xref: /freebsd/sys/netpfil/pf/if_pfsync.c (revision 907b59d76938e654f0d040a888e8dfca3de1e222)
1 /*-
2  * Copyright (c) 2002 Michael Shalayeff
3  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
24  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
25  * THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*-
29  * Copyright (c) 2009 David Gwynne <dlg@openbsd.org>
30  *
31  * Permission to use, copy, modify, and distribute this software for any
32  * purpose with or without fee is hereby granted, provided that the above
33  * copyright notice and this permission notice appear in all copies.
34  *
35  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42  */
43 
44 /*
45  * $OpenBSD: if_pfsync.c,v 1.110 2009/02/24 05:39:19 dlg Exp $
46  *
47  * Revisions picked from OpenBSD after revision 1.110 import:
48  * 1.119 - don't m_copydata() beyond the len of mbuf in pfsync_input()
49  * 1.118, 1.124, 1.148, 1.149, 1.151, 1.171 - fixes to bulk updates
50  * 1.120, 1.175 - use monotonic time_uptime
51  * 1.122 - reduce number of updates for non-TCP sessions
52  * 1.125, 1.127 - rewrite merge or stale processing
53  * 1.128 - cleanups
54  * 1.146 - bzero() mbuf before sparsely filling it with data
55  * 1.170 - SIOCSIFMTU checks
56  * 1.126, 1.142 - deferred packets processing
57  * 1.173 - correct expire time processing
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_inet.h"
64 #include "opt_inet6.h"
65 #include "opt_pf.h"
66 
67 #include <sys/param.h>
68 #include <sys/bus.h>
69 #include <sys/endian.h>
70 #include <sys/interrupt.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/mutex.h>
76 #include <sys/priv.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/sockio.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/if_clone.h>
87 #include <net/if_types.h>
88 #include <net/vnet.h>
89 #include <net/pfvar.h>
90 #include <net/if_pfsync.h>
91 
92 #include <netinet/if_ether.h>
93 #include <netinet/in.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_carp.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/tcp.h>
99 #include <netinet/tcp_fsm.h>
100 #include <netinet/tcp_seq.h>
101 
102 #define PFSYNC_MINPKT ( \
103 	sizeof(struct ip) + \
104 	sizeof(struct pfsync_header) + \
105 	sizeof(struct pfsync_subheader) )
106 
107 struct pfsync_pkt {
108 	struct ip *ip;
109 	struct in_addr src;
110 	u_int8_t flags;
111 };
112 
113 static int	pfsync_upd_tcp(struct pf_state *, struct pfsync_state_peer *,
114 		    struct pfsync_state_peer *);
115 static int	pfsync_in_clr(struct pfsync_pkt *, struct mbuf *, int, int);
116 static int	pfsync_in_ins(struct pfsync_pkt *, struct mbuf *, int, int);
117 static int	pfsync_in_iack(struct pfsync_pkt *, struct mbuf *, int, int);
118 static int	pfsync_in_upd(struct pfsync_pkt *, struct mbuf *, int, int);
119 static int	pfsync_in_upd_c(struct pfsync_pkt *, struct mbuf *, int, int);
120 static int	pfsync_in_ureq(struct pfsync_pkt *, struct mbuf *, int, int);
121 static int	pfsync_in_del(struct pfsync_pkt *, struct mbuf *, int, int);
122 static int	pfsync_in_del_c(struct pfsync_pkt *, struct mbuf *, int, int);
123 static int	pfsync_in_bus(struct pfsync_pkt *, struct mbuf *, int, int);
124 static int	pfsync_in_tdb(struct pfsync_pkt *, struct mbuf *, int, int);
125 static int	pfsync_in_eof(struct pfsync_pkt *, struct mbuf *, int, int);
126 static int	pfsync_in_error(struct pfsync_pkt *, struct mbuf *, int, int);
127 
128 static int (*pfsync_acts[])(struct pfsync_pkt *, struct mbuf *, int, int) = {
129 	pfsync_in_clr,			/* PFSYNC_ACT_CLR */
130 	pfsync_in_ins,			/* PFSYNC_ACT_INS */
131 	pfsync_in_iack,			/* PFSYNC_ACT_INS_ACK */
132 	pfsync_in_upd,			/* PFSYNC_ACT_UPD */
133 	pfsync_in_upd_c,		/* PFSYNC_ACT_UPD_C */
134 	pfsync_in_ureq,			/* PFSYNC_ACT_UPD_REQ */
135 	pfsync_in_del,			/* PFSYNC_ACT_DEL */
136 	pfsync_in_del_c,		/* PFSYNC_ACT_DEL_C */
137 	pfsync_in_error,		/* PFSYNC_ACT_INS_F */
138 	pfsync_in_error,		/* PFSYNC_ACT_DEL_F */
139 	pfsync_in_bus,			/* PFSYNC_ACT_BUS */
140 	pfsync_in_tdb,			/* PFSYNC_ACT_TDB */
141 	pfsync_in_eof			/* PFSYNC_ACT_EOF */
142 };
143 
144 struct pfsync_q {
145 	void		(*write)(struct pf_state *, void *);
146 	size_t		len;
147 	u_int8_t	action;
148 };
149 
150 /* we have one of these for every PFSYNC_S_ */
151 static void	pfsync_out_state(struct pf_state *, void *);
152 static void	pfsync_out_iack(struct pf_state *, void *);
153 static void	pfsync_out_upd_c(struct pf_state *, void *);
154 static void	pfsync_out_del(struct pf_state *, void *);
155 
156 static struct pfsync_q pfsync_qs[] = {
157 	{ pfsync_out_state, sizeof(struct pfsync_state),   PFSYNC_ACT_INS },
158 	{ pfsync_out_iack,  sizeof(struct pfsync_ins_ack), PFSYNC_ACT_INS_ACK },
159 	{ pfsync_out_state, sizeof(struct pfsync_state),   PFSYNC_ACT_UPD },
160 	{ pfsync_out_upd_c, sizeof(struct pfsync_upd_c),   PFSYNC_ACT_UPD_C },
161 	{ pfsync_out_del,   sizeof(struct pfsync_del_c),   PFSYNC_ACT_DEL_C }
162 };
163 
164 static void	pfsync_q_ins(struct pf_state *, int);
165 static void	pfsync_q_del(struct pf_state *);
166 
167 static void	pfsync_update_state(struct pf_state *);
168 
169 struct pfsync_upd_req_item {
170 	TAILQ_ENTRY(pfsync_upd_req_item)	ur_entry;
171 	struct pfsync_upd_req			ur_msg;
172 };
173 
174 struct pfsync_deferral {
175 	struct pfsync_softc		*pd_sc;
176 	TAILQ_ENTRY(pfsync_deferral)	pd_entry;
177 	u_int				pd_refs;
178 	struct callout			pd_tmo;
179 
180 	struct pf_state			*pd_st;
181 	struct mbuf			*pd_m;
182 };
183 
184 struct pfsync_softc {
185 	/* Configuration */
186 	struct ifnet		*sc_ifp;
187 	struct ifnet		*sc_sync_if;
188 	struct ip_moptions	sc_imo;
189 	struct in_addr		sc_sync_peer;
190 	uint32_t		sc_flags;
191 #define	PFSYNCF_OK		0x00000001
192 #define	PFSYNCF_DEFER		0x00000002
193 #define	PFSYNCF_PUSH		0x00000004
194 	uint8_t			sc_maxupdates;
195 	struct ip		sc_template;
196 	struct callout		sc_tmo;
197 	struct mtx		sc_mtx;
198 
199 	/* Queued data */
200 	size_t			sc_len;
201 	TAILQ_HEAD(, pf_state)			sc_qs[PFSYNC_S_COUNT];
202 	TAILQ_HEAD(, pfsync_upd_req_item)	sc_upd_req_list;
203 	TAILQ_HEAD(, pfsync_deferral)		sc_deferrals;
204 	u_int			sc_deferred;
205 	void			*sc_plus;
206 	size_t			sc_pluslen;
207 
208 	/* Bulk update info */
209 	struct mtx		sc_bulk_mtx;
210 	uint32_t		sc_ureq_sent;
211 	int			sc_bulk_tries;
212 	uint32_t		sc_ureq_received;
213 	int			sc_bulk_hashid;
214 	uint64_t		sc_bulk_stateid;
215 	uint32_t		sc_bulk_creatorid;
216 	struct callout		sc_bulk_tmo;
217 	struct callout		sc_bulkfail_tmo;
218 };
219 
220 #define	PFSYNC_LOCK(sc)		mtx_lock(&(sc)->sc_mtx)
221 #define	PFSYNC_UNLOCK(sc)	mtx_unlock(&(sc)->sc_mtx)
222 #define	PFSYNC_LOCK_ASSERT(sc)	mtx_assert(&(sc)->sc_mtx, MA_OWNED)
223 
224 #define	PFSYNC_BLOCK(sc)	mtx_lock(&(sc)->sc_bulk_mtx)
225 #define	PFSYNC_BUNLOCK(sc)	mtx_unlock(&(sc)->sc_bulk_mtx)
226 #define	PFSYNC_BLOCK_ASSERT(sc)	mtx_assert(&(sc)->sc_bulk_mtx, MA_OWNED)
227 
228 static const char pfsyncname[] = "pfsync";
229 static MALLOC_DEFINE(M_PFSYNC, pfsyncname, "pfsync(4) data");
230 static VNET_DEFINE(struct pfsync_softc	*, pfsyncif) = NULL;
231 #define	V_pfsyncif		VNET(pfsyncif)
232 static VNET_DEFINE(void *, pfsync_swi_cookie) = NULL;
233 #define	V_pfsync_swi_cookie	VNET(pfsync_swi_cookie)
234 static VNET_DEFINE(struct pfsyncstats, pfsyncstats);
235 #define	V_pfsyncstats		VNET(pfsyncstats)
236 static VNET_DEFINE(int, pfsync_carp_adj) = CARP_MAXSKEW;
237 #define	V_pfsync_carp_adj	VNET(pfsync_carp_adj)
238 
239 static void	pfsync_timeout(void *);
240 static void	pfsync_push(struct pfsync_softc *);
241 static void	pfsyncintr(void *);
242 static int	pfsync_multicast_setup(struct pfsync_softc *, struct ifnet *,
243 		    void *);
244 static void	pfsync_multicast_cleanup(struct pfsync_softc *);
245 static void	pfsync_pointers_init(void);
246 static void	pfsync_pointers_uninit(void);
247 static int	pfsync_init(void);
248 static void	pfsync_uninit(void);
249 
250 SYSCTL_NODE(_net, OID_AUTO, pfsync, CTLFLAG_RW, 0, "PFSYNC");
251 SYSCTL_STRUCT(_net_pfsync, OID_AUTO, stats, CTLFLAG_VNET | CTLFLAG_RW,
252     &VNET_NAME(pfsyncstats), pfsyncstats,
253     "PFSYNC statistics (struct pfsyncstats, net/if_pfsync.h)");
254 SYSCTL_INT(_net_pfsync, OID_AUTO, carp_demotion_factor, CTLFLAG_RW,
255     &VNET_NAME(pfsync_carp_adj), 0, "pfsync's CARP demotion factor adjustment");
256 
257 static int	pfsync_clone_create(struct if_clone *, int, caddr_t);
258 static void	pfsync_clone_destroy(struct ifnet *);
259 static int	pfsync_alloc_scrub_memory(struct pfsync_state_peer *,
260 		    struct pf_state_peer *);
261 static int	pfsyncoutput(struct ifnet *, struct mbuf *,
262 		    const struct sockaddr *, struct route *);
263 static int	pfsyncioctl(struct ifnet *, u_long, caddr_t);
264 
265 static int	pfsync_defer(struct pf_state *, struct mbuf *);
266 static void	pfsync_undefer(struct pfsync_deferral *, int);
267 static void	pfsync_undefer_state(struct pf_state *, int);
268 static void	pfsync_defer_tmo(void *);
269 
270 static void	pfsync_request_update(u_int32_t, u_int64_t);
271 static void	pfsync_update_state_req(struct pf_state *);
272 
273 static void	pfsync_drop(struct pfsync_softc *);
274 static void	pfsync_sendout(int);
275 static void	pfsync_send_plus(void *, size_t);
276 
277 static void	pfsync_bulk_start(void);
278 static void	pfsync_bulk_status(u_int8_t);
279 static void	pfsync_bulk_update(void *);
280 static void	pfsync_bulk_fail(void *);
281 
282 #ifdef IPSEC
283 static void	pfsync_update_net_tdb(struct pfsync_tdb *);
284 #endif
285 
286 #define PFSYNC_MAX_BULKTRIES	12
287 
288 VNET_DEFINE(struct if_clone *, pfsync_cloner);
289 #define	V_pfsync_cloner	VNET(pfsync_cloner)
290 
291 static int
292 pfsync_clone_create(struct if_clone *ifc, int unit, caddr_t param)
293 {
294 	struct pfsync_softc *sc;
295 	struct ifnet *ifp;
296 	int q;
297 
298 	if (unit != 0)
299 		return (EINVAL);
300 
301 	sc = malloc(sizeof(struct pfsync_softc), M_PFSYNC, M_WAITOK | M_ZERO);
302 	sc->sc_flags |= PFSYNCF_OK;
303 
304 	for (q = 0; q < PFSYNC_S_COUNT; q++)
305 		TAILQ_INIT(&sc->sc_qs[q]);
306 
307 	TAILQ_INIT(&sc->sc_upd_req_list);
308 	TAILQ_INIT(&sc->sc_deferrals);
309 
310 	sc->sc_len = PFSYNC_MINPKT;
311 	sc->sc_maxupdates = 128;
312 
313 	ifp = sc->sc_ifp = if_alloc(IFT_PFSYNC);
314 	if (ifp == NULL) {
315 		free(sc, M_PFSYNC);
316 		return (ENOSPC);
317 	}
318 	if_initname(ifp, pfsyncname, unit);
319 	ifp->if_softc = sc;
320 	ifp->if_ioctl = pfsyncioctl;
321 	ifp->if_output = pfsyncoutput;
322 	ifp->if_type = IFT_PFSYNC;
323 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
324 	ifp->if_hdrlen = sizeof(struct pfsync_header);
325 	ifp->if_mtu = ETHERMTU;
326 	mtx_init(&sc->sc_mtx, pfsyncname, NULL, MTX_DEF);
327 	mtx_init(&sc->sc_bulk_mtx, "pfsync bulk", NULL, MTX_DEF);
328 	callout_init(&sc->sc_tmo, 1);
329 	callout_init_mtx(&sc->sc_bulk_tmo, &sc->sc_bulk_mtx, 0);
330 	callout_init_mtx(&sc->sc_bulkfail_tmo, &sc->sc_bulk_mtx, 0);
331 
332 	if_attach(ifp);
333 
334 	bpfattach(ifp, DLT_PFSYNC, PFSYNC_HDRLEN);
335 
336 	V_pfsyncif = sc;
337 
338 	return (0);
339 }
340 
341 static void
342 pfsync_clone_destroy(struct ifnet *ifp)
343 {
344 	struct pfsync_softc *sc = ifp->if_softc;
345 
346 	/*
347 	 * At this stage, everything should have already been
348 	 * cleared by pfsync_uninit(), and we have only to
349 	 * drain callouts.
