xref: /freebsd/sys/netpfil/ipfw/nat64/nat64_translate.c (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015-2019 Yandex LLC
5  * Copyright (c) 2015-2019 Andrey V. Elsukov <ae@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_ipstealth.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/counter.h>
37 #include <sys/errno.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/rmlock.h>
43 #include <sys/rwlock.h>
44 #include <sys/socket.h>
45 #include <sys/queue.h>
46 
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_pflog.h>
50 #include <net/pfil.h>
51 #include <net/netisr.h>
52 #include <net/route.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_fib.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_fw.h>
59 #include <netinet/ip6.h>
60 #include <netinet/icmp6.h>
61 #include <netinet/ip_icmp.h>
62 #include <netinet/tcp.h>
63 #include <netinet/udp.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet6/in6_fib.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/ip_fw_nat64.h>
68 
69 #include <netpfil/pf/pf.h>
70 #include <netpfil/ipfw/ip_fw_private.h>
71 #include <machine/in_cksum.h>
72 
73 #include "ip_fw_nat64.h"
74 #include "nat64_translate.h"
75 
76 
77 typedef int (*nat64_output_t)(struct ifnet *, struct mbuf *,
78     struct sockaddr *, struct nat64_counters *, void *);
79 typedef int (*nat64_output_one_t)(struct mbuf *, struct nat64_counters *,
80     void *);
81 
82 static int nat64_find_route4(struct nhop4_basic *, struct sockaddr_in *,
83     struct mbuf *);
84 static int nat64_find_route6(struct nhop6_basic *, struct sockaddr_in6 *,
85     struct mbuf *);
86 static int nat64_output_one(struct mbuf *, struct nat64_counters *, void *);
87 static int nat64_output(struct ifnet *, struct mbuf *, struct sockaddr *,
88     struct nat64_counters *, void *);
89 static int nat64_direct_output_one(struct mbuf *, struct nat64_counters *,
90     void *);
91 static int nat64_direct_output(struct ifnet *, struct mbuf *,
92     struct sockaddr *, struct nat64_counters *, void *);
93 
94 struct nat64_methods {
95 	nat64_output_t		output;
96 	nat64_output_one_t	output_one;
97 };
98 static const struct nat64_methods nat64_netisr = {
99 	.output = nat64_output,
100 	.output_one = nat64_output_one
101 };
102 static const struct nat64_methods nat64_direct = {
103 	.output = nat64_direct_output,
104 	.output_one = nat64_direct_output_one
105 };
106 
107 /* These variables should be initialized explicitly on module loading */
108 VNET_DEFINE_STATIC(const struct nat64_methods *, nat64out);
109 VNET_DEFINE_STATIC(const int *, nat64ipstealth);
110 VNET_DEFINE_STATIC(const int *, nat64ip6stealth);
111 #define	V_nat64out		VNET(nat64out)
112 #define	V_nat64ipstealth	VNET(nat64ipstealth)
113 #define	V_nat64ip6stealth	VNET(nat64ip6stealth)
114 
115 static const int stealth_on = 1;
116 #ifndef IPSTEALTH
117 static const int stealth_off = 0;
118 #endif
119 
120 void
121 nat64_set_output_method(int direct)
122 {
123 
124 	if (direct != 0) {
125 		V_nat64out = &nat64_direct;
126 #ifdef IPSTEALTH
127 		/* Honor corresponding variables, if IPSTEALTH is defined */
128 		V_nat64ipstealth = &V_ipstealth;
129 		V_nat64ip6stealth = &V_ip6stealth;
130 #else
131 		/* otherwise we need to decrement HLIM/TTL for direct case */
132 		V_nat64ipstealth = V_nat64ip6stealth = &stealth_off;
133 #endif
134 	} else {
135 		V_nat64out = &nat64_netisr;
136 		/* Leave TTL/HLIM decrementing to forwarding code */
137 		V_nat64ipstealth = V_nat64ip6stealth = &stealth_on;
138 	}
139 }
140 
141 int
142 nat64_get_output_method(void)
143 {
144 
145 	return (V_nat64out == &nat64_direct ? 1: 0);
146 }
147 
148 static void
149 nat64_log(struct pfloghdr *logdata, struct mbuf *m, sa_family_t family)
150 {
151 
152 	logdata->dir = PF_OUT;
153 	logdata->af = family;
154 	ipfw_bpf_mtap2(logdata, PFLOG_HDRLEN, m);
155 }
156 
157 static int
158 nat64_direct_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
159     struct nat64_counters *stats, void *logdata)
160 {
161 	int error;
162 
163 	if (logdata != NULL)
164 		nat64_log(logdata, m, dst->sa_family);
165 	error = (*ifp->if_output)(ifp, m, dst, NULL);
166 	if (error != 0)
167 		NAT64STAT_INC(stats, oerrors);
168 	return (error);
169 }
170 
171 static int
172 nat64_direct_output_one(struct mbuf *m, struct nat64_counters *stats,
173     void *logdata)
174 {
175 	struct nhop6_basic nh6;
176 	struct nhop4_basic nh4;
177 	struct sockaddr_in6 dst6;
178 	struct sockaddr_in dst4;
179 	struct sockaddr *dst;
180 	struct ip6_hdr *ip6;
181 	struct ip *ip4;
182 	struct ifnet *ifp;
183 	int error;
184 
185 	ip4 = mtod(m, struct ip *);
186 	switch (ip4->ip_v) {
187 	case IPVERSION:
188 		dst4.sin_addr = ip4->ip_dst;
189 		error = nat64_find_route4(&nh4, &dst4, m);
190 		if (error != 0)
191 			NAT64STAT_INC(stats, noroute4);
192 		else {
193 			ifp = nh4.nh_ifp;
194 			dst = (struct sockaddr *)&dst4;
195 		}
196 		break;
197 	case (IPV6_VERSION >> 4):
198 		ip6 = mtod(m, struct ip6_hdr *);
199 		dst6.sin6_addr = ip6->ip6_dst;
200 		error = nat64_find_route6(&nh6, &dst6, m);
201 		if (error != 0)
202 			NAT64STAT_INC(stats, noroute6);
203 		else {
204 			ifp = nh6.nh_ifp;
205 			dst = (struct sockaddr *)&dst6;
206 		}
207 		break;
208 	default:
209 		m_freem(m);
210 		NAT64STAT_INC(stats, dropped);
211 		DPRINTF(DP_DROPS, "dropped due to unknown IP version");
212 		return (EAFNOSUPPORT);
213 	}
214 	if (error != 0) {
215 		m_freem(m);
216 		return (EHOSTUNREACH);
217 	}
218 	if (logdata != NULL)
219 		nat64_log(logdata, m, dst->sa_family);
220 	error = (*ifp->if_output)(ifp, m, dst, NULL);
221 	if (error != 0)
222 		NAT64STAT_INC(stats, oerrors);
223 	return (error);
224 }
225 
226 static int
227 nat64_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
228     struct nat64_counters *stats, void *logdata)
229 {
230 	struct ip *ip4;
231 	int ret, af;
232 
233 	ip4 = mtod(m, struct ip *);
234 	switch (ip4->ip_v) {
235 	case IPVERSION:
236 		af = AF_INET;
237 		ret = NETISR_IP;
238 		break;
239 	case (IPV6_VERSION >> 4):
240 		af = AF_INET6;
241 		ret = NETISR_IPV6;
242 		break;
243 	default:
244 		m_freem(m);
245 		NAT64STAT_INC(stats, dropped);
246 		DPRINTF(DP_DROPS, "unknown IP version");
247 		return (EAFNOSUPPORT);
248 	}
249 	if (logdata != NULL)
250 		nat64_log(logdata, m, af);
251 	if (m->m_pkthdr.rcvif == NULL)
252 		m->m_pkthdr.rcvif = V_loif;
253 	ret = netisr_queue(ret, m);
254 	if (ret != 0)
255 		NAT64STAT_INC(stats, oerrors);
256 	return (ret);
257 }
258 
259 static int
260 nat64_output_one(struct mbuf *m, struct nat64_counters *stats, void *logdata)
261 {
262 
263 	return (nat64_output(NULL, m, NULL, stats, logdata));
264 }
265 
266 /*
267  * Check the given IPv6 prefix and length according to RFC6052:
268  *   The prefixes can only have one of the following lengths:
269  *   32, 40, 48, 56, 64, or 96 (The Well-Known Prefix is 96 bits long).
270  * Returns zero on success, otherwise EINVAL.
