xref: /freebsd/sys/netpfil/ipfw/ip_fw_table.c (revision d8ffc21c5ca6f7d4f2d9a65dc6308699af0b6a01)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
5  * Copyright (c) 2014 Yandex LLC
6  * Copyright (c) 2014 Alexander V. Chernikov
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Lookup table support for ipfw.
35  *
36  * This file contains handlers for all generic tables' operations:
37  * add/del/flush entries, list/dump tables etc..
38  *
39  * Table data modification is protected by both UH and runtime lock
40  * while reading configuration/data is protected by UH lock.
41  *
42  * Lookup algorithms for all table types are located in ip_fw_table_algo.c
43  */
44 
45 #include "opt_ipfw.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/rmlock.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/queue.h>
57 #include <net/if.h>	/* ip_fw.h requires IFNAMSIZ */
58 
59 #include <netinet/in.h>
60 #include <netinet/ip_var.h>	/* struct ipfw_rule_ref */
61 #include <netinet/ip_fw.h>
62 
63 #include <netpfil/ipfw/ip_fw_private.h>
64 #include <netpfil/ipfw/ip_fw_table.h>
65 
66  /*
67  * Table has the following `type` concepts:
68  *
69  * `no.type` represents lookup key type (addr, ifp, uid, etc..)
70  * vmask represents bitmask of table values which are present at the moment.
71  * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old
72  * single-value-for-all approach.
73  */
74 struct table_config {
75 	struct named_object	no;
76 	uint8_t		tflags;		/* type flags */
77 	uint8_t		locked;		/* 1 if locked from changes */
78 	uint8_t		linked;		/* 1 if already linked */
79 	uint8_t		ochanged;	/* used by set swapping */
80 	uint8_t		vshared;	/* 1 if using shared value array */
81 	uint8_t		spare[3];
82 	uint32_t	count;		/* Number of records */
83 	uint32_t	limit;		/* Max number of records */
84 	uint32_t	vmask;		/* bitmask with supported values */
85 	uint32_t	ocount;		/* used by set swapping */
86 	uint64_t	gencnt;		/* generation count */
87 	char		tablename[64];	/* table name */
88 	struct table_algo	*ta;	/* Callbacks for given algo */
89 	void		*astate;	/* algorithm state */
90 	struct table_info	ti_copy;	/* data to put to table_info */
91 	struct namedobj_instance	*vi;
92 };
93 
94 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
95     struct table_config **tc);
96 static struct table_config *find_table(struct namedobj_instance *ni,
97     struct tid_info *ti);
98 static struct table_config *alloc_table_config(struct ip_fw_chain *ch,
99     struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags);
100 static void free_table_config(struct namedobj_instance *ni,
101     struct table_config *tc);
102 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
103     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref);
104 static void link_table(struct ip_fw_chain *ch, struct table_config *tc);
105 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc);
106 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
107     struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc);
108 #define	OP_ADD	1
109 #define	OP_DEL	0
110 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
111     struct sockopt_data *sd);
112 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
113     ipfw_xtable_info *i);
114 static int dump_table_tentry(void *e, void *arg);
115 static int dump_table_xentry(void *e, void *arg);
116 
117 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
118     struct tid_info *b);
119 
120 static int check_table_name(const char *name);
121 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
122     struct table_config *tc, struct table_info *ti, uint32_t count);
123 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti);
124 
125 static struct table_algo *find_table_algo(struct tables_config *tableconf,
126     struct tid_info *ti, char *name);
127 
128 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti);
129 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti);
130 
131 #define	CHAIN_TO_NI(chain)	(CHAIN_TO_TCFG(chain)->namehash)
132 #define	KIDX_TO_TI(ch, k)	(&(((struct table_info *)(ch)->tablestate)[k]))
133 
134 #define	TA_BUF_SZ	128	/* On-stack buffer for add/delete state */
135 
136 void
137 rollback_toperation_state(struct ip_fw_chain *ch, void *object)
138 {
139 	struct tables_config *tcfg;
140 	struct op_state *os;
141 
142 	tcfg = CHAIN_TO_TCFG(ch);
143 	TAILQ_FOREACH(os, &tcfg->state_list, next)
144 		os->func(object, os);
145 }
146 
147 void
148 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
149 {
150 	struct tables_config *tcfg;
151 
152 	tcfg = CHAIN_TO_TCFG(ch);
153 	TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next);
154 }
155 
156 void
157 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
158 {
159 	struct tables_config *tcfg;
160 
161 	tcfg = CHAIN_TO_TCFG(ch);
162 	TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next);
163 }
164 
165 void
166 tc_ref(struct table_config *tc)
167 {
168 
169 	tc->no.refcnt++;
170 }
171 
172 void
173 tc_unref(struct table_config *tc)
174 {
175 
176 	tc->no.refcnt--;
177 }
178 
179 static struct table_value *
180 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx)
181 {
182 	struct table_value *pval;
183 
184 	pval = (struct table_value *)ch->valuestate;
185 
186 	return (&pval[kidx]);
187 }
188 
189 
190 /*
191  * Checks if we're able to insert/update entry @tei into table
192  * w.r.t @tc limits.
193  * May alter @tei to indicate insertion error / insert
194  * options.
195  *
196  * Returns 0 if operation can be performed/
197  */
198 static int
199 check_table_limit(struct table_config *tc, struct tentry_info *tei)
200 {
201 
202 	if (tc->limit == 0 || tc->count < tc->limit)
203 		return (0);
204 
205 	if ((tei->flags & TEI_FLAGS_UPDATE) == 0) {
206 		/* Notify userland on error cause */
207 		tei->flags |= TEI_FLAGS_LIMIT;
208 		return (EFBIG);
209 	}
210 
211 	/*
212 	 * We have UPDATE flag set.
213 	 * Permit updating record (if found),
214 	 * but restrict adding new one since we've
215 	 * already hit the limit.
216 	 */
217 	tei->flags |= TEI_FLAGS_DONTADD;
218 
219 	return (0);
220 }
221 
222 /*
223  * Convert algorithm callback return code into
224  * one of pre-defined states known by userland.
225  */
226 static void
227 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num)
228 {
229 	int flag;
230 
231 	flag = 0;
232 
233 	switch (error) {
234 	case 0:
235 		if (op == OP_ADD && num != 0)
236 			flag = TEI_FLAGS_ADDED;
237 		if (op == OP_DEL)
238 			flag = TEI_FLAGS_DELETED;
239 		break;
240 	case ENOENT:
241 		flag = TEI_FLAGS_NOTFOUND;
242 		break;
243 	case EEXIST:
244 		flag = TEI_FLAGS_EXISTS;
245 		break;
246 	default:
247 		flag = TEI_FLAGS_ERROR;
248 	}
249 
250 	tei->flags |= flag;
251 }
252 
253 /*
254  * Creates and references table with default parameters.
