1 /*- 2 * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko. 3 * Copyright (c) 2014 Yandex LLC 4 * Copyright (c) 2014 Alexander V. Chernikov 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * Lookup table support for ipfw. 33 * 34 * This file contains handlers for all generic tables' operations: 35 * add/del/flush entries, list/dump tables etc.. 36 * 37 * Table data modification is protected by both UH and runtime lock 38 * while reading configuration/data is protected by UH lock. 39 * 40 * Lookup algorithms for all table types are located in ip_fw_table_algo.c 41 */ 42 43 #include "opt_ipfw.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/rwlock.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/queue.h> 55 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */ 56 57 #include <netinet/in.h> 58 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */ 59 #include <netinet/ip_fw.h> 60 61 #include <netpfil/ipfw/ip_fw_private.h> 62 #include <netpfil/ipfw/ip_fw_table.h> 63 64 /* 65 * Table has the following `type` concepts: 66 * 67 * `no.type` represents lookup key type (addr, ifp, uid, etc..) 68 * vmask represents bitmask of table values which are present at the moment. 69 * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old 70 * single-value-for-all approach. 71 */ 72 struct table_config { 73 struct named_object no; 74 uint8_t tflags; /* type flags */ 75 uint8_t locked; /* 1 if locked from changes */ 76 uint8_t linked; /* 1 if already linked */ 77 uint8_t ochanged; /* used by set swapping */ 78 uint8_t vshared; /* 1 if using shared value array */ 79 uint8_t spare[3]; 80 uint32_t count; /* Number of records */ 81 uint32_t limit; /* Max number of records */ 82 uint32_t vmask; /* bitmask with supported values */ 83 uint32_t ocount; /* used by set swapping */ 84 uint64_t gencnt; /* generation count */ 85 char tablename[64]; /* table name */ 86 struct table_algo *ta; /* Callbacks for given algo */ 87 void *astate; /* algorithm state */ 88 struct table_info ti_copy; /* data to put to table_info */ 89 struct namedobj_instance *vi; 90 }; 91 92 static struct table_config *find_table(struct namedobj_instance *ni, 93 struct tid_info *ti); 94 static struct table_config *alloc_table_config(struct ip_fw_chain *ch, 95 struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags); 96 static void free_table_config(struct namedobj_instance *ni, 97 struct table_config *tc); 98 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 99 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref); 100 static void link_table(struct ip_fw_chain *ch, struct table_config *tc); 101 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc); 102 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 103 struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc); 104 #define OP_ADD 1 105 #define OP_DEL 0 106 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 107 struct sockopt_data *sd); 108 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 109 ipfw_xtable_info *i); 110 static int dump_table_tentry(void *e, void *arg); 111 static int dump_table_xentry(void *e, void *arg); 112 113 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 114 struct tid_info *b); 115 116 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 117 struct table_config *tc, struct table_info *ti, uint32_t count); 118 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti); 119 120 static struct table_algo *find_table_algo(struct tables_config *tableconf, 121 struct tid_info *ti, char *name); 122 123 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti); 124 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti); 125 static int classify_table_opcode(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype); 126 127 #define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash) 128 #define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k])) 129 130 #define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */ 131 132 void 133 rollback_toperation_state(struct ip_fw_chain *ch, void *object) 134 { 135 struct tables_config *tcfg; 136 struct op_state *os; 137 138 tcfg = CHAIN_TO_TCFG(ch); 139 TAILQ_FOREACH(os, &tcfg->state_list, next) 140 os->func(object, os); 141 } 142 143 void 144 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 145 { 146 struct tables_config *tcfg; 147 148 tcfg = CHAIN_TO_TCFG(ch); 149 TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next); 150 } 151 152 void 153 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 154 { 155 struct tables_config *tcfg; 156 157 tcfg = CHAIN_TO_TCFG(ch); 158 TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next); 159 } 160 161 void 162 tc_ref(struct table_config *tc) 163 { 164 165 tc->no.refcnt++; 166 } 167 168 void 169 tc_unref(struct table_config *tc) 170 { 171 172 tc->no.refcnt--; 173 } 174 175 static struct table_value * 176 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx) 177 { 178 struct table_value *pval; 179 180 pval = (struct table_value *)ch->valuestate; 181 182 return (&pval[kidx]); 183 } 184 185 186 /* 187 * Checks if we're able to insert/update entry @tei into table 188 * w.r.t @tc limits. 189 * May alter @tei to indicate insertion error / insert 190 * options. 191 * 192 * Returns 0 if operation can be performed/ 193 */ 194 static int 195 check_table_limit(struct table_config *tc, struct tentry_info *tei) 196 { 197 198 if (tc->limit == 0 || tc->count < tc->limit) 199 return (0); 200 201 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) { 202 /* Notify userland on error cause */ 203 tei->flags |= TEI_FLAGS_LIMIT; 204 return (EFBIG); 205 } 206 207 /* 208 * We have UPDATE flag set. 209 * Permit updating record (if found), 210 * but restrict adding new one since we've 211 * already hit the limit. 212 */ 213 tei->flags |= TEI_FLAGS_DONTADD; 214 215 return (0); 216 } 217 218 /* 219 * Convert algorithm callback return code into 220 * one of pre-defined states known by userland. 221 */ 222 static void 223 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num) 224 { 225 int flag; 226 227 flag = 0; 228 229 switch (error) { 230 case 0: 231 if (op == OP_ADD && num != 0) 232 flag = TEI_FLAGS_ADDED; 233 if (op == OP_DEL) 234 flag = TEI_FLAGS_DELETED; 235 break; 236 case ENOENT: 237 flag = TEI_FLAGS_NOTFOUND; 238 break; 239 case EEXIST: 240 flag = TEI_FLAGS_EXISTS; 241 break; 242 default: 243 flag = TEI_FLAGS_ERROR; 244 } 245 246 tei->flags |= flag; 247 } 248 249 /* 250 * Creates and references table with default parameters. 251 * Saves table config, algo and allocated kidx info @ptc, @pta and 252 * @pkidx if non-zero. 253 * Used for table auto-creation to support old binaries. 254 * 255 * Returns 0 on success. 256 */ 257 static int 258 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti, 259 uint16_t *pkidx) 260 { 261 ipfw_xtable_info xi; 262 int error; 263 264 memset(&xi, 0, sizeof(xi)); 265 /* Set default value mask for legacy clients */ 266 xi.vmask = IPFW_VTYPE_LEGACY; 267 268 error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1); 269 if (error != 0) 270 return (error); 271 272 return (0); 273 } 274 275 /* 276 * Find and reference existing table optionally 277 * creating new one. 278 * 279 * Saves found table config into @ptc. 280 * Note function may drop/acquire UH_WLOCK. 281 * Returns 0 if table was found/created and referenced 282 * or non-zero return code. 283 */ 284 static int 285 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 286 struct tentry_info *tei, uint32_t count, int op, 287 struct table_config **ptc) 288 { 289 struct namedobj_instance *ni; 290 struct table_config *tc; 291 uint16_t kidx; 292 int error; 293 294 IPFW_UH_WLOCK_ASSERT(ch); 295 296 ni = CHAIN_TO_NI(ch); 297 tc = NULL; 298 if ((tc = find_table(ni, ti)) != NULL) { 299 /* check table type */ 300 if (tc->no.type != ti->type) 301 return (EINVAL); 302 303 if (tc->locked != 0) 304 return (EACCES); 305 306 /* Try to exit early on limit hit */ 307 if (op == OP_ADD && count == 1 && 308 check_table_limit(tc, tei) != 0) 309 return (EFBIG); 310 311 /* Reference and return */ 312 tc->no.refcnt++; 313 *ptc = tc; 314 return (0); 315 } 316 317 if (op == OP_DEL) 318 return (ESRCH); 319 320 /* Compability mode: create new table for old clients */ 321 if ((tei->flags & TEI_FLAGS_COMPAT) == 0) 322 return (ESRCH); 323 324 IPFW_UH_WUNLOCK(ch); 325 error = create_table_compat(ch, ti, &kidx); 326 IPFW_UH_WLOCK(ch); 327 328 if (error != 0) 329 return (error); 330 331 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 332 KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx)); 333 334 /* OK, now we've got referenced table. */ 335 *ptc = tc; 336 return (0); 337 } 338 339 /* 340 * Rolls back already @added to @tc entries using state array @ta_buf_m. 341 * Assume the following layout: 342 * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases 343 * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1]) 344 * for storing deleted state 345 */ 346 static void 347 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc, 348 struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m, 349 uint32_t count, uint32_t added) 350 { 351 struct table_algo *ta; 352 struct tentry_info *ptei; 353 caddr_t v, vv; 354 size_t ta_buf_sz; 355 int error, i; 356 uint32_t num; 357 358 IPFW_UH_WLOCK_ASSERT(ch); 359 360 ta = tc->ta; 361 ta_buf_sz = ta->ta_buf_size; 362 v = ta_buf_m; 363 vv = v + count * ta_buf_sz; 364 for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) { 365 ptei = &tei[i]; 366 if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) { 367 368 /* 369 * We have old value stored by previous 370 * call in @ptei->value. Do add once again 371 * to restore it. 372 */ 373 error = ta->add(tc->astate, tinfo, ptei, v, &num); 374 KASSERT(error == 0, ("rollback UPDATE fail")); 375 KASSERT(num == 0, ("rollback UPDATE fail2")); 376 continue; 377 } 378 379 error = ta->prepare_del(ch, ptei, vv); 380 KASSERT(error == 0, ("pre-rollback INSERT failed")); 381 error = ta->del(tc->astate, tinfo, ptei, vv, &num); 382 KASSERT(error == 0, ("rollback INSERT failed")); 383 tc->count -= num; 384 } 385 } 386 387 /* 388 * Prepares add/del state for all @count entries in @tei. 389 * Uses either stack buffer (@ta_buf) or allocates a new one. 390 * Stores pointer to allocated buffer back to @ta_buf. 391 * 392 * Returns 0 on success. 393 */ 394 static int 395 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 396 struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf) 397 { 398 caddr_t ta_buf_m, v; 399 size_t ta_buf_sz, sz; 400 struct tentry_info *ptei; 401 int error, i; 402 403 error = 0; 404 ta_buf_sz = ta->ta_buf_size; 405 if (count == 1) { 406 /* Sigle add/delete, use on-stack buffer */ 407 memset(*ta_buf, 0, TA_BUF_SZ); 408 ta_buf_m = *ta_buf; 409 } else { 410 411 /* 412 * Multiple adds/deletes, allocate larger buffer 413 * 414 * Note we need 2xcount buffer for add case: 415 * we have hold both ADD state 416 * and DELETE state (this may be needed 417 * if we need to rollback all changes) 418 */ 419 sz = count * ta_buf_sz; 420 ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP, 421 M_WAITOK | M_ZERO); 422 } 423 424 v = ta_buf_m; 425 for (i = 0; i < count; i++, v += ta_buf_sz) { 426 ptei = &tei[i]; 427 error = (op == OP_ADD) ? 428 ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v); 429 430 /* 431 * Some syntax error (incorrect mask, or address, or 432 * anything). Return error regardless of atomicity 433 * settings. 