1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND ISC) 3 * 4 * Copyright (c) 2002 Michael Shalayeff 5 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, 21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 23 * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 26 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 /*- 31 * Copyright (c) 2009 David Gwynne <dlg@openbsd.org> 32 * 33 * Permission to use, copy, modify, and distribute this software for any 34 * purpose with or without fee is hereby granted, provided that the above 35 * copyright notice and this permission notice appear in all copies. 36 * 37 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 38 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 39 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 40 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 41 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 42 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 43 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 44 */ 45 46 /* 47 * $OpenBSD: if_pfsync.c,v 1.110 2009/02/24 05:39:19 dlg Exp $ 48 * 49 * Revisions picked from OpenBSD after revision 1.110 import: 50 * 1.119 - don't m_copydata() beyond the len of mbuf in pfsync_input() 51 * 1.118, 1.124, 1.148, 1.149, 1.151, 1.171 - fixes to bulk updates 52 * 1.120, 1.175 - use monotonic time_uptime 53 * 1.122 - reduce number of updates for non-TCP sessions 54 * 1.125, 1.127 - rewrite merge or stale processing 55 * 1.128 - cleanups 56 * 1.146 - bzero() mbuf before sparsely filling it with data 57 * 1.170 - SIOCSIFMTU checks 58 * 1.126, 1.142 - deferred packets processing 59 * 1.173 - correct expire time processing 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_inet.h" 66 #include "opt_inet6.h" 67 #include "opt_pf.h" 68 69 #include <sys/param.h> 70 #include <sys/bus.h> 71 #include <sys/endian.h> 72 #include <sys/interrupt.h> 73 #include <sys/kernel.h> 74 #include <sys/lock.h> 75 #include <sys/mbuf.h> 76 #include <sys/module.h> 77 #include <sys/mutex.h> 78 #include <sys/nv.h> 79 #include <sys/priv.h> 80 #include <sys/smp.h> 81 #include <sys/socket.h> 82 #include <sys/sockio.h> 83 #include <sys/sysctl.h> 84 #include <sys/syslog.h> 85 86 #include <net/bpf.h> 87 #include <net/if.h> 88 #include <net/if_var.h> 89 #include <net/if_clone.h> 90 #include <net/if_private.h> 91 #include <net/if_types.h> 92 #include <net/vnet.h> 93 #include <net/pfvar.h> 94 #include <net/if_pfsync.h> 95 96 #include <netinet/if_ether.h> 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip.h> 100 #include <netinet/ip_carp.h> 101 #include <netinet/ip_var.h> 102 #include <netinet/tcp.h> 103 #include <netinet/tcp_fsm.h> 104 #include <netinet/tcp_seq.h> 105 106 #include <netpfil/pf/pfsync_nv.h> 107 108 struct pfsync_bucket; 109 110 union inet_template { 111 struct ip ipv4; 112 }; 113 114 #define PFSYNC_MINPKT ( \ 115 sizeof(union inet_template) + \ 116 sizeof(struct pfsync_header) + \ 117 sizeof(struct pfsync_subheader) ) 118 119 static int pfsync_upd_tcp(struct pf_kstate *, struct pfsync_state_peer *, 120 struct pfsync_state_peer *); 121 static int pfsync_in_clr(struct mbuf *, int, int, int); 122 static int pfsync_in_ins(struct mbuf *, int, int, int); 123 static int pfsync_in_iack(struct mbuf *, int, int, int); 124 static int pfsync_in_upd(struct mbuf *, int, int, int); 125 static int pfsync_in_upd_c(struct mbuf *, int, int, int); 126 static int pfsync_in_ureq(struct mbuf *, int, int, int); 127 static int pfsync_in_del(struct mbuf *, int, int, int); 128 static int pfsync_in_del_c(struct mbuf *, int, int, int); 129 static int pfsync_in_bus(struct mbuf *, int, int, int); 130 static int pfsync_in_tdb(struct mbuf *, int, int, int); 131 static int pfsync_in_eof(struct mbuf *, int, int, int); 132 static int pfsync_in_error(struct mbuf *, int, int, int); 133 134 static int (*pfsync_acts[])(struct mbuf *, int, int, int) = { 135 pfsync_in_clr, /* PFSYNC_ACT_CLR */ 136 pfsync_in_ins, /* PFSYNC_ACT_INS */ 137 pfsync_in_iack, /* PFSYNC_ACT_INS_ACK */ 138 pfsync_in_upd, /* PFSYNC_ACT_UPD */ 139 pfsync_in_upd_c, /* PFSYNC_ACT_UPD_C */ 140 pfsync_in_ureq, /* PFSYNC_ACT_UPD_REQ */ 141 pfsync_in_del, /* PFSYNC_ACT_DEL */ 142 pfsync_in_del_c, /* PFSYNC_ACT_DEL_C */ 143 pfsync_in_error, /* PFSYNC_ACT_INS_F */ 144 pfsync_in_error, /* PFSYNC_ACT_DEL_F */ 145 pfsync_in_bus, /* PFSYNC_ACT_BUS */ 146 pfsync_in_tdb, /* PFSYNC_ACT_TDB */ 147 pfsync_in_eof /* PFSYNC_ACT_EOF */ 148 }; 149 150 struct pfsync_q { 151 void (*write)(struct pf_kstate *, void *); 152 size_t len; 153 u_int8_t action; 154 }; 155 156 /* we have one of these for every PFSYNC_S_ */ 157 static void pfsync_out_state(struct pf_kstate *, void *); 158 static void pfsync_out_iack(struct pf_kstate *, void *); 159 static void pfsync_out_upd_c(struct pf_kstate *, void *); 160 static void pfsync_out_del(struct pf_kstate *, void *); 161 162 static struct pfsync_q pfsync_qs[] = { 163 { pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_INS }, 164 { pfsync_out_iack, sizeof(struct pfsync_ins_ack), PFSYNC_ACT_INS_ACK }, 165 { pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_UPD }, 166 { pfsync_out_upd_c, sizeof(struct pfsync_upd_c), PFSYNC_ACT_UPD_C }, 167 { pfsync_out_del, sizeof(struct pfsync_del_c), PFSYNC_ACT_DEL_C } 168 }; 169 170 static void pfsync_q_ins(struct pf_kstate *, int, bool); 171 static void pfsync_q_del(struct pf_kstate *, bool, struct pfsync_bucket *); 172 173 static void pfsync_update_state(struct pf_kstate *); 174 175 struct pfsync_upd_req_item { 176 TAILQ_ENTRY(pfsync_upd_req_item) ur_entry; 177 struct pfsync_upd_req ur_msg; 178 }; 179 180 struct pfsync_deferral { 181 struct pfsync_softc *pd_sc; 182 TAILQ_ENTRY(pfsync_deferral) pd_entry; 183 u_int pd_refs; 184 struct callout pd_tmo; 185 186 struct pf_kstate *pd_st; 187 struct mbuf *pd_m; 188 }; 189 190 struct pfsync_sofct; 191 192 struct pfsync_bucket 193 { 194 int b_id; 195 struct pfsync_softc *b_sc; 196 struct mtx b_mtx; 197 struct callout b_tmo; 198 int b_flags; 199 #define PFSYNCF_BUCKET_PUSH 0x00000001 200 201 size_t b_len; 202 TAILQ_HEAD(, pf_kstate) b_qs[PFSYNC_S_COUNT]; 203 TAILQ_HEAD(, pfsync_upd_req_item) b_upd_req_list; 204 TAILQ_HEAD(, pfsync_deferral) b_deferrals; 205 u_int b_deferred; 206 void *b_plus; 207 size_t b_pluslen; 208 209 struct ifaltq b_snd; 210 }; 211 212 struct pfsync_softc { 213 /* Configuration */ 214 struct ifnet *sc_ifp; 215 struct ifnet *sc_sync_if; 216 struct ip_moptions sc_imo; 217 struct sockaddr_storage sc_sync_peer; 218 uint32_t sc_flags; 219 uint8_t sc_maxupdates; 220 union inet_template sc_template; 221 struct mtx sc_mtx; 222 223 /* Queued data */ 224 struct pfsync_bucket *sc_buckets; 225 226 /* Bulk update info */ 227 struct mtx sc_bulk_mtx; 228 uint32_t sc_ureq_sent; 229 int sc_bulk_tries; 230 uint32_t sc_ureq_received; 231 int sc_bulk_hashid; 232 uint64_t sc_bulk_stateid; 233 uint32_t sc_bulk_creatorid; 234 struct callout sc_bulk_tmo; 235 struct callout sc_bulkfail_tmo; 236 }; 237 238 #define PFSYNC_LOCK(sc) mtx_lock(&(sc)->sc_mtx) 239 #define PFSYNC_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) 240 #define PFSYNC_LOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) 241 242 #define PFSYNC_BUCKET_LOCK(b) mtx_lock(&(b)->b_mtx) 243 #define PFSYNC_BUCKET_UNLOCK(b) mtx_unlock(&(b)->b_mtx) 244 #define PFSYNC_BUCKET_LOCK_ASSERT(b) mtx_assert(&(b)->b_mtx, MA_OWNED) 245 246 #define PFSYNC_BLOCK(sc) mtx_lock(&(sc)->sc_bulk_mtx) 247 #define PFSYNC_BUNLOCK(sc) mtx_unlock(&(sc)->sc_bulk_mtx) 248 #define PFSYNC_BLOCK_ASSERT(sc) mtx_assert(&(sc)->sc_bulk_mtx, MA_OWNED) 249 250 static const char pfsyncname[] = "pfsync"; 251 static MALLOC_DEFINE(M_PFSYNC, pfsyncname, "pfsync(4) data"); 252 VNET_DEFINE_STATIC(struct pfsync_softc *, pfsyncif) = NULL; 253 #define V_pfsyncif VNET(pfsyncif) 254 VNET_DEFINE_STATIC(void *, pfsync_swi_cookie) = NULL; 255 #define V_pfsync_swi_cookie VNET(pfsync_swi_cookie) 256 VNET_DEFINE_STATIC(struct intr_event *, pfsync_swi_ie); 257 #define V_pfsync_swi_ie VNET(pfsync_swi_ie) 258 VNET_DEFINE_STATIC(struct pfsyncstats, pfsyncstats); 259 #define V_pfsyncstats VNET(pfsyncstats) 260 VNET_DEFINE_STATIC(int, pfsync_carp_adj) = CARP_MAXSKEW; 261 #define V_pfsync_carp_adj VNET(pfsync_carp_adj) 262 263 static void pfsync_timeout(void *); 264 static void pfsync_push(struct pfsync_bucket *); 265 static void pfsync_push_all(struct pfsync_softc *); 266 static void pfsyncintr(void *); 267 static int pfsync_multicast_setup(struct pfsync_softc *, struct ifnet *, 268 struct in_mfilter *imf); 269 static void pfsync_multicast_cleanup(struct pfsync_softc *); 270 static void pfsync_pointers_init(void); 271 static void pfsync_pointers_uninit(void); 272 static int pfsync_init(void); 273 static void pfsync_uninit(void); 274 275 static unsigned long pfsync_buckets; 276 277 SYSCTL_NODE(_net, OID_AUTO, pfsync, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 278 "PFSYNC"); 279 SYSCTL_STRUCT(_net_pfsync, OID_AUTO, stats, CTLFLAG_VNET | CTLFLAG_RW, 280 &VNET_NAME(pfsyncstats), pfsyncstats, 281 "PFSYNC statistics (struct