255  * Saves table config, algo and allocated kidx info @ptc, @pta and
256  * @pkidx if non-zero.
257  * Used for table auto-creation to support old binaries.
258  *
259  * Returns 0 on success.
260  */
261 static int
262 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti,
263     uint16_t *pkidx)
264 {
265 	ipfw_xtable_info xi;
266 	int error;
267 
268 	memset(&xi, 0, sizeof(xi));
269 	/* Set default value mask for legacy clients */
270 	xi.vmask = IPFW_VTYPE_LEGACY;
271 
272 	error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1);
273 	if (error != 0)
274 		return (error);
275 
276 	return (0);
277 }
278 
279 /*
280  * Find and reference existing table optionally
281  * creating new one.
282  *
283  * Saves found table config into @ptc.
284  * Note function may drop/acquire UH_WLOCK.
285  * Returns 0 if table was found/created and referenced
286  * or non-zero return code.
287  */
288 static int
289 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
290     struct tentry_info *tei, uint32_t count, int op,
291     struct table_config **ptc)
292 {
293 	struct namedobj_instance *ni;
294 	struct table_config *tc;
295 	uint16_t kidx;
296 	int error;
297 
298 	IPFW_UH_WLOCK_ASSERT(ch);
299 
300 	ni = CHAIN_TO_NI(ch);
301 	tc = NULL;
302 	if ((tc = find_table(ni, ti)) != NULL) {
303 		/* check table type */
304 		if (tc->no.subtype != ti->type)
305 			return (EINVAL);
306 
307 		if (tc->locked != 0)
308 			return (EACCES);
309 
310 		/* Try to exit early on limit hit */
311 		if (op == OP_ADD && count == 1 &&
312 		    check_table_limit(tc, tei) != 0)
313 			return (EFBIG);
314 
315 		/* Reference and return */
316 		tc->no.refcnt++;
317 		*ptc = tc;
318 		return (0);
319 	}
320 
321 	if (op == OP_DEL)
322 		return (ESRCH);
323 
324 	/* Compatibility mode: create new table for old clients */
325 	if ((tei->flags & TEI_FLAGS_COMPAT) == 0)
326 		return (ESRCH);
327 
328 	IPFW_UH_WUNLOCK(ch);
329 	error = create_table_compat(ch, ti, &kidx);
330 	IPFW_UH_WLOCK(ch);
331 
332 	if (error != 0)
333 		return (error);
334 
335 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
336 	KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx));
337 
338 	/* OK, now we've got referenced table. */
339 	*ptc = tc;
340 	return (0);
341 }
342 
343 /*
344  * Rolls back already @added to @tc entries using state array @ta_buf_m.
345  * Assume the following layout:
346  * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases
347  * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1])
348  *   for storing deleted state
349  */
350 static void
351 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc,
352     struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m,
353     uint32_t count, uint32_t added)
354 {
355 	struct table_algo *ta;
356 	struct tentry_info *ptei;
357 	caddr_t v, vv;
358 	size_t ta_buf_sz;
359 	int error, i;
360 	uint32_t num;
361 
362 	IPFW_UH_WLOCK_ASSERT(ch);
363 
364 	ta = tc->ta;
365 	ta_buf_sz = ta->ta_buf_size;
366 	v = ta_buf_m;
367 	vv = v + count * ta_buf_sz;
368 	for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) {
369 		ptei = &tei[i];
370 		if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) {
371 
372 			/*
373 			 * We have old value stored by previous
374 			 * call in @ptei->value. Do add once again
375 			 * to restore it.
376 			 */
377 			error = ta->add(tc->astate, tinfo, ptei, v, &num);
378 			KASSERT(error == 0, ("rollback UPDATE fail"));
379 			KASSERT(num == 0, ("rollback UPDATE fail2"));
380 			continue;
381 		}
382 
383 		error = ta->prepare_del(ch, ptei, vv);
384 		KASSERT(error == 0, ("pre-rollback INSERT failed"));
385 		error = ta->del(tc->astate, tinfo, ptei, vv, &num);
386 		KASSERT(error == 0, ("rollback INSERT failed"));
387 		tc->count -= num;
388 	}
389 }
390 
391 /*
392  * Prepares add/del state for all @count entries in @tei.
393  * Uses either stack buffer (@ta_buf) or allocates a new one.
394  * Stores pointer to allocated buffer back to @ta_buf.
395  *
396  * Returns 0 on success.
397  */
398 static int
399 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
400     struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf)
401 {
402 	caddr_t ta_buf_m, v;
403 	size_t ta_buf_sz, sz;
404 	struct tentry_info *ptei;
405 	int error, i;
406 
407 	error = 0;
408 	ta_buf_sz = ta->ta_buf_size;
409 	if (count == 1) {
410 		/* Single add/delete, use on-stack buffer */
411 		memset(*ta_buf, 0, TA_BUF_SZ);
412 		ta_buf_m = *ta_buf;
413 	} else {
414 
415 		/*
416 		 * Multiple adds/deletes, allocate larger buffer
417 		 *
418 		 * Note we need 2xcount buffer for add case:
419 		 * we have hold both ADD state
420 		 * and DELETE state (this may be needed
421 		 * if we need to rollback all changes)
422 		 */
423 		sz = count * ta_buf_sz;
424 		ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP,
425 		    M_WAITOK | M_ZERO);
426 	}
427 
428 	v = ta_buf_m;
429 	for (i = 0; i < count; i++, v += ta_buf_sz) {
430 		ptei = &tei[i];
431 		error = (op == OP_ADD) ?
432 		    ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v);
433 
434 		/*
435 		 * Some syntax error (incorrect mask, or address, or
436 		 * anything). Return error regardless of atomicity
437 		 * settings.
438 		 */
439 		if (error != 0)
440 			break;
441 	}
442 
443 	*ta_buf = ta_buf_m;
444 	return (error);
445 }
446 
447 /*
448  * Flushes allocated state for each @count entries in @tei.
449  * Frees @ta_buf_m if differs from stack buffer @ta_buf.
450  */
451 static void
452 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
453     struct tentry_info *tei, uint32_t count, int rollback,
454     caddr_t ta_buf_m, caddr_t ta_buf)
455 {
456 	caddr_t v;
457 	struct tentry_info *ptei;
458 	size_t ta_buf_sz;
459 	int i;
460 
461 	ta_buf_sz = ta->ta_buf_size;
462 
463 	/* Run cleaning callback anyway */
464 	v = ta_buf_m;
465 	for (i = 0; i < count; i++, v += ta_buf_sz) {
466 		ptei = &tei[i];
467 		ta->flush_entry(ch, ptei, v);
468 		if (ptei->ptv != NULL) {
469 			free(ptei->ptv, M_IPFW);
470 			ptei->ptv = NULL;
471 		}
472 	}
473 
474 	/* Clean up "deleted" state in case of rollback */
475 	if (rollback != 0) {
476 		v = ta_buf_m + count * ta_buf_sz;
477 		for (i = 0; i < count; i++, v += ta_buf_sz)
478 			ta->flush_entry(ch, &tei[i], v);
479 	}
480 
481 	if (ta_buf_m != ta_buf)
482 		free(ta_buf_m, M_TEMP);
483 }
484 
485 
486 static void
487 rollback_add_entry(void *object, struct op_state *_state)
488 {
489 	struct ip_fw_chain *ch;
490 	struct tableop_state *ts;
491 
492 	ts = (struct tableop_state *)_state;
493 
494 	if (ts->tc != object && ts->ch != object)
495 		return;
496 
497 	ch = ts->ch;
498 
499 	IPFW_UH_WLOCK_ASSERT(ch);
500 
501 	/* Call specifid unlockers */
502 	rollback_table_values(ts);
503 
504 	/* Indicate we've called */
505 	ts->modified = 1;
506 }
507 
508 /*
509  * Adds/updates one or more entries in table @ti.