271  */
272 int
273 nat64_check_prefixlen(int length)
274 {
275 
276 	switch (length) {
277 	case 32:
278 	case 40:
279 	case 48:
280 	case 56:
281 	case 64:
282 	case 96:
283 		return (0);
284 	}
285 	return (EINVAL);
286 }
287 
288 int
289 nat64_check_prefix6(const struct in6_addr *prefix, int length)
290 {
291 
292 	if (nat64_check_prefixlen(length) != 0)
293 		return (EINVAL);
294 
295 	/* Well-known prefix has 96 prefix length */
296 	if (IN6_IS_ADDR_WKPFX(prefix) && length != 96)
297 		return (EINVAL);
298 
299 	/* Bits 64 to 71 must be set to zero */
300 	if (prefix->__u6_addr.__u6_addr8[8] != 0)
301 		return (EINVAL);
302 
303 	/* Some extra checks */
304 	if (IN6_IS_ADDR_MULTICAST(prefix) ||
305 	    IN6_IS_ADDR_UNSPECIFIED(prefix) ||
306 	    IN6_IS_ADDR_LOOPBACK(prefix))
307 		return (EINVAL);
308 	return (0);
309 }
310 
311 int
312 nat64_check_private_ip4(const struct nat64_config *cfg, in_addr_t ia)
313 {
314 
315 	if (cfg->flags & NAT64_ALLOW_PRIVATE)
316 		return (0);
317 
318 	/* WKPFX must not be used to represent non-global IPv4 addresses */
319 	if (cfg->flags & NAT64_WKPFX) {
320 		/* IN_PRIVATE */
321 		if ((ia & htonl(0xff000000)) == htonl(0x0a000000) ||
322 		    (ia & htonl(0xfff00000)) == htonl(0xac100000) ||
323 		    (ia & htonl(0xffff0000)) == htonl(0xc0a80000))
324 			return (1);
325 		/*
326 		 * RFC 5735:
327 		 *  192.0.0.0/24 - reserved for IETF protocol assignments
328 		 *  192.88.99.0/24 - for use as 6to4 relay anycast addresses
329 		 *  198.18.0.0/15 - for use in benchmark tests
330 		 *  192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24 - for use
331 		 *   in documentation and example code
332 		 */
333 		if ((ia & htonl(0xffffff00)) == htonl(0xc0000000) ||
334 		    (ia & htonl(0xffffff00)) == htonl(0xc0586300) ||
335 		    (ia & htonl(0xfffffe00)) == htonl(0xc6120000) ||
336 		    (ia & htonl(0xffffff00)) == htonl(0xc0000200) ||
337 		    (ia & htonl(0xfffffe00)) == htonl(0xc6336400) ||
338 		    (ia & htonl(0xffffff00)) == htonl(0xcb007100))
339 			return (1);
340 	}
341 	return (0);
342 }
343 
344 /*
345  * Embed @ia IPv4 address into @ip6 IPv6 address.
346  * Place to embedding determined from prefix length @plen.
347  */
348 void
349 nat64_embed_ip4(struct in6_addr *ip6, int plen, in_addr_t ia)
350 {
351 
352 	switch (plen) {
353 	case 32:
354 	case 96:
355 		ip6->s6_addr32[plen / 32] = ia;
356 		break;
357 	case 40:
358 	case 48:
359 	case 56:
360 		/*
361 		 * Preserve prefix bits.
362 		 * Since suffix bits should be zero and reserved for future
363 		 * use, we just overwrite the whole word, where they are.
364 		 */
365 		ip6->s6_addr32[1] &= 0xffffffff << (32 - plen % 32);
366 #if BYTE_ORDER == BIG_ENDIAN
367 		ip6->s6_addr32[1] |= ia >> (plen % 32);
368 		ip6->s6_addr32[2] = ia << (24 - plen % 32);
369 #elif BYTE_ORDER == LITTLE_ENDIAN
370 		ip6->s6_addr32[1] |= ia << (plen % 32);
371 		ip6->s6_addr32[2] = ia >> (24 - plen % 32);
372 #endif
373 		break;
374 	case 64:
375 #if BYTE_ORDER == BIG_ENDIAN
376 		ip6->s6_addr32[2] = ia >> 8;
377 		ip6->s6_addr32[3] = ia << 24;
378 #elif BYTE_ORDER == LITTLE_ENDIAN
379 		ip6->s6_addr32[2] = ia << 8;
380 		ip6->s6_addr32[3] = ia >> 24;
381 #endif
382 		break;
383 	default:
384 		panic("Wrong plen: %d", plen);
385 	};
386 	/*
387 	 * Bits 64 to 71 of the address are reserved for compatibility
388 	 * with the host identifier format defined in the IPv6 addressing
389 	 * architecture [RFC4291]. These bits MUST be set to zero.
390 	 */
391 	ip6->s6_addr8[8] = 0;
392 }
393 
394 in_addr_t
395 nat64_extract_ip4(const struct in6_addr *ip6, int plen)
396 {
397 	in_addr_t ia;
398 
399 	/*
400 	 * According to RFC 6052 p2.2:
401 	 * IPv4-embedded IPv6 addresses are composed of a variable-length
402 	 * prefix, the embedded IPv4 address, and a variable length suffix.
403 	 * The suffix bits are reserved for future extensions and SHOULD
404 	 * be set to zero.
405 	 */
406 	switch (plen) {
407 	case 32:
408 		if (ip6->s6_addr32[3] != 0 || ip6->s6_addr32[2] != 0)
409 			goto badip6;
410 		break;
411 	case 40:
412 		if (ip6->s6_addr32[3] != 0 ||
413 		    (ip6->s6_addr32[2] & htonl(0xff00ffff)) != 0)
414 			goto badip6;
415 		break;
416 	case 48:
417 		if (ip6->s6_addr32[3] != 0 ||
418 		    (ip6->s6_addr32[2] & htonl(0xff0000ff)) != 0)
419 			goto badip6;
420 		break;
421 	case 56:
422 		if (ip6->s6_addr32[3] != 0 || ip6->s6_addr8[8] != 0)
423 			goto badip6;
424 		break;
425 	case 64:
426 		if (ip6->s6_addr8[8] != 0 ||
427 		    (ip6->s6_addr32[3] & htonl(0x00ffffff)) != 0)
428 			goto badip6;
429 	};
430 	switch (plen) {
431 	case 32:
432 	case 96:
433 		ia = ip6->s6_addr32[plen / 32];
434 		break;
435 	case 40:
436 	case 48:
437 	case 56:
438 #if BYTE_ORDER == BIG_ENDIAN
439 		ia = (ip6->s6_addr32[1] << (plen % 32)) |
440 		    (ip6->s6_addr32[2] >> (24 - plen % 32));
441 #elif BYTE_ORDER == LITTLE_ENDIAN
442 		ia = (ip6->s6_addr32[1] >> (plen % 32)) |
443 		    (ip6->s6_addr32[2] << (24 - plen % 32));
444 #endif
445 		break;
446 	case 64:
447 #if BYTE_ORDER == BIG_ENDIAN
448 		ia = (ip6->s6_addr32[2] << 8) | (ip6->s6_addr32[3] >> 24);
449 #elif BYTE_ORDER == LITTLE_ENDIAN
450 		ia = (ip6->s6_addr32[2] >> 8) | (ip6->s6_addr32[3] << 24);
451 #endif
452 		break;
453 	default:
454 		return (0);
455 	};
456 	if (nat64_check_ip4(ia) == 0)
457 		return (ia);
458 
459 	DPRINTF(DP_GENERIC | DP_DROPS,
460 	    "invalid destination address: %08x", ia);
461 	return (0);
462 badip6:
463 	DPRINTF(DP_GENERIC | DP_DROPS, "invalid IPv4-embedded IPv6 address");
464 	return (0);
465 }
466 
467 /*
468  * According to RFC 1624 the equation for incremental checksum update is:
469  *	HC' = ~(~HC + ~m + m')	--	[Eqn. 3]
470  *	HC' = HC - ~m - m'	--	[Eqn. 4]
471  * So, when we are replacing IPv4 addresses to IPv6, we
472  * can assume, that new bytes previously were zeros, and vise versa -
473  * when we replacing IPv6 addresses to IPv4, now unused bytes become
474  * zeros. The payload length in pseudo header has bigger size, but one
475  * half of it should be zero. Using the equation 4 we get:
476  *	HC' = HC - (~m0 + m0')	-- m0 is first changed word
477  *	HC' = (HC - (~m0 + m0')) - (~m1 + m1')	-- m1 is second changed word
478  *	HC' = HC - ~m0 - m0' - ~m1 - m1' - ... =
479  *	  = HC - sum(~m[i] + m'[i])
480  *
481  * The function result should be used as follows:
482  *	IPv6 to IPv4:	HC' = cksum_add(HC, result)
483  *	IPv4 to IPv6:	HC' = cksum_add(HC, ~result)
484  */
485 static uint16_t
486 nat64_cksum_convert(struct ip6_hdr *ip6, struct ip *ip)
487 {
488 	uint32_t sum;
489 	uint16_t *p;
490 
491 	sum = ~ip->ip_src.s_addr >> 16;
492 	sum += ~ip->ip_src.s_addr & 0xffff;
493 	sum += ~ip->ip_dst.s_addr >> 16;
494 	sum += ~ip->ip_dst.s_addr & 0xffff;
495 
496 	for (p = (uint16_t *)&ip6->ip6_src;
497 	    p < (uint16_t *)(&ip6->ip6_src + 2); p++)
498 		sum += *p;
499 
500 	while (sum >> 16)
501 		sum = (sum & 0xffff) + (sum >> 16);
502 	return (sum);
503 }
504 
505 static void
506 nat64_init_ip4hdr(const struct ip6_hdr *ip6, const struct ip6_frag *frag,
507     uint16_t plen, uint8_t proto, struct ip *ip)
508 {
509 
510 	/* assume addresses are already initialized */
511 	ip->ip_v = IPVERSION;
512 	ip->ip_hl = sizeof(*ip) >> 2;
513 	ip->ip_tos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
514 	ip->ip_len = htons(sizeof(*ip) + plen);
515 	ip->ip_ttl = ip6->ip6_hlim;
516 	if (*V_nat64ip6stealth == 0)
517 		ip->ip_ttl -= IPV6_HLIMDEC;
518 	ip->ip_sum = 0;
519 	ip->ip_p = (proto == IPPROTO_ICMPV6) ? IPPROTO_ICMP: proto;
520 	ip_fillid(ip);
521 	if (frag != NULL) {
522 		ip->ip_off = htons(ntohs(frag->ip6f_offlg) >> 3);
523 		if (frag->ip6f_offlg & IP6F_MORE_FRAG)
524 			ip->ip_off |= htons(IP_MF);
525 	} else {
526 		ip->ip_off = htons(IP_DF);
527 	}
528 	ip->ip_sum = in_cksum_hdr(ip);
529 }
530 
531 #define	FRAGSZ(mtu) ((mtu) - sizeof(struct ip6_hdr) - sizeof(struct ip6_frag))
532 static NAT64NOINLINE int
533 nat64_fragment6(struct nat64_counters *stats, struct ip6_hdr *ip6,
534     struct mbufq *mq, struct mbuf *m, uint32_t mtu, uint16_t ip_id,
535     uint16_t ip_off)
536 {
537 	struct ip6_frag ip6f;
538 	struct mbuf *n;
539 	uint16_t hlen, len, offset;
540 	int plen;
541 
542 	plen = ntohs(ip6->ip6_plen);
543 	hlen = sizeof(struct ip6_hdr);
544 
545 	/* Fragmentation isn't needed */
546 	if (ip_off == 0 && plen <= mtu - hlen) {
547 		M_PREPEND(m, hlen, M_NOWAIT);
548 		if (m == NULL) {
549 			NAT64STAT_INC(stats, nomem);
550 			return (ENOMEM);
551 		}
552 		bcopy(ip6, mtod(m, void *), hlen);
553 		if (mbufq_enqueue(mq, m) != 0) {
554 			m_freem(m);
555 			NAT64STAT_INC(stats, dropped);
556 			DPRINTF(DP_DROPS, "dropped due to mbufq overflow");
557 			return (ENOBUFS);
558 		}
559 		return (0);
560 	}
561 
562 	hlen += sizeof(struct ip6_frag);
563 	ip6f.ip6f_reserved = 0;
564 	ip6f.ip6f_nxt = ip6->ip6_nxt;
565 	ip6->ip6_nxt = IPPROTO_FRAGMENT;
566 	if (ip_off != 0) {
567 		/*
568 		 * We have got an IPv4 fragment.