pfsyncstats, net/if_pfsync.h)"); 282 SYSCTL_INT(_net_pfsync, OID_AUTO, carp_demotion_factor, CTLFLAG_VNET | CTLFLAG_RW, 283 &VNET_NAME(pfsync_carp_adj), 0, "pfsync's CARP demotion factor adjustment"); 284 SYSCTL_ULONG(_net_pfsync, OID_AUTO, pfsync_buckets, CTLFLAG_RDTUN, 285 &pfsync_buckets, 0, "Number of pfsync hash buckets"); 286 287 static int pfsync_clone_create(struct if_clone *, int, caddr_t); 288 static void pfsync_clone_destroy(struct ifnet *); 289 static int pfsync_alloc_scrub_memory(struct pfsync_state_peer *, 290 struct pf_state_peer *); 291 static int pfsyncoutput(struct ifnet *, struct mbuf *, 292 const struct sockaddr *, struct route *); 293 static int pfsyncioctl(struct ifnet *, u_long, caddr_t); 294 295 static int pfsync_defer(struct pf_kstate *, struct mbuf *); 296 static void pfsync_undefer(struct pfsync_deferral *, int); 297 static void pfsync_undefer_state(struct pf_kstate *, int); 298 static void pfsync_defer_tmo(void *); 299 300 static void pfsync_request_update(u_int32_t, u_int64_t); 301 static bool pfsync_update_state_req(struct pf_kstate *); 302 303 static void pfsync_drop(struct pfsync_softc *); 304 static void pfsync_sendout(int, int); 305 static void pfsync_send_plus(void *, size_t); 306 307 static void pfsync_bulk_start(void); 308 static void pfsync_bulk_status(u_int8_t); 309 static void pfsync_bulk_update(void *); 310 static void pfsync_bulk_fail(void *); 311 312 static void pfsync_detach_ifnet(struct ifnet *); 313 314 static int pfsync_pfsyncreq_to_kstatus(struct pfsyncreq *, 315 struct pfsync_kstatus *); 316 static int pfsync_kstatus_to_softc(struct pfsync_kstatus *, 317 struct pfsync_softc *); 318 319 #ifdef IPSEC 320 static void pfsync_update_net_tdb(struct pfsync_tdb *); 321 #endif 322 static struct pfsync_bucket *pfsync_get_bucket(struct pfsync_softc *, 323 struct pf_kstate *); 324 325 #define PFSYNC_MAX_BULKTRIES 12 326 #define PFSYNC_DEFER_TIMEOUT ((20 * hz) / 1000) 327 328 VNET_DEFINE(struct if_clone *, pfsync_cloner); 329 #define V_pfsync_cloner VNET(pfsync_cloner) 330 331 static int 332 pfsync_clone_create(struct if_clone *ifc, int unit, caddr_t param) 333 { 334 struct pfsync_softc *sc; 335 struct ifnet *ifp; 336 struct pfsync_bucket *b; 337 int c, q; 338 339 if (unit != 0) 340 return (EINVAL); 341 342 if (! pfsync_buckets) 343 pfsync_buckets = mp_ncpus * 2; 344 345 sc = malloc(sizeof(struct pfsync_softc), M_PFSYNC, M_WAITOK | M_ZERO); 346 sc->sc_flags |= PFSYNCF_OK; 347 sc->sc_maxupdates = 128; 348 349 ifp = sc->sc_ifp = if_alloc(IFT_PFSYNC); 350 if (ifp == NULL) { 351 free(sc, M_PFSYNC); 352 return (ENOSPC); 353 } 354 if_initname(ifp, pfsyncname, unit); 355 ifp->if_softc = sc; 356 ifp->if_ioctl = pfsyncioctl; 357 ifp->if_output = pfsyncoutput; 358 ifp->if_type = IFT_PFSYNC; 359 ifp->if_hdrlen = sizeof(struct pfsync_header); 360 ifp->if_mtu = ETHERMTU; 361 mtx_init(&sc->sc_mtx, pfsyncname, NULL, MTX_DEF); 362 mtx_init(&sc->sc_bulk_mtx, "pfsync bulk", NULL, MTX_DEF); 363 callout_init_mtx(&sc->sc_bulk_tmo, &sc->sc_bulk_mtx, 0); 364 callout_init_mtx(&sc->sc_bulkfail_tmo, &sc->sc_bulk_mtx, 0); 365 366 if_attach(ifp); 367 368 bpfattach(ifp, DLT_PFSYNC, PFSYNC_HDRLEN); 369 370 sc->sc_buckets = mallocarray(pfsync_buckets, sizeof(*sc->sc_buckets), 371 M_PFSYNC, M_ZERO | M_WAITOK); 372 for (c = 0; c < pfsync_buckets; c++) { 373 b = &sc->sc_buckets[c]; 374 mtx_init(&b->b_mtx, "pfsync bucket", NULL, MTX_DEF); 375 376 b->b_id = c; 377 b->b_sc = sc; 378 b->b_len = PFSYNC_MINPKT; 379 380 for (q = 0; q < PFSYNC_S_COUNT; q++) 381 TAILQ_INIT(&b->b_qs[q]); 382 383 TAILQ_INIT(&b->b_upd_req_list); 384 TAILQ_INIT(&b->b_deferrals); 385 386 callout_init(&b->b_tmo, 1); 387 388 b->b_snd.ifq_maxlen = ifqmaxlen; 389 } 390 391 V_pfsyncif = sc; 392 393 return (0); 394 } 395 396 static void 397 pfsync_clone_destroy(struct ifnet *ifp) 398 { 399 struct pfsync_softc *sc = ifp->if_softc; 400 struct pfsync_bucket *b; 401 int c; 402 403 for (c = 0; c < pfsync_buckets; c++) { 404 b = &sc->sc_buckets[c]; 405 /* 406 * At this stage, everything should have already been 407 * cleared by pfsync_uninit(), and we have only to 408 * drain callouts. 409 */ 410 while (b->b_deferred > 0) { 411 struct pfsync_deferral *pd = 412 TAILQ_FIRST(&b->b_deferrals); 413 414 TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry); 415 b->b_deferred--; 416 if (callout_stop(&pd->pd_tmo) > 0) { 417 pf_release_state(pd->pd_st); 418 m_freem(pd->pd_m); 419 free(pd, M_PFSYNC); 420 } else { 421 pd->pd_refs++; 422 callout_drain(&pd->pd_tmo); 423 free(pd, M_PFSYNC); 424 } 425 } 426 427 callout_drain(&b->b_tmo); 428 } 429 430 callout_drain(&sc->sc_bulkfail_tmo); 431 callout_drain(&sc->sc_bulk_tmo); 432 433 if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) 434 (*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync destroy"); 435 bpfdetach(ifp); 436 if_detach(ifp); 437 438 pfsync_drop(sc); 439 440 if_free(ifp); 441 pfsync_multicast_cleanup(sc); 442 mtx_destroy(&sc->sc_mtx); 443 mtx_destroy(&sc->sc_bulk_mtx); 444 445 free(sc->sc_buckets, M_PFSYNC); 446 free(sc, M_PFSYNC); 447 448 V_pfsyncif = NULL; 449 } 450 451 static int 452 pfsync_alloc_scrub_memory(struct pfsync_state_peer *s, 453 struct pf_state_peer *d) 454 { 455 if (s->scrub.scrub_flag && d->scrub == NULL) { 456 d->scrub = uma_zalloc(V_pf_state_scrub_z, M_NOWAIT | M_ZERO); 457 if (d->scrub == NULL) 458 return (ENOMEM); 459 } 460 461 return (0); 462 } 463 464 static int 465 pfsync_state_import(struct pfsync_state *sp, int flags) 466 { 467 struct pfsync_softc *sc = V_pfsyncif; 468 #ifndef __NO_STRICT_ALIGNMENT 469 struct pfsync_state_key key[2]; 470 #endif 471 struct pfsync_state_key *kw, *ks; 472 struct pf_kstate *st = NULL; 473 struct pf_state_key *skw = NULL, *sks = NULL; 474 struct pf_krule *r = NULL; 475 struct pfi_kkif *kif; 476 int error; 477 478 PF_RULES_RASSERT(); 479 480 if (sp->creatorid == 0) { 481 if (V_pf_status.debug >= PF_DEBUG_MISC) 482 printf("%s: invalid creator id: %08x\n", __func__, 483 ntohl(sp->creatorid)); 484 return (EINVAL); 485 } 486 487 if ((kif = pfi_kkif_find(sp->ifname)) == NULL) { 488 if (V_pf_status.debug >= PF_DEBUG_MISC) 489 printf("%s: unknown interface: %s\n", __func__, 490 sp->ifname); 491 if (flags & PFSYNC_SI_IOCTL) 492 return (EINVAL); 493 return (0); /* skip this state */ 494 } 495 496 /* 497 * If the ruleset checksums match or the state is coming from the ioctl, 498 * it's safe to associate the state with the rule of that number. 499 */ 500 if (sp->rule != htonl(-1) && sp->anchor == htonl(-1) && 501 (flags & (PFSYNC_SI_IOCTL | PFSYNC_SI_CKSUM)) && ntohl(sp->rule) < 502 pf_main_ruleset.rules[PF_RULESET_FILTER].active.rcount) 503 r = pf_main_ruleset.rules[ 504 PF_RULESET_FILTER].active.ptr_array[ntohl(sp->rule)]; 505 else 506 r = &V_pf_default_rule; 507 508 if ((r->max_states && 509 counter_u64_fetch(r->states_cur) >= r->max_states)) 510 goto cleanup; 511 512 /* 513 * XXXGL: consider M_WAITOK in ioctl path after. 514 */ 515 st = pf_alloc_state(M_NOWAIT); 516 if (__predict_false(st == NULL)) 517 goto cleanup; 518 519 if ((skw = uma_zalloc(V_pf_state_key_z, M_NOWAIT)) == NULL) 520 goto cleanup; 521 522 #ifndef __NO_STRICT_ALIGNMENT 523 bcopy(&sp->key, key, sizeof(struct pfsync_state_key) * 2); 524 kw = &key[PF_SK_WIRE]; 525 ks = &key[PF_SK_STACK]; 526 #else 527 kw = &sp->key[PF_SK_WIRE]; 528 ks = &sp->key[PF_SK_STACK]; 529 #endif 530 531 if (PF_ANEQ(&kw->addr[0], &ks->addr[0], sp->af) || 532 PF_ANEQ(&kw->addr[1], &ks->addr[1], sp->af) || 533 kw->port[0] != ks->port[0] || 534 kw->port[1] != ks->port[1]) { 535 sks = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 536 if (sks == NULL) 537 goto cleanup; 538 } else 539 sks = skw; 540 541 /* allocate memory for scrub info */ 542 if (pfsync_alloc_scrub_memory(&sp->src, &st->src) || 543 pfsync_alloc_scrub_memory(&sp->dst, &st->dst)) 544 goto cleanup; 545 546 /* Copy to state key(s). */ 547 skw->addr[0] = kw->addr[0]; 548 skw->addr[1] = kw->addr[1]; 549 skw->port[0] = kw->port[0]; 550 skw->port[1] = kw->port[1]; 551 skw->proto = sp->proto; 552 skw->af = sp->af; 553 if (sks != skw) { 554 sks->addr[0] = ks->addr[0]; 555 sks->addr[1] = ks->addr[1]; 556 sks->port[0] = ks->port[0]; 557 sks->port[1] = ks->port[1]; 558 sks->proto = sp->proto; 559 sks->af = sp->af; 560 } 561 562 /* copy to state */ 563 bcopy(&sp->rt_addr, &st->rt_addr, sizeof(st->rt_addr)); 564 st->creation = time_uptime - ntohl(sp->creation); 565 st->expire = time_uptime; 566 if (sp->expire) { 567 uint32_t timeout; 568 569 timeout = r->timeout[sp->timeout]; 570 if (!timeout) 571 timeout = V_pf_default_rule.timeout[sp->timeout]; 572 573 /* sp->expire may have been adaptively scaled by export. */ 574 st->expire -= timeout - ntohl(sp->expire); 575 } 576 577 st->direction = sp->direction; 578 st->log = sp->log; 579 st->timeout = sp->timeout; 580 st->state_flags = sp->state_flags; 581 582 st->id = sp->id; 583 st->creatorid = sp->creatorid; 584 pf_state_peer_ntoh(&sp->src, &st->src); 585 pf_state_peer_ntoh(&sp->dst, &st->dst); 586 587 st->rule.ptr = r; 588 st->nat_rule.ptr = NULL; 589 st->anchor.ptr = NULL; 590 st->rt_kif = NULL; 591 592 st->pfsync_time = time_uptime; 593 st->sync_state = PFSYNC_S_NONE; 594 595 if (!