510  *
511  * Function may drop/reacquire UH wlock multiple times due to
512  * items alloc, algorithm callbacks (check_space), value linkage
513  * (new values, value storage realloc), etc..
514  * Other processes like other adds (which may involve storage resize),
515  * table swaps (which changes table data and may change algo type),
516  * table modify (which may change value mask) may be executed
517  * simultaneously so we need to deal with it.
518  *
519  * The following approach was implemented:
520  * we have per-chain linked list, protected with UH lock.
521  * add_table_entry prepares special on-stack structure wthich is passed
522  * to its descendants. Users add this structure to this list before unlock.
523  * After performing needed operations and acquiring UH lock back, each user
524  * checks if structure has changed. If true, it rolls local state back and
525  * returns without error to the caller.
526  * add_table_entry() on its own checks if structure has changed and restarts
527  * its operation from the beginning (goto restart).
528  *
529  * Functions which are modifying fields of interest (currently
530  *   resize_shared_value_storage() and swap_tables() )
531  * traverses given list while holding UH lock immediately before
532  * performing their operations calling function provided be list entry
533  * ( currently rollback_add_entry  ) which performs rollback for all necessary
534  * state and sets appropriate values in structure indicating rollback
535  * has happened.
536  *
537  * Algo interaction:
538  * Function references @ti first to ensure table won't
539  * disappear or change its type.
540  * After that, prepare_add callback is called for each @tei entry.
541  * Next, we try to add each entry under UH+WHLOCK
542  * using add() callback.
543  * Finally, we free all state by calling flush_entry callback
544  * for each @tei.
545  *
546  * Returns 0 on success.
547  */
548 int
549 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
550     struct tentry_info *tei, uint8_t flags, uint32_t count)
551 {
552 	struct table_config *tc;
553 	struct table_algo *ta;
554 	uint16_t kidx;
555 	int error, first_error, i, rollback;
556 	uint32_t num, numadd;
557 	struct tentry_info *ptei;
558 	struct tableop_state ts;
559 	char ta_buf[TA_BUF_SZ];
560 	caddr_t ta_buf_m, v;
561 
562 	memset(&ts, 0, sizeof(ts));
563 	ta = NULL;
564 	IPFW_UH_WLOCK(ch);
565 
566 	/*
567 	 * Find and reference existing table.
568 	 */
569 restart:
570 	if (ts.modified != 0) {
571 		IPFW_UH_WUNLOCK(ch);
572 		flush_batch_buffer(ch, ta, tei, count, rollback,
573 		    ta_buf_m, ta_buf);
574 		memset(&ts, 0, sizeof(ts));
575 		ta = NULL;
576 		IPFW_UH_WLOCK(ch);
577 	}
578 
579 	error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc);
580 	if (error != 0) {
581 		IPFW_UH_WUNLOCK(ch);
582 		return (error);
583 	}
584 	ta = tc->ta;
585 
586 	/* Fill in tablestate */
587 	ts.ch = ch;
588 	ts.opstate.func = rollback_add_entry;
589 	ts.tc = tc;
590 	ts.vshared = tc->vshared;
591 	ts.vmask = tc->vmask;
592 	ts.ta = ta;
593 	ts.tei = tei;
594 	ts.count = count;
595 	rollback = 0;
596 	add_toperation_state(ch, &ts);
597 	IPFW_UH_WUNLOCK(ch);
598 
599 	/* Allocate memory and prepare record(s) */
600 	/* Pass stack buffer by default */
601 	ta_buf_m = ta_buf;
602 	error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m);
603 
604 	IPFW_UH_WLOCK(ch);
605 	del_toperation_state(ch, &ts);
606 	/* Drop reference we've used in first search */
607 	tc->no.refcnt--;
608 
609 	/* Check prepare_batch_buffer() error */
610 	if (error != 0)
611 		goto cleanup;
612 
613 	/*
614 	 * Check if table swap has happened.
615 	 * (so table algo might be changed).
616 	 * Restart operation to achieve consistent behavior.
617 	 */
618 	if (ts.modified != 0)
619 		goto restart;
620 
621 	/*
622 	 * Link all values values to shared/per-table value array.
623 	 *
624 	 * May release/reacquire UH_WLOCK.
625 	 */
626 	error = ipfw_link_table_values(ch, &ts, flags);
627 	if (error != 0)
628 		goto cleanup;
629 	if (ts.modified != 0)
630 		goto restart;
631 
632 	/*
633 	 * Ensure we are able to add all entries without additional
634 	 * memory allocations. May release/reacquire UH_WLOCK.
635 	 */
636 	kidx = tc->no.kidx;
637 	error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count);
638 	if (error != 0)
639 		goto cleanup;
640 	if (ts.modified != 0)
641 		goto restart;
642 
643 	/* We've got valid table in @tc. Let's try to add data */
644 	kidx = tc->no.kidx;
645 	ta = tc->ta;
646 	numadd = 0;
647 	first_error = 0;
648 
649 	IPFW_WLOCK(ch);
650 
651 	v = ta_buf_m;
652 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
653 		ptei = &tei[i];
654 		num = 0;
655 		/* check limit before adding */
656 		if ((error = check_table_limit(tc, ptei)) == 0) {
657 			/*
658 			 * It should be safe to insert a record w/o
659 			 * a properly-linked value if atomicity is
660 			 * not required.
661 			 *
662 			 * If the added item does not have a valid value
663 			 * index, it would get rejected by ta->add().
664 			 * */
665 			error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx),
666 			    ptei, v, &num);
667 			/* Set status flag to inform userland */
668 			store_tei_result(ptei, OP_ADD, error, num);
669 		}
670 		if (error == 0) {
671 			/* Update number of records to ease limit checking */
672 			tc->count += num;
673 			numadd += num;
674 			continue;
675 		}
676 
677 		if (first_error == 0)
678 			first_error = error;
679 
680 		/*
681 		 * Some error have happened. Check our atomicity
682 		 * settings: continue if atomicity is not required,
683 		 * rollback changes otherwise.
