xref: /freebsd/sys/netpfil/ipfw/ip_fw_table_algo.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*-
2  * Copyright (c) 2014 Yandex LLC
3  * Copyright (c) 2014 Alexander V. Chernikov
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Lookup table algorithms.
32  *
33  */
34 
35 #include "opt_ipfw.h"
36 #include "opt_inet.h"
37 #ifndef INET
38 #error IPFIREWALL requires INET.
39 #endif /* INET */
40 #include "opt_inet6.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/rwlock.h>
48 #include <sys/rmlock.h>
49 #include <sys/socket.h>
50 #include <sys/queue.h>
51 #include <net/if.h>	/* ip_fw.h requires IFNAMSIZ */
52 #include <net/radix.h>
53 #include <net/route.h>
54 #include <net/route_var.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_fib.h>
58 #include <netinet/ip_var.h>	/* struct ipfw_rule_ref */
59 #include <netinet/ip_fw.h>
60 #include <netinet6/in6_fib.h>
61 
62 #include <netpfil/ipfw/ip_fw_private.h>
63 #include <netpfil/ipfw/ip_fw_table.h>
64 
65 
66 /*
67  * IPFW table lookup algorithms.
68  *
69  * What is needed to add another table algo?
70  *
71  * Algo init:
72  * * struct table_algo has to be filled with:
73  *   name: "type:algoname" format, e.g. "addr:radix". Currently
74  *     there are the following types: "addr", "iface", "number" and "flow".
75  *   type: one of IPFW_TABLE_* types
76  *   flags: one or more TA_FLAGS_*
77  *   ta_buf_size: size of structure used to store add/del item state.
78  *     Needs to be less than TA_BUF_SZ.
79  *   callbacks: see below for description.
80  * * ipfw_add_table_algo / ipfw_del_table_algo has to be called
81  *
82  * Callbacks description:
83  *
84  * -init: request to initialize new table instance.
85  * typedef int (ta_init)(struct ip_fw_chain *ch, void **ta_state,
86  *     struct table_info *ti, char *data, uint8_t tflags);
87  * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success.
88  *
89  *  Allocate all structures needed for normal operations.
90  *  * Caller may want to parse @data for some algo-specific
91  *    options provided by userland.
92  *  * Caller may want to save configuration state pointer to @ta_state
93  *  * Caller needs to save desired runtime structure pointer(s)
94  *    inside @ti fields. Note that it is not correct to save
95  *    @ti pointer at this moment. Use -change_ti hook for that.
96  *  * Caller has to fill in ti->lookup to appropriate function
97  *    pointer.
98  *
99  *
100  *
101  * -destroy: request to destroy table instance.
102  * typedef void (ta_destroy)(void *ta_state, struct table_info *ti);
103  * MANDATORY, unlocked. (M_WAITOK).
104  *
105  * Frees all table entries and all tables structures allocated by -init.
106  *
107  *
108  *
109  * -prepare_add: request to allocate state for adding new entry.
110  * typedef int (ta_prepare_add)(struct ip_fw_chain *ch, struct tentry_info *tei,
111  *     void *ta_buf);
112  * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success.
113  *
114  * Allocates state and fills it in with all necessary data (EXCEPT value)
115  * from @tei to minimize operations needed to be done under WLOCK.
116  * "value" field has to be copied to new entry in @add callback.
117  * Buffer ta_buf of size ta->ta_buf_sz may be used to store
118  * allocated state.
119  *
120  *
121  *
122  * -prepare_del: request to set state for deleting existing entry.
123  * typedef int (ta_prepare_del)(struct ip_fw_chain *ch, struct tentry_info *tei,
124  *     void *ta_buf);
125  * MANDATORY, locked, UH. (M_NOWAIT). Returns 0 on success.
126  *
127  * Buffer ta_buf of size ta->ta_buf_sz may be used to store
128  * allocated state. Caller should use on-stack ta_buf allocation
129  * instead of doing malloc().
130  *
131  *
132  *
133  * -add: request to insert new entry into runtime/config structures.
134  *  typedef int (ta_add)(void *ta_state, struct table_info *ti,
135  *     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
136  * MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success.
137  *
138  * Insert new entry using previously-allocated state in @ta_buf.
139  * * @tei may have the following flags:
140  *   TEI_FLAGS_UPDATE: request to add or update entry.
141  *   TEI_FLAGS_DONTADD: request to update (but not add) entry.
142  * * Caller is required to do the following:
143  *   copy real entry value from @tei
144  *   entry added: return 0, set 1 to @pnum
145  *   entry updated: return 0, store 0 to @pnum, store old value in @tei,
146  *     add TEI_FLAGS_UPDATED flag to @tei.
147  *   entry exists: return EEXIST
148  *   entry not found: return ENOENT
149  *   other error: return non-zero error code.
150  *
151  *
152  *
153  * -del: request to delete existing entry from runtime/config structures.
154  *  typedef int (ta_del)(void *ta_state, struct table_info *ti,
155  *     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
156  *  MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success.
157  *
158  *  Delete entry using previously set up in @ta_buf.
159  * * Caller is required to do the following:
160  *   entry deleted: return 0, set 1 to @pnum, store old value in @tei.
161  *   entry not found: return ENOENT
162  *   other error: return non-zero error code.
163  *
164  *
165  *
166  * -flush_entry: flush entry state created by -prepare_add / -del / others
167  *  typedef void (ta_flush_entry)(struct ip_fw_chain *ch,
168  *      struct tentry_info *tei, void *ta_buf);
169  *  MANDATORY, may be locked. (M_NOWAIT).
170  *
171  *  Delete state allocated by:
172  *  -prepare_add (-add returned EEXIST|UPDATED)
173  *  -prepare_del (if any)
174  *  -del
175  *  * Caller is required to handle empty @ta_buf correctly.
176  *
177  *
178  * -find_tentry: finds entry specified by key @tei
179  *  typedef int ta_find_tentry(void *ta_state, struct table_info *ti,
180  *      ipfw_obj_tentry *tent);
181  *  OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 on success.
182  *
183  *  Finds entry specified by given key.
184  *  * Caller is requred to do the following:
185  *    entry found: returns 0, export entry to @tent
186  *    entry not found: returns ENOENT
187  *
188  *
189  * -need_modify: checks if @ti has enough space to hold another @count items.
190  *  typedef int (ta_need_modify)(void *ta_state, struct table_info *ti,
191  *      uint32_t count, uint64_t *pflags);
192  *  OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 if has.
193  *
194  *  Checks if given table has enough space to add @count items without
195  *  resize. Caller may use @pflags to store desired modification data.
196  *
197  *
198  *
199  * -prepare_mod: allocate structures for table modification.
200  *  typedef int (ta_prepare_mod)(void *ta_buf, uint64_t *pflags);
201  * OPTIONAL(need_modify), unlocked. (M_WAITOK). Returns 0 on success.
202  *
203  * Allocate all needed state for table modification. Caller
204  * should use `struct mod_item` to store new state in @ta_buf.
205  * Up to TA_BUF_SZ (128 bytes) can be stored in @ta_buf.
206  *
207  *
208  *
209  * -fill_mod: copy some data to new state/
210  *  typedef int (ta_fill_mod)(void *ta_state, struct table_info *ti,
211  *      void *ta_buf, uint64_t *pflags);
212  * OPTIONAL(need_modify), locked (UH). (M_NOWAIT). Returns 0 on success.
213  *
214  * Copy as much data as we can to minimize changes under WLOCK.
215  * For example, array can be merged inside this callback.
216  *
217  *
218  *
219  * -modify: perform final modification.
220  *  typedef void (ta_modify)(void *ta_state, struct table_info *ti,
221  *      void *ta_buf, uint64_t pflags);
222  * OPTIONAL(need_modify), locked (UH+WLOCK). (M_NOWAIT).
223  *
224  * Performs all changes necessary to switch to new structures.
225  * * Caller should save old pointers to @ta_buf storage.
226  *
227  *
228  *
229  * -flush_mod: flush table modification state.
230  *  typedef void (ta_flush_mod)(void *ta_buf);
231  * OPTIONAL(need_modify), unlocked. (M_WAITOK).
232  *
233  * Performs flush for the following:
234  *   - prepare_mod (modification was not necessary)
235  *   - modify (for the old state)
236  *
237  *
238  *
239  * -change_gi: monitor table info pointer changes
240  * typedef void (ta_change_ti)(void *ta_state, struct table_info *ti);
241  * OPTIONAL, locked (UH). (M_NOWAIT).
242  *
243  * Called on @ti pointer changed. Called immediately after -init
244  * to set initial state.
245  *
246  *
247  *
248  * -foreach: calls @f for each table entry
249  *  typedef void ta_foreach(void *ta_state, struct table_info *ti,
250  *      ta_foreach_f *f, void *arg);
251  * MANDATORY, locked(UH). (M_NOWAIT).
252  *
253  * Runs callback with specified argument for each table entry,
254  * Typically used for dumping table entries.
255  *
256  *
257  *
258  * -dump_tentry: dump table entry in current @tentry format.
259  *  typedef int ta_dump_tentry(void *ta_state, struct table_info *ti, void *e,
260  *      ipfw_obj_tentry *tent);
261  * MANDATORY, locked(UH). (M_NOWAIT). Returns 0 on success.
262  *
263  * Dumps entry @e to @tent.
264  *
265  *
266  * -print_config: prints custom algoritm options into buffer.
267  *  typedef void (ta_print_config)(void *ta_state, struct table_info *ti,
268  *      char *buf, size_t bufsize);
269  * OPTIONAL. locked(UH). (M_NOWAIT).
270  *
271  * Prints custom algorithm options in the format suitable to pass
272  * back to -init callback.
273  *
274  *
275  *
276  * -dump_tinfo: dumps algo-specific info.
277  *  typedef void ta_dump_tinfo(void *ta_state, struct table_info *ti,
278  *      ipfw_ta_tinfo *tinfo);
279  * OPTIONAL. locked(UH). (M_NOWAIT).
280  *
281  * Dumps options like items size/hash size, etc.
282  */
283 
284 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
285 
286 /*
287  * Utility structures/functions common to more than one algo
288  */
289 
290 struct mod_item {
291 	void	*main_ptr;
292 	size_t	size;
293 	void	*main_ptr6;
294 	size_t	size6;
295 };
296 
297 static int badd(const void *key, void *item, void *base, size_t nmemb,
298     size_t size, int (*compar) (const void *, const void *));
299 static int bdel(const void *key, void *base, size_t nmemb, size_t size,
300     int (*compar) (const void *, const void *));
301 
302 
303 /*
304  * ADDR implementation using radix
305  *
306  */
307 
308 /*
309  * The radix code expects addr and mask to be array of bytes,
310  * with the first byte being the length of the array. rn_inithead
311  * is called with the offset in bits of the lookup key within the
312  * array. If we use a sockaddr_in as the underlying type,
313  * sin_len is conveniently located at offset 0, sin_addr is at
314  * offset 4 and normally aligned.
315  * But for portability, let's avoid assumption and make the code explicit
316  */
317 #define KEY_LEN(v)	*((uint8_t *)&(v))
318 /*
319  * Do not require radix to compare more than actual IPv4/IPv6 address
320  */
321 #define KEY_LEN_INET	(offsetof(struct sockaddr_in, sin_addr) + sizeof(in_addr_t))
322 #define KEY_LEN_INET6	(offsetof(struct sa_in6, sin6_addr) + sizeof(struct in6_addr))
323 
324 #define OFF_LEN_INET	(8 * offsetof(struct sockaddr_in, sin_addr))
325 #define OFF_LEN_INET6	(8 * offsetof(struct sa_in6, sin6_addr))
326 
327 struct radix_addr_entry {
328 	struct radix_node	rn[2];
329 	struct sockaddr_in	addr;
330 	uint32_t		value;
331 	uint8_t			masklen;
332 };
333 
334 struct sa_in6 {
335 	uint8_t			sin6_len;
336 	uint8_t			sin6_family;
337 	uint8_t			pad[2];
338 	struct in6_addr		sin6_addr;
339 };
340 
341 struct radix_addr_xentry {
342 	struct radix_node	rn[2];
343 	struct sa_in6		addr6;
344 	uint32_t		value;
345 	uint8_t			masklen;
346 };
347 
348 struct radix_cfg {
349 	struct radix_node_head	*head4;
350 	struct radix_node_head	*head6;
351 	size_t			count4;
352 	size_t			count6;
353 };
354 
355 struct ta_buf_radix
356 {
357 	void *ent_ptr;
358 	struct sockaddr	*addr_ptr;
359 	struct sockaddr	*mask_ptr;
360 	union {
361 		struct {
362 			struct sockaddr_in sa;
363 			struct sockaddr_in ma;
364 		} a4;
365 		struct {
366 			struct sa_in6 sa;
367 			struct sa_in6 ma;
368 		} a6;
369 	} addr;
370 };
371 
372 static int ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen,
373     uint32_t *val);
374 static int ta_init_radix(struct ip_fw_chain *ch, void **ta_state,
375     struct table_info *ti, char *data, uint8_t tflags);
376 static int flush_radix_entry(struct radix_node *rn, void *arg);
377 static void ta_destroy_radix(void *ta_state, struct table_info *ti);
378 static void ta_dump_radix_tinfo(void *ta_state, struct table_info *ti,
379     ipfw_ta_tinfo *tinfo);
380 static int ta_dump_radix_tentry(void *ta_state, struct table_info *ti,
381     void *e, ipfw_obj_tentry *tent);
382 static int ta_find_radix_tentry(void *ta_state, struct table_info *ti,
383     ipfw_obj_tentry *tent);
384 static void ta_foreach_radix(void *ta_state, struct table_info *ti,
385     ta_foreach_f *f, void *arg);
386 static void tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa,
387     struct sockaddr *ma, int *set_mask);
388 static int ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
389     void *ta_buf);
390 static int ta_add_radix(void *ta_state, struct table_info *ti,
391     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
392 static int ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
393     void *ta_buf);
394 static int ta_del_radix(void *ta_state, struct table_info *ti,
395     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
396 static void ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
397     void *ta_buf);
398 static int ta_need_modify_radix(void *ta_state, struct table_info *ti,
399     uint32_t count, uint64_t *pflags);
400 
401 static int
402 ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen,
403     uint32_t *val)
404 {
405 	struct radix_node_head *rnh;
406 
407 	if (keylen == sizeof(in_addr_t)) {
408 		struct radix_addr_entry *ent;
409 		struct sockaddr_in sa;
410 		KEY_LEN(sa) = KEY_LEN_INET;
411 		sa.sin_addr.s_addr = *((in_addr_t *)key);
412 		rnh = (struct radix_node_head *)ti->state;
413 		ent = (struct radix_addr_entry *)(rnh->rnh_matchaddr(&sa, &rnh->rh));
414 		if (ent != NULL) {
415 			*val = ent->value;
416 			return (1);
417 		}
418 	} else {
419 		struct radix_addr_xentry *xent;
420 		struct sa_in6 sa6;
421 		KEY_LEN(sa6) = KEY_LEN_INET6;
422 		memcpy(&sa6.sin6_addr, key, sizeof(struct in6_addr));
423 		rnh = (struct radix_node_head *)ti->xstate;
424 		xent = (struct radix_addr_xentry *)(rnh->rnh_matchaddr(&sa6, &rnh->rh));
425 		if (xent != NULL) {
426 			*val = xent->value;
427 			return (1);
428 		}
429 	}
430 
431 	return (0);
432 }
433 
434 /*
435  * New table
436  */
437 static int
438 ta_init_radix(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
439     char *data, uint8_t tflags)
440 {
441 	struct radix_cfg *cfg;
442 
443 	if (!rn_inithead(&ti->state, OFF_LEN_INET))
444 		return (ENOMEM);
445 	if (!rn_inithead(&ti->xstate, OFF_LEN_INET6)) {
446 		rn_detachhead(&ti->state);
447 		return (ENOMEM);
448 	}
449 
450 	cfg = malloc(sizeof(struct radix_cfg), M_IPFW, M_WAITOK | M_ZERO);
451 
452 	*ta_state = cfg;
453 	ti->lookup = ta_lookup_radix;
454 
455 	return (0);
456 }
457 
458 static int
459 flush_radix_entry(struct radix_node *rn, void *arg)
460 {
461 	struct radix_node_head * const rnh = arg;
462 	struct radix_addr_entry *ent;
463 
464 	ent = (struct radix_addr_entry *)
465 	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, &rnh->rh);
466 	if (ent != NULL)
467 		free(ent, M_IPFW_TBL);
468 	return (0);
469 }
470 
471 static void
472 ta_destroy_radix(void *ta_state, struct table_info *ti)
473 {
474 	struct radix_cfg *cfg;
475 	struct radix_node_head *rnh;
476 
477 	cfg = (struct radix_cfg *)ta_state;
478 
479 	rnh = (struct radix_node_head *)(ti->state);
480 	rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh);
481 	rn_detachhead(&ti->state);
482 
483 	rnh = (struct radix_node_head *)(ti->xstate);
484 	rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh);
485 	rn_detachhead(&ti->xstate);
486 
487 	free(cfg, M_IPFW);
488 }
489 
490 /*
491  * Provide algo-specific table info
492  */
493 static void
494 ta_dump_radix_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
495 {
496 	struct radix_cfg *cfg;
497 
498 	cfg = (struct radix_cfg *)ta_state;
499 