350 	 */
351 	while (sc->sc_deferred > 0) {
352 		struct pfsync_deferral *pd = TAILQ_FIRST(&sc->sc_deferrals);
353 
354 		TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry);
355 		sc->sc_deferred--;
356 		if (callout_stop(&pd->pd_tmo) > 0) {
357 			pf_release_state(pd->pd_st);
358 			m_freem(pd->pd_m);
359 			free(pd, M_PFSYNC);
360 		} else {
361 			pd->pd_refs++;
362 			callout_drain(&pd->pd_tmo);
363 			free(pd, M_PFSYNC);
364 		}
365 	}
366 
367 	callout_drain(&sc->sc_tmo);
368 	callout_drain(&sc->sc_bulkfail_tmo);
369 	callout_drain(&sc->sc_bulk_tmo);
370 
371 	if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
372 		(*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync destroy");
373 	bpfdetach(ifp);
374 	if_detach(ifp);
375 
376 	pfsync_drop(sc);
377 
378 	if_free(ifp);
379 	if (sc->sc_imo.imo_membership)
380 		pfsync_multicast_cleanup(sc);
381 	mtx_destroy(&sc->sc_mtx);
382 	mtx_destroy(&sc->sc_bulk_mtx);
383 	free(sc, M_PFSYNC);
384 
385 	V_pfsyncif = NULL;
386 }
387 
388 static int
389 pfsync_alloc_scrub_memory(struct pfsync_state_peer *s,
390     struct pf_state_peer *d)
391 {
392 	if (s->scrub.scrub_flag && d->scrub == NULL) {
393 		d->scrub = uma_zalloc(V_pf_state_scrub_z, M_NOWAIT | M_ZERO);
394 		if (d->scrub == NULL)
395 			return (ENOMEM);
396 	}
397 
398 	return (0);
399 }
400 
401 
402 static int
403 pfsync_state_import(struct pfsync_state *sp, u_int8_t flags)
404 {
405 	struct pfsync_softc *sc = V_pfsyncif;
406 #ifndef	__NO_STRICT_ALIGNMENT
407 	struct pfsync_state_key key[2];
408 #endif
409 	struct pfsync_state_key *kw, *ks;
410 	struct pf_state	*st = NULL;
411 	struct pf_state_key *skw = NULL, *sks = NULL;
412 	struct pf_rule *r = NULL;
413 	struct pfi_kif	*kif;
414 	int error;
415 
416 	PF_RULES_RASSERT();
417 
418 	if (sp->creatorid == 0) {
419 		if (V_pf_status.debug >= PF_DEBUG_MISC)
420 			printf("%s: invalid creator id: %08x\n", __func__,
421 			    ntohl(sp->creatorid));
422 		return (EINVAL);
423 	}
424 
425 	if ((kif = pfi_kif_find(sp->ifname)) == NULL) {
426 		if (V_pf_status.debug >= PF_DEBUG_MISC)
427 			printf("%s: unknown interface: %s\n", __func__,
428 			    sp->ifname);
429 		if (flags & PFSYNC_SI_IOCTL)
430 			return (EINVAL);
431 		return (0);	/* skip this state */
432 	}
433 
434 	/*
435 	 * If the ruleset checksums match or the state is coming from the ioctl,
436 	 * it's safe to associate the state with the rule of that number.
437 	 */
438 	if (sp->rule != htonl(-1) && sp->anchor == htonl(-1) &&
439 	    (flags & (PFSYNC_SI_IOCTL | PFSYNC_SI_CKSUM)) && ntohl(sp->rule) <
440 	    pf_main_ruleset.rules[PF_RULESET_FILTER].active.rcount)
441 		r = pf_main_ruleset.rules[
442 		    PF_RULESET_FILTER].active.ptr_array[ntohl(sp->rule)];
443 	else
444 		r = &V_pf_default_rule;
445 
446 	if ((r->max_states &&
447 	    counter_u64_fetch(r->states_cur) >= r->max_states))
448 		goto cleanup;
449 
450 	/*
451 	 * XXXGL: consider M_WAITOK in ioctl path after.
452 	 */
453 	if ((st = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO)) == NULL)
454 		goto cleanup;
455 
456 	if ((skw = uma_zalloc(V_pf_state_key_z, M_NOWAIT)) == NULL)
457 		goto cleanup;
458 
459 #ifndef	__NO_STRICT_ALIGNMENT
460 	bcopy(&sp->key, key, sizeof(struct pfsync_state_key) * 2);
461 	kw = &key[PF_SK_WIRE];
462 	ks = &key[PF_SK_STACK];
463 #else
464 	kw = &sp->key[PF_SK_WIRE];
465 	ks = &sp->key[PF_SK_STACK];
466 #endif
467 
468 	if (PF_ANEQ(&kw->addr[0], &ks->addr[0], sp->af) ||
469 	    PF_ANEQ(&kw->addr[1], &ks->addr[1], sp->af) ||
470 	    kw->port[0] != ks->port[0] ||
471 	    kw->port[1] != ks->port[1]) {
472 		sks = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
473 		if (sks == NULL)
474 			goto cleanup;
475 	} else
476 		sks = skw;
477 
478 	/* allocate memory for scrub info */
479 	if (pfsync_alloc_scrub_memory(&sp->src, &st->src) ||
480 	    pfsync_alloc_scrub_memory(&sp->dst, &st->dst))
481 		goto cleanup;
482 
483 	/* Copy to state key(s). */
484 	skw->addr[0] = kw->addr[0];
485 	skw->addr[1] = kw->addr[1];
486 	skw->port[0] = kw->port[0];
487 	skw->port[1] = kw->port[1];
488 	skw->proto = sp->proto;
489 	skw->af = sp->af;
490 	if (sks != skw) {
491 		sks->addr[0] = ks->addr[0];
492 		sks->addr[1] = ks->addr[1];
493 		sks->port[0] = ks->port[0];
494 		sks->port[1] = ks->port[1];
495 		sks->proto = sp->proto;
496 		sks->af = sp->af;
497 	}
498 
499 	/* copy to state */
500 	bcopy(&sp->rt_addr, &st->rt_addr, sizeof(st->rt_addr));
501 	st->creation = time_uptime - ntohl(sp->creation);
502 	st->expire = time_uptime;
503 	if (sp->expire) {
504 		uint32_t timeout;
505 
506 		timeout = r->timeout[sp->timeout];
507 		if (!timeout)
508 			timeout = V_pf_default_rule.timeout[sp->timeout];
509 
510 		/* sp->expire may have been adaptively scaled by export. */
511 		st->expire -= timeout - ntohl(sp->expire);
512 	}
513 
514 	st->direction = sp->direction;
515 	st->log = sp->log;
516 	st->timeout = sp->timeout;
517 	st->state_flags = sp->state_flags;
518 
519 	st->id = sp->id;
520 	st->creatorid = sp->creatorid;
521 	pf_state_peer_ntoh(&sp->src, &st->src);
522 	pf_state_peer_ntoh(&sp->dst, &st->dst);
523 
524 	st->rule.ptr = r;
525 	st->nat_rule.ptr = NULL;
526 	st->anchor.ptr = NULL;
527 	st->rt_kif = NULL;
528 
529 	st->pfsync_time = time_uptime;
530 	st->sync_state = PFSYNC_S_NONE;
531 
532 	if (!(flags & PFSYNC_SI_IOCTL))
533 		st->state_flags |= PFSTATE_NOSYNC;
534 
535 	if ((error = pf_state_insert(kif, skw, sks, st)) != 0)
536 		goto cleanup_state;
537 
538 	/* XXX when we have nat_rule/anchors, use STATE_INC_COUNTERS */
539 	counter_u64_add(r->states_cur, 1);
540 	counter_u64_add(r->states_tot, 1);
541 
542 	if (!(flags & PFSYNC_SI_IOCTL)) {
543 		st->state_flags &= ~PFSTATE_NOSYNC;
544 		if (st->state_flags & PFSTATE_ACK) {
545 			pfsync_q_ins(st, PFSYNC_S_IACK);
546 			pfsync_push(sc);
547 		}
548 	}
549 	st->state_flags &= ~PFSTATE_ACK;
550 	PF_STATE_UNLOCK(st);
551 
552 	return (0);
553 
554 cleanup:
555 	error = ENOMEM;
556 	if (skw == sks)
557 		sks = NULL;
558 	if (skw != NULL)
559 		uma_zfree(V_pf_state_key_z, skw);
560 	if (sks != NULL)
561 		uma_zfree(V_pf_state_key_z, sks);
562 
563 cleanup_state:	/* pf_state_insert() frees the state keys. */
564 	if (st) {
565 		if (st->dst.scrub)
566 			uma_zfree(V_pf_state_scrub_z, st->dst.scrub);
567 		if (st->src.scrub)
568 			uma_zfree(V_pf_state_scrub_z, st->src.scrub);
569 		uma_zfree(V_pf_state_z, st);
570 	}
571 	return (error);
572 }
573 
574 static int
575 pfsync_input(struct mbuf **mp, int *offp __unused, int proto __unused)
576 {
577 	struct pfsync_softc *sc = V_pfsyncif;
578 	struct pfsync_pkt pkt;
579 	struct mbuf *m = *mp;
580 	struct ip *ip = mtod(m, struct ip *);
581 	struct pfsync_header *ph;
582 	struct pfsync_subheader subh;
583 
584 	int offset, len;
585 	int rv;
586 	uint16_t count;
587 
588 	*mp = NULL;
589 	V_pfsyncstats.pfsyncs_ipackets++;
590 
591 	/* Verify that we have a sync interface configured. */
592 	if (!sc || !sc->sc_sync_if || !V_pf_status.running ||
593 	    (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
594 		goto done;
595 
596 	/* verify that the packet came in on the right interface */
597 	if (sc->sc_sync_if != m->m_pkthdr.rcvif) {
598 		V_pfsyncstats.pfsyncs_badif++;
599 		goto done;
600 	}
601 
602 	if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1);
603 	if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
604 	/* verify that the IP TTL is 255. */
605 	if (ip->ip_ttl != PFSYNC_DFLTTL) {
606 		V_pfsyncstats.pfsyncs_badttl++;
607 		goto done;
608 	}
609 
610 	offset = ip->ip_hl << 2;
611 	if (m->m_pkthdr.len < offset + sizeof(*ph)) {
612 		V_pfsyncstats.pfsyncs_hdrops++;
613 		goto done;
614 	}
615 
616 	if (offset + sizeof(*ph) > m->m_len) {
617 		if (m_pullup(m, offset + sizeof(*ph)) == NULL) {
618 			V_pfsyncstats.pfsyncs_hdrops++;
619 			return (IPPROTO_DONE);
620 		}
621 		ip = mtod(m, struct ip *);
622 	}
623 	ph = (struct pfsync_header *)((char *)ip + offset);
624 
625 	/* verify the version */
626 	if (ph->version != PFSYNC_VERSION) {
627 		V_pfsyncstats.pfsyncs_badver++;
628 		goto done;
629 	}
630 
631 	len = ntohs(ph->len) + offset;
632 	if (m->m_pkthdr.len < len) {
633 		V_pfsyncstats.pfsyncs_badlen++;
634 		goto done;
635 	}
636 
637 	/* Cheaper to grab this now than having to mess with mbufs later */
638 	pkt.ip = ip;
639 	pkt.src = ip->ip_src;
640 	pkt.flags = 0;
641 
642 	/*
643 	 * Trusting pf_chksum during packet processing, as well as seeking
644 	 * in interface name tree, require holding PF_RULES_RLOCK().