684 		 */
685 		if ((flags & IPFW_CTF_ATOMIC) == 0)
686 			continue;
687 
688 		rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx),
689 		    tei, ta_buf_m, count, i);
690 
691 		rollback = 1;
692 		break;
693 	}
694 
695 	IPFW_WUNLOCK(ch);
696 
697 	ipfw_garbage_table_values(ch, tc, tei, count, rollback);
698 
699 	/* Permit post-add algorithm grow/rehash. */
700 	if (numadd != 0)
701 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
702 
703 	/* Return first error to user, if any */
704 	error = first_error;
705 
706 cleanup:
707 	IPFW_UH_WUNLOCK(ch);
708 
709 	flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf);
710 
711 	return (error);
712 }
713 
714 /*
715  * Deletes one or more entries in table @ti.
716  *
717  * Returns 0 on success.
718  */
719 int
720 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
721     struct tentry_info *tei, uint8_t flags, uint32_t count)
722 {
723 	struct table_config *tc;
724 	struct table_algo *ta;
725 	struct tentry_info *ptei;
726 	uint16_t kidx;
727 	int error, first_error, i;
728 	uint32_t num, numdel;
729 	char ta_buf[TA_BUF_SZ];
730 	caddr_t ta_buf_m, v;
731 
732 	/*
733 	 * Find and reference existing table.
734 	 */
735 	IPFW_UH_WLOCK(ch);
736 	error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc);
737 	if (error != 0) {
738 		IPFW_UH_WUNLOCK(ch);
739 		return (error);
740 	}
741 	ta = tc->ta;
742 	IPFW_UH_WUNLOCK(ch);
743 
744 	/* Allocate memory and prepare record(s) */
745 	/* Pass stack buffer by default */
746 	ta_buf_m = ta_buf;
747 	error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m);
748 	if (error != 0)
749 		goto cleanup;
750 
751 	IPFW_UH_WLOCK(ch);
752 
753 	/* Drop reference we've used in first search */
754 	tc->no.refcnt--;
755 
756 	/*
757 	 * Check if table algo is still the same.
758 	 * (changed ta may be the result of table swap).
759 	 */
760 	if (ta != tc->ta) {
761 		IPFW_UH_WUNLOCK(ch);
762 		error = EINVAL;
763 		goto cleanup;
764 	}
765 
766 	kidx = tc->no.kidx;
767 	numdel = 0;
768 	first_error = 0;
769 
770 	IPFW_WLOCK(ch);
771 	v = ta_buf_m;
772 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
773 		ptei = &tei[i];
774 		num = 0;
775 		error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v,
776 		    &num);
777 		/* Save state for userland */
778 		store_tei_result(ptei, OP_DEL, error, num);
779 		if (error != 0 && first_error == 0)
780 			first_error = error;
781 		tc->count -= num;
782 		numdel += num;
783 	}
784 	IPFW_WUNLOCK(ch);
785 
786 	/* Unlink non-used values */
787 	ipfw_garbage_table_values(ch, tc, tei, count, 0);
788 
789 	if (numdel != 0) {
790 		/* Run post-del hook to permit shrinking */
791 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
792 	}
793 
794 	IPFW_UH_WUNLOCK(ch);
795 
796 	/* Return first error to user, if any */
797 	error = first_error;
798 
799 cleanup:
800 	flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf);
801 
802 	return (error);
803 }
804 
805 /*
806  * Ensure that table @tc has enough space to add @count entries without
807  * need for reallocation.
808  *
809  * Callbacks order:
810  * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize.
811  *
812  * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags.
813  * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage
814  * 3) modify (UH_WLOCK + WLOCK) - switch pointers
815  * 4) flush_modify (UH_WLOCK) - free state, if needed
816  *
817  * Returns 0 on success.
818  */
819 static int
820 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
821     struct table_config *tc, struct table_info *ti, uint32_t count)
822 {
823 	struct table_algo *ta;
824 	uint64_t pflags;
825 	char ta_buf[TA_BUF_SZ];
826 	int error;
827 
828 	IPFW_UH_WLOCK_ASSERT(ch);
829 
830 	error = 0;
831 	ta = tc->ta;
832 	if (ta->need_modify == NULL)
833 		return (0);
834 
835 	/* Acquire reference not to loose @tc between locks/unlocks */
836 	tc->no.refcnt++;
837 
838 	/*
839 	 * TODO: think about avoiding race between large add/large delete
840 	 * operation on algorithm which implements shrinking along with
841 	 * growing.
842 	 */
843 	while (true) {
844 		pflags = 0;
845 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
846 			error = 0;
847 			break;
848 		}
849 
850 		/* We have to shrink/grow table */
851 		if (ts != NULL)
852 			add_toperation_state(ch, ts);
853 		IPFW_UH_WUNLOCK(ch);
854 
855 		memset(&ta_buf, 0, sizeof(ta_buf));
856 		error = ta->prepare_mod(ta_buf, &pflags);
857 
858 		IPFW_UH_WLOCK(ch);
859 		if (ts != NULL)
860 			del_toperation_state(ch, ts);
861 
862 		if (error != 0)
863 			break;
864 
865 		if (ts != NULL && ts->modified != 0) {
866 
867 			/*
868 			 * Swap operation has happened
869 			 * so we're currently operating on other
870 			 * table data. Stop doing this.
871 			 */
872 			ta->flush_mod(ta_buf);
873 			break;
874 		}
875 
876 		/* Check if we still need to alter table */
877 		ti = KIDX_TO_TI(ch, tc->no.kidx);
878 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
879 			IPFW_UH_WUNLOCK(ch);
880 
881 			/*
882 			 * Other thread has already performed resize.
883 			 * Flush our state and return.
884 			 */
885 			ta->flush_mod(ta_buf);
886 			break;
887 		}
888 
889 		error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags);
890 		if (error == 0) {
891 			/* Do actual modification */
892 			IPFW_WLOCK(ch);
893 			ta->modify(tc->astate, ti, ta_buf, pflags);
894 			IPFW_WUNLOCK(ch);
895 		}
896 
897 		/* Anyway, flush data and retry */
898 		ta->flush_mod(ta_buf);
899 	}
900 
901 	tc->no.refcnt--;
902 	return (error);
903 }
904 
905 /*
906  * Adds or deletes record in table.
