1 /*- 2 * Copyright (c) 2014 Yandex LLC 3 * Copyright (c) 2014 Alexander V. Chernikov 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Lookup table algorithms. 32 * 33 */ 34 35 #include "opt_ipfw.h" 36 #include "opt_inet.h" 37 #ifndef INET 38 #error IPFIREWALL requires INET. 39 #endif /* INET */ 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/rwlock.h> 48 #include <sys/rmlock.h> 49 #include <sys/socket.h> 50 #include <sys/queue.h> 51 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */ 52 #include <net/radix.h> 53 #include <net/route.h> 54 #include <net/route_var.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_fib.h> 58 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */ 59 #include <netinet/ip_fw.h> 60 #include <netinet6/in6_fib.h> 61 62 #include <netpfil/ipfw/ip_fw_private.h> 63 #include <netpfil/ipfw/ip_fw_table.h> 64 65 66 /* 67 * IPFW table lookup algorithms. 68 * 69 * What is needed to add another table algo? 70 * 71 * Algo init: 72 * * struct table_algo has to be filled with: 73 * name: "type:algoname" format, e.g. "addr:radix". Currently 74 * there are the following types: "addr", "iface", "number" and "flow". 75 * type: one of IPFW_TABLE_* types 76 * flags: one or more TA_FLAGS_* 77 * ta_buf_size: size of structure used to store add/del item state. 78 * Needs to be less than TA_BUF_SZ. 79 * callbacks: see below for description. 80 * * ipfw_add_table_algo / ipfw_del_table_algo has to be called 81 * 82 * Callbacks description: 83 * 84 * -init: request to initialize new table instance. 85 * typedef int (ta_init)(struct ip_fw_chain *ch, void **ta_state, 86 * struct table_info *ti, char *data, uint8_t tflags); 87 * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success. 88 * 89 * Allocate all structures needed for normal operations. 90 * * Caller may want to parse @data for some algo-specific 91 * options provided by userland. 92 * * Caller may want to save configuration state pointer to @ta_state 93 * * Caller needs to save desired runtime structure pointer(s) 94 * inside @ti fields. Note that it is not correct to save 95 * @ti pointer at this moment. Use -change_ti hook for that. 96 * * Caller has to fill in ti->lookup to appropriate function 97 * pointer. 98 * 99 * 100 * 101 * -destroy: request to destroy table instance. 102 * typedef void (ta_destroy)(void *ta_state, struct table_info *ti); 103 * MANDATORY, unlocked. (M_WAITOK). 104 * 105 * Frees all table entries and all tables structures allocated by -init. 106 * 107 * 108 * 109 * -prepare_add: request to allocate state for adding new entry. 110 * typedef int (ta_prepare_add)(struct ip_fw_chain *ch, struct tentry_info *tei, 111 * void *ta_buf); 112 * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success. 113 * 114 * Allocates state and fills it in with all necessary data (EXCEPT value) 115 * from @tei to minimize operations needed to be done under WLOCK. 116 * "value" field has to be copied to new entry in @add callback. 117 * Buffer ta_buf of size ta->ta_buf_sz may be used to store 118 * allocated state. 119 * 120 * 121 * 122 * -prepare_del: request to set state for deleting existing entry. 123 * typedef int (ta_prepare_del)(struct ip_fw_chain *ch, struct tentry_info *tei, 124 * void *ta_buf); 125 * MANDATORY, locked, UH. (M_NOWAIT). Returns 0 on success. 126 * 127 * Buffer ta_buf of size ta->ta_buf_sz may be used to store 128 * allocated state. Caller should use on-stack ta_buf allocation 129 * instead of doing malloc(). 130 * 131 * 132 * 133 * -add: request to insert new entry into runtime/config structures. 134 * typedef int (ta_add)(void *ta_state, struct table_info *ti, 135 * struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 136 * MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success. 137 * 138 * Insert new entry using previously-allocated state in @ta_buf. 139 * * @tei may have the following flags: 140 * TEI_FLAGS_UPDATE: request to add or update entry. 141 * TEI_FLAGS_DONTADD: request to update (but not add) entry. 142 * * Caller is required to do the following: 143 * copy real entry value from @tei 144 * entry added: return 0, set 1 to @pnum 145 * entry updated: return 0, store 0 to @pnum, store old value in @tei, 146 * add TEI_FLAGS_UPDATED flag to @tei. 147 * entry exists: return EEXIST 148 * entry not found: return ENOENT 149 * other error: return non-zero error code. 150 * 151 * 152 * 153 * -del: request to delete existing entry from runtime/config structures. 154 * typedef int (ta_del)(void *ta_state, struct table_info *ti, 155 * struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 156 * MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success. 157 * 158 * Delete entry using previously set up in @ta_buf. 159 * * Caller is required to do the following: 160 * entry deleted: return 0, set 1 to @pnum, store old value in @tei. 161 * entry not found: return ENOENT 162 * other error: return non-zero error code. 163 * 164 * 165 * 166 * -flush_entry: flush entry state created by -prepare_add / -del / others 167 * typedef void (ta_flush_entry)(struct ip_fw_chain *ch, 168 * struct tentry_info *tei, void *ta_buf); 169 * MANDATORY, may be locked. (M_NOWAIT). 170 * 171 * Delete state allocated by: 172 * -prepare_add (-add returned EEXIST|UPDATED) 173 * -prepare_del (if any) 174 * -del 175 * * Caller is required to handle empty @ta_buf correctly. 176 * 177 * 178 * -find_tentry: finds entry specified by key @tei 179 * typedef int ta_find_tentry(void *ta_state, struct table_info *ti, 180 * ipfw_obj_tentry *tent); 181 * OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 on success. 182 * 183 * Finds entry specified by given key. 184 * * Caller is requred to do the following: 185 * entry found: returns 0, export entry to @tent 186 * entry not found: returns ENOENT 187 * 188 * 189 * -need_modify: checks if @ti has enough space to hold another @count items. 190 * typedef int (ta_need_modify)(void *ta_state, struct table_info *ti, 191 * uint32_t count, uint64_t *pflags); 192 * OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 if has. 193 * 194 * Checks if given table has enough space to add @count items without 195 * resize. Caller may use @pflags to store desired modification data. 196 * 197 * 198 * 199 * -prepare_mod: allocate structures for table modification. 200 * typedef int (ta_prepare_mod)(void *ta_buf, uint64_t *pflags); 201 * OPTIONAL(need_modify), unlocked. (M_WAITOK). Returns 0 on success. 202 * 203 * Allocate all needed state for table modification. Caller 204 * should use `struct mod_item` to store new state in @ta_buf. 205 * Up to TA_BUF_SZ (128 bytes) can be stored in @ta_buf. 206 * 207 * 208 * 209 * -fill_mod: copy some data to new state/ 210 * typedef int (ta_fill_mod)(void *ta_state, struct table_info *ti, 211 * void *ta_buf, uint64_t *pflags); 212 * OPTIONAL(need_modify), locked (UH). (M_NOWAIT). Returns 0 on success. 213 * 214 * Copy as much data as we can to minimize changes under WLOCK. 215 * For example, array can be merged inside this callback. 216 * 217 * 218 * 219 * -modify: perform final modification. 220 * typedef void (ta_modify)(void *ta_state, struct table_info *ti, 221 * void *ta_buf, uint64_t pflags); 222 * OPTIONAL(need_modify), locked (UH+WLOCK). (M_NOWAIT). 223 * 224 * Performs all changes necessary to switch to new structures. 225 * * Caller should save old pointers to @ta_buf storage. 226 * 227 * 228 * 229 * -flush_mod: flush table modification state. 230 * typedef void (ta_flush_mod)(void *ta_buf); 231 * OPTIONAL(need_modify), unlocked. (M_WAITOK). 232 * 233 * Performs flush for the following: 234 * - prepare_mod (modification was not necessary) 235 * - modify (for the old state) 236 * 237 * 238 * 239 * -change_gi: monitor table info pointer changes 240 * typedef void (ta_change_ti)(void *ta_state, struct table_info *ti); 241 * OPTIONAL, locked (UH). (M_NOWAIT). 242 * 243 * Called on @ti pointer changed. Called immediately after -init 244 * to set initial state. 245 * 246 * 247 * 248 * -foreach: calls @f for each table entry 249 * typedef void ta_foreach(void *ta_state, struct table_info *ti, 250 * ta_foreach_f *f, void *arg); 251 * MANDATORY, locked(UH). (M_NOWAIT). 252 * 253 * Runs callback with specified argument for each table entry, 254 * Typically used for dumping table entries. 255 * 256 * 257 * 258 * -dump_tentry: dump table entry in current @tentry format. 259 * typedef int ta_dump_tentry(void *ta_state, struct table_info *ti, void *e, 260 * ipfw_obj_tentry *tent); 261 * MANDATORY, locked(UH). (M_NOWAIT). Returns 0 on success. 262 * 263 * Dumps entry @e to @tent. 264 * 265 * 266 * -print_config: prints custom algoritm options into buffer. 267 * typedef void (ta_print_config)(void *ta_state, struct table_info *ti, 268 * char *buf, size_t bufsize); 269 * OPTIONAL. locked(UH). (M_NOWAIT). 270 * 271 * Prints custom algorithm options in the format suitable to pass 272 * back to -init callback. 273 * 274 * 275 * 276 * -dump_tinfo: dumps algo-specific info. 277 * typedef void ta_dump_tinfo(void *ta_state, struct table_info *ti, 278 * ipfw_ta_tinfo *tinfo); 279 * OPTIONAL. locked(UH). (M_NOWAIT). 280 * 281 * Dumps options like items size/hash size, etc. 282 */ 283 284 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables"); 285 286 /* 287 * Utility structures/functions common to more than one algo 288 */ 289 290 struct mod_item { 291 void *main_ptr; 292 size_t size; 293 void *main_ptr6; 294 size_t size6; 295 }; 296 297 static int badd(const void *key, void *item, void *base, size_t nmemb, 298 size_t size, int (*compar) (const void *, const void *)); 299 static int bdel(const void *key, void *base, size_t nmemb, size_t size, 300 int (*compar) (const void *, const void *)); 301 302 303 /* 304 * ADDR implementation using radix 305 * 306 */ 307 308 /* 309 * The radix code expects addr and mask to be array of bytes, 310 * with the first byte being the length of the array. rn_inithead 311 * is called with the offset in bits of the lookup key within the 312 * array. If we use a sockaddr_in as the underlying type, 313 * sin_len is conveniently located at offset 0, sin_addr is at 314 * offset 4 and normally aligned. 315 * But for portability, let's avoid assumption and make the code explicit 316 */ 317 #define KEY_LEN(v) *((uint8_t *)&(v)) 318 /* 319 * Do not require radix to compare more than actual IPv4/IPv6 address 320 */ 321 #define KEY_LEN_INET (offsetof(struct sockaddr_in, sin_addr) + sizeof(in_addr_t)) 322 #define KEY_LEN_INET6 (offsetof(struct sa_in6, sin6_addr) + sizeof(struct in6_addr)) 323 324 #define OFF_LEN_INET (8 * offsetof(struct sockaddr_in, sin_addr)) 325 #define OFF_LEN_INET6 (8 * offsetof(struct sa_in6, sin6_addr)) 326 327 struct radix_addr_entry { 328 struct radix_node rn[2]; 329 struct sockaddr_in addr; 330 uint32_t value; 331 uint8_t masklen; 332 }; 333 334 struct sa_in6 { 335 uint8_t sin6_len; 336 uint8_t sin6_family; 337 uint8_t pad[2]; 338 struct in6_addr sin6_addr; 339 }; 340 341 struct radix_addr_xentry { 342 struct radix_node rn[2]; 343 struct sa_in6 addr6; 344 uint32_t value; 345 uint8_t masklen; 346 }; 347 348 struct radix_cfg { 349 struct radix_node_head *head4; 350 struct radix_node_head *head6; 351 size_t count4; 352 size_t count6; 353 }; 354 355 struct ta_buf_radix 356 { 357 void *ent_ptr; 358 struct sockaddr *addr_ptr; 359 struct sockaddr *mask_ptr; 360 union { 361 struct { 362 struct sockaddr_in sa; 363 struct sockaddr_in ma; 364 } a4; 365 struct { 366 struct sa_in6 sa; 367 struct sa_in6 ma; 368 } a6; 369 } addr; 370 }; 371 372 static int ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen, 373 uint32_t *val); 374 static int ta_init_radix(struct ip_fw_chain *ch, void **ta_state, 375 struct table_info *ti, char *data, uint8_t tflags); 376 static int flush_radix_entry(struct radix_node *rn, void *arg); 377 static void ta_destroy_radix(void *ta_state, struct table_info *ti); 378 static void ta_dump_radix_tinfo(void *ta_state, struct table_info *ti, 379 ipfw_ta_tinfo *tinfo); 380 static int ta_dump_radix_tentry(void *ta_state, struct table_info *ti, 381 void *e, ipfw_obj_tentry *tent); 382 static int ta_find_radix_tentry(void *ta_state, struct table_info *ti, 383 ipfw_obj_tentry *tent); 384 static void ta_foreach_radix(void *ta_state, struct table_info *ti, 385 ta_foreach_f *f, void *arg); 386 static void tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa, 387 struct sockaddr *ma, int *set_mask); 388 static int ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 389 void *ta_buf); 390 static int ta_add_radix(void *ta_state, struct table_info *ti, 391 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 392 static int ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 393 void *ta_buf); 394 static int ta_del_radix(void *ta_state, struct table_info *ti, 395 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 396 static void ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 397 void *ta_buf); 398 static int ta_need_modify_radix(void *ta_state, struct table_info *ti, 399 uint32_t count, uint64_t *pflags); 400 401 static int 402 ta_lookup_radix(struct table_info *ti, void *key, uint32_t keylen, 403 uint32_t *val) 404 { 405 struct radix_node_head *rnh; 406 407 if (keylen == sizeof(in_addr_t)) { 408 struct radix_addr_entry *ent; 409 struct sockaddr_in sa; 410 KEY_LEN(sa) = KEY_LEN_INET; 411 sa.sin_addr.s_addr = *((in_addr_t *)key); 412 rnh = (struct radix_node_head *)ti->state; 413 ent = (struct radix_addr_entry *)(rnh->rnh_matchaddr(&sa, &rnh->rh)); 414 if (ent != NULL) { 415 *val = ent->value; 416 return (1); 417 } 418 } else { 419 struct radix_addr_xentry *xent; 420 struct sa_in6 sa6; 421 