1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/sdt.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <crypto/sha2/sha512.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_private.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #include <netinet/sctp_header.h> 115 #include <netinet/sctp_crc32.h> 116 117 #include <netipsec/ah.h> 118 119 #include <machine/in_cksum.h> 120 #include <security/mac/mac_framework.h> 121 122 SDT_PROVIDER_DEFINE(pf); 123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int"); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 140 "struct pf_krule *", "struct mbuf *", "int"); 141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 142 "struct pf_sctp_source *"); 143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 144 "struct pf_kstate *", "struct pf_sctp_source *"); 145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int", 146 "int", "struct pf_pdesc *", "int"); 147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t"); 148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *", 149 "int"); 150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *", 151 "int"); 152 153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 154 "struct mbuf *"); 155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 157 "int", "struct pf_keth_rule *", "char *"); 158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 160 "int", "struct pf_keth_rule *"); 161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *"); 163 164 /* 165 * Global variables 166 */ 167 168 /* state tables */ 169 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 170 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]); 171 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 172 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 173 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 174 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 175 VNET_DEFINE(struct pf_kstatus, pf_status); 176 177 VNET_DEFINE(u_int32_t, ticket_altqs_active); 178 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 179 VNET_DEFINE(int, altqs_inactive_open); 180 VNET_DEFINE(u_int32_t, ticket_pabuf); 181 182 static const int PF_HDR_LIMIT = 20; /* arbitrary limit */ 183 184 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx); 185 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 186 VNET_DEFINE(u_char, pf_tcp_secret[16]); 187 #define V_pf_tcp_secret VNET(pf_tcp_secret) 188 VNET_DEFINE(int, pf_tcp_secret_init); 189 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 190 VNET_DEFINE(int, pf_tcp_iss_off); 191 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 192 VNET_DECLARE(int, pf_vnet_active); 193 #define V_pf_vnet_active VNET(pf_vnet_active) 194 195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 196 #define V_pf_purge_idx VNET(pf_purge_idx) 197 198 #ifdef PF_WANT_32_TO_64_COUNTER 199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 200 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 201 202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 203 VNET_DEFINE(size_t, pf_allrulecount); 204 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 205 #endif 206 207 #define PF_SCTP_MAX_ENDPOINTS 8 208 209 struct pf_sctp_endpoint; 210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 211 struct pf_sctp_source { 212 sa_family_t af; 213 struct pf_addr addr; 214 TAILQ_ENTRY(pf_sctp_source) entry; 215 }; 216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 217 struct pf_sctp_endpoint 218 { 219 uint32_t v_tag; 220 struct pf_sctp_sources sources; 221 RB_ENTRY(pf_sctp_endpoint) entry; 222 }; 223 static int 224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 225 { 226 return (a->v_tag - b->v_tag); 227 } 228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 231 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 232 static struct mtx_padalign pf_sctp_endpoints_mtx; 233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 234 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 235 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 236 237 /* 238 * Queue for pf_intr() sends. 239 */ 240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 241 struct pf_send_entry { 242 STAILQ_ENTRY(pf_send_entry) pfse_next; 243 struct mbuf *pfse_m; 244 enum { 245 PFSE_IP, 246 PFSE_IP6, 247 PFSE_ICMP, 248 PFSE_ICMP6, 249 } pfse_type; 250 struct { 251 int type; 252 int code; 253 int mtu; 254 } icmpopts; 255 }; 256 257 STAILQ_HEAD(pf_send_head, pf_send_entry); 258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 259 #define V_pf_sendqueue VNET(pf_sendqueue) 260 261 static struct mtx_padalign pf_sendqueue_mtx; 262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 263 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 264 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 265 266 /* 267 * Queue for pf_overload_task() tasks. 268 */ 269 struct pf_overload_entry { 270 SLIST_ENTRY(pf_overload_entry) next; 271 struct pf_addr addr; 272 sa_family_t af; 273 uint8_t dir; 274 struct pf_krule *rule; 275 }; 276 277 SLIST_HEAD(pf_overload_head, pf_overload_entry); 278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 279 #define V_pf_overloadqueue VNET(pf_overloadqueue) 280 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 281 #define V_pf_overloadtask VNET(pf_overloadtask) 282 283 static struct mtx_padalign pf_overloadqueue_mtx; 284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 285 "pf overload/flush queue", MTX_DEF); 286 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 287 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 288 289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 290 struct mtx_padalign pf_unlnkdrules_mtx; 291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 292 MTX_DEF); 293 294 struct sx pf_config_lock; 295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 296 297 struct mtx_padalign pf_table_stats_lock; 298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 299 MTX_DEF); 300 301 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 302 #define V_pf_sources_z VNET(pf_sources_z) 303 uma_zone_t pf_mtag_z; 304 VNET_DEFINE(uma_zone_t, pf_state_z); 305 VNET_DEFINE(uma_zone_t, pf_state_key_z); 306 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 307 308 VNET_DEFINE(struct unrhdr64, pf_stateid); 309 310 static void pf_src_tree_remove_state(struct pf_kstate *); 311 static int pf_check_threshold(struct pf_kthreshold *); 312 313 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *, 314 struct pf_addr *, u_int16_t); 315 static int pf_modulate_sack(struct pf_pdesc *, 316 struct tcphdr *, struct pf_state_peer *); 317 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 318 u_int16_t *, u_int16_t *); 319 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 320 struct pf_addr *, struct pf_addr *, u_int16_t, 321 u_int16_t *, u_int16_t *, u_int16_t *, 322 u_int16_t *, u_int8_t, sa_family_t); 323 int pf_change_icmp_af(struct mbuf *, int, 324 struct pf_pdesc *, struct pf_pdesc *, 325 struct pf_addr *, struct pf_addr *, sa_family_t, 326 sa_family_t); 327 int pf_translate_icmp_af(int, void *); 328 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 329 int, sa_family_t, struct pf_krule *, int); 330 static void pf_detach_state(struct pf_kstate *); 331 static int pf_state_key_attach(struct pf_state_key *, 332 struct pf_state_key *, struct pf_kstate *); 333 static void pf_state_key_detach(struct pf_kstate *, int); 334 static int pf_state_key_ctor(void *, int, void *, int); 335 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 336 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 337 struct pf_mtag *pf_mtag); 338 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 339 struct pf_krule *, struct mbuf **); 340 static int pf_dummynet_route(struct pf_pdesc *, 341 struct pf_kstate *, struct pf_krule *, 342 struct ifnet *, const struct sockaddr *, struct mbuf **); 343 static int pf_test_eth_rule(int, struct pfi_kkif *, 344 struct mbuf **); 345 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 346 struct pf_pdesc *, struct pf_krule **, 347 struct pf_kruleset **, u_short *, struct inpcb *); 348 static int pf_create_state(struct pf_krule *, 349 struct pf_test_ctx *, 350 struct pf_kstate **, u_int16_t, u_int16_t); 351 static int pf_state_key_addr_setup(struct pf_pdesc *, 352 struct pf_state_key_cmp *, int); 353 static int pf_tcp_track_full(struct pf_kstate *, 354 struct pf_pdesc *, u_short *, int *, 355 struct pf_state_peer *, struct pf_state_peer *, 356 u_int8_t, u_int8_t); 357 static int pf_tcp_track_sloppy(struct pf_kstate *, 358 struct pf_pdesc *, u_short *, 359 struct pf_state_peer *, struct pf_state_peer *, 360 u_int8_t, u_int8_t); 361 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *, 362 u_short *); 363 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 364 struct pf_pdesc *, struct pf_kstate **, 365 u_int16_t, u_int16_t, int, int *, int, int); 366 static int pf_test_state_icmp(struct pf_kstate **, 367 struct pf_pdesc *, u_short *); 368 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *, 369 u_short *); 370 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 371 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 372 struct pfi_kkif *, struct pf_kstate *, int); 373 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 374 int, u_int16_t); 375 static int pf_check_proto_cksum(struct mbuf *, int, int, 376 u_int8_t, sa_family_t); 377 static int pf_walk_option(struct pf_pdesc *, struct ip *, 378 int, int, u_short *); 379 static int pf_walk_header(struct pf_pdesc *, struct ip *, u_short *); 380 #ifdef INET6 381 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *, 382 int, int, u_short *); 383 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *, 384 u_short *); 385 #endif 386 static void pf_print_state_parts(struct pf_kstate *, 387 struct pf_state_key *, struct pf_state_key *); 388 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t, 389 bool); 390 static int pf_find_state(struct pf_pdesc *, 391 const struct pf_state_key_cmp *, struct pf_kstate **); 392 static bool pf_src_connlimit(struct pf_kstate *); 393 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 394 static void pf_counters_inc(int, struct pf_pdesc *, 395 struct pf_kstate *, struct pf_krule *, 396 struct pf_krule *); 397 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *, 398 struct pf_krule *, struct pf_kruleset *, 399 struct pf_krule_slist *); 400 static void pf_overload_task(void *v, int pending); 401 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX], 402 struct pf_srchash *[PF_SN_MAX], struct pf_krule *, 403 struct pf_addr *, sa_family_t, struct pf_addr *, 404 struct pfi_kkif *, sa_family_t, pf_sn_types_t); 405 static u_int pf_purge_expired_states(u_int, int); 406 static void pf_purge_unlinked_rules(void); 407 static int pf_mtag_uminit(void *, int, int); 408 static void pf_mtag_free(struct m_tag *); 409 static void pf_packet_rework_nat(struct pf_pdesc *, int, 410 struct pf_state_key *); 411 #ifdef INET 412 static int pf_route(struct pf_krule *, 413 struct ifnet *, struct pf_kstate *, 414 struct pf_pdesc *, struct inpcb *); 415 #endif /* INET */ 416 #ifdef INET6 417 static void pf_change_a6(struct pf_addr *, u_int16_t *, 418 struct pf_addr *, u_int8_t); 419 static int pf_route6(struct pf_krule *, 420 struct ifnet *, struct pf_kstate *, 421 struct pf_pdesc *, struct inpcb *); 422 #endif /* INET6 */ 423 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 424 425 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 426 427 extern int pf_end_threads; 428 extern struct proc *pf_purge_proc; 429 430 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 431 432 #define PACKET_UNDO_NAT(_pd, _off, _s) \ 433 do { \ 434 struct pf_state_key *nk; \ 435 if ((pd->dir) == PF_OUT) \ 436 nk = (_s)->key[PF_SK_STACK]; \ 437 else \ 438 nk = (_s)->key[PF_SK_WIRE]; \ 439 pf_packet_rework_nat(_pd, _off, nk); \ 440 } while (0) 441 442 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 443 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 444 445 static struct pfi_kkif * 446 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd) 447 { 448 struct pfi_kkif *k = pd->kif; 449 450 SDT_PROBE2(pf, ip, , bound_iface, st, k); 451 452 /* Floating unless otherwise specified. */ 453 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 454 return (V_pfi_all); 455 456 /* 457 * Initially set to all, because we don't know what interface we'll be 458 * sending this out when we create the state. 459 */ 460 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN)) 461 return (V_pfi_all); 462 463 /* 464 * If this state is created based on another state (e.g. SCTP 465 * multihome) always set it floating initially. We can't know for sure 466 * what interface the actual traffic for this state will come in on. 467 */ 468 if (pd->related_rule) 469 return (V_pfi_all); 470 471 /* Don't overrule the interface for states created on incoming packets. */ 472 if (st->direction == PF_IN) 473 return (k); 474 475 /* No route-to, so don't overrule. */ 476 if (st->act.rt != PF_ROUTETO) 477 return (k); 478 479 /* Bind to the route-to interface. */ 480 return (st->act.rt_kif); 481 } 482 483 #define STATE_INC_COUNTERS(s) \ 484 do { \ 485 struct pf_krule_item *mrm; \ 486 counter_u64_add(s->rule->states_cur, 1); \ 487 counter_u64_add(s->rule->states_tot, 1); \ 488 if (s->anchor != NULL) { \ 489 counter_u64_add(s->anchor->states_cur, 1); \ 490 counter_u64_add(s->anchor->states_tot, 1); \ 491 } \ 492 if (s->nat_rule != NULL) { \ 493 counter_u64_add(s->nat_rule->states_cur, 1);\ 494 counter_u64_add(s->nat_rule->states_tot, 1);\ 495 } \ 496 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 497 counter_u64_add(mrm->r->states_cur, 1); \ 498 counter_u64_add(mrm->r->states_tot, 1); \ 499 } \ 500 } while (0) 501 502 #define STATE_DEC_COUNTERS(s) \ 503 do { \ 504 struct pf_krule_item *mrm; \ 505 if (s->nat_rule != NULL) \ 506 counter_u64_add(s->nat_rule->states_cur, -1);\ 507 if (s->anchor != NULL) \ 508 counter_u64_add(s->anchor->states_cur, -1); \ 509 counter_u64_add(s->rule->states_cur, -1); \ 510 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 511 counter_u64_add(mrm->r->states_cur, -1); \ 512 } while (0) 513 514 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 515 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 516 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 517 VNET_DEFINE(struct pf_idhash *, pf_idhash); 518 VNET_DEFINE(struct pf_srchash *, pf_srchash); 519 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 520 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 521 522 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 523 "pf(4)"); 524 525 VNET_DEFINE(u_long, pf_hashmask); 526 VNET_DEFINE(u_long, pf_srchashmask); 527 VNET_DEFINE(u_long, pf_udpendpointhashmask); 528 VNET_DEFINE_STATIC(u_long, pf_hashsize); 529 #define V_pf_hashsize VNET(pf_hashsize) 530 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 531 #define V_pf_srchashsize VNET(pf_srchashsize) 532 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 533 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 534 u_long pf_ioctl_maxcount = 65535; 535 536 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 537 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 538 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 539 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 540 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 541 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 542 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 543 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 544 545 VNET_DEFINE(void *, pf_swi_cookie); 546 VNET_DEFINE(struct intr_event *, pf_swi_ie); 547 548 VNET_DEFINE(uint32_t, pf_hashseed); 549 #define V_pf_hashseed VNET(pf_hashseed) 550 551 static void 552 pf_sctp_checksum(struct mbuf *m, int off) 553 { 554 uint32_t sum = 0; 555 556 /* Zero out the checksum, to enable recalculation. */ 557 m_copyback(m, off + offsetof(struct sctphdr, checksum), 558 sizeof(sum), (caddr_t)&sum); 559 560 sum = sctp_calculate_cksum(m, off); 561 562 m_copyback(m, off + offsetof(struct sctphdr, checksum), 563 sizeof(sum), (caddr_t)&sum); 564 } 565 566 int 567 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 568 { 569 570 switch (af) { 571 #ifdef INET 572 case AF_INET: 573 if (a->addr32[0] > b->addr32[0]) 574 return (1); 575 if (a->addr32[0] < b->addr32[0]) 576 return (-1); 577 break; 578 #endif /* INET */ 579 #ifdef INET6 580 case AF_INET6: 581 if (a->addr32[3] > b->addr32[3]) 582 return (1); 583 if (a->addr32[3] < b->addr32[3]) 584 return (-1); 585 if (a->addr32[2] > b->addr32[2]) 586 return (1); 587 if (a->addr32[2] < b->addr32[2]) 588 return (-1); 589 if (a->addr32[1] > b->addr32[1]) 590 return (1); 591 if (a->addr32[1] < b->addr32[1]) 592 return (-1); 593 if (a->addr32[0] > b->addr32[0]) 594 return (1); 595 if (a->addr32[0] < b->addr32[0]) 596 return (-1); 597 break; 598 #endif /* INET6 */ 599 default: 600 unhandled_af(af); 601 } 602 return (0); 603 } 604 605 static bool 606 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 607 { 608 switch (af) { 609 #ifdef INET 610 case AF_INET: 611 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 612 #endif /* INET */ 613 case AF_INET6: 614 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 615 default: 616 unhandled_af(af); 617 } 618 } 619 620 static void 621 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk) 622 { 623 624 switch (pd->virtual_proto) { 625 case IPPROTO_TCP: { 626 struct tcphdr *th = &pd->hdr.tcp; 627 628 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 629 pf_change_ap(pd, pd->src, &th->th_sport, 630 &nk->addr[pd->sidx], nk->port[pd->sidx]); 631 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 632 pf_change_ap(pd, pd->dst, &th->th_dport, 633 &nk->addr[pd->didx], nk->port[pd->didx]); 634 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th); 635 break; 636 } 637 case IPPROTO_UDP: { 638 struct udphdr *uh = &pd->hdr.udp; 639 640 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 641 pf_change_ap(pd, pd->src, &uh->uh_sport, 642 &nk->addr[pd->sidx], nk->port[pd->sidx]); 643 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 644 pf_change_ap(pd, pd->dst, &uh->uh_dport, 645 &nk->addr[pd->didx], nk->port[pd->didx]); 646 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh); 647 break; 648 } 649 case IPPROTO_SCTP: { 650 struct sctphdr *sh = &pd->hdr.sctp; 651 652 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 653 pf_change_ap(pd, pd->src, &sh->src_port, 654 &nk->addr[pd->sidx], nk->port[pd->sidx]); 655 } 656 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 657 pf_change_ap(pd, pd->dst, &sh->dest_port, 658 &nk->addr[pd->didx], nk->port[pd->didx]); 659 } 660 661 break; 662 } 663 case IPPROTO_ICMP: { 664 struct icmp *ih = &pd->hdr.icmp; 665 666 if (nk->port[pd->sidx] != ih->icmp_id) { 667 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 668 ih->icmp_cksum, ih->icmp_id, 669 nk->port[pd->sidx], 0); 670 ih->icmp_id = nk->port[pd->sidx]; 671 pd->sport = &ih->icmp_id; 672 673 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih); 674 } 675 /* FALLTHROUGH */ 676 } 677 default: 678 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 679 switch (pd->af) { 680 case AF_INET: 681 pf_change_a(&pd->src->v4.s_addr, 682 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 683 0); 684 break; 685 case AF_INET6: 686 pf_addrcpy(pd->src, &nk->addr[pd->sidx], 687 pd->af); 688 break; 689 default: 690 unhandled_af(pd->af); 691 } 692 } 693 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 694 switch (pd->af) { 695 case AF_INET: 696 pf_change_a(&pd->dst->v4.s_addr, 697 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 698 0); 699 break; 700 case AF_INET6: 701 pf_addrcpy(pd->dst, &nk->addr[pd->didx], 702 pd->af); 703 break; 704 default: 705 unhandled_af(pd->af); 706 } 707 } 708 break; 709 } 710 } 711 712 static __inline uint32_t 713 pf_hashkey(const struct pf_state_key *sk) 714 { 715 uint32_t h; 716 717 h = murmur3_32_hash32((const uint32_t *)sk, 718 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 719 V_pf_hashseed); 720 721 return (h & V_pf_hashmask); 722 } 723 724 __inline uint32_t 725 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 726 { 727 uint32_t h; 728 729 switch (af) { 730 case AF_INET: 731 h = murmur3_32_hash32((uint32_t *)&addr->v4, 732 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 733 break; 734 case AF_INET6: 735 h = murmur3_32_hash32((uint32_t *)&addr->v6, 736 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 737 break; 738 default: 739 unhandled_af(af); 740 } 741 742 return (h & V_pf_srchashmask); 743 } 744 745 static inline uint32_t 746 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 747 { 748 uint32_t h; 749 750 h = murmur3_32_hash32((uint32_t *)endpoint, 751 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 752 V_pf_hashseed); 753 return (h & V_pf_udpendpointhashmask); 754 } 755 756 #ifdef ALTQ 757 static int 758 pf_state_hash(struct pf_kstate *s) 759 { 760 u_int32_t hv = (intptr_t)s / sizeof(*s); 761 762 hv ^= crc32(&s->src, sizeof(s->src)); 763 hv ^= crc32(&s->dst, sizeof(s->dst)); 764 if (hv == 0) 765 hv = 1; 766 return (hv); 767 } 768 #endif /* ALTQ */ 769 770 static __inline void 771 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 772 { 773 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 774 s->dst.state = newstate; 775 if (which == PF_PEER_DST) 776 return; 777 if (s->src.state == newstate) 778 return; 779 if (s->creatorid == V_pf_status.hostid && 780 s->key[PF_SK_STACK] != NULL && 781 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 782 !(TCPS_HAVEESTABLISHED(s->src.state) || 783 s->src.state == TCPS_CLOSED) && 784 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 785 atomic_add_32(&V_pf_status.states_halfopen, -1); 786 787 s->src.state = newstate; 788 } 789 790 bool 791 pf_init_threshold(struct pf_kthreshold *threshold, 792 u_int32_t limit, u_int32_t seconds) 793 { 794 threshold->limit = limit; 795 threshold->seconds = seconds; 796 threshold->cr = counter_rate_alloc(M_NOWAIT, seconds); 797 798 return (threshold->cr != NULL); 799 } 800 801 static int 802 pf_check_threshold(struct pf_kthreshold *threshold) 803 { 804 return (counter_ratecheck(threshold->cr, threshold->limit) < 0); 805 } 806 807 static bool 808 pf_src_connlimit(struct pf_kstate *state) 809 { 810 struct pf_overload_entry *pfoe; 811 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT]; 812 bool limited = false; 813 814 PF_STATE_LOCK_ASSERT(state); 815 PF_SRC_NODE_LOCK(src_node); 816 817 src_node->conn++; 818 state->src.tcp_est = 1; 819 820 if (state->rule->max_src_conn && 821 state->rule->max_src_conn < 822 src_node->conn) { 823 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 824 limited = true; 825 } 826 827 if (state->rule->max_src_conn_rate.limit && 828 pf_check_threshold(&src_node->conn_rate)) { 829 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 830 limited = true; 831 } 832 833 if (!limited) 834 goto done; 835 836 /* Kill this state. */ 837 state->timeout = PFTM_PURGE; 838 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 839 840 if (state->rule->overload_tbl == NULL) 841 goto done; 842 843 /* Schedule overloading and flushing task. */ 844 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 845 if (pfoe == NULL) 846 goto done; /* too bad :( */ 847 848 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 849 pfoe->af = state->key[PF_SK_WIRE]->af; 850 pfoe->rule = state->rule; 851 pfoe->dir = state->direction; 852 PF_OVERLOADQ_LOCK(); 853 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 854 PF_OVERLOADQ_UNLOCK(); 855 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 856 857 done: 858 PF_SRC_NODE_UNLOCK(src_node); 859 return (limited); 860 } 861 862 static void 863 pf_overload_task(void *v, int pending) 864 { 865 struct pf_overload_head queue; 866 struct pfr_addr p; 867 struct pf_overload_entry *pfoe, *pfoe1; 868 uint32_t killed = 0; 869 870 CURVNET_SET((struct vnet *)v); 871 872 PF_OVERLOADQ_LOCK(); 873 queue = V_pf_overloadqueue; 874 SLIST_INIT(&V_pf_overloadqueue); 875 PF_OVERLOADQ_UNLOCK(); 876 877 bzero(&p, sizeof(p)); 878 SLIST_FOREACH(pfoe, &queue, next) { 879 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 880 if (V_pf_status.debug >= PF_DEBUG_MISC) { 881 printf("%s: blocking address ", __func__); 882 pf_print_host(&pfoe->addr, 0, pfoe->af); 883 printf("\n"); 884 } 885 886 p.pfra_af = pfoe->af; 887 switch (pfoe->af) { 888 #ifdef INET 889 case AF_INET: 890 p.pfra_net = 32; 891 p.pfra_ip4addr = pfoe->addr.v4; 892 break; 893 #endif /* INET */ 894 #ifdef INET6 895 case AF_INET6: 896 p.pfra_net = 128; 897 p.pfra_ip6addr = pfoe->addr.v6; 898 break; 899 #endif /* INET6 */ 900 default: 901 unhandled_af(pfoe->af); 902 } 903 904 PF_RULES_WLOCK(); 905 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 906 PF_RULES_WUNLOCK(); 907 } 908 909 /* 910 * Remove those entries, that don't need flushing. 911 */ 912 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 913 if (pfoe->rule->flush == 0) { 914 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 915 free(pfoe, M_PFTEMP); 916 } else 917 counter_u64_add( 918 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 919 920 /* If nothing to flush, return. */ 921 if (SLIST_EMPTY(&queue)) { 922 CURVNET_RESTORE(); 923 return; 924 } 925 926 for (int i = 0; i <= V_pf_hashmask; i++) { 927 struct pf_idhash *ih = &V_pf_idhash[i]; 928 struct pf_state_key *sk; 929 struct pf_kstate *s; 930 931 PF_HASHROW_LOCK(ih); 932 LIST_FOREACH(s, &ih->states, entry) { 933 sk = s->key[PF_SK_WIRE]; 934 SLIST_FOREACH(pfoe, &queue, next) 935 if (sk->af == pfoe->af && 936 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 937 pfoe->rule == s->rule) && 938 ((pfoe->dir == PF_OUT && 939 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 940 (pfoe->dir == PF_IN && 941 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 942 s->timeout = PFTM_PURGE; 943 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 944 killed++; 945 } 946 } 947 PF_HASHROW_UNLOCK(ih); 948 } 949 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 950 free(pfoe, M_PFTEMP); 951 if (V_pf_status.debug >= PF_DEBUG_MISC) 952 printf("%s: %u states killed", __func__, killed); 953 954 CURVNET_RESTORE(); 955 } 956 957 /* 958 * On node found always returns locked. On not found its configurable. 959 */ 960 struct pf_ksrc_node * 961 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 962 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked) 963 { 964 struct pf_ksrc_node *n; 965 966 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 967 968 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 969 PF_HASHROW_LOCK(*sh); 970 LIST_FOREACH(n, &(*sh)->nodes, entry) 971 if (n->rule == rule && n->af == af && n->type == sn_type && 972 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 973 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 974 break; 975 976 if (n == NULL && !returnlocked) 977 PF_HASHROW_UNLOCK(*sh); 978 979 return (n); 980 } 981 982 bool 983 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 984 { 985 struct pf_ksrc_node *cur; 986 987 if ((*sn) == NULL) 988 return (false); 989 990 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 991 992 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 993 PF_HASHROW_LOCK(sh); 994 LIST_FOREACH(cur, &(sh->nodes), entry) { 995 if (cur == (*sn) && 996 cur->expire != 1) /* Ignore nodes being killed */ 997 return (true); 998 } 999 PF_HASHROW_UNLOCK(sh); 1000 (*sn) = NULL; 1001 return (false); 1002 } 1003 1004 static void 1005 pf_free_src_node(struct pf_ksrc_node *sn) 1006 { 1007 1008 for (int i = 0; i < 2; i++) { 1009 counter_u64_free(sn->bytes[i]); 1010 counter_u64_free(sn->packets[i]); 1011 } 1012 counter_rate_free(sn->conn_rate.cr); 1013 uma_zfree(V_pf_sources_z, sn); 1014 } 1015 1016 static u_short 1017 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX], 1018 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule, 1019 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr, 1020 struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type) 1021 { 1022 u_short reason = 0; 1023 struct pf_krule *r_track = rule; 1024 struct pf_ksrc_node **sn = &(sns[sn_type]); 1025 struct pf_srchash **sh = &(snhs[sn_type]); 1026 1027 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL), 1028 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__)); 1029 1030 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK), 1031 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__)); 1032 1033 /* 1034 * XXX: There could be a KASSERT for 1035 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR) 1036 * but we'd need to pass pool *only* for this KASSERT. 1037 */ 1038 1039 if ( (rule->rule_flag & PFRULE_SRCTRACK) && 1040 !(rule->rule_flag & PFRULE_RULESRCTRACK)) 1041 r_track = &V_pf_default_rule; 1042 1043 /* 1044 * Request the sh to always be locked, as we might insert a new sn. 1045 */ 1046 if (*sn == NULL) 1047 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true); 1048 1049 if (*sn == NULL) { 1050 PF_HASHROW_ASSERT(*sh); 1051 1052 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes && 1053 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) { 1054 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1055 reason = PFRES_SRCLIMIT; 1056 goto done; 1057 } 1058 1059 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1060 if ((*sn) == NULL) { 1061 reason = PFRES_MEMORY; 1062 goto done; 1063 } 1064 1065 for (int i = 0; i < 2; i++) { 1066 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1067 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1068 1069 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1070 pf_free_src_node(*sn); 1071 reason = PFRES_MEMORY; 1072 goto done; 1073 } 1074 } 1075 1076 if (sn_type == PF_SN_LIMIT) 1077 if (! pf_init_threshold(&(*sn)->conn_rate, 1078 rule->max_src_conn_rate.limit, 1079 rule->max_src_conn_rate.seconds)) { 1080 pf_free_src_node(*sn); 1081 reason = PFRES_MEMORY; 1082 goto done; 1083 } 1084 1085 MPASS((*sn)->lock == NULL); 1086 (*sn)->lock = &(*sh)->lock; 1087 1088 (*sn)->af = af; 1089 (*sn)->rule = r_track; 1090 pf_addrcpy(&(*sn)->addr, src, af); 1091 if (raddr != NULL) 1092 pf_addrcpy(&(*sn)->raddr, raddr, raf); 1093 (*sn)->rkif = rkif; 1094 (*sn)->raf = raf; 1095 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1096 (*sn)->creation = time_uptime; 1097 (*sn)->ruletype = rule->action; 1098 (*sn)->type = sn_type; 1099 counter_u64_add(r_track->src_nodes[sn_type], 1); 1100 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1101 } else { 1102 if (sn_type == PF_SN_LIMIT && rule->max_src_states && 1103 (*sn)->states >= rule->max_src_states) { 1104 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1105 1); 1106 reason = PFRES_SRCLIMIT; 1107 goto done; 1108 } 1109 } 1110 done: 1111 if (reason == 0) 1112 (*sn)->states++; 1113 else 1114 (*sn) = NULL; 1115 1116 PF_HASHROW_UNLOCK(*sh); 1117 return (reason); 1118 } 1119 1120 void 1121 pf_unlink_src_node(struct pf_ksrc_node *src) 1122 { 1123 PF_SRC_NODE_LOCK_ASSERT(src); 1124 1125 LIST_REMOVE(src, entry); 1126 if (src->rule) 1127 counter_u64_add(src->rule->src_nodes[src->type], -1); 1128 } 1129 1130 u_int 1131 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1132 { 1133 struct pf_ksrc_node *sn, *tmp; 1134 u_int count = 0; 1135 1136 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1137 pf_free_src_node(sn); 1138 count++; 1139 } 1140 1141 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1142 1143 return (count); 1144 } 1145 1146 void 1147 pf_mtag_initialize(void) 1148 { 1149 1150 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1151 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1152 UMA_ALIGN_PTR, 0); 1153 } 1154 1155 /* Per-vnet data storage structures initialization. */ 1156 void 1157 pf_initialize(void) 1158 { 1159 struct pf_keyhash *kh; 1160 struct pf_idhash *ih; 1161 struct pf_srchash *sh; 1162 struct pf_udpendpointhash *uh; 1163 u_int i; 1164 1165 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1166 V_pf_hashsize = PF_HASHSIZ; 1167 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1168 V_pf_srchashsize = PF_SRCHASHSIZ; 1169 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1170 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1171 1172 V_pf_hashseed = arc4random(); 1173 1174 /* States and state keys storage. */ 1175 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1176 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1177 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1178 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1179 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1180 1181 V_pf_state_key_z = uma_zcreate("pf state keys", 1182 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1183 UMA_ALIGN_PTR, 0); 1184 1185 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1186 M_PFHASH, M_NOWAIT | M_ZERO); 1187 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1188 M_PFHASH, M_NOWAIT | M_ZERO); 1189 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1190 printf("pf: Unable to allocate memory for " 1191 "state_hashsize %lu.\n", V_pf_hashsize); 1192 1193 free(V_pf_keyhash, M_PFHASH); 1194 free(V_pf_idhash, M_PFHASH); 1195 1196 V_pf_hashsize = PF_HASHSIZ; 1197 V_pf_keyhash = mallocarray(V_pf_hashsize, 1198 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1199 V_pf_idhash = mallocarray(V_pf_hashsize, 1200 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1201 } 1202 1203 V_pf_hashmask = V_pf_hashsize - 1; 1204 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1205 i++, kh++, ih++) { 1206 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1207 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1208 } 1209 1210 /* Source nodes. */ 1211 V_pf_sources_z = uma_zcreate("pf source nodes", 1212 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1213 0); 1214 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1215 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1216 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1217 1218 V_pf_srchash = mallocarray(V_pf_srchashsize, 1219 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1220 if (V_pf_srchash == NULL) { 1221 printf("pf: Unable to allocate memory for " 1222 "source_hashsize %lu.\n", V_pf_srchashsize); 1223 1224 V_pf_srchashsize = PF_SRCHASHSIZ; 1225 V_pf_srchash = mallocarray(V_pf_srchashsize, 1226 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1227 } 1228 1229 V_pf_srchashmask = V_pf_srchashsize - 1; 1230 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1231 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1232 1233 1234 /* UDP endpoint mappings. */ 1235 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1236 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1237 UMA_ALIGN_PTR, 0); 1238 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1239 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1240 if (V_pf_udpendpointhash == NULL) { 1241 printf("pf: Unable to allocate memory for " 1242 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1243 1244 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1245 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1246 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1247 } 1248 1249 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1250 for (i = 0, uh = V_pf_udpendpointhash; 1251 i <= V_pf_udpendpointhashmask; 1252 i++, uh++) { 1253 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1254 MTX_DEF | MTX_DUPOK); 1255 } 1256 1257 /* Anchors */ 1258 V_pf_anchor_z = uma_zcreate("pf anchors", 1259 sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL, 1260 UMA_ALIGN_PTR, 0); 1261 V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z; 1262 uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT); 1263 uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached"); 1264 1265 V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors", 1266 sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL, 1267 UMA_ALIGN_PTR, 0); 1268 V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z; 1269 uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT); 1270 uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached"); 1271 1272 /* ALTQ */ 1273 TAILQ_INIT(&V_pf_altqs[0]); 1274 TAILQ_INIT(&V_pf_altqs[1]); 1275 TAILQ_INIT(&V_pf_altqs[2]); 1276 TAILQ_INIT(&V_pf_altqs[3]); 1277 TAILQ_INIT(&V_pf_pabuf[0]); 1278 TAILQ_INIT(&V_pf_pabuf[1]); 1279 TAILQ_INIT(&V_pf_pabuf[2]); 1280 V_pf_altqs_active = &V_pf_altqs[0]; 1281 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1282 V_pf_altqs_inactive = &V_pf_altqs[2]; 1283 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1284 1285 /* Send & overload+flush queues. */ 1286 STAILQ_INIT(&V_pf_sendqueue); 1287 SLIST_INIT(&V_pf_overloadqueue); 1288 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1289 1290 /* Unlinked, but may be referenced rules. */ 1291 TAILQ_INIT(&V_pf_unlinked_rules); 1292 } 1293 1294 void 1295 pf_mtag_cleanup(void) 1296 { 1297 1298 uma_zdestroy(pf_mtag_z); 1299 } 1300 1301 void 1302 pf_cleanup(void) 1303 { 1304 struct pf_keyhash *kh; 1305 struct pf_idhash *ih; 1306 struct pf_srchash *sh; 1307 struct pf_udpendpointhash *uh; 1308 struct pf_send_entry *pfse, *next; 1309 u_int i; 1310 1311 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1312 i <= V_pf_hashmask; 1313 i++, kh++, ih++) { 1314 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1315 __func__)); 1316 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1317 __func__)); 1318 mtx_destroy(&kh->lock); 1319 mtx_destroy(&ih->lock); 1320 } 1321 free(V_pf_keyhash, M_PFHASH); 1322 free(V_pf_idhash, M_PFHASH); 1323 1324 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1325 KASSERT(LIST_EMPTY(&sh->nodes), 1326 ("%s: source node hash not empty", __func__)); 1327 mtx_destroy(&sh->lock); 1328 } 1329 free(V_pf_srchash, M_PFHASH); 1330 1331 for (i = 0, uh = V_pf_udpendpointhash; 1332 i <= V_pf_udpendpointhashmask; 1333 i++, uh++) { 1334 KASSERT(LIST_EMPTY(&uh->endpoints), 1335 ("%s: udp endpoint hash not empty", __func__)); 1336 mtx_destroy(&uh->lock); 1337 } 1338 free(V_pf_udpendpointhash, M_PFHASH); 1339 1340 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1341 m_freem(pfse->pfse_m); 1342 free(pfse, M_PFTEMP); 1343 } 1344 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1345 1346 uma_zdestroy(V_pf_sources_z); 1347 uma_zdestroy(V_pf_state_z); 1348 uma_zdestroy(V_pf_state_key_z); 1349 uma_zdestroy(V_pf_udp_mapping_z); 1350 uma_zdestroy(V_pf_anchor_z); 1351 uma_zdestroy(V_pf_eth_anchor_z); 1352 } 1353 1354 static int 1355 pf_mtag_uminit(void *mem, int size, int how) 1356 { 1357 struct m_tag *t; 1358 1359 t = (struct m_tag *)mem; 1360 t->m_tag_cookie = MTAG_ABI_COMPAT; 1361 t->m_tag_id = PACKET_TAG_PF; 1362 t->m_tag_len = sizeof(struct pf_mtag); 1363 t->m_tag_free = pf_mtag_free; 1364 1365 return (0); 1366 } 1367 1368 static void 1369 pf_mtag_free(struct m_tag *t) 1370 { 1371 1372 uma_zfree(pf_mtag_z, t); 1373 } 1374 1375 struct pf_mtag * 1376 pf_get_mtag(struct mbuf *m) 1377 { 1378 struct m_tag *mtag; 1379 1380 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1381 return ((struct pf_mtag *)(mtag + 1)); 1382 1383 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1384 if (mtag == NULL) 1385 return (NULL); 1386 bzero(mtag + 1, sizeof(struct pf_mtag)); 1387 m_tag_prepend(m, mtag); 1388 1389 return ((struct pf_mtag *)(mtag + 1)); 1390 } 1391 1392 static int 1393 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1394 struct pf_kstate *s) 1395 { 1396 struct pf_keyhash *khs, *khw, *kh; 1397 struct pf_state_key *sk, *cur; 1398 struct pf_kstate *si, *olds = NULL; 1399 int idx; 1400 1401 NET_EPOCH_ASSERT(); 1402 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1403 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1404 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1405 1406 /* 1407 * We need to lock hash slots of both keys. To avoid deadlock 1408 * we always lock the slot with lower address first. Unlock order 1409 * isn't important. 