907  * Data layout (v0):
908  * Request: [ ip_fw3_opheader ipfw_table_xentry ]
909  *
910  * Returns 0 on success
911  */
912 static int
913 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
914     struct sockopt_data *sd)
915 {
916 	ipfw_table_xentry *xent;
917 	struct tentry_info tei;
918 	struct tid_info ti;
919 	struct table_value v;
920 	int error, hdrlen, read;
921 
922 	hdrlen = offsetof(ipfw_table_xentry, k);
923 
924 	/* Check minimum header size */
925 	if (sd->valsize < (sizeof(*op3) + hdrlen))
926 		return (EINVAL);
927 
928 	read = sizeof(ip_fw3_opheader);
929 
930 	/* Check if xentry len field is valid */
931 	xent = (ipfw_table_xentry *)(op3 + 1);
932 	if (xent->len < hdrlen || xent->len + read > sd->valsize)
933 		return (EINVAL);
934 
935 	memset(&tei, 0, sizeof(tei));
936 	tei.paddr = &xent->k;
937 	tei.masklen = xent->masklen;
938 	ipfw_import_table_value_legacy(xent->value, &v);
939 	tei.pvalue = &v;
940 	/* Old requests compatibility */
941 	tei.flags = TEI_FLAGS_COMPAT;
942 	if (xent->type == IPFW_TABLE_ADDR) {
943 		if (xent->len - hdrlen == sizeof(in_addr_t))
944 			tei.subtype = AF_INET;
945 		else
946 			tei.subtype = AF_INET6;
947 	}
948 
949 	memset(&ti, 0, sizeof(ti));
950 	ti.uidx = xent->tbl;
951 	ti.type = xent->type;
952 
953 	error = (op3->opcode == IP_FW_TABLE_XADD) ?
954 	    add_table_entry(ch, &ti, &tei, 0, 1) :
955 	    del_table_entry(ch, &ti, &tei, 0, 1);
956 
957 	return (error);
958 }
959 
960 /*
961  * Adds or deletes record in table.
962  * Data layout (v1)(current):
963  * Request: [ ipfw_obj_header
964  *   ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ]
965  * ]
966  *
967  * Returns 0 on success
968  */
969 static int
970 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
971     struct sockopt_data *sd)
972 {
973 	ipfw_obj_tentry *tent, *ptent;
974 	ipfw_obj_ctlv *ctlv;
975 	ipfw_obj_header *oh;
976 	struct tentry_info *ptei, tei, *tei_buf;
977 	struct tid_info ti;
978 	int error, i, kidx, read;
979 
980 	/* Check minimum header size */
981 	if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv)))
982 		return (EINVAL);
983 
984 	/* Check if passed data is too long */
985 	if (sd->valsize != sd->kavail)
986 		return (EINVAL);
987 
988 	oh = (ipfw_obj_header *)sd->kbuf;
989 
990 	/* Basic length checks for TLVs */
991 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
992 		return (EINVAL);
993 
994 	read = sizeof(*oh);
995 
996 	ctlv = (ipfw_obj_ctlv *)(oh + 1);
997 	if (ctlv->head.length + read != sd->valsize)
998 		return (EINVAL);
999 
1000 	read += sizeof(*ctlv);
1001 	tent = (ipfw_obj_tentry *)(ctlv + 1);
1002 	if (ctlv->count * sizeof(*tent) + read != sd->valsize)
1003 		return (EINVAL);
1004 
1005 	if (ctlv->count == 0)
1006 		return (0);
1007 
1008 	/*
1009 	 * Mark entire buffer as "read".
1010 	 * This instructs sopt api write it back
1011 	 * after function return.
1012 	 */
1013 	ipfw_get_sopt_header(sd, sd->valsize);
1014 
1015 	/* Perform basic checks for each entry */
1016 	ptent = tent;
1017 	kidx = tent->idx;
1018 	for (i = 0; i < ctlv->count; i++, ptent++) {
1019 		if (ptent->head.length != sizeof(*ptent))
1020 			return (EINVAL);
1021 		if (ptent->idx != kidx)
1022 			return (ENOTSUP);
1023 	}
1024 
1025 	/* Convert data into kernel request objects */
1026 	objheader_to_ti(oh, &ti);
1027 	ti.type = oh->ntlv.type;
1028 	ti.uidx = kidx;
1029 
1030 	/* Use on-stack buffer for single add/del */
1031 	if (ctlv->count == 1) {
1032 		memset(&tei, 0, sizeof(tei));
1033 		tei_buf = &tei;
1034 	} else
1035 		tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP,
1036 		    M_WAITOK | M_ZERO);
1037 
1038 	ptei = tei_buf;
1039 	ptent = tent;
1040 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1041 		ptei->paddr = &ptent->k;
1042 		ptei->subtype = ptent->subtype;
1043 		ptei->masklen = ptent->masklen;
1044 		if (ptent->head.flags & IPFW_TF_UPDATE)
1045 			ptei->flags |= TEI_FLAGS_UPDATE;
1046 
1047 		ipfw_import_table_value_v1(&ptent->v.value);
1048 		ptei->pvalue = (struct table_value *)&ptent->v.value;
1049 	}
1050 
1051 	error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ?
1052 	    add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) :
1053 	    del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count);
1054 
1055 	/* Translate result back to userland */
1056 	ptei = tei_buf;
1057 	ptent = tent;
1058 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1059 		if (ptei->flags & TEI_FLAGS_ADDED)
1060 			ptent->result = IPFW_TR_ADDED;
1061 		else if (ptei->flags & TEI_FLAGS_DELETED)
1062 			ptent->result = IPFW_TR_DELETED;
1063 		else if (ptei->flags & TEI_FLAGS_UPDATED)
1064 			ptent->result = IPFW_TR_UPDATED;
1065 		else if (ptei->flags & TEI_FLAGS_LIMIT)
1066 			ptent->result = IPFW_TR_LIMIT;
1067 		else if (ptei->flags & TEI_FLAGS_ERROR)
1068 			ptent->result = IPFW_TR_ERROR;
1069 		else if (ptei->flags & TEI_FLAGS_NOTFOUND)
1070 			ptent->result = IPFW_TR_NOTFOUND;
1071 		else if (ptei->flags & TEI_FLAGS_EXISTS)
1072 			ptent->result = IPFW_TR_EXISTS;
1073 		ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value);
1074 	}
1075 
1076 	if (tei_buf != &tei)
1077 		free(tei_buf, M_TEMP);
1078 
1079 	return (error);
1080 }
1081 
1082 /*
1083  * Looks up an entry in given table.
1084  * Data layout (v0)(current):
1085  * Request: [ ipfw_obj_header ipfw_obj_tentry ]
1086  * Reply: [ ipfw_obj_header ipfw_obj_tentry ]
1087  *
1088  * Returns 0 on success
1089  */
1090 static int
1091 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1092     struct sockopt_data *sd)
1093 {
1094 	ipfw_obj_tentry *tent;
1095 	ipfw_obj_header *oh;
1096 	struct tid_info ti;
1097 	struct table_config *tc;
1098 	struct table_algo *ta;
1099 	struct table_info *kti;
1100 	struct table_value *pval;
1101 	struct namedobj_instance *ni;
1102 	int error;
1103 	size_t sz;
1104 
1105 	/* Check minimum header size */
1106 	sz = sizeof(*oh) + sizeof(*tent);
1107 	if (sd->valsize != sz)
1108 		return (EINVAL);
1109 
1110 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1111 	tent = (ipfw_obj_tentry *)(oh + 1);
1112 
1113 	/* Basic length checks for TLVs */
1114 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
1115 		return (EINVAL);
1116 
1117 	objheader_to_ti(oh, &ti);
1118 	ti.type = oh->ntlv.type;
1119 	ti.uidx = tent->idx;
1120 
1121 	IPFW_UH_RLOCK(ch);
1122 	ni = CHAIN_TO_NI(ch);
1123 
1124 	/*
1125 	 * Find existing table and check its type .
