1 /*- 2 * Copyright (c) 2014 Yandex LLC 3 * Copyright (c) 2014 Alexander V. Chernikov 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Lookup table algorithms. 32 * 33 */ 34 35 #include "opt_ipfw.h" 36 #include "opt_inet.h" 37 #ifndef INET 38 #error IPFIREWALL requires INET. 39 #endif /* INET */ 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/rwlock.h> 48 #include <sys/rmlock.h> 49 #include <sys/socket.h> 50 #include <sys/queue.h> 51 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */ 52 #include <net/radix.h> 53 #include <net/route.h> 54 #include <net/route/nhop.h> 55 #include <net/route/route_ctl.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_fib.h> 59 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */ 60 #include <netinet/ip_fw.h> 61 #include <netinet6/in6_fib.h> 62 63 #include <netpfil/ipfw/ip_fw_private.h> 64 #include <netpfil/ipfw/ip_fw_table.h> 65 66 /* 67 * IPFW table lookup algorithms. 68 * 69 * What is needed to add another table algo? 70 * 71 * Algo init: 72 * * struct table_algo has to be filled with: 73 * name: "type:algoname" format, e.g. "addr:radix". Currently 74 * there are the following types: "addr", "iface", "number" and "flow". 75 * type: one of IPFW_TABLE_* types 76 * flags: one or more TA_FLAGS_* 77 * ta_buf_size: size of structure used to store add/del item state. 78 * Needs to be less than TA_BUF_SZ. 79 * callbacks: see below for description. 80 * * ipfw_add_table_algo / ipfw_del_table_algo has to be called 81 * 82 * Callbacks description: 83 * 84 * -init: request to initialize new table instance. 85 * typedef int (ta_init)(struct ip_fw_chain *ch, void **ta_state, 86 * struct table_info *ti, char *data, uint8_t tflags); 87 * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success. 88 * 89 * Allocate all structures needed for normal operations. 90 * * Caller may want to parse @data for some algo-specific 91 * options provided by userland. 92 * * Caller may want to save configuration state pointer to @ta_state 93 * * Caller needs to save desired runtime structure pointer(s) 94 * inside @ti fields. Note that it is not correct to save 95 * @ti pointer at this moment. Use -change_ti hook for that. 96 * * Caller has to fill in ti->lookup to appropriate function 97 * pointer. 98 * 99 * 100 * 101 * -destroy: request to destroy table instance. 102 * typedef void (ta_destroy)(void *ta_state, struct table_info *ti); 103 * MANDATORY, unlocked. (M_WAITOK). 104 * 105 * Frees all table entries and all tables structures allocated by -init. 106 * 107 * 108 * 109 * -prepare_add: request to allocate state for adding new entry. 110 * typedef int (ta_prepare_add)(struct ip_fw_chain *ch, struct tentry_info *tei, 111 * void *ta_buf); 112 * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success. 113 * 114 * Allocates state and fills it in with all necessary data (EXCEPT value) 115 * from @tei to minimize operations needed to be done under WLOCK. 116 * "value" field has to be copied to new entry in @add callback. 117 * Buffer ta_buf of size ta->ta_buf_sz may be used to store 118 * allocated state. 119 * 120 * 121 * 122 * -prepare_del: request to set state for deleting existing entry. 123 * typedef int (ta_prepare_del)(struct ip_fw_chain *ch, struct tentry_info *tei, 124 * void *ta_buf); 125 * MANDATORY, locked, UH. (M_NOWAIT). Returns 0 on success. 126 * 127 * Buffer ta_buf of size ta->ta_buf_sz may be used to store 128 * allocated state. Caller should use on-stack ta_buf allocation 129 * instead of doing malloc(). 130 * 131 * 132 * 133 * -add: request to insert new entry into runtime/config structures. 134 * typedef int (ta_add)(void *ta_state, struct table_info *ti, 135 * struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 136 * MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success. 137 * 138 * Insert new entry using previously-allocated state in @ta_buf. 139 * * @tei may have the following flags: 140 * TEI_FLAGS_UPDATE: request to add or update entry. 141 * TEI_FLAGS_DONTADD: request to update (but not add) entry. 142 * * Caller is required to do the following: 143 * copy real entry value from @tei 144 * entry added: return 0, set 1 to @pnum 145 * entry updated: return 0, store 0 to @pnum, store old value in @tei, 146 * add TEI_FLAGS_UPDATED flag to @tei. 147 * entry exists: return EEXIST 148 * entry not found: return ENOENT 149 * other error: return non-zero error code. 150 * 151 * 152 * 153 * -del: request to delete existing entry from runtime/config structures. 154 * typedef int (ta_del)(void *ta_state, struct table_info *ti, 155 * struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 156 * MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success. 157 * 158 * Delete entry using previously set up in @ta_buf. 159 * * Caller is required to do the following: 160 * entry deleted: return 0, set 1 to @pnum, store old value in @tei. 161 * entry not found: return ENOENT 162 * other error: return non-zero error code. 163 * 164 * 165 * 166 * -flush_entry: flush entry state created by -prepare_add / -del / others 167 * typedef void (ta_flush_entry)(struct ip_fw_chain *ch, 168 * struct tentry_info *tei, void *ta_buf); 169 * MANDATORY, may be locked. (M_NOWAIT). 170 * 171 * Delete state allocated by: 172 * -prepare_add (-add returned EEXIST|UPDATED) 173 * -prepare_del (if any) 174 * -del 175 * * Caller is required to handle empty @ta_buf correctly. 176 * 177 * 178 * -find_tentry: finds entry specified by key @tei 179 * typedef int ta_find_tentry(void *ta_state, struct table_info *ti, 180 * ipfw_obj_tentry *tent); 181 * OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 on success. 182 * 183 * Finds entry specified by given key. 184 * * Caller is required to do the following: 185 * entry found: returns 0, export entry to @tent 186 * entry not found: returns ENOENT 187 * 188 * 189 * -need_modify: checks if @ti has enough space to hold another @count items. 190 * typedef int (ta_need_modify)(void *ta_state, struct table_info *ti, 191 * uint32_t count, uint64_t *pflags); 192 * OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 if has. 193 * 194 * Checks if given table has enough space to add @count items without 195 * resize. Caller may use @pflags to store desired modification data. 196 * 197 * 198 * 199 * -prepare_mod: allocate structures for table modification. 200 * typedef int (ta_prepare_mod)(void *ta_buf, uint64_t *pflags); 201 * OPTIONAL(need_modify), unlocked. (M_WAITOK). Returns 0 on success. 202 * 203 * Allocate all needed state for table modification. Caller 204 * should use `struct mod_item` to store new state in @ta_buf. 205 * Up to TA_BUF_SZ (128 bytes) can be stored in @ta_buf. 206 * 207 * 208 * 209 * -fill_mod: copy some data to new state/ 210 * typedef int (ta_fill_mod)(void *ta_state, struct table_info *ti, 211 * void *ta_buf, uint64_t *pflags); 212 * OPTIONAL(need_modify), locked (UH). (M_NOWAIT). Returns 0 on success. 213 * 214 * Copy as much data as we can to minimize changes under WLOCK. 215 * For example, array can be merged inside this callback. 216 * 217 * 218 * 219 * -modify: perform final modification. 220 * typedef void (ta_modify)(void *ta_state, struct table_info *ti, 221 * void *ta_buf, uint64_t pflags); 222 * OPTIONAL(need_modify), locked (UH+WLOCK). (M_NOWAIT). 223 * 224 * Performs all changes necessary to switch to new structures. 225 * * Caller should save old pointers to @ta_buf storage. 226 * 227 * 228 * 229 * -flush_mod: flush table modification state. 230 * typedef void (ta_flush_mod)(void *ta_buf); 231 * OPTIONAL(need_modify), unlocked. (M_WAITOK). 232 * 233 * Performs flush for the following: 234 * - prepare_mod (modification was not necessary) 235 * - modify (for the old state) 236 * 237 * 238 * 239 * -change_gi: monitor table info pointer changes 240 * typedef void (ta_change_ti)(void *ta_state, struct table_info *ti); 241 * OPTIONAL, locked (UH). (M_NOWAIT). 242 * 243 * Called on @ti pointer changed. Called immediately after -init 244 * to set initial state. 245 * 246 * 247 * 248 * -foreach: calls @f for each table entry 249 * typedef void ta_foreach(void *ta_state, struct table_info *ti, 250 * ta_foreach_f *f, void *arg); 251 * MANDATORY, locked(UH). (M_NOWAIT). 252 * 253 * Runs callback with specified argument for each table entry, 254 * Typically used for dumping table entries. 255 * 256 * 257 * 258 * -dump_tentry: dump table entry in current @tentry format. 259 * typedef int ta_dump_tentry(void *ta_state, struct table_info *ti, void *e, 260 * ipfw_obj_tentry *tent); 261 * MANDATORY, locked(UH). (M_NOWAIT). Returns 0 on success. 262 * 263 * Dumps entry @e to @tent. 264 * 265 * 266 * -print_config: prints custom algorithm options into buffer. 267 * typedef void (ta_print_config)(void *ta_state, struct table_info *ti, 268 * char *buf, size_t bufsize); 269 * OPTIONAL. locked(UH). (M_NOWAIT). 270 * 271 * Prints custom algorithm options in the format suitable to pass 272 * back to -init callback. 273 * 274 * 275 * 276 * -dump_tinfo: dumps algo-specific info. 277 * typedef void ta_dump_tinfo(void *ta_state, struct table_info *ti, 278 * ipfw_ta_tinfo *tinfo); 279 * OPTIONAL. locked(UH). (M_NOWAIT). 280 * 281 * Dumps options like items size/hash size, etc. 282 */ 283 284 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables"); 285 286 /* 287 * Utility structures/functions common to more than one algo 288 */ 289 290 struct mod_item { 291 void *main_ptr; 292 size_t size; 293 void *main_ptr6; 294 size_t size6; 295 }; 296 297 static int badd(const void *key, void *item, void *base, size_t nmemb, 298 size_t size, int (*compar) (const void *, const void *)); 299 static int bdel(const void *key, void *base, size_t nmemb, size_t size, 300 int (*compar) (const void *, const void *)); 301 302 /* 303 * ADDR implementation using radix 304 * 305 */ 306 307 /* 308 * The radix code expects addr and mask to be array of bytes, 309 * with the first byte being the length of the array. rn_inithead 310 * is called with the offset in bits of the lookup key within the 311 * array. If we use a sockaddr_in as the underlying type, 312 * sin_len is conveniently located at offset 0, sin_addr is at 313 * offset 4 and normally aligned. 314 * But for portability, let's avoid assumption and make the code explicit 315 */ 316 #define KEY_LEN(v) *((uint8_t *)&(v)) 317 /* 318 * Do not require radix to compare more than actual IPv4/IPv6 address 319 */ 320 #define KEY_LEN_INET (offsetof(struct sockaddr_in, sin_addr) + sizeof(in_addr_t)) 321 #define KEY_LEN_INET6 (offsetof(struct sa_in6, sin6_addr) + sizeof(struct in6_addr)) 322 323 #define OFF_LEN_INET (8 * offsetof(struct sockaddr_in, sin_addr)) 324 #define OFF_LEN_INET6 (8 * offsetof(struct sa_in6, sin6_addr)) 325 326 struct radix_addr_entry { 327 struct radix_node rn[2]; 328 struct sockaddr_in addr; 329 uint32_t value; 330 uint8_t masklen; 331 }; 332 333 struct sa_in6 { 334 uint8_t sin6_len; 335 uint8_t sin6_family; 336 uint8_t pad[2]; 337 struct in6_addr sin6_addr; 338 }; 339 340 struct radix_addr_xentry { 341 struct radix_node rn[2]; 342 struct sa_in6 addr6; 343 uint32_t value; 344 uint8_t masklen; 345 }; 346 347 struct radix_cfg { 348 struct radix_node_head *head4; 349 struct radix_node_head *head6; 350 size_t count4; 351 size_t count6; 352 }; 353 354 struct ta_buf_radix 355 { 356 void *ent_ptr; 357 struct sockaddr *addr_ptr; 358 struct sockaddr *mask_ptr; 359 union { 360 struct { 361 struct sockaddr_in sa; 362 struct sockaddr_in ma; 363 } a4; 364 struct { 365 struct sa_in6 sa; 366 struct sa_in6 ma; 367 } a6; 368 } addr; 369 }; 370 371 static int ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen, 372 uint32_t *val); 373 static int ta_init_radix(struct ip_fw_chain *ch, void **ta_state, 374 struct table_info *ti, char *data, uint8_t tflags); 375 static int flush_radix_entry(struct radix_node *rn, void *arg); 376 static void ta_destroy_radix(void *ta_state, struct table_info *ti); 377 static void ta_dump_radix_tinfo(void *ta_state, struct table_info *ti, 378 ipfw_ta_tinfo *tinfo); 379 static int ta_dump_radix_tentry(void *ta_state, struct table_info *ti, 380 void *e, ipfw_obj_tentry *tent); 381 static int ta_find_radix_tentry(void *ta_state, struct table_info *ti, 382 ipfw_obj_tentry *tent); 383 static void ta_foreach_radix(void *ta_state, struct table_info *ti, 384 ta_foreach_f *f, void *arg); 385 static void tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa, 386 struct sockaddr *ma, int *set_mask); 387 static int ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 388 void *ta_buf); 389 static int ta_add_radix(void *ta_state, struct table_info *ti, 390 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 391 static int ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 392 void *ta_buf); 393 static int ta_del_radix(void *ta_state, struct table_info *ti, 394 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 395 static void ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 396 void *ta_buf); 397 static int ta_need_modify_radix(void *ta_state, struct table_info *ti, 398 uint32_t count, uint64_t *pflags); 399 400 static int 401 ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen, 402 uint32_t *val) 403 { 404 struct radix_node_head *rnh; 405 406 if (keylen == sizeof(in_addr_t)) { 407 struct radix_addr_entry *ent; 408 struct sockaddr_in sa; 409 KEY_LEN(sa) = KEY_LEN_INET; 410 sa.sin_addr.s_addr = *((in_addr_t *)key); 411 rnh = (struct radix_node_head *)ti->state; 412 ent = (struct radix_addr_entry *)(rnh->rnh_matchaddr(&sa, &rnh->rh)); 413 if (ent != NULL) { 414 *val = ent->value; 415 return (1); 416 } 417 } else { 418 struct radix_addr_xentry *xent; 419 struct sa_in6 sa6; 420 KEY_LEN(sa6) = KEY_LEN_INET6; 421 memcpy(&sa6.sin6_addr, key, sizeof(struct in6_addr)); 422 rnh = (struct radix_node_head *)ti->xstate; 423 xent = (struct radix_addr_xentry *)(rnh->rnh_matchaddr(&sa6, &rnh->rh)); 424 if (xent != NULL) { 425 *val = xent->value; 426 return (1); 427 } 428 } 429 430 return (0); 431 } 432 433 /* 434 * New table 435 */ 436 static int 437 ta_init_radix(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 438 char *data, uint8_t tflags) 439 { 440 struct radix_cfg *cfg; 441 442 if (!rn_inithead(&ti->state, OFF_LEN_INET)) 443 return (ENOMEM); 444 if (!rn_inithead(&ti->xstate, OFF_LEN_INET6)) { 445 rn_detachhead(&ti->state); 446 return (ENOMEM); 447 } 448 449 cfg = malloc(sizeof(struct radix_cfg), M_IPFW, M_WAITOK | M_ZERO); 450 451 *ta_state = cfg; 452 ti->lookup = ta_lookup_radix; 453 454 return (0); 455 } 456 457 static int 458 flush_radix_entry(struct radix_node *rn, void *arg) 459 { 460 struct radix_node_head * const rnh = arg; 461 struct radix_addr_entry *ent; 462 463 ent = (struct radix_addr_entry *) 464 rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, &rnh->rh); 465 if (ent != NULL) 466 free(ent, M_IPFW_TBL); 467 return (0); 468 } 469 470 static void 471 ta_destroy_radix(void *ta_state, struct table_info *ti) 472 { 473 struct radix_cfg *cfg; 474 struct radix_node_head *rnh; 475 476 cfg = (struct radix_cfg *)ta_state; 477 478 rnh = (struct radix_node_head *)(ti->state); 479 rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh); 480 rn_detachhead(&ti->state); 481 482 rnh = (struct radix_node_head *)(ti->xstate); 483 rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh); 484 rn_detachhead(&ti->xstate); 485 486 free(cfg, M_IPFW); 487 } 488 489 /* 490 * Provide algo-specific table info 491 */ 492 static void 493 ta_dump_radix_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 494 { 495 struct radix_cfg *cfg; 496 497 cfg = (struct radix_cfg *)ta_state; 498 499 tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM; 500 tinfo->taclass4 = IPFW_TACLASS_RADIX; 501 tinfo->count4 = cfg->count4; 502 tinfo->itemsize4 = sizeof(struct radix_addr_entry); 503 tinfo->taclass6 = IPFW_TACLASS_RADIX; 504 tinfo->count6 = cfg->count6; 505 tinfo->itemsize6 = sizeof(struct radix_addr_xentry); 506 } 507 508 static int 509 ta_dump_radix_tentry(void *ta_state, struct table_info *ti, void *e, 510 ipfw_obj_tentry *tent) 511 { 512 struct radix_addr_entry *n; 513 #ifdef INET6 514 struct radix_addr_xentry *xn; 515 #endif 516 517 n = (struct radix_addr_entry *)e; 518 519 /* Guess IPv4/IPv6 radix by sockaddr family */ 520 if (n->addr.sin_family == AF_INET) { 521 tent->k.addr.s_addr = n->addr.sin_addr.s_addr; 522 tent->masklen = n->masklen; 523 tent->subtype = AF_INET; 524 tent->v.kidx = n->value; 525 #ifdef INET6 526 } else { 527 xn = (struct radix_addr_xentry *)e; 528 memcpy(&tent->k.addr6, &xn->addr6.sin6_addr, 529 sizeof(struct in6_addr)); 530 tent->masklen = xn->masklen; 531 tent->subtype = AF_INET6; 532 tent->v.kidx = xn->value; 533 #endif 534 } 535 536 return (0); 537 } 538 539 static int 540 ta_find_radix_tentry(void *ta_state, struct table_info *ti, 541 ipfw_obj_tentry *tent) 542 { 543 struct radix_node_head *rnh; 544 void *e; 545 546 e = NULL; 547 if (tent->subtype == AF_INET) { 548 struct sockaddr_in sa; 549 KEY_LEN(sa) = KEY_LEN_INET; 550 sa.sin_addr.s_addr = tent->k.addr.s_addr; 551 rnh = (struct radix_node_head *)ti->state; 552 e = rnh->rnh_matchaddr(&sa, &rnh->rh); 553 } else { 554 struct sa_in6 sa6; 555 KEY_LEN(sa6) = KEY_LEN_INET6; 556 memcpy(&sa6.sin6_addr, &tent->k.addr6, sizeof(struct in6_addr)); 557 rnh = (struct radix_node_head *)ti->xstate; 558 e = rnh->rnh_matchaddr(&sa6, &rnh->rh); 559 } 560 561 if (e != NULL) { 562 ta_dump_radix_tentry(ta_state, ti, e, tent); 563 return (0); 564 } 565 566 return (ENOENT); 567 } 568 569 static void 570 ta_foreach_radix(void *ta_state, struct table_info *ti, ta_foreach_f *f, 571 void *arg) 572 { 573 struct radix_node_head *rnh; 574 575 rnh = (struct radix_node_head *)(ti->state); 576 rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg); 577 578 rnh = (struct radix_node_head *)(ti->xstate); 579 rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg); 580 } 581 582 #ifdef INET6 583 static inline void ipv6_writemask(struct in6_addr *addr6, uint8_t mask); 584 585 static inline void 586 ipv6_writemask(struct in6_addr *addr6, uint8_t mask) 587 { 588 uint32_t *cp; 589 590 for (cp = (uint32_t *)addr6; mask >= 32; mask -= 32) 591 *cp++ = 0xFFFFFFFF; 592 if (mask > 0) 593 *cp = htonl(mask ? ~((1 << (32 - mask)) - 1) : 0); 594 } 595 #endif 596 597 static void 598 tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa, 599 struct sockaddr *ma, int *set_mask) 600 { 601 int mlen; 602 #ifdef INET 603 struct sockaddr_in *addr, *mask; 604 #endif 605 #ifdef INET6 606 struct sa_in6 *addr6, *mask6; 607 #endif 608 in_addr_t a4; 609 610 mlen = tei->masklen; 611 612 if (tei->subtype == AF_INET) { 613 #ifdef INET 614 addr = (struct sockaddr_in *)sa; 615 mask = (struct sockaddr_in *)ma; 616 /* Set 'total' structure length */ 617 KEY_LEN(*addr) = KEY_LEN_INET; 618 KEY_LEN(*mask) = KEY_LEN_INET; 619 addr->sin_family = AF_INET; 620 mask->sin_addr.s_addr = 621 htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0); 622 a4 = *((in_addr_t *)tei->paddr); 623 addr->sin_addr.s_addr = a4 & mask->sin_addr.s_addr; 624 if (mlen != 32) 625 *set_mask = 1; 626 else 627 *set_mask = 0; 628 #endif 629 #ifdef INET6 630 } else if (tei->subtype == AF_INET6) { 631 /* IPv6 case */ 632 addr6 = (struct sa_in6 *)sa; 633 mask6 = (struct sa_in6 *)ma; 634 /* Set 'total' structure length */ 635 KEY_LEN(*addr6) = KEY_LEN_INET6; 636 KEY_LEN(*mask6) = KEY_LEN_INET6; 637 addr6->sin6_family = AF_INET6; 638 ipv6_writemask(&mask6->sin6_addr, mlen); 639 memcpy(&addr6->sin6_addr, tei->paddr, sizeof(struct in6_addr)); 640 APPLY_MASK(&addr6->sin6_addr, &mask6->sin6_addr); 641 if (mlen != 128) 642 *set_mask = 1; 643 else 644 *set_mask = 0; 645 #endif 646 } 647 } 648 649 static int 650 ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 651 void *ta_buf) 652 { 653 struct ta_buf_radix *tb; 654 struct radix_addr_entry *ent; 655 #ifdef INET6 656 struct radix_addr_xentry *xent; 657 #endif 658 struct sockaddr *addr, *mask; 659 int mlen, set_mask; 660 661 tb = (struct ta_buf_radix *)ta_buf; 662 663 mlen = tei->masklen; 664 set_mask = 0; 665 666 if (tei->subtype == AF_INET) { 667 #ifdef INET 668 if (mlen > 32) 669 return (EINVAL); 670 ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO); 671 ent->masklen = mlen; 672 673 addr = (struct sockaddr *)&ent->addr; 674 mask = (struct sockaddr *)&tb->addr.a4.ma; 675 tb->ent_ptr = ent; 676 #endif 677 #ifdef INET6 678 } else if (tei->subtype == AF_INET6) { 679 /* IPv6 case */ 680 if (mlen > 128) 681 return (EINVAL); 682 xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO); 683 xent->masklen = mlen; 684 685 addr = (struct sockaddr *)&xent->addr6; 686 mask = (struct sockaddr *)&tb->addr.a6.ma; 687 tb->ent_ptr = xent; 688 #endif 689 } else { 690 /* Unknown CIDR type */ 691 return (EINVAL); 692 } 693 694 tei_to_sockaddr_ent(tei, addr, mask, &set_mask); 695 /* Set pointers */ 696 tb->addr_ptr = addr; 697 if (set_mask != 0) 698 tb->mask_ptr = mask; 699 700 return (0); 701 } 702 703 static int 704 ta_add_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei, 705 void *ta_buf, uint32_t *pnum) 706 { 707 struct radix_cfg *cfg; 708 struct radix_node_head *rnh; 709 struct radix_node *rn; 710 struct ta_buf_radix *tb; 711 uint32_t *old_value, value; 712 713 cfg = (struct radix_cfg *)ta_state; 714 tb = (struct ta_buf_radix *)ta_buf; 715 716 /* Save current entry value from @tei */ 717 if (tei->subtype == AF_INET) { 718 rnh = ti->state; 719 ((struct radix_addr_entry *)tb->ent_ptr)->value = tei->value; 720 } else { 721 rnh = ti->xstate; 722 ((struct radix_addr_xentry *)tb->ent_ptr)->value = tei->value; 723 } 724 725 /* Search for an entry first */ 726 rn = rnh->rnh_lookup(tb->addr_ptr, tb->mask_ptr, &rnh->rh); 727 if (rn != NULL) { 728 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 729 return (EEXIST); 730 /* Record already exists. Update value if we're asked to */ 731 if (tei->subtype == AF_INET) 732 old_value = &((struct radix_addr_entry *)rn)->value; 733 else 734 old_value = &((struct radix_addr_xentry *)rn)->value; 735 736 value = *old_value; 737 *old_value = tei->value; 738 tei->value = value; 739 740 /* Indicate that update has happened instead of addition */ 741 tei->flags |= TEI_FLAGS_UPDATED; 742 *pnum = 0; 743 744 return (0); 745 } 746 747 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 748 return (EFBIG); 749 750 rn = rnh->rnh_addaddr(tb->addr_ptr, tb->mask_ptr, &rnh->rh,tb->ent_ptr); 751 if (rn == NULL) { 752 /* Unknown error */ 753 return (EINVAL); 754 } 755 756 if (tei->subtype == AF_INET) 757 cfg->count4++; 758 else 759 cfg->count6++; 760 tb->ent_ptr = NULL; 761 *pnum = 1; 762 763 return (0); 764 } 765 766 static int 767 ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 768 void *ta_buf) 769 { 770 struct ta_buf_radix *tb; 771 struct sockaddr *addr, *mask; 772 int mlen, set_mask; 773 774 tb = (struct ta_buf_radix *)ta_buf; 775 776 mlen = tei->masklen; 777 set_mask = 0; 778 779 if (tei->subtype == AF_INET) { 780 if (mlen > 32) 781 return (EINVAL); 782 783 addr = (struct sockaddr *)&tb->addr.a4.sa; 784 mask = (struct sockaddr *)&tb->addr.a4.ma; 785 #ifdef INET6 786 } else if (tei->subtype == AF_INET6) { 787 if (mlen > 128) 788 return (EINVAL); 789 790 addr = (struct sockaddr *)&tb->addr.a6.sa; 791 mask = (struct sockaddr *)&tb->addr.a6.ma; 792 #endif 793 } else 794 return (EINVAL); 795 796 tei_to_sockaddr_ent(tei, addr, mask, &set_mask); 797 tb->addr_ptr = addr; 798 if (set_mask != 0) 799 tb->mask_ptr = mask; 800 801 return (0); 802 } 803 804 static int 805 ta_del_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei, 806 void *ta_buf, uint32_t *pnum) 807 { 808 struct radix_cfg *cfg; 809 struct radix_node_head *rnh; 810 struct radix_node *rn; 811 struct ta_buf_radix *tb; 812 813 cfg = (struct radix_cfg *)ta_state; 814 tb = (struct ta_buf_radix *)ta_buf; 815 816 if (tei->subtype == AF_INET) 817 rnh = ti->state; 818 else 819 rnh = ti->xstate; 820 821 rn = rnh->rnh_deladdr(tb->addr_ptr, tb->mask_ptr, &rnh->rh); 822 823 if (rn == NULL) 824 return (ENOENT); 825 826 /* Save entry value to @tei */ 827 if (tei->subtype == AF_INET) 828 tei->value = ((struct radix_addr_entry *)rn)->value; 829 else 830 tei->value = ((struct radix_addr_xentry *)rn)->value; 831 832 tb->ent_ptr = rn; 833 834 if (tei->subtype == AF_INET) 835 cfg->count4--; 836 else 837 cfg->count6--; 838 *pnum = 1; 839 840 return (0); 841 } 842 843 static void 844 ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 845 void *ta_buf) 846 { 847 struct ta_buf_radix *tb; 848 849 tb = (struct ta_buf_radix *)ta_buf; 850 851 if (tb->ent_ptr != NULL) 852 free(tb->ent_ptr, M_IPFW_TBL); 853 } 854 855 static int 856 ta_need_modify_radix(void *ta_state, struct table_info *ti, uint32_t count, 857 uint64_t *pflags) 858 { 859 860 /* 861 * radix does not require additional memory allocations 862 * other than nodes itself. Adding new masks to the tree do 863 * but we don't have any API to call (and we don't known which 864 * sizes do we need). 