569 		 * Use offset value and ip_id from original fragment.
570 		 */
571 		ip6f.ip6f_ident = htonl(ntohs(ip_id));
572 		offset = (ntohs(ip_off) & IP_OFFMASK) << 3;
573 		NAT64STAT_INC(stats, ifrags);
574 	} else {
575 		/* The packet size exceeds interface MTU */
576 		ip6f.ip6f_ident = htonl(ip6_randomid());
577 		offset = 0; /* First fragment*/
578 	}
579 	while (plen > 0 && m != NULL) {
580 		n = NULL;
581 		len = FRAGSZ(mtu) & ~7;
582 		if (len > plen)
583 			len = plen;
584 		ip6->ip6_plen = htons(len + sizeof(ip6f));
585 		ip6f.ip6f_offlg = ntohs(offset);
586 		if (len < plen || (ip_off & htons(IP_MF)) != 0)
587 			ip6f.ip6f_offlg |= IP6F_MORE_FRAG;
588 		offset += len;
589 		plen -= len;
590 		if (plen > 0) {
591 			n = m_split(m, len, M_NOWAIT);
592 			if (n == NULL)
593 				goto fail;
594 		}
595 		M_PREPEND(m, hlen, M_NOWAIT);
596 		if (m == NULL)
597 			goto fail;
598 		bcopy(ip6, mtod(m, void *), sizeof(struct ip6_hdr));
599 		bcopy(&ip6f, mtodo(m, sizeof(struct ip6_hdr)),
600 		    sizeof(struct ip6_frag));
601 		if (mbufq_enqueue(mq, m) != 0)
602 			goto fail;
603 		m = n;
604 	}
605 	NAT64STAT_ADD(stats, ofrags, mbufq_len(mq));
606 	return (0);
607 fail:
608 	if (m != NULL)
609 		m_freem(m);
610 	if (n != NULL)
611 		m_freem(n);
612 	mbufq_drain(mq);
613 	NAT64STAT_INC(stats, nomem);
614 	return (ENOMEM);
615 }
616 
617 static NAT64NOINLINE int
618 nat64_find_route6(struct nhop6_basic *pnh, struct sockaddr_in6 *dst,
619     struct mbuf *m)
620 {
621 
622 	if (fib6_lookup_nh_basic(M_GETFIB(m), &dst->sin6_addr, 0, 0, 0,
623 	    pnh) != 0)
624 		return (EHOSTUNREACH);
625 	if (pnh->nh_flags & (NHF_BLACKHOLE | NHF_REJECT))
626 		return (EHOSTUNREACH);
627 	/*
628 	 * XXX: we need to use destination address with embedded scope
629 	 * zone id, because LLTABLE uses such form of addresses for lookup.
630 	 */
631 	dst->sin6_family = AF_INET6;
632 	dst->sin6_len = sizeof(*dst);
633 	dst->sin6_addr = pnh->nh_addr;
634 	if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr))
635 		dst->sin6_addr.s6_addr16[1] =
636 		    htons(pnh->nh_ifp->if_index & 0xffff);
637 	dst->sin6_port = 0;
638 	dst->sin6_scope_id = 0;
639 	dst->sin6_flowinfo = 0;
640 
641 	return (0);
642 }
643 
644 #define	NAT64_ICMP6_PLEN	64
645 static NAT64NOINLINE void
646 nat64_icmp6_reflect(struct mbuf *m, uint8_t type, uint8_t code, uint32_t mtu,
647     struct nat64_counters *stats, void *logdata)
648 {
649 	struct icmp6_hdr *icmp6;
650 	struct ip6_hdr *ip6, *oip6;
651 	struct mbuf *n;
652 	int len, plen, proto;
653 
654 	len = 0;
655 	proto = nat64_getlasthdr(m, &len);
656 	if (proto < 0) {
657 		DPRINTF(DP_DROPS, "mbuf isn't contigious");
658 		goto freeit;
659 	}
660 	/*
661 	 * Do not send ICMPv6 in reply to ICMPv6 errors.
662 	 */
663 	if (proto == IPPROTO_ICMPV6) {
664 		if (m->m_len < len + sizeof(*icmp6)) {
665 			DPRINTF(DP_DROPS, "mbuf isn't contigious");
666 			goto freeit;
667 		}
668 		icmp6 = mtodo(m, len);
669 		if (icmp6->icmp6_type < ICMP6_ECHO_REQUEST ||
670 		    icmp6->icmp6_type == ND_REDIRECT) {
671 			DPRINTF(DP_DROPS, "do not send ICMPv6 in reply to "
672 			    "ICMPv6 errors");
673 			goto freeit;
674 		}
675 		/*
676 		 * If there are extra headers between IPv6 and ICMPv6,
677 		 * strip off them.
678 		 */
679 		if (len > sizeof(struct ip6_hdr)) {
680 			/*
681 			 * NOTE: ipfw_chk already did m_pullup() and it is
682 			 * expected that data is contigious from the start
683 			 * of IPv6 header up to the end of ICMPv6 header.
684 			 */
685 			bcopy(mtod(m, caddr_t),
686 			    mtodo(m, len - sizeof(struct ip6_hdr)),
687 			    sizeof(struct ip6_hdr));
688 			m_adj(m, len - sizeof(struct ip6_hdr));
689 		}
690 	}
691 	/*
692 	if (icmp6_ratelimit(&ip6->ip6_src, type, code))
693 		goto freeit;
694 		*/
695 	ip6 = mtod(m, struct ip6_hdr *);
696 	switch (type) {
697 	case ICMP6_DST_UNREACH:
698 	case ICMP6_PACKET_TOO_BIG:
699 	case ICMP6_TIME_EXCEEDED:
700 	case ICMP6_PARAM_PROB:
701 		break;
702 	default:
703 		goto freeit;
704 	}
705 	/* Calculate length of ICMPv6 payload */
706 	len = (m->m_pkthdr.len > NAT64_ICMP6_PLEN) ? NAT64_ICMP6_PLEN:
707 	    m->m_pkthdr.len;
708 
709 	/* Create new ICMPv6 datagram */
710 	plen = len + sizeof(struct icmp6_hdr);
711 	n = m_get2(sizeof(struct ip6_hdr) + plen + max_hdr, M_NOWAIT,
712 	    MT_HEADER, M_PKTHDR);
713 	if (n == NULL) {
714 		NAT64STAT_INC(stats, nomem);
715 		m_freem(m);
716 		return;
717 	}
718 	/*
719 	 * Move pkthdr from original mbuf. We should have initialized some
720 	 * fields, because we can reinject this mbuf to netisr and it will
721 	 * go trough input path (it requires at least rcvif should be set).
722 	 * Also do M_ALIGN() to reduce chances of need to allocate new mbuf
723 	 * in the chain, when we will do M_PREPEND() or make some type of
724 	 * tunneling.