1126 	 */
1127 	ta = NULL;
1128 	if ((tc = find_table(ni, &ti)) == NULL) {
1129 		IPFW_UH_RUNLOCK(ch);
1130 		return (ESRCH);
1131 	}
1132 
1133 	/* check table type */
1134 	if (tc->no.subtype != ti.type) {
1135 		IPFW_UH_RUNLOCK(ch);
1136 		return (EINVAL);
1137 	}
1138 
1139 	kti = KIDX_TO_TI(ch, tc->no.kidx);
1140 	ta = tc->ta;
1141 
1142 	if (ta->find_tentry == NULL)
1143 		return (ENOTSUP);
1144 
1145 	error = ta->find_tentry(tc->astate, kti, tent);
1146 	if (error == 0) {
1147 		pval = get_table_value(ch, tc, tent->v.kidx);
1148 		ipfw_export_table_value_v1(pval, &tent->v.value);
1149 	}
1150 	IPFW_UH_RUNLOCK(ch);
1151 
1152 	return (error);
1153 }
1154 
1155 /*
1156  * Flushes all entries or destroys given table.
1157  * Data layout (v0)(current):
1158  * Request: [ ipfw_obj_header ]
1159  *
1160  * Returns 0 on success
1161  */
1162 static int
1163 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1164     struct sockopt_data *sd)
1165 {
1166 	int error;
1167 	struct _ipfw_obj_header *oh;
1168 	struct tid_info ti;
1169 
1170 	if (sd->valsize != sizeof(*oh))
1171 		return (EINVAL);
1172 
1173 	oh = (struct _ipfw_obj_header *)op3;
1174 	objheader_to_ti(oh, &ti);
1175 
1176 	if (op3->opcode == IP_FW_TABLE_XDESTROY)
1177 		error = destroy_table(ch, &ti);
1178 	else if (op3->opcode == IP_FW_TABLE_XFLUSH)
1179 		error = flush_table(ch, &ti);
1180 	else
1181 		return (ENOTSUP);
1182 
1183 	return (error);
1184 }
1185 
1186 static void
1187 restart_flush(void *object, struct op_state *_state)
1188 {
1189 	struct tableop_state *ts;
1190 
1191 	ts = (struct tableop_state *)_state;
1192 
1193 	if (ts->tc != object)
1194 		return;
1195 
1196 	/* Indicate we've called */
1197 	ts->modified = 1;
1198 }
1199 
1200 /*
1201  * Flushes given table.
1202  *
1203  * Function create new table instance with the same
1204  * parameters, swaps it with old one and
1205  * flushes state without holding runtime WLOCK.
1206  *
1207  * Returns 0 on success.
1208  */
1209 int
1210 flush_table(struct ip_fw_chain *ch, struct tid_info *ti)
1211 {
1212 	struct namedobj_instance *ni;
1213 	struct table_config *tc;
1214 	struct table_algo *ta;
1215 	struct table_info ti_old, ti_new, *tablestate;
1216 	void *astate_old, *astate_new;
1217 	char algostate[64], *pstate;
1218 	struct tableop_state ts;
1219 	int error, need_gc;
1220 	uint16_t kidx;
1221 	uint8_t tflags;
1222 
1223 	/*
1224 	 * Stage 1: save table algorithm.
1225 	 * Reference found table to ensure it won't disappear.
1226 	 */
1227 	IPFW_UH_WLOCK(ch);
1228 	ni = CHAIN_TO_NI(ch);
1229 	if ((tc = find_table(ni, ti)) == NULL) {
1230 		IPFW_UH_WUNLOCK(ch);
1231 		return (ESRCH);
1232 	}
1233 	need_gc = 0;
1234 	astate_new = NULL;
1235 	memset(&ti_new, 0, sizeof(ti_new));
1236 restart:
1237 	/* Set up swap handler */
1238 	memset(&ts, 0, sizeof(ts));
1239 	ts.opstate.func = restart_flush;
1240 	ts.tc = tc;
1241 
1242 	ta = tc->ta;
1243 	/* Do not flush readonly tables */
1244 	if ((ta->flags & TA_FLAG_READONLY) != 0) {
1245 		IPFW_UH_WUNLOCK(ch);
1246 		return (EACCES);
1247 	}
1248 	/* Save startup algo parameters */
1249 	if (ta->print_config != NULL) {
1250 		ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx),
1251 		    algostate, sizeof(algostate));
1252 		pstate = algostate;
1253 	} else
1254 		pstate = NULL;
1255 	tflags = tc->tflags;
1256 	tc->no.refcnt++;
1257 	add_toperation_state(ch, &ts);
1258 	IPFW_UH_WUNLOCK(ch);
1259 
1260 	/*
1261 	 * Stage 1.5: if this is not the first attempt, destroy previous state
1262 	 */
1263 	if (need_gc != 0) {
1264 		ta->destroy(astate_new, &ti_new);
1265 		need_gc = 0;
1266 	}
1267 
1268 	/*
1269 	 * Stage 2: allocate new table instance using same algo.
1270 	 */
1271 	memset(&ti_new, 0, sizeof(struct table_info));
1272 	error = ta->init(ch, &astate_new, &ti_new, pstate, tflags);
1273 
1274 	/*
1275 	 * Stage 3: swap old state pointers with newly-allocated ones.
1276 	 * Decrease refcount.
1277 	 */
1278 	IPFW_UH_WLOCK(ch);
1279 	tc->no.refcnt--;
1280 	del_toperation_state(ch, &ts);
1281 
1282 	if (error != 0) {
1283 		IPFW_UH_WUNLOCK(ch);
1284 		return (error);
1285 	}
1286 
1287 	/*
1288 	 * Restart operation if table swap has happened:
1289 	 * even if algo may be the same, algo init parameters
1290 	 * may change. Restart operation instead of doing
1291 	 * complex checks.
1292 	 */
1293 	if (ts.modified != 0) {
1294 		/* Delay destroying data since we're holding UH lock */
1295 		need_gc = 1;
1296 		goto restart;
1297 	}
1298 
1299 	ni = CHAIN_TO_NI(ch);
1300 	kidx = tc->no.kidx;
1301 	tablestate = (struct table_info *)ch->tablestate;
1302 
1303 	IPFW_WLOCK(ch);
1304 	ti_old = tablestate[kidx];
1305 	tablestate[kidx] = ti_new;
1306 	IPFW_WUNLOCK(ch);
1307 
1308 	astate_old = tc->astate;
1309 	tc->astate = astate_new;
1310 	tc->ti_copy = ti_new;
1311 	tc->count = 0;
1312 
1313 	/* Notify algo on real @ti address */
1314 	if (ta->change_ti != NULL)
1315 		ta->change_ti(tc->astate, &tablestate[kidx]);
1316 
1317 	/*
1318 	 * Stage 4: unref values.