(flags & PFSYNC_SI_IOCTL)) 596 st->state_flags |= PFSTATE_NOSYNC; 597 598 if ((error = pf_state_insert(kif, kif, skw, sks, st)) != 0) 599 goto cleanup_state; 600 601 /* XXX when we have nat_rule/anchors, use STATE_INC_COUNTERS */ 602 counter_u64_add(r->states_cur, 1); 603 counter_u64_add(r->states_tot, 1); 604 605 if (!(flags & PFSYNC_SI_IOCTL)) { 606 st->state_flags &= ~PFSTATE_NOSYNC; 607 if (st->state_flags & PFSTATE_ACK) { 608 pfsync_q_ins(st, PFSYNC_S_IACK, true); 609 pfsync_push_all(sc); 610 } 611 } 612 st->state_flags &= ~PFSTATE_ACK; 613 PF_STATE_UNLOCK(st); 614 615 return (0); 616 617 cleanup: 618 error = ENOMEM; 619 if (skw == sks) 620 sks = NULL; 621 if (skw != NULL) 622 uma_zfree(V_pf_state_key_z, skw); 623 if (sks != NULL) 624 uma_zfree(V_pf_state_key_z, sks); 625 626 cleanup_state: /* pf_state_insert() frees the state keys. */ 627 if (st) { 628 st->timeout = PFTM_UNLINKED; /* appease an assert */ 629 pf_free_state(st); 630 } 631 return (error); 632 } 633 634 #ifdef INET 635 static int 636 pfsync_input(struct mbuf **mp, int *offp __unused, int proto __unused) 637 { 638 struct pfsync_softc *sc = V_pfsyncif; 639 struct mbuf *m = *mp; 640 struct ip *ip = mtod(m, struct ip *); 641 struct pfsync_header *ph; 642 struct pfsync_subheader subh; 643 644 int offset, len, flags = 0; 645 int rv; 646 uint16_t count; 647 648 PF_RULES_RLOCK_TRACKER; 649 650 *mp = NULL; 651 V_pfsyncstats.pfsyncs_ipackets++; 652 653 /* Verify that we have a sync interface configured. */ 654 if (!sc || !sc->sc_sync_if || !V_pf_status.running || 655 (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 656 goto done; 657 658 /* verify that the packet came in on the right interface */ 659 if (sc->sc_sync_if != m->m_pkthdr.rcvif) { 660 V_pfsyncstats.pfsyncs_badif++; 661 goto done; 662 } 663 664 if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1); 665 if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 666 /* verify that the IP TTL is 255. */ 667 if (ip->ip_ttl != PFSYNC_DFLTTL) { 668 V_pfsyncstats.pfsyncs_badttl++; 669 goto done; 670 } 671 672 offset = ip->ip_hl << 2; 673 if (m->m_pkthdr.len < offset + sizeof(*ph)) { 674 V_pfsyncstats.pfsyncs_hdrops++; 675 goto done; 676 } 677 678 if (offset + sizeof(*ph) > m->m_len) { 679 if (m_pullup(m, offset + sizeof(*ph)) == NULL) { 680 V_pfsyncstats.pfsyncs_hdrops++; 681 return (IPPROTO_DONE); 682 } 683 ip = mtod(m, struct ip *); 684 } 685 ph = (struct pfsync_header *)((char *)ip + offset); 686 687 /* verify the version */ 688 if (ph->version != PFSYNC_VERSION) { 689 V_pfsyncstats.pfsyncs_badver++; 690 goto done; 691 } 692 693 len = ntohs(ph->len) + offset; 694 if (m->m_pkthdr.len < len) { 695 V_pfsyncstats.pfsyncs_badlen++; 696 goto done; 697 } 698 699 /* 700 * Trusting pf_chksum during packet processing, as well as seeking 701 * in interface name tree, require holding PF_RULES_RLOCK(). 702 */ 703 PF_RULES_RLOCK(); 704 if (!bcmp(&ph->pfcksum, &V_pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH)) 705 flags = PFSYNC_SI_CKSUM; 706 707 offset += sizeof(*ph); 708 while (offset <= len - sizeof(subh)) { 709 m_copydata(m, offset, sizeof(subh), (caddr_t)&subh); 710 offset += sizeof(subh); 711 712 if (subh.action >= PFSYNC_ACT_MAX) { 713 V_pfsyncstats.pfsyncs_badact++; 714 PF_RULES_RUNLOCK(); 715 goto done; 716 } 717 718 count = ntohs(subh.count); 719 V_pfsyncstats.pfsyncs_iacts[subh.action] += count; 720 rv = (*pfsync_acts[subh.action])(m, offset, count, flags); 721 if (rv == -1) { 722 PF_RULES_RUNLOCK(); 723 return (IPPROTO_DONE); 724 } 725 726 offset += rv; 727 } 728 PF_RULES_RUNLOCK(); 729 730 done: 731 m_freem(m); 732 return (IPPROTO_DONE); 733 } 734 #endif 735 736 static int 737 pfsync_in_clr(struct mbuf *m, int offset, int count, int flags) 738 { 739 struct pfsync_clr *clr; 740 struct mbuf *mp; 741 int len = sizeof(*clr) * count; 742 int i, offp; 743 u_int32_t creatorid; 744 745 mp = m_pulldown(m, offset, len, &offp); 746 if (mp == NULL) { 747 V_pfsyncstats.pfsyncs_badlen++; 748 return (-1); 749 } 750 clr = (struct pfsync_clr *)(mp->m_data + offp); 751 752 for (i = 0; i < count; i++) { 753 creatorid = clr[i].creatorid; 754 755 if (clr[i].ifname[0] != '\0' && 756 pfi_kkif_find(clr[i].ifname) == NULL) 757 continue; 758 759 for (int i = 0; i <= pf_hashmask; i++) { 760 struct pf_idhash *ih = &V_pf_idhash[i]; 761 struct pf_kstate *s; 762 relock: 763 PF_HASHROW_LOCK(ih); 764 LIST_FOREACH(s, &ih->states, entry) { 765 if (s->creatorid == creatorid) { 766 s->state_flags |= PFSTATE_NOSYNC; 767 pf_unlink_state(s); 768 goto relock; 769 } 770 } 771 PF_HASHROW_UNLOCK(ih); 772 } 773 } 774 775 return (len); 776 } 777 778 static int 779 pfsync_in_ins(struct mbuf *m, int offset, int count, int flags) 780 { 781 struct mbuf *mp; 782 struct pfsync_state *sa, *sp; 783 int len = sizeof(*sp) * count; 784 int i, offp; 785 786 mp = m_pulldown(m, offset, len, &offp); 787 if (mp == NULL) { 788 V_pfsyncstats.pfsyncs_badlen++; 789 return (-1); 790 } 791 sa = (struct pfsync_state *)(mp->m_data + offp); 792 793 for (i = 0; i < count; i++) { 794 sp = &sa[i]; 795 796 /* Check for invalid values. */ 797 if (sp->timeout >= PFTM_MAX || 798 sp->src.state > PF_TCPS_PROXY_DST || 799 sp->dst.state > PF_TCPS_PROXY_DST || 800 sp->direction > PF_OUT || 801 (sp->af != AF_INET && sp->af != AF_INET6)) { 802 if (V_pf_status.debug >= PF_DEBUG_MISC) 803 printf("%s: invalid value\n", __func__); 804 V_pfsyncstats.pfsyncs_badval++; 805 continue; 806 } 807 808 if (pfsync_state_import(sp, flags) == ENOMEM) 809 /* Drop out, but process the rest of the actions. */ 810 break; 811 } 812 813 return (len); 814 } 815 816 static int 817 pfsync_in_iack(struct mbuf *m, int offset, int count, int flags) 818 { 819 struct pfsync_ins_ack *ia, *iaa; 820 struct pf_kstate *st; 821 822 struct mbuf *mp; 823 int len = count * sizeof(*ia); 824 int offp, i; 825 826 mp = m_pulldown(m, offset, len, &offp); 827 if (mp == NULL) { 828 V_pfsyncstats.pfsyncs_badlen++; 829 return (-1); 830 } 831 iaa = (struct pfsync_ins_ack *)(mp->m_data + offp); 832 833 for (i = 0; i < count; i++) { 834 ia = &iaa[i]; 835 836 st = pf_find_state_byid(ia->id, ia->creatorid); 837 if (st == NULL) 838 continue; 839 840 if (st->state_flags & PFSTATE_ACK) { 841 pfsync_undefer_state(st, 0); 842 } 843 PF_STATE_UNLOCK(st); 844 } 845 /* 846 * XXX this is not yet implemented, but we know the size of the 847 * message so we can skip it. 848 */ 849 850 return (count * sizeof(struct pfsync_ins_ack)); 851 } 852 853 static int 854 pfsync_upd_tcp(struct pf_kstate *st, struct pfsync_state_peer *src, 855 struct pfsync_state_peer *dst) 856 { 857 int sync = 0; 858 859 PF_STATE_LOCK_ASSERT(st); 860 861 /* 862 * The state should never go backwards except 863 * for syn-proxy states. Neither should the 864 * sequence window slide backwards. 865 */ 866 if ((st->src.state > src->state && 867 (st->src.state < PF_TCPS_PROXY_SRC || 868 src->state >= PF_TCPS_PROXY_SRC)) || 869 870 (st->src.state == src->state && 871 SEQ_GT(st->src.seqlo, ntohl(src->seqlo)))) 872 sync++; 873 else 874 pf_state_peer_ntoh(src, &st->src); 875 876 if ((st->dst.state > dst->state) || 877 878 (st->dst.state >= TCPS_SYN_SENT && 879 SEQ_GT(st->dst.seqlo, ntohl(dst->seqlo)))) 880 sync++; 881 else 882 pf_state_peer_ntoh(dst, &st->dst); 883 884 return (sync); 885 } 886 887 static int 888 pfsync_in_upd(struct mbuf *m, int offset, int count, int flags) 889 { 890 struct pfsync_softc *sc = V_pfsyncif; 891 struct pfsync_state *sa, *sp; 892 struct pf_kstate *st; 893 int sync; 894 895 struct mbuf *mp; 896 int len = count * sizeof(*sp); 897 int offp, i; 898 899 mp = m_pulldown(m, offset, len, &offp); 900 if (mp == NULL) { 901 V_pfsyncstats.pfsyncs_badlen++; 902 return (-1); 903 } 904 sa = (struct pfsync_state *)(mp->m_data + offp); 905 906 for (i = 0; i < count; i++) { 907 sp = &sa[i]; 908 909 /* check for invalid values */ 910 if (sp->timeout >= PFTM_MAX || 911 sp->src.state > PF_TCPS_PROXY_DST || 912 sp->dst.state > PF_TCPS_PROXY_DST) { 913 if (V_pf_status.debug >= PF_DEBUG_MISC) { 914 printf("pfsync_input: PFSYNC_ACT_UPD: " 915 "invalid value\n"); 916 } 917 V_pfsyncstats.pfsyncs_badval++; 918 continue; 919 } 920 921 st = pf_find_state_byid(sp->id, sp->creatorid); 922 if (st == NULL) { 923 /* insert the update */ 924 if (pfsync_state_import(sp, flags)) 925 V_pfsyncstats.pfsyncs_badstate++; 926 continue; 927 } 928 929 if (st->state_flags & PFSTATE_ACK) { 930 pfsync_undefer_state(st, 1); 931 } 932 933 if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) 934 sync = pfsync_upd_tcp(st, &sp->src, &sp->dst); 935 else { 936 sync = 0; 937 938 /* 939 * Non-TCP protocol state machine always go 940 * forwards 941 */ 942 if (st->src.state > sp->src.state) 943 sync++; 944 else 945 pf_state_peer_ntoh(&sp->src, &st->src); 946 if (st->dst.state > sp->dst.state) 947 sync++; 948 else 949 pf_state_peer_ntoh(&sp->dst, &st->dst); 950 } 951 if (sync < 2) { 952 pfsync_alloc_scrub_memory(&sp->dst, &st->dst); 953 pf_state_peer_ntoh(&sp->dst, &st->dst); 