8011 }
8012
8013 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8014 (!SEQ_GEQ(src->seqhi, seq) ||
8015 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8016 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8017 printf("pf: BAD ICMP %d:%d ",
8018 icmptype, icmpcode);
8019 pf_print_host(pd->src, 0, pd->af);
8020 printf(" -> ");
8021 pf_print_host(pd->dst, 0, pd->af);
8022 printf(" state: ");
8023 pf_print_state(*state);
8024 printf(" seq=%u\n", seq);
8025 }
8026 REASON_SET(reason, PFRES_BADSTATE);
8027 return (PF_DROP);
8028 } else {
8029 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8030 printf("pf: OK ICMP %d:%d ",
8031 icmptype, icmpcode);
8032 pf_print_host(pd->src, 0, pd->af);
8033 printf(" -> ");
8034 pf_print_host(pd->dst, 0, pd->af);
8035 printf(" state: ");
8036 pf_print_state(*state);
8037 printf(" seq=%u\n", seq);
8038 }
8039 }
8040
8041 /* translate source/destination address, if necessary */
8042 if ((*state)->key[PF_SK_WIRE] !=
8043 (*state)->key[PF_SK_STACK]) {
8044
8045 struct pf_state_key *nk;
8046
8047 if (PF_REVERSED_KEY((*state)->key, pd->af))
8048 nk = (*state)->key[pd->sidx];
8049 else
8050 nk = (*state)->key[pd->didx];
8051
8052 #if defined(INET) && defined(INET6)
8053 int afto, sidx, didx;
8054
8055 afto = pd->af != nk->af;
8056 sidx = afto ? pd2.didx : pd2.sidx;
8057 didx = afto ? pd2.sidx : pd2.didx;
8058
8059 if (afto) {
8060 if (pf_translate_icmp_af(nk->af,
8061 &pd->hdr.icmp))
8062 return (PF_DROP);
8063 m_copyback(pd->m, pd->off,
8064 sizeof(struct icmp6_hdr),
8065 (c_caddr_t)&pd->hdr.icmp6);
8066 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8067 &pd2, &nk->addr[sidx],
8068 &nk->addr[didx], pd->af,
8069 nk->af))
8070 return (PF_DROP);
8071 if (nk->af == AF_INET)
8072 pd->proto = IPPROTO_ICMP;
8073 else
8074 pd->proto = IPPROTO_ICMPV6;
8075 th.th_sport = nk->port[sidx];
8076 th.th_dport = nk->port[didx];
8077 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th);
8078 PF_ACPY(pd->src,
8079 &nk->addr[pd2.sidx], nk->af);
8080 PF_ACPY(pd->dst,
8081 &nk->addr[pd2.didx], nk->af);
8082 pd->naf = nk->af;
8083 return (PF_AFRT);
8084 }
8085 #endif
8086
8087 if (PF_ANEQ(pd2.src,
8088 &nk->addr[pd2.sidx], pd2.af) ||
8089 nk->port[pd2.sidx] != th.th_sport)
8090 pf_change_icmp(pd2.src, &th.th_sport,
8091 daddr, &nk->addr[pd2.sidx],
8092 nk->port[pd2.sidx], NULL,
8093 pd2.ip_sum, icmpsum,
8094 pd->ip_sum, 0, pd2.af);
8095
8096 if (PF_ANEQ(pd2.dst,
8097 &nk->addr[pd2.didx], pd2.af) ||
8098 nk->port[pd2.didx] != th.th_dport)
8099 pf_change_icmp(pd2.dst, &th.th_dport,
8100 saddr, &nk->addr[pd2.didx],
8101 nk->port[pd2.didx], NULL,
8102 pd2.ip_sum, icmpsum,
8103 pd->ip_sum, 0, pd2.af);
8104 copyback = 1;
8105 }
8106
8107 if (copyback) {
8108 switch (pd2.af) {
8109 #ifdef INET
8110 case AF_INET:
8111 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8112 (caddr_t )&pd->hdr.icmp);
8113 m_copyback(pd->m, ipoff2, sizeof(h2),
8114 (caddr_t )&h2);
8115 break;
8116 #endif /* INET */
8117 #ifdef INET6
8118 case AF_INET6:
8119 m_copyback(pd->m, pd->off,
8120 sizeof(struct icmp6_hdr),
8121 (caddr_t )&pd->hdr.icmp6);
8122 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8123 (caddr_t )&h2_6);
8124 break;
8125 #endif /* INET6 */
8126 }
8127 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
8128 }
8129
8130 return (PF_PASS);
8131 break;
8132 }
8133 case IPPROTO_UDP: {
8134 struct udphdr uh;
8135
8136 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
8137 NULL, reason, pd2.af)) {
8138 DPFPRINTF(PF_DEBUG_MISC,
8139 ("pf: ICMP error message too short "
8140 "(udp)\n"));
8141 return (PF_DROP);
8142 }
8143
8144 key.af = pd2.af;
8145 key.proto = IPPROTO_UDP;
8146 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8147 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8148 key.port[pd2.sidx] = uh.uh_sport;
8149 key.port[pd2.didx] = uh.uh_dport;
8150
8151 STATE_LOOKUP(&key, *state, pd);
8152
8153 /* translate source/destination address, if necessary */
8154 if ((*state)->key[PF_SK_WIRE] !=
8155 (*state)->key[PF_SK_STACK]) {
8156 struct pf_state_key *nk;
8157
8158 if (PF_REVERSED_KEY((*state)->key, pd->af))
8159 nk = (*state)->key[pd->sidx];
8160 else
8161 nk = (*state)->key[pd->didx];
8162
8163 #if defined(INET) && defined(INET6)
8164 int afto, sidx, didx;
8165
8166 afto = pd->af != nk->af;
8167 sidx = afto ? pd2.didx : pd2.sidx;
8168 didx = afto ? pd2.sidx : pd2.didx;
8169
8170 if (afto) {
8171 if (pf_translate_icmp_af(nk->af,
8172 &pd->hdr.icmp))
8173 return (PF_DROP);
8174 m_copyback(pd->m, pd->off,
8175 sizeof(struct icmp6_hdr),
8176 (c_caddr_t)&pd->hdr.icmp6);
8177 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8178 &pd2, &nk->addr[sidx],
8179 &nk->addr[didx], pd->af,
8180 nk->af))
8181 return (PF_DROP);
8182 if (nk->af == AF_INET)
8183 pd->proto = IPPROTO_ICMP;
8184 else
8185 pd->proto = IPPROTO_ICMPV6;
8186 pf_change_ap(pd->m, pd2.src, &uh.uh_sport,
8187 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx],
8188 nk->port[sidx], 1, pd->af, nk->af);
8189 pf_change_ap(pd->m, pd2.dst, &uh.uh_dport,
8190 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx],
8191 nk->port[didx], 1, pd->af, nk->af);
8192 m_copyback(pd2.m, pd2.off, sizeof(uh),
8193 (c_caddr_t)&uh);
8194 PF_ACPY(&pd->nsaddr,
8195 &nk->addr[pd2.sidx], nk->af);
8196 PF_ACPY(&pd->ndaddr,
8197 &nk->addr[pd2.didx], nk->af);
8198 pd->naf = nk->af;
8199 return (PF_AFRT);
8200 }
8201 #endif
8202
8203 if (PF_ANEQ(pd2.src,
8204 &nk->addr[pd2.sidx], pd2.af) ||
8205 nk->port[pd2.sidx] != uh.uh_sport)
8206 pf_change_icmp(pd2.src, &uh.uh_sport,
8207 daddr, &nk->addr[pd2.sidx],
8208 nk->port[pd2.sidx], &uh.uh_sum,
8209 pd2.ip_sum, icmpsum,
8210 pd->ip_sum, 1, pd2.af);
8211
8212 if (PF_ANEQ(pd2.dst,
8213 &nk->addr[pd2.didx], pd2.af) ||
8214 nk->port[pd2.didx] != uh.uh_dport)
8215 pf_change_icmp(pd2.dst, &uh.uh_dport,
8216 saddr, &nk->addr[pd2.didx],
8217 nk->port[pd2.didx], &uh.uh_sum,
8218 pd2.ip_sum, icmpsum,
8219 pd->ip_sum, 1, pd2.af);
8220
8221 switch (pd2.af) {
8222 #ifdef INET
8223 case AF_INET:
8224 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8225 (caddr_t )&pd->hdr.icmp);
8226 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8227 break;
8228 #endif /* INET */
8229 #ifdef INET6
8230 case AF_INET6:
8231 m_copyback(pd->m, pd->off,
8232 sizeof(struct icmp6_hdr),
8233 (caddr_t )&pd->hdr.icmp6);
8234 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8235 (caddr_t )&h2_6);
8236 break;
8237 #endif /* INET6 */
8238 }
8239 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
8240 }
8241 return (PF_PASS);
8242 break;
8243 }
8244 #ifdef INET
8245 case IPPROTO_SCTP: {
8246 struct sctphdr sh;
8247 struct pf_state_peer *src;
8248 int copyback = 0;
8249
8250 if (! pf_pull_hdr(pd->m, pd2.off, &sh, sizeof(sh), NULL, reason,
8251 pd2.af)) {
8252 DPFPRINTF(PF_DEBUG_MISC,
8253 ("pf: ICMP error message too short "
8254 "(sctp)\n"));
8255 return (PF_DROP);
8256 }
8257
8258 key.af = pd2.af;
8259 key.proto = IPPROTO_SCTP;
8260 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8261 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8262 key.port[pd2.sidx] = sh.src_port;
8263 key.port[pd2.didx] = sh.dest_port;
8264
8265 STATE_LOOKUP(&key, *state, pd);
8266
8267 if (pd->dir == (*state)->direction) {
8268 if (PF_REVERSED_KEY((*state)->key, pd->af))
8269 src = &(*state)->src;
8270 else
8271 src = &(*state)->dst;
8272 } else {
8273 if (PF_REVERSED_KEY((*state)->key, pd->af))
8274 src = &(*state)->dst;
8275 else
8276 src = &(*state)->src;
8277 }
8278
8279 if (src->scrub->pfss_v_tag != sh.v_tag) {
8280 DPFPRINTF(PF_DEBUG_MISC,
8281 ("pf: ICMP error message has incorrect "
8282 "SCTP v_tag\n"));
8283 return (PF_DROP);
8284 }
8285
8286 /* translate source/destination address, if necessary */
8287 if ((*state)->key[PF_SK_WIRE] !=
8288 (*state)->key[PF_SK_STACK]) {
8289
8290 struct pf_state_key *nk;
8291
8292 if (PF_REVERSED_KEY((*state)->key, pd->af))
8293 nk = (*state)->key[pd->sidx];
8294 else
8295 nk = (*state)->key[pd->didx];
8296
8297 #if defined(INET) && defined(INET6)
8298 int afto, sidx, didx;
8299
8300 afto = pd->af != nk->af;
8301 sidx = afto ? pd2.didx : pd2.sidx;
8302 didx = afto ? pd2.sidx : pd2.didx;
8303
8304 if (afto) {
8305 if (pf_translate_icmp_af(nk->af,
8306 &pd->hdr.icmp))
8307 return (PF_DROP);
8308 m_copyback(pd->m, pd->off,
8309 sizeof(struct icmp6_hdr),
8310 (c_caddr_t)&pd->hdr.icmp6);
8311 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8312 &pd2, &nk->addr[sidx],
8313 &nk->addr[didx], pd->af,
8314 nk->af))
8315 return (PF_DROP);
8316 if (nk->af == AF_INET)
8317 pd->proto = IPPROTO_ICMP;
8318 else
8319 pd->proto = IPPROTO_ICMPV6;
8320 sh.src_port = nk->port[sidx];
8321 sh.dest_port = nk->port[didx];
8322 m_copyback(pd2.m, pd2.off, sizeof(sh), (c_caddr_t)&sh);
8323 PF_ACPY(pd->src,