434 */ 435 if (error != 0) 436 break; 437 } 438 439 *ta_buf = ta_buf_m; 440 return (error); 441 } 442 443 /* 444 * Flushes allocated state for each @count entries in @tei. 445 * Frees @ta_buf_m if differs from stack buffer @ta_buf. 446 */ 447 static void 448 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 449 struct tentry_info *tei, uint32_t count, int rollback, 450 caddr_t ta_buf_m, caddr_t ta_buf) 451 { 452 caddr_t v; 453 struct tentry_info *ptei; 454 size_t ta_buf_sz; 455 int i; 456 457 ta_buf_sz = ta->ta_buf_size; 458 459 /* Run cleaning callback anyway */ 460 v = ta_buf_m; 461 for (i = 0; i < count; i++, v += ta_buf_sz) { 462 ptei = &tei[i]; 463 ta->flush_entry(ch, ptei, v); 464 if (ptei->ptv != NULL) { 465 free(ptei->ptv, M_IPFW); 466 ptei->ptv = NULL; 467 } 468 } 469 470 /* Clean up "deleted" state in case of rollback */ 471 if (rollback != 0) { 472 v = ta_buf_m + count * ta_buf_sz; 473 for (i = 0; i < count; i++, v += ta_buf_sz) 474 ta->flush_entry(ch, &tei[i], v); 475 } 476 477 if (ta_buf_m != ta_buf) 478 free(ta_buf_m, M_TEMP); 479 } 480 481 482 static void 483 rollback_add_entry(void *object, struct op_state *_state) 484 { 485 struct ip_fw_chain *ch; 486 struct tableop_state *ts; 487 488 ts = (struct tableop_state *)_state; 489 490 if (ts->tc != object && ts->ch != object) 491 return; 492 493 ch = ts->ch; 494 495 IPFW_UH_WLOCK_ASSERT(ch); 496 497 /* Call specifid unlockers */ 498 rollback_table_values(ts); 499 500 /* Indicate we've called */ 501 ts->modified = 1; 502 } 503 504 /* 505 * Adds/updates one or more entries in table @ti. 506 * 507 * Function may drop/reacquire UH wlock multiple times due to 508 * items alloc, algorithm callbacks (check_space), value linkage 509 * (new values, value storage realloc), etc.. 510 * Other processes like other adds (which may involve storage resize), 511 * table swaps (which changes table data and may change algo type), 512 * table modify (which may change value mask) may be executed 513 * simultaneously so we need to deal with it. 514 * 515 * The following approach was implemented: 516 * we have per-chain linked list, protected with UH lock. 517 * add_table_entry prepares special on-stack structure wthich is passed 518 * to its descendants. Users add this structure to this list before unlock. 519 * After performing needed operations and acquiring UH lock back, each user 520 * checks if structure has changed. If true, it rolls local state back and 521 * returns without error to the caller. 522 * add_table_entry() on its own checks if structure has changed and restarts 523 * its operation from the beginning (goto restart). 524 * 525 * Functions which are modifying fields of interest (currently 526 * resize_shared_value_storage() and swap_tables() ) 527 * traverses given list while holding UH lock immediately before 528 * performing their operations calling function provided be list entry 529 * ( currently rollback_add_entry ) which performs rollback for all necessary 530 * state and sets appropriate values in structure indicating rollback 531 * has happened. 532 * 533 * Algo interaction: 534 * Function references @ti first to ensure table won't 535 * disappear or change its type. 536 * After that, prepare_add callback is called for each @tei entry. 537 * Next, we try to add each entry under UH+WHLOCK 538 * using add() callback. 539 * Finally, we free all state by calling flush_entry callback 540 * for each @tei. 541 * 542 * Returns 0 on success. 543 */ 544 int 545 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 546 struct tentry_info *tei, uint8_t flags, uint32_t count) 547 { 548 struct table_config *tc; 549 struct table_algo *ta; 550 uint16_t kidx; 551 int error, first_error, i, rollback; 552 uint32_t num, numadd; 553 struct tentry_info *ptei; 554 struct tableop_state ts; 555 char ta_buf[TA_BUF_SZ]; 556 caddr_t ta_buf_m, v; 557 558 memset(&ts, 0, sizeof(ts)); 559 ta = NULL; 560 IPFW_UH_WLOCK(ch); 561 562 /* 563 * Find and reference existing table. 564 */ 565 restart: 566 if (ts.modified != 0) { 567 IPFW_UH_WUNLOCK(ch); 568 flush_batch_buffer(ch, ta, tei, count, rollback, 569 ta_buf_m, ta_buf); 570 memset(&ts, 0, sizeof(ts)); 571 ta = NULL; 572 IPFW_UH_WLOCK(ch); 573 } 574 575 error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc); 576 if (error != 0) { 577 IPFW_UH_WUNLOCK(ch); 578 return (error); 579 } 580 ta = tc->ta; 581 582 /* Fill in tablestate */ 583 ts.ch = ch; 584 ts.opstate.func = rollback_add_entry; 585 ts.tc = tc; 586 ts.vshared = tc->vshared; 587 ts.vmask = tc->vmask; 588 ts.ta = ta; 589 ts.tei = tei; 590 ts.count = count; 591 rollback = 0; 592 add_toperation_state(ch, &ts); 593 IPFW_UH_WUNLOCK(ch); 594 595 /* Allocate memory and prepare record(s) */ 596 /* Pass stack buffer by default */ 597 ta_buf_m = ta_buf; 598 error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m); 599 if (error != 0) 600 goto cleanup; 601 602 IPFW_UH_WLOCK(ch); 603 /* Drop reference we've used in first search */ 604 tc->no.refcnt--; 605 606 /* 607 * Check if table swap has happened. 608 * (so table algo might be changed). 609 * Restart operation to achieve consistent behavior. 610 */ 611 del_toperation_state(ch, &ts); 612 if (ts.modified != 0) 613 goto restart; 614 615 /* 616 * Link all values values to shared/per-table value array. 617 * 618 * May release/reacquire UH_WLOCK. 619 */ 620 error = ipfw_link_table_values(ch, &ts); 621 if (error != 0) 622 goto cleanup; 623 if (ts.modified != 0) 624 goto restart; 625 626 /* 627 * Ensure we are able to add all entries without additional 628 * memory allocations. May release/reacquire UH_WLOCK. 629 */ 630 kidx = tc->no.kidx; 631 error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count); 632 if (error != 0) 633 goto cleanup; 634 if (ts.modified != 0) 635 goto restart; 636 637 /* We've got valid table in @tc. Let's try to add data */ 638 kidx = tc->no.kidx; 639 ta = tc->ta; 640 numadd = 0; 641 first_error = 0; 642 643 IPFW_WLOCK(ch); 644 645 v = ta_buf_m; 646 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 647 ptei = &tei[i]; 648 num = 0; 649 /* check limit before adding */ 650 if ((error = check_table_limit(tc, ptei)) == 0) { 651 error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx), 652 ptei, v, &num); 653 /* Set status flag to inform userland */ 654 store_tei_result(ptei, OP_ADD, error, num); 655 } 656 if (error == 0) { 657 /* Update number of records to ease limit checking */ 658 tc->count += num; 659 numadd += num; 660 continue; 661 } 662 663 if (first_error == 0) 664 first_error = error; 665 666 /* 667 * Some error have happened. Check our atomicity 668 * settings: continue if atomicity is not required, 669 * rollback changes otherwise. 670 */ 671 if ((flags & IPFW_CTF_ATOMIC) == 0) 672 continue; 673 674 rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx), 675 tei, ta_buf_m, count, i); 676 677 rollback = 1; 678 break; 679 } 680 681 IPFW_WUNLOCK(ch); 682 683 ipfw_garbage_table_values(ch, tc, tei, count, rollback); 684 685 /* Permit post-add algorithm grow/rehash. */ 686 if (numadd != 0) 687 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 688 689 /* Return first error to user, if any */ 690 error = first_error; 691 692 cleanup: 693 IPFW_UH_WUNLOCK(ch); 694 695 flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf); 696 697 return (error); 698 } 699 700 /* 701 * Deletes one or more entries in table @ti. 702 * 703 * Returns 0 on success. 704 */ 705 int 706 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 707 struct tentry_info *tei, uint8_t flags, uint32_t count) 708 { 709 struct table_config *tc; 710 struct table_algo *ta; 711 struct tentry_info *ptei; 712 uint16_t kidx; 713 int error, first_error, i; 714 uint32_t num, numdel; 715 char ta_buf[TA_BUF_SZ]; 716 caddr_t ta_buf_m, v; 717 718 /* 719 * Find and reference existing table. 720 */ 721 IPFW_UH_WLOCK(ch); 722 error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc); 723 if (error != 0) { 724 IPFW_UH_WUNLOCK(ch); 725 return (error); 726 } 727 ta = tc->ta; 728 IPFW_UH_WUNLOCK(ch); 729 730 /* Allocate memory and prepare record(s) */ 731 /* Pass stack buffer by default */ 732 ta_buf_m = ta_buf; 733 error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m); 734 if (error != 0) 735 goto cleanup; 736 737 IPFW_UH_WLOCK(ch); 738 739 /* Drop reference we've used in first search */ 740 tc->no.refcnt--; 741 742 /* 743 * Check if table algo is still the same. 744 * (changed ta may be the result of table swap). 745 */ 746 if (ta != tc->ta) { 747 IPFW_UH_WUNLOCK(ch); 748 error = EINVAL; 749 goto cleanup; 750 } 751 752 kidx = tc->no.kidx; 753 numdel = 0; 754 first_error = 0; 755 756 IPFW_WLOCK(ch); 757 v = ta_buf_m; 758 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 759 ptei = &tei[i]; 760 num = 0; 761 error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v, 762 &num); 763 /* Save state for userland */ 764 store_tei_result(ptei, OP_DEL, error, num); 765 if (error != 0 && first_error == 0) 766 first_error = error; 767 tc->count -= num; 768 numdel += num; 769 } 770 IPFW_WUNLOCK(ch); 771 772 /* Unlink non-used values */ 773 ipfw_garbage_table_values(ch, tc, tei, count, 0); 774 775 if (numdel != 0) { 776 /* Run post-del hook to permit shrinking */ 777 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 778 } 779 780 IPFW_UH_WUNLOCK(ch); 781 782 /* Return first error to user, if any */ 783 error = first_error; 784 785 cleanup: 786 flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf); 787 788 return (error); 789 } 790 791 /* 792 * Ensure that table @tc has enough space to add @count entries without 793 * need for reallocation. 794 * 795 * Callbacks order: 796 * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize. 797 * 798 * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags. 799 * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage 800 * 3) modify (UH_WLOCK + WLOCK) - switch pointers 801 * 4) flush_modify (UH_WLOCK) - free state, if needed 802 * 803 * Returns 0 on success. 804 */ 805 static int 806 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 807 struct table_config *tc, struct table_info *ti, uint32_t count) 808 { 809 struct table_algo *ta; 810 uint64_t pflags; 811 char ta_buf[TA_BUF_SZ]; 812 int error; 813 814 IPFW_UH_WLOCK_ASSERT(ch); 815 816 error = 0; 817 ta = tc->ta; 818 if (ta->need_modify == NULL) 819 return (0); 820 821 /* Acquire reference not to loose @tc between locks/unlocks */ 822 tc->no.refcnt++; 823 824 /* 825 * TODO: think about avoiding race between large add/large delete 826 * operation on algorithm which implements shrinking along with 827 * growing. 828 */ 829 while (true) { 830 pflags = 0; 831 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 832 error = 0; 833 break; 834 } 835 836 /* We have to shrink/grow table */ 837 if (ts != NULL) 838 add_toperation_state(ch, ts); 839 IPFW_UH_WUNLOCK(ch); 840 841 memset(&ta_buf, 0, sizeof(ta_buf)); 842 error = ta->prepare_mod(ta_buf, &pflags); 843 844 IPFW_UH_WLOCK(ch); 845 if (ts != NULL) 846 del_toperation_state(ch, ts); 847 848 if (error != 0) 849 break; 850 851 if (ts != NULL && ts->modified != 0) { 852 853 /* 854 * Swap operation has happened 855 * so we're currently operating on other 856 * table data. Stop doing this. 857 */ 858 ta->flush_mod(ta_buf); 859 break; 860 } 861 862 /* Check if we still need to alter table */ 863 ti = KIDX_TO_TI(ch, tc->no.kidx); 864 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 865 IPFW_UH_WUNLOCK(ch); 866 867 /* 868 * Other thread has already performed resize. 869 * Flush our state and return. 870 */ 871 ta->flush_mod(ta_buf); 872 break; 873 } 874 875 error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags); 876 if (error == 0) { 877 /* Do actual modification */ 878 IPFW_WLOCK(ch); 879 ta->modify(tc->astate, ti, ta_buf, pflags); 880 IPFW_WUNLOCK(ch); 881 } 882 883 /* Anyway, flush data and retry */ 884 ta->flush_mod(ta_buf); 885 } 886 887 tc->no.refcnt--; 888 return (error); 889 } 890 891 /* 892 * Adds or deletes record in table. 