954 st->expire = time_uptime; 955 st->timeout = sp->timeout; 956 } 957 st->pfsync_time = time_uptime; 958 959 if (sync) { 960 V_pfsyncstats.pfsyncs_stale++; 961 962 pfsync_update_state(st); 963 PF_STATE_UNLOCK(st); 964 pfsync_push_all(sc); 965 continue; 966 } 967 PF_STATE_UNLOCK(st); 968 } 969 970 return (len); 971 } 972 973 static int 974 pfsync_in_upd_c(struct mbuf *m, int offset, int count, int flags) 975 { 976 struct pfsync_softc *sc = V_pfsyncif; 977 struct pfsync_upd_c *ua, *up; 978 struct pf_kstate *st; 979 int len = count * sizeof(*up); 980 int sync; 981 struct mbuf *mp; 982 int offp, i; 983 984 mp = m_pulldown(m, offset, len, &offp); 985 if (mp == NULL) { 986 V_pfsyncstats.pfsyncs_badlen++; 987 return (-1); 988 } 989 ua = (struct pfsync_upd_c *)(mp->m_data + offp); 990 991 for (i = 0; i < count; i++) { 992 up = &ua[i]; 993 994 /* check for invalid values */ 995 if (up->timeout >= PFTM_MAX || 996 up->src.state > PF_TCPS_PROXY_DST || 997 up->dst.state > PF_TCPS_PROXY_DST) { 998 if (V_pf_status.debug >= PF_DEBUG_MISC) { 999 printf("pfsync_input: " 1000 "PFSYNC_ACT_UPD_C: " 1001 "invalid value\n"); 1002 } 1003 V_pfsyncstats.pfsyncs_badval++; 1004 continue; 1005 } 1006 1007 st = pf_find_state_byid(up->id, up->creatorid); 1008 if (st == NULL) { 1009 /* We don't have this state. Ask for it. */ 1010 PFSYNC_BUCKET_LOCK(&sc->sc_buckets[0]); 1011 pfsync_request_update(up->creatorid, up->id); 1012 PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[0]); 1013 continue; 1014 } 1015 1016 if (st->state_flags & PFSTATE_ACK) { 1017 pfsync_undefer_state(st, 1); 1018 } 1019 1020 if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) 1021 sync = pfsync_upd_tcp(st, &up->src, &up->dst); 1022 else { 1023 sync = 0; 1024 1025 /* 1026 * Non-TCP protocol state machine always go 1027 * forwards 1028 */ 1029 if (st->src.state > up->src.state) 1030 sync++; 1031 else 1032 pf_state_peer_ntoh(&up->src, &st->src); 1033 if (st->dst.state > up->dst.state) 1034 sync++; 1035 else 1036 pf_state_peer_ntoh(&up->dst, &st->dst); 1037 } 1038 if (sync < 2) { 1039 pfsync_alloc_scrub_memory(&up->dst, &st->dst); 1040 pf_state_peer_ntoh(&up->dst, &st->dst); 1041 st->expire = time_uptime; 1042 st->timeout = up->timeout; 1043 } 1044 st->pfsync_time = time_uptime; 1045 1046 if (sync) { 1047 V_pfsyncstats.pfsyncs_stale++; 1048 1049 pfsync_update_state(st); 1050 PF_STATE_UNLOCK(st); 1051 pfsync_push_all(sc); 1052 continue; 1053 } 1054 PF_STATE_UNLOCK(st); 1055 } 1056 1057 return (len); 1058 } 1059 1060 static int 1061 pfsync_in_ureq(struct mbuf *m, int offset, int count, int flags) 1062 { 1063 struct pfsync_upd_req *ur, *ura; 1064 struct mbuf *mp; 1065 int len = count * sizeof(*ur); 1066 int i, offp; 1067 1068 struct pf_kstate *st; 1069 1070 mp = m_pulldown(m, offset, len, &offp); 1071 if (mp == NULL) { 1072 V_pfsyncstats.pfsyncs_badlen++; 1073 return (-1); 1074 } 1075 ura = (struct pfsync_upd_req *)(mp->m_data + offp); 1076 1077 for (i = 0; i < count; i++) { 1078 ur = &ura[i]; 1079 1080 if (ur->id == 0 && ur->creatorid == 0) 1081 pfsync_bulk_start(); 1082 else { 1083 st = pf_find_state_byid(ur->id, ur->creatorid); 1084 if (st == NULL) { 1085 V_pfsyncstats.pfsyncs_badstate++; 1086 continue; 1087 } 1088 if (st->state_flags & PFSTATE_NOSYNC) { 1089 PF_STATE_UNLOCK(st); 1090 continue; 1091 } 1092 1093 pfsync_update_state_req(st); 1094 PF_STATE_UNLOCK(st); 1095 } 1096 } 1097 1098 return (len); 1099 } 1100 1101 static int 1102 pfsync_in_del(struct mbuf *m, int offset, int count, int flags) 1103 { 1104 struct mbuf *mp; 1105 struct pfsync_state *sa, *sp; 1106 struct pf_kstate *st; 1107 int len = count * sizeof(*sp); 1108 int offp, i; 1109 1110 mp = m_pulldown(m, offset, len, &offp); 1111 if (mp == NULL) { 1112 V_pfsyncstats.pfsyncs_badlen++; 1113 return (-1); 1114 } 1115 sa = (struct pfsync_state *)(mp->m_data + offp); 1116 1117 for (i = 0; i < count; i++) { 1118 sp = &sa[i]; 1119 1120 st = pf_find_state_byid(sp->id, sp->creatorid); 1121 if (st == NULL) { 1122 V_pfsyncstats.pfsyncs_badstate++; 1123 continue; 1124 } 1125 st->state_flags |= PFSTATE_NOSYNC; 1126 pf_unlink_state(st); 1127 } 1128 1129 return (len); 1130 } 1131 1132 static int 1133 pfsync_in_del_c(struct mbuf *m, int offset, int count, int flags) 1134 { 1135 struct mbuf *mp; 1136 struct pfsync_del_c *sa, *sp; 1137 struct pf_kstate *st; 1138 int len = count * sizeof(*sp); 1139 int offp, i; 1140 1141 mp = m_pulldown(m, offset, len, &offp); 1142 if (mp == NULL) { 1143 V_pfsyncstats.pfsyncs_badlen++; 1144 return (-1); 1145 } 1146 sa = (struct pfsync_del_c *)(mp->m_data + offp); 1147 1148 for (i = 0; i < count; i++) { 1149 sp = &sa[i]; 1150 1151 st = pf_find_state_byid(sp->id, sp->creatorid); 1152 if (st == NULL) { 1153 V_pfsyncstats.pfsyncs_badstate++; 1154 continue; 1155 } 1156 1157 st->state_flags |= PFSTATE_NOSYNC; 1158 pf_unlink_state(st); 1159 } 1160 1161 return (len); 1162 } 1163 1164 static int 1165 pfsync_in_bus(struct mbuf *m, int offset, int count, int flags) 1166 { 1167 struct pfsync_softc *sc = V_pfsyncif; 1168 struct pfsync_bus *bus; 1169 struct mbuf *mp; 1170 int len = count * sizeof(*bus); 1171 int offp; 1172 1173 PFSYNC_BLOCK(sc); 1174 1175 /* If we're not waiting for a bulk update, who cares. */ 1176 if (sc->sc_ureq_sent == 0) { 1177 PFSYNC_BUNLOCK(sc); 1178 return (len); 1179 } 1180 1181 mp = m_pulldown(m, offset, len, &offp); 1182 if (mp == NULL) { 1183 PFSYNC_BUNLOCK(sc); 1184 V_pfsyncstats.pfsyncs_badlen++; 1185 return (-1); 1186 } 1187 bus = (struct pfsync_bus *)(mp->m_data + offp); 1188 1189 switch (bus->status) { 1190 case PFSYNC_BUS_START: 1191 callout_reset(&sc->sc_bulkfail_tmo, 4 * hz + 1192 V_pf_limits[PF_LIMIT_STATES].limit / 1193 ((sc->sc_ifp->if_mtu - PFSYNC_MINPKT) / 1194 sizeof(struct pfsync_state)), 1195 pfsync_bulk_fail, sc); 1196 if (V_pf_status.debug >= PF_DEBUG_MISC) 1197 printf("pfsync: received bulk update start\n"); 1198 break; 1199 1200 case PFSYNC_BUS_END: 1201 if (time_uptime - ntohl(bus->endtime) >= 1202 sc->sc_ureq_sent) { 1203 /* that's it, we're happy */ 1204 sc->sc_ureq_sent = 0; 1205 sc->sc_bulk_tries = 0; 1206 callout_stop(&sc->sc_bulkfail_tmo); 1207 if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) 1208 (*carp_demote_adj_p)(-V_pfsync_carp_adj, 1209 "pfsync bulk done"); 1210 sc->sc_flags |= PFSYNCF_OK; 1211 if (V_pf_status.debug >= PF_DEBUG_MISC) 1212 printf("pfsync: received valid " 1213 "bulk update end\n"); 1214 } else { 1215 if (V_pf_status.debug >= PF_DEBUG_MISC) 1216 printf("pfsync: received invalid " 1217 "bulk update end: bad timestamp\n"); 1218 } 1219 break; 1220 } 1221 PFSYNC_BUNLOCK(sc); 1222 1223 return (len); 1224 } 1225 1226 static int 1227 pfsync_in_tdb(struct mbuf *m, int offset, int count, int flags) 1228 { 1229 int len = count * sizeof(struct pfsync_tdb); 1230 1231 #if defined(IPSEC) 1232 struct pfsync_tdb *tp; 1233 struct mbuf *mp; 1234 int offp; 1235 int i; 1236 int s; 1237 1238 mp = m_pulldown(m, offset, len, &offp); 1239 if (mp == NULL) { 1240 V_pfsyncstats.pfsyncs_badlen++; 1241 return (-1); 1242 } 1243 tp = (struct pfsync_tdb *)(mp->m_data + offp); 1244 1245 for (i = 0; i < count; i++) 1246 pfsync_update_net_tdb(&tp[i]); 1247 #endif 1248 1249 return (len); 1250 } 1251 1252 #if defined(IPSEC) 1253 /* Update an in-kernel tdb. Silently fail if no tdb is found. */ 1254 static void 1255 pfsync_update_net_tdb(struct pfsync_tdb *pt) 1256 { 1257 struct tdb *tdb; 1258 int s; 1259 1260 /* check for invalid values */ 1261 if (ntohl(pt->spi) <= SPI_RESERVED_MAX || 1262 (pt->dst.sa.sa_family != AF_INET && 1263 pt->dst.sa.sa_family != AF_INET6)) 1264 goto bad; 1265 1266 tdb = gettdb(pt->spi, &pt->dst, pt->sproto); 1267 if (tdb) { 1268 pt->rpl = ntohl(pt->rpl); 1269 pt->cur_bytes = (unsigned long long)be64toh(pt->cur_bytes); 1270 1271 /* Neither replay nor byte counter should ever decrease. */ 1272 if (pt->rpl < tdb->tdb_rpl || 1273 pt->cur_bytes < tdb->tdb_cur_bytes) { 1274 goto bad; 1275 } 1276 1277 tdb->tdb_rpl = pt->rpl; 1278 tdb->tdb_cur_bytes = pt->cur_bytes; 1279 } 1280 return; 1281 1282 bad: 1283 if (V_pf_status.debug >= PF_DEBUG_MISC) 1284 printf("pfsync_insert: PFSYNC_ACT_TDB_UPD: " 1285 "invalid value\n"); 1286 V_pfsyncstats.pfsyncs_badstate++; 1287 return; 1288 } 1289 #endif 1290 1291 static int 1292 pfsync_in_eof(struct mbuf *m, int offset, int count, int flags) 1293 { 1294 /* check if we are at the right place in the packet */ 1295 if (offset != m->m_pkthdr.len) 1296 V_pfsyncstats.pfsyncs_badlen++; 1297 1298 /* we're done. free and let the caller return */ 1299 m_freem(m); 1300 return (-1); 1301 } 1302 1303 static int 1304 pfsync_in_error(struct mbuf *m, int offset, int count, int flags) 1305 { 1306 V_pfsyncstats.pfsyncs_badact++; 1307 1308 m_freem(m); 1309 return (-1); 1310 } 1311 1312 static int 1313 pfsyncoutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1314 struct route *rt) 1315 { 1316 m_freem(m); 1317 return (0); 1318 } 1319 1320 /* ARGSUSED */ 1321 static int 1322 pfsyncioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1323 { 1324 struct pfsync_softc *sc = ifp->if_softc; 1325 struct