725 	 */
726 	m_move_pkthdr(n, m);
727 	M_ALIGN(n, sizeof(struct ip6_hdr) + plen + max_hdr);
728 
729 	n->m_len = n->m_pkthdr.len = sizeof(struct ip6_hdr) + plen;
730 	oip6 = mtod(n, struct ip6_hdr *);
731 	/*
732 	 * Make IPv6 source address selection for reflected datagram.
733 	 * nat64_check_ip6() doesn't allow scoped addresses, therefore
734 	 * we use zero scopeid.
735 	 */
736 	if (in6_selectsrc_addr(M_GETFIB(n), &ip6->ip6_src, 0,
737 	    n->m_pkthdr.rcvif, &oip6->ip6_src, NULL) != 0) {
738 		/*
739 		 * Failed to find proper source address, drop the packet.
740 		 */
741 		m_freem(n);
742 		goto freeit;
743 	}
744 	oip6->ip6_dst = ip6->ip6_src;
745 	oip6->ip6_nxt = IPPROTO_ICMPV6;
746 	oip6->ip6_flow = 0;
747 	oip6->ip6_vfc |= IPV6_VERSION;
748 	oip6->ip6_hlim = V_ip6_defhlim;
749 	oip6->ip6_plen = htons(plen);
750 
751 	icmp6 = mtodo(n, sizeof(struct ip6_hdr));
752 	icmp6->icmp6_cksum = 0;
753 	icmp6->icmp6_type = type;
754 	icmp6->icmp6_code = code;
755 	icmp6->icmp6_mtu = htonl(mtu);
756 
757 	m_copydata(m, 0, len, mtodo(n, sizeof(struct ip6_hdr) +
758 	    sizeof(struct icmp6_hdr)));
759 	icmp6->icmp6_cksum = in6_cksum(n, IPPROTO_ICMPV6,
760 	    sizeof(struct ip6_hdr), plen);
761 	m_freem(m);
762 	V_nat64out->output_one(n, stats, logdata);
763 	return;
764 freeit:
765 	NAT64STAT_INC(stats, dropped);
766 	m_freem(m);
767 }
768 
769 static NAT64NOINLINE int
770 nat64_find_route4(struct nhop4_basic *pnh, struct sockaddr_in *dst,
771     struct mbuf *m)
772 {
773 
774 	if (fib4_lookup_nh_basic(M_GETFIB(m), dst->sin_addr, 0, 0, pnh) != 0)
775 		return (EHOSTUNREACH);
776 	if (pnh->nh_flags & (NHF_BLACKHOLE | NHF_BROADCAST | NHF_REJECT))
777 		return (EHOSTUNREACH);
778 
779 	dst->sin_family = AF_INET;
780 	dst->sin_len = sizeof(*dst);
781 	dst->sin_addr = pnh->nh_addr;
782 	dst->sin_port = 0;
783 	return (0);
784 }
785 
786 #define	NAT64_ICMP_PLEN	64
787 static NAT64NOINLINE void
788 nat64_icmp_reflect(struct mbuf *m, uint8_t type,
789     uint8_t code, uint16_t mtu, struct nat64_counters *stats, void *logdata)
790 {
791 	struct icmp *icmp;
792 	struct ip *ip, *oip;
793 	struct mbuf *n;
794 	int len, plen;
795 
796 	ip = mtod(m, struct ip *);
797 	/* Do not send ICMP error if packet is not the first fragment */
798 	if (ip->ip_off & ~ntohs(IP_MF|IP_DF)) {
799 		DPRINTF(DP_DROPS, "not first fragment");
800 		goto freeit;
801 	}
802 	/* Do not send ICMP in reply to ICMP errors */
803 	if (ip->ip_p == IPPROTO_ICMP) {
804 		if (m->m_len < (ip->ip_hl << 2)) {
805 			DPRINTF(DP_DROPS, "mbuf isn't contigious");
806 			goto freeit;
807 		}
808 		icmp = mtodo(m, ip->ip_hl << 2);
809 		if (!ICMP_INFOTYPE(icmp->icmp_type)) {
810 			DPRINTF(DP_DROPS, "do not send ICMP in reply to "
811 			    "ICMP errors");
812 			goto freeit;
813 		}
814 	}
815 	switch (type) {
816 	case ICMP_UNREACH:
817 	case ICMP_TIMXCEED:
818 	case ICMP_PARAMPROB:
819 		break;
820 	default:
821 		goto freeit;
822 	}
823 	/* Calculate length of ICMP payload */
824 	len = (m->m_pkthdr.len > NAT64_ICMP_PLEN) ? (ip->ip_hl << 2) + 8:
825 	    m->m_pkthdr.len;
826 
827 	/* Create new ICMPv4 datagram */
828 	plen = len + sizeof(struct icmphdr) + sizeof(uint32_t);
829 	n = m_get2(sizeof(struct ip) + plen + max_hdr, M_NOWAIT,
830 	    MT_HEADER, M_PKTHDR);
831 	if (n == NULL) {
832 		NAT64STAT_INC(stats, nomem);
833 		m_freem(m);
834 		return;
835 	}
836 	m_move_pkthdr(n, m);
837 	M_ALIGN(n, sizeof(struct ip) + plen + max_hdr);
838 
839 	n->m_len = n->m_pkthdr.len = sizeof(struct ip) + plen;
840 	oip = mtod(n, struct ip *);
841 	oip->ip_v = IPVERSION;
842 	oip->ip_hl = sizeof(struct ip) >> 2;
843 	oip->ip_tos = 0;
844 	oip->ip_len = htons(n->m_pkthdr.len);
845 	oip->ip_ttl = V_ip_defttl;
846 	oip->ip_p = IPPROTO_ICMP;
847 	ip_fillid(oip);
848 	oip->ip_off = htons(IP_DF);
849 	oip->ip_src = ip->ip_dst;
850 	oip->ip_dst = ip->ip_src;
851 	oip->ip_sum = 0;
852 	oip->ip_sum = in_cksum_hdr(oip);
853 
854 	icmp = mtodo(n, sizeof(struct ip));
855 	icmp->icmp_type = type;
856 	icmp->icmp_code = code;
857 	icmp->icmp_cksum = 0;
858 	icmp->icmp_pmvoid = 0;
859 	icmp->icmp_nextmtu = htons(mtu);
860 	m_copydata(m, 0, len, mtodo(n, sizeof(struct ip) +
861 	    sizeof(struct icmphdr) + sizeof(uint32_t)));
862 	icmp->icmp_cksum = in_cksum_skip(n, sizeof(struct ip) + plen,
863 	    sizeof(struct ip));
864 	m_freem(m);
865 	V_nat64out->output_one(n, stats, logdata);
866 	return;
867 freeit:
868 	NAT64STAT_INC(stats, dropped);
869 	m_freem(m);
870 }
871 
872 /* Translate ICMP echo request/reply into ICMPv6 */
873 static void
874 nat64_icmp_handle_echo(struct ip6_hdr *ip6, struct icmp6_hdr *icmp6,
875     uint16_t id, uint8_t type)
876 {
877 	uint16_t old;
878 
879 	old = *(uint16_t *)icmp6;	/* save type+code in one word */
880 	icmp6->icmp6_type = type;
881 	/* Reflect ICMPv6 -> ICMPv4 type translation in the cksum */
882 	icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
883 	    old, *(uint16_t *)icmp6);
884 	if (id != 0) {
885 		old = icmp6->icmp6_id;
886 		icmp6->icmp6_id = id;
887 		/* Reflect ICMP id translation in the cksum */
888 		icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
889 		    old, id);
890 	}
891 	/* Reflect IPv6 pseudo header in the cksum */
892 	icmp6->icmp6_cksum = ~in6_cksum_pseudo(ip6, ntohs(ip6->ip6_plen),
893 	    IPPROTO_ICMPV6, ~icmp6->icmp6_cksum);
894 }
895 
896 static NAT64NOINLINE struct mbuf *
897 nat64_icmp_translate(struct mbuf *m, struct ip6_hdr *ip6, uint16_t icmpid,
898     int offset, struct nat64_config *cfg)
899 {
900 	struct ip ip;
901 	struct icmp *icmp;
902 	struct tcphdr *tcp;
903 	struct udphdr *udp;
904 	struct ip6_hdr *eip6;
905 	struct mbuf *n;
906 	uint32_t mtu;
907 	int len, hlen, plen;
908 	uint8_t type, code;
909 
910 	if (m->m_len < offset + ICMP_MINLEN)
911 		m = m_pullup(m, offset + ICMP_MINLEN);
912 	if (m == NULL) {
913 		NAT64STAT_INC(&cfg->stats, nomem);
914 		return (m);
915 	}
916 	mtu = 0;
917 	icmp = mtodo(m, offset);
918 	/* RFC 7915 p4.2 */
919 	switch (icmp->icmp_type) {
920 	case ICMP_ECHOREPLY:
921 		type = ICMP6_ECHO_REPLY;
922 		code = 0;
923 		break;
924 	case ICMP_UNREACH:
925 		type = ICMP6_DST_UNREACH;
926 		switch (icmp->icmp_code) {
927 		case ICMP_UNREACH_NET:
928 		case ICMP_UNREACH_HOST:
929 		case ICMP_UNREACH_SRCFAIL:
930 		case ICMP_UNREACH_NET_UNKNOWN:
931 		case ICMP_UNREACH_HOST_UNKNOWN:
932 		case ICMP_UNREACH_TOSNET:
933 		case ICMP_UNREACH_TOSHOST:
934 			code = ICMP6_DST_UNREACH_NOROUTE;
935 			break;
936 		case ICMP_UNREACH_PROTOCOL:
937 			type = ICMP6_PARAM_PROB;
938 			code = ICMP6_PARAMPROB_NEXTHEADER;
939 			break;
940 		case ICMP_UNREACH_PORT:
941 			code = ICMP6_DST_UNREACH_NOPORT;
942 			break;
943 		case ICMP_UNREACH_NEEDFRAG:
944 			type = ICMP6_PACKET_TOO_BIG;
945 			code = 0;
946 			/* XXX: needs an additional look */
947 			mtu = max(IPV6_MMTU, ntohs(icmp->icmp_nextmtu) + 20);
948 			break;
949 		case ICMP_UNREACH_NET_PROHIB:
950 		case ICMP_UNREACH_HOST_PROHIB:
951 		case ICMP_UNREACH_FILTER_PROHIB:
952 		case ICMP_UNREACH_PRECEDENCE_CUTOFF:
953 			code = ICMP6_DST_UNREACH_ADMIN;
954 			break;
955 		default:
956 			DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
957 			    icmp->icmp_type, icmp->icmp_code);
958 			goto freeit;
959 		}
960 		break;
961 	case ICMP_TIMXCEED:
962 		type = ICMP6_TIME_EXCEEDED;
963 		code = icmp->icmp_code;
964 		break;
965 	case ICMP_ECHO:
966 		type = ICMP6_ECHO_REQUEST;
967 		code = 0;
968 		break;
969 	case ICMP_PARAMPROB:
970 		type = ICMP6_PARAM_PROB;
971 		switch (icmp->icmp_code) {
972 		case ICMP_PARAMPROB_ERRATPTR:
973 		case ICMP_PARAMPROB_LENGTH:
974 			code = ICMP6_PARAMPROB_HEADER;
975 			switch (icmp->icmp_pptr) {
976 			case 0: /* Version/IHL */
977 			case 1: /* Type Of Service */
978 				mtu = icmp->icmp_pptr;
979 				break;
980 			case 2: /* Total Length */
981 			case 3: mtu = 4; /* Payload Length */
982 				break;
983 			case 8: /* Time to Live */
984 				mtu = 7; /* Hop Limit */
985 				break;
986 			case 9: /* Protocol */
987 				mtu = 6; /* Next Header */
988 				break;
989 			case 12: /* Source address */
990 			case 13:
991 			case 14:
992 			case 15:
993 				mtu = 8;
994 				break;
995 			case 16: /* Destination address */
996 			case 17:
997 			case 18:
998 			case 19:
999 				mtu = 24;
1000 				break;
1001 			default: /* Silently drop */
1002 				DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
1003 				    " code %d, pptr %d", icmp->icmp_type,
1004 				    icmp->icmp_code, icmp->icmp_pptr);
1005 				goto freeit;
1006 			}
1007 			break;
1008 		default:
1009 			DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
1010 			    " code %d, pptr %d", icmp->icmp_type,
1011 			    icmp->icmp_code, icmp->icmp_pptr);
1012 			goto freeit;
1013 		}
1014 		break;
1015 	default:
1016 		DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
1017 		    icmp->icmp_type, icmp->icmp_code);
1018 		goto freeit;
1019 	}
1020 	/*
1021 	 * For echo request/reply we can use original payload,
1022 	 * but we need adjust icmp_cksum, because ICMPv6 cksum covers
1023 	 * IPv6 pseudo header and ICMPv6 types differs from ICMPv4.
1024 	 */
1025 	if (type == ICMP6_ECHO_REQUEST || type == ICMP6_ECHO_REPLY) {
1026 		nat64_icmp_handle_echo(ip6, ICMP6(icmp), icmpid, type);
1027 		return (m);
1028 	}
1029 	/*
1030 	 * For other types of ICMP messages we need to translate inner
1031 	 * IPv4 header to IPv6 header.
1032 	 * Assume ICMP src is the same as payload dst
1033 	 * E.g. we have ( GWsrc1 , NATIP1 ) in outer header
1034 	 * and          ( NATIP1, Hostdst1 ) in ICMP copy header.
1035 	 * In that case, we already have map for NATIP1 and GWsrc1.
1036 	 * The only thing we need is to copy IPv6 map prefix to
1037 	 * Hostdst1.
1038 	 */
1039 	hlen = offset + ICMP_MINLEN;
1040 	if (m->m_pkthdr.len < hlen + sizeof(struct ip) + ICMP_MINLEN) {
1041 		DPRINTF(DP_DROPS, "Message is too short %d",
1042 		    m->m_pkthdr.len);
1043 		goto freeit;
1044 	}
1045 	m_copydata(m, hlen, sizeof(struct ip), (char *)&ip);
1046 	if (ip.ip_v != IPVERSION) {
1047 		DPRINTF(DP_DROPS, "Wrong IP version %d", ip.ip_v);
1048 		goto freeit;
1049 	}
1050 	hlen += ip.ip_hl << 2; /* Skip inner IP header */
1051 	if (nat64_check_ip4(ip.ip_src.s_addr) != 0 ||
1052 	    nat64_check_ip4(ip.ip_dst.s_addr) != 0 ||
1053 	    nat64_check_private_ip4(cfg, ip.ip_src.s_addr) != 0 ||
1054 	    nat64_check_private_ip4(cfg, ip.ip_dst.s_addr) != 0) {
1055 		DPRINTF(DP_DROPS, "IP addresses checks failed %04x -> %04x",
1056 		    ntohl(ip.ip_src.s_addr), ntohl(ip.ip_dst.s_addr));
1057 		goto freeit;
1058 	}
1059 	if (m->m_pkthdr.len < hlen + ICMP_MINLEN) {
1060 		DPRINTF(DP_DROPS, "Message is too short %d",
1061 		    m->m_pkthdr.len);
1062 		goto freeit;
1063 	}
1064 #if 0
1065 	/*
1066 	 * Check that inner source matches the outer destination.
1067 	 * XXX: We need some method to convert IPv4 into IPv6 address here,
1068 	 *	and compare IPv6 addresses.
1069 	 */
1070 	if (ip.ip_src.s_addr != nat64_get_ip4(&ip6->ip6_dst)) {
1071 		DPRINTF(DP_GENERIC, "Inner source doesn't match destination ",
1072 		    "%04x vs %04x", ip.ip_src.s_addr,
1073 		    nat64_get_ip4(&ip6->ip6_dst));
1074 		goto freeit;
1075 	}
1076 #endif
1077 	/*
1078 	 * Create new mbuf for ICMPv6 datagram.
1079 	 * NOTE: len is data length just after inner IP header.
1080 	 */
1081 	len = m->m_pkthdr.len - hlen;
1082 	if (sizeof(struct ip6_hdr) +
1083 	    sizeof(struct icmp6_hdr) + len > NAT64_ICMP6_PLEN)
1084 		len = NAT64_ICMP6_PLEN - sizeof(struct icmp6_hdr) -
1085 		    sizeof(struct ip6_hdr);
1086 	plen = sizeof(struct icmp6_hdr) + sizeof(struct ip6_hdr) + len;
1087 	n = m_get2(offset + plen + max_hdr, M_NOWAIT, MT_HEADER, M_PKTHDR);
1088 	if (n == NULL) {
1089 		NAT64STAT_INC(&cfg->stats, nomem);
1090 		m_freem(m);
1091 		return (NULL);
1092 	}
1093 	m_move_pkthdr(n, m);
1094 	M_ALIGN(n, offset + plen + max_hdr);
1095 	n->m_len = n->m_pkthdr.len = offset + plen;
1096 	/* Adjust ip6_plen in outer header */
1097 	ip6->ip6_plen = htons(plen);
1098 	/* Construct new inner IPv6 header */
1099 	eip6 = mtodo(n, offset + sizeof(struct icmp6_hdr));
1100 	eip6->ip6_src = ip6->ip6_dst;
1101 
1102 	/* Use the same prefix that we have in outer header */
1103 	eip6->ip6_dst = ip6->ip6_src;
1104 	MPASS(cfg->flags & NAT64_PLATPFX);
1105 	nat64_embed_ip4(&eip6->ip6_dst, cfg->plat_plen, ip.ip_dst.s_addr);
1106 
1107 	eip6->ip6_flow = htonl(ip.ip_tos << 20);
1108 	eip6->ip6_vfc |= IPV6_VERSION;
1109 	eip6->ip6_hlim = ip.ip_ttl;
1110 	eip6->ip6_plen = htons(ntohs(ip.ip_len) - (ip.ip_hl << 2));
1111 	eip6->ip6_nxt = (ip.ip_p == IPPROTO_ICMP) ? IPPROTO_ICMPV6: ip.ip_p;
1112 	m_copydata(m, hlen, len, (char *)(eip6 + 1));
1113 	/*
1114 	 * We need to translate source port in the inner ULP header,
1115 	 * and adjust ULP checksum.