893 * Data layout (v0): 894 * Request: [ ip_fw3_opheader ipfw_table_xentry ] 895 * 896 * Returns 0 on success 897 */ 898 static int 899 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 900 struct sockopt_data *sd) 901 { 902 ipfw_table_xentry *xent; 903 struct tentry_info tei; 904 struct tid_info ti; 905 struct table_value v; 906 int error, hdrlen, read; 907 908 hdrlen = offsetof(ipfw_table_xentry, k); 909 910 /* Check minimum header size */ 911 if (sd->valsize < (sizeof(*op3) + hdrlen)) 912 return (EINVAL); 913 914 read = sizeof(ip_fw3_opheader); 915 916 /* Check if xentry len field is valid */ 917 xent = (ipfw_table_xentry *)(op3 + 1); 918 if (xent->len < hdrlen || xent->len + read > sd->valsize) 919 return (EINVAL); 920 921 memset(&tei, 0, sizeof(tei)); 922 tei.paddr = &xent->k; 923 tei.masklen = xent->masklen; 924 ipfw_import_table_value_legacy(xent->value, &v); 925 tei.pvalue = &v; 926 /* Old requests compability */ 927 tei.flags = TEI_FLAGS_COMPAT; 928 if (xent->type == IPFW_TABLE_ADDR) { 929 if (xent->len - hdrlen == sizeof(in_addr_t)) 930 tei.subtype = AF_INET; 931 else 932 tei.subtype = AF_INET6; 933 } 934 935 memset(&ti, 0, sizeof(ti)); 936 ti.uidx = xent->tbl; 937 ti.type = xent->type; 938 939 error = (op3->opcode == IP_FW_TABLE_XADD) ? 940 add_table_entry(ch, &ti, &tei, 0, 1) : 941 del_table_entry(ch, &ti, &tei, 0, 1); 942 943 return (error); 944 } 945 946 /* 947 * Adds or deletes record in table. 948 * Data layout (v1)(current): 949 * Request: [ ipfw_obj_header 950 * ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ] 951 * ] 952 * 953 * Returns 0 on success 954 */ 955 static int 956 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 957 struct sockopt_data *sd) 958 { 959 ipfw_obj_tentry *tent, *ptent; 960 ipfw_obj_ctlv *ctlv; 961 ipfw_obj_header *oh; 962 struct tentry_info *ptei, tei, *tei_buf; 963 struct tid_info ti; 964 int error, i, kidx, read; 965 966 /* Check minimum header size */ 967 if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv))) 968 return (EINVAL); 969 970 /* Check if passed data is too long */ 971 if (sd->valsize != sd->kavail) 972 return (EINVAL); 973 974 oh = (ipfw_obj_header *)sd->kbuf; 975 976 /* Basic length checks for TLVs */ 977 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 978 return (EINVAL); 979 980 read = sizeof(*oh); 981 982 ctlv = (ipfw_obj_ctlv *)(oh + 1); 983 if (ctlv->head.length + read != sd->valsize) 984 return (EINVAL); 985 986 read += sizeof(*ctlv); 987 tent = (ipfw_obj_tentry *)(ctlv + 1); 988 if (ctlv->count * sizeof(*tent) + read != sd->valsize) 989 return (EINVAL); 990 991 if (ctlv->count == 0) 992 return (0); 993 994 /* 995 * Mark entire buffer as "read". 996 * This instructs sopt api write it back 997 * after function return. 998 */ 999 ipfw_get_sopt_header(sd, sd->valsize); 1000 1001 /* Perform basic checks for each entry */ 1002 ptent = tent; 1003 kidx = tent->idx; 1004 for (i = 0; i < ctlv->count; i++, ptent++) { 1005 if (ptent->head.length != sizeof(*ptent)) 1006 return (EINVAL); 1007 if (ptent->idx != kidx) 1008 return (ENOTSUP); 1009 } 1010 1011 /* Convert data into kernel request objects */ 1012 objheader_to_ti(oh, &ti); 1013 ti.type = oh->ntlv.type; 1014 ti.uidx = kidx; 1015 1016 /* Use on-stack buffer for single add/del */ 1017 if (ctlv->count == 1) { 1018 memset(&tei, 0, sizeof(tei)); 1019 tei_buf = &tei; 1020 } else 1021 tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP, 1022 M_WAITOK | M_ZERO); 1023 1024 ptei = tei_buf; 1025 ptent = tent; 1026 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1027 ptei->paddr = &ptent->k; 1028 ptei->subtype = ptent->subtype; 1029 ptei->masklen = ptent->masklen; 1030 if (ptent->head.flags & IPFW_TF_UPDATE) 1031 ptei->flags |= TEI_FLAGS_UPDATE; 1032 1033 ipfw_import_table_value_v1(&ptent->v.value); 1034 ptei->pvalue = (struct table_value *)&ptent->v.value; 1035 } 1036 1037 error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ? 1038 add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) : 1039 del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count); 1040 1041 /* Translate result back to userland */ 1042 ptei = tei_buf; 1043 ptent = tent; 1044 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1045 if (ptei->flags & TEI_FLAGS_ADDED) 1046 ptent->result = IPFW_TR_ADDED; 1047 else if (ptei->flags & TEI_FLAGS_DELETED) 1048 ptent->result = IPFW_TR_DELETED; 1049 else if (ptei->flags & TEI_FLAGS_UPDATED) 1050 ptent->result = IPFW_TR_UPDATED; 1051 else if (ptei->flags & TEI_FLAGS_LIMIT) 1052 ptent->result = IPFW_TR_LIMIT; 1053 else if (ptei->flags & TEI_FLAGS_ERROR) 1054 ptent->result = IPFW_TR_ERROR; 1055 else if (ptei->flags & TEI_FLAGS_NOTFOUND) 1056 ptent->result = IPFW_TR_NOTFOUND; 1057 else if (ptei->flags & TEI_FLAGS_EXISTS) 1058 ptent->result = IPFW_TR_EXISTS; 1059 ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value); 1060 } 1061 1062 if (tei_buf != &tei) 1063 free(tei_buf, M_TEMP); 1064 1065 return (error); 1066 } 1067 1068 /* 1069 * Looks up an entry in given table. 1070 * Data layout (v0)(current): 1071 * Request: [ ipfw_obj_header ipfw_obj_tentry ] 1072 * Reply: [ ipfw_obj_header ipfw_obj_tentry ] 1073 * 1074 * Returns 0 on success 1075 */ 1076 static int 1077 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1078 struct sockopt_data *sd) 1079 { 1080 ipfw_obj_tentry *tent; 1081 ipfw_obj_header *oh; 1082 struct tid_info ti; 1083 struct table_config *tc; 1084 struct table_algo *ta; 1085 struct table_info *kti; 1086 struct namedobj_instance *ni; 1087 int error; 1088 size_t sz; 1089 1090 /* Check minimum header size */ 1091 sz = sizeof(*oh) + sizeof(*tent); 1092 if (sd->valsize != sz) 1093 return (EINVAL); 1094 1095 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1096 tent = (ipfw_obj_tentry *)(oh + 1); 1097 1098 /* Basic length checks for TLVs */ 1099 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 1100 return (EINVAL); 1101 1102 objheader_to_ti(oh, &ti); 1103 ti.type = oh->ntlv.type; 1104 ti.uidx = tent->idx; 1105 1106 IPFW_UH_RLOCK(ch); 1107 ni = CHAIN_TO_NI(ch); 1108 1109 /* 1110 * Find existing table and check its type . 1111 */ 1112 ta = NULL; 1113 if ((tc = find_table(ni, &ti)) == NULL) { 1114 IPFW_UH_RUNLOCK(ch); 1115 return (ESRCH); 1116 } 1117 1118 /* check table type */ 1119 if (tc->no.type != ti.type) { 1120 IPFW_UH_RUNLOCK(ch); 1121 return (EINVAL); 1122 } 1123 1124 kti = KIDX_TO_TI(ch, tc->no.kidx); 1125 ta = tc->ta; 1126 1127 if (ta->find_tentry == NULL) 1128 return (ENOTSUP); 1129 1130 error = ta->find_tentry(tc->astate, kti, tent); 1131 1132 IPFW_UH_RUNLOCK(ch); 1133 1134 return (error); 1135 } 1136 1137 /* 1138 * Flushes all entries or destroys given table. 1139 * Data layout (v0)(current): 1140 * Request: [ ipfw_obj_header ] 1141 * 1142 * Returns 0 on success 1143 */ 1144 static int 1145 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1146 struct sockopt_data *sd) 1147 { 1148 int error; 1149 struct _ipfw_obj_header *oh; 1150 struct tid_info ti; 1151 1152 if (sd->valsize != sizeof(*oh)) 1153 return (EINVAL); 1154 1155 oh = (struct _ipfw_obj_header *)op3; 1156 objheader_to_ti(oh, &ti); 1157 1158 if (op3->opcode == IP_FW_TABLE_XDESTROY) 1159 error = destroy_table(ch, &ti); 1160 else if (op3->opcode == IP_FW_TABLE_XFLUSH) 1161 error = flush_table(ch, &ti); 1162 else 1163 return (ENOTSUP); 1164 1165 return (error); 1166 } 1167 1168 static void 1169 restart_flush(void *object, struct op_state *_state) 1170 { 1171 struct tableop_state *ts; 1172 1173 ts = (struct tableop_state *)_state; 1174 1175 if (ts->tc != object) 1176 return; 1177 1178 /* Indicate we've called */ 1179 ts->modified = 1; 1180 } 1181 1182 /* 1183 * Flushes given table. 1184 * 1185 * Function create new table instance with the same 1186 * parameters, swaps it with old one and 1187 * flushes state without holding runtime WLOCK. 1188 * 1189 * Returns 0 on success. 1190 */ 1191 int 1192 flush_table(struct ip_fw_chain *ch, struct tid_info *ti) 1193 { 1194 struct namedobj_instance *ni; 1195 struct table_config *tc; 1196 struct table_algo *ta; 1197 struct table_info ti_old, ti_new, *tablestate; 1198 void *astate_old, *astate_new; 1199 char algostate[64], *pstate; 1200 struct tableop_state ts; 1201 int error; 1202 uint16_t kidx; 1203 uint8_t tflags; 1204 1205 /* 1206 * Stage 1: save table algoritm. 1207 * Reference found table to ensure it won't disappear. 1208 */ 1209 IPFW_UH_WLOCK(ch); 1210 ni = CHAIN_TO_NI(ch); 1211 if ((tc = find_table(ni, ti)) == NULL) { 1212 IPFW_UH_WUNLOCK(ch); 1213 return (ESRCH); 1214 } 1215 restart: 1216 /* Set up swap handler */ 1217 memset(&ts, 0, sizeof(ts)); 1218 ts.opstate.func = restart_flush; 1219 ts.tc = tc; 1220 1221 ta = tc->ta; 1222 /* Do not flush readonly tables */ 1223 if ((ta->flags & TA_FLAG_READONLY) != 0) { 1224 IPFW_UH_WUNLOCK(ch); 1225 return (EACCES); 1226 } 1227 /* Save startup algo parameters */ 1228 if (ta->print_config != NULL) { 1229 ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx), 1230 algostate, sizeof(algostate)); 1231 pstate = algostate; 1232 } else 1233 pstate = NULL; 1234 tflags = tc->tflags; 1235 tc->no.refcnt++; 1236 add_toperation_state(ch, &ts); 1237 IPFW_UH_WUNLOCK(ch); 1238 1239 /* 1240 * Stage 2: allocate new table instance using same algo. 1241 */ 1242 memset(&ti_new, 0, sizeof(struct table_info)); 1243 error = ta->init(ch, &astate_new, &ti_new, pstate, tflags); 1244 1245 /* 1246 * Stage 3: swap old state pointers with newly-allocated ones. 1247 * Decrease refcount. 1248 */ 1249 IPFW_UH_WLOCK(ch); 1250 tc->no.refcnt--; 1251 del_toperation_state(ch, &ts); 1252 1253 if (error != 0) { 1254 IPFW_UH_WUNLOCK(ch); 1255 return (error); 1256 } 1257 1258 /* 1259 * Restart operation if table swap has happened: 1260 * even if algo may be the same, algo init parameters 1261 * may change. Restart operation instead of doing 1262 * complex checks. 1263 */ 1264 if (ts.modified != 0) { 1265 ta->destroy(astate_new, &ti_new); 1266 goto restart; 1267 } 1268 1269 ni = CHAIN_TO_NI(ch); 1270 kidx = tc->no.kidx; 1271 tablestate = (struct table_info *)ch->tablestate; 1272 1273 IPFW_WLOCK(ch); 1274 ti_old = tablestate[kidx]; 1275 tablestate[kidx] = ti_new; 1276 IPFW_WUNLOCK(ch); 1277 1278 astate_old = tc->astate; 1279 tc->astate = astate_new; 1280 tc->ti_copy = ti_new; 1281 tc->count = 0; 1282 1283 /* Notify algo on real @ti address */ 1284 if (ta->change_ti != NULL) 1285 ta->change_ti(tc->astate, &tablestate[kidx]); 1286 1287 /* 1288 * Stage 4: unref values. 1289 */ 1290 ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old); 1291 IPFW_UH_WUNLOCK(ch); 1292 1293 /* 1294 * Stage 5: perform real flush/destroy. 1295 */ 1296 ta->destroy(astate_old, &ti_old); 1297 1298 return (0); 1299 } 1300 1301 /* 1302 * Swaps two tables. 1303 * Data layout (v0)(current): 1304 * Request: [ ipfw_obj_header ipfw_obj_ntlv ] 1305 * 1306 * Returns 0 on success 1307 */ 1308 static int 1309 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1310 struct sockopt_data *sd) 1311 { 1312 int error; 1313 struct _ipfw_obj_header *oh; 1314 struct tid_info ti_a, ti_b; 1315 1316 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv)) 1317 return (EINVAL); 1318 1319 oh = (struct _ipfw_obj_header *)op3; 1320 ntlv_to_ti(&oh->ntlv, &ti_a); 1321 ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b); 1322 1323 error = swap_tables(ch, &ti_a, &ti_b); 1324 1325 return (error); 1326 } 1327 1328 /* 1329 * Swaps two tables of the same type/valtype. 1330 * 1331 * Checks if tables are compatible and limits 1332 * permits swap, than actually perform swap. 1333 * 1334 * Each table consists of 2 different parts: 1335 * config: 1336 * @tc (with name, set, kidx) and rule bindings, which is "stable". 