ifreq *ifr = (struct ifreq *)data; 1326 struct pfsyncreq pfsyncr; 1327 size_t nvbuflen; 1328 int error; 1329 int c; 1330 1331 switch (cmd) { 1332 case SIOCSIFFLAGS: 1333 PFSYNC_LOCK(sc); 1334 if (ifp->if_flags & IFF_UP) { 1335 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1336 PFSYNC_UNLOCK(sc); 1337 pfsync_pointers_init(); 1338 } else { 1339 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1340 PFSYNC_UNLOCK(sc); 1341 pfsync_pointers_uninit(); 1342 } 1343 break; 1344 case SIOCSIFMTU: 1345 if (!sc->sc_sync_if || 1346 ifr->ifr_mtu <= PFSYNC_MINPKT || 1347 ifr->ifr_mtu > sc->sc_sync_if->if_mtu) 1348 return (EINVAL); 1349 if (ifr->ifr_mtu < ifp->if_mtu) { 1350 for (c = 0; c < pfsync_buckets; c++) { 1351 PFSYNC_BUCKET_LOCK(&sc->sc_buckets[c]); 1352 if (sc->sc_buckets[c].b_len > PFSYNC_MINPKT) 1353 pfsync_sendout(1, c); 1354 PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[c]); 1355 } 1356 } 1357 ifp->if_mtu = ifr->ifr_mtu; 1358 break; 1359 case SIOCGETPFSYNC: 1360 bzero(&pfsyncr, sizeof(pfsyncr)); 1361 PFSYNC_LOCK(sc); 1362 if (sc->sc_sync_if) { 1363 strlcpy(pfsyncr.pfsyncr_syncdev, 1364 sc->sc_sync_if->if_xname, IFNAMSIZ); 1365 } 1366 pfsyncr.pfsyncr_syncpeer = ((struct sockaddr_in *)&sc->sc_sync_peer)->sin_addr; 1367 pfsyncr.pfsyncr_maxupdates = sc->sc_maxupdates; 1368 pfsyncr.pfsyncr_defer = sc->sc_flags; 1369 PFSYNC_UNLOCK(sc); 1370 return (copyout(&pfsyncr, ifr_data_get_ptr(ifr), 1371 sizeof(pfsyncr))); 1372 1373 case SIOCGETPFSYNCNV: 1374 { 1375 nvlist_t *nvl_syncpeer; 1376 nvlist_t *nvl = nvlist_create(0); 1377 1378 if (nvl == NULL) 1379 return (ENOMEM); 1380 1381 if (sc->sc_sync_if) 1382 nvlist_add_string(nvl, "syncdev", sc->sc_sync_if->if_xname); 1383 nvlist_add_number(nvl, "maxupdates", sc->sc_maxupdates); 1384 nvlist_add_number(nvl, "flags", sc->sc_flags); 1385 if ((nvl_syncpeer = pfsync_sockaddr_to_syncpeer_nvlist(&sc->sc_sync_peer)) != NULL) 1386 nvlist_add_nvlist(nvl, "syncpeer", nvl_syncpeer); 1387 1388 void *packed = NULL; 1389 packed = nvlist_pack(nvl, &nvbuflen); 1390 if (packed == NULL) { 1391 free(packed, M_NVLIST); 1392 nvlist_destroy(nvl); 1393 return (ENOMEM); 1394 } 1395 1396 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 1397 ifr->ifr_cap_nv.length = nvbuflen; 1398 ifr->ifr_cap_nv.buffer = NULL; 1399 free(packed, M_NVLIST); 1400 nvlist_destroy(nvl); 1401 return (EFBIG); 1402 } 1403 1404 ifr->ifr_cap_nv.length = nvbuflen; 1405 error = copyout(packed, ifr->ifr_cap_nv.buffer, nvbuflen); 1406 1407 nvlist_destroy(nvl); 1408 nvlist_destroy(nvl_syncpeer); 1409 free(packed, M_NVLIST); 1410 break; 1411 } 1412 1413 case SIOCSETPFSYNC: 1414 { 1415 struct pfsync_kstatus status; 1416 1417 if ((error = priv_check(curthread, PRIV_NETINET_PF)) != 0) 1418 return (error); 1419 if ((error = copyin(ifr_data_get_ptr(ifr), &pfsyncr, 1420 sizeof(pfsyncr)))) 1421 return (error); 1422 1423 memset((char *)&status, 0, sizeof(struct pfsync_kstatus)); 1424 pfsync_pfsyncreq_to_kstatus(&pfsyncr, &status); 1425 1426 error = pfsync_kstatus_to_softc(&status, sc); 1427 return (error); 1428 } 1429 case SIOCSETPFSYNCNV: 1430 { 1431 struct pfsync_kstatus status; 1432 void *data; 1433 nvlist_t *nvl; 1434 1435 if ((error = priv_check(curthread, PRIV_NETINET_PF)) != 0) 1436 return (error); 1437 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 1438 return (EINVAL); 1439 1440 data = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 1441 1442 if ((error = copyin(ifr->ifr_cap_nv.buffer, data, 1443 ifr->ifr_cap_nv.length)) != 0) { 1444 free(data, M_TEMP); 1445 return (error); 1446 } 1447 1448 if ((nvl = nvlist_unpack(data, ifr->ifr_cap_nv.length, 0)) == NULL) { 1449 free(data, M_TEMP); 1450 return (EINVAL); 1451 } 1452 1453 memset((char *)&status, 0, sizeof(struct pfsync_kstatus)); 1454 pfsync_nvstatus_to_kstatus(nvl, &status); 1455 1456 nvlist_destroy(nvl); 1457 free(data, M_TEMP); 1458 1459 error = pfsync_kstatus_to_softc(&status, sc); 1460 return (error); 1461 } 1462 default: 1463 return (ENOTTY); 1464 } 1465 1466 return (0); 1467 } 1468 1469 static void 1470 pfsync_out_state(struct pf_kstate *st, void *buf) 1471 { 1472 struct pfsync_state *sp = buf; 1473 1474 pfsync_state_export(sp, st); 1475 } 1476 1477 static void 1478 pfsync_out_iack(struct pf_kstate *st, void *buf) 1479 { 1480 struct pfsync_ins_ack *iack = buf; 1481 1482 iack->id = st->id; 1483 iack->creatorid = st->creatorid; 1484 } 1485 1486 static void 1487 pfsync_out_upd_c(struct pf_kstate *st, void *buf) 1488 { 1489 struct pfsync_upd_c *up = buf; 1490 1491 bzero(up, sizeof(*up)); 1492 up->id = st->id; 1493 pf_state_peer_hton(&st->src, &up->src); 1494 pf_state_peer_hton(&st->dst, &up->dst); 1495 up->creatorid = st->creatorid; 1496 up->timeout = st->timeout; 1497 } 1498 1499 static void 1500 pfsync_out_del(struct pf_kstate *st, void *buf) 1501 { 1502 struct pfsync_del_c *dp = buf; 1503 1504 dp->id = st->id; 1505 dp->creatorid = st->creatorid; 1506 st->state_flags |= PFSTATE_NOSYNC; 1507 } 1508 1509 static void 1510 pfsync_drop(struct pfsync_softc *sc) 1511 { 1512 struct pf_kstate *st, *next; 1513 struct pfsync_upd_req_item *ur; 1514 struct pfsync_bucket *b; 1515 int c, q; 1516 1517 for (c = 0; c < pfsync_buckets; c++) { 1518 b = &sc->sc_buckets[c]; 1519 for (q = 0; q < PFSYNC_S_COUNT; q++) { 1520 if (TAILQ_EMPTY(&b->b_qs[q])) 1521 continue; 1522 1523 TAILQ_FOREACH_SAFE(st, &b->b_qs[q], sync_list, next) { 1524 KASSERT(st->sync_state == q, 1525 ("%s: st->sync_state == q", 1526 __func__)); 1527 st->sync_state = PFSYNC_S_NONE; 1528 pf_release_state(st); 1529 } 1530 TAILQ_INIT(&b->b_qs[q]); 1531 } 1532 1533 while ((ur = TAILQ_FIRST(&b->b_upd_req_list)) != NULL) { 1534 TAILQ_REMOVE(&b->b_upd_req_list, ur, ur_entry); 1535 free(ur, M_PFSYNC); 1536 } 1537 1538 b->b_len = PFSYNC_MINPKT; 1539 b->b_plus = NULL; 1540 } 1541 } 1542 1543 static void 1544 pfsync_sendout(int schedswi, int c) 1545 { 1546 struct pfsync_softc *sc = V_pfsyncif; 1547 struct ifnet *ifp = sc->sc_ifp; 1548 struct mbuf *m; 1549 struct pfsync_header *ph; 1550 struct pfsync_subheader *subh; 1551 struct pf_kstate *st, *st_next; 1552 struct pfsync_upd_req_item *ur; 1553 struct pfsync_bucket *b = &sc->sc_buckets[c]; 1554 int aflen, offset; 1555 int q, count = 0; 1556 1557 KASSERT(sc != NULL, ("%s: null sc", __func__)); 1558 KASSERT(b->b_len > PFSYNC_MINPKT, 1559 ("%s: sc_len %zu", __func__, b->b_len)); 1560 PFSYNC_BUCKET_LOCK_ASSERT(b); 1561 1562 if (ifp->if_bpf == NULL && sc->sc_sync_if == NULL) { 1563 pfsync_drop(sc); 1564 return; 1565 } 1566 1567 m = m_get2(max_linkhdr + b->b_len, M_NOWAIT, MT_DATA, M_PKTHDR); 1568 if (m == NULL) { 1569 if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); 1570 V_pfsyncstats.pfsyncs_onomem++; 1571 return; 1572 } 1573 m->m_data += max_linkhdr; 1574 m->m_len = m->m_pkthdr.len = b->b_len; 1575 1576 /* build the ip header */ 1577 switch (sc->sc_sync_peer.ss_family) { 1578 #ifdef INET 1579 case AF_INET: 1580 { 1581 struct ip *ip; 1582 1583 ip = mtod(m, struct ip *); 1584 bcopy(&sc->sc_template.ipv4, ip, sizeof(*ip)); 1585 aflen = offset = sizeof(*ip); 1586 1587 ip->ip_len = htons(m->m_pkthdr.len); 1588 ip_fillid(ip); 1589 break; 1590 } 1591 #endif 1592 default: 1593 m_freem(m); 1594 return; 1595 } 1596 1597 1598 /* build the pfsync header */ 1599 ph = (struct pfsync_header *)(m->m_data + offset); 1600 bzero(ph, sizeof(*ph)); 1601 offset += sizeof(*ph); 1602 1603 ph->version = PFSYNC_VERSION; 1604 ph->len = htons(b->b_len - aflen); 1605 bcopy(V_pf_status.pf_chksum, ph->pfcksum, PF_MD5_DIGEST_LENGTH); 1606 1607 /* walk the queues */ 1608 for (q = 0; q < PFSYNC_S_COUNT; q++) { 1609 if (TAILQ_EMPTY(&b->b_qs[q])) 1610 continue; 1611 1612 subh = (struct pfsync_subheader *)(m->m_data + offset); 1613 offset += sizeof(*subh); 1614 1615 count = 0; 1616 TAILQ_FOREACH_SAFE(st, &b->b_qs[q], sync_list, st_next) { 1617 KASSERT(st->sync_state == q, 1618 ("%s: st->sync_state == q", 1619 __func__)); 1620 /* 1621 * XXXGL: some of write methods do unlocked reads 1622 * of state data :( 1623 */ 1624 pfsync_qs[q].write(st, m->m_data + offset); 1625 offset += pfsync_qs[q].len; 1626 st->sync_state = PFSYNC_S_NONE; 1627 pf_release_state(st); 1628 count++; 1629 } 1630 TAILQ_INIT(&b->b_qs[q]); 1631 1632 bzero(subh, sizeof(*subh)); 1633 subh->action = pfsync_qs[q].action; 1634 subh->count = htons(count); 1635 V_pfsyncstats.pfsyncs_oacts[pfsync_qs[q].action] += count; 1636 } 1637 1638 if (!TAILQ_EMPTY(&b->b_upd_req_list)) { 1639 subh = (struct pfsync_subheader *)(m->m_data + offset); 1640 offset += sizeof(*subh); 1641 1642 count = 0; 1643 while ((ur = TAILQ_FIRST(&b->b_upd_req_list)) != NULL) { 1644 TAILQ_REMOVE(&b->b_upd_req_list, ur, ur_entry); 1645 1646 bcopy(&ur->ur_msg, m->m_data + offset, 1647 sizeof(ur->ur_msg)); 1648 offset += sizeof(ur->ur_msg); 1649 free(ur, M_PFSYNC); 1650 count++; 1651 } 1652 1653 bzero(subh, sizeof(*subh)); 1654 subh->action = PFSYNC_ACT_UPD_REQ; 1655 subh->count = htons(count); 1656 V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_UPD_REQ] += count; 1657 } 1658 1659 /* has someone built a custom region for us to add? */ 1660 if (b->b_plus != NULL) { 1661 bcopy(b->b_plus, m->m_data + offset, b->b_pluslen); 1662 offset += b->b_pluslen; 1663 1664 b->b_plus = NULL; 1665 } 1666 1667 subh = (struct pfsync_subheader *)(m->m_data + offset); 1668 offset += sizeof(*subh); 1669 1670 bzero(subh, sizeof(*subh)); 1671 subh->action = PFSYNC_ACT_EOF; 1672 subh->count = htons(1); 1673 V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_EOF]++; 1674 1675 /* we're done, let's put it on the wire */ 1676 if (ifp->if_bpf) { 1677 m->m_data += aflen; 1678 m->m_len = m->m_pkthdr.len = b->b_len - aflen; 1679 BPF_MTAP(ifp, m); 1680 m->m_data -= aflen; 1681 m->m_len = m->m_pkthdr.len = b->b_len; 1682 } 1683 1684 if (sc->sc_sync_if == NULL) { 1685 b->b_len = PFSYNC_MINPKT; 1686 m_freem(m); 1687 return; 1688 } 1689 1690 if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1); 1691 if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 1692 b->b_len = PFSYNC_MINPKT; 1693 1694 if (!