1410 * 1411 * We also need to lock ID hash slot before dropping key 1412 * locks. On success we return with ID hash slot locked. 1413 */ 1414 1415 if (skw == sks) { 1416 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1417 PF_HASHROW_LOCK(khs); 1418 } else { 1419 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1420 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1421 if (khs == khw) { 1422 PF_HASHROW_LOCK(khs); 1423 } else if (khs < khw) { 1424 PF_HASHROW_LOCK(khs); 1425 PF_HASHROW_LOCK(khw); 1426 } else { 1427 PF_HASHROW_LOCK(khw); 1428 PF_HASHROW_LOCK(khs); 1429 } 1430 } 1431 1432 #define KEYS_UNLOCK() do { \ 1433 if (khs != khw) { \ 1434 PF_HASHROW_UNLOCK(khs); \ 1435 PF_HASHROW_UNLOCK(khw); \ 1436 } else \ 1437 PF_HASHROW_UNLOCK(khs); \ 1438 } while (0) 1439 1440 /* 1441 * First run: start with wire key. 1442 */ 1443 sk = skw; 1444 kh = khw; 1445 idx = PF_SK_WIRE; 1446 1447 MPASS(s->lock == NULL); 1448 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1449 1450 keyattach: 1451 LIST_FOREACH(cur, &kh->keys, entry) 1452 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1453 break; 1454 1455 if (cur != NULL) { 1456 /* Key exists. Check for same kif, if none, add to key. */ 1457 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1458 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1459 1460 PF_HASHROW_LOCK(ih); 1461 if (si->kif == s->kif && 1462 ((si->key[PF_SK_WIRE]->af == sk->af && 1463 si->direction == s->direction) || 1464 (si->key[PF_SK_WIRE]->af != 1465 si->key[PF_SK_STACK]->af && 1466 sk->af == si->key[PF_SK_STACK]->af && 1467 si->direction != s->direction))) { 1468 bool reuse = false; 1469 1470 if (sk->proto == IPPROTO_TCP && 1471 si->src.state >= TCPS_FIN_WAIT_2 && 1472 si->dst.state >= TCPS_FIN_WAIT_2) 1473 reuse = true; 1474 1475 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1476 printf("pf: %s key attach " 1477 "%s on %s: ", 1478 (idx == PF_SK_WIRE) ? 1479 "wire" : "stack", 1480 reuse ? "reuse" : "failed", 1481 s->kif->pfik_name); 1482 pf_print_state_parts(s, 1483 (idx == PF_SK_WIRE) ? 1484 sk : NULL, 1485 (idx == PF_SK_STACK) ? 1486 sk : NULL); 1487 printf(", existing: "); 1488 pf_print_state_parts(si, 1489 (idx == PF_SK_WIRE) ? 1490 sk : NULL, 1491 (idx == PF_SK_STACK) ? 1492 sk : NULL); 1493 printf("\n"); 1494 } 1495 1496 if (reuse) { 1497 /* 1498 * New state matches an old >FIN_WAIT_2 1499 * state. We can't drop key hash locks, 1500 * thus we can't unlink it properly. 1501 * 1502 * As a workaround we drop it into 1503 * TCPS_CLOSED state, schedule purge 1504 * ASAP and push it into the very end 1505 * of the slot TAILQ, so that it won't 1506 * conflict with our new state. 1507 */ 1508 pf_set_protostate(si, PF_PEER_BOTH, 1509 TCPS_CLOSED); 1510 si->timeout = PFTM_PURGE; 1511 olds = si; 1512 } else { 1513 s->timeout = PFTM_UNLINKED; 1514 if (idx == PF_SK_STACK) 1515 /* 1516 * Remove the wire key from 1517 * the hash. Other threads 1518 * can't be referencing it 1519 * because we still hold the 1520 * hash lock. 1521 */ 1522 pf_state_key_detach(s, 1523 PF_SK_WIRE); 1524 PF_HASHROW_UNLOCK(ih); 1525 KEYS_UNLOCK(); 1526 if (idx == PF_SK_WIRE) 1527 /* 1528 * We've not inserted either key. 1529 * Free both. 1530 */ 1531 uma_zfree(V_pf_state_key_z, skw); 1532 if (skw != sks) 1533 uma_zfree( 1534 V_pf_state_key_z, 1535 sks); 1536 return (EEXIST); /* collision! */ 1537 } 1538 } 1539 PF_HASHROW_UNLOCK(ih); 1540 } 1541 uma_zfree(V_pf_state_key_z, sk); 1542 s->key[idx] = cur; 1543 } else { 1544 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1545 s->key[idx] = sk; 1546 } 1547 1548 stateattach: 1549 /* List is sorted, if-bound states before floating. */ 1550 if (s->kif == V_pfi_all) 1551 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1552 else 1553 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1554 1555 if (olds) { 1556 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1557 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1558 key_list[idx]); 1559 olds = NULL; 1560 } 1561 1562 /* 1563 * Attach done. See how should we (or should not?) 1564 * attach a second key. 1565 */ 1566 if (sks == skw) { 1567 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1568 idx = PF_SK_STACK; 1569 sks = NULL; 1570 goto stateattach; 1571 } else if (sks != NULL) { 1572 /* 1573 * Continue attaching with stack key. 1574 */ 1575 sk = sks; 1576 kh = khs; 1577 idx = PF_SK_STACK; 1578 sks = NULL; 1579 goto keyattach; 1580 } 1581 1582 PF_STATE_LOCK(s); 1583 KEYS_UNLOCK(); 1584 1585 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1586 ("%s failure", __func__)); 1587 1588 return (0); 1589 #undef KEYS_UNLOCK 1590 } 1591 1592 static void 1593 pf_detach_state(struct pf_kstate *s) 1594 { 1595 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1596 struct pf_keyhash *kh; 1597 1598 NET_EPOCH_ASSERT(); 1599 MPASS(s->timeout >= PFTM_MAX); 1600 1601 pf_sctp_multihome_detach_addr(s); 1602 1603 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1604 V_pflow_export_state_ptr(s); 1605 1606 if (sks != NULL) { 1607 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1608 PF_HASHROW_LOCK(kh); 1609 if (s->key[PF_SK_STACK] != NULL) 1610 pf_state_key_detach(s, PF_SK_STACK); 1611 /* 1612 * If both point to same key, then we are done. 1613 */ 1614 if (sks == s->key[PF_SK_WIRE]) { 1615 pf_state_key_detach(s, PF_SK_WIRE); 1616 PF_HASHROW_UNLOCK(kh); 1617 return; 1618 } 1619 PF_HASHROW_UNLOCK(kh); 1620 } 1621 1622 if (s->key[PF_SK_WIRE] != NULL) { 1623 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1624 PF_HASHROW_LOCK(kh); 1625 if (s->key[PF_SK_WIRE] != NULL) 1626 pf_state_key_detach(s, PF_SK_WIRE); 1627 PF_HASHROW_UNLOCK(kh); 1628 } 1629 } 1630 1631 static void 1632 pf_state_key_detach(struct pf_kstate *s, int idx) 1633 { 1634 struct pf_state_key *sk = s->key[idx]; 1635 #ifdef INVARIANTS 1636 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1637 1638 PF_HASHROW_ASSERT(kh); 1639 #endif /* INVARIANTS */ 1640 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1641 s->key[idx] = NULL; 1642 1643 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1644 LIST_REMOVE(sk, entry); 1645 uma_zfree(V_pf_state_key_z, sk); 1646 } 1647 } 1648 1649 static int 1650 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1651 { 1652 struct pf_state_key *sk = mem; 1653 1654 bzero(sk, sizeof(struct pf_state_key_cmp)); 1655 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1656 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1657 1658 return (0); 1659 } 1660 1661 static int 1662 pf_state_key_addr_setup(struct pf_pdesc *pd, 1663 struct pf_state_key_cmp *key, int multi) 1664 { 1665 struct pf_addr *saddr = pd->src; 1666 struct pf_addr *daddr = pd->dst; 1667 #ifdef INET6 1668 struct nd_neighbor_solicit nd; 1669 struct pf_addr *target; 1670 1671 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1672 goto copy; 1673 1674 switch (pd->hdr.icmp6.icmp6_type) { 1675 case ND_NEIGHBOR_SOLICIT: 1676 if (multi) 1677 return (-1); 1678 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL, 1679 NULL, pd->af)) 1680 return (-1); 1681 target = (struct pf_addr *)&nd.nd_ns_target; 1682 daddr = target; 1683 break; 1684 case ND_NEIGHBOR_ADVERT: 1685 if (multi) 1686 return (-1); 1687 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL, 1688 NULL, pd->af)) 1689 return (-1); 1690 target = (struct pf_addr *)&nd.nd_ns_target; 1691 saddr = target; 1692 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1693 key->addr[pd->didx].addr32[0] = 0; 1694 key->addr[pd->didx].addr32[1] = 0; 1695 key->addr[pd->didx].addr32[2] = 0; 1696 key->addr[pd->didx].addr32[3] = 0; 1697 daddr = NULL; /* overwritten */ 1698 } 1699 break; 1700 default: 1701 if (multi) { 1702 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1703 key->addr[pd->sidx].addr32[1] = 0; 1704 key->addr[pd->sidx].addr32[2] = 0; 1705 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1706 saddr = NULL; /* overwritten */ 1707 } 1708 } 1709 copy: 1710 #endif /* INET6 */ 1711 if (saddr) 1712 pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af); 1713 if (daddr) 1714 pf_addrcpy(&key->addr[pd->didx], daddr, pd->af); 1715 1716 return (0); 1717 } 1718 1719 int 1720 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1721 struct pf_state_key **sk, struct pf_state_key **nk) 1722 { 1723 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1724 if (*sk == NULL) 1725 return (ENOMEM); 1726 1727 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1728 0)) { 1729 uma_zfree(V_pf_state_key_z, *sk); 1730 *sk = NULL; 1731 return (ENOMEM); 1732 } 1733 1734 (*sk)->port[pd->sidx] = sport; 1735 (*sk)->port[pd->didx] = dport; 1736 (*sk)->proto = pd->proto; 1737 (*sk)->af = pd->af; 1738 1739 *nk = pf_state_key_clone(*sk); 1740 if (*nk == NULL) { 1741 uma_zfree(V_pf_state_key_z, *sk); 1742 *sk = NULL; 1743 return (ENOMEM); 1744 } 1745 1746 if (pd->af != pd->naf) { 1747 (*sk)->port[pd->sidx] = pd->osport; 1748 (*sk)->port[pd->didx] = pd->odport; 1749 1750 (*nk)->af = pd->naf; 1751 1752 /* 1753 * We're overwriting an address here, so potentially there's bits of an IPv6 1754 * address left in here. Clear that out first. 1755 */ 1756 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1757 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1758 if (pd->dir == PF_IN) { 1759 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr, 1760 pd->naf); 1761 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr, 1762 pd->naf); 1763 (*nk)->port[pd->didx] = pd->nsport; 1764 (*nk)->port[pd->sidx] = pd->ndport; 1765 } else { 1766 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr, 1767 pd->naf); 1768 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr, 1769 pd->naf); 1770 (*nk)->port[pd->sidx] = pd->nsport; 1771 (*nk)->port[pd->didx] = pd->ndport; 1772 } 1773 1774 switch (pd->proto) { 1775 case IPPROTO_ICMP: 1776 (*nk)->proto = IPPROTO_ICMPV6; 1777 break; 1778 case IPPROTO_ICMPV6: 1779 (*nk)->proto = IPPROTO_ICMP; 1780 break; 1781 default: 1782 (*nk)->proto = pd->proto; 1783 } 1784 } 1785 1786 return (0); 1787 } 1788 1789 struct pf_state_key * 1790 pf_state_key_clone(const struct pf_state_key *orig) 1791 { 1792 struct pf_state_key *sk; 1793 1794 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1795 if (sk == NULL) 1796 return (NULL); 1797 1798 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1799 1800 return (sk); 1801 } 1802 1803 int 1804 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1805 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1806 { 1807 struct pf_idhash *ih; 1808 struct pf_kstate *cur; 1809 int error; 1810 1811 NET_EPOCH_ASSERT(); 1812 1813 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1814 ("%s: sks not pristine", __func__)); 1815 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1816 ("%s: skw not pristine", __func__)); 1817 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1818 1819 s->kif = kif; 1820 s->orig_kif = orig_kif; 1821 1822 if (s->id == 0 && s->creatorid == 0) { 1823 s->id = alloc_unr64(&V_pf_stateid); 1824 s->id = htobe64(s->id); 1825 s->creatorid = V_pf_status.hostid; 1826 } 1827 1828 /* Returns with ID locked on success. */ 1829 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1830 return (error); 1831 skw = sks = NULL; 1832 1833 ih = &V_pf_idhash[PF_IDHASH(s)]; 1834 PF_HASHROW_ASSERT(ih); 1835 LIST_FOREACH(cur, &ih->states, entry) 1836 if (cur->id == s->id && cur->creatorid == s->creatorid) 1837 break; 1838 1839 if (cur != NULL) { 1840 s->timeout = PFTM_UNLINKED; 1841 PF_HASHROW_UNLOCK(ih); 1842 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1843 printf("pf: state ID collision: " 1844 "id: %016llx creatorid: %08x\n", 1845 (unsigned long long)be64toh(s->id), 1846 ntohl(s->creatorid)); 1847 } 1848 pf_detach_state(s); 1849 return (EEXIST); 1850 } 1851 LIST_INSERT_HEAD(&ih->states, s, entry); 1852 /* One for keys, one for ID hash. */ 1853 refcount_init(&s->refs, 2); 1854 1855 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1856 if (V_pfsync_insert_state_ptr != NULL) 1857 V_pfsync_insert_state_ptr(s); 1858 1859 /* Returns locked. */ 1860 return (0); 1861 } 1862 1863 /* 1864 * Find state by ID: returns with locked row on success. 1865 */ 1866 struct pf_kstate * 1867 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1868 { 1869 struct pf_idhash *ih; 1870 struct pf_kstate *s; 1871 1872 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1873 1874 ih = &V_pf_idhash[PF_IDHASHID(id)]; 1875 1876 PF_HASHROW_LOCK(ih); 1877 LIST_FOREACH(s, &ih->states, entry) 1878 if (s->id == id && s->creatorid == creatorid) 1879 break; 1880 1881 if (s == NULL) 1882 PF_HASHROW_UNLOCK(ih); 1883 1884 return (s); 1885 } 1886 1887 /* 1888 * Find state by key. 1889 * Returns with ID hash slot locked on success. 1890 */ 1891 static int 1892 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key, 1893 struct pf_kstate **state) 1894 { 1895 struct pf_keyhash *kh; 1896 struct pf_state_key *sk; 1897 struct pf_kstate *s; 1898 int idx; 1899 1900 *state = NULL; 1901 1902 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1903 1904 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1905 1906 PF_HASHROW_LOCK(kh); 1907 LIST_FOREACH(sk, &kh->keys, entry) 1908 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1909 break; 1910 if (sk == NULL) { 1911 PF_HASHROW_UNLOCK(kh); 1912 return (PF_DROP); 1913 } 1914 1915 idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1916 1917 /* List is sorted, if-bound states before floating ones. */ 1918 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1919 if (s->kif == V_pfi_all || s->kif == pd->kif || 1920 s->orig_kif == pd->kif) { 1921 PF_STATE_LOCK(s); 1922 PF_HASHROW_UNLOCK(kh); 1923 if (__predict_false(s->timeout >= PFTM_MAX)) { 1924 /* 1925 * State is either being processed by 1926 * pf_remove_state() in an other thread, or 1927 * is scheduled for immediate expiry. 1928 */ 1929 PF_STATE_UNLOCK(s); 1930 SDT_PROBE5(pf, ip, state, lookup, pd->kif, 1931 key, (pd->dir), pd, *state); 1932 return (PF_DROP); 1933 } 1934 goto out; 1935 } 1936 1937 /* Look through the other list, in case of AF-TO */ 1938 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1939 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1940 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1941 continue; 1942 if (s->kif == V_pfi_all || s->kif == pd->kif || 1943 s->orig_kif == pd->kif) { 1944 PF_STATE_LOCK(s); 1945 PF_HASHROW_UNLOCK(kh); 1946 if (__predict_false(s->timeout >= PFTM_MAX)) { 1947 /* 1948 * State is either being processed by 1949 * pf_remove_state() in an other thread, or 1950 * is scheduled for immediate expiry. 1951 */ 1952 PF_STATE_UNLOCK(s); 1953 SDT_PROBE5(pf, ip, state, lookup, pd->kif, 1954 key, (pd->dir), pd, NULL); 1955 return (PF_DROP); 1956 } 1957 goto out; 1958 } 1959 } 1960 1961 PF_HASHROW_UNLOCK(kh); 1962 1963 out: 1964 SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state); 1965 1966 if (s == NULL || s->timeout == PFTM_PURGE) { 1967 if (s) 1968 PF_STATE_UNLOCK(s); 1969 return (PF_DROP); 1970 } 1971 1972 if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) { 1973 if (pf_check_threshold(&(s)->rule->pktrate)) { 1974 PF_STATE_UNLOCK(s); 1975 return (PF_DROP); 1976 } 1977 } 1978 if (PACKET_LOOPED(pd)) { 1979 PF_STATE_UNLOCK(s); 1980 return (PF_PASS); 1981 } 1982 1983 *state = s; 1984 1985 return (PF_MATCH); 1986 } 1987 1988 /* 1989 * Returns with ID hash slot locked on success. 1990 */ 1991 struct pf_kstate * 1992 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1993 { 1994 struct pf_keyhash *kh; 1995 struct pf_state_key *sk; 1996 struct pf_kstate *s, *ret = NULL; 1997 int idx, inout = 0; 1998 1999 if (more != NULL) 2000 *more = 0; 2001 2002 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 2003 2004 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 2005 2006 PF_HASHROW_LOCK(kh); 2007 LIST_FOREACH(sk, &kh->keys, entry) 2008 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 2009 break; 2010 if (sk == NULL) { 2011 PF_HASHROW_UNLOCK(kh); 2012 return (NULL); 2013 } 2014 switch (dir) { 2015 case PF_IN: 2016 idx = PF_SK_WIRE; 2017 break; 2018 case PF_OUT: 2019 idx = PF_SK_STACK; 2020 break; 2021 case PF_INOUT: 2022 idx = PF_SK_WIRE; 2023 inout = 1; 2024 break; 2025 default: 2026 panic("%s: dir %u", __func__, dir); 2027 } 2028 second_run: 2029 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 2030 if (more == NULL) { 2031 PF_STATE_LOCK(s); 2032 PF_HASHROW_UNLOCK(kh); 2033 return (s); 2034 } 2035 2036 if (ret) 2037 (*more)++; 2038 else { 2039 ret = s; 2040 PF_STATE_LOCK(s); 2041 } 2042 } 2043 if (inout == 1) { 2044 inout = 0; 2045 idx = PF_SK_STACK; 2046 goto second_run; 2047 } 2048 PF_HASHROW_UNLOCK(kh); 2049 2050 return (ret); 2051 } 2052 2053 /* 2054 * FIXME 2055 * This routine is inefficient -- locks the state only to unlock immediately on 2056 * return. 2057 * It is racy -- after the state is unlocked nothing stops other threads from 2058 * removing it. 2059 */ 2060 bool 2061 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 2062 { 2063 struct pf_kstate *s; 2064 2065 s = pf_find_state_all(key, dir, NULL); 2066 if (s != NULL) { 2067 PF_STATE_UNLOCK(s); 2068 return (true); 2069 } 2070 return (false); 2071 } 2072 2073 void 2074 pf_state_peer_hton(const struct pf_state_peer *s, struct pf_state_peer_export *d) 2075 { 2076 d->seqlo = htonl(s->seqlo); 2077 d->seqhi = htonl(s->seqhi); 2078 d->seqdiff = htonl(s->seqdiff); 2079 d->max_win = htons(s->max_win); 2080 d->mss = htons(s->mss); 2081 d->state = s->state; 2082 d->wscale = s->wscale; 2083 if (s->scrub) { 2084 d->scrub.pfss_flags = htons( 2085 s->scrub->pfss_flags & PFSS_TIMESTAMP); 2086 d->scrub.pfss_ttl = (s)->scrub->pfss_ttl; 2087 d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod); 2088 d->scrub.scrub_flag = PF_SCRUB_FLAG_VALID; 2089 } 2090 } 2091 2092 void 2093 pf_state_peer_ntoh(const struct pf_state_peer_export *s, struct pf_state_peer *d) 2094 { 2095 d->seqlo = ntohl(s->seqlo); 2096 d->seqhi = ntohl(s->seqhi); 2097 d->seqdiff = ntohl(s->seqdiff); 2098 d->max_win = ntohs(s->max_win); 2099 d->mss = ntohs(s->mss); 2100 d->state = s->state; 2101 d->wscale = s->wscale; 2102 if (s->scrub.scrub_flag == PF_SCRUB_FLAG_VALID && 2103 d->scrub != NULL) { 2104 d->scrub->pfss_flags = ntohs(s->scrub.pfss_flags) & 2105 PFSS_TIMESTAMP; 2106 d->scrub->pfss_ttl = s->scrub.pfss_ttl; 2107 d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod); 2108 } 2109 } 2110 2111 struct pf_udp_mapping * 2112 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 2113 struct pf_addr *nat_addr, uint16_t nat_port) 2114 { 2115 struct pf_udp_mapping *mapping; 2116 2117 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 2118 if (mapping == NULL) 2119 return (NULL); 2120 pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af); 2121 mapping->endpoints[0].port = src_port; 2122 mapping->endpoints[0].af = af; 2123 mapping->endpoints[0].mapping = mapping; 2124 pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af); 2125 mapping->endpoints[1].port = nat_port; 2126 mapping->endpoints[1].af = af; 2127 mapping->endpoints[1].mapping = mapping; 2128 refcount_init(&mapping->refs, 1); 2129 return (mapping); 2130 } 2131 2132 int 2133 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2134 { 2135 struct pf_udpendpointhash *h0, *h1; 2136 struct pf_udp_endpoint *endpoint; 2137 int ret = EEXIST; 2138 2139 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2140 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2141 if (h0 == h1) { 2142 PF_HASHROW_LOCK(h0); 2143 } else if (h0 < h1) { 2144 PF_HASHROW_LOCK(h0); 2145 PF_HASHROW_LOCK(h1); 2146 } else { 2147 PF_HASHROW_LOCK(h1); 2148 PF_HASHROW_LOCK(h0); 2149 } 2150 2151 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2152 if (bcmp(endpoint, &mapping->endpoints[0], 2153 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2154 break; 2155 } 2156 if (endpoint != NULL) 2157 goto cleanup; 2158 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2159 if (bcmp(endpoint, &mapping->endpoints[1], 2160 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2161 break; 2162 } 2163 if (endpoint != NULL) 2164 goto cleanup; 2165 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2166 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2167 ret = 0; 2168 2169 cleanup: 2170 if (h0 != h1) { 2171 PF_HASHROW_UNLOCK(h0); 2172 PF_HASHROW_UNLOCK(h1); 2173 } else { 2174 PF_HASHROW_UNLOCK(h0); 2175 } 2176 return (ret); 2177 } 2178 2179 void 2180 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2181 { 2182 /* refcount is synchronized on the source endpoint's row lock */ 2183 struct pf_udpendpointhash *h0, *h1; 2184 2185 if (mapping == NULL) 2186 return; 2187 2188 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2189 PF_HASHROW_LOCK(h0); 2190 if (refcount_release(&mapping->refs)) { 2191 LIST_REMOVE(&mapping->endpoints[0], entry); 2192 PF_HASHROW_UNLOCK(h0); 2193 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2194 PF_HASHROW_LOCK(h1); 2195 LIST_REMOVE(&mapping->endpoints[1], entry); 2196 PF_HASHROW_UNLOCK(h1); 2197 2198 uma_zfree(V_pf_udp_mapping_z, mapping); 2199 } else { 2200 PF_HASHROW_UNLOCK(h0); 2201 } 2202 } 2203 2204 2205 struct pf_udp_mapping * 2206 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2207 { 2208 struct pf_udpendpointhash *uh; 2209 struct pf_udp_endpoint *endpoint; 2210 2211 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2212 2213 PF_HASHROW_LOCK(uh); 2214 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2215 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2216 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2217 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2218 break; 2219 } 2220 if (endpoint == NULL) { 2221 PF_HASHROW_UNLOCK(uh); 2222 return (NULL); 2223 } 2224 refcount_acquire(&endpoint->mapping->refs); 2225 PF_HASHROW_UNLOCK(uh); 2226 return (endpoint->mapping); 2227 } 2228 /* END state table stuff */ 2229 2230 static void 2231 pf_send(struct pf_send_entry *pfse) 2232 { 2233 2234 PF_SENDQ_LOCK(); 2235 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2236 PF_SENDQ_UNLOCK(); 2237 swi_sched(V_pf_swi_cookie, 0); 2238 } 2239 2240 static bool 2241 pf_isforlocal(struct mbuf *m, int af) 2242 { 2243 switch (af) { 2244 #ifdef INET 2245 case AF_INET: { 2246 struct ip *ip = mtod(m, struct ip *); 2247 2248 return (in_localip(ip->ip_dst)); 2249 } 2250 #endif /* INET */ 2251 #ifdef INET6 2252 case AF_INET6: { 2253 struct ip6_hdr *ip6; 2254 struct in6_ifaddr *ia; 2255 ip6 = mtod(m, struct ip6_hdr *); 2256 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2257 if (ia == NULL) 2258 return (false); 2259 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2260 } 2261 #endif /* INET6 */ 2262 default: 2263 unhandled_af(af); 2264 } 2265 2266 return (false); 2267 } 2268 2269 int 2270 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2271 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type) 2272 { 2273 /* 2274 * ICMP types marked with PF_OUT are typically responses to 2275 * PF_IN, and will match states in the opposite direction. 2276 * PF_IN ICMP types need to match a state with that type. 2277 */ 2278 *icmp_dir = PF_OUT; 2279 2280 /* Queries (and responses) */ 2281 switch (pd->af) { 2282 #ifdef INET 2283 case AF_INET: 2284 switch (type) { 2285 case ICMP_ECHO: 2286 *icmp_dir = PF_IN; 2287 /* FALLTHROUGH */ 2288 case ICMP_ECHOREPLY: 2289 *virtual_type = ICMP_ECHO; 2290 *virtual_id = pd->hdr.icmp.icmp_id; 2291 break; 2292 2293 case ICMP_TSTAMP: 2294 *icmp_dir = PF_IN; 2295 /* FALLTHROUGH */ 2296 case ICMP_TSTAMPREPLY: 2297 *virtual_type = ICMP_TSTAMP; 2298 *virtual_id = pd->hdr.icmp.icmp_id; 2299 break; 2300 2301 case ICMP_IREQ: 2302 *icmp_dir = PF_IN; 2303 /* FALLTHROUGH */ 2304 case ICMP_IREQREPLY: 2305 *virtual_type = ICMP_IREQ; 2306 *virtual_id = pd->hdr.icmp.icmp_id; 2307 break; 2308 2309 case ICMP_MASKREQ: 2310 *icmp_dir = PF_IN; 2311 /* FALLTHROUGH */ 2312 case ICMP_MASKREPLY: 2313 *virtual_type = ICMP_MASKREQ; 2314 *virtual_id = pd->hdr.icmp.icmp_id; 2315 break; 2316 2317 case ICMP_IPV6_WHEREAREYOU: 2318 *icmp_dir = PF_IN; 2319 /* FALLTHROUGH */ 2320 case ICMP_IPV6_IAMHERE: 2321 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2322 *virtual_id = 0; /* Nothing sane to match on! */ 2323 break; 2324 2325 case ICMP_MOBILE_REGREQUEST: 2326 *icmp_dir = PF_IN; 2327 /* FALLTHROUGH */ 2328 case ICMP_MOBILE_REGREPLY: 2329 *virtual_type = ICMP_MOBILE_REGREQUEST; 2330 *virtual_id = 0; /* Nothing sane to match on! */ 2331 break; 2332 2333 case ICMP_ROUTERSOLICIT: 2334 *icmp_dir = PF_IN; 2335 /* FALLTHROUGH */ 2336 case ICMP_ROUTERADVERT: 2337 *virtual_type = ICMP_ROUTERSOLICIT; 2338 *virtual_id = 0; /* Nothing sane to match on! */ 2339 break; 2340 2341 /* These ICMP types map to other connections */ 2342 case ICMP_UNREACH: 2343 case ICMP_SOURCEQUENCH: 2344 case ICMP_REDIRECT: 2345 case ICMP_TIMXCEED: 2346 case ICMP_PARAMPROB: 2347 /* These will not be used, but set them anyway */ 2348 *icmp_dir = PF_IN; 2349 *virtual_type = type; 2350 *virtual_id = 0; 2351 *virtual_type = htons(*virtual_type); 2352 return (1); /* These types match to another state */ 2353 2354 /* 2355 * All remaining ICMP types get their own states, 2356 * and will only match in one direction. 2357 */ 2358 default: 2359 *icmp_dir = PF_IN; 2360 *virtual_type = type; 2361 *virtual_id = 0; 2362 break; 2363 } 2364 break; 2365 #endif /* INET */ 2366 #ifdef INET6 2367 case AF_INET6: 2368 switch (type) { 2369 case ICMP6_ECHO_REQUEST: 2370 *icmp_dir = PF_IN; 2371 /* FALLTHROUGH */ 2372 case ICMP6_ECHO_REPLY: 2373 *virtual_type = ICMP6_ECHO_REQUEST; 2374 *virtual_id = pd->hdr.icmp6.icmp6_id; 2375 break; 2376 2377 case MLD_LISTENER_QUERY: 2378 case MLD_LISTENER_REPORT: { 2379 /* 2380 * Listener Report can be sent by clients 2381 * without an associated Listener Query. 2382 * In addition to that, when Report is sent as a 2383 * reply to a Query its source and destination 2384 * address are different. 2385 */ 2386 *icmp_dir = PF_IN; 2387 *virtual_type = MLD_LISTENER_QUERY; 2388 *virtual_id = 0; 2389 break; 2390 } 2391 case MLD_MTRACE: 2392 *icmp_dir = PF_IN; 2393 /* FALLTHROUGH */ 2394 case MLD_MTRACE_RESP: 2395 *virtual_type = MLD_MTRACE; 2396 *virtual_id = 0; /* Nothing sane to match on! */ 2397 break; 2398 2399 case ND_NEIGHBOR_SOLICIT: 2400 *icmp_dir = PF_IN; 2401 /* FALLTHROUGH */ 2402 case ND_NEIGHBOR_ADVERT: { 2403 *virtual_type = ND_NEIGHBOR_SOLICIT; 2404 *virtual_id = 0; 2405 break; 2406 } 2407 2408 /* 2409 * These ICMP types map to other connections. 2410 * ND_REDIRECT can't be in this list because the triggering 2411 * packet header is optional. 2412 */ 2413 case ICMP6_DST_UNREACH: 2414 case ICMP6_PACKET_TOO_BIG: 2415 case ICMP6_TIME_EXCEEDED: 2416 case ICMP6_PARAM_PROB: 2417 /* These will not be used, but set them anyway */ 2418 *icmp_dir = PF_IN; 2419 *virtual_type = type; 2420 *virtual_id = 0; 2421 *virtual_type = htons(*virtual_type); 2422 return (1); /* These types match to another state */ 2423 /* 2424 * All remaining ICMP6 types get their own states, 2425 * and will only match in one direction. 2426 */ 2427 default: 2428 *icmp_dir = PF_IN; 2429 *virtual_type = type; 2430 *virtual_id = 0; 2431 break; 2432 } 2433 break; 2434 #endif /* INET6 */ 2435 default: 2436 unhandled_af(pd->af); 2437 } 2438 *virtual_type = htons(*virtual_type); 2439 return (0); /* These types match to their own state */ 2440 } 2441 2442 void 2443 pf_intr(void *v) 2444 { 2445 struct epoch_tracker et; 2446 struct pf_send_head queue; 2447 struct pf_send_entry *pfse, *next; 2448 2449 CURVNET_SET((struct vnet *)v); 2450 2451 PF_SENDQ_LOCK(); 2452 queue = V_pf_sendqueue; 2453 STAILQ_INIT(&V_pf_sendqueue); 2454 PF_SENDQ_UNLOCK(); 2455 2456 NET_EPOCH_ENTER(et); 2457 2458 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2459 switch (pfse->pfse_type) { 2460 #ifdef INET 2461 case PFSE_IP: { 2462 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2463 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2464 ("%s: rcvif != loif", __func__)); 2465 2466 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2467 pfse->pfse_m->m_pkthdr.csum_flags |= 2468 CSUM_IP_VALID | CSUM_IP_CHECKED | 2469 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2470 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2471 ip_input(pfse->pfse_m); 2472 } else { 2473 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2474 NULL); 2475 } 2476 break; 2477 } 2478 case PFSE_ICMP: 2479 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2480 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2481 break; 2482 #endif /* INET */ 2483 #ifdef INET6 2484 case PFSE_IP6: 2485 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2486 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2487 ("%s: rcvif != loif", __func__)); 2488 2489 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2490 M_LOOP; 2491 pfse->pfse_m->m_pkthdr.csum_flags |= 2492 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2493 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2494 ip6_input(pfse->pfse_m); 2495 } else { 2496 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2497 NULL, NULL); 2498 } 2499 break; 2500 case PFSE_ICMP6: 2501 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2502 pfse->icmpopts.code, pfse->icmpopts.mtu); 2503 break; 2504 #endif /* INET6 */ 2505 default: 2506 panic("%s: unknown type", __func__); 2507 } 2508 free(pfse, M_PFTEMP); 2509 } 2510 NET_EPOCH_EXIT(et); 2511 CURVNET_RESTORE(); 2512 } 2513 2514 #define pf_purge_thread_period (hz / 10) 2515 2516 #ifdef PF_WANT_32_TO_64_COUNTER 2517 static void 2518 pf_status_counter_u64_periodic(void) 2519 { 2520 2521 PF_RULES_RASSERT(); 2522 2523 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2524 return; 2525 } 2526 2527 for (int i = 0; i < FCNT_MAX; i++) { 2528 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2529 } 2530 } 2531 2532 static void 2533 pf_kif_counter_u64_periodic(void) 2534 { 2535 struct pfi_kkif *kif; 2536 size_t r, run; 2537 2538 PF_RULES_RASSERT(); 2539 2540 if (__predict_false(V_pf_allkifcount == 0)) { 2541 return; 2542 } 2543 2544 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2545 return; 2546 } 2547 2548 run = V_pf_allkifcount / 10; 2549 if (run < 5) 2550 run = 5; 2551 2552 for (r = 0; r < run; r++) { 2553 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2554 if (kif == NULL) { 2555 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2556 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2557 break; 2558 } 2559 2560 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2561 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2562 2563 for (int i = 0; i < 2; i++) { 2564 for (int j = 0; j < 2; j++) { 2565 for (int k = 0; k < 2; k++) { 2566 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2567 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2568 } 2569 } 2570 } 2571 } 2572 } 2573 2574 static void 2575 pf_rule_counter_u64_periodic(void) 2576 { 2577 struct pf_krule *rule; 2578 size_t r, run; 2579 2580 PF_RULES_RASSERT(); 2581 2582 if (__predict_false(V_pf_allrulecount == 0)) { 2583 return; 2584 } 2585 2586 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2587 return; 2588 } 2589 2590 run = V_pf_allrulecount / 10; 2591 if (run < 5) 2592 run = 5; 2593 2594 for (r = 0; r < run; r++) { 2595 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2596 if (rule == NULL) { 2597 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2598 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2599 break; 2600 } 2601 2602 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2603 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2604 2605 pf_counter_u64_periodic(&rule->evaluations); 2606 for (int i = 0; i < 2; i++) { 2607 pf_counter_u64_periodic(&rule->packets[i]); 2608 pf_counter_u64_periodic(&rule->bytes[i]); 2609 } 2610 } 2611 } 2612 2613 static void 2614 pf_counter_u64_periodic_main(void) 2615 { 2616 PF_RULES_RLOCK_TRACKER; 2617 2618 V_pf_counter_periodic_iter++; 2619 2620 PF_RULES_RLOCK(); 2621 pf_counter_u64_critical_enter(); 2622 pf_status_counter_u64_periodic(); 2623 pf_kif_counter_u64_periodic(); 2624 pf_rule_counter_u64_periodic(); 2625 pf_counter_u64_critical_exit(); 2626 PF_RULES_RUNLOCK(); 2627 } 2628 #else 2629 #define pf_counter_u64_periodic_main() do { } while (0) 2630 #endif 2631 2632 void 2633 pf_purge_thread(void *unused __unused) 2634 { 2635 struct epoch_tracker et; 2636 2637 VNET_ITERATOR_DECL(vnet_iter); 2638 2639 sx_xlock(&pf_end_lock); 2640 while (pf_end_threads == 0) { 2641 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2642 2643 VNET_LIST_RLOCK(); 2644 NET_EPOCH_ENTER(et); 2645 VNET_FOREACH(vnet_iter) { 2646 CURVNET_SET(vnet_iter); 2647 2648 /* Wait until V_pf_default_rule is initialized. */ 2649 if (V_pf_vnet_active == 0) { 2650 CURVNET_RESTORE(); 2651 continue; 2652 } 2653 2654 pf_counter_u64_periodic_main(); 2655 2656 /* 2657 * Process 1/interval fraction of the state 2658 * table every run. 2659 */ 2660 V_pf_purge_idx = 2661 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2662 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2663 2664 /* 2665 * Purge other expired types every 2666 * PFTM_INTERVAL seconds. 2667 */ 2668 if (V_pf_purge_idx == 0) { 2669 /* 2670 * Order is important: 2671 * - states and src nodes reference rules 2672 * - states and rules reference kifs 2673 */ 2674 pf_purge_expired_fragments(); 2675 pf_purge_expired_src_nodes(); 2676 pf_purge_unlinked_rules(); 2677 pfi_kkif_purge(); 2678 } 2679 CURVNET_RESTORE(); 2680 } 2681 NET_EPOCH_EXIT(et); 2682 VNET_LIST_RUNLOCK(); 2683 } 2684 2685 pf_end_threads++; 2686 sx_xunlock(&pf_end_lock); 2687 kproc_exit(0); 2688 } 2689 2690 void 2691 pf_unload_vnet_purge(void) 2692 { 2693 2694 /* 2695 * To cleanse up all kifs and rules we need 2696 * two runs: first one clears reference flags, 2697 * then pf_purge_expired_states() doesn't 2698 * raise them, and then second run frees. 2699 */ 2700 pf_purge_unlinked_rules(); 2701 pfi_kkif_purge(); 2702 2703 /* 2704 * Now purge everything. 2705 */ 2706 pf_purge_expired_states(0, V_pf_hashmask); 2707 pf_purge_fragments(UINT_MAX); 2708 pf_purge_expired_src_nodes(); 2709 2710 /* 2711 * Now all kifs & rules should be unreferenced, 2712 * thus should be successfully freed. 2713 */ 2714 pf_purge_unlinked_rules(); 2715 pfi_kkif_purge(); 2716 } 2717 2718 u_int32_t 2719 pf_state_expires(const struct pf_kstate *state) 2720 { 2721 u_int32_t timeout; 2722 u_int32_t start; 2723 u_int32_t end; 2724 u_int32_t states; 2725 2726 /* handle all PFTM_* > PFTM_MAX here */ 2727 if (state->timeout == PFTM_PURGE) 2728 return (time_uptime); 2729 KASSERT(state->timeout != PFTM_UNLINKED, 2730 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2731 KASSERT((state->timeout < PFTM_MAX), 2732 ("pf_state_expires: timeout > PFTM_MAX")); 2733 timeout = state->rule->timeout[state->timeout]; 2734 if (!timeout) 2735 timeout = V_pf_default_rule.timeout[state->timeout]; 2736 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2737 if (start && state->rule != &V_pf_default_rule) { 2738 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2739 states = counter_u64_fetch(state->rule->states_cur); 2740 } else { 2741 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2742 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2743 states = V_pf_status.states; 2744 } 2745 if (end && states > start && start < end) { 2746 if (states < end) { 2747 timeout = (u_int64_t)timeout * (end - states) / 2748 (end - start); 2749 return ((state->expire / 1000) + timeout); 2750 } 2751 else 2752 return (time_uptime); 2753 } 2754 return ((state->expire / 1000) + timeout); 2755 } 2756 2757 void 2758 pf_purge_expired_src_nodes(void) 2759 { 2760 struct pf_ksrc_node_list freelist; 2761 struct pf_srchash *sh; 2762 struct pf_ksrc_node *cur, *next; 2763 int i; 2764 2765 LIST_INIT(&freelist); 2766 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2767 PF_HASHROW_LOCK(sh); 2768 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2769 if (cur->states == 0 && cur->expire <= time_uptime) { 2770 pf_unlink_src_node(cur); 2771 LIST_INSERT_HEAD(&freelist, cur, entry); 2772 } else if (cur->rule != NULL) 2773 cur->rule->rule_ref |= PFRULE_REFS; 2774 PF_HASHROW_UNLOCK(sh); 2775 } 2776 2777 pf_free_src_nodes(&freelist); 2778 2779 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2780 } 2781 2782 static void 2783 pf_src_tree_remove_state(struct pf_kstate *s) 2784 { 2785 uint32_t timeout; 2786 2787 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2788 s->rule->timeout[PFTM_SRC_NODE] : 2789 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2790 2791 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 2792 if (s->sns[sn_type] == NULL) 2793 continue; 2794 PF_SRC_NODE_LOCK(s->sns[sn_type]); 2795 if (sn_type == PF_SN_LIMIT && s->src.tcp_est) 2796 --(s->sns[sn_type]->conn); 2797 if (--(s->sns[sn_type]->states) == 0) 2798 s->sns[sn_type]->expire = time_uptime + timeout; 2799 PF_SRC_NODE_UNLOCK(s->sns[sn_type]); 2800 s->sns[sn_type] = NULL; 2801 } 2802 2803 } 2804 2805 /* 2806 * Unlink and potentilly free a state. Function may be 2807 * called with ID hash row locked, but always returns 2808 * unlocked, since it needs to go through key hash locking. 2809 */ 2810 int 2811 pf_remove_state(struct pf_kstate *s) 2812 { 2813 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2814 2815 NET_EPOCH_ASSERT(); 2816 PF_HASHROW_ASSERT(ih); 2817 2818 if (s->timeout == PFTM_UNLINKED) { 2819 /* 2820 * State is being processed 2821 * by pf_remove_state() in 2822 * an other thread. 2823 */ 2824 PF_HASHROW_UNLOCK(ih); 2825 return (0); /* XXXGL: undefined actually */ 2826 } 2827 2828 if (s->src.state == PF_TCPS_PROXY_DST) { 2829 /* XXX wire key the right one? */ 2830 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2831 &s->key[PF_SK_WIRE]->addr[1], 2832 &s->key[PF_SK_WIRE]->addr[0], 2833 s->key[PF_SK_WIRE]->port[1], 2834 s->key[PF_SK_WIRE]->port[0], 2835 s->src.seqhi, s->src.seqlo + 1, 2836 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2837 s->act.rtableid); 2838 } 2839 2840 LIST_REMOVE(s, entry); 2841 pf_src_tree_remove_state(s); 2842 2843 if (V_pfsync_delete_state_ptr != NULL) 2844 V_pfsync_delete_state_ptr(s); 2845 2846 STATE_DEC_COUNTERS(s); 2847 2848 s->timeout = PFTM_UNLINKED; 2849 2850 /* Ensure we remove it from the list of halfopen states, if needed. */ 2851 if (s->key[PF_SK_STACK] != NULL && 2852 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2853 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2854 2855 PF_HASHROW_UNLOCK(ih); 2856 2857 pf_detach_state(s); 2858 2859 pf_udp_mapping_release(s->udp_mapping); 2860 2861 /* pf_state_insert() initialises refs to 2 */ 2862 return (pf_release_staten(s, 2)); 2863 } 2864 2865 struct pf_kstate * 2866 pf_alloc_state(int flags) 2867 { 2868 2869 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2870 } 2871 2872 void 2873 pf_free_state(struct pf_kstate *cur) 2874 { 2875 struct pf_krule_item *ri; 2876 2877 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2878 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2879 cur->timeout)); 2880 2881 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2882 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2883 free(ri, M_PF_RULE_ITEM); 2884 } 2885 2886 pf_normalize_tcp_cleanup(cur); 2887 uma_zfree(V_pf_state_z, cur); 2888 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2889 } 2890 2891 /* 2892 * Called only from pf_purge_thread(), thus serialized. 