865 */ 866 return (0); 867 } 868 869 struct table_algo addr_radix = { 870 .name = "addr:radix", 871 .type = IPFW_TABLE_ADDR, 872 .flags = TA_FLAG_DEFAULT, 873 .ta_buf_size = sizeof(struct ta_buf_radix), 874 .init = ta_init_radix, 875 .destroy = ta_destroy_radix, 876 .prepare_add = ta_prepare_add_radix, 877 .prepare_del = ta_prepare_del_radix, 878 .add = ta_add_radix, 879 .del = ta_del_radix, 880 .flush_entry = ta_flush_radix_entry, 881 .foreach = ta_foreach_radix, 882 .dump_tentry = ta_dump_radix_tentry, 883 .find_tentry = ta_find_radix_tentry, 884 .dump_tinfo = ta_dump_radix_tinfo, 885 .need_modify = ta_need_modify_radix, 886 }; 887 888 /* 889 * addr:hash cmds 890 * 891 * 892 * ti->data: 893 * [inv.mask4][inv.mask6][log2hsize4][log2hsize6] 894 * [ 8][ 8[ 8][ 8] 895 * 896 * inv.mask4: 32 - mask 897 * inv.mask6: 898 * 1) _slow lookup: mask 899 * 2) _aligned: (128 - mask) / 8 900 * 3) _64: 8 901 * 902 * 903 * pflags: 904 * [v4=1/v6=0][hsize] 905 * [ 32][ 32] 906 */ 907 908 struct chashentry; 909 910 SLIST_HEAD(chashbhead, chashentry); 911 912 struct chash_cfg { 913 struct chashbhead *head4; 914 struct chashbhead *head6; 915 size_t size4; 916 size_t size6; 917 size_t items4; 918 size_t items6; 919 uint8_t mask4; 920 uint8_t mask6; 921 }; 922 923 struct chashentry { 924 SLIST_ENTRY(chashentry) next; 925 uint32_t value; 926 uint32_t type; 927 union { 928 uint32_t a4; /* Host format */ 929 struct in6_addr a6; /* Network format */ 930 } a; 931 }; 932 933 struct ta_buf_chash 934 { 935 void *ent_ptr; 936 struct chashentry ent; 937 }; 938 939 #ifdef INET 940 static __inline uint32_t hash_ip(uint32_t addr, int hsize); 941 #endif 942 #ifdef INET6 943 static __inline uint32_t hash_ip6(struct in6_addr *addr6, int hsize); 944 static __inline uint16_t hash_ip64(struct in6_addr *addr6, int hsize); 945 static __inline uint32_t hash_ip6_slow(struct in6_addr *addr6, void *key, 946 int mask, int hsize); 947 static __inline uint32_t hash_ip6_al(struct in6_addr *addr6, void *key, int mask, 948 int hsize); 949 #endif 950 static int ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen, 951 uint32_t *val); 952 static int ta_lookup_chash_aligned(struct table_info *ti, void *key, 953 uint32_t keylen, uint32_t *val); 954 static int ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen, 955 uint32_t *val); 956 static int chash_parse_opts(struct chash_cfg *cfg, char *data); 957 static void ta_print_chash_config(void *ta_state, struct table_info *ti, 958 char *buf, size_t bufsize); 959 static int ta_log2(uint32_t v); 960 static int ta_init_chash(struct ip_fw_chain *ch, void **ta_state, 961 struct table_info *ti, char *data, uint8_t tflags); 962 static void ta_destroy_chash(void *ta_state, struct table_info *ti); 963 static void ta_dump_chash_tinfo(void *ta_state, struct table_info *ti, 964 ipfw_ta_tinfo *tinfo); 965 static int ta_dump_chash_tentry(void *ta_state, struct table_info *ti, 966 void *e, ipfw_obj_tentry *tent); 967 static uint32_t hash_ent(struct chashentry *ent, int af, int mlen, 968 uint32_t size); 969 static int tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent); 970 static int ta_find_chash_tentry(void *ta_state, struct table_info *ti, 971 ipfw_obj_tentry *tent); 972 static void ta_foreach_chash(void *ta_state, struct table_info *ti, 973 ta_foreach_f *f, void *arg); 974 static int ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 975 void *ta_buf); 976 static int ta_add_chash(void *ta_state, struct table_info *ti, 977 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 978 static int ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 979 void *ta_buf); 980 static int ta_del_chash(void *ta_state, struct table_info *ti, 981 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 982 static void ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 983 void *ta_buf); 984 static int ta_need_modify_chash(void *ta_state, struct table_info *ti, 985 uint32_t count, uint64_t *pflags); 986 static int ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags); 987 static int ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf, 988 uint64_t *pflags); 989 static void ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf, 990 uint64_t pflags); 991 static void ta_flush_mod_chash(void *ta_buf); 992 993 #ifdef INET 994 static __inline uint32_t 995 hash_ip(uint32_t addr, int hsize) 996 { 997 998 return (addr % (hsize - 1)); 999 } 1000 #endif 1001 1002 #ifdef INET6 1003 static __inline uint32_t 1004 hash_ip6(struct in6_addr *addr6, int hsize) 1005 { 1006 uint32_t i; 1007 1008 i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1] ^ 1009 addr6->s6_addr32[2] ^ addr6->s6_addr32[3]; 1010 1011 return (i % (hsize - 1)); 1012 } 1013 1014 static __inline uint16_t 1015 hash_ip64(struct in6_addr *addr6, int hsize) 1016 { 1017 uint32_t i; 1018 1019 i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1]; 1020 1021 return (i % (hsize - 1)); 1022 } 1023 1024 static __inline uint32_t 1025 hash_ip6_slow(struct in6_addr *addr6, void *key, int mask, int hsize) 1026 { 1027 struct in6_addr mask6; 1028 1029 ipv6_writemask(&mask6, mask); 1030 memcpy(addr6, key, sizeof(struct in6_addr)); 1031 APPLY_MASK(addr6, &mask6); 1032 return (hash_ip6(addr6, hsize)); 1033 } 1034 1035 static __inline uint32_t 1036 hash_ip6_al(struct in6_addr *addr6, void *key, int mask, int hsize) 1037 { 1038 uint64_t *paddr; 1039 1040 paddr = (uint64_t *)addr6; 1041 *paddr = 0; 1042 *(paddr + 1) = 0; 1043 memcpy(addr6, key, mask); 1044 return (hash_ip6(addr6, hsize)); 1045 } 1046 #endif 1047 1048 static int 1049 ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen, 1050 uint32_t *val) 1051 { 1052 struct chashbhead *head; 1053 struct chashentry *ent; 1054 uint16_t hash, hsize; 1055 uint8_t imask; 1056 1057 if (keylen == sizeof(in_addr_t)) { 1058 #ifdef INET 1059 head = (struct chashbhead *)ti->state; 1060 imask = ti->data >> 24; 1061 hsize = 1 << ((ti->data & 0xFFFF) >> 8); 1062 uint32_t a; 1063 a = ntohl(*((in_addr_t *)key)); 1064 a = a >> imask; 1065 hash = hash_ip(a, hsize); 1066 SLIST_FOREACH(ent, &head[hash], next) { 1067 if (ent->a.a4 == a) { 1068 *val = ent->value; 1069 return (1); 1070 } 1071 } 1072 #endif 1073 } else { 1074 #ifdef INET6 1075 /* IPv6: worst scenario: non-round mask */ 1076 struct in6_addr addr6; 1077 head = (struct chashbhead *)ti->xstate; 1078 imask = (ti->data & 0xFF0000) >> 16; 1079 hsize = 1 << (ti->data & 0xFF); 1080 hash = hash_ip6_slow(&addr6, key, imask, hsize); 1081 SLIST_FOREACH(ent, &head[hash], next) { 1082 if (memcmp(&ent->a.a6, &addr6, 16) == 0) { 1083 *val = ent->value; 1084 return (1); 1085 } 1086 } 1087 #endif 1088 } 1089 1090 return (0); 1091 } 1092 1093 static int 1094 ta_lookup_chash_aligned(struct table_info *ti, void *key, uint32_t keylen, 1095 uint32_t *val) 1096 { 1097 struct chashbhead *head; 1098 struct chashentry *ent; 1099 uint16_t hash, hsize; 1100 uint8_t imask; 1101 1102 if (keylen == sizeof(in_addr_t)) { 1103 #ifdef INET 1104 head = (struct chashbhead *)ti->state; 1105 imask = ti->data >> 24; 1106 hsize = 1 << ((ti->data & 0xFFFF) >> 8); 1107 uint32_t a; 1108 a = ntohl(*((in_addr_t *)key)); 1109 a = a >> imask; 1110 hash = hash_ip(a, hsize); 1111 SLIST_FOREACH(ent, &head[hash], next) { 1112 if (ent->a.a4 == a) { 1113 *val = ent->value; 1114 return (1); 1115 } 1116 } 1117 #endif 1118 } else { 1119 #ifdef INET6 1120 /* IPv6: aligned to 8bit mask */ 1121 struct in6_addr addr6; 1122 uint64_t *paddr, *ptmp; 1123 head = (struct chashbhead *)ti->xstate; 1124 imask = (ti->data & 0xFF0000) >> 16; 1125 hsize = 1 << (ti->data & 0xFF); 1126 1127 hash = hash_ip6_al(&addr6, key, imask, hsize); 1128 paddr = (uint64_t *)&addr6; 1129 SLIST_FOREACH(ent, &head[hash], next) { 1130 ptmp = (uint64_t *)&ent->a.a6; 1131 if (paddr[0] == ptmp[0] && paddr[1] == ptmp[1]) { 1132 *val = ent->value; 1133 return (1); 1134 } 1135 } 1136 #endif 1137 } 1138 1139 return (0); 1140 } 1141 1142 static int 1143 ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen, 1144 uint32_t *val) 1145 { 1146 struct chashbhead *head; 1147 struct chashentry *ent; 1148 uint16_t hash, hsize; 1149 uint8_t imask; 1150 1151 if (keylen == sizeof(in_addr_t)) { 1152 #ifdef INET 1153 head = (struct chashbhead *)ti->state; 1154 imask = ti->data >> 24; 1155 hsize = 1 << ((ti->data & 0xFFFF) >> 8); 1156 uint32_t a; 1157 a = ntohl(*((in_addr_t *)key)); 1158 a = a >> imask; 1159 hash = hash_ip(a, hsize); 1160 SLIST_FOREACH(ent, &head[hash], next) { 1161 if (ent->a.a4 == a) { 1162 *val = ent->value; 1163 return (1); 1164 } 1165 } 1166 #endif 1167 } else { 1168 #ifdef INET6 1169 /* IPv6: /64 */ 1170 uint64_t a6, *paddr; 1171 head = (struct chashbhead *)ti->xstate; 1172 paddr = (uint64_t *)key; 1173 hsize = 1 << (ti->data & 0xFF); 1174 a6 = *paddr; 1175 hash = hash_ip64((struct in6_addr *)key, hsize); 1176 SLIST_FOREACH(ent, &head[hash], next) { 1177 paddr = (uint64_t *)&ent->a.a6; 1178 if (a6 == *paddr) { 1179 *val = ent->value; 1180 return (1); 1181 } 1182 } 1183 #endif 1184 } 1185 1186 return (0); 1187 } 1188 1189 static int 1190 chash_parse_opts(struct chash_cfg *cfg, char *data) 1191 { 1192 char *pdel, *pend, *s; 1193 int mask4, mask6; 1194 1195 mask4 = cfg->mask4; 1196 mask6 = cfg->mask6; 1197 1198 if (data == NULL) 1199 return (0); 1200 if ((pdel = strchr(data, ' ')) == NULL) 1201 return (0); 1202 while (*pdel == ' ') 1203 pdel++; 1204 if (strncmp(pdel, "masks=", 6) != 0) 1205 return (EINVAL); 1206 if ((s = strchr(pdel, ' ')) != NULL) 1207 *s++ = '\0'; 1208 1209 pdel += 6; 1210 /* Need /XX[,/YY] */ 1211 if (*pdel++ != '/') 1212 return (EINVAL); 1213 mask4 = strtol(pdel, &pend, 10); 1214 if (*pend == ',') { 1215 /* ,/YY */ 1216 pdel = pend + 1; 1217 if (*pdel++ != '/') 1218 return (EINVAL); 1219 mask6 = strtol(pdel, &pend, 10); 1220 if (*pend != '\0') 1221 return (EINVAL); 1222 } else if (*pend != '\0') 1223 return (EINVAL); 1224 1225 if (mask4 < 0 || mask4 > 32 || mask6 < 0 || mask6 > 128) 1226 return (EINVAL); 1227 1228 cfg->mask4 = mask4; 1229 cfg->mask6 = mask6; 1230 1231 return (0); 1232 } 1233 1234 static void 1235 ta_print_chash_config(void *ta_state, struct table_info *ti, char *buf, 1236 size_t bufsize) 1237 { 1238 struct chash_cfg *cfg; 1239 1240 cfg = (struct chash_cfg *)ta_state; 1241 1242 if (cfg->mask4 != 32 || cfg->mask6 != 128) 1243 snprintf(buf, bufsize, "%s masks=/%d,/%d", "addr:hash", 1244 cfg->mask4, cfg->mask6); 1245 else 1246 snprintf(buf, bufsize, "%s", "addr:hash"); 1247 } 1248 1249 static int 1250 ta_log2(uint32_t v) 1251 { 1252 uint32_t r; 1253 1254 r = 0; 1255 while (v >>= 1) 1256 r++; 1257 1258 return (r); 1259 } 1260 1261 /* 1262 * New table. 1263 * We assume 'data' to be either NULL or the following format: 1264 * 'addr:hash [masks=/32[,/128]]' 1265 */ 1266 static int 1267 ta_init_chash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 1268 char *data, uint8_t tflags) 1269 { 1270 int error, i; 1271 uint32_t hsize; 1272 struct chash_cfg *cfg; 1273 1274 cfg = malloc(sizeof(struct chash_cfg), M_IPFW, M_WAITOK | M_ZERO); 1275 1276 cfg->mask4 = 32; 1277 cfg->mask6 = 128; 1278 1279 if ((error = chash_parse_opts(cfg, data)) != 0) { 1280 free(cfg, M_IPFW); 1281 return (error); 1282 } 1283 1284 cfg->size4 = 128; 1285 cfg->size6 = 128; 1286 1287 cfg->head4 = malloc(sizeof(struct chashbhead) * cfg->size4, M_IPFW, 1288 M_WAITOK | M_ZERO); 1289 cfg->head6 = malloc(sizeof(struct chashbhead) * cfg->size6, M_IPFW, 1290 M_WAITOK | M_ZERO); 1291 for (i = 0; i < cfg->size4; i++) 1292 SLIST_INIT(&cfg->head4[i]); 1293 for (i = 0; i < cfg->size6; i++) 1294 SLIST_INIT(&cfg->head6[i]); 1295 1296 *ta_state = cfg; 1297 ti->state = cfg->head4; 1298 ti->xstate = cfg->head6; 1299 1300 /* Store data depending on v6 mask length */ 1301 hsize = ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6); 1302 if (cfg->mask6 == 64) { 1303 ti->data = (32 - cfg->mask4) << 24 | (128 - cfg->mask6) << 16| 1304 hsize; 1305 ti->lookup = ta_lookup_chash_64; 1306 } else if ((cfg->mask6 % 8) == 0) { 1307 ti->data = (32 - cfg->mask4) << 24 | 1308 cfg->mask6 << 13 | hsize; 1309 ti->lookup = ta_lookup_chash_aligned; 1310 } else { 1311 /* don't do that! */ 1312 ti->data = (32 - cfg->mask4) << 24 | 1313 cfg->mask6 << 16 | hsize; 1314 ti->lookup = ta_lookup_chash_slow; 1315 } 1316 1317 return (0); 1318 } 1319 1320 static void 1321 ta_destroy_chash(void *ta_state, struct table_info *ti) 1322 { 1323 struct chash_cfg *cfg; 1324 struct chashentry *ent, *ent_next; 1325 int i; 1326 1327 cfg = (struct chash_cfg *)ta_state; 1328 1329 for (i = 0; i < cfg->size4; i++) 1330 SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next) 1331 free(ent, M_IPFW_TBL); 1332 1333 for (i = 0; i < cfg->size6; i++) 1334 SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next) 1335 free(ent, M_IPFW_TBL); 1336 1337 free(cfg->head4, M_IPFW); 1338 free(cfg->head6, M_IPFW); 1339 1340 free(cfg, M_IPFW); 1341 } 1342 1343 static void 1344 ta_dump_chash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 1345 { 1346 struct chash_cfg *cfg; 1347 1348 cfg = (struct chash_cfg *)ta_state; 1349 1350 tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM; 1351 tinfo->taclass4 = IPFW_TACLASS_HASH; 1352 tinfo->size4 = cfg->size4; 1353 tinfo->count4 = cfg->items4; 1354 tinfo->itemsize4 = sizeof(struct chashentry); 1355 tinfo->taclass6 = IPFW_TACLASS_HASH; 1356 tinfo->size6 = cfg->size6; 1357 tinfo->count6 = cfg->items6; 1358 tinfo->itemsize6 = sizeof(struct chashentry); 1359 } 1360 1361 static int 1362 ta_dump_chash_tentry(void *ta_state, struct table_info *ti, void *e, 1363 ipfw_obj_tentry *tent) 1364 { 1365 struct chash_cfg *cfg; 1366 struct chashentry *ent; 1367 1368 cfg = (struct chash_cfg *)ta_state; 1369 ent = (struct chashentry *)e; 1370 1371 if (ent->type == AF_INET) { 1372 tent->k.addr.s_addr = htonl(ent->a.a4 << (32 - cfg->mask4)); 1373 tent->masklen = cfg->mask4; 1374 tent->subtype = AF_INET; 1375 tent->v.kidx = ent->value; 1376 #ifdef INET6 1377 } else { 1378 memcpy(&tent->k.addr6, &ent->a.a6, sizeof(struct in6_addr)); 1379 tent->masklen = cfg->mask6; 1380 tent->subtype = AF_INET6; 1381 tent->v.kidx = ent->value; 1382 #endif 1383 } 1384 1385 return (0); 1386 } 1387 1388 static uint32_t 1389 hash_ent(struct chashentry *ent, int af, int mlen, uint32_t size) 1390 { 1391 uint32_t hash; 1392 1393 hash = 0; 1394 1395 if (af == AF_INET) { 1396 #ifdef INET 1397 hash = hash_ip(ent->a.a4, size); 1398 #endif 1399 } else { 1400 #ifdef INET6 1401 if (mlen == 64) 1402 hash = hash_ip64(&ent->a.a6, size); 1403 else 1404 hash = hash_ip6(&ent->a.a6, size); 1405 #endif 1406 } 1407 1408 return (hash); 1409 } 1410 1411 static int 1412 tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent) 1413 { 1414 int mlen; 1415 #ifdef INET6 1416 struct in6_addr mask6; 1417 #endif 1418 1419 mlen = tei->masklen; 1420 1421 if (tei->subtype == AF_INET) { 1422 #ifdef INET 1423 if (mlen > 32) 1424 return (EINVAL); 1425 ent->type = AF_INET; 1426 1427 /* Calculate masked address */ 1428 ent->a.a4 = ntohl(*((in_addr_t *)tei->paddr)) >> (32 - mlen); 1429 #endif 1430 #ifdef INET6 1431 } else if (tei->subtype == AF_INET6) { 1432 /* IPv6 case */ 1433 if (mlen > 128) 1434 return (EINVAL); 1435 ent->type = AF_INET6; 1436 1437 ipv6_writemask(&mask6, mlen); 1438 memcpy(&ent->a.a6, tei->paddr, sizeof(struct in6_addr)); 1439 APPLY_MASK(&ent->a.a6, &mask6); 1440 #endif 1441 } else { 1442 /* Unknown CIDR type */ 1443 return (EINVAL); 1444 } 1445 1446 return (0); 1447 } 1448 1449 static int 1450 ta_find_chash_tentry(void *ta_state, struct table_info *ti, 1451 ipfw_obj_tentry *tent) 1452 { 1453 struct chash_cfg *cfg; 1454 struct chashbhead *head; 1455 struct chashentry ent, *tmp; 1456 struct tentry_info tei; 1457 int error; 1458 uint32_t hash; 1459 1460 cfg = (struct chash_cfg *)ta_state; 1461 1462 memset(&ent, 0, sizeof(ent)); 1463 memset(&tei, 0, sizeof(tei)); 1464 1465 if (tent->subtype == AF_INET) { 1466 tei.paddr = &tent->k.addr; 1467 tei.masklen = cfg->mask4; 1468 tei.subtype = AF_INET; 1469 1470 if ((error = tei_to_chash_ent(&tei, &ent)) != 0) 1471 return (error); 1472 1473 head = cfg->head4; 1474 hash = hash_ent(&ent, AF_INET, cfg->mask4, cfg->size4); 1475 /* Check for existence */ 1476 SLIST_FOREACH(tmp, &head[hash], next) { 1477 if (tmp->a.a4 != ent.a.a4) 1478 continue; 1479 1480 ta_dump_chash_tentry(ta_state, ti, tmp, tent); 1481 return (0); 1482 } 1483 } else { 1484 tei.paddr = &tent->k.addr6; 1485 tei.masklen = cfg->mask6; 1486 tei.subtype = AF_INET6; 1487 1488 if ((error = tei_to_chash_ent(&tei, &ent)) != 0) 1489 return (error); 1490 1491 head = cfg->head6; 1492 hash = hash_ent(&ent, AF_INET6, cfg->mask6, cfg->size6); 1493 /* Check for existence */ 1494 SLIST_FOREACH(tmp, &head[hash], next) { 1495 if (memcmp(&tmp->a.a6, &ent.a.a6, 16) != 0) 1496 continue; 1497 ta_dump_chash_tentry(ta_state, ti, tmp, tent); 1498 return (0); 1499 } 1500 } 1501 1502 return (ENOENT); 1503 } 1504 1505 static void 1506 ta_foreach_chash(void *ta_state, struct table_info *ti, ta_foreach_f *f, 1507 void *arg) 1508 { 1509 struct chash_cfg *cfg; 1510 struct chashentry *ent, *ent_next; 1511 int i; 1512 1513 cfg = (struct chash_cfg *)ta_state; 1514 1515 for (i = 0; i < cfg->size4; i++) 1516 SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next) 1517 f(ent, arg); 1518 1519 for (i = 0; i < cfg->size6; i++) 1520 SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next) 1521 f(ent, arg); 1522 } 1523 1524 static int 1525 ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 1526 void *ta_buf) 1527 { 1528 struct ta_buf_chash *tb; 1529 struct chashentry *ent; 1530 int error; 1531 1532 tb = (struct ta_buf_chash *)ta_buf; 1533 1534 ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO); 1535 1536 error = tei_to_chash_ent(tei, ent); 1537 if (error != 0) { 1538 free(ent, M_IPFW_TBL); 1539 return (error); 1540 } 1541 tb->ent_ptr = ent; 1542 1543 return (0); 1544 } 1545 1546 static int 1547 ta_add_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 1548 void *ta_buf, uint32_t *pnum) 1549 { 1550 struct chash_cfg *cfg; 1551 struct chashbhead *head; 1552 struct chashentry *ent, *tmp; 1553 struct ta_buf_chash *tb; 1554 int exists; 1555 uint32_t hash, value; 1556 1557 cfg = (struct chash_cfg *)ta_state; 1558 tb = (struct ta_buf_chash *)ta_buf; 1559 ent = (struct chashentry *)tb->ent_ptr; 1560 hash = 0; 1561 exists = 0; 1562 1563 /* Read current value from @tei */ 1564 ent->value = tei->value; 1565 1566 /* Read cuurrent value */ 1567 if (tei->subtype == AF_INET) { 1568 if (tei->masklen != cfg->mask4) 1569 return (EINVAL); 1570 head = cfg->head4; 1571 hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4); 1572 1573 /* Check for existence */ 1574 SLIST_FOREACH(tmp, &head[hash], next) { 1575 if (tmp->a.a4 == ent->a.a4) { 1576 exists = 1; 1577 break; 1578 } 1579 } 1580 } else { 1581 if (tei->masklen != cfg->mask6) 1582 return (EINVAL); 1583 head = cfg->head6; 1584 hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6); 1585 /* Check for existence */ 1586 SLIST_FOREACH(tmp, &head[hash], next) { 1587 if (memcmp(&tmp->a.a6, &ent->a.a6, 16) == 0) { 1588 exists = 1; 1589 break; 1590 } 1591 } 1592 } 1593 1594 if (exists == 1) { 1595 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 1596 return (EEXIST); 1597 /* Record already exists. Update value if we're asked to */ 1598 value = tmp->value; 1599 tmp->value = tei->value; 1600 tei->value = value; 1601 /* Indicate that update has happened instead of addition */ 1602 tei->flags |= TEI_FLAGS_UPDATED; 1603 *pnum = 0; 1604 } else { 1605 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 1606 return (EFBIG); 1607 SLIST_INSERT_HEAD(&head[hash], ent, next); 1608 tb->ent_ptr = NULL; 1609 *pnum = 1; 1610 1611 /* Update counters */ 1612 if (tei->subtype == AF_INET) 1613 cfg->items4++; 1614 else 1615 cfg->items6++; 1616 } 1617 1618 return (0); 1619 } 1620 1621 static int 1622 ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 1623 void *ta_buf) 1624 { 1625 struct ta_buf_chash *tb; 1626 1627 tb = (struct ta_buf_chash *)ta_buf; 1628 1629 return (tei_to_chash_ent(tei, &tb->ent)); 1630 } 1631 1632 static int 1633 ta_del_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 1634 void *ta_buf, uint32_t *pnum) 1635 { 1636 struct chash_cfg *cfg; 1637 struct chashbhead *head; 1638 struct chashentry *tmp, *tmp_next, *ent; 1639 struct ta_buf_chash *tb; 1640 uint32_t hash; 1641 1642 cfg = (struct chash_cfg *)ta_state; 1643 tb = (struct ta_buf_chash *)ta_buf; 1644 ent = &tb->ent; 1645 1646 if (tei->subtype == AF_INET) { 1647 if (tei->masklen != cfg->mask4) 1648 return (EINVAL); 1649 head = cfg->head4; 1650 hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4); 1651 1652 SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) { 1653 if (tmp->a.a4 != ent->a.a4) 1654 continue; 1655 1656 SLIST_REMOVE(&head[hash], tmp, chashentry, next); 1657 cfg->items4--; 1658 tb->ent_ptr = tmp; 1659 tei->value = tmp->value; 1660 *pnum = 1; 1661 return (0); 1662 } 1663 } else { 1664 if (tei->masklen != cfg->mask6) 1665 return (EINVAL); 1666 head = cfg->head6; 1667 hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6); 1668 SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) { 1669 if (memcmp(&tmp->a.a6, &ent->a.a6, 16) != 0) 1670 continue; 1671 1672 SLIST_REMOVE(&head[hash], tmp, chashentry, next); 1673 cfg->items6--; 1674 tb->ent_ptr = tmp; 1675 tei->value = tmp->value; 1676 *pnum = 1; 1677 return (0); 1678 } 1679 } 1680 1681 return (ENOENT); 1682 } 1683 1684 static void 1685 ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 1686 void *ta_buf) 1687 { 1688 struct ta_buf_chash *tb; 1689 1690 tb = (struct ta_buf_chash *)ta_buf; 1691 1692 if (tb->ent_ptr != NULL) 1693 free(tb->ent_ptr, M_IPFW_TBL); 1694 } 1695 1696 /* 1697 * Hash growing callbacks. 1698 */ 1699 1700 static int 1701 ta_need_modify_chash(void *ta_state, struct table_info *ti, uint32_t count, 1702 uint64_t *pflags) 1703 { 1704 struct chash_cfg *cfg; 1705 uint64_t data; 1706 1707 /* 1708 * Since we don't know exact number of IPv4/IPv6 records in @count, 1709 * ignore non-zero @count value at all. Check current hash sizes 1710 * and return appropriate data. 1711 */ 1712 1713 cfg = (struct chash_cfg *)ta_state; 1714 1715 data = 0; 1716 if (cfg->items4 > cfg->size4 && cfg->size4 < 65536) 1717 data |= (cfg->size4 * 2) << 16; 1718 if (cfg->items6 > cfg->size6 && cfg->size6 < 65536) 1719 data |= cfg->size6 * 2; 1720 1721 if (data != 0) { 1722 *pflags = data; 1723 return (1); 1724 } 1725 1726 return (0); 1727 } 1728 1729 /* 1730 * Allocate new, larger chash. 1731 */ 1732 static int 1733 ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags) 1734 { 1735 struct mod_item *mi; 1736 struct chashbhead *head; 1737 int i; 1738 1739 mi = (struct mod_item *)ta_buf; 1740 1741 memset(mi, 0, sizeof(struct mod_item)); 1742 mi->size = (*pflags >> 16) & 0xFFFF; 1743 mi->size6 = *pflags & 0xFFFF; 1744 if (mi->size > 0) { 1745 head = malloc(sizeof(struct chashbhead) * mi->size, 1746 M_IPFW, M_WAITOK | M_ZERO); 1747 for (i = 0; i < mi->size; i++) 1748 SLIST_INIT(&head[i]); 1749 mi->main_ptr = head; 1750 } 1751 1752 if (mi->size6 > 0) { 1753 head = malloc(sizeof(struct chashbhead) * mi->size6, 1754 M_IPFW, M_WAITOK | M_ZERO); 1755 for (i = 0; i < mi->size6; i++) 1756 SLIST_INIT(&head[i]); 1757 mi->main_ptr6 = head; 1758 } 1759 1760 return (0); 1761 } 1762 1763 /* 1764 * Copy data from old runtime array to new one. 1765 */ 1766 static int 1767 ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf, 1768 uint64_t *pflags) 1769 { 1770 1771 /* In is not possible to do rehash if we're not holidng WLOCK. */ 1772 return (0); 1773 } 1774 1775 /* 1776 * Switch old & new arrays. 1777 */ 1778 static void 1779 ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf, 1780 uint64_t pflags) 1781 { 1782 struct mod_item *mi; 1783 struct chash_cfg *cfg; 1784 struct chashbhead *old_head, *new_head; 1785 struct chashentry *ent, *ent_next; 1786 int af, i, mlen; 1787 uint32_t nhash; 1788 size_t old_size, new_size; 1789 1790 mi = (struct mod_item *)ta_buf; 1791 cfg = (struct chash_cfg *)ta_state; 1792 1793 /* Check which hash we need to grow and do we still need that */ 1794 if (mi->size > 0 && cfg->size4 < mi->size) { 1795 new_head = (struct chashbhead *)mi->main_ptr; 1796 new_size = mi->size; 1797 old_size = cfg->size4; 1798 old_head = ti->state; 1799 mlen = cfg->mask4; 1800 af = AF_INET; 1801 1802 for (i = 0; i < old_size; i++) { 1803 SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) { 1804 nhash = hash_ent(ent, af, mlen, new_size); 1805 SLIST_INSERT_HEAD(&new_head[nhash], ent, next); 1806 } 1807 } 1808 1809 ti->state = new_head; 1810 cfg->head4 = new_head; 1811 cfg->size4 = mi->size; 1812 mi->main_ptr = old_head; 1813 } 1814 1815 if (mi->size6 > 0 && cfg->size6 < mi->size6) { 1816 new_head = (struct chashbhead *)mi->main_ptr6; 1817 new_size = mi->size6; 1818 old_size = cfg->size6; 1819 old_head = ti->xstate; 1820 mlen = cfg->mask6; 1821 af = AF_INET6; 1822 1823 for (i = 0; i < old_size; i++) { 1824 SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) { 1825 nhash = hash_ent(ent, af, mlen, new_size); 1826 SLIST_INSERT_HEAD(&new_head[nhash], ent, next); 1827 } 1828 } 1829 1830 ti->xstate = new_head; 1831 cfg->head6 = new_head; 1832 cfg->size6 = mi->size6; 1833 mi->main_ptr6 = old_head; 1834 } 1835 1836 /* Update lower 32 bits with new values */ 1837 ti->data &= 0xFFFFFFFF00000000; 1838 ti->data |= ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6); 1839 } 1840 1841 /* 1842 * Free unneded array. 1843 */ 1844 static void 1845 ta_flush_mod_chash(void *ta_buf) 1846 { 1847 struct mod_item *mi; 1848 1849 mi = (struct mod_item *)ta_buf; 1850 if (mi->main_ptr != NULL) 1851 free(mi->main_ptr, M_IPFW); 1852 if (mi->main_ptr6 != NULL) 1853 free(mi->main_ptr6, M_IPFW); 1854 } 1855 1856 struct table_algo addr_hash = { 1857 .name = "addr:hash", 1858 .type = IPFW_TABLE_ADDR, 1859 .ta_buf_size = sizeof(struct ta_buf_chash), 1860 .init = ta_init_chash, 1861 .destroy = ta_destroy_chash, 1862 .prepare_add = ta_prepare_add_chash, 1863 .prepare_del = ta_prepare_del_chash, 1864 .add = ta_add_chash, 1865 .del = ta_del_chash, 1866 .flush_entry = ta_flush_chash_entry, 1867 .foreach = ta_foreach_chash, 1868 .dump_tentry = ta_dump_chash_tentry, 1869 .find_tentry = ta_find_chash_tentry, 1870 .print_config = ta_print_chash_config, 1871 .dump_tinfo = ta_dump_chash_tinfo, 1872 .need_modify = ta_need_modify_chash, 1873 .prepare_mod = ta_prepare_mod_chash, 1874 .fill_mod = ta_fill_mod_chash, 1875 .modify = ta_modify_chash, 1876 .flush_mod = ta_flush_mod_chash, 1877 }; 1878 1879 /* 1880 * Iface table cmds. 1881 * 1882 * Implementation: 1883 * 1884 * Runtime part: 1885 * - sorted array of "struct ifidx" pointed by ti->state. 1886 * Array is allocated with rounding up to IFIDX_CHUNK. Only existing 1887 * interfaces are stored in array, however its allocated size is 1888 * sufficient to hold all table records if needed. 1889 * - current array size is stored in ti->data 1890 * 1891 * Table data: 1892 * - "struct iftable_cfg" is allocated to store table state (ta_state). 1893 * - All table records are stored inside namedobj instance. 1894 * 1895 */ 1896 1897 struct ifidx { 1898 uint16_t kidx; 1899 uint16_t spare; 1900 uint32_t value; 1901 }; 1902 #define DEFAULT_IFIDX_SIZE 64 1903 1904 struct iftable_cfg; 1905 1906 struct ifentry { 1907 struct named_object no; 1908 struct ipfw_ifc ic; 1909 struct iftable_cfg *icfg; 1910 uint32_t value; 1911 int linked; 1912 }; 1913 1914 struct iftable_cfg { 1915 struct namedobj_instance *ii; 1916 struct ip_fw_chain *ch; 1917 struct table_info *ti; 1918 void *main_ptr; 1919 size_t size; /* Number of items allocated in array */ 1920 size_t count; /* Number of all items */ 1921 size_t used; /* Number of items _active_ now */ 1922 }; 1923 1924 struct ta_buf_ifidx 1925 { 1926 struct ifentry *ife; 1927 uint32_t value; 1928 }; 1929 1930 int compare_ifidx(const void *k, const void *v); 1931 static struct ifidx * ifidx_find(struct table_info *ti, void *key); 1932 static int ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen, 1933 uint32_t *val); 1934 static int ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, 1935 struct table_info *ti, char *data, uint8_t tflags); 1936 static void ta_change_ti_ifidx(void *ta_state, struct table_info *ti); 1937 static int destroy_ifidx_locked(struct namedobj_instance *ii, 1938 struct named_object *no, void *arg); 1939 static void ta_destroy_ifidx(void *ta_state, struct table_info *ti); 1940 static void ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti, 1941 ipfw_ta_tinfo *tinfo); 1942 static int ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 1943 void *ta_buf); 1944 static int ta_add_ifidx(void *ta_state, struct table_info *ti, 1945 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 1946 static int ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 1947 void *ta_buf); 1948 static int ta_del_ifidx(void *ta_state, struct table_info *ti, 1949 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 1950 static void ta_flush_ifidx_entry(struct ip_fw_chain *ch, 1951 struct tentry_info *tei, void *ta_buf); 1952 static void if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex); 1953 static int ta_need_modify_ifidx(void *ta_state, struct table_info *ti, 1954 uint32_t count, uint64_t *pflags); 1955 static int ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags); 1956 static int ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, 1957 void *ta_buf, uint64_t *pflags); 1958 static void ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf, 1959 uint64_t pflags); 1960 static void ta_flush_mod_ifidx(void *ta_buf); 1961 static int ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e, 1962 ipfw_obj_tentry *tent); 1963 static int ta_find_ifidx_tentry(void *ta_state, struct table_info *ti, 1964 ipfw_obj_tentry *tent); 1965 static int foreach_ifidx(struct namedobj_instance *ii, struct named_object *no, 1966 void *arg); 1967 static void ta_foreach_ifidx(void *ta_state, struct table_info *ti, 1968 ta_foreach_f *f, void *arg); 1969 1970 int 1971 compare_ifidx(const void *k, const void *v) 1972 { 1973 const struct ifidx *ifidx; 1974 uint16_t key; 1975 1976 key = *((const uint16_t *)k); 1977 ifidx = (const struct ifidx *)v; 1978 1979 if (key < ifidx->kidx) 1980 return (-1); 1981 else if (key > ifidx->kidx) 1982 return (1); 1983 1984 return (0); 1985 } 1986 1987 /* 1988 * Adds item @item with key @key into ascending-sorted array @base. 1989 * Assumes @base has enough additional storage. 