1319 	 */
1320 	ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old);
1321 	IPFW_UH_WUNLOCK(ch);
1322 
1323 	/*
1324 	 * Stage 5: perform real flush/destroy.
1325 	 */
1326 	ta->destroy(astate_old, &ti_old);
1327 
1328 	return (0);
1329 }
1330 
1331 /*
1332  * Swaps two tables.
1333  * Data layout (v0)(current):
1334  * Request: [ ipfw_obj_header ipfw_obj_ntlv ]
1335  *
1336  * Returns 0 on success
1337  */
1338 static int
1339 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1340     struct sockopt_data *sd)
1341 {
1342 	int error;
1343 	struct _ipfw_obj_header *oh;
1344 	struct tid_info ti_a, ti_b;
1345 
1346 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv))
1347 		return (EINVAL);
1348 
1349 	oh = (struct _ipfw_obj_header *)op3;
1350 	ntlv_to_ti(&oh->ntlv, &ti_a);
1351 	ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b);
1352 
1353 	error = swap_tables(ch, &ti_a, &ti_b);
1354 
1355 	return (error);
1356 }
1357 
1358 /*
1359  * Swaps two tables of the same type/valtype.
1360  *
1361  * Checks if tables are compatible and limits
1362  * permits swap, than actually perform swap.
1363  *
1364  * Each table consists of 2 different parts:
1365  * config:
1366  *   @tc (with name, set, kidx) and rule bindings, which is "stable".
1367  *   number of items
1368  *   table algo
1369  * runtime:
1370  *   runtime data @ti (ch->tablestate)
1371  *   runtime cache in @tc
1372  *   algo-specific data (@tc->astate)
1373  *
1374  * So we switch:
1375  *  all runtime data
1376  *   number of items
1377  *   table algo
1378  *
1379  * After that we call @ti change handler for each table.
1380  *
1381  * Note that referencing @tc won't protect tc->ta from change.
1382  * XXX: Do we need to restrict swap between locked tables?
1383  * XXX: Do we need to exchange ftype?
1384  *
1385  * Returns 0 on success.
1386  */
1387 static int
1388 swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
1389     struct tid_info *b)
1390 {
1391 	struct namedobj_instance *ni;
1392 	struct table_config *tc_a, *tc_b;
1393 	struct table_algo *ta;
1394 	struct table_info ti, *tablestate;
1395 	void *astate;
1396 	uint32_t count;
1397 
1398 	/*
1399 	 * Stage 1: find both tables and ensure they are of
1400 	 * the same type.
1401 	 */
1402 	IPFW_UH_WLOCK(ch);
1403 	ni = CHAIN_TO_NI(ch);
1404 	if ((tc_a = find_table(ni, a)) == NULL) {
1405 		IPFW_UH_WUNLOCK(ch);
1406 		return (ESRCH);
1407 	}
1408 	if ((tc_b = find_table(ni, b)) == NULL) {
1409 		IPFW_UH_WUNLOCK(ch);
1410 		return (ESRCH);
1411 	}
1412 
1413 	/* It is very easy to swap between the same table */
1414 	if (tc_a == tc_b) {
1415 		IPFW_UH_WUNLOCK(ch);
1416 		return (0);
1417 	}
1418 
1419 	/* Check type and value are the same */
1420 	if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) {
1421 		IPFW_UH_WUNLOCK(ch);
1422 		return (EINVAL);
1423 	}
1424 
1425 	/* Check limits before swap */
1426 	if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) ||
1427 	    (tc_b->limit != 0 && tc_a->count > tc_b->limit)) {
1428 		IPFW_UH_WUNLOCK(ch);
1429 		return (EFBIG);
1430 	}
1431 
1432 	/* Check if one of the tables is readonly */
1433 	if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) {
1434 		IPFW_UH_WUNLOCK(ch);
1435 		return (EACCES);
1436 	}
1437 
1438 	/* Notify we're going to swap */
1439 	rollback_toperation_state(ch, tc_a);
1440 	rollback_toperation_state(ch, tc_b);
1441 
1442 	/* Everything is fine, prepare to swap */
1443 	tablestate = (struct table_info *)ch->tablestate;
1444 	ti = tablestate[tc_a->no.kidx];
1445 	ta = tc_a->ta;
1446 	astate = tc_a->astate;
1447 	count = tc_a->count;
1448 
1449 	IPFW_WLOCK(ch);
1450 	/* a <- b */
1451 	tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx];
1452 	tc_a->ta = tc_b->ta;
1453 	tc_a->astate = tc_b->astate;
1454 	tc_a->count = tc_b->count;
1455 	/* b <- a */
1456 	tablestate[tc_b->no.kidx] = ti;
1457 	tc_b->ta = ta;
1458 	tc_b->astate = astate;
1459 	tc_b->count = count;
1460 	IPFW_WUNLOCK(ch);
1461 
1462 	/* Ensure tc.ti copies are in sync */
1463 	tc_a->ti_copy = tablestate[tc_a->no.kidx];
1464 	tc_b->ti_copy = tablestate[tc_b->no.kidx];
1465 
1466 	/* Notify both tables on @ti change */
1467 	if (tc_a->ta->change_ti != NULL)
1468 		tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]);
1469 	if (tc_b->ta->change_ti != NULL)
1470 		tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]);
1471 
1472 	IPFW_UH_WUNLOCK(ch);
1473 
1474 	return (0);
1475 }
1476 
1477 /*
1478  * Destroys table specified by @ti.
1479  * Data layout (v0)(current):
1480  * Request: [ ip_fw3_opheader ]
1481  *
1482  * Returns 0 on success
1483  */
1484 static int
1485 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti)
1486 {
1487 	struct namedobj_instance *ni;
1488 	struct table_config *tc;
1489 
1490 	IPFW_UH_WLOCK(ch);
1491 
1492 	ni = CHAIN_TO_NI(ch);
1493 	if ((tc = find_table(ni, ti)) == NULL) {
1494 		IPFW_UH_WUNLOCK(ch);
1495 		return (ESRCH);
1496 	}
1497 
1498 	/* Do not permit destroying referenced tables */
1499 	if (tc->no.refcnt > 0) {
1500 		IPFW_UH_WUNLOCK(ch);
1501 		return (EBUSY);
1502 	}
1503 
1504 	IPFW_WLOCK(ch);
1505 	unlink_table(ch, tc);
1506 	IPFW_WUNLOCK(ch);
1507 
1508 	/* Free obj index */
1509 	if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0)
1510 		printf("Error unlinking kidx %d from table %s\n",
1511 		    tc->no.kidx, tc->tablename);
1512 
1513 	/* Unref values used in tables while holding UH lock */
1514 	ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy);
1515 	IPFW_UH_WUNLOCK(ch);
1516 
1517 	free_table_config(ni, tc);
1518 
1519 	return (0);
1520 }
1521 
1522 static uint32_t
1523 roundup2p(uint32_t v)
1524 {
1525 
1526 	v--;
1527 	v |= v >> 1;
1528 	v |= v >> 2;
1529 	v |= v >> 4;
1530 	v |= v >> 8;
1531 	v |= v >> 16;
1532 	v++;
1533 
1534 	return (v);
1535 }
1536 
1537 /*
1538  * Grow tables index.