2893 */ 2894 static u_int 2895 pf_purge_expired_states(u_int i, int maxcheck) 2896 { 2897 struct pf_idhash *ih; 2898 struct pf_kstate *s; 2899 struct pf_krule_item *mrm; 2900 size_t count __unused; 2901 2902 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2903 2904 /* 2905 * Go through hash and unlink states that expire now. 2906 */ 2907 while (maxcheck > 0) { 2908 count = 0; 2909 ih = &V_pf_idhash[i]; 2910 2911 /* only take the lock if we expect to do work */ 2912 if (!LIST_EMPTY(&ih->states)) { 2913 relock: 2914 PF_HASHROW_LOCK(ih); 2915 LIST_FOREACH(s, &ih->states, entry) { 2916 if (pf_state_expires(s) <= time_uptime) { 2917 V_pf_status.states -= 2918 pf_remove_state(s); 2919 goto relock; 2920 } 2921 s->rule->rule_ref |= PFRULE_REFS; 2922 if (s->nat_rule != NULL) 2923 s->nat_rule->rule_ref |= PFRULE_REFS; 2924 if (s->anchor != NULL) 2925 s->anchor->rule_ref |= PFRULE_REFS; 2926 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2927 SLIST_FOREACH(mrm, &s->match_rules, entry) 2928 mrm->r->rule_ref |= PFRULE_REFS; 2929 if (s->act.rt_kif) 2930 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2931 count++; 2932 } 2933 PF_HASHROW_UNLOCK(ih); 2934 } 2935 2936 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2937 2938 /* Return when we hit end of hash. */ 2939 if (++i > V_pf_hashmask) { 2940 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2941 return (0); 2942 } 2943 2944 maxcheck--; 2945 } 2946 2947 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2948 2949 return (i); 2950 } 2951 2952 static void 2953 pf_purge_unlinked_rules(void) 2954 { 2955 struct pf_krulequeue tmpq; 2956 struct pf_krule *r, *r1; 2957 2958 /* 2959 * If we have overloading task pending, then we'd 2960 * better skip purging this time. There is a tiny 2961 * probability that overloading task references 2962 * an already unlinked rule. 2963 */ 2964 PF_OVERLOADQ_LOCK(); 2965 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2966 PF_OVERLOADQ_UNLOCK(); 2967 return; 2968 } 2969 PF_OVERLOADQ_UNLOCK(); 2970 2971 /* 2972 * Do naive mark-and-sweep garbage collecting of old rules. 2973 * Reference flag is raised by pf_purge_expired_states() 2974 * and pf_purge_expired_src_nodes(). 2975 * 2976 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2977 * use a temporary queue. 2978 */ 2979 TAILQ_INIT(&tmpq); 2980 PF_UNLNKDRULES_LOCK(); 2981 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2982 if (!(r->rule_ref & PFRULE_REFS)) { 2983 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2984 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2985 } else 2986 r->rule_ref &= ~PFRULE_REFS; 2987 } 2988 PF_UNLNKDRULES_UNLOCK(); 2989 2990 if (!TAILQ_EMPTY(&tmpq)) { 2991 PF_CONFIG_LOCK(); 2992 PF_RULES_WLOCK(); 2993 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2994 TAILQ_REMOVE(&tmpq, r, entries); 2995 pf_free_rule(r); 2996 } 2997 PF_RULES_WUNLOCK(); 2998 PF_CONFIG_UNLOCK(); 2999 } 3000 } 3001 3002 void 3003 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 3004 { 3005 switch (af) { 3006 #ifdef INET 3007 case AF_INET: { 3008 u_int32_t a = ntohl(addr->addr32[0]); 3009 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 3010 (a>>8)&255, a&255); 3011 if (p) { 3012 p = ntohs(p); 3013 printf(":%u", p); 3014 } 3015 break; 3016 } 3017 #endif /* INET */ 3018 #ifdef INET6 3019 case AF_INET6: { 3020 u_int16_t b; 3021 u_int8_t i, curstart, curend, maxstart, maxend; 3022 curstart = curend = maxstart = maxend = 255; 3023 for (i = 0; i < 8; i++) { 3024 if (!addr->addr16[i]) { 3025 if (curstart == 255) 3026 curstart = i; 3027 curend = i; 3028 } else { 3029 if ((curend - curstart) > 3030 (maxend - maxstart)) { 3031 maxstart = curstart; 3032 maxend = curend; 3033 } 3034 curstart = curend = 255; 3035 } 3036 } 3037 if ((curend - curstart) > 3038 (maxend - maxstart)) { 3039 maxstart = curstart; 3040 maxend = curend; 3041 } 3042 for (i = 0; i < 8; i++) { 3043 if (i >= maxstart && i <= maxend) { 3044 if (i == 0) 3045 printf(":"); 3046 if (i == maxend) 3047 printf(":"); 3048 } else { 3049 b = ntohs(addr->addr16[i]); 3050 printf("%x", b); 3051 if (i < 7) 3052 printf(":"); 3053 } 3054 } 3055 if (p) { 3056 p = ntohs(p); 3057 printf("[%u]", p); 3058 } 3059 break; 3060 } 3061 #endif /* INET6 */ 3062 default: 3063 unhandled_af(af); 3064 } 3065 } 3066 3067 void 3068 pf_print_state(struct pf_kstate *s) 3069 { 3070 pf_print_state_parts(s, NULL, NULL); 3071 } 3072 3073 static void 3074 pf_print_state_parts(struct pf_kstate *s, 3075 struct pf_state_key *skwp, struct pf_state_key *sksp) 3076 { 3077 struct pf_state_key *skw, *sks; 3078 u_int8_t proto, dir; 3079 3080 /* Do our best to fill these, but they're skipped if NULL */ 3081 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 3082 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 3083 proto = skw ? skw->proto : (sks ? sks->proto : 0); 3084 dir = s ? s->direction : 0; 3085 3086 switch (proto) { 3087 case IPPROTO_IPV4: 3088 printf("IPv4"); 3089 break; 3090 case IPPROTO_IPV6: 3091 printf("IPv6"); 3092 break; 3093 case IPPROTO_TCP: 3094 printf("TCP"); 3095 break; 3096 case IPPROTO_UDP: 3097 printf("UDP"); 3098 break; 3099 case IPPROTO_ICMP: 3100 printf("ICMP"); 3101 break; 3102 case IPPROTO_ICMPV6: 3103 printf("ICMPv6"); 3104 break; 3105 default: 3106 printf("%u", proto); 3107 break; 3108 } 3109 switch (dir) { 3110 case PF_IN: 3111 printf(" in"); 3112 break; 3113 case PF_OUT: 3114 printf(" out"); 3115 break; 3116 } 3117 if (skw) { 3118 printf(" wire: "); 3119 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 3120 printf(" "); 3121 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 3122 } 3123 if (sks) { 3124 printf(" stack: "); 3125 if (sks != skw) { 3126 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 3127 printf(" "); 3128 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 3129 } else 3130 printf("-"); 3131 } 3132 if (s) { 3133 if (proto == IPPROTO_TCP) { 3134 printf(" [lo=%u high=%u win=%u modulator=%u", 3135 s->src.seqlo, s->src.seqhi, 3136 s->src.max_win, s->src.seqdiff); 3137 if (s->src.wscale && s->dst.wscale) 3138 printf(" wscale=%u", 3139 s->src.wscale & PF_WSCALE_MASK); 3140 printf("]"); 3141 printf(" [lo=%u high=%u win=%u modulator=%u", 3142 s->dst.seqlo, s->dst.seqhi, 3143 s->dst.max_win, s->dst.seqdiff); 3144 if (s->src.wscale && s->dst.wscale) 3145 printf(" wscale=%u", 3146 s->dst.wscale & PF_WSCALE_MASK); 3147 printf("]"); 3148 } 3149 printf(" %u:%u", s->src.state, s->dst.state); 3150 if (s->rule) 3151 printf(" @%d", s->rule->nr); 3152 } 3153 } 3154 3155 void 3156 pf_print_flags(uint16_t f) 3157 { 3158 if (f) 3159 printf(" "); 3160 if (f & TH_FIN) 3161 printf("F"); 3162 if (f & TH_SYN) 3163 printf("S"); 3164 if (f & TH_RST) 3165 printf("R"); 3166 if (f & TH_PUSH) 3167 printf("P"); 3168 if (f & TH_ACK) 3169 printf("A"); 3170 if (f & TH_URG) 3171 printf("U"); 3172 if (f & TH_ECE) 3173 printf("E"); 3174 if (f & TH_CWR) 3175 printf("W"); 3176 if (f & TH_AE) 3177 printf("e"); 3178 } 3179 3180 #define PF_SET_SKIP_STEPS(i) \ 3181 do { \ 3182 while (head[i] != cur) { \ 3183 head[i]->skip[i] = cur; \ 3184 head[i] = TAILQ_NEXT(head[i], entries); \ 3185 } \ 3186 } while (0) 3187 3188 void 3189 pf_calc_skip_steps(struct pf_krulequeue *rules) 3190 { 3191 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3192 int i; 3193 3194 cur = TAILQ_FIRST(rules); 3195 prev = cur; 3196 for (i = 0; i < PF_SKIP_COUNT; ++i) 3197 head[i] = cur; 3198 while (cur != NULL) { 3199 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3200 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3201 if (cur->direction != prev->direction) 3202 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3203 if (cur->af != prev->af) 3204 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3205 if (cur->proto != prev->proto) 3206 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3207 if (cur->src.neg != prev->src.neg || 3208 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3209 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3210 if (cur->dst.neg != prev->dst.neg || 3211 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3212 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3213 if (cur->src.port[0] != prev->src.port[0] || 3214 cur->src.port[1] != prev->src.port[1] || 3215 cur->src.port_op != prev->src.port_op) 3216 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3217 if (cur->dst.port[0] != prev->dst.port[0] || 3218 cur->dst.port[1] != prev->dst.port[1] || 3219 cur->dst.port_op != prev->dst.port_op) 3220 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3221 3222 prev = cur; 3223 cur = TAILQ_NEXT(cur, entries); 3224 } 3225 for (i = 0; i < PF_SKIP_COUNT; ++i) 3226 PF_SET_SKIP_STEPS(i); 3227 } 3228 3229 int 3230 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3231 { 3232 if (aw1->type != aw2->type) 3233 return (1); 3234 switch (aw1->type) { 3235 case PF_ADDR_ADDRMASK: 3236 case PF_ADDR_RANGE: 3237 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3238 return (1); 3239 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3240 return (1); 3241 return (0); 3242 case PF_ADDR_DYNIFTL: 3243 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3244 case PF_ADDR_NONE: 3245 case PF_ADDR_NOROUTE: 3246 case PF_ADDR_URPFFAILED: 3247 return (0); 3248 case PF_ADDR_TABLE: 3249 return (aw1->p.tbl != aw2->p.tbl); 3250 default: 3251 printf("invalid address type: %d\n", aw1->type); 3252 return (1); 3253 } 3254 } 3255 3256 /** 3257 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3258 * header isn't always a full checksum. In some cases (i.e. output) it's a 3259 * pseudo-header checksum, which is a partial checksum over src/dst IP 3260 * addresses, protocol number and length. 3261 * 3262 * That means we have the following cases: 3263 * * Input or forwarding: we don't have TSO, the checksum fields are full 3264 * checksums, we need to update the checksum whenever we change anything. 3265 * * Output (i.e. the checksum is a pseudo-header checksum): 3266 * x The field being updated is src/dst address or affects the length of 3267 * the packet. We need to update the pseudo-header checksum (note that this 3268 * checksum is not ones' complement). 3269 * x Some other field is being modified (e.g. src/dst port numbers): We 3270 * don't have to update anything. 3271 **/ 3272 u_int16_t 3273 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3274 { 3275 u_int32_t x; 3276 3277 x = cksum + old - new; 3278 x = (x + (x >> 16)) & 0xffff; 3279 3280 /* optimise: eliminate a branch when not udp */ 3281 if (udp && cksum == 0x0000) 3282 return cksum; 3283 if (udp && x == 0x0000) 3284 x = 0xffff; 3285 3286 return (u_int16_t)(x); 3287 } 3288 3289 static int 3290 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi) 3291 { 3292 int rewrite = 0; 3293 3294 if (*f != v) { 3295 uint16_t old = htons(hi ? (*f << 8) : *f); 3296 uint16_t new = htons(hi ? ( v << 8) : v); 3297 3298 *f = v; 3299 3300 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3301 CSUM_DELAY_DATA_IPV6))) 3302 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new, 3303 pd->proto == IPPROTO_UDP); 3304 3305 rewrite = 1; 3306 } 3307 3308 return (rewrite); 3309 } 3310 3311 int 3312 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi) 3313 { 3314 int rewrite = 0; 3315 u_int8_t *fb = (u_int8_t *)f; 3316 u_int8_t *vb = (u_int8_t *)&v; 3317 3318 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3319 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3320 3321 return (rewrite); 3322 } 3323 3324 int 3325 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi) 3326 { 3327 int rewrite = 0; 3328 u_int8_t *fb = (u_int8_t *)f; 3329 u_int8_t *vb = (u_int8_t *)&v; 3330 3331 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3332 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3333 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3334 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3335 3336 return (rewrite); 3337 } 3338 3339 u_int16_t 3340 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3341 u_int16_t new, u_int8_t udp) 3342 { 3343 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3344 return (cksum); 3345 3346 return (pf_cksum_fixup(cksum, old, new, udp)); 3347 } 3348 3349 static void 3350 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p, 3351 struct pf_addr *an, u_int16_t pn) 3352 { 3353 struct pf_addr ao; 3354 u_int16_t po; 3355 uint8_t u = pd->virtual_proto == IPPROTO_UDP; 3356 3357 MPASS(pd->pcksum); 3358 if (pd->af == AF_INET) { 3359 MPASS(pd->ip_sum); 3360 } 3361 3362 pf_addrcpy(&ao, a, pd->af); 3363 if (pd->af == pd->naf) 3364 pf_addrcpy(a, an, pd->af); 3365 3366 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3367 *pd->pcksum = ~*pd->pcksum; 3368 3369 if (p == NULL) /* no port -> done. no cksum to worry about. */ 3370 return; 3371 po = *p; 3372 *p = pn; 3373 3374 switch (pd->af) { 3375 #ifdef INET 3376 case AF_INET: 3377 switch (pd->naf) { 3378 case AF_INET: 3379 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum, 3380 ao.addr16[0], an->addr16[0], 0), 3381 ao.addr16[1], an->addr16[1], 0); 3382 *p = pn; 3383 3384 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3385 ao.addr16[0], an->addr16[0], u), 3386 ao.addr16[1], an->addr16[1], u); 3387 3388 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3389 break; 3390 #ifdef INET6 3391 case AF_INET6: 3392 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3393 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3394 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3395 ao.addr16[0], an->addr16[0], u), 3396 ao.addr16[1], an->addr16[1], u), 3397 0, an->addr16[2], u), 3398 0, an->addr16[3], u), 3399 0, an->addr16[4], u), 3400 0, an->addr16[5], u), 3401 0, an->addr16[6], u), 3402 0, an->addr16[7], u), 3403 po, pn, u); 3404 break; 3405 #endif /* INET6 */ 3406 default: 3407 unhandled_af(pd->naf); 3408 } 3409 break; 3410 #endif /* INET */ 3411 #ifdef INET6 3412 case AF_INET6: 3413 switch (pd->naf) { 3414 #ifdef INET 3415 case AF_INET: 3416 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3417 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3418 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3419 ao.addr16[0], an->addr16[0], u), 3420 ao.addr16[1], an->addr16[1], u), 3421 ao.addr16[2], 0, u), 3422 ao.addr16[3], 0, u), 3423 ao.addr16[4], 0, u), 3424 ao.addr16[5], 0, u), 3425 ao.addr16[6], 0, u), 3426 ao.addr16[7], 0, u), 3427 po, pn, u); 3428 break; 3429 #endif /* INET */ 3430 case AF_INET6: 3431 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3432 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3433 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3434 ao.addr16[0], an->addr16[0], u), 3435 ao.addr16[1], an->addr16[1], u), 3436 ao.addr16[2], an->addr16[2], u), 3437 ao.addr16[3], an->addr16[3], u), 3438 ao.addr16[4], an->addr16[4], u), 3439 ao.addr16[5], an->addr16[5], u), 3440 ao.addr16[6], an->addr16[6], u), 3441 ao.addr16[7], an->addr16[7], u); 3442 3443 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3444 break; 3445 default: 3446 unhandled_af(pd->naf); 3447 } 3448 break; 3449 #endif /* INET6 */ 3450 default: 3451 unhandled_af(pd->af); 3452 } 3453 3454 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3455 CSUM_DELAY_DATA_IPV6)) { 3456 *pd->pcksum = ~*pd->pcksum; 3457 if (! *pd->pcksum) 3458 *pd->pcksum = 0xffff; 3459 } 3460 } 3461 3462 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3463 void 3464 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3465 { 3466 u_int32_t ao; 3467 3468 memcpy(&ao, a, sizeof(ao)); 3469 memcpy(a, &an, sizeof(u_int32_t)); 3470 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3471 ao % 65536, an % 65536, u); 3472 } 3473 3474 void 3475 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3476 { 3477 u_int32_t ao; 3478 3479 memcpy(&ao, a, sizeof(ao)); 3480 memcpy(a, &an, sizeof(u_int32_t)); 3481 3482 *c = pf_proto_cksum_fixup(m, 3483 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3484 ao % 65536, an % 65536, udp); 3485 } 3486 3487 #ifdef INET6 3488 static void 3489 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3490 { 3491 struct pf_addr ao; 3492 3493 pf_addrcpy(&ao, a, AF_INET6); 3494 pf_addrcpy(a, an, AF_INET6); 3495 3496 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3497 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3498 pf_cksum_fixup(pf_cksum_fixup(*c, 3499 ao.addr16[0], an->addr16[0], u), 3500 ao.addr16[1], an->addr16[1], u), 3501 ao.addr16[2], an->addr16[2], u), 3502 ao.addr16[3], an->addr16[3], u), 3503 ao.addr16[4], an->addr16[4], u), 3504 ao.addr16[5], an->addr16[5], u), 3505 ao.addr16[6], an->addr16[6], u), 3506 ao.addr16[7], an->addr16[7], u); 3507 } 3508 #endif /* INET6 */ 3509 3510 static void 3511 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3512 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3513 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3514 { 3515 struct pf_addr oia, ooa; 3516 3517 pf_addrcpy(&oia, ia, af); 3518 if (oa) 3519 pf_addrcpy(&ooa, oa, af); 3520 3521 /* Change inner protocol port, fix inner protocol checksum. */ 3522 if (ip != NULL) { 3523 u_int16_t oip = *ip; 3524 u_int32_t opc; 3525 3526 if (pc != NULL) 3527 opc = *pc; 3528 *ip = np; 3529 if (pc != NULL) 3530 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3531 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3532 if (pc != NULL) 3533 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3534 } 3535 /* Change inner ip address, fix inner ip and icmp checksums. */ 3536 pf_addrcpy(ia, na, af); 3537 switch (af) { 3538 #ifdef INET 3539 case AF_INET: { 3540 u_int32_t oh2c = *h2c; 3541 3542 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3543 oia.addr16[0], ia->addr16[0], 0), 3544 oia.addr16[1], ia->addr16[1], 0); 3545 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3546 oia.addr16[0], ia->addr16[0], 0), 3547 oia.addr16[1], ia->addr16[1], 0); 3548 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3549 break; 3550 } 3551 #endif /* INET */ 3552 #ifdef INET6 3553 case AF_INET6: 3554 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3555 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3556 pf_cksum_fixup(pf_cksum_fixup(*ic, 3557 oia.addr16[0], ia->addr16[0], u), 3558 oia.addr16[1], ia->addr16[1], u), 3559 oia.addr16[2], ia->addr16[2], u), 3560 oia.addr16[3], ia->addr16[3], u), 3561 oia.addr16[4], ia->addr16[4], u), 3562 oia.addr16[5], ia->addr16[5], u), 3563 oia.addr16[6], ia->addr16[6], u), 3564 oia.addr16[7], ia->addr16[7], u); 3565 break; 3566 #endif /* INET6 */ 3567 } 3568 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3569 if (oa) { 3570 pf_addrcpy(oa, na, af); 3571 switch (af) { 3572 #ifdef INET 3573 case AF_INET: 3574 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3575 ooa.addr16[0], oa->addr16[0], 0), 3576 ooa.addr16[1], oa->addr16[1], 0); 3577 break; 3578 #endif /* INET */ 3579 #ifdef INET6 3580 case AF_INET6: 3581 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3582 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3583 pf_cksum_fixup(pf_cksum_fixup(*ic, 3584 ooa.addr16[0], oa->addr16[0], u), 3585 ooa.addr16[1], oa->addr16[1], u), 3586 ooa.addr16[2], oa->addr16[2], u), 3587 ooa.addr16[3], oa->addr16[3], u), 3588 ooa.addr16[4], oa->addr16[4], u), 3589 ooa.addr16[5], oa->addr16[5], u), 3590 ooa.addr16[6], oa->addr16[6], u), 3591 ooa.addr16[7], oa->addr16[7], u); 3592 break; 3593 #endif /* INET6 */ 3594 } 3595 } 3596 } 3597 3598 int 3599 pf_translate_af(struct pf_pdesc *pd) 3600 { 3601 #if defined(INET) && defined(INET6) 3602 struct mbuf *mp; 3603 struct ip *ip4; 3604 struct ip6_hdr *ip6; 3605 struct icmp6_hdr *icmp; 3606 struct m_tag *mtag; 3607 struct pf_fragment_tag *ftag; 3608 int hlen; 3609 3610 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3611 3612 /* trim the old header */ 3613 m_adj(pd->m, pd->off); 3614 3615 /* prepend a new one */ 3616 M_PREPEND(pd->m, hlen, M_NOWAIT); 3617 if (pd->m == NULL) 3618 return (-1); 3619 3620 switch (pd->naf) { 3621 case AF_INET: 3622 ip4 = mtod(pd->m, struct ip *); 3623 bzero(ip4, hlen); 3624 ip4->ip_v = IPVERSION; 3625 ip4->ip_hl = hlen >> 2; 3626 ip4->ip_tos = pd->tos; 3627 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3628 ip_fillid(ip4, V_ip_random_id); 3629 ip4->ip_ttl = pd->ttl; 3630 ip4->ip_p = pd->proto; 3631 ip4->ip_src = pd->nsaddr.v4; 3632 ip4->ip_dst = pd->ndaddr.v4; 3633 pd->src = (struct pf_addr *)&ip4->ip_src; 3634 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3635 pd->off = sizeof(struct ip); 3636 if (pd->m->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 3637 pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP_IPV6; 3638 pd->m->m_pkthdr.csum_flags |= CSUM_TCP; 3639 } 3640 if (pd->m->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 3641 pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP_IPV6; 3642 pd->m->m_pkthdr.csum_flags |= CSUM_UDP; 3643 } 3644 if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 3645 pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 3646 pd->m->m_pkthdr.csum_flags |= CSUM_SCTP; 3647 } 3648 break; 3649 case AF_INET6: 3650 ip6 = mtod(pd->m, struct ip6_hdr *); 3651 bzero(ip6, hlen); 3652 ip6->ip6_vfc = IPV6_VERSION; 3653 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20); 3654 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3655 ip6->ip6_nxt = pd->proto; 3656 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3657 ip6->ip6_hlim = IPV6_DEFHLIM; 3658 else 3659 ip6->ip6_hlim = pd->ttl; 3660 ip6->ip6_src = pd->nsaddr.v6; 3661 ip6->ip6_dst = pd->ndaddr.v6; 3662 pd->src = (struct pf_addr *)&ip6->ip6_src; 3663 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3664 pd->off = sizeof(struct ip6_hdr); 3665 if (pd->m->m_pkthdr.csum_flags & CSUM_TCP) { 3666 pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP; 3667 pd->m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6; 3668 } 3669 if (pd->m->m_pkthdr.csum_flags & CSUM_UDP) { 3670 pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP; 3671 pd->m->m_pkthdr.csum_flags |= CSUM_UDP_IPV6; 3672 } 3673 if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP) { 3674 pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 3675 pd->m->m_pkthdr.csum_flags |= CSUM_SCTP_IPV6; 3676 } 3677 3678 /* 3679 * If we're dealing with a reassembled packet we need to adjust 3680 * the header length from the IPv4 header size to IPv6 header 3681 * size. 3682 */ 3683 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL); 3684 if (mtag) { 3685 ftag = (struct pf_fragment_tag *)(mtag + 1); 3686 ftag->ft_hdrlen = sizeof(*ip6); 3687 ftag->ft_maxlen -= sizeof(struct ip6_hdr) - 3688 sizeof(struct ip) + sizeof(struct ip6_frag); 3689 } 3690 break; 3691 default: 3692 return (-1); 3693 } 3694 3695 /* recalculate icmp/icmp6 checksums */ 3696 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3697 int off; 3698 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3699 NULL) { 3700 pd->m = NULL; 3701 return (-1); 3702 } 3703 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3704 icmp->icmp6_cksum = 0; 3705 icmp->icmp6_cksum = pd->naf == AF_INET ? 3706 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3707 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3708 ntohs(ip6->ip6_plen)); 3709 } 3710 #endif /* INET && INET6 */ 3711 3712 return (0); 3713 } 3714 3715 int 3716 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3717 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3718 sa_family_t af, sa_family_t naf) 3719 { 3720 #if defined(INET) && defined(INET6) 3721 struct mbuf *n = NULL; 3722 struct ip *ip4; 3723 struct ip6_hdr *ip6; 3724 int hlen, olen, mlen; 3725 3726 if (af == naf || (af != AF_INET && af != AF_INET6) || 3727 (naf != AF_INET && naf != AF_INET6)) 3728 return (-1); 3729 3730 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3731 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3732 return (-1); 3733 3734 /* old header */ 3735 olen = pd2->off - off; 3736 /* new header */ 3737 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3738 3739 /* trim old header */ 3740 m_adj(n, olen); 3741 3742 /* prepend a new one */ 3743 M_PREPEND(n, hlen, M_NOWAIT); 3744 if (n == NULL) 3745 return (-1); 3746 3747 /* translate inner ip/ip6 header */ 3748 switch (naf) { 3749 case AF_INET: 3750 ip4 = mtod(n, struct ip *); 3751 bzero(ip4, sizeof(*ip4)); 3752 ip4->ip_v = IPVERSION; 3753 ip4->ip_hl = sizeof(*ip4) >> 2; 3754 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen); 3755 ip_fillid(ip4, V_ip_random_id); 3756 ip4->ip_off = htons(IP_DF); 3757 ip4->ip_ttl = pd2->ttl; 3758 if (pd2->proto == IPPROTO_ICMPV6) 3759 ip4->ip_p = IPPROTO_ICMP; 3760 else 3761 ip4->ip_p = pd2->proto; 3762 ip4->ip_src = src->v4; 3763 ip4->ip_dst = dst->v4; 3764 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3765 break; 3766 case AF_INET6: 3767 ip6 = mtod(n, struct ip6_hdr *); 3768 bzero(ip6, sizeof(*ip6)); 3769 ip6->ip6_vfc = IPV6_VERSION; 3770 ip6->ip6_plen = htons(pd2->tot_len - olen); 3771 if (pd2->proto == IPPROTO_ICMP) 3772 ip6->ip6_nxt = IPPROTO_ICMPV6; 3773 else 3774 ip6->ip6_nxt = pd2->proto; 3775 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3776 ip6->ip6_hlim = IPV6_DEFHLIM; 3777 else 3778 ip6->ip6_hlim = pd2->ttl; 3779 ip6->ip6_src = src->v6; 3780 ip6->ip6_dst = dst->v6; 3781 break; 3782 default: 3783 unhandled_af(naf); 3784 } 3785 3786 /* adjust payload offset and total packet length */ 3787 pd2->off += hlen - olen; 3788 pd->tot_len += hlen - olen; 3789 3790 /* merge modified inner packet with the original header */ 3791 mlen = n->m_pkthdr.len; 3792 m_cat(m, n); 3793 m->m_pkthdr.len += mlen; 3794 #endif /* INET && INET6 */ 3795 3796 return (0); 3797 } 3798 3799 #define PTR_IP(field) (offsetof(struct ip, field)) 3800 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3801 3802 int 3803 pf_translate_icmp_af(int af, void *arg) 3804 { 3805 #if defined(INET) && defined(INET6) 3806 struct icmp *icmp4; 3807 struct icmp6_hdr *icmp6; 3808 u_int32_t mtu; 3809 int32_t ptr = -1; 3810 u_int8_t type; 3811 u_int8_t code; 3812 3813 switch (af) { 3814 case AF_INET: 3815 icmp6 = arg; 3816 type = icmp6->icmp6_type; 3817 code = icmp6->icmp6_code; 3818 mtu = ntohl(icmp6->icmp6_mtu); 3819 3820 switch (type) { 3821 case ICMP6_ECHO_REQUEST: 3822 type = ICMP_ECHO; 3823 break; 3824 case ICMP6_ECHO_REPLY: 3825 type = ICMP_ECHOREPLY; 3826 break; 3827 case ICMP6_DST_UNREACH: 3828 type = ICMP_UNREACH; 3829 switch (code) { 3830 case ICMP6_DST_UNREACH_NOROUTE: 3831 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3832 case ICMP6_DST_UNREACH_ADDR: 3833 code = ICMP_UNREACH_HOST; 3834 break; 3835 case ICMP6_DST_UNREACH_ADMIN: 3836 code = ICMP_UNREACH_HOST_PROHIB; 3837 break; 3838 case ICMP6_DST_UNREACH_NOPORT: 3839 code = ICMP_UNREACH_PORT; 3840 break; 3841 default: 3842 return (-1); 3843 } 3844 break; 3845 case ICMP6_PACKET_TOO_BIG: 3846 type = ICMP_UNREACH; 3847 code = ICMP_UNREACH_NEEDFRAG; 3848 mtu -= 20; 3849 break; 3850 case ICMP6_TIME_EXCEEDED: 3851 type = ICMP_TIMXCEED; 3852 break; 3853 case ICMP6_PARAM_PROB: 3854 switch (code) { 3855 case ICMP6_PARAMPROB_HEADER: 3856 type = ICMP_PARAMPROB; 3857 code = ICMP_PARAMPROB_ERRATPTR; 3858 ptr = ntohl(icmp6->icmp6_pptr); 3859 3860 if (ptr == PTR_IP6(ip6_vfc)) 3861 ; /* preserve */ 3862 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3863 ptr = PTR_IP(ip_tos); 3864 else if (ptr == PTR_IP6(ip6_plen) || 3865 ptr == PTR_IP6(ip6_plen) + 1) 3866 ptr = PTR_IP(ip_len); 3867 else if (ptr == PTR_IP6(ip6_nxt)) 3868 ptr = PTR_IP(ip_p); 3869 else if (ptr == PTR_IP6(ip6_hlim)) 3870 ptr = PTR_IP(ip_ttl); 3871 else if (ptr >= PTR_IP6(ip6_src) && 3872 ptr < PTR_IP6(ip6_dst)) 3873 ptr = PTR_IP(ip_src); 3874 else if (ptr >= PTR_IP6(ip6_dst) && 3875 ptr < sizeof(struct ip6_hdr)) 3876 ptr = PTR_IP(ip_dst); 3877 else { 3878 return (-1); 3879 } 3880 break; 3881 case ICMP6_PARAMPROB_NEXTHEADER: 3882 type = ICMP_UNREACH; 3883 code = ICMP_UNREACH_PROTOCOL; 3884 break; 3885 default: 3886 return (-1); 3887 } 3888 break; 3889 default: 3890 return (-1); 3891 } 3892 if (icmp6->icmp6_type != type) { 3893 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3894 icmp6->icmp6_type, type, 0); 3895 icmp6->icmp6_type = type; 3896 } 3897 if (icmp6->icmp6_code != code) { 3898 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3899 icmp6->icmp6_code, code, 0); 3900 icmp6->icmp6_code = code; 3901 } 3902 if (icmp6->icmp6_mtu != htonl(mtu)) { 3903 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3904 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3905 /* aligns well with a icmpv4 nextmtu */ 3906 icmp6->icmp6_mtu = htonl(mtu); 3907 } 3908 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3909 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3910 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3911 /* icmpv4 pptr is a one most significant byte */ 3912 icmp6->icmp6_pptr = htonl(ptr << 24); 3913 } 3914 break; 3915 case AF_INET6: 3916 icmp4 = arg; 3917 type = icmp4->icmp_type; 3918 code = icmp4->icmp_code; 3919 mtu = ntohs(icmp4->icmp_nextmtu); 3920 3921 switch (type) { 3922 case ICMP_ECHO: 3923 type = ICMP6_ECHO_REQUEST; 3924 break; 3925 case ICMP_ECHOREPLY: 3926 type = ICMP6_ECHO_REPLY; 3927 break; 3928 case ICMP_UNREACH: 3929 type = ICMP6_DST_UNREACH; 3930 switch (code) { 3931 case ICMP_UNREACH_NET: 3932 case ICMP_UNREACH_HOST: 3933 case ICMP_UNREACH_NET_UNKNOWN: 3934 case ICMP_UNREACH_HOST_UNKNOWN: 3935 case ICMP_UNREACH_ISOLATED: 3936 case ICMP_UNREACH_TOSNET: 3937 case ICMP_UNREACH_TOSHOST: 3938 code = ICMP6_DST_UNREACH_NOROUTE; 3939 break; 3940 case ICMP_UNREACH_PORT: 3941 code = ICMP6_DST_UNREACH_NOPORT; 3942 break; 3943 case ICMP_UNREACH_NET_PROHIB: 3944 case ICMP_UNREACH_HOST_PROHIB: 3945 case ICMP_UNREACH_FILTER_PROHIB: 3946 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3947 code = ICMP6_DST_UNREACH_ADMIN; 3948 break; 3949 case ICMP_UNREACH_PROTOCOL: 3950 type = ICMP6_PARAM_PROB; 3951 code = ICMP6_PARAMPROB_NEXTHEADER; 3952 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3953 break; 3954 case ICMP_UNREACH_NEEDFRAG: 3955 type = ICMP6_PACKET_TOO_BIG; 3956 code = 0; 3957 mtu += 20; 3958 break; 3959 default: 3960 return (-1); 3961 } 3962 break; 3963 case ICMP_TIMXCEED: 3964 type = ICMP6_TIME_EXCEEDED; 3965 break; 3966 case ICMP_PARAMPROB: 3967 type = ICMP6_PARAM_PROB; 3968 switch (code) { 3969 case ICMP_PARAMPROB_ERRATPTR: 3970 code = ICMP6_PARAMPROB_HEADER; 3971 break; 3972 case ICMP_PARAMPROB_LENGTH: 3973 code = ICMP6_PARAMPROB_HEADER; 3974 break; 3975 default: 3976 return (-1); 3977 } 3978 3979 ptr = icmp4->icmp_pptr; 3980 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3981 ; /* preserve */ 3982 else if (ptr == PTR_IP(ip_len) || 3983 ptr == PTR_IP(ip_len) + 1) 3984 ptr = PTR_IP6(ip6_plen); 3985 else if (ptr == PTR_IP(ip_ttl)) 3986 ptr = PTR_IP6(ip6_hlim); 3987 else if (ptr == PTR_IP(ip_p)) 3988 ptr = PTR_IP6(ip6_nxt); 3989 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3990 ptr = PTR_IP6(ip6_src); 3991 else if (ptr >= PTR_IP(ip_dst) && 3992 ptr < sizeof(struct ip)) 3993 ptr = PTR_IP6(ip6_dst); 3994 else { 3995 return (-1); 3996 } 3997 break; 3998 default: 3999 return (-1); 4000 } 4001 if (icmp4->icmp_type != type) { 4002 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 4003 icmp4->icmp_type, type, 0); 4004 icmp4->icmp_type = type; 4005 } 4006 if (icmp4->icmp_code != code) { 4007 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 4008 icmp4->icmp_code, code, 0); 4009 icmp4->icmp_code = code; 4010 } 4011 if (icmp4->icmp_nextmtu != htons(mtu)) { 4012 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 4013 icmp4->icmp_nextmtu, htons(mtu), 0); 4014 icmp4->icmp_nextmtu = htons(mtu); 4015 } 4016 if (ptr >= 0 && icmp4->icmp_void != ptr) { 4017 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 4018 htons(icmp4->icmp_pptr), htons(ptr), 0); 4019 icmp4->icmp_void = htonl(ptr); 4020 } 4021 break; 4022 default: 4023 unhandled_af(af); 4024 } 4025 #endif /* INET && INET6 */ 4026 4027 return (0); 4028 } 4029 4030 /* 4031 * Need to modulate the sequence numbers in the TCP SACK option 4032 * (credits to Krzysztof Pfaff for report and patch) 4033 */ 4034 static int 4035 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 4036 struct pf_state_peer *dst) 4037 { 4038 struct sackblk sack; 4039 int copyback = 0, i; 4040 int olen, optsoff; 4041 uint8_t opts[MAX_TCPOPTLEN], *opt, *eoh; 4042 4043 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); 4044 optsoff = pd->off + sizeof(struct tcphdr); 4045 #define TCPOLEN_MINSACK (TCPOLEN_SACK + 2) 4046 if (olen < TCPOLEN_MINSACK || 4047 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af)) 4048 return (0); 4049 4050 eoh = opts + olen; 4051 opt = opts; 4052 while ((opt = pf_find_tcpopt(opt, opts, olen, 4053 TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL) 4054 { 4055 size_t safelen = MIN(opt[1], (eoh - opt)); 4056 for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) { 4057 size_t startoff = (opt + i) - opts; 4058 memcpy(&sack, &opt[i], sizeof(sack)); 4059 pf_patch_32(pd, &sack.start, 4060 htonl(ntohl(sack.start) - dst->seqdiff), 4061 PF_ALGNMNT(startoff)); 4062 pf_patch_32(pd, &sack.end, 4063 htonl(ntohl(sack.end) - dst->seqdiff), 4064 PF_ALGNMNT(startoff + sizeof(sack.start))); 4065 memcpy(&opt[i], &sack, sizeof(sack)); 4066 } 4067 copyback = 1; 4068 opt += opt[1]; 4069 } 4070 4071 if (copyback) 4072 m_copyback(pd->m, optsoff, olen, (caddr_t)opts); 4073 4074 return (copyback); 4075 } 4076 4077 struct mbuf * 4078 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 4079 const struct pf_addr *saddr, const struct pf_addr *daddr, 4080 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4081 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4082 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack, 4083 int rtableid) 4084 { 4085 struct mbuf *m; 4086 int len, tlen; 4087 #ifdef INET 4088 struct ip *h = NULL; 4089 #endif /* INET */ 4090 #ifdef INET6 4091 struct ip6_hdr *h6 = NULL; 4092 #endif /* INET6 */ 4093 struct tcphdr *th; 4094 char *opt; 4095 struct pf_mtag *pf_mtag; 4096 4097 len = 0; 4098 th = NULL; 4099 4100 /* maximum segment size tcp option */ 4101 tlen = sizeof(struct tcphdr); 4102 if (mss) 4103 tlen += 4; 4104 if (sack) 4105 tlen += 2; 4106 4107 switch (af) { 4108 #ifdef INET 4109 case AF_INET: 4110 len = sizeof(struct ip) + tlen; 4111 break; 4112 #endif /* INET */ 4113 #ifdef INET6 4114 case AF_INET6: 4115 len = sizeof(struct ip6_hdr) + tlen; 4116 break; 4117 #endif /* INET6 */ 4118 default: 4119 unhandled_af(af); 4120 } 4121 4122 m = m_gethdr(M_NOWAIT, MT_DATA); 4123 if (m == NULL) 4124 return (NULL); 4125 4126 #ifdef MAC 4127 mac_netinet_firewall_send(m); 4128 #endif 4129 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 4130 m_freem(m); 4131 return (NULL); 4132 } 4133 m->m_flags |= mbuf_flags; 4134 pf_mtag->tag = mtag_tag; 4135 pf_mtag->flags = mtag_flags; 4136 4137 if (rtableid >= 0) 4138 M_SETFIB(m, rtableid); 4139 4140 #ifdef ALTQ 4141 if (r != NULL && r->qid) { 4142 pf_mtag->qid = r->qid; 4143 4144 /* add hints for ecn */ 4145 pf_mtag->hdr = mtod(m, struct ip *); 4146 } 4147 #endif /* ALTQ */ 4148 m->m_data += max_linkhdr; 4149 m->m_pkthdr.len = m->m_len = len; 4150 /* The rest of the stack assumes a rcvif, so provide one. 4151 * This is a locally generated packet, so .. close enough. */ 4152 m->m_pkthdr.rcvif = V_loif; 4153 bzero(m->m_data, len); 4154 switch (af) { 4155 #ifdef INET 4156 case AF_INET: 4157 m->m_pkthdr.csum_flags |= CSUM_TCP; 4158 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4159 4160 h = mtod(m, struct ip *); 4161 4162 h->ip_p = IPPROTO_TCP; 4163 h->ip_len = htons(tlen); 4164 h->ip_v = 4; 4165 h->ip_hl = sizeof(*h) >> 2; 4166 h->ip_tos = IPTOS_LOWDELAY; 4167 h->ip_len = htons(len); 4168 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4169 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4170 h->ip_sum = 0; 4171 h->ip_src.s_addr = saddr->v4.s_addr; 4172 h->ip_dst.s_addr = daddr->v4.s_addr; 4173 4174 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 4175 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr, 4176 htons(len - sizeof(struct ip) + IPPROTO_TCP)); 4177 break; 4178 #endif /* INET */ 4179 #ifdef INET6 4180 case AF_INET6: 4181 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6; 4182 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4183 4184 h6 = mtod(m, struct ip6_hdr *); 4185 4186 /* IP header fields included in the TCP checksum */ 4187 h6->ip6_nxt = IPPROTO_TCP; 4188 h6->ip6_plen = htons(tlen); 4189 h6->ip6_vfc |= IPV6_VERSION; 4190 h6->ip6_hlim = V_ip6_defhlim; 4191 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 4192 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 4193 4194 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 4195 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr), 4196 IPPROTO_TCP, 0); 4197 break; 4198 #endif /* INET6 */ 4199 } 4200 4201 /* TCP header */ 4202 th->th_sport = sport; 4203 th->th_dport = dport; 4204 th->th_seq = htonl(seq); 4205 th->th_ack = htonl(ack); 4206 th->th_off = tlen >> 2; 4207 tcp_set_flags(th, tcp_flags); 4208 th->th_win = htons(win); 4209 4210 opt = (char *)(th + 1); 4211 if (mss) { 4212 opt = (char *)(th + 1); 4213 opt[0] = TCPOPT_MAXSEG; 4214 opt[1] = 4; 4215 mss = htons(mss); 4216 memcpy((opt + 2), &mss, 2); 4217 opt += 4; 4218 } 4219 if (sack) { 4220 opt[0] = TCPOPT_SACK_PERMITTED; 4221 opt[1] = 2; 4222 opt += 2; 4223 } 4224 4225 return (m); 4226 } 4227 4228 static void 4229 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4230 uint8_t ttl, int rtableid) 4231 { 4232 struct mbuf *m; 4233 #ifdef INET 4234 struct ip *h = NULL; 4235 #endif /* INET */ 4236 #ifdef INET6 4237 struct ip6_hdr *h6 = NULL; 4238 #endif /* INET6 */ 4239 struct sctphdr *hdr; 4240 struct sctp_chunkhdr *chunk; 4241 struct pf_send_entry *pfse; 4242 int off = 0; 4243 4244 MPASS(af == pd->af); 4245 4246 m = m_gethdr(M_NOWAIT, MT_DATA); 4247 if (m == NULL) 4248 return; 4249 4250 m->m_data += max_linkhdr; 4251 m->m_flags |= M_SKIP_FIREWALL; 4252 /* The rest of the stack assumes a rcvif, so provide one. 4253 * This is a locally generated packet, so .. close enough. */ 4254 m->m_pkthdr.rcvif = V_loif; 4255 4256 /* IPv4|6 header */ 4257 switch (af) { 4258 #ifdef INET 4259 case AF_INET: 4260 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4261 4262 h = mtod(m, struct ip *); 4263 4264 /* IP header fields included in the TCP checksum */ 4265 4266 h->ip_p = IPPROTO_SCTP; 4267 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4268 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4269 h->ip_src = pd->dst->v4; 4270 h->ip_dst = pd->src->v4; 4271 4272 off += sizeof(struct ip); 4273 break; 4274 #endif /* INET */ 4275 #ifdef INET6 4276 case AF_INET6: 4277 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4278 4279 h6 = mtod(m, struct ip6_hdr *); 4280 4281 /* IP header fields included in the TCP checksum */ 4282 h6->ip6_vfc |= IPV6_VERSION; 4283 h6->ip6_nxt = IPPROTO_SCTP; 4284 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4285 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4286 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4287 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4288 4289 off += sizeof(struct ip6_hdr); 4290 break; 4291 #endif /* INET6 */ 4292 default: 4293 unhandled_af(af); 4294 } 4295 4296 /* SCTP header */ 4297 hdr = mtodo(m, off); 4298 4299 hdr->src_port = pd->hdr.sctp.dest_port; 4300 hdr->dest_port = pd->hdr.sctp.src_port; 4301 hdr->v_tag = pd->sctp_initiate_tag; 4302 hdr->checksum = 0; 4303 4304 /* Abort chunk. */ 4305 off += sizeof(struct sctphdr); 4306 chunk = mtodo(m, off); 4307 4308 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4309 chunk->chunk_length = htons(sizeof(*chunk)); 4310 4311 /* SCTP checksum */ 4312 off += sizeof(*chunk); 4313 m->m_pkthdr.len = m->m_len = off; 4314 4315 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4316 4317 if (rtableid >= 0) 4318 M_SETFIB(m, rtableid); 4319 4320 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4321 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4322 if (pfse == NULL) { 4323 m_freem(m); 4324 return; 4325 } 4326 4327 switch (af) { 4328 #ifdef INET 4329 case AF_INET: 4330 pfse->pfse_type = PFSE_IP; 4331 break; 4332 #endif /* INET */ 4333 #ifdef INET6 4334 case AF_INET6: 4335 pfse->pfse_type = PFSE_IP6; 4336 break; 4337 #endif /* INET6 */ 4338 } 4339 4340 pfse->pfse_m = m; 4341 pf_send(pfse); 4342 } 4343 4344 void 4345 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4346 const struct pf_addr *saddr, const struct pf_addr *daddr, 4347 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4348 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4349 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4350 { 4351 struct pf_send_entry *pfse; 4352 struct mbuf *m; 4353 4354 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4355 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid); 4356 if (m == NULL) 4357 return; 4358 4359 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4360 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4361 if (pfse == NULL) { 4362 m_freem(m); 4363 return; 4364 } 4365 4366 switch (af) { 4367 #ifdef INET 4368 case AF_INET: 4369 pfse->pfse_type = PFSE_IP; 4370 break; 4371 #endif /* INET */ 4372 #ifdef INET6 4373 case AF_INET6: 4374 pfse->pfse_type = PFSE_IP6; 4375 break; 4376 #endif /* INET6 */ 4377 default: 4378 unhandled_af(af); 4379 } 4380 4381 pfse->pfse_m = m; 4382 pf_send(pfse); 4383 } 4384 4385 static void 4386 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum) 4387 { 4388 /* undo NAT changes, if they have taken place */ 4389 if (nr != NULL) { 4390 pf_addrcpy(pd->src, &pd->osrc, pd->af); 4391 pf_addrcpy(pd->dst, &pd->odst, pd->af); 4392 if (pd->sport) 4393 *pd->sport = pd->osport; 4394 if (pd->dport) 4395 *pd->dport = pd->odport; 4396 if (pd->ip_sum) 4397 *pd->ip_sum = bip_sum; 4398 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4399 } 4400 } 4401 4402 static void 4403 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4404 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum, 4405 u_short *reason, int rtableid) 4406 { 4407 pf_undo_nat(nr, pd, bip_sum); 4408 4409 if (pd->proto == IPPROTO_TCP && 4410 ((r->rule_flag & PFRULE_RETURNRST) || 4411 (r->rule_flag & PFRULE_RETURN)) && 4412 !