1337 * number of items 1338 * table algo 1339 * runtime: 1340 * runtime data @ti (ch->tablestate) 1341 * runtime cache in @tc 1342 * algo-specific data (@tc->astate) 1343 * 1344 * So we switch: 1345 * all runtime data 1346 * number of items 1347 * table algo 1348 * 1349 * After that we call @ti change handler for each table. 1350 * 1351 * Note that referencing @tc won't protect tc->ta from change. 1352 * XXX: Do we need to restrict swap between locked tables? 1353 * XXX: Do we need to exchange ftype? 1354 * 1355 * Returns 0 on success. 1356 */ 1357 static int 1358 swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 1359 struct tid_info *b) 1360 { 1361 struct namedobj_instance *ni; 1362 struct table_config *tc_a, *tc_b; 1363 struct table_algo *ta; 1364 struct table_info ti, *tablestate; 1365 void *astate; 1366 uint32_t count; 1367 1368 /* 1369 * Stage 1: find both tables and ensure they are of 1370 * the same type. 1371 */ 1372 IPFW_UH_WLOCK(ch); 1373 ni = CHAIN_TO_NI(ch); 1374 if ((tc_a = find_table(ni, a)) == NULL) { 1375 IPFW_UH_WUNLOCK(ch); 1376 return (ESRCH); 1377 } 1378 if ((tc_b = find_table(ni, b)) == NULL) { 1379 IPFW_UH_WUNLOCK(ch); 1380 return (ESRCH); 1381 } 1382 1383 /* It is very easy to swap between the same table */ 1384 if (tc_a == tc_b) { 1385 IPFW_UH_WUNLOCK(ch); 1386 return (0); 1387 } 1388 1389 /* Check type and value are the same */ 1390 if (tc_a->no.type != tc_b->no.type || tc_a->tflags != tc_b->tflags) { 1391 IPFW_UH_WUNLOCK(ch); 1392 return (EINVAL); 1393 } 1394 1395 /* Check limits before swap */ 1396 if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) || 1397 (tc_b->limit != 0 && tc_a->count > tc_b->limit)) { 1398 IPFW_UH_WUNLOCK(ch); 1399 return (EFBIG); 1400 } 1401 1402 /* Check if one of the tables is readonly */ 1403 if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) { 1404 IPFW_UH_WUNLOCK(ch); 1405 return (EACCES); 1406 } 1407 1408 /* Notify we're going to swap */ 1409 rollback_toperation_state(ch, tc_a); 1410 rollback_toperation_state(ch, tc_b); 1411 1412 /* Everything is fine, prepare to swap */ 1413 tablestate = (struct table_info *)ch->tablestate; 1414 ti = tablestate[tc_a->no.kidx]; 1415 ta = tc_a->ta; 1416 astate = tc_a->astate; 1417 count = tc_a->count; 1418 1419 IPFW_WLOCK(ch); 1420 /* a <- b */ 1421 tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx]; 1422 tc_a->ta = tc_b->ta; 1423 tc_a->astate = tc_b->astate; 1424 tc_a->count = tc_b->count; 1425 /* b <- a */ 1426 tablestate[tc_b->no.kidx] = ti; 1427 tc_b->ta = ta; 1428 tc_b->astate = astate; 1429 tc_b->count = count; 1430 IPFW_WUNLOCK(ch); 1431 1432 /* Ensure tc.ti copies are in sync */ 1433 tc_a->ti_copy = tablestate[tc_a->no.kidx]; 1434 tc_b->ti_copy = tablestate[tc_b->no.kidx]; 1435 1436 /* Notify both tables on @ti change */ 1437 if (tc_a->ta->change_ti != NULL) 1438 tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]); 1439 if (tc_b->ta->change_ti != NULL) 1440 tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]); 1441 1442 IPFW_UH_WUNLOCK(ch); 1443 1444 return (0); 1445 } 1446 1447 /* 1448 * Destroys table specified by @ti. 1449 * Data layout (v0)(current): 1450 * Request: [ ip_fw3_opheader ] 1451 * 1452 * Returns 0 on success 1453 */ 1454 static int 1455 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti) 1456 { 1457 struct namedobj_instance *ni; 1458 struct table_config *tc; 1459 1460 IPFW_UH_WLOCK(ch); 1461 1462 ni = CHAIN_TO_NI(ch); 1463 if ((tc = find_table(ni, ti)) == NULL) { 1464 IPFW_UH_WUNLOCK(ch); 1465 return (ESRCH); 1466 } 1467 1468 /* Do not permit destroying referenced tables */ 1469 if (tc->no.refcnt > 0) { 1470 IPFW_UH_WUNLOCK(ch); 1471 return (EBUSY); 1472 } 1473 1474 IPFW_WLOCK(ch); 1475 unlink_table(ch, tc); 1476 IPFW_WUNLOCK(ch); 1477 1478 /* Free obj index */ 1479 if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0) 1480 printf("Error unlinking kidx %d from table %s\n", 1481 tc->no.kidx, tc->tablename); 1482 1483 /* Unref values used in tables while holding UH lock */ 1484 ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy); 1485 IPFW_UH_WUNLOCK(ch); 1486 1487 free_table_config(ni, tc); 1488 1489 return (0); 1490 } 1491 1492 /* 1493 * Grow tables index. 1494 * 1495 * Returns 0 on success. 1496 */ 1497 int 1498 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables) 1499 { 1500 unsigned int ntables_old, tbl; 1501 struct namedobj_instance *ni; 1502 void *new_idx, *old_tablestate, *tablestate; 1503 struct table_info *ti; 1504 struct table_config *tc; 1505 int i, new_blocks; 1506 1507 /* Check new value for validity */ 1508 if (ntables > IPFW_TABLES_MAX) 1509 ntables = IPFW_TABLES_MAX; 1510 1511 /* Allocate new pointers */ 1512 tablestate = malloc(ntables * sizeof(struct table_info), 1513 M_IPFW, M_WAITOK | M_ZERO); 1514 1515 ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks); 1516 1517 IPFW_UH_WLOCK(ch); 1518 1519 tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables; 1520 ni = CHAIN_TO_NI(ch); 1521 1522 /* Temporary restrict decreasing max_tables */ 1523 if (ntables < V_fw_tables_max) { 1524 1525 /* 1526 * FIXME: Check if we really can shrink 1527 */ 1528 IPFW_UH_WUNLOCK(ch); 1529 return (EINVAL); 1530 } 1531 1532 /* Copy table info/indices */ 1533 memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl); 1534 ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks); 1535 1536 IPFW_WLOCK(ch); 1537 1538 /* Change pointers */ 1539 old_tablestate = ch->tablestate; 1540 ch->tablestate = tablestate; 1541 ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks); 1542 1543 ntables_old = V_fw_tables_max; 1544 V_fw_tables_max = ntables; 1545 1546 IPFW_WUNLOCK(ch); 1547 1548 /* Notify all consumers that their @ti pointer has changed */ 1549 ti = (struct table_info *)ch->tablestate; 1550 for (i = 0; i < tbl; i++, ti++) { 1551 if (ti->lookup == NULL) 1552 continue; 1553 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i); 1554 if (tc == NULL || tc->ta->change_ti == NULL) 1555 continue; 1556 1557 tc->ta->change_ti(tc->astate, ti); 1558 } 1559 1560 IPFW_UH_WUNLOCK(ch); 1561 1562 /* Free old pointers */ 1563 free(old_tablestate, M_IPFW); 1564 ipfw_objhash_bitmap_free(new_idx, new_blocks); 1565 1566 return (0); 1567 } 1568 1569 /* 1570 * Switch between "set 0" and "rule's set" table binding, 1571 * Check all ruleset bindings and permits changing 1572 * IFF each binding has both rule AND table in default set (set 0). 1573 * 1574 * Returns 0 on success. 1575 */ 1576 int 1577 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets) 1578 { 1579 struct namedobj_instance *ni; 1580 struct named_object *no; 1581 struct ip_fw *rule; 1582 ipfw_insn *cmd; 1583 int cmdlen, i, l; 1584 uint16_t kidx; 1585 uint8_t type; 1586 1587 IPFW_UH_WLOCK(ch); 1588 1589 if (V_fw_tables_sets == sets) { 1590 IPFW_UH_WUNLOCK(ch); 1591 return (0); 1592 } 1593 1594 ni = CHAIN_TO_NI(ch); 1595 1596 /* 1597 * Scan all rules and examine tables opcodes. 1598 */ 1599 for (i = 0; i < ch->n_rules; i++) { 1600 rule = ch->map[i]; 1601 1602 l = rule->cmd_len; 1603 cmd = rule->cmd; 1604 cmdlen = 0; 1605 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 1606 cmdlen = F_LEN(cmd); 1607 1608 if (classify_table_opcode(cmd, &kidx, &type) != 0) 1609 continue; 1610 1611 no = ipfw_objhash_lookup_kidx(ni, kidx); 1612 1613 /* Check if both table object and rule has the set 0 */ 1614 if (no->set != 0 || rule->set != 0) { 1615 IPFW_UH_WUNLOCK(ch); 1616 return (EBUSY); 1617 } 1618 1619 } 1620 } 1621 V_fw_tables_sets = sets; 1622 1623 IPFW_UH_WUNLOCK(ch); 1624 1625 return (0); 1626 } 1627 1628 /* 1629 * Lookup an IP @addr in table @tbl. 1630 * Stores found value in @val. 1631 * 1632 * Returns 1 if @addr was found. 1633 */ 1634 int 1635 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr, 1636 uint32_t *val) 1637 { 1638 struct table_info *ti; 1639 1640 ti = KIDX_TO_TI(ch, tbl); 1641 1642 return (ti->lookup(ti, &addr, sizeof(in_addr_t), val)); 1643 } 1644 1645 /* 1646 * Lookup an arbtrary key @paddr of legth @plen in table @tbl. 1647 * Stores found value in @val. 1648 * 1649 * Returns 1 if key was found. 1650 */ 1651 int 1652 ipfw_lookup_table_extended(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen, 1653 void *paddr, uint32_t *val) 1654 { 1655 struct table_info *ti; 1656 1657 ti = KIDX_TO_TI(ch, tbl); 1658 1659 return (ti->lookup(ti, paddr, plen, val)); 1660 } 1661 1662 /* 1663 * Info/List/dump support for tables. 1664 * 1665 */ 1666 1667 /* 1668 * High-level 'get' cmds sysctl handlers 1669 */ 1670 1671 /* 1672 * Lists all tables currently available in kernel. 1673 * Data layout (v0)(current): 1674 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 1675 * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ] 1676 * 1677 * Returns 0 on success 1678 */ 1679 static int 1680 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1681 struct sockopt_data *sd) 1682 { 1683 struct _ipfw_obj_lheader *olh; 1684 int error; 1685 1686 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 1687 if (olh == NULL) 1688 return (EINVAL); 1689 if (sd->valsize < olh->size) 1690 return (EINVAL); 1691 1692 IPFW_UH_RLOCK(ch); 1693 error = export_tables(ch, olh, sd); 1694 IPFW_UH_RUNLOCK(ch); 1695 1696 return (error); 1697 } 1698 1699 /* 1700 * Store table info to buffer provided by @sd. 1701 * Data layout (v0)(current): 1702 * Request: [ ipfw_obj_header ipfw_xtable_info(empty)] 1703 * Reply: [ ipfw_obj_header ipfw_xtable_info ] 1704 * 1705 * Returns 0 on success. 1706 */ 1707 static int 1708 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1709 struct sockopt_data *sd) 1710 { 1711 struct _ipfw_obj_header *oh; 1712 struct table_config *tc; 1713 struct tid_info ti; 1714 size_t sz; 1715 1716 sz = sizeof(*oh) + sizeof(ipfw_xtable_info); 1717 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1718 if (oh == NULL) 1719 return (EINVAL); 1720 1721 objheader_to_ti(oh, &ti); 1722 1723 IPFW_UH_RLOCK(ch); 1724 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 1725 IPFW_UH_RUNLOCK(ch); 1726 return (ESRCH); 1727 } 1728 1729 export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1)); 1730 IPFW_UH_RUNLOCK(ch); 1731 1732 return (0); 1733 } 1734 1735 /* 1736 * Modifies existing table. 1737 * Data layout (v0)(current): 1738 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1739 * 1740 * Returns 0 on success 1741 */ 1742 static int 1743 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1744 struct sockopt_data *sd) 1745 { 1746 struct _ipfw_obj_header *oh; 1747 ipfw_xtable_info *i; 1748 char *tname; 1749 struct tid_info ti; 1750 struct namedobj_instance *ni; 1751 struct table_config *tc; 1752 1753 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1754 return (EINVAL); 1755 1756 oh = (struct _ipfw_obj_header *)sd->kbuf; 1757 i = (ipfw_xtable_info *)(oh + 1); 1758 1759 /* 1760 * Verify user-supplied strings. 1761 * Check for null-terminated/zero-length strings/ 1762 */ 1763 tname = oh->ntlv.name; 1764 if (ipfw_check_table_name(tname) != 0) 1765 return (EINVAL); 1766 1767 objheader_to_ti(oh, &ti); 1768 ti.type = i->type; 1769 1770 IPFW_UH_WLOCK(ch); 1771 ni = CHAIN_TO_NI(ch); 1772 if ((tc = find_table(ni, &ti)) == NULL) { 1773 IPFW_UH_WUNLOCK(ch); 1774 return (ESRCH); 1775 } 1776 1777 /* Do not support any modifications for readonly tables */ 1778 if ((tc->ta->flags & TA_FLAG_READONLY) != 0) { 1779 IPFW_UH_WUNLOCK(ch); 1780 return (EACCES); 1781 } 1782 1783 if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0) 1784 tc->limit = i->limit; 1785 if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0) 1786 tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0); 1787 IPFW_UH_WUNLOCK(ch); 1788 1789 return (0); 1790 } 1791 1792 /* 1793 * Creates new table. 