645 	 */
646 	PF_RULES_RLOCK();
647 	if (!bcmp(&ph->pfcksum, &V_pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH))
648 		pkt.flags |= PFSYNC_SI_CKSUM;
649 
650 	offset += sizeof(*ph);
651 	while (offset <= len - sizeof(subh)) {
652 		m_copydata(m, offset, sizeof(subh), (caddr_t)&subh);
653 		offset += sizeof(subh);
654 
655 		if (subh.action >= PFSYNC_ACT_MAX) {
656 			V_pfsyncstats.pfsyncs_badact++;
657 			PF_RULES_RUNLOCK();
658 			goto done;
659 		}
660 
661 		count = ntohs(subh.count);
662 		V_pfsyncstats.pfsyncs_iacts[subh.action] += count;
663 		rv = (*pfsync_acts[subh.action])(&pkt, m, offset, count);
664 		if (rv == -1) {
665 			PF_RULES_RUNLOCK();
666 			return (IPPROTO_DONE);
667 		}
668 
669 		offset += rv;
670 	}
671 	PF_RULES_RUNLOCK();
672 
673 done:
674 	m_freem(m);
675 	return (IPPROTO_DONE);
676 }
677 
678 static int
679 pfsync_in_clr(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
680 {
681 	struct pfsync_clr *clr;
682 	struct mbuf *mp;
683 	int len = sizeof(*clr) * count;
684 	int i, offp;
685 	u_int32_t creatorid;
686 
687 	mp = m_pulldown(m, offset, len, &offp);
688 	if (mp == NULL) {
689 		V_pfsyncstats.pfsyncs_badlen++;
690 		return (-1);
691 	}
692 	clr = (struct pfsync_clr *)(mp->m_data + offp);
693 
694 	for (i = 0; i < count; i++) {
695 		creatorid = clr[i].creatorid;
696 
697 		if (clr[i].ifname[0] != '\0' &&
698 		    pfi_kif_find(clr[i].ifname) == NULL)
699 			continue;
700 
701 		for (int i = 0; i <= pf_hashmask; i++) {
702 			struct pf_idhash *ih = &V_pf_idhash[i];
703 			struct pf_state *s;
704 relock:
705 			PF_HASHROW_LOCK(ih);
706 			LIST_FOREACH(s, &ih->states, entry) {
707 				if (s->creatorid == creatorid) {
708 					s->state_flags |= PFSTATE_NOSYNC;
709 					pf_unlink_state(s, PF_ENTER_LOCKED);
710 					goto relock;
711 				}
712 			}
713 			PF_HASHROW_UNLOCK(ih);
714 		}
715 	}
716 
717 	return (len);
718 }
719 
720 static int
721 pfsync_in_ins(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
722 {
723 	struct mbuf *mp;
724 	struct pfsync_state *sa, *sp;
725 	int len = sizeof(*sp) * count;
726 	int i, offp;
727 
728 	mp = m_pulldown(m, offset, len, &offp);
729 	if (mp == NULL) {
730 		V_pfsyncstats.pfsyncs_badlen++;
731 		return (-1);
732 	}
733 	sa = (struct pfsync_state *)(mp->m_data + offp);
734 
735 	for (i = 0; i < count; i++) {
736 		sp = &sa[i];
737 
738 		/* Check for invalid values. */
739 		if (sp->timeout >= PFTM_MAX ||
740 		    sp->src.state > PF_TCPS_PROXY_DST ||
741 		    sp->dst.state > PF_TCPS_PROXY_DST ||
742 		    sp->direction > PF_OUT ||
743 		    (sp->af != AF_INET && sp->af != AF_INET6)) {
744 			if (V_pf_status.debug >= PF_DEBUG_MISC)
745 				printf("%s: invalid value\n", __func__);
746 			V_pfsyncstats.pfsyncs_badval++;
747 			continue;
748 		}
749 
750 		if (pfsync_state_import(sp, pkt->flags) == ENOMEM)
751 			/* Drop out, but process the rest of the actions. */
752 			break;
753 	}
754 
755 	return (len);
756 }
757 
758 static int
759 pfsync_in_iack(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
760 {
761 	struct pfsync_ins_ack *ia, *iaa;
762 	struct pf_state *st;
763 
764 	struct mbuf *mp;
765 	int len = count * sizeof(*ia);
766 	int offp, i;
767 
768 	mp = m_pulldown(m, offset, len, &offp);
769 	if (mp == NULL) {
770 		V_pfsyncstats.pfsyncs_badlen++;
771 		return (-1);
772 	}
773 	iaa = (struct pfsync_ins_ack *)(mp->m_data + offp);
774 
775 	for (i = 0; i < count; i++) {
776 		ia = &iaa[i];
777 
778 		st = pf_find_state_byid(ia->id, ia->creatorid);
779 		if (st == NULL)
780 			continue;
781 
782 		if (st->state_flags & PFSTATE_ACK) {
783 			PFSYNC_LOCK(V_pfsyncif);
784 			pfsync_undefer_state(st, 0);
785 			PFSYNC_UNLOCK(V_pfsyncif);
786 		}
787 		PF_STATE_UNLOCK(st);
788 	}
789 	/*
790 	 * XXX this is not yet implemented, but we know the size of the
791 	 * message so we can skip it.
792 	 */
793 
794 	return (count * sizeof(struct pfsync_ins_ack));
795 }
796 
797 static int
798 pfsync_upd_tcp(struct pf_state *st, struct pfsync_state_peer *src,
799     struct pfsync_state_peer *dst)
800 {
801 	int sync = 0;
802 
803 	PF_STATE_LOCK_ASSERT(st);
804 
805 	/*
806 	 * The state should never go backwards except
807 	 * for syn-proxy states.  Neither should the
808 	 * sequence window slide backwards.
