1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 138 "struct pf_krule *", "struct mbuf *", "int"); 139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 140 "struct pf_sctp_source *"); 141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 142 "struct pf_kstate *", "struct pf_sctp_source *"); 143 144 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 145 "struct mbuf *"); 146 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 147 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 148 "int", "struct pf_keth_rule *", "char *"); 149 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 150 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 151 "int", "struct pf_keth_rule *"); 152 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 153 154 /* 155 * Global variables 156 */ 157 158 /* state tables */ 159 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 160 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 161 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 162 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 163 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 164 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 165 VNET_DEFINE(struct pf_kstatus, pf_status); 166 167 VNET_DEFINE(u_int32_t, ticket_altqs_active); 168 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 169 VNET_DEFINE(int, altqs_inactive_open); 170 VNET_DEFINE(u_int32_t, ticket_pabuf); 171 172 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 173 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 174 VNET_DEFINE(u_char, pf_tcp_secret[16]); 175 #define V_pf_tcp_secret VNET(pf_tcp_secret) 176 VNET_DEFINE(int, pf_tcp_secret_init); 177 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 178 VNET_DEFINE(int, pf_tcp_iss_off); 179 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 180 VNET_DECLARE(int, pf_vnet_active); 181 #define V_pf_vnet_active VNET(pf_vnet_active) 182 183 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 184 #define V_pf_purge_idx VNET(pf_purge_idx) 185 186 #ifdef PF_WANT_32_TO_64_COUNTER 187 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 188 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 189 190 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 191 VNET_DEFINE(size_t, pf_allrulecount); 192 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 193 #endif 194 195 struct pf_sctp_endpoint; 196 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 197 struct pf_sctp_source { 198 sa_family_t af; 199 struct pf_addr addr; 200 TAILQ_ENTRY(pf_sctp_source) entry; 201 }; 202 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 203 struct pf_sctp_endpoint 204 { 205 uint32_t v_tag; 206 struct pf_sctp_sources sources; 207 RB_ENTRY(pf_sctp_endpoint) entry; 208 }; 209 static int 210 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 211 { 212 return (a->v_tag - b->v_tag); 213 } 214 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 215 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 216 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 217 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 218 static struct mtx_padalign pf_sctp_endpoints_mtx; 219 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 220 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 221 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 222 223 /* 224 * Queue for pf_intr() sends. 225 */ 226 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 227 struct pf_send_entry { 228 STAILQ_ENTRY(pf_send_entry) pfse_next; 229 struct mbuf *pfse_m; 230 enum { 231 PFSE_IP, 232 PFSE_IP6, 233 PFSE_ICMP, 234 PFSE_ICMP6, 235 } pfse_type; 236 struct { 237 int type; 238 int code; 239 int mtu; 240 } icmpopts; 241 }; 242 243 STAILQ_HEAD(pf_send_head, pf_send_entry); 244 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 245 #define V_pf_sendqueue VNET(pf_sendqueue) 246 247 static struct mtx_padalign pf_sendqueue_mtx; 248 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 249 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 250 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 251 252 /* 253 * Queue for pf_overload_task() tasks. 254 */ 255 struct pf_overload_entry { 256 SLIST_ENTRY(pf_overload_entry) next; 257 struct pf_addr addr; 258 sa_family_t af; 259 uint8_t dir; 260 struct pf_krule *rule; 261 }; 262 263 SLIST_HEAD(pf_overload_head, pf_overload_entry); 264 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 265 #define V_pf_overloadqueue VNET(pf_overloadqueue) 266 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 267 #define V_pf_overloadtask VNET(pf_overloadtask) 268 269 static struct mtx_padalign pf_overloadqueue_mtx; 270 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 271 "pf overload/flush queue", MTX_DEF); 272 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 273 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 274 275 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 276 struct mtx_padalign pf_unlnkdrules_mtx; 277 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 278 MTX_DEF); 279 280 struct sx pf_config_lock; 281 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 282 283 struct mtx_padalign pf_table_stats_lock; 284 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 285 MTX_DEF); 286 287 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 288 #define V_pf_sources_z VNET(pf_sources_z) 289 uma_zone_t pf_mtag_z; 290 VNET_DEFINE(uma_zone_t, pf_state_z); 291 VNET_DEFINE(uma_zone_t, pf_state_key_z); 292 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 293 294 VNET_DEFINE(struct unrhdr64, pf_stateid); 295 296 static void pf_src_tree_remove_state(struct pf_kstate *); 297 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 298 u_int32_t); 299 static void pf_add_threshold(struct pf_threshold *); 300 static int pf_check_threshold(struct pf_threshold *); 301 302 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 303 u_int16_t *, u_int16_t *, struct pf_addr *, 304 u_int16_t, u_int8_t, sa_family_t); 305 static int pf_modulate_sack(struct pf_pdesc *, 306 struct tcphdr *, struct pf_state_peer *); 307 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 308 int *, u_int16_t *, u_int16_t *); 309 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 310 struct pf_addr *, struct pf_addr *, u_int16_t, 311 u_int16_t *, u_int16_t *, u_int16_t *, 312 u_int16_t *, u_int8_t, sa_family_t); 313 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 314 sa_family_t, struct pf_krule *, int); 315 static void pf_detach_state(struct pf_kstate *); 316 static int pf_state_key_attach(struct pf_state_key *, 317 struct pf_state_key *, struct pf_kstate *); 318 static void pf_state_key_detach(struct pf_kstate *, int); 319 static int pf_state_key_ctor(void *, int, void *, int); 320 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 321 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 322 struct pf_mtag *pf_mtag); 323 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 324 struct pf_krule *, struct mbuf **); 325 static int pf_dummynet_route(struct pf_pdesc *, 326 struct pf_kstate *, struct pf_krule *, 327 struct ifnet *, struct sockaddr *, struct mbuf **); 328 static int pf_test_eth_rule(int, struct pfi_kkif *, 329 struct mbuf **); 330 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 331 struct pf_pdesc *, struct pf_krule **, 332 struct pf_kruleset **, struct inpcb *); 333 static int pf_create_state(struct pf_krule *, struct pf_krule *, 334 struct pf_krule *, struct pf_pdesc *, 335 struct pf_state_key *, struct pf_state_key *, 336 u_int16_t, u_int16_t, int *, 337 struct pf_kstate **, int, u_int16_t, u_int16_t, 338 struct pf_krule_slist *, struct pf_udp_mapping *); 339 static int pf_state_key_addr_setup(struct pf_pdesc *, 340 struct pf_state_key_cmp *, int); 341 static int pf_tcp_track_full(struct pf_kstate **, 342 struct pf_pdesc *, u_short *, int *); 343 static int pf_tcp_track_sloppy(struct pf_kstate **, 344 struct pf_pdesc *, u_short *); 345 static int pf_test_state_tcp(struct pf_kstate **, 346 struct pf_pdesc *, u_short *); 347 static int pf_test_state_udp(struct pf_kstate **, 348 struct pf_pdesc *); 349 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 350 struct pf_pdesc *, struct pf_kstate **, 351 int, u_int16_t, u_int16_t, 352 int, int *, int, int); 353 static int pf_test_state_icmp(struct pf_kstate **, 354 struct pf_pdesc *, u_short *); 355 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 356 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 357 struct pfi_kkif *, struct pf_kstate *, int); 358 static int pf_test_state_sctp(struct pf_kstate **, 359 struct pf_pdesc *, u_short *); 360 static int pf_test_state_other(struct pf_kstate **, 361 struct pf_pdesc *); 362 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 363 int, u_int16_t); 364 static int pf_check_proto_cksum(struct mbuf *, int, int, 365 u_int8_t, sa_family_t); 366 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 367 u_short *); 368 static void pf_print_state_parts(struct pf_kstate *, 369 struct pf_state_key *, struct pf_state_key *); 370 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 371 bool, u_int8_t); 372 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 373 const struct pf_state_key_cmp *, u_int); 374 static bool pf_src_connlimit(struct pf_kstate *); 375 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 376 static void pf_counters_inc(int, struct pf_pdesc *, 377 struct pf_kstate *, struct pf_krule *, 378 struct pf_krule *); 379 static void pf_overload_task(void *v, int pending); 380 static u_short pf_insert_src_node(struct pf_ksrc_node **, 381 struct pf_srchash **, struct pf_krule *, 382 struct pf_addr *, sa_family_t, struct pf_addr *, 383 struct pfi_kkif *); 384 static u_int pf_purge_expired_states(u_int, int); 385 static void pf_purge_unlinked_rules(void); 386 static int pf_mtag_uminit(void *, int, int); 387 static void pf_mtag_free(struct m_tag *); 388 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 389 int, struct pf_state_key *); 390 #ifdef INET 391 static void pf_route(struct mbuf **, struct pf_krule *, 392 struct ifnet *, struct pf_kstate *, 393 struct pf_pdesc *, struct inpcb *); 394 #endif /* INET */ 395 #ifdef INET6 396 static void pf_change_a6(struct pf_addr *, u_int16_t *, 397 struct pf_addr *, u_int8_t); 398 static void pf_route6(struct mbuf **, struct pf_krule *, 399 struct ifnet *, struct pf_kstate *, 400 struct pf_pdesc *, struct inpcb *); 401 #endif /* INET6 */ 402 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 403 404 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 405 406 extern int pf_end_threads; 407 extern struct proc *pf_purge_proc; 408 409 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 410 411 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 412 413 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 414 do { \ 415 struct pf_state_key *nk; \ 416 if ((pd->dir) == PF_OUT) \ 417 nk = (_s)->key[PF_SK_STACK]; \ 418 else \ 419 nk = (_s)->key[PF_SK_WIRE]; \ 420 pf_packet_rework_nat(_m, _pd, _off, nk); \ 421 } while (0) 422 423 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 424 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 425 426 #define STATE_LOOKUP(k, s, pd) \ 427 do { \ 428 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 429 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 430 if ((s) == NULL) \ 431 return (PF_DROP); \ 432 if (PACKET_LOOPED(pd)) \ 433 return (PF_PASS); \ 434 } while (0) 435 436 static struct pfi_kkif * 437 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 438 { 439 SDT_PROBE2(pf, ip, , bound_iface, st, k); 440 441 /* Floating unless otherwise specified. */ 442 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 443 return (V_pfi_all); 444 445 /* 446 * Initially set to all, because we don't know what interface we'll be 447 * sending this out when we create the state. 448 */ 449 if (st->rule->rt == PF_REPLYTO) 450 return (V_pfi_all); 451 452 /* Don't overrule the interface for states created on incoming packets. */ 453 if (st->direction == PF_IN) 454 return (k); 455 456 /* No route-to, so don't overrule. */ 457 if (st->act.rt != PF_ROUTETO) 458 return (k); 459 460 /* Bind to the route-to interface. */ 461 return (st->act.rt_kif); 462 } 463 464 #define STATE_INC_COUNTERS(s) \ 465 do { \ 466 struct pf_krule_item *mrm; \ 467 counter_u64_add(s->rule->states_cur, 1); \ 468 counter_u64_add(s->rule->states_tot, 1); \ 469 if (s->anchor != NULL) { \ 470 counter_u64_add(s->anchor->states_cur, 1); \ 471 counter_u64_add(s->anchor->states_tot, 1); \ 472 } \ 473 if (s->nat_rule != NULL) { \ 474 counter_u64_add(s->nat_rule->states_cur, 1);\ 475 counter_u64_add(s->nat_rule->states_tot, 1);\ 476 } \ 477 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 478 counter_u64_add(mrm->r->states_cur, 1); \ 479 counter_u64_add(mrm->r->states_tot, 1); \ 480 } \ 481 } while (0) 482 483 #define STATE_DEC_COUNTERS(s) \ 484 do { \ 485 struct pf_krule_item *mrm; \ 486 if (s->nat_rule != NULL) \ 487 counter_u64_add(s->nat_rule->states_cur, -1);\ 488 if (s->anchor != NULL) \ 489 counter_u64_add(s->anchor->states_cur, -1); \ 490 counter_u64_add(s->rule->states_cur, -1); \ 491 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 492 counter_u64_add(mrm->r->states_cur, -1); \ 493 } while (0) 494 495 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 496 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 497 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 498 VNET_DEFINE(struct pf_idhash *, pf_idhash); 499 VNET_DEFINE(struct pf_srchash *, pf_srchash); 500 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 501 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 502 503 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 504 "pf(4)"); 505 506 VNET_DEFINE(u_long, pf_hashmask); 507 VNET_DEFINE(u_long, pf_srchashmask); 508 VNET_DEFINE(u_long, pf_udpendpointhashmask); 509 VNET_DEFINE_STATIC(u_long, pf_hashsize); 510 #define V_pf_hashsize VNET(pf_hashsize) 511 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 512 #define V_pf_srchashsize VNET(pf_srchashsize) 513 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 514 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 515 u_long pf_ioctl_maxcount = 65535; 516 517 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 518 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 519 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 520 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 521 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 522 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 523 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 524 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 525 526 VNET_DEFINE(void *, pf_swi_cookie); 527 VNET_DEFINE(struct intr_event *, pf_swi_ie); 528 529 VNET_DEFINE(uint32_t, pf_hashseed); 530 #define V_pf_hashseed VNET(pf_hashseed) 531 532 static void 533 pf_sctp_checksum(struct mbuf *m, int off) 534 { 535 uint32_t sum = 0; 536 537 /* Zero out the checksum, to enable recalculation. */ 538 m_copyback(m, off + offsetof(struct sctphdr, checksum), 539 sizeof(sum), (caddr_t)&sum); 540 541 sum = sctp_calculate_cksum(m, off); 542 543 m_copyback(m, off + offsetof(struct sctphdr, checksum), 544 sizeof(sum), (caddr_t)&sum); 545 } 546 547 int 548 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 549 { 550 551 switch (af) { 552 #ifdef INET 553 case AF_INET: 554 if (a->addr32[0] > b->addr32[0]) 555 return (1); 556 if (a->addr32[0] < b->addr32[0]) 557 return (-1); 558 break; 559 #endif /* INET */ 560 #ifdef INET6 561 case AF_INET6: 562 if (a->addr32[3] > b->addr32[3]) 563 return (1); 564 if (a->addr32[3] < b->addr32[3]) 565 return (-1); 566 if (a->addr32[2] > b->addr32[2]) 567 return (1); 568 if (a->addr32[2] < b->addr32[2]) 569 return (-1); 570 if (a->addr32[1] > b->addr32[1]) 571 return (1); 572 if (a->addr32[1] < b->addr32[1]) 573 return (-1); 574 if (a->addr32[0] > b->addr32[0]) 575 return (1); 576 if (a->addr32[0] < b->addr32[0]) 577 return (-1); 578 break; 579 #endif /* INET6 */ 580 } 581 return (0); 582 } 583 584 static bool 585 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 586 { 587 switch (af) { 588 #ifdef INET 589 case AF_INET: 590 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 591 #endif 592 case AF_INET6: 593 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 594 default: 595 panic("Unknown af %d", af); 596 } 597 } 598 599 static void 600 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 601 struct pf_state_key *nk) 602 { 603 604 switch (pd->proto) { 605 case IPPROTO_TCP: { 606 struct tcphdr *th = &pd->hdr.tcp; 607 608 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 609 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 610 &th->th_sum, &nk->addr[pd->sidx], 611 nk->port[pd->sidx], 0, pd->af); 612 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 613 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 614 &th->th_sum, &nk->addr[pd->didx], 615 nk->port[pd->didx], 0, pd->af); 616 m_copyback(m, off, sizeof(*th), (caddr_t)th); 617 break; 618 } 619 case IPPROTO_UDP: { 620 struct udphdr *uh = &pd->hdr.udp; 621 622 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 623 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 624 &uh->uh_sum, &nk->addr[pd->sidx], 625 nk->port[pd->sidx], 1, pd->af); 626 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 627 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 628 &uh->uh_sum, &nk->addr[pd->didx], 629 nk->port[pd->didx], 1, pd->af); 630 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 631 break; 632 } 633 case IPPROTO_SCTP: { 634 struct sctphdr *sh = &pd->hdr.sctp; 635 uint16_t checksum = 0; 636 637 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 638 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 639 &checksum, &nk->addr[pd->sidx], 640 nk->port[pd->sidx], 1, pd->af); 641 } 642 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 643 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 644 &checksum, &nk->addr[pd->didx], 645 nk->port[pd->didx], 1, pd->af); 646 } 647 648 break; 649 } 650 case IPPROTO_ICMP: { 651 struct icmp *ih = &pd->hdr.icmp; 652 653 if (nk->port[pd->sidx] != ih->icmp_id) { 654 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 655 ih->icmp_cksum, ih->icmp_id, 656 nk->port[pd->sidx], 0); 657 ih->icmp_id = nk->port[pd->sidx]; 658 pd->sport = &ih->icmp_id; 659 660 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 661 } 662 /* FALLTHROUGH */ 663 } 664 default: 665 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 666 switch (pd->af) { 667 case AF_INET: 668 pf_change_a(&pd->src->v4.s_addr, 669 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 670 0); 671 break; 672 case AF_INET6: 673 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 674 break; 675 } 676 } 677 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 678 switch (pd->af) { 679 case AF_INET: 680 pf_change_a(&pd->dst->v4.s_addr, 681 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 682 0); 683 break; 684 case AF_INET6: 685 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 686 break; 687 } 688 } 689 break; 690 } 691 } 692 693 static __inline uint32_t 694 pf_hashkey(const struct pf_state_key *sk) 695 { 696 uint32_t h; 697 698 h = murmur3_32_hash32((const uint32_t *)sk, 699 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 700 V_pf_hashseed); 701 702 return (h & V_pf_hashmask); 703 } 704 705 __inline uint32_t 706 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 707 { 708 uint32_t h; 709 710 switch (af) { 711 case AF_INET: 712 h = murmur3_32_hash32((uint32_t *)&addr->v4, 713 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 714 break; 715 case AF_INET6: 716 h = murmur3_32_hash32((uint32_t *)&addr->v6, 717 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 718 break; 719 } 720 721 return (h & V_pf_srchashmask); 722 } 723 724 static inline uint32_t 725 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 726 { 727 uint32_t h; 728 729 h = murmur3_32_hash32((uint32_t *)endpoint, 730 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 731 V_pf_hashseed); 732 return (h & V_pf_udpendpointhashmask); 733 } 734 735 #ifdef ALTQ 736 static int 737 pf_state_hash(struct pf_kstate *s) 738 { 739 u_int32_t hv = (intptr_t)s / sizeof(*s); 740 741 hv ^= crc32(&s->src, sizeof(s->src)); 742 hv ^= crc32(&s->dst, sizeof(s->dst)); 743 if (hv == 0) 744 hv = 1; 745 return (hv); 746 } 747 #endif 748 749 static __inline void 750 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 751 { 752 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 753 s->dst.state = newstate; 754 if (which == PF_PEER_DST) 755 return; 756 if (s->src.state == newstate) 757 return; 758 if (s->creatorid == V_pf_status.hostid && 759 s->key[PF_SK_STACK] != NULL && 760 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 761 !(TCPS_HAVEESTABLISHED(s->src.state) || 762 s->src.state == TCPS_CLOSED) && 763 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 764 atomic_add_32(&V_pf_status.states_halfopen, -1); 765 766 s->src.state = newstate; 767 } 768 769 #ifdef INET6 770 void 771 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 772 { 773 switch (af) { 774 #ifdef INET 775 case AF_INET: 776 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 777 break; 778 #endif /* INET */ 779 case AF_INET6: 780 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 781 break; 782 } 783 } 784 #endif /* INET6 */ 785 786 static void 787 pf_init_threshold(struct pf_threshold *threshold, 788 u_int32_t limit, u_int32_t seconds) 789 { 790 threshold->limit = limit * PF_THRESHOLD_MULT; 791 threshold->seconds = seconds; 792 threshold->count = 0; 793 threshold->last = time_uptime; 794 } 795 796 static void 797 pf_add_threshold(struct pf_threshold *threshold) 798 { 799 u_int32_t t = time_uptime, diff = t - threshold->last; 800 801 if (diff >= threshold->seconds) 802 threshold->count = 0; 803 else 804 threshold->count -= threshold->count * diff / 805 threshold->seconds; 806 threshold->count += PF_THRESHOLD_MULT; 807 threshold->last = t; 808 } 809 810 static int 811 pf_check_threshold(struct pf_threshold *threshold) 812 { 813 return (threshold->count > threshold->limit); 814 } 815 816 static bool 817 pf_src_connlimit(struct pf_kstate *state) 818 { 819 struct pf_overload_entry *pfoe; 820 bool limited = false; 821 822 PF_STATE_LOCK_ASSERT(state); 823 PF_SRC_NODE_LOCK(state->src_node); 824 825 state->src_node->conn++; 826 state->src.tcp_est = 1; 827 pf_add_threshold(&state->src_node->conn_rate); 828 829 if (state->rule->max_src_conn && 830 state->rule->max_src_conn < 831 state->src_node->conn) { 832 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 833 limited = true; 834 } 835 836 if (state->rule->max_src_conn_rate.limit && 837 pf_check_threshold(&state->src_node->conn_rate)) { 838 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 839 limited = true; 840 } 841 842 if (!limited) 843 goto done; 844 845 /* Kill this state. */ 846 state->timeout = PFTM_PURGE; 847 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 848 849 if (state->rule->overload_tbl == NULL) 850 goto done; 851 852 /* Schedule overloading and flushing task. */ 853 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 854 if (pfoe == NULL) 855 goto done; /* too bad :( */ 856 857 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 858 pfoe->af = state->key[PF_SK_WIRE]->af; 859 pfoe->rule = state->rule; 860 pfoe->dir = state->direction; 861 PF_OVERLOADQ_LOCK(); 862 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 863 PF_OVERLOADQ_UNLOCK(); 864 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 865 866 done: 867 PF_SRC_NODE_UNLOCK(state->src_node); 868 return (limited); 869 } 870 871 static void 872 pf_overload_task(void *v, int pending) 873 { 874 struct pf_overload_head queue; 875 struct pfr_addr p; 876 struct pf_overload_entry *pfoe, *pfoe1; 877 uint32_t killed = 0; 878 879 CURVNET_SET((struct vnet *)v); 880 881 PF_OVERLOADQ_LOCK(); 882 queue = V_pf_overloadqueue; 883 SLIST_INIT(&V_pf_overloadqueue); 884 PF_OVERLOADQ_UNLOCK(); 885 886 bzero(&p, sizeof(p)); 887 SLIST_FOREACH(pfoe, &queue, next) { 888 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 889 if (V_pf_status.debug >= PF_DEBUG_MISC) { 890 printf("%s: blocking address ", __func__); 891 pf_print_host(&pfoe->addr, 0, pfoe->af); 892 printf("\n"); 893 } 894 895 p.pfra_af = pfoe->af; 896 switch (pfoe->af) { 897 #ifdef INET 898 case AF_INET: 899 p.pfra_net = 32; 900 p.pfra_ip4addr = pfoe->addr.v4; 901 break; 902 #endif 903 #ifdef INET6 904 case AF_INET6: 905 p.pfra_net = 128; 906 p.pfra_ip6addr = pfoe->addr.v6; 907 break; 908 #endif 909 } 910 911 PF_RULES_WLOCK(); 912 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 913 PF_RULES_WUNLOCK(); 914 } 915 916 /* 917 * Remove those entries, that don't need flushing. 918 */ 919 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 920 if (pfoe->rule->flush == 0) { 921 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 922 free(pfoe, M_PFTEMP); 923 } else 924 counter_u64_add( 925 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 926 927 /* If nothing to flush, return. */ 928 if (SLIST_EMPTY(&queue)) { 929 CURVNET_RESTORE(); 930 return; 931 } 932 933 for (int i = 0; i <= V_pf_hashmask; i++) { 934 struct pf_idhash *ih = &V_pf_idhash[i]; 935 struct pf_state_key *sk; 936 struct pf_kstate *s; 937 938 PF_HASHROW_LOCK(ih); 939 LIST_FOREACH(s, &ih->states, entry) { 940 sk = s->key[PF_SK_WIRE]; 941 SLIST_FOREACH(pfoe, &queue, next) 942 if (sk->af == pfoe->af && 943 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 944 pfoe->rule == s->rule) && 945 ((pfoe->dir == PF_OUT && 946 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 947 (pfoe->dir == PF_IN && 948 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 949 s->timeout = PFTM_PURGE; 950 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 951 killed++; 952 } 953 } 954 PF_HASHROW_UNLOCK(ih); 955 } 956 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 957 free(pfoe, M_PFTEMP); 958 if (V_pf_status.debug >= PF_DEBUG_MISC) 959 printf("%s: %u states killed", __func__, killed); 960 961 CURVNET_RESTORE(); 962 } 963 964 /* 965 * On node found always returns locked. On not found its configurable. 966 */ 967 struct pf_ksrc_node * 968 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 969 struct pf_srchash **sh, bool returnlocked) 970 { 971 struct pf_ksrc_node *n; 972 973 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 974 975 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 976 PF_HASHROW_LOCK(*sh); 977 LIST_FOREACH(n, &(*sh)->nodes, entry) 978 if (n->rule == rule && n->af == af && 979 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 980 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 981 break; 982 983 if (n == NULL && !returnlocked) 984 PF_HASHROW_UNLOCK(*sh); 985 986 return (n); 987 } 988 989 bool 990 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 991 { 992 struct pf_ksrc_node *cur; 993 994 if ((*sn) == NULL) 995 return (false); 996 997 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 998 999 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 1000 PF_HASHROW_LOCK(sh); 1001 LIST_FOREACH(cur, &(sh->nodes), entry) { 1002 if (cur == (*sn) && 1003 cur->expire != 1) /* Ignore nodes being killed */ 1004 return (true); 1005 } 1006 PF_HASHROW_UNLOCK(sh); 1007 (*sn) = NULL; 1008 return (false); 1009 } 1010 1011 static void 1012 pf_free_src_node(struct pf_ksrc_node *sn) 1013 { 1014 1015 for (int i = 0; i < 2; i++) { 1016 counter_u64_free(sn->bytes[i]); 1017 counter_u64_free(sn->packets[i]); 1018 } 1019 uma_zfree(V_pf_sources_z, sn); 1020 } 1021 1022 static u_short 1023 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh, 1024 struct pf_krule *rule, struct pf_addr *src, sa_family_t af, 1025 struct pf_addr *raddr, struct pfi_kkif *rkif) 1026 { 1027 u_short reason = 0; 1028 1029 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1030 rule->rpool.opts & PF_POOL_STICKYADDR), 1031 ("%s for non-tracking rule %p", __func__, rule)); 1032 1033 /* 1034 * Request the sh to always be locked, as we might insert a new sn. 1035 */ 1036 if (*sn == NULL) 1037 *sn = pf_find_src_node(src, rule, af, sh, true); 1038 1039 if (*sn == NULL) { 1040 PF_HASHROW_ASSERT(*sh); 1041 1042 if (rule->max_src_nodes && 1043 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1044 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1045 reason = PFRES_SRCLIMIT; 1046 goto done; 1047 } 1048 1049 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1050 if ((*sn) == NULL) { 1051 reason = PFRES_MEMORY; 1052 goto done; 1053 } 1054 1055 for (int i = 0; i < 2; i++) { 1056 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1057 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1058 1059 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1060 pf_free_src_node(*sn); 1061 reason = PFRES_MEMORY; 1062 goto done; 1063 } 1064 } 1065 1066 pf_init_threshold(&(*sn)->conn_rate, 1067 rule->max_src_conn_rate.limit, 1068 rule->max_src_conn_rate.seconds); 1069 1070 MPASS((*sn)->lock == NULL); 1071 (*sn)->lock = &(*sh)->lock; 1072 1073 (*sn)->af = af; 1074 (*sn)->rule = rule; 1075 PF_ACPY(&(*sn)->addr, src, af); 1076 PF_ACPY(&(*sn)->raddr, raddr, af); 1077 (*sn)->rkif = rkif; 1078 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1079 (*sn)->creation = time_uptime; 1080 (*sn)->ruletype = rule->action; 1081 if ((*sn)->rule != NULL) 1082 counter_u64_add((*sn)->rule->src_nodes, 1); 1083 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1084 } else { 1085 if (rule->max_src_states && 1086 (*sn)->states >= rule->max_src_states) { 1087 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1088 1); 1089 reason = PFRES_SRCLIMIT; 1090 goto done; 1091 } 1092 } 1093 done: 1094 if (reason == 0) 1095 (*sn)->states++; 1096 else 1097 (*sn) = NULL; 1098 1099 PF_HASHROW_UNLOCK(*sh); 1100 return (reason); 1101 } 1102 1103 void 1104 pf_unlink_src_node(struct pf_ksrc_node *src) 1105 { 1106 PF_SRC_NODE_LOCK_ASSERT(src); 1107 1108 LIST_REMOVE(src, entry); 1109 if (src->rule) 1110 counter_u64_add(src->rule->src_nodes, -1); 1111 } 1112 1113 u_int 1114 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1115 { 1116 struct pf_ksrc_node *sn, *tmp; 1117 u_int count = 0; 1118 1119 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1120 pf_free_src_node(sn); 1121 count++; 1122 } 1123 1124 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1125 1126 return (count); 1127 } 1128 1129 void 1130 pf_mtag_initialize(void) 1131 { 1132 1133 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1134 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1135 UMA_ALIGN_PTR, 0); 1136 } 1137 1138 /* Per-vnet data storage structures initialization. */ 1139 void 1140 pf_initialize(void) 1141 { 1142 struct pf_keyhash *kh; 1143 struct pf_idhash *ih; 1144 struct pf_srchash *sh; 1145 struct pf_udpendpointhash *uh; 1146 u_int i; 1147 1148 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1149 V_pf_hashsize = PF_HASHSIZ; 1150 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1151 V_pf_srchashsize = PF_SRCHASHSIZ; 1152 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1153 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1154 1155 V_pf_hashseed = arc4random(); 1156 1157 /* States and state keys storage. */ 1158 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1159 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1160 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1161 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1162 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1163 1164 V_pf_state_key_z = uma_zcreate("pf state keys", 1165 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1166 UMA_ALIGN_PTR, 0); 1167 1168 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1169 M_PFHASH, M_NOWAIT | M_ZERO); 1170 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1171 M_PFHASH, M_NOWAIT | M_ZERO); 1172 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1173 printf("pf: Unable to allocate memory for " 1174 "state_hashsize %lu.\n", V_pf_hashsize); 1175 1176 free(V_pf_keyhash, M_PFHASH); 1177 free(V_pf_idhash, M_PFHASH); 1178 1179 V_pf_hashsize = PF_HASHSIZ; 1180 V_pf_keyhash = mallocarray(V_pf_hashsize, 1181 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1182 V_pf_idhash = mallocarray(V_pf_hashsize, 1183 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1184 } 1185 1186 V_pf_hashmask = V_pf_hashsize - 1; 1187 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1188 i++, kh++, ih++) { 1189 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1190 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1191 } 1192 1193 /* Source nodes. */ 1194 V_pf_sources_z = uma_zcreate("pf source nodes", 1195 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1196 0); 1197 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1198 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1199 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1200 1201 V_pf_srchash = mallocarray(V_pf_srchashsize, 1202 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1203 if (V_pf_srchash == NULL) { 1204 printf("pf: Unable to allocate memory for " 1205 "source_hashsize %lu.