1794 * Data layout (v0)(current): 1795 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1796 * 1797 * Returns 0 on success 1798 */ 1799 static int 1800 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1801 struct sockopt_data *sd) 1802 { 1803 struct _ipfw_obj_header *oh; 1804 ipfw_xtable_info *i; 1805 char *tname, *aname; 1806 struct tid_info ti; 1807 struct namedobj_instance *ni; 1808 struct table_config *tc; 1809 1810 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1811 return (EINVAL); 1812 1813 oh = (struct _ipfw_obj_header *)sd->kbuf; 1814 i = (ipfw_xtable_info *)(oh + 1); 1815 1816 /* 1817 * Verify user-supplied strings. 1818 * Check for null-terminated/zero-length strings/ 1819 */ 1820 tname = oh->ntlv.name; 1821 aname = i->algoname; 1822 if (ipfw_check_table_name(tname) != 0 || 1823 strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname)) 1824 return (EINVAL); 1825 1826 if (aname[0] == '\0') { 1827 /* Use default algorithm */ 1828 aname = NULL; 1829 } 1830 1831 objheader_to_ti(oh, &ti); 1832 ti.type = i->type; 1833 1834 ni = CHAIN_TO_NI(ch); 1835 1836 IPFW_UH_RLOCK(ch); 1837 if ((tc = find_table(ni, &ti)) != NULL) { 1838 IPFW_UH_RUNLOCK(ch); 1839 return (EEXIST); 1840 } 1841 IPFW_UH_RUNLOCK(ch); 1842 1843 return (create_table_internal(ch, &ti, aname, i, NULL, 0)); 1844 } 1845 1846 /* 1847 * Creates new table based on @ti and @aname. 1848 * 1849 * Relies on table name checking inside find_name_tlv() 1850 * Assume @aname to be checked and valid. 1851 * Stores allocated table kidx inside @pkidx (if non-NULL). 1852 * Reference created table if @compat is non-zero. 1853 * 1854 * Returns 0 on success. 1855 */ 1856 static int 1857 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 1858 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat) 1859 { 1860 struct namedobj_instance *ni; 1861 struct table_config *tc, *tc_new, *tmp; 1862 struct table_algo *ta; 1863 uint16_t kidx; 1864 1865 ni = CHAIN_TO_NI(ch); 1866 1867 ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname); 1868 if (ta == NULL) 1869 return (ENOTSUP); 1870 1871 tc = alloc_table_config(ch, ti, ta, aname, i->tflags); 1872 if (tc == NULL) 1873 return (ENOMEM); 1874 1875 tc->vmask = i->vmask; 1876 tc->limit = i->limit; 1877 if (ta->flags & TA_FLAG_READONLY) 1878 tc->locked = 1; 1879 else 1880 tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0; 1881 1882 IPFW_UH_WLOCK(ch); 1883 1884 /* Check if table has been already created */ 1885 tc_new = find_table(ni, ti); 1886 if (tc_new != NULL) { 1887 1888 /* 1889 * Compat: do not fail if we're 1890 * requesting to create existing table 1891 * which has the same type 1892 */ 1893 if (compat == 0 || tc_new->no.type != tc->no.type) { 1894 IPFW_UH_WUNLOCK(ch); 1895 free_table_config(ni, tc); 1896 return (EEXIST); 1897 } 1898 1899 /* Exchange tc and tc_new for proper refcounting & freeing */ 1900 tmp = tc; 1901 tc = tc_new; 1902 tc_new = tmp; 1903 } else { 1904 /* New table */ 1905 if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) { 1906 IPFW_UH_WUNLOCK(ch); 1907 printf("Unable to allocate table index." 1908 " Consider increasing net.inet.ip.fw.tables_max"); 1909 free_table_config(ni, tc); 1910 return (EBUSY); 1911 } 1912 tc->no.kidx = kidx; 1913 1914 IPFW_WLOCK(ch); 1915 link_table(ch, tc); 1916 IPFW_WUNLOCK(ch); 1917 } 1918 1919 if (compat != 0) 1920 tc->no.refcnt++; 1921 if (pkidx != NULL) 1922 *pkidx = tc->no.kidx; 1923 1924 IPFW_UH_WUNLOCK(ch); 1925 1926 if (tc_new != NULL) 1927 free_table_config(ni, tc_new); 1928 1929 return (0); 1930 } 1931 1932 static void 1933 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti) 1934 { 1935 1936 memset(ti, 0, sizeof(struct tid_info)); 1937 ti->set = ntlv->set; 1938 ti->uidx = ntlv->idx; 1939 ti->tlvs = ntlv; 1940 ti->tlen = ntlv->head.length; 1941 } 1942 1943 static void 1944 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti) 1945 { 1946 1947 ntlv_to_ti(&oh->ntlv, ti); 1948 } 1949 1950 /* 1951 * Exports basic table info as name TLV. 1952 * Used inside dump_static_rules() to provide info 1953 * about all tables referenced by current ruleset. 1954 * 1955 * Returns 0 on success. 1956 */ 1957 int 1958 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx, 1959 struct sockopt_data *sd) 1960 { 1961 struct namedobj_instance *ni; 1962 struct named_object *no; 1963 ipfw_obj_ntlv *ntlv; 1964 1965 ni = CHAIN_TO_NI(ch); 1966 1967 no = ipfw_objhash_lookup_kidx(ni, kidx); 1968 KASSERT(no != NULL, ("invalid table kidx passed")); 1969 1970 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv)); 1971 if (ntlv == NULL) 1972 return (ENOMEM); 1973 1974 ntlv->head.type = IPFW_TLV_TBL_NAME; 1975 ntlv->head.length = sizeof(*ntlv); 1976 ntlv->idx = no->kidx; 1977 strlcpy(ntlv->name, no->name, sizeof(ntlv->name)); 1978 1979 return (0); 1980 } 1981 1982 /* 1983 * Marks every table kidx used in @rule with bit in @bmask. 1984 * Used to generate bitmask of referenced tables for given ruleset. 1985 * 1986 * Returns number of newly-referenced tables. 1987 */ 1988 int 1989 ipfw_mark_table_kidx(struct ip_fw_chain *chain, struct ip_fw *rule, 1990 uint32_t *bmask) 1991 { 1992 int cmdlen, l, count; 1993 ipfw_insn *cmd; 1994 uint16_t kidx; 1995 uint8_t type; 1996 1997 l = rule->cmd_len; 1998 cmd = rule->cmd; 1999 cmdlen = 0; 2000 count = 0; 2001 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 2002 cmdlen = F_LEN(cmd); 2003 2004 if (classify_table_opcode(cmd, &kidx, &type) != 0) 2005 continue; 2006 2007 if ((bmask[kidx / 32] & (1 << (kidx % 32))) == 0) 2008 count++; 2009 2010 bmask[kidx / 32] |= 1 << (kidx % 32); 2011 } 2012 2013 return (count); 2014 } 2015 2016 struct dump_args { 2017 struct ip_fw_chain *ch; 2018 struct table_info *ti; 2019 struct table_config *tc; 2020 struct sockopt_data *sd; 2021 uint32_t cnt; 2022 uint16_t uidx; 2023 int error; 2024 uint32_t size; 2025 ipfw_table_entry *ent; 2026 ta_foreach_f *f; 2027 void *farg; 2028 ipfw_obj_tentry tent; 2029 }; 2030 2031 static int 2032 count_ext_entries(void *e, void *arg) 2033 { 2034 struct dump_args *da; 2035 2036 da = (struct dump_args *)arg; 2037 da->cnt++; 2038 2039 return (0); 2040 } 2041 2042 /* 2043 * Gets number of items from table either using 2044 * internal counter or calling algo callback for 2045 * externally-managed tables. 2046 * 2047 * Returns number of records. 2048 */ 2049 static uint32_t 2050 table_get_count(struct ip_fw_chain *ch, struct table_config *tc) 2051 { 2052 struct table_info *ti; 2053 struct table_algo *ta; 2054 struct dump_args da; 2055 2056 ti = KIDX_TO_TI(ch, tc->no.kidx); 2057 ta = tc->ta; 2058 2059 /* Use internal counter for self-managed tables */ 2060 if ((ta->flags & TA_FLAG_READONLY) == 0) 2061 return (tc->count); 2062 2063 /* Use callback to quickly get number of items */ 2064 if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0) 2065 return (ta->get_count(tc->astate, ti)); 2066 2067 /* Count number of iterms ourselves */ 2068 memset(&da, 0, sizeof(da)); 2069 ta->foreach(tc->astate, ti, count_ext_entries, &da); 2070 2071 return (da.cnt); 2072 } 2073 2074 /* 2075 * Exports table @tc info into standard ipfw_xtable_info format. 2076 */ 2077 static void 2078 export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 2079 ipfw_xtable_info *i) 2080 { 2081 struct table_info *ti; 2082 struct table_algo *ta; 2083 2084 i->type = tc->no.type; 2085 i->tflags = tc->tflags; 2086 i->vmask = tc->vmask; 2087 i->set = tc->no.set; 2088 i->kidx = tc->no.kidx; 2089 i->refcnt = tc->no.refcnt; 2090 i->count = table_get_count(ch, tc); 2091 i->limit = tc->limit; 2092 i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0; 2093 i->size = tc->count * sizeof(ipfw_obj_tentry); 2094 i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2095 strlcpy(i->tablename, tc->tablename, sizeof(i->tablename)); 2096 ti = KIDX_TO_TI(ch, tc->no.kidx); 2097 ta = tc->ta; 2098 if (ta->print_config != NULL) { 2099 /* Use algo function to print table config to string */ 2100 ta->print_config(tc->astate, ti, i->algoname, 2101 sizeof(i->algoname)); 2102 } else 2103 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2104 /* Dump algo-specific data, if possible */ 2105 if (ta->dump_tinfo != NULL) { 2106 ta->dump_tinfo(tc->astate, ti, &i->ta_info); 2107 i->ta_info.flags |= IPFW_TATFLAGS_DATA; 2108 } 2109 } 2110 2111 struct dump_table_args { 2112 struct ip_fw_chain *ch; 2113 struct sockopt_data *sd; 2114 }; 2115 2116 static void 2117 export_table_internal(struct namedobj_instance *ni, struct named_object *no, 2118 void *arg) 2119 { 2120 ipfw_xtable_info *i; 2121 struct dump_table_args *dta; 2122 2123 dta = (struct dump_table_args *)arg; 2124 2125 i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i)); 2126 KASSERT(i != 0, ("previously checked buffer is not enough")); 2127 2128 export_table_info(dta->ch, (struct table_config *)no, i); 2129 } 2130 2131 /* 2132 * Export all tables as ipfw_xtable_info structures to 2133 * storage provided by @sd. 2134 * 2135 * If supplied buffer is too small, fills in required size 2136 * and returns ENOMEM. 2137 * Returns 0 on success. 2138 */ 2139 static int 2140 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 2141 struct sockopt_data *sd) 2142 { 2143 uint32_t size; 2144 uint32_t count; 2145 struct dump_table_args dta; 2146 2147 count = ipfw_objhash_count(CHAIN_TO_NI(ch)); 2148 size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader); 2149 2150 /* Fill in header regadless of buffer size */ 2151 olh->count = count; 2152 olh->objsize = sizeof(ipfw_xtable_info); 2153 2154 if (size > olh->size) { 2155 olh->size = size; 2156 return (ENOMEM); 2157 } 2158 2159 olh->size = size; 2160 2161 dta.ch = ch; 2162 dta.sd = sd; 2163 2164 ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta); 2165 2166 return (0); 2167 } 2168 2169 /* 2170 * Dumps all table data 2171 * Data layout (v1)(current): 2172 * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size 2173 * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ] 2174 * 2175 * Returns 0 on success 2176 */ 2177 static int 2178 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2179 struct sockopt_data *sd) 2180 { 2181 struct _ipfw_obj_header *oh; 2182 ipfw_xtable_info *i; 2183 struct tid_info ti; 2184 struct table_config *tc; 2185 struct table_algo *ta; 2186 struct dump_args da; 2187 uint32_t sz; 2188 2189 sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2190 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 2191 if (oh == NULL) 2192 return (EINVAL); 2193 2194 i = (ipfw_xtable_info *)(oh + 1); 2195 objheader_to_ti(oh, &ti); 2196 2197 IPFW_UH_RLOCK(ch); 2198 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2199 IPFW_UH_RUNLOCK(ch); 2200 return (ESRCH); 2201 } 2202 export_table_info(ch, tc, i); 2203 2204 if (sd->valsize < i->size) { 2205 2206 /* 2207 * Submitted buffer size is not enough. 2208 * WE've already filled in @i structure with 2209 * relevant table info including size, so we 2210 * can return. Buffer will be flushed automatically. 2211 */ 2212 IPFW_UH_RUNLOCK(ch); 2213 return (ENOMEM); 2214 } 2215 2216 /* 2217 * Do the actual dump in eXtended format 2218 */ 2219 memset(&da, 0, sizeof(da)); 2220 da.ch = ch; 2221 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2222 da.tc = tc; 2223 da.sd = sd; 2224 2225 ta = tc->ta; 2226 2227 ta->foreach(tc->astate, da.ti, dump_table_tentry, &da); 2228 IPFW_UH_RUNLOCK(ch); 2229 2230 return (da.error); 2231 } 2232 2233 /* 2234 * Dumps all table data 2235 * Data layout (version 0)(legacy): 2236 * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE() 2237 * Reply: [ ipfw_xtable ipfw_table_xentry x N ] 2238 * 2239 * Returns 0 on success 2240 */ 2241 static int 2242 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2243 struct sockopt_data *sd) 2244 { 2245 ipfw_xtable *xtbl; 2246 struct tid_info ti; 2247 struct table_config *tc; 2248 struct table_algo *ta; 2249 struct dump_args da; 2250 size_t sz, count; 2251 2252 xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable)); 2253 if (xtbl == NULL) 2254 return (EINVAL); 2255 2256 memset(&ti, 0, sizeof(ti)); 2257 ti.uidx = xtbl->tbl; 2258 2259 IPFW_UH_RLOCK(ch); 2260 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2261 IPFW_UH_RUNLOCK(ch); 2262 return (0); 2263 } 2264 count = table_get_count(ch, tc); 2265 sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable); 2266 2267 xtbl->cnt = count; 2268 xtbl->size = sz; 2269 xtbl->type = tc->no.type; 2270 xtbl->tbl = ti.uidx; 2271 2272 if (sd->valsize < sz) { 2273 2274 /* 2275 * Submitted buffer size is not enough. 