(tcp_get_flags(th) & TH_RST)) { 4413 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4414 4415 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4416 IPPROTO_TCP, pd->af)) 4417 REASON_SET(reason, PFRES_PROTCKSUM); 4418 else { 4419 if (tcp_get_flags(th) & TH_SYN) 4420 ack++; 4421 if (tcp_get_flags(th) & TH_FIN) 4422 ack++; 4423 pf_send_tcp(r, pd->af, pd->dst, 4424 pd->src, th->th_dport, th->th_sport, 4425 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4426 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4427 } 4428 } else if (pd->proto == IPPROTO_SCTP && 4429 (r->rule_flag & PFRULE_RETURN)) { 4430 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4431 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4432 r->return_icmp) 4433 pf_send_icmp(pd->m, r->return_icmp >> 8, 4434 r->return_icmp & 255, 0, pd->af, r, rtableid); 4435 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4436 r->return_icmp6) 4437 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4438 r->return_icmp6 & 255, 0, pd->af, r, rtableid); 4439 } 4440 4441 static int 4442 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4443 { 4444 struct m_tag *mtag; 4445 u_int8_t mpcp; 4446 4447 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4448 if (mtag == NULL) 4449 return (0); 4450 4451 if (prio == PF_PRIO_ZERO) 4452 prio = 0; 4453 4454 mpcp = *(uint8_t *)(mtag + 1); 4455 4456 return (mpcp == prio); 4457 } 4458 4459 static int 4460 pf_icmp_to_bandlim(uint8_t type) 4461 { 4462 switch (type) { 4463 case ICMP_ECHO: 4464 case ICMP_ECHOREPLY: 4465 return (BANDLIM_ICMP_ECHO); 4466 case ICMP_TSTAMP: 4467 case ICMP_TSTAMPREPLY: 4468 return (BANDLIM_ICMP_TSTAMP); 4469 case ICMP_UNREACH: 4470 default: 4471 return (BANDLIM_ICMP_UNREACH); 4472 } 4473 } 4474 4475 static void 4476 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s, 4477 struct pf_state_peer *src, struct pf_state_peer *dst) 4478 { 4479 /* 4480 * We are sending challenge ACK as a response to SYN packet, which 4481 * matches existing state (modulo TCP window check). Therefore packet 4482 * must be sent on behalf of destination. 4483 * 4484 * We expect sender to remain either silent, or send RST packet 4485 * so both, firewall and remote peer, can purge dead state from 4486 * memory. 4487 */ 4488 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src, 4489 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo, 4490 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0, 4491 s->rule->rtableid); 4492 } 4493 4494 static void 4495 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu, 4496 sa_family_t af, struct pf_krule *r, int rtableid) 4497 { 4498 struct pf_send_entry *pfse; 4499 struct mbuf *m0; 4500 struct pf_mtag *pf_mtag; 4501 4502 /* ICMP packet rate limitation. */ 4503 switch (af) { 4504 #ifdef INET6 4505 case AF_INET6: 4506 if (icmp6_ratelimit(NULL, type, code)) 4507 return; 4508 break; 4509 #endif /* INET6 */ 4510 #ifdef INET 4511 case AF_INET: 4512 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4513 return; 4514 break; 4515 #endif /* INET */ 4516 } 4517 4518 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4519 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4520 if (pfse == NULL) 4521 return; 4522 4523 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4524 free(pfse, M_PFTEMP); 4525 return; 4526 } 4527 4528 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4529 free(pfse, M_PFTEMP); 4530 return; 4531 } 4532 /* XXX: revisit */ 4533 m0->m_flags |= M_SKIP_FIREWALL; 4534 4535 if (rtableid >= 0) 4536 M_SETFIB(m0, rtableid); 4537 4538 #ifdef ALTQ 4539 if (r->qid) { 4540 pf_mtag->qid = r->qid; 4541 /* add hints for ecn */ 4542 pf_mtag->hdr = mtod(m0, struct ip *); 4543 } 4544 #endif /* ALTQ */ 4545 4546 switch (af) { 4547 #ifdef INET 4548 case AF_INET: 4549 pfse->pfse_type = PFSE_ICMP; 4550 break; 4551 #endif /* INET */ 4552 #ifdef INET6 4553 case AF_INET6: 4554 pfse->pfse_type = PFSE_ICMP6; 4555 break; 4556 #endif /* INET6 */ 4557 } 4558 pfse->pfse_m = m0; 4559 pfse->icmpopts.type = type; 4560 pfse->icmpopts.code = code; 4561 pfse->icmpopts.mtu = mtu; 4562 pf_send(pfse); 4563 } 4564 4565 /* 4566 * Return ((n = 0) == (a = b [with mask m])) 4567 * Note: n != 0 => returns (a != b [with mask m]) 4568 */ 4569 int 4570 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m, 4571 const struct pf_addr *b, sa_family_t af) 4572 { 4573 switch (af) { 4574 #ifdef INET 4575 case AF_INET: 4576 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4577 return (n == 0); 4578 break; 4579 #endif /* INET */ 4580 #ifdef INET6 4581 case AF_INET6: 4582 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4583 return (n == 0); 4584 break; 4585 #endif /* INET6 */ 4586 } 4587 4588 return (n != 0); 4589 } 4590 4591 /* 4592 * Return 1 if b <= a <= e, otherwise return 0. 4593 */ 4594 int 4595 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e, 4596 const struct pf_addr *a, sa_family_t af) 4597 { 4598 switch (af) { 4599 #ifdef INET 4600 case AF_INET: 4601 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4602 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4603 return (0); 4604 break; 4605 #endif /* INET */ 4606 #ifdef INET6 4607 case AF_INET6: { 4608 int i; 4609 4610 /* check a >= b */ 4611 for (i = 0; i < 4; ++i) 4612 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4613 break; 4614 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4615 return (0); 4616 /* check a <= e */ 4617 for (i = 0; i < 4; ++i) 4618 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4619 break; 4620 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4621 return (0); 4622 break; 4623 } 4624 #endif /* INET6 */ 4625 } 4626 return (1); 4627 } 4628 4629 static int 4630 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4631 { 4632 switch (op) { 4633 case PF_OP_IRG: 4634 return ((p > a1) && (p < a2)); 4635 case PF_OP_XRG: 4636 return ((p < a1) || (p > a2)); 4637 case PF_OP_RRG: 4638 return ((p >= a1) && (p <= a2)); 4639 case PF_OP_EQ: 4640 return (p == a1); 4641 case PF_OP_NE: 4642 return (p != a1); 4643 case PF_OP_LT: 4644 return (p < a1); 4645 case PF_OP_LE: 4646 return (p <= a1); 4647 case PF_OP_GT: 4648 return (p > a1); 4649 case PF_OP_GE: 4650 return (p >= a1); 4651 } 4652 return (0); /* never reached */ 4653 } 4654 4655 int 4656 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4657 { 4658 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p))); 4659 } 4660 4661 static int 4662 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4663 { 4664 if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE) 4665 return (0); 4666 return (pf_match(op, a1, a2, u)); 4667 } 4668 4669 static int 4670 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4671 { 4672 if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE) 4673 return (0); 4674 return (pf_match(op, a1, a2, g)); 4675 } 4676 4677 int 4678 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4679 { 4680 if (*tag == -1) 4681 *tag = mtag; 4682 4683 return ((!r->match_tag_not && r->match_tag == *tag) || 4684 (r->match_tag_not && r->match_tag != *tag)); 4685 } 4686 4687 static int 4688 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4689 { 4690 struct ifnet *ifp = m->m_pkthdr.rcvif; 4691 struct pfi_kkif *kif; 4692 4693 if (ifp == NULL) 4694 return (0); 4695 4696 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4697 4698 if (kif == NULL) { 4699 DPFPRINTF(PF_DEBUG_URGENT, 4700 "%s: kif == NULL, @%d via %s", __func__, r->nr, 4701 r->rcv_ifname); 4702 return (0); 4703 } 4704 4705 return (pfi_kkif_match(r->rcv_kif, kif)); 4706 } 4707 4708 int 4709 pf_tag_packet(struct pf_pdesc *pd, int tag) 4710 { 4711 4712 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4713 4714 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4715 return (ENOMEM); 4716 4717 pd->pf_mtag->tag = tag; 4718 4719 return (0); 4720 } 4721 4722 /* 4723 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4724 */ 4725 #define PF_ANCHORSTACK_MATCH 0x00000001 4726 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4727 4728 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4729 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4730 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4731 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4732 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4733 } while (0) 4734 4735 enum pf_test_status 4736 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r) 4737 { 4738 enum pf_test_status rv; 4739 4740 PF_RULES_RASSERT(); 4741 4742 if (ctx->depth >= PF_ANCHOR_STACK_MAX) { 4743 printf("%s: anchor stack overflow on %s\n", 4744 __func__, r->anchor->name); 4745 return (PF_TEST_FAIL); 4746 } 4747 4748 ctx->depth++; 4749 4750 if (r->anchor_wildcard) { 4751 struct pf_kanchor *child; 4752 rv = PF_TEST_OK; 4753 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) { 4754 rv = pf_match_rule(ctx, &child->ruleset); 4755 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) { 4756 /* 4757 * we either hit a rule with quick action 4758 * (more likely), or hit some runtime 4759 * error (e.g. pool_get() failure). 4760 */ 4761 break; 4762 } 4763 } 4764 } else { 4765 rv = pf_match_rule(ctx, &r->anchor->ruleset); 4766 /* 4767 * Unless errors occured, stop iff any rule matched 4768 * within quick anchors. 4769 */ 4770 if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK && 4771 *ctx->am == r) 4772 rv = PF_TEST_QUICK; 4773 } 4774 4775 ctx->depth--; 4776 4777 return (rv); 4778 } 4779 4780 struct pf_keth_anchor_stackframe { 4781 struct pf_keth_ruleset *rs; 4782 struct pf_keth_rule *r; /* XXX: + match bit */ 4783 struct pf_keth_anchor *child; 4784 }; 4785 4786 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4787 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4788 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4789 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4790 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4791 } while (0) 4792 4793 void 4794 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4795 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4796 struct pf_keth_rule **a, int *match) 4797 { 4798 struct pf_keth_anchor_stackframe *f; 4799 4800 NET_EPOCH_ASSERT(); 4801 4802 if (match) 4803 *match = 0; 4804 if (*depth >= PF_ANCHOR_STACK_MAX) { 4805 printf("%s: anchor stack overflow on %s\n", 4806 __func__, (*r)->anchor->name); 4807 *r = TAILQ_NEXT(*r, entries); 4808 return; 4809 } else if (*depth == 0 && a != NULL) 4810 *a = *r; 4811 f = stack + (*depth)++; 4812 f->rs = *rs; 4813 f->r = *r; 4814 if ((*r)->anchor_wildcard) { 4815 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4816 4817 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4818 *r = NULL; 4819 return; 4820 } 4821 *rs = &f->child->ruleset; 4822 } else { 4823 f->child = NULL; 4824 *rs = &(*r)->anchor->ruleset; 4825 } 4826 *r = TAILQ_FIRST((*rs)->active.rules); 4827 } 4828 4829 int 4830 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4831 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4832 struct pf_keth_rule **a, int *match) 4833 { 4834 struct pf_keth_anchor_stackframe *f; 4835 struct pf_keth_rule *fr; 4836 int quick = 0; 4837 4838 NET_EPOCH_ASSERT(); 4839 4840 do { 4841 if (*depth <= 0) 4842 break; 4843 f = stack + *depth - 1; 4844 fr = PF_ETH_ANCHOR_RULE(f); 4845 if (f->child != NULL) { 4846 /* 4847 * This block traverses through 4848 * a wildcard anchor. 4849 */ 4850 if (match != NULL && *match) { 4851 /* 4852 * If any of "*" matched, then 4853 * "foo/ *" matched, mark frame 4854 * appropriately. 4855 */ 4856 PF_ETH_ANCHOR_SET_MATCH(f); 4857 *match = 0; 4858 } 4859 f->child = RB_NEXT(pf_keth_anchor_node, 4860 &fr->anchor->children, f->child); 4861 if (f->child != NULL) { 4862 *rs = &f->child->ruleset; 4863 *r = TAILQ_FIRST((*rs)->active.rules); 4864 if (*r == NULL) 4865 continue; 4866 else 4867 break; 4868 } 4869 } 4870 (*depth)--; 4871 if (*depth == 0 && a != NULL) 4872 *a = NULL; 4873 *rs = f->rs; 4874 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4875 quick = fr->quick; 4876 *r = TAILQ_NEXT(fr, entries); 4877 } while (*r == NULL); 4878 4879 return (quick); 4880 } 4881 4882 void 4883 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4884 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4885 { 4886 switch (af) { 4887 #ifdef INET 4888 case AF_INET: 4889 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4890 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4891 break; 4892 #endif /* INET */ 4893 #ifdef INET6 4894 case AF_INET6: 4895 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4896 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4897 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4898 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4899 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4900 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4901 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4902 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4903 break; 4904 #endif /* INET6 */ 4905 } 4906 } 4907 4908 void 4909 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4910 { 4911 switch (af) { 4912 #ifdef INET 4913 case AF_INET: 4914 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4915 break; 4916 #endif /* INET */ 4917 #ifdef INET6 4918 case AF_INET6: 4919 if (addr->addr32[3] == 0xffffffff) { 4920 addr->addr32[3] = 0; 4921 if (addr->addr32[2] == 0xffffffff) { 4922 addr->addr32[2] = 0; 4923 if (addr->addr32[1] == 0xffffffff) { 4924 addr->addr32[1] = 0; 4925 addr->addr32[0] = 4926 htonl(ntohl(addr->addr32[0]) + 1); 4927 } else 4928 addr->addr32[1] = 4929 htonl(ntohl(addr->addr32[1]) + 1); 4930 } else 4931 addr->addr32[2] = 4932 htonl(ntohl(addr->addr32[2]) + 1); 4933 } else 4934 addr->addr32[3] = 4935 htonl(ntohl(addr->addr32[3]) + 1); 4936 break; 4937 #endif /* INET6 */ 4938 } 4939 } 4940 4941 void 4942 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4943 { 4944 /* 4945 * Modern rules use the same flags in rules as they do in states. 4946 */ 4947 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4948 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4949 4950 /* 4951 * Old-style scrub rules have different flags which need to be translated. 4952 */ 4953 if (r->rule_flag & PFRULE_RANDOMID) 4954 a->flags |= PFSTATE_RANDOMID; 4955 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4956 a->flags |= PFSTATE_SETTOS; 4957 a->set_tos = r->set_tos; 4958 } 4959 4960 if (r->qid) 4961 a->qid = r->qid; 4962 if (r->pqid) 4963 a->pqid = r->pqid; 4964 if (r->rtableid >= 0) 4965 a->rtableid = r->rtableid; 4966 a->log |= r->log; 4967 if (r->min_ttl) 4968 a->min_ttl = r->min_ttl; 4969 if (r->max_mss) 4970 a->max_mss = r->max_mss; 4971 if (r->dnpipe) 4972 a->dnpipe = r->dnpipe; 4973 if (r->dnrpipe) 4974 a->dnrpipe = r->dnrpipe; 4975 if (r->dnpipe || r->dnrpipe) { 4976 if (r->free_flags & PFRULE_DN_IS_PIPE) 4977 a->flags |= PFSTATE_DN_IS_PIPE; 4978 else 4979 a->flags &= ~PFSTATE_DN_IS_PIPE; 4980 } 4981 if (r->scrub_flags & PFSTATE_SETPRIO) { 4982 a->set_prio[0] = r->set_prio[0]; 4983 a->set_prio[1] = r->set_prio[1]; 4984 } 4985 if (r->allow_opts) 4986 a->allow_opts = r->allow_opts; 4987 if (r->max_pkt_size) 4988 a->max_pkt_size = r->max_pkt_size; 4989 } 4990 4991 int 4992 pf_socket_lookup(struct pf_pdesc *pd) 4993 { 4994 struct pf_addr *saddr, *daddr; 4995 u_int16_t sport, dport; 4996 struct inpcbinfo *pi; 4997 struct inpcb *inp; 4998 4999 pd->lookup.uid = -1; 5000 pd->lookup.gid = -1; 5001 5002 switch (pd->proto) { 5003 case IPPROTO_TCP: 5004 sport = pd->hdr.tcp.th_sport; 5005 dport = pd->hdr.tcp.th_dport; 5006 pi = &V_tcbinfo; 5007 break; 5008 case IPPROTO_UDP: 5009 sport = pd->hdr.udp.uh_sport; 5010 dport = pd->hdr.udp.uh_dport; 5011 pi = &V_udbinfo; 5012 break; 5013 default: 5014 return (-1); 5015 } 5016 if (pd->dir == PF_IN) { 5017 saddr = pd->src; 5018 daddr = pd->dst; 5019 } else { 5020 u_int16_t p; 5021 5022 p = sport; 5023 sport = dport; 5024 dport = p; 5025 saddr = pd->dst; 5026 daddr = pd->src; 5027 } 5028 switch (pd->af) { 5029 #ifdef INET 5030 case AF_INET: 5031 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 5032 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 5033 if (inp == NULL) { 5034 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 5035 daddr->v4, dport, INPLOOKUP_WILDCARD | 5036 INPLOOKUP_RLOCKPCB, NULL, pd->m); 5037 if (inp == NULL) 5038 return (-1); 5039 } 5040 break; 5041 #endif /* INET */ 5042 #ifdef INET6 5043 case AF_INET6: 5044 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 5045 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 5046 if (inp == NULL) { 5047 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 5048 &daddr->v6, dport, INPLOOKUP_WILDCARD | 5049 INPLOOKUP_RLOCKPCB, NULL, pd->m); 5050 if (inp == NULL) 5051 return (-1); 5052 } 5053 break; 5054 #endif /* INET6 */ 5055 default: 5056 unhandled_af(pd->af); 5057 } 5058 INP_RLOCK_ASSERT(inp); 5059 pd->lookup.uid = inp->inp_cred->cr_uid; 5060 pd->lookup.gid = inp->inp_cred->cr_gid; 5061 INP_RUNLOCK(inp); 5062 5063 return (1); 5064 } 5065 5066 /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity" 5067 * /\ (eoh - r) >= min_typelen >= 2 "safety" ) 5068 * 5069 * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen 5070 */ 5071 uint8_t* 5072 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type, 5073 u_int8_t min_typelen) 5074 { 5075 uint8_t *eoh = opts + hlen; 5076 5077 if (min_typelen < 2) 5078 return (NULL); 5079 5080 while ((eoh - opt) >= min_typelen) { 5081 switch (*opt) { 5082 case TCPOPT_EOL: 5083 /* FALLTHROUGH - Workaround the failure of some 5084 systems to NOP-pad their bzero'd option buffers, 5085 producing spurious EOLs */ 5086 case TCPOPT_NOP: 5087 opt++; 5088 continue; 5089 default: 5090 if (opt[0] == type && 5091 opt[1] >= min_typelen) 5092 return (opt); 5093 } 5094 5095 opt += MAX(opt[1], 2); /* evade infinite loops */ 5096 } 5097 5098 return (NULL); 5099 } 5100 5101 u_int8_t 5102 pf_get_wscale(struct pf_pdesc *pd) 5103 { 5104 int olen; 5105 uint8_t opts[MAX_TCPOPTLEN], *opt; 5106 uint8_t wscale = 0; 5107 5108 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); 5109 if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m, 5110 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af)) 5111 return (0); 5112 5113 opt = opts; 5114 while ((opt = pf_find_tcpopt(opt, opts, olen, 5115 TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) { 5116 wscale = opt[2]; 5117 wscale = MIN(wscale, TCP_MAX_WINSHIFT); 5118 wscale |= PF_WSCALE_FLAG; 5119 5120 opt += opt[1]; 5121 } 5122 5123 return (wscale); 5124 } 5125 5126 u_int16_t 5127 pf_get_mss(struct pf_pdesc *pd) 5128 { 5129 int olen; 5130 uint8_t opts[MAX_TCPOPTLEN], *opt; 5131 u_int16_t mss = V_tcp_mssdflt; 5132 5133 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); 5134 if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m, 5135 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af)) 5136 return (0); 5137 5138 opt = opts; 5139 while ((opt = pf_find_tcpopt(opt, opts, olen, 5140 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) { 5141 memcpy(&mss, (opt + 2), 2); 5142 mss = ntohs(mss); 5143 opt += opt[1]; 5144 } 5145 5146 return (mss); 5147 } 5148 5149 static u_int16_t 5150 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 5151 { 5152 struct nhop_object *nh; 5153 #ifdef INET6 5154 struct in6_addr dst6; 5155 uint32_t scopeid; 5156 #endif /* INET6 */ 5157 int hlen = 0; 5158 uint16_t mss = 0; 5159 5160 NET_EPOCH_ASSERT(); 5161 5162 switch (af) { 5163 #ifdef INET 5164 case AF_INET: 5165 hlen = sizeof(struct ip); 5166 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 5167 if (nh != NULL) 5168 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5169 break; 5170 #endif /* INET */ 5171 #ifdef INET6 5172 case AF_INET6: 5173 hlen = sizeof(struct ip6_hdr); 5174 in6_splitscope(&addr->v6, &dst6, &scopeid); 5175 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5176 if (nh != NULL) 5177 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5178 break; 5179 #endif /* INET6 */ 5180 } 5181 5182 mss = max(V_tcp_mssdflt, mss); 5183 mss = min(mss, offer); 5184 mss = max(mss, 64); /* sanity - at least max opt space */ 5185 return (mss); 5186 } 5187 5188 static u_int32_t 5189 pf_tcp_iss(struct pf_pdesc *pd) 5190 { 5191 SHA512_CTX ctx; 5192 union { 5193 uint8_t bytes[SHA512_DIGEST_LENGTH]; 5194 uint32_t words[1]; 5195 } digest; 5196 5197 if (V_pf_tcp_secret_init == 0) { 5198 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5199 SHA512_Init(&V_pf_tcp_secret_ctx); 5200 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5201 sizeof(V_pf_tcp_secret)); 5202 V_pf_tcp_secret_init = 1; 5203 } 5204 5205 ctx = V_pf_tcp_secret_ctx; 5206 5207 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short)); 5208 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short)); 5209 switch (pd->af) { 5210 case AF_INET6: 5211 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr)); 5212 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr)); 5213 break; 5214 case AF_INET: 5215 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr)); 5216 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr)); 5217 break; 5218 } 5219 SHA512_Final(digest.bytes, &ctx); 5220 V_pf_tcp_iss_off += 4096; 5221 #define ISN_RANDOM_INCREMENT (4096 - 1) 5222 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5223 V_pf_tcp_iss_off); 5224 #undef ISN_RANDOM_INCREMENT 5225 } 5226 5227 static bool 5228 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5229 { 5230 bool match = true; 5231 5232 /* Always matches if not set */ 5233 if (! r->isset) 5234 return (!r->neg); 5235 5236 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5237 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5238 match = false; 5239 break; 5240 } 5241 } 5242 5243 return (match ^ r->neg); 5244 } 5245 5246 static int 5247 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5248 { 5249 if (*tag == -1) 5250 *tag = mtag; 5251 5252 return ((!r->match_tag_not && r->match_tag == *tag) || 5253 (r->match_tag_not && r->match_tag != *tag)); 5254 } 5255 5256 static void 5257 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5258 { 5259 /* If we don't have the interface drop the packet. */ 5260 if (ifp == NULL) { 5261 m_freem(m); 5262 return; 5263 } 5264 5265 switch (ifp->if_type) { 5266 case IFT_ETHER: 5267 case IFT_XETHER: 5268 case IFT_L2VLAN: 5269 case IFT_BRIDGE: 5270 case IFT_IEEE8023ADLAG: 5271 break; 5272 default: 5273 m_freem(m); 5274 return; 5275 } 5276 5277 ifp->if_transmit(ifp, m); 5278 } 5279 5280 static int 5281 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5282 { 5283 #ifdef INET 5284 struct ip ip; 5285 #endif /* INET */ 5286 #ifdef INET6 5287 struct ip6_hdr ip6; 5288 #endif /* INET6 */ 5289 struct mbuf *m = *m0; 5290 struct ether_header *e; 5291 struct pf_keth_rule *r, *rm, *a = NULL; 5292 struct pf_keth_ruleset *ruleset = NULL; 5293 struct pf_mtag *mtag; 5294 struct pf_keth_ruleq *rules; 5295 struct pf_addr *src = NULL, *dst = NULL; 5296 struct pfi_kkif *bridge_to; 5297 sa_family_t af = 0; 5298 uint16_t proto; 5299 int asd = 0, match = 0; 5300 int tag = -1; 5301 uint8_t action; 5302 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX]; 5303 5304 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5305 NET_EPOCH_ASSERT(); 5306 5307 PF_RULES_RLOCK_TRACKER; 5308 5309 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5310 5311 mtag = pf_find_mtag(m); 5312 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5313 /* Dummynet re-injects packets after they've 5314 * completed their delay. We've already 5315 * processed them, so pass unconditionally. */ 5316 5317 /* But only once. We may see the packet multiple times (e.g. 5318 * PFIL_IN/PFIL_OUT). */ 5319 pf_dummynet_flag_remove(m, mtag); 5320 5321 return (PF_PASS); 5322 } 5323 5324 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5325 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5326 DPFPRINTF(PF_DEBUG_URGENT, 5327 "%s: m_len < sizeof(struct ether_header)" 5328 ", pullup failed", __func__); 5329 return (PF_DROP); 5330 } 5331 e = mtod(m, struct ether_header *); 5332 proto = ntohs(e->ether_type); 5333 5334 switch (proto) { 5335 #ifdef INET 5336 case ETHERTYPE_IP: { 5337 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5338 sizeof(ip))) 5339 return (PF_DROP); 5340 5341 af = AF_INET; 5342 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5343 (caddr_t)&ip); 5344 src = (struct pf_addr *)&ip.ip_src; 5345 dst = (struct pf_addr *)&ip.ip_dst; 5346 break; 5347 } 5348 #endif /* INET */ 5349 #ifdef INET6 5350 case ETHERTYPE_IPV6: { 5351 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5352 sizeof(ip6))) 5353 return (PF_DROP); 5354 5355 af = AF_INET6; 5356 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5357 (caddr_t)&ip6); 5358 src = (struct pf_addr *)&ip6.ip6_src; 5359 dst = (struct pf_addr *)&ip6.ip6_dst; 5360 break; 5361 } 5362 #endif /* INET6 */ 5363 } 5364 5365 PF_RULES_RLOCK(); 5366 5367 ruleset = V_pf_keth; 5368 rules = atomic_load_ptr(&ruleset->active.rules); 5369 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) { 5370 counter_u64_add(r->evaluations, 1); 5371 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5372 5373 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5374 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5375 "kif"); 5376 r = r->skip[PFE_SKIP_IFP].ptr; 5377 } 5378 else if (r->direction && r->direction != dir) { 5379 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5380 "dir"); 5381 r = r->skip[PFE_SKIP_DIR].ptr; 5382 } 5383 else if (r->proto && r->proto != proto) { 5384 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5385 "proto"); 5386 r = r->skip[PFE_SKIP_PROTO].ptr; 5387 } 5388 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5389 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5390 "src"); 5391 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5392 } 5393 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5394 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5395 "dst"); 5396 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5397 } 5398 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5399 r->ipsrc.neg, kif, M_GETFIB(m))) { 5400 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5401 "ip_src"); 5402 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5403 } 5404 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5405 r->ipdst.neg, kif, M_GETFIB(m))) { 5406 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5407 "ip_dst"); 5408 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5409 } 5410 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5411 mtag ? mtag->tag : 0)) { 5412 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5413 "match_tag"); 5414 r = TAILQ_NEXT(r, entries); 5415 } 5416 else { 5417 if (r->tag) 5418 tag = r->tag; 5419 if (r->anchor == NULL) { 5420 /* Rule matches */ 5421 rm = r; 5422 5423 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5424 5425 if (r->quick) 5426 break; 5427 5428 r = TAILQ_NEXT(r, entries); 5429 } else { 5430 pf_step_into_keth_anchor(anchor_stack, &asd, 5431 &ruleset, &r, &a, &match); 5432 } 5433 } 5434 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5435 &ruleset, &r, &a, &match)) 5436 break; 5437 } 5438 5439 r = rm; 5440 5441 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5442 5443 /* Default to pass. */ 5444 if (r == NULL) { 5445 PF_RULES_RUNLOCK(); 5446 return (PF_PASS); 5447 } 5448 5449 /* Execute action. */ 5450 counter_u64_add(r->packets[dir == PF_OUT], 1); 5451 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5452 pf_update_timestamp(r); 5453 5454 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5455 if (r->action == PF_DROP) { 5456 PF_RULES_RUNLOCK(); 5457 return (PF_DROP); 5458 } 5459 5460 if (tag > 0) { 5461 if (mtag == NULL) 5462 mtag = pf_get_mtag(m); 5463 if (mtag == NULL) { 5464 PF_RULES_RUNLOCK(); 5465 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5466 return (PF_DROP); 5467 } 5468 mtag->tag = tag; 5469 } 5470 5471 if (r->qid != 0) { 5472 if (mtag == NULL) 5473 mtag = pf_get_mtag(m); 5474 if (mtag == NULL) { 5475 PF_RULES_RUNLOCK(); 5476 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5477 return (PF_DROP); 5478 } 5479 mtag->qid = r->qid; 5480 } 5481 5482 action = r->action; 5483 bridge_to = r->bridge_to; 5484 5485 /* Dummynet */ 5486 if (r->dnpipe) { 5487 struct ip_fw_args dnflow; 5488 5489 /* Drop packet if dummynet is not loaded. */ 5490 if (ip_dn_io_ptr == NULL) { 5491 PF_RULES_RUNLOCK(); 5492 m_freem(m); 5493 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5494 return (PF_DROP); 5495 } 5496 if (mtag == NULL) 5497 mtag = pf_get_mtag(m); 5498 if (mtag == NULL) { 5499 PF_RULES_RUNLOCK(); 5500 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5501 return (PF_DROP); 5502 } 5503 5504 bzero(&dnflow, sizeof(dnflow)); 5505 5506 /* We don't have port numbers here, so we set 0. That means 5507 * that we'll be somewhat limited in distinguishing flows (i.e. 5508 * only based on IP addresses, not based on port numbers), but 5509 * it's better than nothing. */ 5510 dnflow.f_id.dst_port = 0; 5511 dnflow.f_id.src_port = 0; 5512 dnflow.f_id.proto = 0; 5513 5514 dnflow.rule.info = r->dnpipe; 5515 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5516 if (r->dnflags & PFRULE_DN_IS_PIPE) 5517 dnflow.rule.info |= IPFW_IS_PIPE; 5518 5519 dnflow.f_id.extra = dnflow.rule.info; 5520 5521 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5522 dnflow.flags |= IPFW_ARGS_ETHER; 5523 dnflow.ifp = kif->pfik_ifp; 5524 5525 switch (af) { 5526 case AF_INET: 5527 dnflow.f_id.addr_type = 4; 5528 dnflow.f_id.src_ip = src->v4.s_addr; 5529 dnflow.f_id.dst_ip = dst->v4.s_addr; 5530 break; 5531 case AF_INET6: 5532 dnflow.flags |= IPFW_ARGS_IP6; 5533 dnflow.f_id.addr_type = 6; 5534 dnflow.f_id.src_ip6 = src->v6; 5535 dnflow.f_id.dst_ip6 = dst->v6; 5536 break; 5537 } 5538 5539 PF_RULES_RUNLOCK(); 5540 5541 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5542 ip_dn_io_ptr(m0, &dnflow); 5543 if (*m0 != NULL) 5544 pf_dummynet_flag_remove(m, mtag); 5545 } else { 5546 PF_RULES_RUNLOCK(); 5547 } 5548 5549 if (action == PF_PASS && bridge_to) { 5550 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5551 *m0 = NULL; /* We've eaten the packet. */ 5552 } 5553 5554 return (action); 5555 } 5556 5557 #define PF_TEST_ATTRIB(t, a) \ 5558 if (t) { \ 5559 r = a; \ 5560 continue; \ 5561 } else do { \ 5562 } while (0) 5563 5564 static __inline u_short 5565 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r) 5566 { 5567 struct pf_pdesc *pd = ctx->pd; 5568 u_short transerror; 5569 u_int8_t nat_action; 5570 5571 if (r->rule_flag & PFRULE_AFTO) { 5572 /* Don't translate if there was an old style NAT rule */ 5573 if (ctx->nr != NULL) 5574 return (PFRES_TRANSLATE); 5575 5576 /* pass af-to rules, unsupported on match rules */ 5577 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__)); 5578 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */ 5579 ctx->nat_pool = &(r->nat); 5580 ctx->nr = r; 5581 pd->naf = r->naf; 5582 if (pf_get_transaddr_af(ctx->nr, pd) == -1) { 5583 return (PFRES_TRANSLATE); 5584 } 5585 return (PFRES_MATCH); 5586 } else if (r->rdr.cur || r->nat.cur) { 5587 /* Don't translate if there was an old style NAT rule */ 5588 if (ctx->nr != NULL) 5589 return (PFRES_TRANSLATE); 5590 5591 /* match/pass nat-to/rdr-to rules */ 5592 ctx->nr = r; 5593 if (r->nat.cur) { 5594 nat_action = PF_NAT; 5595 ctx->nat_pool = &(r->nat); 5596 } else { 5597 nat_action = PF_RDR; 5598 ctx->nat_pool = &(r->rdr); 5599 } 5600 5601 transerror = pf_get_transaddr(ctx, ctx->nr, 5602 nat_action, ctx->nat_pool); 5603 if (transerror == PFRES_MATCH) { 5604 ctx->rewrite += pf_translate_compat(ctx); 5605 return(PFRES_MATCH); 5606 } 5607 return (transerror); 5608 } 5609 5610 return (PFRES_MAX); 5611 } 5612 5613 enum pf_test_status 5614 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset) 5615 { 5616 struct pf_krule_item *ri; 5617 struct pf_krule *r; 5618 struct pf_krule *save_a; 5619 struct pf_kruleset *save_aruleset; 5620 struct pf_pdesc *pd = ctx->pd; 5621 u_short transerror; 5622 5623 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr); 5624 while (r != NULL) { 5625 if (ctx->pd->related_rule) { 5626 *ctx->rm = ctx->pd->related_rule; 5627 break; 5628 } 5629 pf_counter_u64_add(&r->evaluations, 1); 5630 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5631 r->skip[PF_SKIP_IFP]); 5632 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5633 r->skip[PF_SKIP_DIR]); 5634 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5635 r->skip[PF_SKIP_AF]); 5636 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5637 r->skip[PF_SKIP_PROTO]); 5638 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5639 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5640 r->skip[PF_SKIP_SRC_ADDR]); 5641 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5642 r->dst.neg, NULL, M_GETFIB(pd->m)), 5643 r->skip[PF_SKIP_DST_ADDR]); 5644 switch (pd->virtual_proto) { 5645 case PF_VPROTO_FRAGMENT: 5646 /* tcp/udp only. port_op always 0 in other cases */ 5647 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5648 TAILQ_NEXT(r, entries)); 5649 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5650 TAILQ_NEXT(r, entries)); 5651 /* icmp only. type/code always 0 in other cases */ 5652 PF_TEST_ATTRIB((r->type || r->code), 5653 TAILQ_NEXT(r, entries)); 5654 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5655 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5656 TAILQ_NEXT(r, entries)); 5657 break; 5658 5659 case IPPROTO_TCP: 5660 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th)) 5661 != r->flags, 5662 TAILQ_NEXT(r, entries)); 5663 /* FALLTHROUGH */ 5664 case IPPROTO_SCTP: 5665 case IPPROTO_UDP: 5666 /* tcp/udp only. port_op always 0 in other cases */ 5667 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5668 r->src.port[0], r->src.port[1], pd->nsport), 5669 r->skip[PF_SKIP_SRC_PORT]); 5670 /* tcp/udp only. port_op always 0 in other cases */ 5671 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5672 r->dst.port[0], r->dst.port[1], pd->ndport), 5673 r->skip[PF_SKIP_DST_PORT]); 5674 /* tcp/udp only. uid.op always 0 in other cases */ 5675 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5676 pf_socket_lookup(pd), 1)) && 5677 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5678 pd->lookup.uid), 5679 TAILQ_NEXT(r, entries)); 5680 /* tcp/udp only. gid.op always 0 in other cases */ 5681 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5682 pf_socket_lookup(pd), 1)) && 5683 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5684 pd->lookup.gid), 5685 TAILQ_NEXT(r, entries)); 5686 break; 5687 5688 case IPPROTO_ICMP: 5689 case IPPROTO_ICMPV6: 5690 /* icmp only. type always 0 in other cases */ 5691 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1, 5692 TAILQ_NEXT(r, entries)); 5693 /* icmp only. type always 0 in other cases */ 5694 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1, 5695 TAILQ_NEXT(r, entries)); 5696 break; 5697 5698 default: 5699 break; 5700 } 5701 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5702 TAILQ_NEXT(r, entries)); 5703 PF_TEST_ATTRIB(r->prio && 5704 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5705 TAILQ_NEXT(r, entries)); 5706 PF_TEST_ATTRIB(r->prob && 5707 r->prob <= arc4random(), 5708 TAILQ_NEXT(r, entries)); 5709 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, 5710 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0), 5711 TAILQ_NEXT(r, entries)); 5712 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) == 5713 r->rcvifnot), 5714 TAILQ_NEXT(r, entries)); 5715 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5716 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5717 TAILQ_NEXT(r, entries)); 5718 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5719 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5720 pf_osfp_fingerprint(pd, ctx->th), 5721 r->os_fingerprint)), 5722 TAILQ_NEXT(r, entries)); 5723 /* must be last! */ 5724 if (r->pktrate.limit) { 5725 PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)), 5726 TAILQ_NEXT(r, entries)); 5727 } 5728 /* FALLTHROUGH */ 5729 if (r->tag) 5730 ctx->tag = r->tag; 5731 if (r->anchor == NULL) { 5732 if (r->action == PF_MATCH) { 5733 /* 5734 * Apply translations before increasing counters, 5735 * in case it fails. 5736 */ 5737 transerror = pf_rule_apply_nat(ctx, r); 5738 switch (transerror) { 5739 case PFRES_MATCH: 5740 /* Translation action found in rule and applied successfully */ 5741 case PFRES_MAX: 5742 /* No translation action found in rule */ 5743 break; 5744 default: 5745 /* Translation action found in rule but failed to apply */ 5746 REASON_SET(&ctx->reason, transerror); 5747 return (PF_TEST_FAIL); 5748 } 5749 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5750 if (ri == NULL) { 5751 REASON_SET(&ctx->reason, PFRES_MEMORY); 5752 return (PF_TEST_FAIL); 5753 } 5754 ri->r = r; 5755 SLIST_INSERT_HEAD(&ctx->rules, ri, entry); 5756 pf_counter_u64_critical_enter(); 5757 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5758 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5759 pf_counter_u64_critical_exit(); 5760 pf_rule_to_actions(r, &pd->act); 5761 if (r->log) 5762 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5763 ctx->a, ruleset, pd, 1, NULL); 5764 } else { 5765 /* 5766 * found matching r 5767 */ 5768 *ctx->rm = r; 5769 /* 5770 * anchor, with ruleset, where r belongs to 5771 */ 5772 *ctx->am = ctx->a; 5773 /* 5774 * ruleset where r belongs to 5775 */ 5776 *ctx->rsm = ruleset; 5777 /* 5778 * ruleset, where anchor belongs to. 5779 */ 5780 ctx->arsm = ctx->aruleset; 5781 } 5782 if (pd->act.log & PF_LOG_MATCHES) 5783 pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules); 5784 if (r->quick) { 5785 ctx->test_status = PF_TEST_QUICK; 5786 break; 5787 } 5788 } else { 5789 save_a = ctx->a; 5790 save_aruleset = ctx->aruleset; 5791 5792 ctx->a = r; /* remember anchor */ 5793 ctx->aruleset = ruleset; /* and its ruleset */ 5794 if (ctx->a->quick) 5795 ctx->test_status = PF_TEST_QUICK; 5796 /* 5797 * Note: we don't need to restore if we are not going 5798 * to continue with ruleset evaluation. 