\n", V_pf_srchashsize); 1206 1207 V_pf_srchashsize = PF_SRCHASHSIZ; 1208 V_pf_srchash = mallocarray(V_pf_srchashsize, 1209 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1210 } 1211 1212 V_pf_srchashmask = V_pf_srchashsize - 1; 1213 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1214 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1215 1216 1217 /* UDP endpoint mappings. */ 1218 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1219 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1220 UMA_ALIGN_PTR, 0); 1221 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1222 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1223 if (V_pf_udpendpointhash == NULL) { 1224 printf("pf: Unable to allocate memory for " 1225 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1226 1227 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1228 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1229 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1230 } 1231 1232 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1233 for (i = 0, uh = V_pf_udpendpointhash; 1234 i <= V_pf_udpendpointhashmask; 1235 i++, uh++) { 1236 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1237 MTX_DEF | MTX_DUPOK); 1238 } 1239 1240 /* ALTQ */ 1241 TAILQ_INIT(&V_pf_altqs[0]); 1242 TAILQ_INIT(&V_pf_altqs[1]); 1243 TAILQ_INIT(&V_pf_altqs[2]); 1244 TAILQ_INIT(&V_pf_altqs[3]); 1245 TAILQ_INIT(&V_pf_pabuf); 1246 V_pf_altqs_active = &V_pf_altqs[0]; 1247 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1248 V_pf_altqs_inactive = &V_pf_altqs[2]; 1249 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1250 1251 /* Send & overload+flush queues. */ 1252 STAILQ_INIT(&V_pf_sendqueue); 1253 SLIST_INIT(&V_pf_overloadqueue); 1254 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1255 1256 /* Unlinked, but may be referenced rules. */ 1257 TAILQ_INIT(&V_pf_unlinked_rules); 1258 } 1259 1260 void 1261 pf_mtag_cleanup(void) 1262 { 1263 1264 uma_zdestroy(pf_mtag_z); 1265 } 1266 1267 void 1268 pf_cleanup(void) 1269 { 1270 struct pf_keyhash *kh; 1271 struct pf_idhash *ih; 1272 struct pf_srchash *sh; 1273 struct pf_udpendpointhash *uh; 1274 struct pf_send_entry *pfse, *next; 1275 u_int i; 1276 1277 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1278 i <= V_pf_hashmask; 1279 i++, kh++, ih++) { 1280 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1281 __func__)); 1282 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1283 __func__)); 1284 mtx_destroy(&kh->lock); 1285 mtx_destroy(&ih->lock); 1286 } 1287 free(V_pf_keyhash, M_PFHASH); 1288 free(V_pf_idhash, M_PFHASH); 1289 1290 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1291 KASSERT(LIST_EMPTY(&sh->nodes), 1292 ("%s: source node hash not empty", __func__)); 1293 mtx_destroy(&sh->lock); 1294 } 1295 free(V_pf_srchash, M_PFHASH); 1296 1297 for (i = 0, uh = V_pf_udpendpointhash; 1298 i <= V_pf_udpendpointhashmask; 1299 i++, uh++) { 1300 KASSERT(LIST_EMPTY(&uh->endpoints), 1301 ("%s: udp endpoint hash not empty", __func__)); 1302 mtx_destroy(&uh->lock); 1303 } 1304 free(V_pf_udpendpointhash, M_PFHASH); 1305 1306 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1307 m_freem(pfse->pfse_m); 1308 free(pfse, M_PFTEMP); 1309 } 1310 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1311 1312 uma_zdestroy(V_pf_sources_z); 1313 uma_zdestroy(V_pf_state_z); 1314 uma_zdestroy(V_pf_state_key_z); 1315 uma_zdestroy(V_pf_udp_mapping_z); 1316 } 1317 1318 static int 1319 pf_mtag_uminit(void *mem, int size, int how) 1320 { 1321 struct m_tag *t; 1322 1323 t = (struct m_tag *)mem; 1324 t->m_tag_cookie = MTAG_ABI_COMPAT; 1325 t->m_tag_id = PACKET_TAG_PF; 1326 t->m_tag_len = sizeof(struct pf_mtag); 1327 t->m_tag_free = pf_mtag_free; 1328 1329 return (0); 1330 } 1331 1332 static void 1333 pf_mtag_free(struct m_tag *t) 1334 { 1335 1336 uma_zfree(pf_mtag_z, t); 1337 } 1338 1339 struct pf_mtag * 1340 pf_get_mtag(struct mbuf *m) 1341 { 1342 struct m_tag *mtag; 1343 1344 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1345 return ((struct pf_mtag *)(mtag + 1)); 1346 1347 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1348 if (mtag == NULL) 1349 return (NULL); 1350 bzero(mtag + 1, sizeof(struct pf_mtag)); 1351 m_tag_prepend(m, mtag); 1352 1353 return ((struct pf_mtag *)(mtag + 1)); 1354 } 1355 1356 static int 1357 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1358 struct pf_kstate *s) 1359 { 1360 struct pf_keyhash *khs, *khw, *kh; 1361 struct pf_state_key *sk, *cur; 1362 struct pf_kstate *si, *olds = NULL; 1363 int idx; 1364 1365 NET_EPOCH_ASSERT(); 1366 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1367 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1368 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1369 1370 /* 1371 * We need to lock hash slots of both keys. To avoid deadlock 1372 * we always lock the slot with lower address first. Unlock order 1373 * isn't important. 1374 * 1375 * We also need to lock ID hash slot before dropping key 1376 * locks. On success we return with ID hash slot locked. 1377 */ 1378 1379 if (skw == sks) { 1380 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1381 PF_HASHROW_LOCK(khs); 1382 } else { 1383 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1384 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1385 if (khs == khw) { 1386 PF_HASHROW_LOCK(khs); 1387 } else if (khs < khw) { 1388 PF_HASHROW_LOCK(khs); 1389 PF_HASHROW_LOCK(khw); 1390 } else { 1391 PF_HASHROW_LOCK(khw); 1392 PF_HASHROW_LOCK(khs); 1393 } 1394 } 1395 1396 #define KEYS_UNLOCK() do { \ 1397 if (khs != khw) { \ 1398 PF_HASHROW_UNLOCK(khs); \ 1399 PF_HASHROW_UNLOCK(khw); \ 1400 } else \ 1401 PF_HASHROW_UNLOCK(khs); \ 1402 } while (0) 1403 1404 /* 1405 * First run: start with wire key. 1406 */ 1407 sk = skw; 1408 kh = khw; 1409 idx = PF_SK_WIRE; 1410 1411 MPASS(s->lock == NULL); 1412 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1413 1414 keyattach: 1415 LIST_FOREACH(cur, &kh->keys, entry) 1416 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1417 break; 1418 1419 if (cur != NULL) { 1420 /* Key exists. Check for same kif, if none, add to key. */ 1421 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1422 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1423 1424 PF_HASHROW_LOCK(ih); 1425 if (si->kif == s->kif && 1426 si->direction == s->direction) { 1427 if (sk->proto == IPPROTO_TCP && 1428 si->src.state >= TCPS_FIN_WAIT_2 && 1429 si->dst.state >= TCPS_FIN_WAIT_2) { 1430 /* 1431 * New state matches an old >FIN_WAIT_2 1432 * state. We can't drop key hash locks, 1433 * thus we can't unlink it properly. 1434 * 1435 * As a workaround we drop it into 1436 * TCPS_CLOSED state, schedule purge 1437 * ASAP and push it into the very end 1438 * of the slot TAILQ, so that it won't 1439 * conflict with our new state. 1440 */ 1441 pf_set_protostate(si, PF_PEER_BOTH, 1442 TCPS_CLOSED); 1443 si->timeout = PFTM_PURGE; 1444 olds = si; 1445 } else { 1446 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1447 printf("pf: %s key attach " 1448 "failed on %s: ", 1449 (idx == PF_SK_WIRE) ? 1450 "wire" : "stack", 1451 s->kif->pfik_name); 1452 pf_print_state_parts(s, 1453 (idx == PF_SK_WIRE) ? 1454 sk : NULL, 1455 (idx == PF_SK_STACK) ? 1456 sk : NULL); 1457 printf(", existing: "); 1458 pf_print_state_parts(si, 1459 (idx == PF_SK_WIRE) ? 1460 sk : NULL, 1461 (idx == PF_SK_STACK) ? 1462 sk : NULL); 1463 printf("\n"); 1464 } 1465 s->timeout = PFTM_UNLINKED; 1466 PF_HASHROW_UNLOCK(ih); 1467 KEYS_UNLOCK(); 1468 uma_zfree(V_pf_state_key_z, skw); 1469 if (skw != sks) 1470 uma_zfree(V_pf_state_key_z, sks); 1471 if (idx == PF_SK_STACK) 1472 pf_detach_state(s); 1473 return (EEXIST); /* collision! */ 1474 } 1475 } 1476 PF_HASHROW_UNLOCK(ih); 1477 } 1478 uma_zfree(V_pf_state_key_z, sk); 1479 s->key[idx] = cur; 1480 } else { 1481 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1482 s->key[idx] = sk; 1483 } 1484 1485 stateattach: 1486 /* List is sorted, if-bound states before floating. */ 1487 if (s->kif == V_pfi_all) 1488 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1489 else 1490 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1491 1492 if (olds) { 1493 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1494 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1495 key_list[idx]); 1496 olds = NULL; 1497 } 1498 1499 /* 1500 * Attach done. See how should we (or should not?) 1501 * attach a second key. 1502 */ 1503 if (sks == skw) { 1504 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1505 idx = PF_SK_STACK; 1506 sks = NULL; 1507 goto stateattach; 1508 } else if (sks != NULL) { 1509 /* 1510 * Continue attaching with stack key. 1511 */ 1512 sk = sks; 1513 kh = khs; 1514 idx = PF_SK_STACK; 1515 sks = NULL; 1516 goto keyattach; 1517 } 1518 1519 PF_STATE_LOCK(s); 1520 KEYS_UNLOCK(); 1521 1522 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1523 ("%s failure", __func__)); 1524 1525 return (0); 1526 #undef KEYS_UNLOCK 1527 } 1528 1529 static void 1530 pf_detach_state(struct pf_kstate *s) 1531 { 1532 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1533 struct pf_keyhash *kh; 1534 1535 NET_EPOCH_ASSERT(); 1536 MPASS(s->timeout >= PFTM_MAX); 1537 1538 pf_sctp_multihome_detach_addr(s); 1539 1540 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1541 V_pflow_export_state_ptr(s); 1542 1543 if (sks != NULL) { 1544 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1545 PF_HASHROW_LOCK(kh); 1546 if (s->key[PF_SK_STACK] != NULL) 1547 pf_state_key_detach(s, PF_SK_STACK); 1548 /* 1549 * If both point to same key, then we are done. 1550 */ 1551 if (sks == s->key[PF_SK_WIRE]) { 1552 pf_state_key_detach(s, PF_SK_WIRE); 1553 PF_HASHROW_UNLOCK(kh); 1554 return; 1555 } 1556 PF_HASHROW_UNLOCK(kh); 1557 } 1558 1559 if (s->key[PF_SK_WIRE] != NULL) { 1560 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1561 PF_HASHROW_LOCK(kh); 1562 if (s->key[PF_SK_WIRE] != NULL) 1563 pf_state_key_detach(s, PF_SK_WIRE); 1564 PF_HASHROW_UNLOCK(kh); 1565 } 1566 } 1567 1568 static void 1569 pf_state_key_detach(struct pf_kstate *s, int idx) 1570 { 1571 struct pf_state_key *sk = s->key[idx]; 1572 #ifdef INVARIANTS 1573 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1574 1575 PF_HASHROW_ASSERT(kh); 1576 #endif 1577 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1578 s->key[idx] = NULL; 1579 1580 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1581 LIST_REMOVE(sk, entry); 1582 uma_zfree(V_pf_state_key_z, sk); 1583 } 1584 } 1585 1586 static int 1587 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1588 { 1589 struct pf_state_key *sk = mem; 1590 1591 bzero(sk, sizeof(struct pf_state_key_cmp)); 1592 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1593 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1594 1595 return (0); 1596 } 1597 1598 static int 1599 pf_state_key_addr_setup(struct pf_pdesc *pd, 1600 struct pf_state_key_cmp *key, int multi) 1601 { 1602 struct pf_addr *saddr = pd->src; 1603 struct pf_addr *daddr = pd->dst; 1604 #ifdef INET6 1605 struct nd_neighbor_solicit nd; 1606 struct pf_addr *target; 1607 u_short action, reason; 1608 1609 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1610 goto copy; 1611 1612 switch (pd->hdr.icmp6.icmp6_type) { 1613 case ND_NEIGHBOR_SOLICIT: 1614 if (multi) 1615 return (-1); 1616 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1617 return (-1); 1618 target = (struct pf_addr *)&nd.nd_ns_target; 1619 daddr = target; 1620 break; 1621 case ND_NEIGHBOR_ADVERT: 1622 if (multi) 1623 return (-1); 1624 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1625 return (-1); 1626 target = (struct pf_addr *)&nd.nd_ns_target; 1627 saddr = target; 1628 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1629 key->addr[pd->didx].addr32[0] = 0; 1630 key->addr[pd->didx].addr32[1] = 0; 1631 key->addr[pd->didx].addr32[2] = 0; 1632 key->addr[pd->didx].addr32[3] = 0; 1633 daddr = NULL; /* overwritten */ 1634 } 1635 break; 1636 default: 1637 if (multi == PF_ICMP_MULTI_LINK) { 1638 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1639 key->addr[pd->sidx].addr32[1] = 0; 1640 key->addr[pd->sidx].addr32[2] = 0; 1641 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1642 saddr = NULL; /* overwritten */ 1643 } 1644 } 1645 copy: 1646 #endif 1647 if (saddr) 1648 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1649 if (daddr) 1650 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1651 1652 return (0); 1653 } 1654 1655 struct pf_state_key * 1656 pf_state_key_setup(struct pf_pdesc *pd, 1657 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1658 u_int16_t dport) 1659 { 1660 struct pf_state_key *sk; 1661 1662 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1663 if (sk == NULL) 1664 return (NULL); 1665 1666 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk, 1667 0)) { 1668 uma_zfree(V_pf_state_key_z, sk); 1669 return (NULL); 1670 } 1671 1672 sk->port[pd->sidx] = sport; 1673 sk->port[pd->didx] = dport; 1674 sk->proto = pd->proto; 1675 sk->af = pd->af; 1676 1677 return (sk); 1678 } 1679 1680 struct pf_state_key * 1681 pf_state_key_clone(const struct pf_state_key *orig) 1682 { 1683 struct pf_state_key *sk; 1684 1685 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1686 if (sk == NULL) 1687 return (NULL); 1688 1689 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1690 1691 return (sk); 1692 } 1693 1694 int 1695 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1696 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1697 { 1698 struct pf_idhash *ih; 1699 struct pf_kstate *cur; 1700 int error; 1701 1702 NET_EPOCH_ASSERT(); 1703 1704 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1705 ("%s: sks not pristine", __func__)); 1706 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1707 ("%s: skw not pristine", __func__)); 1708 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1709 1710 s->kif = kif; 1711 s->orig_kif = orig_kif; 1712 1713 if (s->id == 0 && s->creatorid == 0) { 1714 s->id = alloc_unr64(&V_pf_stateid); 1715 s->id = htobe64(s->id); 1716 s->creatorid = V_pf_status.hostid; 1717 } 1718 1719 /* Returns with ID locked on success. */ 1720 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1721 return (error); 1722 1723 ih = &V_pf_idhash[PF_IDHASH(s)]; 1724 PF_HASHROW_ASSERT(ih); 1725 LIST_FOREACH(cur, &ih->states, entry) 1726 if (cur->id == s->id && cur->creatorid == s->creatorid) 1727 break; 1728 1729 if (cur != NULL) { 1730 s->timeout = PFTM_UNLINKED; 1731 PF_HASHROW_UNLOCK(ih); 1732 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1733 printf("pf: state ID collision: " 1734 "id: %016llx creatorid: %08x\n", 1735 (unsigned long long)be64toh(s->id), 1736 ntohl(s->creatorid)); 1737 } 1738 pf_detach_state(s); 1739 return (EEXIST); 1740 } 1741 LIST_INSERT_HEAD(&ih->states, s, entry); 1742 /* One for keys, one for ID hash. */ 1743 refcount_init(&s->refs, 2); 1744 1745 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1746 if (V_pfsync_insert_state_ptr != NULL) 1747 V_pfsync_insert_state_ptr(s); 1748 1749 /* Returns locked. */ 1750 return (0); 1751 } 1752 1753 /* 1754 * Find state by ID: returns with locked row on success. 1755 */ 1756 struct pf_kstate * 1757 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1758 { 1759 struct pf_idhash *ih; 1760 struct pf_kstate *s; 1761 1762 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1763 1764 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1765 1766 PF_HASHROW_LOCK(ih); 1767 LIST_FOREACH(s, &ih->states, entry) 1768 if (s->id == id && s->creatorid == creatorid) 1769 break; 1770 1771 if (s == NULL) 1772 PF_HASHROW_UNLOCK(ih); 1773 1774 return (s); 1775 } 1776 1777 /* 1778 * Find state by key. 1779 * Returns with ID hash slot locked on success. 1780 */ 1781 static struct pf_kstate * 1782 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1783 u_int dir) 1784 { 1785 struct pf_keyhash *kh; 1786 struct pf_state_key *sk; 1787 struct pf_kstate *s; 1788 int idx; 1789 1790 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1791 1792 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1793 1794 PF_HASHROW_LOCK(kh); 1795 LIST_FOREACH(sk, &kh->keys, entry) 1796 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1797 break; 1798 if (sk == NULL) { 1799 PF_HASHROW_UNLOCK(kh); 1800 return (NULL); 1801 } 1802 1803 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1804 1805 /* List is sorted, if-bound states before floating ones. */ 1806 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1807 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1808 PF_STATE_LOCK(s); 1809 PF_HASHROW_UNLOCK(kh); 1810 if (__predict_false(s->timeout >= PFTM_MAX)) { 1811 /* 1812 * State is either being processed by 1813 * pf_unlink_state() in an other thread, or 1814 * is scheduled for immediate expiry. 1815 */ 1816 PF_STATE_UNLOCK(s); 1817 return (NULL); 1818 } 1819 return (s); 1820 } 1821 PF_HASHROW_UNLOCK(kh); 1822 1823 return (NULL); 1824 } 1825 1826 /* 1827 * Returns with ID hash slot locked on success. 1828 */ 1829 struct pf_kstate * 1830 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1831 { 1832 struct pf_keyhash *kh; 1833 struct pf_state_key *sk; 1834 struct pf_kstate *s, *ret = NULL; 1835 int idx, inout = 0; 1836 1837 if (more != NULL) 1838 *more = 0; 1839 1840 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1841 1842 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1843 1844 PF_HASHROW_LOCK(kh); 1845 LIST_FOREACH(sk, &kh->keys, entry) 1846 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1847 break; 1848 if (sk == NULL) { 1849 PF_HASHROW_UNLOCK(kh); 1850 return (NULL); 1851 } 1852 switch (dir) { 1853 case PF_IN: 1854 idx = PF_SK_WIRE; 1855 break; 1856 case PF_OUT: 1857 idx = PF_SK_STACK; 1858 break; 1859 case PF_INOUT: 1860 idx = PF_SK_WIRE; 1861 inout = 1; 1862 break; 1863 default: 1864 panic("%s: dir %u", __func__, dir); 1865 } 1866 second_run: 1867 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1868 if (more == NULL) { 1869 PF_STATE_LOCK(s); 1870 PF_HASHROW_UNLOCK(kh); 1871 return (s); 1872 } 1873 1874 if (ret) 1875 (*more)++; 1876 else { 1877 ret = s; 1878 PF_STATE_LOCK(s); 1879 } 1880 } 1881 if (inout == 1) { 1882 inout = 0; 1883 idx = PF_SK_STACK; 1884 goto second_run; 1885 } 1886 PF_HASHROW_UNLOCK(kh); 1887 1888 return (ret); 1889 } 1890 1891 /* 1892 * FIXME 1893 * This routine is inefficient -- locks the state only to unlock immediately on 1894 * return. 1895 * It is racy -- after the state is unlocked nothing stops other threads from 1896 * removing it. 1897 */ 1898 bool 1899 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1900 { 1901 struct pf_kstate *s; 1902 1903 s = pf_find_state_all(key, dir, NULL); 1904 if (s != NULL) { 1905 PF_STATE_UNLOCK(s); 1906 return (true); 1907 } 1908 return (false); 1909 } 1910 1911 struct pf_udp_mapping * 1912 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1913 struct pf_addr *nat_addr, uint16_t nat_port) 1914 { 1915 struct pf_udp_mapping *mapping; 1916 1917 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1918 if (mapping == NULL) 1919 return (NULL); 1920 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1921 mapping->endpoints[0].port = src_port; 1922 mapping->endpoints[0].af = af; 1923 mapping->endpoints[0].mapping = mapping; 1924 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1925 mapping->endpoints[1].port = nat_port; 1926 mapping->endpoints[1].af = af; 1927 mapping->endpoints[1].mapping = mapping; 1928 refcount_init(&mapping->refs, 1); 1929 return (mapping); 1930 } 1931 1932 int 1933 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1934 { 1935 struct pf_udpendpointhash *h0, *h1; 1936 struct pf_udp_endpoint *endpoint; 1937 int ret = EEXIST; 1938 1939 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1940 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1941 if (h0 == h1) { 1942 PF_HASHROW_LOCK(h0); 1943 } else if (h0 < h1) { 1944 PF_HASHROW_LOCK(h0); 1945 PF_HASHROW_LOCK(h1); 1946 } else { 1947 PF_HASHROW_LOCK(h1); 1948 PF_HASHROW_LOCK(h0); 1949 } 1950 1951 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1952 if (bcmp(endpoint, &mapping->endpoints[0], 1953 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1954 break; 1955 } 1956 if (endpoint != NULL) 1957 goto cleanup; 1958 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1959 if (bcmp(endpoint, &mapping->endpoints[1], 1960 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1961 break; 1962 } 1963 if (endpoint != NULL) 1964 goto cleanup; 1965 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1966 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1967 ret = 0; 1968 1969 cleanup: 1970 if (h0 != h1) { 1971 PF_HASHROW_UNLOCK(h0); 1972 PF_HASHROW_UNLOCK(h1); 1973 } else { 1974 PF_HASHROW_UNLOCK(h0); 1975 } 1976 return (ret); 1977 } 1978 1979 void 1980 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1981 { 1982 /* refcount is synchronized on the source endpoint's row lock */ 1983 struct pf_udpendpointhash *h0, *h1; 1984 1985 if (mapping == NULL) 1986 return; 1987 1988 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1989 PF_HASHROW_LOCK(h0); 1990 if (refcount_release(&mapping->refs)) { 1991 LIST_REMOVE(&mapping->endpoints[0], entry); 1992 PF_HASHROW_UNLOCK(h0); 1993 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1994 PF_HASHROW_LOCK(h1); 1995 LIST_REMOVE(&mapping->endpoints[1], entry); 1996 PF_HASHROW_UNLOCK(h1); 1997 1998 uma_zfree(V_pf_udp_mapping_z, mapping); 1999 } else { 2000 PF_HASHROW_UNLOCK(h0); 2001 } 2002 } 2003 2004 2005 struct pf_udp_mapping * 2006 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2007 { 2008 struct pf_udpendpointhash *uh; 2009 struct pf_udp_endpoint *endpoint; 2010 2011 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2012 2013 PF_HASHROW_LOCK(uh); 2014 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2015 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2016 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2017 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2018 break; 2019 } 2020 if (endpoint == NULL) { 2021 PF_HASHROW_UNLOCK(uh); 2022 return (NULL); 2023 } 2024 refcount_acquire(&endpoint->mapping->refs); 2025 PF_HASHROW_UNLOCK(uh); 2026 return (endpoint->mapping); 2027 } 2028 /* END state table stuff */ 2029 2030 static void 2031 pf_send(struct pf_send_entry *pfse) 2032 { 2033 2034 PF_SENDQ_LOCK(); 2035 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2036 PF_SENDQ_UNLOCK(); 2037 swi_sched(V_pf_swi_cookie, 0); 2038 } 2039 2040 static bool 2041 pf_isforlocal(struct mbuf *m, int af) 2042 { 2043 switch (af) { 2044 #ifdef INET 2045 case AF_INET: { 2046 struct ip *ip = mtod(m, struct ip *); 2047 2048 return (in_localip(ip->ip_dst)); 2049 } 2050 #endif 2051 #ifdef INET6 2052 case AF_INET6: { 2053 struct ip6_hdr *ip6; 2054 struct in6_ifaddr *ia; 2055 ip6 = mtod(m, struct ip6_hdr *); 2056 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2057 if (ia == NULL) 2058 return (false); 2059 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2060 } 2061 #endif 2062 } 2063 2064 return (false); 2065 } 2066 2067 int 2068 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2069 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2070 { 2071 /* 2072 * ICMP types marked with PF_OUT are typically responses to 2073 * PF_IN, and will match states in the opposite direction. 2074 * PF_IN ICMP types need to match a state with that type. 2075 */ 2076 *icmp_dir = PF_OUT; 2077 *multi = PF_ICMP_MULTI_LINK; 2078 /* Queries (and responses) */ 2079 switch (pd->af) { 2080 #ifdef INET 2081 case AF_INET: 2082 switch (type) { 2083 case ICMP_ECHO: 2084 *icmp_dir = PF_IN; 2085 case ICMP_ECHOREPLY: 2086 *virtual_type = ICMP_ECHO; 2087 *virtual_id = pd->hdr.icmp.icmp_id; 2088 break; 2089 2090 case ICMP_TSTAMP: 2091 *icmp_dir = PF_IN; 2092 case ICMP_TSTAMPREPLY: 2093 *virtual_type = ICMP_TSTAMP; 2094 *virtual_id = pd->hdr.icmp.icmp_id; 2095 break; 2096 2097 case ICMP_IREQ: 2098 *icmp_dir = PF_IN; 2099 case ICMP_IREQREPLY: 2100 *virtual_type = ICMP_IREQ; 2101 *virtual_id = pd->hdr.icmp.icmp_id; 2102 break; 2103 2104 case ICMP_MASKREQ: 2105 *icmp_dir = PF_IN; 2106 case ICMP_MASKREPLY: 2107 *virtual_type = ICMP_MASKREQ; 2108 *virtual_id = pd->hdr.icmp.icmp_id; 2109 break; 2110 2111 case ICMP_IPV6_WHEREAREYOU: 2112 *icmp_dir = PF_IN; 2113 case ICMP_IPV6_IAMHERE: 2114 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2115 *virtual_id = 0; /* Nothing sane to match on! */ 2116 break; 2117 2118 case ICMP_MOBILE_REGREQUEST: 2119 *icmp_dir = PF_IN; 2120 case ICMP_MOBILE_REGREPLY: 2121 *virtual_type = ICMP_MOBILE_REGREQUEST; 2122 *virtual_id = 0; /* Nothing sane to match on! */ 2123 break; 2124 2125 case ICMP_ROUTERSOLICIT: 2126 *icmp_dir = PF_IN; 2127 case ICMP_ROUTERADVERT: 2128 *virtual_type = ICMP_ROUTERSOLICIT; 2129 *virtual_id = 0; /* Nothing sane to match on! */ 2130 break; 2131 2132 /* These ICMP types map to other connections */ 2133 case ICMP_UNREACH: 2134 case ICMP_SOURCEQUENCH: 2135 case ICMP_REDIRECT: 2136 case ICMP_TIMXCEED: 2137 case ICMP_PARAMPROB: 2138 /* These will not be used, but set them anyway */ 2139 *icmp_dir = PF_IN; 2140 *virtual_type = type; 2141 *virtual_id = 0; 2142 HTONS(*virtual_type); 2143 return (1); /* These types match to another state */ 2144 2145 /* 2146 * All remaining ICMP types get their own states, 2147 * and will only match in one direction. 2148 */ 2149 default: 2150 *icmp_dir = PF_IN; 2151 *virtual_type = type; 2152 *virtual_id = 0; 2153 break; 2154 } 2155 break; 2156 #endif /* INET */ 2157 #ifdef INET6 2158 case AF_INET6: 2159 switch (type) { 2160 case ICMP6_ECHO_REQUEST: 2161 *icmp_dir = PF_IN; 2162 case ICMP6_ECHO_REPLY: 2163 *virtual_type = ICMP6_ECHO_REQUEST; 2164 *virtual_id = pd->hdr.icmp6.icmp6_id; 2165 break; 2166 2167 case MLD_LISTENER_QUERY: 2168 case MLD_LISTENER_REPORT: { 2169 /* 2170 * Listener Report can be sent by clients 2171 * without an associated Listener Query. 2172 * In addition to that, when Report is sent as a 2173 * reply to a Query its source and destination 2174 * address are different. 2175 */ 2176 *icmp_dir = PF_IN; 2177 *virtual_type = MLD_LISTENER_QUERY; 2178 *virtual_id = 0; 2179 break; 2180 } 2181 case MLD_MTRACE: 2182 *icmp_dir = PF_IN; 2183 case MLD_MTRACE_RESP: 2184 *virtual_type = MLD_MTRACE; 2185 *virtual_id = 0; /* Nothing sane to match on! */ 2186 break; 2187 2188 case ND_NEIGHBOR_SOLICIT: 2189 *icmp_dir = PF_IN; 2190 case ND_NEIGHBOR_ADVERT: { 2191 *virtual_type = ND_NEIGHBOR_SOLICIT; 2192 *virtual_id = 0; 2193 break; 2194 } 2195 2196 /* 2197 * These ICMP types map to other connections. 2198 * ND_REDIRECT can't be in this list because the triggering 2199 * packet header is optional. 2200 */ 2201 case ICMP6_DST_UNREACH: 2202 case ICMP6_PACKET_TOO_BIG: 2203 case ICMP6_TIME_EXCEEDED: 2204 case ICMP6_PARAM_PROB: 2205 /* These will not be used, but set them anyway */ 2206 *icmp_dir = PF_IN; 2207 *virtual_type = type; 2208 *virtual_id = 0; 2209 HTONS(*virtual_type); 2210 return (1); /* These types match to another state */ 2211 /* 2212 * All remaining ICMP6 types get their own states, 2213 * and will only match in one direction. 2214 */ 2215 default: 2216 *icmp_dir = PF_IN; 2217 *virtual_type = type; 2218 *virtual_id = 0; 2219 break; 2220 } 2221 break; 2222 #endif /* INET6 */ 2223 } 2224 HTONS(*virtual_type); 2225 return (0); /* These types match to their own state */ 2226 } 2227 2228 void 2229 pf_intr(void *v) 2230 { 2231 struct epoch_tracker et; 2232 struct pf_send_head queue; 2233 struct pf_send_entry *pfse, *next; 2234 2235 CURVNET_SET((struct vnet *)v); 2236 2237 PF_SENDQ_LOCK(); 2238 queue = V_pf_sendqueue; 2239 STAILQ_INIT(&V_pf_sendqueue); 2240 PF_SENDQ_UNLOCK(); 2241 2242 NET_EPOCH_ENTER(et); 2243 2244 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2245 switch (pfse->pfse_type) { 2246 #ifdef INET 2247 case PFSE_IP: { 2248 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2249 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2250 ("%s: rcvif != loif", __func__)); 2251 2252 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2253 pfse->pfse_m->m_pkthdr.csum_flags |= 2254 CSUM_IP_VALID | CSUM_IP_CHECKED; 2255 ip_input(pfse->pfse_m); 2256 } else { 2257 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2258 NULL); 2259 } 2260 break; 2261 } 2262 case PFSE_ICMP: 2263 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2264 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2265 break; 2266 #endif /* INET */ 2267 #ifdef INET6 2268 case PFSE_IP6: 2269 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2270 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2271 ("%s: rcvif != loif", __func__)); 2272 2273 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2274 M_LOOP; 2275 ip6_input(pfse->pfse_m); 2276 } else { 2277 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2278 NULL, NULL); 2279 } 2280 break; 2281 case PFSE_ICMP6: 2282 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2283 pfse->icmpopts.code, pfse->icmpopts.mtu); 2284 break; 2285 #endif /* INET6 */ 2286 default: 2287 panic("%s: unknown type", __func__); 2288 } 2289 free(pfse, M_PFTEMP); 2290 } 2291 NET_EPOCH_EXIT(et); 2292 CURVNET_RESTORE(); 2293 } 2294 2295 #define pf_purge_thread_period (hz / 10) 2296 2297 #ifdef PF_WANT_32_TO_64_COUNTER 2298 static void 2299 pf_status_counter_u64_periodic(void) 2300 { 2301 2302 PF_RULES_RASSERT(); 2303 2304 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2305 return; 2306 } 2307 2308 for (int i = 0; i < FCNT_MAX; i++) { 2309 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2310 } 2311 } 2312 2313 static void 2314 pf_kif_counter_u64_periodic(void) 2315 { 2316 struct pfi_kkif *kif; 2317 size_t r, run; 2318 2319 PF_RULES_RASSERT(); 2320 2321 if (__predict_false(V_pf_allkifcount == 0)) { 2322 return; 2323 } 2324 2325 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2326 return; 2327 } 2328 2329 run = V_pf_allkifcount / 10; 2330 if (run < 5) 2331 run = 5; 2332 2333 for (r = 0; r < run; r++) { 2334 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2335 if (kif == NULL) { 2336 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2337 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2338 break; 2339 } 2340 2341 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2342 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2343 2344 for (int i = 0; i < 2; i++) { 2345 for (int j = 0; j < 2; j++) { 2346 for (int k = 0; k < 2; k++) { 2347 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2348 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2349 } 2350 } 2351 } 2352 } 2353 } 2354 2355 static void 2356 pf_rule_counter_u64_periodic(void) 2357 { 2358 struct pf_krule *rule; 2359 size_t r, run; 2360 2361 PF_RULES_RASSERT(); 2362 2363 if (__predict_false(V_pf_allrulecount == 0)) { 2364 return; 2365 } 2366 2367 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2368 return; 2369 } 2370 2371 run = V_pf_allrulecount / 10; 2372 if (run < 5) 2373 run = 5; 2374 2375 for (r = 0; r < run; r++) { 2376 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2377 if (rule == NULL) { 2378 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2379 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2380 break; 2381 } 2382 2383 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2384 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2385 2386 pf_counter_u64_periodic(&rule->evaluations); 2387 for (int i = 0; i < 2; i++) { 2388 pf_counter_u64_periodic(&rule->packets[i]); 2389 pf_counter_u64_periodic(&rule->bytes[i]); 2390 } 2391 } 2392 } 2393 2394 static void 2395 pf_counter_u64_periodic_main(void) 2396 { 2397 PF_RULES_RLOCK_TRACKER; 2398 2399 V_pf_counter_periodic_iter++; 2400 2401 PF_RULES_RLOCK(); 2402 pf_counter_u64_critical_enter(); 2403 pf_status_counter_u64_periodic(); 2404 pf_kif_counter_u64_periodic(); 2405 pf_rule_counter_u64_periodic(); 2406 pf_counter_u64_critical_exit(); 2407 PF_RULES_RUNLOCK(); 2408 } 2409 #else 2410 #define pf_counter_u64_periodic_main() do { } while (0) 2411 #endif 2412 2413 void 2414 pf_purge_thread(void *unused __unused) 2415 { 2416 struct epoch_tracker et; 2417 2418 VNET_ITERATOR_DECL(vnet_iter); 2419 2420 sx_xlock(&pf_end_lock); 2421 while (pf_end_threads == 0) { 2422 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2423 2424 VNET_LIST_RLOCK(); 2425 NET_EPOCH_ENTER(et); 2426 VNET_FOREACH(vnet_iter) { 2427 CURVNET_SET(vnet_iter); 2428 2429 /* Wait until V_pf_default_rule is initialized. */ 2430 if (V_pf_vnet_active == 0) { 2431 CURVNET_RESTORE(); 2432 continue; 2433 } 2434 2435 pf_counter_u64_periodic_main(); 2436 2437 /* 2438 * Process 1/interval fraction of the state 2439 * table every run. 2440 */ 2441 V_pf_purge_idx = 2442 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2443 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2444 2445 /* 2446 * Purge other expired types every 2447 * PFTM_INTERVAL seconds. 