1116 	 */
1117 	switch (ip.ip_p) {
1118 	case IPPROTO_TCP:
1119 		if (len < offsetof(struct tcphdr, th_sum))
1120 			break;
1121 		tcp = TCP(eip6 + 1);
1122 		if (icmpid != 0) {
1123 			tcp->th_sum = cksum_adjust(tcp->th_sum,
1124 			    tcp->th_sport, icmpid);
1125 			tcp->th_sport = icmpid;
1126 		}
1127 		tcp->th_sum = cksum_add(tcp->th_sum,
1128 		    ~nat64_cksum_convert(eip6, &ip));
1129 		break;
1130 	case IPPROTO_UDP:
1131 		if (len < offsetof(struct udphdr, uh_sum))
1132 			break;
1133 		udp = UDP(eip6 + 1);
1134 		if (icmpid != 0) {
1135 			udp->uh_sum = cksum_adjust(udp->uh_sum,
1136 			    udp->uh_sport, icmpid);
1137 			udp->uh_sport = icmpid;
1138 		}
1139 		udp->uh_sum = cksum_add(udp->uh_sum,
1140 		    ~nat64_cksum_convert(eip6, &ip));
1141 		break;
1142 	case IPPROTO_ICMP:
1143 		/*
1144 		 * Check if this is an ICMP error message for echo request
1145 		 * that we sent. I.e. ULP in the data containing invoking
1146 		 * packet is IPPROTO_ICMP and its type is ICMP_ECHO.
1147 		 */
1148 		icmp = (struct icmp *)(eip6 + 1);
1149 		if (icmp->icmp_type != ICMP_ECHO) {
1150 			m_freem(n);
1151 			goto freeit;
1152 		}
1153 		/*
1154 		 * For our client this original datagram should looks
1155 		 * like it was ICMPv6 datagram with type ICMP6_ECHO_REQUEST.
1156 		 * Thus we need adjust icmp_cksum and convert type from
1157 		 * ICMP_ECHO to ICMP6_ECHO_REQUEST.
1158 		 */
1159 		nat64_icmp_handle_echo(eip6, ICMP6(icmp), icmpid,
1160 		    ICMP6_ECHO_REQUEST);
1161 	}
1162 	m_freem(m);
1163 	/* Convert ICMPv4 into ICMPv6 header */
1164 	icmp = mtodo(n, offset);
1165 	ICMP6(icmp)->icmp6_type = type;
1166 	ICMP6(icmp)->icmp6_code = code;
1167 	ICMP6(icmp)->icmp6_mtu = htonl(mtu);
1168 	ICMP6(icmp)->icmp6_cksum = 0;
1169 	ICMP6(icmp)->icmp6_cksum = cksum_add(
1170 	    ~in6_cksum_pseudo(ip6, plen, IPPROTO_ICMPV6, 0),
1171 	    in_cksum_skip(n, n->m_pkthdr.len, offset));
1172 	return (n);
1173 freeit:
1174 	m_freem(m);
1175 	NAT64STAT_INC(&cfg->stats, dropped);
1176 	return (NULL);
1177 }
1178 
1179 int
1180 nat64_getlasthdr(struct mbuf *m, int *offset)
1181 {
1182 	struct ip6_hdr *ip6;
1183 	struct ip6_hbh *hbh;
1184 	int proto, hlen;
1185 
1186 	if (offset != NULL)
1187 		hlen = *offset;
1188 	else
1189 		hlen = 0;
1190 
1191 	if (m->m_len < hlen + sizeof(*ip6))
1192 		return (-1);
1193 
1194 	ip6 = mtodo(m, hlen);
1195 	hlen += sizeof(*ip6);
1196 	proto = ip6->ip6_nxt;
1197 	/* Skip extension headers */
1198 	while (proto == IPPROTO_HOPOPTS || proto == IPPROTO_ROUTING ||
1199 	    proto == IPPROTO_DSTOPTS) {
1200 		hbh = mtodo(m, hlen);
1201 		/*
1202 		 * We expect mbuf has contigious data up to
1203 		 * upper level header.
1204 		 */
1205 		if (m->m_len < hlen)
1206 			return (-1);
1207 		/*
1208 		 * We doesn't support Jumbo payload option,
1209 		 * so return error.
1210 		 */
1211 		if (proto == IPPROTO_HOPOPTS && ip6->ip6_plen == 0)
1212 			return (-1);
1213 		proto = hbh->ip6h_nxt;
1214 		hlen += (hbh->ip6h_len + 1) << 3;
1215 	}
1216 	if (offset != NULL)
1217 		*offset = hlen;
1218 	return (proto);
1219 }
1220 
1221 int
1222 nat64_do_handle_ip4(struct mbuf *m, struct in6_addr *saddr,
1223     struct in6_addr *daddr, uint16_t lport, struct nat64_config *cfg,
1224     void *logdata)
1225 {
1226 	struct nhop6_basic nh;
1227 	struct ip6_hdr ip6;
1228 	struct sockaddr_in6 dst;
1229 	struct ip *ip;
1230 	struct mbufq mq;
1231 	uint16_t ip_id, ip_off;
1232 	uint16_t *csum;
1233 	int plen, hlen;
1234 	uint8_t proto;
1235 
1236 	ip = mtod(m, struct ip*);
1237 
1238 	if (*V_nat64ipstealth == 0 && ip->ip_ttl <= IPTTLDEC) {
1239 		nat64_icmp_reflect(m, ICMP_TIMXCEED,
1240 		    ICMP_TIMXCEED_INTRANS, 0, &cfg->stats, logdata);
1241 		return (NAT64RETURN);
1242 	}
1243 
1244 	ip6.ip6_dst = *daddr;
1245 	ip6.ip6_src = *saddr;
1246 
1247 	hlen = ip->ip_hl << 2;
1248 	plen = ntohs(ip->ip_len) - hlen;
1249 	proto = ip->ip_p;
1250 
1251 	/* Save ip_id and ip_off, both are in network byte order */
1252 	ip_id = ip->ip_id;
1253 	ip_off = ip->ip_off & htons(IP_OFFMASK | IP_MF);
1254 
1255 	/* Fragment length must be multiple of 8 octets */
1256 	if ((ip->ip_off & htons(IP_MF)) != 0 && (plen & 0x7) != 0) {
1257 		nat64_icmp_reflect(m, ICMP_PARAMPROB,
1258 		    ICMP_PARAMPROB_LENGTH, 0, &cfg->stats, logdata);
1259 		return (NAT64RETURN);
1260 	}
1261 	/* Fragmented ICMP is unsupported */
1262 	if (proto == IPPROTO_ICMP && ip_off != 0) {
1263 		DPRINTF(DP_DROPS, "dropped due to fragmented ICMP");
1264 		NAT64STAT_INC(&cfg->stats, dropped);
1265 		return (NAT64MFREE);
1266 	}
1267 
1268 	dst.sin6_addr = ip6.ip6_dst;
1269 	if (nat64_find_route6(&nh, &dst, m) != 0) {
1270 		NAT64STAT_INC(&cfg->stats, noroute6);
1271 		nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0,
1272 		    &cfg->stats, logdata);
1273 		return (NAT64RETURN);
1274 	}
1275 	if (nh.nh_mtu < plen + sizeof(ip6) &&
1276 	    (ip->ip_off & htons(IP_DF)) != 0) {
1277 		nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
1278 		    FRAGSZ(nh.nh_mtu) + sizeof(struct ip), &cfg->stats, logdata);
1279 		return (NAT64RETURN);
1280 	}
1281 
1282 	ip6.ip6_flow = htonl(ip->ip_tos << 20);
1283 	ip6.ip6_vfc |= IPV6_VERSION;
1284 	ip6.ip6_hlim = ip->ip_ttl;
1285 	if (*V_nat64ipstealth == 0)
1286 		ip6.ip6_hlim -= IPTTLDEC;
1287 	ip6.ip6_plen = htons(plen);
1288 	ip6.ip6_nxt = (proto == IPPROTO_ICMP) ? IPPROTO_ICMPV6: proto;
1289 	/* Convert checksums. */
1290 	switch (proto) {
1291 	case IPPROTO_TCP:
1292 		csum = &TCP(mtodo(m, hlen))->th_sum;
1293 		if (lport != 0) {
1294 			struct tcphdr *tcp = TCP(mtodo(m, hlen));
1295 			*csum = cksum_adjust(*csum, tcp->th_dport, lport);
1296 			tcp->th_dport = lport;
1297 		}
1298 		*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1299 		break;
1300 	case IPPROTO_UDP:
1301 		csum = &UDP(mtodo(m, hlen))->uh_sum;
1302 		if (lport != 0) {
1303 			struct udphdr *udp = UDP(mtodo(m, hlen));
1304 			*csum = cksum_adjust(*csum, udp->uh_dport, lport);
1305 			udp->uh_dport = lport;
1306 		}
1307 		*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1308 		break;
1309 	case IPPROTO_ICMP:
1310 		m = nat64_icmp_translate(m, &ip6, lport, hlen, cfg);
1311 		if (m == NULL)	/* stats already accounted */
1312 			return (NAT64RETURN);
1313 	}
1314 
1315 	m_adj(m, hlen);
1316 	mbufq_init(&mq, 255);
1317 	nat64_fragment6(&cfg->stats, &ip6, &mq, m, nh.nh_mtu, ip_id, ip_off);
1318 	while ((m = mbufq_dequeue(&mq)) != NULL) {
1319 		if (V_nat64out->output(nh.nh_ifp, m, (struct sockaddr *)&dst,
1320 		    &cfg->stats, logdata) != 0)
1321 			break;
1322 		NAT64STAT_INC(&cfg->stats, opcnt46);
1323 	}
1324 	mbufq_drain(&mq);
1325 	return (NAT64RETURN);
1326 }
1327 
1328 int
1329 nat64_handle_icmp6(struct mbuf *m, int hlen, uint32_t aaddr, uint16_t aport,
1330     struct nat64_config *cfg, void *logdata)
1331 {
1332 	struct ip ip;
1333 	struct icmp6_hdr *icmp6;
1334 	struct ip6_frag *ip6f;
1335 	struct ip6_hdr *ip6, *ip6i;
1336 	uint32_t mtu;
1337 	int plen, proto;
1338 	uint8_t type, code;
1339 
1340 	if (hlen == 0) {
1341 		ip6 = mtod(m, struct ip6_hdr *);
1342 		if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1343 		    nat64_check_ip6(&ip6->ip6_dst) != 0)
1344 			return (NAT64SKIP);
1345 
1346 		proto = nat64_getlasthdr(m, &hlen);
1347 		if (proto != IPPROTO_ICMPV6) {
1348 			DPRINTF(DP_DROPS,
1349 			    "dropped due to mbuf isn't contigious");
1350 			NAT64STAT_INC(&cfg->stats, dropped);
1351 			return (NAT64MFREE);
1352 		}
1353 	}
1354 
1355 	/*
1356 	 * Translate ICMPv6 type and code to ICMPv4 (RFC7915).