8324 &nk->addr[pd2.sidx], nk->af);
8325 PF_ACPY(pd->dst,
8326 &nk->addr[pd2.didx], nk->af);
8327 pd->naf = nk->af;
8328 return (PF_AFRT);
8329 }
8330 #endif
8331
8332 if (PF_ANEQ(pd2.src,
8333 &nk->addr[pd2.sidx], pd2.af) ||
8334 nk->port[pd2.sidx] != sh.src_port)
8335 pf_change_icmp(pd2.src, &sh.src_port,
8336 daddr, &nk->addr[pd2.sidx],
8337 nk->port[pd2.sidx], NULL,
8338 pd2.ip_sum, icmpsum,
8339 pd->ip_sum, 0, pd2.af);
8340
8341 if (PF_ANEQ(pd2.dst,
8342 &nk->addr[pd2.didx], pd2.af) ||
8343 nk->port[pd2.didx] != sh.dest_port)
8344 pf_change_icmp(pd2.dst, &sh.dest_port,
8345 saddr, &nk->addr[pd2.didx],
8346 nk->port[pd2.didx], NULL,
8347 pd2.ip_sum, icmpsum,
8348 pd->ip_sum, 0, pd2.af);
8349 copyback = 1;
8350 }
8351
8352 if (copyback) {
8353 switch (pd2.af) {
8354 #ifdef INET
8355 case AF_INET:
8356 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8357 (caddr_t )&pd->hdr.icmp);
8358 m_copyback(pd->m, ipoff2, sizeof(h2),
8359 (caddr_t )&h2);
8360 break;
8361 #endif /* INET */
8362 #ifdef INET6
8363 case AF_INET6:
8364 m_copyback(pd->m, pd->off,
8365 sizeof(struct icmp6_hdr),
8366 (caddr_t )&pd->hdr.icmp6);
8367 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8368 (caddr_t )&h2_6);
8369 break;
8370 #endif /* INET6 */
8371 }
8372 m_copyback(pd->m, pd2.off, sizeof(sh), (caddr_t)&sh);
8373 }
8374
8375 return (PF_PASS);
8376 break;
8377 }
8378 case IPPROTO_ICMP: {
8379 struct icmp *iih = &pd2.hdr.icmp;
8380
8381 if (pd2.af != AF_INET) {
8382 REASON_SET(reason, PFRES_NORM);
8383 return (PF_DROP);
8384 }
8385
8386 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8387 NULL, reason, pd2.af)) {
8388 DPFPRINTF(PF_DEBUG_MISC,
8389 ("pf: ICMP error message too short i"
8390 "(icmp)\n"));
8391 return (PF_DROP);
8392 }
8393
8394 icmpid = iih->icmp_id;
8395 pf_icmp_mapping(&pd2, iih->icmp_type,
8396 &icmp_dir, &multi, &virtual_id, &virtual_type);
8397
8398 ret = pf_icmp_state_lookup(&key, &pd2, state,
8399 pd2.dir, virtual_id, virtual_type,
8400 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
8401 if (ret >= 0) {
8402 MPASS(*state == NULL);
8403 return (ret);
8404 }
8405
8406 /* translate source/destination address, if necessary */
8407 if ((*state)->key[PF_SK_WIRE] !=
8408 (*state)->key[PF_SK_STACK]) {
8409 struct pf_state_key *nk;
8410
8411 if (PF_REVERSED_KEY((*state)->key, pd->af))
8412 nk = (*state)->key[pd->sidx];
8413 else
8414 nk = (*state)->key[pd->didx];
8415
8416 #if defined(INET) && defined(INET6)
8417 int afto, sidx, didx;
8418
8419 afto = pd->af != nk->af;
8420 sidx = afto ? pd2.didx : pd2.sidx;
8421 didx = afto ? pd2.sidx : pd2.didx;
8422 iidx = afto ? !iidx : iidx;
8423
8424 if (afto) {
8425 if (nk->af != AF_INET6)
8426 return (PF_DROP);
8427 if (pf_translate_icmp_af(nk->af,
8428 &pd->hdr.icmp))
8429 return (PF_DROP);
8430 m_copyback(pd->m, pd->off,
8431 sizeof(struct icmp6_hdr),
8432 (c_caddr_t)&pd->hdr.icmp6);
8433 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8434 &pd2, &nk->addr[sidx],
8435 &nk->addr[didx], pd->af,
8436 nk->af))
8437 return (PF_DROP);
8438 pd->proto = IPPROTO_ICMPV6;
8439 if (pf_translate_icmp_af(nk->af, &iih))
8440 return (PF_DROP);
8441 if (virtual_type == htons(ICMP_ECHO) &&
8442 nk->port[iidx] != iih->icmp_id)
8443 iih->icmp_id = nk->port[iidx];
8444 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8445 (c_caddr_t)&iih);
8446 PF_ACPY(&pd->nsaddr,
8447 &nk->addr[pd2.sidx], nk->af);
8448 PF_ACPY(&pd->ndaddr,
8449 &nk->addr[pd2.didx], nk->af);
8450 pd->naf = nk->af;
8451 return (PF_AFRT);
8452 }
8453 #endif
8454
8455 if (PF_ANEQ(pd2.src,
8456 &nk->addr[pd2.sidx], pd2.af) ||
8457 (virtual_type == htons(ICMP_ECHO) &&
8458 nk->port[iidx] != iih->icmp_id))
8459 pf_change_icmp(pd2.src,
8460 (virtual_type == htons(ICMP_ECHO)) ?
8461 &iih->icmp_id : NULL,
8462 daddr, &nk->addr[pd2.sidx],
8463 (virtual_type == htons(ICMP_ECHO)) ?
8464 nk->port[iidx] : 0, NULL,
8465 pd2.ip_sum, icmpsum,
8466 pd->ip_sum, 0, AF_INET);
8467
8468 if (PF_ANEQ(pd2.dst,
8469 &nk->addr[pd2.didx], pd2.af))
8470 pf_change_icmp(pd2.dst, NULL, NULL,
8471 &nk->addr[pd2.didx], 0, NULL,
8472 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8473 AF_INET);
8474
8475 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8476 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8477 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8478 }
8479 return (PF_PASS);
8480 break;
8481 }
8482 #endif /* INET */
8483 #ifdef INET6
8484 case IPPROTO_ICMPV6: {
8485 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
8486
8487 if (pd2.af != AF_INET6) {
8488 REASON_SET(reason, PFRES_NORM);
8489 return (PF_DROP);
8490 }
8491
8492 if (!pf_pull_hdr(pd->m, pd2.off, iih,
8493 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8494 DPFPRINTF(PF_DEBUG_MISC,
8495 ("pf: ICMP error message too short "
8496 "(icmp6)\n"));
8497 return (PF_DROP);
8498 }
8499
8500 pf_icmp_mapping(&pd2, iih->icmp6_type,
8501 &icmp_dir, &multi, &virtual_id, &virtual_type);
8502
8503 ret = pf_icmp_state_lookup(&key, &pd2, state,
8504 pd->dir, virtual_id, virtual_type,
8505 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
8506 if (ret >= 0) {
8507 MPASS(*state == NULL);
8508 if (ret == PF_DROP && pd2.af == AF_INET6 &&
8509 icmp_dir == PF_OUT) {
8510 ret = pf_icmp_state_lookup(&key, &pd2,
8511 state, pd->dir,
8512 virtual_id, virtual_type,
8513 icmp_dir, &iidx, multi, 1);
8514 if (ret >= 0) {
8515 MPASS(*state == NULL);
8516 return (ret);
8517 }
8518 } else
8519 return (ret);
8520 }
8521
8522 /* translate source/destination address, if necessary */
8523 if ((*state)->key[PF_SK_WIRE] !=
8524 (*state)->key[PF_SK_STACK]) {
8525 struct pf_state_key *nk;
8526
8527 if (PF_REVERSED_KEY((*state)->key, pd->af))
8528 nk = (*state)->key[pd->sidx];
8529 else
8530 nk = (*state)->key[pd->didx];
8531
8532 #if defined(INET) && defined(INET6)
8533 int afto, sidx, didx;
8534
8535 afto = pd->af != nk->af;
8536 sidx = afto ? pd2.didx : pd2.sidx;
8537 didx = afto ? pd2.sidx : pd2.didx;
8538 iidx = afto ? !iidx : iidx;
8539
8540 if (afto) {
8541 if (nk->af != AF_INET)
8542 return (PF_DROP);
8543 if (pf_translate_icmp_af(nk->af,
8544 &pd->hdr.icmp))
8545 return (PF_DROP);
8546 m_copyback(pd->m, pd->off,
8547 sizeof(struct icmp6_hdr),
8548 (c_caddr_t)&pd->hdr.icmp6);
8549 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8550 &pd2, &nk->addr[sidx],
8551 &nk->addr[didx], pd->af,
8552 nk->af))
8553 return (PF_DROP);
8554 pd->proto = IPPROTO_ICMP;
8555 if (pf_translate_icmp_af(nk->af, &iih))
8556 return (PF_DROP);
8557 if (virtual_type ==
8558 htons(ICMP6_ECHO_REQUEST) &&
8559 nk->port[iidx] != iih->icmp6_id)
8560 iih->icmp6_id = nk->port[iidx];
8561 m_copyback(pd2.m, pd2.off,
8562 sizeof(struct icmp6_hdr), (c_caddr_t)&iih);
8563 PF_ACPY(&pd->nsaddr,
8564 &nk->addr[pd2.sidx], nk->af);
8565 PF_ACPY(&pd->ndaddr,
8566 &nk->addr[pd2.didx], nk->af);
8567 pd->naf = nk->af;
8568 return (PF_AFRT);
8569 }
8570 #endif
8571
8572 if (PF_ANEQ(pd2.src,
8573 &nk->addr[pd2.sidx], pd2.af) ||
8574 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8575 nk->port[pd2.sidx] != iih->icmp6_id))
8576 pf_change_icmp(pd2.src,
8577 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8578 ? &iih->icmp6_id : NULL,
8579 daddr, &nk->addr[pd2.sidx],
8580 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8581 ? nk->port[iidx] : 0, NULL,
8582 pd2.ip_sum, icmpsum,
8583 pd->ip_sum, 0, AF_INET6);
8584
8585 if (PF_ANEQ(pd2.dst,
8586 &nk->addr[pd2.didx], pd2.af))
8587 pf_change_icmp(pd2.dst, NULL, NULL,
8588 &nk->addr[pd2.didx], 0, NULL,
8589 pd2.ip_sum, icmpsum,
8590 pd->ip_sum, 0, AF_INET6);
8591
8592 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8593 (caddr_t)&pd->hdr.icmp6);
8594 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8595 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8596 (caddr_t)iih);
8597 }
8598 return (PF_PASS);
8599 break;
8600 }
8601 #endif /* INET6 */
8602 default: {
8603 key.af = pd2.af;
8604 key.proto = pd2.proto;
8605 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8606 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8607 key.port[0] = key.port[1] = 0;
8608
8609 STATE_LOOKUP(&key, *state, pd);
8610
8611 /* translate source/destination address, if necessary */
8612 if ((*state)->key[PF_SK_WIRE] !=
8613 (*state)->key[PF_SK_STACK]) {
8614 struct pf_state_key *nk =
8615 (*state)->key[pd->didx];
8616
8617 if (PF_ANEQ(pd2.src,
8618 &nk->addr[pd2.sidx], pd2.af))
8619 pf_change_icmp(pd2.src, NULL, daddr,
8620 &nk->addr[pd2.sidx], 0, NULL,
8621 pd2.ip_sum, icmpsum,
8622 pd->ip_sum, 0, pd2.af);
8623
8624 if (PF_ANEQ(pd2.dst,
8625 &nk->addr[pd2.didx], pd2.af))
8626 pf_change_icmp(pd2.dst, NULL, saddr,
8627 &nk->addr[pd2.didx], 0, NULL,
8628 pd2.ip_sum, icmpsum,
8629 pd->ip_sum, 0, pd2.af);
8630
8631 switch (pd2.af) {
8632 #ifdef INET
8633 case AF_INET:
8634 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8635 (caddr_t)&pd->hdr.icmp);
8636 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8637 break;
8638 #endif /* INET */
8639 #ifdef INET6
8640 case AF_INET6:
8641 m_copyback(pd->m, pd->off,
8642 sizeof(struct icmp6_hdr),
8643 (caddr_t )&pd->hdr.icmp6);
8644 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8645 (caddr_t )&h2_6);
8646 break;
8647 #endif /* INET6 */
8648 }
8649 }
8650 return (PF_PASS);
8651 break;
8652 }
8653 }
8654 }
8655 }
8656
8657 static int
pf_test_state_other(struct pf_kstate ** state,struct pf_pdesc * pd)8658 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd)
8659 {
8660 struct pf_state_peer *src, *dst;
8661 struct pf_state_key_cmp key;
8662 uint8_t psrc, pdst;
8663 int action = PF_PASS;
8664
8665 bzero(&key, sizeof(key));
8666 key.af = pd->af;
8667 key.proto = pd->proto;
8668 if (pd->dir == PF_IN) {
8669 PF_ACPY(&key.addr[0], pd->src, key.af);
8670 PF_ACPY(&key.addr[1], pd->dst, key.af);
8671 key.port[0] = key.port[1] = 0;
8672 } else {
8673 PF_ACPY(&key.addr[1], pd->src, key.af);
8674 PF_ACPY(&key.addr[0], pd->dst, key.af);
8675 key.port[1] = key.port[0] = 0;
8676 }
8677
8678 STATE_LOOKUP(&key, *state, pd);
8679
8680 if (pd->dir == (*state)->direction) {
8681 src = &(*state)->src;
8682 dst = &(*state)->dst;
8683 psrc = PF_PEER_SRC;
8684 pdst = PF_PEER_DST;
8685 } else {
8686 src = &(*state)->dst;
8687 dst = &(*state)->src;
8688 psrc = PF_PEER_DST;
8689 pdst = PF_PEER_SRC;
8690 }
8691
8692 /* update states */
8693 if (src->state < PFOTHERS_SINGLE)
8694 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
8695 if (dst->state == PFOTHERS_SINGLE)
8696 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
8697
8698 /* update expire time */
8699 (*state)->expire = pf_get_uptime();
8700 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
8701 (*state)->timeout = PFTM_OTHER_MULTIPLE;
8702 else
8703 (*state)->timeout = PFTM_OTHER_SINGLE;
8704
8705 /* translate source/destination address, if necessary */
8706 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
8707 struct pf_state_key *nk;
8708 int afto;
8709
8710 if (PF_REVERSED_KEY((*state)->key, pd->af))
8711 nk = (*state)->key[pd->sidx];
8712 else
8713 nk = (*state)->key[pd->didx];
8714
8715 KASSERT(nk, ("%s: nk is null", __func__));
8716 KASSERT(pd, ("%s: pd is null", __func__));
8717 KASSERT(pd->src, ("%s: pd->src is null", __func__));
8718 KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
8719
8720 afto = pd->af != nk->af;
8721
8722 switch (pd->af) {
8723 #ifdef INET
8724 case AF_INET:
8725 if (!afto &&
8726 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
8727 pf_change_a(&pd->src->v4.s_addr,
8728 pd->ip_sum,
8729 nk->addr[pd->sidx].v4.s_addr,
8730 0);
8731
8732 if (!afto &&
8733 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
8734 pf_change_a(&pd->dst->v4.s_addr,
8735 pd->ip_sum,
8736 nk->addr[pd->didx].v4.s_addr,
8737 0);
8738
8739 break;
8740 #endif /* INET */
8741 #ifdef INET6
8742 case AF_INET6:
8743 if (!afto &&
8744 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6))
8745 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
8746
8747 if (!afto &&
8748 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6))
8749 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
8750 #endif /* INET6 */
8751 }
8752 if (afto) {
8753 PF_ACPY(&pd->nsaddr,
8754 &nk->addr[afto ? pd->didx : pd->sidx], nk->af);
8755 PF_ACPY(&pd->ndaddr,
8756 &nk->addr[afto ? pd->sidx : pd->didx], nk->af);
8757 pd->naf = nk->af;
8758 action = PF_AFRT;
8759 }
8760 }
8761 return (action);
8762 }
8763
8764 /*
8765 * ipoff and off are measured from the start of the mbuf chain.
8766 * h must be at "ipoff" on the mbuf chain.
8767 */
8768 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8769 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8770 u_short *actionp, u_short *reasonp, sa_family_t af)
8771 {
8772 switch (af) {
8773 #ifdef INET
8774 case AF_INET: {
8775 const struct ip *h = mtod(m, struct ip *);
8776 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8777
8778 if (fragoff) {
8779 if (fragoff >= len)
8780 ACTION_SET(actionp, PF_PASS);
8781 else {
8782 ACTION_SET(actionp, PF_DROP);
8783 REASON_SET(reasonp, PFRES_FRAG);
8784 }
8785 return (NULL);
8786 }
8787 if (m->m_pkthdr.len < off + len ||
8788 ntohs(h->ip_len) < off + len) {
8789 ACTION_SET(actionp, PF_DROP);
8790 REASON_SET(reasonp, PFRES_SHORT);
8791 return (NULL);
8792 }
8793 break;
8794 }
8795 #endif /* INET */
8796 #ifdef INET6
8797 case AF_INET6: {
8798 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8799
8800 if (m->m_pkthdr.len < off + len ||
8801 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
8802 (unsigned)(off + len)) {
8803 ACTION_SET(actionp, PF_DROP);
8804 REASON_SET(reasonp, PFRES_SHORT);
8805 return (NULL);
8806 }
8807 break;
8808 }
8809 #endif /* INET6 */
8810 }
8811 m_copydata(m, off, len, p);
8812 return (p);
8813 }
8814
8815 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8816 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8817 int rtableid)
8818 {
8819 struct ifnet *ifp;
8820
8821 /*
8822 * Skip check for addresses with embedded interface scope,
8823 * as they would always match anyway.
8824 */
8825 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8826 return (1);
8827
8828 if (af != AF_INET && af != AF_INET6)
8829 return (0);
8830
8831 if (kif == V_pfi_all)
8832 return (1);
8833
8834 /* Skip checks for ipsec interfaces */
8835 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8836 return (1);
8837
8838 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8839
8840 switch (af) {
8841 #ifdef INET6
8842 case AF_INET6:
8843 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8844 ifp));
8845 #endif
8846 #ifdef INET
8847 case AF_INET:
8848 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8849 ifp));
8850 #endif
8851 }
8852
8853 return (0);
8854 }
8855
8856 #ifdef INET
8857 static void
pf_route(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8858 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
8859 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8860 {
8861 struct mbuf *m0, *m1, *md;
8862 struct sockaddr_in dst;
8863 struct ip *ip;
8864 struct ifnet *ifp = NULL;
8865 int error = 0;
8866 uint16_t ip_len, ip_off;
8867 uint16_t tmp;
8868 int r_dir;
8869
8870 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
8871
8872 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp);
8873
8874 if (s) {
8875 r_dir = s->direction;
8876 } else {
8877 r_dir = r->direction;
8878 }
8879
8880 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
8881 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
8882 __func__));
8883
8884 if ((pd->pf_mtag == NULL &&
8885 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
8886 pd->pf_mtag->routed++ > 3) {
8887 m0 = *m;
8888 *m = NULL;
8889 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8890 goto bad_locked;
8891 }
8892
8893 if (pd->act.rt_kif != NULL)
8894 ifp = pd->act.rt_kif->pfik_ifp;
8895
8896 if (pd->act.rt == PF_DUPTO) {
8897 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
8898 if (s != NULL) {
8899 PF_STATE_UNLOCK(s);
8900 }
8901 if (ifp == oifp) {
8902 /* When the 2nd interface is not skipped */
8903 return;
8904 } else {
8905 m0 = *m;
8906 *m = NULL;
8907 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8908 goto bad;
8909 }
8910 } else {
8911 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8912 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
8913 if (s)
8914 PF_STATE_UNLOCK(s);
8915 return;
8916 }
8917 }
8918 } else {
8919 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8920 pf_dummynet(pd, s, r, m);
8921 if (s)
8922 PF_STATE_UNLOCK(s);
8923 return;
8924 }
8925 m0 = *m;
8926 }
8927
8928 ip = mtod(m0, struct ip *);
8929
8930 bzero(&dst, sizeof(dst));
8931 dst.sin_family = AF_INET;
8932 dst.sin_len = sizeof(dst);
8933 dst.sin_addr = ip->ip_dst;
8934 dst.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
8935
8936 if (s != NULL){
8937 if (r->rule_flag & PFRULE_IFBOUND &&
8938 pd->act.rt == PF_REPLYTO &&
8939 s->kif == V_pfi_all) {
8940 s->kif = pd->act.rt_kif;
8941 s->orig_kif = oifp->if_pf_kif;
8942 }
8943
8944 if (ifp == NULL && (pd->af != pd->naf)) {
8945 /* We're in the AFTO case. Do a route lookup. */
8946 struct nhop_object *nh;
8947 nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0);
8948 if (nh) {
8949 ifp = nh->nh_ifp;
8950
8951 /* Use the gateway if needed. */
8952 if (nh->nh_flags & NHF_GATEWAY)
8953 dst.sin_addr = nh->gw4_sa.sin_addr;
8954 else
8955 dst.sin_addr = ip->ip_dst;
8956
8957 /*
8958 * Bind to the correct interface if we're
8959 * if-bound. We don't know which interface
8960 * that will be until here, so we've inserted
8961 * the state on V_pf_all. Fix that now.