KEY_LEN(sa6) = KEY_LEN_INET6; 422 memcpy(&sa6.sin6_addr, key, sizeof(struct in6_addr)); 423 rnh = (struct radix_node_head *)ti->xstate; 424 xent = (struct radix_addr_xentry *)(rnh->rnh_matchaddr(&sa6, &rnh->rh)); 425 if (xent != NULL) { 426 *val = xent->value; 427 return (1); 428 } 429 } 430 431 return (0); 432 } 433 434 /* 435 * New table 436 */ 437 static int 438 ta_init_radix(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 439 char *data, uint8_t tflags) 440 { 441 struct radix_cfg *cfg; 442 443 if (!rn_inithead(&ti->state, OFF_LEN_INET)) 444 return (ENOMEM); 445 if (!rn_inithead(&ti->xstate, OFF_LEN_INET6)) { 446 rn_detachhead(&ti->state); 447 return (ENOMEM); 448 } 449 450 cfg = malloc(sizeof(struct radix_cfg), M_IPFW, M_WAITOK | M_ZERO); 451 452 *ta_state = cfg; 453 ti->lookup = ta_lookup_radix; 454 455 return (0); 456 } 457 458 static int 459 flush_radix_entry(struct radix_node *rn, void *arg) 460 { 461 struct radix_node_head * const rnh = arg; 462 struct radix_addr_entry *ent; 463 464 ent = (struct radix_addr_entry *) 465 rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, &rnh->rh); 466 if (ent != NULL) 467 free(ent, M_IPFW_TBL); 468 return (0); 469 } 470 471 static void 472 ta_destroy_radix(void *ta_state, struct table_info *ti) 473 { 474 struct radix_cfg *cfg; 475 struct radix_node_head *rnh; 476 477 cfg = (struct radix_cfg *)ta_state; 478 479 rnh = (struct radix_node_head *)(ti->state); 480 rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh); 481 rn_detachhead(&ti->state); 482 483 rnh = (struct radix_node_head *)(ti->xstate); 484 rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh); 485 rn_detachhead(&ti->xstate); 486 487 free(cfg, M_IPFW); 488 } 489 490 /* 491 * Provide algo-specific table info 492 */ 493 static void 494 ta_dump_radix_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 495 { 496 struct radix_cfg *cfg; 497 498 cfg = (struct radix_cfg *)ta_state; 499 500 tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM; 501 tinfo->taclass4 = IPFW_TACLASS_RADIX; 502 tinfo->count4 = cfg->count4; 503 tinfo->itemsize4 = sizeof(struct radix_addr_entry); 504 tinfo->taclass6 = IPFW_TACLASS_RADIX; 505 tinfo->count6 = cfg->count6; 506 tinfo->itemsize6 = sizeof(struct radix_addr_xentry); 507 } 508 509 static int 510 ta_dump_radix_tentry(void *ta_state, struct table_info *ti, void *e, 511 ipfw_obj_tentry *tent) 512 { 513 struct radix_addr_entry *n; 514 #ifdef INET6 515 struct radix_addr_xentry *xn; 516 #endif 517 518 n = (struct radix_addr_entry *)e; 519 520 /* Guess IPv4/IPv6 radix by sockaddr family */ 521 if (n->addr.sin_family == AF_INET) { 522 tent->k.addr.s_addr = n->addr.sin_addr.s_addr; 523 tent->masklen = n->masklen; 524 tent->subtype = AF_INET; 525 tent->v.kidx = n->value; 526 #ifdef INET6 527 } else { 528 xn = (struct radix_addr_xentry *)e; 529 memcpy(&tent->k, &xn->addr6.sin6_addr, sizeof(struct in6_addr)); 530 tent->masklen = xn->masklen; 531 tent->subtype = AF_INET6; 532 tent->v.kidx = xn->value; 533 #endif 534 } 535 536 return (0); 537 } 538 539 static int 540 ta_find_radix_tentry(void *ta_state, struct table_info *ti, 541 ipfw_obj_tentry *tent) 542 { 543 struct radix_node_head *rnh; 544 void *e; 545 546 e = NULL; 547 if (tent->subtype == AF_INET) { 548 struct sockaddr_in sa; 549 KEY_LEN(sa) = KEY_LEN_INET; 550 sa.sin_addr.s_addr = tent->k.addr.s_addr; 551 rnh = (struct radix_node_head *)ti->state; 552 e = rnh->rnh_matchaddr(&sa, &rnh->rh); 553 } else { 554 struct sa_in6 sa6; 555 KEY_LEN(sa6) = KEY_LEN_INET6; 556 memcpy(&sa6.sin6_addr, &tent->k.addr6, sizeof(struct in6_addr)); 557 rnh = (struct radix_node_head *)ti->xstate; 558 e = rnh->rnh_matchaddr(&sa6, &rnh->rh); 559 } 560 561 if (e != NULL) { 562 ta_dump_radix_tentry(ta_state, ti, e, tent); 563 return (0); 564 } 565 566 return (ENOENT); 567 } 568 569 static void 570 ta_foreach_radix(void *ta_state, struct table_info *ti, ta_foreach_f *f, 571 void *arg) 572 { 573 struct radix_node_head *rnh; 574 575 rnh = (struct radix_node_head *)(ti->state); 576 rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg); 577 578 rnh = (struct radix_node_head *)(ti->xstate); 579 rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg); 580 } 581 582 583 #ifdef INET6 584 static inline void ipv6_writemask(struct in6_addr *addr6, uint8_t mask); 585 586 static inline void 587 ipv6_writemask(struct in6_addr *addr6, uint8_t mask) 588 { 589 uint32_t *cp; 590 591 for (cp = (uint32_t *)addr6; mask >= 32; mask -= 32) 592 *cp++ = 0xFFFFFFFF; 593 *cp = htonl(mask ? ~((1 << (32 - mask)) - 1) : 0); 594 } 595 #endif 596 597 static void 598 tei_to_sockaddr_ent(struct tentry_info *tei, struct sockaddr *sa, 599 struct sockaddr *ma, int *set_mask) 600 { 601 int mlen; 602 #ifdef INET 603 struct sockaddr_in *addr, *mask; 604 #endif 605 #ifdef INET6 606 struct sa_in6 *addr6, *mask6; 607 #endif 608 in_addr_t a4; 609 610 mlen = tei->masklen; 611 612 if (tei->subtype == AF_INET) { 613 #ifdef INET 614 addr = (struct sockaddr_in *)sa; 615 mask = (struct sockaddr_in *)ma; 616 /* Set 'total' structure length */ 617 KEY_LEN(*addr) = KEY_LEN_INET; 618 KEY_LEN(*mask) = KEY_LEN_INET; 619 addr->sin_family = AF_INET; 620 mask->sin_addr.s_addr = 621 htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0); 622 a4 = *((in_addr_t *)tei->paddr); 623 addr->sin_addr.s_addr = a4 & mask->sin_addr.s_addr; 624 if (mlen != 32) 625 *set_mask = 1; 626 else 627 *set_mask = 0; 628 #endif 629 #ifdef INET6 630 } else if (tei->subtype == AF_INET6) { 631 /* IPv6 case */ 632 addr6 = (struct sa_in6 *)sa; 633 mask6 = (struct sa_in6 *)ma; 634 /* Set 'total' structure length */ 635 KEY_LEN(*addr6) = KEY_LEN_INET6; 636 KEY_LEN(*mask6) = KEY_LEN_INET6; 637 addr6->sin6_family = AF_INET6; 638 ipv6_writemask(&mask6->sin6_addr, mlen); 639 memcpy(&addr6->sin6_addr, tei->paddr, sizeof(struct in6_addr)); 640 APPLY_MASK(&addr6->sin6_addr, &mask6->sin6_addr); 641 if (mlen != 128) 642 *set_mask = 1; 643 else 644 *set_mask = 0; 645 #endif 646 } 647 } 648 649 static int 650 ta_prepare_add_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 651 void *ta_buf) 652 { 653 struct ta_buf_radix *tb; 654 struct radix_addr_entry *ent; 655 #ifdef INET6 656 struct radix_addr_xentry *xent; 657 #endif 658 struct sockaddr *addr, *mask; 659 int mlen, set_mask; 660 661 tb = (struct ta_buf_radix *)ta_buf; 662 663 mlen = tei->masklen; 664 set_mask = 0; 665 666 if (tei->subtype == AF_INET) { 667 #ifdef INET 668 if (mlen > 32) 669 return (EINVAL); 670 ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO); 671 ent->masklen = mlen; 672 673 addr = (struct sockaddr *)&ent->addr; 674 mask = (struct sockaddr *)&tb->addr.a4.ma; 675 tb->ent_ptr = ent; 676 #endif 677 #ifdef INET6 678 } else if (tei->subtype == AF_INET6) { 679 /* IPv6 case */ 680 if (mlen > 128) 681 return (EINVAL); 682 xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO); 683 xent->masklen = mlen; 684 685 addr = (struct sockaddr *)&xent->addr6; 686 mask = (struct sockaddr *)&tb->addr.a6.ma; 687 tb->ent_ptr = xent; 688 #endif 689 } else { 690 /* Unknown CIDR type */ 691 return (EINVAL); 692 } 693 694 tei_to_sockaddr_ent(tei, addr, mask, &set_mask); 695 /* Set pointers */ 696 tb->addr_ptr = addr; 697 if (set_mask != 0) 698 tb->mask_ptr = mask; 699 700 return (0); 701 } 702 703 static int 704 ta_add_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei, 705 void *ta_buf, uint32_t *pnum) 706 { 707 struct radix_cfg *cfg; 708 struct radix_node_head *rnh; 709 struct radix_node *rn; 710 struct ta_buf_radix *tb; 711 uint32_t *old_value, value; 712 713 cfg = (struct radix_cfg *)ta_state; 714 tb = (struct ta_buf_radix *)ta_buf; 715 716 /* Save current entry value from @tei */ 717 if (tei->subtype == AF_INET) { 718 rnh = ti->state; 719 ((struct radix_addr_entry *)tb->ent_ptr)->value = tei->value; 720 } else { 721 rnh = ti->xstate; 722 ((struct radix_addr_xentry *)tb->ent_ptr)->value = tei->value; 723 } 724 725 /* Search for an entry first */ 726 rn = rnh->rnh_lookup(tb->addr_ptr, tb->mask_ptr, &rnh->rh); 727 if (rn != NULL) { 728 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 729 return (EEXIST); 730 /* Record already exists. Update value if we're asked to */ 731 if (tei->subtype == AF_INET) 732 old_value = &((struct radix_addr_entry *)rn)->value; 733 else 734 old_value = &((struct radix_addr_xentry *)rn)->value; 735 736 value = *old_value; 737 *old_value = tei->value; 738 tei->value = value; 739 740 /* Indicate that update has happened instead of addition */ 741 tei->flags |= TEI_FLAGS_UPDATED; 742 *pnum = 0; 743 744 return (0); 745 } 746 747 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 748 return (EFBIG); 749 750 rn = rnh->rnh_addaddr(tb->addr_ptr, tb->mask_ptr, &rnh->rh,tb->ent_ptr); 751 if (rn == NULL) { 752 /* Unknown error */ 753 return (EINVAL); 754 } 755 756 if (tei->subtype == AF_INET) 757 cfg->count4++; 758 else 759 cfg->count6++; 760 tb->ent_ptr = NULL; 761 *pnum = 1; 762 763 return (0); 764 } 765 766 static int 767 ta_prepare_del_radix(struct ip_fw_chain *ch, struct tentry_info *tei, 768 void *ta_buf) 769 { 770 struct ta_buf_radix *tb; 771 struct sockaddr *addr, *mask; 772 int mlen, set_mask; 773 774 tb = (struct ta_buf_radix *)ta_buf; 775 776 mlen = tei->masklen; 777 set_mask = 0; 778 779 if (tei->subtype == AF_INET) { 780 if (mlen > 32) 781 return (EINVAL); 782 783 addr = (struct sockaddr *)&tb->addr.a4.sa; 784 mask = (struct sockaddr *)&tb->addr.a4.ma; 785 #ifdef INET6 786 } else if (tei->subtype == AF_INET6) { 787 if (mlen > 128) 788 return (EINVAL); 789 790 addr = (struct sockaddr *)&tb->addr.a6.sa; 791 mask = (struct sockaddr *)&tb->addr.a6.ma; 792 #endif 793 } else 794 return (EINVAL); 795 796 tei_to_sockaddr_ent(tei, addr, mask, &set_mask); 797 tb->addr_ptr = addr; 798 if (set_mask != 0) 799 tb->mask_ptr = mask; 800 801 return (0); 802 } 803 804 static int 805 ta_del_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei, 806 void *ta_buf, uint32_t *pnum) 807 { 808 struct radix_cfg *cfg; 809 struct radix_node_head *rnh; 810 struct radix_node *rn; 811 struct ta_buf_radix *tb; 812 813 cfg = (struct radix_cfg *)ta_state; 814 tb = (struct ta_buf_radix *)ta_buf; 815 816 if (tei->subtype == AF_INET) 817 rnh = ti->state; 818 else 819 rnh = ti->xstate; 820 821 rn = rnh->rnh_deladdr(tb->addr_ptr, tb->mask_ptr, &rnh->rh); 822 823 if (rn == NULL) 824 return (ENOENT); 825 826 /* Save entry value to @tei */ 827 if (tei->subtype == AF_INET) 828 tei->value = ((struct radix_addr_entry *)rn)->value; 829 else 830 tei->value = ((struct radix_addr_xentry *)rn)->value; 831 832 tb->ent_ptr = rn; 833 834 if (tei->subtype == AF_INET) 835 cfg->count4--; 836 else 837 cfg->count6--; 838 *pnum = 1; 839 840 return (0); 841 } 842 843 static void 844 ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 845 void *ta_buf) 846 { 847 struct ta_buf_radix *tb; 848 849 tb = (struct ta_buf_radix *)ta_buf; 850 851 if (tb->ent_ptr != NULL) 852 free(tb->ent_ptr, M_IPFW_TBL); 853 } 854 855 static int 856 ta_need_modify_radix(void *ta_state, struct table_info *ti, uint32_t count, 857 uint64_t *pflags) 858 { 859 860 /* 861 * radix does not require additional memory allocations 862 * other than nodes itself. Adding new masks to the tree do 863 * but we don't have any API to call (and we don't known which 864 * sizes do we need). 865 */ 866 return (0); 867 } 868 869 struct table_algo addr_radix = { 870 .name = "addr:radix", 871 .type = IPFW_TABLE_ADDR, 872 .flags = TA_FLAG_DEFAULT, 873 .ta_buf_size = sizeof(struct ta_buf_radix), 874 .init = ta_init_radix, 875 .destroy = ta_destroy_radix, 876 .prepare_add = ta_prepare_add_radix, 877 .prepare_del = ta_prepare_del_radix, 878 .add = ta_add_radix, 879 .del = ta_del_radix, 880 .flush_entry = ta_flush_radix_entry, 881 .foreach = ta_foreach_radix, 882 .dump_tentry = ta_dump_radix_tentry, 883 .find_tentry = ta_find_radix_tentry, 884 .dump_tinfo = ta_dump_radix_tinfo, 885 .need_modify = ta_need_modify_radix, 886 }; 887 888 889 /* 890 * addr:hash cmds 891 * 892 * 893 * ti->data: 894 * [inv.mask4][inv.mask6][log2hsize4][log2hsize6] 895 * [ 8][ 8[ 8][ 8] 896 * 897 * inv.mask4: 32 - mask 898 * inv.mask6: 899 * 1) _slow lookup: mask 900 * 2) _aligned: (128 - mask) / 8 901 * 3) _64: 8 902 * 903 * 904 * pflags: 905 * [v4=1/v6=0][hsize] 906 * [ 32][ 32] 907 */ 908 909 struct chashentry; 910 911 SLIST_HEAD(chashbhead, chashentry); 912 913 struct chash_cfg { 914 struct chashbhead *head4; 915 struct chashbhead *head6; 916 size_t size4; 917 size_t size6; 918 size_t items4; 919 size_t items6; 920 uint8_t mask4; 921 uint8_t mask6; 922 }; 923 924 struct chashentry { 925 SLIST_ENTRY(chashentry) next; 926 uint32_t value; 927 uint32_t type; 928 union { 929 uint32_t a4; /* Host format */ 930 struct in6_addr a6; /* Network format */ 931 } a; 932 }; 933 934 struct ta_buf_chash 935 { 936 void *ent_ptr; 937 struct chashentry ent; 938 }; 939 940 #ifdef INET 941 static __inline uint32_t hash_ip(uint32_t addr, int hsize); 942 #endif 943 #ifdef INET6 944 static __inline uint32_t hash_ip6(struct in6_addr *addr6, int hsize); 945 static __inline uint16_t hash_ip64(struct in6_addr *addr6, int hsize); 946 static __inline uint32_t hash_ip6_slow(struct in6_addr *addr6, void *key, 947 int mask, int hsize); 948 static __inline uint32_t hash_ip6_al(struct in6_addr *addr6, void *key, int mask, 949 int hsize); 950 #endif 951 static int ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen, 952 uint32_t *val); 953 static int ta_lookup_chash_aligned(struct table_info *ti, void *key, 954 uint32_t keylen, uint32_t *val); 955 static int ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen, 956 uint32_t *val); 957 static int chash_parse_opts(struct chash_cfg *cfg, char *data); 