1990 * 1991 * Returns 1 on success, 0 on duplicate key. 1992 */ 1993 static int 1994 badd(const void *key, void *item, void *base, size_t nmemb, 1995 size_t size, int (*compar) (const void *, const void *)) 1996 { 1997 int min, max, mid, shift, res; 1998 caddr_t paddr; 1999 2000 if (nmemb == 0) { 2001 memcpy(base, item, size); 2002 return (1); 2003 } 2004 2005 /* Binary search */ 2006 min = 0; 2007 max = nmemb - 1; 2008 mid = 0; 2009 while (min <= max) { 2010 mid = (min + max) / 2; 2011 res = compar(key, (const void *)((caddr_t)base + mid * size)); 2012 if (res == 0) 2013 return (0); 2014 2015 if (res > 0) 2016 min = mid + 1; 2017 else 2018 max = mid - 1; 2019 } 2020 2021 /* Item not found. */ 2022 res = compar(key, (const void *)((caddr_t)base + mid * size)); 2023 if (res > 0) 2024 shift = mid + 1; 2025 else 2026 shift = mid; 2027 2028 paddr = (caddr_t)base + shift * size; 2029 if (nmemb > shift) 2030 memmove(paddr + size, paddr, (nmemb - shift) * size); 2031 2032 memcpy(paddr, item, size); 2033 2034 return (1); 2035 } 2036 2037 /* 2038 * Deletes item with key @key from ascending-sorted array @base. 2039 * 2040 * Returns 1 on success, 0 for non-existent key. 2041 */ 2042 static int 2043 bdel(const void *key, void *base, size_t nmemb, size_t size, 2044 int (*compar) (const void *, const void *)) 2045 { 2046 caddr_t item; 2047 size_t sz; 2048 2049 item = (caddr_t)bsearch(key, base, nmemb, size, compar); 2050 2051 if (item == NULL) 2052 return (0); 2053 2054 sz = (caddr_t)base + nmemb * size - item; 2055 2056 if (sz > 0) 2057 memmove(item, item + size, sz); 2058 2059 return (1); 2060 } 2061 2062 static struct ifidx * 2063 ifidx_find(struct table_info *ti, void *key) 2064 { 2065 struct ifidx *ifi; 2066 2067 ifi = bsearch(key, ti->state, ti->data, sizeof(struct ifidx), 2068 compare_ifidx); 2069 2070 return (ifi); 2071 } 2072 2073 static int 2074 ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen, 2075 uint32_t *val) 2076 { 2077 struct ifidx *ifi; 2078 2079 ifi = ifidx_find(ti, key); 2080 2081 if (ifi != NULL) { 2082 *val = ifi->value; 2083 return (1); 2084 } 2085 2086 return (0); 2087 } 2088 2089 static int 2090 ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 2091 char *data, uint8_t tflags) 2092 { 2093 struct iftable_cfg *icfg; 2094 2095 icfg = malloc(sizeof(struct iftable_cfg), M_IPFW, M_WAITOK | M_ZERO); 2096 2097 icfg->ii = ipfw_objhash_create(DEFAULT_IFIDX_SIZE); 2098 icfg->size = DEFAULT_IFIDX_SIZE; 2099 icfg->main_ptr = malloc(sizeof(struct ifidx) * icfg->size, M_IPFW, 2100 M_WAITOK | M_ZERO); 2101 icfg->ch = ch; 2102 2103 *ta_state = icfg; 2104 ti->state = icfg->main_ptr; 2105 ti->lookup = ta_lookup_ifidx; 2106 2107 return (0); 2108 } 2109 2110 /* 2111 * Handle tableinfo @ti pointer change (on table array resize). 2112 */ 2113 static void 2114 ta_change_ti_ifidx(void *ta_state, struct table_info *ti) 2115 { 2116 struct iftable_cfg *icfg; 2117 2118 icfg = (struct iftable_cfg *)ta_state; 2119 icfg->ti = ti; 2120 } 2121 2122 static int 2123 destroy_ifidx_locked(struct namedobj_instance *ii, struct named_object *no, 2124 void *arg) 2125 { 2126 struct ifentry *ife; 2127 struct ip_fw_chain *ch; 2128 2129 ch = (struct ip_fw_chain *)arg; 2130 ife = (struct ifentry *)no; 2131 2132 ipfw_iface_del_notify(ch, &ife->ic); 2133 ipfw_iface_unref(ch, &ife->ic); 2134 free(ife, M_IPFW_TBL); 2135 return (0); 2136 } 2137 2138 /* 2139 * Destroys table @ti 2140 */ 2141 static void 2142 ta_destroy_ifidx(void *ta_state, struct table_info *ti) 2143 { 2144 struct iftable_cfg *icfg; 2145 struct ip_fw_chain *ch; 2146 2147 icfg = (struct iftable_cfg *)ta_state; 2148 ch = icfg->ch; 2149 2150 if (icfg->main_ptr != NULL) 2151 free(icfg->main_ptr, M_IPFW); 2152 2153 IPFW_UH_WLOCK(ch); 2154 ipfw_objhash_foreach(icfg->ii, destroy_ifidx_locked, ch); 2155 IPFW_UH_WUNLOCK(ch); 2156 2157 ipfw_objhash_destroy(icfg->ii); 2158 2159 free(icfg, M_IPFW); 2160 } 2161 2162 /* 2163 * Provide algo-specific table info 2164 */ 2165 static void 2166 ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 2167 { 2168 struct iftable_cfg *cfg; 2169 2170 cfg = (struct iftable_cfg *)ta_state; 2171 2172 tinfo->taclass4 = IPFW_TACLASS_ARRAY; 2173 tinfo->size4 = cfg->size; 2174 tinfo->count4 = cfg->used; 2175 tinfo->itemsize4 = sizeof(struct ifidx); 2176 } 2177 2178 /* 2179 * Prepare state to add to the table: 2180 * allocate ifentry and reference needed interface. 2181 */ 2182 static int 2183 ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 2184 void *ta_buf) 2185 { 2186 struct ta_buf_ifidx *tb; 2187 char *ifname; 2188 struct ifentry *ife; 2189 2190 tb = (struct ta_buf_ifidx *)ta_buf; 2191 2192 /* Check if string is terminated */ 2193 ifname = (char *)tei->paddr; 2194 if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE) 2195 return (EINVAL); 2196 2197 ife = malloc(sizeof(struct ifentry), M_IPFW_TBL, M_WAITOK | M_ZERO); 2198 ife->ic.cb = if_notifier; 2199 ife->ic.cbdata = ife; 2200 2201 if (ipfw_iface_ref(ch, ifname, &ife->ic) != 0) { 2202 free(ife, M_IPFW_TBL); 2203 return (EINVAL); 2204 } 2205 2206 /* Use ipfw_iface 'ifname' field as stable storage */ 2207 ife->no.name = ife->ic.iface->ifname; 2208 2209 tb->ife = ife; 2210 2211 return (0); 2212 } 2213 2214 static int 2215 ta_add_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2216 void *ta_buf, uint32_t *pnum) 2217 { 2218 struct iftable_cfg *icfg; 2219 struct ifentry *ife, *tmp; 2220 struct ta_buf_ifidx *tb; 2221 struct ipfw_iface *iif; 2222 struct ifidx *ifi; 2223 char *ifname; 2224 uint32_t value; 2225 2226 tb = (struct ta_buf_ifidx *)ta_buf; 2227 ifname = (char *)tei->paddr; 2228 icfg = (struct iftable_cfg *)ta_state; 2229 ife = tb->ife; 2230 2231 ife->icfg = icfg; 2232 ife->value = tei->value; 2233 2234 tmp = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname); 2235 2236 if (tmp != NULL) { 2237 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 2238 return (EEXIST); 2239 2240 /* Exchange values in @tmp and @tei */ 2241 value = tmp->value; 2242 tmp->value = tei->value; 2243 tei->value = value; 2244 2245 iif = tmp->ic.iface; 2246 if (iif->resolved != 0) { 2247 /* We have to update runtime value, too */ 2248 ifi = ifidx_find(ti, &iif->ifindex); 2249 ifi->value = ife->value; 2250 } 2251 2252 /* Indicate that update has happened instead of addition */ 2253 tei->flags |= TEI_FLAGS_UPDATED; 2254 *pnum = 0; 2255 return (0); 2256 } 2257 2258 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 2259 return (EFBIG); 2260 2261 /* Link to internal list */ 2262 ipfw_objhash_add(icfg->ii, &ife->no); 2263 2264 /* Link notifier (possible running its callback) */ 2265 ipfw_iface_add_notify(icfg->ch, &ife->ic); 2266 icfg->count++; 2267 2268 tb->ife = NULL; 2269 *pnum = 1; 2270 2271 return (0); 2272 } 2273 2274 /* 2275 * Prepare to delete key from table. 2276 * Do basic interface name checks. 2277 */ 2278 static int 2279 ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 2280 void *ta_buf) 2281 { 2282 char *ifname; 2283 2284 /* Check if string is terminated */ 2285 ifname = (char *)tei->paddr; 2286 if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE) 2287 return (EINVAL); 2288 2289 return (0); 2290 } 2291 2292 /* 2293 * Remove key from both configuration list and 2294 * runtime array. Removed interface notification. 2295 */ 2296 static int 2297 ta_del_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2298 void *ta_buf, uint32_t *pnum) 2299 { 2300 struct iftable_cfg *icfg; 2301 struct ifentry *ife; 2302 struct ta_buf_ifidx *tb; 2303 char *ifname; 2304 uint16_t ifindex; 2305 int res __diagused; 2306 2307 tb = (struct ta_buf_ifidx *)ta_buf; 2308 ifname = (char *)tei->paddr; 2309 icfg = (struct iftable_cfg *)ta_state; 2310 2311 ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname); 2312 2313 if (ife == NULL) 2314 return (ENOENT); 2315 2316 if (ife->linked != 0) { 2317 /* We have to remove item from runtime */ 2318 ifindex = ife->ic.iface->ifindex; 2319 2320 res = bdel(&ifindex, icfg->main_ptr, icfg->used, 2321 sizeof(struct ifidx), compare_ifidx); 2322 2323 KASSERT(res == 1, ("index %d does not exist", ifindex)); 2324 icfg->used--; 2325 ti->data = icfg->used; 2326 ife->linked = 0; 2327 } 2328 2329 /* Unlink from local list */ 2330 ipfw_objhash_del(icfg->ii, &ife->no); 2331 /* Unlink notifier and deref */ 2332 ipfw_iface_del_notify(icfg->ch, &ife->ic); 2333 ipfw_iface_unref(icfg->ch, &ife->ic); 2334 2335 icfg->count--; 2336 tei->value = ife->value; 2337 2338 tb->ife = ife; 2339 *pnum = 1; 2340 2341 return (0); 2342 } 2343 2344 /* 2345 * Flush deleted entry. 2346 * Drops interface reference and frees entry. 2347 */ 2348 static void 2349 ta_flush_ifidx_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 2350 void *ta_buf) 2351 { 2352 struct ta_buf_ifidx *tb; 2353 2354 tb = (struct ta_buf_ifidx *)ta_buf; 2355 2356 if (tb->ife != NULL) 2357 free(tb->ife, M_IPFW_TBL); 2358 } 2359 2360 /* 2361 * Handle interface announce/withdrawal for particular table. 2362 * Every real runtime array modification happens here. 2363 */ 2364 static void 2365 if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex) 2366 { 2367 struct ifentry *ife; 2368 struct ifidx ifi; 2369 struct iftable_cfg *icfg; 2370 struct table_info *ti; 2371 int res __diagused; 2372 2373 ife = (struct ifentry *)cbdata; 2374 icfg = ife->icfg; 2375 ti = icfg->ti; 2376 2377 KASSERT(ti != NULL, ("ti=NULL, check change_ti handler")); 2378 2379 if (ife->linked == 0 && ifindex != 0) { 2380 /* Interface announce */ 2381 ifi.kidx = ifindex; 2382 ifi.spare = 0; 2383 ifi.value = ife->value; 2384 res = badd(&ifindex, &ifi, icfg->main_ptr, icfg->used, 2385 sizeof(struct ifidx), compare_ifidx); 2386 KASSERT(res == 1, ("index %d already exists", ifindex)); 2387 icfg->used++; 2388 ti->data = icfg->used; 2389 ife->linked = 1; 2390 } else if (ife->linked != 0 && ifindex == 0) { 2391 /* Interface withdrawal */ 2392 ifindex = ife->ic.iface->ifindex; 2393 2394 res = bdel(&ifindex, icfg->main_ptr, icfg->used, 2395 sizeof(struct ifidx), compare_ifidx); 2396 2397 KASSERT(res == 1, ("index %d does not exist", ifindex)); 2398 icfg->used--; 2399 ti->data = icfg->used; 2400 ife->linked = 0; 2401 } 2402 } 2403 2404 /* 2405 * Table growing callbacks. 2406 */ 2407 2408 static int 2409 ta_need_modify_ifidx(void *ta_state, struct table_info *ti, uint32_t count, 2410 uint64_t *pflags) 2411 { 2412 struct iftable_cfg *cfg; 2413 uint32_t size; 2414 2415 cfg = (struct iftable_cfg *)ta_state; 2416 2417 size = cfg->size; 2418 while (size < cfg->count + count) 2419 size *= 2; 2420 2421 if (size != cfg->size) { 2422 *pflags = size; 2423 return (1); 2424 } 2425 2426 return (0); 2427 } 2428 2429 /* 2430 * Allocate ned, larger runtime ifidx array. 2431 */ 2432 static int 2433 ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags) 2434 { 2435 struct mod_item *mi; 2436 2437 mi = (struct mod_item *)ta_buf; 2438 2439 memset(mi, 0, sizeof(struct mod_item)); 2440 mi->size = *pflags; 2441 mi->main_ptr = malloc(sizeof(struct ifidx) * mi->size, M_IPFW, 2442 M_WAITOK | M_ZERO); 2443 2444 return (0); 2445 } 2446 2447 /* 2448 * Copy data from old runtime array to new one. 2449 */ 2450 static int 2451 ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, void *ta_buf, 2452 uint64_t *pflags) 2453 { 2454 struct mod_item *mi; 2455 struct iftable_cfg *icfg; 2456 2457 mi = (struct mod_item *)ta_buf; 2458 icfg = (struct iftable_cfg *)ta_state; 2459 2460 /* Check if we still need to grow array */ 2461 if (icfg->size >= mi->size) { 2462 *pflags = 0; 2463 return (0); 2464 } 2465 2466 memcpy(mi->main_ptr, icfg->main_ptr, icfg->used * sizeof(struct ifidx)); 2467 2468 return (0); 2469 } 2470 2471 /* 2472 * Switch old & new arrays. 