500 	tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM;
501 	tinfo->taclass4 = IPFW_TACLASS_RADIX;
502 	tinfo->count4 = cfg->count4;
503 	tinfo->itemsize4 = sizeof(struct radix_addr_entry);
504 	tinfo->taclass6 = IPFW_TACLASS_RADIX;
505 	tinfo->count6 = cfg->count6;
506 	tinfo->itemsize6 = sizeof(struct radix_addr_xentry);
507 }
508 
509 static int
510 ta_dump_radix_tentry(void *ta_state, struct table_info *ti, void *e,
511     ipfw_obj_tentry *tent)
512 {
513 	struct radix_addr_entry *n;
514 #ifdef INET6
515 	struct radix_addr_xentry *xn;
516 #endif
517 
518 	n = (struct radix_addr_entry *)e;
519 
520 	/* Guess IPv4/IPv6 radix by sockaddr family */
521 	if (n->addr.sin_family == AF_INET) {
522 		tent->k.addr.s_addr = n->addr.sin_addr.s_addr;
523 		tent->masklen = n->masklen;
524 		tent->subtype = AF_INET;
525 		tent->v.kidx = n->value;
526 #ifdef INET6
527 	} else {
528 		xn = (struct radix_addr_xentry *)e;
529 		memcpy(&tent->k, &xn->addr6.sin6_addr, sizeof(struct in6_addr));
530 		tent->masklen = xn->masklen;
531 		tent->subtype = AF_INET6;
532 		tent->v.kidx = xn->value;
533 #endif
534 	}
535 
536 	return (0);
537 }
538 
539 static int
540 ta_find_radix_tentry(void *ta_state, struct table_info *ti,
541     ipfw_obj_tentry *tent)
542 {
543 	struct radix_node_head *rnh;
544 	void *e;
545 
546 	e = NULL;
547 	if (tent->subtype == AF_INET) {
548 		struct sockaddr_in sa;
549 		KEY_LEN(sa) = KEY_LEN_INET;
550 		sa.sin_addr.s_addr = tent->k.addr.s_addr;
551 		rnh = (struct radix_node_head *)ti->state;
552 		e = rnh->rnh_matchaddr(&sa, &rnh->rh);
553 	} else {
554 		struct sa_in6 sa6;
555 		KEY_LEN(sa6) = KEY_LEN_INET6;
556 		memcpy(&sa6.sin6_addr, &tent->k.addr6, sizeof(struct in6_addr));
557 		rnh = (struct radix_node_head *)ti->xstate;
558 		e = rnh->rnh_matchaddr(&sa6, &rnh->rh);
559 	}
560 
561 	if (e != NULL) {
562 		ta_dump_radix_tentry(ta_state, ti, e, tent);
563 		return (0);
564 	}
565 
566 	return (ENOENT);
567 }
568 
569 static void
570 ta_foreach_radix(void *ta_state, struct table_info *ti, ta_foreach_f *f,
571     void *arg)
572 {
573 	struct radix_node_head *rnh;
574 
575 	rnh = (struct radix_node_head *)(ti->state);
576 	rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg);
577 
578 	rnh = (struct radix_node_head *)(ti->xstate);
579 	rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg);
580 }
581 
582 
583 #ifdef INET6
584 static inline void ipv6_writemask(struct in6_addr *addr6, uint8_t mask);
585 
586 static inline void
587 ipv6_writemask(struct in6_addr *addr6, uint8_t mask)
588 {
589 	uint32_t *cp;
590 
591 	for (cp = (uint32_t *)addr6; mask >= 32; mask -= 32)
592 		*cp++ = 0xFFFFFFFF;
593 	*cp = htonl(mask ? ~((1 << (32 - mask)) - 1) : 0);
594 }
595 #endif
596 
597 static void
598 tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa,
599     struct sockaddr *ma, int *set_mask)
600 {
601 	int mlen;
602 #ifdef INET
603 	struct sockaddr_in *addr, *mask;
604 #endif
605 #ifdef INET6
606 	struct sa_in6 *addr6, *mask6;
607 #endif
608 	in_addr_t a4;
609 
610 	mlen = tei->masklen;
611 
612 	if (tei->subtype == AF_INET) {
613 #ifdef INET
614 		addr = (struct sockaddr_in *)sa;
615 		mask = (struct sockaddr_in *)ma;
616 		/* Set 'total' structure length */
617 		KEY_LEN(*addr) = KEY_LEN_INET;
618 		KEY_LEN(*mask) = KEY_LEN_INET;
619 		addr->sin_family = AF_INET;
620 		mask->sin_addr.s_addr =
621 		    htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
622 		a4 = *((in_addr_t *)tei->paddr);
623 		addr->sin_addr.s_addr = a4 & mask->sin_addr.s_addr;
624 		if (mlen != 32)
625 			*set_mask = 1;
626 		else
627 			*set_mask = 0;
628 #endif
629 #ifdef INET6
630 	} else if (tei->subtype == AF_INET6) {
631 		/* IPv6 case */
632 		addr6 = (struct sa_in6 *)sa;
633 		mask6 = (struct sa_in6 *)ma;
634 		/* Set 'total' structure length */
635 		KEY_LEN(*addr6) = KEY_LEN_INET6;
636 		KEY_LEN(*mask6) = KEY_LEN_INET6;
637 		addr6->sin6_family = AF_INET6;
638 		ipv6_writemask(&mask6->sin6_addr, mlen);
639 		memcpy(&addr6->sin6_addr, tei->paddr, sizeof(struct in6_addr));
640 		APPLY_MASK(&addr6->sin6_addr, &mask6->sin6_addr);
641 		if (mlen != 128)
642 			*set_mask = 1;
643 		else
644 			*set_mask = 0;
645 #endif
646 	}
647 }
648 
649 static int
650 ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
651     void *ta_buf)
652 {
653 	struct ta_buf_radix *tb;
654 	struct radix_addr_entry *ent;
655 #ifdef INET6
656 	struct radix_addr_xentry *xent;
657 #endif
658 	struct sockaddr *addr, *mask;
659 	int mlen, set_mask;
660 
661 	tb = (struct ta_buf_radix *)ta_buf;
662 
663 	mlen = tei->masklen;
664 	set_mask = 0;
665 
666 	if (tei->subtype == AF_INET) {
667 #ifdef INET
668 		if (mlen > 32)
669 			return (EINVAL);
670 		ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
671 		ent->masklen = mlen;
672 
673 		addr = (struct sockaddr *)&ent->addr;
674 		mask = (struct sockaddr *)&tb->addr.a4.ma;
675 		tb->ent_ptr = ent;
676 #endif
677 #ifdef INET6
678 	} else if (tei->subtype == AF_INET6) {
679 		/* IPv6 case */
680 		if (mlen > 128)
681 			return (EINVAL);
682 		xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO);
683 		xent->masklen = mlen;
684 
685 		addr = (struct sockaddr *)&xent->addr6;
686 		mask = (struct sockaddr *)&tb->addr.a6.ma;
687 		tb->ent_ptr = xent;
688 #endif
689 	} else {
690 		/* Unknown CIDR type */
691 		return (EINVAL);
692 	}
693 
694 	tei_to_sockaddr_ent(tei, addr, mask, &set_mask);
695 	/* Set pointers */
696 	tb->addr_ptr = addr;
697 	if (set_mask != 0)
698 		tb->mask_ptr = mask;
699 
700 	return (0);
701 }
702 
703 static int
704 ta_add_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
705     void *ta_buf, uint32_t *pnum)
706 {
707 	struct radix_cfg *cfg;
708 	struct radix_node_head *rnh;
709 	struct radix_node *rn;
710 	struct ta_buf_radix *tb;
711 	uint32_t *old_value, value;
712 
713 	cfg = (struct radix_cfg *)ta_state;
714 	tb = (struct ta_buf_radix *)ta_buf;
715 
716 	/* Save current entry value from @tei */
717 	if (tei->subtype == AF_INET) {
718 		rnh = ti->state;
719 		((struct radix_addr_entry *)tb->ent_ptr)->value = tei->value;
720 	} else {
721 		rnh = ti->xstate;
722 		((struct radix_addr_xentry *)tb->ent_ptr)->value = tei->value;
723 	}
724 
725 	/* Search for an entry first */
726 	rn = rnh->rnh_lookup(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
727 	if (rn != NULL) {
728 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
729 			return (EEXIST);
730 		/* Record already exists. Update value if we're asked to */
731 		if (tei->subtype == AF_INET)
732 			old_value = &((struct radix_addr_entry *)rn)->value;
733 		else
734 			old_value = &((struct radix_addr_xentry *)rn)->value;
735 
736 		value = *old_value;
737 		*old_value = tei->value;
738 		tei->value = value;
739 
740 		/* Indicate that update has happened instead of addition */
741 		tei->flags |= TEI_FLAGS_UPDATED;
742 		*pnum = 0;
743 
744 		return (0);
745 	}
746 
747 	if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
748 		return (EFBIG);
749 
750 	rn = rnh->rnh_addaddr(tb->addr_ptr, tb->mask_ptr, &rnh->rh,tb->ent_ptr);
751 	if (rn == NULL) {
752 		/* Unknown error */
753 		return (EINVAL);
754 	}
755 
756 	if (tei->subtype == AF_INET)
757 		cfg->count4++;
758 	else
759 		cfg->count6++;
760 	tb->ent_ptr = NULL;
761 	*pnum = 1;
762 
763 	return (0);
764 }
765 
766 static int
767 ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
768     void *ta_buf)
769 {
770 	struct ta_buf_radix *tb;
771 	struct sockaddr *addr, *mask;
772 	int mlen, set_mask;
773 
774 	tb = (struct ta_buf_radix *)ta_buf;
775 
776 	mlen = tei->masklen;
777 	set_mask = 0;
778 
779 	if (tei->subtype == AF_INET) {
780 		if (mlen > 32)
781 			return (EINVAL);
782 
783 		addr = (struct sockaddr *)&tb->addr.a4.sa;
784 		mask = (struct sockaddr *)&tb->addr.a4.ma;
785 #ifdef INET6
786 	} else if (tei->subtype == AF_INET6) {
787 		if (mlen > 128)
788 			return (EINVAL);
789 
790 		addr = (struct sockaddr *)&tb->addr.a6.sa;
791 		mask = (struct sockaddr *)&tb->addr.a6.ma;
792 #endif
793 	} else
794 		return (EINVAL);
795 
796 	tei_to_sockaddr_ent(tei, addr, mask, &set_mask);
797 	tb->addr_ptr = addr;
798 	if (set_mask != 0)
799 		tb->mask_ptr = mask;
800 
801 	return (0);
802 }
803 
804 static int
805 ta_del_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
806     void *ta_buf, uint32_t *pnum)
807 {
808 	struct radix_cfg *cfg;
809 	struct radix_node_head *rnh;
810 	struct radix_node *rn;
811 	struct ta_buf_radix *tb;
812 
813 	cfg = (struct radix_cfg *)ta_state;
814 	tb = (struct ta_buf_radix *)ta_buf;
815 
816 	if (tei->subtype == AF_INET)
817 		rnh = ti->state;
818 	else
819 		rnh = ti->xstate;
820 
821 	rn = rnh->rnh_deladdr(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
822 
823 	if (rn == NULL)
824 		return (ENOENT);
825 
826 	/* Save entry value to @tei */
827 	if (tei->subtype == AF_INET)
828 		tei->value = ((struct radix_addr_entry *)rn)->value;
829 	else
830 		tei->value = ((struct radix_addr_xentry *)rn)->value;
831 
832 	tb->ent_ptr = rn;
833 
834 	if (tei->subtype == AF_INET)
835 		cfg->count4--;
836 	else
837 		cfg->count6--;
838 	*pnum = 1;
839 
840 	return (0);
841 }
842 
843 static void
844 ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
845     void *ta_buf)
846 {
847 	struct ta_buf_radix *tb;
848 
849 	tb = (struct ta_buf_radix *)ta_buf;
850 
851 	if (tb->ent_ptr != NULL)
852 		free(tb->ent_ptr, M_IPFW_TBL);
853 }
854 
855 static int
856 ta_need_modify_radix(void *ta_state, struct table_info *ti, uint32_t count,
857     uint64_t *pflags)
858 {
859 
860 	/*
861 	 * radix does not require additional memory allocations
862 	 * other than nodes itself. Adding new masks to the tree do
863 	 * but we don't have any API to call (and we don't known which
864 	 * sizes do we need).
865 	 */
866 	return (0);
867 }
868 
869 struct table_algo addr_radix = {
870 	.name		= "addr:radix",
871 	.type		= IPFW_TABLE_ADDR,
872 	.flags		= TA_FLAG_DEFAULT,
873 	.ta_buf_size	= sizeof(struct ta_buf_radix),
874 	.init		= ta_init_radix,
875 	.destroy	= ta_destroy_radix,
876 	.prepare_add	= ta_prepare_add_radix,
877 	.prepare_del	= ta_prepare_del_radix,
878 	.add		= ta_add_radix,
879 	.del		= ta_del_radix,
880 	.flush_entry	= ta_flush_radix_entry,
881 	.foreach	= ta_foreach_radix,
882 	.dump_tentry	= ta_dump_radix_tentry,
883 	.find_tentry	= ta_find_radix_tentry,
884 	.dump_tinfo	= ta_dump_radix_tinfo,
885 	.need_modify	= ta_need_modify_radix,
886 };
887 
888 
889 /*
890  * addr:hash cmds
891  *
892  *
893  * ti->data:
894  * [inv.mask4][inv.mask6][log2hsize4][log2hsize6]
895  * [        8][        8[          8][         8]
896  *
897  * inv.mask4: 32 - mask
898  * inv.mask6:
899  * 1) _slow lookup: mask
900  * 2) _aligned: (128 - mask) / 8
901  * 3) _64: 8
902  *
903  *
904  * pflags:
905  * [v4=1/v6=0][hsize]
906  * [       32][   32]
907  */
908 
909 struct chashentry;
910 
911 SLIST_HEAD(chashbhead, chashentry);
912 
913 struct chash_cfg {
914 	struct chashbhead *head4;
915 	struct chashbhead *head6;
916 	size_t	size4;
917 	size_t	size6;
918 	size_t	items4;
919 	size_t	items6;
920 	uint8_t	mask4;
921 	uint8_t	mask6;
922 };
923 
924 struct chashentry {
925 	SLIST_ENTRY(chashentry)	next;
926 	uint32_t	value;
927 	uint32_t	type;
928 	union {
929 		uint32_t	a4;	/* Host format */
930 		struct in6_addr	a6;	/* Network format */
931 	} a;
932 };
933 
934 struct ta_buf_chash
935 {
936 	void *ent_ptr;
937 	struct chashentry ent;
938 };
939 
940 #ifdef INET
941 static __inline uint32_t hash_ip(uint32_t addr, int hsize);
942 #endif
943 #ifdef INET6
944 static __inline uint32_t hash_ip6(struct in6_addr *addr6, int hsize);
945 static __inline uint16_t hash_ip64(struct in6_addr *addr6, int hsize);
946 static __inline uint32_t hash_ip6_slow(struct in6_addr *addr6, void *key,
947     int mask, int hsize);
948 static __inline uint32_t hash_ip6_al(struct in6_addr *addr6, void *key, int mask,
949     int hsize);
950 #endif
951 static int ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen,
952     uint32_t *val);
953 static int ta_lookup_chash_aligned(struct table_info *ti, void *key,
954     uint32_t keylen, uint32_t *val);
955 static int ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen,
956     uint32_t *val);
957 static int chash_parse_opts(struct chash_cfg *cfg, char *data);
958 static void ta_print_chash_config(void *ta_state, struct table_info *ti,
959     char *buf, size_t bufsize);
960 static int ta_log2(uint32_t v);
961 static int ta_init_chash(struct ip_fw_chain *ch, void **ta_state,
962     struct table_info *ti, char *data, uint8_t tflags);
963 static void ta_destroy_chash(void *ta_state, struct table_info *ti);
964 static void ta_dump_chash_tinfo(void *ta_state, struct table_info *ti,
965     ipfw_ta_tinfo *tinfo);
966 static int ta_dump_chash_tentry(void *ta_state, struct table_info *ti,
967     void *e, ipfw_obj_tentry *tent);
968 static uint32_t hash_ent(struct chashentry *ent, int af, int mlen,
969     uint32_t size);
970 static int tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent);
971 static int ta_find_chash_tentry(void *ta_state, struct table_info *ti,
972     ipfw_obj_tentry *tent);
973 static void ta_foreach_chash(void *ta_state, struct table_info *ti,
974     ta_foreach_f *f, void *arg);
975 static int ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
976     void *ta_buf);
977 static int ta_add_chash(void *ta_state, struct table_info *ti,
978     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
979 static int ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
980     void *ta_buf);
981 static int ta_del_chash(void *ta_state, struct table_info *ti,
982     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
983 static void ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
984     void *ta_buf);
985 static int ta_need_modify_chash(void *ta_state, struct table_info *ti,
986     uint32_t count, uint64_t *pflags);
987 static int ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags);
988 static int ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf,
989     uint64_t *pflags);
990 static void ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf,
991     uint64_t pflags);
992 static void ta_flush_mod_chash(void *ta_buf);
993 
994 
995 #ifdef INET
996 static __inline uint32_t
997 hash_ip(uint32_t addr, int hsize)
998 {
999 
1000 	return (addr % (hsize - 1));
1001 }
1002 #endif
1003 
1004 #ifdef INET6
1005 static __inline uint32_t
1006 hash_ip6(struct in6_addr *addr6, int hsize)
1007 {
1008 	uint32_t i;
1009 
1010 	i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1] ^
1011 	    addr6->s6_addr32[2] ^ addr6->s6_addr32[3];
1012 
1013 	return (i % (hsize - 1));
1014 }
1015 
1016 
1017 static __inline uint16_t
1018 hash_ip64(struct in6_addr *addr6, int hsize)
1019 {
1020 	uint32_t i;
1021 
1022 	i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1];
1023 
1024 	return (i % (hsize - 1));
1025 }
1026 
1027 
1028 static __inline uint32_t
1029 hash_ip6_slow(struct in6_addr *addr6, void *key, int mask, int hsize)
1030 {
1031 	struct in6_addr mask6;
1032 
1033 	ipv6_writemask(&mask6, mask);
1034 	memcpy(addr6, key, sizeof(struct in6_addr));
1035 	APPLY_MASK(addr6, &mask6);
1036 	return (hash_ip6(addr6, hsize));
1037 }
1038 
1039 static __inline uint32_t
1040 hash_ip6_al(struct in6_addr *addr6, void *key, int mask, int hsize)
1041 {
1042 	uint64_t *paddr;
1043 
1044 	paddr = (uint64_t *)addr6;
1045 	*paddr = 0;
1046 	*(paddr + 1) = 0;
1047 	memcpy(addr6, key, mask);
1048 	return (hash_ip6(addr6, hsize));
1049 }
1050 #endif
1051 
1052 static int
1053 ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen,
1054     uint32_t *val)
1055 {
1056 	struct chashbhead *head;
1057 	struct chashentry *ent;
1058 	uint16_t hash, hsize;
1059 	uint8_t imask;
1060 
1061 	if (keylen == sizeof(in_addr_t)) {
1062 #ifdef INET
1063 		head = (struct chashbhead *)ti->state;
1064 		imask = ti->data >> 24;
1065 		hsize = 1 << ((ti->data & 0xFFFF) >> 8);
1066 		uint32_t a;
1067 		a = ntohl(*((in_addr_t *)key));
1068 		a = a >> imask;
1069 		hash = hash_ip(a, hsize);
1070 		SLIST_FOREACH(ent, &head[hash], next) {
1071 			if (ent->a.a4 == a) {
1072 				*val = ent->value;
1073 				return (1);
1074 			}
1075 		}
1076 #endif
1077 	} else {
1078 #ifdef INET6
1079 		/* IPv6: worst scenario: non-round mask */
1080 		struct in6_addr addr6;