809 	 */
810 	if ((st->src.state > src->state &&
811 	    (st->src.state < PF_TCPS_PROXY_SRC ||
812 	    src->state >= PF_TCPS_PROXY_SRC)) ||
813 
814 	    (st->src.state == src->state &&
815 	    SEQ_GT(st->src.seqlo, ntohl(src->seqlo))))
816 		sync++;
817 	else
818 		pf_state_peer_ntoh(src, &st->src);
819 
820 	if ((st->dst.state > dst->state) ||
821 
822 	    (st->dst.state >= TCPS_SYN_SENT &&
823 	    SEQ_GT(st->dst.seqlo, ntohl(dst->seqlo))))
824 		sync++;
825 	else
826 		pf_state_peer_ntoh(dst, &st->dst);
827 
828 	return (sync);
829 }
830 
831 static int
832 pfsync_in_upd(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
833 {
834 	struct pfsync_softc *sc = V_pfsyncif;
835 	struct pfsync_state *sa, *sp;
836 	struct pf_state *st;
837 	int sync;
838 
839 	struct mbuf *mp;
840 	int len = count * sizeof(*sp);
841 	int offp, i;
842 
843 	mp = m_pulldown(m, offset, len, &offp);
844 	if (mp == NULL) {
845 		V_pfsyncstats.pfsyncs_badlen++;
846 		return (-1);
847 	}
848 	sa = (struct pfsync_state *)(mp->m_data + offp);
849 
850 	for (i = 0; i < count; i++) {
851 		sp = &sa[i];
852 
853 		/* check for invalid values */
854 		if (sp->timeout >= PFTM_MAX ||
855 		    sp->src.state > PF_TCPS_PROXY_DST ||
856 		    sp->dst.state > PF_TCPS_PROXY_DST) {
857 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
858 				printf("pfsync_input: PFSYNC_ACT_UPD: "
859 				    "invalid value\n");
860 			}
861 			V_pfsyncstats.pfsyncs_badval++;
862 			continue;
863 		}
864 
865 		st = pf_find_state_byid(sp->id, sp->creatorid);
866 		if (st == NULL) {
867 			/* insert the update */
868 			if (pfsync_state_import(sp, 0))
869 				V_pfsyncstats.pfsyncs_badstate++;
870 			continue;
871 		}
872 
873 		if (st->state_flags & PFSTATE_ACK) {
874 			PFSYNC_LOCK(sc);
875 			pfsync_undefer_state(st, 1);
876 			PFSYNC_UNLOCK(sc);
877 		}
878 
879 		if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP)
880 			sync = pfsync_upd_tcp(st, &sp->src, &sp->dst);
881 		else {
882 			sync = 0;
883 
884 			/*
885 			 * Non-TCP protocol state machine always go
886 			 * forwards
887 			 */
888 			if (st->src.state > sp->src.state)
889 				sync++;
890 			else
891 				pf_state_peer_ntoh(&sp->src, &st->src);
892 			if (st->dst.state > sp->dst.state)
893 				sync++;
894 			else
895 				pf_state_peer_ntoh(&sp->dst, &st->dst);
896 		}
897 		if (sync < 2) {
898 			pfsync_alloc_scrub_memory(&sp->dst, &st->dst);
899 			pf_state_peer_ntoh(&sp->dst, &st->dst);
900 			st->expire = time_uptime;
901 			st->timeout = sp->timeout;
902 		}
903 		st->pfsync_time = time_uptime;
904 
905 		if (sync) {
906 			V_pfsyncstats.pfsyncs_stale++;
907 
908 			pfsync_update_state(st);
909 			PF_STATE_UNLOCK(st);
910 			PFSYNC_LOCK(sc);
911 			pfsync_push(sc);
912 			PFSYNC_UNLOCK(sc);
913 			continue;
914 		}
915 		PF_STATE_UNLOCK(st);
916 	}
917 
918 	return (len);
919 }
920 
921 static int
922 pfsync_in_upd_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
923 {
924 	struct pfsync_softc *sc = V_pfsyncif;
925 	struct pfsync_upd_c *ua, *up;
926 	struct pf_state *st;
927 	int len = count * sizeof(*up);
928 	int sync;
929 	struct mbuf *mp;
930 	int offp, i;
931 
932 	mp = m_pulldown(m, offset, len, &offp);
933 	if (mp == NULL) {
934 		V_pfsyncstats.pfsyncs_badlen++;
935 		return (-1);
936 	}
937 	ua = (struct pfsync_upd_c *)(mp->m_data + offp);
938 
939 	for (i = 0; i < count; i++) {
940 		up = &ua[i];
941 
942 		/* check for invalid values */
943 		if (up->timeout >= PFTM_MAX ||
944 		    up->src.state > PF_TCPS_PROXY_DST ||
945 		    up->dst.state > PF_TCPS_PROXY_DST) {
946 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
947 				printf("pfsync_input: "
948 				    "PFSYNC_ACT_UPD_C: "
949 				    "invalid value\n");
950 			}
951 			V_pfsyncstats.pfsyncs_badval++;
952 			continue;
953 		}
954 
955 		st = pf_find_state_byid(up->id, up->creatorid);
956 		if (st == NULL) {
957 			/* We don't have this state. Ask for it. */
958 			PFSYNC_LOCK(sc);
959 			pfsync_request_update(up->creatorid, up->id);
960 			PFSYNC_UNLOCK(sc);
961 			continue;
962 		}
963 
964 		if (st->state_flags & PFSTATE_ACK) {
965 			PFSYNC_LOCK(sc);
966 			pfsync_undefer_state(st, 1);
967 			PFSYNC_UNLOCK(sc);
968 		}
969 
970 		if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP)
971 			sync = pfsync_upd_tcp(st, &up->src, &up->dst);
972 		else {
973 			sync = 0;
974 
975 			/*
976 			 * Non-TCP protocol state machine always go
977 			 * forwards
978 			 */
979 			if (st->src.state > up->src.state)
980 				sync++;
981 			else
982 				pf_state_peer_ntoh(&up->src, &st->src);
983 			if (st->dst.state > up->dst.state)
984 				sync++;
985 			else
986 				pf_state_peer_ntoh(&up->dst, &st->dst);
987 		}
988 		if (sync < 2) {
989 			pfsync_alloc_scrub_memory(&up->dst, &st->dst);
990 			pf_state_peer_ntoh(&up->dst, &st->dst);
991 			st->expire = time_uptime;
992 			st->timeout = up->timeout;
993 		}
994 		st->pfsync_time = time_uptime;
995 
996 		if (sync) {
997 			V_pfsyncstats.pfsyncs_stale++;
998 
999 			pfsync_update_state(st);
1000 			PF_STATE_UNLOCK(st);
1001 			PFSYNC_LOCK(sc);
1002 			pfsync_push(sc);
1003 			PFSYNC_UNLOCK(sc);
1004 			continue;
1005 		}
1006 		PF_STATE_UNLOCK(st);
1007 	}
1008 
1009 	return (len);
1010 }
1011 
1012 static int
1013 pfsync_in_ureq(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
1014 {
1015 	struct pfsync_upd_req *ur, *ura;
1016 	struct mbuf *mp;
1017 	int len = count * sizeof(*ur);
1018 	int i, offp;
1019 
1020 	struct pf_state *st;
1021 
1022 	mp = m_pulldown(m, offset, len, &offp);
1023 	if (mp == NULL) {
1024 		V_pfsyncstats.pfsyncs_badlen++;
1025 		return (-1);
1026 	}
1027 	ura = (struct pfsync_upd_req *)(mp->m_data + offp);
1028 
1029 	for (i = 0; i < count; i++) {
1030 		ur = &ura[i];
1031 
1032 		if (ur->id == 0 && ur->creatorid == 0)
1033 			pfsync_bulk_start();
1034 		else {
1035 			st = pf_find_state_byid(ur->id, ur->creatorid);
1036 			if (st == NULL) {
1037 				V_pfsyncstats.pfsyncs_badstate++;
1038 				continue;
1039 			}
1040 			if (st->state_flags & PFSTATE_NOSYNC) {
1041 				PF_STATE_UNLOCK(st);
1042 				continue;
1043 			}
1044 
1045 			pfsync_update_state_req(st);
1046 			PF_STATE_UNLOCK(st);
1047 		}
1048 	}
1049 
1050 	return (len);
1051 }
1052 
1053 static int
1054 pfsync_in_del(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
1055 {
1056 	struct mbuf *mp;
1057 	struct pfsync_state *sa, *sp;
1058 	struct pf_state *st;
1059 	int len = count * sizeof(*sp);
1060 	int offp, i;
1061 
1062 	mp = m_pulldown(m, offset, len, &offp);
1063 	if (mp == NULL) {
1064 		V_pfsyncstats.pfsyncs_badlen++;
1065 		return (-1);
1066 	}
1067 	sa = (struct pfsync_state *)(mp->m_data + offp);
1068 
1069 	for (i = 0; i < count; i++) {
1070 		sp = &sa[i];
1071 
1072 		st = pf_find_state_byid(sp->id, sp->creatorid);
1073 		if (st == NULL) {
1074 			V_pfsyncstats.pfsyncs_badstate++;
1075 			continue;
1076 		}
1077 		st->state_flags |= PFSTATE_NOSYNC;
1078 		pf_unlink_state(st, PF_ENTER_LOCKED);
1079 	}
1080 
1081 	return (len);
1082 }
1083 
1084 static int
1085 pfsync_in_del_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
1086 {
1087 	struct mbuf *mp;
1088 	struct pfsync_del_c *sa, *sp;
1089 	struct pf_state *st;
1090 	int len = count * sizeof(*sp);
1091 	int offp, i;
1092 
1093 	mp = m_pulldown(m, offset, len, &offp);
1094 	if (mp == NULL) {
1095 		V_pfsyncstats.pfsyncs_badlen++;
1096 		return (-1);
1097 	}
1098 	sa = (struct pfsync_del_c *)(mp->m_data + offp);
1099 
1100 	for (i = 0; i < count; i++) {
1101 		sp = &sa[i];
1102 
1103 		st = pf_find_state_byid(sp->id, sp->creatorid);
1104 		if (st == NULL) {
1105 			V_pfsyncstats.pfsyncs_badstate++;
1106 			continue;
1107 		}
1108 
1109 		st->state_flags |= PFSTATE_NOSYNC;
1110 		pf_unlink_state(st, PF_ENTER_LOCKED);
1111 	}
1112 
1113 	return (len);
1114 }
1115 
1116 static int
1117 pfsync_in_bus(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
1118 {
1119 	struct pfsync_softc *sc = V_pfsyncif;
1120 	struct pfsync_bus *bus;
1121 	struct mbuf *mp;
1122 	int len = count * sizeof(*bus);
1123 	int offp;
1124 
1125 	PFSYNC_BLOCK(sc);
1126 
1127 	/* If we're not waiting for a bulk update, who cares. */
1128 	if (sc->sc_ureq_sent == 0) {
1129 		PFSYNC_BUNLOCK(sc);
1130 		return (len);
1131 	}
1132 
1133 	mp = m_pulldown(m, offset, len, &offp);
1134 	if (mp == NULL) {
1135 		PFSYNC_BUNLOCK(sc);
1136 		V_pfsyncstats.pfsyncs_badlen++;
1137 		return (-1);
1138 	}
1139 	bus = (struct pfsync_bus *)(mp->m_data + offp);
1140 
1141 	switch (bus->status) {
1142 	case PFSYNC_BUS_START:
1143 		callout_reset(&sc->sc_bulkfail_tmo, 4 * hz +
1144 		    V_pf_limits[PF_LIMIT_STATES].limit /
1145 		    ((sc->sc_ifp->if_mtu - PFSYNC_MINPKT) /
1146 		    sizeof(struct pfsync_state)),
1147 		    pfsync_bulk_fail, sc);
1148 		if (V_pf_status.debug >= PF_DEBUG_MISC)
1149 			printf("pfsync: received bulk update start\n");
1150 		break;
1151 
1152 	case PFSYNC_BUS_END:
1153 		if (time_uptime - ntohl(bus->endtime) >=
1154 		    sc->sc_ureq_sent) {
1155 			/* that's it, we're happy */
1156 			sc->sc_ureq_sent = 0;
1157 			sc->sc_bulk_tries = 0;
1158 			callout_stop(&sc->sc_bulkfail_tmo);
1159 			if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
1160 				(*carp_demote_adj_p)(-V_pfsync_carp_adj,
1161 				    "pfsync bulk done");
1162 			sc->sc_flags |= PFSYNCF_OK;
1163 			if (V_pf_status.debug >= PF_DEBUG_MISC)
1164 				printf("pfsync: received valid "
1165 				    "bulk update end\n");
1166 		} else {
1167 			if (V_pf_status.debug >= PF_DEBUG_MISC)
1168 				printf("pfsync: received invalid "