2473 */ 2474 static void 2475 ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf, 2476 uint64_t pflags) 2477 { 2478 struct mod_item *mi; 2479 struct iftable_cfg *icfg; 2480 void *old_ptr; 2481 2482 mi = (struct mod_item *)ta_buf; 2483 icfg = (struct iftable_cfg *)ta_state; 2484 2485 old_ptr = icfg->main_ptr; 2486 icfg->main_ptr = mi->main_ptr; 2487 icfg->size = mi->size; 2488 ti->state = icfg->main_ptr; 2489 2490 mi->main_ptr = old_ptr; 2491 } 2492 2493 /* 2494 * Free unneded array. 2495 */ 2496 static void 2497 ta_flush_mod_ifidx(void *ta_buf) 2498 { 2499 struct mod_item *mi; 2500 2501 mi = (struct mod_item *)ta_buf; 2502 if (mi->main_ptr != NULL) 2503 free(mi->main_ptr, M_IPFW); 2504 } 2505 2506 static int 2507 ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e, 2508 ipfw_obj_tentry *tent) 2509 { 2510 struct ifentry *ife; 2511 2512 ife = (struct ifentry *)e; 2513 2514 tent->masklen = 8 * IF_NAMESIZE; 2515 memcpy(&tent->k, ife->no.name, IF_NAMESIZE); 2516 tent->v.kidx = ife->value; 2517 2518 return (0); 2519 } 2520 2521 static int 2522 ta_find_ifidx_tentry(void *ta_state, struct table_info *ti, 2523 ipfw_obj_tentry *tent) 2524 { 2525 struct iftable_cfg *icfg; 2526 struct ifentry *ife; 2527 char *ifname; 2528 2529 icfg = (struct iftable_cfg *)ta_state; 2530 ifname = tent->k.iface; 2531 2532 if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE) 2533 return (EINVAL); 2534 2535 ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname); 2536 2537 if (ife != NULL) { 2538 ta_dump_ifidx_tentry(ta_state, ti, ife, tent); 2539 return (0); 2540 } 2541 2542 return (ENOENT); 2543 } 2544 2545 struct wa_ifidx { 2546 ta_foreach_f *f; 2547 void *arg; 2548 }; 2549 2550 static int 2551 foreach_ifidx(struct namedobj_instance *ii, struct named_object *no, 2552 void *arg) 2553 { 2554 struct ifentry *ife; 2555 struct wa_ifidx *wa; 2556 2557 ife = (struct ifentry *)no; 2558 wa = (struct wa_ifidx *)arg; 2559 2560 wa->f(ife, wa->arg); 2561 return (0); 2562 } 2563 2564 static void 2565 ta_foreach_ifidx(void *ta_state, struct table_info *ti, ta_foreach_f *f, 2566 void *arg) 2567 { 2568 struct iftable_cfg *icfg; 2569 struct wa_ifidx wa; 2570 2571 icfg = (struct iftable_cfg *)ta_state; 2572 2573 wa.f = f; 2574 wa.arg = arg; 2575 2576 ipfw_objhash_foreach(icfg->ii, foreach_ifidx, &wa); 2577 } 2578 2579 struct table_algo iface_idx = { 2580 .name = "iface:array", 2581 .type = IPFW_TABLE_INTERFACE, 2582 .flags = TA_FLAG_DEFAULT, 2583 .ta_buf_size = sizeof(struct ta_buf_ifidx), 2584 .init = ta_init_ifidx, 2585 .destroy = ta_destroy_ifidx, 2586 .prepare_add = ta_prepare_add_ifidx, 2587 .prepare_del = ta_prepare_del_ifidx, 2588 .add = ta_add_ifidx, 2589 .del = ta_del_ifidx, 2590 .flush_entry = ta_flush_ifidx_entry, 2591 .foreach = ta_foreach_ifidx, 2592 .dump_tentry = ta_dump_ifidx_tentry, 2593 .find_tentry = ta_find_ifidx_tentry, 2594 .dump_tinfo = ta_dump_ifidx_tinfo, 2595 .need_modify = ta_need_modify_ifidx, 2596 .prepare_mod = ta_prepare_mod_ifidx, 2597 .fill_mod = ta_fill_mod_ifidx, 2598 .modify = ta_modify_ifidx, 2599 .flush_mod = ta_flush_mod_ifidx, 2600 .change_ti = ta_change_ti_ifidx, 2601 }; 2602 2603 /* 2604 * Number array cmds. 2605 * 2606 * Implementation: 2607 * 2608 * Runtime part: 2609 * - sorted array of "struct numarray" pointed by ti->state. 2610 * Array is allocated with rounding up to NUMARRAY_CHUNK. 2611 * - current array size is stored in ti->data 2612 * 2613 */ 2614 2615 struct numarray { 2616 uint32_t number; 2617 uint32_t value; 2618 }; 2619 2620 struct numarray_cfg { 2621 void *main_ptr; 2622 size_t size; /* Number of items allocated in array */ 2623 size_t used; /* Number of items _active_ now */ 2624 }; 2625 2626 struct ta_buf_numarray 2627 { 2628 struct numarray na; 2629 }; 2630 2631 int compare_numarray(const void *k, const void *v); 2632 static struct numarray *numarray_find(struct table_info *ti, void *key); 2633 static int ta_lookup_numarray(struct table_info *ti, void *key, 2634 uint32_t keylen, uint32_t *val); 2635 static int ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, 2636 struct table_info *ti, char *data, uint8_t tflags); 2637 static void ta_destroy_numarray(void *ta_state, struct table_info *ti); 2638 static void ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti, 2639 ipfw_ta_tinfo *tinfo); 2640 static int ta_prepare_add_numarray(struct ip_fw_chain *ch, 2641 struct tentry_info *tei, void *ta_buf); 2642 static int ta_add_numarray(void *ta_state, struct table_info *ti, 2643 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 2644 static int ta_del_numarray(void *ta_state, struct table_info *ti, 2645 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 2646 static void ta_flush_numarray_entry(struct ip_fw_chain *ch, 2647 struct tentry_info *tei, void *ta_buf); 2648 static int ta_need_modify_numarray(void *ta_state, struct table_info *ti, 2649 uint32_t count, uint64_t *pflags); 2650 static int ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags); 2651 static int ta_fill_mod_numarray(void *ta_state, struct table_info *ti, 2652 void *ta_buf, uint64_t *pflags); 2653 static void ta_modify_numarray(void *ta_state, struct table_info *ti, 2654 void *ta_buf, uint64_t pflags); 2655 static void ta_flush_mod_numarray(void *ta_buf); 2656 static int ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, 2657 void *e, ipfw_obj_tentry *tent); 2658 static int ta_find_numarray_tentry(void *ta_state, struct table_info *ti, 2659 ipfw_obj_tentry *tent); 2660 static void ta_foreach_numarray(void *ta_state, struct table_info *ti, 2661 ta_foreach_f *f, void *arg); 2662 2663 int 2664 compare_numarray(const void *k, const void *v) 2665 { 2666 const struct numarray *na; 2667 uint32_t key; 2668 2669 key = *((const uint32_t *)k); 2670 na = (const struct numarray *)v; 2671 2672 if (key < na->number) 2673 return (-1); 2674 else if (key > na->number) 2675 return (1); 2676 2677 return (0); 2678 } 2679 2680 static struct numarray * 2681 numarray_find(struct table_info *ti, void *key) 2682 { 2683 struct numarray *ri; 2684 2685 ri = bsearch(key, ti->state, ti->data, sizeof(struct numarray), 2686 compare_ifidx); 2687 2688 return (ri); 2689 } 2690 2691 static int 2692 ta_lookup_numarray(struct table_info *ti, void *key, uint32_t keylen, 2693 uint32_t *val) 2694 { 2695 struct numarray *ri; 2696 2697 ri = numarray_find(ti, key); 2698 2699 if (ri != NULL) { 2700 *val = ri->value; 2701 return (1); 2702 } 2703 2704 return (0); 2705 } 2706 2707 static int 2708 ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 2709 char *data, uint8_t tflags) 2710 { 2711 struct numarray_cfg *cfg; 2712 2713 cfg = malloc(sizeof(*cfg), M_IPFW, M_WAITOK | M_ZERO); 2714 2715 cfg->size = 16; 2716 cfg->main_ptr = malloc(sizeof(struct numarray) * cfg->size, M_IPFW, 2717 M_WAITOK | M_ZERO); 2718 2719 *ta_state = cfg; 2720 ti->state = cfg->main_ptr; 2721 ti->lookup = ta_lookup_numarray; 2722 2723 return (0); 2724 } 2725 2726 /* 2727 * Destroys table @ti 2728 */ 2729 static void 2730 ta_destroy_numarray(void *ta_state, struct table_info *ti) 2731 { 2732 struct numarray_cfg *cfg; 2733 2734 cfg = (struct numarray_cfg *)ta_state; 2735 2736 if (cfg->main_ptr != NULL) 2737 free(cfg->main_ptr, M_IPFW); 2738 2739 free(cfg, M_IPFW); 2740 } 2741 2742 /* 2743 * Provide algo-specific table info 2744 */ 2745 static void 2746 ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 2747 { 2748 struct numarray_cfg *cfg; 2749 2750 cfg = (struct numarray_cfg *)ta_state; 2751 2752 tinfo->taclass4 = IPFW_TACLASS_ARRAY; 2753 tinfo->size4 = cfg->size; 2754 tinfo->count4 = cfg->used; 2755 tinfo->itemsize4 = sizeof(struct numarray); 2756 } 2757 2758 /* 2759 * Prepare for addition/deletion to an array. 2760 */ 2761 static int 2762 ta_prepare_add_numarray(struct ip_fw_chain *ch, struct tentry_info *tei, 2763 void *ta_buf) 2764 { 2765 struct ta_buf_numarray *tb; 2766 2767 tb = (struct ta_buf_numarray *)ta_buf; 2768 2769 tb->na.number = *((uint32_t *)tei->paddr); 2770 2771 return (0); 2772 } 2773 2774 static int 2775 ta_add_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2776 void *ta_buf, uint32_t *pnum) 2777 { 2778 struct numarray_cfg *cfg; 2779 struct ta_buf_numarray *tb; 2780 struct numarray *ri; 2781 int res __diagused; 2782 uint32_t value; 2783 2784 tb = (struct ta_buf_numarray *)ta_buf; 2785 cfg = (struct numarray_cfg *)ta_state; 2786 2787 /* Read current value from @tei */ 2788 tb->na.value = tei->value; 2789 2790 ri = numarray_find(ti, &tb->na.number); 2791 2792 if (ri != NULL) { 2793 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 2794 return (EEXIST); 2795 2796 /* Exchange values between ri and @tei */ 2797 value = ri->value; 2798 ri->value = tei->value; 2799 tei->value = value; 2800 /* Indicate that update has happened instead of addition */ 2801 tei->flags |= TEI_FLAGS_UPDATED; 2802 *pnum = 0; 2803 return (0); 2804 } 2805 2806 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 2807 return (EFBIG); 2808 2809 res = badd(&tb->na.number, &tb->na, cfg->main_ptr, cfg->used, 2810 sizeof(struct numarray), compare_numarray); 2811 2812 KASSERT(res == 1, ("number %d already exists", tb->na.number)); 2813 cfg->used++; 2814 ti->data = cfg->used; 2815 *pnum = 1; 2816 2817 return (0); 2818 } 2819 2820 /* 2821 * Remove key from both configuration list and 2822 * runtime array. Removed interface notification. 2823 */ 2824 static int 2825 ta_del_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2826 void *ta_buf, uint32_t *pnum) 2827 { 2828 struct numarray_cfg *cfg; 2829 struct ta_buf_numarray *tb; 2830 struct numarray *ri; 2831 int res __diagused; 2832 2833 tb = (struct ta_buf_numarray *)ta_buf; 2834 cfg = (struct numarray_cfg *)ta_state; 2835 2836 ri = numarray_find(ti, &tb->na.number); 2837 if (ri == NULL) 2838 return (ENOENT); 2839 2840 tei->value = ri->value; 2841 2842 res = bdel(&tb->na.number, cfg->main_ptr, cfg->used, 2843 sizeof(struct numarray), compare_numarray); 2844 2845 KASSERT(res == 1, ("number %u does not exist", tb->na.number)); 2846 cfg->used--; 2847 ti->data = cfg->used; 2848 *pnum = 1; 2849 2850 return (0); 2851 } 2852 2853 static void 2854 ta_flush_numarray_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 2855 void *ta_buf) 2856 { 2857 2858 /* We don't have any state, do nothing */ 2859 } 2860 2861 /* 2862 * Table growing callbacks. 2863 */ 2864 2865 static int 2866 ta_need_modify_numarray(void *ta_state, struct table_info *ti, uint32_t count, 2867 uint64_t *pflags) 2868 { 2869 struct numarray_cfg *cfg; 2870 size_t size; 2871 2872 cfg = (struct numarray_cfg *)ta_state; 2873 2874 size = cfg->size; 2875 while (size < cfg->used + count) 2876 size *= 2; 2877 2878 if (size != cfg->size) { 2879 *pflags = size; 2880 return (1); 2881 } 2882 2883 return (0); 2884 } 2885 2886 /* 2887 * Allocate new, larger runtime array. 2888 */ 2889 static int 2890 ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags) 2891 { 2892 struct mod_item *mi; 2893 2894 mi = (struct mod_item *)ta_buf; 2895 2896 memset(mi, 0, sizeof(struct mod_item)); 2897 mi->size = *pflags; 2898 mi->main_ptr = malloc(sizeof(struct numarray) * mi->size, M_IPFW, 2899 M_WAITOK | M_ZERO); 2900 2901 return (0); 2902 } 2903 2904 /* 2905 * Copy data from old runtime array to new one. 2906 */ 2907 static int 2908 ta_fill_mod_numarray(void *ta_state, struct table_info *ti, void *ta_buf, 2909 uint64_t *pflags) 2910 { 2911 struct mod_item *mi; 2912 struct numarray_cfg *cfg; 2913 2914 mi = (struct mod_item *)ta_buf; 2915 cfg = (struct numarray_cfg *)ta_state; 2916 2917 /* Check if we still need to grow array */ 2918 if (cfg->size >= mi->size) { 2919 *pflags = 0; 2920 return (0); 2921 } 2922 2923 memcpy(mi->main_ptr, cfg->main_ptr, cfg->used * sizeof(struct numarray)); 2924 2925 return (0); 2926 } 2927 2928 /* 2929 * Switch old & new arrays. 2930 */ 2931 static void 2932 ta_modify_numarray(void *ta_state, struct table_info *ti, void *ta_buf, 2933 uint64_t pflags) 2934 { 2935 struct mod_item *mi; 2936 struct numarray_cfg *cfg; 2937 void *old_ptr; 2938 2939 mi = (struct mod_item *)ta_buf; 2940 cfg = (struct numarray_cfg *)ta_state; 2941 2942 old_ptr = cfg->main_ptr; 2943 cfg->main_ptr = mi->main_ptr; 2944 cfg->size = mi->size; 2945 ti->state = cfg->main_ptr; 2946 2947 mi->main_ptr = old_ptr; 2948 } 2949 2950 /* 2951 * Free unneded array. 