2448 */ 2449 if (V_pf_purge_idx == 0) { 2450 /* 2451 * Order is important: 2452 * - states and src nodes reference rules 2453 * - states and rules reference kifs 2454 */ 2455 pf_purge_expired_fragments(); 2456 pf_purge_expired_src_nodes(); 2457 pf_purge_unlinked_rules(); 2458 pfi_kkif_purge(); 2459 } 2460 CURVNET_RESTORE(); 2461 } 2462 NET_EPOCH_EXIT(et); 2463 VNET_LIST_RUNLOCK(); 2464 } 2465 2466 pf_end_threads++; 2467 sx_xunlock(&pf_end_lock); 2468 kproc_exit(0); 2469 } 2470 2471 void 2472 pf_unload_vnet_purge(void) 2473 { 2474 2475 /* 2476 * To cleanse up all kifs and rules we need 2477 * two runs: first one clears reference flags, 2478 * then pf_purge_expired_states() doesn't 2479 * raise them, and then second run frees. 2480 */ 2481 pf_purge_unlinked_rules(); 2482 pfi_kkif_purge(); 2483 2484 /* 2485 * Now purge everything. 2486 */ 2487 pf_purge_expired_states(0, V_pf_hashmask); 2488 pf_purge_fragments(UINT_MAX); 2489 pf_purge_expired_src_nodes(); 2490 2491 /* 2492 * Now all kifs & rules should be unreferenced, 2493 * thus should be successfully freed. 2494 */ 2495 pf_purge_unlinked_rules(); 2496 pfi_kkif_purge(); 2497 } 2498 2499 u_int32_t 2500 pf_state_expires(const struct pf_kstate *state) 2501 { 2502 u_int32_t timeout; 2503 u_int32_t start; 2504 u_int32_t end; 2505 u_int32_t states; 2506 2507 /* handle all PFTM_* > PFTM_MAX here */ 2508 if (state->timeout == PFTM_PURGE) 2509 return (time_uptime); 2510 KASSERT(state->timeout != PFTM_UNLINKED, 2511 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2512 KASSERT((state->timeout < PFTM_MAX), 2513 ("pf_state_expires: timeout > PFTM_MAX")); 2514 timeout = state->rule->timeout[state->timeout]; 2515 if (!timeout) 2516 timeout = V_pf_default_rule.timeout[state->timeout]; 2517 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2518 if (start && state->rule != &V_pf_default_rule) { 2519 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2520 states = counter_u64_fetch(state->rule->states_cur); 2521 } else { 2522 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2523 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2524 states = V_pf_status.states; 2525 } 2526 if (end && states > start && start < end) { 2527 if (states < end) { 2528 timeout = (u_int64_t)timeout * (end - states) / 2529 (end - start); 2530 return ((state->expire / 1000) + timeout); 2531 } 2532 else 2533 return (time_uptime); 2534 } 2535 return ((state->expire / 1000) + timeout); 2536 } 2537 2538 void 2539 pf_purge_expired_src_nodes(void) 2540 { 2541 struct pf_ksrc_node_list freelist; 2542 struct pf_srchash *sh; 2543 struct pf_ksrc_node *cur, *next; 2544 int i; 2545 2546 LIST_INIT(&freelist); 2547 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2548 PF_HASHROW_LOCK(sh); 2549 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2550 if (cur->states == 0 && cur->expire <= time_uptime) { 2551 pf_unlink_src_node(cur); 2552 LIST_INSERT_HEAD(&freelist, cur, entry); 2553 } else if (cur->rule != NULL) 2554 cur->rule->rule_ref |= PFRULE_REFS; 2555 PF_HASHROW_UNLOCK(sh); 2556 } 2557 2558 pf_free_src_nodes(&freelist); 2559 2560 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2561 } 2562 2563 static void 2564 pf_src_tree_remove_state(struct pf_kstate *s) 2565 { 2566 struct pf_ksrc_node *sn; 2567 uint32_t timeout; 2568 2569 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2570 s->rule->timeout[PFTM_SRC_NODE] : 2571 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2572 2573 if (s->src_node != NULL) { 2574 sn = s->src_node; 2575 PF_SRC_NODE_LOCK(sn); 2576 if (s->src.tcp_est) 2577 --sn->conn; 2578 if (--sn->states == 0) 2579 sn->expire = time_uptime + timeout; 2580 PF_SRC_NODE_UNLOCK(sn); 2581 } 2582 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2583 sn = s->nat_src_node; 2584 PF_SRC_NODE_LOCK(sn); 2585 if (--sn->states == 0) 2586 sn->expire = time_uptime + timeout; 2587 PF_SRC_NODE_UNLOCK(sn); 2588 } 2589 s->src_node = s->nat_src_node = NULL; 2590 } 2591 2592 /* 2593 * Unlink and potentilly free a state. Function may be 2594 * called with ID hash row locked, but always returns 2595 * unlocked, since it needs to go through key hash locking. 2596 */ 2597 int 2598 pf_unlink_state(struct pf_kstate *s) 2599 { 2600 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2601 2602 NET_EPOCH_ASSERT(); 2603 PF_HASHROW_ASSERT(ih); 2604 2605 if (s->timeout == PFTM_UNLINKED) { 2606 /* 2607 * State is being processed 2608 * by pf_unlink_state() in 2609 * an other thread. 2610 */ 2611 PF_HASHROW_UNLOCK(ih); 2612 return (0); /* XXXGL: undefined actually */ 2613 } 2614 2615 if (s->src.state == PF_TCPS_PROXY_DST) { 2616 /* XXX wire key the right one? */ 2617 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2618 &s->key[PF_SK_WIRE]->addr[1], 2619 &s->key[PF_SK_WIRE]->addr[0], 2620 s->key[PF_SK_WIRE]->port[1], 2621 s->key[PF_SK_WIRE]->port[0], 2622 s->src.seqhi, s->src.seqlo + 1, 2623 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2624 s->act.rtableid); 2625 } 2626 2627 LIST_REMOVE(s, entry); 2628 pf_src_tree_remove_state(s); 2629 2630 if (V_pfsync_delete_state_ptr != NULL) 2631 V_pfsync_delete_state_ptr(s); 2632 2633 STATE_DEC_COUNTERS(s); 2634 2635 s->timeout = PFTM_UNLINKED; 2636 2637 /* Ensure we remove it from the list of halfopen states, if needed. */ 2638 if (s->key[PF_SK_STACK] != NULL && 2639 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2640 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2641 2642 PF_HASHROW_UNLOCK(ih); 2643 2644 pf_detach_state(s); 2645 2646 pf_udp_mapping_release(s->udp_mapping); 2647 2648 /* pf_state_insert() initialises refs to 2 */ 2649 return (pf_release_staten(s, 2)); 2650 } 2651 2652 struct pf_kstate * 2653 pf_alloc_state(int flags) 2654 { 2655 2656 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2657 } 2658 2659 void 2660 pf_free_state(struct pf_kstate *cur) 2661 { 2662 struct pf_krule_item *ri; 2663 2664 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2665 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2666 cur->timeout)); 2667 2668 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2669 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2670 free(ri, M_PF_RULE_ITEM); 2671 } 2672 2673 pf_normalize_tcp_cleanup(cur); 2674 uma_zfree(V_pf_state_z, cur); 2675 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2676 } 2677 2678 /* 2679 * Called only from pf_purge_thread(), thus serialized. 2680 */ 2681 static u_int 2682 pf_purge_expired_states(u_int i, int maxcheck) 2683 { 2684 struct pf_idhash *ih; 2685 struct pf_kstate *s; 2686 struct pf_krule_item *mrm; 2687 size_t count __unused; 2688 2689 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2690 2691 /* 2692 * Go through hash and unlink states that expire now. 2693 */ 2694 while (maxcheck > 0) { 2695 count = 0; 2696 ih = &V_pf_idhash[i]; 2697 2698 /* only take the lock if we expect to do work */ 2699 if (!LIST_EMPTY(&ih->states)) { 2700 relock: 2701 PF_HASHROW_LOCK(ih); 2702 LIST_FOREACH(s, &ih->states, entry) { 2703 if (pf_state_expires(s) <= time_uptime) { 2704 V_pf_status.states -= 2705 pf_unlink_state(s); 2706 goto relock; 2707 } 2708 s->rule->rule_ref |= PFRULE_REFS; 2709 if (s->nat_rule != NULL) 2710 s->nat_rule->rule_ref |= PFRULE_REFS; 2711 if (s->anchor != NULL) 2712 s->anchor->rule_ref |= PFRULE_REFS; 2713 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2714 SLIST_FOREACH(mrm, &s->match_rules, entry) 2715 mrm->r->rule_ref |= PFRULE_REFS; 2716 if (s->act.rt_kif) 2717 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2718 count++; 2719 } 2720 PF_HASHROW_UNLOCK(ih); 2721 } 2722 2723 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2724 2725 /* Return when we hit end of hash. */ 2726 if (++i > V_pf_hashmask) { 2727 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2728 return (0); 2729 } 2730 2731 maxcheck--; 2732 } 2733 2734 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2735 2736 return (i); 2737 } 2738 2739 static void 2740 pf_purge_unlinked_rules(void) 2741 { 2742 struct pf_krulequeue tmpq; 2743 struct pf_krule *r, *r1; 2744 2745 /* 2746 * If we have overloading task pending, then we'd 2747 * better skip purging this time. There is a tiny 2748 * probability that overloading task references 2749 * an already unlinked rule. 2750 */ 2751 PF_OVERLOADQ_LOCK(); 2752 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2753 PF_OVERLOADQ_UNLOCK(); 2754 return; 2755 } 2756 PF_OVERLOADQ_UNLOCK(); 2757 2758 /* 2759 * Do naive mark-and-sweep garbage collecting of old rules. 2760 * Reference flag is raised by pf_purge_expired_states() 2761 * and pf_purge_expired_src_nodes(). 2762 * 2763 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2764 * use a temporary queue. 2765 */ 2766 TAILQ_INIT(&tmpq); 2767 PF_UNLNKDRULES_LOCK(); 2768 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2769 if (!(r->rule_ref & PFRULE_REFS)) { 2770 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2771 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2772 } else 2773 r->rule_ref &= ~PFRULE_REFS; 2774 } 2775 PF_UNLNKDRULES_UNLOCK(); 2776 2777 if (!TAILQ_EMPTY(&tmpq)) { 2778 PF_CONFIG_LOCK(); 2779 PF_RULES_WLOCK(); 2780 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2781 TAILQ_REMOVE(&tmpq, r, entries); 2782 pf_free_rule(r); 2783 } 2784 PF_RULES_WUNLOCK(); 2785 PF_CONFIG_UNLOCK(); 2786 } 2787 } 2788 2789 void 2790 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2791 { 2792 switch (af) { 2793 #ifdef INET 2794 case AF_INET: { 2795 u_int32_t a = ntohl(addr->addr32[0]); 2796 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2797 (a>>8)&255, a&255); 2798 if (p) { 2799 p = ntohs(p); 2800 printf(":%u", p); 2801 } 2802 break; 2803 } 2804 #endif /* INET */ 2805 #ifdef INET6 2806 case AF_INET6: { 2807 u_int16_t b; 2808 u_int8_t i, curstart, curend, maxstart, maxend; 2809 curstart = curend = maxstart = maxend = 255; 2810 for (i = 0; i < 8; i++) { 2811 if (!addr->addr16[i]) { 2812 if (curstart == 255) 2813 curstart = i; 2814 curend = i; 2815 } else { 2816 if ((curend - curstart) > 2817 (maxend - maxstart)) { 2818 maxstart = curstart; 2819 maxend = curend; 2820 } 2821 curstart = curend = 255; 2822 } 2823 } 2824 if ((curend - curstart) > 2825 (maxend - maxstart)) { 2826 maxstart = curstart; 2827 maxend = curend; 2828 } 2829 for (i = 0; i < 8; i++) { 2830 if (i >= maxstart && i <= maxend) { 2831 if (i == 0) 2832 printf(":"); 2833 if (i == maxend) 2834 printf(":"); 2835 } else { 2836 b = ntohs(addr->addr16[i]); 2837 printf("%x", b); 2838 if (i < 7) 2839 printf(":"); 2840 } 2841 } 2842 if (p) { 2843 p = ntohs(p); 2844 printf("[%u]", p); 2845 } 2846 break; 2847 } 2848 #endif /* INET6 */ 2849 } 2850 } 2851 2852 void 2853 pf_print_state(struct pf_kstate *s) 2854 { 2855 pf_print_state_parts(s, NULL, NULL); 2856 } 2857 2858 static void 2859 pf_print_state_parts(struct pf_kstate *s, 2860 struct pf_state_key *skwp, struct pf_state_key *sksp) 2861 { 2862 struct pf_state_key *skw, *sks; 2863 u_int8_t proto, dir; 2864 2865 /* Do our best to fill these, but they're skipped if NULL */ 2866 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2867 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2868 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2869 dir = s ? s->direction : 0; 2870 2871 switch (proto) { 2872 case IPPROTO_IPV4: 2873 printf("IPv4"); 2874 break; 2875 case IPPROTO_IPV6: 2876 printf("IPv6"); 2877 break; 2878 case IPPROTO_TCP: 2879 printf("TCP"); 2880 break; 2881 case IPPROTO_UDP: 2882 printf("UDP"); 2883 break; 2884 case IPPROTO_ICMP: 2885 printf("ICMP"); 2886 break; 2887 case IPPROTO_ICMPV6: 2888 printf("ICMPv6"); 2889 break; 2890 default: 2891 printf("%u", proto); 2892 break; 2893 } 2894 switch (dir) { 2895 case PF_IN: 2896 printf(" in"); 2897 break; 2898 case PF_OUT: 2899 printf(" out"); 2900 break; 2901 } 2902 if (skw) { 2903 printf(" wire: "); 2904 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2905 printf(" "); 2906 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2907 } 2908 if (sks) { 2909 printf(" stack: "); 2910 if (sks != skw) { 2911 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2912 printf(" "); 2913 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2914 } else 2915 printf("-"); 2916 } 2917 if (s) { 2918 if (proto == IPPROTO_TCP) { 2919 printf(" [lo=%u high=%u win=%u modulator=%u", 2920 s->src.seqlo, s->src.seqhi, 2921 s->src.max_win, s->src.seqdiff); 2922 if (s->src.wscale && s->dst.wscale) 2923 printf(" wscale=%u", 2924 s->src.wscale & PF_WSCALE_MASK); 2925 printf("]"); 2926 printf(" [lo=%u high=%u win=%u modulator=%u", 2927 s->dst.seqlo, s->dst.seqhi, 2928 s->dst.max_win, s->dst.seqdiff); 2929 if (s->src.wscale && s->dst.wscale) 2930 printf(" wscale=%u", 2931 s->dst.wscale & PF_WSCALE_MASK); 2932 printf("]"); 2933 } 2934 printf(" %u:%u", s->src.state, s->dst.state); 2935 if (s->rule) 2936 printf(" @%d", s->rule->nr); 2937 } 2938 } 2939 2940 void 2941 pf_print_flags(uint16_t f) 2942 { 2943 if (f) 2944 printf(" "); 2945 if (f & TH_FIN) 2946 printf("F"); 2947 if (f & TH_SYN) 2948 printf("S"); 2949 if (f & TH_RST) 2950 printf("R"); 2951 if (f & TH_PUSH) 2952 printf("P"); 2953 if (f & TH_ACK) 2954 printf("A"); 2955 if (f & TH_URG) 2956 printf("U"); 2957 if (f & TH_ECE) 2958 printf("E"); 2959 if (f & TH_CWR) 2960 printf("W"); 2961 if (f & TH_AE) 2962 printf("e"); 2963 } 2964 2965 #define PF_SET_SKIP_STEPS(i) \ 2966 do { \ 2967 while (head[i] != cur) { \ 2968 head[i]->skip[i] = cur; \ 2969 head[i] = TAILQ_NEXT(head[i], entries); \ 2970 } \ 2971 } while (0) 2972 2973 void 2974 pf_calc_skip_steps(struct pf_krulequeue *rules) 2975 { 2976 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2977 int i; 2978 2979 cur = TAILQ_FIRST(rules); 2980 prev = cur; 2981 for (i = 0; i < PF_SKIP_COUNT; ++i) 2982 head[i] = cur; 2983 while (cur != NULL) { 2984 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2985 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2986 if (cur->direction != prev->direction) 2987 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2988 if (cur->af != prev->af) 2989 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2990 if (cur->proto != prev->proto) 2991 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2992 if (cur->src.neg != prev->src.neg || 2993 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2994 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2995 if (cur->dst.neg != prev->dst.neg || 2996 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2997 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2998 if (cur->src.port[0] != prev->src.port[0] || 2999 cur->src.port[1] != prev->src.port[1] || 3000 cur->src.port_op != prev->src.port_op) 3001 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3002 if (cur->dst.port[0] != prev->dst.port[0] || 3003 cur->dst.port[1] != prev->dst.port[1] || 3004 cur->dst.port_op != prev->dst.port_op) 3005 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3006 3007 prev = cur; 3008 cur = TAILQ_NEXT(cur, entries); 3009 } 3010 for (i = 0; i < PF_SKIP_COUNT; ++i) 3011 PF_SET_SKIP_STEPS(i); 3012 } 3013 3014 int 3015 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3016 { 3017 if (aw1->type != aw2->type) 3018 return (1); 3019 switch (aw1->type) { 3020 case PF_ADDR_ADDRMASK: 3021 case PF_ADDR_RANGE: 3022 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3023 return (1); 3024 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3025 return (1); 3026 return (0); 3027 case PF_ADDR_DYNIFTL: 3028 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3029 case PF_ADDR_NOROUTE: 3030 case PF_ADDR_URPFFAILED: 3031 return (0); 3032 case PF_ADDR_TABLE: 3033 return (aw1->p.tbl != aw2->p.tbl); 3034 default: 3035 printf("invalid address type: %d\n", aw1->type); 3036 return (1); 3037 } 3038 } 3039 3040 /** 3041 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3042 * header isn't always a full checksum. In some cases (i.e. output) it's a 3043 * pseudo-header checksum, which is a partial checksum over src/dst IP 3044 * addresses, protocol number and length. 3045 * 3046 * That means we have the following cases: 3047 * * Input or forwarding: we don't have TSO, the checksum fields are full 3048 * checksums, we need to update the checksum whenever we change anything. 3049 * * Output (i.e. the checksum is a pseudo-header checksum): 3050 * x The field being updated is src/dst address or affects the length of 3051 * the packet. We need to update the pseudo-header checksum (note that this 3052 * checksum is not ones' complement). 3053 * x Some other field is being modified (e.g. src/dst port numbers): We 3054 * don't have to update anything. 3055 **/ 3056 u_int16_t 3057 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3058 { 3059 u_int32_t x; 3060 3061 x = cksum + old - new; 3062 x = (x + (x >> 16)) & 0xffff; 3063 3064 /* optimise: eliminate a branch when not udp */ 3065 if (udp && cksum == 0x0000) 3066 return cksum; 3067 if (udp && x == 0x0000) 3068 x = 0xffff; 3069 3070 return (u_int16_t)(x); 3071 } 3072 3073 static void 3074 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3075 u_int8_t udp) 3076 { 3077 u_int16_t old = htons(hi ? (*f << 8) : *f); 3078 u_int16_t new = htons(hi ? ( v << 8) : v); 3079 3080 if (*f == v) 3081 return; 3082 3083 *f = v; 3084 3085 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3086 return; 3087 3088 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3089 } 3090 3091 void 3092 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3093 bool hi, u_int8_t udp) 3094 { 3095 u_int8_t *fb = (u_int8_t *)f; 3096 u_int8_t *vb = (u_int8_t *)&v; 3097 3098 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3099 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3100 } 3101 3102 void 3103 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3104 bool hi, u_int8_t udp) 3105 { 3106 u_int8_t *fb = (u_int8_t *)f; 3107 u_int8_t *vb = (u_int8_t *)&v; 3108 3109 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3110 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3111 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3112 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3113 } 3114 3115 u_int16_t 3116 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3117 u_int16_t new, u_int8_t udp) 3118 { 3119 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3120 return (cksum); 3121 3122 return (pf_cksum_fixup(cksum, old, new, udp)); 3123 } 3124 3125 static void 3126 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3127 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3128 sa_family_t af) 3129 { 3130 struct pf_addr ao; 3131 u_int16_t po = *p; 3132 3133 PF_ACPY(&ao, a, af); 3134 PF_ACPY(a, an, af); 3135 3136 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3137 *pc = ~*pc; 3138 3139 *p = pn; 3140 3141 switch (af) { 3142 #ifdef INET 3143 case AF_INET: 3144 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3145 ao.addr16[0], an->addr16[0], 0), 3146 ao.addr16[1], an->addr16[1], 0); 3147 *p = pn; 3148 3149 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3150 ao.addr16[0], an->addr16[0], u), 3151 ao.addr16[1], an->addr16[1], u); 3152 3153 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3154 break; 3155 #endif /* INET */ 3156 #ifdef INET6 3157 case AF_INET6: 3158 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3159 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3160 pf_cksum_fixup(pf_cksum_fixup(*pc, 3161 ao.addr16[0], an->addr16[0], u), 3162 ao.addr16[1], an->addr16[1], u), 3163 ao.addr16[2], an->addr16[2], u), 3164 ao.addr16[3], an->addr16[3], u), 3165 ao.addr16[4], an->addr16[4], u), 3166 ao.addr16[5], an->addr16[5], u), 3167 ao.addr16[6], an->addr16[6], u), 3168 ao.addr16[7], an->addr16[7], u); 3169 3170 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3171 break; 3172 #endif /* INET6 */ 3173 } 3174 3175 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3176 CSUM_DELAY_DATA_IPV6)) { 3177 *pc = ~*pc; 3178 if (! *pc) 3179 *pc = 0xffff; 3180 } 3181 } 3182 3183 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3184 void 3185 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3186 { 3187 u_int32_t ao; 3188 3189 memcpy(&ao, a, sizeof(ao)); 3190 memcpy(a, &an, sizeof(u_int32_t)); 3191 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3192 ao % 65536, an % 65536, u); 3193 } 3194 3195 void 3196 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3197 { 3198 u_int32_t ao; 3199 3200 memcpy(&ao, a, sizeof(ao)); 3201 memcpy(a, &an, sizeof(u_int32_t)); 3202 3203 *c = pf_proto_cksum_fixup(m, 3204 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3205 ao % 65536, an % 65536, udp); 3206 } 3207 3208 #ifdef INET6 3209 static void 3210 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3211 { 3212 struct pf_addr ao; 3213 3214 PF_ACPY(&ao, a, AF_INET6); 3215 PF_ACPY(a, an, AF_INET6); 3216 3217 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3218 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3219 pf_cksum_fixup(pf_cksum_fixup(*c, 3220 ao.addr16[0], an->addr16[0], u), 3221 ao.addr16[1], an->addr16[1], u), 3222 ao.addr16[2], an->addr16[2], u), 3223 ao.addr16[3], an->addr16[3], u), 3224 ao.addr16[4], an->addr16[4], u), 3225 ao.addr16[5], an->addr16[5], u), 3226 ao.addr16[6], an->addr16[6], u), 3227 ao.addr16[7], an->addr16[7], u); 3228 } 3229 #endif /* INET6 */ 3230 3231 static void 3232 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3233 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3234 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3235 { 3236 struct pf_addr oia, ooa; 3237 3238 PF_ACPY(&oia, ia, af); 3239 if (oa) 3240 PF_ACPY(&ooa, oa, af); 3241 3242 /* Change inner protocol port, fix inner protocol checksum. */ 3243 if (ip != NULL) { 3244 u_int16_t oip = *ip; 3245 u_int32_t opc; 3246 3247 if (pc != NULL) 3248 opc = *pc; 3249 *ip = np; 3250 if (pc != NULL) 3251 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3252 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3253 if (pc != NULL) 3254 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3255 } 3256 /* Change inner ip address, fix inner ip and icmp checksums. */ 3257 PF_ACPY(ia, na, af); 3258 switch (af) { 3259 #ifdef INET 3260 case AF_INET: { 3261 u_int32_t oh2c = *h2c; 3262 3263 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3264 oia.addr16[0], ia->addr16[0], 0), 3265 oia.addr16[1], ia->addr16[1], 0); 3266 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3267 oia.addr16[0], ia->addr16[0], 0), 3268 oia.addr16[1], ia->addr16[1], 0); 3269 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3270 break; 3271 } 3272 #endif /* INET */ 3273 #ifdef INET6 3274 case AF_INET6: 3275 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3276 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3277 pf_cksum_fixup(pf_cksum_fixup(*ic, 3278 oia.addr16[0], ia->addr16[0], u), 3279 oia.addr16[1], ia->addr16[1], u), 3280 oia.addr16[2], ia->addr16[2], u), 3281 oia.addr16[3], ia->addr16[3], u), 3282 oia.addr16[4], ia->addr16[4], u), 3283 oia.addr16[5], ia->addr16[5], u), 3284 oia.addr16[6], ia->addr16[6], u), 3285 oia.addr16[7], ia->addr16[7], u); 3286 break; 3287 #endif /* INET6 */ 3288 } 3289 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3290 if (oa) { 3291 PF_ACPY(oa, na, af); 3292 switch (af) { 3293 #ifdef INET 3294 case AF_INET: 3295 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3296 ooa.addr16[0], oa->addr16[0], 0), 3297 ooa.addr16[1], oa->addr16[1], 0); 3298 break; 3299 #endif /* INET */ 3300 #ifdef INET6 3301 case AF_INET6: 3302 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3303 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3304 pf_cksum_fixup(pf_cksum_fixup(*ic, 3305 ooa.addr16[0], oa->addr16[0], u), 3306 ooa.addr16[1], oa->addr16[1], u), 3307 ooa.addr16[2], oa->addr16[2], u), 3308 ooa.addr16[3], oa->addr16[3], u), 3309 ooa.addr16[4], oa->addr16[4], u), 3310 ooa.addr16[5], oa->addr16[5], u), 3311 ooa.addr16[6], oa->addr16[6], u), 3312 ooa.addr16[7], oa->addr16[7], u); 3313 break; 3314 #endif /* INET6 */ 3315 } 3316 } 3317 } 3318 3319 /* 3320 * Need to modulate the sequence numbers in the TCP SACK option 3321 * (credits to Krzysztof Pfaff for report and patch) 3322 */ 3323 static int 3324 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3325 struct pf_state_peer *dst) 3326 { 3327 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3328 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3329 int copyback = 0, i, olen; 3330 struct sackblk sack; 3331 3332 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3333 if (hlen < TCPOLEN_SACKLEN || 3334 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3335 return 0; 3336 3337 while (hlen >= TCPOLEN_SACKLEN) { 3338 size_t startoff = opt - opts; 3339 olen = opt[1]; 3340 switch (*opt) { 3341 case TCPOPT_EOL: /* FALLTHROUGH */ 3342 case TCPOPT_NOP: 3343 opt++; 3344 hlen--; 3345 break; 3346 case TCPOPT_SACK: 3347 if (olen > hlen) 3348 olen = hlen; 3349 if (olen >= TCPOLEN_SACKLEN) { 3350 for (i = 2; i + TCPOLEN_SACK <= olen; 3351 i += TCPOLEN_SACK) { 3352 memcpy(&sack, &opt[i], sizeof(sack)); 3353 pf_patch_32_unaligned(pd->m, 3354 &th->th_sum, &sack.start, 3355 htonl(ntohl(sack.start) - dst->seqdiff), 3356 PF_ALGNMNT(startoff), 3357 0); 3358 pf_patch_32_unaligned(pd->m, &th->th_sum, 3359 &sack.end, 3360 htonl(ntohl(sack.end) - dst->seqdiff), 3361 PF_ALGNMNT(startoff), 3362 0); 3363 memcpy(&opt[i], &sack, sizeof(sack)); 3364 } 3365 copyback = 1; 3366 } 3367 /* FALLTHROUGH */ 3368 default: 3369 if (olen < 2) 3370 olen = 2; 3371 hlen -= olen; 3372 opt += olen; 3373 } 3374 } 3375 3376 if (copyback) 3377 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3378 return (copyback); 3379 } 3380 3381 struct mbuf * 3382 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3383 const struct pf_addr *saddr, const struct pf_addr *daddr, 3384 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3385 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3386 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3387 { 3388 struct mbuf *m; 3389 int len, tlen; 3390 #ifdef INET 3391 struct ip *h = NULL; 3392 #endif /* INET */ 3393 #ifdef INET6 3394 struct ip6_hdr *h6 = NULL; 3395 #endif /* INET6 */ 3396 struct tcphdr *th; 3397 char *opt; 3398 struct pf_mtag *pf_mtag; 3399 3400 len = 0; 3401 th = NULL; 3402 3403 /* maximum segment size tcp option */ 3404 tlen = sizeof(struct tcphdr); 3405 if (mss) 3406 tlen += 4; 3407 3408 switch (af) { 3409 #ifdef INET 3410 case AF_INET: 3411 len = sizeof(struct ip) + tlen; 3412 break; 3413 #endif /* INET */ 3414 #ifdef INET6 3415 case AF_INET6: 3416 len = sizeof(struct ip6_hdr) + tlen; 3417 break; 3418 #endif /* INET6 */ 3419 } 3420 3421 m = m_gethdr(M_NOWAIT, MT_DATA); 3422 if (m == NULL) 3423 return (NULL); 3424 3425 #ifdef MAC 3426 mac_netinet_firewall_send(m); 3427 #endif 3428 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3429 m_freem(m); 3430 return (NULL); 3431 } 3432 m->m_flags |= mbuf_flags; 3433 pf_mtag->tag = mtag_tag; 3434 pf_mtag->flags = mtag_flags; 3435 3436 if (rtableid >= 0) 3437 M_SETFIB(m, rtableid); 3438 3439 #ifdef ALTQ 3440 if (r != NULL && r->qid) { 3441 pf_mtag->qid = r->qid; 3442 3443 /* add hints for ecn */ 3444 pf_mtag->hdr = mtod(m, struct ip *); 3445 } 3446 #endif /* ALTQ */ 3447 m->m_data += max_linkhdr; 3448 m->m_pkthdr.len = m->m_len = len; 3449 /* The rest of the stack assumes a rcvif, so provide one. 3450 * This is a locally generated packet, so .. close enough. */ 3451 m->m_pkthdr.rcvif = V_loif; 3452 bzero(m->m_data, len); 3453 switch (af) { 3454 #ifdef INET 3455 case AF_INET: 3456 h = mtod(m, struct ip *); 3457 3458 /* IP header fields included in the TCP checksum */ 3459 h->ip_p = IPPROTO_TCP; 3460 h->ip_len = htons(tlen); 3461 h->ip_src.s_addr = saddr->v4.s_addr; 3462 h->ip_dst.s_addr = daddr->v4.s_addr; 3463 3464 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3465 break; 3466 #endif /* INET */ 3467 #ifdef INET6 3468 case AF_INET6: 3469 h6 = mtod(m, struct ip6_hdr *); 3470 3471 /* IP header fields included in the TCP checksum */ 3472 h6->ip6_nxt = IPPROTO_TCP; 3473 h6->ip6_plen = htons(tlen); 3474 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3475 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3476 3477 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3478 break; 3479 #endif /* INET6 */ 3480 } 3481 3482 /* TCP header */ 3483 th->th_sport = sport; 3484 th->th_dport = dport; 3485 th->th_seq = htonl(seq); 3486 th->th_ack = htonl(ack); 3487 th->th_off = tlen >> 2; 3488 tcp_set_flags(th, tcp_flags); 3489 th->th_win = htons(win); 3490 3491 if (mss) { 3492 opt = (char *)(th + 1); 3493 opt[0] = TCPOPT_MAXSEG; 3494 opt[1] = 4; 3495 HTONS(mss); 3496 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3497 } 3498 3499 switch (af) { 3500 #ifdef INET 3501 case AF_INET: 3502 /* TCP checksum */ 3503 th->th_sum = in_cksum(m, len); 3504 3505 /* Finish the IP header */ 3506 h->ip_v = 4; 3507 h->ip_hl = sizeof(*h) >> 2; 3508 h->ip_tos = IPTOS_LOWDELAY; 3509 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3510 h->ip_len = htons(len); 3511 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3512 h->ip_sum = 0; 3513 break; 3514 #endif /* INET */ 3515 #ifdef INET6 3516 case AF_INET6: 3517 /* TCP checksum */ 3518 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3519 sizeof(struct ip6_hdr), tlen); 3520 3521 h6->ip6_vfc |= IPV6_VERSION; 3522 h6->ip6_hlim = IPV6_DEFHLIM; 3523 break; 3524 #endif /* INET6 */ 3525 } 3526 3527 return (m); 3528 } 3529 3530 static void 3531 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3532 uint8_t ttl, int rtableid) 3533 { 3534 struct mbuf *m; 3535 #ifdef INET 3536 struct ip *h = NULL; 3537 #endif /* INET */ 3538 #ifdef INET6 3539 struct ip6_hdr *h6 = NULL; 3540 #endif /* INET6 */ 3541 struct sctphdr *hdr; 3542 struct sctp_chunkhdr *chunk; 3543 struct pf_send_entry *pfse; 3544 int off = 0; 3545 3546 MPASS(af == pd->af); 3547 3548 m = m_gethdr(M_NOWAIT, MT_DATA); 3549 if (m == NULL) 3550 return; 3551 3552 m->m_data += max_linkhdr; 3553 m->m_flags |= M_SKIP_FIREWALL; 3554 /* The rest of the stack assumes a rcvif, so provide one. 3555 * This is a locally generated packet, so .. close enough. */ 3556 m->m_pkthdr.rcvif = V_loif; 3557 3558 /* IPv4|6 header */ 3559 switch (af) { 3560 #ifdef INET 3561 case AF_INET: 3562 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3563 3564 h = mtod(m, struct ip *); 3565 3566 /* IP header fields included in the TCP checksum */ 3567 3568 h->ip_p = IPPROTO_SCTP; 3569 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3570 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3571 h->ip_src = pd->dst->v4; 3572 h->ip_dst = pd->src->v4; 3573 3574 off += sizeof(struct ip); 3575 break; 3576 #endif /* INET */ 3577 #ifdef INET6 3578 case AF_INET6: 3579 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3580 3581 h6 = mtod(m, struct ip6_hdr *); 3582 3583 /* IP header fields included in the TCP checksum */ 3584 h6->ip6_vfc |= IPV6_VERSION; 3585 h6->ip6_nxt = IPPROTO_SCTP; 3586 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3587 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3588 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3589 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3590 3591 off += sizeof(struct ip6_hdr); 3592 break; 3593 #endif /* INET6 */ 3594 } 3595 3596 /* SCTP header */ 3597 hdr = mtodo(m, off); 3598 3599 hdr->src_port = pd->hdr.sctp.dest_port; 3600 hdr->dest_port = pd->hdr.sctp.src_port; 3601 hdr->v_tag = pd->sctp_initiate_tag; 3602 hdr->checksum = 0; 3603 3604 /* Abort chunk. */ 3605 off += sizeof(struct sctphdr); 3606 chunk = mtodo(m, off); 3607 3608 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3609 chunk->chunk_length = htons(sizeof(*chunk)); 3610 3611 /* SCTP checksum */ 3612 off += sizeof(*chunk); 3613 m->m_pkthdr.len = m->m_len = off; 3614 3615 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3616 3617 if (rtableid >= 0) 3618 M_SETFIB(m, rtableid); 3619 3620 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3621 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3622 if (pfse == NULL) { 3623 m_freem(m); 3624 return; 3625 } 3626 3627 switch (af) { 3628 #ifdef INET 3629 case AF_INET: 3630 pfse->pfse_type = PFSE_IP; 3631 break; 3632 #endif /* INET */ 3633 #ifdef INET6 3634 case AF_INET6: 3635 pfse->pfse_type = PFSE_IP6; 3636 break; 3637 #endif /* INET6 */ 3638 } 3639 3640 pfse->pfse_m = m; 3641 pf_send(pfse); 3642 } 3643 3644 void 3645 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3646 const struct pf_addr *saddr, const struct pf_addr *daddr, 3647 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3648 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3649 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3650 { 3651 struct pf_send_entry *pfse; 3652 struct mbuf *m; 3653 3654 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3655 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 3656 if (m == NULL) 3657 return; 3658 3659 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3660 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3661 if (pfse == NULL) { 3662 m_freem(m); 3663 return; 3664 } 3665 3666 switch (af) { 3667 #ifdef INET 3668 case AF_INET: 3669 pfse->pfse_type = PFSE_IP; 3670 break; 3671 #endif /* INET */ 3672 #ifdef INET6 3673 case AF_INET6: 3674 pfse->pfse_type = PFSE_IP6; 3675 break; 3676 #endif /* INET6 */ 3677 } 3678 3679 pfse->pfse_m = m; 3680 pf_send(pfse); 3681 } 3682 3683 static void 3684 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3685 struct pf_state_key *sk, struct tcphdr *th, 3686 u_int16_t bproto_sum, u_int16_t bip_sum, 3687 u_short *reason, int rtableid) 3688 { 3689 struct pf_addr * const saddr = pd->src; 3690 struct pf_addr * const daddr = pd->dst; 3691 3692 /* undo NAT changes, if they have taken place */ 3693 if (nr != NULL) { 3694 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 3695 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 3696 if (pd->sport) 3697 *pd->sport = sk->port[pd->sidx]; 3698 if (pd->dport) 3699 *pd->dport = sk->port[pd->didx]; 3700 if (pd->ip_sum) 3701 *pd->ip_sum = bip_sum; 3702 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 3703 } 3704 if (pd->proto == IPPROTO_TCP && 3705 ((r->rule_flag & PFRULE_RETURNRST) || 3706 (r->rule_flag & PFRULE_RETURN)) && 3707 !