1169 				    "bulk update end: bad timestamp\n");
1170 		}
1171 		break;
1172 	}
1173 	PFSYNC_BUNLOCK(sc);
1174 
1175 	return (len);
1176 }
1177 
1178 static int
1179 pfsync_in_tdb(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
1180 {
1181 	int len = count * sizeof(struct pfsync_tdb);
1182 
1183 #if defined(IPSEC)
1184 	struct pfsync_tdb *tp;
1185 	struct mbuf *mp;
1186 	int offp;
1187 	int i;
1188 	int s;
1189 
1190 	mp = m_pulldown(m, offset, len, &offp);
1191 	if (mp == NULL) {
1192 		V_pfsyncstats.pfsyncs_badlen++;
1193 		return (-1);
1194 	}
1195 	tp = (struct pfsync_tdb *)(mp->m_data + offp);
1196 
1197 	for (i = 0; i < count; i++)
1198 		pfsync_update_net_tdb(&tp[i]);
1199 #endif
1200 
1201 	return (len);
1202 }
1203 
1204 #if defined(IPSEC)
1205 /* Update an in-kernel tdb. Silently fail if no tdb is found. */
1206 static void
1207 pfsync_update_net_tdb(struct pfsync_tdb *pt)
1208 {
1209 	struct tdb		*tdb;
1210 	int			 s;
1211 
1212 	/* check for invalid values */
1213 	if (ntohl(pt->spi) <= SPI_RESERVED_MAX ||
1214 	    (pt->dst.sa.sa_family != AF_INET &&
1215 	    pt->dst.sa.sa_family != AF_INET6))
1216 		goto bad;
1217 
1218 	tdb = gettdb(pt->spi, &pt->dst, pt->sproto);
1219 	if (tdb) {
1220 		pt->rpl = ntohl(pt->rpl);
1221 		pt->cur_bytes = (unsigned long long)be64toh(pt->cur_bytes);
1222 
1223 		/* Neither replay nor byte counter should ever decrease. */
1224 		if (pt->rpl < tdb->tdb_rpl ||
1225 		    pt->cur_bytes < tdb->tdb_cur_bytes) {
1226 			goto bad;
1227 		}
1228 
1229 		tdb->tdb_rpl = pt->rpl;
1230 		tdb->tdb_cur_bytes = pt->cur_bytes;
1231 	}
1232 	return;
1233 
1234 bad:
1235 	if (V_pf_status.debug >= PF_DEBUG_MISC)
1236 		printf("pfsync_insert: PFSYNC_ACT_TDB_UPD: "
1237 		    "invalid value\n");
1238 	V_pfsyncstats.pfsyncs_badstate++;
1239 	return;
1240 }
1241 #endif
1242 
1243 
1244 static int
1245 pfsync_in_eof(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
1246 {
1247 	/* check if we are at the right place in the packet */
1248 	if (offset != m->m_pkthdr.len)
1249 		V_pfsyncstats.pfsyncs_badlen++;
1250 
1251 	/* we're done. free and let the caller return */
1252 	m_freem(m);
1253 	return (-1);
1254 }
1255 
1256 static int
1257 pfsync_in_error(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
1258 {
1259 	V_pfsyncstats.pfsyncs_badact++;
1260 
1261 	m_freem(m);
1262 	return (-1);
1263 }
1264 
1265 static int
1266 pfsyncoutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1267 	struct route *rt)
1268 {
1269 	m_freem(m);
1270 	return (0);
1271 }
1272 
1273 /* ARGSUSED */
1274 static int
1275 pfsyncioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1276 {
1277 	struct pfsync_softc *sc = ifp->if_softc;
1278 	struct ifreq *ifr = (struct ifreq *)data;
1279 	struct pfsyncreq pfsyncr;
1280 	int error;
1281 
1282 	switch (cmd) {
1283 	case SIOCSIFFLAGS:
1284 		PFSYNC_LOCK(sc);
1285 		if (ifp->if_flags & IFF_UP) {
1286 			ifp->if_drv_flags |= IFF_DRV_RUNNING;
1287 			PFSYNC_UNLOCK(sc);
1288 			pfsync_pointers_init();
1289 		} else {
1290 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1291 			PFSYNC_UNLOCK(sc);
1292 			pfsync_pointers_uninit();
1293 		}
1294 		break;
1295 	case SIOCSIFMTU:
1296 		if (!sc->sc_sync_if ||
1297 		    ifr->ifr_mtu <= PFSYNC_MINPKT ||
1298 		    ifr->ifr_mtu > sc->sc_sync_if->if_mtu)
1299 			return (EINVAL);
1300 		if (ifr->ifr_mtu < ifp->if_mtu) {
1301 			PFSYNC_LOCK(sc);
1302 			if (sc->sc_len > PFSYNC_MINPKT)
1303 				pfsync_sendout(1);
1304 			PFSYNC_UNLOCK(sc);
1305 		}
1306 		ifp->if_mtu = ifr->ifr_mtu;
1307 		break;
1308 	case SIOCGETPFSYNC:
1309 		bzero(&pfsyncr, sizeof(pfsyncr));
1310 		PFSYNC_LOCK(sc);
1311 		if (sc->sc_sync_if) {
1312 			strlcpy(pfsyncr.pfsyncr_syncdev,
1313 			    sc->sc_sync_if->if_xname, IFNAMSIZ);
1314 		}
1315 		pfsyncr.pfsyncr_syncpeer = sc->sc_sync_peer;
1316 		pfsyncr.pfsyncr_maxupdates = sc->sc_maxupdates;
1317 		pfsyncr.pfsyncr_defer = (PFSYNCF_DEFER ==
1318 		    (sc->sc_flags & PFSYNCF_DEFER));
1319 		PFSYNC_UNLOCK(sc);
1320 		return (copyout(&pfsyncr, ifr->ifr_data, sizeof(pfsyncr)));
1321 
1322 	case SIOCSETPFSYNC:
1323 	    {
1324 		struct ip_moptions *imo = &sc->sc_imo;
1325 		struct ifnet *sifp;
1326 		struct ip *ip;
1327 		void *mship = NULL;
1328 
1329 		if ((error = priv_check(curthread, PRIV_NETINET_PF)) != 0)
1330 			return (error);
1331 		if ((error = copyin(ifr->ifr_data, &pfsyncr, sizeof(pfsyncr))))
1332 			return (error);
1333 
1334 		if (pfsyncr.pfsyncr_maxupdates > 255)
1335 			return (EINVAL);
1336 
1337 		if (pfsyncr.pfsyncr_syncdev[0] == 0)
1338 			sifp = NULL;
1339 		else if ((sifp = ifunit_ref(pfsyncr.pfsyncr_syncdev)) == NULL)
1340 			return (EINVAL);
1341 
1342 		if (sifp != NULL && (
1343 		    pfsyncr.pfsyncr_syncpeer.s_addr == 0 ||
1344 		    pfsyncr.pfsyncr_syncpeer.s_addr ==
1345 		    htonl(INADDR_PFSYNC_GROUP)))
1346 			mship = malloc((sizeof(struct in_multi *) *
1347 			    IP_MIN_MEMBERSHIPS), M_PFSYNC, M_WAITOK | M_ZERO);
1348 
1349 		PFSYNC_LOCK(sc);
1350 		if (pfsyncr.pfsyncr_syncpeer.s_addr == 0)
1351 			sc->sc_sync_peer.s_addr = htonl(INADDR_PFSYNC_GROUP);
1352 		else
1353 			sc->sc_sync_peer.s_addr =
1354 			    pfsyncr.pfsyncr_syncpeer.s_addr;
1355 
1356 		sc->sc_maxupdates = pfsyncr.pfsyncr_maxupdates;
1357 		if (pfsyncr.pfsyncr_defer) {
1358 			sc->sc_flags |= PFSYNCF_DEFER;
1359 			pfsync_defer_ptr = pfsync_defer;
1360 		} else {
1361 			sc->sc_flags &= ~PFSYNCF_DEFER;
1362 			pfsync_defer_ptr = NULL;
1363 		}
1364 
1365 		if (sifp == NULL) {
1366 			if (sc->sc_sync_if)
1367 				if_rele(sc->sc_sync_if);
1368 			sc->sc_sync_if = NULL;
1369 			if (imo->imo_membership)
1370 				pfsync_multicast_cleanup(sc);
1371 			PFSYNC_UNLOCK(sc);
1372 			break;
1373 		}
1374 
1375 		if (sc->sc_len > PFSYNC_MINPKT &&
1376 		    (sifp->if_mtu < sc->sc_ifp->if_mtu ||
1377 		    (sc->sc_sync_if != NULL &&
1378 		    sifp->if_mtu < sc->sc_sync_if->if_mtu) ||
1379 		    sifp->if_mtu < MCLBYTES - sizeof(struct ip)))
1380 			pfsync_sendout(1);
1381 
1382 		if (imo->imo_membership)
1383 			pfsync_multicast_cleanup(sc);
1384 
1385 		if (sc->sc_sync_peer.s_addr == htonl(INADDR_PFSYNC_GROUP)) {
1386 			error = pfsync_multicast_setup(sc, sifp, mship);
1387 			if (error) {
1388 				if_rele(sifp);
1389 				free(mship, M_PFSYNC);
1390 				return (error);
1391 			}
1392 		}
1393 		if (sc->sc_sync_if)
1394 			if_rele(sc->sc_sync_if);
1395 		sc->sc_sync_if = sifp;
1396 
1397 		ip = &sc->sc_template;
1398 		bzero(ip, sizeof(*ip));
1399 		ip->ip_v = IPVERSION;
1400 		ip->ip_hl = sizeof(sc->sc_template) >> 2;
1401 		ip->ip_tos = IPTOS_LOWDELAY;
1402 		/* len and id are set later. */
1403 		ip->ip_off = htons(IP_DF);
1404 		ip->ip_ttl = PFSYNC_DFLTTL;
1405 		ip->ip_p = IPPROTO_PFSYNC;
1406 		ip->ip_src.s_addr = INADDR_ANY;
1407 		ip->ip_dst.s_addr = sc->sc_sync_peer.s_addr;
1408 
1409 		/* Request a full state table update. */
1410 		if ((sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
1411 			(*carp_demote_adj_p)(V_pfsync_carp_adj,
1412 			    "pfsync bulk start");
1413 		sc->sc_flags &= ~PFSYNCF_OK;
1414 		if (V_pf_status.debug >= PF_DEBUG_MISC)
1415 			printf("pfsync: requesting bulk update\n");
1416 		pfsync_request_update(0, 0);
1417 		PFSYNC_UNLOCK(sc);
1418 		PFSYNC_BLOCK(sc);
1419 		sc->sc_ureq_sent = time_uptime;
1420 		callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, pfsync_bulk_fail,
1421 		    sc);
1422 		PFSYNC_BUNLOCK(sc);
1423 
1424 		break;
1425 	    }
1426 	default:
1427 		return (ENOTTY);
1428 	}
1429 
1430 	return (0);
1431 }
1432 
1433 static void
1434 pfsync_out_state(struct pf_state *st, void *buf)
1435 {
1436 	struct pfsync_state *sp = buf;
1437 
1438 	pfsync_state_export(sp, st);
1439 }
1440 
1441 static void
1442 pfsync_out_iack(struct pf_state *st, void *buf)
1443 {
1444 	struct pfsync_ins_ack *iack = buf;
1445 
1446 	iack->id = st->id;
1447 	iack->creatorid = st->creatorid;
1448 }
1449 
1450 static void
1451 pfsync_out_upd_c(struct pf_state *st, void *buf)
1452 {
1453 	struct pfsync_upd_c *up = buf;
1454 
1455 	bzero(up, sizeof(*up));
1456 	up->id = st->id;
1457 	pf_state_peer_hton(&st->src, &up->src);
1458 	pf_state_peer_hton(&st->dst, &up->dst);
1459 	up->creatorid = st->creatorid;
1460 	up->timeout = st->timeout;
1461 }
1462 
1463 static void
1464 pfsync_out_del(struct pf_state *st, void *buf)
1465 {
1466 	struct pfsync_del_c *dp = buf;
1467 
1468 	dp->id = st->id;
1469 	dp->creatorid = st->creatorid;
1470 	st->state_flags |= PFSTATE_NOSYNC;
1471 }
1472 
1473 static void
1474 pfsync_drop(struct pfsync_softc *sc)
1475 {
1476 	struct pf_state *st, *next;
1477 	struct pfsync_upd_req_item *ur;
1478 	int q;
1479 
1480 	for (q = 0; q < PFSYNC_S_COUNT; q++) {
1481 		if (TAILQ_EMPTY(&sc->sc_qs[q]))
1482 			continue;
1483 
1484 		TAILQ_FOREACH_SAFE(st, &sc->sc_qs[q], sync_list, next) {
1485 			KASSERT(st->sync_state == q,
1486 				("%s: st->sync_state == q",
1487 					__func__));
1488 			st->sync_state = PFSYNC_S_NONE;
1489 			pf_release_state(st);
1490 		}
1491 		TAILQ_INIT(&sc->sc_qs[q]);
1492 	}
1493 
1494 	while ((ur = TAILQ_FIRST(&sc->sc_upd_req_list)) != NULL) {
1495 		TAILQ_REMOVE(&sc->sc_upd_req_list, ur, ur_entry);
1496 		free(ur, M_PFSYNC);
1497 	}
1498 
1499 	sc->sc_plus = NULL;
1500 	sc->sc_len = PFSYNC_MINPKT;
1501 }
1502 
1503 static void
1504 pfsync_sendout(int schedswi)
1505 {
1506 	struct pfsync_softc *sc = V_pfsyncif;
1507 	struct ifnet *ifp = sc->sc_ifp;
1508 	struct mbuf *m;
1509 	struct ip *ip;
1510 	struct pfsync_header *ph;
1511 	struct pfsync_subheader *subh;
1512 	struct pf_state *st;
1513 	struct pfsync_upd_req_item *ur;