958 static void ta_print_chash_config(void *ta_state, struct table_info *ti, 959 char *buf, size_t bufsize); 960 static int ta_log2(uint32_t v); 961 static int ta_init_chash(struct ip_fw_chain *ch, void **ta_state, 962 struct table_info *ti, char *data, uint8_t tflags); 963 static void ta_destroy_chash(void *ta_state, struct table_info *ti); 964 static void ta_dump_chash_tinfo(void *ta_state, struct table_info *ti, 965 ipfw_ta_tinfo *tinfo); 966 static int ta_dump_chash_tentry(void *ta_state, struct table_info *ti, 967 void *e, ipfw_obj_tentry *tent); 968 static uint32_t hash_ent(struct chashentry *ent, int af, int mlen, 969 uint32_t size); 970 static int tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent); 971 static int ta_find_chash_tentry(void *ta_state, struct table_info *ti, 972 ipfw_obj_tentry *tent); 973 static void ta_foreach_chash(void *ta_state, struct table_info *ti, 974 ta_foreach_f *f, void *arg); 975 static int ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 976 void *ta_buf); 977 static int ta_add_chash(void *ta_state, struct table_info *ti, 978 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 979 static int ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 980 void *ta_buf); 981 static int ta_del_chash(void *ta_state, struct table_info *ti, 982 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 983 static void ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 984 void *ta_buf); 985 static int ta_need_modify_chash(void *ta_state, struct table_info *ti, 986 uint32_t count, uint64_t *pflags); 987 static int ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags); 988 static int ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf, 989 uint64_t *pflags); 990 static void ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf, 991 uint64_t pflags); 992 static void ta_flush_mod_chash(void *ta_buf); 993 994 995 #ifdef INET 996 static __inline uint32_t 997 hash_ip(uint32_t addr, int hsize) 998 { 999 1000 return (addr % (hsize - 1)); 1001 } 1002 #endif 1003 1004 #ifdef INET6 1005 static __inline uint32_t 1006 hash_ip6(struct in6_addr *addr6, int hsize) 1007 { 1008 uint32_t i; 1009 1010 i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1] ^ 1011 addr6->s6_addr32[2] ^ addr6->s6_addr32[3]; 1012 1013 return (i % (hsize - 1)); 1014 } 1015 1016 1017 static __inline uint16_t 1018 hash_ip64(struct in6_addr *addr6, int hsize) 1019 { 1020 uint32_t i; 1021 1022 i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1]; 1023 1024 return (i % (hsize - 1)); 1025 } 1026 1027 1028 static __inline uint32_t 1029 hash_ip6_slow(struct in6_addr *addr6, void *key, int mask, int hsize) 1030 { 1031 struct in6_addr mask6; 1032 1033 ipv6_writemask(&mask6, mask); 1034 memcpy(addr6, key, sizeof(struct in6_addr)); 1035 APPLY_MASK(addr6, &mask6); 1036 return (hash_ip6(addr6, hsize)); 1037 } 1038 1039 static __inline uint32_t 1040 hash_ip6_al(struct in6_addr *addr6, void *key, int mask, int hsize) 1041 { 1042 uint64_t *paddr; 1043 1044 paddr = (uint64_t *)addr6; 1045 *paddr = 0; 1046 *(paddr + 1) = 0; 1047 memcpy(addr6, key, mask); 1048 return (hash_ip6(addr6, hsize)); 1049 } 1050 #endif 1051 1052 static int 1053 ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen, 1054 uint32_t *val) 1055 { 1056 struct chashbhead *head; 1057 struct chashentry *ent; 1058 uint16_t hash, hsize; 1059 uint8_t imask; 1060 1061 if (keylen == sizeof(in_addr_t)) { 1062 #ifdef INET 1063 head = (struct chashbhead *)ti->state; 1064 imask = ti->data >> 24; 1065 hsize = 1 << ((ti->data & 0xFFFF) >> 8); 1066 uint32_t a; 1067 a = ntohl(*((in_addr_t *)key)); 1068 a = a >> imask; 1069 hash = hash_ip(a, hsize); 1070 SLIST_FOREACH(ent, &head[hash], next) { 1071 if (ent->a.a4 == a) { 1072 *val = ent->value; 1073 return (1); 1074 } 1075 } 1076 #endif 1077 } else { 1078 #ifdef INET6 1079 /* IPv6: worst scenario: non-round mask */ 1080 struct in6_addr addr6; 1081 head = (struct chashbhead *)ti->xstate; 1082 imask = (ti->data & 0xFF0000) >> 16; 1083 hsize = 1 << (ti->data & 0xFF); 1084 hash = hash_ip6_slow(&addr6, key, imask, hsize); 1085 SLIST_FOREACH(ent, &head[hash], next) { 1086 if (memcmp(&ent->a.a6, &addr6, 16) == 0) { 1087 *val = ent->value; 1088 return (1); 1089 } 1090 } 1091 #endif 1092 } 1093 1094 return (0); 1095 } 1096 1097 static int 1098 ta_lookup_chash_aligned(struct table_info *ti, void *key, uint32_t keylen, 1099 uint32_t *val) 1100 { 1101 struct chashbhead *head; 1102 struct chashentry *ent; 1103 uint16_t hash, hsize; 1104 uint8_t imask; 1105 1106 if (keylen == sizeof(in_addr_t)) { 1107 #ifdef INET 1108 head = (struct chashbhead *)ti->state; 1109 imask = ti->data >> 24; 1110 hsize = 1 << ((ti->data & 0xFFFF) >> 8); 1111 uint32_t a; 1112 a = ntohl(*((in_addr_t *)key)); 1113 a = a >> imask; 1114 hash = hash_ip(a, hsize); 1115 SLIST_FOREACH(ent, &head[hash], next) { 1116 if (ent->a.a4 == a) { 1117 *val = ent->value; 1118 return (1); 1119 } 1120 } 1121 #endif 1122 } else { 1123 #ifdef INET6 1124 /* IPv6: aligned to 8bit mask */ 1125 struct in6_addr addr6; 1126 uint64_t *paddr, *ptmp; 1127 head = (struct chashbhead *)ti->xstate; 1128 imask = (ti->data & 0xFF0000) >> 16; 1129 hsize = 1 << (ti->data & 0xFF); 1130 1131 hash = hash_ip6_al(&addr6, key, imask, hsize); 1132 paddr = (uint64_t *)&addr6; 1133 SLIST_FOREACH(ent, &head[hash], next) { 1134 ptmp = (uint64_t *)&ent->a.a6; 1135 if (paddr[0] == ptmp[0] && paddr[1] == ptmp[1]) { 1136 *val = ent->value; 1137 return (1); 1138 } 1139 } 1140 #endif 1141 } 1142 1143 return (0); 1144 } 1145 1146 static int 1147 ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen, 1148 uint32_t *val) 1149 { 1150 struct chashbhead *head; 1151 struct chashentry *ent; 1152 uint16_t hash, hsize; 1153 uint8_t imask; 1154 1155 if (keylen == sizeof(in_addr_t)) { 1156 #ifdef INET 1157 head = (struct chashbhead *)ti->state; 1158 imask = ti->data >> 24; 1159 hsize = 1 << ((ti->data & 0xFFFF) >> 8); 1160 uint32_t a; 1161 a = ntohl(*((in_addr_t *)key)); 1162 a = a >> imask; 1163 hash = hash_ip(a, hsize); 1164 SLIST_FOREACH(ent, &head[hash], next) { 1165 if (ent->a.a4 == a) { 1166 *val = ent->value; 1167 return (1); 1168 } 1169 } 1170 #endif 1171 } else { 1172 #ifdef INET6 1173 /* IPv6: /64 */ 1174 uint64_t a6, *paddr; 1175 head = (struct chashbhead *)ti->xstate; 1176 paddr = (uint64_t *)key; 1177 hsize = 1 << (ti->data & 0xFF); 1178 a6 = *paddr; 1179 hash = hash_ip64((struct in6_addr *)key, hsize); 1180 SLIST_FOREACH(ent, &head[hash], next) { 1181 paddr = (uint64_t *)&ent->a.a6; 1182 if (a6 == *paddr) { 1183 *val = ent->value; 1184 return (1); 1185 } 1186 } 1187 #endif 1188 } 1189 1190 return (0); 1191 } 1192 1193 static int 1194 chash_parse_opts(struct chash_cfg *cfg, char *data) 1195 { 1196 char *pdel, *pend, *s; 1197 int mask4, mask6; 1198 1199 mask4 = cfg->mask4; 1200 mask6 = cfg->mask6; 1201 1202 if (data == NULL) 1203 return (0); 1204 if ((pdel = strchr(data, ' ')) == NULL) 1205 return (0); 1206 while (*pdel == ' ') 1207 pdel++; 1208 if (strncmp(pdel, "masks=", 6) != 0) 1209 return (EINVAL); 1210 if ((s = strchr(pdel, ' ')) != NULL) 1211 *s++ = '\0'; 1212 1213 pdel += 6; 1214 /* Need /XX[,/YY] */ 1215 if (*pdel++ != '/') 1216 return (EINVAL); 1217 mask4 = strtol(pdel, &pend, 10); 1218 if (*pend == ',') { 1219 /* ,/YY */ 1220 pdel = pend + 1; 1221 if (*pdel++ != '/') 1222 return (EINVAL); 1223 mask6 = strtol(pdel, &pend, 10); 1224 if (*pend != '\0') 1225 return (EINVAL); 1226 } else if (*pend != '\0') 1227 return (EINVAL); 1228 1229 if (mask4 < 0 || mask4 > 32 || mask6 < 0 || mask6 > 128) 1230 return (EINVAL); 1231 1232 cfg->mask4 = mask4; 1233 cfg->mask6 = mask6; 1234 1235 return (0); 1236 } 1237 1238 static void 1239 ta_print_chash_config(void *ta_state, struct table_info *ti, char *buf, 1240 size_t bufsize) 1241 { 1242 struct chash_cfg *cfg; 1243 1244 cfg = (struct chash_cfg *)ta_state; 1245 1246 if (cfg->mask4 != 32 || cfg->mask6 != 128) 1247 snprintf(buf, bufsize, "%s masks=/%d,/%d", "addr:hash", 1248 cfg->mask4, cfg->mask6); 1249 else 1250 snprintf(buf, bufsize, "%s", "addr:hash"); 1251 } 1252 1253 static int 1254 ta_log2(uint32_t v) 1255 { 1256 uint32_t r; 1257 1258 r = 0; 1259 while (v >>= 1) 1260 r++; 1261 1262 return (r); 1263 } 1264 1265 /* 1266 * New table. 1267 * We assume 'data' to be either NULL or the following format: 1268 * 'addr:hash [masks=/32[,/128]]' 1269 */ 1270 static int 1271 ta_init_chash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 1272 char *data, uint8_t tflags) 1273 { 1274 int error, i; 1275 uint32_t hsize; 1276 struct chash_cfg *cfg; 1277 1278 cfg = malloc(sizeof(struct chash_cfg), M_IPFW, M_WAITOK | M_ZERO); 1279 1280 cfg->mask4 = 32; 1281 cfg->mask6 = 128; 1282 1283 if ((error = chash_parse_opts(cfg, data)) != 0) { 1284 free(cfg, M_IPFW); 1285 return (error); 1286 } 1287 1288 cfg->size4 = 128; 1289 cfg->size6 = 128; 1290 1291 cfg->head4 = malloc(sizeof(struct chashbhead) * cfg->size4, M_IPFW, 1292 M_WAITOK | M_ZERO); 1293 cfg->head6 = malloc(sizeof(struct chashbhead) * cfg->size6, M_IPFW, 1294 M_WAITOK | M_ZERO); 1295 for (i = 0; i < cfg->size4; i++) 1296 SLIST_INIT(&cfg->head4[i]); 1297 for (i = 0; i < cfg->size6; i++) 1298 SLIST_INIT(&cfg->head6[i]); 1299 1300 1301 *ta_state = cfg; 1302 ti->state = cfg->head4; 1303 ti->xstate = cfg->head6; 1304 1305 /* Store data depending on v6 mask length */ 1306 hsize = ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6); 1307 if (cfg->mask6 == 64) { 1308 ti->data = (32 - cfg->mask4) << 24 | (128 - cfg->mask6) << 16| 1309 hsize; 1310 ti->lookup = ta_lookup_chash_64; 1311 } else if ((cfg->mask6 % 8) == 0) { 1312 ti->data = (32 - cfg->mask4) << 24 | 1313 cfg->mask6 << 13 | hsize; 1314 ti->lookup = ta_lookup_chash_aligned; 1315 } else { 1316 /* don't do that! */ 1317 ti->data = (32 - cfg->mask4) << 24 | 1318 cfg->mask6 << 16 | hsize; 1319 ti->lookup = ta_lookup_chash_slow; 1320 } 1321 1322 return (0); 1323 } 1324 1325 static void 1326 ta_destroy_chash(void *ta_state, struct table_info *ti) 1327 { 1328 struct chash_cfg *cfg; 1329 struct chashentry *ent, *ent_next; 1330 int i; 1331 1332 cfg = (struct chash_cfg *)ta_state; 1333 1334 for (i = 0; i < cfg->size4; i++) 1335 SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next) 1336 free(ent, M_IPFW_TBL); 1337 1338 for (i = 0; i < cfg->size6; i++) 1339 SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next) 1340 free(ent, M_IPFW_TBL); 1341 1342 free(cfg->head4, M_IPFW); 1343 free(cfg->head6, M_IPFW); 1344 1345 free(cfg, M_IPFW); 1346 } 1347 1348 static void 1349 ta_dump_chash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 1350 { 1351 struct chash_cfg *cfg; 1352 1353 cfg = (struct chash_cfg *)ta_state; 1354 1355 tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM; 1356 tinfo->taclass4 = IPFW_TACLASS_HASH; 1357 tinfo->size4 = cfg->size4; 1358 tinfo->count4 = cfg->items4; 1359 tinfo->itemsize4 = sizeof(struct chashentry); 1360 tinfo->taclass6 = IPFW_TACLASS_HASH; 1361 tinfo->size6 = cfg->size6; 1362 tinfo->count6 = cfg->items6; 1363 tinfo->itemsize6 = sizeof(struct chashentry); 1364 } 1365 1366 static int 1367 ta_dump_chash_tentry(void *ta_state, struct table_info *ti, void *e, 1368 ipfw_obj_tentry *tent) 1369 { 1370 struct chash_cfg *cfg; 1371 struct chashentry *ent; 1372 1373 cfg = (struct chash_cfg *)ta_state; 1374 ent = (struct chashentry *)e; 1375 1376 if (ent->type == AF_INET) { 1377 tent->k.addr.s_addr = htonl(ent->a.a4 << (32 - cfg->mask4)); 1378 tent->masklen = cfg->mask4; 1379 tent->subtype = AF_INET; 1380 tent->v.kidx = ent->value; 1381 #ifdef INET6 1382 } else { 1383 memcpy(&tent->k, &ent->a.a6, sizeof(struct in6_addr)); 1384 tent->masklen = cfg->mask6; 1385 tent->subtype = AF_INET6; 1386 tent->v.kidx = ent->value; 1387 #endif 1388 } 1389 1390 return (0); 1391 } 1392 1393 static uint32_t 1394 hash_ent(struct chashentry *ent, int af, int mlen, uint32_t size) 1395 { 1396 uint32_t hash; 1397 1398 hash = 0; 1399 1400 if (af == AF_INET) { 1401 #ifdef INET 1402 hash = hash_ip(ent->a.a4, size); 1403 #endif 1404 } else { 1405 #ifdef INET6 1406 if (mlen == 64) 1407 hash = hash_ip64(&ent->a.a6, size); 1408 else 1409 hash = hash_ip6(&ent->a.a6, size); 1410 #endif 1411 } 1412 1413 return (hash); 1414 } 1415 1416 static int 1417 tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent) 1418 { 1419 int mlen; 1420 #ifdef INET6 1421 struct in6_addr mask6; 1422 #endif 1423 1424 1425 mlen = tei->masklen; 1426 1427 if (tei->subtype == AF_INET) { 1428 #ifdef INET 1429 if (mlen > 32) 1430 return (EINVAL); 1431 ent->type = AF_INET; 1432 1433 /* Calculate masked address */ 1434 ent->a.a4 = ntohl(*((in_addr_t *)tei->paddr)) >> (32 - mlen); 1435 #endif 1436 #ifdef INET6 1437 } else if (tei->subtype == AF_INET6) { 1438 /* IPv6 case */ 1439 if (mlen > 128) 1440 return (EINVAL); 1441 ent->type = AF_INET6; 1442 1443 ipv6_writemask(&mask6, mlen); 1444 memcpy(&ent->a.a6, tei->paddr, sizeof(struct in6_addr)); 1445 APPLY_MASK(&ent->a.a6, &mask6); 1446 #endif 1447 } else { 1448 /* Unknown CIDR type */ 1449 return (EINVAL); 1450 } 1451 1452 return (0); 1453 } 1454 1455 static int 1456 ta_find_chash_tentry(void *ta_state, struct table_info *ti, 1457 ipfw_obj_tentry *tent) 1458 { 1459 struct chash_cfg *cfg; 1460 struct chashbhead *head; 1461 struct chashentry ent, *tmp; 1462 struct tentry_info tei; 1463 int error; 1464 uint32_t hash; 1465 1466 cfg = (struct chash_cfg *)ta_state; 1467 1468 memset(&ent, 0, sizeof(ent)); 1469 memset(&tei, 0, sizeof(tei)); 1470 1471 if (tent->subtype == AF_INET) { 1472 tei.paddr = &tent->k.addr; 1473 tei.masklen = cfg->mask4; 1474 tei.subtype = AF_INET; 1475 1476 if ((error = tei_to_chash_ent(&tei, &ent)) != 0) 1477 return (error); 1478 1479 head = cfg->head4; 1480 hash = hash_ent(&ent, AF_INET, cfg->mask4, cfg->size4); 1481 /* Check for existence */ 1482 SLIST_FOREACH(tmp, &head[hash], next) { 1483 if (tmp->a.a4 != ent.a.a4) 1484 continue; 1485 1486 ta_dump_chash_tentry(ta_state, ti, tmp, tent); 1487 return (0); 1488 } 1489 } else { 1490 tei.paddr = &tent->k.addr6; 1491 tei.masklen = cfg->mask6; 1492 tei.subtype = AF_INET6; 1493 1494 if ((error = tei_to_chash_ent(&tei, &ent)) != 0) 1495 return (error); 1496 1497 head = cfg->head6; 1498 hash = hash_ent(&ent, AF_INET6, cfg->mask6, cfg->size6); 1499 /* Check for existence */ 1500 SLIST_FOREACH(tmp, &head[hash], next) { 1501 if (memcmp(&tmp->a.a6, &ent.a.a6, 16) != 0) 1502 continue; 1503 ta_dump_chash_tentry(ta_state, ti, tmp, tent); 1504 return (0); 1505 } 1506 } 1507 1508 return (ENOENT); 1509 } 1510 1511 static void 1512 ta_foreach_chash(void *ta_state, struct table_info *ti, ta_foreach_f *f, 1513 void *arg) 1514 { 1515 struct chash_cfg *cfg; 1516 struct chashentry *ent, *ent_next; 1517 int i; 1518 1519 cfg = (struct chash_cfg *)ta_state; 1520 1521 for (i = 0; i < cfg->size4; i++) 1522 SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next) 1523 f(ent, arg); 1524 1525 for (i = 0; i < cfg->size6; i++) 1526 SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next) 1527 f(ent, arg); 1528 } 1529 1530 static int 1531 ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 1532 void *ta_buf) 1533 { 1534 struct ta_buf_chash *tb; 1535 struct chashentry *ent; 1536 int error; 1537 1538 tb = (struct ta_buf_chash *)ta_buf; 1539 1540 ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO); 1541 1542 error = tei_to_chash_ent(tei, ent); 1543 if (error != 0) { 1544 free(ent, M_IPFW_TBL); 1545 return (error); 1546 } 1547 tb->ent_ptr = ent; 1548 1549 return (0); 1550 } 1551 1552 static int 1553 ta_add_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 1554 void *ta_buf, uint32_t *pnum) 1555 { 1556 struct chash_cfg *cfg; 1557 struct chashbhead *head; 1558 struct chashentry *ent, *tmp; 1559 struct ta_buf_chash *tb; 1560 int exists; 1561 uint32_t hash, value; 1562 1563 cfg = (struct chash_cfg *)ta_state; 1564 tb = (struct ta_buf_chash *)ta_buf; 1565 ent = (struct chashentry *)tb->ent_ptr; 1566 hash = 0; 1567 exists = 0; 1568 1569 /* Read current value from @tei */ 1570 ent->value = tei->value; 1571 1572 /* Read cuurrent value */ 1573 if (tei->subtype == AF_INET) { 1574 if (tei->masklen != cfg->mask4) 1575 return (EINVAL); 1576 head = cfg->head4; 1577 hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4); 1578 1579 /* Check for existence */ 1580 SLIST_FOREACH(tmp, &head[hash], next) { 1581 if (tmp->a.a4 == ent->a.a4) { 1582 exists = 1; 1583 break; 1584 } 1585 } 1586 } else { 1587 if (tei->masklen != cfg->mask6) 1588 return (EINVAL); 1589 head = cfg->head6; 1590 hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6); 1591 /* Check for existence */ 1592 SLIST_FOREACH(tmp, &head[hash], next) { 1593 if (memcmp(&tmp->a.a6, &ent->a.a6, 16) == 0) { 1594 exists = 1; 1595 break; 1596 } 1597 } 1598 } 1599 1600 if (exists == 1) { 1601 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 1602 return (EEXIST); 1603 /* Record already exists. Update value if we're asked to */ 1604 value = tmp->value; 1605 tmp->value = tei->value; 1606 tei->value = value; 1607 /* Indicate that update has happened instead of addition */ 1608 tei->flags |= TEI_FLAGS_UPDATED; 1609 *pnum = 0; 1610 } else { 1611 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 1612 return (EFBIG); 1613 SLIST_INSERT_HEAD(&head[hash], ent, next); 1614 tb->ent_ptr = NULL; 1615 *pnum = 1; 1616 1617 /* Update counters */ 1618 if (tei->subtype == AF_INET) 1619 cfg->items4++; 1620 else 1621 cfg->items6++; 1622 } 1623 1624 return (0); 1625 } 1626 1627 static int 1628 ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei, 1629 void *ta_buf) 1630 { 1631 struct ta_buf_chash *tb; 1632 1633 tb = (struct ta_buf_chash *)ta_buf; 1634 1635 return (tei_to_chash_ent(tei, &tb->ent)); 1636 } 1637 1638 static int 1639 ta_del_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 1640 void *ta_buf, uint32_t *pnum) 1641 { 1642 struct chash_cfg *cfg; 1643 struct chashbhead *head; 1644 struct chashentry *tmp, *tmp_next, *ent; 1645 struct ta_buf_chash *tb; 1646 uint32_t hash; 1647 1648 cfg = (struct chash_cfg *)ta_state; 1649 tb = (struct ta_buf_chash *)ta_buf; 1650 ent = &tb->ent; 1651 1652 if (tei->subtype == AF_INET) { 1653 if (tei->masklen != cfg->mask4) 1654 return (EINVAL); 1655 head = cfg->head4; 1656 hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4); 1657 1658 SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) { 1659 if (tmp->a.a4 != ent->a.a4) 1660 continue; 1661 1662 SLIST_REMOVE(&head[hash], tmp, chashentry, next); 1663 cfg->items4--; 1664 tb->ent_ptr = tmp; 1665 tei->value = tmp->value; 1666 *pnum = 1; 1667 return (0); 1668 } 1669 } else { 1670 if (tei->masklen != cfg->mask6) 1671 return (EINVAL); 1672 head = cfg->head6; 1673 hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6); 1674 SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) { 1675 if (memcmp(&tmp->a.a6, &ent->a.a6, 16) != 0) 1676 continue; 1677 1678 SLIST_REMOVE(&head[hash], tmp, chashentry, next); 1679 cfg->items6--; 1680 tb->ent_ptr = tmp; 1681 tei->value = tmp->value; 1682 *pnum = 1; 1683 return (0); 1684 } 1685 } 1686 1687 return (ENOENT); 1688 } 1689 1690 static void 1691 ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 1692 void *ta_buf) 1693 { 1694 struct ta_buf_chash *tb; 1695 1696 tb = (struct ta_buf_chash *)ta_buf; 1697 1698 if (tb->ent_ptr != NULL) 1699 free(tb->ent_ptr, M_IPFW_TBL); 1700 } 1701 1702 /* 1703 * Hash growing callbacks. 1704 */ 1705 1706 static int 1707 ta_need_modify_chash(void *ta_state, struct table_info *ti, uint32_t count, 1708 uint64_t *pflags) 1709 { 1710 struct chash_cfg *cfg; 1711 uint64_t data; 1712 1713 /* 1714 * Since we don't know exact number of IPv4/IPv6 records in @count, 1715 * ignore non-zero @count value at all. Check current hash sizes 1716 * and return appropriate data. 1717 */ 1718 1719 cfg = (struct chash_cfg *)ta_state; 1720 1721 data = 0; 1722 if (cfg->items4 > cfg->size4 && cfg->size4 < 65536) 1723 data |= (cfg->size4 * 2) << 16; 1724 if (cfg->items6 > cfg->size6 && cfg->size6 < 65536) 1725 data |= cfg->size6 * 2; 1726 1727 if (data != 0) { 1728 *pflags = data; 1729 return (1); 1730 } 1731 1732 return (0); 1733 } 1734 1735 /* 1736 * Allocate new, larger chash. 1737 */ 1738 static int 1739 ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags) 1740 { 1741 struct mod_item *mi; 1742 struct chashbhead *head; 1743 int i; 1744 1745 mi = (struct mod_item *)ta_buf; 1746 1747 memset(mi, 0, sizeof(struct mod_item)); 1748 mi->size = (*pflags >> 16) & 0xFFFF; 1749 mi->size6 = *pflags & 0xFFFF; 1750 if (mi->size > 0) { 1751 head = malloc(sizeof(struct chashbhead) * mi->size, 1752 M_IPFW, M_WAITOK | M_ZERO); 1753 for (i = 0; i < mi->size; i++) 1754 SLIST_INIT(&head[i]); 1755 mi->main_ptr = head; 1756 } 1757 1758 if (mi->size6 > 0) { 1759 head = malloc(sizeof(struct chashbhead) * mi->size6, 1760 M_IPFW, M_WAITOK | M_ZERO); 1761 for (i = 0; i < mi->size6; i++) 1762 SLIST_INIT(&head[i]); 1763 mi->main_ptr6 = head; 1764 } 1765 1766 return (0); 1767 } 1768 1769 /* 1770 * Copy data from old runtime array to new one. 1771 */ 1772 static int 1773 ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf, 1774 uint64_t *pflags) 1775 { 1776 1777 /* In is not possible to do rehash if we're not holidng WLOCK. */ 1778 return (0); 1779 } 1780 1781 /* 1782 * Switch old & new arrays. 1783 */ 1784 static void 1785 ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf, 1786 uint64_t pflags) 1787 { 1788 struct mod_item *mi; 1789 struct chash_cfg *cfg; 1790 struct chashbhead *old_head, *new_head; 1791 struct chashentry *ent, *ent_next; 1792 int af, i, mlen; 1793 uint32_t nhash; 1794 size_t old_size, new_size; 1795 1796 mi = (struct mod_item *)ta_buf; 1797 cfg = (struct chash_cfg *)ta_state; 1798 1799 /* Check which hash we need to grow and do we still need that */ 1800 if (mi->size > 0 && cfg->size4 < mi->size) { 1801 new_head = (struct chashbhead *)mi->main_ptr; 1802 new_size = mi->size; 1803 old_size = cfg->size4; 1804 old_head = ti->state; 1805 mlen = cfg->mask4; 1806 af = AF_INET; 1807 1808 for (i = 0; i < old_size; i++) { 1809 SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) { 1810 nhash = hash_ent(ent, af, mlen, new_size); 1811 SLIST_INSERT_HEAD(&new_head[nhash], ent, next); 1812 } 1813 } 1814 1815 ti->state = new_head; 1816 cfg->head4 = new_head; 1817 cfg->size4 = mi->size; 1818 mi->main_ptr = old_head; 1819 } 1820 1821 if (mi->size6 > 0 && cfg->size6 < mi->size6) { 1822 new_head = (struct chashbhead *)mi->main_ptr6; 1823 new_size = mi->size6; 1824 old_size = cfg->size6; 1825 old_head = ti->xstate; 1826 mlen = cfg->mask6; 1827 af = AF_INET6; 1828 1829 for (i = 0; i < old_size; i++) { 1830 SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) { 1831 nhash = hash_ent(ent, af, mlen, new_size); 1832 SLIST_INSERT_HEAD(&new_head[nhash], ent, next); 1833 } 1834 } 1835 1836 ti->xstate = new_head; 1837 cfg->head6 = new_head; 1838 cfg->size6 = mi->size6; 1839 mi->main_ptr6 = old_head; 1840 } 1841 1842 /* Update lower 32 bits with new values */ 1843 ti->data &= 0xFFFFFFFF00000000; 1844 ti->data |= ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6); 1845 } 1846 1847 /* 1848 * Free unneded array. 1849 */ 1850 static void 1851 ta_flush_mod_chash(void *ta_buf) 1852 { 1853 struct mod_item *mi; 1854 1855 mi = (struct mod_item *)ta_buf; 1856 if (mi->main_ptr != NULL) 1857 free(mi->main_ptr, M_IPFW); 1858 if (mi->main_ptr6 != NULL) 1859 free(mi->main_ptr6, M_IPFW); 1860 } 1861 1862 struct table_algo addr_hash = { 1863 .name = "addr:hash", 1864 .type = IPFW_TABLE_ADDR, 1865 .ta_buf_size = sizeof(struct ta_buf_chash), 1866 .init = ta_init_chash, 1867 .destroy = ta_destroy_chash, 1868 .prepare_add = ta_prepare_add_chash, 1869 .prepare_del = ta_prepare_del_chash, 1870 .add = ta_add_chash, 1871 .del = ta_del_chash, 1872 .flush_entry = ta_flush_chash_entry, 1873 .foreach = ta_foreach_chash, 1874 .dump_tentry = ta_dump_chash_tentry, 1875 .find_tentry = ta_find_chash_tentry, 1876 .print_config = ta_print_chash_config, 1877 .dump_tinfo = ta_dump_chash_tinfo, 1878 .need_modify = ta_need_modify_chash, 1879 .prepare_mod = ta_prepare_mod_chash, 1880 .fill_mod = ta_fill_mod_chash, 1881 .modify = ta_modify_chash, 1882 .flush_mod = ta_flush_mod_chash, 1883 }; 1884 1885 1886 /* 1887 * Iface table cmds. 1888 * 1889 * Implementation: 1890 * 1891 * Runtime part: 1892 * - sorted array of "struct ifidx" pointed by ti->state. 1893 * Array is allocated with rounding up to IFIDX_CHUNK. Only existing 1894 * interfaces are stored in array, however its allocated size is 1895 * sufficient to hold all table records if needed. 1896 * - current array size is stored in ti->data 1897 * 1898 * Table data: 1899 * - "struct iftable_cfg" is allocated to store table state (ta_state). 1900 * - All table records are stored inside namedobj instance. 1901 * 1902 */ 1903 1904 struct ifidx { 1905 uint16_t kidx; 1906 uint16_t spare; 1907 uint32_t value; 1908 }; 1909 #define DEFAULT_IFIDX_SIZE 64 1910 1911 struct iftable_cfg; 1912 1913 struct ifentry { 1914 struct named_object no; 1915 struct ipfw_ifc ic; 1916 struct iftable_cfg *icfg; 1917 uint32_t value; 1918 int linked; 1919 }; 1920 1921 struct iftable_cfg { 1922 struct namedobj_instance *ii; 1923 struct ip_fw_chain *ch; 1924 struct table_info *ti; 1925 void *main_ptr; 1926 size_t size; /* Number of items allocated in array */ 1927 size_t count; /* Number of all items */ 1928 size_t used; /* Number of items _active_ now */ 1929 }; 1930 1931 struct ta_buf_ifidx 1932 { 1933 struct ifentry *ife; 1934 uint32_t value; 1935 }; 1936 1937 int compare_ifidx(const void *k, const void *v); 1938 static struct ifidx * ifidx_find(struct table_info *ti, void *key); 1939 static int ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen, 1940 uint32_t *val); 1941 static int ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, 1942 struct table_info *ti, char *data, uint8_t tflags); 1943 static void ta_change_ti_ifidx(void *ta_state, struct table_info *ti); 1944 static void destroy_ifidx_locked(struct namedobj_instance *ii, 1945 struct named_object *no, void *arg); 1946 static void ta_destroy_ifidx(void *ta_state, struct table_info *ti); 1947 static void ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti, 1948 ipfw_ta_tinfo *tinfo); 1949 static int ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 1950 void *ta_buf); 1951 static int ta_add_ifidx(void *ta_state, struct table_info *ti, 1952 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 1953 static int ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 1954 void *ta_buf); 1955 static int ta_del_ifidx(void *ta_state, struct table_info *ti, 1956 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 1957 static void ta_flush_ifidx_entry(struct ip_fw_chain *ch, 1958 struct tentry_info *tei, void *ta_buf); 1959 static void if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex); 1960 static int ta_need_modify_ifidx(void *ta_state, struct table_info *ti, 1961 uint32_t count, uint64_t *pflags); 1962 static int ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags); 1963 static int ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, 1964 void *ta_buf, uint64_t *pflags); 1965 static void ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf, 1966 uint64_t pflags); 1967 static void ta_flush_mod_ifidx(void *ta_buf); 1968 static int ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e, 1969 ipfw_obj_tentry *tent); 1970 static int ta_find_ifidx_tentry(void *ta_state, struct table_info *ti, 1971 ipfw_obj_tentry *tent); 1972 static void foreach_ifidx(struct namedobj_instance *ii, struct named_object *no, 1973 void *arg); 1974 static void ta_foreach_ifidx(void *ta_state, struct table_info *ti, 1975 ta_foreach_f *f, void *arg); 1976 1977 int 1978 compare_ifidx(const void *k, const void *v) 1979 { 1980 const struct ifidx *ifidx; 1981 uint16_t key; 1982 1983 key = *((const uint16_t *)k); 1984 ifidx = (const struct ifidx *)v; 1985 1986 if (key < ifidx->kidx) 1987 return (-1); 1988 else if (key > ifidx->kidx) 1989 return (1); 1990 1991 return (0); 1992 } 1993 1994 /* 1995 * Adds item @item with key @key into ascending-sorted array @base. 1996 * Assumes @base has enough additional storage. 