1357 	 * NOTE: ICMPv6 echo handled by nat64_do_handle_ip6().
1358 	 */
1359 	icmp6 = mtodo(m, hlen);
1360 	mtu = 0;
1361 	switch (icmp6->icmp6_type) {
1362 	case ICMP6_DST_UNREACH:
1363 		type = ICMP_UNREACH;
1364 		switch (icmp6->icmp6_code) {
1365 		case ICMP6_DST_UNREACH_NOROUTE:
1366 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
1367 		case ICMP6_DST_UNREACH_ADDR:
1368 			code = ICMP_UNREACH_HOST;
1369 			break;
1370 		case ICMP6_DST_UNREACH_ADMIN:
1371 			code = ICMP_UNREACH_HOST_PROHIB;
1372 			break;
1373 		case ICMP6_DST_UNREACH_NOPORT:
1374 			code = ICMP_UNREACH_PORT;
1375 			break;
1376 		default:
1377 			DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1378 			    " code %d", icmp6->icmp6_type,
1379 			    icmp6->icmp6_code);
1380 			NAT64STAT_INC(&cfg->stats, dropped);
1381 			return (NAT64MFREE);
1382 		}
1383 		break;
1384 	case ICMP6_PACKET_TOO_BIG:
1385 		type = ICMP_UNREACH;
1386 		code = ICMP_UNREACH_NEEDFRAG;
1387 		mtu = ntohl(icmp6->icmp6_mtu);
1388 		if (mtu < IPV6_MMTU) {
1389 			DPRINTF(DP_DROPS, "Wrong MTU %d in ICMPv6 type %d,"
1390 			    " code %d", mtu, icmp6->icmp6_type,
1391 			    icmp6->icmp6_code);
1392 			NAT64STAT_INC(&cfg->stats, dropped);
1393 			return (NAT64MFREE);
1394 		}
1395 		/*
1396 		 * Adjust MTU to reflect difference between
1397 		 * IPv6 an IPv4 headers.
1398 		 */
1399 		mtu -= sizeof(struct ip6_hdr) - sizeof(struct ip);
1400 		break;
1401 	case ICMP6_TIME_EXCEEDED:
1402 		type = ICMP_TIMXCEED;
1403 		code = icmp6->icmp6_code;
1404 		break;
1405 	case ICMP6_PARAM_PROB:
1406 		switch (icmp6->icmp6_code) {
1407 		case ICMP6_PARAMPROB_HEADER:
1408 			type = ICMP_PARAMPROB;
1409 			code = ICMP_PARAMPROB_ERRATPTR;
1410 			mtu = ntohl(icmp6->icmp6_pptr);
1411 			switch (mtu) {
1412 			case 0: /* Version/Traffic Class */
1413 			case 1: /* Traffic Class/Flow Label */
1414 				break;
1415 			case 4: /* Payload Length */
1416 			case 5:
1417 				mtu = 2;
1418 				break;
1419 			case 6: /* Next Header */
1420 				mtu = 9;
1421 				break;
1422 			case 7: /* Hop Limit */
1423 				mtu = 8;
1424 				break;
1425 			default:
1426 				if (mtu >= 8 && mtu <= 23) {
1427 					mtu = 12; /* Source address */
1428 					break;
1429 				}
1430 				if (mtu >= 24 && mtu <= 39) {
1431 					mtu = 16; /* Destination address */
1432 					break;
1433 				}
1434 				DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1435 				    " code %d, pptr %d", icmp6->icmp6_type,
1436 				    icmp6->icmp6_code, mtu);
1437 				NAT64STAT_INC(&cfg->stats, dropped);
1438 				return (NAT64MFREE);
1439 			}
1440 		case ICMP6_PARAMPROB_NEXTHEADER:
1441 			type = ICMP_UNREACH;
1442 			code = ICMP_UNREACH_PROTOCOL;
1443 			break;
1444 		default:
1445 			DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1446 			    " code %d, pptr %d", icmp6->icmp6_type,
1447 			    icmp6->icmp6_code, ntohl(icmp6->icmp6_pptr));
1448 			NAT64STAT_INC(&cfg->stats, dropped);
1449 			return (NAT64MFREE);
1450 		}
1451 		break;
1452 	default:
1453 		DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d, code %d",
1454 		    icmp6->icmp6_type, icmp6->icmp6_code);
1455 		NAT64STAT_INC(&cfg->stats, dropped);
1456 		return (NAT64MFREE);
1457 	}
1458 
1459 	hlen += sizeof(struct icmp6_hdr);
1460 	if (m->m_pkthdr.len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN) {
1461 		NAT64STAT_INC(&cfg->stats, dropped);
1462 		DPRINTF(DP_DROPS, "Message is too short %d",
1463 		    m->m_pkthdr.len);
1464 		return (NAT64MFREE);
1465 	}
1466 	/*
1467 	 * We need at least ICMP_MINLEN bytes of original datagram payload
1468 	 * to generate ICMP message. It is nice that ICMP_MINLEN is equal
1469 	 * to sizeof(struct ip6_frag). So, if embedded datagram had a fragment
1470 	 * header we will not have to do m_pullup() again.
1471 	 *
1472 	 * What we have here:
1473 	 * Outer header: (IPv6iGW, v4mapPRefix+v4exthost)
1474 	 * Inner header: (v4mapPRefix+v4host, IPv6iHost) [sport, dport]
1475 	 * We need to translate it to:
1476 	 *
1477 	 * Outer header: (alias_host, v4exthost)
1478 	 * Inner header: (v4exthost, alias_host) [sport, alias_port]
1479 	 *
1480 	 * Assume caller function has checked if v4mapPRefix+v4host
1481 	 * matches configured prefix.
1482 	 * The only two things we should be provided with are mapping between
1483 	 * IPv6iHost <> alias_host and between dport and alias_port.
1484 	 */
1485 	if (m->m_len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN)
1486 		m = m_pullup(m, hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN);
1487 	if (m == NULL) {
1488 		NAT64STAT_INC(&cfg->stats, nomem);
1489 		return (NAT64RETURN);
1490 	}
1491 	ip6 = mtod(m, struct ip6_hdr *);
1492 	ip6i = mtodo(m, hlen);
1493 	ip6f = NULL;
1494 	proto = ip6i->ip6_nxt;
1495 	plen = ntohs(ip6i->ip6_plen);
1496 	hlen += sizeof(struct ip6_hdr);
1497 	if (proto == IPPROTO_FRAGMENT) {
1498 		if (m->m_pkthdr.len < hlen + sizeof(struct ip6_frag) +
1499 		    ICMP_MINLEN)
1500 			goto fail;
1501 		ip6f = mtodo(m, hlen);
1502 		proto = ip6f->ip6f_nxt;
1503 		plen -= sizeof(struct ip6_frag);
1504 		hlen += sizeof(struct ip6_frag);
1505 		/* Ajust MTU to reflect frag header size */
1506 		if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG)
1507 			mtu -= sizeof(struct ip6_frag);
1508 	}
1509 	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) {
1510 		DPRINTF(DP_DROPS, "Unsupported proto %d in the inner header",
1511 		    proto);
1512 		goto fail;
1513 	}
1514 	if (nat64_check_ip6(&ip6i->ip6_src) != 0 ||
1515 	    nat64_check_ip6(&ip6i->ip6_dst) != 0) {
1516 		DPRINTF(DP_DROPS, "Inner addresses do not passes the check");
1517 		goto fail;
1518 	}
1519 	/* Check if outer dst is the same as inner src */
1520 	if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6i->ip6_src)) {
1521 		DPRINTF(DP_DROPS, "Inner src doesn't match outer dst");
1522 		goto fail;
1523 	}
1524 
1525 	/* Now we need to make a fake IPv4 packet to generate ICMP message */
1526 	ip.ip_dst.s_addr = aaddr;
1527 	ip.ip_src.s_addr = nat64_extract_ip4(&ip6i->ip6_src, cfg->plat_plen);
1528 	if (ip.ip_src.s_addr == 0)
1529 		goto fail;
1530 	/* XXX: Make fake ulp header */
1531 	if (V_nat64out == &nat64_direct) /* init_ip4hdr will decrement it */
1532 		ip6i->ip6_hlim += IPV6_HLIMDEC;
1533 	nat64_init_ip4hdr(ip6i, ip6f, plen, proto, &ip);
1534 	m_adj(m, hlen - sizeof(struct ip));
1535 	bcopy(&ip, mtod(m, void *), sizeof(ip));
1536 	nat64_icmp_reflect(m, type, code, (uint16_t)mtu, &cfg->stats,
1537 	    logdata);
1538 	return (NAT64RETURN);
1539 fail:
1540 	/*
1541 	 * We must call m_freem() because mbuf pointer could be
1542 	 * changed with m_pullup().