(tcp_get_flags(th) & TH_RST)) { 3708 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3709 3710 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 3711 IPPROTO_TCP, pd->af)) 3712 REASON_SET(reason, PFRES_PROTCKSUM); 3713 else { 3714 if (tcp_get_flags(th) & TH_SYN) 3715 ack++; 3716 if (tcp_get_flags(th) & TH_FIN) 3717 ack++; 3718 pf_send_tcp(r, pd->af, pd->dst, 3719 pd->src, th->th_dport, th->th_sport, 3720 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3721 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 3722 } 3723 } else if (pd->proto == IPPROTO_SCTP && 3724 (r->rule_flag & PFRULE_RETURN)) { 3725 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 3726 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 3727 r->return_icmp) 3728 pf_send_icmp(pd->m, r->return_icmp >> 8, 3729 r->return_icmp & 255, pd->af, r, rtableid); 3730 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 3731 r->return_icmp6) 3732 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 3733 r->return_icmp6 & 255, pd->af, r, rtableid); 3734 } 3735 3736 static int 3737 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3738 { 3739 struct m_tag *mtag; 3740 u_int8_t mpcp; 3741 3742 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3743 if (mtag == NULL) 3744 return (0); 3745 3746 if (prio == PF_PRIO_ZERO) 3747 prio = 0; 3748 3749 mpcp = *(uint8_t *)(mtag + 1); 3750 3751 return (mpcp == prio); 3752 } 3753 3754 static int 3755 pf_icmp_to_bandlim(uint8_t type) 3756 { 3757 switch (type) { 3758 case ICMP_ECHO: 3759 case ICMP_ECHOREPLY: 3760 return (BANDLIM_ICMP_ECHO); 3761 case ICMP_TSTAMP: 3762 case ICMP_TSTAMPREPLY: 3763 return (BANDLIM_ICMP_TSTAMP); 3764 case ICMP_UNREACH: 3765 default: 3766 return (BANDLIM_ICMP_UNREACH); 3767 } 3768 } 3769 3770 static void 3771 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3772 struct pf_krule *r, int rtableid) 3773 { 3774 struct pf_send_entry *pfse; 3775 struct mbuf *m0; 3776 struct pf_mtag *pf_mtag; 3777 3778 /* ICMP packet rate limitation. */ 3779 switch (af) { 3780 #ifdef INET6 3781 case AF_INET6: 3782 if (icmp6_ratelimit(NULL, type, code)) 3783 return; 3784 break; 3785 #endif 3786 #ifdef INET 3787 case AF_INET: 3788 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3789 return; 3790 break; 3791 #endif 3792 } 3793 3794 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3795 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3796 if (pfse == NULL) 3797 return; 3798 3799 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3800 free(pfse, M_PFTEMP); 3801 return; 3802 } 3803 3804 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3805 free(pfse, M_PFTEMP); 3806 return; 3807 } 3808 /* XXX: revisit */ 3809 m0->m_flags |= M_SKIP_FIREWALL; 3810 3811 if (rtableid >= 0) 3812 M_SETFIB(m0, rtableid); 3813 3814 #ifdef ALTQ 3815 if (r->qid) { 3816 pf_mtag->qid = r->qid; 3817 /* add hints for ecn */ 3818 pf_mtag->hdr = mtod(m0, struct ip *); 3819 } 3820 #endif /* ALTQ */ 3821 3822 switch (af) { 3823 #ifdef INET 3824 case AF_INET: 3825 pfse->pfse_type = PFSE_ICMP; 3826 break; 3827 #endif /* INET */ 3828 #ifdef INET6 3829 case AF_INET6: 3830 pfse->pfse_type = PFSE_ICMP6; 3831 break; 3832 #endif /* INET6 */ 3833 } 3834 pfse->pfse_m = m0; 3835 pfse->icmpopts.type = type; 3836 pfse->icmpopts.code = code; 3837 pf_send(pfse); 3838 } 3839 3840 /* 3841 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3842 * If n is 0, they match if they are equal. If n is != 0, they match if they 3843 * are different. 3844 */ 3845 int 3846 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3847 struct pf_addr *b, sa_family_t af) 3848 { 3849 int match = 0; 3850 3851 switch (af) { 3852 #ifdef INET 3853 case AF_INET: 3854 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3855 match++; 3856 break; 3857 #endif /* INET */ 3858 #ifdef INET6 3859 case AF_INET6: 3860 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3861 match++; 3862 break; 3863 #endif /* INET6 */ 3864 } 3865 if (match) { 3866 if (n) 3867 return (0); 3868 else 3869 return (1); 3870 } else { 3871 if (n) 3872 return (1); 3873 else 3874 return (0); 3875 } 3876 } 3877 3878 /* 3879 * Return 1 if b <= a <= e, otherwise return 0. 3880 */ 3881 int 3882 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3883 struct pf_addr *a, sa_family_t af) 3884 { 3885 switch (af) { 3886 #ifdef INET 3887 case AF_INET: 3888 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3889 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3890 return (0); 3891 break; 3892 #endif /* INET */ 3893 #ifdef INET6 3894 case AF_INET6: { 3895 int i; 3896 3897 /* check a >= b */ 3898 for (i = 0; i < 4; ++i) 3899 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3900 break; 3901 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3902 return (0); 3903 /* check a <= e */ 3904 for (i = 0; i < 4; ++i) 3905 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3906 break; 3907 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3908 return (0); 3909 break; 3910 } 3911 #endif /* INET6 */ 3912 } 3913 return (1); 3914 } 3915 3916 static int 3917 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3918 { 3919 switch (op) { 3920 case PF_OP_IRG: 3921 return ((p > a1) && (p < a2)); 3922 case PF_OP_XRG: 3923 return ((p < a1) || (p > a2)); 3924 case PF_OP_RRG: 3925 return ((p >= a1) && (p <= a2)); 3926 case PF_OP_EQ: 3927 return (p == a1); 3928 case PF_OP_NE: 3929 return (p != a1); 3930 case PF_OP_LT: 3931 return (p < a1); 3932 case PF_OP_LE: 3933 return (p <= a1); 3934 case PF_OP_GT: 3935 return (p > a1); 3936 case PF_OP_GE: 3937 return (p >= a1); 3938 } 3939 return (0); /* never reached */ 3940 } 3941 3942 int 3943 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3944 { 3945 NTOHS(a1); 3946 NTOHS(a2); 3947 NTOHS(p); 3948 return (pf_match(op, a1, a2, p)); 3949 } 3950 3951 static int 3952 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3953 { 3954 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3955 return (0); 3956 return (pf_match(op, a1, a2, u)); 3957 } 3958 3959 static int 3960 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3961 { 3962 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3963 return (0); 3964 return (pf_match(op, a1, a2, g)); 3965 } 3966 3967 int 3968 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3969 { 3970 if (*tag == -1) 3971 *tag = mtag; 3972 3973 return ((!r->match_tag_not && r->match_tag == *tag) || 3974 (r->match_tag_not && r->match_tag != *tag)); 3975 } 3976 3977 static int 3978 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3979 { 3980 struct ifnet *ifp = m->m_pkthdr.rcvif; 3981 struct pfi_kkif *kif; 3982 3983 if (ifp == NULL) 3984 return (0); 3985 3986 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3987 3988 if (kif == NULL) { 3989 DPFPRINTF(PF_DEBUG_URGENT, 3990 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3991 r->rcv_ifname)); 3992 return (0); 3993 } 3994 3995 return (pfi_kkif_match(r->rcv_kif, kif)); 3996 } 3997 3998 int 3999 pf_tag_packet(struct pf_pdesc *pd, int tag) 4000 { 4001 4002 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4003 4004 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4005 return (ENOMEM); 4006 4007 pd->pf_mtag->tag = tag; 4008 4009 return (0); 4010 } 4011 4012 #define PF_ANCHOR_STACKSIZE 32 4013 struct pf_kanchor_stackframe { 4014 struct pf_kruleset *rs; 4015 struct pf_krule *r; /* XXX: + match bit */ 4016 struct pf_kanchor *child; 4017 }; 4018 4019 /* 4020 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4021 */ 4022 #define PF_ANCHORSTACK_MATCH 0x00000001 4023 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4024 4025 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4026 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4027 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4028 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4029 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4030 } while (0) 4031 4032 void 4033 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4034 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4035 int *match) 4036 { 4037 struct pf_kanchor_stackframe *f; 4038 4039 PF_RULES_RASSERT(); 4040 4041 if (match) 4042 *match = 0; 4043 if (*depth >= PF_ANCHOR_STACKSIZE) { 4044 printf("%s: anchor stack overflow on %s\n", 4045 __func__, (*r)->anchor->name); 4046 *r = TAILQ_NEXT(*r, entries); 4047 return; 4048 } else if (*depth == 0 && a != NULL) 4049 *a = *r; 4050 f = stack + (*depth)++; 4051 f->rs = *rs; 4052 f->r = *r; 4053 if ((*r)->anchor_wildcard) { 4054 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4055 4056 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4057 *r = NULL; 4058 return; 4059 } 4060 *rs = &f->child->ruleset; 4061 } else { 4062 f->child = NULL; 4063 *rs = &(*r)->anchor->ruleset; 4064 } 4065 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4066 } 4067 4068 int 4069 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4070 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4071 int *match) 4072 { 4073 struct pf_kanchor_stackframe *f; 4074 struct pf_krule *fr; 4075 int quick = 0; 4076 4077 PF_RULES_RASSERT(); 4078 4079 do { 4080 if (*depth <= 0) 4081 break; 4082 f = stack + *depth - 1; 4083 fr = PF_ANCHOR_RULE(f); 4084 if (f->child != NULL) { 4085 /* 4086 * This block traverses through 4087 * a wildcard anchor. 4088 */ 4089 if (match != NULL && *match) { 4090 /* 4091 * If any of "*" matched, then 4092 * "foo/ *" matched, mark frame 4093 * appropriately. 4094 */ 4095 PF_ANCHOR_SET_MATCH(f); 4096 *match = 0; 4097 } 4098 f->child = RB_NEXT(pf_kanchor_node, 4099 &fr->anchor->children, f->child); 4100 if (f->child != NULL) { 4101 *rs = &f->child->ruleset; 4102 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4103 if (*r == NULL) 4104 continue; 4105 else 4106 break; 4107 } 4108 } 4109 (*depth)--; 4110 if (*depth == 0 && a != NULL) 4111 *a = NULL; 4112 *rs = f->rs; 4113 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4114 quick = fr->quick; 4115 *r = TAILQ_NEXT(fr, entries); 4116 } while (*r == NULL); 4117 4118 return (quick); 4119 } 4120 4121 struct pf_keth_anchor_stackframe { 4122 struct pf_keth_ruleset *rs; 4123 struct pf_keth_rule *r; /* XXX: + match bit */ 4124 struct pf_keth_anchor *child; 4125 }; 4126 4127 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4128 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4129 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4130 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4131 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4132 } while (0) 4133 4134 void 4135 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4136 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4137 struct pf_keth_rule **a, int *match) 4138 { 4139 struct pf_keth_anchor_stackframe *f; 4140 4141 NET_EPOCH_ASSERT(); 4142 4143 if (match) 4144 *match = 0; 4145 if (*depth >= PF_ANCHOR_STACKSIZE) { 4146 printf("%s: anchor stack overflow on %s\n", 4147 __func__, (*r)->anchor->name); 4148 *r = TAILQ_NEXT(*r, entries); 4149 return; 4150 } else if (*depth == 0 && a != NULL) 4151 *a = *r; 4152 f = stack + (*depth)++; 4153 f->rs = *rs; 4154 f->r = *r; 4155 if ((*r)->anchor_wildcard) { 4156 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4157 4158 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4159 *r = NULL; 4160 return; 4161 } 4162 *rs = &f->child->ruleset; 4163 } else { 4164 f->child = NULL; 4165 *rs = &(*r)->anchor->ruleset; 4166 } 4167 *r = TAILQ_FIRST((*rs)->active.rules); 4168 } 4169 4170 int 4171 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4172 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4173 struct pf_keth_rule **a, int *match) 4174 { 4175 struct pf_keth_anchor_stackframe *f; 4176 struct pf_keth_rule *fr; 4177 int quick = 0; 4178 4179 NET_EPOCH_ASSERT(); 4180 4181 do { 4182 if (*depth <= 0) 4183 break; 4184 f = stack + *depth - 1; 4185 fr = PF_ETH_ANCHOR_RULE(f); 4186 if (f->child != NULL) { 4187 /* 4188 * This block traverses through 4189 * a wildcard anchor. 4190 */ 4191 if (match != NULL && *match) { 4192 /* 4193 * If any of "*" matched, then 4194 * "foo/ *" matched, mark frame 4195 * appropriately. 4196 */ 4197 PF_ETH_ANCHOR_SET_MATCH(f); 4198 *match = 0; 4199 } 4200 f->child = RB_NEXT(pf_keth_anchor_node, 4201 &fr->anchor->children, f->child); 4202 if (f->child != NULL) { 4203 *rs = &f->child->ruleset; 4204 *r = TAILQ_FIRST((*rs)->active.rules); 4205 if (*r == NULL) 4206 continue; 4207 else 4208 break; 4209 } 4210 } 4211 (*depth)--; 4212 if (*depth == 0 && a != NULL) 4213 *a = NULL; 4214 *rs = f->rs; 4215 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4216 quick = fr->quick; 4217 *r = TAILQ_NEXT(fr, entries); 4218 } while (*r == NULL); 4219 4220 return (quick); 4221 } 4222 4223 #ifdef INET6 4224 void 4225 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4226 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4227 { 4228 switch (af) { 4229 #ifdef INET 4230 case AF_INET: 4231 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4232 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4233 break; 4234 #endif /* INET */ 4235 case AF_INET6: 4236 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4237 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4238 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4239 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4240 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4241 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4242 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4243 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4244 break; 4245 } 4246 } 4247 4248 void 4249 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4250 { 4251 switch (af) { 4252 #ifdef INET 4253 case AF_INET: 4254 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4255 break; 4256 #endif /* INET */ 4257 case AF_INET6: 4258 if (addr->addr32[3] == 0xffffffff) { 4259 addr->addr32[3] = 0; 4260 if (addr->addr32[2] == 0xffffffff) { 4261 addr->addr32[2] = 0; 4262 if (addr->addr32[1] == 0xffffffff) { 4263 addr->addr32[1] = 0; 4264 addr->addr32[0] = 4265 htonl(ntohl(addr->addr32[0]) + 1); 4266 } else 4267 addr->addr32[1] = 4268 htonl(ntohl(addr->addr32[1]) + 1); 4269 } else 4270 addr->addr32[2] = 4271 htonl(ntohl(addr->addr32[2]) + 1); 4272 } else 4273 addr->addr32[3] = 4274 htonl(ntohl(addr->addr32[3]) + 1); 4275 break; 4276 } 4277 } 4278 #endif /* INET6 */ 4279 4280 void 4281 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4282 { 4283 /* 4284 * Modern rules use the same flags in rules as they do in states. 4285 */ 4286 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4287 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4288 4289 /* 4290 * Old-style scrub rules have different flags which need to be translated. 4291 */ 4292 if (r->rule_flag & PFRULE_RANDOMID) 4293 a->flags |= PFSTATE_RANDOMID; 4294 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4295 a->flags |= PFSTATE_SETTOS; 4296 a->set_tos = r->set_tos; 4297 } 4298 4299 if (r->qid) 4300 a->qid = r->qid; 4301 if (r->pqid) 4302 a->pqid = r->pqid; 4303 if (r->rtableid >= 0) 4304 a->rtableid = r->rtableid; 4305 a->log |= r->log; 4306 if (r->min_ttl) 4307 a->min_ttl = r->min_ttl; 4308 if (r->max_mss) 4309 a->max_mss = r->max_mss; 4310 if (r->dnpipe) 4311 a->dnpipe = r->dnpipe; 4312 if (r->dnrpipe) 4313 a->dnrpipe = r->dnrpipe; 4314 if (r->dnpipe || r->dnrpipe) { 4315 if (r->free_flags & PFRULE_DN_IS_PIPE) 4316 a->flags |= PFSTATE_DN_IS_PIPE; 4317 else 4318 a->flags &= ~PFSTATE_DN_IS_PIPE; 4319 } 4320 if (r->scrub_flags & PFSTATE_SETPRIO) { 4321 a->set_prio[0] = r->set_prio[0]; 4322 a->set_prio[1] = r->set_prio[1]; 4323 } 4324 } 4325 4326 int 4327 pf_socket_lookup(struct pf_pdesc *pd) 4328 { 4329 struct pf_addr *saddr, *daddr; 4330 u_int16_t sport, dport; 4331 struct inpcbinfo *pi; 4332 struct inpcb *inp; 4333 4334 pd->lookup.uid = UID_MAX; 4335 pd->lookup.gid = GID_MAX; 4336 4337 switch (pd->proto) { 4338 case IPPROTO_TCP: 4339 sport = pd->hdr.tcp.th_sport; 4340 dport = pd->hdr.tcp.th_dport; 4341 pi = &V_tcbinfo; 4342 break; 4343 case IPPROTO_UDP: 4344 sport = pd->hdr.udp.uh_sport; 4345 dport = pd->hdr.udp.uh_dport; 4346 pi = &V_udbinfo; 4347 break; 4348 default: 4349 return (-1); 4350 } 4351 if (pd->dir == PF_IN) { 4352 saddr = pd->src; 4353 daddr = pd->dst; 4354 } else { 4355 u_int16_t p; 4356 4357 p = sport; 4358 sport = dport; 4359 dport = p; 4360 saddr = pd->dst; 4361 daddr = pd->src; 4362 } 4363 switch (pd->af) { 4364 #ifdef INET 4365 case AF_INET: 4366 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4367 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4368 if (inp == NULL) { 4369 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4370 daddr->v4, dport, INPLOOKUP_WILDCARD | 4371 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4372 if (inp == NULL) 4373 return (-1); 4374 } 4375 break; 4376 #endif /* INET */ 4377 #ifdef INET6 4378 case AF_INET6: 4379 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4380 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4381 if (inp == NULL) { 4382 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4383 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4384 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4385 if (inp == NULL) 4386 return (-1); 4387 } 4388 break; 4389 #endif /* INET6 */ 4390 } 4391 INP_RLOCK_ASSERT(inp); 4392 pd->lookup.uid = inp->inp_cred->cr_uid; 4393 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4394 INP_RUNLOCK(inp); 4395 4396 return (1); 4397 } 4398 4399 u_int8_t 4400 pf_get_wscale(struct pf_pdesc *pd) 4401 { 4402 struct tcphdr *th = &pd->hdr.tcp; 4403 int hlen; 4404 u_int8_t hdr[60]; 4405 u_int8_t *opt, optlen; 4406 u_int8_t wscale = 0; 4407 4408 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4409 if (hlen <= sizeof(struct tcphdr)) 4410 return (0); 4411 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4412 return (0); 4413 opt = hdr + sizeof(struct tcphdr); 4414 hlen -= sizeof(struct tcphdr); 4415 while (hlen >= 3) { 4416 switch (*opt) { 4417 case TCPOPT_EOL: 4418 case TCPOPT_NOP: 4419 ++opt; 4420 --hlen; 4421 break; 4422 case TCPOPT_WINDOW: 4423 wscale = opt[2]; 4424 if (wscale > TCP_MAX_WINSHIFT) 4425 wscale = TCP_MAX_WINSHIFT; 4426 wscale |= PF_WSCALE_FLAG; 4427 /* FALLTHROUGH */ 4428 default: 4429 optlen = opt[1]; 4430 if (optlen < 2) 4431 optlen = 2; 4432 hlen -= optlen; 4433 opt += optlen; 4434 break; 4435 } 4436 } 4437 return (wscale); 4438 } 4439 4440 u_int16_t 4441 pf_get_mss(struct pf_pdesc *pd) 4442 { 4443 struct tcphdr *th = &pd->hdr.tcp; 4444 int hlen; 4445 u_int8_t hdr[60]; 4446 u_int8_t *opt, optlen; 4447 u_int16_t mss = V_tcp_mssdflt; 4448 4449 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4450 if (hlen <= sizeof(struct tcphdr)) 4451 return (0); 4452 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4453 return (0); 4454 opt = hdr + sizeof(struct tcphdr); 4455 hlen -= sizeof(struct tcphdr); 4456 while (hlen >= TCPOLEN_MAXSEG) { 4457 switch (*opt) { 4458 case TCPOPT_EOL: 4459 case TCPOPT_NOP: 4460 ++opt; 4461 --hlen; 4462 break; 4463 case TCPOPT_MAXSEG: 4464 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4465 NTOHS(mss); 4466 /* FALLTHROUGH */ 4467 default: 4468 optlen = opt[1]; 4469 if (optlen < 2) 4470 optlen = 2; 4471 hlen -= optlen; 4472 opt += optlen; 4473 break; 4474 } 4475 } 4476 return (mss); 4477 } 4478 4479 static u_int16_t 4480 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4481 { 4482 struct nhop_object *nh; 4483 #ifdef INET6 4484 struct in6_addr dst6; 4485 uint32_t scopeid; 4486 #endif /* INET6 */ 4487 int hlen = 0; 4488 uint16_t mss = 0; 4489 4490 NET_EPOCH_ASSERT(); 4491 4492 switch (af) { 4493 #ifdef INET 4494 case AF_INET: 4495 hlen = sizeof(struct ip); 4496 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4497 if (nh != NULL) 4498 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4499 break; 4500 #endif /* INET */ 4501 #ifdef INET6 4502 case AF_INET6: 4503 hlen = sizeof(struct ip6_hdr); 4504 in6_splitscope(&addr->v6, &dst6, &scopeid); 4505 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4506 if (nh != NULL) 4507 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4508 break; 4509 #endif /* INET6 */ 4510 } 4511 4512 mss = max(V_tcp_mssdflt, mss); 4513 mss = min(mss, offer); 4514 mss = max(mss, 64); /* sanity - at least max opt space */ 4515 return (mss); 4516 } 4517 4518 static u_int32_t 4519 pf_tcp_iss(struct pf_pdesc *pd) 4520 { 4521 MD5_CTX ctx; 4522 u_int32_t digest[4]; 4523 4524 if (V_pf_tcp_secret_init == 0) { 4525 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4526 MD5Init(&V_pf_tcp_secret_ctx); 4527 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4528 sizeof(V_pf_tcp_secret)); 4529 V_pf_tcp_secret_init = 1; 4530 } 4531 4532 ctx = V_pf_tcp_secret_ctx; 4533 4534 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4535 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4536 switch (pd->af) { 4537 case AF_INET6: 4538 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4539 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4540 break; 4541 case AF_INET: 4542 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4543 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4544 break; 4545 } 4546 MD5Final((u_char *)digest, &ctx); 4547 V_pf_tcp_iss_off += 4096; 4548 #define ISN_RANDOM_INCREMENT (4096 - 1) 4549 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4550 V_pf_tcp_iss_off); 4551 #undef ISN_RANDOM_INCREMENT 4552 } 4553 4554 static bool 4555 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4556 { 4557 bool match = true; 4558 4559 /* Always matches if not set */ 4560 if (! r->isset) 4561 return (!r->neg); 4562 4563 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4564 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4565 match = false; 4566 break; 4567 } 4568 } 4569 4570 return (match ^ r->neg); 4571 } 4572 4573 static int 4574 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4575 { 4576 if (*tag == -1) 4577 *tag = mtag; 4578 4579 return ((!r->match_tag_not && r->match_tag == *tag) || 4580 (r->match_tag_not && r->match_tag != *tag)); 4581 } 4582 4583 static void 4584 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4585 { 4586 /* If we don't have the interface drop the packet. */ 4587 if (ifp == NULL) { 4588 m_freem(m); 4589 return; 4590 } 4591 4592 switch (ifp->if_type) { 4593 case IFT_ETHER: 4594 case IFT_XETHER: 4595 case IFT_L2VLAN: 4596 case IFT_BRIDGE: 4597 case IFT_IEEE8023ADLAG: 4598 break; 4599 default: 4600 m_freem(m); 4601 return; 4602 } 4603 4604 ifp->if_transmit(ifp, m); 4605 } 4606 4607 static int 4608 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4609 { 4610 #ifdef INET 4611 struct ip ip; 4612 #endif 4613 #ifdef INET6 4614 struct ip6_hdr ip6; 4615 #endif 4616 struct mbuf *m = *m0; 4617 struct ether_header *e; 4618 struct pf_keth_rule *r, *rm, *a = NULL; 4619 struct pf_keth_ruleset *ruleset = NULL; 4620 struct pf_mtag *mtag; 4621 struct pf_keth_ruleq *rules; 4622 struct pf_addr *src = NULL, *dst = NULL; 4623 struct pfi_kkif *bridge_to; 4624 sa_family_t af = 0; 4625 uint16_t proto; 4626 int asd = 0, match = 0; 4627 int tag = -1; 4628 uint8_t action; 4629 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4630 4631 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4632 NET_EPOCH_ASSERT(); 4633 4634 PF_RULES_RLOCK_TRACKER; 4635 4636 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4637 4638 mtag = pf_find_mtag(m); 4639 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4640 /* Dummynet re-injects packets after they've 4641 * completed their delay. We've already 4642 * processed them, so pass unconditionally. */ 4643 4644 /* But only once. We may see the packet multiple times (e.g. 4645 * PFIL_IN/PFIL_OUT). */ 4646 pf_dummynet_flag_remove(m, mtag); 4647 4648 return (PF_PASS); 4649 } 4650 4651 ruleset = V_pf_keth; 4652 rules = ck_pr_load_ptr(&ruleset->active.rules); 4653 r = TAILQ_FIRST(rules); 4654 rm = NULL; 4655 4656 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4657 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4658 DPFPRINTF(PF_DEBUG_URGENT, 4659 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4660 ", pullup failed\n")); 4661 return (PF_DROP); 4662 } 4663 e = mtod(m, struct ether_header *); 4664 proto = ntohs(e->ether_type); 4665 4666 switch (proto) { 4667 #ifdef INET 4668 case ETHERTYPE_IP: { 4669 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4670 sizeof(ip))) 4671 return (PF_DROP); 4672 4673 af = AF_INET; 4674 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4675 (caddr_t)&ip); 4676 src = (struct pf_addr *)&ip.ip_src; 4677 dst = (struct pf_addr *)&ip.ip_dst; 4678 break; 4679 } 4680 #endif /* INET */ 4681 #ifdef INET6 4682 case ETHERTYPE_IPV6: { 4683 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4684 sizeof(ip6))) 4685 return (PF_DROP); 4686 4687 af = AF_INET6; 4688 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4689 (caddr_t)&ip6); 4690 src = (struct pf_addr *)&ip6.ip6_src; 4691 dst = (struct pf_addr *)&ip6.ip6_dst; 4692 break; 4693 } 4694 #endif /* INET6 */ 4695 } 4696 4697 PF_RULES_RLOCK(); 4698 4699 while (r != NULL) { 4700 counter_u64_add(r->evaluations, 1); 4701 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4702 4703 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4704 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4705 "kif"); 4706 r = r->skip[PFE_SKIP_IFP].ptr; 4707 } 4708 else if (r->direction && r->direction != dir) { 4709 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4710 "dir"); 4711 r = r->skip[PFE_SKIP_DIR].ptr; 4712 } 4713 else if (r->proto && r->proto != proto) { 4714 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4715 "proto"); 4716 r = r->skip[PFE_SKIP_PROTO].ptr; 4717 } 4718 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4719 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4720 "src"); 4721 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4722 } 4723 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4724 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4725 "dst"); 4726 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4727 } 4728 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4729 r->ipsrc.neg, kif, M_GETFIB(m))) { 4730 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4731 "ip_src"); 4732 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4733 } 4734 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4735 r->ipdst.neg, kif, M_GETFIB(m))) { 4736 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4737 "ip_dst"); 4738 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4739 } 4740 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4741 mtag ? mtag->tag : 0)) { 4742 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4743 "match_tag"); 4744 r = TAILQ_NEXT(r, entries); 4745 } 4746 else { 4747 if (r->tag) 4748 tag = r->tag; 4749 if (r->anchor == NULL) { 4750 /* Rule matches */ 4751 rm = r; 4752 4753 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4754 4755 if (r->quick) 4756 break; 4757 4758 r = TAILQ_NEXT(r, entries); 4759 } else { 4760 pf_step_into_keth_anchor(anchor_stack, &asd, 4761 &ruleset, &r, &a, &match); 4762 } 4763 } 4764 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4765 &ruleset, &r, &a, &match)) 4766 break; 4767 } 4768 4769 r = rm; 4770 4771 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4772 4773 /* Default to pass. */ 4774 if (r == NULL) { 4775 PF_RULES_RUNLOCK(); 4776 return (PF_PASS); 4777 } 4778 4779 /* Execute action. */ 4780 counter_u64_add(r->packets[dir == PF_OUT], 1); 4781 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4782 pf_update_timestamp(r); 4783 4784 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4785 if (r->action == PF_DROP) { 4786 PF_RULES_RUNLOCK(); 4787 return (PF_DROP); 4788 } 4789 4790 if (tag > 0) { 4791 if (mtag == NULL) 4792 mtag = pf_get_mtag(m); 4793 if (mtag == NULL) { 4794 PF_RULES_RUNLOCK(); 4795 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4796 return (PF_DROP); 4797 } 4798 mtag->tag = tag; 4799 } 4800 4801 if (r->qid != 0) { 4802 if (mtag == NULL) 4803 mtag = pf_get_mtag(m); 4804 if (mtag == NULL) { 4805 PF_RULES_RUNLOCK(); 4806 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4807 return (PF_DROP); 4808 } 4809 mtag->qid = r->qid; 4810 } 4811 4812 action = r->action; 4813 bridge_to = r->bridge_to; 4814 4815 /* Dummynet */ 4816 if (r->dnpipe) { 4817 struct ip_fw_args dnflow; 4818 4819 /* Drop packet if dummynet is not loaded. */ 4820 if (ip_dn_io_ptr == NULL) { 4821 PF_RULES_RUNLOCK(); 4822 m_freem(m); 4823 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4824 return (PF_DROP); 4825 } 4826 if (mtag == NULL) 4827 mtag = pf_get_mtag(m); 4828 if (mtag == NULL) { 4829 PF_RULES_RUNLOCK(); 4830 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4831 return (PF_DROP); 4832 } 4833 4834 bzero(&dnflow, sizeof(dnflow)); 4835 4836 /* We don't have port numbers here, so we set 0. That means 4837 * that we'll be somewhat limited in distinguishing flows (i.e. 4838 * only based on IP addresses, not based on port numbers), but 4839 * it's better than nothing. */ 4840 dnflow.f_id.dst_port = 0; 4841 dnflow.f_id.src_port = 0; 4842 dnflow.f_id.proto = 0; 4843 4844 dnflow.rule.info = r->dnpipe; 4845 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4846 if (r->dnflags & PFRULE_DN_IS_PIPE) 4847 dnflow.rule.info |= IPFW_IS_PIPE; 4848 4849 dnflow.f_id.extra = dnflow.rule.info; 4850 4851 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4852 dnflow.flags |= IPFW_ARGS_ETHER; 4853 dnflow.ifp = kif->pfik_ifp; 4854 4855 switch (af) { 4856 case AF_INET: 4857 dnflow.f_id.addr_type = 4; 4858 dnflow.f_id.src_ip = src->v4.s_addr; 4859 dnflow.f_id.dst_ip = dst->v4.s_addr; 4860 break; 4861 case AF_INET6: 4862 dnflow.flags |= IPFW_ARGS_IP6; 4863 dnflow.f_id.addr_type = 6; 4864 dnflow.f_id.src_ip6 = src->v6; 4865 dnflow.f_id.dst_ip6 = dst->v6; 4866 break; 4867 } 4868 4869 PF_RULES_RUNLOCK(); 4870 4871 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4872 ip_dn_io_ptr(m0, &dnflow); 4873 if (*m0 != NULL) 4874 pf_dummynet_flag_remove(m, mtag); 4875 } else { 4876 PF_RULES_RUNLOCK(); 4877 } 4878 4879 if (action == PF_PASS && bridge_to) { 4880 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4881 *m0 = NULL; /* We've eaten the packet. */ 4882 } 4883 4884 return (action); 4885 } 4886 4887 #define PF_TEST_ATTRIB(t, a)\ 4888 do { \ 4889 if (t) { \ 4890 r = a; \ 4891 goto nextrule; \ 4892 } \ 4893 } while (0) 4894 4895 static int 4896 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 4897 struct pf_pdesc *pd, struct pf_krule **am, 4898 struct pf_kruleset **rsm, struct inpcb *inp) 4899 { 4900 struct pf_krule *nr = NULL; 4901 struct pf_addr * const saddr = pd->src; 4902 struct pf_addr * const daddr = pd->dst; 4903 struct pf_krule *r, *a = NULL; 4904 struct pf_kruleset *ruleset = NULL; 4905 struct pf_krule_slist match_rules; 4906 struct pf_krule_item *ri; 4907 struct tcphdr *th = &pd->hdr.tcp; 4908 struct pf_state_key *sk = NULL, *nk = NULL; 4909 u_short reason, transerror; 4910 int rewrite = 0; 4911 int tag = -1; 4912 int asd = 0; 4913 int match = 0; 4914 int state_icmp = 0, icmp_dir, multi; 4915 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4916 u_int16_t bproto_sum = 0, bip_sum = 0; 4917 u_int8_t icmptype = 0, icmpcode = 0; 4918 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4919 struct pf_udp_mapping *udp_mapping = NULL; 4920 4921 PF_RULES_RASSERT(); 4922 4923 SLIST_INIT(&match_rules); 4924 4925 if (inp != NULL) { 4926 INP_LOCK_ASSERT(inp); 4927 pd->lookup.uid = inp->inp_cred->cr_uid; 4928 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4929 pd->lookup.done = 1; 4930 } 4931 4932 switch (pd->virtual_proto) { 4933 case IPPROTO_TCP: 4934 sport = th->th_sport; 4935 dport = th->th_dport; 4936 break; 4937 case IPPROTO_UDP: 4938 sport = pd->hdr.udp.uh_sport; 4939 dport = pd->hdr.udp.uh_dport; 4940 break; 4941 case IPPROTO_SCTP: 4942 sport = pd->hdr.sctp.src_port; 4943 dport = pd->hdr.sctp.dest_port; 4944 break; 4945 #ifdef INET 4946 case IPPROTO_ICMP: 4947 MPASS(pd->af == AF_INET); 4948 icmptype = pd->hdr.icmp.icmp_type; 4949 icmpcode = pd->hdr.icmp.icmp_code; 4950 state_icmp = pf_icmp_mapping(pd, icmptype, 4951 &icmp_dir, &multi, &virtual_id, &virtual_type); 4952 if (icmp_dir == PF_IN) { 4953 sport = virtual_id; 4954 dport = virtual_type; 4955 } else { 4956 sport = virtual_type; 4957 dport = virtual_id; 4958 } 4959 break; 4960 #endif /* INET */ 4961 #ifdef INET6 4962 case IPPROTO_ICMPV6: 4963 MPASS(pd->af == AF_INET6); 4964 icmptype = pd->hdr.icmp6.icmp6_type; 4965 icmpcode = pd->hdr.icmp6.icmp6_code; 4966 state_icmp = pf_icmp_mapping(pd, icmptype, 4967 &icmp_dir, &multi, &virtual_id, &virtual_type); 4968 if (icmp_dir == PF_IN) { 4969 sport = virtual_id; 4970 dport = virtual_type; 4971 } else { 4972 sport = virtual_type; 4973 dport = virtual_id; 4974 } 4975 4976 break; 4977 #endif /* INET6 */ 4978 default: 4979 sport = dport = 0; 4980 break; 4981 } 4982 4983 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4984 4985 /* check packet for BINAT/NAT/RDR */ 4986 transerror = pf_get_translation(pd, pd->off, &sk, &nk, saddr, daddr, 4987 sport, dport, anchor_stack, &nr, &udp_mapping); 4988 switch (transerror) { 4989 default: 4990 /* A translation error occurred. */ 4991 REASON_SET(&reason, transerror); 4992 goto cleanup; 4993 case PFRES_MAX: 4994 /* No match. */ 4995 break; 4996 case PFRES_MATCH: 4997 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4998 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4999 5000 if (nr->log) { 5001 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 5002 ruleset, pd, 1); 5003 } 5004 5005 if (pd->ip_sum) 5006 bip_sum = *pd->ip_sum; 5007 5008 switch (pd->proto) { 5009 case IPPROTO_TCP: 5010 bproto_sum = th->th_sum; 5011 5012 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5013 nk->port[pd->sidx] != sport) { 5014 pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum, 5015 &th->th_sum, &nk->addr[pd->sidx], 5016 nk->port[pd->sidx], 0, pd->af); 5017 pd->sport = &th->th_sport; 5018 sport = th->th_sport; 5019 } 5020 5021 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5022 nk->port[pd->didx] != dport) { 5023 pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum, 5024 &th->th_sum, &nk->addr[pd->didx], 5025 nk->port[pd->didx], 0, pd->af); 5026 dport = th->th_dport; 5027 pd->dport = &th->th_dport; 5028 } 5029 rewrite++; 5030 break; 5031 case IPPROTO_UDP: 5032 bproto_sum = pd->hdr.udp.uh_sum; 5033 5034 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5035 nk->port[pd->sidx] != sport) { 5036 pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport, 5037 pd->ip_sum, &pd->hdr.udp.uh_sum, 5038 &nk->addr[pd->sidx], 5039 nk->port[pd->sidx], 1, pd->af); 5040 sport = pd->hdr.udp.uh_sport; 5041 pd->sport = &pd->hdr.udp.uh_sport; 5042 } 5043 5044 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5045 nk->port[pd->didx] != dport) { 5046 pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport, 5047 pd->ip_sum, &pd->hdr.udp.uh_sum, 5048 &nk->addr[pd->didx], 5049 nk->port[pd->didx], 1, pd->af); 5050 dport = pd->hdr.udp.uh_dport; 5051 pd->dport = &pd->hdr.udp.uh_dport; 5052 } 5053 rewrite++; 5054 break; 5055 case IPPROTO_SCTP: { 5056 uint16_t checksum = 0; 5057 5058 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5059 nk->port[pd->sidx] != sport) { 5060 pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port, 5061 pd->ip_sum, &checksum, 5062 &nk->addr[pd->sidx], 5063 nk->port[pd->sidx], 1, pd->af); 5064 } 5065 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5066 nk->port[pd->didx] != dport) { 5067 pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port, 5068 pd->ip_sum, &checksum, 5069 &nk->addr[pd->didx], 5070 nk->port[pd->didx], 1, pd->af); 5071 } 5072 break; 5073 } 5074 #ifdef INET 5075 case IPPROTO_ICMP: 5076 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5077 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5078 nk->addr[pd->sidx].v4.s_addr, 0); 5079 5080 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5081 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5082 nk->addr[pd->didx].v4.s_addr, 0); 5083 5084 if (virtual_type == htons(ICMP_ECHO) && 5085 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5086 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5087 pd->hdr.icmp.icmp_cksum, sport, 5088 nk->port[pd->sidx], 0); 5089 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5090 pd->sport = &pd->hdr.icmp.icmp_id; 5091 } 5092 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5093 break; 5094 #endif /* INET */ 5095 #ifdef INET6 5096 case IPPROTO_ICMPV6: 5097 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5098 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5099 &nk->addr[pd->sidx], 0); 5100 5101 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5102 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5103 &nk->addr[pd->didx], 0); 5104 rewrite++; 5105 break; 5106 #endif /* INET */ 5107 default: 5108 switch (pd->af) { 5109 #ifdef INET 5110 case AF_INET: 5111 if (PF_ANEQ(saddr, 5112 &nk->addr[pd->sidx], AF_INET)) 5113 pf_change_a(&saddr->v4.s_addr, 5114 pd->ip_sum, 5115 nk->addr[pd->sidx].v4.s_addr, 0); 5116 5117 if (PF_ANEQ(daddr, 5118 &nk->addr[pd->didx], AF_INET)) 5119 pf_change_a(&daddr->v4.s_addr, 5120 pd->ip_sum, 5121 nk->addr[pd->didx].v4.s_addr, 0); 5122 break; 5123 #endif /* INET */ 5124 #ifdef INET6 5125 case AF_INET6: 5126 if (PF_ANEQ(saddr, 5127 &nk->addr[pd->sidx], AF_INET6)) 5128 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af); 5129 5130 if (PF_ANEQ(daddr, 5131 &nk->addr[pd->didx], AF_INET6)) 5132 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af); 5133 break; 5134 #endif /* INET */ 5135 } 5136 break; 5137 } 5138 if (nr->natpass) 5139 r = NULL; 5140 } 5141 5142 while (r != NULL) { 5143 pf_counter_u64_add(&r->evaluations, 1); 5144 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5145 r->skip[PF_SKIP_IFP]); 5146 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5147 r->skip[PF_SKIP_DIR]); 5148 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5149 r->skip[PF_SKIP_AF]); 5150 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5151 r->skip[PF_SKIP_PROTO]); 5152 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af, 5153 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5154 r->skip[PF_SKIP_SRC_ADDR]); 5155 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af, 5156 r->dst.neg, NULL, M_GETFIB(pd->m)), 5157 r->skip[PF_SKIP_DST_ADDR]); 5158 switch (pd->virtual_proto) { 5159 case PF_VPROTO_FRAGMENT: 5160 /* tcp/udp only. port_op always 0 in other cases */ 5161 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5162 TAILQ_NEXT(r, entries)); 5163 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5164 TAILQ_NEXT(r, entries)); 5165 /* icmp only. type/code always 0 in other cases */ 5166 PF_TEST_ATTRIB((r->type || r->code), 5167 TAILQ_NEXT(r, entries)); 5168 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5169 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5170 TAILQ_NEXT(r, entries)); 5171 break; 5172 5173 case IPPROTO_TCP: 5174 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags, 5175 TAILQ_NEXT(r, entries)); 5176 /* FALLTHROUGH */ 5177 case IPPROTO_SCTP: 5178 case IPPROTO_UDP: 5179 /* tcp/udp only. port_op always 0 in other cases */ 5180 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5181 r->src.port[0], r->src.port[1], sport), 5182 r->skip[PF_SKIP_SRC_PORT]); 5183 /* tcp/udp only. port_op always 0 in other cases */ 5184 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5185 r->dst.port[0], r->dst.port[1], dport), 5186 r->skip[PF_SKIP_DST_PORT]); 5187 /* tcp/udp only. uid.op always 0 in other cases */ 5188 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5189 pf_socket_lookup(pd), 1)) && 5190 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5191 pd->lookup.uid), 5192 TAILQ_NEXT(r, entries)); 5193 /* tcp/udp only. gid.op always 0 in other cases */ 5194 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5195 pf_socket_lookup(pd), 1)) && 5196 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5197 pd->lookup.gid), 5198 TAILQ_NEXT(r, entries)); 5199 break; 5200 5201 case IPPROTO_ICMP: 5202 case IPPROTO_ICMPV6: 5203 /* icmp only. type always 0 in other cases */ 5204 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5205 TAILQ_NEXT(r, entries)); 5206 /* icmp only. type always 0 in other cases */ 5207 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5208 TAILQ_NEXT(r, entries)); 5209 break; 5210 5211 default: 5212 break; 5213 } 5214 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5215 TAILQ_NEXT(r, entries)); 5216 PF_TEST_ATTRIB(r->prio && 5217 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5218 TAILQ_NEXT(r, entries)); 5219 PF_TEST_ATTRIB(r->prob && 5220 r->prob <= arc4random(), 5221 TAILQ_NEXT(r, entries)); 5222 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5223 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5224 TAILQ_NEXT(r, entries)); 5225 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5226 TAILQ_NEXT(r, entries)); 5227 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5228 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5229 TAILQ_NEXT(r, entries)); 5230 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5231 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5232 pf_osfp_fingerprint(pd, th), 5233 r->os_fingerprint)), 5234 TAILQ_NEXT(r, entries)); 5235 /* FALLTHROUGH */ 5236 if (r->tag) 5237 tag = r->tag; 5238 if (r->anchor == NULL) { 5239 if (r->action == PF_MATCH) { 5240 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5241 if (ri == NULL) { 5242 REASON_SET(&reason, PFRES_MEMORY); 5243 goto cleanup; 5244 } 5245 ri->r = r; 5246 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5247 pf_counter_u64_critical_enter(); 5248 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5249 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5250 pf_counter_u64_critical_exit(); 5251 pf_rule_to_actions(r, &pd->act); 5252 if (r->log || pd->act.log & PF_LOG_MATCHES) 5253 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5254 a, ruleset, pd, 1); 5255 } else { 5256 match = 1; 5257 *rm = r; 5258 *am = a; 5259 *rsm = ruleset; 5260 if (pd->act.log & PF_LOG_MATCHES) 5261 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5262 a, ruleset, pd, 1); 5263 } 5264 if ((*rm)->quick) 5265 break; 5266 r = TAILQ_NEXT(r, entries); 5267 } else 5268 pf_step_into_anchor(anchor_stack, &asd, 5269 &ruleset, PF_RULESET_FILTER, &r, &a, 5270 &match); 5271 nextrule: 5272 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5273 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5274 break; 5275 } 5276 r = *rm; 5277 a = *am; 5278 ruleset = *rsm; 5279 5280 REASON_SET(&reason, PFRES_MATCH); 5281 5282 /* apply actions for last matching pass/block rule */ 5283 pf_rule_to_actions(r, &pd->act); 5284 5285 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5286 if (rewrite) 5287 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5288 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5289 } 5290 5291 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5292 (r->action == PF_DROP) && 5293 ((r->rule_flag & PFRULE_RETURNRST) || 5294 (r->rule_flag & PFRULE_RETURNICMP) || 5295 (r->rule_flag & PFRULE_RETURN))) { 5296 pf_return(r, nr, pd, sk, th, bproto_sum, 5297 bip_sum, &reason, r->rtableid); 5298 } 5299 5300 if (r->action == PF_DROP) 5301 goto cleanup; 5302 5303 if (tag > 0 && pf_tag_packet(pd, tag)) { 5304 REASON_SET(&reason, PFRES_MEMORY); 5305 goto cleanup; 5306 } 5307 if (pd->act.rtableid >= 0) 5308 M_SETFIB(pd->m, pd->act.rtableid); 5309 5310 if (r->rt) { 5311 struct pf_ksrc_node *sn = NULL; 5312 struct pf_srchash *snh = NULL; 5313 /* 5314 * Set act.rt here instead of in pf_rule_to_actions() because 5315 * it is applied only from the last pass rule. 5316 */ 5317 pd->act.rt = r->rt; 5318 /* Don't use REASON_SET, pf_map_addr increases the reason counters */ 5319 reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr, 5320 &pd->act.rt_kif, NULL, &sn, &snh); 5321 if (reason != 0) 5322 goto cleanup; 5323 } 5324 5325 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5326 (!state_icmp && (r->keep_state || nr != NULL || 5327 (pd->flags & PFDESC_TCP_NORM)))) { 5328 int action; 5329 action = pf_create_state(r, nr, a, pd, nk, sk, 5330 sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum, 5331 &match_rules, udp_mapping); 5332 if (action != PF_PASS) { 5333 pf_udp_mapping_release(udp_mapping); 5334 if (action == PF_DROP && 5335 (r->rule_flag & PFRULE_RETURN)) 5336 pf_return(r, nr, pd, sk, th, 5337 bproto_sum, bip_sum, &reason, 5338 pd->act.rtableid); 5339 return (action); 5340 } 5341 } else { 5342 while ((ri = SLIST_FIRST(&match_rules))) { 5343 SLIST_REMOVE_HEAD(&match_rules, entry); 5344 free(ri, M_PF_RULE_ITEM); 5345 } 5346 5347 uma_zfree(V_pf_state_key_z, sk); 5348 uma_zfree(V_pf_state_key_z, nk); 5349 pf_udp_mapping_release(udp_mapping); 5350 } 5351 5352 /* copy back packet headers if we performed NAT operations */ 5353 if (rewrite) 5354 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5355 5356 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5357 pd->dir == PF_OUT && 5358 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5359 /* 5360 * We want the state created, but we dont 5361 * want to send this in case a partner 5362 * firewall has to know about it to allow 5363 * replies through it. 5364 */ 5365 return (PF_DEFER); 5366 5367 return (PF_PASS); 5368 5369 cleanup: 5370 while ((ri = SLIST_FIRST(&match_rules))) { 5371 SLIST_REMOVE_HEAD(&match_rules, entry); 5372 free(ri, M_PF_RULE_ITEM); 5373 } 5374 5375 uma_zfree(V_pf_state_key_z, sk); 5376 uma_zfree(V_pf_state_key_z, nk); 5377 pf_udp_mapping_release(udp_mapping); 5378 5379 return (PF_DROP); 5380 } 5381 5382 static int 5383 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5384 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk, 5385 u_int16_t sport, u_int16_t dport, int *rewrite, struct pf_kstate **sm, 5386 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, 5387 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5388 { 5389 struct pf_kstate *s = NULL; 5390 struct pf_ksrc_node *sn = NULL; 5391 struct pf_srchash *snh = NULL; 5392 struct pf_ksrc_node *nsn = NULL; 5393 struct pf_srchash *nsnh = NULL; 5394 struct tcphdr *th = &pd->hdr.tcp; 5395 u_int16_t mss = V_tcp_mssdflt; 5396 u_short reason, sn_reason; 5397 struct pf_krule_item *ri; 5398 5399 /* check maximums */ 5400 if (r->max_states && 5401 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5402 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5403 REASON_SET(&reason, PFRES_MAXSTATES); 5404 goto csfailed; 5405 } 5406 /* src node for filter rule */ 5407 if ((r->rule_flag & PFRULE_SRCTRACK || 5408 r->rpool.opts & PF_POOL_STICKYADDR) && 5409 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af, 5410 &pd->act.rt_addr, pd->act.rt_kif)) != 0) { 5411 REASON_SET(&reason, sn_reason); 5412 goto csfailed; 5413 } 5414 /* src node for translation rule */ 5415 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5416 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx], 5417 pd->af, &nk->addr[1], NULL)) != 0 ) { 5418 REASON_SET(&reason, sn_reason); 5419 goto csfailed; 5420 } 5421 s = pf_alloc_state(M_NOWAIT); 5422 if (s == NULL) { 5423 REASON_SET(&reason, PFRES_MEMORY); 5424 goto csfailed; 5425 } 5426 s->rule = r; 5427 s->nat_rule = nr; 5428 s->anchor = a; 5429 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5430 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5431 5432 STATE_INC_COUNTERS(s); 5433 if (r->allow_opts) 5434 s->state_flags |= PFSTATE_ALLOWOPTS; 5435 if (r->rule_flag & PFRULE_STATESLOPPY) 5436 s->state_flags |= PFSTATE_SLOPPY; 5437 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5438 s->state_flags |= PFSTATE_SCRUB_TCP; 5439 if ((r->rule_flag & PFRULE_PFLOW) || 5440 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5441 s->state_flags |= PFSTATE_PFLOW; 5442 5443 s->act.log = pd->act.log & PF_LOG_ALL; 5444 s->sync_state = PFSYNC_S_NONE; 5445 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5446 5447 if (nr != NULL) 5448 s->act.log |= nr->log & PF_LOG_ALL; 5449 switch (pd->proto) { 5450 case IPPROTO_TCP: 5451 s->src.seqlo = ntohl(th->th_seq); 5452 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5453 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 5454 r->keep_state == PF_STATE_MODULATE) { 5455 /* Generate sequence number modulator */ 5456 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5457 0) 5458 s->src.seqdiff = 1; 5459 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 5460 htonl(s->src.seqlo + s->src.seqdiff), 0); 5461 *rewrite = 1; 5462 } else 5463 s->src.seqdiff = 0; 5464 if (tcp_get_flags(th) & TH_SYN) { 5465 s->src.seqhi++; 5466 s->src.wscale = pf_get_wscale(pd); 5467 } 5468 s->src.max_win = MAX(ntohs(th->th_win), 1); 5469 if (s->src.wscale & PF_WSCALE_MASK) { 5470 /* Remove scale factor from initial window */ 5471 int win = s->src.max_win; 5472 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5473 s->src.max_win = (win - 1) >> 5474 (s->src.wscale & PF_WSCALE_MASK); 5475 } 5476 if (tcp_get_flags(th) & TH_FIN) 5477 s->src.seqhi++; 5478 s->dst.seqhi = 1; 5479 s->dst.max_win = 1; 5480 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5481 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5482 s->timeout = PFTM_TCP_FIRST_PACKET; 5483 atomic_add_32(&V_pf_status.states_halfopen, 1); 5484 break; 5485 case IPPROTO_UDP: 5486 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5487 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5488 s->timeout = PFTM_UDP_FIRST_PACKET; 5489 break; 5490 case IPPROTO_SCTP: 5491 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5492 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5493 s->timeout = PFTM_SCTP_FIRST_PACKET; 5494 break; 5495 case IPPROTO_ICMP: 5496 #ifdef INET6 5497 case IPPROTO_ICMPV6: 5498 #endif 5499 s->timeout = PFTM_ICMP_FIRST_PACKET; 5500 break; 5501 default: 5502 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5503 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5504 s->timeout = PFTM_OTHER_FIRST_PACKET; 5505 } 5506 5507 s->creation = s->expire = pf_get_uptime(); 5508 5509 if (pd->proto == IPPROTO_TCP) { 5510 if (s->state_flags & PFSTATE_SCRUB_TCP && 5511 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 5512 REASON_SET(&reason, PFRES_MEMORY); 5513 goto csfailed; 5514 } 5515 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5516 pf_normalize_tcp_stateful(pd, &reason, th, s, 5517 &s->src, &s->dst, rewrite)) { 5518 /* This really shouldn't happen!!! */ 5519 DPFPRINTF(PF_DEBUG_URGENT, 5520 ("pf_normalize_tcp_stateful failed on first " 5521 "pkt\n")); 5522 goto csfailed; 5523 } 5524 } else if (pd->proto == IPPROTO_SCTP) { 5525 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 5526 goto csfailed; 5527 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5528 goto csfailed; 5529 } 5530 s->direction = pd->dir; 5531 5532 /* 5533 * sk/nk could already been setup by pf_get_translation(). 5534 */ 5535 if (nr == NULL) { 5536 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5537 __func__, nr, sk, nk)); 5538 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5539 if (sk == NULL) 5540 goto csfailed; 5541 nk = sk; 5542 } else 5543 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5544 __func__, nr, sk, nk)); 5545 5546 /* Swap sk/nk for PF_OUT. */ 5547 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif, 5548 (pd->dir == PF_IN) ? sk : nk, 5549 (pd->dir == PF_IN) ? nk : sk, s)) { 5550 REASON_SET(&reason, PFRES_STATEINS); 5551 goto drop; 5552 } else 5553 *sm = s; 5554 5555 /* 5556 * Lock order is important: first state, then source node. 5557 */ 5558 if (pf_src_node_exists(&sn, snh)) { 5559 s->src_node = sn; 5560 PF_HASHROW_UNLOCK(snh); 5561 } 5562 if (pf_src_node_exists(&nsn, nsnh)) { 5563 s->nat_src_node = nsn; 5564 PF_HASHROW_UNLOCK(nsnh); 5565 } 5566 5567 if (tag > 0) 5568 s->tag = tag; 5569 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 5570 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5571 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5572 /* undo NAT changes, if they have taken place */ 5573 if (nr != NULL) { 5574 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5575 if (pd->dir == PF_OUT) 5576 skt = s->key[PF_SK_STACK]; 5577 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5578 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5579 if (pd->sport) 5580 *pd->sport = skt->port[pd->sidx]; 5581 if (pd->dport) 5582 *pd->dport = skt->port[pd->didx]; 5583 if (pd->ip_sum) 5584 *pd->ip_sum = bip_sum; 5585 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5586 } 5587 s->src.seqhi = htonl(arc4random()); 5588 /* Find mss option */ 5589 int rtid = M_GETFIB(pd->m); 5590 mss = pf_get_mss(pd); 5591 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5592 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5593 s->src.mss = mss; 5594 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5595 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5596 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 5597 pd->act.rtableid); 5598 REASON_SET(&reason, PFRES_SYNPROXY); 5599 return (PF_SYNPROXY_DROP); 5600 } 5601 5602 s->udp_mapping = udp_mapping; 5603 5604 return (PF_PASS); 5605 5606 csfailed: 5607 while ((ri = SLIST_FIRST(match_rules))) { 5608 SLIST_REMOVE_HEAD(match_rules, entry); 5609 free(ri, M_PF_RULE_ITEM); 5610 } 5611 5612 uma_zfree(V_pf_state_key_z, sk); 5613 uma_zfree(V_pf_state_key_z, nk); 5614 5615 if (pf_src_node_exists(&sn, snh)) { 5616 if (--sn->states == 0 && sn->expire == 0) { 5617 pf_unlink_src_node(sn); 5618 pf_free_src_node(sn); 5619 counter_u64_add( 5620 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5621 } 5622 PF_HASHROW_UNLOCK(snh); 5623 } 5624 5625 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) { 5626 if (--nsn->states == 0 && nsn->expire == 0) { 5627 pf_unlink_src_node(nsn); 5628 pf_free_src_node(nsn); 5629 counter_u64_add( 5630 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5631 } 5632 PF_HASHROW_UNLOCK(nsnh); 5633 } 5634 5635 drop: 5636 if (s != NULL) { 5637 pf_src_tree_remove_state(s); 5638 s->timeout = PFTM_UNLINKED; 5639 STATE_DEC_COUNTERS(s); 5640 pf_free_state(s); 5641 } 5642 5643 return (PF_DROP); 5644 } 5645 5646 static int 5647 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 5648 u_short *reason, int *copyback) 5649 { 5650 struct tcphdr *th = &pd->hdr.tcp; 5651 struct pf_state_peer *src, *dst; 5652 u_int16_t win = ntohs(th->th_win); 5653 u_int32_t ack, end, data_end, seq, orig_seq; 5654 u_int8_t sws, dws, psrc, pdst; 5655 int ackskew; 5656 5657 if (pd->dir == (*state)->direction) { 5658 src = &(*state)->src; 5659 dst = &(*state)->dst; 5660 psrc = PF_PEER_SRC; 5661 pdst = PF_PEER_DST; 5662 } else { 5663 src = &(*state)->dst; 5664 dst = &(*state)->src; 5665 psrc = PF_PEER_DST; 5666 pdst = PF_PEER_SRC; 5667 } 5668 5669 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 5670 sws = src->wscale & PF_WSCALE_MASK; 5671 dws = dst->wscale & PF_WSCALE_MASK; 5672 } else 5673 sws = dws = 0; 5674 5675 /* 5676 * Sequence tracking algorithm from Guido van Rooij's paper: 5677 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5678 * tcp_filtering.ps 5679 */ 5680 5681 orig_seq = seq = ntohl(th->th_seq); 5682 if (src->seqlo == 0) { 5683 /* First packet from this end. Set its state */ 5684 5685 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5686 src->scrub == NULL) { 5687 if (pf_normalize_tcp_init(pd, th, src, dst)) { 5688 REASON_SET(reason, PFRES_MEMORY); 5689 return (PF_DROP); 5690 } 5691 } 5692 5693 /* Deferred generation of sequence number modulator */ 5694 if (dst->seqdiff && !src->seqdiff) { 5695 /* use random iss for the TCP server */ 5696 while ((src->seqdiff = arc4random() - seq) == 0) 5697 ; 5698 ack = ntohl(th->th_ack) - dst->seqdiff; 5699 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5700 src->seqdiff), 0); 5701 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5702 *copyback = 1; 5703 } else { 5704 ack = ntohl(th->th_ack); 5705 } 5706 5707 end = seq + pd->p_len; 5708 if (tcp_get_flags(th) & TH_SYN) { 5709 end++; 5710 if (dst->wscale & PF_WSCALE_FLAG) { 5711 src->wscale = pf_get_wscale(pd); 5712 if (src->wscale & PF_WSCALE_FLAG) { 5713 /* Remove scale factor from initial 5714 * window */ 5715 sws = src->wscale & PF_WSCALE_MASK; 5716 win = ((u_int32_t)win + (1 << sws) - 1) 5717 >> sws; 5718 dws = dst->wscale & PF_WSCALE_MASK; 5719 } else { 5720 /* fixup other window */ 5721 dst->max_win = MIN(TCP_MAXWIN, 5722 (u_int32_t)dst->max_win << 5723 (dst->wscale & PF_WSCALE_MASK)); 5724 /* in case of a retrans SYN|ACK */ 5725 dst->wscale = 0; 5726 } 5727 } 5728 } 5729 data_end = end; 5730 if (tcp_get_flags(th) & TH_FIN) 5731 end++; 5732 5733 src->seqlo = seq; 5734 if (src->state < TCPS_SYN_SENT) 5735 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5736 5737 /* 5738 * May need to slide the window (seqhi may have been set by 5739 * the crappy stack check or if we picked up the connection 5740 * after establishment) 5741 */ 5742 if (src->seqhi == 1 || 5743 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5744 src->seqhi = end + MAX(1, dst->max_win << dws); 5745 if (win > src->max_win) 5746 src->max_win = win; 5747 5748 } else { 5749 ack = ntohl(th->th_ack) - dst->seqdiff; 5750 if (src->seqdiff) { 5751 /* Modulate sequence numbers */ 5752 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5753 src->seqdiff), 0); 5754 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5755 *copyback = 1; 5756 } 5757 end = seq + pd->p_len; 5758 if (tcp_get_flags(th) & TH_SYN) 5759 end++; 5760 data_end = end; 5761 if (tcp_get_flags(th) & TH_FIN) 5762 end++; 5763 } 5764 5765 if ((tcp_get_flags(th) & TH_ACK) == 0) { 5766 /* Let it pass through the ack skew check */ 5767 ack = dst->seqlo; 5768 } else if ((ack == 0 && 5769 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5770 /* broken tcp stacks do not set ack */ 5771 (dst->state < TCPS_SYN_SENT)) { 5772 /* 5773 * Many stacks (ours included) will set the ACK number in an 5774 * FIN|ACK if the SYN times out -- no sequence to ACK. 5775 */ 5776 ack = dst->seqlo; 5777 } 5778 5779 if (seq == end) { 5780 /* Ease sequencing restrictions on no data packets */ 5781 seq = src->seqlo; 5782 data_end = end = seq; 5783 } 5784 5785 ackskew = dst->seqlo - ack; 5786 5787 /* 5788 * Need to demodulate the sequence numbers in any TCP SACK options 5789 * (Selective ACK). We could optionally validate the SACK values 5790 * against the current ACK window, either forwards or backwards, but 5791 * I'm not confident that SACK has been implemented properly 5792 * everywhere. It wouldn't surprise me if several stacks accidentally 5793 * SACK too far backwards of previously ACKed data. There really aren't 5794 * any security implications of bad SACKing unless the target stack 5795 * doesn't validate the option length correctly. Someone trying to 5796 * spoof into a TCP connection won't bother blindly sending SACK 5797 * options anyway. 5798 */ 5799 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5800 if (pf_modulate_sack(pd, th, dst)) 5801 *copyback = 1; 5802 } 5803 5804 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5805 if (SEQ_GEQ(src->seqhi, data_end) && 5806 /* Last octet inside other's window space */ 5807 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5808 /* Retrans: not more than one window back */ 5809 (ackskew >= -MAXACKWINDOW) && 5810 /* Acking not more than one reassembled fragment backwards */ 5811 (ackskew <= (MAXACKWINDOW << sws)) && 5812 /* Acking not more than one window forward */ 5813 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 5814 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5815 /* Require an exact/+1 sequence match on resets when possible */ 5816 5817 if (dst->scrub || src->scrub) { 5818 if (pf_normalize_tcp_stateful(pd, reason, th, 5819 *state, src, dst, copyback)) 5820 return (PF_DROP); 5821 } 5822 5823 /* update max window */ 5824 if (src->max_win < win) 5825 src->max_win = win; 5826 /* synchronize sequencing */ 5827 if (SEQ_GT(end, src->seqlo)) 5828 src->seqlo = end; 5829 /* slide the window of what the other end can send */ 5830 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5831 dst->seqhi = ack + MAX((win << sws), 1); 5832 5833 /* update states */ 5834 if (tcp_get_flags(th) & TH_SYN) 5835 if (src->state < TCPS_SYN_SENT) 5836 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5837 if (tcp_get_flags(th) & TH_FIN) 5838 if (src->state < TCPS_CLOSING) 5839 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5840 if (tcp_get_flags(th) & TH_ACK) { 5841 if (dst->state == TCPS_SYN_SENT) { 5842 pf_set_protostate(*state, pdst, 5843 TCPS_ESTABLISHED); 5844 if (src->state == TCPS_ESTABLISHED && 5845 (*state)->src_node != NULL && 5846 pf_src_connlimit(*state)) { 5847 REASON_SET(reason, PFRES_SRCLIMIT); 5848 return (PF_DROP); 5849 } 5850 } else if (dst->state == TCPS_CLOSING) 5851 pf_set_protostate(*state, pdst, 5852 TCPS_FIN_WAIT_2); 5853 } 5854 if (tcp_get_flags(th) & TH_RST) 5855 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5856 5857 /* update expire time */ 5858 (*state)->expire = pf_get_uptime(); 5859 if (src->state >= TCPS_FIN_WAIT_2 && 5860 dst->state >= TCPS_FIN_WAIT_2) 5861 (*state)->timeout = PFTM_TCP_CLOSED; 5862 else if (src->state >= TCPS_CLOSING && 5863 dst->state >= TCPS_CLOSING) 5864 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5865 else if (src->state < TCPS_ESTABLISHED || 5866 dst->state < TCPS_ESTABLISHED) 5867 (*state)->timeout = PFTM_TCP_OPENING; 5868 else if (src->state >= TCPS_CLOSING || 5869 dst->state >= TCPS_CLOSING) 5870 (*state)->timeout = PFTM_TCP_CLOSING; 5871 else 5872 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5873 5874 /* Fall through to PASS packet */ 5875 5876 } else if ((dst->state < TCPS_SYN_SENT || 5877 dst->state >= TCPS_FIN_WAIT_2 || 5878 src->state >= TCPS_FIN_WAIT_2) && 5879 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5880 /* Within a window forward of the originating packet */ 5881 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5882 /* Within a window backward of the originating packet */ 5883 5884 /* 5885 * This currently handles three situations: 5886 * 1) Stupid stacks will shotgun SYNs before their peer 5887 * replies. 5888 * 2) When PF catches an already established stream (the 5889 * firewall rebooted, the state table was flushed, routes 5890 * changed...) 5891 * 3) Packets get funky immediately after the connection 5892 * closes (this should catch Solaris spurious ACK|FINs 5893 * that web servers like to spew after a close) 5894 * 5895 * This must be a little more careful than the above code 5896 * since packet floods will also be caught here. We don't 5897 * update the TTL here to mitigate the damage of a packet 5898 * flood and so the same code can handle awkward establishment 5899 * and a loosened connection close. 5900 * In the establishment case, a correct peer response will 5901 * validate the connection, go through the normal state code 5902 * and keep updating the state TTL. 5903 */ 5904 5905 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5906 printf("pf: loose state match: "); 5907 pf_print_state(*state); 5908 pf_print_flags(tcp_get_flags(th)); 5909 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5910 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5911 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5912 (unsigned long long)(*state)->packets[1], 5913 pd->dir == PF_IN ? "in" : "out", 5914 pd->dir == (*state)->direction ? "fwd" : "rev"); 5915 } 5916 5917 if (dst->scrub || src->scrub) { 5918 if (pf_normalize_tcp_stateful(pd, reason, th, 5919 *state, src, dst, copyback)) 5920 return (PF_DROP); 5921 } 5922 5923 /* update max window */ 5924 if (src->max_win < win) 5925 src->max_win = win; 5926 /* synchronize sequencing */ 5927 if (SEQ_GT(end, src->seqlo)) 5928 src->seqlo = end; 5929 /* slide the window of what the other end can send */ 5930 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5931 dst->seqhi = ack + MAX((win << sws), 1); 5932 5933 /* 5934 * Cannot set dst->seqhi here since this could be a shotgunned 5935 * SYN and not an already established connection. 5936 */ 5937 5938 if (tcp_get_flags(th) & TH_FIN) 5939 if (src->state < TCPS_CLOSING) 5940 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5941 if (tcp_get_flags(th) & TH_RST) 5942 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5943 5944 /* Fall through to PASS packet */ 5945 5946 } else { 5947 if ((*state)->dst.state == TCPS_SYN_SENT && 5948 (*state)->src.state == TCPS_SYN_SENT) { 5949 /* Send RST for state mismatches during handshake */ 5950 if (!