1997 * 1998 * Returns 1 on success, 0 on duplicate key. 1999 */ 2000 static int 2001 badd(const void *key, void *item, void *base, size_t nmemb, 2002 size_t size, int (*compar) (const void *, const void *)) 2003 { 2004 int min, max, mid, shift, res; 2005 caddr_t paddr; 2006 2007 if (nmemb == 0) { 2008 memcpy(base, item, size); 2009 return (1); 2010 } 2011 2012 /* Binary search */ 2013 min = 0; 2014 max = nmemb - 1; 2015 mid = 0; 2016 while (min <= max) { 2017 mid = (min + max) / 2; 2018 res = compar(key, (const void *)((caddr_t)base + mid * size)); 2019 if (res == 0) 2020 return (0); 2021 2022 if (res > 0) 2023 min = mid + 1; 2024 else 2025 max = mid - 1; 2026 } 2027 2028 /* Item not found. */ 2029 res = compar(key, (const void *)((caddr_t)base + mid * size)); 2030 if (res > 0) 2031 shift = mid + 1; 2032 else 2033 shift = mid; 2034 2035 paddr = (caddr_t)base + shift * size; 2036 if (nmemb > shift) 2037 memmove(paddr + size, paddr, (nmemb - shift) * size); 2038 2039 memcpy(paddr, item, size); 2040 2041 return (1); 2042 } 2043 2044 /* 2045 * Deletes item with key @key from ascending-sorted array @base. 2046 * 2047 * Returns 1 on success, 0 for non-existent key. 2048 */ 2049 static int 2050 bdel(const void *key, void *base, size_t nmemb, size_t size, 2051 int (*compar) (const void *, const void *)) 2052 { 2053 caddr_t item; 2054 size_t sz; 2055 2056 item = (caddr_t)bsearch(key, base, nmemb, size, compar); 2057 2058 if (item == NULL) 2059 return (0); 2060 2061 sz = (caddr_t)base + nmemb * size - item; 2062 2063 if (sz > 0) 2064 memmove(item, item + size, sz); 2065 2066 return (1); 2067 } 2068 2069 static struct ifidx * 2070 ifidx_find(struct table_info *ti, void *key) 2071 { 2072 struct ifidx *ifi; 2073 2074 ifi = bsearch(key, ti->state, ti->data, sizeof(struct ifidx), 2075 compare_ifidx); 2076 2077 return (ifi); 2078 } 2079 2080 static int 2081 ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen, 2082 uint32_t *val) 2083 { 2084 struct ifidx *ifi; 2085 2086 ifi = ifidx_find(ti, key); 2087 2088 if (ifi != NULL) { 2089 *val = ifi->value; 2090 return (1); 2091 } 2092 2093 return (0); 2094 } 2095 2096 static int 2097 ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 2098 char *data, uint8_t tflags) 2099 { 2100 struct iftable_cfg *icfg; 2101 2102 icfg = malloc(sizeof(struct iftable_cfg), M_IPFW, M_WAITOK | M_ZERO); 2103 2104 icfg->ii = ipfw_objhash_create(DEFAULT_IFIDX_SIZE); 2105 icfg->size = DEFAULT_IFIDX_SIZE; 2106 icfg->main_ptr = malloc(sizeof(struct ifidx) * icfg->size, M_IPFW, 2107 M_WAITOK | M_ZERO); 2108 icfg->ch = ch; 2109 2110 *ta_state = icfg; 2111 ti->state = icfg->main_ptr; 2112 ti->lookup = ta_lookup_ifidx; 2113 2114 return (0); 2115 } 2116 2117 /* 2118 * Handle tableinfo @ti pointer change (on table array resize). 2119 */ 2120 static void 2121 ta_change_ti_ifidx(void *ta_state, struct table_info *ti) 2122 { 2123 struct iftable_cfg *icfg; 2124 2125 icfg = (struct iftable_cfg *)ta_state; 2126 icfg->ti = ti; 2127 } 2128 2129 static void 2130 destroy_ifidx_locked(struct namedobj_instance *ii, struct named_object *no, 2131 void *arg) 2132 { 2133 struct ifentry *ife; 2134 struct ip_fw_chain *ch; 2135 2136 ch = (struct ip_fw_chain *)arg; 2137 ife = (struct ifentry *)no; 2138 2139 ipfw_iface_del_notify(ch, &ife->ic); 2140 ipfw_iface_unref(ch, &ife->ic); 2141 free(ife, M_IPFW_TBL); 2142 } 2143 2144 2145 /* 2146 * Destroys table @ti 2147 */ 2148 static void 2149 ta_destroy_ifidx(void *ta_state, struct table_info *ti) 2150 { 2151 struct iftable_cfg *icfg; 2152 struct ip_fw_chain *ch; 2153 2154 icfg = (struct iftable_cfg *)ta_state; 2155 ch = icfg->ch; 2156 2157 if (icfg->main_ptr != NULL) 2158 free(icfg->main_ptr, M_IPFW); 2159 2160 IPFW_UH_WLOCK(ch); 2161 ipfw_objhash_foreach(icfg->ii, destroy_ifidx_locked, ch); 2162 IPFW_UH_WUNLOCK(ch); 2163 2164 ipfw_objhash_destroy(icfg->ii); 2165 2166 free(icfg, M_IPFW); 2167 } 2168 2169 /* 2170 * Provide algo-specific table info 2171 */ 2172 static void 2173 ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 2174 { 2175 struct iftable_cfg *cfg; 2176 2177 cfg = (struct iftable_cfg *)ta_state; 2178 2179 tinfo->taclass4 = IPFW_TACLASS_ARRAY; 2180 tinfo->size4 = cfg->size; 2181 tinfo->count4 = cfg->used; 2182 tinfo->itemsize4 = sizeof(struct ifidx); 2183 } 2184 2185 /* 2186 * Prepare state to add to the table: 2187 * allocate ifentry and reference needed interface. 2188 */ 2189 static int 2190 ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 2191 void *ta_buf) 2192 { 2193 struct ta_buf_ifidx *tb; 2194 char *ifname; 2195 struct ifentry *ife; 2196 2197 tb = (struct ta_buf_ifidx *)ta_buf; 2198 2199 /* Check if string is terminated */ 2200 ifname = (char *)tei->paddr; 2201 if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE) 2202 return (EINVAL); 2203 2204 ife = malloc(sizeof(struct ifentry), M_IPFW_TBL, M_WAITOK | M_ZERO); 2205 ife->ic.cb = if_notifier; 2206 ife->ic.cbdata = ife; 2207 2208 if (ipfw_iface_ref(ch, ifname, &ife->ic) != 0) { 2209 free(ife, M_IPFW_TBL); 2210 return (EINVAL); 2211 } 2212 2213 /* Use ipfw_iface 'ifname' field as stable storage */ 2214 ife->no.name = ife->ic.iface->ifname; 2215 2216 tb->ife = ife; 2217 2218 return (0); 2219 } 2220 2221 static int 2222 ta_add_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2223 void *ta_buf, uint32_t *pnum) 2224 { 2225 struct iftable_cfg *icfg; 2226 struct ifentry *ife, *tmp; 2227 struct ta_buf_ifidx *tb; 2228 struct ipfw_iface *iif; 2229 struct ifidx *ifi; 2230 char *ifname; 2231 uint32_t value; 2232 2233 tb = (struct ta_buf_ifidx *)ta_buf; 2234 ifname = (char *)tei->paddr; 2235 icfg = (struct iftable_cfg *)ta_state; 2236 ife = tb->ife; 2237 2238 ife->icfg = icfg; 2239 ife->value = tei->value; 2240 2241 tmp = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname); 2242 2243 if (tmp != NULL) { 2244 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 2245 return (EEXIST); 2246 2247 /* Exchange values in @tmp and @tei */ 2248 value = tmp->value; 2249 tmp->value = tei->value; 2250 tei->value = value; 2251 2252 iif = tmp->ic.iface; 2253 if (iif->resolved != 0) { 2254 /* We have to update runtime value, too */ 2255 ifi = ifidx_find(ti, &iif->ifindex); 2256 ifi->value = ife->value; 2257 } 2258 2259 /* Indicate that update has happened instead of addition */ 2260 tei->flags |= TEI_FLAGS_UPDATED; 2261 *pnum = 0; 2262 return (0); 2263 } 2264 2265 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 2266 return (EFBIG); 2267 2268 /* Link to internal list */ 2269 ipfw_objhash_add(icfg->ii, &ife->no); 2270 2271 /* Link notifier (possible running its callback) */ 2272 ipfw_iface_add_notify(icfg->ch, &ife->ic); 2273 icfg->count++; 2274 2275 tb->ife = NULL; 2276 *pnum = 1; 2277 2278 return (0); 2279 } 2280 2281 /* 2282 * Prepare to delete key from table. 2283 * Do basic interface name checks. 2284 */ 2285 static int 2286 ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei, 2287 void *ta_buf) 2288 { 2289 struct ta_buf_ifidx *tb; 2290 char *ifname; 2291 2292 tb = (struct ta_buf_ifidx *)ta_buf; 2293 2294 /* Check if string is terminated */ 2295 ifname = (char *)tei->paddr; 2296 if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE) 2297 return (EINVAL); 2298 2299 return (0); 2300 } 2301 2302 /* 2303 * Remove key from both configuration list and 2304 * runtime array. Removed interface notification. 2305 */ 2306 static int 2307 ta_del_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2308 void *ta_buf, uint32_t *pnum) 2309 { 2310 struct iftable_cfg *icfg; 2311 struct ifentry *ife; 2312 struct ta_buf_ifidx *tb; 2313 char *ifname; 2314 uint16_t ifindex; 2315 int res; 2316 2317 tb = (struct ta_buf_ifidx *)ta_buf; 2318 ifname = (char *)tei->paddr; 2319 icfg = (struct iftable_cfg *)ta_state; 2320 ife = tb->ife; 2321 2322 ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname); 2323 2324 if (ife == NULL) 2325 return (ENOENT); 2326 2327 if (ife->linked != 0) { 2328 /* We have to remove item from runtime */ 2329 ifindex = ife->ic.iface->ifindex; 2330 2331 res = bdel(&ifindex, icfg->main_ptr, icfg->used, 2332 sizeof(struct ifidx), compare_ifidx); 2333 2334 KASSERT(res == 1, ("index %d does not exist", ifindex)); 2335 icfg->used--; 2336 ti->data = icfg->used; 2337 ife->linked = 0; 2338 } 2339 2340 /* Unlink from local list */ 2341 ipfw_objhash_del(icfg->ii, &ife->no); 2342 /* Unlink notifier and deref */ 2343 ipfw_iface_del_notify(icfg->ch, &ife->ic); 2344 ipfw_iface_unref(icfg->ch, &ife->ic); 2345 2346 icfg->count--; 2347 tei->value = ife->value; 2348 2349 tb->ife = ife; 2350 *pnum = 1; 2351 2352 return (0); 2353 } 2354 2355 /* 2356 * Flush deleted entry. 2357 * Drops interface reference and frees entry. 2358 */ 2359 static void 2360 ta_flush_ifidx_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 2361 void *ta_buf) 2362 { 2363 struct ta_buf_ifidx *tb; 2364 2365 tb = (struct ta_buf_ifidx *)ta_buf; 2366 2367 if (tb->ife != NULL) 2368 free(tb->ife, M_IPFW_TBL); 2369 } 2370 2371 2372 /* 2373 * Handle interface announce/withdrawal for particular table. 2374 * Every real runtime array modification happens here. 2375 */ 2376 static void 2377 if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex) 2378 { 2379 struct ifentry *ife; 2380 struct ifidx ifi; 2381 struct iftable_cfg *icfg; 2382 struct table_info *ti; 2383 int res; 2384 2385 ife = (struct ifentry *)cbdata; 2386 icfg = ife->icfg; 2387 ti = icfg->ti; 2388 2389 KASSERT(ti != NULL, ("ti=NULL, check change_ti handler")); 2390 2391 if (ife->linked == 0 && ifindex != 0) { 2392 /* Interface announce */ 2393 ifi.kidx = ifindex; 2394 ifi.spare = 0; 2395 ifi.value = ife->value; 2396 res = badd(&ifindex, &ifi, icfg->main_ptr, icfg->used, 2397 sizeof(struct ifidx), compare_ifidx); 2398 KASSERT(res == 1, ("index %d already exists", ifindex)); 2399 icfg->used++; 2400 ti->data = icfg->used; 2401 ife->linked = 1; 2402 } else if (ife->linked != 0 && ifindex == 0) { 2403 /* Interface withdrawal */ 2404 ifindex = ife->ic.iface->ifindex; 2405 2406 res = bdel(&ifindex, icfg->main_ptr, icfg->used, 2407 sizeof(struct ifidx), compare_ifidx); 2408 2409 KASSERT(res == 1, ("index %d does not exist", ifindex)); 2410 icfg->used--; 2411 ti->data = icfg->used; 2412 ife->linked = 0; 2413 } 2414 } 2415 2416 2417 /* 2418 * Table growing callbacks. 2419 */ 2420 2421 static int 2422 ta_need_modify_ifidx(void *ta_state, struct table_info *ti, uint32_t count, 2423 uint64_t *pflags) 2424 { 2425 struct iftable_cfg *cfg; 2426 uint32_t size; 2427 2428 cfg = (struct iftable_cfg *)ta_state; 2429 2430 size = cfg->size; 2431 while (size < cfg->count + count) 2432 size *= 2; 2433 2434 if (size != cfg->size) { 2435 *pflags = size; 2436 return (1); 2437 } 2438 2439 return (0); 2440 } 2441 2442 /* 2443 * Allocate ned, larger runtime ifidx array. 2444 */ 2445 static int 2446 ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags) 2447 { 2448 struct mod_item *mi; 2449 2450 mi = (struct mod_item *)ta_buf; 2451 2452 memset(mi, 0, sizeof(struct mod_item)); 2453 mi->size = *pflags; 2454 mi->main_ptr = malloc(sizeof(struct ifidx) * mi->size, M_IPFW, 2455 M_WAITOK | M_ZERO); 2456 2457 return (0); 2458 } 2459 2460 /* 2461 * Copy data from old runtime array to new one. 2462 */ 2463 static int 2464 ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, void *ta_buf, 2465 uint64_t *pflags) 2466 { 2467 struct mod_item *mi; 2468 struct iftable_cfg *icfg; 2469 2470 mi = (struct mod_item *)ta_buf; 2471 icfg = (struct iftable_cfg *)ta_state; 2472 2473 /* Check if we still need to grow array */ 2474 if (icfg->size >= mi->size) { 2475 *pflags = 0; 2476 return (0); 2477 } 2478 2479 memcpy(mi->main_ptr, icfg->main_ptr, icfg->used * sizeof(struct ifidx)); 2480 2481 return (0); 2482 } 2483 2484 /* 2485 * Switch old & new arrays. 2486 */ 2487 static void 2488 ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf, 2489 uint64_t pflags) 2490 { 2491 struct mod_item *mi; 2492 struct iftable_cfg *icfg; 2493 void *old_ptr; 2494 2495 mi = (struct mod_item *)ta_buf; 2496 icfg = (struct iftable_cfg *)ta_state; 2497 2498 old_ptr = icfg->main_ptr; 2499 icfg->main_ptr = mi->main_ptr; 2500 icfg->size = mi->size; 2501 ti->state = icfg->main_ptr; 2502 2503 mi->main_ptr = old_ptr; 2504 } 2505 2506 /* 2507 * Free unneded array. 