5799 */ 5800 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) { 5801 break; 5802 } 5803 ctx->a = save_a; 5804 ctx->aruleset = save_aruleset; 5805 } 5806 r = TAILQ_NEXT(r, entries); 5807 } 5808 5809 return (ctx->test_status); 5810 } 5811 5812 static int 5813 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5814 struct pf_pdesc *pd, struct pf_krule **am, 5815 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp) 5816 { 5817 struct pf_krule *r = NULL; 5818 struct pf_kruleset *ruleset = NULL; 5819 struct pf_krule_item *ri; 5820 struct pf_test_ctx ctx; 5821 u_short transerror; 5822 int action = PF_PASS; 5823 u_int16_t bproto_sum = 0, bip_sum = 0; 5824 enum pf_test_status rv; 5825 5826 PF_RULES_RASSERT(); 5827 5828 bzero(&ctx, sizeof(ctx)); 5829 ctx.tag = -1; 5830 ctx.pd = pd; 5831 ctx.rm = rm; 5832 ctx.am = am; 5833 ctx.rsm = rsm; 5834 ctx.th = &pd->hdr.tcp; 5835 ctx.reason = *reason; 5836 SLIST_INIT(&ctx.rules); 5837 5838 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 5839 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 5840 5841 if (inp != NULL) { 5842 INP_LOCK_ASSERT(inp); 5843 pd->lookup.uid = inp->inp_cred->cr_uid; 5844 pd->lookup.gid = inp->inp_cred->cr_gid; 5845 pd->lookup.done = 1; 5846 } 5847 5848 if (pd->ip_sum) 5849 bip_sum = *pd->ip_sum; 5850 5851 switch (pd->virtual_proto) { 5852 case IPPROTO_TCP: 5853 bproto_sum = ctx.th->th_sum; 5854 pd->nsport = ctx.th->th_sport; 5855 pd->ndport = ctx.th->th_dport; 5856 break; 5857 case IPPROTO_UDP: 5858 bproto_sum = pd->hdr.udp.uh_sum; 5859 pd->nsport = pd->hdr.udp.uh_sport; 5860 pd->ndport = pd->hdr.udp.uh_dport; 5861 break; 5862 case IPPROTO_SCTP: 5863 pd->nsport = pd->hdr.sctp.src_port; 5864 pd->ndport = pd->hdr.sctp.dest_port; 5865 break; 5866 #ifdef INET 5867 case IPPROTO_ICMP: 5868 MPASS(pd->af == AF_INET); 5869 ctx.icmptype = pd->hdr.icmp.icmp_type; 5870 ctx.icmpcode = pd->hdr.icmp.icmp_code; 5871 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, 5872 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type); 5873 if (ctx.icmp_dir == PF_IN) { 5874 pd->nsport = ctx.virtual_id; 5875 pd->ndport = ctx.virtual_type; 5876 } else { 5877 pd->nsport = ctx.virtual_type; 5878 pd->ndport = ctx.virtual_id; 5879 } 5880 break; 5881 #endif /* INET */ 5882 #ifdef INET6 5883 case IPPROTO_ICMPV6: 5884 MPASS(pd->af == AF_INET6); 5885 ctx.icmptype = pd->hdr.icmp6.icmp6_type; 5886 ctx.icmpcode = pd->hdr.icmp6.icmp6_code; 5887 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, 5888 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type); 5889 if (ctx.icmp_dir == PF_IN) { 5890 pd->nsport = ctx.virtual_id; 5891 pd->ndport = ctx.virtual_type; 5892 } else { 5893 pd->nsport = ctx.virtual_type; 5894 pd->ndport = ctx.virtual_id; 5895 } 5896 5897 break; 5898 #endif /* INET6 */ 5899 default: 5900 pd->nsport = pd->ndport = 0; 5901 break; 5902 } 5903 pd->osport = pd->nsport; 5904 pd->odport = pd->ndport; 5905 5906 /* check packet for BINAT/NAT/RDR */ 5907 transerror = pf_get_translation(&ctx); 5908 switch (transerror) { 5909 default: 5910 /* A translation error occurred. */ 5911 REASON_SET(&ctx.reason, transerror); 5912 goto cleanup; 5913 case PFRES_MAX: 5914 /* No match. */ 5915 break; 5916 case PFRES_MATCH: 5917 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__)); 5918 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__)); 5919 if (ctx.nr->log) { 5920 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a, 5921 ruleset, pd, 1, NULL); 5922 } 5923 5924 ctx.rewrite += pf_translate_compat(&ctx); 5925 ctx.nat_pool = &(ctx.nr->rdr); 5926 } 5927 5928 ruleset = &pf_main_ruleset; 5929 rv = pf_match_rule(&ctx, ruleset); 5930 if (rv == PF_TEST_FAIL) { 5931 /* 5932 * Reason has been set in pf_match_rule() already. 5933 */ 5934 goto cleanup; 5935 } 5936 5937 r = *ctx.rm; /* matching rule */ 5938 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */ 5939 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */ 5940 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */ 5941 5942 REASON_SET(&ctx.reason, PFRES_MATCH); 5943 5944 /* apply actions for last matching pass/block rule */ 5945 pf_rule_to_actions(r, &pd->act); 5946 transerror = pf_rule_apply_nat(&ctx, r); 5947 switch (transerror) { 5948 case PFRES_MATCH: 5949 /* Translation action found in rule and applied successfully */ 5950 case PFRES_MAX: 5951 /* No translation action found in rule */ 5952 break; 5953 default: 5954 /* Translation action found in rule but failed to apply */ 5955 REASON_SET(&ctx.reason, transerror); 5956 goto cleanup; 5957 } 5958 5959 if (r->log) { 5960 if (ctx.rewrite) 5961 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5962 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL); 5963 } 5964 if (pd->act.log & PF_LOG_MATCHES) 5965 pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules); 5966 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5967 (r->action == PF_DROP) && 5968 ((r->rule_flag & PFRULE_RETURNRST) || 5969 (r->rule_flag & PFRULE_RETURNICMP) || 5970 (r->rule_flag & PFRULE_RETURN))) { 5971 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum, 5972 bip_sum, &ctx.reason, r->rtableid); 5973 } 5974 5975 if (r->action == PF_DROP) 5976 goto cleanup; 5977 5978 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) { 5979 REASON_SET(&ctx.reason, PFRES_MEMORY); 5980 goto cleanup; 5981 } 5982 if (pd->act.rtableid >= 0) 5983 M_SETFIB(pd->m, pd->act.rtableid); 5984 5985 if (r->rt) { 5986 /* 5987 * Set act.rt here instead of in pf_rule_to_actions() because 5988 * it is applied only from the last pass rule. For rules 5989 * with the prefer-ipv6-nexthop option act.rt_af is a hint 5990 * about AF of the forwarded packet and might be changed. 5991 */ 5992 pd->act.rt = r->rt; 5993 if (r->rt == PF_REPLYTO) 5994 pd->act.rt_af = pd->af; 5995 else 5996 pd->act.rt_af = pd->naf; 5997 if ((transerror = pf_map_addr_sn(pd->af, r, pd->src, 5998 &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL, 5999 &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) { 6000 REASON_SET(&ctx.reason, transerror); 6001 goto cleanup; 6002 } 6003 } 6004 6005 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 6006 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL || 6007 (pd->flags & PFDESC_TCP_NORM)))) { 6008 bool nat64; 6009 6010 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum); 6011 ctx.sk = ctx.nk = NULL; 6012 if (action != PF_PASS) { 6013 pf_udp_mapping_release(ctx.udp_mapping); 6014 if (r->log || (ctx.nr != NULL && ctx.nr->log) || 6015 ctx.reason == PFRES_MEMORY) 6016 pd->act.log |= PF_LOG_FORCE; 6017 if (action == PF_DROP && 6018 (r->rule_flag & PFRULE_RETURN)) 6019 pf_return(r, ctx.nr, pd, ctx.th, 6020 bproto_sum, bip_sum, &ctx.reason, 6021 pd->act.rtableid); 6022 *reason = ctx.reason; 6023 return (action); 6024 } 6025 6026 nat64 = pd->af != pd->naf; 6027 if (nat64) { 6028 int ret; 6029 6030 if (ctx.sk == NULL) 6031 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 6032 if (ctx.nk == NULL) 6033 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 6034 6035 if (pd->dir == PF_IN) { 6036 ret = pf_translate(pd, &ctx.sk->addr[pd->didx], 6037 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx], 6038 ctx.sk->port[pd->sidx], ctx.virtual_type, 6039 ctx.icmp_dir); 6040 } else { 6041 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx], 6042 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx], 6043 ctx.sk->port[pd->didx], ctx.virtual_type, 6044 ctx.icmp_dir); 6045 } 6046 6047 if (ret < 0) 6048 goto cleanup; 6049 6050 ctx.rewrite += ret; 6051 6052 if (ctx.rewrite && ctx.sk->af != ctx.nk->af) 6053 action = PF_AFRT; 6054 } 6055 } else { 6056 while ((ri = SLIST_FIRST(&ctx.rules))) { 6057 SLIST_REMOVE_HEAD(&ctx.rules, entry); 6058 free(ri, M_PF_RULE_ITEM); 6059 } 6060 6061 uma_zfree(V_pf_state_key_z, ctx.sk); 6062 uma_zfree(V_pf_state_key_z, ctx.nk); 6063 ctx.sk = ctx.nk = NULL; 6064 pf_udp_mapping_release(ctx.udp_mapping); 6065 } 6066 6067 /* copy back packet headers if we performed NAT operations */ 6068 if (ctx.rewrite) 6069 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 6070 6071 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 6072 pd->dir == PF_OUT && 6073 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) { 6074 /* 6075 * We want the state created, but we dont 6076 * want to send this in case a partner 6077 * firewall has to know about it to allow 6078 * replies through it. 6079 */ 6080 *reason = ctx.reason; 6081 return (PF_DEFER); 6082 } 6083 6084 *reason = ctx.reason; 6085 return (action); 6086 6087 cleanup: 6088 while ((ri = SLIST_FIRST(&ctx.rules))) { 6089 SLIST_REMOVE_HEAD(&ctx.rules, entry); 6090 free(ri, M_PF_RULE_ITEM); 6091 } 6092 6093 uma_zfree(V_pf_state_key_z, ctx.sk); 6094 uma_zfree(V_pf_state_key_z, ctx.nk); 6095 pf_udp_mapping_release(ctx.udp_mapping); 6096 *reason = ctx.reason; 6097 6098 return (PF_DROP); 6099 } 6100 6101 static int 6102 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx, 6103 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum) 6104 { 6105 struct pf_pdesc *pd = ctx->pd; 6106 struct pf_kstate *s = NULL; 6107 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL }; 6108 /* 6109 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same 6110 * but for PF_SN_NAT it is different. Don't try optimizing it, 6111 * just store all 3 hashes. 6112 */ 6113 struct pf_srchash *snhs[PF_SN_MAX] = { NULL }; 6114 struct tcphdr *th = &pd->hdr.tcp; 6115 u_int16_t mss = V_tcp_mssdflt; 6116 u_short sn_reason; 6117 struct pf_krule_item *ri; 6118 6119 /* check maximums */ 6120 if (r->max_states && 6121 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 6122 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 6123 REASON_SET(&ctx->reason, PFRES_MAXSTATES); 6124 goto csfailed; 6125 } 6126 /* src node for limits */ 6127 if ((r->rule_flag & PFRULE_SRCTRACK) && 6128 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af, 6129 NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) { 6130 REASON_SET(&ctx->reason, sn_reason); 6131 goto csfailed; 6132 } 6133 /* src node for route-to rule */ 6134 if (r->rt) { 6135 if ((r->route.opts & PF_POOL_STICKYADDR) && 6136 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, 6137 pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af, 6138 PF_SN_ROUTE)) != 0) { 6139 REASON_SET(&ctx->reason, sn_reason); 6140 goto csfailed; 6141 } 6142 } 6143 /* src node for translation rule */ 6144 if (ctx->nr != NULL) { 6145 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__)); 6146 /* 6147 * The NAT addresses are chosen during ruleset parsing. 6148 * The new afto code stores post-nat addresses in nsaddr. 6149 * The old nat code (also used for new nat-to rules) creates 6150 * state keys and stores addresses in them. 6151 */ 6152 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) && 6153 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr, 6154 ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af, 6155 ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL, 6156 pd->naf, PF_SN_NAT)) != 0 ) { 6157 REASON_SET(&ctx->reason, sn_reason); 6158 goto csfailed; 6159 } 6160 } 6161 s = pf_alloc_state(M_NOWAIT); 6162 if (s == NULL) { 6163 REASON_SET(&ctx->reason, PFRES_MEMORY); 6164 goto csfailed; 6165 } 6166 s->rule = r; 6167 s->nat_rule = ctx->nr; 6168 s->anchor = ctx->a; 6169 memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules)); 6170 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6171 6172 if (pd->act.allow_opts) 6173 s->state_flags |= PFSTATE_ALLOWOPTS; 6174 if (r->rule_flag & PFRULE_STATESLOPPY) 6175 s->state_flags |= PFSTATE_SLOPPY; 6176 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6177 s->state_flags |= PFSTATE_SCRUB_TCP; 6178 if ((r->rule_flag & PFRULE_PFLOW) || 6179 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW)) 6180 s->state_flags |= PFSTATE_PFLOW; 6181 6182 s->act.log = pd->act.log & PF_LOG_ALL; 6183 s->sync_state = PFSYNC_S_NONE; 6184 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6185 6186 if (ctx->nr != NULL) 6187 s->act.log |= ctx->nr->log & PF_LOG_ALL; 6188 switch (pd->proto) { 6189 case IPPROTO_TCP: 6190 s->src.seqlo = ntohl(th->th_seq); 6191 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6192 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6193 r->keep_state == PF_STATE_MODULATE) { 6194 /* Generate sequence number modulator */ 6195 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6196 0) 6197 s->src.seqdiff = 1; 6198 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6199 htonl(s->src.seqlo + s->src.seqdiff), 0); 6200 ctx->rewrite = 1; 6201 } else 6202 s->src.seqdiff = 0; 6203 if (tcp_get_flags(th) & TH_SYN) { 6204 s->src.seqhi++; 6205 s->src.wscale = pf_get_wscale(pd); 6206 } 6207 s->src.max_win = MAX(ntohs(th->th_win), 1); 6208 if (s->src.wscale & PF_WSCALE_MASK) { 6209 /* Remove scale factor from initial window */ 6210 int win = s->src.max_win; 6211 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6212 s->src.max_win = (win - 1) >> 6213 (s->src.wscale & PF_WSCALE_MASK); 6214 } 6215 if (tcp_get_flags(th) & TH_FIN) 6216 s->src.seqhi++; 6217 s->dst.seqhi = 1; 6218 s->dst.max_win = 1; 6219 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6220 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6221 s->timeout = PFTM_TCP_FIRST_PACKET; 6222 atomic_add_32(&V_pf_status.states_halfopen, 1); 6223 break; 6224 case IPPROTO_UDP: 6225 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6226 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6227 s->timeout = PFTM_UDP_FIRST_PACKET; 6228 break; 6229 case IPPROTO_SCTP: 6230 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6231 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6232 s->timeout = PFTM_SCTP_FIRST_PACKET; 6233 break; 6234 case IPPROTO_ICMP: 6235 #ifdef INET6 6236 case IPPROTO_ICMPV6: 6237 #endif /* INET6 */ 6238 s->timeout = PFTM_ICMP_FIRST_PACKET; 6239 break; 6240 default: 6241 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6242 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6243 s->timeout = PFTM_OTHER_FIRST_PACKET; 6244 } 6245 6246 s->creation = s->expire = pf_get_uptime(); 6247 6248 if (pd->proto == IPPROTO_TCP) { 6249 if (s->state_flags & PFSTATE_SCRUB_TCP && 6250 pf_normalize_tcp_init(pd, th, &s->src)) { 6251 REASON_SET(&ctx->reason, PFRES_MEMORY); 6252 goto csfailed; 6253 } 6254 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6255 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s, 6256 &s->src, &s->dst, &ctx->rewrite)) { 6257 /* This really shouldn't happen!!! */ 6258 DPFPRINTF(PF_DEBUG_URGENT, 6259 "%s: tcp normalize failed on first " 6260 "pkt", __func__); 6261 goto csfailed; 6262 } 6263 } else if (pd->proto == IPPROTO_SCTP) { 6264 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6265 goto csfailed; 6266 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6267 goto csfailed; 6268 } 6269 s->direction = pd->dir; 6270 6271 /* 6272 * sk/nk could already been setup by pf_get_translation(). 6273 */ 6274 if (ctx->sk == NULL && ctx->nk == NULL) { 6275 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6276 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6277 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, 6278 &ctx->sk, &ctx->nk)) { 6279 goto csfailed; 6280 } 6281 } else 6282 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p", 6283 __func__, ctx->nr, ctx->sk, ctx->nk)); 6284 6285 /* Swap sk/nk for PF_OUT. */ 6286 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif, 6287 (pd->dir == PF_IN) ? ctx->sk : ctx->nk, 6288 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) { 6289 REASON_SET(&ctx->reason, PFRES_STATEINS); 6290 goto drop; 6291 } else 6292 *sm = s; 6293 ctx->sk = ctx->nk = NULL; 6294 6295 STATE_INC_COUNTERS(s); 6296 6297 /* 6298 * Lock order is important: first state, then source node. 6299 */ 6300 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6301 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6302 s->sns[sn_type] = sns[sn_type]; 6303 PF_HASHROW_UNLOCK(snhs[sn_type]); 6304 } 6305 } 6306 6307 if (ctx->tag > 0) 6308 s->tag = ctx->tag; 6309 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6310 TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) { 6311 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6312 pf_undo_nat(ctx->nr, pd, bip_sum); 6313 s->src.seqhi = arc4random(); 6314 /* Find mss option */ 6315 int rtid = M_GETFIB(pd->m); 6316 mss = pf_get_mss(pd); 6317 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6318 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6319 s->src.mss = mss; 6320 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6321 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6322 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6323 pd->act.rtableid); 6324 REASON_SET(&ctx->reason, PFRES_SYNPROXY); 6325 return (PF_SYNPROXY_DROP); 6326 } 6327 6328 s->udp_mapping = ctx->udp_mapping; 6329 6330 return (PF_PASS); 6331 6332 csfailed: 6333 while ((ri = SLIST_FIRST(&ctx->rules))) { 6334 SLIST_REMOVE_HEAD(&ctx->rules, entry); 6335 free(ri, M_PF_RULE_ITEM); 6336 } 6337 6338 uma_zfree(V_pf_state_key_z, ctx->sk); 6339 uma_zfree(V_pf_state_key_z, ctx->nk); 6340 6341 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6342 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6343 if (--sns[sn_type]->states == 0 && 6344 sns[sn_type]->expire == 0) { 6345 pf_unlink_src_node(sns[sn_type]); 6346 pf_free_src_node(sns[sn_type]); 6347 counter_u64_add( 6348 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6349 } 6350 PF_HASHROW_UNLOCK(snhs[sn_type]); 6351 } 6352 } 6353 6354 drop: 6355 if (s != NULL) { 6356 pf_src_tree_remove_state(s); 6357 s->timeout = PFTM_UNLINKED; 6358 pf_free_state(s); 6359 } 6360 6361 return (PF_DROP); 6362 } 6363 6364 int 6365 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6366 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6367 int icmp_dir) 6368 { 6369 /* 6370 * pf_translate() implements OpenBSD's "new" NAT approach. 6371 * We don't follow it, because it involves a breaking syntax change 6372 * (removing nat/rdr rules, moving it into regular pf rules.) 6373 * It also moves NAT processing to be done after normal rules evaluation 6374 * whereas in FreeBSD that's done before rules processing. 6375 * 6376 * We adopt the function only for nat64, and keep other NAT processing 6377 * before rules processing. 6378 */ 6379 int rewrite = 0; 6380 int afto = pd->af != pd->naf; 6381 6382 MPASS(afto); 6383 6384 switch (pd->proto) { 6385 case IPPROTO_TCP: 6386 case IPPROTO_UDP: 6387 case IPPROTO_SCTP: 6388 if (afto || *pd->sport != sport) { 6389 pf_change_ap(pd, pd->src, pd->sport, 6390 saddr, sport); 6391 rewrite = 1; 6392 } 6393 if (afto || *pd->dport != dport) { 6394 pf_change_ap(pd, pd->dst, pd->dport, 6395 daddr, dport); 6396 rewrite = 1; 6397 } 6398 break; 6399 6400 #ifdef INET 6401 case IPPROTO_ICMP: 6402 /* pf_translate() is also used when logging invalid packets */ 6403 if (pd->af != AF_INET) 6404 return (0); 6405 6406 if (afto) { 6407 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6408 return (-1); 6409 pd->proto = IPPROTO_ICMPV6; 6410 rewrite = 1; 6411 } 6412 if (virtual_type == htons(ICMP_ECHO)) { 6413 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6414 6415 if (icmpid != pd->hdr.icmp.icmp_id) { 6416 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6417 pd->hdr.icmp.icmp_cksum, 6418 pd->hdr.icmp.icmp_id, icmpid, 0); 6419 pd->hdr.icmp.icmp_id = icmpid; 6420 /* XXX TODO copyback. */ 6421 rewrite = 1; 6422 } 6423 } 6424 break; 6425 #endif /* INET */ 6426 6427 #ifdef INET6 6428 case IPPROTO_ICMPV6: 6429 /* pf_translate() is also used when logging invalid packets */ 6430 if (pd->af != AF_INET6) 6431 return (0); 6432 6433 if (afto) { 6434 /* ip_sum will be recalculated in pf_translate_af */ 6435 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6436 return (0); 6437 pd->proto = IPPROTO_ICMP; 6438 rewrite = 1; 6439 } 6440 break; 6441 #endif /* INET6 */ 6442 6443 default: 6444 break; 6445 } 6446 6447 return (rewrite); 6448 } 6449 6450 int 6451 pf_translate_compat(struct pf_test_ctx *ctx) 6452 { 6453 struct pf_pdesc *pd = ctx->pd; 6454 struct pf_state_key *nk = ctx->nk; 6455 struct tcphdr *th = &pd->hdr.tcp; 6456 int rewrite = 0; 6457 6458 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__)); 6459 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__)); 6460 6461 switch (pd->virtual_proto) { 6462 case IPPROTO_TCP: 6463 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6464 nk->port[pd->sidx] != pd->nsport) { 6465 pf_change_ap(pd, pd->src, &th->th_sport, 6466 &nk->addr[pd->sidx], nk->port[pd->sidx]); 6467 pd->sport = &th->th_sport; 6468 pd->nsport = th->th_sport; 6469 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6470 } 6471 6472 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6473 nk->port[pd->didx] != pd->ndport) { 6474 pf_change_ap(pd, pd->dst, &th->th_dport, 6475 &nk->addr[pd->didx], nk->port[pd->didx]); 6476 pd->dport = &th->th_dport; 6477 pd->ndport = th->th_dport; 6478 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6479 } 6480 rewrite++; 6481 break; 6482 case IPPROTO_UDP: 6483 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6484 nk->port[pd->sidx] != pd->nsport) { 6485 pf_change_ap(pd, pd->src, 6486 &pd->hdr.udp.uh_sport, 6487 &nk->addr[pd->sidx], 6488 nk->port[pd->sidx]); 6489 pd->sport = &pd->hdr.udp.uh_sport; 6490 pd->nsport = pd->hdr.udp.uh_sport; 6491 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6492 } 6493 6494 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6495 nk->port[pd->didx] != pd->ndport) { 6496 pf_change_ap(pd, pd->dst, 6497 &pd->hdr.udp.uh_dport, 6498 &nk->addr[pd->didx], 6499 nk->port[pd->didx]); 6500 pd->dport = &pd->hdr.udp.uh_dport; 6501 pd->ndport = pd->hdr.udp.uh_dport; 6502 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6503 } 6504 rewrite++; 6505 break; 6506 case IPPROTO_SCTP: { 6507 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6508 nk->port[pd->sidx] != pd->nsport) { 6509 pf_change_ap(pd, pd->src, 6510 &pd->hdr.sctp.src_port, 6511 &nk->addr[pd->sidx], 6512 nk->port[pd->sidx]); 6513 pd->sport = &pd->hdr.sctp.src_port; 6514 pd->nsport = pd->hdr.sctp.src_port; 6515 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6516 } 6517 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6518 nk->port[pd->didx] != pd->ndport) { 6519 pf_change_ap(pd, pd->dst, 6520 &pd->hdr.sctp.dest_port, 6521 &nk->addr[pd->didx], 6522 nk->port[pd->didx]); 6523 pd->dport = &pd->hdr.sctp.dest_port; 6524 pd->ndport = pd->hdr.sctp.dest_port; 6525 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6526 } 6527 break; 6528 } 6529 #ifdef INET 6530 case IPPROTO_ICMP: 6531 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 6532 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 6533 nk->addr[pd->sidx].v4.s_addr, 0); 6534 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6535 } 6536 6537 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 6538 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 6539 nk->addr[pd->didx].v4.s_addr, 0); 6540 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6541 } 6542 6543 if (ctx->virtual_type == htons(ICMP_ECHO) && 6544 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 6545 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6546 pd->hdr.icmp.icmp_cksum, pd->nsport, 6547 nk->port[pd->sidx], 0); 6548 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 6549 pd->sport = &pd->hdr.icmp.icmp_id; 6550 } 6551 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6552 break; 6553 #endif /* INET */ 6554 #ifdef INET6 6555 case IPPROTO_ICMPV6: 6556 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 6557 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 6558 &nk->addr[pd->sidx], 0); 6559 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6560 } 6561 6562 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 6563 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 6564 &nk->addr[pd->didx], 0); 6565 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6566 } 6567 rewrite++; 6568 break; 6569 #endif /* INET */ 6570 default: 6571 switch (pd->af) { 6572 #ifdef INET 6573 case AF_INET: 6574 if (PF_ANEQ(&pd->nsaddr, 6575 &nk->addr[pd->sidx], AF_INET)) { 6576 pf_change_a(&pd->src->v4.s_addr, 6577 pd->ip_sum, 6578 nk->addr[pd->sidx].v4.s_addr, 0); 6579 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6580 } 6581 6582 if (PF_ANEQ(&pd->ndaddr, 6583 &nk->addr[pd->didx], AF_INET)) { 6584 pf_change_a(&pd->dst->v4.s_addr, 6585 pd->ip_sum, 6586 nk->addr[pd->didx].v4.s_addr, 0); 6587 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6588 } 6589 break; 6590 #endif /* INET */ 6591 #ifdef INET6 6592 case AF_INET6: 6593 if (PF_ANEQ(&pd->nsaddr, 6594 &nk->addr[pd->sidx], AF_INET6)) { 6595 pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx], 6596 pd->af); 6597 pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af); 6598 } 6599 6600 if (PF_ANEQ(&pd->ndaddr, 6601 &nk->addr[pd->didx], AF_INET6)) { 6602 pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx], 6603 pd->af); 6604 pf_addrcpy(pd->dst, &nk->addr[pd->didx], 6605 pd->af); 6606 } 6607 break; 6608 #endif /* INET6 */ 6609 } 6610 break; 6611 } 6612 return (rewrite); 6613 } 6614 6615 static int 6616 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd, 6617 u_short *reason, int *copyback, struct pf_state_peer *src, 6618 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst) 6619 { 6620 struct tcphdr *th = &pd->hdr.tcp; 6621 u_int16_t win = ntohs(th->th_win); 6622 u_int32_t ack, end, data_end, seq, orig_seq; 6623 u_int8_t sws, dws; 6624 int ackskew; 6625 6626 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6627 sws = src->wscale & PF_WSCALE_MASK; 6628 dws = dst->wscale & PF_WSCALE_MASK; 6629 } else 6630 sws = dws = 0; 6631 6632 /* 6633 * Sequence tracking algorithm from Guido van Rooij's paper: 6634 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6635 * tcp_filtering.ps 6636 */ 6637 6638 orig_seq = seq = ntohl(th->th_seq); 6639 if (src->seqlo == 0) { 6640 /* First packet from this end. Set its state */ 6641 6642 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6643 src->scrub == NULL) { 6644 if (pf_normalize_tcp_init(pd, th, src)) { 6645 REASON_SET(reason, PFRES_MEMORY); 6646 return (PF_DROP); 6647 } 6648 } 6649 6650 /* Deferred generation of sequence number modulator */ 6651 if (dst->seqdiff && !src->seqdiff) { 6652 /* use random iss for the TCP server */ 6653 while ((src->seqdiff = arc4random() - seq) == 0) 6654 ; 6655 ack = ntohl(th->th_ack) - dst->seqdiff; 6656 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6657 src->seqdiff), 0); 6658 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6659 *copyback = 1; 6660 } else { 6661 ack = ntohl(th->th_ack); 6662 } 6663 6664 end = seq + pd->p_len; 6665 if (tcp_get_flags(th) & TH_SYN) { 6666 end++; 6667 if (dst->wscale & PF_WSCALE_FLAG) { 6668 src->wscale = pf_get_wscale(pd); 6669 if (src->wscale & PF_WSCALE_FLAG) { 6670 /* Remove scale factor from initial 6671 * window */ 6672 sws = src->wscale & PF_WSCALE_MASK; 6673 win = ((u_int32_t)win + (1 << sws) - 1) 6674 >> sws; 6675 dws = dst->wscale & PF_WSCALE_MASK; 6676 } else { 6677 /* fixup other window */ 6678 dst->max_win = MIN(TCP_MAXWIN, 6679 (u_int32_t)dst->max_win << 6680 (dst->wscale & PF_WSCALE_MASK)); 6681 /* in case of a retrans SYN|ACK */ 6682 dst->wscale = 0; 6683 } 6684 } 6685 } 6686 data_end = end; 6687 if (tcp_get_flags(th) & TH_FIN) 6688 end++; 6689 6690 src->seqlo = seq; 6691 if (src->state < TCPS_SYN_SENT) 6692 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6693 6694 /* 6695 * May need to slide the window (seqhi may have been set by 6696 * the crappy stack check or if we picked up the connection 6697 * after establishment) 6698 */ 6699 if (src->seqhi == 1 || 6700 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6701 src->seqhi = end + MAX(1, dst->max_win << dws); 6702 if (win > src->max_win) 6703 src->max_win = win; 6704 6705 } else { 6706 ack = ntohl(th->th_ack) - dst->seqdiff; 6707 if (src->seqdiff) { 6708 /* Modulate sequence numbers */ 6709 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6710 src->seqdiff), 0); 6711 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6712 *copyback = 1; 6713 } 6714 end = seq + pd->p_len; 6715 if (tcp_get_flags(th) & TH_SYN) 6716 end++; 6717 data_end = end; 6718 if (tcp_get_flags(th) & TH_FIN) 6719 end++; 6720 } 6721 6722 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6723 /* Let it pass through the ack skew check */ 6724 ack = dst->seqlo; 6725 } else if ((ack == 0 && 6726 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6727 /* broken tcp stacks do not set ack */ 6728 (dst->state < TCPS_SYN_SENT)) { 6729 /* 6730 * Many stacks (ours included) will set the ACK number in an 6731 * FIN|ACK if the SYN times out -- no sequence to ACK. 6732 */ 6733 ack = dst->seqlo; 6734 } 6735 6736 if (seq == end) { 6737 /* Ease sequencing restrictions on no data packets */ 6738 seq = src->seqlo; 6739 data_end = end = seq; 6740 } 6741 6742 ackskew = dst->seqlo - ack; 6743 6744 /* 6745 * Need to demodulate the sequence numbers in any TCP SACK options 6746 * (Selective ACK). We could optionally validate the SACK values 6747 * against the current ACK window, either forwards or backwards, but 6748 * I'm not confident that SACK has been implemented properly 6749 * everywhere. It wouldn't surprise me if several stacks accidentally 6750 * SACK too far backwards of previously ACKed data. There really aren't 6751 * any security implications of bad SACKing unless the target stack 6752 * doesn't validate the option length correctly. Someone trying to 6753 * spoof into a TCP connection won't bother blindly sending SACK 6754 * options anyway. 6755 */ 6756 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6757 if (pf_modulate_sack(pd, th, dst)) 6758 *copyback = 1; 6759 } 6760 6761 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6762 if (SEQ_GEQ(src->seqhi, data_end) && 6763 /* Last octet inside other's window space */ 6764 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6765 /* Retrans: not more than one window back */ 6766 (ackskew >= -MAXACKWINDOW) && 6767 /* Acking not more than one reassembled fragment backwards */ 6768 (ackskew <= (MAXACKWINDOW << sws)) && 6769 /* Acking not more than one window forward */ 6770 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6771 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6772 /* Require an exact/+1 sequence match on resets when possible */ 6773 6774 if (dst->scrub || src->scrub) { 6775 if (pf_normalize_tcp_stateful(pd, reason, th, 6776 state, src, dst, copyback)) 6777 return (PF_DROP); 6778 } 6779 6780 /* update max window */ 6781 if (src->max_win < win) 6782 src->max_win = win; 6783 /* synchronize sequencing */ 6784 if (SEQ_GT(end, src->seqlo)) 6785 src->seqlo = end; 6786 /* slide the window of what the other end can send */ 6787 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6788 dst->seqhi = ack + MAX((win << sws), 1); 6789 6790 /* update states */ 6791 if (tcp_get_flags(th) & TH_SYN) 6792 if (src->state < TCPS_SYN_SENT) 6793 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6794 if (tcp_get_flags(th) & TH_FIN) 6795 if (src->state < TCPS_CLOSING) 6796 pf_set_protostate(state, psrc, TCPS_CLOSING); 6797 if (tcp_get_flags(th) & TH_ACK) { 6798 if (dst->state == TCPS_SYN_SENT) { 6799 pf_set_protostate(state, pdst, 6800 TCPS_ESTABLISHED); 6801 if (src->state == TCPS_ESTABLISHED && 6802 state->sns[PF_SN_LIMIT] != NULL && 6803 pf_src_connlimit(state)) { 6804 REASON_SET(reason, PFRES_SRCLIMIT); 6805 return (PF_DROP); 6806 } 6807 } else if (dst->state == TCPS_CLOSING) 6808 pf_set_protostate(state, pdst, 6809 TCPS_FIN_WAIT_2); 6810 } 6811 if (tcp_get_flags(th) & TH_RST) 6812 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6813 6814 /* update expire time */ 6815 state->expire = pf_get_uptime(); 6816 if (src->state >= TCPS_FIN_WAIT_2 && 6817 dst->state >= TCPS_FIN_WAIT_2) 6818 state->timeout = PFTM_TCP_CLOSED; 6819 else if (src->state >= TCPS_CLOSING && 6820 dst->state >= TCPS_CLOSING) 6821 state->timeout = PFTM_TCP_FIN_WAIT; 6822 else if (src->state < TCPS_ESTABLISHED || 6823 dst->state < TCPS_ESTABLISHED) 6824 state->timeout = PFTM_TCP_OPENING; 6825 else if (src->state >= TCPS_CLOSING || 6826 dst->state >= TCPS_CLOSING) 6827 state->timeout = PFTM_TCP_CLOSING; 6828 else 6829 state->timeout = PFTM_TCP_ESTABLISHED; 6830 6831 /* Fall through to PASS packet */ 6832 6833 } else if ((dst->state < TCPS_SYN_SENT || 6834 dst->state >= TCPS_FIN_WAIT_2 || 6835 src->state >= TCPS_FIN_WAIT_2) && 6836 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6837 /* Within a window forward of the originating packet */ 6838 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6839 /* Within a window backward of the originating packet */ 6840 6841 /* 6842 * This currently handles three situations: 6843 * 1) Stupid stacks will shotgun SYNs before their peer 6844 * replies. 6845 * 2) When PF catches an already established stream (the 6846 * firewall rebooted, the state table was flushed, routes 6847 * changed...) 6848 * 3) Packets get funky immediately after the connection 6849 * closes (this should catch Solaris spurious ACK|FINs 6850 * that web servers like to spew after a close) 6851 * 6852 * This must be a little more careful than the above code 6853 * since packet floods will also be caught here. We don't 6854 * update the TTL here to mitigate the damage of a packet 6855 * flood and so the same code can handle awkward establishment 6856 * and a loosened connection close. 6857 * In the establishment case, a correct peer response will 6858 * validate the connection, go through the normal state code 6859 * and keep updating the state TTL. 6860 */ 6861 6862 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6863 printf("pf: loose state match: "); 6864 pf_print_state(state); 6865 pf_print_flags(tcp_get_flags(th)); 6866 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6867 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6868 pd->p_len, ackskew, (unsigned long long)state->packets[0], 6869 (unsigned long long)state->packets[1], 6870 pd->dir == PF_IN ? "in" : "out", 6871 pd->dir == state->direction ? "fwd" : "rev"); 6872 } 6873 6874 if (dst->scrub || src->scrub) { 6875 if (pf_normalize_tcp_stateful(pd, reason, th, 6876 state, src, dst, copyback)) 6877 return (PF_DROP); 6878 } 6879 6880 /* update max window */ 6881 if (src->max_win < win) 6882 src->max_win = win; 6883 /* synchronize sequencing */ 6884 if (SEQ_GT(end, src->seqlo)) 6885 src->seqlo = end; 6886 /* slide the window of what the other end can send */ 6887 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6888 dst->seqhi = ack + MAX((win << sws), 1); 6889 6890 /* 6891 * Cannot set dst->seqhi here since this could be a shotgunned 6892 * SYN and not an already established connection. 6893 */ 6894 6895 if (tcp_get_flags(th) & TH_FIN) 6896 if (src->state < TCPS_CLOSING) 6897 pf_set_protostate(state, psrc, TCPS_CLOSING); 6898 if (tcp_get_flags(th) & TH_RST) 6899 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6900 6901 /* Fall through to PASS packet */ 6902 6903 } else { 6904 if (state->dst.state == TCPS_SYN_SENT && 6905 state->src.state == TCPS_SYN_SENT) { 6906 /* Send RST for state mismatches during handshake */ 6907 if (!(tcp_get_flags(th) & TH_RST)) 6908 pf_send_tcp(state->rule, pd->af, 6909 pd->dst, pd->src, th->th_dport, 6910 th->th_sport, ntohl(th->th_ack), 0, 6911 TH_RST, 0, 0, 6912 state->rule->return_ttl, M_SKIP_FIREWALL, 6913 0, 0, state->act.rtableid); 6914 src->seqlo = 0; 6915 src->seqhi = 1; 6916 src->max_win = 1; 6917 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6918 printf("pf: BAD state: "); 6919 pf_print_state(state); 6920 pf_print_flags(tcp_get_flags(th)); 6921 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6922 "pkts=%llu:%llu dir=%s,%s\n", 6923 seq, orig_seq, ack, pd->p_len, ackskew, 6924 (unsigned long long)state->packets[0], 6925 (unsigned long long)state->packets[1], 6926 pd->dir == PF_IN ? "in" : "out", 6927 pd->dir == state->direction ? "fwd" : "rev"); 6928 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6929 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6930 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6931 ' ': '2', 6932 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6933 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6934 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6935 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6936 } 6937 REASON_SET(reason, PFRES_BADSTATE); 6938 return (PF_DROP); 6939 } 6940 6941 return (PF_PASS); 6942 } 6943 6944 static int 6945 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd, 6946 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst, 6947 u_int8_t psrc, u_int8_t pdst) 6948 { 6949 struct tcphdr *th = &pd->hdr.tcp; 6950 6951 if (tcp_get_flags(th) & TH_SYN) 6952 if (src->state < TCPS_SYN_SENT) 6953 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6954 if (tcp_get_flags(th) & TH_FIN) 6955 if (src->state < TCPS_CLOSING) 6956 pf_set_protostate(state, psrc, TCPS_CLOSING); 6957 if (tcp_get_flags(th) & TH_ACK) { 6958 if (dst->state == TCPS_SYN_SENT) { 6959 pf_set_protostate(state, pdst, TCPS_ESTABLISHED); 6960 if (src->state == TCPS_ESTABLISHED && 6961 state->sns[PF_SN_LIMIT] != NULL && 6962 pf_src_connlimit(state)) { 6963 REASON_SET(reason, PFRES_SRCLIMIT); 6964 return (PF_DROP); 6965 } 6966 } else if (dst->state == TCPS_CLOSING) { 6967 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2); 6968 } else if (src->state == TCPS_SYN_SENT && 6969 dst->state < TCPS_SYN_SENT) { 6970 /* 6971 * Handle a special sloppy case where we only see one 6972 * half of the connection. If there is a ACK after 6973 * the initial SYN without ever seeing a packet from 6974 * the destination, set the connection to established. 6975 */ 6976 pf_set_protostate(state, PF_PEER_BOTH, 6977 TCPS_ESTABLISHED); 6978 dst->state = src->state = TCPS_ESTABLISHED; 6979 if (state->sns[PF_SN_LIMIT] != NULL && 6980 pf_src_connlimit(state)) { 6981 REASON_SET(reason, PFRES_SRCLIMIT); 6982 return (PF_DROP); 6983 } 6984 } else if (src->state == TCPS_CLOSING && 6985 dst->state == TCPS_ESTABLISHED && 6986 dst->seqlo == 0) { 6987 /* 6988 * Handle the closing of half connections where we 6989 * don't see the full bidirectional FIN/ACK+ACK 6990 * handshake. 