8962 */
8963 if (s->kif == V_pfi_all && ifp != NULL &&
8964 r->rule_flag & PFRULE_IFBOUND)
8965 s->kif = ifp->if_pf_kif;
8966 }
8967 }
8968
8969 PF_STATE_UNLOCK(s);
8970 }
8971
8972 if (ifp == NULL) {
8973 m0 = *m;
8974 *m = NULL;
8975 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8976 goto bad;
8977 }
8978
8979 if (pd->dir == PF_IN) {
8980 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
8981 &pd->act) != PF_PASS) {
8982 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8983 goto bad;
8984 } else if (m0 == NULL) {
8985 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8986 goto done;
8987 }
8988 if (m0->m_len < sizeof(struct ip)) {
8989 DPFPRINTF(PF_DEBUG_URGENT,
8990 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
8991 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8992 goto bad;
8993 }
8994 ip = mtod(m0, struct ip *);
8995 }
8996
8997 if (ifp->if_flags & IFF_LOOPBACK)
8998 m0->m_flags |= M_SKIP_FIREWALL;
8999
9000 ip_len = ntohs(ip->ip_len);
9001 ip_off = ntohs(ip->ip_off);
9002
9003 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
9004 m0->m_pkthdr.csum_flags |= CSUM_IP;
9005 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9006 in_delayed_cksum(m0);
9007 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9008 }
9009 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9010 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9011 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9012 }
9013
9014 if (pd->dir == PF_IN) {
9015 /*
9016 * Make sure dummynet gets the correct direction, in case it needs to
9017 * re-inject later.
9018 */
9019 pd->dir = PF_OUT;
9020
9021 /*
9022 * The following processing is actually the rest of the inbound processing, even
9023 * though we've marked it as outbound (so we don't look through dummynet) and it
9024 * happens after the outbound processing (pf_test(PF_OUT) above).
9025 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9026 * conclusion about what direction it's processing, and we can't fix it or it
9027 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9028 * decision will pick the right pipe, and everything will mostly work as expected.
9029 */
9030 tmp = pd->act.dnrpipe;
9031 pd->act.dnrpipe = pd->act.dnpipe;
9032 pd->act.dnpipe = tmp;
9033 }
9034
9035 /*
9036 * If small enough for interface, or the interface will take
9037 * care of the fragmentation for us, we can just send directly.
9038 */
9039 if (ip_len <= ifp->if_mtu ||
9040 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9041 ip->ip_sum = 0;
9042 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9043 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9044 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9045 }
9046 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
9047
9048 md = m0;
9049 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9050 if (md != NULL) {
9051 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL);
9052 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9053 }
9054 goto done;
9055 }
9056
9057 /* Balk when DF bit is set or the interface didn't support TSO. */
9058 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9059 error = EMSGSIZE;
9060 KMOD_IPSTAT_INC(ips_cantfrag);
9061 if (pd->act.rt != PF_DUPTO) {
9062 if (s && s->nat_rule != NULL)
9063 PACKET_UNDO_NAT(m0, pd,
9064 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9065 s);
9066
9067 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
9068 ifp->if_mtu);
9069 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9070 goto done;
9071 } else {
9072 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9073 goto bad;
9074 }
9075 }
9076
9077 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9078 if (error) {
9079 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9080 goto bad;
9081 }
9082
9083 for (; m0; m0 = m1) {
9084 m1 = m0->m_nextpkt;
9085 m0->m_nextpkt = NULL;
9086 if (error == 0) {
9087 m_clrprotoflags(m0);
9088 md = m0;
9089 pd->pf_mtag = pf_find_mtag(md);
9090 error = pf_dummynet_route(pd, s, r, ifp,
9091 sintosa(&dst), &md);
9092 if (md != NULL) {
9093 error = (*ifp->if_output)(ifp, md,
9094 sintosa(&dst), NULL);
9095 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9096 }
9097 } else
9098 m_freem(m0);
9099 }
9100
9101 if (error == 0)
9102 KMOD_IPSTAT_INC(ips_fragmented);
9103
9104 done:
9105 if (pd->act.rt != PF_DUPTO)
9106 *m = NULL;
9107 return;
9108
9109 bad_locked:
9110 if (s)
9111 PF_STATE_UNLOCK(s);
9112 bad:
9113 m_freem(m0);
9114 goto done;
9115 }
9116 #endif /* INET */
9117
9118 #ifdef INET6
9119 static void
pf_route6(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9120 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
9121 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9122 {
9123 struct mbuf *m0, *md;
9124 struct m_tag *mtag;
9125 struct sockaddr_in6 dst;
9126 struct ip6_hdr *ip6;
9127 struct ifnet *ifp = NULL;
9128 int r_dir;
9129
9130 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
9131
9132 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp);
9133
9134 if (s) {
9135 r_dir = s->direction;
9136 } else {
9137 r_dir = r->direction;
9138 }
9139
9140 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9141 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9142 __func__));
9143
9144 if ((pd->pf_mtag == NULL &&
9145 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
9146 pd->pf_mtag->routed++ > 3) {
9147 m0 = *m;
9148 *m = NULL;
9149 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9150 goto bad_locked;
9151 }
9152
9153 if (pd->act.rt_kif != NULL)
9154 ifp = pd->act.rt_kif->pfik_ifp;
9155
9156 if (pd->act.rt == PF_DUPTO) {
9157 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9158 if (s != NULL) {
9159 PF_STATE_UNLOCK(s);
9160 }
9161 if (ifp == oifp) {
9162 /* When the 2nd interface is not skipped */
9163 return;
9164 } else {
9165 m0 = *m;
9166 *m = NULL;
9167 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9168 goto bad;
9169 }
9170 } else {
9171 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9172 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
9173 if (s)
9174 PF_STATE_UNLOCK(s);
9175 return;
9176 }
9177 }
9178 } else {
9179 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9180 pf_dummynet(pd, s, r, m);
9181 if (s)
9182 PF_STATE_UNLOCK(s);
9183 return;
9184 }
9185 m0 = *m;
9186 }
9187
9188 ip6 = mtod(m0, struct ip6_hdr *);
9189
9190 bzero(&dst, sizeof(dst));
9191 dst.sin6_family = AF_INET6;
9192 dst.sin6_len = sizeof(dst);
9193 dst.sin6_addr = ip6->ip6_dst;
9194 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6);
9195
9196 if (s != NULL) {
9197 if (r->rule_flag & PFRULE_IFBOUND &&
9198 pd->act.rt == PF_REPLYTO &&
9199 s->kif == V_pfi_all) {
9200 s->kif = pd->act.rt_kif;
9201 s->orig_kif = oifp->if_pf_kif;
9202 }
9203
9204 if (ifp == NULL && (pd->af != pd->naf)) {
9205 struct nhop_object *nh;
9206 nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0);
9207 if (nh) {
9208 ifp = nh->nh_ifp;
9209
9210 /* Use the gateway if needed. */
9211 if (nh->nh_flags & NHF_GATEWAY)
9212 bcopy(&dst.sin6_addr, &nh->gw6_sa.sin6_addr,
9213 sizeof(dst.sin6_addr));
9214 else
9215 dst.sin6_addr = ip6->ip6_dst;
9216
9217 /*
9218 * Bind to the correct interface if we're
9219 * if-bound. We don't know which interface
9220 * that will be until here, so we've inserted
9221 * the state on V_pf_all. Fix that now.
9222 */
9223 if (s->kif == V_pfi_all && ifp != NULL &&
9224 r->rule_flag & PFRULE_IFBOUND)
9225 s->kif = ifp->if_pf_kif;
9226 }
9227 }
9228
9229 PF_STATE_UNLOCK(s);
9230 }
9231
9232 if (pd->af != pd->naf) {
9233 struct udphdr *uh = &pd->hdr.udp;
9234
9235 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9236 uh->uh_sum = in6_cksum_pseudo(ip6,
9237 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9238 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9239 }
9240 }
9241
9242 if (ifp == NULL) {
9243 m0 = *m;
9244 *m = NULL;
9245 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9246 goto bad;
9247 }
9248
9249 if (pd->dir == PF_IN) {
9250 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9251 ifp, &m0, inp, &pd->act) != PF_PASS) {
9252 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9253 goto bad;
9254 } else if (m0 == NULL) {
9255 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9256 goto done;
9257 }
9258 if (m0->m_len < sizeof(struct ip6_hdr)) {
9259 DPFPRINTF(PF_DEBUG_URGENT,
9260 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
9261 __func__));
9262 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9263 goto bad;
9264 }
9265 ip6 = mtod(m0, struct ip6_hdr *);
9266 }
9267
9268 if (ifp->if_flags & IFF_LOOPBACK)
9269 m0->m_flags |= M_SKIP_FIREWALL;
9270
9271 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9272 ~ifp->if_hwassist) {
9273 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9274 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9275 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9276 }
9277
9278 if (pd->dir == PF_IN) {
9279 uint16_t tmp;
9280 /*
9281 * Make sure dummynet gets the correct direction, in case it needs to
9282 * re-inject later.
9283 */
9284 pd->dir = PF_OUT;
9285
9286 /*
9287 * The following processing is actually the rest of the inbound processing, even
9288 * though we've marked it as outbound (so we don't look through dummynet) and it
9289 * happens after the outbound processing (pf_test(PF_OUT) above).
9290 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9291 * conclusion about what direction it's processing, and we can't fix it or it
9292 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9293 * decision will pick the right pipe, and everything will mostly work as expected.
9294 */
9295 tmp = pd->act.dnrpipe;
9296 pd->act.dnrpipe = pd->act.dnpipe;
9297 pd->act.dnpipe = tmp;
9298 }
9299
9300 /*
9301 * If the packet is too large for the outgoing interface,
9302 * send back an icmp6 error.
9303 */
9304 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9305 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9306 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9307 if (mtag != NULL) {
9308 int ret __sdt_used;
9309 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9310 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9311 goto done;
9312 }
9313
9314 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9315 md = m0;
9316 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9317 if (md != NULL) {
9318 int ret __sdt_used;
9319 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9320 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9321 }
9322 }
9323 else {
9324 in6_ifstat_inc(ifp, ifs6_in_toobig);
9325 if (pd->act.rt != PF_DUPTO) {
9326 if (s && s->nat_rule != NULL)
9327 PACKET_UNDO_NAT(m0, pd,
9328 ((caddr_t)ip6 - m0->m_data) +
9329 sizeof(struct ip6_hdr), s);
9330
9331 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
9332 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9333 } else {
9334 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9335 goto bad;
9336 }
9337 }
9338
9339 done:
9340 if (pd->act.rt != PF_DUPTO)
9341 *m = NULL;
9342 return;
9343
9344 bad_locked:
9345 if (s)
9346 PF_STATE_UNLOCK(s);
9347 bad:
9348 m_freem(m0);
9349 goto done;
9350 }
9351 #endif /* INET6 */
9352
9353 /*
9354 * FreeBSD supports cksum offloads for the following drivers.