2508 */ 2509 static void 2510 ta_flush_mod_ifidx(void *ta_buf) 2511 { 2512 struct mod_item *mi; 2513 2514 mi = (struct mod_item *)ta_buf; 2515 if (mi->main_ptr != NULL) 2516 free(mi->main_ptr, M_IPFW); 2517 } 2518 2519 static int 2520 ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e, 2521 ipfw_obj_tentry *tent) 2522 { 2523 struct ifentry *ife; 2524 2525 ife = (struct ifentry *)e; 2526 2527 tent->masklen = 8 * IF_NAMESIZE; 2528 memcpy(&tent->k, ife->no.name, IF_NAMESIZE); 2529 tent->v.kidx = ife->value; 2530 2531 return (0); 2532 } 2533 2534 static int 2535 ta_find_ifidx_tentry(void *ta_state, struct table_info *ti, 2536 ipfw_obj_tentry *tent) 2537 { 2538 struct iftable_cfg *icfg; 2539 struct ifentry *ife; 2540 char *ifname; 2541 2542 icfg = (struct iftable_cfg *)ta_state; 2543 ifname = tent->k.iface; 2544 2545 if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE) 2546 return (EINVAL); 2547 2548 ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname); 2549 2550 if (ife != NULL) { 2551 ta_dump_ifidx_tentry(ta_state, ti, ife, tent); 2552 return (0); 2553 } 2554 2555 return (ENOENT); 2556 } 2557 2558 struct wa_ifidx { 2559 ta_foreach_f *f; 2560 void *arg; 2561 }; 2562 2563 static void 2564 foreach_ifidx(struct namedobj_instance *ii, struct named_object *no, 2565 void *arg) 2566 { 2567 struct ifentry *ife; 2568 struct wa_ifidx *wa; 2569 2570 ife = (struct ifentry *)no; 2571 wa = (struct wa_ifidx *)arg; 2572 2573 wa->f(ife, wa->arg); 2574 } 2575 2576 static void 2577 ta_foreach_ifidx(void *ta_state, struct table_info *ti, ta_foreach_f *f, 2578 void *arg) 2579 { 2580 struct iftable_cfg *icfg; 2581 struct wa_ifidx wa; 2582 2583 icfg = (struct iftable_cfg *)ta_state; 2584 2585 wa.f = f; 2586 wa.arg = arg; 2587 2588 ipfw_objhash_foreach(icfg->ii, foreach_ifidx, &wa); 2589 } 2590 2591 struct table_algo iface_idx = { 2592 .name = "iface:array", 2593 .type = IPFW_TABLE_INTERFACE, 2594 .flags = TA_FLAG_DEFAULT, 2595 .ta_buf_size = sizeof(struct ta_buf_ifidx), 2596 .init = ta_init_ifidx, 2597 .destroy = ta_destroy_ifidx, 2598 .prepare_add = ta_prepare_add_ifidx, 2599 .prepare_del = ta_prepare_del_ifidx, 2600 .add = ta_add_ifidx, 2601 .del = ta_del_ifidx, 2602 .flush_entry = ta_flush_ifidx_entry, 2603 .foreach = ta_foreach_ifidx, 2604 .dump_tentry = ta_dump_ifidx_tentry, 2605 .find_tentry = ta_find_ifidx_tentry, 2606 .dump_tinfo = ta_dump_ifidx_tinfo, 2607 .need_modify = ta_need_modify_ifidx, 2608 .prepare_mod = ta_prepare_mod_ifidx, 2609 .fill_mod = ta_fill_mod_ifidx, 2610 .modify = ta_modify_ifidx, 2611 .flush_mod = ta_flush_mod_ifidx, 2612 .change_ti = ta_change_ti_ifidx, 2613 }; 2614 2615 /* 2616 * Number array cmds. 2617 * 2618 * Implementation: 2619 * 2620 * Runtime part: 2621 * - sorted array of "struct numarray" pointed by ti->state. 2622 * Array is allocated with rounding up to NUMARRAY_CHUNK. 2623 * - current array size is stored in ti->data 2624 * 2625 */ 2626 2627 struct numarray { 2628 uint32_t number; 2629 uint32_t value; 2630 }; 2631 2632 struct numarray_cfg { 2633 void *main_ptr; 2634 size_t size; /* Number of items allocated in array */ 2635 size_t used; /* Number of items _active_ now */ 2636 }; 2637 2638 struct ta_buf_numarray 2639 { 2640 struct numarray na; 2641 }; 2642 2643 int compare_numarray(const void *k, const void *v); 2644 static struct numarray *numarray_find(struct table_info *ti, void *key); 2645 static int ta_lookup_numarray(struct table_info *ti, void *key, 2646 uint32_t keylen, uint32_t *val); 2647 static int ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, 2648 struct table_info *ti, char *data, uint8_t tflags); 2649 static void ta_destroy_numarray(void *ta_state, struct table_info *ti); 2650 static void ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti, 2651 ipfw_ta_tinfo *tinfo); 2652 static int ta_prepare_add_numarray(struct ip_fw_chain *ch, 2653 struct tentry_info *tei, void *ta_buf); 2654 static int ta_add_numarray(void *ta_state, struct table_info *ti, 2655 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 2656 static int ta_del_numarray(void *ta_state, struct table_info *ti, 2657 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 2658 static void ta_flush_numarray_entry(struct ip_fw_chain *ch, 2659 struct tentry_info *tei, void *ta_buf); 2660 static int ta_need_modify_numarray(void *ta_state, struct table_info *ti, 2661 uint32_t count, uint64_t *pflags); 2662 static int ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags); 2663 static int ta_fill_mod_numarray(void *ta_state, struct table_info *ti, 2664 void *ta_buf, uint64_t *pflags); 2665 static void ta_modify_numarray(void *ta_state, struct table_info *ti, 2666 void *ta_buf, uint64_t pflags); 2667 static void ta_flush_mod_numarray(void *ta_buf); 2668 static int ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, 2669 void *e, ipfw_obj_tentry *tent); 2670 static int ta_find_numarray_tentry(void *ta_state, struct table_info *ti, 2671 ipfw_obj_tentry *tent); 2672 static void ta_foreach_numarray(void *ta_state, struct table_info *ti, 2673 ta_foreach_f *f, void *arg); 2674 2675 int 2676 compare_numarray(const void *k, const void *v) 2677 { 2678 const struct numarray *na; 2679 uint32_t key; 2680 2681 key = *((const uint32_t *)k); 2682 na = (const struct numarray *)v; 2683 2684 if (key < na->number) 2685 return (-1); 2686 else if (key > na->number) 2687 return (1); 2688 2689 return (0); 2690 } 2691 2692 static struct numarray * 2693 numarray_find(struct table_info *ti, void *key) 2694 { 2695 struct numarray *ri; 2696 2697 ri = bsearch(key, ti->state, ti->data, sizeof(struct numarray), 2698 compare_ifidx); 2699 2700 return (ri); 2701 } 2702 2703 static int 2704 ta_lookup_numarray(struct table_info *ti, void *key, uint32_t keylen, 2705 uint32_t *val) 2706 { 2707 struct numarray *ri; 2708 2709 ri = numarray_find(ti, key); 2710 2711 if (ri != NULL) { 2712 *val = ri->value; 2713 return (1); 2714 } 2715 2716 return (0); 2717 } 2718 2719 static int 2720 ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 2721 char *data, uint8_t tflags) 2722 { 2723 struct numarray_cfg *cfg; 2724 2725 cfg = malloc(sizeof(*cfg), M_IPFW, M_WAITOK | M_ZERO); 2726 2727 cfg->size = 16; 2728 cfg->main_ptr = malloc(sizeof(struct numarray) * cfg->size, M_IPFW, 2729 M_WAITOK | M_ZERO); 2730 2731 *ta_state = cfg; 2732 ti->state = cfg->main_ptr; 2733 ti->lookup = ta_lookup_numarray; 2734 2735 return (0); 2736 } 2737 2738 /* 2739 * Destroys table @ti 2740 */ 2741 static void 2742 ta_destroy_numarray(void *ta_state, struct table_info *ti) 2743 { 2744 struct numarray_cfg *cfg; 2745 2746 cfg = (struct numarray_cfg *)ta_state; 2747 2748 if (cfg->main_ptr != NULL) 2749 free(cfg->main_ptr, M_IPFW); 2750 2751 free(cfg, M_IPFW); 2752 } 2753 2754 /* 2755 * Provide algo-specific table info 2756 */ 2757 static void 2758 ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 2759 { 2760 struct numarray_cfg *cfg; 2761 2762 cfg = (struct numarray_cfg *)ta_state; 2763 2764 tinfo->taclass4 = IPFW_TACLASS_ARRAY; 2765 tinfo->size4 = cfg->size; 2766 tinfo->count4 = cfg->used; 2767 tinfo->itemsize4 = sizeof(struct numarray); 2768 } 2769 2770 /* 2771 * Prepare for addition/deletion to an array. 2772 */ 2773 static int 2774 ta_prepare_add_numarray(struct ip_fw_chain *ch, struct tentry_info *tei, 2775 void *ta_buf) 2776 { 2777 struct ta_buf_numarray *tb; 2778 2779 tb = (struct ta_buf_numarray *)ta_buf; 2780 2781 tb->na.number = *((uint32_t *)tei->paddr); 2782 2783 return (0); 2784 } 2785 2786 static int 2787 ta_add_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2788 void *ta_buf, uint32_t *pnum) 2789 { 2790 struct numarray_cfg *cfg; 2791 struct ta_buf_numarray *tb; 2792 struct numarray *ri; 2793 int res; 2794 uint32_t value; 2795 2796 tb = (struct ta_buf_numarray *)ta_buf; 2797 cfg = (struct numarray_cfg *)ta_state; 2798 2799 /* Read current value from @tei */ 2800 tb->na.value = tei->value; 2801 2802 ri = numarray_find(ti, &tb->na.number); 2803 2804 if (ri != NULL) { 2805 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 2806 return (EEXIST); 2807 2808 /* Exchange values between ri and @tei */ 2809 value = ri->value; 2810 ri->value = tei->value; 2811 tei->value = value; 2812 /* Indicate that update has happened instead of addition */ 2813 tei->flags |= TEI_FLAGS_UPDATED; 2814 *pnum = 0; 2815 return (0); 2816 } 2817 2818 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 2819 return (EFBIG); 2820 2821 res = badd(&tb->na.number, &tb->na, cfg->main_ptr, cfg->used, 2822 sizeof(struct numarray), compare_numarray); 2823 2824 KASSERT(res == 1, ("number %d already exists", tb->na.number)); 2825 cfg->used++; 2826 ti->data = cfg->used; 2827 *pnum = 1; 2828 2829 return (0); 2830 } 2831 2832 /* 2833 * Remove key from both configuration list and 2834 * runtime array. Removed interface notification. 2835 */ 2836 static int 2837 ta_del_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei, 2838 void *ta_buf, uint32_t *pnum) 2839 { 2840 struct numarray_cfg *cfg; 2841 struct ta_buf_numarray *tb; 2842 struct numarray *ri; 2843 int res; 2844 2845 tb = (struct ta_buf_numarray *)ta_buf; 2846 cfg = (struct numarray_cfg *)ta_state; 2847 2848 ri = numarray_find(ti, &tb->na.number); 2849 if (ri == NULL) 2850 return (ENOENT); 2851 2852 tei->value = ri->value; 2853 2854 res = bdel(&tb->na.number, cfg->main_ptr, cfg->used, 2855 sizeof(struct numarray), compare_numarray); 2856 2857 KASSERT(res == 1, ("number %u does not exist", tb->na.number)); 2858 cfg->used--; 2859 ti->data = cfg->used; 2860 *pnum = 1; 2861 2862 return (0); 2863 } 2864 2865 static void 2866 ta_flush_numarray_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 2867 void *ta_buf) 2868 { 2869 2870 /* We don't have any state, do nothing */ 2871 } 2872 2873 2874 /* 2875 * Table growing callbacks. 2876 */ 2877 2878 static int 2879 ta_need_modify_numarray(void *ta_state, struct table_info *ti, uint32_t count, 2880 uint64_t *pflags) 2881 { 2882 struct numarray_cfg *cfg; 2883 size_t size; 2884 2885 cfg = (struct numarray_cfg *)ta_state; 2886 2887 size = cfg->size; 2888 while (size < cfg->used + count) 2889 size *= 2; 2890 2891 if (size != cfg->size) { 2892 *pflags = size; 2893 return (1); 2894 } 2895 2896 return (0); 2897 } 2898 2899 /* 2900 * Allocate new, larger runtime array. 2901 */ 2902 static int 2903 ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags) 2904 { 2905 struct mod_item *mi; 2906 2907 mi = (struct mod_item *)ta_buf; 2908 2909 memset(mi, 0, sizeof(struct mod_item)); 2910 mi->size = *pflags; 2911 mi->main_ptr = malloc(sizeof(struct numarray) * mi->size, M_IPFW, 2912 M_WAITOK | M_ZERO); 2913 2914 return (0); 2915 } 2916 2917 /* 2918 * Copy data from old runtime array to new one. 2919 */ 2920 static int 2921 ta_fill_mod_numarray(void *ta_state, struct table_info *ti, void *ta_buf, 2922 uint64_t *pflags) 2923 { 2924 struct mod_item *mi; 2925 struct numarray_cfg *cfg; 2926 2927 mi = (struct mod_item *)ta_buf; 2928 cfg = (struct numarray_cfg *)ta_state; 2929 2930 /* Check if we still need to grow array */ 2931 if (cfg->size >= mi->size) { 2932 *pflags = 0; 2933 return (0); 2934 } 2935 2936 memcpy(mi->main_ptr, cfg->main_ptr, cfg->used * sizeof(struct numarray)); 2937 2938 return (0); 2939 } 2940 2941 /* 2942 * Switch old & new arrays. 2943 */ 2944 static void 2945 ta_modify_numarray(void *ta_state, struct table_info *ti, void *ta_buf, 2946 uint64_t pflags) 2947 { 2948 struct mod_item *mi; 2949 struct numarray_cfg *cfg; 2950 void *old_ptr; 2951 2952 mi = (struct mod_item *)ta_buf; 2953 cfg = (struct numarray_cfg *)ta_state; 2954 2955 old_ptr = cfg->main_ptr; 2956 cfg->main_ptr = mi->main_ptr; 2957 cfg->size = mi->size; 2958 ti->state = cfg->main_ptr; 2959 2960 mi->main_ptr = old_ptr; 2961 } 2962 2963 /* 2964 * Free unneded array. 2965 */ 2966 static void 2967 ta_flush_mod_numarray(void *ta_buf) 2968 { 2969 struct mod_item *mi; 2970 2971 mi = (struct mod_item *)ta_buf; 2972 if (mi->main_ptr != NULL) 2973 free(mi->main_ptr, M_IPFW); 2974 } 2975 2976 static int 2977 ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, void *e, 2978 ipfw_obj_tentry *tent) 2979 { 2980 struct numarray *na; 2981 2982 na = (struct numarray *)e; 2983 2984 tent->k.key = na->number; 2985 tent->v.kidx = na->value; 2986 2987 return (0); 2988 } 2989 2990 static int 2991 ta_find_numarray_tentry(void *ta_state, struct table_info *ti, 2992 ipfw_obj_tentry *tent) 2993 { 2994 struct numarray_cfg *cfg; 2995 struct numarray *ri; 2996 2997 cfg = (struct numarray_cfg *)ta_state; 2998 2999 ri = numarray_find(ti, &tent->k.key); 3000 3001 if (ri != NULL) { 3002 ta_dump_numarray_tentry(ta_state, ti, ri, tent); 3003 return (0); 3004 } 3005 3006 return (ENOENT); 3007 } 3008 3009 static void 3010 ta_foreach_numarray(void *ta_state, struct table_info *ti, ta_foreach_f *f, 3011 void *arg) 3012 { 3013 struct numarray_cfg *cfg; 3014 struct numarray *array; 3015 int i; 3016 3017 cfg = (struct numarray_cfg *)ta_state; 3018 array = cfg->main_ptr; 3019 3020 for (i = 0; i < cfg->used; i++) 3021 f(&array[i], arg); 3022 } 3023 3024 struct table_algo number_array = { 3025 .name = "number:array", 3026 .type = IPFW_TABLE_NUMBER, 3027 .ta_buf_size = sizeof(struct ta_buf_numarray), 3028 .init = ta_init_numarray, 3029 .destroy = ta_destroy_numarray, 3030 .prepare_add = ta_prepare_add_numarray, 3031 .prepare_del = ta_prepare_add_numarray, 3032 .add = ta_add_numarray, 3033 .del = ta_del_numarray, 3034 .flush_entry = ta_flush_numarray_entry, 3035 .foreach = ta_foreach_numarray, 3036 .dump_tentry = ta_dump_numarray_tentry, 3037 .find_tentry = ta_find_numarray_tentry, 3038 .dump_tinfo = ta_dump_numarray_tinfo, 3039 .need_modify = ta_need_modify_numarray, 3040 .prepare_mod = ta_prepare_mod_numarray, 3041 .fill_mod = ta_fill_mod_numarray, 3042 .modify = ta_modify_numarray, 3043 .flush_mod = ta_flush_mod_numarray, 3044 }; 3045 3046 /* 3047 * flow:hash cmds 3048 * 3049 * 3050 * ti->data: 3051 * [inv.mask4][inv.mask6][log2hsize4][log2hsize6] 3052 * [ 8][ 8[ 8][ 8] 3053 * 3054 * inv.mask4: 32 - mask 3055 * inv.mask6: 3056 * 1) _slow lookup: mask 3057 * 2) _aligned: (128 - mask) / 8 3058 * 3) _64: 8 3059 * 3060 * 3061 * pflags: 3062 * [hsize4][hsize6] 3063 * [ 16][ 16] 3064 */ 3065 3066 struct fhashentry; 3067 3068 SLIST_HEAD(fhashbhead, fhashentry); 3069 3070 struct fhashentry { 3071 