1081 		head = (struct chashbhead *)ti->xstate;
1082 		imask = (ti->data & 0xFF0000) >> 16;
1083 		hsize = 1 << (ti->data & 0xFF);
1084 		hash = hash_ip6_slow(&addr6, key, imask, hsize);
1085 		SLIST_FOREACH(ent, &head[hash], next) {
1086 			if (memcmp(&ent->a.a6, &addr6, 16) == 0) {
1087 				*val = ent->value;
1088 				return (1);
1089 			}
1090 		}
1091 #endif
1092 	}
1093 
1094 	return (0);
1095 }
1096 
1097 static int
1098 ta_lookup_chash_aligned(struct table_info *ti, void *key, uint32_t keylen,
1099     uint32_t *val)
1100 {
1101 	struct chashbhead *head;
1102 	struct chashentry *ent;
1103 	uint16_t hash, hsize;
1104 	uint8_t imask;
1105 
1106 	if (keylen == sizeof(in_addr_t)) {
1107 #ifdef INET
1108 		head = (struct chashbhead *)ti->state;
1109 		imask = ti->data >> 24;
1110 		hsize = 1 << ((ti->data & 0xFFFF) >> 8);
1111 		uint32_t a;
1112 		a = ntohl(*((in_addr_t *)key));
1113 		a = a >> imask;
1114 		hash = hash_ip(a, hsize);
1115 		SLIST_FOREACH(ent, &head[hash], next) {
1116 			if (ent->a.a4 == a) {
1117 				*val = ent->value;
1118 				return (1);
1119 			}
1120 		}
1121 #endif
1122 	} else {
1123 #ifdef INET6
1124 		/* IPv6: aligned to 8bit mask */
1125 		struct in6_addr addr6;
1126 		uint64_t *paddr, *ptmp;
1127 		head = (struct chashbhead *)ti->xstate;
1128 		imask = (ti->data & 0xFF0000) >> 16;
1129 		hsize = 1 << (ti->data & 0xFF);
1130 
1131 		hash = hash_ip6_al(&addr6, key, imask, hsize);
1132 		paddr = (uint64_t *)&addr6;
1133 		SLIST_FOREACH(ent, &head[hash], next) {
1134 			ptmp = (uint64_t *)&ent->a.a6;
1135 			if (paddr[0] == ptmp[0] && paddr[1] == ptmp[1]) {
1136 				*val = ent->value;
1137 				return (1);
1138 			}
1139 		}
1140 #endif
1141 	}
1142 
1143 	return (0);
1144 }
1145 
1146 static int
1147 ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen,
1148     uint32_t *val)
1149 {
1150 	struct chashbhead *head;
1151 	struct chashentry *ent;
1152 	uint16_t hash, hsize;
1153 	uint8_t imask;
1154 
1155 	if (keylen == sizeof(in_addr_t)) {
1156 #ifdef INET
1157 		head = (struct chashbhead *)ti->state;
1158 		imask = ti->data >> 24;
1159 		hsize = 1 << ((ti->data & 0xFFFF) >> 8);
1160 		uint32_t a;
1161 		a = ntohl(*((in_addr_t *)key));
1162 		a = a >> imask;
1163 		hash = hash_ip(a, hsize);
1164 		SLIST_FOREACH(ent, &head[hash], next) {
1165 			if (ent->a.a4 == a) {
1166 				*val = ent->value;
1167 				return (1);
1168 			}
1169 		}
1170 #endif
1171 	} else {
1172 #ifdef INET6
1173 		/* IPv6: /64 */
1174 		uint64_t a6, *paddr;
1175 		head = (struct chashbhead *)ti->xstate;
1176 		paddr = (uint64_t *)key;
1177 		hsize = 1 << (ti->data & 0xFF);
1178 		a6 = *paddr;
1179 		hash = hash_ip64((struct in6_addr *)key, hsize);
1180 		SLIST_FOREACH(ent, &head[hash], next) {
1181 			paddr = (uint64_t *)&ent->a.a6;
1182 			if (a6 == *paddr) {
1183 				*val = ent->value;
1184 				return (1);
1185 			}
1186 		}
1187 #endif
1188 	}
1189 
1190 	return (0);
1191 }
1192 
1193 static int
1194 chash_parse_opts(struct chash_cfg *cfg, char *data)
1195 {
1196 	char *pdel, *pend, *s;
1197 	int mask4, mask6;
1198 
1199 	mask4 = cfg->mask4;
1200 	mask6 = cfg->mask6;
1201 
1202 	if (data == NULL)
1203 		return (0);
1204 	if ((pdel = strchr(data, ' ')) == NULL)
1205 		return (0);
1206 	while (*pdel == ' ')
1207 		pdel++;
1208 	if (strncmp(pdel, "masks=", 6) != 0)
1209 		return (EINVAL);
1210 	if ((s = strchr(pdel, ' ')) != NULL)
1211 		*s++ = '\0';
1212 
1213 	pdel += 6;
1214 	/* Need /XX[,/YY] */
1215 	if (*pdel++ != '/')
1216 		return (EINVAL);
1217 	mask4 = strtol(pdel, &pend, 10);
1218 	if (*pend == ',') {
1219 		/* ,/YY */
1220 		pdel = pend + 1;
1221 		if (*pdel++ != '/')
1222 			return (EINVAL);
1223 		mask6 = strtol(pdel, &pend, 10);
1224 		if (*pend != '\0')
1225 			return (EINVAL);
1226 	} else if (*pend != '\0')
1227 		return (EINVAL);
1228 
1229 	if (mask4 < 0 || mask4 > 32 || mask6 < 0 || mask6 > 128)
1230 		return (EINVAL);
1231 
1232 	cfg->mask4 = mask4;
1233 	cfg->mask6 = mask6;
1234 
1235 	return (0);
1236 }
1237 
1238 static void
1239 ta_print_chash_config(void *ta_state, struct table_info *ti, char *buf,
1240     size_t bufsize)
1241 {
1242 	struct chash_cfg *cfg;
1243 
1244 	cfg = (struct chash_cfg *)ta_state;
1245 
1246 	if (cfg->mask4 != 32 || cfg->mask6 != 128)
1247 		snprintf(buf, bufsize, "%s masks=/%d,/%d", "addr:hash",
1248 		    cfg->mask4, cfg->mask6);
1249 	else
1250 		snprintf(buf, bufsize, "%s", "addr:hash");
1251 }
1252 
1253 static int
1254 ta_log2(uint32_t v)
1255 {
1256 	uint32_t r;
1257 
1258 	r = 0;
1259 	while (v >>= 1)
1260 		r++;
1261 
1262 	return (r);
1263 }
1264 
1265 /*
1266  * New table.
1267  * We assume 'data' to be either NULL or the following format:
1268  * 'addr:hash [masks=/32[,/128]]'
1269  */
1270 static int
1271 ta_init_chash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
1272     char *data, uint8_t tflags)
1273 {
1274 	int error, i;
1275 	uint32_t hsize;
1276 	struct chash_cfg *cfg;
1277 
1278 	cfg = malloc(sizeof(struct chash_cfg), M_IPFW, M_WAITOK | M_ZERO);
1279 
1280 	cfg->mask4 = 32;
1281 	cfg->mask6 = 128;
1282 
1283 	if ((error = chash_parse_opts(cfg, data)) != 0) {
1284 		free(cfg, M_IPFW);
1285 		return (error);
1286 	}
1287 
1288 	cfg->size4 = 128;
1289 	cfg->size6 = 128;
1290 
1291 	cfg->head4 = malloc(sizeof(struct chashbhead) * cfg->size4, M_IPFW,
1292 	    M_WAITOK | M_ZERO);
1293 	cfg->head6 = malloc(sizeof(struct chashbhead) * cfg->size6, M_IPFW,
1294 	    M_WAITOK | M_ZERO);
1295 	for (i = 0; i < cfg->size4; i++)
1296 		SLIST_INIT(&cfg->head4[i]);
1297 	for (i = 0; i < cfg->size6; i++)
1298 		SLIST_INIT(&cfg->head6[i]);
1299 
1300 
1301 	*ta_state = cfg;
1302 	ti->state = cfg->head4;
1303 	ti->xstate = cfg->head6;
1304 
1305 	/* Store data depending on v6 mask length */
1306 	hsize = ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6);
1307 	if (cfg->mask6 == 64) {
1308 		ti->data = (32 - cfg->mask4) << 24 | (128 - cfg->mask6) << 16|
1309 		    hsize;
1310 		ti->lookup = ta_lookup_chash_64;
1311 	} else if ((cfg->mask6  % 8) == 0) {
1312 		ti->data = (32 - cfg->mask4) << 24 |
1313 		    cfg->mask6 << 13 | hsize;
1314 		ti->lookup = ta_lookup_chash_aligned;
1315 	} else {
1316 		/* don't do that! */
1317 		ti->data = (32 - cfg->mask4) << 24 |
1318 		    cfg->mask6 << 16 | hsize;
1319 		ti->lookup = ta_lookup_chash_slow;
1320 	}
1321 
1322 	return (0);
1323 }
1324 
1325 static void
1326 ta_destroy_chash(void *ta_state, struct table_info *ti)
1327 {
1328 	struct chash_cfg *cfg;
1329 	struct chashentry *ent, *ent_next;
1330 	int i;
1331 
1332 	cfg = (struct chash_cfg *)ta_state;
1333 
1334 	for (i = 0; i < cfg->size4; i++)
1335 		SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next)
1336 			free(ent, M_IPFW_TBL);
1337 
1338 	for (i = 0; i < cfg->size6; i++)
1339 		SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next)
1340 			free(ent, M_IPFW_TBL);
1341 
1342 	free(cfg->head4, M_IPFW);
1343 	free(cfg->head6, M_IPFW);
1344 
1345 	free(cfg, M_IPFW);
1346 }
1347 
1348 static void
1349 ta_dump_chash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
1350 {
1351 	struct chash_cfg *cfg;
1352 
1353 	cfg = (struct chash_cfg *)ta_state;
1354 
1355 	tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM;
1356 	tinfo->taclass4 = IPFW_TACLASS_HASH;
1357 	tinfo->size4 = cfg->size4;
1358 	tinfo->count4 = cfg->items4;
1359 	tinfo->itemsize4 = sizeof(struct chashentry);
1360 	tinfo->taclass6 = IPFW_TACLASS_HASH;
1361 	tinfo->size6 = cfg->size6;
1362 	tinfo->count6 = cfg->items6;
1363 	tinfo->itemsize6 = sizeof(struct chashentry);
1364 }
1365 
1366 static int
1367 ta_dump_chash_tentry(void *ta_state, struct table_info *ti, void *e,
1368     ipfw_obj_tentry *tent)
1369 {
1370 	struct chash_cfg *cfg;
1371 	struct chashentry *ent;
1372 
1373 	cfg = (struct chash_cfg *)ta_state;
1374 	ent = (struct chashentry *)e;
1375 
1376 	if (ent->type == AF_INET) {
1377 		tent->k.addr.s_addr = htonl(ent->a.a4 << (32 - cfg->mask4));
1378 		tent->masklen = cfg->mask4;
1379 		tent->subtype = AF_INET;
1380 		tent->v.kidx = ent->value;
1381 #ifdef INET6
1382 	} else {
1383 		memcpy(&tent->k, &ent->a.a6, sizeof(struct in6_addr));
1384 		tent->masklen = cfg->mask6;
1385 		tent->subtype = AF_INET6;
1386 		tent->v.kidx = ent->value;
1387 #endif
1388 	}
1389 
1390 	return (0);
1391 }
1392 
1393 static uint32_t
1394 hash_ent(struct chashentry *ent, int af, int mlen, uint32_t size)
1395 {
1396 	uint32_t hash;
1397 
1398 	hash = 0;
1399 
1400 	if (af == AF_INET) {
1401 #ifdef INET
1402 		hash = hash_ip(ent->a.a4, size);
1403 #endif
1404 	} else {
1405 #ifdef INET6
1406 		if (mlen == 64)
1407 			hash = hash_ip64(&ent->a.a6, size);
1408 		else
1409 			hash = hash_ip6(&ent->a.a6, size);
1410 #endif
1411 	}
1412 
1413 	return (hash);
1414 }
1415 
1416 static int
1417 tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent)
1418 {
1419 	int mlen;
1420 #ifdef INET6
1421 	struct in6_addr mask6;
1422 #endif
1423 
1424 
1425 	mlen = tei->masklen;
1426 
1427 	if (tei->subtype == AF_INET) {
1428 #ifdef INET
1429 		if (mlen > 32)
1430 			return (EINVAL);
1431 		ent->type = AF_INET;
1432 
1433 		/* Calculate masked address */
1434 		ent->a.a4 = ntohl(*((in_addr_t *)tei->paddr)) >> (32 - mlen);
1435 #endif
1436 #ifdef INET6
1437 	} else if (tei->subtype == AF_INET6) {
1438 		/* IPv6 case */
1439 		if (mlen > 128)
1440 			return (EINVAL);
1441 		ent->type = AF_INET6;
1442 
1443 		ipv6_writemask(&mask6, mlen);
1444 		memcpy(&ent->a.a6, tei->paddr, sizeof(struct in6_addr));
1445 		APPLY_MASK(&ent->a.a6, &mask6);
1446 #endif
1447 	} else {
1448 		/* Unknown CIDR type */
1449 		return (EINVAL);
1450 	}
1451 
1452 	return (0);
1453 }
1454 
1455 static int
1456 ta_find_chash_tentry(void *ta_state, struct table_info *ti,
1457     ipfw_obj_tentry *tent)
1458 {
1459 	struct chash_cfg *cfg;
1460 	struct chashbhead *head;
1461 	struct chashentry ent, *tmp;
1462 	struct tentry_info tei;
1463 	int error;
1464 	uint32_t hash;
1465 
1466 	cfg = (struct chash_cfg *)ta_state;
1467 
1468 	memset(&ent, 0, sizeof(ent));
1469 	memset(&tei, 0, sizeof(tei));
1470 
1471 	if (tent->subtype == AF_INET) {
1472 		tei.paddr = &tent->k.addr;
1473 		tei.masklen = cfg->mask4;
1474 		tei.subtype = AF_INET;
1475 
1476 		if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
1477 			return (error);
1478 
1479 		head = cfg->head4;
1480 		hash = hash_ent(&ent, AF_INET, cfg->mask4, cfg->size4);
1481 		/* Check for existence */
1482 		SLIST_FOREACH(tmp, &head[hash], next) {
1483 			if (tmp->a.a4 != ent.a.a4)
1484 				continue;
1485 
1486 			ta_dump_chash_tentry(ta_state, ti, tmp, tent);
1487 			return (0);
1488 		}
1489 	} else {
1490 		tei.paddr = &tent->k.addr6;
1491 		tei.masklen = cfg->mask6;
1492 		tei.subtype = AF_INET6;
1493 
1494 		if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
1495 			return (error);
1496 
1497 		head = cfg->head6;
1498 		hash = hash_ent(&ent, AF_INET6, cfg->mask6, cfg->size6);
1499 		/* Check for existence */
1500 		SLIST_FOREACH(tmp, &head[hash], next) {
1501 			if (memcmp(&tmp->a.a6, &ent.a.a6, 16) != 0)
1502 				continue;
1503 			ta_dump_chash_tentry(ta_state, ti, tmp, tent);
1504 			return (0);
1505 		}
1506 	}
1507 
1508 	return (ENOENT);
1509 }
1510 
1511 static void
1512 ta_foreach_chash(void *ta_state, struct table_info *ti, ta_foreach_f *f,
1513     void *arg)
1514 {
1515 	struct chash_cfg *cfg;
1516 	struct chashentry *ent, *ent_next;
1517 	int i;
1518 
1519 	cfg = (struct chash_cfg *)ta_state;
1520 
1521 	for (i = 0; i < cfg->size4; i++)
1522 		SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next)
1523 			f(ent, arg);
1524 
1525 	for (i = 0; i < cfg->size6; i++)
1526 		SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next)
1527 			f(ent, arg);
1528 }
1529 
1530 static int
1531 ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
1532     void *ta_buf)
1533 {
1534 	struct ta_buf_chash *tb;
1535 	struct chashentry *ent;
1536 	int error;
1537 
1538 	tb = (struct ta_buf_chash *)ta_buf;
1539 
1540 	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
1541 
1542 	error = tei_to_chash_ent(tei, ent);
1543 	if (error != 0) {
1544 		free(ent, M_IPFW_TBL);
1545 		return (error);
1546 	}
1547 	tb->ent_ptr = ent;
1548 
1549 	return (0);
1550 }
1551 
1552 static int
1553 ta_add_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
1554     void *ta_buf, uint32_t *pnum)
1555 {
1556 	struct chash_cfg *cfg;
1557 	struct chashbhead *head;
1558 	struct chashentry *ent, *tmp;
1559 	struct ta_buf_chash *tb;
1560 	int exists;
1561 	uint32_t hash, value;
1562 
1563 	cfg = (struct chash_cfg *)ta_state;
1564 	tb = (struct ta_buf_chash *)ta_buf;
1565 	ent = (struct chashentry *)tb->ent_ptr;
1566 	hash = 0;
1567 	exists = 0;
1568 
1569 	/* Read current value from @tei */
1570 	ent->value = tei->value;
1571 
1572 	/* Read cuurrent value */
1573 	if (tei->subtype == AF_INET) {
1574 		if (tei->masklen != cfg->mask4)
1575 			return (EINVAL);
1576 		head = cfg->head4;
1577 		hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4);
1578 
1579 		/* Check for existence */
1580 		SLIST_FOREACH(tmp, &head[hash], next) {
1581 			if (tmp->a.a4 == ent->a.a4) {
1582 				exists = 1;
1583 				break;
1584 			}
1585 		}
1586 	} else {
1587 		if (tei->masklen != cfg->mask6)
1588 			return (EINVAL);
1589 		head = cfg->head6;
1590 		hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6);
1591 		/* Check for existence */
1592 		SLIST_FOREACH(tmp, &head[hash], next) {
1593 			if (memcmp(&tmp->a.a6, &ent->a.a6, 16) == 0) {
1594 				exists = 1;
1595 				break;
1596 			}
1597 		}
1598 	}
1599 
1600 	if (exists == 1) {
1601 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
1602 			return (EEXIST);
1603 		/* Record already exists. Update value if we're asked to */
1604 		value = tmp->value;
1605 		tmp->value = tei->value;
1606 		tei->value = value;
1607 		/* Indicate that update has happened instead of addition */
1608 		tei->flags |= TEI_FLAGS_UPDATED;
1609 		*pnum = 0;
1610 	} else {
1611 		if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
1612 			return (EFBIG);
1613 		SLIST_INSERT_HEAD(&head[hash], ent, next);
1614 		tb->ent_ptr = NULL;
1615 		*pnum = 1;
1616 
1617 		/* Update counters */
1618 		if (tei->subtype == AF_INET)
1619 			cfg->items4++;
1620 		else
1621 			cfg->items6++;
1622 	}
1623 
1624 	return (0);
1625 }
1626 
1627 static int
1628 ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
1629     void *ta_buf)
1630 {
1631 	struct ta_buf_chash *tb;
1632 
1633 	tb = (struct ta_buf_chash *)ta_buf;
1634 
1635 	return (tei_to_chash_ent(tei, &tb->ent));
1636 }
1637 
1638 static int
1639 ta_del_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
1640     void *ta_buf, uint32_t *pnum)
1641 {
1642 	struct chash_cfg *cfg;
1643 	struct chashbhead *head;
1644 	struct chashentry *tmp, *tmp_next, *ent;
1645 	struct ta_buf_chash *tb;
1646 	uint32_t hash;
1647 
1648 	cfg = (struct chash_cfg *)ta_state;
1649 	tb = (struct ta_buf_chash *)ta_buf;
1650 	ent = &tb->ent;
1651 
1652 	if (tei->subtype == AF_INET) {
1653 		if (tei->masklen != cfg->mask4)
1654 			return (EINVAL);
1655 		head = cfg->head4;
1656 		hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4);
1657 
1658 		SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) {
1659 			if (tmp->a.a4 != ent->a.a4)
1660 				continue;
1661 
1662 			SLIST_REMOVE(&head[hash], tmp, chashentry, next);
1663 			cfg->items4--;
1664 			tb->ent_ptr = tmp;
1665 			tei->value = tmp->value;
1666 			*pnum = 1;
1667 			return (0);
1668 		}
1669 	} else {
1670 		if (tei->masklen != cfg->mask6)
1671 			return (EINVAL);
1672 		head = cfg->head6;
1673 		hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6);
1674 		SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) {
1675 			if (memcmp(&tmp->a.a6, &ent->a.a6, 16) != 0)
1676 				continue;
1677 
1678 			SLIST_REMOVE(&head[hash], tmp, chashentry, next);
1679 			cfg->items6--;
1680 			tb->ent_ptr = tmp;
1681 			tei->value = tmp->value;
1682 			*pnum = 1;
1683 			return (0);
1684 		}
1685 	}
1686 
1687 	return (ENOENT);
1688 }
1689 
1690 static void
1691 ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
1692     void *ta_buf)
1693 {
1694 	struct ta_buf_chash *tb;
1695 
1696 	tb = (struct ta_buf_chash *)ta_buf;
1697 
1698 	if (tb->ent_ptr != NULL)
1699 		free(tb->ent_ptr, M_IPFW_TBL);
1700 }
1701 
1702 /*
1703  * Hash growing callbacks.