2276 * WE've already filled in @i structure with 2277 * relevant table info including size, so we 2278 * can return. Buffer will be flushed automatically. 2279 */ 2280 IPFW_UH_RUNLOCK(ch); 2281 return (ENOMEM); 2282 } 2283 2284 /* Do the actual dump in eXtended format */ 2285 memset(&da, 0, sizeof(da)); 2286 da.ch = ch; 2287 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2288 da.tc = tc; 2289 da.sd = sd; 2290 2291 ta = tc->ta; 2292 2293 ta->foreach(tc->astate, da.ti, dump_table_xentry, &da); 2294 IPFW_UH_RUNLOCK(ch); 2295 2296 return (0); 2297 } 2298 2299 /* 2300 * Legacy function to retrieve number of items in table. 2301 */ 2302 static int 2303 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2304 struct sockopt_data *sd) 2305 { 2306 uint32_t *tbl; 2307 struct tid_info ti; 2308 size_t sz; 2309 int error; 2310 2311 sz = sizeof(*op3) + sizeof(uint32_t); 2312 op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz); 2313 if (op3 == NULL) 2314 return (EINVAL); 2315 2316 tbl = (uint32_t *)(op3 + 1); 2317 memset(&ti, 0, sizeof(ti)); 2318 ti.uidx = *tbl; 2319 IPFW_UH_RLOCK(ch); 2320 error = ipfw_count_xtable(ch, &ti, tbl); 2321 IPFW_UH_RUNLOCK(ch); 2322 return (error); 2323 } 2324 2325 /* 2326 * Legacy IP_FW_TABLE_GETSIZE handler 2327 */ 2328 int 2329 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2330 { 2331 struct table_config *tc; 2332 2333 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2334 return (ESRCH); 2335 *cnt = table_get_count(ch, tc); 2336 return (0); 2337 } 2338 2339 /* 2340 * Legacy IP_FW_TABLE_XGETSIZE handler 2341 */ 2342 int 2343 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2344 { 2345 struct table_config *tc; 2346 uint32_t count; 2347 2348 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) { 2349 *cnt = 0; 2350 return (0); /* 'table all list' requires success */ 2351 } 2352 2353 count = table_get_count(ch, tc); 2354 *cnt = count * sizeof(ipfw_table_xentry); 2355 if (count > 0) 2356 *cnt += sizeof(ipfw_xtable); 2357 return (0); 2358 } 2359 2360 static int 2361 dump_table_entry(void *e, void *arg) 2362 { 2363 struct dump_args *da; 2364 struct table_config *tc; 2365 struct table_algo *ta; 2366 ipfw_table_entry *ent; 2367 struct table_value *pval; 2368 int error; 2369 2370 da = (struct dump_args *)arg; 2371 2372 tc = da->tc; 2373 ta = tc->ta; 2374 2375 /* Out of memory, returning */ 2376 if (da->cnt == da->size) 2377 return (1); 2378 ent = da->ent++; 2379 ent->tbl = da->uidx; 2380 da->cnt++; 2381 2382 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2383 if (error != 0) 2384 return (error); 2385 2386 ent->addr = da->tent.k.addr.s_addr; 2387 ent->masklen = da->tent.masklen; 2388 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2389 ent->value = ipfw_export_table_value_legacy(pval); 2390 2391 return (0); 2392 } 2393 2394 /* 2395 * Dumps table in pre-8.1 legacy format. 2396 */ 2397 int 2398 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti, 2399 ipfw_table *tbl) 2400 { 2401 struct table_config *tc; 2402 struct table_algo *ta; 2403 struct dump_args da; 2404 2405 tbl->cnt = 0; 2406 2407 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2408 return (0); /* XXX: We should return ESRCH */ 2409 2410 ta = tc->ta; 2411 2412 /* This dump format supports IPv4 only */ 2413 if (tc->no.type != IPFW_TABLE_ADDR) 2414 return (0); 2415 2416 memset(&da, 0, sizeof(da)); 2417 da.ch = ch; 2418 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2419 da.tc = tc; 2420 da.ent = &tbl->ent[0]; 2421 da.size = tbl->size; 2422 2423 tbl->cnt = 0; 2424 ta->foreach(tc->astate, da.ti, dump_table_entry, &da); 2425 tbl->cnt = da.cnt; 2426 2427 return (0); 2428 } 2429 2430 /* 2431 * Dumps table entry in eXtended format (v1)(current). 2432 */ 2433 static int 2434 dump_table_tentry(void *e, void *arg) 2435 { 2436 struct dump_args *da; 2437 struct table_config *tc; 2438 struct table_algo *ta; 2439 struct table_value *pval; 2440 ipfw_obj_tentry *tent; 2441 int error; 2442 2443 da = (struct dump_args *)arg; 2444 2445 tc = da->tc; 2446 ta = tc->ta; 2447 2448 tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent)); 2449 /* Out of memory, returning */ 2450 if (tent == NULL) { 2451 da->error = ENOMEM; 2452 return (1); 2453 } 2454 tent->head.length = sizeof(ipfw_obj_tentry); 2455 tent->idx = da->uidx; 2456 2457 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2458 if (error != 0) 2459 return (error); 2460 2461 pval = get_table_value(da->ch, da->tc, tent->v.kidx); 2462 ipfw_export_table_value_v1(pval, &tent->v.value); 2463 2464 return (0); 2465 } 2466 2467 /* 2468 * Dumps table entry in eXtended format (v0). 2469 */ 2470 static int 2471 dump_table_xentry(void *e, void *arg) 2472 { 2473 struct dump_args *da; 2474 struct table_config *tc; 2475 struct table_algo *ta; 2476 ipfw_table_xentry *xent; 2477 ipfw_obj_tentry *tent; 2478 struct table_value *pval; 2479 int error; 2480 2481 da = (struct dump_args *)arg; 2482 2483 tc = da->tc; 2484 ta = tc->ta; 2485 2486 xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent)); 2487 /* Out of memory, returning */ 2488 if (xent == NULL) 2489 return (1); 2490 xent->len = sizeof(ipfw_table_xentry); 2491 xent->tbl = da->uidx; 2492 2493 memset(&da->tent, 0, sizeof(da->tent)); 2494 tent = &da->tent; 2495 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2496 if (error != 0) 2497 return (error); 2498 2499 /* Convert current format to previous one */ 2500 xent->masklen = tent->masklen; 2501 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2502 xent->value = ipfw_export_table_value_legacy(pval); 2503 /* Apply some hacks */ 2504 if (tc->no.type == IPFW_TABLE_ADDR && tent->subtype == AF_INET) { 2505 xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr; 2506 xent->flags = IPFW_TCF_INET; 2507 } else 2508 memcpy(&xent->k, &tent->k, sizeof(xent->k)); 2509 2510 return (0); 2511 } 2512 2513 /* 2514 * Helper function to export table algo data 2515 * to tentry format before calling user function. 2516 * 2517 * Returns 0 on success. 2518 */ 2519 static int 2520 prepare_table_tentry(void *e, void *arg) 2521 { 2522 struct dump_args *da; 2523 struct table_config *tc; 2524 struct table_algo *ta; 2525 int error; 2526 2527 da = (struct dump_args *)arg; 2528 2529 tc = da->tc; 2530 ta = tc->ta; 2531 2532 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2533 if (error != 0) 2534 return (error); 2535 2536 da->f(&da->tent, da->farg); 2537 2538 return (0); 2539 } 2540 2541 /* 2542 * Allow external consumers to read table entries in standard format. 2543 */ 2544 int 2545 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx, 2546 ta_foreach_f *f, void *arg) 2547 { 2548 struct namedobj_instance *ni; 2549 struct table_config *tc; 2550 struct table_algo *ta; 2551 struct dump_args da; 2552 2553 ni = CHAIN_TO_NI(ch); 2554 2555 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 2556 if (tc == NULL) 2557 return (ESRCH); 2558 2559 ta = tc->ta; 2560 2561 memset(&da, 0, sizeof(da)); 2562 da.ch = ch; 2563 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2564 da.tc = tc; 2565 da.f = f; 2566 da.farg = arg; 2567 2568 ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da); 2569 2570 return (0); 2571 } 2572 2573 /* 2574 * Table algorithms 2575 */ 2576 2577 /* 2578 * Finds algoritm by index, table type or supplied name. 2579 * 2580 * Returns pointer to algo or NULL. 2581 */ 2582 static struct table_algo * 2583 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name) 2584 { 2585 int i, l; 2586 struct table_algo *ta; 2587 2588 if (ti->type > IPFW_TABLE_MAXTYPE) 2589 return (NULL); 2590 2591 /* Search by index */ 2592 if (ti->atype != 0) { 2593 if (ti->atype > tcfg->algo_count) 2594 return (NULL); 2595 return (tcfg->algo[ti->atype]); 2596 } 2597 2598 if (name == NULL) { 2599 /* Return default algorithm for given type if set */ 2600 return (tcfg->def_algo[ti->type]); 2601 } 2602 2603 /* Search by name */ 2604 /* TODO: better search */ 2605 for (i = 1; i <= tcfg->algo_count; i++) { 2606 ta = tcfg->algo[i]; 2607 2608 /* 2609 * One can supply additional algorithm 2610 * parameters so we compare only the first word 2611 * of supplied name: 2612 * 'addr:chash hsize=32' 2613 * '^^^^^^^^^' 2614 * 2615 */ 2616 l = strlen(ta->name); 2617 if (strncmp(name, ta->name, l) != 0) 2618 continue; 2619 if (name[l] != '\0' && name[l] != ' ') 2620 continue; 2621 /* Check if we're requesting proper table type */ 2622 if (ti->type != 0 && ti->type != ta->type) 2623 return (NULL); 2624 return (ta); 2625 } 2626 2627 return (NULL); 2628 } 2629 2630 /* 2631 * Register new table algo @ta. 2632 * Stores algo id inside @idx. 2633 * 2634 * Returns 0 on success. 2635 */ 2636 int 2637 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size, 2638 int *idx) 2639 { 2640 struct tables_config *tcfg; 2641 struct table_algo *ta_new; 2642 size_t sz; 2643 2644 if (size > sizeof(struct table_algo)) 2645 return (EINVAL); 2646 2647 /* Check for the required on-stack size for add/del */ 2648 sz = roundup2(ta->ta_buf_size, sizeof(void *)); 2649 if (sz > TA_BUF_SZ) 2650 return (EINVAL); 2651 2652 KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE")); 2653 2654 /* Copy algorithm data to stable storage. */ 2655 ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO); 2656 memcpy(ta_new, ta, size); 2657 2658 tcfg = CHAIN_TO_TCFG(ch); 2659 2660 KASSERT(tcfg->algo_count < 255, ("Increase algo array size")); 2661 2662 tcfg->algo[++tcfg->algo_count] = ta_new; 2663 ta_new->idx = tcfg->algo_count; 2664 2665 /* Set algorithm as default one for given type */ 2666 if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 && 2667 tcfg->def_algo[ta_new->type] == NULL) 2668 tcfg->def_algo[ta_new->type] = ta_new; 2669 2670 *idx = ta_new->idx; 2671 2672 return (0); 2673 } 2674 2675 /* 2676 * Unregisters table algo using @idx as id. 2677 * XXX: It is NOT safe to call this function in any place 2678 * other than ipfw instance destroy handler. 2679 */ 2680 void 2681 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx) 2682 { 2683 struct tables_config *tcfg; 2684 struct table_algo *ta; 2685 2686 tcfg = CHAIN_TO_TCFG(ch); 2687 2688 KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d", 2689 idx, tcfg->algo_count)); 2690 2691 ta = tcfg->algo[idx]; 2692 KASSERT(ta != NULL, ("algo idx %d is NULL", idx)); 2693 2694 if (tcfg->def_algo[ta->type] == ta) 2695 tcfg->def_algo[ta->type] = NULL; 2696 2697 free(ta, M_IPFW); 2698 } 2699 2700 /* 2701 * Lists all table algorithms currently available. 