SLIST_ENTRY(fhashentry) next; 3072 uint8_t af; 3073 uint8_t proto; 3074 uint16_t spare0; 3075 uint16_t dport; 3076 uint16_t sport; 3077 uint32_t value; 3078 uint32_t spare1; 3079 }; 3080 3081 struct fhashentry4 { 3082 struct fhashentry e; 3083 struct in_addr dip; 3084 struct in_addr sip; 3085 }; 3086 3087 struct fhashentry6 { 3088 struct fhashentry e; 3089 struct in6_addr dip6; 3090 struct in6_addr sip6; 3091 }; 3092 3093 struct fhash_cfg { 3094 struct fhashbhead *head; 3095 size_t size; 3096 size_t items; 3097 struct fhashentry4 fe4; 3098 struct fhashentry6 fe6; 3099 }; 3100 3101 struct ta_buf_fhash { 3102 void *ent_ptr; 3103 struct fhashentry6 fe6; 3104 }; 3105 3106 static __inline int cmp_flow_ent(struct fhashentry *a, 3107 struct fhashentry *b, size_t sz); 3108 static __inline uint32_t hash_flow4(struct fhashentry4 *f, int hsize); 3109 static __inline uint32_t hash_flow6(struct fhashentry6 *f, int hsize); 3110 static uint32_t hash_flow_ent(struct fhashentry *ent, uint32_t size); 3111 static int ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen, 3112 uint32_t *val); 3113 static int ta_init_fhash(struct ip_fw_chain *ch, void **ta_state, 3114 struct table_info *ti, char *data, uint8_t tflags); 3115 static void ta_destroy_fhash(void *ta_state, struct table_info *ti); 3116 static void ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti, 3117 ipfw_ta_tinfo *tinfo); 3118 static int ta_dump_fhash_tentry(void *ta_state, struct table_info *ti, 3119 void *e, ipfw_obj_tentry *tent); 3120 static int tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent); 3121 static int ta_find_fhash_tentry(void *ta_state, struct table_info *ti, 3122 ipfw_obj_tentry *tent); 3123 static void ta_foreach_fhash(void *ta_state, struct table_info *ti, 3124 ta_foreach_f *f, void *arg); 3125 static int ta_prepare_add_fhash(struct ip_fw_chain *ch, 3126 struct tentry_info *tei, void *ta_buf); 3127 static int ta_add_fhash(void *ta_state, struct table_info *ti, 3128 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 3129 static int ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei, 3130 void *ta_buf); 3131 static int ta_del_fhash(void *ta_state, struct table_info *ti, 3132 struct tentry_info *tei, void *ta_buf, uint32_t *pnum); 3133 static void ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 3134 void *ta_buf); 3135 static int ta_need_modify_fhash(void *ta_state, struct table_info *ti, 3136 uint32_t count, uint64_t *pflags); 3137 static int ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags); 3138 static int ta_fill_mod_fhash(void *ta_state, struct table_info *ti, 3139 void *ta_buf, uint64_t *pflags); 3140 static void ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf, 3141 uint64_t pflags); 3142 static void ta_flush_mod_fhash(void *ta_buf); 3143 3144 static __inline int 3145 cmp_flow_ent(struct fhashentry *a, struct fhashentry *b, size_t sz) 3146 { 3147 uint64_t *ka, *kb; 3148 3149 ka = (uint64_t *)(&a->next + 1); 3150 kb = (uint64_t *)(&b->next + 1); 3151 3152 if (*ka == *kb && (memcmp(a + 1, b + 1, sz) == 0)) 3153 return (1); 3154 3155 return (0); 3156 } 3157 3158 static __inline uint32_t 3159 hash_flow4(struct fhashentry4 *f, int hsize) 3160 { 3161 uint32_t i; 3162 3163 i = (f->dip.s_addr) ^ (f->sip.s_addr) ^ (f->e.dport) ^ (f->e.sport); 3164 3165 return (i % (hsize - 1)); 3166 } 3167 3168 static __inline uint32_t 3169 hash_flow6(struct fhashentry6 *f, int hsize) 3170 { 3171 uint32_t i; 3172 3173 i = (f->dip6.__u6_addr.__u6_addr32[2]) ^ 3174 (f->dip6.__u6_addr.__u6_addr32[3]) ^ 3175 (f->sip6.__u6_addr.__u6_addr32[2]) ^ 3176 (f->sip6.__u6_addr.__u6_addr32[3]) ^ 3177 (f->e.dport) ^ (f->e.sport); 3178 3179 return (i % (hsize - 1)); 3180 } 3181 3182 static uint32_t 3183 hash_flow_ent(struct fhashentry *ent, uint32_t size) 3184 { 3185 uint32_t hash; 3186 3187 if (ent->af == AF_INET) { 3188 hash = hash_flow4((struct fhashentry4 *)ent, size); 3189 } else { 3190 hash = hash_flow6((struct fhashentry6 *)ent, size); 3191 } 3192 3193 return (hash); 3194 } 3195 3196 static int 3197 ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen, 3198 uint32_t *val) 3199 { 3200 struct fhashbhead *head; 3201 struct fhashentry *ent; 3202 struct fhashentry4 *m4; 3203 struct ipfw_flow_id *id; 3204 uint16_t hash, hsize; 3205 3206 id = (struct ipfw_flow_id *)key; 3207 head = (struct fhashbhead *)ti->state; 3208 hsize = ti->data; 3209 m4 = (struct fhashentry4 *)ti->xstate; 3210 3211 if (id->addr_type == 4) { 3212 struct fhashentry4 f; 3213 3214 /* Copy hash mask */ 3215 f = *m4; 3216 3217 f.dip.s_addr &= id->dst_ip; 3218 f.sip.s_addr &= id->src_ip; 3219 f.e.dport &= id->dst_port; 3220 f.e.sport &= id->src_port; 3221 f.e.proto &= id->proto; 3222 hash = hash_flow4(&f, hsize); 3223 SLIST_FOREACH(ent, &head[hash], next) { 3224 if (cmp_flow_ent(ent, &f.e, 2 * 4) != 0) { 3225 *val = ent->value; 3226 return (1); 3227 } 3228 } 3229 } else if (id->addr_type == 6) { 3230 struct fhashentry6 f; 3231 uint64_t *fp, *idp; 3232 3233 /* Copy hash mask */ 3234 f = *((struct fhashentry6 *)(m4 + 1)); 3235 3236 /* Handle lack of __u6_addr.__u6_addr64 */ 3237 fp = (uint64_t *)&f.dip6; 3238 idp = (uint64_t *)&id->dst_ip6; 3239 /* src IPv6 is stored after dst IPv6 */ 3240 *fp++ &= *idp++; 3241 *fp++ &= *idp++; 3242 *fp++ &= *idp++; 3243 *fp &= *idp; 3244 f.e.dport &= id->dst_port; 3245 f.e.sport &= id->src_port; 3246 f.e.proto &= id->proto; 3247 hash = hash_flow6(&f, hsize); 3248 SLIST_FOREACH(ent, &head[hash], next) { 3249 if (cmp_flow_ent(ent, &f.e, 2 * 16) != 0) { 3250 *val = ent->value; 3251 return (1); 3252 } 3253 } 3254 } 3255 3256 return (0); 3257 } 3258 3259 /* 3260 * New table. 3261 */ 3262 static int 3263 ta_init_fhash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 3264 char *data, uint8_t tflags) 3265 { 3266 int i; 3267 struct fhash_cfg *cfg; 3268 struct fhashentry4 *fe4; 3269 struct fhashentry6 *fe6; 3270 3271 cfg = malloc(sizeof(struct fhash_cfg), M_IPFW, M_WAITOK | M_ZERO); 3272 3273 cfg->size = 512; 3274 3275 cfg->head = malloc(sizeof(struct fhashbhead) * cfg->size, M_IPFW, 3276 M_WAITOK | M_ZERO); 3277 for (i = 0; i < cfg->size; i++) 3278 SLIST_INIT(&cfg->head[i]); 3279 3280 /* Fill in fe masks based on @tflags */ 3281 fe4 = &cfg->fe4; 3282 fe6 = &cfg->fe6; 3283 if (tflags & IPFW_TFFLAG_SRCIP) { 3284 memset(&fe4->sip, 0xFF, sizeof(fe4->sip)); 3285 memset(&fe6->sip6, 0xFF, sizeof(fe6->sip6)); 3286 } 3287 if (tflags & IPFW_TFFLAG_DSTIP) { 3288 memset(&fe4->dip, 0xFF, sizeof(fe4->dip)); 3289 memset(&fe6->dip6, 0xFF, sizeof(fe6->dip6)); 3290 } 3291 if (tflags & IPFW_TFFLAG_SRCPORT) { 3292 memset(&fe4->e.sport, 0xFF, sizeof(fe4->e.sport)); 3293 memset(&fe6->e.sport, 0xFF, sizeof(fe6->e.sport)); 3294 } 3295 if (tflags & IPFW_TFFLAG_DSTPORT) { 3296 memset(&fe4->e.dport, 0xFF, sizeof(fe4->e.dport)); 3297 memset(&fe6->e.dport, 0xFF, sizeof(fe6->e.dport)); 3298 } 3299 if (tflags & IPFW_TFFLAG_PROTO) { 3300 memset(&fe4->e.proto, 0xFF, sizeof(fe4->e.proto)); 3301 memset(&fe6->e.proto, 0xFF, sizeof(fe6->e.proto)); 3302 } 3303 3304 fe4->e.af = AF_INET; 3305 fe6->e.af = AF_INET6; 3306 3307 *ta_state = cfg; 3308 ti->state = cfg->head; 3309 ti->xstate = &cfg->fe4; 3310 ti->data = cfg->size; 3311 ti->lookup = ta_lookup_fhash; 3312 3313 return (0); 3314 } 3315 3316 static void 3317 ta_destroy_fhash(void *ta_state, struct table_info *ti) 3318 { 3319 struct fhash_cfg *cfg; 3320 struct fhashentry *ent, *ent_next; 3321 int i; 3322 3323 cfg = (struct fhash_cfg *)ta_state; 3324 3325 for (i = 0; i < cfg->size; i++) 3326 SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next) 3327 free(ent, M_IPFW_TBL); 3328 3329 free(cfg->head, M_IPFW); 3330 free(cfg, M_IPFW); 3331 } 3332 3333 /* 3334 * Provide algo-specific table info 3335 */ 3336 static void 3337 ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 3338 { 3339 struct fhash_cfg *cfg; 3340 3341 cfg = (struct fhash_cfg *)ta_state; 3342 3343 tinfo->flags = IPFW_TATFLAGS_AFITEM; 3344 tinfo->taclass4 = IPFW_TACLASS_HASH; 3345 tinfo->size4 = cfg->size; 3346 tinfo->count4 = cfg->items; 3347 tinfo->itemsize4 = sizeof(struct fhashentry4); 3348 tinfo->itemsize6 = sizeof(struct fhashentry6); 3349 } 3350 3351 static int 3352 ta_dump_fhash_tentry(void *ta_state, struct table_info *ti, void *e, 3353 ipfw_obj_tentry *tent) 3354 { 3355 struct fhash_cfg *cfg; 3356 struct fhashentry *ent; 3357 struct fhashentry4 *fe4; 3358 #ifdef INET6 3359 struct fhashentry6 *fe6; 3360 #endif 3361 struct tflow_entry *tfe; 3362 3363 cfg = (struct fhash_cfg *)ta_state; 3364 ent = (struct fhashentry *)e; 3365 tfe = &tent->k.flow; 3366 3367 tfe->af = ent->af; 3368 tfe->proto = ent->proto; 3369 tfe->dport = htons(ent->dport); 3370 tfe->sport = htons(ent->sport); 3371 tent->v.kidx = ent->value; 3372 tent->subtype = ent->af; 3373 3374 if (ent->af == AF_INET) { 3375 fe4 = (struct fhashentry4 *)ent; 3376 tfe->a.a4.sip.s_addr = htonl(fe4->sip.s_addr); 3377 tfe->a.a4.dip.s_addr = htonl(fe4->dip.s_addr); 3378 tent->masklen = 32; 3379 #ifdef INET6 3380 } else { 3381 fe6 = (struct fhashentry6 *)ent; 3382 tfe->a.a6.sip6 = fe6->sip6; 3383 tfe->a.a6.dip6 = fe6->dip6; 3384 tent->masklen = 128; 3385 #endif 3386 } 3387 3388 return (0); 3389 } 3390 3391 static int 3392 tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent) 3393 { 3394 #ifdef INET 3395 struct fhashentry4 *fe4; 3396 #endif 3397 #ifdef INET6 3398 struct fhashentry6 *fe6; 3399 #endif 3400 struct tflow_entry *tfe; 3401 3402 tfe = (struct tflow_entry *)tei->paddr; 3403 3404 ent->af = tei->subtype; 3405 ent->proto = tfe->proto; 3406 ent->dport = ntohs(tfe->dport); 3407 ent->sport = ntohs(tfe->sport); 3408 3409 if (tei->subtype == AF_INET) { 3410 #ifdef INET 3411 fe4 = (struct fhashentry4 *)ent; 3412 fe4->sip.s_addr = ntohl(tfe->a.a4.sip.s_addr); 3413 fe4->dip.s_addr = ntohl(tfe->a.a4.dip.s_addr); 3414 #endif 3415 #ifdef INET6 3416 } else if (tei->subtype == AF_INET6) { 3417 fe6 = (struct fhashentry6 *)ent; 3418 fe6->sip6 = tfe->a.a6.sip6; 3419 fe6->dip6 = tfe->a.a6.dip6; 3420 #endif 3421 } else { 3422 /* Unknown CIDR type */ 3423 return (EINVAL); 3424 } 3425 3426 return (0); 3427 } 3428 3429 3430 static int 3431 ta_find_fhash_tentry(void *ta_state, struct table_info *ti, 3432 ipfw_obj_tentry *tent) 3433 { 3434 struct fhash_cfg *cfg; 3435 struct fhashbhead *head; 3436 struct fhashentry *ent, *tmp; 3437 struct fhashentry6 fe6; 3438 struct tentry_info tei; 3439 int error; 3440 uint32_t hash; 3441 size_t sz; 3442 3443 cfg = (struct fhash_cfg *)ta_state; 3444 3445 ent = &fe6.e; 3446 3447 memset(&fe6, 0, sizeof(fe6)); 3448 memset(&tei, 0, sizeof(tei)); 3449 3450 tei.paddr = &tent->k.flow; 3451 tei.subtype = tent->subtype; 3452 3453 if ((error = tei_to_fhash_ent(&tei, ent)) != 0) 3454 return (error); 3455 3456 head = cfg->head; 3457 hash = hash_flow_ent(ent, cfg->size); 3458 3459 if (tei.subtype == AF_INET) 3460 sz = 2 * sizeof(struct in_addr); 3461 else 3462 sz = 2 * sizeof(struct in6_addr); 3463 3464 /* Check for existence */ 3465 SLIST_FOREACH(tmp, &head[hash], next) { 3466 if (cmp_flow_ent(tmp, ent, sz) != 0) { 3467 ta_dump_fhash_tentry(ta_state, ti, tmp, tent); 3468 return (0); 3469 } 3470 } 3471 3472 return (ENOENT); 3473 } 3474 3475 static void 3476 ta_foreach_fhash(void *ta_state, struct table_info *ti, ta_foreach_f *f, 3477 void *arg) 3478 { 3479 struct fhash_cfg *cfg; 3480 struct fhashentry *ent, *ent_next; 3481 int i; 3482 3483 cfg = (struct fhash_cfg *)ta_state; 3484 3485 for (i = 0; i < cfg->size; i++) 3486 SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next) 3487 f(ent, arg); 3488 } 3489 3490 static int 3491 ta_prepare_add_fhash(struct ip_fw_chain *ch, struct tentry_info *tei, 3492 void *ta_buf) 3493 { 3494 struct ta_buf_fhash *tb; 3495 struct fhashentry *ent; 3496 size_t sz; 3497 int error; 3498 3499 tb = (struct ta_buf_fhash *)ta_buf; 3500 3501 if (tei->subtype == AF_INET) 3502 sz = sizeof(struct fhashentry4); 3503 else if (tei->subtype == AF_INET6) 3504 sz = sizeof(struct fhashentry6); 3505 else 3506 return (EINVAL); 3507 3508 ent = malloc(sz, M_IPFW_TBL, M_WAITOK | M_ZERO); 3509 3510 error = tei_to_fhash_ent(tei, ent); 3511 if (error != 0) { 3512 free(ent, M_IPFW_TBL); 3513 return (error); 3514 } 3515 tb->ent_ptr = ent; 3516 3517 return (0); 3518 } 3519 3520 static int 3521 ta_add_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 3522 void *ta_buf, uint32_t *pnum) 3523 { 3524 struct fhash_cfg *cfg; 3525 struct fhashbhead *head; 3526 struct fhashentry *ent, *tmp; 3527 struct ta_buf_fhash *tb; 3528 int exists; 3529 uint32_t hash, value; 3530 size_t sz; 3531 3532 cfg = (struct fhash_cfg *)ta_state; 3533 tb = (struct ta_buf_fhash *)ta_buf; 3534 ent = (struct fhashentry *)tb->ent_ptr; 3535 exists = 0; 3536 3537 /* Read current value from @tei */ 3538 ent->value = tei->value; 3539 3540 head = cfg->head; 3541 hash = hash_flow_ent(ent, cfg->size); 3542 3543 if (tei->subtype == AF_INET) 3544 sz = 2 * sizeof(struct in_addr); 3545 else 3546 sz = 2 * sizeof(struct in6_addr); 3547 3548 /* Check for existence */ 3549 SLIST_FOREACH(tmp, &head[hash], next) { 3550 if (cmp_flow_ent(tmp, ent, sz) != 0) { 3551 exists = 1; 3552 break; 3553 } 3554 } 3555 3556 if (exists == 1) { 3557 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) 3558 return (EEXIST); 3559 /* Record already exists. Update value if we're asked to */ 3560 /* Exchange values between tmp and @tei */ 3561 value = tmp->value; 3562 tmp->value = tei->value; 3563 tei->value = value; 3564 /* Indicate that update has happened instead of addition */ 3565 tei->flags |= TEI_FLAGS_UPDATED; 3566 *pnum = 0; 3567 } else { 3568 if ((tei->flags & TEI_FLAGS_DONTADD) != 0) 3569 return (EFBIG); 3570 3571 SLIST_INSERT_HEAD(&head[hash], ent, next); 3572 tb->ent_ptr = NULL; 3573 *pnum = 1; 3574 3575 /* Update counters and check if we need to grow hash */ 3576 cfg->items++; 3577 } 3578 3579 return (0); 3580 } 3581 3582 static int 3583 ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei, 3584 void *ta_buf) 3585 { 3586 struct ta_buf_fhash *tb; 3587 3588 tb = (struct ta_buf_fhash *)ta_buf; 3589 3590 return (tei_to_fhash_ent(tei, &tb->fe6.e)); 3591 } 3592 3593 static int 3594 ta_del_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei, 3595 void *ta_buf, uint32_t *pnum) 3596 { 3597 struct fhash_cfg *cfg; 3598 struct fhashbhead *head; 3599 struct fhashentry *ent, *tmp; 3600 struct ta_buf_fhash *tb; 3601 uint32_t hash; 3602 size_t sz; 3603 3604 cfg = (struct fhash_cfg *)ta_state; 3605 tb = (struct ta_buf_fhash *)ta_buf; 3606 ent = &tb->fe6.e; 3607 3608 head = cfg->head; 3609 hash = hash_flow_ent(ent, cfg->size); 3610 3611 if (tei->subtype == AF_INET) 3612 sz = 2 * sizeof(struct in_addr); 3613 else 3614 sz = 2 * sizeof(struct in6_addr); 3615 3616 /* Check for existence */ 3617 SLIST_FOREACH(tmp, &head[hash], next) { 3618 if (cmp_flow_ent(tmp, ent, sz) == 0) 3619 continue; 3620 3621 SLIST_REMOVE(&head[hash], tmp, fhashentry, next); 3622 tei->value = tmp->value; 3623 *pnum = 1; 3624 cfg->items--; 3625 tb->ent_ptr = tmp; 3626 return (0); 3627 } 3628 3629 return (ENOENT); 3630 } 3631 3632 static void 3633 ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei, 3634 void *ta_buf) 3635 { 3636 struct ta_buf_fhash *tb; 3637 3638 tb = (struct ta_buf_fhash *)ta_buf; 3639 3640 if (tb->ent_ptr != NULL) 3641 free(tb->ent_ptr, M_IPFW_TBL); 3642 } 3643 3644 /* 3645 * Hash growing callbacks. 