(tcp_get_flags(th) & TH_RST)) 5951 pf_send_tcp((*state)->rule, pd->af, 5952 pd->dst, pd->src, th->th_dport, 5953 th->th_sport, ntohl(th->th_ack), 0, 5954 TH_RST, 0, 0, 5955 (*state)->rule->return_ttl, M_SKIP_FIREWALL, 5956 0, 0, (*state)->act.rtableid); 5957 src->seqlo = 0; 5958 src->seqhi = 1; 5959 src->max_win = 1; 5960 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5961 printf("pf: BAD state: "); 5962 pf_print_state(*state); 5963 pf_print_flags(tcp_get_flags(th)); 5964 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5965 "pkts=%llu:%llu dir=%s,%s\n", 5966 seq, orig_seq, ack, pd->p_len, ackskew, 5967 (unsigned long long)(*state)->packets[0], 5968 (unsigned long long)(*state)->packets[1], 5969 pd->dir == PF_IN ? "in" : "out", 5970 pd->dir == (*state)->direction ? "fwd" : "rev"); 5971 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5972 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5973 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5974 ' ': '2', 5975 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5976 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5977 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5978 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5979 } 5980 REASON_SET(reason, PFRES_BADSTATE); 5981 return (PF_DROP); 5982 } 5983 5984 return (PF_PASS); 5985 } 5986 5987 static int 5988 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5989 { 5990 struct tcphdr *th = &pd->hdr.tcp; 5991 struct pf_state_peer *src, *dst; 5992 u_int8_t psrc, pdst; 5993 5994 if (pd->dir == (*state)->direction) { 5995 src = &(*state)->src; 5996 dst = &(*state)->dst; 5997 psrc = PF_PEER_SRC; 5998 pdst = PF_PEER_DST; 5999 } else { 6000 src = &(*state)->dst; 6001 dst = &(*state)->src; 6002 psrc = PF_PEER_DST; 6003 pdst = PF_PEER_SRC; 6004 } 6005 6006 if (tcp_get_flags(th) & TH_SYN) 6007 if (src->state < TCPS_SYN_SENT) 6008 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6009 if (tcp_get_flags(th) & TH_FIN) 6010 if (src->state < TCPS_CLOSING) 6011 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6012 if (tcp_get_flags(th) & TH_ACK) { 6013 if (dst->state == TCPS_SYN_SENT) { 6014 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6015 if (src->state == TCPS_ESTABLISHED && 6016 (*state)->src_node != NULL && 6017 pf_src_connlimit(*state)) { 6018 REASON_SET(reason, PFRES_SRCLIMIT); 6019 return (PF_DROP); 6020 } 6021 } else if (dst->state == TCPS_CLOSING) { 6022 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6023 } else if (src->state == TCPS_SYN_SENT && 6024 dst->state < TCPS_SYN_SENT) { 6025 /* 6026 * Handle a special sloppy case where we only see one 6027 * half of the connection. If there is a ACK after 6028 * the initial SYN without ever seeing a packet from 6029 * the destination, set the connection to established. 6030 */ 6031 pf_set_protostate(*state, PF_PEER_BOTH, 6032 TCPS_ESTABLISHED); 6033 dst->state = src->state = TCPS_ESTABLISHED; 6034 if ((*state)->src_node != NULL && 6035 pf_src_connlimit(*state)) { 6036 REASON_SET(reason, PFRES_SRCLIMIT); 6037 return (PF_DROP); 6038 } 6039 } else if (src->state == TCPS_CLOSING && 6040 dst->state == TCPS_ESTABLISHED && 6041 dst->seqlo == 0) { 6042 /* 6043 * Handle the closing of half connections where we 6044 * don't see the full bidirectional FIN/ACK+ACK 6045 * handshake. 6046 */ 6047 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6048 } 6049 } 6050 if (tcp_get_flags(th) & TH_RST) 6051 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6052 6053 /* update expire time */ 6054 (*state)->expire = pf_get_uptime(); 6055 if (src->state >= TCPS_FIN_WAIT_2 && 6056 dst->state >= TCPS_FIN_WAIT_2) 6057 (*state)->timeout = PFTM_TCP_CLOSED; 6058 else if (src->state >= TCPS_CLOSING && 6059 dst->state >= TCPS_CLOSING) 6060 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6061 else if (src->state < TCPS_ESTABLISHED || 6062 dst->state < TCPS_ESTABLISHED) 6063 (*state)->timeout = PFTM_TCP_OPENING; 6064 else if (src->state >= TCPS_CLOSING || 6065 dst->state >= TCPS_CLOSING) 6066 (*state)->timeout = PFTM_TCP_CLOSING; 6067 else 6068 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6069 6070 return (PF_PASS); 6071 } 6072 6073 static int 6074 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6075 { 6076 struct pf_state_key *sk = (*state)->key[pd->didx]; 6077 struct tcphdr *th = &pd->hdr.tcp; 6078 6079 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6080 if (pd->dir != (*state)->direction) { 6081 REASON_SET(reason, PFRES_SYNPROXY); 6082 return (PF_SYNPROXY_DROP); 6083 } 6084 if (tcp_get_flags(th) & TH_SYN) { 6085 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6086 REASON_SET(reason, PFRES_SYNPROXY); 6087 return (PF_DROP); 6088 } 6089 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6090 pd->src, th->th_dport, th->th_sport, 6091 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6092 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 6093 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6094 REASON_SET(reason, PFRES_SYNPROXY); 6095 return (PF_SYNPROXY_DROP); 6096 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6097 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6098 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6099 REASON_SET(reason, PFRES_SYNPROXY); 6100 return (PF_DROP); 6101 } else if ((*state)->src_node != NULL && 6102 pf_src_connlimit(*state)) { 6103 REASON_SET(reason, PFRES_SRCLIMIT); 6104 return (PF_DROP); 6105 } else 6106 pf_set_protostate(*state, PF_PEER_SRC, 6107 PF_TCPS_PROXY_DST); 6108 } 6109 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6110 if (pd->dir == (*state)->direction) { 6111 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6112 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6113 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6114 REASON_SET(reason, PFRES_SYNPROXY); 6115 return (PF_DROP); 6116 } 6117 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6118 if ((*state)->dst.seqhi == 1) 6119 (*state)->dst.seqhi = htonl(arc4random()); 6120 pf_send_tcp((*state)->rule, pd->af, 6121 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6122 sk->port[pd->sidx], sk->port[pd->didx], 6123 (*state)->dst.seqhi, 0, TH_SYN, 0, 6124 (*state)->src.mss, 0, 6125 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6126 (*state)->tag, 0, (*state)->act.rtableid); 6127 REASON_SET(reason, PFRES_SYNPROXY); 6128 return (PF_SYNPROXY_DROP); 6129 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6130 (TH_SYN|TH_ACK)) || 6131 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6132 REASON_SET(reason, PFRES_SYNPROXY); 6133 return (PF_DROP); 6134 } else { 6135 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6136 (*state)->dst.seqlo = ntohl(th->th_seq); 6137 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6138 pd->src, th->th_dport, th->th_sport, 6139 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6140 TH_ACK, (*state)->src.max_win, 0, 0, 0, 6141 (*state)->tag, 0, (*state)->act.rtableid); 6142 pf_send_tcp((*state)->rule, pd->af, 6143 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6144 sk->port[pd->sidx], sk->port[pd->didx], 6145 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6146 TH_ACK, (*state)->dst.max_win, 0, 0, 6147 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6148 (*state)->src.seqdiff = (*state)->dst.seqhi - 6149 (*state)->src.seqlo; 6150 (*state)->dst.seqdiff = (*state)->src.seqhi - 6151 (*state)->dst.seqlo; 6152 (*state)->src.seqhi = (*state)->src.seqlo + 6153 (*state)->dst.max_win; 6154 (*state)->dst.seqhi = (*state)->dst.seqlo + 6155 (*state)->src.max_win; 6156 (*state)->src.wscale = (*state)->dst.wscale = 0; 6157 pf_set_protostate(*state, PF_PEER_BOTH, 6158 TCPS_ESTABLISHED); 6159 REASON_SET(reason, PFRES_SYNPROXY); 6160 return (PF_SYNPROXY_DROP); 6161 } 6162 } 6163 6164 return (PF_PASS); 6165 } 6166 6167 static int 6168 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6169 u_short *reason) 6170 { 6171 struct pf_state_key_cmp key; 6172 struct tcphdr *th = &pd->hdr.tcp; 6173 int copyback = 0; 6174 int action; 6175 struct pf_state_peer *src, *dst; 6176 6177 bzero(&key, sizeof(key)); 6178 key.af = pd->af; 6179 key.proto = IPPROTO_TCP; 6180 if (pd->dir == PF_IN) { /* wire side, straight */ 6181 PF_ACPY(&key.addr[0], pd->src, key.af); 6182 PF_ACPY(&key.addr[1], pd->dst, key.af); 6183 key.port[0] = th->th_sport; 6184 key.port[1] = th->th_dport; 6185 } else { /* stack side, reverse */ 6186 PF_ACPY(&key.addr[1], pd->src, key.af); 6187 PF_ACPY(&key.addr[0], pd->dst, key.af); 6188 key.port[1] = th->th_sport; 6189 key.port[0] = th->th_dport; 6190 } 6191 6192 STATE_LOOKUP(&key, *state, pd); 6193 6194 if (pd->dir == (*state)->direction) { 6195 src = &(*state)->src; 6196 dst = &(*state)->dst; 6197 } else { 6198 src = &(*state)->dst; 6199 dst = &(*state)->src; 6200 } 6201 6202 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6203 return (action); 6204 6205 if (dst->state >= TCPS_FIN_WAIT_2 && 6206 src->state >= TCPS_FIN_WAIT_2 && 6207 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) || 6208 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6209 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6210 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6211 printf("pf: state reuse "); 6212 pf_print_state(*state); 6213 pf_print_flags(tcp_get_flags(th)); 6214 printf("\n"); 6215 } 6216 /* XXX make sure it's the same direction ?? */ 6217 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6218 pf_unlink_state(*state); 6219 *state = NULL; 6220 return (PF_DROP); 6221 } 6222 6223 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6224 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6225 return (PF_DROP); 6226 } else { 6227 if (pf_tcp_track_full(state, pd, reason, 6228 ©back) == PF_DROP) 6229 return (PF_DROP); 6230 } 6231 6232 /* translate source/destination address, if necessary */ 6233 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6234 struct pf_state_key *nk = (*state)->key[pd->didx]; 6235 6236 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6237 nk->port[pd->sidx] != th->th_sport) 6238 pf_change_ap(pd->m, pd->src, &th->th_sport, 6239 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6240 nk->port[pd->sidx], 0, pd->af); 6241 6242 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6243 nk->port[pd->didx] != th->th_dport) 6244 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6245 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6246 nk->port[pd->didx], 0, pd->af); 6247 copyback = 1; 6248 } 6249 6250 /* Copyback sequence modulation or stateful scrub changes if needed */ 6251 if (copyback) 6252 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 6253 6254 return (PF_PASS); 6255 } 6256 6257 static int 6258 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 6259 { 6260 struct pf_state_peer *src, *dst; 6261 struct pf_state_key_cmp key; 6262 struct udphdr *uh = &pd->hdr.udp; 6263 uint8_t psrc, pdst; 6264 6265 bzero(&key, sizeof(key)); 6266 key.af = pd->af; 6267 key.proto = IPPROTO_UDP; 6268 if (pd->dir == PF_IN) { /* wire side, straight */ 6269 PF_ACPY(&key.addr[0], pd->src, key.af); 6270 PF_ACPY(&key.addr[1], pd->dst, key.af); 6271 key.port[0] = uh->uh_sport; 6272 key.port[1] = uh->uh_dport; 6273 } else { /* stack side, reverse */ 6274 PF_ACPY(&key.addr[1], pd->src, key.af); 6275 PF_ACPY(&key.addr[0], pd->dst, key.af); 6276 key.port[1] = uh->uh_sport; 6277 key.port[0] = uh->uh_dport; 6278 } 6279 6280 STATE_LOOKUP(&key, *state, pd); 6281 6282 if (pd->dir == (*state)->direction) { 6283 src = &(*state)->src; 6284 dst = &(*state)->dst; 6285 psrc = PF_PEER_SRC; 6286 pdst = PF_PEER_DST; 6287 } else { 6288 src = &(*state)->dst; 6289 dst = &(*state)->src; 6290 psrc = PF_PEER_DST; 6291 pdst = PF_PEER_SRC; 6292 } 6293 6294 /* update states */ 6295 if (src->state < PFUDPS_SINGLE) 6296 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6297 if (dst->state == PFUDPS_SINGLE) 6298 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6299 6300 /* update expire time */ 6301 (*state)->expire = pf_get_uptime(); 6302 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6303 (*state)->timeout = PFTM_UDP_MULTIPLE; 6304 else 6305 (*state)->timeout = PFTM_UDP_SINGLE; 6306 6307 /* translate source/destination address, if necessary */ 6308 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6309 struct pf_state_key *nk = (*state)->key[pd->didx]; 6310 6311 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6312 nk->port[pd->sidx] != uh->uh_sport) 6313 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 6314 &uh->uh_sum, &nk->addr[pd->sidx], 6315 nk->port[pd->sidx], 1, pd->af); 6316 6317 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6318 nk->port[pd->didx] != uh->uh_dport) 6319 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 6320 &uh->uh_sum, &nk->addr[pd->didx], 6321 nk->port[pd->didx], 1, pd->af); 6322 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 6323 } 6324 6325 return (PF_PASS); 6326 } 6327 6328 static int 6329 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 6330 u_short *reason) 6331 { 6332 struct pf_state_key_cmp key; 6333 struct pf_state_peer *src, *dst; 6334 struct sctphdr *sh = &pd->hdr.sctp; 6335 u_int8_t psrc; //, pdst; 6336 6337 bzero(&key, sizeof(key)); 6338 key.af = pd->af; 6339 key.proto = IPPROTO_SCTP; 6340 if (pd->dir == PF_IN) { /* wire side, straight */ 6341 PF_ACPY(&key.addr[0], pd->src, key.af); 6342 PF_ACPY(&key.addr[1], pd->dst, key.af); 6343 key.port[0] = sh->src_port; 6344 key.port[1] = sh->dest_port; 6345 } else { /* stack side, reverse */ 6346 PF_ACPY(&key.addr[1], pd->src, key.af); 6347 PF_ACPY(&key.addr[0], pd->dst, key.af); 6348 key.port[1] = sh->src_port; 6349 key.port[0] = sh->dest_port; 6350 } 6351 6352 STATE_LOOKUP(&key, *state, pd); 6353 6354 if (pd->dir == (*state)->direction) { 6355 src = &(*state)->src; 6356 dst = &(*state)->dst; 6357 psrc = PF_PEER_SRC; 6358 } else { 6359 src = &(*state)->dst; 6360 dst = &(*state)->src; 6361 psrc = PF_PEER_DST; 6362 } 6363 6364 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6365 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6366 pd->sctp_flags & PFDESC_SCTP_INIT) { 6367 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6368 pf_unlink_state(*state); 6369 *state = NULL; 6370 return (PF_DROP); 6371 } 6372 6373 /* Track state. */ 6374 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6375 if (src->state < SCTP_COOKIE_WAIT) { 6376 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6377 (*state)->timeout = PFTM_SCTP_OPENING; 6378 } 6379 } 6380 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6381 MPASS(dst->scrub != NULL); 6382 if (dst->scrub->pfss_v_tag == 0) 6383 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6384 } 6385 6386 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6387 if (src->state < SCTP_ESTABLISHED) { 6388 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6389 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6390 } 6391 } 6392 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6393 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6394 if (src->state < SCTP_SHUTDOWN_PENDING) { 6395 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6396 (*state)->timeout = PFTM_SCTP_CLOSING; 6397 } 6398 } 6399 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6400 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6401 (*state)->timeout = PFTM_SCTP_CLOSED; 6402 } 6403 6404 if (src->scrub != NULL) { 6405 if (src->scrub->pfss_v_tag == 0) { 6406 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6407 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6408 return (PF_DROP); 6409 } 6410 6411 (*state)->expire = pf_get_uptime(); 6412 6413 /* translate source/destination address, if necessary */ 6414 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6415 uint16_t checksum = 0; 6416 struct pf_state_key *nk = (*state)->key[pd->didx]; 6417 6418 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6419 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6420 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 6421 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6422 nk->port[pd->sidx], 1, pd->af); 6423 } 6424 6425 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6426 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6427 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 6428 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6429 nk->port[pd->didx], 1, pd->af); 6430 } 6431 } 6432 6433 return (PF_PASS); 6434 } 6435 6436 static void 6437 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6438 { 6439 struct pf_sctp_endpoint key; 6440 struct pf_sctp_endpoint *ep; 6441 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6442 struct pf_sctp_source *i, *tmp; 6443 6444 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6445 return; 6446 6447 PF_SCTP_ENDPOINTS_LOCK(); 6448 6449 key.v_tag = s->dst.scrub->pfss_v_tag; 6450 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6451 if (ep != NULL) { 6452 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6453 if (pf_addr_cmp(&i->addr, 6454 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6455 s->key[PF_SK_WIRE]->af) == 0) { 6456 SDT_PROBE3(pf, sctp, multihome, remove, 6457 key.v_tag, s, i); 6458 TAILQ_REMOVE(&ep->sources, i, entry); 6459 free(i, M_PFTEMP); 6460 break; 6461 } 6462 } 6463 6464 if (TAILQ_EMPTY(&ep->sources)) { 6465 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6466 free(ep, M_PFTEMP); 6467 } 6468 } 6469 6470 /* Other direction. */ 6471 key.v_tag = s->src.scrub->pfss_v_tag; 6472 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6473 if (ep != NULL) { 6474 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6475 if (pf_addr_cmp(&i->addr, 6476 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6477 s->key[PF_SK_WIRE]->af) == 0) { 6478 SDT_PROBE3(pf, sctp, multihome, remove, 6479 key.v_tag, s, i); 6480 TAILQ_REMOVE(&ep->sources, i, entry); 6481 free(i, M_PFTEMP); 6482 break; 6483 } 6484 } 6485 6486 if (TAILQ_EMPTY(&ep->sources)) { 6487 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6488 free(ep, M_PFTEMP); 6489 } 6490 } 6491 6492 PF_SCTP_ENDPOINTS_UNLOCK(); 6493 } 6494 6495 static void 6496 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6497 { 6498 struct pf_sctp_endpoint key = { 6499 .v_tag = v_tag, 6500 }; 6501 struct pf_sctp_source *i; 6502 struct pf_sctp_endpoint *ep; 6503 6504 PF_SCTP_ENDPOINTS_LOCK(); 6505 6506 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6507 if (ep == NULL) { 6508 ep = malloc(sizeof(struct pf_sctp_endpoint), 6509 M_PFTEMP, M_NOWAIT); 6510 if (ep == NULL) { 6511 PF_SCTP_ENDPOINTS_UNLOCK(); 6512 return; 6513 } 6514 6515 ep->v_tag = v_tag; 6516 TAILQ_INIT(&ep->sources); 6517 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6518 } 6519 6520 /* Avoid inserting duplicates. */ 6521 TAILQ_FOREACH(i, &ep->sources, entry) { 6522 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6523 PF_SCTP_ENDPOINTS_UNLOCK(); 6524 return; 6525 } 6526 } 6527 6528 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6529 if (i == NULL) { 6530 PF_SCTP_ENDPOINTS_UNLOCK(); 6531 return; 6532 } 6533 6534 i->af = pd->af; 6535 memcpy(&i->addr, a, sizeof(*a)); 6536 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6537 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6538 6539 PF_SCTP_ENDPOINTS_UNLOCK(); 6540 } 6541 6542 static void 6543 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 6544 struct pf_kstate *s, int action) 6545 { 6546 struct pf_sctp_multihome_job *j, *tmp; 6547 struct pf_sctp_source *i; 6548 int ret __unused; 6549 struct pf_kstate *sm = NULL; 6550 struct pf_krule *ra = NULL; 6551 struct pf_krule *r = &V_pf_default_rule; 6552 struct pf_kruleset *rs = NULL; 6553 bool do_extra = true; 6554 6555 PF_RULES_RLOCK_TRACKER; 6556 6557 again: 6558 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6559 if (s == NULL || action != PF_PASS) 6560 goto free; 6561 6562 /* Confirm we don't recurse here. */ 6563 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6564 6565 switch (j->op) { 6566 case SCTP_ADD_IP_ADDRESS: { 6567 uint32_t v_tag = pd->sctp_initiate_tag; 6568 6569 if (v_tag == 0) { 6570 if (s->direction == pd->dir) 6571 v_tag = s->src.scrub->pfss_v_tag; 6572 else 6573 v_tag = s->dst.scrub->pfss_v_tag; 6574 } 6575 6576 /* 6577 * Avoid duplicating states. We'll already have 6578 * created a state based on the source address of 6579 * the packet, but SCTP endpoints may also list this 6580 * address again in the INIT(_ACK) parameters. 6581 */ 6582 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6583 break; 6584 } 6585 6586 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6587 PF_RULES_RLOCK(); 6588 sm = NULL; 6589 ret = pf_test_rule(&r, &sm, 6590 &j->pd, &ra, &rs, NULL); 6591 PF_RULES_RUNLOCK(); 6592 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 6593 if (ret != PF_DROP && sm != NULL) { 6594 /* Inherit v_tag values. */ 6595 if (sm->direction == s->direction) { 6596 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6597 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6598 } else { 6599 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6600 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6601 } 6602 PF_STATE_UNLOCK(sm); 6603 } else { 6604 /* If we try duplicate inserts? */ 6605 break; 6606 } 6607 6608 /* Only add the address if we've actually allowed the state. */ 6609 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6610 6611 if (! do_extra) { 6612 break; 6613 } 6614 /* 6615 * We need to do this for each of our source addresses. 6616 * Find those based on the verification tag. 6617 */ 6618 struct pf_sctp_endpoint key = { 6619 .v_tag = pd->hdr.sctp.v_tag, 6620 }; 6621 struct pf_sctp_endpoint *ep; 6622 6623 PF_SCTP_ENDPOINTS_LOCK(); 6624 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6625 if (ep == NULL) { 6626 PF_SCTP_ENDPOINTS_UNLOCK(); 6627 break; 6628 } 6629 MPASS(ep != NULL); 6630 6631 TAILQ_FOREACH(i, &ep->sources, entry) { 6632 struct pf_sctp_multihome_job *nj; 6633 6634 /* SCTP can intermingle IPv4 and IPv6. */ 6635 if (i->af != pd->af) 6636 continue; 6637 6638 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6639 if (! nj) { 6640 continue; 6641 } 6642 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6643 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6644 nj->pd.src = &nj->src; 6645 // New destination address! 6646 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6647 nj->pd.dst = &nj->dst; 6648 nj->pd.m = j->pd.m; 6649 nj->op = j->op; 6650 6651 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6652 } 6653 PF_SCTP_ENDPOINTS_UNLOCK(); 6654 6655 break; 6656 } 6657 case SCTP_DEL_IP_ADDRESS: { 6658 struct pf_state_key_cmp key; 6659 uint8_t psrc; 6660 6661 bzero(&key, sizeof(key)); 6662 key.af = j->pd.af; 6663 key.proto = IPPROTO_SCTP; 6664 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6665 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6666 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6667 key.port[0] = j->pd.hdr.sctp.src_port; 6668 key.port[1] = j->pd.hdr.sctp.dest_port; 6669 } else { /* stack side, reverse */ 6670 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6671 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6672 key.port[1] = j->pd.hdr.sctp.src_port; 6673 key.port[0] = j->pd.hdr.sctp.dest_port; 6674 } 6675 6676 sm = pf_find_state(kif, &key, j->pd.dir); 6677 if (sm != NULL) { 6678 PF_STATE_LOCK_ASSERT(sm); 6679 if (j->pd.dir == sm->direction) { 6680 psrc = PF_PEER_SRC; 6681 } else { 6682 psrc = PF_PEER_DST; 6683 } 6684 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6685 sm->timeout = PFTM_SCTP_CLOSING; 6686 PF_STATE_UNLOCK(sm); 6687 } 6688 break; 6689 default: 6690 panic("Unknown op %#x", j->op); 6691 } 6692 } 6693 6694 free: 6695 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6696 free(j, M_PFTEMP); 6697 } 6698 6699 /* We may have inserted extra work while processing the list. */ 6700 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6701 do_extra = false; 6702 goto again; 6703 } 6704 } 6705 6706 static int 6707 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 6708 { 6709 int off = 0; 6710 struct pf_sctp_multihome_job *job; 6711 6712 while (off < len) { 6713 struct sctp_paramhdr h; 6714 6715 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 6716 pd->af)) 6717 return (PF_DROP); 6718 6719 /* Parameters are at least 4 bytes. */ 6720 if (ntohs(h.param_length) < 4) 6721 return (PF_DROP); 6722 6723 switch (ntohs(h.param_type)) { 6724 case SCTP_IPV4_ADDRESS: { 6725 struct in_addr t; 6726 6727 if (ntohs(h.param_length) != 6728 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6729 return (PF_DROP); 6730 6731 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6732 NULL, NULL, pd->af)) 6733 return (PF_DROP); 6734 6735 if (in_nullhost(t)) 6736 t.s_addr = pd->src->v4.s_addr; 6737 6738 /* 6739 * We hold the state lock (idhash) here, which means 6740 * that we can't acquire the keyhash, or we'll get a 6741 * LOR (and potentially double-lock things too). We also 6742 * can't release the state lock here, so instead we'll 6743 * enqueue this for async handling. 6744 * There's a relatively small race here, in that a 6745 * packet using the new addresses could arrive already, 6746 * but that's just though luck for it. 6747 */ 6748 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6749 if (! job) 6750 return (PF_DROP); 6751 6752 memcpy(&job->pd, pd, sizeof(*pd)); 6753 6754 // New source address! 6755 memcpy(&job->src, &t, sizeof(t)); 6756 job->pd.src = &job->src; 6757 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6758 job->pd.dst = &job->dst; 6759 job->pd.m = pd->m; 6760 job->op = op; 6761 6762 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6763 break; 6764 } 6765 #ifdef INET6 6766 case SCTP_IPV6_ADDRESS: { 6767 struct in6_addr t; 6768 6769 if (ntohs(h.param_length) != 6770 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6771 return (PF_DROP); 6772 6773 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6774 NULL, NULL, pd->af)) 6775 return (PF_DROP); 6776 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6777 break; 6778 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6779 memcpy(&t, &pd->src->v6, sizeof(t)); 6780 6781 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6782 if (! job) 6783 return (PF_DROP); 6784 6785 memcpy(&job->pd, pd, sizeof(*pd)); 6786 memcpy(&job->src, &t, sizeof(t)); 6787 job->pd.src = &job->src; 6788 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6789 job->pd.dst = &job->dst; 6790 job->pd.m = pd->m; 6791 job->op = op; 6792 6793 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6794 break; 6795 } 6796 #endif 6797 case SCTP_ADD_IP_ADDRESS: { 6798 int ret; 6799 struct sctp_asconf_paramhdr ah; 6800 6801 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6802 NULL, NULL, pd->af)) 6803 return (PF_DROP); 6804 6805 ret = pf_multihome_scan(start + off + sizeof(ah), 6806 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6807 SCTP_ADD_IP_ADDRESS); 6808 if (ret != PF_PASS) 6809 return (ret); 6810 break; 6811 } 6812 case SCTP_DEL_IP_ADDRESS: { 6813 int ret; 6814 struct sctp_asconf_paramhdr ah; 6815 6816 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6817 NULL, NULL, pd->af)) 6818 return (PF_DROP); 6819 ret = pf_multihome_scan(start + off + sizeof(ah), 6820 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6821 SCTP_DEL_IP_ADDRESS); 6822 if (ret != PF_PASS) 6823 return (ret); 6824 break; 6825 } 6826 default: 6827 break; 6828 } 6829 6830 off += roundup(ntohs(h.param_length), 4); 6831 } 6832 6833 return (PF_PASS); 6834 } 6835 int 6836 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 6837 { 6838 start += sizeof(struct sctp_init_chunk); 6839 len -= sizeof(struct sctp_init_chunk); 6840 6841 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6842 } 6843 6844 int 6845 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 6846 { 6847 start += sizeof(struct sctp_asconf_chunk); 6848 len -= sizeof(struct sctp_asconf_chunk); 6849 6850 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6851 } 6852 6853 int 6854 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6855 struct pf_kstate **state, int direction, 6856 u_int16_t icmpid, u_int16_t type, int icmp_dir, 6857 int *iidx, int multi, int inner) 6858 { 6859 key->af = pd->af; 6860 key->proto = pd->proto; 6861 if (icmp_dir == PF_IN) { 6862 *iidx = pd->sidx; 6863 key->port[pd->sidx] = icmpid; 6864 key->port[pd->didx] = type; 6865 } else { 6866 *iidx = pd->didx; 6867 key->port[pd->sidx] = type; 6868 key->port[pd->didx] = icmpid; 6869 } 6870 if (pf_state_key_addr_setup(pd, key, multi)) 6871 return (PF_DROP); 6872 6873 STATE_LOOKUP(key, *state, pd); 6874 6875 if ((*state)->state_flags & PFSTATE_SLOPPY) 6876 return (-1); 6877 6878 /* Is this ICMP message flowing in right direction? */ 6879 if ((*state)->rule->type && 6880 (((!inner && (*state)->direction == direction) || 6881 (inner && (*state)->direction != direction)) ? 6882 PF_IN : PF_OUT) != icmp_dir) { 6883 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6884 printf("pf: icmp type %d in wrong direction (%d): ", 6885 ntohs(type), icmp_dir); 6886 pf_print_state(*state); 6887 printf("\n"); 6888 } 6889 PF_STATE_UNLOCK(*state); 6890 *state = NULL; 6891 return (PF_DROP); 6892 } 6893 return (-1); 6894 } 6895 6896 static int 6897 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 6898 u_short *reason) 6899 { 6900 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6901 u_int16_t *icmpsum, virtual_id, virtual_type; 6902 u_int8_t icmptype, icmpcode; 6903 int icmp_dir, iidx, ret, multi; 6904 struct pf_state_key_cmp key; 6905 #ifdef INET 6906 u_int16_t icmpid; 6907 #endif 6908 6909 MPASS(*state == NULL); 6910 6911 bzero(&key, sizeof(key)); 6912 switch (pd->proto) { 6913 #ifdef INET 6914 case IPPROTO_ICMP: 6915 icmptype = pd->hdr.icmp.icmp_type; 6916 icmpcode = pd->hdr.icmp.icmp_code; 6917 icmpid = pd->hdr.icmp.icmp_id; 6918 icmpsum = &pd->hdr.icmp.icmp_cksum; 6919 break; 6920 #endif /* INET */ 6921 #ifdef INET6 6922 case IPPROTO_ICMPV6: 6923 icmptype = pd->hdr.icmp6.icmp6_type; 6924 icmpcode = pd->hdr.icmp6.icmp6_code; 6925 #ifdef INET 6926 icmpid = pd->hdr.icmp6.icmp6_id; 6927 #endif 6928 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6929 break; 6930 #endif /* INET6 */ 6931 } 6932 6933 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6934 &virtual_id, &virtual_type) == 0) { 6935 /* 6936 * ICMP query/reply message not related to a TCP/UDP packet. 6937 * Search for an ICMP state. 6938 */ 6939 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 6940 virtual_id, virtual_type, icmp_dir, &iidx, 6941 PF_ICMP_MULTI_NONE, 0); 6942 if (ret >= 0) { 6943 MPASS(*state == NULL); 6944 if (ret == PF_DROP && pd->af == AF_INET6 && 6945 icmp_dir == PF_OUT) { 6946 ret = pf_icmp_state_lookup(&key, pd, state, 6947 pd->dir, virtual_id, virtual_type, 6948 icmp_dir, &iidx, multi, 0); 6949 if (ret >= 0) { 6950 MPASS(*state == NULL); 6951 return (ret); 6952 } 6953 } else 6954 return (ret); 6955 } 6956 6957 (*state)->expire = pf_get_uptime(); 6958 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6959 6960 /* translate source/destination address, if necessary */ 6961 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6962 struct pf_state_key *nk = (*state)->key[pd->didx]; 6963 6964 switch (pd->af) { 6965 #ifdef INET 6966 case AF_INET: 6967 if (PF_ANEQ(pd->src, 6968 &nk->addr[pd->sidx], AF_INET)) 6969 pf_change_a(&saddr->v4.s_addr, 6970 pd->ip_sum, 6971 nk->addr[pd->sidx].v4.s_addr, 0); 6972 6973 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6974 AF_INET)) 6975 pf_change_a(&daddr->v4.s_addr, 6976 pd->ip_sum, 6977 nk->addr[pd->didx].v4.s_addr, 0); 6978 6979 if (nk->port[iidx] != 6980 pd->hdr.icmp.icmp_id) { 6981 pd->hdr.icmp.icmp_cksum = 6982 pf_cksum_fixup( 6983 pd->hdr.icmp.icmp_cksum, icmpid, 6984 nk->port[iidx], 0); 6985 pd->hdr.icmp.icmp_id = 6986 nk->port[iidx]; 6987 } 6988 6989 m_copyback(pd->m, pd->off, ICMP_MINLEN, 6990 (caddr_t )&pd->hdr.icmp); 6991 break; 6992 #endif /* INET */ 6993 #ifdef INET6 6994 case AF_INET6: 6995 if (PF_ANEQ(pd->src, 6996 &nk->addr[pd->sidx], AF_INET6)) 6997 pf_change_a6(saddr, 6998 &pd->hdr.icmp6.icmp6_cksum, 6999 &nk->addr[pd->sidx], 0); 7000 7001 if (PF_ANEQ(pd->dst, 7002 &nk->addr[pd->didx], AF_INET6)) 7003 pf_change_a6(daddr, 7004 &pd->hdr.icmp6.icmp6_cksum, 7005 &nk->addr[pd->didx], 0); 7006 7007 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7008 (caddr_t )&pd->hdr.icmp6); 7009 break; 7010 #endif /* INET6 */ 7011 } 7012 } 7013 return (PF_PASS); 7014 7015 } else { 7016 /* 7017 * ICMP error message in response to a TCP/UDP packet. 7018 * Extract the inner TCP/UDP header and search for that state. 