1514 	int offset;
1515 	int q, count = 0;
1516 
1517 	KASSERT(sc != NULL, ("%s: null sc", __func__));
1518 	KASSERT(sc->sc_len > PFSYNC_MINPKT,
1519 	    ("%s: sc_len %zu", __func__, sc->sc_len));
1520 	PFSYNC_LOCK_ASSERT(sc);
1521 
1522 	if (ifp->if_bpf == NULL && sc->sc_sync_if == NULL) {
1523 		pfsync_drop(sc);
1524 		return;
1525 	}
1526 
1527 	m = m_get2(max_linkhdr + sc->sc_len, M_NOWAIT, MT_DATA, M_PKTHDR);
1528 	if (m == NULL) {
1529 		if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1);
1530 		V_pfsyncstats.pfsyncs_onomem++;
1531 		return;
1532 	}
1533 	m->m_data += max_linkhdr;
1534 	m->m_len = m->m_pkthdr.len = sc->sc_len;
1535 
1536 	/* build the ip header */
1537 	ip = (struct ip *)m->m_data;
1538 	bcopy(&sc->sc_template, ip, sizeof(*ip));
1539 	offset = sizeof(*ip);
1540 
1541 	ip->ip_len = htons(m->m_pkthdr.len);
1542 	ip_fillid(ip);
1543 
1544 	/* build the pfsync header */
1545 	ph = (struct pfsync_header *)(m->m_data + offset);
1546 	bzero(ph, sizeof(*ph));
1547 	offset += sizeof(*ph);
1548 
1549 	ph->version = PFSYNC_VERSION;
1550 	ph->len = htons(sc->sc_len - sizeof(*ip));
1551 	bcopy(V_pf_status.pf_chksum, ph->pfcksum, PF_MD5_DIGEST_LENGTH);
1552 
1553 	/* walk the queues */
1554 	for (q = 0; q < PFSYNC_S_COUNT; q++) {
1555 		if (TAILQ_EMPTY(&sc->sc_qs[q]))
1556 			continue;
1557 
1558 		subh = (struct pfsync_subheader *)(m->m_data + offset);
1559 		offset += sizeof(*subh);
1560 
1561 		count = 0;
1562 		TAILQ_FOREACH(st, &sc->sc_qs[q], sync_list) {
1563 			KASSERT(st->sync_state == q,
1564 				("%s: st->sync_state == q",
1565 					__func__));
1566 			/*
1567 			 * XXXGL: some of write methods do unlocked reads
1568 			 * of state data :(
1569 			 */
1570 			pfsync_qs[q].write(st, m->m_data + offset);
1571 			offset += pfsync_qs[q].len;
1572 			st->sync_state = PFSYNC_S_NONE;
1573 			pf_release_state(st);
1574 			count++;
1575 		}
1576 		TAILQ_INIT(&sc->sc_qs[q]);
1577 
1578 		bzero(subh, sizeof(*subh));
1579 		subh->action = pfsync_qs[q].action;
1580 		subh->count = htons(count);
1581 		V_pfsyncstats.pfsyncs_oacts[pfsync_qs[q].action] += count;
1582 	}
1583 
1584 	if (!TAILQ_EMPTY(&sc->sc_upd_req_list)) {
1585 		subh = (struct pfsync_subheader *)(m->m_data + offset);
1586 		offset += sizeof(*subh);
1587 
1588 		count = 0;
1589 		while ((ur = TAILQ_FIRST(&sc->sc_upd_req_list)) != NULL) {
1590 			TAILQ_REMOVE(&sc->sc_upd_req_list, ur, ur_entry);
1591 
1592 			bcopy(&ur->ur_msg, m->m_data + offset,
1593 			    sizeof(ur->ur_msg));
1594 			offset += sizeof(ur->ur_msg);
1595 			free(ur, M_PFSYNC);
1596 			count++;
1597 		}
1598 
1599 		bzero(subh, sizeof(*subh));
1600 		subh->action = PFSYNC_ACT_UPD_REQ;
1601 		subh->count = htons(count);
1602 		V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_UPD_REQ] += count;
1603 	}
1604 
1605 	/* has someone built a custom region for us to add? */
1606 	if (sc->sc_plus != NULL) {
1607 		bcopy(sc->sc_plus, m->m_data + offset, sc->sc_pluslen);
1608 		offset += sc->sc_pluslen;
1609 
1610 		sc->sc_plus = NULL;
1611 	}
1612 
1613 	subh = (struct pfsync_subheader *)(m->m_data + offset);
1614 	offset += sizeof(*subh);
1615 
1616 	bzero(subh, sizeof(*subh));
1617 	subh->action = PFSYNC_ACT_EOF;
1618 	subh->count = htons(1);
1619 	V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_EOF]++;
1620 
1621 	/* we're done, let's put it on the wire */
1622 	if (ifp->if_bpf) {
1623 		m->m_data += sizeof(*ip);
1624 		m->m_len = m->m_pkthdr.len = sc->sc_len - sizeof(*ip);
1625 		BPF_MTAP(ifp, m);
1626 		m->m_data -= sizeof(*ip);
1627 		m->m_len = m->m_pkthdr.len = sc->sc_len;
1628 	}
1629 
1630 	if (sc->sc_sync_if == NULL) {
1631 		sc->sc_len = PFSYNC_MINPKT;
1632 		m_freem(m);
1633 		return;
1634 	}
1635 
1636 	if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1);
1637 	if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
1638 	sc->sc_len = PFSYNC_MINPKT;
1639 
1640 	if (!_IF_QFULL(&sc->sc_ifp->if_snd))
1641 		_IF_ENQUEUE(&sc->sc_ifp->if_snd, m);
1642 	else {
1643 		m_freem(m);
1644 		if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1);
1645 	}
1646 	if (schedswi)
1647 		swi_sched(V_pfsync_swi_cookie, 0);
1648 }
1649 
1650 static void
1651 pfsync_insert_state(struct pf_state *st)
1652 {
1653 	struct pfsync_softc *sc = V_pfsyncif;
1654 
1655 	if (st->state_flags & PFSTATE_NOSYNC)
1656 		return;
1657 
1658 	if ((st->rule.ptr->rule_flag & PFRULE_NOSYNC) ||
1659 	    st->key[PF_SK_WIRE]->proto == IPPROTO_PFSYNC) {
1660 		st->state_flags |= PFSTATE_NOSYNC;
1661 		return;
1662 	}
1663 
1664 	KASSERT(st->sync_state == PFSYNC_S_NONE,
1665 		("%s: st->sync_state %u", __func__, st->sync_state));
1666 
1667 	PFSYNC_LOCK(sc);
1668 	if (sc->sc_len == PFSYNC_MINPKT)
1669 		callout_reset(&sc->sc_tmo, 1 * hz, pfsync_timeout, V_pfsyncif);
1670 
1671 	pfsync_q_ins(st, PFSYNC_S_INS);
1672 	PFSYNC_UNLOCK(sc);
1673 
1674 	st->sync_updates = 0;
1675 }
1676 
1677 static int
1678 pfsync_defer(struct pf_state *st, struct mbuf *m)
1679 {
1680 	struct pfsync_softc *sc = V_pfsyncif;
1681 	struct pfsync_deferral *pd;
1682 
1683 	if (m->m_flags & (M_BCAST|M_MCAST))
1684 		return (0);
1685 
1686 	PFSYNC_LOCK(sc);
1687 
1688 	if (sc == NULL || !(sc->sc_ifp->if_flags & IFF_DRV_RUNNING) ||
1689 	    !(sc->sc_flags & PFSYNCF_DEFER)) {
1690 		PFSYNC_UNLOCK(sc);
1691 		return (0);
1692 	}
1693 
1694 	 if (sc->sc_deferred >= 128)
1695 		pfsync_undefer(TAILQ_FIRST(&sc->sc_deferrals), 0);
1696 
1697 	pd = malloc(sizeof(*pd), M_PFSYNC, M_NOWAIT);
1698 	if (pd == NULL)
1699 		return (0);
1700 	sc->sc_deferred++;
1701 
1702 	m->m_flags |= M_SKIP_FIREWALL;
1703 	st->state_flags |= PFSTATE_ACK;
1704 
1705 	pd->pd_sc = sc;
1706 	pd->pd_refs = 0;
1707 	pd->pd_st = st;
1708 	pf_ref_state(st);
1709 	pd->pd_m = m;
1710 
1711 	TAILQ_INSERT_TAIL(&sc->sc_deferrals, pd, pd_entry);
1712 	callout_init_mtx(&pd->pd_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED);
1713 	callout_reset(&pd->pd_tmo, 10, pfsync_defer_tmo, pd);
1714 
1715 	pfsync_push(sc);
1716 
1717 	return (1);
1718 }
1719 
1720 static void
1721 pfsync_undefer(struct pfsync_deferral *pd, int drop)
1722 {
1723 	struct pfsync_softc *sc = pd->pd_sc;
1724 	struct mbuf *m = pd->pd_m;
1725 	struct pf_state *st = pd->pd_st;
1726 
1727 	PFSYNC_LOCK_ASSERT(sc);
1728 
1729 	TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry);
1730 	sc->sc_deferred--;
1731 	pd->pd_st->state_flags &= ~PFSTATE_ACK;	/* XXX: locking! */
1732 	free(pd, M_PFSYNC);
1733 	pf_release_state(st);
1734 
1735 	if (drop)
1736 		m_freem(m);
1737 	else {
1738 		_IF_ENQUEUE(&sc->sc_ifp->if_snd, m);
1739 		pfsync_push(sc);
1740 	}
1741 }
1742 
1743 static void
1744 pfsync_defer_tmo(void *arg)
1745 {
1746 	struct pfsync_deferral *pd = arg;
1747 	struct pfsync_softc *sc = pd->pd_sc;
1748 	struct mbuf *m = pd->pd_m;
1749 	struct pf_state *st = pd->pd_st;
1750 
1751 	PFSYNC_LOCK_ASSERT(sc);
1752 
1753 	CURVNET_SET(m->m_pkthdr.rcvif->if_vnet);
1754 
1755 	TAILQ_REMOVE(&sc->sc_deferrals, pd, pd_entry);
1756 	sc->sc_deferred--;
1757 	pd->pd_st->state_flags &= ~PFSTATE_ACK;	/* XXX: locking! */
1758 	if (pd->pd_refs == 0)
1759 		free(pd, M_PFSYNC);
1760 	PFSYNC_UNLOCK(sc);
1761 
1762 	ip_output(m, NULL, NULL, 0, NULL, NULL);
1763 
1764 	pf_release_state(st);
1765 
1766 	CURVNET_RESTORE();
1767 }
1768 
1769 static void
1770 pfsync_undefer_state(struct pf_state *st, int drop)
1771 {
1772 	struct pfsync_softc *sc = V_pfsyncif;
1773 	struct pfsync_deferral *pd;
1774 
1775 	PFSYNC_LOCK_ASSERT(sc);
1776 
1777 	TAILQ_FOREACH(pd, &sc->sc_deferrals, pd_entry) {
1778 		 if (pd->pd_st == st) {
1779 			if (callout_stop(&pd->pd_tmo) > 0)
1780 				pfsync_undefer(pd, drop);
1781 			return;
1782 		}
1783 	}
1784 
1785 	panic("%s: unable to find deferred state", __func__);
1786 }
1787 
1788 static void
1789 pfsync_update_state(struct pf_state *st)
1790 {
1791 	struct pfsync_softc *sc = V_pfsyncif;
1792 	int sync = 0;
1793 
1794 	PF_STATE_LOCK_ASSERT(st);
1795 	PFSYNC_LOCK(sc);
1796 
1797 	if (st->state_flags & PFSTATE_ACK)
1798 		pfsync_undefer_state(st, 0);
1799 	if (st->state_flags & PFSTATE_NOSYNC) {
1800 		if (st->sync_state != PFSYNC_S_NONE)
1801 			pfsync_q_del(st);
1802 		PFSYNC_UNLOCK(sc);
1803 		return;
1804 	}
1805 
1806 	if (sc->sc_len == PFSYNC_MINPKT)
1807 		callout_reset(&sc->sc_tmo, 1 * hz, pfsync_timeout, V_pfsyncif);
1808 
1809 	switch (st->sync_state) {
1810 	case PFSYNC_S_UPD_C:
1811 	case PFSYNC_S_UPD:
1812 	case PFSYNC_S_INS:
1813 		/* we're already handling it */
1814 
1815 		if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) {
1816 			st->sync_updates++;
1817 			if (st->sync_updates >= sc->sc_maxupdates)
1818 				sync = 1;
1819 		}
1820 		break;
1821 
1822 	case PFSYNC_S_IACK:
1823 		pfsync_q_del(st);
1824 	case PFSYNC_S_NONE:
1825 		pfsync_q_ins(st, PFSYNC_S_UPD_C);
1826 		st->sync_updates = 0;
1827 		break;
1828 
1829 	default:
1830 		panic("%s: unexpected sync state %d", __func__, st->sync_state);
1831 	}
1832 
1833 	if (sync || (time_uptime - st->pfsync_time) < 2)
1834 		pfsync_push(sc);
1835 
1836 	PFSYNC_UNLOCK(sc);
1837 }
1838 
1839 static void
1840 pfsync_request_update(u_int32_t creatorid, u_int64_t id)
1841 {
1842 	struct pfsync_softc *sc = V_pfsyncif;
1843 	struct pfsync_upd_req_item *item;
1844 	size_t nlen = sizeof(struct pfsync_upd_req);
1845 
1846 	PFSYNC_LOCK_ASSERT(sc);
1847 
1848 	/*
1849 	 * This code does a bit to prevent multiple update requests for the
1850 	 * same state being generated. It searches current subheader queue,
1851 	 * but it doesn't lookup into queue of already packed datagrams.