1704  */
1705 
1706 static int
1707 ta_need_modify_chash(void *ta_state, struct table_info *ti, uint32_t count,
1708     uint64_t *pflags)
1709 {
1710 	struct chash_cfg *cfg;
1711 	uint64_t data;
1712 
1713 	/*
1714 	 * Since we don't know exact number of IPv4/IPv6 records in @count,
1715 	 * ignore non-zero @count value at all. Check current hash sizes
1716 	 * and return appropriate data.
1717 	 */
1718 
1719 	cfg = (struct chash_cfg *)ta_state;
1720 
1721 	data = 0;
1722 	if (cfg->items4 > cfg->size4 && cfg->size4 < 65536)
1723 		data |= (cfg->size4 * 2) << 16;
1724 	if (cfg->items6 > cfg->size6 && cfg->size6 < 65536)
1725 		data |= cfg->size6 * 2;
1726 
1727 	if (data != 0) {
1728 		*pflags = data;
1729 		return (1);
1730 	}
1731 
1732 	return (0);
1733 }
1734 
1735 /*
1736  * Allocate new, larger chash.
1737  */
1738 static int
1739 ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags)
1740 {
1741 	struct mod_item *mi;
1742 	struct chashbhead *head;
1743 	int i;
1744 
1745 	mi = (struct mod_item *)ta_buf;
1746 
1747 	memset(mi, 0, sizeof(struct mod_item));
1748 	mi->size = (*pflags >> 16) & 0xFFFF;
1749 	mi->size6 = *pflags & 0xFFFF;
1750 	if (mi->size > 0) {
1751 		head = malloc(sizeof(struct chashbhead) * mi->size,
1752 		    M_IPFW, M_WAITOK | M_ZERO);
1753 		for (i = 0; i < mi->size; i++)
1754 			SLIST_INIT(&head[i]);
1755 		mi->main_ptr = head;
1756 	}
1757 
1758 	if (mi->size6 > 0) {
1759 		head = malloc(sizeof(struct chashbhead) * mi->size6,
1760 		    M_IPFW, M_WAITOK | M_ZERO);
1761 		for (i = 0; i < mi->size6; i++)
1762 			SLIST_INIT(&head[i]);
1763 		mi->main_ptr6 = head;
1764 	}
1765 
1766 	return (0);
1767 }
1768 
1769 /*
1770  * Copy data from old runtime array to new one.
1771  */
1772 static int
1773 ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf,
1774     uint64_t *pflags)
1775 {
1776 
1777 	/* In is not possible to do rehash if we're not holidng WLOCK. */
1778 	return (0);
1779 }
1780 
1781 /*
1782  * Switch old & new arrays.
1783  */
1784 static void
1785 ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf,
1786     uint64_t pflags)
1787 {
1788 	struct mod_item *mi;
1789 	struct chash_cfg *cfg;
1790 	struct chashbhead *old_head, *new_head;
1791 	struct chashentry *ent, *ent_next;
1792 	int af, i, mlen;
1793 	uint32_t nhash;
1794 	size_t old_size, new_size;
1795 
1796 	mi = (struct mod_item *)ta_buf;
1797 	cfg = (struct chash_cfg *)ta_state;
1798 
1799 	/* Check which hash we need to grow and do we still need that */
1800 	if (mi->size > 0 && cfg->size4 < mi->size) {
1801 		new_head = (struct chashbhead *)mi->main_ptr;
1802 		new_size = mi->size;
1803 		old_size = cfg->size4;
1804 		old_head = ti->state;
1805 		mlen = cfg->mask4;
1806 		af = AF_INET;
1807 
1808 		for (i = 0; i < old_size; i++) {
1809 			SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
1810 				nhash = hash_ent(ent, af, mlen, new_size);
1811 				SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
1812 			}
1813 		}
1814 
1815 		ti->state = new_head;
1816 		cfg->head4 = new_head;
1817 		cfg->size4 = mi->size;
1818 		mi->main_ptr = old_head;
1819 	}
1820 
1821 	if (mi->size6 > 0 && cfg->size6 < mi->size6) {
1822 		new_head = (struct chashbhead *)mi->main_ptr6;
1823 		new_size = mi->size6;
1824 		old_size = cfg->size6;
1825 		old_head = ti->xstate;
1826 		mlen = cfg->mask6;
1827 		af = AF_INET6;
1828 
1829 		for (i = 0; i < old_size; i++) {
1830 			SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
1831 				nhash = hash_ent(ent, af, mlen, new_size);
1832 				SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
1833 			}
1834 		}
1835 
1836 		ti->xstate = new_head;
1837 		cfg->head6 = new_head;
1838 		cfg->size6 = mi->size6;
1839 		mi->main_ptr6 = old_head;
1840 	}
1841 
1842 	/* Update lower 32 bits with new values */
1843 	ti->data &= 0xFFFFFFFF00000000;
1844 	ti->data |= ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6);
1845 }
1846 
1847 /*
1848  * Free unneded array.
1849  */
1850 static void
1851 ta_flush_mod_chash(void *ta_buf)
1852 {
1853 	struct mod_item *mi;
1854 
1855 	mi = (struct mod_item *)ta_buf;
1856 	if (mi->main_ptr != NULL)
1857 		free(mi->main_ptr, M_IPFW);
1858 	if (mi->main_ptr6 != NULL)
1859 		free(mi->main_ptr6, M_IPFW);
1860 }
1861 
1862 struct table_algo addr_hash = {
1863 	.name		= "addr:hash",
1864 	.type		= IPFW_TABLE_ADDR,
1865 	.ta_buf_size	= sizeof(struct ta_buf_chash),
1866 	.init		= ta_init_chash,
1867 	.destroy	= ta_destroy_chash,
1868 	.prepare_add	= ta_prepare_add_chash,
1869 	.prepare_del	= ta_prepare_del_chash,
1870 	.add		= ta_add_chash,
1871 	.del		= ta_del_chash,
1872 	.flush_entry	= ta_flush_chash_entry,
1873 	.foreach	= ta_foreach_chash,
1874 	.dump_tentry	= ta_dump_chash_tentry,
1875 	.find_tentry	= ta_find_chash_tentry,
1876 	.print_config	= ta_print_chash_config,
1877 	.dump_tinfo	= ta_dump_chash_tinfo,
1878 	.need_modify	= ta_need_modify_chash,
1879 	.prepare_mod	= ta_prepare_mod_chash,
1880 	.fill_mod	= ta_fill_mod_chash,
1881 	.modify		= ta_modify_chash,
1882 	.flush_mod	= ta_flush_mod_chash,
1883 };
1884 
1885 
1886 /*
1887  * Iface table cmds.
1888  *
1889  * Implementation:
1890  *
1891  * Runtime part:
1892  * - sorted array of "struct ifidx" pointed by ti->state.
1893  *   Array is allocated with rounding up to IFIDX_CHUNK. Only existing
1894  *   interfaces are stored in array, however its allocated size is
1895  *   sufficient to hold all table records if needed.
1896  * - current array size is stored in ti->data
1897  *
1898  * Table data:
1899  * - "struct iftable_cfg" is allocated to store table state (ta_state).
1900  * - All table records are stored inside namedobj instance.
1901  *
1902  */
1903 
1904 struct ifidx {
1905 	uint16_t	kidx;
1906 	uint16_t	spare;
1907 	uint32_t	value;
1908 };
1909 #define	DEFAULT_IFIDX_SIZE	64
1910 
1911 struct iftable_cfg;
1912 
1913 struct ifentry {
1914 	struct named_object	no;
1915 	struct ipfw_ifc		ic;
1916 	struct iftable_cfg	*icfg;
1917 	uint32_t		value;
1918 	int			linked;
1919 };
1920 
1921 struct iftable_cfg {
1922 	struct namedobj_instance	*ii;
1923 	struct ip_fw_chain	*ch;
1924 	struct table_info	*ti;
1925 	void	*main_ptr;
1926 	size_t	size;	/* Number of items allocated in array */
1927 	size_t	count;	/* Number of all items */
1928 	size_t	used;	/* Number of items _active_ now */
1929 };
1930 
1931 struct ta_buf_ifidx
1932 {
1933 	struct ifentry *ife;
1934 	uint32_t value;
1935 };
1936 
1937 int compare_ifidx(const void *k, const void *v);
1938 static struct ifidx * ifidx_find(struct table_info *ti, void *key);
1939 static int ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen,
1940     uint32_t *val);
1941 static int ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state,
1942     struct table_info *ti, char *data, uint8_t tflags);
1943 static void ta_change_ti_ifidx(void *ta_state, struct table_info *ti);
1944 static void destroy_ifidx_locked(struct namedobj_instance *ii,
1945     struct named_object *no, void *arg);
1946 static void ta_destroy_ifidx(void *ta_state, struct table_info *ti);
1947 static void ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti,
1948     ipfw_ta_tinfo *tinfo);
1949 static int ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
1950     void *ta_buf);
1951 static int ta_add_ifidx(void *ta_state, struct table_info *ti,
1952     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
1953 static int ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
1954     void *ta_buf);
1955 static int ta_del_ifidx(void *ta_state, struct table_info *ti,
1956     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
1957 static void ta_flush_ifidx_entry(struct ip_fw_chain *ch,
1958     struct tentry_info *tei, void *ta_buf);
1959 static void if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex);
1960 static int ta_need_modify_ifidx(void *ta_state, struct table_info *ti,
1961     uint32_t count, uint64_t *pflags);
1962 static int ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags);
1963 static int ta_fill_mod_ifidx(void *ta_state, struct table_info *ti,
1964     void *ta_buf, uint64_t *pflags);
1965 static void ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
1966     uint64_t pflags);
1967 static void ta_flush_mod_ifidx(void *ta_buf);
1968 static int ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e,
1969     ipfw_obj_tentry *tent);
1970 static int ta_find_ifidx_tentry(void *ta_state, struct table_info *ti,
1971     ipfw_obj_tentry *tent);
1972 static void foreach_ifidx(struct namedobj_instance *ii, struct named_object *no,
1973     void *arg);
1974 static void ta_foreach_ifidx(void *ta_state, struct table_info *ti,
1975     ta_foreach_f *f, void *arg);
1976 
1977 int
1978 compare_ifidx(const void *k, const void *v)
1979 {
1980 	const struct ifidx *ifidx;
1981 	uint16_t key;
1982 
1983 	key = *((const uint16_t *)k);
1984 	ifidx = (const struct ifidx *)v;
1985 
1986 	if (key < ifidx->kidx)
1987 		return (-1);
1988 	else if (key > ifidx->kidx)
1989 		return (1);
1990 
1991 	return (0);
1992 }
1993 
1994 /*
1995  * Adds item @item with key @key into ascending-sorted array @base.
1996  * Assumes @base has enough additional storage.
1997  *
1998  * Returns 1 on success, 0 on duplicate key.
1999  */
2000 static int
2001 badd(const void *key, void *item, void *base, size_t nmemb,
2002     size_t size, int (*compar) (const void *, const void *))
2003 {
2004 	int min, max, mid, shift, res;
2005 	caddr_t paddr;
2006 
2007 	if (nmemb == 0) {
2008 		memcpy(base, item, size);
2009 		return (1);
2010 	}
2011 
2012 	/* Binary search */
2013 	min = 0;
2014 	max = nmemb - 1;
2015 	mid = 0;
2016 	while (min <= max) {
2017 		mid = (min + max) / 2;
2018 		res = compar(key, (const void *)((caddr_t)base + mid * size));
2019 		if (res == 0)
2020 			return (0);
2021 
2022 		if (res > 0)
2023 			min = mid + 1;
2024 		else
2025 			max = mid - 1;
2026 	}
2027 
2028 	/* Item not found. */
2029 	res = compar(key, (const void *)((caddr_t)base + mid * size));
2030 	if (res > 0)
2031 		shift = mid + 1;
2032 	else
2033 		shift = mid;
2034 
2035 	paddr = (caddr_t)base + shift * size;
2036 	if (nmemb > shift)
2037 		memmove(paddr + size, paddr, (nmemb - shift) * size);
2038 
2039 	memcpy(paddr, item, size);
2040 
2041 	return (1);
2042 }
2043 
2044 /*
2045  * Deletes item with key @key from ascending-sorted array @base.
2046  *
2047  * Returns 1 on success, 0 for non-existent key.