7019 */ 7020 7021 struct pf_pdesc pd2; 7022 bzero(&pd2, sizeof pd2); 7023 #ifdef INET 7024 struct ip h2; 7025 #endif /* INET */ 7026 #ifdef INET6 7027 struct ip6_hdr h2_6; 7028 int fragoff2, extoff2; 7029 u_int32_t jumbolen; 7030 #endif /* INET6 */ 7031 int ipoff2 = 0; 7032 7033 pd2.af = pd->af; 7034 pd2.dir = pd->dir; 7035 /* Payload packet is from the opposite direction. */ 7036 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7037 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7038 pd2.m = pd->m; 7039 switch (pd->af) { 7040 #ifdef INET 7041 case AF_INET: 7042 /* offset of h2 in mbuf chain */ 7043 ipoff2 = pd->off + ICMP_MINLEN; 7044 7045 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7046 NULL, reason, pd2.af)) { 7047 DPFPRINTF(PF_DEBUG_MISC, 7048 ("pf: ICMP error message too short " 7049 "(ip)\n")); 7050 return (PF_DROP); 7051 } 7052 /* 7053 * ICMP error messages don't refer to non-first 7054 * fragments 7055 */ 7056 if (h2.ip_off & htons(IP_OFFMASK)) { 7057 REASON_SET(reason, PFRES_FRAG); 7058 return (PF_DROP); 7059 } 7060 7061 /* offset of protocol header that follows h2 */ 7062 pd2.off = ipoff2 + (h2.ip_hl << 2); 7063 7064 pd2.proto = h2.ip_p; 7065 pd2.src = (struct pf_addr *)&h2.ip_src; 7066 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7067 pd2.ip_sum = &h2.ip_sum; 7068 break; 7069 #endif /* INET */ 7070 #ifdef INET6 7071 case AF_INET6: 7072 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7073 7074 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7075 NULL, reason, pd2.af)) { 7076 DPFPRINTF(PF_DEBUG_MISC, 7077 ("pf: ICMP error message too short " 7078 "(ip6)\n")); 7079 return (PF_DROP); 7080 } 7081 pd2.off = ipoff2; 7082 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2, 7083 &fragoff2, &pd2.proto, &jumbolen, 7084 reason) != PF_PASS) 7085 return (PF_DROP); 7086 7087 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7088 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7089 pd2.ip_sum = NULL; 7090 break; 7091 #endif /* INET6 */ 7092 } 7093 7094 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7095 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7096 printf("pf: BAD ICMP %d:%d outer dst: ", 7097 icmptype, icmpcode); 7098 pf_print_host(pd->src, 0, pd->af); 7099 printf(" -> "); 7100 pf_print_host(pd->dst, 0, pd->af); 7101 printf(" inner src: "); 7102 pf_print_host(pd2.src, 0, pd2.af); 7103 printf(" -> "); 7104 pf_print_host(pd2.dst, 0, pd2.af); 7105 printf("\n"); 7106 } 7107 REASON_SET(reason, PFRES_BADSTATE); 7108 return (PF_DROP); 7109 } 7110 7111 switch (pd2.proto) { 7112 case IPPROTO_TCP: { 7113 struct tcphdr th; 7114 u_int32_t seq; 7115 struct pf_state_peer *src, *dst; 7116 u_int8_t dws; 7117 int copyback = 0; 7118 7119 /* 7120 * Only the first 8 bytes of the TCP header can be 7121 * expected. Don't access any TCP header fields after 7122 * th_seq, an ackskew test is not possible. 7123 */ 7124 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7125 pd2.af)) { 7126 DPFPRINTF(PF_DEBUG_MISC, 7127 ("pf: ICMP error message too short " 7128 "(tcp)\n")); 7129 return (PF_DROP); 7130 } 7131 7132 key.af = pd2.af; 7133 key.proto = IPPROTO_TCP; 7134 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7135 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7136 key.port[pd2.sidx] = th.th_sport; 7137 key.port[pd2.didx] = th.th_dport; 7138 7139 STATE_LOOKUP(&key, *state, pd); 7140 7141 if (pd->dir == (*state)->direction) { 7142 src = &(*state)->dst; 7143 dst = &(*state)->src; 7144 } else { 7145 src = &(*state)->src; 7146 dst = &(*state)->dst; 7147 } 7148 7149 if (src->wscale && dst->wscale) 7150 dws = dst->wscale & PF_WSCALE_MASK; 7151 else 7152 dws = 0; 7153 7154 /* Demodulate sequence number */ 7155 seq = ntohl(th.th_seq) - src->seqdiff; 7156 if (src->seqdiff) { 7157 pf_change_a(&th.th_seq, icmpsum, 7158 htonl(seq), 0); 7159 copyback = 1; 7160 } 7161 7162 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7163 (!SEQ_GEQ(src->seqhi, seq) || 7164 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7165 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7166 printf("pf: BAD ICMP %d:%d ", 7167 icmptype, icmpcode); 7168 pf_print_host(pd->src, 0, pd->af); 7169 printf(" -> "); 7170 pf_print_host(pd->dst, 0, pd->af); 7171 printf(" state: "); 7172 pf_print_state(*state); 7173 printf(" seq=%u\n", seq); 7174 } 7175 REASON_SET(reason, PFRES_BADSTATE); 7176 return (PF_DROP); 7177 } else { 7178 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7179 printf("pf: OK ICMP %d:%d ", 7180 icmptype, icmpcode); 7181 pf_print_host(pd->src, 0, pd->af); 7182 printf(" -> "); 7183 pf_print_host(pd->dst, 0, pd->af); 7184 printf(" state: "); 7185 pf_print_state(*state); 7186 printf(" seq=%u\n", seq); 7187 } 7188 } 7189 7190 /* translate source/destination address, if necessary */ 7191 if ((*state)->key[PF_SK_WIRE] != 7192 (*state)->key[PF_SK_STACK]) { 7193 struct pf_state_key *nk = 7194 (*state)->key[pd->didx]; 7195 7196 if (PF_ANEQ(pd2.src, 7197 &nk->addr[pd2.sidx], pd2.af) || 7198 nk->port[pd2.sidx] != th.th_sport) 7199 pf_change_icmp(pd2.src, &th.th_sport, 7200 daddr, &nk->addr[pd2.sidx], 7201 nk->port[pd2.sidx], NULL, 7202 pd2.ip_sum, icmpsum, 7203 pd->ip_sum, 0, pd2.af); 7204 7205 if (PF_ANEQ(pd2.dst, 7206 &nk->addr[pd2.didx], pd2.af) || 7207 nk->port[pd2.didx] != th.th_dport) 7208 pf_change_icmp(pd2.dst, &th.th_dport, 7209 saddr, &nk->addr[pd2.didx], 7210 nk->port[pd2.didx], NULL, 7211 pd2.ip_sum, icmpsum, 7212 pd->ip_sum, 0, pd2.af); 7213 copyback = 1; 7214 } 7215 7216 if (copyback) { 7217 switch (pd2.af) { 7218 #ifdef INET 7219 case AF_INET: 7220 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7221 (caddr_t )&pd->hdr.icmp); 7222 m_copyback(pd->m, ipoff2, sizeof(h2), 7223 (caddr_t )&h2); 7224 break; 7225 #endif /* INET */ 7226 #ifdef INET6 7227 case AF_INET6: 7228 m_copyback(pd->m, pd->off, 7229 sizeof(struct icmp6_hdr), 7230 (caddr_t )&pd->hdr.icmp6); 7231 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7232 (caddr_t )&h2_6); 7233 break; 7234 #endif /* INET6 */ 7235 } 7236 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 7237 } 7238 7239 return (PF_PASS); 7240 break; 7241 } 7242 case IPPROTO_UDP: { 7243 struct udphdr uh; 7244 7245 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 7246 NULL, reason, pd2.af)) { 7247 DPFPRINTF(PF_DEBUG_MISC, 7248 ("pf: ICMP error message too short " 7249 "(udp)\n")); 7250 return (PF_DROP); 7251 } 7252 7253 key.af = pd2.af; 7254 key.proto = IPPROTO_UDP; 7255 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7256 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7257 key.port[pd2.sidx] = uh.uh_sport; 7258 key.port[pd2.didx] = uh.uh_dport; 7259 7260 STATE_LOOKUP(&key, *state, pd); 7261 7262 /* translate source/destination address, if necessary */ 7263 if ((*state)->key[PF_SK_WIRE] != 7264 (*state)->key[PF_SK_STACK]) { 7265 struct pf_state_key *nk = 7266 (*state)->key[pd->didx]; 7267 7268 if (PF_ANEQ(pd2.src, 7269 &nk->addr[pd2.sidx], pd2.af) || 7270 nk->port[pd2.sidx] != uh.uh_sport) 7271 pf_change_icmp(pd2.src, &uh.uh_sport, 7272 daddr, &nk->addr[pd2.sidx], 7273 nk->port[pd2.sidx], &uh.uh_sum, 7274 pd2.ip_sum, icmpsum, 7275 pd->ip_sum, 1, pd2.af); 7276 7277 if (PF_ANEQ(pd2.dst, 7278 &nk->addr[pd2.didx], pd2.af) || 7279 nk->port[pd2.didx] != uh.uh_dport) 7280 pf_change_icmp(pd2.dst, &uh.uh_dport, 7281 saddr, &nk->addr[pd2.didx], 7282 nk->port[pd2.didx], &uh.uh_sum, 7283 pd2.ip_sum, icmpsum, 7284 pd->ip_sum, 1, pd2.af); 7285 7286 switch (pd2.af) { 7287 #ifdef INET 7288 case AF_INET: 7289 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7290 (caddr_t )&pd->hdr.icmp); 7291 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7292 break; 7293 #endif /* INET */ 7294 #ifdef INET6 7295 case AF_INET6: 7296 m_copyback(pd->m, pd->off, 7297 sizeof(struct icmp6_hdr), 7298 (caddr_t )&pd->hdr.icmp6); 7299 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7300 (caddr_t )&h2_6); 7301 break; 7302 #endif /* INET6 */ 7303 } 7304 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 7305 } 7306 return (PF_PASS); 7307 break; 7308 } 7309 #ifdef INET 7310 case IPPROTO_ICMP: { 7311 struct icmp *iih = &pd2.hdr.icmp; 7312 7313 if (pd2.af != AF_INET) { 7314 REASON_SET(reason, PFRES_NORM); 7315 return (PF_DROP); 7316 } 7317 7318 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 7319 NULL, reason, pd2.af)) { 7320 DPFPRINTF(PF_DEBUG_MISC, 7321 ("pf: ICMP error message too short i" 7322 "(icmp)\n")); 7323 return (PF_DROP); 7324 } 7325 7326 icmpid = iih->icmp_id; 7327 pf_icmp_mapping(&pd2, iih->icmp_type, 7328 &icmp_dir, &multi, &virtual_id, &virtual_type); 7329 7330 ret = pf_icmp_state_lookup(&key, &pd2, state, 7331 pd2.dir, virtual_id, virtual_type, 7332 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7333 if (ret >= 0) { 7334 MPASS(*state == NULL); 7335 return (ret); 7336 } 7337 7338 /* translate source/destination address, if necessary */ 7339 if ((*state)->key[PF_SK_WIRE] != 7340 (*state)->key[PF_SK_STACK]) { 7341 struct pf_state_key *nk = 7342 (*state)->key[pd->didx]; 7343 7344 if (PF_ANEQ(pd2.src, 7345 &nk->addr[pd2.sidx], pd2.af) || 7346 (virtual_type == htons(ICMP_ECHO) && 7347 nk->port[iidx] != iih->icmp_id)) 7348 pf_change_icmp(pd2.src, 7349 (virtual_type == htons(ICMP_ECHO)) ? 7350 &iih->icmp_id : NULL, 7351 daddr, &nk->addr[pd2.sidx], 7352 (virtual_type == htons(ICMP_ECHO)) ? 7353 nk->port[iidx] : 0, NULL, 7354 pd2.ip_sum, icmpsum, 7355 pd->ip_sum, 0, AF_INET); 7356 7357 if (PF_ANEQ(pd2.dst, 7358 &nk->addr[pd2.didx], pd2.af)) 7359 pf_change_icmp(pd2.dst, NULL, NULL, 7360 &nk->addr[pd2.didx], 0, NULL, 7361 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7362 AF_INET); 7363 7364 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7365 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7366 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 7367 } 7368 return (PF_PASS); 7369 break; 7370 } 7371 #endif /* INET */ 7372 #ifdef INET6 7373 case IPPROTO_ICMPV6: { 7374 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7375 7376 if (pd2.af != AF_INET6) { 7377 REASON_SET(reason, PFRES_NORM); 7378 return (PF_DROP); 7379 } 7380 7381 if (!pf_pull_hdr(pd->m, pd2.off, iih, 7382 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7383 DPFPRINTF(PF_DEBUG_MISC, 7384 ("pf: ICMP error message too short " 7385 "(icmp6)\n")); 7386 return (PF_DROP); 7387 } 7388 7389 pf_icmp_mapping(&pd2, iih->icmp6_type, 7390 &icmp_dir, &multi, &virtual_id, &virtual_type); 7391 7392 ret = pf_icmp_state_lookup(&key, &pd2, state, 7393 pd->dir, virtual_id, virtual_type, 7394 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7395 if (ret >= 0) { 7396 MPASS(*state == NULL); 7397 if (ret == PF_DROP && pd2.af == AF_INET6 && 7398 icmp_dir == PF_OUT) { 7399 ret = pf_icmp_state_lookup(&key, &pd2, 7400 state, pd->dir, 7401 virtual_id, virtual_type, 7402 icmp_dir, &iidx, multi, 1); 7403 if (ret >= 0) { 7404 MPASS(*state == NULL); 7405 return (ret); 7406 } 7407 } else 7408 return (ret); 7409 } 7410 7411 /* translate source/destination address, if necessary */ 7412 if ((*state)->key[PF_SK_WIRE] != 7413 (*state)->key[PF_SK_STACK]) { 7414 struct pf_state_key *nk = 7415 (*state)->key[pd->didx]; 7416 7417 if (PF_ANEQ(pd2.src, 7418 &nk->addr[pd2.sidx], pd2.af) || 7419 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7420 nk->port[pd2.sidx] != iih->icmp6_id)) 7421 pf_change_icmp(pd2.src, 7422 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7423 ? &iih->icmp6_id : NULL, 7424 daddr, &nk->addr[pd2.sidx], 7425 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7426 ? nk->port[iidx] : 0, NULL, 7427 pd2.ip_sum, icmpsum, 7428 pd->ip_sum, 0, AF_INET6); 7429 7430 if (PF_ANEQ(pd2.dst, 7431 &nk->addr[pd2.didx], pd2.af)) 7432 pf_change_icmp(pd2.dst, NULL, NULL, 7433 &nk->addr[pd2.didx], 0, NULL, 7434 pd2.ip_sum, icmpsum, 7435 pd->ip_sum, 0, AF_INET6); 7436 7437 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7438 (caddr_t)&pd->hdr.icmp6); 7439 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7440 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 7441 (caddr_t)iih); 7442 } 7443 return (PF_PASS); 7444 break; 7445 } 7446 #endif /* INET6 */ 7447 default: { 7448 key.af = pd2.af; 7449 key.proto = pd2.proto; 7450 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7451 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7452 key.port[0] = key.port[1] = 0; 7453 7454 STATE_LOOKUP(&key, *state, pd); 7455 7456 /* translate source/destination address, if necessary */ 7457 if ((*state)->key[PF_SK_WIRE] != 7458 (*state)->key[PF_SK_STACK]) { 7459 struct pf_state_key *nk = 7460 (*state)->key[pd->didx]; 7461 7462 if (PF_ANEQ(pd2.src, 7463 &nk->addr[pd2.sidx], pd2.af)) 7464 pf_change_icmp(pd2.src, NULL, daddr, 7465 &nk->addr[pd2.sidx], 0, NULL, 7466 pd2.ip_sum, icmpsum, 7467 pd->ip_sum, 0, pd2.af); 7468 7469 if (PF_ANEQ(pd2.dst, 7470 &nk->addr[pd2.didx], pd2.af)) 7471 pf_change_icmp(pd2.dst, NULL, saddr, 7472 &nk->addr[pd2.didx], 0, NULL, 7473 pd2.ip_sum, icmpsum, 7474 pd->ip_sum, 0, pd2.af); 7475 7476 switch (pd2.af) { 7477 #ifdef INET 7478 case AF_INET: 7479 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7480 (caddr_t)&pd->hdr.icmp); 7481 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7482 break; 7483 #endif /* INET */ 7484 #ifdef INET6 7485 case AF_INET6: 7486 m_copyback(pd->m, pd->off, 7487 sizeof(struct icmp6_hdr), 7488 (caddr_t )&pd->hdr.icmp6); 7489 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7490 (caddr_t )&h2_6); 7491 break; 7492 #endif /* INET6 */ 7493 } 7494 } 7495 return (PF_PASS); 7496 break; 7497 } 7498 } 7499 } 7500 } 7501 7502 static int 7503 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 7504 { 7505 struct pf_state_peer *src, *dst; 7506 struct pf_state_key_cmp key; 7507 uint8_t psrc, pdst; 7508 7509 bzero(&key, sizeof(key)); 7510 key.af = pd->af; 7511 key.proto = pd->proto; 7512 if (pd->dir == PF_IN) { 7513 PF_ACPY(&key.addr[0], pd->src, key.af); 7514 PF_ACPY(&key.addr[1], pd->dst, key.af); 7515 key.port[0] = key.port[1] = 0; 7516 } else { 7517 PF_ACPY(&key.addr[1], pd->src, key.af); 7518 PF_ACPY(&key.addr[0], pd->dst, key.af); 7519 key.port[1] = key.port[0] = 0; 7520 } 7521 7522 STATE_LOOKUP(&key, *state, pd); 7523 7524 if (pd->dir == (*state)->direction) { 7525 src = &(*state)->src; 7526 dst = &(*state)->dst; 7527 psrc = PF_PEER_SRC; 7528 pdst = PF_PEER_DST; 7529 } else { 7530 src = &(*state)->dst; 7531 dst = &(*state)->src; 7532 psrc = PF_PEER_DST; 7533 pdst = PF_PEER_SRC; 7534 } 7535 7536 /* update states */ 7537 if (src->state < PFOTHERS_SINGLE) 7538 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7539 if (dst->state == PFOTHERS_SINGLE) 7540 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7541 7542 /* update expire time */ 7543 (*state)->expire = pf_get_uptime(); 7544 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7545 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7546 else 7547 (*state)->timeout = PFTM_OTHER_SINGLE; 7548 7549 /* translate source/destination address, if necessary */ 7550 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7551 struct pf_state_key *nk = (*state)->key[pd->didx]; 7552 7553 KASSERT(nk, ("%s: nk is null", __func__)); 7554 KASSERT(pd, ("%s: pd is null", __func__)); 7555 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7556 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7557 switch (pd->af) { 7558 #ifdef INET 7559 case AF_INET: 7560 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7561 pf_change_a(&pd->src->v4.s_addr, 7562 pd->ip_sum, 7563 nk->addr[pd->sidx].v4.s_addr, 7564 0); 7565 7566 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7567 pf_change_a(&pd->dst->v4.s_addr, 7568 pd->ip_sum, 7569 nk->addr[pd->didx].v4.s_addr, 7570 0); 7571 7572 break; 7573 #endif /* INET */ 7574 #ifdef INET6 7575 case AF_INET6: 7576 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7577 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7578 7579 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7580 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7581 #endif /* INET6 */ 7582 } 7583 } 7584 return (PF_PASS); 7585 } 7586 7587 /* 7588 * ipoff and off are measured from the start of the mbuf chain. 7589 * h must be at "ipoff" on the mbuf chain. 7590 */ 7591 void * 7592 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7593 u_short *actionp, u_short *reasonp, sa_family_t af) 7594 { 7595 switch (af) { 7596 #ifdef INET 7597 case AF_INET: { 7598 const struct ip *h = mtod(m, struct ip *); 7599 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7600 7601 if (fragoff) { 7602 if (fragoff >= len) 7603 ACTION_SET(actionp, PF_PASS); 7604 else { 7605 ACTION_SET(actionp, PF_DROP); 7606 REASON_SET(reasonp, PFRES_FRAG); 7607 } 7608 return (NULL); 7609 } 7610 if (m->m_pkthdr.len < off + len || 7611 ntohs(h->ip_len) < off + len) { 7612 ACTION_SET(actionp, PF_DROP); 7613 REASON_SET(reasonp, PFRES_SHORT); 7614 return (NULL); 7615 } 7616 break; 7617 } 7618 #endif /* INET */ 7619 #ifdef INET6 7620 case AF_INET6: { 7621 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7622 7623 if (m->m_pkthdr.len < off + len || 7624 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7625 (unsigned)(off + len)) { 7626 ACTION_SET(actionp, PF_DROP); 7627 REASON_SET(reasonp, PFRES_SHORT); 7628 return (NULL); 7629 } 7630 break; 7631 } 7632 #endif /* INET6 */ 7633 } 7634 m_copydata(m, off, len, p); 7635 return (p); 7636 } 7637 7638 int 7639 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7640 int rtableid) 7641 { 7642 struct ifnet *ifp; 7643 7644 /* 7645 * Skip check for addresses with embedded interface scope, 7646 * as they would always match anyway. 7647 */ 7648 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7649 return (1); 7650 7651 if (af != AF_INET && af != AF_INET6) 7652 return (0); 7653 7654 if (kif == V_pfi_all) 7655 return (1); 7656 7657 /* Skip checks for ipsec interfaces */ 7658 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7659 return (1); 7660 7661 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7662 7663 switch (af) { 7664 #ifdef INET6 7665 case AF_INET6: 7666 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7667 ifp)); 7668 #endif 7669 #ifdef INET 7670 case AF_INET: 7671 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7672 ifp)); 7673 #endif 7674 } 7675 7676 return (0); 7677 } 7678 7679 #ifdef INET 7680 static void 7681 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7682 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7683 { 7684 struct mbuf *m0, *m1, *md; 7685 struct sockaddr_in dst; 7686 struct ip *ip; 7687 struct ifnet *ifp; 7688 int error = 0; 7689 uint16_t ip_len, ip_off; 7690 uint16_t tmp; 7691 int r_dir; 7692 7693 KASSERT(m && *m && r && oifp && pd->act.rt_kif, 7694 ("%s: invalid parameters", __func__)); 7695 7696 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp); 7697 7698 if (s) { 7699 r_dir = s->direction; 7700 } else { 7701 r_dir = r->direction; 7702 } 7703 7704 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7705 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7706 __func__)); 7707 7708 if ((pd->pf_mtag == NULL && 7709 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7710 pd->pf_mtag->routed++ > 3) { 7711 m0 = *m; 7712 *m = NULL; 7713 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7714 goto bad_locked; 7715 } 7716 7717 if ((ifp = pd->act.rt_kif->pfik_ifp) == NULL) { 7718 m0 = *m; 7719 *m = NULL; 7720 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7721 goto bad_locked; 7722 } 7723 7724 if (pd->act.rt == PF_DUPTO) { 7725 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7726 if (s != NULL) { 7727 PF_STATE_UNLOCK(s); 7728 } 7729 if (ifp == oifp) { 7730 /* When the 2nd interface is not skipped */ 7731 return; 7732 } else { 7733 m0 = *m; 7734 *m = NULL; 7735 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7736 goto bad; 7737 } 7738 } else { 7739 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7740 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7741 if (s) 7742 PF_STATE_UNLOCK(s); 7743 return; 7744 } 7745 } 7746 } else { 7747 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7748 pf_dummynet(pd, s, r, m); 7749 if (s) 7750 PF_STATE_UNLOCK(s); 7751 return; 7752 } 7753 m0 = *m; 7754 } 7755 7756 ip = mtod(m0, struct ip *); 7757 7758 bzero(&dst, sizeof(dst)); 7759 dst.sin_family = AF_INET; 7760 dst.sin_len = sizeof(dst); 7761 dst.sin_addr = ip->ip_dst; 7762 dst.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 7763 7764 if (s != NULL){ 7765 if (r->rule_flag & PFRULE_IFBOUND && 7766 pd->act.rt == PF_REPLYTO && 7767 s->kif == V_pfi_all) { 7768 s->kif = pd->act.rt_kif; 7769 s->orig_kif = oifp->if_pf_kif; 7770 } 7771 7772 PF_STATE_UNLOCK(s); 7773 } 7774 7775 if (pd->dir == PF_IN) { 7776 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7777 &pd->act) != PF_PASS) { 7778 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7779 goto bad; 7780 } else if (m0 == NULL) { 7781 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7782 goto done; 7783 } 7784 if (m0->m_len < sizeof(struct ip)) { 7785 DPFPRINTF(PF_DEBUG_URGENT, 7786 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7787 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7788 goto bad; 7789 } 7790 ip = mtod(m0, struct ip *); 7791 } 7792 7793 if (ifp->if_flags & IFF_LOOPBACK) 7794 m0->m_flags |= M_SKIP_FIREWALL; 7795 7796 ip_len = ntohs(ip->ip_len); 7797 ip_off = ntohs(ip->ip_off); 7798 7799 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7800 m0->m_pkthdr.csum_flags |= CSUM_IP; 7801 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7802 in_delayed_cksum(m0); 7803 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7804 } 7805 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7806 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7807 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7808 } 7809 7810 if (pd->dir == PF_IN) { 7811 /* 7812 * Make sure dummynet gets the correct direction, in case it needs to 7813 * re-inject later. 7814 */ 7815 pd->dir = PF_OUT; 7816 7817 /* 7818 * The following processing is actually the rest of the inbound processing, even 7819 * though we've marked it as outbound (so we don't look through dummynet) and it 7820 * happens after the outbound processing (pf_test(PF_OUT) above). 7821 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7822 * conclusion about what direction it's processing, and we can't fix it or it 7823 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7824 * decision will pick the right pipe, and everything will mostly work as expected. 7825 */ 7826 tmp = pd->act.dnrpipe; 7827 pd->act.dnrpipe = pd->act.dnpipe; 7828 pd->act.dnpipe = tmp; 7829 } 7830 7831 /* 7832 * If small enough for interface, or the interface will take 7833 * care of the fragmentation for us, we can just send directly. 7834 */ 7835 if (ip_len <= ifp->if_mtu || 7836 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7837 ip->ip_sum = 0; 7838 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7839 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7840 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7841 } 7842 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7843 7844 md = m0; 7845 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7846 if (md != NULL) { 7847 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7848 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 7849 } 7850 goto done; 7851 } 7852 7853 /* Balk when DF bit is set or the interface didn't support TSO. */ 7854 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7855 error = EMSGSIZE; 7856 KMOD_IPSTAT_INC(ips_cantfrag); 7857 if (pd->act.rt != PF_DUPTO) { 7858 if (s && s->nat_rule != NULL) 7859 PACKET_UNDO_NAT(m0, pd, 7860 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7861 s); 7862 7863 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7864 ifp->if_mtu); 7865 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7866 goto done; 7867 } else { 7868 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7869 goto bad; 7870 } 7871 } 7872 7873 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7874 if (error) { 7875 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7876 goto bad; 7877 } 7878 7879 for (; m0; m0 = m1) { 7880 m1 = m0->m_nextpkt; 7881 m0->m_nextpkt = NULL; 7882 if (error == 0) { 7883 m_clrprotoflags(m0); 7884 md = m0; 7885 pd->pf_mtag = pf_find_mtag(md); 7886 error = pf_dummynet_route(pd, s, r, ifp, 7887 sintosa(&dst), &md); 7888 if (md != NULL) { 7889 error = (*ifp->if_output)(ifp, md, 7890 sintosa(&dst), NULL); 7891 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 7892 } 7893 } else 7894 m_freem(m0); 7895 } 7896 7897 if (error == 0) 7898 KMOD_IPSTAT_INC(ips_fragmented); 7899 7900 done: 7901 if (pd->act.rt != PF_DUPTO) 7902 *m = NULL; 7903 return; 7904 7905 bad_locked: 7906 if (s) 7907 PF_STATE_UNLOCK(s); 7908 bad: 7909 m_freem(m0); 7910 goto done; 7911 } 7912 #endif /* INET */ 7913 7914 #ifdef INET6 7915 static void 7916 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7917 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7918 { 7919 struct mbuf *m0, *md; 7920 struct m_tag *mtag; 7921 struct sockaddr_in6 dst; 7922 struct ip6_hdr *ip6; 7923 struct ifnet *ifp = NULL; 7924 int r_dir; 7925 7926 KASSERT(m && *m && r && oifp && pd->act.rt_kif, 7927 ("%s: invalid parameters", __func__)); 7928 7929 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp); 7930 7931 if (s) { 7932 r_dir = s->direction; 7933 } else { 7934 r_dir = r->direction; 7935 } 7936 7937 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7938 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7939 __func__)); 7940 7941 if ((pd->pf_mtag == NULL && 7942 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7943 pd->pf_mtag->routed++ > 3) { 7944 m0 = *m; 7945 *m = NULL; 7946 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 7947 goto bad_locked; 7948 } 7949 7950 if ((ifp = pd->act.rt_kif->pfik_ifp) == NULL) { 7951 m0 = *m; 7952 *m = NULL; 7953 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 7954 goto bad_locked; 7955 } 7956 7957 if (pd->act.rt == PF_DUPTO) { 7958 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7959 if (s != NULL) { 7960 PF_STATE_UNLOCK(s); 7961 } 7962 if (ifp == oifp) { 7963 /* When the 2nd interface is not skipped */ 7964 return; 7965 } else { 7966 m0 = *m; 7967 *m = NULL; 7968 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 7969 goto bad; 7970 } 7971 } else { 7972 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7973 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7974 if (s) 7975 PF_STATE_UNLOCK(s); 7976 return; 7977 } 7978 } 7979 } else { 7980 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7981 pf_dummynet(pd, s, r, m); 7982 if (s) 7983 PF_STATE_UNLOCK(s); 7984 return; 7985 } 7986 m0 = *m; 7987 } 7988 7989 ip6 = mtod(m0, struct ip6_hdr *); 7990 7991 bzero(&dst, sizeof(dst)); 7992 dst.sin6_family = AF_INET6; 7993 dst.sin6_len = sizeof(dst); 7994 dst.sin6_addr = ip6->ip6_dst; 7995 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6); 7996 7997 if (s != NULL) { 7998 if (r->rule_flag & PFRULE_IFBOUND && 7999 pd->act.rt == PF_REPLYTO && 8000 s->kif == V_pfi_all) { 8001 s->kif = pd->act.rt_kif; 8002 s->orig_kif = oifp->if_pf_kif; 8003 } 8004 PF_STATE_UNLOCK(s); 8005 } 8006 8007 if (pd->dir == PF_IN) { 8008 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 8009 ifp, &m0, inp, &pd->act) != PF_PASS) { 8010 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8011 goto bad; 8012 } else if (m0 == NULL) { 8013 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8014 goto done; 8015 } 8016 if (m0->m_len < sizeof(struct ip6_hdr)) { 8017 DPFPRINTF(PF_DEBUG_URGENT, 8018 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8019 __func__)); 8020 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8021 goto bad; 8022 } 8023 ip6 = mtod(m0, struct ip6_hdr *); 8024 } 8025 8026 if (ifp->if_flags & IFF_LOOPBACK) 8027 m0->m_flags |= M_SKIP_FIREWALL; 8028 8029 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8030 ~ifp->if_hwassist) { 8031 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8032 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8033 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8034 } 8035 8036 /* 8037 * If the packet is too large for the outgoing interface, 8038 * send back an icmp6 error. 8039 */ 8040 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8041 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8042 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 8043 if (mtag != NULL) { 8044 int ret __sdt_used; 8045 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 8046 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 8047 goto done; 8048 } 8049 8050 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8051 md = m0; 8052 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8053 if (md != NULL) { 8054 int ret __sdt_used; 8055 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8056 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 8057 } 8058 } 8059 else { 8060 in6_ifstat_inc(ifp, ifs6_in_toobig); 8061 if (pd->act.rt != PF_DUPTO) { 8062 if (s && s->nat_rule != NULL) 8063 PACKET_UNDO_NAT(m0, pd, 8064 ((caddr_t)ip6 - m0->m_data) + 8065 sizeof(struct ip6_hdr), s); 8066 8067 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8068 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8069 } else { 8070 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8071 goto bad; 8072 } 8073 } 8074 8075 done: 8076 if (pd->act.rt != PF_DUPTO) 8077 *m = NULL; 8078 return; 8079 8080 bad_locked: 8081 if (s) 8082 PF_STATE_UNLOCK(s); 8083 bad: 8084 m_freem(m0); 8085 goto done; 8086 } 8087 #endif /* INET6 */ 8088 8089 /* 8090 * FreeBSD supports cksum offloads for the following drivers. 8091 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8092 * 8093 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8094 * network driver performed cksum including pseudo header, need to verify 8095 * csum_data 8096 * CSUM_DATA_VALID : 8097 * network driver performed cksum, needs to additional pseudo header 8098 * cksum computation with partial csum_data(i.e. lack of H/W support for 8099 * pseudo header, for instance sk(4) and possibly gem(4)) 8100 * 8101 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8102 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8103 * TCP/UDP layer. 8104 * Also, set csum_data to 0xffff to force cksum validation. 8105 */ 8106 static int 8107 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8108 { 8109 u_int16_t sum = 0; 8110 int hw_assist = 0; 8111 struct ip *ip; 8112 8113 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8114 return (1); 8115 if (m->m_pkthdr.len < off + len) 8116 return (1); 8117 8118 switch (p) { 8119 case IPPROTO_TCP: 8120 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8121 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8122 sum = m->m_pkthdr.csum_data; 8123 } else { 8124 ip = mtod(m, struct ip *); 8125 sum = in_pseudo(ip->ip_src.s_addr, 8126 ip->ip_dst.s_addr, htonl((u_short)len + 8127 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8128 } 8129 sum ^= 0xffff; 8130 ++hw_assist; 8131 } 8132 break; 8133 case IPPROTO_UDP: 8134 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8135 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8136 sum = m->m_pkthdr.csum_data; 8137 } else { 8138 ip = mtod(m, struct ip *); 8139 sum = in_pseudo(ip->ip_src.s_addr, 8140 ip->ip_dst.s_addr, htonl((u_short)len + 8141 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8142 } 8143 sum ^= 0xffff; 8144 ++hw_assist; 8145 } 8146 break; 8147 case IPPROTO_ICMP: 8148 #ifdef INET6 8149 case IPPROTO_ICMPV6: 8150 #endif /* INET6 */ 8151 break; 8152 default: 8153 return (1); 8154 } 8155 8156 if (!hw_assist) { 8157 switch (af) { 8158 case AF_INET: 8159 if (p == IPPROTO_ICMP) { 8160 if (m->m_len < off) 8161 return (1); 8162 m->m_data += off; 8163 m->m_len -= off; 8164 sum = in_cksum(m, len); 8165 m->m_data -= off; 8166 m->m_len += off; 8167 } else { 8168 if (m->m_len < sizeof(struct ip)) 8169 return (1); 8170 sum = in4_cksum(m, p, off, len); 8171 } 8172 break; 8173 #ifdef INET6 8174 case AF_INET6: 8175 if (m->m_len < sizeof(struct ip6_hdr)) 8176 return (1); 8177 sum = in6_cksum(m, p, off, len); 8178 break; 8179 #endif /* INET6 */ 8180 } 8181 } 8182 if (sum) { 8183 switch (p) { 8184 case IPPROTO_TCP: 8185 { 8186 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8187 break; 8188 } 8189 case IPPROTO_UDP: 8190 { 8191 KMOD_UDPSTAT_INC(udps_badsum); 8192 break; 8193 } 8194 #ifdef INET 8195 case IPPROTO_ICMP: 8196 { 8197 KMOD_ICMPSTAT_INC(icps_checksum); 8198 break; 8199 } 8200 #endif 8201 #ifdef INET6 8202 case IPPROTO_ICMPV6: 8203 { 8204 KMOD_ICMP6STAT_INC(icp6s_checksum); 8205 break; 8206 } 8207 #endif /* INET6 */ 8208 } 8209 return (1); 8210 } else { 8211 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8212 m->m_pkthdr.csum_flags |= 8213 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8214 m->m_pkthdr.csum_data = 0xffff; 8215 } 8216 } 8217 return (0); 8218 } 8219 8220 static bool 8221 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8222 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8223 { 8224 int dndir = r->direction; 8225 8226 if (s && dndir == PF_INOUT) { 8227 dndir = s->direction; 8228 } else if (dndir == PF_INOUT) { 8229 /* Assume primary direction. Happens when we've set dnpipe in 8230 * the ethernet level code. */ 8231 dndir = pd->dir; 8232 } 8233 8234 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8235 return (false); 8236 8237 memset(dnflow, 0, sizeof(*dnflow)); 8238 8239 if (pd->dport != NULL) 8240 dnflow->f_id.dst_port = ntohs(*pd->dport); 8241 if (pd->sport != NULL) 8242 dnflow->f_id.src_port = ntohs(*pd->sport); 8243 8244 if (pd->dir == PF_IN) 8245 dnflow->flags |= IPFW_ARGS_IN; 8246 else 8247 dnflow->flags |= IPFW_ARGS_OUT; 8248 8249 if (pd->dir != dndir && pd->act.dnrpipe) { 8250 dnflow->rule.info = pd->act.dnrpipe; 8251 } 8252 else if (pd->dir == dndir && pd->act.dnpipe) { 8253 dnflow->rule.info = pd->act.dnpipe; 8254 } 8255 else { 8256 return (false); 8257 } 8258 8259 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8260 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8261 dnflow->rule.info |= IPFW_IS_PIPE; 8262 8263 dnflow->f_id.proto = pd->proto; 8264 dnflow->f_id.extra = dnflow->rule.info; 8265 switch (pd->af) { 8266 case AF_INET: 8267 dnflow->f_id.addr_type = 4; 8268 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8269 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8270 break; 8271 case AF_INET6: 8272 dnflow->flags |= IPFW_ARGS_IP6; 8273 dnflow->f_id.addr_type = 6; 8274 dnflow->f_id.src_ip6 = pd->src->v6; 8275 dnflow->f_id.dst_ip6 = pd->dst->v6; 8276 break; 8277 } 8278 8279 return (true); 8280 } 8281 8282 int 8283 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8284 struct inpcb *inp) 8285 { 8286 struct pfi_kkif *kif; 8287 struct mbuf *m = *m0; 8288 8289 M_ASSERTPKTHDR(m); 8290 MPASS(ifp->if_vnet == curvnet); 8291 NET_EPOCH_ASSERT(); 8292 8293 if (!V_pf_status.running) 8294 return (PF_PASS); 8295 8296 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8297 8298 if (kif == NULL) { 8299 DPFPRINTF(PF_DEBUG_URGENT, 8300 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8301 return (PF_DROP); 8302 } 8303 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8304 return (PF_PASS); 8305 8306 if (m->m_flags & M_SKIP_FIREWALL) 8307 return (PF_PASS); 8308 8309 if (__predict_false(! M_WRITABLE(*m0))) { 8310 m = *m0 = m_unshare(*m0, M_NOWAIT); 8311 if (*m0 == NULL) 8312 return (PF_DROP); 8313 } 8314 8315 /* Stateless! */ 8316 return (pf_test_eth_rule(dir, kif, m0)); 8317 } 8318 8319 static __inline void 8320 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8321 { 8322 struct m_tag *mtag; 8323 8324 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8325 8326 /* dummynet adds this tag, but pf does not need it, 8327 * and keeping it creates unexpected behavior, 8328 * e.g. in case of divert(4) usage right after dummynet. */ 8329 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8330 if (mtag != NULL) 8331 m_tag_delete(m, mtag); 8332 } 8333 8334 static int 8335 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8336 struct pf_krule *r, struct mbuf **m0) 8337 { 8338 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8339 } 8340 8341 static int 8342 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8343 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8344 struct mbuf **m0) 8345 { 8346 struct ip_fw_args dnflow; 8347 8348 NET_EPOCH_ASSERT(); 8349 8350 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 8351 return (0); 8352 8353 if (ip_dn_io_ptr == NULL) { 8354 m_freem(*m0); 8355 *m0 = NULL; 8356 return (ENOMEM); 8357 } 8358 8359 if (pd->pf_mtag == NULL && 8360 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8361 m_freem(*m0); 8362 *m0 = NULL; 8363 return (ENOMEM); 8364 } 8365 8366 if (ifp != NULL) { 8367 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8368 8369 pd->pf_mtag->if_index = ifp->if_index; 8370 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8371 8372 MPASS(sa != NULL); 8373 8374 switch (pd->af) { 8375 case AF_INET: 8376 memcpy(&pd->pf_mtag->dst, sa, 8377 sizeof(struct sockaddr_in)); 8378 break; 8379 case AF_INET6: 8380 memcpy(&pd->pf_mtag->dst, sa, 8381 sizeof(struct sockaddr_in6)); 8382 break; 8383 } 8384 } 8385 8386 if (s != NULL && s->nat_rule != NULL && 8387 s->nat_rule->action == PF_RDR && 8388 ( 8389 #ifdef INET 8390 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8391 #endif 8392 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8393 /* 8394 * If we're redirecting to loopback mark this packet 8395 * as being local. Otherwise it might get dropped 8396 * if dummynet re-injects. 