9355 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9356 *
9357 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9358 * network driver performed cksum including pseudo header, need to verify
9359 * csum_data
9360 * CSUM_DATA_VALID :
9361 * network driver performed cksum, needs to additional pseudo header
9362 * cksum computation with partial csum_data(i.e. lack of H/W support for
9363 * pseudo header, for instance sk(4) and possibly gem(4))
9364 *
9365 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9366 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9367 * TCP/UDP layer.
9368 * Also, set csum_data to 0xffff to force cksum validation.
9369 */
9370 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9371 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9372 {
9373 u_int16_t sum = 0;
9374 int hw_assist = 0;
9375 struct ip *ip;
9376
9377 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9378 return (1);
9379 if (m->m_pkthdr.len < off + len)
9380 return (1);
9381
9382 switch (p) {
9383 case IPPROTO_TCP:
9384 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9385 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9386 sum = m->m_pkthdr.csum_data;
9387 } else {
9388 ip = mtod(m, struct ip *);
9389 sum = in_pseudo(ip->ip_src.s_addr,
9390 ip->ip_dst.s_addr, htonl((u_short)len +
9391 m->m_pkthdr.csum_data + IPPROTO_TCP));
9392 }
9393 sum ^= 0xffff;
9394 ++hw_assist;
9395 }
9396 break;
9397 case IPPROTO_UDP:
9398 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9399 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9400 sum = m->m_pkthdr.csum_data;
9401 } else {
9402 ip = mtod(m, struct ip *);
9403 sum = in_pseudo(ip->ip_src.s_addr,
9404 ip->ip_dst.s_addr, htonl((u_short)len +
9405 m->m_pkthdr.csum_data + IPPROTO_UDP));
9406 }
9407 sum ^= 0xffff;
9408 ++hw_assist;
9409 }
9410 break;
9411 case IPPROTO_ICMP:
9412 #ifdef INET6
9413 case IPPROTO_ICMPV6:
9414 #endif /* INET6 */
9415 break;
9416 default:
9417 return (1);
9418 }
9419
9420 if (!hw_assist) {
9421 switch (af) {
9422 case AF_INET:
9423 if (p == IPPROTO_ICMP) {
9424 if (m->m_len < off)
9425 return (1);
9426 m->m_data += off;
9427 m->m_len -= off;
9428 sum = in_cksum(m, len);
9429 m->m_data -= off;
9430 m->m_len += off;
9431 } else {
9432 if (m->m_len < sizeof(struct ip))
9433 return (1);
9434 sum = in4_cksum(m, p, off, len);
9435 }
9436 break;
9437 #ifdef INET6
9438 case AF_INET6:
9439 if (m->m_len < sizeof(struct ip6_hdr))
9440 return (1);
9441 sum = in6_cksum(m, p, off, len);
9442 break;
9443 #endif /* INET6 */
9444 }
9445 }
9446 if (sum) {
9447 switch (p) {
9448 case IPPROTO_TCP:
9449 {
9450 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9451 break;
9452 }
9453 case IPPROTO_UDP:
9454 {
9455 KMOD_UDPSTAT_INC(udps_badsum);
9456 break;
9457 }
9458 #ifdef INET
9459 case IPPROTO_ICMP:
9460 {
9461 KMOD_ICMPSTAT_INC(icps_checksum);
9462 break;
9463 }
9464 #endif
9465 #ifdef INET6
9466 case IPPROTO_ICMPV6:
9467 {
9468 KMOD_ICMP6STAT_INC(icp6s_checksum);
9469 break;
9470 }
9471 #endif /* INET6 */
9472 }
9473 return (1);
9474 } else {
9475 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9476 m->m_pkthdr.csum_flags |=
9477 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9478 m->m_pkthdr.csum_data = 0xffff;
9479 }
9480 }
9481 return (0);
9482 }
9483
9484 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9485 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9486 const struct pf_kstate *s, struct ip_fw_args *dnflow)
9487 {
9488 int dndir = r->direction;
9489
9490 if (s && dndir == PF_INOUT) {
9491 dndir = s->direction;
9492 } else if (dndir == PF_INOUT) {
9493 /* Assume primary direction. Happens when we've set dnpipe in
9494 * the ethernet level code. */
9495 dndir = pd->dir;
9496 }
9497
9498 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9499 return (false);
9500
9501 memset(dnflow, 0, sizeof(*dnflow));
9502
9503 if (pd->dport != NULL)
9504 dnflow->f_id.dst_port = ntohs(*pd->dport);
9505 if (pd->sport != NULL)
9506 dnflow->f_id.src_port = ntohs(*pd->sport);
9507
9508 if (pd->dir == PF_IN)
9509 dnflow->flags |= IPFW_ARGS_IN;
9510 else
9511 dnflow->flags |= IPFW_ARGS_OUT;
9512
9513 if (pd->dir != dndir && pd->act.dnrpipe) {
9514 dnflow->rule.info = pd->act.dnrpipe;
9515 }
9516 else if (pd->dir == dndir && pd->act.dnpipe) {
9517 dnflow->rule.info = pd->act.dnpipe;
9518 }
9519 else {
9520 return (false);
9521 }
9522
9523 dnflow->rule.info |= IPFW_IS_DUMMYNET;
9524 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9525 dnflow->rule.info |= IPFW_IS_PIPE;
9526
9527 dnflow->f_id.proto = pd->proto;
9528 dnflow->f_id.extra = dnflow->rule.info;
9529 switch (pd->naf) {
9530 case AF_INET:
9531 dnflow->f_id.addr_type = 4;
9532 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9533 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9534 break;
9535 case AF_INET6:
9536 dnflow->flags |= IPFW_ARGS_IP6;
9537 dnflow->f_id.addr_type = 6;
9538 dnflow->f_id.src_ip6 = pd->src->v6;
9539 dnflow->f_id.dst_ip6 = pd->dst->v6;
9540 break;
9541 }
9542
9543 return (true);
9544 }
9545
9546 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9547 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9548 struct inpcb *inp)
9549 {
9550 struct pfi_kkif *kif;
9551 struct mbuf *m = *m0;
9552
9553 M_ASSERTPKTHDR(m);
9554 MPASS(ifp->if_vnet == curvnet);
9555 NET_EPOCH_ASSERT();
9556
9557 if (!V_pf_status.running)
9558 return (PF_PASS);
9559
9560 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9561
9562 if (kif == NULL) {
9563 DPFPRINTF(PF_DEBUG_URGENT,
9564 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
9565 return (PF_DROP);
9566 }
9567 if (kif->pfik_flags & PFI_IFLAG_SKIP)
9568 return (PF_PASS);
9569
9570 if (m->m_flags & M_SKIP_FIREWALL)
9571 return (PF_PASS);
9572
9573 if (__predict_false(! M_WRITABLE(*m0))) {
9574 m = *m0 = m_unshare(*m0, M_NOWAIT);
9575 if (*m0 == NULL)
9576 return (PF_DROP);
9577 }
9578
9579 /* Stateless! */
9580 return (pf_test_eth_rule(dir, kif, m0));
9581 }
9582
9583 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9584 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9585 {
9586 struct m_tag *mtag;
9587
9588 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9589
9590 /* dummynet adds this tag, but pf does not need it,
9591 * and keeping it creates unexpected behavior,
9592 * e.g. in case of divert(4) usage right after dummynet. */
9593 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9594 if (mtag != NULL)
9595 m_tag_delete(m, mtag);
9596 }
9597
9598 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9599 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9600 struct pf_krule *r, struct mbuf **m0)
9601 {
9602 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9603 }
9604
9605 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,struct sockaddr * sa,struct mbuf ** m0)9606 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9607 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa,
9608 struct mbuf **m0)
9609 {
9610 struct ip_fw_args dnflow;
9611
9612 NET_EPOCH_ASSERT();
9613
9614 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9615 return (0);
9616
9617 if (ip_dn_io_ptr == NULL) {
9618 m_freem(*m0);
9619 *m0 = NULL;
9620 return (ENOMEM);
9621 }
9622
9623 if (pd->pf_mtag == NULL &&
9624 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9625 m_freem(*m0);
9626 *m0 = NULL;
9627 return (ENOMEM);
9628 }
9629
9630 if (ifp != NULL) {
9631 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9632
9633 pd->pf_mtag->if_index = ifp->if_index;
9634 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9635
9636 MPASS(sa != NULL);
9637
9638 switch (pd->naf) {
9639 case AF_INET:
9640 memcpy(&pd->pf_mtag->dst, sa,
9641 sizeof(struct sockaddr_in));
9642 break;
9643 case AF_INET6:
9644 memcpy(&pd->pf_mtag->dst, sa,
9645 sizeof(struct sockaddr_in6));
9646 break;
9647 }
9648 }
9649
9650 if (s != NULL && s->nat_rule != NULL &&
9651 s->nat_rule->action == PF_RDR &&
9652 (
9653 #ifdef INET
9654 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9655 #endif
9656 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9657 /*
9658 * If we're redirecting to loopback mark this packet
9659 * as being local. Otherwise it might get dropped
9660 * if dummynet re-injects.