2048  */
2049 static int
2050 bdel(const void *key, void *base, size_t nmemb, size_t size,
2051     int (*compar) (const void *, const void *))
2052 {
2053 	caddr_t item;
2054 	size_t sz;
2055 
2056 	item = (caddr_t)bsearch(key, base, nmemb, size, compar);
2057 
2058 	if (item == NULL)
2059 		return (0);
2060 
2061 	sz = (caddr_t)base + nmemb * size - item;
2062 
2063 	if (sz > 0)
2064 		memmove(item, item + size, sz);
2065 
2066 	return (1);
2067 }
2068 
2069 static struct ifidx *
2070 ifidx_find(struct table_info *ti, void *key)
2071 {
2072 	struct ifidx *ifi;
2073 
2074 	ifi = bsearch(key, ti->state, ti->data, sizeof(struct ifidx),
2075 	    compare_ifidx);
2076 
2077 	return (ifi);
2078 }
2079 
2080 static int
2081 ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen,
2082     uint32_t *val)
2083 {
2084 	struct ifidx *ifi;
2085 
2086 	ifi = ifidx_find(ti, key);
2087 
2088 	if (ifi != NULL) {
2089 		*val = ifi->value;
2090 		return (1);
2091 	}
2092 
2093 	return (0);
2094 }
2095 
2096 static int
2097 ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
2098     char *data, uint8_t tflags)
2099 {
2100 	struct iftable_cfg *icfg;
2101 
2102 	icfg = malloc(sizeof(struct iftable_cfg), M_IPFW, M_WAITOK | M_ZERO);
2103 
2104 	icfg->ii = ipfw_objhash_create(DEFAULT_IFIDX_SIZE);
2105 	icfg->size = DEFAULT_IFIDX_SIZE;
2106 	icfg->main_ptr = malloc(sizeof(struct ifidx) * icfg->size, M_IPFW,
2107 	    M_WAITOK | M_ZERO);
2108 	icfg->ch = ch;
2109 
2110 	*ta_state = icfg;
2111 	ti->state = icfg->main_ptr;
2112 	ti->lookup = ta_lookup_ifidx;
2113 
2114 	return (0);
2115 }
2116 
2117 /*
2118  * Handle tableinfo @ti pointer change (on table array resize).
2119  */
2120 static void
2121 ta_change_ti_ifidx(void *ta_state, struct table_info *ti)
2122 {
2123 	struct iftable_cfg *icfg;
2124 
2125 	icfg = (struct iftable_cfg *)ta_state;
2126 	icfg->ti = ti;
2127 }
2128 
2129 static void
2130 destroy_ifidx_locked(struct namedobj_instance *ii, struct named_object *no,
2131     void *arg)
2132 {
2133 	struct ifentry *ife;
2134 	struct ip_fw_chain *ch;
2135 
2136 	ch = (struct ip_fw_chain *)arg;
2137 	ife = (struct ifentry *)no;
2138 
2139 	ipfw_iface_del_notify(ch, &ife->ic);
2140 	ipfw_iface_unref(ch, &ife->ic);
2141 	free(ife, M_IPFW_TBL);
2142 }
2143 
2144 
2145 /*
2146  * Destroys table @ti
2147  */
2148 static void
2149 ta_destroy_ifidx(void *ta_state, struct table_info *ti)
2150 {
2151 	struct iftable_cfg *icfg;
2152 	struct ip_fw_chain *ch;
2153 
2154 	icfg = (struct iftable_cfg *)ta_state;
2155 	ch = icfg->ch;
2156 
2157 	if (icfg->main_ptr != NULL)
2158 		free(icfg->main_ptr, M_IPFW);
2159 
2160 	IPFW_UH_WLOCK(ch);
2161 	ipfw_objhash_foreach(icfg->ii, destroy_ifidx_locked, ch);
2162 	IPFW_UH_WUNLOCK(ch);
2163 
2164 	ipfw_objhash_destroy(icfg->ii);
2165 
2166 	free(icfg, M_IPFW);
2167 }
2168 
2169 /*
2170  * Provide algo-specific table info
2171  */
2172 static void
2173 ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
2174 {
2175 	struct iftable_cfg *cfg;
2176 
2177 	cfg = (struct iftable_cfg *)ta_state;
2178 
2179 	tinfo->taclass4 = IPFW_TACLASS_ARRAY;
2180 	tinfo->size4 = cfg->size;
2181 	tinfo->count4 = cfg->used;
2182 	tinfo->itemsize4 = sizeof(struct ifidx);
2183 }
2184 
2185 /*
2186  * Prepare state to add to the table:
2187  * allocate ifentry and reference needed interface.
2188  */
2189 static int
2190 ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
2191     void *ta_buf)
2192 {
2193 	struct ta_buf_ifidx *tb;
2194 	char *ifname;
2195 	struct ifentry *ife;
2196 
2197 	tb = (struct ta_buf_ifidx *)ta_buf;
2198 
2199 	/* Check if string is terminated */
2200 	ifname = (char *)tei->paddr;
2201 	if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
2202 		return (EINVAL);
2203 
2204 	ife = malloc(sizeof(struct ifentry), M_IPFW_TBL, M_WAITOK | M_ZERO);
2205 	ife->ic.cb = if_notifier;
2206 	ife->ic.cbdata = ife;
2207 
2208 	if (ipfw_iface_ref(ch, ifname, &ife->ic) != 0) {
2209 		free(ife, M_IPFW_TBL);
2210 		return (EINVAL);
2211 	}
2212 
2213 	/* Use ipfw_iface 'ifname' field as stable storage */
2214 	ife->no.name = ife->ic.iface->ifname;
2215 
2216 	tb->ife = ife;
2217 
2218 	return (0);
2219 }
2220 
2221 static int
2222 ta_add_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2223     void *ta_buf, uint32_t *pnum)
2224 {
2225 	struct iftable_cfg *icfg;
2226 	struct ifentry *ife, *tmp;
2227 	struct ta_buf_ifidx *tb;
2228 	struct ipfw_iface *iif;
2229 	struct ifidx *ifi;
2230 	char *ifname;
2231 	uint32_t value;
2232 
2233 	tb = (struct ta_buf_ifidx *)ta_buf;
2234 	ifname = (char *)tei->paddr;
2235 	icfg = (struct iftable_cfg *)ta_state;
2236 	ife = tb->ife;
2237 
2238 	ife->icfg = icfg;
2239 	ife->value = tei->value;
2240 
2241 	tmp = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
2242 
2243 	if (tmp != NULL) {
2244 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
2245 			return (EEXIST);
2246 
2247 		/* Exchange values in @tmp and @tei */
2248 		value = tmp->value;
2249 		tmp->value = tei->value;
2250 		tei->value = value;
2251 
2252 		iif = tmp->ic.iface;
2253 		if (iif->resolved != 0) {
2254 			/* We have to update runtime value, too */
2255 			ifi = ifidx_find(ti, &iif->ifindex);
2256 			ifi->value = ife->value;
2257 		}
2258 
2259 		/* Indicate that update has happened instead of addition */
2260 		tei->flags |= TEI_FLAGS_UPDATED;
2261 		*pnum = 0;
2262 		return (0);
2263 	}
2264 
2265 	if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
2266 		return (EFBIG);
2267 
2268 	/* Link to internal list */
2269 	ipfw_objhash_add(icfg->ii, &ife->no);
2270 
2271 	/* Link notifier (possible running its callback) */
2272 	ipfw_iface_add_notify(icfg->ch, &ife->ic);
2273 	icfg->count++;
2274 
2275 	tb->ife = NULL;
2276 	*pnum = 1;
2277 
2278 	return (0);
2279 }
2280 
2281 /*
2282  * Prepare to delete key from table.
2283  * Do basic interface name checks.
2284  */
2285 static int
2286 ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
2287     void *ta_buf)
2288 {
2289 	struct ta_buf_ifidx *tb;
2290 	char *ifname;
2291 
2292 	tb = (struct ta_buf_ifidx *)ta_buf;
2293 
2294 	/* Check if string is terminated */
2295 	ifname = (char *)tei->paddr;
2296 	if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
2297 		return (EINVAL);
2298 
2299 	return (0);
2300 }
2301 
2302 /*
2303  * Remove key from both configuration list and
2304  * runtime array. Removed interface notification.
2305  */
2306 static int
2307 ta_del_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2308     void *ta_buf, uint32_t *pnum)
2309 {
2310 	struct iftable_cfg *icfg;
2311 	struct ifentry *ife;
2312 	struct ta_buf_ifidx *tb;
2313 	char *ifname;
2314 	uint16_t ifindex;
2315 	int res;
2316 
2317 	tb = (struct ta_buf_ifidx *)ta_buf;
2318 	ifname = (char *)tei->paddr;
2319 	icfg = (struct iftable_cfg *)ta_state;
2320 	ife = tb->ife;
2321 
2322 	ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
2323 
2324 	if (ife == NULL)
2325 		return (ENOENT);
2326 
2327 	if (ife->linked != 0) {
2328 		/* We have to remove item from runtime */
2329 		ifindex = ife->ic.iface->ifindex;
2330 
2331 		res = bdel(&ifindex, icfg->main_ptr, icfg->used,
2332 		    sizeof(struct ifidx), compare_ifidx);
2333 
2334 		KASSERT(res == 1, ("index %d does not exist", ifindex));
2335 		icfg->used--;
2336 		ti->data = icfg->used;
2337 		ife->linked = 0;
2338 	}
2339 
2340 	/* Unlink from local list */
2341 	ipfw_objhash_del(icfg->ii, &ife->no);
2342 	/* Unlink notifier and deref */
2343 	ipfw_iface_del_notify(icfg->ch, &ife->ic);
2344 	ipfw_iface_unref(icfg->ch, &ife->ic);
2345 
2346 	icfg->count--;
2347 	tei->value = ife->value;
2348 
2349 	tb->ife = ife;
2350 	*pnum = 1;
2351 
2352 	return (0);
2353 }
2354 
2355 /*
2356  * Flush deleted entry.
2357  * Drops interface reference and frees entry.
2358  */
2359 static void
2360 ta_flush_ifidx_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
2361     void *ta_buf)
2362 {
2363 	struct ta_buf_ifidx *tb;
2364 
2365 	tb = (struct ta_buf_ifidx *)ta_buf;
2366 
2367 	if (tb->ife != NULL)
2368 		free(tb->ife, M_IPFW_TBL);
2369 }
2370 
2371 
2372 /*
2373  * Handle interface announce/withdrawal for particular table.
2374  * Every real runtime array modification happens here.
2375  */
2376 static void
2377 if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex)
2378 {
2379 	struct ifentry *ife;
2380 	struct ifidx ifi;
2381 	struct iftable_cfg *icfg;
2382 	struct table_info *ti;
2383 	int res;
2384 
2385 	ife = (struct ifentry *)cbdata;
2386 	icfg = ife->icfg;
2387 	ti = icfg->ti;
2388 
2389 	KASSERT(ti != NULL, ("ti=NULL, check change_ti handler"));
2390 
2391 	if (ife->linked == 0 && ifindex != 0) {
2392 		/* Interface announce */
2393 		ifi.kidx = ifindex;
2394 		ifi.spare = 0;
2395 		ifi.value = ife->value;
2396 		res = badd(&ifindex, &ifi, icfg->main_ptr, icfg->used,
2397 		    sizeof(struct ifidx), compare_ifidx);
2398 		KASSERT(res == 1, ("index %d already exists", ifindex));
2399 		icfg->used++;
2400 		ti->data = icfg->used;
2401 		ife->linked = 1;
2402 	} else if (ife->linked != 0 && ifindex == 0) {
2403 		/* Interface withdrawal */
2404 		ifindex = ife->ic.iface->ifindex;
2405 
2406 		res = bdel(&ifindex, icfg->main_ptr, icfg->used,
2407 		    sizeof(struct ifidx), compare_ifidx);
2408 
2409 		KASSERT(res == 1, ("index %d does not exist", ifindex));
2410 		icfg->used--;
2411 		ti->data = icfg->used;
2412 		ife->linked = 0;
2413 	}
2414 }
2415 
2416 
2417 /*
2418  * Table growing callbacks.
2419  */
2420 
2421 static int
2422 ta_need_modify_ifidx(void *ta_state, struct table_info *ti, uint32_t count,
2423     uint64_t *pflags)
2424 {
2425 	struct iftable_cfg *cfg;
2426 	uint32_t size;
2427 
2428 	cfg = (struct iftable_cfg *)ta_state;
2429 
2430 	size = cfg->size;
2431 	while (size < cfg->count + count)
2432 		size *= 2;
2433 
2434 	if (size != cfg->size) {
2435 		*pflags = size;
2436 		return (1);
2437 	}
2438 
2439 	return (0);
2440 }
2441 
2442 /*
2443  * Allocate ned, larger runtime ifidx array.
2444  */
2445 static int
2446 ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags)
2447 {
2448 	struct mod_item *mi;
2449 
2450 	mi = (struct mod_item *)ta_buf;
2451 
2452 	memset(mi, 0, sizeof(struct mod_item));
2453 	mi->size = *pflags;
2454 	mi->main_ptr = malloc(sizeof(struct ifidx) * mi->size, M_IPFW,
2455 	    M_WAITOK | M_ZERO);
2456 
2457 	return (0);
2458 }
2459 
2460 /*
2461  * Copy data from old runtime array to new one.
2462  */
2463 static int
2464 ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
2465     uint64_t *pflags)
2466 {
2467 	struct mod_item *mi;
2468 	struct iftable_cfg *icfg;
2469 
2470 	mi = (struct mod_item *)ta_buf;
2471 	icfg = (struct iftable_cfg *)ta_state;
2472 
2473 	/* Check if we still need to grow array */
2474 	if (icfg->size >= mi->size) {
2475 		*pflags = 0;
2476 		return (0);
2477 	}
2478 
2479 	memcpy(mi->main_ptr, icfg->main_ptr, icfg->used * sizeof(struct ifidx));
2480 
2481 	return (0);
2482 }
2483 
2484 /*
2485  * Switch old & new arrays.
2486  */
2487 static void
2488 ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
2489     uint64_t pflags)
2490 {
2491 	struct mod_item *mi;
2492 	struct iftable_cfg *icfg;
2493 	void *old_ptr;
2494 
2495 	mi = (struct mod_item *)ta_buf;
2496 	icfg = (struct iftable_cfg *)ta_state;
2497 
2498 	old_ptr = icfg->main_ptr;
2499 	icfg->main_ptr = mi->main_ptr;
2500 	icfg->size = mi->size;
2501 	ti->state = icfg->main_ptr;
2502 
2503 	mi->main_ptr = old_ptr;
2504 }
2505 
2506 /*
2507  * Free unneded array.
2508  */
2509 static void
2510 ta_flush_mod_ifidx(void *ta_buf)
2511 {
2512 	struct mod_item *mi;
2513 
2514 	mi = (struct mod_item *)ta_buf;
2515 	if (mi->main_ptr != NULL)
2516 		free(mi->main_ptr, M_IPFW);
2517 }
2518 
2519 static int
2520 ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e,
2521     ipfw_obj_tentry *tent)
2522 {
2523 	struct ifentry *ife;
2524 
2525 	ife = (struct ifentry *)e;
2526 
2527 	tent->masklen = 8 * IF_NAMESIZE;
2528 	memcpy(&tent->k, ife->no.name, IF_NAMESIZE);
2529 	tent->v.kidx = ife->value;
2530 
2531 	return (0);
2532 }
2533 
2534 static int
2535 ta_find_ifidx_tentry(void *ta_state, struct table_info *ti,
2536     ipfw_obj_tentry *tent)
2537 {
2538 	struct iftable_cfg *icfg;
2539 	struct ifentry *ife;
2540 	char *ifname;
2541 
2542 	icfg = (struct iftable_cfg *)ta_state;
2543 	ifname = tent->k.iface;
2544 
2545 	if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
2546 		return (EINVAL);
2547 
2548 	ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
2549 
2550 	if (ife != NULL) {
2551 		ta_dump_ifidx_tentry(ta_state, ti, ife, tent);
2552 		return (0);
2553 	}
2554 
2555 	return (ENOENT);
2556 }
2557 
2558 struct wa_ifidx {
2559 	ta_foreach_f	*f;
2560 	void		*arg;
2561 };
2562 
2563 static void
2564 foreach_ifidx(struct namedobj_instance *ii, struct named_object *no,
2565     void *arg)
2566 {
2567 	struct ifentry *ife;
2568 	struct wa_ifidx *wa;
2569 
2570 	ife = (struct ifentry *)no;
2571 	wa = (struct wa_ifidx *)arg;
2572 
2573 	wa->f(ife, wa->arg);
2574 }
2575 
2576 static void
2577 ta_foreach_ifidx(void *ta_state, struct table_info *ti, ta_foreach_f *f,
2578     void *arg)
2579 {
2580 	struct iftable_cfg *icfg;
2581 	struct wa_ifidx wa;
2582 
2583 	icfg = (struct iftable_cfg *)ta_state;
2584 
2585 	wa.f = f;
2586 	wa.arg = arg;
2587 
2588 	ipfw_objhash_foreach(icfg->ii, foreach_ifidx, &wa);
2589 }
2590 
2591 struct table_algo iface_idx = {
2592 	.name		= "iface:array",
2593 	.type		= IPFW_TABLE_INTERFACE,
2594 	.flags		= TA_FLAG_DEFAULT,
2595 	.ta_buf_size	= sizeof(struct ta_buf_ifidx),
2596 	.init		= ta_init_ifidx,
2597 	.destroy	= ta_destroy_ifidx,
2598 	.prepare_add	= ta_prepare_add_ifidx,
2599 	.prepare_del	= ta_prepare_del_ifidx,
2600 	.add		= ta_add_ifidx,
2601 	.del		= ta_del_ifidx,
2602 	.flush_entry	= ta_flush_ifidx_entry,
2603 	.foreach	= ta_foreach_ifidx,
2604 	.dump_tentry	= ta_dump_ifidx_tentry,
2605 	.find_tentry	= ta_find_ifidx_tentry,
2606 	.dump_tinfo	= ta_dump_ifidx_tinfo,
2607 	.need_modify	= ta_need_modify_ifidx,
2608 	.prepare_mod	= ta_prepare_mod_ifidx,
2609 	.fill_mod	= ta_fill_mod_ifidx,
2610 	.modify		= ta_modify_ifidx,
2611 	.flush_mod	= ta_flush_mod_ifidx,
2612 	.change_ti	= ta_change_ti_ifidx,
2613 };
2614 
2615 /*
2616  * Number array cmds.