3646 */ 3647 3648 static int 3649 ta_need_modify_fhash(void *ta_state, struct table_info *ti, uint32_t count, 3650 uint64_t *pflags) 3651 { 3652 struct fhash_cfg *cfg; 3653 3654 cfg = (struct fhash_cfg *)ta_state; 3655 3656 if (cfg->items > cfg->size && cfg->size < 65536) { 3657 *pflags = cfg->size * 2; 3658 return (1); 3659 } 3660 3661 return (0); 3662 } 3663 3664 /* 3665 * Allocate new, larger fhash. 3666 */ 3667 static int 3668 ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags) 3669 { 3670 struct mod_item *mi; 3671 struct fhashbhead *head; 3672 int i; 3673 3674 mi = (struct mod_item *)ta_buf; 3675 3676 memset(mi, 0, sizeof(struct mod_item)); 3677 mi->size = *pflags; 3678 head = malloc(sizeof(struct fhashbhead) * mi->size, M_IPFW, 3679 M_WAITOK | M_ZERO); 3680 for (i = 0; i < mi->size; i++) 3681 SLIST_INIT(&head[i]); 3682 3683 mi->main_ptr = head; 3684 3685 return (0); 3686 } 3687 3688 /* 3689 * Copy data from old runtime array to new one. 3690 */ 3691 static int 3692 ta_fill_mod_fhash(void *ta_state, struct table_info *ti, void *ta_buf, 3693 uint64_t *pflags) 3694 { 3695 3696 /* In is not possible to do rehash if we're not holidng WLOCK. */ 3697 return (0); 3698 } 3699 3700 /* 3701 * Switch old & new arrays. 3702 */ 3703 static void 3704 ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf, 3705 uint64_t pflags) 3706 { 3707 struct mod_item *mi; 3708 struct fhash_cfg *cfg; 3709 struct fhashbhead *old_head, *new_head; 3710 struct fhashentry *ent, *ent_next; 3711 int i; 3712 uint32_t nhash; 3713 size_t old_size; 3714 3715 mi = (struct mod_item *)ta_buf; 3716 cfg = (struct fhash_cfg *)ta_state; 3717 3718 old_size = cfg->size; 3719 old_head = ti->state; 3720 3721 new_head = (struct fhashbhead *)mi->main_ptr; 3722 for (i = 0; i < old_size; i++) { 3723 SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) { 3724 nhash = hash_flow_ent(ent, mi->size); 3725 SLIST_INSERT_HEAD(&new_head[nhash], ent, next); 3726 } 3727 } 3728 3729 ti->state = new_head; 3730 ti->data = mi->size; 3731 cfg->head = new_head; 3732 cfg->size = mi->size; 3733 3734 mi->main_ptr = old_head; 3735 } 3736 3737 /* 3738 * Free unneded array. 3739 */ 3740 static void 3741 ta_flush_mod_fhash(void *ta_buf) 3742 { 3743 struct mod_item *mi; 3744 3745 mi = (struct mod_item *)ta_buf; 3746 if (mi->main_ptr != NULL) 3747 free(mi->main_ptr, M_IPFW); 3748 } 3749 3750 struct table_algo flow_hash = { 3751 .name = "flow:hash", 3752 .type = IPFW_TABLE_FLOW, 3753 .flags = TA_FLAG_DEFAULT, 3754 .ta_buf_size = sizeof(struct ta_buf_fhash), 3755 .init = ta_init_fhash, 3756 .destroy = ta_destroy_fhash, 3757 .prepare_add = ta_prepare_add_fhash, 3758 .prepare_del = ta_prepare_del_fhash, 3759 .add = ta_add_fhash, 3760 .del = ta_del_fhash, 3761 .flush_entry = ta_flush_fhash_entry, 3762 .foreach = ta_foreach_fhash, 3763 .dump_tentry = ta_dump_fhash_tentry, 3764 .find_tentry = ta_find_fhash_tentry, 3765 .dump_tinfo = ta_dump_fhash_tinfo, 3766 .need_modify = ta_need_modify_fhash, 3767 .prepare_mod = ta_prepare_mod_fhash, 3768 .fill_mod = ta_fill_mod_fhash, 3769 .modify = ta_modify_fhash, 3770 .flush_mod = ta_flush_mod_fhash, 3771 }; 3772 3773 /* 3774 * Kernel fibs bindings. 3775 * 3776 * Implementation: 3777 * 3778 * Runtime part: 3779 * - fully relies on route API 3780 * - fib number is stored in ti->data 3781 * 3782 */ 3783 3784 static int ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen, 3785 uint32_t *val); 3786 static int kfib_parse_opts(int *pfib, char *data); 3787 static void ta_print_kfib_config(void *ta_state, struct table_info *ti, 3788 char *buf, size_t bufsize); 3789 static int ta_init_kfib(struct ip_fw_chain *ch, void **ta_state, 3790 struct table_info *ti, char *data, uint8_t tflags); 3791 static void ta_destroy_kfib(void *ta_state, struct table_info *ti); 3792 static void ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti, 3793 ipfw_ta_tinfo *tinfo); 3794 static int contigmask(uint8_t *p, int len); 3795 static int ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e, 3796 ipfw_obj_tentry *tent); 3797 static int ta_dump_kfib_tentry_int(struct sockaddr *paddr, 3798 struct sockaddr *pmask, ipfw_obj_tentry *tent); 3799 static int ta_find_kfib_tentry(void *ta_state, struct table_info *ti, 3800 ipfw_obj_tentry *tent); 3801 static void ta_foreach_kfib(void *ta_state, struct table_info *ti, 3802 ta_foreach_f *f, void *arg); 3803 3804 3805 static int 3806 ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen, 3807 uint32_t *val) 3808 { 3809 #ifdef INET 3810 struct nhop4_basic nh4; 3811 struct in_addr in; 3812 #endif 3813 #ifdef INET6 3814 struct nhop6_basic nh6; 3815 #endif 3816 int error; 3817 3818 error = ENOENT; 3819 #ifdef INET 3820 if (keylen == 4) { 3821 in.s_addr = *(in_addr_t *)key; 3822 error = fib4_lookup_nh_basic(ti->data, 3823 in, 0, 0, &nh4); 3824 } 3825 #endif 3826 #ifdef INET6 3827 if (keylen == 6) 3828 error = fib6_lookup_nh_basic(ti->data, 3829 (struct in6_addr *)key, 0, 0, 0, &nh6); 3830 #endif 3831 3832 if (error != 0) 3833 return (0); 3834 3835 *val = 0; 3836 3837 return (1); 3838 } 3839 3840 /* Parse 'fib=%d' */ 3841 static int 3842 kfib_parse_opts(int *pfib, char *data) 3843 { 3844 char *pdel, *pend, *s; 3845 int fibnum; 3846 3847 if (data == NULL) 3848 return (0); 3849 if ((pdel = strchr(data, ' ')) == NULL) 3850 return (0); 3851 while (*pdel == ' ') 3852 pdel++; 3853 if (strncmp(pdel, "fib=", 4) != 0) 3854 return (EINVAL); 3855 if ((s = strchr(pdel, ' ')) != NULL) 3856 *s++ = '\0'; 3857 3858 pdel += 4; 3859 /* Need \d+ */ 3860 fibnum = strtol(pdel, &pend, 10); 3861 if (*pend != '\0') 3862 return (EINVAL); 3863 3864 *pfib = fibnum; 3865 3866 return (0); 3867 } 3868 3869 static void 3870 ta_print_kfib_config(void *ta_state, struct table_info *ti, char *buf, 3871 size_t bufsize) 3872 { 3873 3874 if (ti->data != 0) 3875 snprintf(buf, bufsize, "%s fib=%lu", "addr:kfib", ti->data); 3876 else 3877 snprintf(buf, bufsize, "%s", "addr:kfib"); 3878 } 3879 3880 static int 3881 ta_init_kfib(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti, 3882 char *data, uint8_t tflags) 3883 { 3884 int error, fibnum; 3885 3886 fibnum = 0; 3887 if ((error = kfib_parse_opts(&fibnum, data)) != 0) 3888 return (error); 3889 3890 if (fibnum >= rt_numfibs) 3891 return (E2BIG); 3892 3893 ti->data = fibnum; 3894 ti->lookup = ta_lookup_kfib; 3895 3896 return (0); 3897 } 3898 3899 /* 3900 * Destroys table @ti 3901 */ 3902 static void 3903 ta_destroy_kfib(void *ta_state, struct table_info *ti) 3904 { 3905 3906 } 3907 3908 /* 3909 * Provide algo-specific table info 3910 */ 3911 static void 3912 ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo) 3913 { 3914 3915 tinfo->flags = IPFW_TATFLAGS_AFDATA; 3916 tinfo->taclass4 = IPFW_TACLASS_RADIX; 3917 tinfo->count4 = 0; 3918 tinfo->itemsize4 = sizeof(struct rtentry); 3919 tinfo->taclass6 = IPFW_TACLASS_RADIX; 3920 tinfo->count6 = 0; 3921 tinfo->itemsize6 = sizeof(struct rtentry); 3922 } 3923 3924 static int 3925 contigmask(uint8_t *p, int len) 3926 { 3927 int i, n; 3928 3929 for (i = 0; i < len ; i++) 3930 if ( (p[i/8] & (1 << (7 - (i%8)))) == 0) /* first bit unset */ 3931 break; 3932 for (n= i + 1; n < len; n++) 3933 if ( (p[n/8] & (1 << (7 - (n % 8)))) != 0) 3934 return (-1); /* mask not contiguous */ 3935 return (i); 3936 } 3937 3938 3939 static int 3940 ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e, 3941 ipfw_obj_tentry *tent) 3942 { 3943 struct rtentry *rte; 3944 3945 rte = (struct rtentry *)e; 3946 3947 return ta_dump_kfib_tentry_int(rt_key(rte), rt_mask(rte), tent); 3948 } 3949 3950 static int 3951 ta_dump_kfib_tentry_int(struct sockaddr *paddr, struct sockaddr *pmask, 3952 ipfw_obj_tentry *tent) 3953 { 3954 #ifdef INET 3955 struct sockaddr_in *addr, *mask; 3956 #endif 3957 #ifdef INET6 3958 struct sockaddr_in6 *addr6, *mask6; 3959 #endif 3960 int len; 3961 3962 len = 0; 3963 3964 /* Guess IPv4/IPv6 radix by sockaddr family */ 3965 #ifdef INET 3966 if (paddr->sa_family == AF_INET) { 3967 addr = (struct sockaddr_in *)paddr; 3968 mask = (struct sockaddr_in *)pmask; 3969 tent->k.addr.s_addr = addr->sin_addr.s_addr; 3970 len = 32; 3971 if (mask != NULL) 3972 len = contigmask((uint8_t *)&mask->sin_addr, 32); 3973 if (len == -1) 3974 len = 0; 3975 tent->masklen = len; 3976 tent->subtype = AF_INET; 3977 tent->v.kidx = 0; /* Do we need to put GW here? */ 3978 } 3979 #endif 3980 #ifdef INET6 3981 if (paddr->sa_family == AF_INET6) { 3982 addr6 = (struct sockaddr_in6 *)paddr; 3983 mask6 = (struct sockaddr_in6 *)pmask; 3984 memcpy(&tent->k, &addr6->sin6_addr, sizeof(struct in6_addr)); 3985 len = 128; 3986 if (mask6 != NULL) 3987 len = contigmask((uint8_t *)&mask6->sin6_addr, 128); 3988 if (len == -1) 3989 len = 0; 3990 tent->masklen = len; 3991 tent->subtype = AF_INET6; 3992 tent->v.kidx = 0; 3993 } 3994 #endif 3995 3996 return (0); 3997 } 3998 3999 static int 4000 ta_find_kfib_tentry(void *ta_state, struct table_info *ti, 4001 ipfw_obj_tentry *tent) 4002 { 4003 struct rt_addrinfo info; 4004 struct sockaddr_in6 key6, dst6, mask6; 4005 struct sockaddr *dst, *key, *mask; 4006 4007 /* Prepare sockaddr for prefix/mask and info */ 4008 bzero(&dst6, sizeof(dst6)); 4009 dst6.sin6_len = sizeof(dst6); 4010 dst = (struct sockaddr *)&dst6; 4011 bzero(&mask6, sizeof(mask6)); 4012 mask6.sin6_len = sizeof(mask6); 4013 mask = (struct sockaddr *)&mask6; 4014 4015 bzero(&info, sizeof(info)); 4016 info.rti_info[RTAX_DST] = dst; 4017 info.rti_info[RTAX_NETMASK] = mask; 4018 4019 /* Prepare the lookup key */ 4020 bzero(&key6, sizeof(key6)); 4021 key6.sin6_family = tent->subtype; 4022 key = (struct sockaddr *)&key6; 4023 4024 if (tent->subtype == AF_INET) { 4025 ((struct sockaddr_in *)&key6)->sin_addr = tent->k.addr; 4026 key6.sin6_len = sizeof(struct sockaddr_in); 4027 } else { 4028 key6.sin6_addr = tent->k.addr6; 4029 key6.sin6_len = sizeof(struct sockaddr_in6); 4030 } 4031 4032 if (rib_lookup_info(ti->data, key, 0, 0, &info) != 0) 4033 return (ENOENT); 4034 if ((info.rti_addrs & RTA_NETMASK) == 0) 4035 mask = NULL; 4036 4037 ta_dump_kfib_tentry_int(dst, mask, tent); 4038 4039 return (0); 4040 } 4041 4042 static void 4043 ta_foreach_kfib(void *ta_state, struct table_info *ti, ta_foreach_f *f, 4044 void *arg) 4045 { 4046 struct rib_head *rh; 4047 int error; 4048 4049 rh = rt_tables_get_rnh(ti->data, AF_INET); 4050 if (rh != NULL) { 4051 RIB_RLOCK(rh); 4052 error = rh->rnh_walktree(&rh->head, (walktree_f_t *)f, arg); 4053 RIB_RUNLOCK(rh); 4054 } 4055 4056 rh = rt_tables_get_rnh(ti->data, AF_INET6); 4057 if (rh != NULL) { 4058 RIB_RLOCK(rh); 4059 error = rh->rnh_walktree(&rh->head, (walktree_f_t *)f, arg); 4060 RIB_RUNLOCK(rh); 4061 } 4062 } 4063 4064 struct table_algo addr_kfib = { 4065 .name = "addr:kfib", 4066 .type = IPFW_TABLE_ADDR, 4067 .flags = TA_FLAG_READONLY, 4068 .ta_buf_size = 0, 4069 .init = ta_init_kfib, 4070 .destroy = ta_destroy_kfib, 4071 .foreach = ta_foreach_kfib, 4072 .dump_tentry = ta_dump_kfib_tentry, 4073 .find_tentry = ta_find_kfib_tentry, 4074 .dump_tinfo = ta_dump_kfib_tinfo, 4075 .print_config = ta_print_kfib_config, 4076 }; 4077 4078 void 4079 ipfw_table_algo_init(struct ip_fw_chain *ch) 4080 { 4081 size_t sz; 4082 4083 /* 4084 * Register all algorithms presented here. 4085 */ 4086 sz = sizeof(struct table_algo); 4087 ipfw_add_table_algo(ch, &addr_radix, sz, &addr_radix.idx); 4088 ipfw_add_table_algo(ch, &addr_hash, sz, &addr_hash.idx); 4089 ipfw_add_table_algo(ch, &iface_idx, sz, &iface_idx.idx); 4090 ipfw_add_table_algo(ch, &number_array, sz, &number_array.idx); 4091 ipfw_add_table_algo(ch, &flow_hash, sz, &flow_hash.idx); 4092 ipfw_add_table_algo(ch, &addr_kfib, sz, &addr_kfib.idx); 4093 } 4094 4095 void 4096 ipfw_table_algo_destroy(struct ip_fw_chain *ch) 4097 { 4098 4099 ipfw_del_table_algo(ch, addr_radix.idx); 4100 ipfw_del_table_algo(ch, addr_hash.idx); 4101 ipfw_del_table_algo(ch, iface_idx.idx); 4102 ipfw_del_table_algo(ch, number_array.idx); 4103 ipfw_del_table_algo(ch, flow_hash.idx); 4104 ipfw_del_table_algo(ch, addr_kfib.idx); 4105 } 4106 4107 4108