_IF_QFULL(&b->b_snd)) 1695 _IF_ENQUEUE(&b->b_snd, m); 1696 else { 1697 m_freem(m); 1698 if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1); 1699 } 1700 if (schedswi) 1701 swi_sched(V_pfsync_swi_cookie, 0); 1702 } 1703 1704 static void 1705 pfsync_insert_state(struct pf_kstate *st) 1706 { 1707 struct pfsync_softc *sc = V_pfsyncif; 1708 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 1709 1710 if (st->state_flags & PFSTATE_NOSYNC) 1711 return; 1712 1713 if ((st->rule.ptr->rule_flag & PFRULE_NOSYNC) || 1714 st->key[PF_SK_WIRE]->proto == IPPROTO_PFSYNC) { 1715 st->state_flags |= PFSTATE_NOSYNC; 1716 return; 1717 } 1718 1719 KASSERT(st->sync_state == PFSYNC_S_NONE, 1720 ("%s: st->sync_state %u", __func__, st->sync_state)); 1721 1722 PFSYNC_BUCKET_LOCK(b); 1723 if (b->b_len == PFSYNC_MINPKT) 1724 callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b); 1725 1726 pfsync_q_ins(st, PFSYNC_S_INS, true); 1727 PFSYNC_BUCKET_UNLOCK(b); 1728 1729 st->sync_updates = 0; 1730 } 1731 1732 static int 1733 pfsync_defer(struct pf_kstate *st, struct mbuf *m) 1734 { 1735 struct pfsync_softc *sc = V_pfsyncif; 1736 struct pfsync_deferral *pd; 1737 struct pfsync_bucket *b; 1738 1739 if (m->m_flags & (M_BCAST|M_MCAST)) 1740 return (0); 1741 1742 if (sc == NULL) 1743 return (0); 1744 1745 b = pfsync_get_bucket(sc, st); 1746 1747 PFSYNC_LOCK(sc); 1748 1749 if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) || 1750 !(sc->sc_flags & PFSYNCF_DEFER)) { 1751 PFSYNC_UNLOCK(sc); 1752 return (0); 1753 } 1754 1755 PFSYNC_BUCKET_LOCK(b); 1756 PFSYNC_UNLOCK(sc); 1757 1758 if (b->b_deferred >= 128) 1759 pfsync_undefer(TAILQ_FIRST(&b->b_deferrals), 0); 1760 1761 pd = malloc(sizeof(*pd), M_PFSYNC, M_NOWAIT); 1762 if (pd == NULL) { 1763 PFSYNC_BUCKET_UNLOCK(b); 1764 return (0); 1765 } 1766 b->b_deferred++; 1767 1768 m->m_flags |= M_SKIP_FIREWALL; 1769 st->state_flags |= PFSTATE_ACK; 1770 1771 pd->pd_sc = sc; 1772 pd->pd_refs = 0; 1773 pd->pd_st = st; 1774 pf_ref_state(st); 1775 pd->pd_m = m; 1776 1777 TAILQ_INSERT_TAIL(&b->b_deferrals, pd, pd_entry); 1778 callout_init_mtx(&pd->pd_tmo, &b->b_mtx, CALLOUT_RETURNUNLOCKED); 1779 callout_reset(&pd->pd_tmo, PFSYNC_DEFER_TIMEOUT, pfsync_defer_tmo, pd); 1780 1781 pfsync_push(b); 1782 PFSYNC_BUCKET_UNLOCK(b); 1783 1784 return (1); 1785 } 1786 1787 static void 1788 pfsync_undefer(struct pfsync_deferral *pd, int drop) 1789 { 1790 struct pfsync_softc *sc = pd->pd_sc; 1791 struct mbuf *m = pd->pd_m; 1792 struct pf_kstate *st = pd->pd_st; 1793 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 1794 1795 PFSYNC_BUCKET_LOCK_ASSERT(b); 1796 1797 TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry); 1798 b->b_deferred--; 1799 pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */ 1800 free(pd, M_PFSYNC); 1801 pf_release_state(st); 1802 1803 if (drop) 1804 m_freem(m); 1805 else { 1806 _IF_ENQUEUE(&b->b_snd, m); 1807 pfsync_push(b); 1808 } 1809 } 1810 1811 static void 1812 pfsync_defer_tmo(void *arg) 1813 { 1814 struct epoch_tracker et; 1815 struct pfsync_deferral *pd = arg; 1816 struct pfsync_softc *sc = pd->pd_sc; 1817 struct mbuf *m = pd->pd_m; 1818 struct pf_kstate *st = pd->pd_st; 1819 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 1820 1821 PFSYNC_BUCKET_LOCK_ASSERT(b); 1822 1823 if (sc->sc_sync_if == NULL) 1824 return; 1825 1826 NET_EPOCH_ENTER(et); 1827 CURVNET_SET(sc->sc_sync_if->if_vnet); 1828 1829 TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry); 1830 b->b_deferred--; 1831 pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */ 1832 if (pd->pd_refs == 0) 1833 free(pd, M_PFSYNC); 1834 PFSYNC_BUCKET_UNLOCK(b); 1835 1836 switch (sc->sc_sync_peer.ss_family) { 1837 #ifdef INET 1838 case AF_INET: 1839 ip_output(m, NULL, NULL, 0, NULL, NULL); 1840 break; 1841 #endif 1842 } 1843 1844 pf_release_state(st); 1845 1846 CURVNET_RESTORE(); 1847 NET_EPOCH_EXIT(et); 1848 } 1849 1850 static void 1851 pfsync_undefer_state(struct pf_kstate *st, int drop) 1852 { 1853 struct pfsync_softc *sc = V_pfsyncif; 1854 struct pfsync_deferral *pd; 1855 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 1856 1857 PFSYNC_BUCKET_LOCK(b); 1858 1859 TAILQ_FOREACH(pd, &b->b_deferrals, pd_entry) { 1860 if (pd->pd_st == st) { 1861 if (callout_stop(&pd->pd_tmo) > 0) 1862 pfsync_undefer(pd, drop); 1863 1864 PFSYNC_BUCKET_UNLOCK(b); 1865 return; 1866 } 1867 } 1868 PFSYNC_BUCKET_UNLOCK(b); 1869 1870 panic("%s: unable to find deferred state", __func__); 1871 } 1872 1873 static struct pfsync_bucket* 1874 pfsync_get_bucket(struct pfsync_softc *sc, struct pf_kstate *st) 1875 { 1876 int c = PF_IDHASH(st) % pfsync_buckets; 1877 return &sc->sc_buckets[c]; 1878 } 1879 1880 static void 1881 pfsync_update_state(struct pf_kstate *st) 1882 { 1883 struct pfsync_softc *sc = V_pfsyncif; 1884 bool sync = false, ref = true; 1885 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 1886 1887 PF_STATE_LOCK_ASSERT(st); 1888 PFSYNC_BUCKET_LOCK(b); 1889 1890 if (st->state_flags & PFSTATE_ACK) 1891 pfsync_undefer_state(st, 0); 1892 if (st->state_flags & PFSTATE_NOSYNC) { 1893 if (st->sync_state != PFSYNC_S_NONE) 1894 pfsync_q_del(st, true, b); 1895 PFSYNC_BUCKET_UNLOCK(b); 1896 return; 1897 } 1898 1899 if (b->b_len == PFSYNC_MINPKT) 1900 callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b); 1901 1902 switch (st->sync_state) { 1903 case PFSYNC_S_UPD_C: 1904 case PFSYNC_S_UPD: 1905 case PFSYNC_S_INS: 1906 /* we're already handling it */ 1907 1908 if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) { 1909 st->sync_updates++; 1910 if (st->sync_updates >= sc->sc_maxupdates) 1911 sync = true; 1912 } 1913 break; 1914 1915 case PFSYNC_S_IACK: 1916 pfsync_q_del(st, false, b); 1917 ref = false; 1918 /* FALLTHROUGH */ 1919 1920 case PFSYNC_S_NONE: 1921 pfsync_q_ins(st, PFSYNC_S_UPD_C, ref); 1922 st->sync_updates = 0; 1923 break; 1924 1925 default: 1926 panic("%s: unexpected sync state %d", __func__, st->sync_state); 1927 } 1928 1929 if (sync || (time_uptime - st->pfsync_time) < 2) 1930 pfsync_push(b); 1931 1932 PFSYNC_BUCKET_UNLOCK(b); 1933 } 1934 1935 static void 1936 pfsync_request_update(u_int32_t creatorid, u_int64_t id) 1937 { 1938 struct pfsync_softc *sc = V_pfsyncif; 1939 struct pfsync_bucket *b = &sc->sc_buckets[0]; 1940 struct pfsync_upd_req_item *item; 1941 size_t nlen = sizeof(struct pfsync_upd_req); 1942 1943 PFSYNC_BUCKET_LOCK_ASSERT(b); 1944 1945 /* 1946 * This code does a bit to prevent multiple update requests for the 1947 * same state being generated. It searches current subheader queue, 1948 * but it doesn't lookup into queue of already packed datagrams. 1949 */ 1950 TAILQ_FOREACH(item, &b->b_upd_req_list, ur_entry) 1951 if (item->ur_msg.id == id && 1952 item->ur_msg.creatorid == creatorid) 1953 return; 1954 1955 item = malloc(sizeof(*item), M_PFSYNC, M_NOWAIT); 1956 if (item == NULL) 1957 return; /* XXX stats */ 1958 1959 item->ur_msg.id = id; 1960 item->ur_msg.creatorid = creatorid; 1961 1962 if (TAILQ_EMPTY(&b->b_upd_req_list)) 1963 nlen += sizeof(struct pfsync_subheader); 1964 1965 if (b->b_len + nlen > sc->sc_ifp->if_mtu) { 1966 pfsync_sendout(0, 0); 1967 1968 nlen = sizeof(struct pfsync_subheader) + 1969 sizeof(struct pfsync_upd_req); 1970 } 1971 1972 TAILQ_INSERT_TAIL(&b->b_upd_req_list, item, ur_entry); 1973 b->b_len += nlen; 1974 1975 pfsync_push(b); 1976 } 1977 1978 static bool 1979 pfsync_update_state_req(struct pf_kstate *st) 1980 { 1981 struct pfsync_softc *sc = V_pfsyncif; 1982 bool ref = true, full = false; 1983 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 1984 1985 PF_STATE_LOCK_ASSERT(st); 1986 PFSYNC_BUCKET_LOCK(b); 1987 1988 if (st->state_flags & PFSTATE_NOSYNC) { 1989 if (st->sync_state != PFSYNC_S_NONE) 1990 pfsync_q_del(st, true, b); 1991 PFSYNC_BUCKET_UNLOCK(b); 1992 return (full); 1993 } 1994 1995 switch (st->sync_state) { 1996 case PFSYNC_S_UPD_C: 1997 case PFSYNC_S_IACK: 1998 pfsync_q_del(st, false, b); 1999 ref = false; 2000 /* FALLTHROUGH */ 2001 2002 case PFSYNC_S_NONE: 2003 pfsync_q_ins(st, PFSYNC_S_UPD, ref); 2004 pfsync_push(b); 2005 break; 2006 2007 case PFSYNC_S_INS: 2008 case PFSYNC_S_UPD: 2009 case PFSYNC_S_DEL: 