2617  *
2618  * Implementation:
2619  *
2620  * Runtime part:
2621  * - sorted array of "struct numarray" pointed by ti->state.
2622  *   Array is allocated with rounding up to NUMARRAY_CHUNK.
2623  * - current array size is stored in ti->data
2624  *
2625  */
2626 
2627 struct numarray {
2628 	uint32_t	number;
2629 	uint32_t	value;
2630 };
2631 
2632 struct numarray_cfg {
2633 	void	*main_ptr;
2634 	size_t	size;	/* Number of items allocated in array */
2635 	size_t	used;	/* Number of items _active_ now */
2636 };
2637 
2638 struct ta_buf_numarray
2639 {
2640 	struct numarray na;
2641 };
2642 
2643 int compare_numarray(const void *k, const void *v);
2644 static struct numarray *numarray_find(struct table_info *ti, void *key);
2645 static int ta_lookup_numarray(struct table_info *ti, void *key,
2646     uint32_t keylen, uint32_t *val);
2647 static int ta_init_numarray(struct ip_fw_chain *ch, void **ta_state,
2648     struct table_info *ti, char *data, uint8_t tflags);
2649 static void ta_destroy_numarray(void *ta_state, struct table_info *ti);
2650 static void ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti,
2651     ipfw_ta_tinfo *tinfo);
2652 static int ta_prepare_add_numarray(struct ip_fw_chain *ch,
2653     struct tentry_info *tei, void *ta_buf);
2654 static int ta_add_numarray(void *ta_state, struct table_info *ti,
2655     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
2656 static int ta_del_numarray(void *ta_state, struct table_info *ti,
2657     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
2658 static void ta_flush_numarray_entry(struct ip_fw_chain *ch,
2659     struct tentry_info *tei, void *ta_buf);
2660 static int ta_need_modify_numarray(void *ta_state, struct table_info *ti,
2661     uint32_t count, uint64_t *pflags);
2662 static int ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags);
2663 static int ta_fill_mod_numarray(void *ta_state, struct table_info *ti,
2664     void *ta_buf, uint64_t *pflags);
2665 static void ta_modify_numarray(void *ta_state, struct table_info *ti,
2666     void *ta_buf, uint64_t pflags);
2667 static void ta_flush_mod_numarray(void *ta_buf);
2668 static int ta_dump_numarray_tentry(void *ta_state, struct table_info *ti,
2669     void *e, ipfw_obj_tentry *tent);
2670 static int ta_find_numarray_tentry(void *ta_state, struct table_info *ti,
2671     ipfw_obj_tentry *tent);
2672 static void ta_foreach_numarray(void *ta_state, struct table_info *ti,
2673     ta_foreach_f *f, void *arg);
2674 
2675 int
2676 compare_numarray(const void *k, const void *v)
2677 {
2678 	const struct numarray *na;
2679 	uint32_t key;
2680 
2681 	key = *((const uint32_t *)k);
2682 	na = (const struct numarray *)v;
2683 
2684 	if (key < na->number)
2685 		return (-1);
2686 	else if (key > na->number)
2687 		return (1);
2688 
2689 	return (0);
2690 }
2691 
2692 static struct numarray *
2693 numarray_find(struct table_info *ti, void *key)
2694 {
2695 	struct numarray *ri;
2696 
2697 	ri = bsearch(key, ti->state, ti->data, sizeof(struct numarray),
2698 	    compare_ifidx);
2699 
2700 	return (ri);
2701 }
2702 
2703 static int
2704 ta_lookup_numarray(struct table_info *ti, void *key, uint32_t keylen,
2705     uint32_t *val)
2706 {
2707 	struct numarray *ri;
2708 
2709 	ri = numarray_find(ti, key);
2710 
2711 	if (ri != NULL) {
2712 		*val = ri->value;
2713 		return (1);
2714 	}
2715 
2716 	return (0);
2717 }
2718 
2719 static int
2720 ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
2721     char *data, uint8_t tflags)
2722 {
2723 	struct numarray_cfg *cfg;
2724 
2725 	cfg = malloc(sizeof(*cfg), M_IPFW, M_WAITOK | M_ZERO);
2726 
2727 	cfg->size = 16;
2728 	cfg->main_ptr = malloc(sizeof(struct numarray) * cfg->size, M_IPFW,
2729 	    M_WAITOK | M_ZERO);
2730 
2731 	*ta_state = cfg;
2732 	ti->state = cfg->main_ptr;
2733 	ti->lookup = ta_lookup_numarray;
2734 
2735 	return (0);
2736 }
2737 
2738 /*
2739  * Destroys table @ti
2740  */
2741 static void
2742 ta_destroy_numarray(void *ta_state, struct table_info *ti)
2743 {
2744 	struct numarray_cfg *cfg;
2745 
2746 	cfg = (struct numarray_cfg *)ta_state;
2747 
2748 	if (cfg->main_ptr != NULL)
2749 		free(cfg->main_ptr, M_IPFW);
2750 
2751 	free(cfg, M_IPFW);
2752 }
2753 
2754 /*
2755  * Provide algo-specific table info
2756  */
2757 static void
2758 ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
2759 {
2760 	struct numarray_cfg *cfg;
2761 
2762 	cfg = (struct numarray_cfg *)ta_state;
2763 
2764 	tinfo->taclass4 = IPFW_TACLASS_ARRAY;
2765 	tinfo->size4 = cfg->size;
2766 	tinfo->count4 = cfg->used;
2767 	tinfo->itemsize4 = sizeof(struct numarray);
2768 }
2769 
2770 /*
2771  * Prepare for addition/deletion to an array.
2772  */
2773 static int
2774 ta_prepare_add_numarray(struct ip_fw_chain *ch, struct tentry_info *tei,
2775     void *ta_buf)
2776 {
2777 	struct ta_buf_numarray *tb;
2778 
2779 	tb = (struct ta_buf_numarray *)ta_buf;
2780 
2781 	tb->na.number = *((uint32_t *)tei->paddr);
2782 
2783 	return (0);
2784 }
2785 
2786 static int
2787 ta_add_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2788     void *ta_buf, uint32_t *pnum)
2789 {
2790 	struct numarray_cfg *cfg;
2791 	struct ta_buf_numarray *tb;
2792 	struct numarray *ri;
2793 	int res;
2794 	uint32_t value;
2795 
2796 	tb = (struct ta_buf_numarray *)ta_buf;
2797 	cfg = (struct numarray_cfg *)ta_state;
2798 
2799 	/* Read current value from @tei */
2800 	tb->na.value = tei->value;
2801 
2802 	ri = numarray_find(ti, &tb->na.number);
2803 
2804 	if (ri != NULL) {
2805 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
2806 			return (EEXIST);
2807 
2808 		/* Exchange values between ri and @tei */
2809 		value = ri->value;
2810 		ri->value = tei->value;
2811 		tei->value = value;
2812 		/* Indicate that update has happened instead of addition */
2813 		tei->flags |= TEI_FLAGS_UPDATED;
2814 		*pnum = 0;
2815 		return (0);
2816 	}
2817 
2818 	if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
2819 		return (EFBIG);
2820 
2821 	res = badd(&tb->na.number, &tb->na, cfg->main_ptr, cfg->used,
2822 	    sizeof(struct numarray), compare_numarray);
2823 
2824 	KASSERT(res == 1, ("number %d already exists", tb->na.number));
2825 	cfg->used++;
2826 	ti->data = cfg->used;
2827 	*pnum = 1;
2828 
2829 	return (0);
2830 }
2831 
2832 /*
2833  * Remove key from both configuration list and
2834  * runtime array. Removed interface notification.
2835  */
2836 static int
2837 ta_del_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2838     void *ta_buf, uint32_t *pnum)
2839 {
2840 	struct numarray_cfg *cfg;
2841 	struct ta_buf_numarray *tb;
2842 	struct numarray *ri;
2843 	int res;
2844 
2845 	tb = (struct ta_buf_numarray *)ta_buf;
2846 	cfg = (struct numarray_cfg *)ta_state;
2847 
2848 	ri = numarray_find(ti, &tb->na.number);
2849 	if (ri == NULL)
2850 		return (ENOENT);
2851 
2852 	tei->value = ri->value;
2853 
2854 	res = bdel(&tb->na.number, cfg->main_ptr, cfg->used,
2855 	    sizeof(struct numarray), compare_numarray);
2856 
2857 	KASSERT(res == 1, ("number %u does not exist", tb->na.number));
2858 	cfg->used--;
2859 	ti->data = cfg->used;
2860 	*pnum = 1;
2861 
2862 	return (0);
2863 }
2864 
2865 static void
2866 ta_flush_numarray_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
2867     void *ta_buf)
2868 {
2869 
2870 	/* We don't have any state, do nothing */
2871 }
2872 
2873 
2874 /*
2875  * Table growing callbacks.
2876  */
2877 
2878 static int
2879 ta_need_modify_numarray(void *ta_state, struct table_info *ti, uint32_t count,
2880     uint64_t *pflags)
2881 {
2882 	struct numarray_cfg *cfg;
2883 	size_t size;
2884 
2885 	cfg = (struct numarray_cfg *)ta_state;
2886 
2887 	size = cfg->size;
2888 	while (size < cfg->used + count)
2889 		size *= 2;
2890 
2891 	if (size != cfg->size) {
2892 		*pflags = size;
2893 		return (1);
2894 	}
2895 
2896 	return (0);
2897 }
2898 
2899 /*
2900  * Allocate new, larger runtime array.
2901  */
2902 static int
2903 ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags)
2904 {
2905 	struct mod_item *mi;
2906 
2907 	mi = (struct mod_item *)ta_buf;
2908 
2909 	memset(mi, 0, sizeof(struct mod_item));
2910 	mi->size = *pflags;
2911 	mi->main_ptr = malloc(sizeof(struct numarray) * mi->size, M_IPFW,
2912 	    M_WAITOK | M_ZERO);
2913 
2914 	return (0);
2915 }
2916 
2917 /*
2918  * Copy data from old runtime array to new one.
2919  */
2920 static int
2921 ta_fill_mod_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
2922     uint64_t *pflags)
2923 {
2924 	struct mod_item *mi;
2925 	struct numarray_cfg *cfg;
2926 
2927 	mi = (struct mod_item *)ta_buf;
2928 	cfg = (struct numarray_cfg *)ta_state;
2929 
2930 	/* Check if we still need to grow array */
2931 	if (cfg->size >= mi->size) {
2932 		*pflags = 0;
2933 		return (0);
2934 	}
2935 
2936 	memcpy(mi->main_ptr, cfg->main_ptr, cfg->used * sizeof(struct numarray));
2937 
2938 	return (0);
2939 }
2940 
2941 /*
2942  * Switch old & new arrays.
2943  */
2944 static void
2945 ta_modify_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
2946     uint64_t pflags)
2947 {
2948 	struct mod_item *mi;
2949 	struct numarray_cfg *cfg;
2950 	void *old_ptr;
2951 
2952 	mi = (struct mod_item *)ta_buf;
2953 	cfg = (struct numarray_cfg *)ta_state;
2954 
2955 	old_ptr = cfg->main_ptr;
2956 	cfg->main_ptr = mi->main_ptr;
2957 	cfg->size = mi->size;
2958 	ti->state = cfg->main_ptr;
2959 
2960 	mi->main_ptr = old_ptr;
2961 }
2962 
2963 /*
2964  * Free unneded array.
2965  */
2966 static void
2967 ta_flush_mod_numarray(void *ta_buf)
2968 {
2969 	struct mod_item *mi;
2970 
2971 	mi = (struct mod_item *)ta_buf;
2972 	if (mi->main_ptr != NULL)
2973 		free(mi->main_ptr, M_IPFW);
2974 }
2975 
2976 static int
2977 ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, void *e,
2978     ipfw_obj_tentry *tent)
2979 {
2980 	struct numarray *na;
2981 
2982 	na = (struct numarray *)e;
2983 
2984 	tent->k.key = na->number;
2985 	tent->v.kidx = na->value;
2986 
2987 	return (0);
2988 }
2989 
2990 static int
2991 ta_find_numarray_tentry(void *ta_state, struct table_info *ti,
2992     ipfw_obj_tentry *tent)
2993 {
2994 	struct numarray_cfg *cfg;
2995 	struct numarray *ri;
2996 
2997 	cfg = (struct numarray_cfg *)ta_state;
2998 
2999 	ri = numarray_find(ti, &tent->k.key);
3000 
3001 	if (ri != NULL) {
3002 		ta_dump_numarray_tentry(ta_state, ti, ri, tent);
3003 		return (0);
3004 	}
3005 
3006 	return (ENOENT);
3007 }
3008 
3009 static void
3010 ta_foreach_numarray(void *ta_state, struct table_info *ti, ta_foreach_f *f,
3011     void *arg)
3012 {
3013 	struct numarray_cfg *cfg;
3014 	struct numarray *array;
3015 	int i;
3016 
3017 	cfg = (struct numarray_cfg *)ta_state;
3018 	array = cfg->main_ptr;
3019 
3020 	for (i = 0; i < cfg->used; i++)
3021 		f(&array[i], arg);
3022 }
3023 
3024 struct table_algo number_array = {
3025 	.name		= "number:array",
3026 	.type		= IPFW_TABLE_NUMBER,
3027 	.ta_buf_size	= sizeof(struct ta_buf_numarray),
3028 	.init		= ta_init_numarray,
3029 	.destroy	= ta_destroy_numarray,
3030 	.prepare_add	= ta_prepare_add_numarray,
3031 	.prepare_del	= ta_prepare_add_numarray,
3032 	.add		= ta_add_numarray,
3033 	.del		= ta_del_numarray,
3034 	.flush_entry	= ta_flush_numarray_entry,
3035 	.foreach	= ta_foreach_numarray,
3036 	.dump_tentry	= ta_dump_numarray_tentry,
3037 	.find_tentry	= ta_find_numarray_tentry,
3038 	.dump_tinfo	= ta_dump_numarray_tinfo,
3039 	.need_modify	= ta_need_modify_numarray,
3040 	.prepare_mod	= ta_prepare_mod_numarray,
3041 	.fill_mod	= ta_fill_mod_numarray,
3042 	.modify		= ta_modify_numarray,
3043 	.flush_mod	= ta_flush_mod_numarray,
3044 };
3045 
3046 /*
3047  * flow:hash cmds
3048  *
3049  *
3050  * ti->data:
3051  * [inv.mask4][inv.mask6][log2hsize4][log2hsize6]
3052  * [        8][        8[          8][         8]
3053  *
3054  * inv.mask4: 32 - mask
3055  * inv.mask6:
3056  * 1) _slow lookup: mask
3057  * 2) _aligned: (128 - mask) / 8
3058  * 3) _64: 8
3059  *
3060  *
3061  * pflags:
3062  * [hsize4][hsize6]
3063  * [    16][    16]
3064  */
3065 
3066 struct fhashentry;
3067 
3068 SLIST_HEAD(fhashbhead, fhashentry);
3069 
3070 struct fhashentry {
3071 	SLIST_ENTRY(fhashentry)	next;
3072 	uint8_t		af;
3073 	uint8_t		proto;
3074 	uint16_t	spare0;
3075 	uint16_t	dport;
3076 	uint16_t	sport;
3077 	uint32_t	value;
3078 	uint32_t	spare1;
3079 };
3080 
3081 struct fhashentry4 {
3082 	struct fhashentry	e;
3083 	struct in_addr		dip;
3084 	struct in_addr		sip;
3085 };
3086 
3087 struct fhashentry6 {
3088 	struct fhashentry	e;
3089 	struct in6_addr		dip6;
3090 	struct in6_addr		sip6;
3091 };
3092 
3093 struct fhash_cfg {
3094 	struct fhashbhead	*head;
3095 	size_t			size;
3096 	size_t			items;
3097 	struct fhashentry4	fe4;
3098 	struct fhashentry6	fe6;
3099 };
3100 
3101 struct ta_buf_fhash {
3102 	void	*ent_ptr;
3103 	struct fhashentry6 fe6;
3104 };
3105 
3106 static __inline int cmp_flow_ent(struct fhashentry *a,
3107     struct fhashentry *b, size_t sz);
3108 static __inline uint32_t hash_flow4(struct fhashentry4 *f, int hsize);
3109 static __inline uint32_t hash_flow6(struct fhashentry6 *f, int hsize);
3110 static uint32_t hash_flow_ent(struct fhashentry *ent, uint32_t size);
3111 static int ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen,
3112     uint32_t *val);
3113 static int ta_init_fhash(struct ip_fw_chain *ch, void **ta_state,
3114 struct table_info *ti, char *data, uint8_t tflags);
3115 static void ta_destroy_fhash(void *ta_state, struct table_info *ti);
3116 static void ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti,
3117     ipfw_ta_tinfo *tinfo);
3118 static int ta_dump_fhash_tentry(void *ta_state, struct table_info *ti,
3119     void *e, ipfw_obj_tentry *tent);
3120 static int tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent);
3121 static int ta_find_fhash_tentry(void *ta_state, struct table_info *ti,
3122     ipfw_obj_tentry *tent);
3123 static void ta_foreach_fhash(void *ta_state, struct table_info *ti,
3124     ta_foreach_f *f, void *arg);
3125 static int ta_prepare_add_fhash(struct ip_fw_chain *ch,
3126     struct tentry_info *tei, void *ta_buf);
3127 static int ta_add_fhash(void *ta_state, struct table_info *ti,
3128     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
3129 static int ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
3130     void *ta_buf);
3131 static int ta_del_fhash(void *ta_state, struct table_info *ti,
3132     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
3133 static void ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
3134     void *ta_buf);
3135 static int ta_need_modify_fhash(void *ta_state, struct table_info *ti,
3136     uint32_t count, uint64_t *pflags);
3137 static int ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags);
3138 static int ta_fill_mod_fhash(void *ta_state, struct table_info *ti,
3139     void *ta_buf, uint64_t *pflags);
3140 static void ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
3141     uint64_t pflags);
3142 static void ta_flush_mod_fhash(void *ta_buf);
3143 
3144 static __inline int
3145 cmp_flow_ent(struct fhashentry *a, struct fhashentry *b, size_t sz)
3146 {
3147 	uint64_t *ka, *kb;
3148 
3149 	ka = (uint64_t *)(&a->next + 1);
3150 	kb = (uint64_t *)(&b->next + 1);
3151 
3152 	if (*ka == *kb && (memcmp(a + 1, b + 1, sz) == 0))
3153 		return (1);
3154 
3155 	return (0);
3156 }
3157 
3158 static __inline uint32_t
3159 hash_flow4(struct fhashentry4 *f, int hsize)
3160 {
3161 	uint32_t i;
3162 
3163 	i = (f->dip.s_addr) ^ (f->sip.s_addr) ^ (f->e.dport) ^ (f->e.sport);
3164 
3165 	return (i % (hsize - 1));
3166 }
3167 
3168 static __inline uint32_t
3169 hash_flow6(struct fhashentry6 *f, int hsize)
3170 {
3171 	uint32_t i;
3172 
3173 	i = (f->dip6.__u6_addr.__u6_addr32[2]) ^
3174 	    (f->dip6.__u6_addr.__u6_addr32[3]) ^
3175 	    (f->sip6.__u6_addr.__u6_addr32[2]) ^
3176 	    (f->sip6.__u6_addr.__u6_addr32[3]) ^
3177 	    (f->e.dport) ^ (f->e.sport);
3178 
3179 	return (i % (hsize - 1));
3180 }
3181 
3182 static uint32_t
3183 hash_flow_ent(struct fhashentry *ent, uint32_t size)
3184 {
3185 	uint32_t hash;
3186 
3187 	if (ent->af == AF_INET) {
3188 		hash = hash_flow4((struct fhashentry4 *)ent, size);
3189 	} else {
3190 		hash = hash_flow6((struct fhashentry6 *)ent, size);
3191 	}
3192 
3193 	return (hash);
3194 }
3195 
3196 static int
3197 ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen,
3198     uint32_t *val)
3199 {
3200 	struct fhashbhead *head;
3201 	struct fhashentry *ent;
3202 	struct fhashentry4 *m4;
3203 	struct ipfw_flow_id *id;
3204 	uint16_t hash, hsize;
3205 
3206 	id = (struct ipfw_flow_id *)key;
3207 	head = (struct fhashbhead *)ti->state;
3208 	hsize = ti->data;
3209 	m4 = (struct fhashentry4 *)ti->xstate;
3210 
3211 	if (id->addr_type == 4) {
3212 		struct fhashentry4 f;
3213 
3214 		/* Copy hash mask */
3215 		f = *m4;
3216 
3217 		f.dip.s_addr &= id->dst_ip;
3218 		f.sip.s_addr &= id->src_ip;
3219 		f.e.dport &= id->dst_port;
3220 		f.e.sport &= id->src_port;
3221 		f.e.proto &= id->proto;
3222 		hash = hash_flow4(&f, hsize);
3223 		SLIST_FOREACH(ent, &head[hash], next) {
3224 			if (cmp_flow_ent(ent, &f.e, 2 * 4) != 0) {
3225 				*val = ent->value;
3226 				return (1);
3227 			}
3228 		}
3229 	} else if (id->addr_type == 6) {
3230 		struct fhashentry6 f;
3231 		uint64_t *fp, *idp;
3232 
3233 		/* Copy hash mask */
3234 		f = *((struct fhashentry6 *)(m4 + 1));
3235 
3236 		/* Handle lack of __u6_addr.__u6_addr64 */
3237 		fp = (uint64_t *)&f.dip6;
3238 		idp = (uint64_t *)&id->dst_ip6;
3239 		/* src IPv6 is stored after dst IPv6 */
3240 		*fp++ &= *idp++;
3241 		*fp++ &= *idp++;
3242 		*fp++ &= *idp++;
3243 		*fp &= *idp;
3244 		f.e.dport &= id->dst_port;
3245 		f.e.sport &= id->src_port;
3246 		f.e.proto &= id->proto;
3247 		hash = hash_flow6(&f, hsize);
3248 		SLIST_FOREACH(ent, &head[hash], next) {
3249 			if (cmp_flow_ent(ent, &f.e, 2 * 16) != 0) {
3250 				*val = ent->value;
3251 				return (1);
3252 			}
3253 		}
3254 	}
3255 
3256 	return (0);
3257 }
3258 
3259 /*
3260  * New table.