8397 */ 8398 (*m0)->m_pkthdr.rcvif = V_loif; 8399 } 8400 8401 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8402 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8403 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8404 ip_dn_io_ptr(m0, &dnflow); 8405 if (*m0 != NULL) { 8406 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8407 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8408 } 8409 } 8410 8411 return (0); 8412 } 8413 8414 #ifdef INET6 8415 static int 8416 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 8417 u_short *reason) 8418 { 8419 struct ip6_opt opt; 8420 struct ip6_opt_jumbo jumbo; 8421 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8422 8423 while (off < end) { 8424 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 8425 NULL, reason, AF_INET6)) { 8426 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 8427 return (PF_DROP); 8428 } 8429 if (opt.ip6o_type == IP6OPT_PAD1) { 8430 off++; 8431 continue; 8432 } 8433 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 8434 AF_INET6)) { 8435 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 8436 return (PF_DROP); 8437 } 8438 if (off + sizeof(opt) + opt.ip6o_len > end) { 8439 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 8440 REASON_SET(reason, PFRES_IPOPTIONS); 8441 return (PF_DROP); 8442 } 8443 switch (opt.ip6o_type) { 8444 case IP6OPT_JUMBO: 8445 if (*jumbolen != 0) { 8446 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 8447 REASON_SET(reason, PFRES_IPOPTIONS); 8448 return (PF_DROP); 8449 } 8450 if (ntohs(h->ip6_plen) != 0) { 8451 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 8452 REASON_SET(reason, PFRES_IPOPTIONS); 8453 return (PF_DROP); 8454 } 8455 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 8456 reason, AF_INET6)) { 8457 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 8458 return (PF_DROP); 8459 } 8460 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 8461 sizeof(*jumbolen)); 8462 *jumbolen = ntohl(*jumbolen); 8463 if (*jumbolen < IPV6_MAXPACKET) { 8464 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 8465 REASON_SET(reason, PFRES_IPOPTIONS); 8466 return (PF_DROP); 8467 } 8468 break; 8469 default: 8470 break; 8471 } 8472 off += sizeof(opt) + opt.ip6o_len; 8473 } 8474 8475 return (PF_PASS); 8476 } 8477 8478 int 8479 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 8480 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 8481 { 8482 struct ip6_frag frag; 8483 struct ip6_ext ext; 8484 struct ip6_rthdr rthdr; 8485 int rthdr_cnt = 0; 8486 8487 *off += sizeof(struct ip6_hdr); 8488 *extoff = *fragoff = 0; 8489 *nxt = h->ip6_nxt; 8490 *jumbolen = 0; 8491 for (;;) { 8492 switch (*nxt) { 8493 case IPPROTO_FRAGMENT: 8494 if (*fragoff != 0) { 8495 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 8496 REASON_SET(reason, PFRES_FRAG); 8497 return (PF_DROP); 8498 } 8499 /* jumbo payload packets cannot be fragmented */ 8500 if (*jumbolen != 0) { 8501 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 8502 REASON_SET(reason, PFRES_FRAG); 8503 return (PF_DROP); 8504 } 8505 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 8506 reason, AF_INET6)) { 8507 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 8508 return (PF_DROP); 8509 } 8510 *fragoff = *off; 8511 /* stop walking over non initial fragments */ 8512 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 8513 return (PF_PASS); 8514 *off += sizeof(frag); 8515 *nxt = frag.ip6f_nxt; 8516 break; 8517 case IPPROTO_ROUTING: 8518 if (rthdr_cnt++) { 8519 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 8520 REASON_SET(reason, PFRES_IPOPTIONS); 8521 return (PF_DROP); 8522 } 8523 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 8524 reason, AF_INET6)) { 8525 /* fragments may be short */ 8526 if (*fragoff != 0) { 8527 *off = *fragoff; 8528 *nxt = IPPROTO_FRAGMENT; 8529 return (PF_PASS); 8530 } 8531 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 8532 return (PF_DROP); 8533 } 8534 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8535 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 8536 REASON_SET(reason, PFRES_IPOPTIONS); 8537 return (PF_DROP); 8538 } 8539 /* FALLTHROUGH */ 8540 case IPPROTO_AH: 8541 case IPPROTO_HOPOPTS: 8542 case IPPROTO_DSTOPTS: 8543 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 8544 reason, AF_INET6)) { 8545 /* fragments may be short */ 8546 if (*fragoff != 0) { 8547 *off = *fragoff; 8548 *nxt = IPPROTO_FRAGMENT; 8549 return (PF_PASS); 8550 } 8551 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 8552 return (PF_DROP); 8553 } 8554 /* reassembly needs the ext header before the frag */ 8555 if (*fragoff == 0) 8556 *extoff = *off; 8557 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 8558 if (pf_walk_option6(m, *off + sizeof(ext), 8559 *off + (ext.ip6e_len + 1) * 8, jumbolen, 8560 reason) != PF_PASS) 8561 return (PF_DROP); 8562 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 8563 DPFPRINTF(PF_DEBUG_MISC, 8564 ("IPv6 missing jumbo")); 8565 REASON_SET(reason, PFRES_IPOPTIONS); 8566 return (PF_DROP); 8567 } 8568 } 8569 if (*nxt == IPPROTO_AH) 8570 *off += (ext.ip6e_len + 2) * 4; 8571 else 8572 *off += (ext.ip6e_len + 1) * 8; 8573 *nxt = ext.ip6e_nxt; 8574 break; 8575 case IPPROTO_TCP: 8576 case IPPROTO_UDP: 8577 case IPPROTO_SCTP: 8578 case IPPROTO_ICMPV6: 8579 /* fragments may be short, ignore inner header then */ 8580 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 8581 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 8582 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 8583 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 8584 sizeof(struct icmp6_hdr))) { 8585 *off = *fragoff; 8586 *nxt = IPPROTO_FRAGMENT; 8587 } 8588 /* FALLTHROUGH */ 8589 default: 8590 return (PF_PASS); 8591 } 8592 } 8593 } 8594 #endif 8595 8596 static void 8597 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 8598 { 8599 memset(pd, 0, sizeof(*pd)); 8600 pd->pf_mtag = pf_find_mtag(m); 8601 pd->m = m; 8602 } 8603 8604 static int 8605 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 8606 u_short *action, u_short *reason, struct pfi_kkif *kif, 8607 struct pf_rule_actions *default_actions) 8608 { 8609 pd->af = af; 8610 pd->dir = dir; 8611 pd->kif = kif; 8612 pd->m = *m0; 8613 pd->sidx = (dir == PF_IN) ? 0 : 1; 8614 pd->didx = (dir == PF_IN) ? 1 : 0; 8615 8616 TAILQ_INIT(&pd->sctp_multihome_jobs); 8617 if (default_actions != NULL) 8618 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8619 8620 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8621 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8622 pd->act.flags = pd->pf_mtag->dnflags; 8623 } 8624 8625 switch (af) { 8626 #ifdef INET 8627 case AF_INET: { 8628 struct ip *h; 8629 8630 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 8631 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8632 DPFPRINTF(PF_DEBUG_URGENT, 8633 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8634 *action = PF_DROP; 8635 REASON_SET(reason, PFRES_SHORT); 8636 return (-1); 8637 } 8638 8639 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 8640 /* We do IP header normalization and packet reassembly here */ 8641 *action = PF_DROP; 8642 return (-1); 8643 } 8644 pd->m = *m0; 8645 8646 h = mtod(pd->m, struct ip *); 8647 pd->off = h->ip_hl << 2; 8648 if (pd->off < (int)sizeof(*h)) { 8649 *action = PF_DROP; 8650 REASON_SET(reason, PFRES_SHORT); 8651 return (-1); 8652 } 8653 pd->src = (struct pf_addr *)&h->ip_src; 8654 pd->dst = (struct pf_addr *)&h->ip_dst; 8655 pd->ip_sum = &h->ip_sum; 8656 pd->virtual_proto = pd->proto = h->ip_p; 8657 pd->tos = h->ip_tos; 8658 pd->ttl = h->ip_ttl; 8659 pd->tot_len = ntohs(h->ip_len); 8660 pd->act.rtableid = -1; 8661 8662 if (h->ip_hl > 5) /* has options */ 8663 pd->badopts++; 8664 8665 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 8666 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8667 8668 break; 8669 } 8670 #endif 8671 #ifdef INET6 8672 case AF_INET6: { 8673 struct ip6_hdr *h; 8674 int fragoff; 8675 uint32_t jumbolen; 8676 uint8_t nxt; 8677 8678 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 8679 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8680 DPFPRINTF(PF_DEBUG_URGENT, 8681 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8682 ", pullup failed\n")); 8683 *action = PF_DROP; 8684 REASON_SET(reason, PFRES_SHORT); 8685 return (-1); 8686 } 8687 8688 h = mtod(pd->m, struct ip6_hdr *); 8689 pd->off = 0; 8690 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8691 &jumbolen, reason) != PF_PASS) { 8692 *action = PF_DROP; 8693 return (-1); 8694 } 8695 8696 h = mtod(pd->m, struct ip6_hdr *); 8697 pd->src = (struct pf_addr *)&h->ip6_src; 8698 pd->dst = (struct pf_addr *)&h->ip6_dst; 8699 pd->ip_sum = NULL; 8700 pd->tos = IPV6_DSCP(h); 8701 pd->ttl = h->ip6_hlim; 8702 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8703 pd->virtual_proto = pd->proto = h->ip6_nxt; 8704 pd->act.rtableid = -1; 8705 8706 if (fragoff != 0) 8707 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8708 8709 /* 8710 * we do not support jumbogram. if we keep going, zero ip6_plen 8711 * will do something bad, so drop the packet for now. 8712 */ 8713 if (htons(h->ip6_plen) == 0) { 8714 *action = PF_DROP; 8715 return (-1); 8716 } 8717 8718 /* We do IP header normalization and packet reassembly here */ 8719 if (pf_normalize_ip6(m0, fragoff, reason, pd) != 8720 PF_PASS) { 8721 *action = PF_DROP; 8722 return (-1); 8723 } 8724 pd->m = *m0; 8725 if (pd->m == NULL) { 8726 /* packet sits in reassembly queue, no error */ 8727 *action = PF_PASS; 8728 return (-1); 8729 } 8730 8731 /* Update pointers into the packet. */ 8732 h = mtod(pd->m, struct ip6_hdr *); 8733 pd->src = (struct pf_addr *)&h->ip6_src; 8734 pd->dst = (struct pf_addr *)&h->ip6_dst; 8735 8736 /* 8737 * Reassembly may have changed the next protocol from fragment 8738 * to something else, so update. 8739 */ 8740 pd->virtual_proto = pd->proto = h->ip6_nxt; 8741 pd->off = 0; 8742 8743 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8744 &jumbolen, reason) != PF_PASS) { 8745 *action = PF_DROP; 8746 return (-1); 8747 } 8748 8749 if (fragoff != 0) 8750 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8751 8752 break; 8753 } 8754 #endif 8755 default: 8756 panic("pf_setup_pdesc called with illegal af %u", af); 8757 } 8758 8759 switch (pd->virtual_proto) { 8760 case IPPROTO_TCP: { 8761 struct tcphdr *th = &pd->hdr.tcp; 8762 8763 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 8764 reason, af)) { 8765 *action = PF_DROP; 8766 REASON_SET(reason, PFRES_SHORT); 8767 return (-1); 8768 } 8769 pd->hdrlen = sizeof(*th); 8770 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 8771 pd->sport = &th->th_sport; 8772 pd->dport = &th->th_dport; 8773 break; 8774 } 8775 case IPPROTO_UDP: { 8776 struct udphdr *uh = &pd->hdr.udp; 8777 8778 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 8779 reason, af)) { 8780 *action = PF_DROP; 8781 REASON_SET(reason, PFRES_SHORT); 8782 return (-1); 8783 } 8784 pd->hdrlen = sizeof(*uh); 8785 if (uh->uh_dport == 0 || 8786 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 8787 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8788 *action = PF_DROP; 8789 REASON_SET(reason, PFRES_SHORT); 8790 return (-1); 8791 } 8792 pd->sport = &uh->uh_sport; 8793 pd->dport = &uh->uh_dport; 8794 break; 8795 } 8796 case IPPROTO_SCTP: { 8797 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8798 action, reason, af)) { 8799 *action = PF_DROP; 8800 REASON_SET(reason, PFRES_SHORT); 8801 return (-1); 8802 } 8803 pd->hdrlen = sizeof(pd->hdr.sctp); 8804 pd->p_len = pd->tot_len - pd->off; 8805 8806 pd->sport = &pd->hdr.sctp.src_port; 8807 pd->dport = &pd->hdr.sctp.dest_port; 8808 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8809 *action = PF_DROP; 8810 REASON_SET(reason, PFRES_SHORT); 8811 return (-1); 8812 } 8813 if (pf_scan_sctp(pd) != PF_PASS) { 8814 *action = PF_DROP; 8815 REASON_SET(reason, PFRES_SHORT); 8816 return (-1); 8817 } 8818 break; 8819 } 8820 case IPPROTO_ICMP: { 8821 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 8822 action, reason, af)) { 8823 *action = PF_DROP; 8824 REASON_SET(reason, PFRES_SHORT); 8825 return (-1); 8826 } 8827 pd->hdrlen = ICMP_MINLEN; 8828 break; 8829 } 8830 #ifdef INET6 8831 case IPPROTO_ICMPV6: { 8832 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8833 8834 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8835 action, reason, af)) { 8836 *action = PF_DROP; 8837 REASON_SET(reason, PFRES_SHORT); 8838 return (-1); 8839 } 8840 /* ICMP headers we look further into to match state */ 8841 switch (pd->hdr.icmp6.icmp6_type) { 8842 case MLD_LISTENER_QUERY: 8843 case MLD_LISTENER_REPORT: 8844 icmp_hlen = sizeof(struct mld_hdr); 8845 break; 8846 case ND_NEIGHBOR_SOLICIT: 8847 case ND_NEIGHBOR_ADVERT: 8848 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8849 break; 8850 } 8851 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8852 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8853 action, reason, af)) { 8854 *action = PF_DROP; 8855 REASON_SET(reason, PFRES_SHORT); 8856 return (-1); 8857 } 8858 pd->hdrlen = icmp_hlen; 8859 break; 8860 } 8861 #endif 8862 } 8863 return (0); 8864 } 8865 8866 static void 8867 pf_counters_inc(int action, struct pf_pdesc *pd, 8868 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 8869 { 8870 struct pf_krule *tr; 8871 int dir = pd->dir; 8872 int dirndx; 8873 8874 pf_counter_u64_critical_enter(); 8875 pf_counter_u64_add_protected( 8876 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8877 pd->tot_len); 8878 pf_counter_u64_add_protected( 8879 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8880 1); 8881 8882 if (action == PF_PASS || r->action == PF_DROP) { 8883 dirndx = (dir == PF_OUT); 8884 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8885 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8886 pf_update_timestamp(r); 8887 8888 if (a != NULL) { 8889 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8890 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8891 } 8892 if (s != NULL) { 8893 struct pf_krule_item *ri; 8894 8895 if (s->nat_rule != NULL) { 8896 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 8897 1); 8898 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 8899 pd->tot_len); 8900 } 8901 if (s->src_node != NULL) { 8902 counter_u64_add(s->src_node->packets[dirndx], 8903 1); 8904 counter_u64_add(s->src_node->bytes[dirndx], 8905 pd->tot_len); 8906 } 8907 if (s->nat_src_node != NULL) { 8908 counter_u64_add(s->nat_src_node->packets[dirndx], 8909 1); 8910 counter_u64_add(s->nat_src_node->bytes[dirndx], 8911 pd->tot_len); 8912 } 8913 dirndx = (dir == s->direction) ? 0 : 1; 8914 s->packets[dirndx]++; 8915 s->bytes[dirndx] += pd->tot_len; 8916 8917 SLIST_FOREACH(ri, &s->match_rules, entry) { 8918 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8919 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8920 } 8921 } 8922 8923 tr = r; 8924 if (s != NULL && s->nat_rule != NULL && 8925 r == &V_pf_default_rule) 8926 tr = s->nat_rule; 8927 8928 if (tr->src.addr.type == PF_ADDR_TABLE) 8929 pfr_update_stats(tr->src.addr.p.tbl, 8930 (s == NULL) ? pd->src : 8931 &s->key[(s->direction == PF_IN)]-> 8932 addr[(s->direction == PF_OUT)], 8933 pd->af, pd->tot_len, dir == PF_OUT, 8934 r->action == PF_PASS, tr->src.neg); 8935 if (tr->dst.addr.type == PF_ADDR_TABLE) 8936 pfr_update_stats(tr->dst.addr.p.tbl, 8937 (s == NULL) ? pd->dst : 8938 &s->key[(s->direction == PF_IN)]-> 8939 addr[(s->direction == PF_IN)], 8940 pd->af, pd->tot_len, dir == PF_OUT, 8941 r->action == PF_PASS, tr->dst.neg); 8942 } 8943 pf_counter_u64_critical_exit(); 8944 } 8945 8946 #if defined(INET) || defined(INET6) 8947 int 8948 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8949 struct inpcb *inp, struct pf_rule_actions *default_actions) 8950 { 8951 struct pfi_kkif *kif; 8952 u_short action, reason = 0; 8953 struct m_tag *mtag; 8954 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 8955 struct pf_kstate *s = NULL; 8956 struct pf_kruleset *ruleset = NULL; 8957 struct pf_pdesc pd; 8958 int use_2nd_queue = 0; 8959 uint16_t tag; 8960 8961 PF_RULES_RLOCK_TRACKER; 8962 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8963 M_ASSERTPKTHDR(*m0); 8964 8965 if (!V_pf_status.running) 8966 return (PF_PASS); 8967 8968 PF_RULES_RLOCK(); 8969 8970 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8971 8972 if (__predict_false(kif == NULL)) { 8973 DPFPRINTF(PF_DEBUG_URGENT, 8974 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8975 PF_RULES_RUNLOCK(); 8976 return (PF_DROP); 8977 } 8978 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8979 PF_RULES_RUNLOCK(); 8980 return (PF_PASS); 8981 } 8982 8983 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 8984 PF_RULES_RUNLOCK(); 8985 return (PF_PASS); 8986 } 8987 8988 #ifdef INET6 8989 /* 8990 * If we end up changing IP addresses (e.g. binat) the stack may get 8991 * confused and fail to send the icmp6 packet too big error. Just send 8992 * it here, before we do any NAT. 8993 */ 8994 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 8995 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 8996 PF_RULES_RUNLOCK(); 8997 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8998 *m0 = NULL; 8999 return (PF_DROP); 9000 } 9001 #endif 9002 9003 if (__predict_false(! M_WRITABLE(*m0))) { 9004 *m0 = m_unshare(*m0, M_NOWAIT); 9005 if (*m0 == NULL) { 9006 PF_RULES_RUNLOCK(); 9007 return (PF_DROP); 9008 } 9009 } 9010 9011 pf_init_pdesc(&pd, *m0); 9012 9013 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9014 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9015 9016 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9017 pd.pf_mtag->if_idxgen); 9018 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9019 PF_RULES_RUNLOCK(); 9020 m_freem(*m0); 9021 *m0 = NULL; 9022 return (PF_PASS); 9023 } 9024 PF_RULES_RUNLOCK(); 9025 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 9026 *m0 = NULL; 9027 return (PF_PASS); 9028 } 9029 9030 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9031 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9032 /* Dummynet re-injects packets after they've 9033 * completed their delay. We've already 9034 * processed them, so pass unconditionally. */ 9035 9036 /* But only once. We may see the packet multiple times (e.g. 9037 * PFIL_IN/PFIL_OUT). */ 9038 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 9039 PF_RULES_RUNLOCK(); 9040 9041 return (PF_PASS); 9042 } 9043 9044 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 9045 kif, default_actions) == -1) { 9046 if (action != PF_PASS) 9047 pd.act.log |= PF_LOG_FORCE; 9048 goto done; 9049 } 9050 9051 if (__predict_false(ip_divert_ptr != NULL) && 9052 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 9053 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 9054 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 9055 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 9056 if (pd.pf_mtag == NULL && 9057 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9058 action = PF_DROP; 9059 goto done; 9060 } 9061 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 9062 } 9063 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 9064 pd.m->m_flags |= M_FASTFWD_OURS; 9065 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9066 } 9067 m_tag_delete(pd.m, mtag); 9068 9069 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 9070 if (mtag != NULL) 9071 m_tag_delete(pd.m, mtag); 9072 } 9073 9074 switch (pd.virtual_proto) { 9075 case PF_VPROTO_FRAGMENT: 9076 /* 9077 * handle fragments that aren't reassembled by 9078 * normalization 9079 */ 9080 if (kif == NULL || r == NULL) /* pflog */ 9081 action = PF_DROP; 9082 else 9083 action = pf_test_rule(&r, &s, &pd, &a, 9084 &ruleset, inp); 9085 if (action != PF_PASS) 9086 REASON_SET(&reason, PFRES_FRAG); 9087 break; 9088 9089 case IPPROTO_TCP: { 9090 /* Respond to SYN with a syncookie. */ 9091 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9092 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9093 pf_syncookie_send(&pd); 9094 action = PF_DROP; 9095 break; 9096 } 9097 9098 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 9099 use_2nd_queue = 1; 9100 action = pf_normalize_tcp(&pd); 9101 if (action == PF_DROP) 9102 goto done; 9103 action = pf_test_state_tcp(&s, &pd, &reason); 9104 if (action == PF_PASS) { 9105 if (V_pfsync_update_state_ptr != NULL) 9106 V_pfsync_update_state_ptr(s); 9107 r = s->rule; 9108 a = s->anchor; 9109 } else if (s == NULL) { 9110 /* Validate remote SYN|ACK, re-create original SYN if 9111 * valid. */ 9112 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 9113 TH_ACK && pf_syncookie_validate(&pd) && 9114 pd.dir == PF_IN) { 9115 struct mbuf *msyn; 9116 9117 msyn = pf_syncookie_recreate_syn(&pd); 9118 if (msyn == NULL) { 9119 action = PF_DROP; 9120 break; 9121 } 9122 9123 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9124 &pd.act); 9125 m_freem(msyn); 9126 if (action != PF_PASS) 9127 break; 9128 9129 action = pf_test_state_tcp(&s, &pd, &reason); 9130 if (action != PF_PASS || s == NULL) { 9131 action = PF_DROP; 9132 break; 9133 } 9134 9135 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9136 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9137 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9138 action = pf_synproxy(&pd, &s, &reason); 9139 break; 9140 } else { 9141 action = pf_test_rule(&r, &s, &pd, 9142 &a, &ruleset, inp); 9143 } 9144 } 9145 break; 9146 } 9147 9148 case IPPROTO_UDP: { 9149 action = pf_test_state_udp(&s, &pd); 9150 if (action == PF_PASS) { 9151 if (V_pfsync_update_state_ptr != NULL) 9152 V_pfsync_update_state_ptr(s); 9153 r = s->rule; 9154 a = s->anchor; 9155 } else if (s == NULL) 9156 action = pf_test_rule(&r, &s, &pd, 9157 &a, &ruleset, inp); 9158 break; 9159 } 9160 9161 case IPPROTO_SCTP: { 9162 action = pf_normalize_sctp(&pd); 9163 if (action == PF_DROP) 9164 goto done; 9165 action = pf_test_state_sctp(&s, &pd, &reason); 9166 if (action == PF_PASS) { 9167 if (V_pfsync_update_state_ptr != NULL) 9168 V_pfsync_update_state_ptr(s); 9169 r = s->rule; 9170 a = s->anchor; 9171 } else if (s == NULL) { 9172 action = pf_test_rule(&r, &s, 9173 &pd, &a, &ruleset, inp); 9174 } 9175 break; 9176 } 9177 9178 case IPPROTO_ICMP: { 9179 if (af != AF_INET) { 9180 action = PF_DROP; 9181 REASON_SET(&reason, PFRES_NORM); 9182 DPFPRINTF(PF_DEBUG_MISC, 9183 ("dropping IPv6 packet with ICMPv4 payload")); 9184 goto done; 9185 } 9186 action = pf_test_state_icmp(&s, &pd, &reason); 9187 if (action == PF_PASS) { 9188 if (V_pfsync_update_state_ptr != NULL) 9189 V_pfsync_update_state_ptr(s); 9190 r = s->rule; 9191 a = s->anchor; 9192 } else if (s == NULL) 9193 action = pf_test_rule(&r, &s, &pd, 9194 &a, &ruleset, inp); 9195 break; 9196 } 9197 9198 case IPPROTO_ICMPV6: { 9199 if (af != AF_INET6) { 9200 action = PF_DROP; 9201 REASON_SET(&reason, PFRES_NORM); 9202 DPFPRINTF(PF_DEBUG_MISC, 9203 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9204 goto done; 9205 } 9206 action = pf_test_state_icmp(&s, &pd, &reason); 9207 if (action == PF_PASS) { 9208 if (V_pfsync_update_state_ptr != NULL) 9209 V_pfsync_update_state_ptr(s); 9210 r = s->rule; 9211 a = s->anchor; 9212 } else if (s == NULL) 9213 action = pf_test_rule(&r, &s, &pd, 9214 &a, &ruleset, inp); 9215 break; 9216 } 9217 9218 default: 9219 action = pf_test_state_other(&s, &pd); 9220 if (action == PF_PASS) { 9221 if (V_pfsync_update_state_ptr != NULL) 9222 V_pfsync_update_state_ptr(s); 9223 r = s->rule; 9224 a = s->anchor; 9225 } else if (s == NULL) 9226 action = pf_test_rule(&r, &s, &pd, 9227 &a, &ruleset, inp); 9228 break; 9229 } 9230 9231 done: 9232 PF_RULES_RUNLOCK(); 9233 9234 if (pd.m == NULL) 9235 goto eat_pkt; 9236 9237 if (action == PF_PASS && pd.badopts && 9238 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9239 action = PF_DROP; 9240 REASON_SET(&reason, PFRES_IPOPTIONS); 9241 pd.act.log = PF_LOG_FORCE; 9242 DPFPRINTF(PF_DEBUG_MISC, 9243 ("pf: dropping packet with dangerous headers\n")); 9244 } 9245 9246 if (s) { 9247 uint8_t log = pd.act.log; 9248 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9249 pd.act.log |= log; 9250 tag = s->tag; 9251 } else { 9252 tag = r->tag; 9253 } 9254 9255 if (tag > 0 && pf_tag_packet(&pd, tag)) { 9256 action = PF_DROP; 9257 REASON_SET(&reason, PFRES_MEMORY); 9258 } 9259 9260 pf_scrub(&pd); 9261 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9262 pf_normalize_mss(&pd); 9263 9264 if (pd.act.rtableid >= 0) 9265 M_SETFIB(pd.m, pd.act.rtableid); 9266 9267 if (pd.act.flags & PFSTATE_SETPRIO) { 9268 if (pd.tos & IPTOS_LOWDELAY) 9269 use_2nd_queue = 1; 9270 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 9271 action = PF_DROP; 9272 REASON_SET(&reason, PFRES_MEMORY); 9273 pd.act.log = PF_LOG_FORCE; 9274 DPFPRINTF(PF_DEBUG_MISC, 9275 ("pf: failed to allocate 802.1q mtag\n")); 9276 } 9277 } 9278 9279 #ifdef ALTQ 9280 if (action == PF_PASS && pd.act.qid) { 9281 if (pd.pf_mtag == NULL && 9282 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9283 action = PF_DROP; 9284 REASON_SET(&reason, PFRES_MEMORY); 9285 } else { 9286 if (s != NULL) 9287 pd.pf_mtag->qid_hash = pf_state_hash(s); 9288 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9289 pd.pf_mtag->qid = pd.act.pqid; 9290 else 9291 pd.pf_mtag->qid = pd.act.qid; 9292 /* Add hints for ecn. */ 9293 pd.pf_mtag->hdr = mtod(pd.m, void *); 9294 } 9295 } 9296 #endif /* ALTQ */ 9297 9298 /* 9299 * connections redirected to loopback should not match sockets 9300 * bound specifically to loopback due to security implications, 9301 * see tcp_input() and in_pcblookup_listen(). 9302 */ 9303 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9304 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 9305 (s->nat_rule->action == PF_RDR || 9306 s->nat_rule->action == PF_BINAT) && 9307 pf_is_loopback(af, pd.dst)) 9308 pd.m->m_flags |= M_SKIP_FIREWALL; 9309 9310 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9311 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9312 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9313 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9314 if (mtag != NULL) { 9315 ((struct pf_divert_mtag *)(mtag+1))->port = 9316 ntohs(r->divert.port); 9317 ((struct pf_divert_mtag *)(mtag+1))->idir = 9318 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9319 PF_DIVERT_MTAG_DIR_OUT; 9320 9321 if (s) 9322 PF_STATE_UNLOCK(s); 9323 9324 m_tag_prepend(pd.m, mtag); 9325 if (pd.m->m_flags & M_FASTFWD_OURS) { 9326 if (pd.pf_mtag == NULL && 9327 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9328 action = PF_DROP; 9329 REASON_SET(&reason, PFRES_MEMORY); 9330 pd.act.log = PF_LOG_FORCE; 9331 DPFPRINTF(PF_DEBUG_MISC, 9332 ("pf: failed to allocate tag\n")); 9333 } else { 9334 pd.pf_mtag->flags |= 9335 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9336 pd.m->m_flags &= ~M_FASTFWD_OURS; 9337 } 9338 } 9339 ip_divert_ptr(*m0, dir == PF_IN); 9340 *m0 = NULL; 9341 9342 return (action); 9343 } else { 9344 /* XXX: ipfw has the same behaviour! */ 9345 action = PF_DROP; 9346 REASON_SET(&reason, PFRES_MEMORY); 9347 pd.act.log = PF_LOG_FORCE; 9348 DPFPRINTF(PF_DEBUG_MISC, 9349 ("pf: failed to allocate divert tag\n")); 9350 } 9351 } 9352 /* XXX: Anybody working on it?! */ 9353 if (af == AF_INET6 && r->divert.port) 9354 printf("pf: divert(9) is not supported for IPv6\n"); 9355 9356 /* this flag will need revising if the pkt is forwarded */ 9357 if (pd.pf_mtag) 9358 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9359 9360 if (pd.act.log) { 9361 struct pf_krule *lr; 9362 struct pf_krule_item *ri; 9363 9364 if (s != NULL && s->nat_rule != NULL && 9365 s->nat_rule->log & PF_LOG_ALL) 9366 lr = s->nat_rule; 9367 else 9368 lr = r; 9369 9370 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9371 PFLOG_PACKET(action, reason, lr, a, 9372 ruleset, &pd, (s == NULL)); 9373 if (s) { 9374 SLIST_FOREACH(ri, &s->match_rules, entry) 9375 if (ri->r->log & PF_LOG_ALL) 9376 PFLOG_PACKET(action, 9377 reason, ri->r, a, ruleset, &pd, 0); 9378 } 9379 } 9380 9381 pf_counters_inc(action, &pd, s, r, a); 9382 9383 switch (action) { 9384 case PF_SYNPROXY_DROP: 9385 m_freem(*m0); 9386 case PF_DEFER: 9387 *m0 = NULL; 9388 action = PF_PASS; 9389 break; 9390 case PF_DROP: 9391 m_freem(*m0); 9392 *m0 = NULL; 9393 break; 9394 default: 9395 if (pd.act.rt) { 9396 switch (af) { 9397 #ifdef INET 9398 case AF_INET: 9399 /* pf_route() returns unlocked. */ 9400 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9401 break; 9402 #endif 9403 #ifdef INET6 9404 case AF_INET6: 9405 /* pf_route6() returns unlocked. */ 9406 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9407 break; 9408 #endif 9409 } 9410 goto out; 9411 } 9412 if (pf_dummynet(&pd, s, r, m0) != 0) { 9413 action = PF_DROP; 9414 REASON_SET(&reason, PFRES_MEMORY); 9415 } 9416 break; 9417 } 9418 9419 eat_pkt: 9420 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9421 9422 if (s && action != PF_DROP) { 9423 if (!s->if_index_in && dir == PF_IN) 9424 s->if_index_in = ifp->if_index; 9425 else if (!s->if_index_out && dir == PF_OUT) 9426 s->if_index_out = ifp->if_index; 9427 } 9428 9429 if (s) 9430 PF_STATE_UNLOCK(s); 9431 9432 out: 9433 #ifdef INET6 9434 /* If reassembled packet passed, create new fragments. */ 9435 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9436 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 9437 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9438 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 9439 #endif 9440 9441 pf_sctp_multihome_delayed(&pd, kif, s, action); 9442 9443 return (action); 9444 } 9445 #endif /* INET || INET6 */ 9446