6991 */ 6992 pf_set_protostate(state, pdst, TCPS_CLOSING); 6993 } 6994 } 6995 if (tcp_get_flags(th) & TH_RST) 6996 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6997 6998 /* update expire time */ 6999 state->expire = pf_get_uptime(); 7000 if (src->state >= TCPS_FIN_WAIT_2 && 7001 dst->state >= TCPS_FIN_WAIT_2) 7002 state->timeout = PFTM_TCP_CLOSED; 7003 else if (src->state >= TCPS_CLOSING && 7004 dst->state >= TCPS_CLOSING) 7005 state->timeout = PFTM_TCP_FIN_WAIT; 7006 else if (src->state < TCPS_ESTABLISHED || 7007 dst->state < TCPS_ESTABLISHED) 7008 state->timeout = PFTM_TCP_OPENING; 7009 else if (src->state >= TCPS_CLOSING || 7010 dst->state >= TCPS_CLOSING) 7011 state->timeout = PFTM_TCP_CLOSING; 7012 else 7013 state->timeout = PFTM_TCP_ESTABLISHED; 7014 7015 return (PF_PASS); 7016 } 7017 7018 static int 7019 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason) 7020 { 7021 struct pf_state_key *sk = state->key[pd->didx]; 7022 struct tcphdr *th = &pd->hdr.tcp; 7023 7024 if (state->src.state == PF_TCPS_PROXY_SRC) { 7025 if (pd->dir != state->direction) { 7026 REASON_SET(reason, PFRES_SYNPROXY); 7027 return (PF_SYNPROXY_DROP); 7028 } 7029 if (tcp_get_flags(th) & TH_SYN) { 7030 if (ntohl(th->th_seq) != state->src.seqlo) { 7031 REASON_SET(reason, PFRES_SYNPROXY); 7032 return (PF_DROP); 7033 } 7034 pf_send_tcp(state->rule, pd->af, pd->dst, 7035 pd->src, th->th_dport, th->th_sport, 7036 state->src.seqhi, ntohl(th->th_seq) + 1, 7037 TH_SYN|TH_ACK, 0, state->src.mss, 0, 7038 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 7039 REASON_SET(reason, PFRES_SYNPROXY); 7040 return (PF_SYNPROXY_DROP); 7041 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 7042 (ntohl(th->th_ack) != state->src.seqhi + 1) || 7043 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 7044 REASON_SET(reason, PFRES_SYNPROXY); 7045 return (PF_DROP); 7046 } else if (state->sns[PF_SN_LIMIT] != NULL && 7047 pf_src_connlimit(state)) { 7048 REASON_SET(reason, PFRES_SRCLIMIT); 7049 return (PF_DROP); 7050 } else 7051 pf_set_protostate(state, PF_PEER_SRC, 7052 PF_TCPS_PROXY_DST); 7053 } 7054 if (state->src.state == PF_TCPS_PROXY_DST) { 7055 if (pd->dir == state->direction) { 7056 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 7057 (ntohl(th->th_ack) != state->src.seqhi + 1) || 7058 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 7059 REASON_SET(reason, PFRES_SYNPROXY); 7060 return (PF_DROP); 7061 } 7062 state->src.max_win = MAX(ntohs(th->th_win), 1); 7063 if (state->dst.seqhi == 1) 7064 state->dst.seqhi = arc4random(); 7065 pf_send_tcp(state->rule, pd->af, 7066 &sk->addr[pd->sidx], &sk->addr[pd->didx], 7067 sk->port[pd->sidx], sk->port[pd->didx], 7068 state->dst.seqhi, 0, TH_SYN, 0, 7069 state->src.mss, 0, 7070 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 7071 state->tag, 0, state->act.rtableid); 7072 REASON_SET(reason, PFRES_SYNPROXY); 7073 return (PF_SYNPROXY_DROP); 7074 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 7075 (TH_SYN|TH_ACK)) || 7076 (ntohl(th->th_ack) != state->dst.seqhi + 1)) { 7077 REASON_SET(reason, PFRES_SYNPROXY); 7078 return (PF_DROP); 7079 } else { 7080 state->dst.max_win = MAX(ntohs(th->th_win), 1); 7081 state->dst.seqlo = ntohl(th->th_seq); 7082 pf_send_tcp(state->rule, pd->af, pd->dst, 7083 pd->src, th->th_dport, th->th_sport, 7084 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 7085 TH_ACK, state->src.max_win, 0, 0, 0, 7086 state->tag, 0, state->act.rtableid); 7087 pf_send_tcp(state->rule, pd->af, 7088 &sk->addr[pd->sidx], &sk->addr[pd->didx], 7089 sk->port[pd->sidx], sk->port[pd->didx], 7090 state->src.seqhi + 1, state->src.seqlo + 1, 7091 TH_ACK, state->dst.max_win, 0, 0, 7092 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 7093 state->src.seqdiff = state->dst.seqhi - 7094 state->src.seqlo; 7095 state->dst.seqdiff = state->src.seqhi - 7096 state->dst.seqlo; 7097 state->src.seqhi = state->src.seqlo + 7098 state->dst.max_win; 7099 state->dst.seqhi = state->dst.seqlo + 7100 state->src.max_win; 7101 state->src.wscale = state->dst.wscale = 0; 7102 pf_set_protostate(state, PF_PEER_BOTH, 7103 TCPS_ESTABLISHED); 7104 REASON_SET(reason, PFRES_SYNPROXY); 7105 return (PF_SYNPROXY_DROP); 7106 } 7107 } 7108 7109 return (PF_PASS); 7110 } 7111 7112 static int 7113 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 7114 { 7115 struct pf_state_key_cmp key; 7116 int copyback = 0; 7117 struct pf_state_peer *src, *dst; 7118 uint8_t psrc, pdst; 7119 int action; 7120 7121 bzero(&key, sizeof(key)); 7122 key.af = pd->af; 7123 key.proto = pd->virtual_proto; 7124 pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af); 7125 pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af); 7126 key.port[pd->sidx] = pd->osport; 7127 key.port[pd->didx] = pd->odport; 7128 7129 action = pf_find_state(pd, &key, state); 7130 if (action != PF_MATCH) 7131 return (action); 7132 7133 action = PF_PASS; 7134 if (pd->dir == (*state)->direction) { 7135 if (PF_REVERSED_KEY(*state, pd->af)) { 7136 src = &(*state)->dst; 7137 dst = &(*state)->src; 7138 psrc = PF_PEER_DST; 7139 pdst = PF_PEER_SRC; 7140 } else { 7141 src = &(*state)->src; 7142 dst = &(*state)->dst; 7143 psrc = PF_PEER_SRC; 7144 pdst = PF_PEER_DST; 7145 } 7146 } else { 7147 if (PF_REVERSED_KEY(*state, pd->af)) { 7148 src = &(*state)->src; 7149 dst = &(*state)->dst; 7150 psrc = PF_PEER_SRC; 7151 pdst = PF_PEER_DST; 7152 } else { 7153 src = &(*state)->dst; 7154 dst = &(*state)->src; 7155 psrc = PF_PEER_DST; 7156 pdst = PF_PEER_SRC; 7157 } 7158 } 7159 7160 switch (pd->virtual_proto) { 7161 case IPPROTO_TCP: { 7162 struct tcphdr *th = &pd->hdr.tcp; 7163 7164 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS) 7165 return (action); 7166 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) || 7167 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK && 7168 pf_syncookie_check(pd) && pd->dir == PF_IN)) { 7169 if ((*state)->src.state >= TCPS_FIN_WAIT_2 && 7170 (*state)->dst.state >= TCPS_FIN_WAIT_2) { 7171 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7172 printf("pf: state reuse "); 7173 pf_print_state(*state); 7174 pf_print_flags(tcp_get_flags(th)); 7175 printf("\n"); 7176 } 7177 /* XXX make sure it's the same direction ?? */ 7178 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 7179 pf_remove_state(*state); 7180 *state = NULL; 7181 return (PF_DROP); 7182 } else if ((*state)->src.state >= TCPS_ESTABLISHED && 7183 (*state)->dst.state >= TCPS_ESTABLISHED) { 7184 /* 7185 * SYN matches existing state??? 7186 * Typically happens when sender boots up after 7187 * sudden panic. Certain protocols (NFSv3) are 7188 * always using same port numbers. Challenge 7189 * ACK enables all parties (firewall and peers) 7190 * to get in sync again. 7191 */ 7192 pf_send_challenge_ack(pd, *state, src, dst); 7193 return (PF_DROP); 7194 } 7195 } 7196 if ((*state)->state_flags & PFSTATE_SLOPPY) { 7197 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst, 7198 psrc, pdst) == PF_DROP) 7199 return (PF_DROP); 7200 } else { 7201 int ret; 7202 7203 ret = pf_tcp_track_full(*state, pd, reason, 7204 ©back, src, dst, psrc, pdst); 7205 if (ret == PF_DROP) 7206 return (PF_DROP); 7207 } 7208 break; 7209 } 7210 case IPPROTO_UDP: 7211 /* update states */ 7212 if (src->state < PFUDPS_SINGLE) 7213 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7214 if (dst->state == PFUDPS_SINGLE) 7215 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7216 7217 /* update expire time */ 7218 (*state)->expire = pf_get_uptime(); 7219 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7220 (*state)->timeout = PFTM_UDP_MULTIPLE; 7221 else 7222 (*state)->timeout = PFTM_UDP_SINGLE; 7223 break; 7224 case IPPROTO_SCTP: 7225 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7226 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7227 pd->sctp_flags & PFDESC_SCTP_INIT) { 7228 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7229 pf_remove_state(*state); 7230 *state = NULL; 7231 return (PF_DROP); 7232 } 7233 7234 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7235 return (PF_DROP); 7236 7237 /* Track state. */ 7238 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7239 if (src->state < SCTP_COOKIE_WAIT) { 7240 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7241 (*state)->timeout = PFTM_SCTP_OPENING; 7242 } 7243 } 7244 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7245 MPASS(dst->scrub != NULL); 7246 if (dst->scrub->pfss_v_tag == 0) 7247 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7248 } 7249 7250 /* 7251 * Bind to the correct interface if we're if-bound. For multihomed 7252 * extra associations we don't know which interface that will be until 7253 * here, so we've inserted the state on V_pf_all. Fix that now. 7254 */ 7255 if ((*state)->kif == V_pfi_all && 7256 (*state)->rule->rule_flag & PFRULE_IFBOUND) 7257 (*state)->kif = pd->kif; 7258 7259 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7260 if (src->state < SCTP_ESTABLISHED) { 7261 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7262 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7263 } 7264 } 7265 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | 7266 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7267 if (src->state < SCTP_SHUTDOWN_PENDING) { 7268 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7269 (*state)->timeout = PFTM_SCTP_CLOSING; 7270 } 7271 } 7272 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) { 7273 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7274 (*state)->timeout = PFTM_SCTP_CLOSED; 7275 } 7276 7277 (*state)->expire = pf_get_uptime(); 7278 break; 7279 default: 7280 /* update states */ 7281 if (src->state < PFOTHERS_SINGLE) 7282 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7283 if (dst->state == PFOTHERS_SINGLE) 7284 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7285 7286 /* update expire time */ 7287 (*state)->expire = pf_get_uptime(); 7288 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7289 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7290 else 7291 (*state)->timeout = PFTM_OTHER_SINGLE; 7292 break; 7293 } 7294 7295 /* translate source/destination address, if necessary */ 7296 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7297 struct pf_state_key *nk; 7298 int afto, sidx, didx; 7299 7300 if (PF_REVERSED_KEY(*state, pd->af)) 7301 nk = (*state)->key[pd->sidx]; 7302 else 7303 nk = (*state)->key[pd->didx]; 7304 7305 afto = pd->af != nk->af; 7306 7307 if (afto && (*state)->direction == PF_IN) { 7308 sidx = pd->didx; 7309 didx = pd->sidx; 7310 } else { 7311 sidx = pd->sidx; 7312 didx = pd->didx; 7313 } 7314 7315 if (afto) { 7316 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af); 7317 pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af); 7318 pd->naf = nk->af; 7319 action = PF_AFRT; 7320 } 7321 7322 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7323 nk->port[sidx] != pd->osport) 7324 pf_change_ap(pd, pd->src, pd->sport, 7325 &nk->addr[sidx], nk->port[sidx]); 7326 7327 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7328 nk->port[didx] != pd->odport) 7329 pf_change_ap(pd, pd->dst, pd->dport, 7330 &nk->addr[didx], nk->port[didx]); 7331 7332 copyback = 1; 7333 } 7334 7335 if (copyback && pd->hdrlen > 0) 7336 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 7337 7338 return (action); 7339 } 7340 7341 static int 7342 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7343 u_short *reason) 7344 { 7345 struct pf_state_peer *src; 7346 if (pd->dir == state->direction) { 7347 if (PF_REVERSED_KEY(state, pd->af)) 7348 src = &state->dst; 7349 else 7350 src = &state->src; 7351 } else { 7352 if (PF_REVERSED_KEY(state, pd->af)) 7353 src = &state->src; 7354 else 7355 src = &state->dst; 7356 } 7357 7358 if (src->scrub != NULL) { 7359 if (src->scrub->pfss_v_tag == 0) 7360 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7361 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7362 return (PF_DROP); 7363 } 7364 7365 return (PF_PASS); 7366 } 7367 7368 static void 7369 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7370 { 7371 struct pf_sctp_endpoint key; 7372 struct pf_sctp_endpoint *ep; 7373 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7374 struct pf_sctp_source *i, *tmp; 7375 7376 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7377 return; 7378 7379 PF_SCTP_ENDPOINTS_LOCK(); 7380 7381 key.v_tag = s->dst.scrub->pfss_v_tag; 7382 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7383 if (ep != NULL) { 7384 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7385 if (pf_addr_cmp(&i->addr, 7386 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7387 s->key[PF_SK_WIRE]->af) == 0) { 7388 SDT_PROBE3(pf, sctp, multihome, remove, 7389 key.v_tag, s, i); 7390 TAILQ_REMOVE(&ep->sources, i, entry); 7391 free(i, M_PFTEMP); 7392 break; 7393 } 7394 } 7395 7396 if (TAILQ_EMPTY(&ep->sources)) { 7397 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7398 free(ep, M_PFTEMP); 7399 } 7400 } 7401 7402 /* Other direction. */ 7403 key.v_tag = s->src.scrub->pfss_v_tag; 7404 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7405 if (ep != NULL) { 7406 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7407 if (pf_addr_cmp(&i->addr, 7408 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7409 s->key[PF_SK_WIRE]->af) == 0) { 7410 SDT_PROBE3(pf, sctp, multihome, remove, 7411 key.v_tag, s, i); 7412 TAILQ_REMOVE(&ep->sources, i, entry); 7413 free(i, M_PFTEMP); 7414 break; 7415 } 7416 } 7417 7418 if (TAILQ_EMPTY(&ep->sources)) { 7419 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7420 free(ep, M_PFTEMP); 7421 } 7422 } 7423 7424 PF_SCTP_ENDPOINTS_UNLOCK(); 7425 } 7426 7427 static void 7428 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7429 { 7430 struct pf_sctp_endpoint key = { 7431 .v_tag = v_tag, 7432 }; 7433 struct pf_sctp_source *i; 7434 struct pf_sctp_endpoint *ep; 7435 int count; 7436 7437 PF_SCTP_ENDPOINTS_LOCK(); 7438 7439 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7440 if (ep == NULL) { 7441 ep = malloc(sizeof(struct pf_sctp_endpoint), 7442 M_PFTEMP, M_NOWAIT); 7443 if (ep == NULL) { 7444 PF_SCTP_ENDPOINTS_UNLOCK(); 7445 return; 7446 } 7447 7448 ep->v_tag = v_tag; 7449 TAILQ_INIT(&ep->sources); 7450 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7451 } 7452 7453 /* Avoid inserting duplicates. */ 7454 count = 0; 7455 TAILQ_FOREACH(i, &ep->sources, entry) { 7456 count++; 7457 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7458 PF_SCTP_ENDPOINTS_UNLOCK(); 7459 return; 7460 } 7461 } 7462 7463 /* Limit the number of addresses per endpoint. */ 7464 if (count >= PF_SCTP_MAX_ENDPOINTS) { 7465 PF_SCTP_ENDPOINTS_UNLOCK(); 7466 return; 7467 } 7468 7469 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7470 if (i == NULL) { 7471 PF_SCTP_ENDPOINTS_UNLOCK(); 7472 return; 7473 } 7474 7475 i->af = pd->af; 7476 memcpy(&i->addr, a, sizeof(*a)); 7477 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7478 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7479 7480 PF_SCTP_ENDPOINTS_UNLOCK(); 7481 } 7482 7483 static void 7484 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7485 struct pf_kstate *s, int action) 7486 { 7487 struct pf_sctp_multihome_job *j, *tmp; 7488 struct pf_sctp_source *i; 7489 int ret; 7490 struct pf_kstate *sm = NULL; 7491 struct pf_krule *ra = NULL; 7492 struct pf_krule *r = &V_pf_default_rule; 7493 struct pf_kruleset *rs = NULL; 7494 u_short reason; 7495 bool do_extra = true; 7496 7497 PF_RULES_RLOCK_TRACKER; 7498 7499 again: 7500 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7501 if (s == NULL || action != PF_PASS) 7502 goto free; 7503 7504 /* Confirm we don't recurse here. */ 7505 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7506 7507 switch (j->op) { 7508 case SCTP_ADD_IP_ADDRESS: { 7509 uint32_t v_tag = pd->sctp_initiate_tag; 7510 7511 if (v_tag == 0) { 7512 if (s->direction == pd->dir) 7513 v_tag = s->src.scrub->pfss_v_tag; 7514 else 7515 v_tag = s->dst.scrub->pfss_v_tag; 7516 } 7517 7518 /* 7519 * Avoid duplicating states. We'll already have 7520 * created a state based on the source address of 7521 * the packet, but SCTP endpoints may also list this 7522 * address again in the INIT(_ACK) parameters. 7523 */ 7524 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7525 break; 7526 } 7527 7528 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7529 PF_RULES_RLOCK(); 7530 sm = NULL; 7531 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) { 7532 j->pd.related_rule = s->rule; 7533 } 7534 ret = pf_test_rule(&r, &sm, 7535 &j->pd, &ra, &rs, &reason, NULL); 7536 PF_RULES_RUNLOCK(); 7537 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7538 if (ret != PF_DROP && sm != NULL) { 7539 /* Inherit v_tag values. */ 7540 if (sm->direction == s->direction) { 7541 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7542 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7543 } else { 7544 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7545 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7546 } 7547 PF_STATE_UNLOCK(sm); 7548 } else { 7549 /* If we try duplicate inserts? */ 7550 break; 7551 } 7552 7553 /* Only add the address if we've actually allowed the state. */ 7554 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7555 7556 if (! do_extra) { 7557 break; 7558 } 7559 /* 7560 * We need to do this for each of our source addresses. 7561 * Find those based on the verification tag. 7562 */ 7563 struct pf_sctp_endpoint key = { 7564 .v_tag = pd->hdr.sctp.v_tag, 7565 }; 7566 struct pf_sctp_endpoint *ep; 7567 7568 PF_SCTP_ENDPOINTS_LOCK(); 7569 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7570 if (ep == NULL) { 7571 PF_SCTP_ENDPOINTS_UNLOCK(); 7572 break; 7573 } 7574 MPASS(ep != NULL); 7575 7576 TAILQ_FOREACH(i, &ep->sources, entry) { 7577 struct pf_sctp_multihome_job *nj; 7578 7579 /* SCTP can intermingle IPv4 and IPv6. */ 7580 if (i->af != pd->af) 7581 continue; 7582 7583 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7584 if (! nj) { 7585 continue; 7586 } 7587 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7588 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7589 nj->pd.src = &nj->src; 7590 // New destination address! 7591 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7592 nj->pd.dst = &nj->dst; 7593 nj->pd.m = j->pd.m; 7594 nj->op = j->op; 7595 7596 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7597 } 7598 PF_SCTP_ENDPOINTS_UNLOCK(); 7599 7600 break; 7601 } 7602 case SCTP_DEL_IP_ADDRESS: { 7603 struct pf_state_key_cmp key; 7604 uint8_t psrc; 7605 int action; 7606 7607 bzero(&key, sizeof(key)); 7608 key.af = j->pd.af; 7609 key.proto = IPPROTO_SCTP; 7610 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7611 pf_addrcpy(&key.addr[0], j->pd.src, key.af); 7612 pf_addrcpy(&key.addr[1], j->pd.dst, key.af); 7613 key.port[0] = j->pd.hdr.sctp.src_port; 7614 key.port[1] = j->pd.hdr.sctp.dest_port; 7615 } else { /* stack side, reverse */ 7616 pf_addrcpy(&key.addr[1], j->pd.src, key.af); 7617 pf_addrcpy(&key.addr[0], j->pd.dst, key.af); 7618 key.port[1] = j->pd.hdr.sctp.src_port; 7619 key.port[0] = j->pd.hdr.sctp.dest_port; 7620 } 7621 7622 action = pf_find_state(&j->pd, &key, &sm); 7623 if (action == PF_MATCH) { 7624 PF_STATE_LOCK_ASSERT(sm); 7625 if (j->pd.dir == sm->direction) { 7626 psrc = PF_PEER_SRC; 7627 } else { 7628 psrc = PF_PEER_DST; 7629 } 7630 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7631 sm->timeout = PFTM_SCTP_CLOSING; 7632 PF_STATE_UNLOCK(sm); 7633 } 7634 break; 7635 default: 7636 panic("Unknown op %#x", j->op); 7637 } 7638 } 7639 7640 free: 7641 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7642 free(j, M_PFTEMP); 7643 } 7644 7645 /* We may have inserted extra work while processing the list. */ 7646 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7647 do_extra = false; 7648 goto again; 7649 } 7650 } 7651 7652 static int 7653 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7654 { 7655 int off = 0; 7656 struct pf_sctp_multihome_job *job; 7657 7658 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op); 7659 7660 while (off < len) { 7661 struct sctp_paramhdr h; 7662 7663 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7664 pd->af)) 7665 return (PF_DROP); 7666 7667 /* Parameters are at least 4 bytes. */ 7668 if (ntohs(h.param_length) < 4) 7669 return (PF_DROP); 7670 7671 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type), 7672 ntohs(h.param_length)); 7673 7674 switch (ntohs(h.param_type)) { 7675 case SCTP_IPV4_ADDRESS: { 7676 struct in_addr t; 7677 7678 if (ntohs(h.param_length) != 7679 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7680 return (PF_DROP); 7681 7682 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7683 NULL, NULL, pd->af)) 7684 return (PF_DROP); 7685 7686 if (in_nullhost(t)) 7687 t.s_addr = pd->src->v4.s_addr; 7688 7689 /* 7690 * We hold the state lock (idhash) here, which means 7691 * that we can't acquire the keyhash, or we'll get a 7692 * LOR (and potentially double-lock things too). We also 7693 * can't release the state lock here, so instead we'll 7694 * enqueue this for async handling. 7695 * There's a relatively small race here, in that a 7696 * packet using the new addresses could arrive already, 7697 * but that's just though luck for it. 7698 */ 7699 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7700 if (! job) 7701 return (PF_DROP); 7702 7703 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op); 7704 7705 memcpy(&job->pd, pd, sizeof(*pd)); 7706 7707 // New source address! 7708 memcpy(&job->src, &t, sizeof(t)); 7709 job->pd.src = &job->src; 7710 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7711 job->pd.dst = &job->dst; 7712 job->pd.m = pd->m; 7713 job->op = op; 7714 7715 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7716 break; 7717 } 7718 #ifdef INET6 7719 case SCTP_IPV6_ADDRESS: { 7720 struct in6_addr t; 7721 7722 if (ntohs(h.param_length) != 7723 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7724 return (PF_DROP); 7725 7726 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7727 NULL, NULL, pd->af)) 7728 return (PF_DROP); 7729 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7730 break; 7731 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7732 memcpy(&t, &pd->src->v6, sizeof(t)); 7733 7734 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7735 if (! job) 7736 return (PF_DROP); 7737 7738 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op); 7739 7740 memcpy(&job->pd, pd, sizeof(*pd)); 7741 memcpy(&job->src, &t, sizeof(t)); 7742 job->pd.src = &job->src; 7743 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7744 job->pd.dst = &job->dst; 7745 job->pd.m = pd->m; 7746 job->op = op; 7747 7748 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7749 break; 7750 } 7751 #endif /* INET6 */ 7752 case SCTP_ADD_IP_ADDRESS: { 7753 int ret; 7754 struct sctp_asconf_paramhdr ah; 7755 7756 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7757 NULL, NULL, pd->af)) 7758 return (PF_DROP); 7759 7760 ret = pf_multihome_scan(start + off + sizeof(ah), 7761 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7762 SCTP_ADD_IP_ADDRESS); 7763 if (ret != PF_PASS) 7764 return (ret); 7765 break; 7766 } 7767 case SCTP_DEL_IP_ADDRESS: { 7768 int ret; 7769 struct sctp_asconf_paramhdr ah; 7770 7771 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7772 NULL, NULL, pd->af)) 7773 return (PF_DROP); 7774 ret = pf_multihome_scan(start + off + sizeof(ah), 7775 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7776 SCTP_DEL_IP_ADDRESS); 7777 if (ret != PF_PASS) 7778 return (ret); 7779 break; 7780 } 7781 default: 7782 break; 7783 } 7784 7785 off += roundup(ntohs(h.param_length), 4); 7786 } 7787 7788 return (PF_PASS); 7789 } 7790 7791 int 7792 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7793 { 7794 start += sizeof(struct sctp_init_chunk); 7795 len -= sizeof(struct sctp_init_chunk); 7796 7797 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7798 } 7799 7800 int 7801 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7802 { 7803 start += sizeof(struct sctp_asconf_chunk); 7804 len -= sizeof(struct sctp_asconf_chunk); 7805 7806 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7807 } 7808 7809 int 7810 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7811 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir, 7812 int *iidx, int multi, int inner) 7813 { 7814 int action, direction = pd->dir; 7815 7816 key->af = pd->af; 7817 key->proto = pd->proto; 7818 if (icmp_dir == PF_IN) { 7819 *iidx = pd->sidx; 7820 key->port[pd->sidx] = icmpid; 7821 key->port[pd->didx] = type; 7822 } else { 7823 *iidx = pd->didx; 7824 key->port[pd->sidx] = type; 7825 key->port[pd->didx] = icmpid; 7826 } 7827 if (pf_state_key_addr_setup(pd, key, multi)) 7828 return (PF_DROP); 7829 7830 action = pf_find_state(pd, key, state); 7831 if (action != PF_MATCH) 7832 return (action); 7833 7834 if ((*state)->state_flags & PFSTATE_SLOPPY) 7835 return (-1); 7836 7837 /* Is this ICMP message flowing in right direction? */ 7838 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af) 7839 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ? 7840 PF_IN : PF_OUT; 7841 else 7842 direction = (*state)->direction; 7843 if ((*state)->rule->type && 7844 (((!inner && direction == pd->dir) || 7845 (inner && direction != pd->dir)) ? 7846 PF_IN : PF_OUT) != icmp_dir) { 7847 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7848 printf("pf: icmp type %d in wrong direction (%d): ", 7849 ntohs(type), icmp_dir); 7850 pf_print_state(*state); 7851 printf("\n"); 7852 } 7853 PF_STATE_UNLOCK(*state); 7854 *state = NULL; 7855 return (PF_DROP); 7856 } 7857 return (-1); 7858 } 7859 7860 static int 7861 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7862 u_short *reason) 7863 { 7864 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7865 u_int16_t *icmpsum, virtual_id, virtual_type; 7866 u_int8_t icmptype, icmpcode; 7867 int icmp_dir, iidx, ret; 7868 struct pf_state_key_cmp key; 7869 #ifdef INET 7870 u_int16_t icmpid; 7871 #endif /* INET*/ 7872 7873 MPASS(*state == NULL); 7874 7875 bzero(&key, sizeof(key)); 7876 switch (pd->proto) { 7877 #ifdef INET 7878 case IPPROTO_ICMP: 7879 icmptype = pd->hdr.icmp.icmp_type; 7880 icmpcode = pd->hdr.icmp.icmp_code; 7881 icmpid = pd->hdr.icmp.icmp_id; 7882 icmpsum = &pd->hdr.icmp.icmp_cksum; 7883 break; 7884 #endif /* INET */ 7885 #ifdef INET6 7886 case IPPROTO_ICMPV6: 7887 icmptype = pd->hdr.icmp6.icmp6_type; 7888 icmpcode = pd->hdr.icmp6.icmp6_code; 7889 #ifdef INET 7890 icmpid = pd->hdr.icmp6.icmp6_id; 7891 #endif /* INET */ 7892 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7893 break; 7894 #endif /* INET6 */ 7895 default: 7896 panic("unhandled proto %d", pd->proto); 7897 } 7898 7899 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id, 7900 &virtual_type) == 0) { 7901 /* 7902 * ICMP query/reply message not related to a TCP/UDP/SCTP 7903 * packet. Search for an ICMP state. 7904 */ 7905 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id, 7906 virtual_type, icmp_dir, &iidx, 0, 0); 7907 /* IPv6? try matching a multicast address */ 7908 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) { 7909 MPASS(*state == NULL); 7910 ret = pf_icmp_state_lookup(&key, pd, state, 7911 virtual_id, virtual_type, 7912 icmp_dir, &iidx, 1, 0); 7913 } 7914 if (ret >= 0) { 7915 MPASS(*state == NULL); 7916 return (ret); 7917 } 7918 7919 (*state)->expire = pf_get_uptime(); 7920 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7921 7922 /* translate source/destination address, if necessary */ 7923 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7924 struct pf_state_key *nk; 7925 int afto, sidx, didx; 7926 7927 if (PF_REVERSED_KEY(*state, pd->af)) 7928 nk = (*state)->key[pd->sidx]; 7929 else 7930 nk = (*state)->key[pd->didx]; 7931 7932 afto = pd->af != nk->af; 7933 7934 if (afto && (*state)->direction == PF_IN) { 7935 sidx = pd->didx; 7936 didx = pd->sidx; 7937 iidx = !iidx; 7938 } else { 7939 sidx = pd->sidx; 7940 didx = pd->didx; 7941 } 7942 7943 switch (pd->af) { 7944 #ifdef INET 7945 case AF_INET: 7946 #ifdef INET6 7947 if (afto) { 7948 if (pf_translate_icmp_af(AF_INET6, 7949 &pd->hdr.icmp)) 7950 return (PF_DROP); 7951 pd->proto = IPPROTO_ICMPV6; 7952 } 7953 #endif /* INET6 */ 7954 if (!afto && 7955 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7956 pf_change_a(&saddr->v4.s_addr, 7957 pd->ip_sum, 7958 nk->addr[sidx].v4.s_addr, 7959 0); 7960 7961 if (!afto && PF_ANEQ(pd->dst, 7962 &nk->addr[didx], AF_INET)) 7963 pf_change_a(&daddr->v4.s_addr, 7964 pd->ip_sum, 7965 nk->addr[didx].v4.s_addr, 0); 7966 7967 if (nk->port[iidx] != 7968 pd->hdr.icmp.icmp_id) { 7969 pd->hdr.icmp.icmp_cksum = 7970 pf_cksum_fixup( 7971 pd->hdr.icmp.icmp_cksum, icmpid, 7972 nk->port[iidx], 0); 7973 pd->hdr.icmp.icmp_id = 7974 nk->port[iidx]; 7975 } 7976 7977 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7978 (caddr_t )&pd->hdr.icmp); 7979 break; 7980 #endif /* INET */ 7981 #ifdef INET6 7982 case AF_INET6: 7983 #ifdef INET 7984 if (afto) { 7985 if (pf_translate_icmp_af(AF_INET, 7986 &pd->hdr.icmp6)) 7987 return (PF_DROP); 7988 pd->proto = IPPROTO_ICMP; 7989 } 7990 #endif /* INET */ 7991 if (!afto && 7992 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7993 pf_change_a6(saddr, 7994 &pd->hdr.icmp6.icmp6_cksum, 7995 &nk->addr[sidx], 0); 7996 7997 if (!afto && PF_ANEQ(pd->dst, 7998 &nk->addr[didx], AF_INET6)) 7999 pf_change_a6(daddr, 8000 &pd->hdr.icmp6.icmp6_cksum, 8001 &nk->addr[didx], 0); 8002 8003 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id) 8004 pd->hdr.icmp6.icmp6_id = 8005 nk->port[iidx]; 8006 8007 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8008 (caddr_t )&pd->hdr.icmp6); 8009 break; 8010 #endif /* INET6 */ 8011 } 8012 if (afto) { 8013 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], 8014 nk->af); 8015 pf_addrcpy(&pd->ndaddr, &nk->addr[didx], 8016 nk->af); 8017 pd->naf = nk->af; 8018 return (PF_AFRT); 8019 } 8020 } 8021 return (PF_PASS); 8022 8023 } else { 8024 /* 8025 * ICMP error message in response to a TCP/UDP packet. 8026 * Extract the inner TCP/UDP header and search for that state. 8027 */ 8028 8029 struct pf_pdesc pd2; 8030 bzero(&pd2, sizeof pd2); 8031 #ifdef INET 8032 struct ip h2; 8033 #endif /* INET */ 8034 #ifdef INET6 8035 struct ip6_hdr h2_6; 8036 #endif /* INET6 */ 8037 int ipoff2 = 0; 8038 8039 pd2.af = pd->af; 8040 pd2.dir = pd->dir; 8041 /* Payload packet is from the opposite direction. */ 8042 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 8043 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 8044 pd2.m = pd->m; 8045 pd2.pf_mtag = pd->pf_mtag; 8046 pd2.kif = pd->kif; 8047 switch (pd->af) { 8048 #ifdef INET 8049 case AF_INET: 8050 /* offset of h2 in mbuf chain */ 8051 ipoff2 = pd->off + ICMP_MINLEN; 8052 8053 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 8054 NULL, reason, pd2.af)) { 8055 DPFPRINTF(PF_DEBUG_MISC, 8056 "pf: ICMP error message too short " 8057 "(ip)"); 8058 return (PF_DROP); 8059 } 8060 /* 8061 * ICMP error messages don't refer to non-first 8062 * fragments 8063 */ 8064 if (h2.ip_off & htons(IP_OFFMASK)) { 8065 REASON_SET(reason, PFRES_FRAG); 8066 return (PF_DROP); 8067 } 8068 8069 /* offset of protocol header that follows h2 */ 8070 pd2.off = ipoff2; 8071 if (pf_walk_header(&pd2, &h2, reason) != PF_PASS) 8072 return (PF_DROP); 8073 8074 pd2.tot_len = ntohs(h2.ip_len); 8075 pd2.ttl = h2.ip_ttl; 8076 pd2.src = (struct pf_addr *)&h2.ip_src; 8077 pd2.dst = (struct pf_addr *)&h2.ip_dst; 8078 pd2.ip_sum = &h2.ip_sum; 8079 break; 8080 #endif /* INET */ 8081 #ifdef INET6 8082 case AF_INET6: 8083 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 8084 8085 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 8086 NULL, reason, pd2.af)) { 8087 DPFPRINTF(PF_DEBUG_MISC, 8088 "pf: ICMP error message too short " 8089 "(ip6)"); 8090 return (PF_DROP); 8091 } 8092 pd2.off = ipoff2; 8093 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS) 8094 return (PF_DROP); 8095 8096 pd2.tot_len = ntohs(h2_6.ip6_plen) + 8097 sizeof(struct ip6_hdr); 8098 pd2.ttl = h2_6.ip6_hlim; 8099 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 8100 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 8101 pd2.ip_sum = NULL; 8102 break; 8103 #endif /* INET6 */ 8104 default: 8105 unhandled_af(pd->af); 8106 } 8107 8108 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 8109 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8110 printf("pf: BAD ICMP %d:%d outer dst: ", 8111 icmptype, icmpcode); 8112 pf_print_host(pd->src, 0, pd->af); 8113 printf(" -> "); 8114 pf_print_host(pd->dst, 0, pd->af); 8115 printf(" inner src: "); 8116 pf_print_host(pd2.src, 0, pd2.af); 8117 printf(" -> "); 8118 pf_print_host(pd2.dst, 0, pd2.af); 8119 printf("\n"); 8120 } 8121 REASON_SET(reason, PFRES_BADSTATE); 8122 return (PF_DROP); 8123 } 8124 8125 switch (pd2.proto) { 8126 case IPPROTO_TCP: { 8127 struct tcphdr *th = &pd2.hdr.tcp; 8128 u_int32_t seq; 8129 struct pf_state_peer *src, *dst; 8130 u_int8_t dws; 8131 int copyback = 0; 8132 int action; 8133 8134 /* 8135 * Only the first 8 bytes of the TCP header can be 8136 * expected. Don't access any TCP header fields after 8137 * th_seq, an ackskew test is not possible. 8138 */ 8139 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason, 8140 pd2.af)) { 8141 DPFPRINTF(PF_DEBUG_MISC, 8142 "pf: ICMP error message too short " 8143 "(tcp)"); 8144 return (PF_DROP); 8145 } 8146 pd2.pcksum = &pd2.hdr.tcp.th_sum; 8147 8148 key.af = pd2.af; 8149 key.proto = IPPROTO_TCP; 8150 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8151 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8152 key.port[pd2.sidx] = th->th_sport; 8153 key.port[pd2.didx] = th->th_dport; 8154 8155 action = pf_find_state(&pd2, &key, state); 8156 if (action != PF_MATCH) 8157 return (action); 8158 8159 if (pd->dir == (*state)->direction) { 8160 if (PF_REVERSED_KEY(*state, pd->af)) { 8161 src = &(*state)->src; 8162 dst = &(*state)->dst; 8163 } else { 8164 src = &(*state)->dst; 8165 dst = &(*state)->src; 8166 } 8167 } else { 8168 if (PF_REVERSED_KEY(*state, pd->af)) { 8169 src = &(*state)->dst; 8170 dst = &(*state)->src; 8171 } else { 8172 src = &(*state)->src; 8173 dst = &(*state)->dst; 8174 } 8175 } 8176 8177 if (src->wscale && dst->wscale) 8178 dws = dst->wscale & PF_WSCALE_MASK; 8179 else 8180 dws = 0; 8181 8182 /* Demodulate sequence number */ 8183 seq = ntohl(th->th_seq) - src->seqdiff; 8184 if (src->seqdiff) { 8185 pf_change_a(&th->th_seq, icmpsum, 8186 htonl(seq), 0); 8187 copyback = 1; 8188 } 8189 8190 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 8191 (!SEQ_GEQ(src->seqhi, seq) || 8192 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 8193 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8194 printf("pf: BAD ICMP %d:%d ", 8195 icmptype, icmpcode); 8196 pf_print_host(pd->src, 0, pd->af); 8197 printf(" -> "); 8198 pf_print_host(pd->dst, 0, pd->af); 8199 printf(" state: "); 8200 pf_print_state(*state); 8201 printf(" seq=%u\n", seq); 8202 } 8203 REASON_SET(reason, PFRES_BADSTATE); 8204 return (PF_DROP); 8205 } else { 8206 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8207 printf("pf: OK ICMP %d:%d ", 8208 icmptype, icmpcode); 8209 pf_print_host(pd->src, 0, pd->af); 8210 printf(" -> "); 8211 pf_print_host(pd->dst, 0, pd->af); 8212 printf(" state: "); 8213 pf_print_state(*state); 8214 printf(" seq=%u\n", seq); 8215 } 8216 } 8217 8218 /* translate source/destination address, if necessary */ 8219 if ((*state)->key[PF_SK_WIRE] != 8220 (*state)->key[PF_SK_STACK]) { 8221 8222 struct pf_state_key *nk; 8223 8224 if (PF_REVERSED_KEY(*state, pd->af)) 8225 nk = (*state)->key[pd->sidx]; 8226 else 8227 nk = (*state)->key[pd->didx]; 8228 8229 #if defined(INET) && defined(INET6) 8230 int afto, sidx, didx; 8231 8232 afto = pd->af != nk->af; 8233 8234 if (afto && (*state)->direction == PF_IN) { 8235 sidx = pd2.didx; 8236 didx = pd2.sidx; 8237 } else { 8238 sidx = pd2.sidx; 8239 didx = pd2.didx; 8240 } 8241 8242 if (afto) { 8243 if (pf_translate_icmp_af(nk->af, 8244 &pd->hdr.icmp)) 8245 return (PF_DROP); 8246 m_copyback(pd->m, pd->off, 8247 sizeof(struct icmp6_hdr), 8248 (c_caddr_t)&pd->hdr.icmp6); 8249 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8250 &pd2, &nk->addr[sidx], 8251 &nk->addr[didx], pd->af, 8252 nk->af)) 8253 return (PF_DROP); 8254 pf_addrcpy(&pd->nsaddr, 8255 &nk->addr[pd2.sidx], nk->af); 8256 pf_addrcpy(&pd->ndaddr, 8257 &nk->addr[pd2.didx], nk->af); 8258 if (nk->af == AF_INET) { 8259 pd->proto = IPPROTO_ICMP; 8260 } else { 8261 pd->proto = IPPROTO_ICMPV6; 8262 /* 8263 * IPv4 becomes IPv6 so we must 8264 * copy IPv4 src addr to least 8265 * 32bits in IPv6 address to 8266 * keep traceroute/icmp 8267 * working. 8268 */ 8269 pd->nsaddr.addr32[3] = 8270 pd->src->addr32[0]; 8271 } 8272 pd->naf = pd2.naf = nk->af; 8273 pf_change_ap(&pd2, pd2.src, &th->th_sport, 8274 &nk->addr[pd2.sidx], nk->port[sidx]); 8275 pf_change_ap(&pd2, pd2.dst, &th->th_dport, 8276 &nk->addr[pd2.didx], nk->port[didx]); 8277 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th); 8278 return (PF_AFRT); 8279 } 8280 #endif /* INET && INET6 */ 8281 8282 if (PF_ANEQ(pd2.src, 8283 &nk->addr[pd2.sidx], pd2.af) || 8284 nk->port[pd2.sidx] != th->th_sport) 8285 pf_change_icmp(pd2.src, &th->th_sport, 8286 daddr, &nk->addr[pd2.sidx], 8287 nk->port[pd2.sidx], NULL, 8288 pd2.ip_sum, icmpsum, 8289 pd->ip_sum, 0, pd2.af); 8290 8291 if (PF_ANEQ(pd2.dst, 8292 &nk->addr[pd2.didx], pd2.af) || 8293 nk->port[pd2.didx] != th->th_dport) 8294 pf_change_icmp(pd2.dst, &th->th_dport, 8295 saddr, &nk->addr[pd2.didx], 8296 nk->port[pd2.didx], NULL, 8297 pd2.ip_sum, icmpsum, 8298 pd->ip_sum, 0, pd2.af); 8299 copyback = 1; 8300 } 8301 8302 if (copyback) { 8303 switch (pd2.af) { 8304 #ifdef INET 8305 case AF_INET: 8306 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8307 (caddr_t )&pd->hdr.icmp); 8308 m_copyback(pd->m, ipoff2, sizeof(h2), 8309 (caddr_t )&h2); 8310 break; 8311 #endif /* INET */ 8312 #ifdef INET6 8313 case AF_INET6: 8314 m_copyback(pd->m, pd->off, 8315 sizeof(struct icmp6_hdr), 8316 (caddr_t )&pd->hdr.icmp6); 8317 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8318 (caddr_t )&h2_6); 8319 break; 8320 #endif /* INET6 */ 8321 default: 8322 unhandled_af(pd->af); 8323 } 8324 m_copyback(pd->m, pd2.off, 8, (caddr_t)th); 8325 } 8326 8327 return (PF_PASS); 8328 break; 8329 } 8330 case IPPROTO_UDP: { 8331 struct udphdr *uh = &pd2.hdr.udp; 8332 int action; 8333 8334 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh), 8335 NULL, reason, pd2.af)) { 8336 DPFPRINTF(PF_DEBUG_MISC, 8337 "pf: ICMP error message too short " 8338 "(udp)"); 8339 return (PF_DROP); 8340 } 8341 pd2.pcksum = &pd2.hdr.udp.uh_sum; 8342 8343 key.af = pd2.af; 8344 key.proto = IPPROTO_UDP; 8345 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8346 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8347 key.port[pd2.sidx] = uh->uh_sport; 8348 key.port[pd2.didx] = uh->uh_dport; 8349 8350 action = pf_find_state(&pd2, &key, state); 8351 if (action != PF_MATCH) 8352 return (action); 8353 8354 /* translate source/destination address, if necessary */ 8355 if ((*state)->key[PF_SK_WIRE] != 8356 (*state)->key[PF_SK_STACK]) { 8357 struct pf_state_key *nk; 8358 8359 if (PF_REVERSED_KEY(*state, pd->af)) 8360 nk = (*state)->key[pd->sidx]; 8361 else 8362 nk = (*state)->key[pd->didx]; 8363 8364 #if defined(INET) && defined(INET6) 8365 int afto, sidx, didx; 8366 8367 afto = pd->af != nk->af; 8368 8369 if (afto && (*state)->direction == PF_IN) { 8370 sidx = pd2.didx; 8371 didx = pd2.sidx; 8372 } else { 8373 sidx = pd2.sidx; 8374 didx = pd2.didx; 8375 } 8376 8377 if (afto) { 8378 if (pf_translate_icmp_af(nk->af, 8379 &pd->hdr.icmp)) 8380 return (PF_DROP); 8381 m_copyback(pd->m, pd->off, 8382 sizeof(struct icmp6_hdr), 8383 (c_caddr_t)&pd->hdr.icmp6); 8384 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8385 &pd2, &nk->addr[sidx], 8386 &nk->addr[didx], pd->af, 8387 nk->af)) 8388 return (PF_DROP); 8389 pf_addrcpy(&pd->nsaddr, 8390 &nk->addr[pd2.sidx], nk->af); 8391 pf_addrcpy(&pd->ndaddr, 8392 &nk->addr[pd2.didx], nk->af); 8393 if (nk->af == AF_INET) { 8394 pd->proto = IPPROTO_ICMP; 8395 } else { 8396 pd->proto = IPPROTO_ICMPV6; 8397 /* 8398 * IPv4 becomes IPv6 so we must 8399 * copy IPv4 src addr to least 8400 * 32bits in IPv6 address to 8401 * keep traceroute/icmp 8402 * working. 