3261  */
3262 static int
3263 ta_init_fhash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
3264     char *data, uint8_t tflags)
3265 {
3266 	int i;
3267 	struct fhash_cfg *cfg;
3268 	struct fhashentry4 *fe4;
3269 	struct fhashentry6 *fe6;
3270 
3271 	cfg = malloc(sizeof(struct fhash_cfg), M_IPFW, M_WAITOK | M_ZERO);
3272 
3273 	cfg->size = 512;
3274 
3275 	cfg->head = malloc(sizeof(struct fhashbhead) * cfg->size, M_IPFW,
3276 	    M_WAITOK | M_ZERO);
3277 	for (i = 0; i < cfg->size; i++)
3278 		SLIST_INIT(&cfg->head[i]);
3279 
3280 	/* Fill in fe masks based on @tflags */
3281 	fe4 = &cfg->fe4;
3282 	fe6 = &cfg->fe6;
3283 	if (tflags & IPFW_TFFLAG_SRCIP) {
3284 		memset(&fe4->sip, 0xFF, sizeof(fe4->sip));
3285 		memset(&fe6->sip6, 0xFF, sizeof(fe6->sip6));
3286 	}
3287 	if (tflags & IPFW_TFFLAG_DSTIP) {
3288 		memset(&fe4->dip, 0xFF, sizeof(fe4->dip));
3289 		memset(&fe6->dip6, 0xFF, sizeof(fe6->dip6));
3290 	}
3291 	if (tflags & IPFW_TFFLAG_SRCPORT) {
3292 		memset(&fe4->e.sport, 0xFF, sizeof(fe4->e.sport));
3293 		memset(&fe6->e.sport, 0xFF, sizeof(fe6->e.sport));
3294 	}
3295 	if (tflags & IPFW_TFFLAG_DSTPORT) {
3296 		memset(&fe4->e.dport, 0xFF, sizeof(fe4->e.dport));
3297 		memset(&fe6->e.dport, 0xFF, sizeof(fe6->e.dport));
3298 	}
3299 	if (tflags & IPFW_TFFLAG_PROTO) {
3300 		memset(&fe4->e.proto, 0xFF, sizeof(fe4->e.proto));
3301 		memset(&fe6->e.proto, 0xFF, sizeof(fe6->e.proto));
3302 	}
3303 
3304 	fe4->e.af = AF_INET;
3305 	fe6->e.af = AF_INET6;
3306 
3307 	*ta_state = cfg;
3308 	ti->state = cfg->head;
3309 	ti->xstate = &cfg->fe4;
3310 	ti->data = cfg->size;
3311 	ti->lookup = ta_lookup_fhash;
3312 
3313 	return (0);
3314 }
3315 
3316 static void
3317 ta_destroy_fhash(void *ta_state, struct table_info *ti)
3318 {
3319 	struct fhash_cfg *cfg;
3320 	struct fhashentry *ent, *ent_next;
3321 	int i;
3322 
3323 	cfg = (struct fhash_cfg *)ta_state;
3324 
3325 	for (i = 0; i < cfg->size; i++)
3326 		SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next)
3327 			free(ent, M_IPFW_TBL);
3328 
3329 	free(cfg->head, M_IPFW);
3330 	free(cfg, M_IPFW);
3331 }
3332 
3333 /*
3334  * Provide algo-specific table info
3335  */
3336 static void
3337 ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
3338 {
3339 	struct fhash_cfg *cfg;
3340 
3341 	cfg = (struct fhash_cfg *)ta_state;
3342 
3343 	tinfo->flags = IPFW_TATFLAGS_AFITEM;
3344 	tinfo->taclass4 = IPFW_TACLASS_HASH;
3345 	tinfo->size4 = cfg->size;
3346 	tinfo->count4 = cfg->items;
3347 	tinfo->itemsize4 = sizeof(struct fhashentry4);
3348 	tinfo->itemsize6 = sizeof(struct fhashentry6);
3349 }
3350 
3351 static int
3352 ta_dump_fhash_tentry(void *ta_state, struct table_info *ti, void *e,
3353     ipfw_obj_tentry *tent)
3354 {
3355 	struct fhash_cfg *cfg;
3356 	struct fhashentry *ent;
3357 	struct fhashentry4 *fe4;
3358 #ifdef INET6
3359 	struct fhashentry6 *fe6;
3360 #endif
3361 	struct tflow_entry *tfe;
3362 
3363 	cfg = (struct fhash_cfg *)ta_state;
3364 	ent = (struct fhashentry *)e;
3365 	tfe = &tent->k.flow;
3366 
3367 	tfe->af = ent->af;
3368 	tfe->proto = ent->proto;
3369 	tfe->dport = htons(ent->dport);
3370 	tfe->sport = htons(ent->sport);
3371 	tent->v.kidx = ent->value;
3372 	tent->subtype = ent->af;
3373 
3374 	if (ent->af == AF_INET) {
3375 		fe4 = (struct fhashentry4 *)ent;
3376 		tfe->a.a4.sip.s_addr = htonl(fe4->sip.s_addr);
3377 		tfe->a.a4.dip.s_addr = htonl(fe4->dip.s_addr);
3378 		tent->masklen = 32;
3379 #ifdef INET6
3380 	} else {
3381 		fe6 = (struct fhashentry6 *)ent;
3382 		tfe->a.a6.sip6 = fe6->sip6;
3383 		tfe->a.a6.dip6 = fe6->dip6;
3384 		tent->masklen = 128;
3385 #endif
3386 	}
3387 
3388 	return (0);
3389 }
3390 
3391 static int
3392 tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent)
3393 {
3394 #ifdef INET
3395 	struct fhashentry4 *fe4;
3396 #endif
3397 #ifdef INET6
3398 	struct fhashentry6 *fe6;
3399 #endif
3400 	struct tflow_entry *tfe;
3401 
3402 	tfe = (struct tflow_entry *)tei->paddr;
3403 
3404 	ent->af = tei->subtype;
3405 	ent->proto = tfe->proto;
3406 	ent->dport = ntohs(tfe->dport);
3407 	ent->sport = ntohs(tfe->sport);
3408 
3409 	if (tei->subtype == AF_INET) {
3410 #ifdef INET
3411 		fe4 = (struct fhashentry4 *)ent;
3412 		fe4->sip.s_addr = ntohl(tfe->a.a4.sip.s_addr);
3413 		fe4->dip.s_addr = ntohl(tfe->a.a4.dip.s_addr);
3414 #endif
3415 #ifdef INET6
3416 	} else if (tei->subtype == AF_INET6) {
3417 		fe6 = (struct fhashentry6 *)ent;
3418 		fe6->sip6 = tfe->a.a6.sip6;
3419 		fe6->dip6 = tfe->a.a6.dip6;
3420 #endif
3421 	} else {
3422 		/* Unknown CIDR type */
3423 		return (EINVAL);
3424 	}
3425 
3426 	return (0);
3427 }
3428 
3429 
3430 static int
3431 ta_find_fhash_tentry(void *ta_state, struct table_info *ti,
3432     ipfw_obj_tentry *tent)
3433 {
3434 	struct fhash_cfg *cfg;
3435 	struct fhashbhead *head;
3436 	struct fhashentry *ent, *tmp;
3437 	struct fhashentry6 fe6;
3438 	struct tentry_info tei;
3439 	int error;
3440 	uint32_t hash;
3441 	size_t sz;
3442 
3443 	cfg = (struct fhash_cfg *)ta_state;
3444 
3445 	ent = &fe6.e;
3446 
3447 	memset(&fe6, 0, sizeof(fe6));
3448 	memset(&tei, 0, sizeof(tei));
3449 
3450 	tei.paddr = &tent->k.flow;
3451 	tei.subtype = tent->subtype;
3452 
3453 	if ((error = tei_to_fhash_ent(&tei, ent)) != 0)
3454 		return (error);
3455 
3456 	head = cfg->head;
3457 	hash = hash_flow_ent(ent, cfg->size);
3458 
3459 	if (tei.subtype == AF_INET)
3460 		sz = 2 * sizeof(struct in_addr);
3461 	else
3462 		sz = 2 * sizeof(struct in6_addr);
3463 
3464 	/* Check for existence */
3465 	SLIST_FOREACH(tmp, &head[hash], next) {
3466 		if (cmp_flow_ent(tmp, ent, sz) != 0) {
3467 			ta_dump_fhash_tentry(ta_state, ti, tmp, tent);
3468 			return (0);
3469 		}
3470 	}
3471 
3472 	return (ENOENT);
3473 }
3474 
3475 static void
3476 ta_foreach_fhash(void *ta_state, struct table_info *ti, ta_foreach_f *f,
3477     void *arg)
3478 {
3479 	struct fhash_cfg *cfg;
3480 	struct fhashentry *ent, *ent_next;
3481 	int i;
3482 
3483 	cfg = (struct fhash_cfg *)ta_state;
3484 
3485 	for (i = 0; i < cfg->size; i++)
3486 		SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next)
3487 			f(ent, arg);
3488 }
3489 
3490 static int
3491 ta_prepare_add_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
3492     void *ta_buf)
3493 {
3494 	struct ta_buf_fhash *tb;
3495 	struct fhashentry *ent;
3496 	size_t sz;
3497 	int error;
3498 
3499 	tb = (struct ta_buf_fhash *)ta_buf;
3500 
3501 	if (tei->subtype == AF_INET)
3502 		sz = sizeof(struct fhashentry4);
3503 	else if (tei->subtype == AF_INET6)
3504 		sz = sizeof(struct fhashentry6);
3505 	else
3506 		return (EINVAL);
3507 
3508 	ent = malloc(sz, M_IPFW_TBL, M_WAITOK | M_ZERO);
3509 
3510 	error = tei_to_fhash_ent(tei, ent);
3511 	if (error != 0) {
3512 		free(ent, M_IPFW_TBL);
3513 		return (error);
3514 	}
3515 	tb->ent_ptr = ent;
3516 
3517 	return (0);
3518 }
3519 
3520 static int
3521 ta_add_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
3522     void *ta_buf, uint32_t *pnum)
3523 {
3524 	struct fhash_cfg *cfg;
3525 	struct fhashbhead *head;
3526 	struct fhashentry *ent, *tmp;
3527 	struct ta_buf_fhash *tb;
3528 	int exists;
3529 	uint32_t hash, value;
3530 	size_t sz;
3531 
3532 	cfg = (struct fhash_cfg *)ta_state;
3533 	tb = (struct ta_buf_fhash *)ta_buf;
3534 	ent = (struct fhashentry *)tb->ent_ptr;
3535 	exists = 0;
3536 
3537 	/* Read current value from @tei */
3538 	ent->value = tei->value;
3539 
3540 	head = cfg->head;
3541 	hash = hash_flow_ent(ent, cfg->size);
3542 
3543 	if (tei->subtype == AF_INET)
3544 		sz = 2 * sizeof(struct in_addr);
3545 	else
3546 		sz = 2 * sizeof(struct in6_addr);
3547 
3548 	/* Check for existence */
3549 	SLIST_FOREACH(tmp, &head[hash], next) {
3550 		if (cmp_flow_ent(tmp, ent, sz) != 0) {
3551 			exists = 1;
3552 			break;
3553 		}
3554 	}
3555 
3556 	if (exists == 1) {
3557 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
3558 			return (EEXIST);
3559 		/* Record already exists. Update value if we're asked to */
3560 		/* Exchange values between tmp and @tei */
3561 		value = tmp->value;
3562 		tmp->value = tei->value;
3563 		tei->value = value;
3564 		/* Indicate that update has happened instead of addition */
3565 		tei->flags |= TEI_FLAGS_UPDATED;
3566 		*pnum = 0;
3567 	} else {
3568 		if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
3569 			return (EFBIG);
3570 
3571 		SLIST_INSERT_HEAD(&head[hash], ent, next);
3572 		tb->ent_ptr = NULL;
3573 		*pnum = 1;
3574 
3575 		/* Update counters and check if we need to grow hash */
3576 		cfg->items++;
3577 	}
3578 
3579 	return (0);
3580 }
3581 
3582 static int
3583 ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
3584     void *ta_buf)
3585 {
3586 	struct ta_buf_fhash *tb;
3587 
3588 	tb = (struct ta_buf_fhash *)ta_buf;
3589 
3590 	return (tei_to_fhash_ent(tei, &tb->fe6.e));
3591 }
3592 
3593 static int
3594 ta_del_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
3595     void *ta_buf, uint32_t *pnum)
3596 {
3597 	struct fhash_cfg *cfg;
3598 	struct fhashbhead *head;
3599 	struct fhashentry *ent, *tmp;
3600 	struct ta_buf_fhash *tb;
3601 	uint32_t hash;
3602 	size_t sz;
3603 
3604 	cfg = (struct fhash_cfg *)ta_state;
3605 	tb = (struct ta_buf_fhash *)ta_buf;
3606 	ent = &tb->fe6.e;
3607 
3608 	head = cfg->head;
3609 	hash = hash_flow_ent(ent, cfg->size);
3610 
3611 	if (tei->subtype == AF_INET)
3612 		sz = 2 * sizeof(struct in_addr);
3613 	else
3614 		sz = 2 * sizeof(struct in6_addr);
3615 
3616 	/* Check for existence */
3617 	SLIST_FOREACH(tmp, &head[hash], next) {
3618 		if (cmp_flow_ent(tmp, ent, sz) == 0)
3619 			continue;
3620 
3621 		SLIST_REMOVE(&head[hash], tmp, fhashentry, next);
3622 		tei->value = tmp->value;
3623 		*pnum = 1;
3624 		cfg->items--;
3625 		tb->ent_ptr = tmp;
3626 		return (0);
3627 	}
3628 
3629 	return (ENOENT);
3630 }
3631 
3632 static void
3633 ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
3634     void *ta_buf)
3635 {
3636 	struct ta_buf_fhash *tb;
3637 
3638 	tb = (struct ta_buf_fhash *)ta_buf;
3639 
3640 	if (tb->ent_ptr != NULL)
3641 		free(tb->ent_ptr, M_IPFW_TBL);
3642 }
3643 
3644 /*
3645  * Hash growing callbacks.