2702 * Data layout (v0)(current): 2703 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 2704 * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ] 2705 * 2706 * Returns 0 on success 2707 */ 2708 static int 2709 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2710 struct sockopt_data *sd) 2711 { 2712 struct _ipfw_obj_lheader *olh; 2713 struct tables_config *tcfg; 2714 ipfw_ta_info *i; 2715 struct table_algo *ta; 2716 uint32_t count, n, size; 2717 2718 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 2719 if (olh == NULL) 2720 return (EINVAL); 2721 if (sd->valsize < olh->size) 2722 return (EINVAL); 2723 2724 IPFW_UH_RLOCK(ch); 2725 tcfg = CHAIN_TO_TCFG(ch); 2726 count = tcfg->algo_count; 2727 size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader); 2728 2729 /* Fill in header regadless of buffer size */ 2730 olh->count = count; 2731 olh->objsize = sizeof(ipfw_ta_info); 2732 2733 if (size > olh->size) { 2734 olh->size = size; 2735 IPFW_UH_RUNLOCK(ch); 2736 return (ENOMEM); 2737 } 2738 olh->size = size; 2739 2740 for (n = 1; n <= count; n++) { 2741 i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i)); 2742 KASSERT(i != 0, ("previously checked buffer is not enough")); 2743 ta = tcfg->algo[n]; 2744 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2745 i->type = ta->type; 2746 i->refcnt = ta->refcnt; 2747 } 2748 2749 IPFW_UH_RUNLOCK(ch); 2750 2751 return (0); 2752 } 2753 2754 /* 2755 * Tables rewriting code 2756 */ 2757 2758 /* 2759 * Determine table number and lookup type for @cmd. 2760 * Fill @tbl and @type with appropriate values. 2761 * Returns 0 for relevant opcodes, 1 otherwise. 2762 */ 2763 static int 2764 classify_table_opcode(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2765 { 2766 ipfw_insn_if *cmdif; 2767 int skip; 2768 uint16_t v; 2769 2770 skip = 1; 2771 2772 switch (cmd->opcode) { 2773 case O_IP_SRC_LOOKUP: 2774 case O_IP_DST_LOOKUP: 2775 /* Basic IPv4/IPv6 or u32 lookups */ 2776 *puidx = cmd->arg1; 2777 /* Assume ADDR by default */ 2778 *ptype = IPFW_TABLE_ADDR; 2779 skip = 0; 2780 2781 if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) { 2782 /* 2783 * generic lookup. The key must be 2784 * in 32bit big-endian format. 2785 */ 2786 v = ((ipfw_insn_u32 *)cmd)->d[1]; 2787 switch (v) { 2788 case 0: 2789 case 1: 2790 /* IPv4 src/dst */ 2791 break; 2792 case 2: 2793 case 3: 2794 /* src/dst port */ 2795 *ptype = IPFW_TABLE_NUMBER; 2796 break; 2797 case 4: 2798 /* uid/gid */ 2799 *ptype = IPFW_TABLE_NUMBER; 2800 break; 2801 case 5: 2802 /* jid */ 2803 *ptype = IPFW_TABLE_NUMBER; 2804 break; 2805 case 6: 2806 /* dscp */ 2807 *ptype = IPFW_TABLE_NUMBER; 2808 break; 2809 } 2810 } 2811 break; 2812 case O_XMIT: 2813 case O_RECV: 2814 case O_VIA: 2815 /* Interface table, possibly */ 2816 cmdif = (ipfw_insn_if *)cmd; 2817 if (cmdif->name[0] != '\1') 2818 break; 2819 2820 *ptype = IPFW_TABLE_INTERFACE; 2821 *puidx = cmdif->p.kidx; 2822 skip = 0; 2823 break; 2824 case O_IP_FLOW_LOOKUP: 2825 *puidx = cmd->arg1; 2826 *ptype = IPFW_TABLE_FLOW; 2827 skip = 0; 2828 break; 2829 } 2830 2831 return (skip); 2832 } 2833 2834 /* 2835 * Sets new table value for given opcode. 2836 * Assume the same opcodes as classify_table_opcode() 2837 */ 2838 static void 2839 update_table_opcode(ipfw_insn *cmd, uint16_t idx) 2840 { 2841 ipfw_insn_if *cmdif; 2842 2843 switch (cmd->opcode) { 2844 case O_IP_SRC_LOOKUP: 2845 case O_IP_DST_LOOKUP: 2846 /* Basic IPv4/IPv6 or u32 lookups */ 2847 cmd->arg1 = idx; 2848 break; 2849 case O_XMIT: 2850 case O_RECV: 2851 case O_VIA: 2852 /* Interface table, possibly */ 2853 cmdif = (ipfw_insn_if *)cmd; 2854 cmdif->p.kidx = idx; 2855 break; 2856 case O_IP_FLOW_LOOKUP: 2857 cmd->arg1 = idx; 2858 break; 2859 } 2860 } 2861 2862 /* 2863 * Checks table name for validity. 2864 * Enforce basic length checks, the rest 2865 * should be done in userland. 2866 * 2867 * Returns 0 if name is considered valid. 2868 */ 2869 int 2870 ipfw_check_table_name(char *name) 2871 { 2872 int nsize; 2873 ipfw_obj_ntlv *ntlv = NULL; 2874 2875 nsize = sizeof(ntlv->name); 2876 2877 if (strnlen(name, nsize) == nsize) 2878 return (EINVAL); 2879 2880 if (name[0] == '\0') 2881 return (EINVAL); 2882 2883 /* 2884 * TODO: do some more complicated checks 2885 */ 2886 2887 return (0); 2888 } 2889 2890 /* 2891 * Find tablename TLV by @uid. 2892 * Check @tlvs for valid data inside. 2893 * 2894 * Returns pointer to found TLV or NULL. 2895 */ 2896 static ipfw_obj_ntlv * 2897 find_name_tlv(void *tlvs, int len, uint16_t uidx) 2898 { 2899 ipfw_obj_ntlv *ntlv; 2900 uintptr_t pa, pe; 2901 int l; 2902 2903 pa = (uintptr_t)tlvs; 2904 pe = pa + len; 2905 l = 0; 2906 for (; pa < pe; pa += l) { 2907 ntlv = (ipfw_obj_ntlv *)pa; 2908 l = ntlv->head.length; 2909 2910 if (l != sizeof(*ntlv)) 2911 return (NULL); 2912 2913 if (ntlv->head.type != IPFW_TLV_TBL_NAME) 2914 continue; 2915 2916 if (ntlv->idx != uidx) 2917 continue; 2918 2919 if (ipfw_check_table_name(ntlv->name) != 0) 2920 return (NULL); 2921 2922 return (ntlv); 2923 } 2924 2925 return (NULL); 2926 } 2927 2928 /* 2929 * Finds table config based on either legacy index 2930 * or name in ntlv. 2931 * Note @ti structure contains unchecked data from userland. 2932 * 2933 * Returns pointer to table_config or NULL. 2934 */ 2935 static struct table_config * 2936 find_table(struct namedobj_instance *ni, struct tid_info *ti) 2937 { 2938 char *name, bname[16]; 2939 struct named_object *no; 2940 ipfw_obj_ntlv *ntlv; 2941 uint32_t set; 2942 2943 if (ti->tlvs != NULL) { 2944 ntlv = find_name_tlv(ti->tlvs, ti->tlen, ti->uidx); 2945 if (ntlv == NULL) 2946 return (NULL); 2947 name = ntlv->name; 2948 2949 /* 2950 * Use set provided by @ti instead of @ntlv one. 2951 * This is needed due to different sets behavior 2952 * controlled by V_fw_tables_sets. 2953 */ 2954 set = ti->set; 2955 } else { 2956 snprintf(bname, sizeof(bname), "%d", ti->uidx); 2957 name = bname; 2958 set = 0; 2959 } 2960 2961 no = ipfw_objhash_lookup_name(ni, set, name); 2962 2963 return ((struct table_config *)no); 2964 } 2965 2966 /* 2967 * Allocate new table config structure using 2968 * specified @algo and @aname. 2969 * 2970 * Returns pointer to config or NULL. 2971 */ 2972 static struct table_config * 2973 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti, 2974 struct table_algo *ta, char *aname, uint8_t tflags) 2975 { 2976 char *name, bname[16]; 2977 struct table_config *tc; 2978 int error; 2979 ipfw_obj_ntlv *ntlv; 2980 uint32_t set; 2981 2982 if (ti->tlvs != NULL) { 2983 ntlv = find_name_tlv(ti->tlvs, ti->tlen, ti->uidx); 2984 if (ntlv == NULL) 2985 return (NULL); 2986 name = ntlv->name; 2987 set = ntlv->set; 2988 } else { 2989 snprintf(bname, sizeof(bname), "%d", ti->uidx); 2990 name = bname; 2991 set = 0; 2992 } 2993 2994 tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO); 2995 tc->no.name = tc->tablename; 2996 tc->no.type = ta->type; 2997 tc->no.set = set; 2998 tc->tflags = tflags; 2999 tc->ta = ta; 3000 strlcpy(tc->tablename, name, sizeof(tc->tablename)); 3001 /* Set "shared" value type by default */ 3002 tc->vshared = 1; 3003 3004 if (ti->tlvs == NULL) { 3005 tc->no.compat = 1; 3006 tc->no.uidx = ti->uidx; 3007 } 3008 3009 /* Preallocate data structures for new tables */ 3010 error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags); 3011 if (error != 0) { 3012 free(tc, M_IPFW); 3013 return (NULL); 3014 } 3015 3016 return (tc); 3017 } 3018 3019 /* 3020 * Destroys table state and config. 3021 */ 3022 static void 3023 free_table_config(struct namedobj_instance *ni, struct table_config *tc) 3024 { 3025 3026 KASSERT(tc->linked == 0, ("free() on linked config")); 3027 3028 /* 3029 * We're using ta without any locking/referencing. 3030 * TODO: fix this if we're going to use unloadable algos. 3031 */ 3032 tc->ta->destroy(tc->astate, &tc->ti_copy); 3033 free(tc, M_IPFW); 3034 } 3035 3036 /* 3037 * Links @tc to @chain table named instance. 3038 * Sets appropriate type/states in @chain table info. 3039 */ 3040 static void 3041 link_table(struct ip_fw_chain *ch, struct table_config *tc) 3042 { 3043 struct namedobj_instance *ni; 3044 struct table_info *ti; 3045 uint16_t kidx; 3046 3047 IPFW_UH_WLOCK_ASSERT(ch); 3048 IPFW_WLOCK_ASSERT(ch); 3049 3050 ni = CHAIN_TO_NI(ch); 3051 kidx = tc->no.kidx; 3052 3053 ipfw_objhash_add(ni, &tc->no); 3054 3055 ti = KIDX_TO_TI(ch, kidx); 3056 *ti = tc->ti_copy; 3057 3058 /* Notify algo on real @ti address */ 3059 if (tc->ta->change_ti != NULL) 3060 tc->ta->change_ti(tc->astate, ti); 3061 3062 tc->linked = 1; 3063 tc->ta->refcnt++; 3064 } 3065 3066 /* 3067 * Unlinks @tc from @chain table named instance. 3068 * Zeroes states in @chain and stores them in @tc. 3069 */ 3070 static void 3071 unlink_table(struct ip_fw_chain *ch, struct table_config *tc) 3072 { 3073 struct namedobj_instance *ni; 3074 struct table_info *ti; 3075 uint16_t kidx; 3076 3077 IPFW_UH_WLOCK_ASSERT(ch); 3078 IPFW_WLOCK_ASSERT(ch); 3079 3080 ni = CHAIN_TO_NI(ch); 3081 kidx = tc->no.kidx; 3082 3083 /* Clear state. @ti copy is already saved inside @tc */ 3084 ipfw_objhash_del(ni, &tc->no); 3085 ti = KIDX_TO_TI(ch, kidx); 3086 memset(ti, 0, sizeof(struct table_info)); 3087 tc->linked = 0; 3088 tc->ta->refcnt--; 3089 3090 /* Notify algo on real @ti address */ 3091 if (tc->ta->change_ti != NULL) 3092 tc->ta->change_ti(tc->astate, NULL); 3093 } 3094 3095 struct swap_table_args { 3096 int set; 3097 int new_set; 3098 int mv; 3099 }; 3100 3101 /* 3102 * Change set for each matching table. 3103 * 3104 * Ensure we dispatch each table once by setting/checking ochange 3105 * fields. 3106 */ 3107 static void 3108 swap_table_set(struct namedobj_instance *ni, struct named_object *no, 3109 void *arg) 3110 { 3111 struct table_config *tc; 3112 struct swap_table_args *sta; 3113 3114 tc = (struct table_config *)no; 3115 sta = (struct swap_table_args *)arg; 3116 3117 if (no->set != sta->set && (no->set != sta->new_set || sta->mv != 0)) 3118 return; 3119 3120 if (tc->ochanged != 0) 3121 return; 3122 3123 tc->ochanged = 1; 3124 ipfw_objhash_del(ni, no); 3125 if (no->set == sta->set) 3126 no->set = sta->new_set; 3127 else 3128 no->set = sta->set; 3129 ipfw_objhash_add(ni, no); 3130 } 3131 3132 /* 3133 * Cleans up ochange field for all tables. 3134 */ 3135 static void 3136 clean_table_set_data(struct namedobj_instance *ni, struct named_object *no, 3137 void *arg) 3138 { 3139 struct table_config *tc; 3140 struct swap_table_args *sta; 3141 3142 tc = (struct table_config *)no; 3143 sta = (struct swap_table_args *)arg; 3144 3145 tc->ochanged = 0; 3146 } 3147 3148 /* 3149 * Swaps tables within two sets. 3150 */ 3151 void 3152 ipfw_swap_tables_sets(struct ip_fw_chain *ch, uint32_t set, 3153 uint32_t new_set, int mv) 3154 { 3155 struct swap_table_args sta; 3156 3157 IPFW_UH_WLOCK_ASSERT(ch); 3158 3159 sta.set = set; 3160 sta.new_set = new_set; 3161 sta.mv = mv; 3162 3163 ipfw_objhash_foreach(CHAIN_TO_NI(ch), swap_table_set, &sta); 3164 ipfw_objhash_foreach(CHAIN_TO_NI(ch), clean_table_set_data, &sta); 3165 } 3166 3167 /* 3168 * Move all tables which are reference by rules in @rr to set @new_set. 3169 * Makes sure that all relevant tables are referenced ONLLY by given rules. 3170 * 3171 * Retuns 0 on success, 3172 */ 3173 int 3174 ipfw_move_tables_sets(struct ip_fw_chain *ch, ipfw_range_tlv *rt, 3175 uint32_t new_set) 3176 { 3177 struct ip_fw *rule; 3178 struct table_config *tc; 3179 struct named_object *no; 3180 struct namedobj_instance *ni; 3181 int bad, i, l, cmdlen; 3182 uint16_t kidx; 3183 uint8_t type; 3184 ipfw_insn *cmd; 3185 3186 IPFW_UH_WLOCK_ASSERT(ch); 3187 3188 ni = CHAIN_TO_NI(ch); 3189 3190 /* Stage 1: count number of references by given rules */ 3191 for (i = 0; i < ch->n_rules - 1; i++) { 3192 rule = ch->map[i]; 3193 if (ipfw_match_range(rule, rt) == 0) 3194 continue; 3195 3196 l = rule->cmd_len; 3197 cmd = rule->cmd; 3198 cmdlen = 0; 3199 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3200 cmdlen = F_LEN(cmd); 3201 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3202 continue; 3203 no = ipfw_objhash_lookup_kidx(ni, kidx); 3204 KASSERT(no != NULL, 3205 ("objhash lookup failed on index %d", kidx)); 3206 tc = (struct table_config *)no; 3207 tc->ocount++; 3208 } 3209 3210 } 3211 3212 /* Stage 2: verify "ownership" */ 3213 bad = 0; 3214 for (i = 0; i < ch->n_rules - 1; i++) { 3215 rule = ch->map[i]; 3216 if (ipfw_match_range(rule, rt) == 0) 3217 continue; 3218 3219 l = rule->cmd_len; 3220 cmd = rule->cmd; 3221 cmdlen = 0; 3222 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3223 cmdlen = F_LEN(cmd); 3224 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3225 continue; 3226 no = ipfw_objhash_lookup_kidx(ni, kidx); 3227 KASSERT(no != NULL, 3228 ("objhash lookup failed on index %d", kidx)); 3229 tc = (struct table_config *)no; 3230 if (tc->no.refcnt != tc->ocount) { 3231 3232 /* 3233 * Number of references differ: 3234 * Other rule(s) are holding reference to given 3235 * table, so it is not possible to change its set. 3236 * 3237 * Note that refcnt may account 3238 * references to some going-to-be-added rules. 