1543 	 */
1544 	m_freem(m);
1545 	NAT64STAT_INC(&cfg->stats, dropped);
1546 	return (NAT64RETURN);
1547 }
1548 
1549 int
1550 nat64_do_handle_ip6(struct mbuf *m, uint32_t aaddr, uint16_t aport,
1551     struct nat64_config *cfg, void *logdata)
1552 {
1553 	struct ip ip;
1554 	struct nhop4_basic nh;
1555 	struct sockaddr_in dst;
1556 	struct ip6_frag *frag;
1557 	struct ip6_hdr *ip6;
1558 	struct icmp6_hdr *icmp6;
1559 	uint16_t *csum;
1560 	int plen, hlen, proto;
1561 
1562 	/*
1563 	 * XXX: we expect ipfw_chk() did m_pullup() up to upper level
1564 	 * protocol's headers. Also we skip some checks, that ip6_input(),
1565 	 * ip6_forward(), ip6_fastfwd() and ipfw_chk() already did.
1566 	 */
1567 	ip6 = mtod(m, struct ip6_hdr *);
1568 	if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1569 	    nat64_check_ip6(&ip6->ip6_dst) != 0) {
1570 		return (NAT64SKIP);
1571 	}
1572 
1573 	/* Starting from this point we must not return zero */
1574 	ip.ip_src.s_addr = aaddr;
1575 	if (nat64_check_ip4(ip.ip_src.s_addr) != 0) {
1576 		DPRINTF(DP_GENERIC | DP_DROPS, "invalid source address: %08x",
1577 		    ip.ip_src.s_addr);
1578 		NAT64STAT_INC(&cfg->stats, dropped);
1579 		return (NAT64MFREE);
1580 	}
1581 
1582 	ip.ip_dst.s_addr = nat64_extract_ip4(&ip6->ip6_dst, cfg->plat_plen);
1583 	if (ip.ip_dst.s_addr == 0) {
1584 		NAT64STAT_INC(&cfg->stats, dropped);
1585 		return (NAT64MFREE);
1586 	}
1587 
1588 	if (*V_nat64ip6stealth == 0 && ip6->ip6_hlim <= IPV6_HLIMDEC) {
1589 		nat64_icmp6_reflect(m, ICMP6_TIME_EXCEEDED,
1590 		    ICMP6_TIME_EXCEED_TRANSIT, 0, &cfg->stats, logdata);
1591 		return (NAT64RETURN);
1592 	}
1593 
1594 	hlen = 0;
1595 	plen = ntohs(ip6->ip6_plen);
1596 	proto = nat64_getlasthdr(m, &hlen);
1597 	if (proto < 0) {
1598 		DPRINTF(DP_DROPS, "dropped due to mbuf isn't contigious");
1599 		NAT64STAT_INC(&cfg->stats, dropped);
1600 		return (NAT64MFREE);
1601 	}
1602 	frag = NULL;
1603 	if (proto == IPPROTO_FRAGMENT) {
1604 		/* ipfw_chk should m_pullup up to frag header */
1605 		if (m->m_len < hlen + sizeof(*frag)) {
1606 			DPRINTF(DP_DROPS,
1607 			    "dropped due to mbuf isn't contigious");
1608 			NAT64STAT_INC(&cfg->stats, dropped);
1609 			return (NAT64MFREE);
1610 		}
1611 		frag = mtodo(m, hlen);
1612 		proto = frag->ip6f_nxt;
1613 		hlen += sizeof(*frag);
1614 		/* Fragmented ICMPv6 is unsupported */
1615 		if (proto == IPPROTO_ICMPV6) {
1616 			DPRINTF(DP_DROPS, "dropped due to fragmented ICMPv6");
1617 			NAT64STAT_INC(&cfg->stats, dropped);
1618 			return (NAT64MFREE);
1619 		}
1620 		/* Fragment length must be multiple of 8 octets */
1621 		if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0 &&
1622 		    ((plen + sizeof(struct ip6_hdr) - hlen) & 0x7) != 0) {
1623 			nat64_icmp6_reflect(m, ICMP6_PARAM_PROB,
1624 			    ICMP6_PARAMPROB_HEADER,
1625 			    offsetof(struct ip6_hdr, ip6_plen), &cfg->stats,
1626 			    logdata);
1627 			return (NAT64RETURN);
1628 		}
1629 	}
1630 	plen -= hlen - sizeof(struct ip6_hdr);
1631 	if (plen < 0 || m->m_pkthdr.len < plen + hlen) {
1632 		DPRINTF(DP_DROPS, "plen %d, pkthdr.len %d, hlen %d",
1633 		    plen, m->m_pkthdr.len, hlen);
1634 		NAT64STAT_INC(&cfg->stats, dropped);
1635 		return (NAT64MFREE);
1636 	}
1637 
1638 	icmp6 = NULL;	/* Make gcc happy */
1639 	if (proto == IPPROTO_ICMPV6) {
1640 		icmp6 = mtodo(m, hlen);
1641 		if (icmp6->icmp6_type != ICMP6_ECHO_REQUEST &&
1642 		    icmp6->icmp6_type != ICMP6_ECHO_REPLY)
1643 			return (nat64_handle_icmp6(m, hlen, aaddr, aport,
1644 			    cfg, logdata));
1645 	}
1646 	dst.sin_addr.s_addr = ip.ip_dst.s_addr;
1647 	if (nat64_find_route4(&nh, &dst, m) != 0) {
1648 		NAT64STAT_INC(&cfg->stats, noroute4);
1649 		nat64_icmp6_reflect(m, ICMP6_DST_UNREACH,
1650 		    ICMP6_DST_UNREACH_NOROUTE, 0, &cfg->stats, logdata);
1651 		return (NAT64RETURN);
1652 	}
1653 	if (nh.nh_mtu < plen + sizeof(ip)) {
1654 		nat64_icmp6_reflect(m, ICMP6_PACKET_TOO_BIG, 0, nh.nh_mtu,
1655 		    &cfg->stats, logdata);
1656 		return (NAT64RETURN);
1657 	}
1658 	nat64_init_ip4hdr(ip6, frag, plen, proto, &ip);
1659 	/* Convert checksums. */
1660 	switch (proto) {
1661 	case IPPROTO_TCP:
1662 		csum = &TCP(mtodo(m, hlen))->th_sum;
1663 		if (aport != 0) {
1664 			struct tcphdr *tcp = TCP(mtodo(m, hlen));
1665 			*csum = cksum_adjust(*csum, tcp->th_sport, aport);
1666 			tcp->th_sport = aport;
1667 		}
1668 		*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1669 		break;
1670 	case IPPROTO_UDP:
1671 		csum = &UDP(mtodo(m, hlen))->uh_sum;
1672 		if (aport != 0) {
1673 			struct udphdr *udp = UDP(mtodo(m, hlen));
1674 			*csum = cksum_adjust(*csum, udp->uh_sport, aport);
1675 			udp->uh_sport = aport;
1676 		}
1677 		*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1678 		break;
1679 	case IPPROTO_ICMPV6:
1680 		/* Checksum in ICMPv6 covers pseudo header */
1681 		csum = &icmp6->icmp6_cksum;
1682 		*csum = cksum_add(*csum, in6_cksum_pseudo(ip6, plen,
1683 		    IPPROTO_ICMPV6, 0));
1684 		/* Convert ICMPv6 types to ICMP */
1685 		proto = *(uint16_t *)icmp6; /* save old word for cksum_adjust */
1686 		if (icmp6->icmp6_type == ICMP6_ECHO_REQUEST)
1687 			icmp6->icmp6_type = ICMP_ECHO;
1688 		else /* ICMP6_ECHO_REPLY */
1689 			icmp6->icmp6_type = ICMP_ECHOREPLY;
1690 		*csum = cksum_adjust(*csum, (uint16_t)proto,
1691 		    *(uint16_t *)icmp6);
1692 		if (aport != 0) {
1693 			uint16_t old_id = icmp6->icmp6_id;
1694 			icmp6->icmp6_id = aport;
1695 			*csum = cksum_adjust(*csum, old_id, aport);
1696 		}
1697 		break;
1698 	};
1699 
1700 	m_adj(m, hlen - sizeof(ip));
1701 	bcopy(&ip, mtod(m, void *), sizeof(ip));
1702 	if (V_nat64out->output(nh.nh_ifp, m, (struct sockaddr *)&dst,
1703 	    &cfg->stats, logdata) == 0)
1704 		NAT64STAT_INC(&cfg->stats, opcnt64);
1705 	return (NAT64RETURN);
1706 }
1707 
1708