3646  */
3647 
3648 static int
3649 ta_need_modify_fhash(void *ta_state, struct table_info *ti, uint32_t count,
3650     uint64_t *pflags)
3651 {
3652 	struct fhash_cfg *cfg;
3653 
3654 	cfg = (struct fhash_cfg *)ta_state;
3655 
3656 	if (cfg->items > cfg->size && cfg->size < 65536) {
3657 		*pflags = cfg->size * 2;
3658 		return (1);
3659 	}
3660 
3661 	return (0);
3662 }
3663 
3664 /*
3665  * Allocate new, larger fhash.
3666  */
3667 static int
3668 ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags)
3669 {
3670 	struct mod_item *mi;
3671 	struct fhashbhead *head;
3672 	int i;
3673 
3674 	mi = (struct mod_item *)ta_buf;
3675 
3676 	memset(mi, 0, sizeof(struct mod_item));
3677 	mi->size = *pflags;
3678 	head = malloc(sizeof(struct fhashbhead) * mi->size, M_IPFW,
3679 	    M_WAITOK | M_ZERO);
3680 	for (i = 0; i < mi->size; i++)
3681 		SLIST_INIT(&head[i]);
3682 
3683 	mi->main_ptr = head;
3684 
3685 	return (0);
3686 }
3687 
3688 /*
3689  * Copy data from old runtime array to new one.
3690  */
3691 static int
3692 ta_fill_mod_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
3693     uint64_t *pflags)
3694 {
3695 
3696 	/* In is not possible to do rehash if we're not holidng WLOCK. */
3697 	return (0);
3698 }
3699 
3700 /*
3701  * Switch old & new arrays.
3702  */
3703 static void
3704 ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
3705     uint64_t pflags)
3706 {
3707 	struct mod_item *mi;
3708 	struct fhash_cfg *cfg;
3709 	struct fhashbhead *old_head, *new_head;
3710 	struct fhashentry *ent, *ent_next;
3711 	int i;
3712 	uint32_t nhash;
3713 	size_t old_size;
3714 
3715 	mi = (struct mod_item *)ta_buf;
3716 	cfg = (struct fhash_cfg *)ta_state;
3717 
3718 	old_size = cfg->size;
3719 	old_head = ti->state;
3720 
3721 	new_head = (struct fhashbhead *)mi->main_ptr;
3722 	for (i = 0; i < old_size; i++) {
3723 		SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
3724 			nhash = hash_flow_ent(ent, mi->size);
3725 			SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
3726 		}
3727 	}
3728 
3729 	ti->state = new_head;
3730 	ti->data = mi->size;
3731 	cfg->head = new_head;
3732 	cfg->size = mi->size;
3733 
3734 	mi->main_ptr = old_head;
3735 }
3736 
3737 /*
3738  * Free unneded array.
3739  */
3740 static void
3741 ta_flush_mod_fhash(void *ta_buf)
3742 {
3743 	struct mod_item *mi;
3744 
3745 	mi = (struct mod_item *)ta_buf;
3746 	if (mi->main_ptr != NULL)
3747 		free(mi->main_ptr, M_IPFW);
3748 }
3749 
3750 struct table_algo flow_hash = {
3751 	.name		= "flow:hash",
3752 	.type		= IPFW_TABLE_FLOW,
3753 	.flags		= TA_FLAG_DEFAULT,
3754 	.ta_buf_size	= sizeof(struct ta_buf_fhash),
3755 	.init		= ta_init_fhash,
3756 	.destroy	= ta_destroy_fhash,
3757 	.prepare_add	= ta_prepare_add_fhash,
3758 	.prepare_del	= ta_prepare_del_fhash,
3759 	.add		= ta_add_fhash,
3760 	.del		= ta_del_fhash,
3761 	.flush_entry	= ta_flush_fhash_entry,
3762 	.foreach	= ta_foreach_fhash,
3763 	.dump_tentry	= ta_dump_fhash_tentry,
3764 	.find_tentry	= ta_find_fhash_tentry,
3765 	.dump_tinfo	= ta_dump_fhash_tinfo,
3766 	.need_modify	= ta_need_modify_fhash,
3767 	.prepare_mod	= ta_prepare_mod_fhash,
3768 	.fill_mod	= ta_fill_mod_fhash,
3769 	.modify		= ta_modify_fhash,
3770 	.flush_mod	= ta_flush_mod_fhash,
3771 };
3772 
3773 /*
3774  * Kernel fibs bindings.
3775  *
3776  * Implementation:
3777  *
3778  * Runtime part:
3779  * - fully relies on route API
3780  * - fib number is stored in ti->data
3781  *
3782  */
3783 
3784 static int ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen,
3785     uint32_t *val);
3786 static int kfib_parse_opts(int *pfib, char *data);
3787 static void ta_print_kfib_config(void *ta_state, struct table_info *ti,
3788     char *buf, size_t bufsize);
3789 static int ta_init_kfib(struct ip_fw_chain *ch, void **ta_state,
3790     struct table_info *ti, char *data, uint8_t tflags);
3791 static void ta_destroy_kfib(void *ta_state, struct table_info *ti);
3792 static void ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti,
3793     ipfw_ta_tinfo *tinfo);
3794 static int contigmask(uint8_t *p, int len);
3795 static int ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e,
3796     ipfw_obj_tentry *tent);
3797 static int ta_dump_kfib_tentry_int(struct sockaddr *paddr,
3798     struct sockaddr *pmask, ipfw_obj_tentry *tent);
3799 static int ta_find_kfib_tentry(void *ta_state, struct table_info *ti,
3800     ipfw_obj_tentry *tent);
3801 static void ta_foreach_kfib(void *ta_state, struct table_info *ti,
3802     ta_foreach_f *f, void *arg);
3803 
3804 
3805 static int
3806 ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen,
3807     uint32_t *val)
3808 {
3809 #ifdef INET
3810 	struct nhop4_basic nh4;
3811 	struct in_addr in;
3812 #endif
3813 #ifdef INET6
3814 	struct nhop6_basic nh6;
3815 #endif
3816 	int error;
3817 
3818 	error = ENOENT;
3819 #ifdef INET
3820 	if (keylen == 4) {
3821 		in.s_addr = *(in_addr_t *)key;
3822 		error = fib4_lookup_nh_basic(ti->data,
3823 		    in, 0, 0, &nh4);
3824 	}
3825 #endif
3826 #ifdef INET6
3827 	if (keylen == 6)
3828 		error = fib6_lookup_nh_basic(ti->data,
3829 		    (struct in6_addr *)key, 0, 0, 0, &nh6);
3830 #endif
3831 
3832 	if (error != 0)
3833 		return (0);
3834 
3835 	*val = 0;
3836 
3837 	return (1);
3838 }
3839 
3840 /* Parse 'fib=%d' */
3841 static int
3842 kfib_parse_opts(int *pfib, char *data)
3843 {
3844 	char *pdel, *pend, *s;
3845 	int fibnum;
3846 
3847 	if (data == NULL)
3848 		return (0);
3849 	if ((pdel = strchr(data, ' ')) == NULL)
3850 		return (0);
3851 	while (*pdel == ' ')
3852 		pdel++;
3853 	if (strncmp(pdel, "fib=", 4) != 0)
3854 		return (EINVAL);
3855 	if ((s = strchr(pdel, ' ')) != NULL)
3856 		*s++ = '\0';
3857 
3858 	pdel += 4;
3859 	/* Need \d+ */
3860 	fibnum = strtol(pdel, &pend, 10);
3861 	if (*pend != '\0')
3862 		return (EINVAL);
3863 
3864 	*pfib = fibnum;
3865 
3866 	return (0);
3867 }
3868 
3869 static void
3870 ta_print_kfib_config(void *ta_state, struct table_info *ti, char *buf,
3871     size_t bufsize)
3872 {
3873 
3874 	if (ti->data != 0)
3875 		snprintf(buf, bufsize, "%s fib=%lu", "addr:kfib", ti->data);
3876 	else
3877 		snprintf(buf, bufsize, "%s", "addr:kfib");
3878 }
3879 
3880 static int
3881 ta_init_kfib(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
3882     char *data, uint8_t tflags)
3883 {
3884 	int error, fibnum;
3885 
3886 	fibnum = 0;
3887 	if ((error = kfib_parse_opts(&fibnum, data)) != 0)
3888 		return (error);
3889 
3890 	if (fibnum >= rt_numfibs)
3891 		return (E2BIG);
3892 
3893 	ti->data = fibnum;
3894 	ti->lookup = ta_lookup_kfib;
3895 
3896 	return (0);
3897 }
3898 
3899 /*
3900  * Destroys table @ti
3901  */
3902 static void
3903 ta_destroy_kfib(void *ta_state, struct table_info *ti)
3904 {
3905 
3906 }
3907 
3908 /*
3909  * Provide algo-specific table info
3910  */
3911 static void
3912 ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
3913 {
3914 
3915 	tinfo->flags = IPFW_TATFLAGS_AFDATA;
3916 	tinfo->taclass4 = IPFW_TACLASS_RADIX;
3917 	tinfo->count4 = 0;
3918 	tinfo->itemsize4 = sizeof(struct rtentry);
3919 	tinfo->taclass6 = IPFW_TACLASS_RADIX;
3920 	tinfo->count6 = 0;
3921 	tinfo->itemsize6 = sizeof(struct rtentry);
3922 }
3923 
3924 static int
3925 contigmask(uint8_t *p, int len)
3926 {
3927 	int i, n;
3928 
3929 	for (i = 0; i < len ; i++)
3930 		if ( (p[i/8] & (1 << (7 - (i%8)))) == 0) /* first bit unset */
3931 			break;
3932 	for (n= i + 1; n < len; n++)
3933 		if ( (p[n/8] & (1 << (7 - (n % 8)))) != 0)
3934 			return (-1); /* mask not contiguous */
3935 	return (i);
3936 }
3937 
3938 
3939 static int
3940 ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e,
3941     ipfw_obj_tentry *tent)
3942 {
3943 	struct rtentry *rte;
3944 
3945 	rte = (struct rtentry *)e;
3946 
3947 	return ta_dump_kfib_tentry_int(rt_key(rte), rt_mask(rte), tent);
3948 }
3949 
3950 static int
3951 ta_dump_kfib_tentry_int(struct sockaddr *paddr, struct sockaddr *pmask,
3952     ipfw_obj_tentry *tent)
3953 {
3954 #ifdef INET
3955 	struct sockaddr_in *addr, *mask;
3956 #endif
3957 #ifdef INET6
3958 	struct sockaddr_in6 *addr6, *mask6;
3959 #endif
3960 	int len;
3961 
3962 	len = 0;
3963 
3964 	/* Guess IPv4/IPv6 radix by sockaddr family */
3965 #ifdef INET
3966 	if (paddr->sa_family == AF_INET) {
3967 		addr = (struct sockaddr_in *)paddr;
3968 		mask = (struct sockaddr_in *)pmask;
3969 		tent->k.addr.s_addr = addr->sin_addr.s_addr;
3970 		len = 32;
3971 		if (mask != NULL)
3972 			len = contigmask((uint8_t *)&mask->sin_addr, 32);
3973 		if (len == -1)
3974 			len = 0;
3975 		tent->masklen = len;
3976 		tent->subtype = AF_INET;
3977 		tent->v.kidx = 0; /* Do we need to put GW here? */
3978 	}
3979 #endif
3980 #ifdef INET6
3981 	if (paddr->sa_family == AF_INET6) {
3982 		addr6 = (struct sockaddr_in6 *)paddr;
3983 		mask6 = (struct sockaddr_in6 *)pmask;
3984 		memcpy(&tent->k, &addr6->sin6_addr, sizeof(struct in6_addr));
3985 		len = 128;
3986 		if (mask6 != NULL)
3987 			len = contigmask((uint8_t *)&mask6->sin6_addr, 128);
3988 		if (len == -1)
3989 			len = 0;
3990 		tent->masklen = len;
3991 		tent->subtype = AF_INET6;
3992 		tent->v.kidx = 0;
3993 	}
3994 #endif
3995 
3996 	return (0);
3997 }
3998 
3999 static int
4000 ta_find_kfib_tentry(void *ta_state, struct table_info *ti,
4001     ipfw_obj_tentry *tent)
4002 {
4003 	struct rt_addrinfo info;
4004 	struct sockaddr_in6 key6, dst6, mask6;
4005 	struct sockaddr *dst, *key, *mask;
4006 
4007 	/* Prepare sockaddr for prefix/mask and info */
4008 	bzero(&dst6, sizeof(dst6));
4009 	dst6.sin6_len = sizeof(dst6);
4010 	dst = (struct sockaddr *)&dst6;
4011 	bzero(&mask6, sizeof(mask6));
4012 	mask6.sin6_len = sizeof(mask6);
4013 	mask = (struct sockaddr *)&mask6;
4014 
4015 	bzero(&info, sizeof(info));
4016 	info.rti_info[RTAX_DST] = dst;
4017 	info.rti_info[RTAX_NETMASK] = mask;
4018 
4019 	/* Prepare the lookup key */
4020 	bzero(&key6, sizeof(key6));
4021 	key6.sin6_family = tent->subtype;
4022 	key = (struct sockaddr *)&key6;
4023 
4024 	if (tent->subtype == AF_INET) {
4025 		((struct sockaddr_in *)&key6)->sin_addr = tent->k.addr;
4026 		key6.sin6_len = sizeof(struct sockaddr_in);
4027 	} else {
4028 		key6.sin6_addr = tent->k.addr6;
4029 		key6.sin6_len = sizeof(struct sockaddr_in6);
4030 	}
4031 
4032 	if (rib_lookup_info(ti->data, key, 0, 0, &info) != 0)
4033 		return (ENOENT);
4034 	if ((info.rti_addrs & RTA_NETMASK) == 0)
4035 		mask = NULL;
4036 
4037 	ta_dump_kfib_tentry_int(dst, mask, tent);
4038 
4039 	return (0);
4040 }
4041 
4042 static void
4043 ta_foreach_kfib(void *ta_state, struct table_info *ti, ta_foreach_f *f,
4044     void *arg)
4045 {
4046 	struct rib_head *rh;
4047 	int error;
4048 
4049 	rh = rt_tables_get_rnh(ti->data, AF_INET);
4050 	if (rh != NULL) {
4051 		RIB_RLOCK(rh);
4052 		error = rh->rnh_walktree(&rh->head, (walktree_f_t *)f, arg);
4053 		RIB_RUNLOCK(rh);
4054 	}
4055 
4056 	rh = rt_tables_get_rnh(ti->data, AF_INET6);
4057 	if (rh != NULL) {
4058 		RIB_RLOCK(rh);
4059 		error = rh->rnh_walktree(&rh->head, (walktree_f_t *)f, arg);
4060 		RIB_RUNLOCK(rh);
4061 	}
4062 }
4063 
4064 struct table_algo addr_kfib = {
4065 	.name		= "addr:kfib",
4066 	.type		= IPFW_TABLE_ADDR,
4067 	.flags		= TA_FLAG_READONLY,
4068 	.ta_buf_size	= 0,
4069 	.init		= ta_init_kfib,
4070 	.destroy	= ta_destroy_kfib,
4071 	.foreach	= ta_foreach_kfib,
4072 	.dump_tentry	= ta_dump_kfib_tentry,
4073 	.find_tentry	= ta_find_kfib_tentry,
4074 	.dump_tinfo	= ta_dump_kfib_tinfo,
4075 	.print_config	= ta_print_kfib_config,
4076 };
4077 
4078 void
4079 ipfw_table_algo_init(struct ip_fw_chain *ch)
4080 {
4081 	size_t sz;
4082 
4083 	/*
4084 	 * Register all algorithms presented here.
4085 	 */
4086 	sz = sizeof(struct table_algo);
4087 	ipfw_add_table_algo(ch, &addr_radix, sz, &addr_radix.idx);
4088 	ipfw_add_table_algo(ch, &addr_hash, sz, &addr_hash.idx);
4089 	ipfw_add_table_algo(ch, &iface_idx, sz, &iface_idx.idx);
4090 	ipfw_add_table_algo(ch, &number_array, sz, &number_array.idx);
4091 	ipfw_add_table_algo(ch, &flow_hash, sz, &flow_hash.idx);
4092 	ipfw_add_table_algo(ch, &addr_kfib, sz, &addr_kfib.idx);
4093 }
4094 
4095 void
4096 ipfw_table_algo_destroy(struct ip_fw_chain *ch)
4097 {
4098 
4099 	ipfw_del_table_algo(ch, addr_radix.idx);
4100 	ipfw_del_table_algo(ch, addr_hash.idx);
4101 	ipfw_del_table_algo(ch, iface_idx.idx);
4102 	ipfw_del_table_algo(ch, number_array.idx);
4103 	ipfw_del_table_algo(ch, flow_hash.idx);
4104 	ipfw_del_table_algo(ch, addr_kfib.idx);
4105 }
4106 
4107 
4108