9661 */
9662 (*m0)->m_pkthdr.rcvif = V_loif;
9663 }
9664
9665 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9666 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9667 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9668 ip_dn_io_ptr(m0, &dnflow);
9669 if (*m0 != NULL) {
9670 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9671 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9672 }
9673 }
9674
9675 return (0);
9676 }
9677
9678 #ifdef INET6
9679 static int
pf_walk_option6(struct mbuf * m,int off,int end,uint32_t * jumbolen,u_short * reason)9680 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen,
9681 u_short *reason)
9682 {
9683 struct ip6_opt opt;
9684 struct ip6_opt_jumbo jumbo;
9685 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
9686
9687 while (off < end) {
9688 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type),
9689 NULL, reason, AF_INET6)) {
9690 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
9691 return (PF_DROP);
9692 }
9693 if (opt.ip6o_type == IP6OPT_PAD1) {
9694 off++;
9695 continue;
9696 }
9697 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason,
9698 AF_INET6)) {
9699 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
9700 return (PF_DROP);
9701 }
9702 if (off + sizeof(opt) + opt.ip6o_len > end) {
9703 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
9704 REASON_SET(reason, PFRES_IPOPTIONS);
9705 return (PF_DROP);
9706 }
9707 switch (opt.ip6o_type) {
9708 case IP6OPT_JUMBO:
9709 if (*jumbolen != 0) {
9710 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
9711 REASON_SET(reason, PFRES_IPOPTIONS);
9712 return (PF_DROP);
9713 }
9714 if (ntohs(h->ip6_plen) != 0) {
9715 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
9716 REASON_SET(reason, PFRES_IPOPTIONS);
9717 return (PF_DROP);
9718 }
9719 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL,
9720 reason, AF_INET6)) {
9721 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
9722 return (PF_DROP);
9723 }
9724 memcpy(jumbolen, jumbo.ip6oj_jumbo_len,
9725 sizeof(*jumbolen));
9726 *jumbolen = ntohl(*jumbolen);
9727 if (*jumbolen < IPV6_MAXPACKET) {
9728 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
9729 REASON_SET(reason, PFRES_IPOPTIONS);
9730 return (PF_DROP);
9731 }
9732 break;
9733 default:
9734 break;
9735 }
9736 off += sizeof(opt) + opt.ip6o_len;
9737 }
9738
9739 return (PF_PASS);
9740 }
9741
9742 int
pf_walk_header6(struct mbuf * m,struct ip6_hdr * h,int * off,int * extoff,int * fragoff,uint8_t * nxt,uint32_t * jumbolen,u_short * reason)9743 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff,
9744 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason)
9745 {
9746 struct ip6_frag frag;
9747 struct ip6_ext ext;
9748 struct ip6_rthdr rthdr;
9749 int rthdr_cnt = 0;
9750
9751 *off += sizeof(struct ip6_hdr);
9752 *extoff = *fragoff = 0;
9753 *nxt = h->ip6_nxt;
9754 *jumbolen = 0;
9755 for (;;) {
9756 switch (*nxt) {
9757 case IPPROTO_FRAGMENT:
9758 if (*fragoff != 0) {
9759 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
9760 REASON_SET(reason, PFRES_FRAG);
9761 return (PF_DROP);
9762 }
9763 /* jumbo payload packets cannot be fragmented */
9764 if (*jumbolen != 0) {
9765 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
9766 REASON_SET(reason, PFRES_FRAG);
9767 return (PF_DROP);
9768 }
9769 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL,
9770 reason, AF_INET6)) {
9771 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
9772 return (PF_DROP);
9773 }
9774 *fragoff = *off;
9775 /* stop walking over non initial fragments */
9776 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0)
9777 return (PF_PASS);
9778 *off += sizeof(frag);
9779 *nxt = frag.ip6f_nxt;
9780 break;
9781 case IPPROTO_ROUTING:
9782 if (rthdr_cnt++) {
9783 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
9784 REASON_SET(reason, PFRES_IPOPTIONS);
9785 return (PF_DROP);
9786 }
9787 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL,
9788 reason, AF_INET6)) {
9789 /* fragments may be short */
9790 if (*fragoff != 0) {
9791 *off = *fragoff;
9792 *nxt = IPPROTO_FRAGMENT;
9793 return (PF_PASS);
9794 }
9795 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
9796 return (PF_DROP);
9797 }
9798 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
9799 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
9800 REASON_SET(reason, PFRES_IPOPTIONS);
9801 return (PF_DROP);
9802 }
9803 /* FALLTHROUGH */
9804 case IPPROTO_AH:
9805 case IPPROTO_HOPOPTS:
9806 case IPPROTO_DSTOPTS:
9807 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL,
9808 reason, AF_INET6)) {
9809 /* fragments may be short */
9810 if (*fragoff != 0) {
9811 *off = *fragoff;
9812 *nxt = IPPROTO_FRAGMENT;
9813 return (PF_PASS);
9814 }
9815 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
9816 return (PF_DROP);
9817 }
9818 /* reassembly needs the ext header before the frag */
9819 if (*fragoff == 0)
9820 *extoff = *off;
9821 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) {
9822 if (pf_walk_option6(m, *off + sizeof(ext),
9823 *off + (ext.ip6e_len + 1) * 8, jumbolen,
9824 reason) != PF_PASS)
9825 return (PF_DROP);
9826 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) {
9827 DPFPRINTF(PF_DEBUG_MISC,
9828 ("IPv6 missing jumbo"));
9829 REASON_SET(reason, PFRES_IPOPTIONS);
9830 return (PF_DROP);
9831 }
9832 }
9833 if (*nxt == IPPROTO_AH)
9834 *off += (ext.ip6e_len + 2) * 4;
9835 else
9836 *off += (ext.ip6e_len + 1) * 8;
9837 *nxt = ext.ip6e_nxt;
9838 break;
9839 case IPPROTO_TCP:
9840 case IPPROTO_UDP:
9841 case IPPROTO_SCTP:
9842 case IPPROTO_ICMPV6:
9843 /* fragments may be short, ignore inner header then */
9844 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off +
9845 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) :
9846 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) :
9847 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) :
9848 sizeof(struct icmp6_hdr))) {
9849 *off = *fragoff;
9850 *nxt = IPPROTO_FRAGMENT;
9851 }
9852 /* FALLTHROUGH */
9853 default:
9854 return (PF_PASS);
9855 }
9856 }
9857 }
9858 #endif
9859
9860 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)9861 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
9862 {
9863 memset(pd, 0, sizeof(*pd));
9864 pd->pf_mtag = pf_find_mtag(m);
9865 pd->m = m;
9866 }
9867
9868 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)9869 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
9870 u_short *action, u_short *reason, struct pfi_kkif *kif,
9871 struct pf_rule_actions *default_actions)
9872 {
9873 pd->dir = dir;
9874 pd->kif = kif;
9875 pd->m = *m0;
9876 pd->sidx = (dir == PF_IN) ? 0 : 1;
9877 pd->didx = (dir == PF_IN) ? 1 : 0;
9878 pd->af = pd->naf = af;
9879
9880 TAILQ_INIT(&pd->sctp_multihome_jobs);
9881 if (default_actions != NULL)
9882 memcpy(&pd->act, default_actions, sizeof(pd->act));
9883
9884 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
9885 pd->act.dnpipe = pd->pf_mtag->dnpipe;
9886 pd->act.flags = pd->pf_mtag->dnflags;
9887 }
9888
9889 switch (af) {
9890 #ifdef INET
9891 case AF_INET: {
9892 struct ip *h;
9893
9894 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
9895 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
9896 DPFPRINTF(PF_DEBUG_URGENT,
9897 ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
9898 *action = PF_DROP;
9899 REASON_SET(reason, PFRES_SHORT);
9900 return (-1);
9901 }
9902
9903 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) {
9904 /* We do IP header normalization and packet reassembly here */
9905 *action = PF_DROP;
9906 return (-1);
9907 }
9908 pd->m = *m0;
9909
9910 h = mtod(pd->m, struct ip *);
9911 pd->off = h->ip_hl << 2;
9912 if (pd->off < (int)sizeof(*h)) {
9913 *action = PF_DROP;
9914 REASON_SET(reason, PFRES_SHORT);
9915 return (-1);
9916 }
9917 pd->src = (struct pf_addr *)&h->ip_src;
9918 pd->dst = (struct pf_addr *)&h->ip_dst;
9919 pd->ip_sum = &h->ip_sum;
9920 pd->virtual_proto = pd->proto = h->ip_p;
9921 pd->tos = h->ip_tos;
9922 pd->ttl = h->ip_ttl;
9923 pd->tot_len = ntohs(h->ip_len);
9924 pd->act.rtableid = -1;
9925
9926 if (h->ip_hl > 5) /* has options */
9927 pd->badopts++;
9928
9929 if (h->ip_off & htons(IP_MF | IP_OFFMASK))
9930 pd->virtual_proto = PF_VPROTO_FRAGMENT;
9931
9932 break;
9933 }
9934 #endif
9935 #ifdef INET6
9936 case AF_INET6: {
9937 struct ip6_hdr *h;
9938 int fragoff;
9939 uint32_t jumbolen;
9940 uint8_t nxt;
9941
9942 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
9943 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
9944 DPFPRINTF(PF_DEBUG_URGENT,
9945 ("pf_test6: m_len < sizeof(struct ip6_hdr)"
9946 ", pullup failed\n"));
9947 *action = PF_DROP;
9948 REASON_SET(reason, PFRES_SHORT);
9949 return (-1);
9950 }
9951
9952 h = mtod(pd->m, struct ip6_hdr *);
9953 pd->off = 0;
9954 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
9955 &jumbolen, reason) != PF_PASS) {
9956 *action = PF_DROP;
9957 return (-1);
9958 }
9959
9960 h = mtod(pd->m, struct ip6_hdr *);
9961 pd->src = (struct pf_addr *)&h->ip6_src;
9962 pd->dst = (struct pf_addr *)&h->ip6_dst;
9963 pd->ip_sum = NULL;
9964 pd->tos = IPV6_DSCP(h);
9965 pd->ttl = h->ip6_hlim;
9966 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
9967 pd->virtual_proto = pd->proto = h->ip6_nxt;
9968 pd->act.rtableid = -1;
9969
9970 if (fragoff != 0)
9971 pd->virtual_proto = PF_VPROTO_FRAGMENT;
9972
9973 /*
9974 * we do not support jumbogram. if we keep going, zero ip6_plen
9975 * will do something bad, so drop the packet for now.
9976 */
9977 if (htons(h->ip6_plen) == 0) {
9978 *action = PF_DROP;
9979 return (-1);
9980 }
9981
9982 /* We do IP header normalization and packet reassembly here */
9983 if (pf_normalize_ip6(m0, fragoff, reason, pd) !=
9984 PF_PASS) {
9985 *action = PF_DROP;
9986 return (-1);
9987 }
9988 pd->m = *m0;
9989 if (pd->m == NULL) {
9990 /* packet sits in reassembly queue, no error */
9991 *action = PF_PASS;
9992 return (-1);
9993 }
9994
9995 /* Update pointers into the packet. */
9996 h = mtod(pd->m, struct ip6_hdr *);
9997 pd->src = (struct pf_addr *)&h->ip6_src;
9998 pd->dst = (struct pf_addr *)&h->ip6_dst;
9999
10000 /*
10001 * Reassembly may have changed the next protocol from fragment
10002 * to something else, so update.