2010 /* we're already handling it */ 2011 break; 2012 2013 default: 2014 panic("%s: unexpected sync state %d", __func__, st->sync_state); 2015 } 2016 2017 if ((sc->sc_ifp->if_mtu - b->b_len) < sizeof(struct pfsync_state)) 2018 full = true; 2019 2020 PFSYNC_BUCKET_UNLOCK(b); 2021 2022 return (full); 2023 } 2024 2025 static void 2026 pfsync_delete_state(struct pf_kstate *st) 2027 { 2028 struct pfsync_softc *sc = V_pfsyncif; 2029 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 2030 bool ref = true; 2031 2032 PFSYNC_BUCKET_LOCK(b); 2033 if (st->state_flags & PFSTATE_ACK) 2034 pfsync_undefer_state(st, 1); 2035 if (st->state_flags & PFSTATE_NOSYNC) { 2036 if (st->sync_state != PFSYNC_S_NONE) 2037 pfsync_q_del(st, true, b); 2038 PFSYNC_BUCKET_UNLOCK(b); 2039 return; 2040 } 2041 2042 if (b->b_len == PFSYNC_MINPKT) 2043 callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b); 2044 2045 switch (st->sync_state) { 2046 case PFSYNC_S_INS: 2047 /* We never got to tell the world so just forget about it. */ 2048 pfsync_q_del(st, true, b); 2049 break; 2050 2051 case PFSYNC_S_UPD_C: 2052 case PFSYNC_S_UPD: 2053 case PFSYNC_S_IACK: 2054 pfsync_q_del(st, false, b); 2055 ref = false; 2056 /* FALLTHROUGH */ 2057 2058 case PFSYNC_S_NONE: 2059 pfsync_q_ins(st, PFSYNC_S_DEL, ref); 2060 break; 2061 2062 default: 2063 panic("%s: unexpected sync state %d", __func__, st->sync_state); 2064 } 2065 2066 PFSYNC_BUCKET_UNLOCK(b); 2067 } 2068 2069 static void 2070 pfsync_clear_states(u_int32_t creatorid, const char *ifname) 2071 { 2072 struct { 2073 struct pfsync_subheader subh; 2074 struct pfsync_clr clr; 2075 } __packed r; 2076 2077 bzero(&r, sizeof(r)); 2078 2079 r.subh.action = PFSYNC_ACT_CLR; 2080 r.subh.count = htons(1); 2081 V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_CLR]++; 2082 2083 strlcpy(r.clr.ifname, ifname, sizeof(r.clr.ifname)); 2084 r.clr.creatorid = creatorid; 2085 2086 pfsync_send_plus(&r, sizeof(r)); 2087 } 2088 2089 static void 2090 pfsync_q_ins(struct pf_kstate *st, int q, bool ref) 2091 { 2092 struct pfsync_softc *sc = V_pfsyncif; 2093 size_t nlen = pfsync_qs[q].len; 2094 struct pfsync_bucket *b = pfsync_get_bucket(sc, st); 2095 2096 PFSYNC_BUCKET_LOCK_ASSERT(b); 2097 2098 KASSERT(st->sync_state == PFSYNC_S_NONE, 2099 ("%s: st->sync_state %u", __func__, st->sync_state)); 2100 KASSERT(b->b_len >= PFSYNC_MINPKT, ("pfsync pkt len is too low %zu", 2101 b->b_len)); 2102 2103 if (TAILQ_EMPTY(&b->b_qs[q])) 2104 nlen += sizeof(struct pfsync_subheader); 2105 2106 if (b->b_len + nlen > sc->sc_ifp->if_mtu) { 2107 pfsync_sendout(1, b->b_id); 2108 2109 nlen = sizeof(struct pfsync_subheader) + pfsync_qs[q].len; 2110 } 2111 2112 b->b_len += nlen; 2113 TAILQ_INSERT_TAIL(&b->b_qs[q], st, sync_list); 2114 st->sync_state = q; 2115 if (ref) 2116 pf_ref_state(st); 2117 } 2118 2119 static void 2120 pfsync_q_del(struct pf_kstate *st, bool unref, struct pfsync_bucket *b) 2121 { 2122 int q = st->sync_state; 2123 2124 PFSYNC_BUCKET_LOCK_ASSERT(b); 2125 KASSERT(st->sync_state != PFSYNC_S_NONE, 2126 ("%s: st->sync_state != PFSYNC_S_NONE", __func__)); 2127 2128 b->b_len -= pfsync_qs[q].len; 2129 TAILQ_REMOVE(&b->b_qs[q], st, sync_list); 2130 st->sync_state = PFSYNC_S_NONE; 2131 if (unref) 2132 pf_release_state(st); 2133 2134 if (TAILQ_EMPTY(&b->b_qs[q])) 2135 b->b_len -= sizeof(struct pfsync_subheader); 2136 } 2137 2138 static void 2139 pfsync_bulk_start(void) 2140 { 2141 struct pfsync_softc *sc = V_pfsyncif; 2142 2143 if (V_pf_status.debug >= PF_DEBUG_MISC) 2144 printf("pfsync: received bulk update request\n"); 2145 2146 PFSYNC_BLOCK(sc); 2147 2148 sc->sc_ureq_received = time_uptime; 2149 sc->sc_bulk_hashid = 0; 2150 sc->sc_bulk_stateid = 0; 2151 pfsync_bulk_status(PFSYNC_BUS_START); 2152 callout_reset(&sc->sc_bulk_tmo, 1, pfsync_bulk_update, sc); 2153 PFSYNC_BUNLOCK(sc); 2154 } 2155 2156 static void 2157 pfsync_bulk_update(void *arg) 2158 { 2159 struct pfsync_softc *sc = arg; 2160 struct pf_kstate *s; 2161 int i; 2162 2163 PFSYNC_BLOCK_ASSERT(sc); 2164 CURVNET_SET(sc->sc_ifp->if_vnet); 2165 2166 /* 2167 * Start with last state from previous invocation. 2168 * It may had gone, in this case start from the 2169 * hash slot. 2170 */ 2171 s = pf_find_state_byid(sc->sc_bulk_stateid, sc->sc_bulk_creatorid); 2172 2173 if (s != NULL) 2174 i = PF_IDHASH(s); 2175 else 2176 i = sc->sc_bulk_hashid; 2177 2178 for (; i <= pf_hashmask; i++) { 2179 struct pf_idhash *ih = &V_pf_idhash[i]; 2180 2181 if (s != NULL) 2182 PF_HASHROW_ASSERT(ih); 2183 else { 2184 PF_HASHROW_LOCK(ih); 2185 s = LIST_FIRST(&ih->states); 2186 } 2187 2188 for (; s; s = LIST_NEXT(s, entry)) { 2189 if (s->sync_state == PFSYNC_S_NONE && 2190 s->timeout < PFTM_MAX && 2191 s->pfsync_time <= sc->sc_ureq_received) { 2192 if (pfsync_update_state_req(s)) { 2193 /* We've filled a packet. */ 2194 sc->sc_bulk_hashid = i; 2195 sc->sc_bulk_stateid = s->id; 2196 sc->sc_bulk_creatorid = s->creatorid; 2197 PF_HASHROW_UNLOCK(ih); 2198 callout_reset(&sc->sc_bulk_tmo, 1, 2199 pfsync_bulk_update, sc); 2200 goto full; 2201 } 2202 } 2203 } 2204 PF_HASHROW_UNLOCK(ih); 2205 } 2206 2207 /* We're done. */ 2208 pfsync_bulk_status(PFSYNC_BUS_END); 2209 full: 2210 CURVNET_RESTORE(); 2211 } 2212 2213 static void 2214 pfsync_bulk_status(u_int8_t status) 2215 { 2216 struct { 2217 struct pfsync_subheader subh; 2218 struct pfsync_bus bus; 2219 } __packed r; 2220 2221 struct pfsync_softc *sc = V_pfsyncif; 2222 2223 bzero(&r, sizeof(r)); 2224 2225 r.subh.action = PFSYNC_ACT_BUS; 2226 r.subh.count = htons(1); 2227 V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_BUS]++; 2228 2229 r.bus.creatorid = V_pf_status.hostid; 2230 r.bus.endtime = htonl(time_uptime - sc->sc_ureq_received); 2231 r.bus.status = status; 2232 2233 pfsync_send_plus(&r, sizeof(r)); 2234 } 2235 2236 static void 2237 pfsync_bulk_fail(void *arg) 2238 { 2239 struct pfsync_softc *sc = arg; 2240 struct pfsync_bucket *b = &sc->sc_buckets[0]; 2241 2242 CURVNET_SET(sc->sc_ifp->if_vnet); 2243 2244 PFSYNC_BLOCK_ASSERT(sc); 2245 2246 if (sc->sc_bulk_tries++ < PFSYNC_MAX_BULKTRIES) { 2247 /* Try again */ 2248 callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, 2249 pfsync_bulk_fail, V_pfsyncif); 2250 PFSYNC_BUCKET_LOCK(b); 2251 pfsync_request_update(0, 0); 2252 PFSYNC_BUCKET_UNLOCK(b); 2253 } else { 2254 /* Pretend like the transfer was ok. */ 2255 sc->sc_ureq_sent = 0; 2256 sc->sc_bulk_tries = 0; 2257 PFSYNC_LOCK(sc); 2258 if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) 2259 (*carp_demote_adj_p)(-V_pfsync_carp_adj, 2260 "pfsync bulk fail"); 2261 sc->sc_flags |= PFSYNCF_OK; 2262 PFSYNC_UNLOCK(sc); 2263 if (V_pf_status.debug >= PF_DEBUG_MISC) 2264 printf("pfsync: failed to receive bulk update\n"); 2265 } 2266 2267 CURVNET_RESTORE(); 2268 } 2269 2270 static void 2271 pfsync_send_plus(void *plus, size_t pluslen) 2272 { 2273 struct pfsync_softc *sc = V_pfsyncif; 2274 struct pfsync_bucket *b = &sc->sc_buckets[0]; 2275 2276 PFSYNC_BUCKET_LOCK(b); 2277 2278 if (b->b_len + pluslen > sc->sc_ifp->if_mtu) 2279 pfsync_sendout(1, b->b_id); 2280 2281 b->b_plus = plus; 2282 b->b_len += (b->b_pluslen = pluslen); 2283 2284 pfsync_sendout(1, b->b_id); 2285 PFSYNC_BUCKET_UNLOCK(b); 2286 } 2287 2288 static void 2289 pfsync_timeout(void *arg) 2290 { 2291 struct pfsync_bucket *b = arg; 2292 2293 CURVNET_SET(b->b_sc->sc_ifp->if_vnet); 2294 PFSYNC_BUCKET_LOCK(b); 2295 pfsync_push(b); 2296 PFSYNC_BUCKET_UNLOCK(b); 2297 CURVNET_RESTORE(); 2298 } 2299 2300 static void 2301 pfsync_push(struct pfsync_bucket *b) 2302 { 2303 2304 PFSYNC_BUCKET_LOCK_ASSERT(b); 2305 2306 b->b_flags |= PFSYNCF_BUCKET_PUSH; 2307 swi_sched(V_pfsync_swi_cookie, 0); 2308 } 2309 2310 static void 2311 pfsync_push_all(struct pfsync_softc *sc) 2312 { 2313 int c; 2314 struct pfsync_bucket *b; 2315 2316 for (c = 0; c < pfsync_buckets; c++) { 2317 b = &sc->sc_buckets[c]; 2318 2319 PFSYNC_BUCKET_LOCK(b); 2320 pfsync_push(b); 2321 PFSYNC_BUCKET_UNLOCK(b); 2322 } 2323 } 2324 2325 static void 2326 pfsyncintr(void *arg) 2327 { 2328 struct epoch_tracker et; 2329 struct pfsync_softc *sc = arg; 2330 struct pfsync_bucket *b; 2331 struct mbuf *m, *n; 2332 int c, error; 2333 2334 NET_EPOCH_ENTER(et); 2335 CURVNET_SET(sc->sc_ifp->if_vnet); 2336 2337 for (c = 0; c < pfsync_buckets; c++) { 2338 b = &sc->sc_buckets[c]; 2339 2340 PFSYNC_BUCKET_LOCK(b); 2341 if ((b->b_flags & PFSYNCF_BUCKET_PUSH) && b->b_len > PFSYNC_MINPKT) { 2342 pfsync_sendout(0, b->b_id); 2343 b->b_flags &= ~PFSYNCF_BUCKET_PUSH; 2344 } 2345 _IF_DEQUEUE_ALL(&b->b_snd, m); 2346 PFSYNC_BUCKET_UNLOCK(b); 2347 2348 for (; m != NULL; m = n) { 2349 n = m->m_nextpkt; 2350 m->m_nextpkt = NULL; 2351 2352 /* 2353 * We distinguish between a deferral packet and our 2354 * own pfsync packet based on M_SKIP_FIREWALL 2355 * flag. This is XXX. 2356 */ 2357 switch (sc->sc_sync_peer.ss_family) { 2358 #ifdef INET 2359 case AF_INET: 2360 if (m->m_flags & M_SKIP_FIREWALL) { 2361 error = ip_output(m, NULL, NULL, 0, 2362 NULL, NULL); 2363 } else { 2364 error = ip_output(m, NULL, NULL, 2365 IP_RAWOUTPUT, &sc->sc_imo, NULL); 2366 } 2367 break; 2368 #endif 2369 } 2370 2371 if (error == 0) 2372 V_pfsyncstats.pfsyncs_opackets++; 2373 else 2374 V_pfsyncstats.pfsyncs_oerrors++; 2375 } 2376 } 2377 CURVNET_RESTORE(); 2378 NET_EPOCH_EXIT(et); 2379 } 2380 2381 static int 2382 pfsync_multicast_setup(struct pfsync_softc *sc, struct ifnet *ifp, 2383 struct in_mfilter *imf) 2384 { 2385 struct ip_moptions *imo = &sc->sc_imo; 2386 int error; 2387 2388 if (!