2952 */ 2953 static void 2954 ta_flush_mod_numarray(void *ta_buf) 2955 { 2956 struct mod_item *mi; 2957 2958 mi = (struct mod_item *)ta_buf; 2959 if (mi->main_ptr != NULL) 2960 free(mi->main_ptr, M_IPFW); 2961 } 2962 2963 static int 2964 ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, void *e, 2965 ipfw_obj_tentry *tent) 2966 { 2967 struct numarray *na; 2968 2969 na = (struct numarray *)e; 2970 2971 tent->k.key = na->number; 2972 tent->v.kidx = na->value; 2973 2974 return (0); 2975 } 2976 2977 static int 2978 ta_find_numarray_tentry(void *ta_state, struct table_info *ti, 2979 ipfw_obj_tentry *tent) 2980 { 2981 struct numarray *ri; 2982 2983 ri = numarray_find(ti, &tent->k.key); 2984 2985 if (ri != NULL) { 2986 ta_dump_numarray_tentry(ta_state, ti, ri, tent); 2987 return (0); 2988 } 2989 2990 return (ENOENT); 2991 } 2992 2993 static void 2994 ta_foreach_numarray(void *ta_state, struct table_info *ti, ta_foreach_f *f, 2995 void *arg) 2996 { 2997 struct numarray_cfg *cfg; 2998 struct numarray *array; 2999 int i; 3000 3001 cfg = (struct numarray_cfg *)ta_state; 3002 array = cfg->main_ptr; 3003 3004 for (i = 0; i < cfg->used; i++) 3005 f(&array[i], arg); 3006 } 3007 3008 struct table_algo number_array = { 3009 .name = "number:array", 3010 .type = IPFW_TABLE_NUMBER, 3011 .ta_buf_size = sizeof(struct ta_buf_numarray), 3012 .init = ta_init_numarray, 3013 .destroy = ta_destroy_numarray, 3014 .prepare_add = ta_prepare_add_numarray, 3015 .prepare_del = ta_prepare_add_numarray, 3016 .add = ta_add_numarray, 3017 .del = ta_del_numarray, 3018 .flush_entry = ta_flush_numarray_entry, 3019 .foreach = ta_foreach_numarray, 3020 .dump_tentry = ta_dump_numarray_tentry, 3021 .find_tentry = ta_find_numarray_tentry, 3022 .dump_tinfo = ta_dump_numarray_tinfo, 3023 .need_modify = ta_need_modify_numarray, 3024 .prepare_mod = ta_prepare_mod_numarray, 3025 .fill_mod = ta_fill_mod_numarray, 3026 .modify = ta_modify_numarray, 3027 .flush_mod = ta_flush_mod_numarray, 3028 }; 3029 3030 /* 3031 * flow:hash cmds 3032 * 3033 * 3034 * ti->data: 3035 * [inv.mask4][inv.mask6][log2hsize4][log2hsize6] 3036 * [ 8][ 8[ 8][ 8] 3037 * 3038 * inv.mask4: 32 - mask 3039 * inv.mask6: 3040 * 1) _slow lookup: mask 3041 * 2) _aligned: (128 - mask) / 8 3042 * 3) _64: 8 3043 * 3044 * 3045 * pflags: 3046 * [hsize4][hsize6] 3047 * [ 16][ 16] 3048 */ 3049 3050 struct fhashentry; 3051 3052 SLIST_HEAD(fhashbhead, fhashentry); 3053 3054 struct fhashentry { 3055 SLIST_ENTRY(fhashentry) next; 3056 uint8_t af; 3057 uint8_t proto; 3058 uint16_t spare0; 3059 uint16_t dport; 3060 uint16_t sport; 3061 uint32_t value; 3062 uint32_t spare1; 3063 }; 3064 3065 struct fhashentry4 { 3066 struct fhashentry e; 3067 struct in_addr dip; 3068 struct in_addr sip; 3069 }; 3070 3071 struct fhashentry6 { 3072 struct fhashentry e; 3073 struct in6_addr dip6; 3074 struct in6_addr sip6; 3075 }; 3076 3077 struct fhash_cfg { 3078 struct fhashbhead *head; 3079 size_t size; 3080 size_t items; 3081 struct fhashentry4 fe4; 3082 struct fhashentry6 fe6; 3083 }; 3084 3085 struct ta_buf_fhash { 3086 void *ent_ptr; 3087 struct fhashentry6 fe6; 3088 }; 3089 3090 static __inline int cmp_flow_ent(struct fhashentry *a, 3091 struct fhashentry *b, size_t sz); 3092 static __inline uint32_t hash_flow4(struct fhashentry4 *f, int hsize); 3093 static __inline uint32_t hash_flow6(struct fhashentry6 *f, int hsize); 3094 static uint32_t hash_flow_ent(struct fhashentry *ent, uint32_t size); 3095 static int ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen, 3096 uint32_t *val); 3097 static int ta_init_fhash(struct ip_fw_chain *ch, void **ta_state, 3098 struct table_info *ti, char *data, uint8_t tflags); 3099 static void ta_destroy_fhash(void *ta_state, struct table_info *ti); 3100 static void ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti, 3101 ipfw_ta_tinfo *tinfo); 3102 static int ta_dump_fhash_tentry(void *ta_state, struct table_info *ti, 3103 void *e, ipfw_obj_tentry *tent); 3104 static int tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent); 3105 static int ta_find_fhash_tentry(void *ta_state, struct table_info *ti, 3106 ipfw_obj_tentry *tent); 3107 static void ta_foreach_fhash(void *ta_state, struct table_info *ti, 3108 ta_foreach_f *f, void *arg); 3109 static int ta_prepare_add_fhash(struct ip_fw_chain *ch, 3110 struct tentry_info *tei, void *ta_buf); 3111 static int ta_add_fhash(void *ta_state, struct table_info *ti, 3112 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 3113 static int ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei, 3114 void *ta_buf); 3115 static int ta_del_fhash(void *ta_state, struct table_info *ti, 3116 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 3117 static void ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 3118 void *ta_buf); 3119 static int ta_need_modify_fhash(void *ta_state, struct table_info *ti, 3120 uint32_t count, uint64_t *pflags); 3121 static int ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags); 3122 static int ta_fill_mod_fhash(void *ta_state, struct table_info *ti, 3123 void *ta_buf, uint64_t *pflags); 3124 static void ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf, 3125 uint64_t pflags); 3126 static void ta_flush_mod_fhash(void *ta_buf); 3127 3128 static __inline int 3129 cmp_flow_ent(struct fhashentry *a, struct fhashentry *b, size_t sz) 3130 { 3131 uint64_t *ka, *kb; 3132 3133 ka = (uint64_t *)(&a->next + 1); 3134 kb = (uint64_t *)(&b->next + 1); 3135 3136 if (*ka == *kb && (memcmp(a + 1, b + 1, sz) == 0)) 3137 return (1); 3138 3139 return (0); 3140 } 3141 3142 static __inline uint32_t 3143 hash_flow4(struct fhashentry4 *f, int hsize) 3144 { 3145 uint32_t i; 3146 3147 i = (f->dip.s_addr) ^ (f->sip.s_addr) ^ (f->e.dport) ^ (f->e.sport); 3148 3149 return (i % (hsize - 1)); 3150 } 3151 3152 static __inline uint32_t 3153 hash_flow6(struct fhashentry6 *f, int hsize) 3154 { 3155 uint32_t i; 3156 3157 i = (f->dip6.__u6_addr.__u6_addr32[2]) ^ 3158 (f->dip6.__u6_addr.__u6_addr32[3]) ^ 3159 (f->sip6.__u6_addr.__u6_addr32[2]) ^ 3160 (f->sip6.__u6_addr.__u6_addr32[3]) ^ 3161 (f->e.dport) ^ (f->e.sport); 3162 3163 return (i % (hsize - 1)); 3164 } 3165 3166 static uint32_t 3167 hash_flow_ent(struct fhashentry *ent, uint32_t size) 3168 { 3169 uint32_t hash; 3170 3171 if (ent->af == AF_INET) { 3172 hash = hash_flow4((struct fhashentry4 *)ent, size); 3173 } else { 3174 hash = hash_flow6((struct fhashentry6 *)ent, size); 3175 } 3176 3177 return (hash); 3178 } 3179 3180 static int 3181 ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen, 3182 uint32_t *val) 3183 { 3184 struct fhashbhead *head; 3185 struct fhashentry *ent; 3186 struct fhashentry4 *m4; 3187 struct ipfw_flow_id *id; 3188 uint32_t hsize; 3189 uint16_t hash; 3190 3191 id = (struct ipfw_flow_id *)key; 3192 head = (struct fhashbhead *)ti->state; 3193 hsize = ti->data; 3194 m4 = (struct fhashentry4 *)ti->xstate; 3195 3196 if (id->addr_type == 4) { 3197 struct fhashentry4 f; 3198 3199 /* Copy hash mask */ 3200 f = *m4; 3201 3202 f.dip.s_addr &= id->dst_ip; 3203 f.sip.s_addr &= id->src_ip; 3204 f.e.dport &= id->dst_port; 3205 f.e.sport &= id->src_port; 3206 f.e.proto &= id->proto; 3207 hash = hash_flow4(&f, hsize); 3208 SLIST_FOREACH(ent, &head[hash], next) { 3209 if (cmp_flow_ent(ent, &f.e, 2 * 4) != 0) { 3210 *val = ent->value; 3211 return (1); 3212 } 3213 } 3214 } else if (id->addr_type == 6) { 3215 struct fhashentry6 f; 3216 uint64_t *fp, *idp; 3217 3218 /* Copy hash mask */ 3219 f = *((struct fhashentry6 *)(m4 + 1)); 3220 3221 /* Handle lack of __u6_addr.__u6_addr64 */ 3222 fp = (uint64_t *)&f.dip6; 3223 idp = (uint64_t *)&id->dst_ip6; 3224 /* src IPv6 is stored after dst IPv6 */ 3225 *fp++ &= *idp++; 3226 *fp++ &= *idp++; 3227 *fp++ &= *idp++; 3228 *fp &= *idp; 3229 f.e.dport &= id->dst_port; 3230 f.e.sport &= id->src_port; 3231 f.e.proto &= id->proto; 3232 hash = hash_flow6(&f, hsize); 3233 SLIST_FOREACH(ent, &head[hash], next) { 3234 if (cmp_flow_ent(ent, &f.e, 2 * 16) != 0) { 3235 *val = ent->value; 3236 return (1); 3237 } 3238 } 3239 } 3240 3241 return (0); 3242 } 3243 3244 /* 3245 * New table. 3246 */ 3247 static int 3248 ta_init_fhash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 3249 char *data, uint8_t tflags) 3250 { 3251 struct fhash_cfg *cfg; 3252 struct fhashentry4 *fe4; 3253 struct fhashentry6 *fe6; 3254 u_int i; 3255 3256 cfg = malloc(sizeof(struct fhash_cfg), M_IPFW, M_WAITOK | M_ZERO); 3257 3258 cfg->size = 512; 3259 3260 cfg->head = malloc(sizeof(struct fhashbhead) * cfg->size, M_IPFW, 3261 M_WAITOK | M_ZERO); 3262 for (i = 0; i < cfg->size; i++) 3263 SLIST_INIT(&cfg->head[i]); 3264 3265 /* Fill in fe masks based on @tflags */ 3266 fe4 = &cfg->fe4; 3267 fe6 = &cfg->fe6; 3268 if (tflags & IPFW_TFFLAG_SRCIP) { 3269 memset(&fe4->sip, 0xFF, sizeof(fe4->sip)); 3270 memset(&fe6->sip6, 0xFF, sizeof(fe6->sip6)); 3271 } 3272 if (tflags & IPFW_TFFLAG_DSTIP) { 3273 memset(&fe4->dip, 0xFF, sizeof(fe4->dip)); 3274 memset(&fe6->dip6, 0xFF, sizeof(fe6->dip6)); 3275 } 3276 if (tflags & IPFW_TFFLAG_SRCPORT) { 3277 memset(&fe4->e.sport, 0xFF, sizeof(fe4->e.sport)); 3278 memset(&fe6->e.sport, 0xFF, sizeof(fe6->e.sport)); 3279 } 3280 if (tflags & IPFW_TFFLAG_DSTPORT) { 3281 memset(&fe4->e.dport, 0xFF, sizeof(fe4->e.dport)); 3282 memset(&fe6->e.dport, 0xFF, sizeof(fe6->e.dport)); 3283 } 3284 if (tflags & IPFW_TFFLAG_PROTO) { 3285 memset(&fe4->e.proto, 0xFF, sizeof(fe4->e.proto)); 3286 memset(&fe6->e.proto, 0xFF, sizeof(fe6->e.proto)); 3287 } 3288 3289 fe4->e.af = AF_INET; 3290 fe6->e.af = AF_INET6; 3291 3292 *ta_state = cfg; 3293 ti->state = cfg->head; 3294 ti->xstate = &cfg->fe4; 3295 ti->data = cfg->size; 3296 ti->lookup = ta_lookup_fhash; 3297 3298 return (0); 3299 } 3300 3301 static void 3302 ta_destroy_fhash(void *ta_state, struct table_info *ti) 3303 { 3304 struct fhash_cfg *cfg; 3305 struct fhashentry *ent, *ent_next; 3306 int i; 3307 3308 cfg = (struct fhash_cfg *)ta_state; 3309 3310 for (i = 0; i < cfg->size; i++) 3311 SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next) 3312 free(ent, M_IPFW_TBL); 3313 3314 free(cfg->head, M_IPFW); 3315 free(cfg, M_IPFW); 3316 } 3317 3318 /* 3319 * Provide algo-specific table info 3320 */ 3321 static void 3322 ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 3323 { 3324 struct fhash_cfg *cfg; 3325 3326 cfg = (struct fhash_cfg *)ta_state; 3327 3328 tinfo->flags = IPFW_TATFLAGS_AFITEM; 3329 tinfo->taclass4 = IPFW_TACLASS_HASH; 3330 tinfo->size4 = cfg->size; 3331 tinfo->count4 = cfg->items; 3332 tinfo->itemsize4 = sizeof(struct fhashentry4); 3333 tinfo->itemsize6 = sizeof(struct fhashentry6); 3334 } 3335 3336 static int 3337 ta_dump_fhash_tentry(void *ta_state, struct table_info *ti, void *e, 3338 ipfw_obj_tentry *tent) 3339 { 3340 struct fhashentry *ent; 3341 struct fhashentry4 *fe4; 3342 #ifdef INET6 3343 struct fhashentry6 *fe6; 3344 #endif 3345 struct tflow_entry *tfe; 3346 3347 ent = (struct fhashentry *)e; 3348 tfe = &tent->k.flow; 3349 3350 tfe->af = ent->af; 3351 tfe->proto = ent->proto; 3352 tfe->dport = htons(ent->dport); 3353 tfe->sport = htons(ent->sport); 3354 tent->v.kidx = ent->value; 3355 tent->subtype = ent->af; 3356 3357 if (ent->af == AF_INET) { 3358 fe4 = (struct fhashentry4 *)ent; 3359 tfe->a.a4.sip.s_addr = htonl(fe4->sip.s_addr); 3360 tfe->a.a4.dip.s_addr = htonl(fe4->dip.s_addr); 3361 tent->masklen = 32; 3362 #ifdef INET6 3363 } else { 3364 fe6 = (struct fhashentry6 *)ent; 3365 tfe->a.a6.sip6 = fe6->sip6; 3366 tfe->a.a6.dip6 = fe6->dip6; 3367 tent->masklen = 128; 3368 #endif 3369 } 3370 3371 return (0); 3372 } 3373 3374 static int 3375 tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent) 3376 { 3377 #ifdef INET 3378 struct fhashentry4 *fe4; 3379 #endif 3380 #ifdef INET6 3381 struct fhashentry6 *fe6; 3382 #endif 3383 struct tflow_entry *tfe; 3384 3385 tfe = (struct tflow_entry *)tei->paddr; 3386 3387 ent->af = tei->subtype; 3388 ent->proto = tfe->proto; 3389 ent->dport = ntohs(tfe->dport); 3390 ent->sport = ntohs(tfe->sport); 3391 3392 if (tei->subtype == AF_INET) { 3393 #ifdef INET 3394 fe4 = (struct fhashentry4 *)ent; 3395 fe4->sip.s_addr = ntohl(tfe->a.a4.sip.s_addr); 3396 fe4->dip.s_addr = ntohl(tfe->a.a4.dip.s_addr); 3397 #endif 3398 #ifdef INET6 3399 } else if (tei->subtype == AF_INET6) { 3400 fe6 = (struct fhashentry6 *)ent; 3401 fe6->sip6 = tfe->a.a6.sip6; 3402 fe6->dip6 = tfe->a.a6.dip6; 3403 #endif 3404 } else { 3405 /* Unknown CIDR type */ 3406 return (EINVAL); 3407 } 3408 3409 return (0); 3410 } 3411 3412 static int 3413 ta_find_fhash_tentry(void *ta_state, struct table_info *ti, 3414 ipfw_obj_tentry *tent) 3415 { 3416 struct fhash_cfg *cfg; 3417 struct fhashbhead *head; 3418 struct fhashentry *ent, *tmp; 3419 struct fhashentry6 fe6; 3420 struct tentry_info tei; 3421 int error; 3422 uint32_t hash; 3423 size_t sz; 3424 3425 cfg = (struct fhash_cfg *)ta_state; 3426 3427 ent = &fe6.e; 3428 3429 memset(&fe6, 0, sizeof(fe6)); 3430 memset(&tei, 0, sizeof(tei)); 3431 3432 tei.paddr = &tent->k.flow; 3433 tei.subtype = tent->subtype; 3434 3435 if ((error = tei_to_fhash_ent(&tei, ent)) != 0) 3436 return (error); 3437 3438 head = cfg->head; 3439 hash = hash_flow_ent(ent, cfg->size); 3440 3441 if (tei.subtype == AF_INET) 3442 sz = 2 * sizeof(struct in_addr); 3443 else 3444 sz = 2 * sizeof(struct in6_addr); 3445 3446 /* Check for existence */ 3447 SLIST_FOREACH(tmp, &head[hash], next) { 3448 if (cmp_flow_ent(tmp, ent, sz) != 0) { 3449 ta_dump_fhash_tentry(ta_state, ti, tmp, tent); 3450 return (0); 3451 } 3452 } 3453 3454 return (ENOENT); 3455 } 3456 3457 static void 3458 ta_foreach_fhash(void *ta_state, struct table_info *ti, ta_foreach_f *f, 3459 void *arg) 3460 { 3461 struct fhash_cfg *cfg; 3462 struct fhashentry *ent, *ent_next; 3463 int i; 3464 3465 cfg = (struct fhash_cfg *)ta_state; 3466 3467 for (i = 0; i < cfg->size; i++) 3468 SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next) 3469 f(ent, arg); 3470 } 3471 3472 static int 3473 ta_prepare_add_fhash(struct ip_fw_chain *ch, struct tentry_info *tei, 3474 void *ta_buf) 3475 { 3476 struct ta_buf_fhash *tb; 3477 struct fhashentry *ent; 3478 size_t sz; 3479 int error; 3480 3481 tb = (struct ta_buf_fhash *)ta_buf; 3482 3483 if (tei->subtype == AF_INET) 3484 sz = sizeof(struct fhashentry4); 3485 else if (tei->subtype == AF_INET6) 3486 sz = sizeof(struct fhashentry6); 3487 else 3488 return (EINVAL); 3489 3490 ent = malloc(sz, M_IPFW_TBL, M_WAITOK | M_ZERO); 3491 3492 error = tei_to_fhash_ent(tei, ent); 3493 if (error != 0) { 3494 free(ent, M_IPFW_TBL); 3495 return (error); 3496 } 3497 tb->ent_ptr = ent; 3498 3499 return (0); 3500 } 3501 3502 static int 3503 ta_add_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 3504 void *ta_buf, uint32_t *pnum) 3505 { 3506 struct fhash_cfg *cfg; 3507 struct fhashbhead *head; 3508 struct fhashentry *ent, *tmp; 3509 struct ta_buf_fhash *tb; 3510 int exists; 3511 uint32_t hash, value; 3512 size_t sz; 3513 3514 cfg = (struct fhash_cfg *)ta_state; 3515 tb = (struct ta_buf_fhash *)ta_buf; 3516 ent = (struct fhashentry *)tb->ent_ptr; 3517 exists = 0; 3518 3519 /* Read current value from @tei */ 3520 ent->value = tei->value; 3521 3522 head = cfg->head; 3523 hash = hash_flow_ent(ent, cfg->size); 3524 3525 if (tei->subtype == AF_INET) 3526 sz = 2 * sizeof(struct in_addr); 3527 else 3528 sz = 2 * sizeof(struct in6_addr); 3529 3530 /* Check for existence */ 3531 SLIST_FOREACH(tmp, &head[hash], next) { 3532 if (cmp_flow_ent(tmp, ent, sz) != 0) { 3533 exists = 1; 3534 break; 3535 } 3536 } 3537 3538 if (exists == 1) { 3539 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 3540 return (EEXIST); 3541 /* Record already exists. Update value if we're asked to */ 3542 /* Exchange values between tmp and @tei */ 3543 value = tmp->value; 3544 tmp->value = tei->value; 3545 tei->value = value; 3546 /* Indicate that update has happened instead of addition */ 3547 tei->flags |= TEI_FLAGS_UPDATED; 3548 *pnum = 0; 3549 } else { 3550 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 3551 return (EFBIG); 3552 3553 SLIST_INSERT_HEAD(&head[hash], ent, next); 3554 tb->ent_ptr = NULL; 3555 *pnum = 1; 3556 3557 /* Update counters and check if we need to grow hash */ 3558 cfg->items++; 3559 } 3560 3561 return (0); 3562 } 3563 3564 static int 3565 ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei, 3566 void *ta_buf) 3567 { 3568 struct ta_buf_fhash *tb; 3569 3570 tb = (struct ta_buf_fhash *)ta_buf; 3571 3572 return (tei_to_fhash_ent(tei, &tb->fe6.e)); 3573 } 3574 3575 static int 3576 ta_del_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 3577 void *ta_buf, uint32_t *pnum) 3578 { 3579 struct fhash_cfg *cfg; 3580 struct fhashbhead *head; 3581 struct fhashentry *ent, *tmp; 3582 struct ta_buf_fhash *tb; 3583 uint32_t hash; 3584 size_t sz; 3585 3586 cfg = (struct fhash_cfg *)ta_state; 3587 tb = (struct ta_buf_fhash *)ta_buf; 3588 ent = &tb->fe6.e; 3589 3590 head = cfg->head; 3591 hash = hash_flow_ent(ent, cfg->size); 3592 3593 if (tei->subtype == AF_INET) 3594 sz = 2 * sizeof(struct in_addr); 3595 else 3596 sz = 2 * sizeof(struct in6_addr); 3597 3598 /* Check for existence */ 3599 SLIST_FOREACH(tmp, &head[hash], next) { 3600 if (cmp_flow_ent(tmp, ent, sz) == 0) 3601 continue; 3602 3603 SLIST_REMOVE(&head[hash], tmp, fhashentry, next); 3604 tei->value = tmp->value; 3605 *pnum = 1; 3606 cfg->items--; 3607 tb->ent_ptr = tmp; 3608 return (0); 3609 } 3610 3611 return (ENOENT); 3612 } 3613 3614 static void 3615 ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 3616 void *ta_buf) 3617 { 3618 struct ta_buf_fhash *tb; 3619 3620 tb = (struct ta_buf_fhash *)ta_buf; 3621 3622 if (tb->ent_ptr != NULL) 3623 free(tb->ent_ptr, M_IPFW_TBL); 3624 } 3625 3626 /* 3627 * Hash growing callbacks. 3628 */ 3629 3630 static int 3631 ta_need_modify_fhash(void *ta_state, struct table_info *ti, uint32_t count, 3632 uint64_t *pflags) 3633 { 3634 struct fhash_cfg *cfg; 3635 3636 cfg = (struct fhash_cfg *)ta_state; 3637 3638 if (cfg->items > cfg->size && cfg->size < 65536) { 3639 *pflags = cfg->size * 2; 3640 return (1); 3641 } 3642 3643 return (0); 3644 } 3645 3646 /* 3647 * Allocate new, larger fhash. 3648 */ 3649 static int 3650 ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags) 3651 { 3652 struct mod_item *mi; 3653 struct fhashbhead *head; 3654 u_int i; 3655 3656 mi = (struct mod_item *)ta_buf; 3657 3658 memset(mi, 0, sizeof(struct mod_item)); 3659 mi->size = *pflags; 3660 head = malloc(sizeof(struct fhashbhead) * mi->size, M_IPFW, 3661 M_WAITOK | M_ZERO); 3662 for (i = 0; i < mi->size; i++) 3663 SLIST_INIT(&head[i]); 3664 3665 mi->main_ptr = head; 3666 3667 return (0); 3668 } 3669 3670 /* 3671 * Copy data from old runtime array to new one. 3672 */ 3673 static int 3674 ta_fill_mod_fhash(void *ta_state, struct table_info *ti, void *ta_buf, 3675 uint64_t *pflags) 3676 { 3677 3678 /* In is not possible to do rehash if we're not holidng WLOCK. */ 3679 return (0); 3680 } 3681 3682 /* 3683 * Switch old & new arrays. 3684 */ 3685 static void 3686 ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf, 3687 uint64_t pflags) 3688 { 3689 struct mod_item *mi; 3690 struct fhash_cfg *cfg; 3691 struct fhashbhead *old_head, *new_head; 3692 struct fhashentry *ent, *ent_next; 3693 int i; 3694 uint32_t nhash; 3695 size_t old_size; 3696 3697 mi = (struct mod_item *)ta_buf; 3698 cfg = (struct fhash_cfg *)ta_state; 3699 3700 old_size = cfg->size; 3701 old_head = ti->state; 3702 3703 new_head = (struct fhashbhead *)mi->main_ptr; 3704 for (i = 0; i < old_size; i++) { 3705 SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) { 3706 nhash = hash_flow_ent(ent, mi->size); 3707 SLIST_INSERT_HEAD(&new_head[nhash], ent, next); 3708 } 3709 } 3710 3711 ti->state = new_head; 3712 ti->data = mi->size; 3713 cfg->head = new_head; 3714 cfg->size = mi->size; 3715 3716 mi->main_ptr = old_head; 3717 } 3718 3719 /* 3720 * Free unneded array. 3721 */ 3722 static void 3723 ta_flush_mod_fhash(void *ta_buf) 3724 { 3725 struct mod_item *mi; 3726 3727 mi = (struct mod_item *)ta_buf; 3728 if (mi->main_ptr != NULL) 3729 free(mi->main_ptr, M_IPFW); 3730 } 3731 3732 struct table_algo flow_hash = { 3733 .name = "flow:hash", 3734 .type = IPFW_TABLE_FLOW, 3735 .flags = TA_FLAG_DEFAULT, 3736 .ta_buf_size = sizeof(struct ta_buf_fhash), 3737 .init = ta_init_fhash, 3738 .destroy = ta_destroy_fhash, 3739 .prepare_add = ta_prepare_add_fhash, 3740 .prepare_del = ta_prepare_del_fhash, 3741 .add = ta_add_fhash, 3742 .del = ta_del_fhash, 3743 .flush_entry = ta_flush_fhash_entry, 3744 .foreach = ta_foreach_fhash, 3745 .dump_tentry = ta_dump_fhash_tentry, 3746 .find_tentry = ta_find_fhash_tentry, 3747 .dump_tinfo = ta_dump_fhash_tinfo, 3748 .need_modify = ta_need_modify_fhash, 3749 .prepare_mod = ta_prepare_mod_fhash, 3750 .fill_mod = ta_fill_mod_fhash, 3751 .modify = ta_modify_fhash, 3752 .flush_mod = ta_flush_mod_fhash, 3753 }; 3754 3755 /* 3756 * Kernel fibs bindings. 3757 * 3758 * Implementation: 3759 * 3760 * Runtime part: 3761 * - fully relies on route API 3762 * - fib number is stored in ti->data 3763 * 3764 */ 3765 3766 static int ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen, 3767 uint32_t *val); 3768 static int kfib_parse_opts(int *pfib, char *data); 3769 static void ta_print_kfib_config(void *ta_state, struct table_info *ti, 3770 char *buf, size_t bufsize); 3771 static int ta_init_kfib(struct ip_fw_chain *ch, void **ta_state, 3772 struct table_info *ti, char *data, uint8_t tflags); 3773 static void ta_destroy_kfib(void *ta_state, struct table_info *ti); 3774 static void ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti, 3775 ipfw_ta_tinfo *tinfo); 3776 static int ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e, 3777 ipfw_obj_tentry *tent); 3778 static int ta_dump_kfib_tentry_int(int familt, const struct rtentry *rt, 3779 ipfw_obj_tentry *tent); 3780 static int ta_find_kfib_tentry(void *ta_state, struct table_info *ti, 3781 ipfw_obj_tentry *tent); 3782 static void ta_foreach_kfib(void *ta_state, struct table_info *ti, 3783 ta_foreach_f *f, void *arg); 3784 3785 static int 3786 ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen, 3787 uint32_t *val) 3788 { 3789 #ifdef INET 3790 struct in_addr in; 3791 #endif 3792 int error; 3793 3794 error = ENOENT; 3795 #ifdef INET 3796 if (keylen == 4) { 3797 in.s_addr = *(in_addr_t *)key; 3798 NET_EPOCH_ASSERT(); 3799 error = fib4_lookup(ti->data, in, 0, NHR_NONE, 0) != NULL; 3800 } 3801 #endif 3802 #ifdef INET6 3803 if (keylen == 6) 3804 error = fib6_lookup(ti->data, (struct in6_addr *)key, 3805 0, NHR_NONE, 0) != NULL; 3806 #endif 3807 3808 if (error != 0) 3809 return (0); 3810 3811 *val = 0; 3812 3813 return (1); 3814 } 3815 3816 /* Parse 'fib=%d' */ 3817 static int 3818 kfib_parse_opts(int *pfib, char *data) 3819 { 3820 char *pdel, *pend, *s; 3821 int fibnum; 3822 3823 if (data == NULL) 3824 return (0); 3825 if ((pdel = strchr(data, ' ')) == NULL) 3826 return (0); 3827 while (*pdel == ' ') 3828 pdel++; 3829 if (strncmp(pdel, "fib=", 4) != 0) 3830 return (EINVAL); 3831 if ((s = strchr(pdel, ' ')) != NULL) 3832 *s++ = '\0'; 3833 3834 pdel += 4; 3835 /* Need \d+ */ 3836 fibnum = strtol(pdel, &pend, 10); 3837 if (*pend != '\0') 3838 return (EINVAL); 3839 3840 *pfib = fibnum; 3841 3842 return (0); 3843 } 3844 3845 static void 3846 ta_print_kfib_config(void *ta_state, struct table_info *ti, char *buf, 3847 size_t bufsize) 3848 { 3849 3850 if (ti->data != 0) 3851 snprintf(buf, bufsize, "%s fib=%lu", "addr:kfib", ti->data); 3852 else 3853 snprintf(buf, bufsize, "%s", "addr:kfib"); 3854 } 3855 3856 static int 3857 ta_init_kfib(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 3858 char *data, uint8_t tflags) 3859 { 3860 int error, fibnum; 3861 3862 fibnum = 0; 3863 if ((error = kfib_parse_opts(&fibnum, data)) != 0) 3864 return (error); 3865 3866 if (fibnum >= rt_numfibs) 3867 return (E2BIG); 3868 3869 ti->data = fibnum; 3870 ti->lookup = ta_lookup_kfib; 3871 3872 return (0); 3873 } 3874 3875 /* 3876 * Destroys table @ti 3877 */ 3878 static void 3879 ta_destroy_kfib(void *ta_state, struct table_info *ti) 3880 { 3881 3882 } 3883 3884 /* 3885 * Provide algo-specific table info 3886 */ 3887 static void 3888 ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 3889 { 3890 3891 tinfo->flags = IPFW_TATFLAGS_AFDATA; 3892 tinfo->taclass4 = IPFW_TACLASS_RADIX; 3893 tinfo->count4 = 0; 3894 tinfo->itemsize4 = 128; /* table is readonly, value does not matter */ 3895 tinfo->taclass6 = IPFW_TACLASS_RADIX; 3896 tinfo->count6 = 0; 3897 tinfo->itemsize6 = 128; 3898 } 3899 3900 static int 3901 ta_dump_kfib_tentry_int(int family, const struct rtentry *rt, 3902 ipfw_obj_tentry *tent) 3903 { 3904 uint32_t scopeid; 3905 int plen; 3906 3907 #ifdef INET 3908 if (family == AF_INET) { 3909 rt_get_inet_prefix_plen(rt, &tent->k.addr, &plen, &scopeid); 3910 tent->masklen = plen; 3911 tent->subtype = AF_INET; 3912 tent->v.kidx = 0; 3913 } 3914 #endif 3915 #ifdef INET6 3916 if (family == AF_INET6) { 3917 rt_get_inet6_prefix_plen(rt, &tent->k.addr6, &plen, &scopeid); 3918 tent->masklen = plen; 3919 tent->subtype = AF_INET6; 3920 tent->v.kidx = 0; 3921 } 3922 #endif 3923 return (0); 3924 } 3925 3926 static int 3927 ta_find_kfib_tentry(void *ta_state, struct table_info *ti, 3928 ipfw_obj_tentry *tent) 3929 { 3930 struct rtentry *rt = NULL; 3931 struct route_nhop_data rnd; 3932 struct epoch_tracker et; 3933 int error; 3934 3935 NET_EPOCH_ENTER(et); 3936 3937 switch (tent->subtype) { 3938 #ifdef INET 3939 case AF_INET: 3940 rt = fib4_lookup_rt(ti->data, tent->k.addr, 0, 0, &rnd); 3941 break; 3942 #endif 3943 #ifdef INET6 3944 case AF_INET6: 3945 rt = fib6_lookup_rt(ti->data, &tent->k.addr6, 0, 0, &rnd); 3946 break; 3947 #endif 3948 } 3949 if (rt != NULL) 3950 error = ta_dump_kfib_tentry_int(tent->subtype, rt, tent); 3951 else 3952 error = ENOENT; 3953 NET_EPOCH_EXIT(et); 3954 3955 return (error); 3956 } 3957 3958 struct kfib_dump_arg { 3959 struct rtentry *rt; 3960 int family; 3961 ta_foreach_f *f; 3962 void *arg; 3963 }; 3964 3965 static int 3966 ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e, 3967 ipfw_obj_tentry *tent) 3968 { 3969 struct kfib_dump_arg *karg = (struct kfib_dump_arg *)e; 3970 3971 return (ta_dump_kfib_tentry_int(karg->family, karg->rt, tent)); 3972 } 3973 3974 static int 3975 walk_wrapper_f(struct rtentry *rt, void *arg) 3976 { 3977 struct kfib_dump_arg *karg = (struct kfib_dump_arg *)arg; 3978 3979 karg->rt = rt; 3980 return (karg->f(karg, karg->arg)); 3981 } 3982 3983 static void 3984 ta_foreach_kfib(void *ta_state, struct table_info *ti, ta_foreach_f *f, 3985 void *arg) 3986 { 3987 struct kfib_dump_arg karg = { .f = f, .arg = arg }; 3988 3989 karg.family = AF_INET; 3990 rib_walk(ti->data, AF_INET, false, walk_wrapper_f, &karg); 3991 karg.family = AF_INET6; 3992 rib_walk(ti->data, AF_INET6, false, walk_wrapper_f, &karg); 3993 } 3994 3995 struct table_algo addr_kfib = { 3996 .name = "addr:kfib", 3997 .type = IPFW_TABLE_ADDR, 3998 .flags = TA_FLAG_READONLY, 3999 .ta_buf_size = 0, 4000 .init = ta_init_kfib, 4001 .destroy = ta_destroy_kfib, 4002 .foreach = ta_foreach_kfib, 4003 .dump_tentry = ta_dump_kfib_tentry, 4004 .find_tentry = ta_find_kfib_tentry, 4005 .dump_tinfo = ta_dump_kfib_tinfo, 4006 .print_config = ta_print_kfib_config, 4007 }; 4008 4009 void 4010 ipfw_table_algo_init(struct ip_fw_chain *ch) 4011 { 4012 size_t sz; 4013 4014 /* 4015 * Register all algorithms presented here. 4016 */ 4017 sz = sizeof(struct table_algo); 4018 ipfw_add_table_algo(ch, &addr_radix, sz, &addr_radix.idx); 4019 ipfw_add_table_algo(ch, &addr_hash, sz, &addr_hash.idx); 4020 ipfw_add_table_algo(ch, &iface_idx, sz, &iface_idx.idx); 4021 ipfw_add_table_algo(ch, &number_array, sz, &number_array.idx); 4022 ipfw_add_table_algo(ch, &flow_hash, sz, &flow_hash.idx); 4023 ipfw_add_table_algo(ch, &addr_kfib, sz, &addr_kfib.idx); 4024 } 4025 4026 void 4027 ipfw_table_algo_destroy(struct ip_fw_chain *ch) 4028 { 4029 4030 ipfw_del_table_algo(ch, addr_radix.idx); 4031 ipfw_del_table_algo(ch, addr_hash.idx); 4032 ipfw_del_table_algo(ch, iface_idx.idx); 4033 ipfw_del_table_algo(ch, number_array.idx); 4034 ipfw_del_table_algo(ch, flow_hash.idx); 4035 ipfw_del_table_algo(ch, addr_kfib.idx); 4036 } 4037