10003 */
10004 pd->virtual_proto = pd->proto = h->ip6_nxt;
10005 pd->off = 0;
10006
10007 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
10008 &jumbolen, reason) != PF_PASS) {
10009 *action = PF_DROP;
10010 return (-1);
10011 }
10012
10013 if (fragoff != 0)
10014 pd->virtual_proto = PF_VPROTO_FRAGMENT;
10015
10016 break;
10017 }
10018 #endif
10019 default:
10020 panic("pf_setup_pdesc called with illegal af %u", af);
10021 }
10022
10023 switch (pd->virtual_proto) {
10024 case IPPROTO_TCP: {
10025 struct tcphdr *th = &pd->hdr.tcp;
10026
10027 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10028 reason, af)) {
10029 *action = PF_DROP;
10030 REASON_SET(reason, PFRES_SHORT);
10031 return (-1);
10032 }
10033 pd->hdrlen = sizeof(*th);
10034 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10035 pd->sport = &th->th_sport;
10036 pd->dport = &th->th_dport;
10037 break;
10038 }
10039 case IPPROTO_UDP: {
10040 struct udphdr *uh = &pd->hdr.udp;
10041
10042 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10043 reason, af)) {
10044 *action = PF_DROP;
10045 REASON_SET(reason, PFRES_SHORT);
10046 return (-1);
10047 }
10048 pd->hdrlen = sizeof(*uh);
10049 if (uh->uh_dport == 0 ||
10050 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10051 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10052 *action = PF_DROP;
10053 REASON_SET(reason, PFRES_SHORT);
10054 return (-1);
10055 }
10056 pd->sport = &uh->uh_sport;
10057 pd->dport = &uh->uh_dport;
10058 break;
10059 }
10060 case IPPROTO_SCTP: {
10061 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10062 action, reason, af)) {
10063 *action = PF_DROP;
10064 REASON_SET(reason, PFRES_SHORT);
10065 return (-1);
10066 }
10067 pd->hdrlen = sizeof(pd->hdr.sctp);
10068 pd->p_len = pd->tot_len - pd->off;
10069
10070 pd->sport = &pd->hdr.sctp.src_port;
10071 pd->dport = &pd->hdr.sctp.dest_port;
10072 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10073 *action = PF_DROP;
10074 REASON_SET(reason, PFRES_SHORT);
10075 return (-1);
10076 }
10077 if (pf_scan_sctp(pd) != PF_PASS) {
10078 *action = PF_DROP;
10079 REASON_SET(reason, PFRES_SHORT);
10080 return (-1);
10081 }
10082 break;
10083 }
10084 case IPPROTO_ICMP: {
10085 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10086 action, reason, af)) {
10087 *action = PF_DROP;
10088 REASON_SET(reason, PFRES_SHORT);
10089 return (-1);
10090 }
10091 pd->hdrlen = ICMP_MINLEN;
10092 break;
10093 }
10094 #ifdef INET6
10095 case IPPROTO_ICMPV6: {
10096 size_t icmp_hlen = sizeof(struct icmp6_hdr);
10097
10098 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10099 action, reason, af)) {
10100 *action = PF_DROP;
10101 REASON_SET(reason, PFRES_SHORT);
10102 return (-1);
10103 }
10104 /* ICMP headers we look further into to match state */
10105 switch (pd->hdr.icmp6.icmp6_type) {
10106 case MLD_LISTENER_QUERY:
10107 case MLD_LISTENER_REPORT:
10108 icmp_hlen = sizeof(struct mld_hdr);
10109 break;
10110 case ND_NEIGHBOR_SOLICIT:
10111 case ND_NEIGHBOR_ADVERT:
10112 icmp_hlen = sizeof(struct nd_neighbor_solicit);
10113 break;
10114 }
10115 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10116 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10117 action, reason, af)) {
10118 *action = PF_DROP;
10119 REASON_SET(reason, PFRES_SHORT);
10120 return (-1);
10121 }
10122 pd->hdrlen = icmp_hlen;
10123 break;
10124 }
10125 #endif
10126 }
10127 return (0);
10128 }
10129
10130 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10131 pf_counters_inc(int action, struct pf_pdesc *pd,
10132 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10133 {
10134 struct pf_krule *tr;
10135 int dir = pd->dir;
10136 int dirndx;
10137
10138 pf_counter_u64_critical_enter();
10139 pf_counter_u64_add_protected(
10140 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10141 pd->tot_len);
10142 pf_counter_u64_add_protected(
10143 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10144 1);
10145
10146 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10147 dirndx = (dir == PF_OUT);
10148 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10149 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10150 pf_update_timestamp(r);
10151
10152 if (a != NULL) {
10153 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10154 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10155 }
10156 if (s != NULL) {
10157 struct pf_krule_item *ri;
10158
10159 if (s->nat_rule != NULL) {
10160 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10161 1);
10162 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10163 pd->tot_len);
10164 }
10165 if (s->src_node != NULL) {
10166 counter_u64_add(s->src_node->packets[dirndx],
10167 1);
10168 counter_u64_add(s->src_node->bytes[dirndx],
10169 pd->tot_len);
10170 }
10171 if (s->nat_src_node != NULL) {
10172 counter_u64_add(s->nat_src_node->packets[dirndx],
10173 1);
10174 counter_u64_add(s->nat_src_node->bytes[dirndx],
10175 pd->tot_len);
10176 }
10177 dirndx = (dir == s->direction) ? 0 : 1;
10178 s->packets[dirndx]++;
10179 s->bytes[dirndx] += pd->tot_len;
10180
10181 SLIST_FOREACH(ri, &s->match_rules, entry) {
10182 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10183 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10184 }
10185 }
10186
10187 tr = r;
10188 if (s != NULL && s->nat_rule != NULL &&
10189 r == &V_pf_default_rule)
10190 tr = s->nat_rule;
10191
10192 if (tr->src.addr.type == PF_ADDR_TABLE)
10193 pfr_update_stats(tr->src.addr.p.tbl,
10194 (s == NULL) ? pd->src :
10195 &s->key[(s->direction == PF_IN)]->
10196 addr[(s->direction == PF_OUT)],
10197 pd->af, pd->tot_len, dir == PF_OUT,
10198 r->action == PF_PASS, tr->src.neg);
10199 if (tr->dst.addr.type == PF_ADDR_TABLE)
10200 pfr_update_stats(tr->dst.addr.p.tbl,
10201 (s == NULL) ? pd->dst :
10202 &s->key[(s->direction == PF_IN)]->
10203 addr[(s->direction == PF_IN)],
10204 pd->af, pd->tot_len, dir == PF_OUT,
10205 r->action == PF_PASS, tr->dst.neg);
10206 }
10207 pf_counter_u64_critical_exit();
10208 }
10209
10210 #if defined(INET) || defined(INET6)
10211 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10212 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10213 struct inpcb *inp, struct pf_rule_actions *default_actions)
10214 {
10215 struct pfi_kkif *kif;
10216 u_short action, reason = 0;
10217 struct m_tag *mtag;
10218 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
10219 struct pf_kstate *s = NULL;
10220 struct pf_kruleset *ruleset = NULL;
10221 struct pf_pdesc pd;
10222 int use_2nd_queue = 0;
10223 uint16_t tag;
10224
10225 PF_RULES_RLOCK_TRACKER;
10226 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10227 M_ASSERTPKTHDR(*m0);
10228
10229 if (!V_pf_status.running)
10230 return (PF_PASS);
10231
10232 PF_RULES_RLOCK();
10233
10234 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10235
10236 if (__predict_false(kif == NULL)) {
10237 DPFPRINTF(PF_DEBUG_URGENT,
10238 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
10239 PF_RULES_RUNLOCK();
10240 return (PF_DROP);
10241 }
10242 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10243 PF_RULES_RUNLOCK();
10244 return (PF_PASS);
10245 }
10246
10247 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10248 PF_RULES_RUNLOCK();
10249 return (PF_PASS);
10250 }
10251
10252 #ifdef INET6
10253 /*
10254 * If we end up changing IP addresses (e.g. binat) the stack may get
10255 * confused and fail to send the icmp6 packet too big error. Just send
10256 * it here, before we do any NAT.
10257 */
10258 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10259 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10260 PF_RULES_RUNLOCK();
10261 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10262 *m0 = NULL;
10263 return (PF_DROP);
10264 }
10265 #endif
10266
10267 if (__predict_false(! M_WRITABLE(*m0))) {
10268 *m0 = m_unshare(*m0, M_NOWAIT);
10269 if (*m0 == NULL) {
10270 PF_RULES_RUNLOCK();
10271 return (PF_DROP);
10272 }
10273 }
10274
10275 pf_init_pdesc(&pd, *m0);
10276
10277 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10278 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10279
10280 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10281 pd.pf_mtag->if_idxgen);
10282 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10283 PF_RULES_RUNLOCK();
10284 m_freem(*m0);
10285 *m0 = NULL;
10286 return (PF_PASS);
10287 }
10288 PF_RULES_RUNLOCK();
10289 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10290 *m0 = NULL;
10291 return (PF_PASS);
10292 }
10293
10294 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10295 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10296 /* Dummynet re-injects packets after they've
10297 * completed their delay. We've already
10298 * processed them, so pass unconditionally. */
10299
10300 /* But only once. We may see the packet multiple times (e.g.