8403 */ 8404 pd->nsaddr.addr32[3] = 8405 pd->src->addr32[0]; 8406 } 8407 pd->naf = pd2.naf = nk->af; 8408 pf_change_ap(&pd2, pd2.src, &uh->uh_sport, 8409 &nk->addr[pd2.sidx], nk->port[sidx]); 8410 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport, 8411 &nk->addr[pd2.didx], nk->port[didx]); 8412 m_copyback(pd2.m, pd2.off, sizeof(*uh), 8413 (c_caddr_t)uh); 8414 return (PF_AFRT); 8415 } 8416 #endif /* INET && INET6 */ 8417 8418 if (PF_ANEQ(pd2.src, 8419 &nk->addr[pd2.sidx], pd2.af) || 8420 nk->port[pd2.sidx] != uh->uh_sport) 8421 pf_change_icmp(pd2.src, &uh->uh_sport, 8422 daddr, &nk->addr[pd2.sidx], 8423 nk->port[pd2.sidx], &uh->uh_sum, 8424 pd2.ip_sum, icmpsum, 8425 pd->ip_sum, 1, pd2.af); 8426 8427 if (PF_ANEQ(pd2.dst, 8428 &nk->addr[pd2.didx], pd2.af) || 8429 nk->port[pd2.didx] != uh->uh_dport) 8430 pf_change_icmp(pd2.dst, &uh->uh_dport, 8431 saddr, &nk->addr[pd2.didx], 8432 nk->port[pd2.didx], &uh->uh_sum, 8433 pd2.ip_sum, icmpsum, 8434 pd->ip_sum, 1, pd2.af); 8435 8436 switch (pd2.af) { 8437 #ifdef INET 8438 case AF_INET: 8439 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8440 (caddr_t )&pd->hdr.icmp); 8441 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8442 break; 8443 #endif /* INET */ 8444 #ifdef INET6 8445 case AF_INET6: 8446 m_copyback(pd->m, pd->off, 8447 sizeof(struct icmp6_hdr), 8448 (caddr_t )&pd->hdr.icmp6); 8449 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8450 (caddr_t )&h2_6); 8451 break; 8452 #endif /* INET6 */ 8453 } 8454 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh); 8455 } 8456 return (PF_PASS); 8457 break; 8458 } 8459 #ifdef INET 8460 case IPPROTO_SCTP: { 8461 struct sctphdr *sh = &pd2.hdr.sctp; 8462 struct pf_state_peer *src; 8463 int copyback = 0; 8464 int action; 8465 8466 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason, 8467 pd2.af)) { 8468 DPFPRINTF(PF_DEBUG_MISC, 8469 "pf: ICMP error message too short " 8470 "(sctp)"); 8471 return (PF_DROP); 8472 } 8473 pd2.pcksum = &pd2.sctp_dummy_sum; 8474 8475 key.af = pd2.af; 8476 key.proto = IPPROTO_SCTP; 8477 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8478 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8479 key.port[pd2.sidx] = sh->src_port; 8480 key.port[pd2.didx] = sh->dest_port; 8481 8482 action = pf_find_state(&pd2, &key, state); 8483 if (action != PF_MATCH) 8484 return (action); 8485 8486 if (pd->dir == (*state)->direction) { 8487 if (PF_REVERSED_KEY(*state, pd->af)) 8488 src = &(*state)->src; 8489 else 8490 src = &(*state)->dst; 8491 } else { 8492 if (PF_REVERSED_KEY(*state, pd->af)) 8493 src = &(*state)->dst; 8494 else 8495 src = &(*state)->src; 8496 } 8497 8498 if (src->scrub->pfss_v_tag != sh->v_tag) { 8499 DPFPRINTF(PF_DEBUG_MISC, 8500 "pf: ICMP error message has incorrect " 8501 "SCTP v_tag"); 8502 return (PF_DROP); 8503 } 8504 8505 /* translate source/destination address, if necessary */ 8506 if ((*state)->key[PF_SK_WIRE] != 8507 (*state)->key[PF_SK_STACK]) { 8508 8509 struct pf_state_key *nk; 8510 8511 if (PF_REVERSED_KEY(*state, pd->af)) 8512 nk = (*state)->key[pd->sidx]; 8513 else 8514 nk = (*state)->key[pd->didx]; 8515 8516 #if defined(INET) && defined(INET6) 8517 int afto, sidx, didx; 8518 8519 afto = pd->af != nk->af; 8520 8521 if (afto && (*state)->direction == PF_IN) { 8522 sidx = pd2.didx; 8523 didx = pd2.sidx; 8524 } else { 8525 sidx = pd2.sidx; 8526 didx = pd2.didx; 8527 } 8528 8529 if (afto) { 8530 if (pf_translate_icmp_af(nk->af, 8531 &pd->hdr.icmp)) 8532 return (PF_DROP); 8533 m_copyback(pd->m, pd->off, 8534 sizeof(struct icmp6_hdr), 8535 (c_caddr_t)&pd->hdr.icmp6); 8536 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8537 &pd2, &nk->addr[sidx], 8538 &nk->addr[didx], pd->af, 8539 nk->af)) 8540 return (PF_DROP); 8541 sh->src_port = nk->port[sidx]; 8542 sh->dest_port = nk->port[didx]; 8543 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh); 8544 pf_addrcpy(&pd->nsaddr, 8545 &nk->addr[pd2.sidx], nk->af); 8546 pf_addrcpy(&pd->ndaddr, 8547 &nk->addr[pd2.didx], nk->af); 8548 if (nk->af == AF_INET) { 8549 pd->proto = IPPROTO_ICMP; 8550 } else { 8551 pd->proto = IPPROTO_ICMPV6; 8552 /* 8553 * IPv4 becomes IPv6 so we must 8554 * copy IPv4 src addr to least 8555 * 32bits in IPv6 address to 8556 * keep traceroute/icmp 8557 * working. 8558 */ 8559 pd->nsaddr.addr32[3] = 8560 pd->src->addr32[0]; 8561 } 8562 pd->naf = nk->af; 8563 return (PF_AFRT); 8564 } 8565 #endif /* INET && INET6 */ 8566 8567 if (PF_ANEQ(pd2.src, 8568 &nk->addr[pd2.sidx], pd2.af) || 8569 nk->port[pd2.sidx] != sh->src_port) 8570 pf_change_icmp(pd2.src, &sh->src_port, 8571 daddr, &nk->addr[pd2.sidx], 8572 nk->port[pd2.sidx], NULL, 8573 pd2.ip_sum, icmpsum, 8574 pd->ip_sum, 0, pd2.af); 8575 8576 if (PF_ANEQ(pd2.dst, 8577 &nk->addr[pd2.didx], pd2.af) || 8578 nk->port[pd2.didx] != sh->dest_port) 8579 pf_change_icmp(pd2.dst, &sh->dest_port, 8580 saddr, &nk->addr[pd2.didx], 8581 nk->port[pd2.didx], NULL, 8582 pd2.ip_sum, icmpsum, 8583 pd->ip_sum, 0, pd2.af); 8584 copyback = 1; 8585 } 8586 8587 if (copyback) { 8588 switch (pd2.af) { 8589 #ifdef INET 8590 case AF_INET: 8591 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8592 (caddr_t )&pd->hdr.icmp); 8593 m_copyback(pd->m, ipoff2, sizeof(h2), 8594 (caddr_t )&h2); 8595 break; 8596 #endif /* INET */ 8597 #ifdef INET6 8598 case AF_INET6: 8599 m_copyback(pd->m, pd->off, 8600 sizeof(struct icmp6_hdr), 8601 (caddr_t )&pd->hdr.icmp6); 8602 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8603 (caddr_t )&h2_6); 8604 break; 8605 #endif /* INET6 */ 8606 } 8607 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh); 8608 } 8609 8610 return (PF_PASS); 8611 break; 8612 } 8613 case IPPROTO_ICMP: { 8614 struct icmp *iih = &pd2.hdr.icmp; 8615 8616 if (pd2.af != AF_INET) { 8617 REASON_SET(reason, PFRES_NORM); 8618 return (PF_DROP); 8619 } 8620 8621 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8622 NULL, reason, pd2.af)) { 8623 DPFPRINTF(PF_DEBUG_MISC, 8624 "pf: ICMP error message too short i" 8625 "(icmp)"); 8626 return (PF_DROP); 8627 } 8628 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum; 8629 8630 icmpid = iih->icmp_id; 8631 pf_icmp_mapping(&pd2, iih->icmp_type, 8632 &icmp_dir, &virtual_id, &virtual_type); 8633 8634 ret = pf_icmp_state_lookup(&key, &pd2, state, 8635 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8636 if (ret >= 0) { 8637 MPASS(*state == NULL); 8638 return (ret); 8639 } 8640 8641 /* translate source/destination address, if necessary */ 8642 if ((*state)->key[PF_SK_WIRE] != 8643 (*state)->key[PF_SK_STACK]) { 8644 struct pf_state_key *nk; 8645 8646 if (PF_REVERSED_KEY(*state, pd->af)) 8647 nk = (*state)->key[pd->sidx]; 8648 else 8649 nk = (*state)->key[pd->didx]; 8650 8651 #if defined(INET) && defined(INET6) 8652 int afto, sidx, didx; 8653 8654 afto = pd->af != nk->af; 8655 8656 if (afto && (*state)->direction == PF_IN) { 8657 sidx = pd2.didx; 8658 didx = pd2.sidx; 8659 iidx = !iidx; 8660 } else { 8661 sidx = pd2.sidx; 8662 didx = pd2.didx; 8663 } 8664 8665 if (afto) { 8666 if (nk->af != AF_INET6) 8667 return (PF_DROP); 8668 if (pf_translate_icmp_af(nk->af, 8669 &pd->hdr.icmp)) 8670 return (PF_DROP); 8671 m_copyback(pd->m, pd->off, 8672 sizeof(struct icmp6_hdr), 8673 (c_caddr_t)&pd->hdr.icmp6); 8674 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8675 &pd2, &nk->addr[sidx], 8676 &nk->addr[didx], pd->af, 8677 nk->af)) 8678 return (PF_DROP); 8679 pd->proto = IPPROTO_ICMPV6; 8680 if (pf_translate_icmp_af(nk->af, iih)) 8681 return (PF_DROP); 8682 if (virtual_type == htons(ICMP_ECHO) && 8683 nk->port[iidx] != iih->icmp_id) 8684 iih->icmp_id = nk->port[iidx]; 8685 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8686 (c_caddr_t)iih); 8687 pf_addrcpy(&pd->nsaddr, 8688 &nk->addr[pd2.sidx], nk->af); 8689 pf_addrcpy(&pd->ndaddr, 8690 &nk->addr[pd2.didx], nk->af); 8691 /* 8692 * IPv4 becomes IPv6 so we must copy 8693 * IPv4 src addr to least 32bits in 8694 * IPv6 address to keep traceroute 8695 * working. 8696 */ 8697 pd->nsaddr.addr32[3] = 8698 pd->src->addr32[0]; 8699 pd->naf = nk->af; 8700 return (PF_AFRT); 8701 } 8702 #endif /* INET && INET6 */ 8703 8704 if (PF_ANEQ(pd2.src, 8705 &nk->addr[pd2.sidx], pd2.af) || 8706 (virtual_type == htons(ICMP_ECHO) && 8707 nk->port[iidx] != iih->icmp_id)) 8708 pf_change_icmp(pd2.src, 8709 (virtual_type == htons(ICMP_ECHO)) ? 8710 &iih->icmp_id : NULL, 8711 daddr, &nk->addr[pd2.sidx], 8712 (virtual_type == htons(ICMP_ECHO)) ? 8713 nk->port[iidx] : 0, NULL, 8714 pd2.ip_sum, icmpsum, 8715 pd->ip_sum, 0, AF_INET); 8716 8717 if (PF_ANEQ(pd2.dst, 8718 &nk->addr[pd2.didx], pd2.af)) 8719 pf_change_icmp(pd2.dst, NULL, NULL, 8720 &nk->addr[pd2.didx], 0, NULL, 8721 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8722 AF_INET); 8723 8724 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8725 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8726 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8727 } 8728 return (PF_PASS); 8729 break; 8730 } 8731 #endif /* INET */ 8732 #ifdef INET6 8733 case IPPROTO_ICMPV6: { 8734 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8735 8736 if (pd2.af != AF_INET6) { 8737 REASON_SET(reason, PFRES_NORM); 8738 return (PF_DROP); 8739 } 8740 8741 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8742 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8743 DPFPRINTF(PF_DEBUG_MISC, 8744 "pf: ICMP error message too short " 8745 "(icmp6)"); 8746 return (PF_DROP); 8747 } 8748 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum; 8749 8750 pf_icmp_mapping(&pd2, iih->icmp6_type, 8751 &icmp_dir, &virtual_id, &virtual_type); 8752 8753 ret = pf_icmp_state_lookup(&key, &pd2, state, 8754 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8755 /* IPv6? try matching a multicast address */ 8756 if (ret == PF_DROP && pd2.af == AF_INET6 && 8757 icmp_dir == PF_OUT) { 8758 MPASS(*state == NULL); 8759 ret = pf_icmp_state_lookup(&key, &pd2, 8760 state, virtual_id, virtual_type, 8761 icmp_dir, &iidx, 1, 1); 8762 } 8763 if (ret >= 0) { 8764 MPASS(*state == NULL); 8765 return (ret); 8766 } 8767 8768 /* translate source/destination address, if necessary */ 8769 if ((*state)->key[PF_SK_WIRE] != 8770 (*state)->key[PF_SK_STACK]) { 8771 struct pf_state_key *nk; 8772 8773 if (PF_REVERSED_KEY(*state, pd->af)) 8774 nk = (*state)->key[pd->sidx]; 8775 else 8776 nk = (*state)->key[pd->didx]; 8777 8778 #if defined(INET) && defined(INET6) 8779 int afto, sidx, didx; 8780 8781 afto = pd->af != nk->af; 8782 8783 if (afto && (*state)->direction == PF_IN) { 8784 sidx = pd2.didx; 8785 didx = pd2.sidx; 8786 iidx = !iidx; 8787 } else { 8788 sidx = pd2.sidx; 8789 didx = pd2.didx; 8790 } 8791 8792 if (afto) { 8793 if (nk->af != AF_INET) 8794 return (PF_DROP); 8795 if (pf_translate_icmp_af(nk->af, 8796 &pd->hdr.icmp)) 8797 return (PF_DROP); 8798 m_copyback(pd->m, pd->off, 8799 sizeof(struct icmp6_hdr), 8800 (c_caddr_t)&pd->hdr.icmp6); 8801 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8802 &pd2, &nk->addr[sidx], 8803 &nk->addr[didx], pd->af, 8804 nk->af)) 8805 return (PF_DROP); 8806 pd->proto = IPPROTO_ICMP; 8807 if (pf_translate_icmp_af(nk->af, iih)) 8808 return (PF_DROP); 8809 if (virtual_type == 8810 htons(ICMP6_ECHO_REQUEST) && 8811 nk->port[iidx] != iih->icmp6_id) 8812 iih->icmp6_id = nk->port[iidx]; 8813 m_copyback(pd2.m, pd2.off, 8814 sizeof(struct icmp6_hdr), (c_caddr_t)iih); 8815 pf_addrcpy(&pd->nsaddr, 8816 &nk->addr[pd2.sidx], nk->af); 8817 pf_addrcpy(&pd->ndaddr, 8818 &nk->addr[pd2.didx], nk->af); 8819 pd->naf = nk->af; 8820 return (PF_AFRT); 8821 } 8822 #endif /* INET && INET6 */ 8823 8824 if (PF_ANEQ(pd2.src, 8825 &nk->addr[pd2.sidx], pd2.af) || 8826 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8827 nk->port[pd2.sidx] != iih->icmp6_id)) 8828 pf_change_icmp(pd2.src, 8829 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8830 ? &iih->icmp6_id : NULL, 8831 daddr, &nk->addr[pd2.sidx], 8832 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8833 ? nk->port[iidx] : 0, NULL, 8834 pd2.ip_sum, icmpsum, 8835 pd->ip_sum, 0, AF_INET6); 8836 8837 if (PF_ANEQ(pd2.dst, 8838 &nk->addr[pd2.didx], pd2.af)) 8839 pf_change_icmp(pd2.dst, NULL, NULL, 8840 &nk->addr[pd2.didx], 0, NULL, 8841 pd2.ip_sum, icmpsum, 8842 pd->ip_sum, 0, AF_INET6); 8843 8844 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8845 (caddr_t)&pd->hdr.icmp6); 8846 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8847 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8848 (caddr_t)iih); 8849 } 8850 return (PF_PASS); 8851 break; 8852 } 8853 #endif /* INET6 */ 8854 default: { 8855 int action; 8856 8857 /* 8858 * Placeholder value, so future calls to pf_change_ap() 8859 * don't try to update a NULL checksum pointer. 8860 */ 8861 pd->pcksum = &pd->sctp_dummy_sum; 8862 key.af = pd2.af; 8863 key.proto = pd2.proto; 8864 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8865 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8866 key.port[0] = key.port[1] = 0; 8867 8868 action = pf_find_state(&pd2, &key, state); 8869 if (action != PF_MATCH) 8870 return (action); 8871 8872 /* translate source/destination address, if necessary */ 8873 if ((*state)->key[PF_SK_WIRE] != 8874 (*state)->key[PF_SK_STACK]) { 8875 struct pf_state_key *nk = 8876 (*state)->key[pd->didx]; 8877 8878 if (PF_ANEQ(pd2.src, 8879 &nk->addr[pd2.sidx], pd2.af)) 8880 pf_change_icmp(pd2.src, NULL, daddr, 8881 &nk->addr[pd2.sidx], 0, NULL, 8882 pd2.ip_sum, icmpsum, 8883 pd->ip_sum, 0, pd2.af); 8884 8885 if (PF_ANEQ(pd2.dst, 8886 &nk->addr[pd2.didx], pd2.af)) 8887 pf_change_icmp(pd2.dst, NULL, saddr, 8888 &nk->addr[pd2.didx], 0, NULL, 8889 pd2.ip_sum, icmpsum, 8890 pd->ip_sum, 0, pd2.af); 8891 8892 switch (pd2.af) { 8893 #ifdef INET 8894 case AF_INET: 8895 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8896 (caddr_t)&pd->hdr.icmp); 8897 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8898 break; 8899 #endif /* INET */ 8900 #ifdef INET6 8901 case AF_INET6: 8902 m_copyback(pd->m, pd->off, 8903 sizeof(struct icmp6_hdr), 8904 (caddr_t )&pd->hdr.icmp6); 8905 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8906 (caddr_t )&h2_6); 8907 break; 8908 #endif /* INET6 */ 8909 } 8910 } 8911 return (PF_PASS); 8912 break; 8913 } 8914 } 8915 } 8916 } 8917 8918 /* 8919 * ipoff and off are measured from the start of the mbuf chain. 8920 * h must be at "ipoff" on the mbuf chain. 8921 */ 8922 void * 8923 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8924 u_short *actionp, u_short *reasonp, sa_family_t af) 8925 { 8926 int iplen = 0; 8927 switch (af) { 8928 #ifdef INET 8929 case AF_INET: { 8930 const struct ip *h = mtod(m, struct ip *); 8931 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8932 8933 if (fragoff) { 8934 if (fragoff >= len) 8935 ACTION_SET(actionp, PF_PASS); 8936 else { 8937 ACTION_SET(actionp, PF_DROP); 8938 REASON_SET(reasonp, PFRES_FRAG); 8939 } 8940 return (NULL); 8941 } 8942 iplen = ntohs(h->ip_len); 8943 break; 8944 } 8945 #endif /* INET */ 8946 #ifdef INET6 8947 case AF_INET6: { 8948 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8949 8950 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8951 break; 8952 } 8953 #endif /* INET6 */ 8954 } 8955 if (m->m_pkthdr.len < off + len || iplen < off + len) { 8956 ACTION_SET(actionp, PF_DROP); 8957 REASON_SET(reasonp, PFRES_SHORT); 8958 return (NULL); 8959 } 8960 m_copydata(m, off, len, p); 8961 return (p); 8962 } 8963 8964 int 8965 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8966 int rtableid) 8967 { 8968 struct ifnet *ifp; 8969 8970 /* 8971 * Skip check for addresses with embedded interface scope, 8972 * as they would always match anyway. 8973 */ 8974 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8975 return (1); 8976 8977 if (af != AF_INET && af != AF_INET6) 8978 return (0); 8979 8980 if (kif == V_pfi_all) 8981 return (1); 8982 8983 /* Skip checks for ipsec interfaces */ 8984 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8985 return (1); 8986 8987 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8988 8989 switch (af) { 8990 #ifdef INET6 8991 case AF_INET6: 8992 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8993 ifp)); 8994 #endif /* INET6 */ 8995 #ifdef INET 8996 case AF_INET: 8997 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8998 ifp)); 8999 #endif /* INET */ 9000 } 9001 9002 return (0); 9003 } 9004 9005 #ifdef INET 9006 static int 9007 pf_route(struct pf_krule *r, struct ifnet *oifp, 9008 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 9009 { 9010 struct mbuf *m0, *m1, *md; 9011 struct route_in6 ro; 9012 union sockaddr_union rt_gw; 9013 const union sockaddr_union *gw = (const union sockaddr_union *)&ro.ro_dst; 9014 union sockaddr_union *dst; 9015 struct ip *ip; 9016 struct ifnet *ifp = NULL; 9017 int error = 0; 9018 uint16_t ip_len, ip_off; 9019 uint16_t tmp; 9020 int r_dir; 9021 bool skip_test = false; 9022 int action = PF_PASS; 9023 9024 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 9025 9026 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp); 9027 9028 if (s) { 9029 r_dir = s->direction; 9030 } else { 9031 r_dir = r->direction; 9032 } 9033 9034 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9035 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9036 __func__)); 9037 9038 if ((pd->pf_mtag == NULL && 9039 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 9040 pd->pf_mtag->routed++ > 3) { 9041 m0 = pd->m; 9042 pd->m = NULL; 9043 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9044 action = PF_DROP; 9045 goto bad_locked; 9046 } 9047 9048 if (pd->act.rt_kif != NULL) 9049 ifp = pd->act.rt_kif->pfik_ifp; 9050 9051 if (pd->act.rt == PF_DUPTO) { 9052 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9053 if (s != NULL) { 9054 PF_STATE_UNLOCK(s); 9055 } 9056 if (ifp == oifp) { 9057 /* When the 2nd interface is not skipped */ 9058 return (action); 9059 } else { 9060 m0 = pd->m; 9061 pd->m = NULL; 9062 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9063 action = PF_DROP; 9064 goto bad; 9065 } 9066 } else { 9067 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9068 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 9069 if (s) 9070 PF_STATE_UNLOCK(s); 9071 return (action); 9072 } 9073 } 9074 } else { 9075 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9076 if (pd->af == pd->naf) { 9077 pf_dummynet(pd, s, r, &pd->m); 9078 if (s) 9079 PF_STATE_UNLOCK(s); 9080 return (action); 9081 } else { 9082 if (r_dir == PF_IN) { 9083 skip_test = true; 9084 } 9085 } 9086 } 9087 9088 /* 9089 * If we're actually doing route-to and af-to and are in the 9090 * reply direction. 9091 */ 9092 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 9093 pd->af != pd->naf) { 9094 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) { 9095 /* Un-set ifp so we do a plain route lookup. */ 9096 ifp = NULL; 9097 } 9098 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) { 9099 /* Un-set ifp so we do a plain route lookup. */ 9100 ifp = NULL; 9101 } 9102 } 9103 m0 = pd->m; 9104 } 9105 9106 ip = mtod(m0, struct ip *); 9107 9108 bzero(&ro, sizeof(ro)); 9109 dst = (union sockaddr_union *)&ro.ro_dst; 9110 dst->sin.sin_family = AF_INET; 9111 dst->sin.sin_len = sizeof(struct sockaddr_in); 9112 dst->sin.sin_addr = ip->ip_dst; 9113 if (ifp) { /* Only needed in forward direction and route-to */ 9114 bzero(&rt_gw, sizeof(rt_gw)); 9115 ro.ro_flags |= RT_HAS_GW; 9116 gw = &rt_gw; 9117 switch (pd->act.rt_af) { 9118 #ifdef INET 9119 case AF_INET: 9120 rt_gw.sin.sin_family = AF_INET; 9121 rt_gw.sin.sin_len = sizeof(struct sockaddr_in); 9122 rt_gw.sin.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 9123 break; 9124 #endif /* INET */ 9125 #ifdef INET6 9126 case AF_INET6: 9127 rt_gw.sin6.sin6_family = AF_INET6; 9128 rt_gw.sin6.sin6_len = sizeof(struct sockaddr_in6); 9129 pf_addrcpy((struct pf_addr *)&rt_gw.sin6.sin6_addr, 9130 &pd->act.rt_addr, AF_INET6); 9131 break; 9132 #endif /* INET6 */ 9133 default: 9134 /* Normal af-to without route-to */ 9135 break; 9136 } 9137 } 9138 9139 if (pd->dir == PF_IN) { 9140 if (ip->ip_ttl <= IPTTLDEC) { 9141 if (r->rt != PF_DUPTO) 9142 pf_send_icmp(m0, ICMP_TIMXCEED, 9143 ICMP_TIMXCEED_INTRANS, 0, pd->af, r, 9144 pd->act.rtableid); 9145 action = PF_DROP; 9146 goto bad_locked; 9147 } 9148 ip->ip_ttl -= IPTTLDEC; 9149 } 9150 9151 if (s != NULL) { 9152 if (ifp == NULL && (pd->af != pd->naf)) { 9153 /* We're in the AFTO case. Do a route lookup. */ 9154 const struct nhop_object *nh; 9155 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0); 9156 if (nh) { 9157 ifp = nh->nh_ifp; 9158 9159 /* Use the gateway if needed. */ 9160 if (nh->nh_flags & NHF_GATEWAY) { 9161 gw = (const union sockaddr_union *)&nh->gw_sa; 9162 ro.ro_flags |= RT_HAS_GW; 9163 } else { 9164 dst->sin.sin_addr = ip->ip_dst; 9165 } 9166 9167 /* 9168 * Bind to the correct interface if we're 9169 * if-bound. We don't know which interface 9170 * that will be until here, so we've inserted 9171 * the state on V_pf_all. Fix that now. 9172 */ 9173 if (s->kif == V_pfi_all && ifp != NULL && 9174 r->rule_flag & PFRULE_IFBOUND) 9175 s->kif = ifp->if_pf_kif; 9176 } 9177 } 9178 9179 if (r->rule_flag & PFRULE_IFBOUND && 9180 pd->act.rt == PF_REPLYTO && 9181 s->kif == V_pfi_all) { 9182 s->kif = pd->act.rt_kif; 9183 s->orig_kif = oifp->if_pf_kif; 9184 } 9185 9186 PF_STATE_UNLOCK(s); 9187 } 9188 9189 /* It must have been either set from rt_af or from fib4_lookup */ 9190 KASSERT(gw->sin.sin_family != 0, ("%s: gw address family undetermined", __func__)); 9191 9192 if (ifp == NULL) { 9193 m0 = pd->m; 9194 pd->m = NULL; 9195 action = PF_DROP; 9196 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9197 goto bad; 9198 } 9199 9200 if (r->rt == PF_DUPTO) 9201 skip_test = true; 9202 9203 if (pd->dir == PF_IN && !skip_test) { 9204 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 9205 &pd->act) != PF_PASS) { 9206 action = PF_DROP; 9207 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9208 goto bad; 9209 } else if (m0 == NULL) { 9210 action = PF_DROP; 9211 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9212 goto done; 9213 } 9214 if (m0->m_len < sizeof(struct ip)) { 9215 DPFPRINTF(PF_DEBUG_URGENT, 9216 "%s: m0->m_len < sizeof(struct ip)", __func__); 9217 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9218 action = PF_DROP; 9219 goto bad; 9220 } 9221 ip = mtod(m0, struct ip *); 9222 } 9223 9224 if (ifp->if_flags & IFF_LOOPBACK) 9225 m0->m_flags |= M_SKIP_FIREWALL; 9226 9227 ip_len = ntohs(ip->ip_len); 9228 ip_off = ntohs(ip->ip_off); 9229 9230 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 9231 m0->m_pkthdr.csum_flags |= CSUM_IP; 9232 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 9233 in_delayed_cksum(m0); 9234 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 9235 } 9236 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 9237 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 9238 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 9239 } 9240 9241 if (pd->dir == PF_IN) { 9242 /* 9243 * Make sure dummynet gets the correct direction, in case it needs to 9244 * re-inject later. 9245 */ 9246 pd->dir = PF_OUT; 9247 9248 /* 9249 * The following processing is actually the rest of the inbound processing, even 9250 * though we've marked it as outbound (so we don't look through dummynet) and it 9251 * happens after the outbound processing (pf_test(PF_OUT) above). 9252 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9253 * conclusion about what direction it's processing, and we can't fix it or it 9254 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9255 * decision will pick the right pipe, and everything will mostly work as expected. 9256 */ 9257 tmp = pd->act.dnrpipe; 9258 pd->act.dnrpipe = pd->act.dnpipe; 9259 pd->act.dnpipe = tmp; 9260 } 9261 9262 /* 9263 * If small enough for interface, or the interface will take 9264 * care of the fragmentation for us, we can just send directly. 9265 */ 9266 if (ip_len <= ifp->if_mtu || 9267 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 9268 ip->ip_sum = 0; 9269 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 9270 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 9271 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 9272 } 9273 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 9274 9275 md = m0; 9276 error = pf_dummynet_route(pd, s, r, ifp, 9277 (const struct sockaddr *)gw, &md); 9278 if (md != NULL) { 9279 error = (*ifp->if_output)(ifp, md, 9280 (const struct sockaddr *)gw, (struct route *)&ro); 9281 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9282 } 9283 goto done; 9284 } 9285 9286 /* Balk when DF bit is set or the interface didn't support TSO. */ 9287 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 9288 error = EMSGSIZE; 9289 KMOD_IPSTAT_INC(ips_cantfrag); 9290 if (pd->act.rt != PF_DUPTO) { 9291 if (s && s->nat_rule != NULL) { 9292 MPASS(m0 == pd->m); 9293 PACKET_UNDO_NAT(pd, 9294 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 9295 s); 9296 } 9297 9298 pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 9299 ifp->if_mtu, pd->af, r, pd->act.rtableid); 9300 } 9301 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9302 action = PF_DROP; 9303 goto bad; 9304 } 9305 9306 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 9307 if (error) { 9308 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9309 action = PF_DROP; 9310 goto bad; 9311 } 9312 9313 for (; m0; m0 = m1) { 9314 m1 = m0->m_nextpkt; 9315 m0->m_nextpkt = NULL; 9316 if (error == 0) { 9317 m_clrprotoflags(m0); 9318 md = m0; 9319 pd->pf_mtag = pf_find_mtag(md); 9320 error = pf_dummynet_route(pd, s, r, ifp, 9321 (const struct sockaddr *)gw, &md); 9322 if (md != NULL) { 9323 error = (*ifp->if_output)(ifp, md, 9324 (const struct sockaddr *)gw, 9325 (struct route *)&ro); 9326 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9327 } 9328 } else 9329 m_freem(m0); 9330 } 9331 9332 if (error == 0) 9333 KMOD_IPSTAT_INC(ips_fragmented); 9334 9335 done: 9336 if (pd->act.rt != PF_DUPTO) 9337 pd->m = NULL; 9338 else 9339 action = PF_PASS; 9340 return (action); 9341 9342 bad_locked: 9343 if (s) 9344 PF_STATE_UNLOCK(s); 9345 bad: 9346 m_freem(m0); 9347 goto done; 9348 } 9349 #endif /* INET */ 9350 9351 #ifdef INET6 9352 static int 9353 pf_route6(struct pf_krule *r, struct ifnet *oifp, 9354 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 9355 { 9356 struct mbuf *m0, *md; 9357 struct m_tag *mtag; 9358 struct sockaddr_in6 dst; 9359 struct ip6_hdr *ip6; 9360 struct ifnet *ifp = NULL; 9361 int r_dir; 9362 bool skip_test = false; 9363 int action = PF_PASS; 9364 9365 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 9366 9367 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp); 9368 9369 if (s) { 9370 r_dir = s->direction; 9371 } else { 9372 r_dir = r->direction; 9373 } 9374 9375 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9376 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9377 __func__)); 9378 9379 if ((pd->pf_mtag == NULL && 9380 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 9381 pd->pf_mtag->routed++ > 3) { 9382 m0 = pd->m; 9383 pd->m = NULL; 9384 action = PF_DROP; 9385 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9386 goto bad_locked; 9387 } 9388 9389 if (pd->act.rt_kif != NULL) 9390 ifp = pd->act.rt_kif->pfik_ifp; 9391 9392 if (pd->act.rt == PF_DUPTO) { 9393 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9394 if (s != NULL) { 9395 PF_STATE_UNLOCK(s); 9396 } 9397 if (ifp == oifp) { 9398 /* When the 2nd interface is not skipped */ 9399 return (action); 9400 } else { 9401 m0 = pd->m; 9402 pd->m = NULL; 9403 action = PF_DROP; 9404 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9405 goto bad; 9406 } 9407 } else { 9408 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9409 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 9410 if (s) 9411 PF_STATE_UNLOCK(s); 9412 return (action); 9413 } 9414 } 9415 } else { 9416 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9417 if (pd->af == pd->naf) { 9418 pf_dummynet(pd, s, r, &pd->m); 9419 if (s) 9420 PF_STATE_UNLOCK(s); 9421 return (action); 9422 } else { 9423 if (r_dir == PF_IN) { 9424 skip_test = true; 9425 } 9426 } 9427 } 9428 9429 /* 9430 * If we're actually doing route-to and af-to and are in the 9431 * reply direction. 9432 */ 9433 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 9434 pd->af != pd->naf) { 9435 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) { 9436 /* Un-set ifp so we do a plain route lookup. */ 9437 ifp = NULL; 9438 } 9439 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) { 9440 /* Un-set ifp so we do a plain route lookup. */ 9441 ifp = NULL; 9442 } 9443 } 9444 m0 = pd->m; 9445 } 9446 9447 ip6 = mtod(m0, struct ip6_hdr *); 9448 9449 bzero(&dst, sizeof(dst)); 9450 dst.sin6_family = AF_INET6; 9451 dst.sin6_len = sizeof(dst); 9452 pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, 9453 AF_INET6); 9454 9455 if (pd->dir == PF_IN) { 9456 if (ip6->ip6_hlim <= IPV6_HLIMDEC) { 9457 if (r->rt != PF_DUPTO) 9458 pf_send_icmp(m0, ICMP6_TIME_EXCEEDED, 9459 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r, 9460 pd->act.rtableid); 9461 action = PF_DROP; 9462 goto bad_locked; 9463 } 9464 ip6->ip6_hlim -= IPV6_HLIMDEC; 9465 } 9466 9467 if (s != NULL) { 9468 if (ifp == NULL && (pd->af != pd->naf)) { 9469 const struct nhop_object *nh; 9470 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0); 9471 if (nh) { 9472 ifp = nh->nh_ifp; 9473 9474 /* Use the gateway if needed. */ 9475 if (nh->nh_flags & NHF_GATEWAY) 9476 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr, 9477 sizeof(dst.sin6_addr)); 9478 else 9479 dst.sin6_addr = ip6->ip6_dst; 9480 9481 /* 9482 * Bind to the correct interface if we're 9483 * if-bound. We don't know which interface 9484 * that will be until here, so we've inserted 9485 * the state on V_pf_all. Fix that now. 9486 */ 9487 if (s->kif == V_pfi_all && ifp != NULL && 9488 r->rule_flag & PFRULE_IFBOUND) 9489 s->kif = ifp->if_pf_kif; 9490 } 9491 } 9492 9493 if (r->rule_flag & PFRULE_IFBOUND && 9494 pd->act.rt == PF_REPLYTO && 9495 s->kif == V_pfi_all) { 9496 s->kif = pd->act.rt_kif; 9497 s->orig_kif = oifp->if_pf_kif; 9498 } 9499 9500 PF_STATE_UNLOCK(s); 9501 } 9502 9503 if (pd->af != pd->naf) { 9504 struct udphdr *uh = &pd->hdr.udp; 9505 9506 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) { 9507 uh->uh_sum = in6_cksum_pseudo(ip6, 9508 ntohs(uh->uh_ulen), IPPROTO_UDP, 0); 9509 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any); 9510 } 9511 } 9512 9513 if (ifp == NULL) { 9514 m0 = pd->m; 9515 pd->m = NULL; 9516 action = PF_DROP; 9517 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9518 goto bad; 9519 } 9520 9521 if (r->rt == PF_DUPTO) 9522 skip_test = true; 9523 9524 if (pd->dir == PF_IN && !skip_test) { 9525 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9526 ifp, &m0, inp, &pd->act) != PF_PASS) { 9527 action = PF_DROP; 9528 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9529 goto bad; 9530 } else if (m0 == NULL) { 9531 action = PF_DROP; 9532 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9533 goto done; 9534 } 9535 if (m0->m_len < sizeof(struct ip6_hdr)) { 9536 DPFPRINTF(PF_DEBUG_URGENT, 9537 "%s: m0->m_len < sizeof(struct ip6_hdr)", 9538 __func__); 9539 action = PF_DROP; 9540 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9541 goto bad; 9542 } 9543 ip6 = mtod(m0, struct ip6_hdr *); 9544 } 9545 9546 if (ifp->if_flags & IFF_LOOPBACK) 9547 m0->m_flags |= M_SKIP_FIREWALL; 9548 9549 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9550 ~ifp->if_hwassist) { 9551 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9552 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9553 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9554 } 9555 9556 if (pd->dir == PF_IN) { 9557 uint16_t tmp; 9558 /* 9559 * Make sure dummynet gets the correct direction, in case it needs to 9560 * re-inject later. 9561 */ 9562 pd->dir = PF_OUT; 9563 9564 /* 9565 * The following processing is actually the rest of the inbound processing, even 9566 * though we've marked it as outbound (so we don't look through dummynet) and it 9567 * happens after the outbound processing (pf_test(PF_OUT) above). 9568 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9569 * conclusion about what direction it's processing, and we can't fix it or it 9570 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9571 * decision will pick the right pipe, and everything will mostly work as expected. 9572 */ 9573 tmp = pd->act.dnrpipe; 9574 pd->act.dnrpipe = pd->act.dnpipe; 9575 pd->act.dnpipe = tmp; 9576 } 9577 9578 /* 9579 * If the packet is too large for the outgoing interface, 9580 * send back an icmp6 error. 9581 */ 9582 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9583 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9584 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9585 if (mtag != NULL) { 9586 int ret __sdt_used; 9587 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9588 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9589 goto done; 9590 } 9591 9592 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9593 md = m0; 9594 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9595 if (md != NULL) { 9596 int ret __sdt_used; 9597 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9598 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9599 } 9600 } 9601 else { 9602 in6_ifstat_inc(ifp, ifs6_in_toobig); 9603 if (pd->act.rt != PF_DUPTO) { 9604 if (s && s->nat_rule != NULL) { 9605 MPASS(m0 == pd->m); 9606 PACKET_UNDO_NAT(pd, 9607 ((caddr_t)ip6 - m0->m_data) + 9608 sizeof(struct ip6_hdr), s); 9609 } 9610 9611 if (r->rt != PF_DUPTO) 9612 pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0, 9613 ifp->if_mtu, pd->af, r, pd->act.rtableid); 9614 } 9615 action = PF_DROP; 9616 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9617 goto bad; 9618 } 9619 9620 done: 9621 if (pd->act.rt != PF_DUPTO) 9622 pd->m = NULL; 9623 else 9624 action = PF_PASS; 9625 return (action); 9626 9627 bad_locked: 9628 if (s) 9629 PF_STATE_UNLOCK(s); 9630 bad: 9631 m_freem(m0); 9632 goto done; 9633 } 9634 #endif /* INET6 */ 9635 9636 /* 9637 * FreeBSD supports cksum offloads for the following drivers. 9638 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9639 * 9640 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9641 * network driver performed cksum including pseudo header, need to verify 9642 * csum_data 9643 * CSUM_DATA_VALID : 9644 * network driver performed cksum, needs to additional pseudo header 9645 * cksum computation with partial csum_data(i.e. lack of H/W support for 9646 * pseudo header, for instance sk(4) and possibly gem(4)) 9647 * 9648 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9649 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9650 * TCP/UDP layer. 9651 * Also, set csum_data to 0xffff to force cksum validation. 9652 */ 9653 static int 9654 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9655 { 9656 u_int16_t sum = 0; 9657 int hw_assist = 0; 9658 struct ip *ip; 9659 9660 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9661 return (1); 9662 if (m->m_pkthdr.len < off + len) 9663 return (1); 9664 9665 switch (p) { 9666 case IPPROTO_TCP: 9667 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9668 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9669 sum = m->m_pkthdr.csum_data; 9670 } else { 9671 ip = mtod(m, struct ip *); 9672 sum = in_pseudo(ip->ip_src.s_addr, 9673 ip->ip_dst.s_addr, htonl((u_short)len + 9674 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9675 } 9676 sum ^= 0xffff; 9677 ++hw_assist; 9678 } 9679 break; 9680 case IPPROTO_UDP: 9681 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9682 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9683 sum = m->m_pkthdr.csum_data; 9684 } else { 9685 ip = mtod(m, struct ip *); 9686 sum = in_pseudo(ip->ip_src.s_addr, 9687 ip->ip_dst.s_addr, htonl((u_short)len + 9688 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9689 } 9690 sum ^= 0xffff; 9691 ++hw_assist; 9692 } 9693 break; 9694 case IPPROTO_ICMP: 9695 #ifdef INET6 9696 case IPPROTO_ICMPV6: 9697 #endif /* INET6 */ 9698 break; 9699 default: 9700 return (1); 9701 } 9702 9703 if (!hw_assist) { 9704 switch (af) { 9705 case AF_INET: 9706 if (m->m_len < sizeof(struct ip)) 9707 return (1); 9708 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len); 9709 break; 9710 #ifdef INET6 9711 case AF_INET6: 9712 if (m->m_len < sizeof(struct ip6_hdr)) 9713 return (1); 9714 sum = in6_cksum(m, p, off, len); 9715 break; 9716 #endif /* INET6 */ 9717 } 9718 } 9719 if (sum) { 9720 switch (p) { 9721 case IPPROTO_TCP: 9722 { 9723 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9724 break; 9725 } 9726 case IPPROTO_UDP: 9727 { 9728 KMOD_UDPSTAT_INC(udps_badsum); 9729 break; 9730 } 9731 #ifdef INET 9732 case IPPROTO_ICMP: 9733 { 9734 KMOD_ICMPSTAT_INC(icps_checksum); 9735 break; 9736 } 9737 #endif 9738 #ifdef INET6 9739 case IPPROTO_ICMPV6: 9740 { 9741 KMOD_ICMP6STAT_INC(icp6s_checksum); 9742 break; 9743 } 9744 #endif /* INET6 */ 9745 } 9746 return (1); 9747 } else { 9748 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9749 m->m_pkthdr.csum_flags |= 9750 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9751 m->m_pkthdr.csum_data = 0xffff; 9752 } 9753 } 9754 return (0); 9755 } 9756 9757 static bool 9758 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9759 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9760 { 9761 int dndir = r->direction; 9762 9763 if (s && dndir == PF_INOUT) { 9764 dndir = s->direction; 9765 } else if (dndir == PF_INOUT) { 9766 /* Assume primary direction. Happens when we've set dnpipe in 9767 * the ethernet level code. */ 9768 dndir = pd->dir; 9769 } 9770 9771 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9772 return (false); 9773 9774 memset(dnflow, 0, sizeof(*dnflow)); 9775 9776 if (pd->dport != NULL) 9777 dnflow->f_id.dst_port = ntohs(*pd->dport); 9778 if (pd->sport != NULL) 9779 dnflow->f_id.src_port = ntohs(*pd->sport); 9780 9781 if (pd->dir == PF_IN) 9782 dnflow->flags |= IPFW_ARGS_IN; 9783 else 9784 dnflow->flags |= IPFW_ARGS_OUT; 9785 9786 if (pd->dir != dndir && pd->act.dnrpipe) { 9787 dnflow->rule.info = pd->act.dnrpipe; 9788 } 9789 else if (pd->dir == dndir && pd->act.dnpipe) { 9790 dnflow->rule.info = pd->act.dnpipe; 9791 } 9792 else { 9793 return (false); 9794 } 9795 9796 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9797 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9798 dnflow->rule.info |= IPFW_IS_PIPE; 9799 9800 dnflow->f_id.proto = pd->proto; 9801 dnflow->f_id.extra = dnflow->rule.info; 9802 switch (pd->naf) { 9803 case AF_INET: 9804 dnflow->f_id.addr_type = 4; 9805 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9806 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9807 break; 9808 case AF_INET6: 9809 dnflow->flags |= IPFW_ARGS_IP6; 9810 dnflow->f_id.addr_type = 6; 9811 dnflow->f_id.src_ip6 = pd->src->v6; 9812 dnflow->f_id.dst_ip6 = pd->dst->v6; 9813 break; 9814 } 9815 9816 return (true); 9817 } 9818 9819 int 9820 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9821 struct inpcb *inp) 9822 { 9823 struct pfi_kkif *kif; 9824 struct mbuf *m = *m0; 9825 9826 M_ASSERTPKTHDR(m); 9827 MPASS(ifp->if_vnet == curvnet); 9828 NET_EPOCH_ASSERT(); 9829 9830 if (!V_pf_status.running) 9831 return (PF_PASS); 9832 9833 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9834 9835 if (kif == NULL) { 9836 DPFPRINTF(PF_DEBUG_URGENT, 9837 "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname); 9838 return (PF_DROP); 9839 } 9840 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9841 return (PF_PASS); 9842 9843 if (m->m_flags & M_SKIP_FIREWALL) 9844 return (PF_PASS); 9845 9846 if (__predict_false(! M_WRITABLE(*m0))) { 9847 m = *m0 = m_unshare(*m0, M_NOWAIT); 9848 if (*m0 == NULL) 9849 return (PF_DROP); 9850 } 9851 9852 /* Stateless! */ 9853 return (pf_test_eth_rule(dir, kif, m0)); 9854 } 9855 9856 static __inline void 9857 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9858 { 9859 struct m_tag *mtag; 9860 9861 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9862 9863 /* dummynet adds this tag, but pf does not need it, 9864 * and keeping it creates unexpected behavior, 9865 * e.g. in case of divert(4) usage right after dummynet. */ 9866 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9867 if (mtag != NULL) 9868 m_tag_delete(m, mtag); 9869 } 9870 9871 static int 9872 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9873 struct pf_krule *r, struct mbuf **m0) 9874 { 9875 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9876 } 9877 9878 static int 9879 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9880 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa, 9881 struct mbuf **m0) 9882 { 9883 struct ip_fw_args dnflow; 9884 9885 NET_EPOCH_ASSERT(); 9886 9887 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9888 return (0); 9889 9890 if (ip_dn_io_ptr == NULL) { 9891 m_freem(*m0); 9892 *m0 = NULL; 9893 return (ENOMEM); 9894 } 9895 9896 if (pd->pf_mtag == NULL && 9897 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9898 m_freem(*m0); 9899 *m0 = NULL; 9900 return (ENOMEM); 9901 } 9902 9903 if (ifp != NULL) { 9904 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9905 9906 pd->pf_mtag->if_index = ifp->if_index; 9907 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9908 9909 MPASS(sa != NULL); 9910 9911 switch (sa->sa_family) { 9912 case AF_INET: 9913 memcpy(&pd->pf_mtag->dst, sa, 9914 sizeof(struct sockaddr_in)); 9915 break; 9916 case AF_INET6: 9917 memcpy(&pd->pf_mtag->dst, sa, 9918 sizeof(struct sockaddr_in6)); 9919 break; 9920 } 9921 } 9922 9923 if (s != NULL && s->nat_rule != NULL && 9924 s->nat_rule->action == PF_RDR && 9925 ( 9926 #ifdef INET 9927 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9928 #endif /* INET */ 9929 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9930 /* 9931 * If we're redirecting to loopback mark this packet 9932 * as being local. Otherwise it might get dropped 9933 * if dummynet re-injects. 