1852 	 */
1853 	TAILQ_FOREACH(item, &sc->sc_upd_req_list, ur_entry)
1854 		if (item->ur_msg.id == id &&
1855 		    item->ur_msg.creatorid == creatorid)
1856 			return;
1857 
1858 	item = malloc(sizeof(*item), M_PFSYNC, M_NOWAIT);
1859 	if (item == NULL)
1860 		return; /* XXX stats */
1861 
1862 	item->ur_msg.id = id;
1863 	item->ur_msg.creatorid = creatorid;
1864 
1865 	if (TAILQ_EMPTY(&sc->sc_upd_req_list))
1866 		nlen += sizeof(struct pfsync_subheader);
1867 
1868 	if (sc->sc_len + nlen > sc->sc_ifp->if_mtu) {
1869 		pfsync_sendout(1);
1870 
1871 		nlen = sizeof(struct pfsync_subheader) +
1872 		    sizeof(struct pfsync_upd_req);
1873 	}
1874 
1875 	TAILQ_INSERT_TAIL(&sc->sc_upd_req_list, item, ur_entry);
1876 	sc->sc_len += nlen;
1877 }
1878 
1879 static void
1880 pfsync_update_state_req(struct pf_state *st)
1881 {
1882 	struct pfsync_softc *sc = V_pfsyncif;
1883 
1884 	PF_STATE_LOCK_ASSERT(st);
1885 	PFSYNC_LOCK(sc);
1886 
1887 	if (st->state_flags & PFSTATE_NOSYNC) {
1888 		if (st->sync_state != PFSYNC_S_NONE)
1889 			pfsync_q_del(st);
1890 		PFSYNC_UNLOCK(sc);
1891 		return;
1892 	}
1893 
1894 	switch (st->sync_state) {
1895 	case PFSYNC_S_UPD_C:
1896 	case PFSYNC_S_IACK:
1897 		pfsync_q_del(st);
1898 	case PFSYNC_S_NONE:
1899 		pfsync_q_ins(st, PFSYNC_S_UPD);
1900 		pfsync_push(sc);
1901 		break;
1902 
1903 	case PFSYNC_S_INS:
1904 	case PFSYNC_S_UPD:
1905 	case PFSYNC_S_DEL:
1906 		/* we're already handling it */
1907 		break;
1908 
1909 	default:
1910 		panic("%s: unexpected sync state %d", __func__, st->sync_state);
1911 	}
1912 
1913 	PFSYNC_UNLOCK(sc);
1914 }
1915 
1916 static void
1917 pfsync_delete_state(struct pf_state *st)
1918 {
1919 	struct pfsync_softc *sc = V_pfsyncif;
1920 
1921 	PFSYNC_LOCK(sc);
1922 	if (st->state_flags & PFSTATE_ACK)
1923 		pfsync_undefer_state(st, 1);
1924 	if (st->state_flags & PFSTATE_NOSYNC) {
1925 		if (st->sync_state != PFSYNC_S_NONE)
1926 			pfsync_q_del(st);
1927 		PFSYNC_UNLOCK(sc);
1928 		return;
1929 	}
1930 
1931 	if (sc->sc_len == PFSYNC_MINPKT)
1932 		callout_reset(&sc->sc_tmo, 1 * hz, pfsync_timeout, V_pfsyncif);
1933 
1934 	switch (st->sync_state) {
1935 	case PFSYNC_S_INS:
1936 		/* We never got to tell the world so just forget about it. */
1937 		pfsync_q_del(st);
1938 		break;
1939 
1940 	case PFSYNC_S_UPD_C:
1941 	case PFSYNC_S_UPD:
1942 	case PFSYNC_S_IACK:
1943 		pfsync_q_del(st);
1944 		/* FALLTHROUGH to putting it on the del list */
1945 
1946 	case PFSYNC_S_NONE:
1947 		pfsync_q_ins(st, PFSYNC_S_DEL);
1948 		break;
1949 
1950 	default:
1951 		panic("%s: unexpected sync state %d", __func__, st->sync_state);
1952 	}
1953 	PFSYNC_UNLOCK(sc);
1954 }
1955 
1956 static void
1957 pfsync_clear_states(u_int32_t creatorid, const char *ifname)
1958 {
1959 	struct pfsync_softc *sc = V_pfsyncif;
1960 	struct {
1961 		struct pfsync_subheader subh;
1962 		struct pfsync_clr clr;
1963 	} __packed r;
1964 
1965 	bzero(&r, sizeof(r));
1966 
1967 	r.subh.action = PFSYNC_ACT_CLR;
1968 	r.subh.count = htons(1);
1969 	V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_CLR]++;
1970 
1971 	strlcpy(r.clr.ifname, ifname, sizeof(r.clr.ifname));
1972 	r.clr.creatorid = creatorid;
1973 
1974 	PFSYNC_LOCK(sc);
1975 	pfsync_send_plus(&r, sizeof(r));
1976 	PFSYNC_UNLOCK(sc);
1977 }
1978 
1979 static void
1980 pfsync_q_ins(struct pf_state *st, int q)
1981 {
1982 	struct pfsync_softc *sc = V_pfsyncif;
1983 	size_t nlen = pfsync_qs[q].len;
1984 
1985 	PFSYNC_LOCK_ASSERT(sc);
1986 
1987 	KASSERT(st->sync_state == PFSYNC_S_NONE,
1988 		("%s: st->sync_state %u", __func__, st->sync_state));
1989 	KASSERT(sc->sc_len >= PFSYNC_MINPKT, ("pfsync pkt len is too low %zu",
1990 	    sc->sc_len));
1991 
1992 	if (TAILQ_EMPTY(&sc->sc_qs[q]))
1993 		nlen += sizeof(struct pfsync_subheader);
1994 
1995 	if (sc->sc_len + nlen > sc->sc_ifp->if_mtu) {
1996 		pfsync_sendout(1);
1997 
1998 		nlen = sizeof(struct pfsync_subheader) + pfsync_qs[q].len;
1999 	}
2000 
2001 	sc->sc_len += nlen;
2002 	TAILQ_INSERT_TAIL(&sc->sc_qs[q], st, sync_list);
2003 	st->sync_state = q;
2004 	pf_ref_state(st);
2005 }
2006 
2007 static void
2008 pfsync_q_del(struct pf_state *st)
2009 {
2010 	struct pfsync_softc *sc = V_pfsyncif;
2011 	int q = st->sync_state;
2012 
2013 	PFSYNC_LOCK_ASSERT(sc);
2014 	KASSERT(st->sync_state != PFSYNC_S_NONE,
2015 		("%s: st->sync_state != PFSYNC_S_NONE", __func__));
2016 
2017 	sc->sc_len -= pfsync_qs[q].len;
2018 	TAILQ_REMOVE(&sc->sc_qs[q], st, sync_list);
2019 	st->sync_state = PFSYNC_S_NONE;
2020 	pf_release_state(st);
2021 
2022 	if (TAILQ_EMPTY(&sc->sc_qs[q]))
2023 		sc->sc_len -= sizeof(struct pfsync_subheader);
2024 }
2025 
2026 static void
2027 pfsync_bulk_start(void)
2028 {
2029 	struct pfsync_softc *sc = V_pfsyncif;
2030 
2031 	if (V_pf_status.debug >= PF_DEBUG_MISC)
2032 		printf("pfsync: received bulk update request\n");
2033 
2034 	PFSYNC_BLOCK(sc);
2035 
2036 	sc->sc_ureq_received = time_uptime;
2037 	sc->sc_bulk_hashid = 0;
2038 	sc->sc_bulk_stateid = 0;
2039 	pfsync_bulk_status(PFSYNC_BUS_START);
2040 	callout_reset(&sc->sc_bulk_tmo, 1, pfsync_bulk_update, sc);
2041 	PFSYNC_BUNLOCK(sc);
2042 }
2043 
2044 static void
2045 pfsync_bulk_update(void *arg)
2046 {
2047 	struct pfsync_softc *sc = arg;
2048 	struct pf_state *s;
2049 	int i, sent = 0;
2050 
2051 	PFSYNC_BLOCK_ASSERT(sc);
2052 	CURVNET_SET(sc->sc_ifp->if_vnet);
2053 
2054 	/*
2055 	 * Start with last state from previous invocation.
2056 	 * It may had gone, in this case start from the
2057 	 * hash slot.