10301 * PFIL_IN/PFIL_OUT). */
10302 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10303 PF_RULES_RUNLOCK();
10304
10305 return (PF_PASS);
10306 }
10307
10308 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10309 kif, default_actions) == -1) {
10310 if (action != PF_PASS)
10311 pd.act.log |= PF_LOG_FORCE;
10312 goto done;
10313 }
10314
10315 if (__predict_false(ip_divert_ptr != NULL) &&
10316 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10317 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10318 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10319 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10320 if (pd.pf_mtag == NULL &&
10321 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10322 action = PF_DROP;
10323 goto done;
10324 }
10325 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10326 }
10327 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10328 pd.m->m_flags |= M_FASTFWD_OURS;
10329 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10330 }
10331 m_tag_delete(pd.m, mtag);
10332
10333 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10334 if (mtag != NULL)
10335 m_tag_delete(pd.m, mtag);
10336 }
10337
10338 switch (pd.virtual_proto) {
10339 case PF_VPROTO_FRAGMENT:
10340 /*
10341 * handle fragments that aren't reassembled by
10342 * normalization
10343 */
10344 if (kif == NULL || r == NULL) /* pflog */
10345 action = PF_DROP;
10346 else
10347 action = pf_test_rule(&r, &s, &pd, &a,
10348 &ruleset, inp);
10349 if (action != PF_PASS)
10350 REASON_SET(&reason, PFRES_FRAG);
10351 break;
10352
10353 case IPPROTO_TCP: {
10354 /* Respond to SYN with a syncookie. */
10355 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10356 pd.dir == PF_IN && pf_synflood_check(&pd)) {
10357 pf_syncookie_send(&pd);
10358 action = PF_DROP;
10359 break;
10360 }
10361
10362 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10363 use_2nd_queue = 1;
10364 action = pf_normalize_tcp(&pd);
10365 if (action == PF_DROP)
10366 goto done;
10367 action = pf_test_state_tcp(&s, &pd, &reason);
10368 if (action == PF_PASS || action == PF_AFRT) {
10369 if (V_pfsync_update_state_ptr != NULL)
10370 V_pfsync_update_state_ptr(s);
10371 r = s->rule;
10372 a = s->anchor;
10373 } else if (s == NULL) {
10374 /* Validate remote SYN|ACK, re-create original SYN if
10375 * valid. */
10376 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10377 TH_ACK && pf_syncookie_validate(&pd) &&
10378 pd.dir == PF_IN) {
10379 struct mbuf *msyn;
10380
10381 msyn = pf_syncookie_recreate_syn(&pd);
10382 if (msyn == NULL) {
10383 action = PF_DROP;
10384 break;
10385 }
10386
10387 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10388 &pd.act);
10389 m_freem(msyn);
10390 if (action != PF_PASS)
10391 break;
10392
10393 action = pf_test_state_tcp(&s, &pd, &reason);
10394 if (action != PF_PASS || s == NULL) {
10395 action = PF_DROP;
10396 break;
10397 }
10398
10399 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10400 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10401 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10402 action = pf_synproxy(&pd, &s, &reason);
10403 break;
10404 } else {
10405 action = pf_test_rule(&r, &s, &pd,
10406 &a, &ruleset, inp);
10407 }
10408 }
10409 break;
10410 }
10411
10412 case IPPROTO_UDP: {
10413 action = pf_test_state_udp(&s, &pd);
10414 if (action == PF_PASS || action == PF_AFRT) {
10415 if (V_pfsync_update_state_ptr != NULL)
10416 V_pfsync_update_state_ptr(s);
10417 r = s->rule;
10418 a = s->anchor;
10419 } else if (s == NULL)
10420 action = pf_test_rule(&r, &s, &pd,
10421 &a, &ruleset, inp);
10422 break;
10423 }
10424
10425 case IPPROTO_SCTP: {
10426 action = pf_normalize_sctp(&pd);
10427 if (action == PF_DROP)
10428 goto done;
10429 action = pf_test_state_sctp(&s, &pd, &reason);
10430 if (action == PF_PASS || action == PF_AFRT) {
10431 if (V_pfsync_update_state_ptr != NULL)
10432 V_pfsync_update_state_ptr(s);
10433 r = s->rule;
10434 a = s->anchor;
10435 } else if (s == NULL) {
10436 action = pf_test_rule(&r, &s,
10437 &pd, &a, &ruleset, inp);
10438 }
10439 break;
10440 }
10441
10442 case IPPROTO_ICMP:
10443 case IPPROTO_ICMPV6: {
10444 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10445 action = PF_DROP;
10446 REASON_SET(&reason, PFRES_NORM);
10447 DPFPRINTF(PF_DEBUG_MISC,
10448 ("dropping IPv6 packet with ICMPv4 payload"));
10449 goto done;
10450 }
10451 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10452 action = PF_DROP;
10453 REASON_SET(&reason, PFRES_NORM);
10454 DPFPRINTF(PF_DEBUG_MISC,
10455 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
10456 goto done;
10457 }
10458 action = pf_test_state_icmp(&s, &pd, &reason);
10459 if (action == PF_PASS || action == PF_AFRT) {
10460 if (V_pfsync_update_state_ptr != NULL)
10461 V_pfsync_update_state_ptr(s);
10462 r = s->rule;
10463 a = s->anchor;
10464 } else if (s == NULL)
10465 action = pf_test_rule(&r, &s, &pd,
10466 &a, &ruleset, inp);
10467 break;
10468 }
10469
10470 default:
10471 action = pf_test_state_other(&s, &pd);
10472 if (action == PF_PASS || action == PF_AFRT) {
10473 if (V_pfsync_update_state_ptr != NULL)
10474 V_pfsync_update_state_ptr(s);
10475 r = s->rule;
10476 a = s->anchor;
10477 } else if (s == NULL)
10478 action = pf_test_rule(&r, &s, &pd,
10479 &a, &ruleset, inp);
10480 break;
10481 }
10482
10483 done:
10484 PF_RULES_RUNLOCK();
10485
10486 if (pd.m == NULL)
10487 goto eat_pkt;
10488
10489 if (action == PF_PASS && pd.badopts &&
10490 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
10491 action = PF_DROP;
10492 REASON_SET(&reason, PFRES_IPOPTIONS);
10493 pd.act.log = PF_LOG_FORCE;
10494 DPFPRINTF(PF_DEBUG_MISC,
10495 ("pf: dropping packet with dangerous headers\n"));
10496 }
10497
10498 if (s) {
10499 uint8_t log = pd.act.log;
10500 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10501 pd.act.log |= log;
10502 tag = s->tag;
10503 } else {
10504 tag = r->tag;
10505 }
10506
10507 if (tag > 0 && pf_tag_packet(&pd, tag)) {
10508 action = PF_DROP;
10509 REASON_SET(&reason, PFRES_MEMORY);
10510 }
10511
10512 pf_scrub(&pd);
10513 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
10514 pf_normalize_mss(&pd);
10515
10516 if (pd.act.rtableid >= 0)
10517 M_SETFIB(pd.m, pd.act.rtableid);
10518
10519 if (pd.act.flags & PFSTATE_SETPRIO) {
10520 if (pd.tos & IPTOS_LOWDELAY)
10521 use_2nd_queue = 1;
10522 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
10523 action = PF_DROP;
10524 REASON_SET(&reason, PFRES_MEMORY);
10525 pd.act.log = PF_LOG_FORCE;
10526 DPFPRINTF(PF_DEBUG_MISC,
10527 ("pf: failed to allocate 802.1q mtag\n"));
10528 }
10529 }
10530
10531 #ifdef ALTQ
10532 if (action == PF_PASS && pd.act.qid) {
10533 if (pd.pf_mtag == NULL &&
10534 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10535 action = PF_DROP;
10536 REASON_SET(&reason, PFRES_MEMORY);
10537 } else {
10538 if (s != NULL)
10539 pd.pf_mtag->qid_hash = pf_state_hash(s);
10540 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
10541 pd.pf_mtag->qid = pd.act.pqid;
10542 else
10543 pd.pf_mtag->qid = pd.act.qid;
10544 /* Add hints for ecn. */
10545 pd.pf_mtag->hdr = mtod(pd.m, void *);
10546 }
10547 }
10548 #endif /* ALTQ */
10549
10550 /*
10551 * connections redirected to loopback should not match sockets
10552 * bound specifically to loopback due to security implications,
10553 * see tcp_input() and in_pcblookup_listen().
10554 */
10555 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
10556 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
10557 (s->nat_rule->action == PF_RDR ||
10558 s->nat_rule->action == PF_BINAT) &&
10559 pf_is_loopback(af, pd.dst))
10560 pd.m->m_flags |= M_SKIP_FIREWALL;
10561
10562 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
10563 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
10564 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
10565 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
10566 if (mtag != NULL) {
10567 ((struct pf_divert_mtag *)(mtag+1))->port =
10568 ntohs(r->divert.port);
10569 ((struct pf_divert_mtag *)(mtag+1))->idir =
10570 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
10571 PF_DIVERT_MTAG_DIR_OUT;
10572
10573 if (s)
10574 PF_STATE_UNLOCK(s);
10575
10576 m_tag_prepend(pd.m, mtag);
10577 if (pd.m->m_flags & M_FASTFWD_OURS) {
10578 if (pd.pf_mtag == NULL &&
10579 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10580 action = PF_DROP;
10581 REASON_SET(&reason, PFRES_MEMORY);
10582 pd.act.log = PF_LOG_FORCE;
10583 DPFPRINTF(PF_DEBUG_MISC,
10584 ("pf: failed to allocate tag\n"));
10585 } else {
10586 pd.pf_mtag->flags |=
10587 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10588 pd.m->m_flags &= ~M_FASTFWD_OURS;
10589 }
10590 }
10591 ip_divert_ptr(*m0, dir == PF_IN);
10592 *m0 = NULL;
10593
10594 return (action);
10595 } else {
10596 /* XXX: ipfw has the same behaviour! */
10597 action = PF_DROP;
10598 REASON_SET(&reason, PFRES_MEMORY);
10599 pd.act.log = PF_LOG_FORCE;
10600 DPFPRINTF(PF_DEBUG_MISC,
10601 ("pf: failed to allocate divert tag\n"));
10602 }
10603 }
10604 /* XXX: Anybody working on it?! */
10605 if (af == AF_INET6 && r->divert.port)
10606 printf("pf: divert(9) is not supported for IPv6\n");
10607
10608 /* this flag will need revising if the pkt is forwarded */
10609 if (pd.pf_mtag)
10610 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
10611
10612 if (pd.act.log) {
10613 struct pf_krule *lr;
10614 struct pf_krule_item *ri;
10615
10616 if (s != NULL && s->nat_rule != NULL &&
10617 s->nat_rule->log & PF_LOG_ALL)
10618 lr = s->nat_rule;
10619 else
10620 lr = r;
10621
10622 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
10623 PFLOG_PACKET(action, reason, lr, a,
10624 ruleset, &pd, (s == NULL));
10625 if (s) {
10626 SLIST_FOREACH(ri, &s->match_rules, entry)
10627 if (ri->r->log & PF_LOG_ALL)
10628 PFLOG_PACKET(action,
10629 reason, ri->r, a, ruleset, &pd, 0);
10630 }
10631 }
10632
10633 pf_counters_inc(action, &pd, s, r, a);
10634
10635 switch (action) {
10636 case PF_SYNPROXY_DROP:
10637 m_freem(*m0);
10638 case PF_DEFER:
10639 *m0 = NULL;
10640 action = PF_PASS;
10641 break;
10642 case PF_DROP:
10643 m_freem(*m0);
10644 *m0 = NULL;
10645 break;
10646 case PF_AFRT:
10647 if (pf_translate_af(&pd)) {
10648 if (!pd.m)
10649 *m0 = NULL;
10650 action = PF_DROP;
10651 break;
10652 }
10653 *m0 = pd.m; /* pf_translate_af may change pd.m */
10654 #ifdef INET
10655 if (pd.naf == AF_INET)
10656 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10657 #endif
10658 #ifdef INET6
10659 if (pd.naf == AF_INET6)
10660 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10661 #endif
10662 *m0 = NULL;
10663 action = PF_PASS;
10664 goto out;
10665 break;
10666 default:
10667 if (pd.act.rt) {
10668 switch (af) {
10669 #ifdef INET
10670 case AF_INET:
10671 /* pf_route() returns unlocked. */
10672 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10673 break;
10674 #endif
10675 #ifdef INET6
10676 case AF_INET6:
10677 /* pf_route6() returns unlocked. */
10678 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10679 break;
10680 #endif
10681 }
10682 goto out;
10683 }
10684 if (pf_dummynet(&pd, s, r, m0) != 0) {
10685 action = PF_DROP;
10686 REASON_SET(&reason, PFRES_MEMORY);
10687 }
10688 break;
10689 }
10690
10691 eat_pkt:
10692 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
10693
10694 if (s && action != PF_DROP) {
10695 if (!s->if_index_in && dir == PF_IN)
10696 s->if_index_in = ifp->if_index;
10697 else if (!s->if_index_out && dir == PF_OUT)
10698 s->if_index_out = ifp->if_index;
10699 }
10700
10701 if (s)
10702 PF_STATE_UNLOCK(s);
10703
10704 out:
10705 #ifdef INET6
10706 /* If reassembled packet passed, create new fragments. */
10707 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
10708 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
10709 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
10710 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
10711 #endif
10712
10713 pf_sctp_multihome_delayed(&pd, kif, s, action);
10714
10715 return (action);
10716 }
10717 #endif /* INET || INET6 */
10718