9934 */ 9935 (*m0)->m_pkthdr.rcvif = V_loif; 9936 } 9937 9938 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9939 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9940 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9941 ip_dn_io_ptr(m0, &dnflow); 9942 if (*m0 != NULL) { 9943 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9944 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9945 } 9946 } 9947 9948 return (0); 9949 } 9950 9951 static int 9952 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end, 9953 u_short *reason) 9954 { 9955 uint8_t type, length, opts[15 * 4 - sizeof(struct ip)]; 9956 9957 /* IP header in payload of ICMP packet may be too short */ 9958 if (pd->m->m_pkthdr.len < end) { 9959 DPFPRINTF(PF_DEBUG_MISC, "IP option too short"); 9960 REASON_SET(reason, PFRES_SHORT); 9961 return (PF_DROP); 9962 } 9963 9964 MPASS(end - off <= sizeof(opts)); 9965 m_copydata(pd->m, off, end - off, opts); 9966 end -= off; 9967 off = 0; 9968 9969 while (off < end) { 9970 type = opts[off]; 9971 if (type == IPOPT_EOL) 9972 break; 9973 if (type == IPOPT_NOP) { 9974 off++; 9975 continue; 9976 } 9977 if (off + 2 > end) { 9978 DPFPRINTF(PF_DEBUG_MISC, "IP length opt"); 9979 REASON_SET(reason, PFRES_IPOPTIONS); 9980 return (PF_DROP); 9981 } 9982 length = opts[off + 1]; 9983 if (length < 2) { 9984 DPFPRINTF(PF_DEBUG_MISC, "IP short opt"); 9985 REASON_SET(reason, PFRES_IPOPTIONS); 9986 return (PF_DROP); 9987 } 9988 if (off + length > end) { 9989 DPFPRINTF(PF_DEBUG_MISC, "IP long opt"); 9990 REASON_SET(reason, PFRES_IPOPTIONS); 9991 return (PF_DROP); 9992 } 9993 switch (type) { 9994 case IPOPT_RA: 9995 pd->badopts |= PF_OPT_ROUTER_ALERT; 9996 break; 9997 default: 9998 pd->badopts |= PF_OPT_OTHER; 9999 break; 10000 } 10001 off += length; 10002 } 10003 10004 return (PF_PASS); 10005 } 10006 10007 static int 10008 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason) 10009 { 10010 struct ah ext; 10011 u_int32_t hlen, end; 10012 int hdr_cnt; 10013 10014 hlen = h->ip_hl << 2; 10015 if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) { 10016 REASON_SET(reason, PFRES_SHORT); 10017 return (PF_DROP); 10018 } 10019 if (hlen != sizeof(struct ip)) { 10020 if (pf_walk_option(pd, h, pd->off + sizeof(struct ip), 10021 pd->off + hlen, reason) != PF_PASS) 10022 return (PF_DROP); 10023 /* header options which contain only padding is fishy */ 10024 if (pd->badopts == 0) 10025 pd->badopts |= PF_OPT_OTHER; 10026 } 10027 end = pd->off + ntohs(h->ip_len); 10028 pd->off += hlen; 10029 pd->proto = h->ip_p; 10030 /* IGMP packets have router alert options, allow them */ 10031 if (pd->proto == IPPROTO_IGMP) { 10032 /* 10033 * According to RFC 1112 ttl must be set to 1 in all IGMP 10034 * packets sent to 224.0.0.1 10035 */ 10036 if ((h->ip_ttl != 1) && 10037 (h->ip_dst.s_addr == INADDR_ALLHOSTS_GROUP)) { 10038 DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP"); 10039 REASON_SET(reason, PFRES_IPOPTIONS); 10040 return (PF_DROP); 10041 } 10042 pd->badopts &= ~PF_OPT_ROUTER_ALERT; 10043 } 10044 /* stop walking over non initial fragments */ 10045 if ((h->ip_off & htons(IP_OFFMASK)) != 0) 10046 return (PF_PASS); 10047 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) { 10048 switch (pd->proto) { 10049 case IPPROTO_AH: 10050 /* fragments may be short */ 10051 if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 && 10052 end < pd->off + sizeof(ext)) 10053 return (PF_PASS); 10054 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 10055 NULL, reason, AF_INET)) { 10056 DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr"); 10057 return (PF_DROP); 10058 } 10059 pd->off += (ext.ah_len + 2) * 4; 10060 pd->proto = ext.ah_nxt; 10061 break; 10062 default: 10063 return (PF_PASS); 10064 } 10065 } 10066 DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit"); 10067 REASON_SET(reason, PFRES_IPOPTIONS); 10068 return (PF_DROP); 10069 } 10070 10071 #ifdef INET6 10072 static int 10073 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end, 10074 u_short *reason) 10075 { 10076 struct ip6_opt opt; 10077 struct ip6_opt_jumbo jumbo; 10078 10079 while (off < end) { 10080 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type, 10081 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) { 10082 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type"); 10083 return (PF_DROP); 10084 } 10085 if (opt.ip6o_type == IP6OPT_PAD1) { 10086 off++; 10087 continue; 10088 } 10089 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL, 10090 reason, AF_INET6)) { 10091 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt"); 10092 return (PF_DROP); 10093 } 10094 if (off + sizeof(opt) + opt.ip6o_len > end) { 10095 DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt"); 10096 REASON_SET(reason, PFRES_IPOPTIONS); 10097 return (PF_DROP); 10098 } 10099 switch (opt.ip6o_type) { 10100 case IP6OPT_PADN: 10101 break; 10102 case IP6OPT_JUMBO: 10103 pd->badopts |= PF_OPT_JUMBO; 10104 if (pd->jumbolen != 0) { 10105 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo"); 10106 REASON_SET(reason, PFRES_IPOPTIONS); 10107 return (PF_DROP); 10108 } 10109 if (ntohs(h->ip6_plen) != 0) { 10110 DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen"); 10111 REASON_SET(reason, PFRES_IPOPTIONS); 10112 return (PF_DROP); 10113 } 10114 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL, 10115 reason, AF_INET6)) { 10116 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo"); 10117 return (PF_DROP); 10118 } 10119 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len, 10120 sizeof(pd->jumbolen)); 10121 pd->jumbolen = ntohl(pd->jumbolen); 10122 if (pd->jumbolen < IPV6_MAXPACKET) { 10123 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen"); 10124 REASON_SET(reason, PFRES_IPOPTIONS); 10125 return (PF_DROP); 10126 } 10127 break; 10128 case IP6OPT_ROUTER_ALERT: 10129 pd->badopts |= PF_OPT_ROUTER_ALERT; 10130 break; 10131 default: 10132 pd->badopts |= PF_OPT_OTHER; 10133 break; 10134 } 10135 off += sizeof(opt) + opt.ip6o_len; 10136 } 10137 10138 return (PF_PASS); 10139 } 10140 10141 int 10142 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason) 10143 { 10144 struct ip6_frag frag; 10145 struct ip6_ext ext; 10146 struct icmp6_hdr icmp6; 10147 struct ip6_rthdr rthdr; 10148 uint32_t end; 10149 int hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0; 10150 10151 pd->off += sizeof(struct ip6_hdr); 10152 end = pd->off + ntohs(h->ip6_plen); 10153 pd->fragoff = pd->extoff = pd->jumbolen = 0; 10154 pd->proto = h->ip6_nxt; 10155 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) { 10156 switch (pd->proto) { 10157 case IPPROTO_ROUTING: 10158 case IPPROTO_DSTOPTS: 10159 pd->badopts |= PF_OPT_OTHER; 10160 break; 10161 case IPPROTO_HOPOPTS: 10162 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 10163 NULL, reason, AF_INET6)) { 10164 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr"); 10165 return (PF_DROP); 10166 } 10167 if (pf_walk_option6(pd, h, pd->off + sizeof(ext), 10168 pd->off + (ext.ip6e_len + 1) * 8, 10169 reason) != PF_PASS) 10170 return (PF_DROP); 10171 /* option header which contains only padding is fishy */ 10172 if (pd->badopts == 0) 10173 pd->badopts |= PF_OPT_OTHER; 10174 break; 10175 } 10176 switch (pd->proto) { 10177 case IPPROTO_FRAGMENT: 10178 if (fraghdr_cnt++) { 10179 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment"); 10180 REASON_SET(reason, PFRES_FRAG); 10181 return (PF_DROP); 10182 } 10183 /* jumbo payload packets cannot be fragmented */ 10184 if (pd->jumbolen != 0) { 10185 DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo"); 10186 REASON_SET(reason, PFRES_FRAG); 10187 return (PF_DROP); 10188 } 10189 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag), 10190 NULL, reason, AF_INET6)) { 10191 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment"); 10192 return (PF_DROP); 10193 } 10194 /* stop walking over non initial fragments */ 10195 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) { 10196 pd->fragoff = pd->off; 10197 return (PF_PASS); 10198 } 10199 /* RFC6946: reassemble only non atomic fragments */ 10200 if (frag.ip6f_offlg & IP6F_MORE_FRAG) 10201 pd->fragoff = pd->off; 10202 pd->off += sizeof(frag); 10203 pd->proto = frag.ip6f_nxt; 10204 break; 10205 case IPPROTO_ROUTING: 10206 if (rthdr_cnt++) { 10207 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr"); 10208 REASON_SET(reason, PFRES_IPOPTIONS); 10209 return (PF_DROP); 10210 } 10211 /* fragments may be short */ 10212 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) { 10213 pd->off = pd->fragoff; 10214 pd->proto = IPPROTO_FRAGMENT; 10215 return (PF_PASS); 10216 } 10217 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr), 10218 NULL, reason, AF_INET6)) { 10219 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr"); 10220 return (PF_DROP); 10221 } 10222 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 10223 DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0"); 10224 REASON_SET(reason, PFRES_IPOPTIONS); 10225 return (PF_DROP); 10226 } 10227 /* FALLTHROUGH */ 10228 case IPPROTO_HOPOPTS: 10229 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */ 10230 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) { 10231 DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first"); 10232 REASON_SET(reason, PFRES_IPOPTIONS); 10233 return (PF_DROP); 10234 } 10235 /* FALLTHROUGH */ 10236 case IPPROTO_AH: 10237 case IPPROTO_DSTOPTS: 10238 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 10239 NULL, reason, AF_INET6)) { 10240 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr"); 10241 return (PF_DROP); 10242 } 10243 /* fragments may be short */ 10244 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) { 10245 pd->off = pd->fragoff; 10246 pd->proto = IPPROTO_FRAGMENT; 10247 return (PF_PASS); 10248 } 10249 /* reassembly needs the ext header before the frag */ 10250 if (pd->fragoff == 0) 10251 pd->extoff = pd->off; 10252 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 && 10253 ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) { 10254 DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo"); 10255 REASON_SET(reason, PFRES_IPOPTIONS); 10256 return (PF_DROP); 10257 } 10258 if (pd->proto == IPPROTO_AH) 10259 pd->off += (ext.ip6e_len + 2) * 4; 10260 else 10261 pd->off += (ext.ip6e_len + 1) * 8; 10262 pd->proto = ext.ip6e_nxt; 10263 break; 10264 case IPPROTO_ICMPV6: 10265 /* fragments may be short, ignore inner header then */ 10266 if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) { 10267 pd->off = pd->fragoff; 10268 pd->proto = IPPROTO_FRAGMENT; 10269 return (PF_PASS); 10270 } 10271 if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6), 10272 NULL, reason, AF_INET6)) { 10273 DPFPRINTF(PF_DEBUG_MISC, 10274 "IPv6 short icmp6hdr"); 10275 return (PF_DROP); 10276 } 10277 /* ICMP multicast packets have router alert options */ 10278 switch (icmp6.icmp6_type) { 10279 case MLD_LISTENER_QUERY: 10280 case MLD_LISTENER_REPORT: 10281 case MLD_LISTENER_DONE: 10282 case MLDV2_LISTENER_REPORT: 10283 /* 10284 * According to RFC 2710 all MLD messages are 10285 * sent with hop-limit (ttl) set to 1, and link 10286 * local source address. If either one is 10287 * missing then MLD message is invalid and 10288 * should be discarded. 10289 */ 10290 if ((h->ip6_hlim != 1) || 10291 !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) { 10292 DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD"); 10293 REASON_SET(reason, PFRES_IPOPTIONS); 10294 return (PF_DROP); 10295 } 10296 pd->badopts &= ~PF_OPT_ROUTER_ALERT; 10297 break; 10298 } 10299 return (PF_PASS); 10300 case IPPROTO_TCP: 10301 case IPPROTO_UDP: 10302 case IPPROTO_SCTP: 10303 /* fragments may be short, ignore inner header then */ 10304 if (pd->fragoff != 0 && end < pd->off + 10305 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) : 10306 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) : 10307 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) : 10308 sizeof(struct icmp6_hdr))) { 10309 pd->off = pd->fragoff; 10310 pd->proto = IPPROTO_FRAGMENT; 10311 } 10312 /* FALLTHROUGH */ 10313 default: 10314 return (PF_PASS); 10315 } 10316 } 10317 DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit"); 10318 REASON_SET(reason, PFRES_IPOPTIONS); 10319 return (PF_DROP); 10320 } 10321 #endif /* INET6 */ 10322 10323 static void 10324 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 10325 { 10326 memset(pd, 0, sizeof(*pd)); 10327 pd->pf_mtag = pf_find_mtag(m); 10328 pd->m = m; 10329 } 10330 10331 static int 10332 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 10333 u_short *action, u_short *reason, struct pfi_kkif *kif, 10334 struct pf_rule_actions *default_actions) 10335 { 10336 pd->dir = dir; 10337 pd->kif = kif; 10338 pd->m = *m0; 10339 pd->sidx = (dir == PF_IN) ? 0 : 1; 10340 pd->didx = (dir == PF_IN) ? 1 : 0; 10341 pd->af = pd->naf = af; 10342 10343 PF_RULES_ASSERT(); 10344 10345 TAILQ_INIT(&pd->sctp_multihome_jobs); 10346 if (default_actions != NULL) 10347 memcpy(&pd->act, default_actions, sizeof(pd->act)); 10348 10349 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 10350 pd->act.dnpipe = pd->pf_mtag->dnpipe; 10351 pd->act.flags = pd->pf_mtag->dnflags; 10352 } 10353 10354 switch (af) { 10355 #ifdef INET 10356 case AF_INET: { 10357 struct ip *h; 10358 10359 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 10360 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 10361 DPFPRINTF(PF_DEBUG_URGENT, 10362 "%s: m_len < sizeof(struct ip), pullup failed", 10363 __func__); 10364 *action = PF_DROP; 10365 REASON_SET(reason, PFRES_SHORT); 10366 return (-1); 10367 } 10368 10369 h = mtod(pd->m, struct ip *); 10370 if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) { 10371 *action = PF_DROP; 10372 REASON_SET(reason, PFRES_SHORT); 10373 return (-1); 10374 } 10375 10376 if (pf_normalize_ip(reason, pd) != PF_PASS) { 10377 /* We do IP header normalization and packet reassembly here */ 10378 *m0 = pd->m; 10379 *action = PF_DROP; 10380 return (-1); 10381 } 10382 *m0 = pd->m; 10383 h = mtod(pd->m, struct ip *); 10384 10385 if (pf_walk_header(pd, h, reason) != PF_PASS) { 10386 *action = PF_DROP; 10387 return (-1); 10388 } 10389 10390 pd->src = (struct pf_addr *)&h->ip_src; 10391 pd->dst = (struct pf_addr *)&h->ip_dst; 10392 pf_addrcpy(&pd->osrc, pd->src, af); 10393 pf_addrcpy(&pd->odst, pd->dst, af); 10394 pd->ip_sum = &h->ip_sum; 10395 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK; 10396 pd->ttl = h->ip_ttl; 10397 pd->tot_len = ntohs(h->ip_len); 10398 pd->act.rtableid = -1; 10399 pd->df = h->ip_off & htons(IP_DF); 10400 pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ? 10401 PF_VPROTO_FRAGMENT : pd->proto; 10402 10403 break; 10404 } 10405 #endif /* INET */ 10406 #ifdef INET6 10407 case AF_INET6: { 10408 struct ip6_hdr *h; 10409 10410 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 10411 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 10412 DPFPRINTF(PF_DEBUG_URGENT, 10413 "%s: m_len < sizeof(struct ip6_hdr)" 10414 ", pullup failed", __func__); 10415 *action = PF_DROP; 10416 REASON_SET(reason, PFRES_SHORT); 10417 return (-1); 10418 } 10419 10420 h = mtod(pd->m, struct ip6_hdr *); 10421 if (pd->m->m_pkthdr.len < 10422 sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) { 10423 *action = PF_DROP; 10424 REASON_SET(reason, PFRES_SHORT); 10425 return (-1); 10426 } 10427 10428 /* 10429 * we do not support jumbogram. if we keep going, zero ip6_plen 10430 * will do something bad, so drop the packet for now. 10431 */ 10432 if (htons(h->ip6_plen) == 0) { 10433 *action = PF_DROP; 10434 return (-1); 10435 } 10436 10437 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 10438 *action = PF_DROP; 10439 return (-1); 10440 } 10441 10442 h = mtod(pd->m, struct ip6_hdr *); 10443 pd->src = (struct pf_addr *)&h->ip6_src; 10444 pd->dst = (struct pf_addr *)&h->ip6_dst; 10445 pf_addrcpy(&pd->osrc, pd->src, af); 10446 pf_addrcpy(&pd->odst, pd->dst, af); 10447 pd->ip_sum = NULL; 10448 pd->tos = IPV6_DSCP(h); 10449 pd->ttl = h->ip6_hlim; 10450 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 10451 pd->act.rtableid = -1; 10452 10453 pd->virtual_proto = (pd->fragoff != 0) ? 10454 PF_VPROTO_FRAGMENT : pd->proto; 10455 10456 /* We do IP header normalization and packet reassembly here */ 10457 if (pf_normalize_ip6(pd->fragoff, reason, pd) != 10458 PF_PASS) { 10459 *m0 = pd->m; 10460 *action = PF_DROP; 10461 return (-1); 10462 } 10463 *m0 = pd->m; 10464 if (pd->m == NULL) { 10465 /* packet sits in reassembly queue, no error */ 10466 *action = PF_PASS; 10467 return (-1); 10468 } 10469 10470 /* Update pointers into the packet. */ 10471 h = mtod(pd->m, struct ip6_hdr *); 10472 pd->src = (struct pf_addr *)&h->ip6_src; 10473 pd->dst = (struct pf_addr *)&h->ip6_dst; 10474 10475 pd->off = 0; 10476 10477 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 10478 *action = PF_DROP; 10479 return (-1); 10480 } 10481 10482 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) { 10483 /* 10484 * Reassembly may have changed the next protocol from 10485 * fragment to something else, so update. 10486 */ 10487 pd->virtual_proto = pd->proto; 10488 MPASS(pd->fragoff == 0); 10489 } 10490 10491 if (pd->fragoff != 0) 10492 pd->virtual_proto = PF_VPROTO_FRAGMENT; 10493 10494 break; 10495 } 10496 #endif /* INET6 */ 10497 default: 10498 panic("pf_setup_pdesc called with illegal af %u", af); 10499 } 10500 10501 switch (pd->virtual_proto) { 10502 case IPPROTO_TCP: { 10503 struct tcphdr *th = &pd->hdr.tcp; 10504 10505 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 10506 reason, af)) { 10507 *action = PF_DROP; 10508 REASON_SET(reason, PFRES_SHORT); 10509 return (-1); 10510 } 10511 pd->hdrlen = sizeof(*th); 10512 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 10513 pd->sport = &th->th_sport; 10514 pd->dport = &th->th_dport; 10515 pd->pcksum = &th->th_sum; 10516 break; 10517 } 10518 case IPPROTO_UDP: { 10519 struct udphdr *uh = &pd->hdr.udp; 10520 10521 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 10522 reason, af)) { 10523 *action = PF_DROP; 10524 REASON_SET(reason, PFRES_SHORT); 10525 return (-1); 10526 } 10527 pd->hdrlen = sizeof(*uh); 10528 if (uh->uh_dport == 0 || 10529 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 10530 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 10531 *action = PF_DROP; 10532 REASON_SET(reason, PFRES_SHORT); 10533 return (-1); 10534 } 10535 pd->sport = &uh->uh_sport; 10536 pd->dport = &uh->uh_dport; 10537 pd->pcksum = &uh->uh_sum; 10538 break; 10539 } 10540 case IPPROTO_SCTP: { 10541 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 10542 action, reason, af)) { 10543 *action = PF_DROP; 10544 REASON_SET(reason, PFRES_SHORT); 10545 return (-1); 10546 } 10547 pd->hdrlen = sizeof(pd->hdr.sctp); 10548 pd->p_len = pd->tot_len - pd->off; 10549 10550 pd->sport = &pd->hdr.sctp.src_port; 10551 pd->dport = &pd->hdr.sctp.dest_port; 10552 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 10553 *action = PF_DROP; 10554 REASON_SET(reason, PFRES_SHORT); 10555 return (-1); 10556 } 10557 if (pf_scan_sctp(pd) != PF_PASS) { 10558 *action = PF_DROP; 10559 REASON_SET(reason, PFRES_SHORT); 10560 return (-1); 10561 } 10562 /* 10563 * Placeholder. The SCTP checksum is 32-bits, but 10564 * pf_test_state() expects to update a 16-bit checksum. 10565 * Provide a dummy value which we'll subsequently ignore. 10566 */ 10567 pd->pcksum = &pd->sctp_dummy_sum; 10568 break; 10569 } 10570 case IPPROTO_ICMP: { 10571 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 10572 action, reason, af)) { 10573 *action = PF_DROP; 10574 REASON_SET(reason, PFRES_SHORT); 10575 return (-1); 10576 } 10577 pd->pcksum = &pd->hdr.icmp.icmp_cksum; 10578 pd->hdrlen = ICMP_MINLEN; 10579 break; 10580 } 10581 #ifdef INET6 10582 case IPPROTO_ICMPV6: { 10583 size_t icmp_hlen = sizeof(struct icmp6_hdr); 10584 10585 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10586 action, reason, af)) { 10587 *action = PF_DROP; 10588 REASON_SET(reason, PFRES_SHORT); 10589 return (-1); 10590 } 10591 /* ICMP headers we look further into to match state */ 10592 switch (pd->hdr.icmp6.icmp6_type) { 10593 case MLD_LISTENER_QUERY: 10594 case MLD_LISTENER_REPORT: 10595 icmp_hlen = sizeof(struct mld_hdr); 10596 break; 10597 case ND_NEIGHBOR_SOLICIT: 10598 case ND_NEIGHBOR_ADVERT: 10599 icmp_hlen = sizeof(struct nd_neighbor_solicit); 10600 /* FALLTHROUGH */ 10601 case ND_ROUTER_SOLICIT: 10602 case ND_ROUTER_ADVERT: 10603 case ND_REDIRECT: 10604 if (pd->ttl != 255) { 10605 REASON_SET(reason, PFRES_NORM); 10606 return (PF_DROP); 10607 } 10608 break; 10609 } 10610 if (icmp_hlen > sizeof(struct icmp6_hdr) && 10611 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10612 action, reason, af)) { 10613 *action = PF_DROP; 10614 REASON_SET(reason, PFRES_SHORT); 10615 return (-1); 10616 } 10617 pd->hdrlen = icmp_hlen; 10618 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum; 10619 break; 10620 } 10621 #endif /* INET6 */ 10622 default: 10623 /* 10624 * Placeholder value, so future calls to pf_change_ap() don't 10625 * try to update a NULL checksum pointer. 10626 */ 10627 pd->pcksum = &pd->sctp_dummy_sum; 10628 break; 10629 } 10630 10631 if (pd->sport) 10632 pd->osport = pd->nsport = *pd->sport; 10633 if (pd->dport) 10634 pd->odport = pd->ndport = *pd->dport; 10635 10636 MPASS(pd->pcksum != NULL); 10637 10638 return (0); 10639 } 10640 10641 static void 10642 pf_counters_inc(int action, struct pf_pdesc *pd, 10643 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 10644 { 10645 struct pf_krule *tr; 10646 int dir = pd->dir; 10647 int dirndx; 10648 10649 pf_counter_u64_critical_enter(); 10650 pf_counter_u64_add_protected( 10651 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10652 pd->tot_len); 10653 pf_counter_u64_add_protected( 10654 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10655 1); 10656 10657 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 10658 dirndx = (dir == PF_OUT); 10659 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 10660 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 10661 pf_update_timestamp(r); 10662 10663 if (a != NULL) { 10664 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 10665 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 10666 } 10667 if (s != NULL) { 10668 struct pf_krule_item *ri; 10669 10670 if (s->nat_rule != NULL) { 10671 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 10672 1); 10673 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 10674 pd->tot_len); 10675 } 10676 /* 10677 * Source nodes are accessed unlocked here. 10678 * But since we are operating with stateful tracking 10679 * and the state is locked, those SNs could not have 10680 * been freed. 10681 */ 10682 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 10683 if (s->sns[sn_type] != NULL) { 10684 counter_u64_add( 10685 s->sns[sn_type]->packets[dirndx], 10686 1); 10687 counter_u64_add( 10688 s->sns[sn_type]->bytes[dirndx], 10689 pd->tot_len); 10690 } 10691 } 10692 dirndx = (dir == s->direction) ? 0 : 1; 10693 s->packets[dirndx]++; 10694 s->bytes[dirndx] += pd->tot_len; 10695 10696 SLIST_FOREACH(ri, &s->match_rules, entry) { 10697 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 10698 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 10699 10700 if (ri->r->src.addr.type == PF_ADDR_TABLE) 10701 pfr_update_stats(ri->r->src.addr.p.tbl, 10702 (s == NULL) ? pd->src : 10703 &s->key[(s->direction == PF_IN)]-> 10704 addr[(s->direction == PF_OUT)], 10705 pd->af, pd->tot_len, dir == PF_OUT, 10706 r->action == PF_PASS, ri->r->src.neg); 10707 if (ri->r->dst.addr.type == PF_ADDR_TABLE) 10708 pfr_update_stats(ri->r->dst.addr.p.tbl, 10709 (s == NULL) ? pd->dst : 10710 &s->key[(s->direction == PF_IN)]-> 10711 addr[(s->direction == PF_IN)], 10712 pd->af, pd->tot_len, dir == PF_OUT, 10713 r->action == PF_PASS, ri->r->dst.neg); 10714 } 10715 } 10716 10717 tr = r; 10718 if (s != NULL && s->nat_rule != NULL && 10719 r == &V_pf_default_rule) 10720 tr = s->nat_rule; 10721 10722 if (tr->src.addr.type == PF_ADDR_TABLE) 10723 pfr_update_stats(tr->src.addr.p.tbl, 10724 (s == NULL) ? pd->src : 10725 &s->key[(s->direction == PF_IN)]-> 10726 addr[(s->direction == PF_OUT)], 10727 pd->af, pd->tot_len, dir == PF_OUT, 10728 r->action == PF_PASS, tr->src.neg); 10729 if (tr->dst.addr.type == PF_ADDR_TABLE) 10730 pfr_update_stats(tr->dst.addr.p.tbl, 10731 (s == NULL) ? pd->dst : 10732 &s->key[(s->direction == PF_IN)]-> 10733 addr[(s->direction == PF_IN)], 10734 pd->af, pd->tot_len, dir == PF_OUT, 10735 r->action == PF_PASS, tr->dst.neg); 10736 } 10737 pf_counter_u64_critical_exit(); 10738 } 10739 static void 10740 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm, 10741 struct pf_krule *am, struct pf_kruleset *ruleset, 10742 struct pf_krule_slist *matchrules) 10743 { 10744 struct pf_krule_item *ri; 10745 10746 /* if this is the log(matches) rule, packet has been logged already */ 10747 if (rm->log & PF_LOG_MATCHES) 10748 return; 10749 10750 SLIST_FOREACH(ri, matchrules, entry) 10751 if (ri->r->log & PF_LOG_MATCHES) 10752 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am, 10753 ruleset, pd, 1, ri->r); 10754 } 10755 10756 #if defined(INET) || defined(INET6) 10757 int 10758 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10759 struct inpcb *inp, struct pf_rule_actions *default_actions) 10760 { 10761 struct pfi_kkif *kif; 10762 u_short action, reason = 0; 10763 struct m_tag *mtag; 10764 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10765 struct pf_kstate *s = NULL; 10766 struct pf_kruleset *ruleset = NULL; 10767 struct pf_pdesc pd; 10768 int use_2nd_queue = 0; 10769 uint16_t tag; 10770 10771 PF_RULES_RLOCK_TRACKER; 10772 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10773 M_ASSERTPKTHDR(*m0); 10774 NET_EPOCH_ASSERT(); 10775 10776 if (!V_pf_status.running) 10777 return (PF_PASS); 10778 10779 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10780 10781 if (__predict_false(kif == NULL)) { 10782 DPFPRINTF(PF_DEBUG_URGENT, 10783 "%s: kif == NULL, if_xname %s", 10784 __func__, ifp->if_xname); 10785 return (PF_DROP); 10786 } 10787 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10788 return (PF_PASS); 10789 } 10790 10791 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10792 return (PF_PASS); 10793 } 10794 10795 if (__predict_false(! M_WRITABLE(*m0))) { 10796 *m0 = m_unshare(*m0, M_NOWAIT); 10797 if (*m0 == NULL) { 10798 return (PF_DROP); 10799 } 10800 } 10801 10802 pf_init_pdesc(&pd, *m0); 10803 10804 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10805 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10806 10807 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10808 pd.pf_mtag->if_idxgen); 10809 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10810 m_freem(*m0); 10811 *m0 = NULL; 10812 return (PF_PASS); 10813 } 10814 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10815 *m0 = NULL; 10816 return (PF_PASS); 10817 } 10818 10819 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10820 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10821 /* Dummynet re-injects packets after they've 10822 * completed their delay. We've already 10823 * processed them, so pass unconditionally. */ 10824 10825 /* But only once. We may see the packet multiple times (e.g. 10826 * PFIL_IN/PFIL_OUT). */ 10827 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10828 10829 return (PF_PASS); 10830 } 10831 10832 PF_RULES_RLOCK(); 10833 10834 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10835 kif, default_actions) == -1) { 10836 if (action != PF_PASS) 10837 pd.act.log |= PF_LOG_FORCE; 10838 goto done; 10839 } 10840 10841 #ifdef INET 10842 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD && 10843 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) { 10844 PF_RULES_RUNLOCK(); 10845 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 10846 0, ifp->if_mtu); 10847 *m0 = NULL; 10848 return (PF_DROP); 10849 } 10850 #endif /* INET */ 10851 #ifdef INET6 10852 /* 10853 * If we end up changing IP addresses (e.g. binat) the stack may get 10854 * confused and fail to send the icmp6 packet too big error. Just send 10855 * it here, before we do any NAT. 10856 */ 10857 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10858 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10859 PF_RULES_RUNLOCK(); 10860 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10861 *m0 = NULL; 10862 return (PF_DROP); 10863 } 10864 #endif /* INET6 */ 10865 10866 if (__predict_false(ip_divert_ptr != NULL) && 10867 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10868 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10869 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10870 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10871 if (pd.pf_mtag == NULL && 10872 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10873 action = PF_DROP; 10874 goto done; 10875 } 10876 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10877 } 10878 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10879 pd.m->m_flags |= M_FASTFWD_OURS; 10880 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10881 } 10882 m_tag_delete(pd.m, mtag); 10883 10884 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10885 if (mtag != NULL) 10886 m_tag_delete(pd.m, mtag); 10887 } 10888 10889 switch (pd.virtual_proto) { 10890 case PF_VPROTO_FRAGMENT: 10891 /* 10892 * handle fragments that aren't reassembled by 10893 * normalization 10894 */ 10895 if (kif == NULL || r == NULL) /* pflog */ 10896 action = PF_DROP; 10897 else 10898 action = pf_test_rule(&r, &s, &pd, &a, 10899 &ruleset, &reason, inp); 10900 if (action != PF_PASS) 10901 REASON_SET(&reason, PFRES_FRAG); 10902 break; 10903 10904 case IPPROTO_TCP: { 10905 /* Respond to SYN with a syncookie. */ 10906 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10907 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10908 pf_syncookie_send(&pd); 10909 action = PF_DROP; 10910 break; 10911 } 10912 10913 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10914 use_2nd_queue = 1; 10915 action = pf_normalize_tcp(&pd); 10916 if (action == PF_DROP) 10917 break; 10918 action = pf_test_state(&s, &pd, &reason); 10919 if (action == PF_PASS || action == PF_AFRT) { 10920 if (V_pfsync_update_state_ptr != NULL) 10921 V_pfsync_update_state_ptr(s); 10922 r = s->rule; 10923 a = s->anchor; 10924 } else if (s == NULL) { 10925 /* Validate remote SYN|ACK, re-create original SYN if 10926 * valid. */ 10927 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10928 TH_ACK && pf_syncookie_validate(&pd) && 10929 pd.dir == PF_IN) { 10930 struct mbuf *msyn; 10931 10932 msyn = pf_syncookie_recreate_syn(&pd); 10933 if (msyn == NULL) { 10934 action = PF_DROP; 10935 break; 10936 } 10937 10938 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10939 &pd.act); 10940 m_freem(msyn); 10941 if (action != PF_PASS) 10942 break; 10943 10944 action = pf_test_state(&s, &pd, &reason); 10945 if (action != PF_PASS || s == NULL) { 10946 action = PF_DROP; 10947 break; 10948 } 10949 10950 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10951 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10952 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10953 action = pf_synproxy(&pd, s, &reason); 10954 break; 10955 } else { 10956 action = pf_test_rule(&r, &s, &pd, 10957 &a, &ruleset, &reason, inp); 10958 } 10959 } 10960 break; 10961 } 10962 10963 case IPPROTO_SCTP: 10964 action = pf_normalize_sctp(&pd); 10965 if (action == PF_DROP) 10966 break; 10967 /* fallthrough */ 10968 case IPPROTO_UDP: 10969 default: 10970 action = pf_test_state(&s, &pd, &reason); 10971 if (action == PF_PASS || action == PF_AFRT) { 10972 if (V_pfsync_update_state_ptr != NULL) 10973 V_pfsync_update_state_ptr(s); 10974 r = s->rule; 10975 a = s->anchor; 10976 } else if (s == NULL) { 10977 action = pf_test_rule(&r, &s, 10978 &pd, &a, &ruleset, &reason, inp); 10979 } 10980 break; 10981 10982 case IPPROTO_ICMP: 10983 case IPPROTO_ICMPV6: { 10984 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) { 10985 action = PF_DROP; 10986 REASON_SET(&reason, PFRES_NORM); 10987 DPFPRINTF(PF_DEBUG_MISC, 10988 "dropping IPv6 packet with ICMPv4 payload"); 10989 break; 10990 } 10991 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) { 10992 action = PF_DROP; 10993 REASON_SET(&reason, PFRES_NORM); 10994 DPFPRINTF(PF_DEBUG_MISC, 10995 "pf: dropping IPv4 packet with ICMPv6 payload"); 10996 break; 10997 } 10998 action = pf_test_state_icmp(&s, &pd, &reason); 10999 if (action == PF_PASS || action == PF_AFRT) { 11000 if (V_pfsync_update_state_ptr != NULL) 11001 V_pfsync_update_state_ptr(s); 11002 r = s->rule; 11003 a = s->anchor; 11004 } else if (s == NULL) 11005 action = pf_test_rule(&r, &s, &pd, 11006 &a, &ruleset, &reason, inp); 11007 break; 11008 } 11009 11010 } 11011 11012 done: 11013 PF_RULES_RUNLOCK(); 11014 11015 if (pd.m == NULL) 11016 goto eat_pkt; 11017 11018 if (s) 11019 memcpy(&pd.act, &s->act, sizeof(s->act)); 11020 11021 if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) { 11022 action = PF_DROP; 11023 REASON_SET(&reason, PFRES_IPOPTIONS); 11024 pd.act.log = PF_LOG_FORCE; 11025 DPFPRINTF(PF_DEBUG_MISC, 11026 "pf: dropping packet with dangerous headers"); 11027 } 11028 11029 if (pd.act.max_pkt_size && pd.act.max_pkt_size && 11030 pd.tot_len > pd.act.max_pkt_size) { 11031 action = PF_DROP; 11032 REASON_SET(&reason, PFRES_NORM); 11033 pd.act.log = PF_LOG_FORCE; 11034 DPFPRINTF(PF_DEBUG_MISC, 11035 "pf: dropping overly long packet"); 11036 } 11037 11038 if (s) { 11039 uint8_t log = pd.act.log; 11040 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 11041 pd.act.log |= log; 11042 tag = s->tag; 11043 } else { 11044 tag = r->tag; 11045 } 11046 11047 if (tag > 0 && pf_tag_packet(&pd, tag)) { 11048 action = PF_DROP; 11049 REASON_SET(&reason, PFRES_MEMORY); 11050 } 11051 11052 pf_scrub(&pd); 11053 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 11054 pf_normalize_mss(&pd); 11055 11056 if (pd.act.rtableid >= 0) 11057 M_SETFIB(pd.m, pd.act.rtableid); 11058 11059 if (pd.act.flags & PFSTATE_SETPRIO) { 11060 if (pd.tos & IPTOS_LOWDELAY) 11061 use_2nd_queue = 1; 11062 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 11063 action = PF_DROP; 11064 REASON_SET(&reason, PFRES_MEMORY); 11065 pd.act.log = PF_LOG_FORCE; 11066 DPFPRINTF(PF_DEBUG_MISC, 11067 "pf: failed to allocate 802.1q mtag"); 11068 } 11069 } 11070 11071 #ifdef ALTQ 11072 if (action == PF_PASS && pd.act.qid) { 11073 if (pd.pf_mtag == NULL && 11074 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 11075 action = PF_DROP; 11076 REASON_SET(&reason, PFRES_MEMORY); 11077 } else { 11078 if (s != NULL) 11079 pd.pf_mtag->qid_hash = pf_state_hash(s); 11080 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 11081 pd.pf_mtag->qid = pd.act.pqid; 11082 else 11083 pd.pf_mtag->qid = pd.act.qid; 11084 /* Add hints for ecn. */ 11085 pd.pf_mtag->hdr = mtod(pd.m, void *); 11086 } 11087 } 11088 #endif /* ALTQ */ 11089 11090 /* 11091 * connections redirected to loopback should not match sockets 11092 * bound specifically to loopback due to security implications, 11093 * see tcp_input() and in_pcblookup_listen(). 11094 */ 11095 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 11096 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 11097 (s->nat_rule->action == PF_RDR || 11098 s->nat_rule->action == PF_BINAT) && 11099 pf_is_loopback(af, pd.dst)) 11100 pd.m->m_flags |= M_SKIP_FIREWALL; 11101 11102 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 11103 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 11104 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 11105 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 11106 if (mtag != NULL) { 11107 ((struct pf_divert_mtag *)(mtag+1))->port = 11108 ntohs(r->divert.port); 11109 ((struct pf_divert_mtag *)(mtag+1))->idir = 11110 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 11111 PF_DIVERT_MTAG_DIR_OUT; 11112 11113 if (s) 11114 PF_STATE_UNLOCK(s); 11115 11116 m_tag_prepend(pd.m, mtag); 11117 if (pd.m->m_flags & M_FASTFWD_OURS) { 11118 if (pd.pf_mtag == NULL && 11119 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 11120 action = PF_DROP; 11121 REASON_SET(&reason, PFRES_MEMORY); 11122 pd.act.log = PF_LOG_FORCE; 11123 DPFPRINTF(PF_DEBUG_MISC, 11124 "pf: failed to allocate tag"); 11125 } else { 11126 pd.pf_mtag->flags |= 11127 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 11128 pd.m->m_flags &= ~M_FASTFWD_OURS; 11129 } 11130 } 11131 ip_divert_ptr(*m0, dir == PF_IN); 11132 *m0 = NULL; 11133 11134 return (action); 11135 } else { 11136 /* XXX: ipfw has the same behaviour! */ 11137 action = PF_DROP; 11138 REASON_SET(&reason, PFRES_MEMORY); 11139 pd.act.log = PF_LOG_FORCE; 11140 DPFPRINTF(PF_DEBUG_MISC, 11141 "pf: failed to allocate divert tag"); 11142 } 11143 } 11144 /* XXX: Anybody working on it?! */ 11145 if (af == AF_INET6 && r->divert.port) 11146 printf("pf: divert(9) is not supported for IPv6\n"); 11147 11148 /* this flag will need revising if the pkt is forwarded */ 11149 if (pd.pf_mtag) 11150 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 11151 11152 if (pd.act.log) { 11153 struct pf_krule *lr; 11154 struct pf_krule_item *ri; 11155 11156 if (s != NULL && s->nat_rule != NULL && 11157 s->nat_rule->log & PF_LOG_ALL) 11158 lr = s->nat_rule; 11159 else 11160 lr = r; 11161 11162 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 11163 PFLOG_PACKET(action, reason, lr, a, 11164 ruleset, &pd, (s == NULL), NULL); 11165 if (s) { 11166 SLIST_FOREACH(ri, &s->match_rules, entry) 11167 if (ri->r->log & PF_LOG_ALL) 11168 PFLOG_PACKET(action, 11169 reason, ri->r, a, ruleset, &pd, 0, NULL); 11170 } 11171 } 11172 11173 pf_counters_inc(action, &pd, s, r, a); 11174 11175 switch (action) { 11176 case PF_SYNPROXY_DROP: 11177 m_freem(*m0); 11178 case PF_DEFER: 11179 *m0 = NULL; 11180 action = PF_PASS; 11181 break; 11182 case PF_DROP: 11183 m_freem(*m0); 11184 *m0 = NULL; 11185 break; 11186 case PF_AFRT: 11187 if (pf_translate_af(&pd)) { 11188 *m0 = pd.m; 11189 action = PF_DROP; 11190 break; 11191 } 11192 #ifdef INET 11193 if (pd.naf == AF_INET) { 11194 action = pf_route(r, kif->pfik_ifp, s, &pd, 11195 inp); 11196 } 11197 #endif /* INET */ 11198 #ifdef INET6 11199 if (pd.naf == AF_INET6) { 11200 action = pf_route6(r, kif->pfik_ifp, s, &pd, 11201 inp); 11202 } 11203 #endif /* INET6 */ 11204 *m0 = pd.m; 11205 goto out; 11206 break; 11207 default: 11208 if (pd.act.rt) { 11209 switch (af) { 11210 #ifdef INET 11211 case AF_INET: 11212 /* pf_route() returns unlocked. */ 11213 action = pf_route(r, kif->pfik_ifp, s, &pd, 11214 inp); 11215 break; 11216 #endif /* INET */ 11217 #ifdef INET6 11218 case AF_INET6: 11219 /* pf_route6() returns unlocked. */ 11220 action = pf_route6(r, kif->pfik_ifp, s, &pd, 11221 inp); 11222 break; 11223 #endif /* INET6 */ 11224 } 11225 *m0 = pd.m; 11226 goto out; 11227 } 11228 if (pf_dummynet(&pd, s, r, m0) != 0) { 11229 action = PF_DROP; 11230 REASON_SET(&reason, PFRES_MEMORY); 11231 } 11232 break; 11233 } 11234 11235 eat_pkt: 11236 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 11237 11238 if (s && action != PF_DROP) { 11239 if (!s->if_index_in && dir == PF_IN) 11240 s->if_index_in = ifp->if_index; 11241 else if (!s->if_index_out && dir == PF_OUT) 11242 s->if_index_out = ifp->if_index; 11243 } 11244 11245 if (s) 11246 PF_STATE_UNLOCK(s); 11247 11248 out: 11249 #ifdef INET6 11250 /* If reassembled packet passed, create new fragments. */ 11251 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 11252 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 11253 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 11254 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 11255 #endif /* INET6 */ 11256 11257 pf_sctp_multihome_delayed(&pd, kif, s, action); 11258 11259 return (action); 11260 } 11261 #endif /* INET || INET6 */ 11262