(ifp->if_flags & IFF_MULTICAST)) 2389 return (EADDRNOTAVAIL); 2390 2391 switch (sc->sc_sync_peer.ss_family) { 2392 #ifdef INET 2393 case AF_INET: 2394 { 2395 ip_mfilter_init(&imo->imo_head); 2396 imo->imo_multicast_vif = -1; 2397 if ((error = in_joingroup(ifp, &((struct sockaddr_in *)&sc->sc_sync_peer)->sin_addr, NULL, 2398 &imf->imf_inm)) != 0) 2399 return (error); 2400 2401 ip_mfilter_insert(&imo->imo_head, imf); 2402 imo->imo_multicast_ifp = ifp; 2403 imo->imo_multicast_ttl = PFSYNC_DFLTTL; 2404 imo->imo_multicast_loop = 0; 2405 break; 2406 } 2407 #endif 2408 } 2409 2410 return (0); 2411 } 2412 2413 static void 2414 pfsync_multicast_cleanup(struct pfsync_softc *sc) 2415 { 2416 struct ip_moptions *imo = &sc->sc_imo; 2417 struct in_mfilter *imf; 2418 2419 while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { 2420 ip_mfilter_remove(&imo->imo_head, imf); 2421 in_leavegroup(imf->imf_inm, NULL); 2422 ip_mfilter_free(imf); 2423 } 2424 imo->imo_multicast_ifp = NULL; 2425 } 2426 2427 void 2428 pfsync_detach_ifnet(struct ifnet *ifp) 2429 { 2430 struct pfsync_softc *sc = V_pfsyncif; 2431 2432 if (sc == NULL) 2433 return; 2434 2435 PFSYNC_LOCK(sc); 2436 2437 if (sc->sc_sync_if == ifp) { 2438 /* We don't need mutlicast cleanup here, because the interface 2439 * is going away. We do need to ensure we don't try to do 2440 * cleanup later. 2441 */ 2442 ip_mfilter_init(&sc->sc_imo.imo_head); 2443 sc->sc_imo.imo_multicast_ifp = NULL; 2444 sc->sc_sync_if = NULL; 2445 } 2446 2447 PFSYNC_UNLOCK(sc); 2448 } 2449 2450 static int 2451 pfsync_pfsyncreq_to_kstatus(struct pfsyncreq *pfsyncr, struct pfsync_kstatus *status) 2452 { 2453 struct sockaddr_storage sa; 2454 status->maxupdates = pfsyncr->pfsyncr_maxupdates; 2455 status->flags = pfsyncr->pfsyncr_defer; 2456 2457 strlcpy(status->syncdev, pfsyncr->pfsyncr_syncdev, IFNAMSIZ); 2458 2459 memset(&sa, 0, sizeof(sa)); 2460 if (pfsyncr->pfsyncr_syncpeer.s_addr != 0) { 2461 struct sockaddr_in *in = (struct sockaddr_in *)&sa; 2462 in->sin_family = AF_INET; 2463 in->sin_len = sizeof(*in); 2464 in->sin_addr.s_addr = pfsyncr->pfsyncr_syncpeer.s_addr; 2465 } 2466 status->syncpeer = sa; 2467 2468 return 0; 2469 } 2470 2471 static int 2472 pfsync_kstatus_to_softc(struct pfsync_kstatus *status, struct pfsync_softc *sc) 2473 { 2474 struct in_mfilter *imf = NULL; 2475 struct ifnet *sifp; 2476 struct ip *ip; 2477 int error; 2478 int c; 2479 2480 if ((status->maxupdates < 0) || (status->maxupdates > 255)) 2481 return (EINVAL); 2482 2483 if (status->syncdev[0] == '\0') 2484 sifp = NULL; 2485 else if ((sifp = ifunit_ref(status->syncdev)) == NULL) 2486 return (EINVAL); 2487 2488 struct sockaddr_in *status_sin = 2489 (struct sockaddr_in *)&(status->syncpeer); 2490 if (sifp != NULL && (status_sin->sin_addr.s_addr == 0 || 2491 status_sin->sin_addr.s_addr == 2492 htonl(INADDR_PFSYNC_GROUP))) 2493 imf = ip_mfilter_alloc(M_WAITOK, 0, 0); 2494 2495 PFSYNC_LOCK(sc); 2496 struct sockaddr_in *sc_sin = (struct sockaddr_in *)&sc->sc_sync_peer; 2497 sc_sin->sin_family = AF_INET; 2498 sc_sin->sin_len = sizeof(*sc_sin); 2499 if (status_sin->sin_addr.s_addr == 0) { 2500 sc_sin->sin_addr.s_addr = htonl(INADDR_PFSYNC_GROUP); 2501 } else { 2502 sc_sin->sin_addr.s_addr = status_sin->sin_addr.s_addr; 2503 } 2504 2505 sc->sc_maxupdates = status->maxupdates; 2506 if (status->flags & PFSYNCF_DEFER) { 2507 sc->sc_flags |= PFSYNCF_DEFER; 2508 V_pfsync_defer_ptr = pfsync_defer; 2509 } else { 2510 sc->sc_flags &= ~PFSYNCF_DEFER; 2511 V_pfsync_defer_ptr = NULL; 2512 } 2513 2514 if (sifp == NULL) { 2515 if (sc->sc_sync_if) 2516 if_rele(sc->sc_sync_if); 2517 sc->sc_sync_if = NULL; 2518 pfsync_multicast_cleanup(sc); 2519 PFSYNC_UNLOCK(sc); 2520 return (0); 2521 } 2522 2523 for (c = 0; c < pfsync_buckets; c++) { 2524 PFSYNC_BUCKET_LOCK(&sc->sc_buckets[c]); 2525 if (sc->sc_buckets[c].b_len > PFSYNC_MINPKT && 2526 (sifp->if_mtu < sc->sc_ifp->if_mtu || 2527 (sc->sc_sync_if != NULL && 2528 sifp->if_mtu < sc->sc_sync_if->if_mtu) || 2529 sifp->if_mtu < MCLBYTES - sizeof(struct ip))) 2530 pfsync_sendout(1, c); 2531 PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[c]); 2532 } 2533 2534 pfsync_multicast_cleanup(sc); 2535 2536 if (sc_sin->sin_addr.s_addr == htonl(INADDR_PFSYNC_GROUP)) { 2537 error = pfsync_multicast_setup(sc, sifp, imf); 2538 if (error) { 2539 if_rele(sifp); 2540 ip_mfilter_free(imf); 2541 PFSYNC_UNLOCK(sc); 2542 return (error); 2543 } 2544 } 2545 if (sc->sc_sync_if) 2546 if_rele(sc->sc_sync_if); 2547 sc->sc_sync_if = sifp; 2548 2549 ip = &sc->sc_template.ipv4; 2550 bzero(ip, sizeof(*ip)); 2551 ip->ip_v = IPVERSION; 2552 ip->ip_hl = sizeof(sc->sc_template.ipv4) >> 2; 2553 ip->ip_tos = IPTOS_LOWDELAY; 2554 /* len and id are set later. */ 2555 ip->ip_off = htons(IP_DF); 2556 ip->ip_ttl = PFSYNC_DFLTTL; 2557 ip->ip_p = IPPROTO_PFSYNC; 2558 ip->ip_src.s_addr = INADDR_ANY; 2559 ip->ip_dst.s_addr = sc_sin->sin_addr.s_addr; 2560 2561 /* Request a full state table update. */ 2562 if ((sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) 2563 (*carp_demote_adj_p)(V_pfsync_carp_adj, 2564 "pfsync bulk start"); 2565 sc->sc_flags &= ~PFSYNCF_OK; 2566 if (V_pf_status.debug >= PF_DEBUG_MISC) 2567 printf("pfsync: requesting bulk update\n"); 2568 PFSYNC_UNLOCK(sc); 2569 PFSYNC_BUCKET_LOCK(&sc->sc_buckets[0]); 2570 pfsync_request_update(0, 0); 2571 PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[0]); 2572 PFSYNC_BLOCK(sc); 2573 sc->sc_ureq_sent = time_uptime; 2574 callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, pfsync_bulk_fail, sc); 2575 PFSYNC_BUNLOCK(sc); 2576 return (0); 2577 } 2578 2579 static void 2580 pfsync_pointers_init(void) 2581 { 2582 2583 PF_RULES_WLOCK(); 2584 V_pfsync_state_import_ptr = pfsync_state_import; 2585 V_pfsync_insert_state_ptr = pfsync_insert_state; 2586 V_pfsync_update_state_ptr = pfsync_update_state; 2587 V_pfsync_delete_state_ptr = pfsync_delete_state; 2588 V_pfsync_clear_states_ptr = pfsync_clear_states; 2589 V_pfsync_defer_ptr = pfsync_defer; 2590 PF_RULES_WUNLOCK(); 2591 } 2592 2593 static void 2594 pfsync_pointers_uninit(void) 2595 { 2596 2597 PF_RULES_WLOCK(); 2598 V_pfsync_state_import_ptr = NULL; 2599 V_pfsync_insert_state_ptr = NULL; 2600 V_pfsync_update_state_ptr = NULL; 2601 V_pfsync_delete_state_ptr = NULL; 2602 V_pfsync_clear_states_ptr = NULL; 2603 V_pfsync_defer_ptr = NULL; 2604 PF_RULES_WUNLOCK(); 2605 } 2606 2607 static void 2608 vnet_pfsync_init(const void *unused __unused) 2609 { 2610 int error; 2611 2612 V_pfsync_cloner = if_clone_simple(pfsyncname, 2613 pfsync_clone_create, pfsync_clone_destroy, 1); 2614 error = swi_add(&V_pfsync_swi_ie, pfsyncname, pfsyncintr, V_pfsyncif, 2615 SWI_NET, INTR_MPSAFE, &V_pfsync_swi_cookie); 2616 if (error) { 2617 if_clone_detach(V_pfsync_cloner); 2618 log(LOG_INFO, "swi_add() failed in %s\n", __func__); 2619 } 2620 2621 pfsync_pointers_init(); 2622 } 2623 VNET_SYSINIT(vnet_pfsync_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY, 2624 vnet_pfsync_init, NULL); 2625 2626 static void 2627 vnet_pfsync_uninit(const void *unused __unused) 2628 { 2629 int ret __diagused; 2630 2631 pfsync_pointers_uninit(); 2632 2633 if_clone_detach(V_pfsync_cloner); 2634 ret = swi_remove(V_pfsync_swi_cookie); 2635 MPASS(ret == 0); 2636 ret = intr_event_destroy(V_pfsync_swi_ie); 2637 MPASS(ret == 0); 2638 } 2639 2640 VNET_SYSUNINIT(vnet_pfsync_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_FOURTH, 2641 vnet_pfsync_uninit, NULL); 2642 2643 static int 2644 pfsync_init(void) 2645 { 2646 #ifdef INET 2647 int error; 2648 2649 pfsync_detach_ifnet_ptr = pfsync_detach_ifnet; 2650 2651 error = ipproto_register(IPPROTO_PFSYNC, pfsync_input, NULL); 2652 if (error) 2653 return (error); 2654 #endif 2655 2656 return (0); 2657 } 2658 2659 static void 2660 pfsync_uninit(void) 2661 { 2662 pfsync_detach_ifnet_ptr = NULL; 2663 2664 #ifdef INET 2665 ipproto_unregister(IPPROTO_PFSYNC); 2666 #endif 2667 } 2668 2669 static int 2670 pfsync_modevent(module_t mod, int type, void *data) 2671 { 2672 int error = 0; 2673 2674 switch (type) { 2675 case MOD_LOAD: 2676 error = pfsync_init(); 2677 break; 2678 case MOD_UNLOAD: 2679 pfsync_uninit(); 2680 break; 2681 default: 2682 error = EINVAL; 2683 break; 2684 } 2685 2686 return (error); 2687 } 2688 2689 static moduledata_t pfsync_mod = { 2690 pfsyncname, 2691 pfsync_modevent, 2692 0 2693 }; 2694 2695 #define PFSYNC_MODVER 1 2696 2697 /* Stay on FIREWALL as we depend on pf being initialized and on inetdomain. */ 2698 DECLARE_MODULE(pfsync, pfsync_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY); 2699 MODULE_VERSION(pfsync, PFSYNC_MODVER); 2700 MODULE_DEPEND(pfsync, pf, PF_MODVER, PF_MODVER, PF_MODVER); 2701