3239 * Since we don't know their numbers (and event 3240 * if they will be added) it is perfectly OK 3241 * to return error here. 3242 */ 3243 bad = 1; 3244 break; 3245 } 3246 } 3247 3248 if (bad != 0) 3249 break; 3250 } 3251 3252 /* Stage 3: change set or cleanup */ 3253 for (i = 0; i < ch->n_rules - 1; i++) { 3254 rule = ch->map[i]; 3255 if (ipfw_match_range(rule, rt) == 0) 3256 continue; 3257 3258 l = rule->cmd_len; 3259 cmd = rule->cmd; 3260 cmdlen = 0; 3261 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3262 cmdlen = F_LEN(cmd); 3263 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3264 continue; 3265 no = ipfw_objhash_lookup_kidx(ni, kidx); 3266 KASSERT(no != NULL, 3267 ("objhash lookup failed on index %d", kidx)); 3268 tc = (struct table_config *)no; 3269 3270 tc->ocount = 0; 3271 if (bad != 0) 3272 continue; 3273 3274 /* Actually change set. */ 3275 ipfw_objhash_del(ni, no); 3276 no->set = new_set; 3277 ipfw_objhash_add(ni, no); 3278 } 3279 } 3280 3281 return (bad); 3282 } 3283 3284 /* 3285 * Finds and bumps refcount for tables referenced by given @rule. 3286 * Auto-creates non-existing tables. 3287 * Fills in @oib array with userland/kernel indexes. 3288 * First free oidx pointer is saved back in @oib. 3289 * 3290 * Returns 0 on success. 3291 */ 3292 static int 3293 find_ref_rule_tables(struct ip_fw_chain *ch, struct ip_fw *rule, 3294 struct rule_check_info *ci, struct obj_idx **oib, struct tid_info *ti) 3295 { 3296 struct table_config *tc; 3297 struct namedobj_instance *ni; 3298 struct named_object *no; 3299 int cmdlen, error, l, numnew; 3300 uint16_t kidx; 3301 ipfw_insn *cmd; 3302 struct obj_idx *pidx, *pidx_first, *p; 3303 3304 pidx_first = *oib; 3305 pidx = pidx_first; 3306 l = rule->cmd_len; 3307 cmd = rule->cmd; 3308 cmdlen = 0; 3309 error = 0; 3310 numnew = 0; 3311 3312 IPFW_UH_WLOCK(ch); 3313 ni = CHAIN_TO_NI(ch); 3314 3315 /* Increase refcount on each existing referenced table. */ 3316 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3317 cmdlen = F_LEN(cmd); 3318 3319 if (classify_table_opcode(cmd, &ti->uidx, &ti->type) != 0) 3320 continue; 3321 3322 pidx->uidx = ti->uidx; 3323 pidx->type = ti->type; 3324 3325 if ((tc = find_table(ni, ti)) != NULL) { 3326 if (tc->no.type != ti->type) { 3327 /* Incompatible types */ 3328 error = EINVAL; 3329 break; 3330 } 3331 3332 /* Reference found table and save kidx */ 3333 tc->no.refcnt++; 3334 pidx->kidx = tc->no.kidx; 3335 pidx++; 3336 continue; 3337 } 3338 3339 /* 3340 * Compability stuff for old clients: 3341 * prepare to manually create non-existing tables. 3342 */ 3343 pidx++; 3344 numnew++; 3345 } 3346 3347 if (error != 0) { 3348 /* Unref everything we have already done */ 3349 for (p = *oib; p < pidx; p++) { 3350 if (p->kidx == 0) 3351 continue; 3352 3353 /* Find & unref by existing idx */ 3354 no = ipfw_objhash_lookup_kidx(ni, p->kidx); 3355 KASSERT(no != NULL, ("Ref'd table %d disappeared", 3356 p->kidx)); 3357 3358 no->refcnt--; 3359 } 3360 } 3361 3362 IPFW_UH_WUNLOCK(ch); 3363 3364 if (numnew == 0) { 3365 *oib = pidx; 3366 return (error); 3367 } 3368 3369 /* 3370 * Compatibility stuff: do actual creation for non-existing, 3371 * but referenced tables. 3372 */ 3373 for (p = pidx_first; p < pidx; p++) { 3374 if (p->kidx != 0) 3375 continue; 3376 3377 ti->uidx = p->uidx; 3378 ti->type = p->type; 3379 ti->atype = 0; 3380 3381 error = create_table_compat(ch, ti, &kidx); 3382 if (error == 0) { 3383 p->kidx = kidx; 3384 continue; 3385 } 3386 3387 /* Error. We have to drop references */ 3388 IPFW_UH_WLOCK(ch); 3389 for (p = pidx_first; p < pidx; p++) { 3390 if (p->kidx == 0) 3391 continue; 3392 3393 /* Find & unref by existing idx */ 3394 no = ipfw_objhash_lookup_kidx(ni, p->kidx); 3395 KASSERT(no != NULL, ("Ref'd table %d disappeared", 3396 p->kidx)); 3397 3398 no->refcnt--; 3399 } 3400 IPFW_UH_WUNLOCK(ch); 3401 3402 return (error); 3403 } 3404 3405 *oib = pidx; 3406 3407 return (error); 3408 } 3409 3410 /* 3411 * Remove references from every table used in @rule. 3412 */ 3413 void 3414 ipfw_unref_rule_tables(struct ip_fw_chain *chain, struct ip_fw *rule) 3415 { 3416 int cmdlen, l; 3417 ipfw_insn *cmd; 3418 struct namedobj_instance *ni; 3419 struct named_object *no; 3420 uint16_t kidx; 3421 uint8_t type; 3422 3423 IPFW_UH_WLOCK_ASSERT(chain); 3424 ni = CHAIN_TO_NI(chain); 3425 3426 l = rule->cmd_len; 3427 cmd = rule->cmd; 3428 cmdlen = 0; 3429 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3430 cmdlen = F_LEN(cmd); 3431 3432 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3433 continue; 3434 3435 no = ipfw_objhash_lookup_kidx(ni, kidx); 3436 3437 KASSERT(no != NULL, ("table id %d not found", kidx)); 3438 KASSERT(no->type == type, ("wrong type %d (%d) for table id %d", 3439 no->type, type, kidx)); 3440 KASSERT(no->refcnt > 0, ("refcount for table %d is %d", 3441 kidx, no->refcnt)); 3442 3443 no->refcnt--; 3444 } 3445 } 3446 3447 /* 3448 * Compatibility function for old ipfw(8) binaries. 3449 * Rewrites table kernel indices with userland ones. 3450 * Convert tables matching '/^\d+$/' to their atoi() value. 3451 * Use number 65535 for other tables. 3452 * 3453 * Returns 0 on success. 3454 */ 3455 int 3456 ipfw_rewrite_table_kidx(struct ip_fw_chain *chain, struct ip_fw_rule0 *rule) 3457 { 3458 int cmdlen, error, l; 3459 ipfw_insn *cmd; 3460 uint16_t kidx, uidx; 3461 uint8_t type; 3462 struct named_object *no; 3463 struct namedobj_instance *ni; 3464 3465 ni = CHAIN_TO_NI(chain); 3466 error = 0; 3467 3468 l = rule->cmd_len; 3469 cmd = rule->cmd; 3470 cmdlen = 0; 3471 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3472 cmdlen = F_LEN(cmd); 3473 3474 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3475 continue; 3476 3477 if ((no = ipfw_objhash_lookup_kidx(ni, kidx)) == NULL) 3478 return (1); 3479 3480 uidx = no->uidx; 3481 if (no->compat == 0) { 3482 3483 /* 3484 * We are called via legacy opcode. 3485 * Save error and show table as fake number 3486 * not to make ipfw(8) hang. 3487 */ 3488 uidx = 65535; 3489 error = 2; 3490 } 3491 3492 update_table_opcode(cmd, uidx); 3493 } 3494 3495 return (error); 3496 } 3497 3498 /* 3499 * Checks is opcode is referencing table of appropriate type. 3500 * Adds reference count for found table if true. 3501 * Rewrites user-supplied opcode values with kernel ones. 3502 * 3503 * Returns 0 on success and appropriate error code otherwise. 3504 */ 3505 int 3506 ipfw_rewrite_table_uidx(struct ip_fw_chain *chain, 3507 struct rule_check_info *ci) 3508 { 3509 int cmdlen, error, l; 3510 ipfw_insn *cmd; 3511 uint16_t uidx; 3512 uint8_t type; 3513 struct namedobj_instance *ni; 3514 struct obj_idx *p, *pidx_first, *pidx_last; 3515 struct tid_info ti; 3516 3517 ni = CHAIN_TO_NI(chain); 3518 3519 /* 3520 * Prepare an array for storing opcode indices. 3521 * Use stack allocation by default. 3522 */ 3523 if (ci->table_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) { 3524 /* Stack */ 3525 pidx_first = ci->obuf; 3526 } else 3527 pidx_first = malloc(ci->table_opcodes * sizeof(struct obj_idx), 3528 M_IPFW, M_WAITOK | M_ZERO); 3529 3530 pidx_last = pidx_first; 3531 error = 0; 3532 type = 0; 3533 memset(&ti, 0, sizeof(ti)); 3534 3535 /* 3536 * Use default set for looking up tables (old way) or 3537 * use set rule is assigned to (new way). 3538 */ 3539 ti.set = (V_fw_tables_sets != 0) ? ci->krule->set : 0; 3540 if (ci->ctlv != NULL) { 3541 ti.tlvs = (void *)(ci->ctlv + 1); 3542 ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv); 3543 } 3544 3545 /* Reference all used tables */ 3546 error = find_ref_rule_tables(chain, ci->krule, ci, &pidx_last, &ti); 3547 if (error != 0) 3548 goto free; 3549 3550 IPFW_UH_WLOCK(chain); 3551 3552 /* Perform rule rewrite */ 3553 l = ci->krule->cmd_len; 3554 cmd = ci->krule->cmd; 3555 cmdlen = 0; 3556 p = pidx_first; 3557 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3558 cmdlen = F_LEN(cmd); 3559 if (classify_table_opcode(cmd, &uidx, &type) != 0) 3560 continue; 3561 update_table_opcode(cmd, p->kidx); 3562 p++; 3563 } 3564 3565 IPFW_UH_WUNLOCK(chain); 3566 3567 free: 3568 if (pidx_first != ci->obuf) 3569 free(pidx_first, M_IPFW); 3570 3571 return (error); 3572 } 3573 3574 static struct ipfw_sopt_handler scodes[] = { 3575 { IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table }, 3576 { IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 }, 3577 { IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 }, 3578 { IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table }, 3579 { IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table }, 3580 { IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables }, 3581 { IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 }, 3582 { IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 }, 3583 { IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 }, 3584 { IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 }, 3585 { IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 }, 3586 { IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 }, 3587 { IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry }, 3588 { IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table }, 3589 { IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo }, 3590 { IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size }, 3591 }; 3592 3593 static void 3594 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no, 3595 void *arg) 3596 { 3597 3598 unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no); 3599 if (ipfw_objhash_free_idx(ni, no->kidx) != 0) 3600 printf("Error unlinking kidx %d from table %s\n", 3601 no->kidx, no->name); 3602 free_table_config(ni, (struct table_config *)no); 3603 } 3604 3605 /* 3606 * Shuts tables module down. 3607 */ 3608 void 3609 ipfw_destroy_tables(struct ip_fw_chain *ch, int last) 3610 { 3611 3612 IPFW_DEL_SOPT_HANDLER(last, scodes); 3613 3614 /* Remove all tables from working set */ 3615 IPFW_UH_WLOCK(ch); 3616 IPFW_WLOCK(ch); 3617 ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch); 3618 IPFW_WUNLOCK(ch); 3619 IPFW_UH_WUNLOCK(ch); 3620 3621 /* Free pointers itself */ 3622 free(ch->tablestate, M_IPFW); 3623 3624 ipfw_table_value_destroy(ch, last); 3625 ipfw_table_algo_destroy(ch); 3626 3627 ipfw_objhash_destroy(CHAIN_TO_NI(ch)); 3628 free(CHAIN_TO_TCFG(ch), M_IPFW); 3629 } 3630 3631 /* 3632 * Starts tables module. 3633 */ 3634 int 3635 ipfw_init_tables(struct ip_fw_chain *ch, int first) 3636 { 3637 struct tables_config *tcfg; 3638 3639 /* Allocate pointers */ 3640 ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info), 3641 M_IPFW, M_WAITOK | M_ZERO); 3642 3643 tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO); 3644 tcfg->namehash = ipfw_objhash_create(V_fw_tables_max); 3645 ch->tblcfg = tcfg; 3646 3647 ipfw_table_value_init(ch, first); 3648 ipfw_table_algo_init(ch); 3649 3650 IPFW_ADD_SOPT_HANDLER(first, scodes); 3651 return (0); 3652 } 3653 3654 3655 3656