2058 	 */
2059 	s = pf_find_state_byid(sc->sc_bulk_stateid, sc->sc_bulk_creatorid);
2060 
2061 	if (s != NULL)
2062 		i = PF_IDHASH(s);
2063 	else
2064 		i = sc->sc_bulk_hashid;
2065 
2066 	for (; i <= pf_hashmask; i++) {
2067 		struct pf_idhash *ih = &V_pf_idhash[i];
2068 
2069 		if (s != NULL)
2070 			PF_HASHROW_ASSERT(ih);
2071 		else {
2072 			PF_HASHROW_LOCK(ih);
2073 			s = LIST_FIRST(&ih->states);
2074 		}
2075 
2076 		for (; s; s = LIST_NEXT(s, entry)) {
2077 
2078 			if (sent > 1 && (sc->sc_ifp->if_mtu - sc->sc_len) <
2079 			    sizeof(struct pfsync_state)) {
2080 				/* We've filled a packet. */
2081 				sc->sc_bulk_hashid = i;
2082 				sc->sc_bulk_stateid = s->id;
2083 				sc->sc_bulk_creatorid = s->creatorid;
2084 				PF_HASHROW_UNLOCK(ih);
2085 				callout_reset(&sc->sc_bulk_tmo, 1,
2086 				    pfsync_bulk_update, sc);
2087 				goto full;
2088 			}
2089 
2090 			if (s->sync_state == PFSYNC_S_NONE &&
2091 			    s->timeout < PFTM_MAX &&
2092 			    s->pfsync_time <= sc->sc_ureq_received) {
2093 				pfsync_update_state_req(s);
2094 				sent++;
2095 			}
2096 		}
2097 		PF_HASHROW_UNLOCK(ih);
2098 	}
2099 
2100 	/* We're done. */
2101 	pfsync_bulk_status(PFSYNC_BUS_END);
2102 
2103 full:
2104 	CURVNET_RESTORE();
2105 }
2106 
2107 static void
2108 pfsync_bulk_status(u_int8_t status)
2109 {
2110 	struct {
2111 		struct pfsync_subheader subh;
2112 		struct pfsync_bus bus;
2113 	} __packed r;
2114 
2115 	struct pfsync_softc *sc = V_pfsyncif;
2116 
2117 	bzero(&r, sizeof(r));
2118 
2119 	r.subh.action = PFSYNC_ACT_BUS;
2120 	r.subh.count = htons(1);
2121 	V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_BUS]++;
2122 
2123 	r.bus.creatorid = V_pf_status.hostid;
2124 	r.bus.endtime = htonl(time_uptime - sc->sc_ureq_received);
2125 	r.bus.status = status;
2126 
2127 	PFSYNC_LOCK(sc);
2128 	pfsync_send_plus(&r, sizeof(r));
2129 	PFSYNC_UNLOCK(sc);
2130 }
2131 
2132 static void
2133 pfsync_bulk_fail(void *arg)
2134 {
2135 	struct pfsync_softc *sc = arg;
2136 
2137 	CURVNET_SET(sc->sc_ifp->if_vnet);
2138 
2139 	PFSYNC_BLOCK_ASSERT(sc);
2140 
2141 	if (sc->sc_bulk_tries++ < PFSYNC_MAX_BULKTRIES) {
2142 		/* Try again */
2143 		callout_reset(&sc->sc_bulkfail_tmo, 5 * hz,
2144 		    pfsync_bulk_fail, V_pfsyncif);
2145 		PFSYNC_LOCK(sc);
2146 		pfsync_request_update(0, 0);
2147 		PFSYNC_UNLOCK(sc);
2148 	} else {
2149 		/* Pretend like the transfer was ok. */
2150 		sc->sc_ureq_sent = 0;
2151 		sc->sc_bulk_tries = 0;
2152 		PFSYNC_LOCK(sc);
2153 		if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
2154 			(*carp_demote_adj_p)(-V_pfsync_carp_adj,
2155 			    "pfsync bulk fail");
2156 		sc->sc_flags |= PFSYNCF_OK;
2157 		PFSYNC_UNLOCK(sc);
2158 		if (V_pf_status.debug >= PF_DEBUG_MISC)
2159 			printf("pfsync: failed to receive bulk update\n");
2160 	}
2161 
2162 	CURVNET_RESTORE();
2163 }
2164 
2165 static void
2166 pfsync_send_plus(void *plus, size_t pluslen)
2167 {
2168 	struct pfsync_softc *sc = V_pfsyncif;
2169 
2170 	PFSYNC_LOCK_ASSERT(sc);
2171 
2172 	if (sc->sc_len + pluslen > sc->sc_ifp->if_mtu)
2173 		pfsync_sendout(1);
2174 
2175 	sc->sc_plus = plus;
2176 	sc->sc_len += (sc->sc_pluslen = pluslen);
2177 
2178 	pfsync_sendout(1);
2179 }
2180 
2181 static void
2182 pfsync_timeout(void *arg)
2183 {
2184 	struct pfsync_softc *sc = arg;
2185 
2186 	CURVNET_SET(sc->sc_ifp->if_vnet);
2187 	PFSYNC_LOCK(sc);
2188 	pfsync_push(sc);
2189 	PFSYNC_UNLOCK(sc);
2190 	CURVNET_RESTORE();
2191 }
2192 
2193 static void
2194 pfsync_push(struct pfsync_softc *sc)
2195 {
2196 
2197 	PFSYNC_LOCK_ASSERT(sc);
2198 
2199 	sc->sc_flags |= PFSYNCF_PUSH;
2200 	swi_sched(V_pfsync_swi_cookie, 0);
2201 }
2202 
2203 static void
2204 pfsyncintr(void *arg)
2205 {
2206 	struct pfsync_softc *sc = arg;
2207 	struct mbuf *m, *n;
2208 
2209 	CURVNET_SET(sc->sc_ifp->if_vnet);
2210 
2211 	PFSYNC_LOCK(sc);
2212 	if ((sc->sc_flags & PFSYNCF_PUSH) && sc->sc_len > PFSYNC_MINPKT) {
2213 		pfsync_sendout(0);
2214 		sc->sc_flags &= ~PFSYNCF_PUSH;
2215 	}
2216 	_IF_DEQUEUE_ALL(&sc->sc_ifp->if_snd, m);
2217 	PFSYNC_UNLOCK(sc);
2218 
2219 	for (; m != NULL; m = n) {
2220 
2221 		n = m->m_nextpkt;
2222 		m->m_nextpkt = NULL;
2223 
2224 		/*
2225 		 * We distinguish between a deferral packet and our
2226 		 * own pfsync packet based on M_SKIP_FIREWALL
2227 		 * flag. This is XXX.
2228 		 */
2229 		if (m->m_flags & M_SKIP_FIREWALL)
2230 			ip_output(m, NULL, NULL, 0, NULL, NULL);
2231 		else if (ip_output(m, NULL, NULL, IP_RAWOUTPUT, &sc->sc_imo,
2232 		    NULL) == 0)
2233 			V_pfsyncstats.pfsyncs_opackets++;
2234 		else
2235 			V_pfsyncstats.pfsyncs_oerrors++;
2236 	}
2237 	CURVNET_RESTORE();
2238 }
2239 
2240 static int
2241 pfsync_multicast_setup(struct pfsync_softc *sc, struct ifnet *ifp, void *mship)
2242 {
2243 	struct ip_moptions *imo = &sc->sc_imo;
2244 	int error;
2245 
2246 	if (!(ifp->if_flags & IFF_MULTICAST))
2247 		return (EADDRNOTAVAIL);
2248 
2249 	imo->imo_membership = (struct in_multi **)mship;
2250 	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
2251 	imo->imo_multicast_vif = -1;
2252 
2253 	if ((error = in_joingroup(ifp, &sc->sc_sync_peer, NULL,
2254 	    &imo->imo_membership[0])) != 0) {
2255 		imo->imo_membership = NULL;
2256 		return (error);
2257 	}
2258 	imo->imo_num_memberships++;
2259 	imo->imo_multicast_ifp = ifp;
2260 	imo->imo_multicast_ttl = PFSYNC_DFLTTL;
2261 	imo->imo_multicast_loop = 0;
2262 
2263 	return (0);
2264 }
2265 
2266 static void
2267 pfsync_multicast_cleanup(struct pfsync_softc *sc)
2268 {
2269 	struct ip_moptions *imo = &sc->sc_imo;
2270 
2271 	in_leavegroup(imo->imo_membership[0], NULL);
2272 	free(imo->imo_membership, M_PFSYNC);
2273 	imo->imo_membership = NULL;
2274 	imo->imo_multicast_ifp = NULL;
2275 }
2276 
2277 #ifdef INET
2278 extern  struct domain inetdomain;
2279 static struct protosw in_pfsync_protosw = {
2280 	.pr_type =		SOCK_RAW,
2281 	.pr_domain =		&inetdomain,
2282 	.pr_protocol =		IPPROTO_PFSYNC,
2283 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2284 	.pr_input =		pfsync_input,
2285 	.pr_output =		rip_output,
2286 	.pr_ctloutput =		rip_ctloutput,
2287 	.pr_usrreqs =		&rip_usrreqs
2288 };
2289 #endif
2290 
2291 static void
2292 pfsync_pointers_init()
2293 {
2294 
2295 	PF_RULES_WLOCK();
2296 	pfsync_state_import_ptr = pfsync_state_import;
2297 	pfsync_insert_state_ptr = pfsync_insert_state;
2298 	pfsync_update_state_ptr = pfsync_update_state;
2299 	pfsync_delete_state_ptr = pfsync_delete_state;
2300 	pfsync_clear_states_ptr = pfsync_clear_states;
2301 	pfsync_defer_ptr = pfsync_defer;
2302 	PF_RULES_WUNLOCK();
2303 }
2304 
2305 static void
2306 pfsync_pointers_uninit()
2307 {
2308 
2309 	PF_RULES_WLOCK();
2310 	pfsync_state_import_ptr = NULL;
2311 	pfsync_insert_state_ptr = NULL;
2312 	pfsync_update_state_ptr = NULL;
2313 	pfsync_delete_state_ptr = NULL;
2314 	pfsync_clear_states_ptr = NULL;
2315 	pfsync_defer_ptr = NULL;
2316 	PF_RULES_WUNLOCK();
2317 }
2318 
2319 static void
2320 vnet_pfsync_init(const void *unused __unused)
2321 {
2322 	int error;
2323 
2324 	V_pfsync_cloner = if_clone_simple(pfsyncname,
2325 	    pfsync_clone_create, pfsync_clone_destroy, 1);
2326 	error = swi_add(NULL, pfsyncname, pfsyncintr, V_pfsyncif,
2327 	    SWI_NET, INTR_MPSAFE, &V_pfsync_swi_cookie);
2328 	if (error) {
2329 		if_clone_detach(V_pfsync_cloner);
2330 		log(LOG_INFO, "swi_add() failed in %s\n", __func__);
2331 	}
2332 }
2333 VNET_SYSINIT(vnet_pfsync_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY,
2334     vnet_pfsync_init, NULL);
2335 
2336 static void
2337 vnet_pfsync_uninit(const void *unused __unused)
2338 {
2339 
2340 	if_clone_detach(V_pfsync_cloner);
2341 	swi_remove(V_pfsync_swi_cookie);
2342 }
2343 /*
2344  * Detach after pf is gone; otherwise we might touch pfsync memory
2345  * from within pf after freeing pfsync.
2346  */
2347 VNET_SYSUNINIT(vnet_pfsync_uninit, SI_SUB_INIT_IF, SI_ORDER_SECOND,
2348     vnet_pfsync_uninit, NULL);
2349 
2350 static int
2351 pfsync_init()
2352 {
2353 #ifdef INET
2354 	int error;
2355 
2356 	error = pf_proto_register(PF_INET, &in_pfsync_protosw);
2357 	if (error)
2358 		return (error);
2359 	error = ipproto_register(IPPROTO_PFSYNC);
2360 	if (error) {
2361 		pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW);
2362 		return (error);
2363 	}
2364 #endif
2365 	pfsync_pointers_init();
2366 
2367 	return (0);
2368 }
2369 
2370 static void
2371 pfsync_uninit()
2372 {
2373 
2374 	pfsync_pointers_uninit();
2375 
2376 #ifdef INET
2377 	ipproto_unregister(IPPROTO_PFSYNC);
2378 	pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW);
2379 #endif
2380 }
2381 
2382 static int
2383 pfsync_modevent(module_t mod, int type, void *data)
2384 {
2385 	int error = 0;
2386 
2387 	switch (type) {
2388 	case MOD_LOAD:
2389 		error = pfsync_init();
2390 		break;
2391 	case MOD_QUIESCE:
2392 		/*
2393 		 * Module should not be unloaded due to race conditions.
2394 		 */
2395 		error = EBUSY;
2396 		break;
2397 	case MOD_UNLOAD:
2398 		pfsync_uninit();
2399 		break;
2400 	default:
2401 		error = EINVAL;
2402 		break;
2403 	}
2404 
2405 	return (error);
2406 }
2407 
2408 static moduledata_t pfsync_mod = {
2409 	pfsyncname,
2410 	pfsync_modevent,
2411 	0
2412 };
2413 
2414 #define PFSYNC_MODVER 1
2415 
2416 /* Stay on FIREWALL as we depend on pf being initialized and on inetdomain. */
2417 DECLARE_MODULE(pfsync, pfsync_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY);
2418 MODULE_VERSION(pfsync, PFSYNC_MODVER);
2419 MODULE_DEPEND(pfsync, pf, PF_MODVER, PF_MODVER, PF_MODVER);
2420