1539  *
1540  * Returns 0 on success.
1541  */
1542 int
1543 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
1544 {
1545 	unsigned int ntables_old, tbl;
1546 	struct namedobj_instance *ni;
1547 	void *new_idx, *old_tablestate, *tablestate;
1548 	struct table_info *ti;
1549 	struct table_config *tc;
1550 	int i, new_blocks;
1551 
1552 	/* Check new value for validity */
1553 	if (ntables == 0)
1554 		return (EINVAL);
1555 	if (ntables > IPFW_TABLES_MAX)
1556 		ntables = IPFW_TABLES_MAX;
1557 	/* Alight to nearest power of 2 */
1558 	ntables = (unsigned int)roundup2p(ntables);
1559 
1560 	/* Allocate new pointers */
1561 	tablestate = malloc(ntables * sizeof(struct table_info),
1562 	    M_IPFW, M_WAITOK | M_ZERO);
1563 
1564 	ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks);
1565 
1566 	IPFW_UH_WLOCK(ch);
1567 
1568 	tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
1569 	ni = CHAIN_TO_NI(ch);
1570 
1571 	/* Temporary restrict decreasing max_tables */
1572 	if (ntables < V_fw_tables_max) {
1573 
1574 		/*
1575 		 * FIXME: Check if we really can shrink
1576 		 */
1577 		IPFW_UH_WUNLOCK(ch);
1578 		return (EINVAL);
1579 	}
1580 
1581 	/* Copy table info/indices */
1582 	memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl);
1583 	ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks);
1584 
1585 	IPFW_WLOCK(ch);
1586 
1587 	/* Change pointers */
1588 	old_tablestate = ch->tablestate;
1589 	ch->tablestate = tablestate;
1590 	ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks);
1591 
1592 	ntables_old = V_fw_tables_max;
1593 	V_fw_tables_max = ntables;
1594 
1595 	IPFW_WUNLOCK(ch);
1596 
1597 	/* Notify all consumers that their @ti pointer has changed */
1598 	ti = (struct table_info *)ch->tablestate;
1599 	for (i = 0; i < tbl; i++, ti++) {
1600 		if (ti->lookup == NULL)
1601 			continue;
1602 		tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i);
1603 		if (tc == NULL || tc->ta->change_ti == NULL)
1604 			continue;
1605 
1606 		tc->ta->change_ti(tc->astate, ti);
1607 	}
1608 
1609 	IPFW_UH_WUNLOCK(ch);
1610 
1611 	/* Free old pointers */
1612 	free(old_tablestate, M_IPFW);
1613 	ipfw_objhash_bitmap_free(new_idx, new_blocks);
1614 
1615 	return (0);
1616 }
1617 
1618 /*
1619  * Lookup table's named object by its @kidx.
1620  */
1621 struct named_object *
1622 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx)
1623 {
1624 
1625 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx));
1626 }
1627 
1628 /*
1629  * Take reference to table specified in @ntlv.
1630  * On success return its @kidx.
1631  */
1632 int
1633 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx)
1634 {
1635 	struct tid_info ti;
1636 	struct table_config *tc;
1637 	int error;
1638 
1639 	IPFW_UH_WLOCK_ASSERT(ch);
1640 
1641 	ntlv_to_ti(ntlv, &ti);
1642 	error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc);
1643 	if (error != 0)
1644 		return (error);
1645 
1646 	if (tc == NULL)
1647 		return (ESRCH);
1648 
1649 	tc_ref(tc);
1650 	*kidx = tc->no.kidx;
1651 
1652 	return (0);
1653 }
1654 
1655 void
1656 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx)
1657 {
1658 
1659 	struct namedobj_instance *ni;
1660 	struct named_object *no;
1661 
1662 	IPFW_UH_WLOCK_ASSERT(ch);
1663 	ni = CHAIN_TO_NI(ch);
1664 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1665 	KASSERT(no != NULL, ("Table with index %d not found", kidx));
1666 	no->refcnt--;
1667 }
1668 
1669 /*
1670  * Lookup an arbitrary key @paddr of length @plen in table @tbl.
1671  * Stores found value in @val.
1672  *
1673  * Returns 1 if key was found.
1674  */
1675 int
1676 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
1677     void *paddr, uint32_t *val)
1678 {
1679 	struct table_info *ti;
1680 
1681 	ti = KIDX_TO_TI(ch, tbl);
1682 
1683 	return (ti->lookup(ti, paddr, plen, val));
1684 }
1685 
1686 /*
1687  * Info/List/dump support for tables.
1688  *
1689  */
1690 
1691 /*
1692  * High-level 'get' cmds sysctl handlers
1693  */
1694 
1695 /*
1696  * Lists all tables currently available in kernel.
1697  * Data layout (v0)(current):
1698  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
1699  * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ]
1700  *
1701  * Returns 0 on success
1702  */
1703 static int
1704 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1705     struct sockopt_data *sd)
1706 {
1707 	struct _ipfw_obj_lheader *olh;
1708 	int error;
1709 
1710 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
1711 	if (olh == NULL)
1712 		return (EINVAL);
1713 	if (sd->valsize < olh->size)
1714 		return (EINVAL);
1715 
1716 	IPFW_UH_RLOCK(ch);
1717 	error = export_tables(ch, olh, sd);
1718 	IPFW_UH_RUNLOCK(ch);
1719 
1720 	return (error);
1721 }
1722 
1723 /*
1724  * Store table info to buffer provided by @sd.
1725  * Data layout (v0)(current):
1726  * Request: [ ipfw_obj_header ipfw_xtable_info(empty)]
1727  * Reply: [ ipfw_obj_header ipfw_xtable_info ]
1728  *
1729  * Returns 0 on success.
1730  */
1731 static int
1732 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1733     struct sockopt_data *sd)
1734 {
1735 	struct _ipfw_obj_header *oh;
1736 	struct table_config *tc;
1737 	struct tid_info ti;
1738 	size_t sz;
1739 
1740 	sz = sizeof(*oh) + sizeof(ipfw_xtable_info);
1741 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1742 	if (oh == NULL)
1743 		return (EINVAL);
1744 
1745 	objheader_to_ti(oh, &ti);
1746 
1747 	IPFW_UH_RLOCK(ch);
1748 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
1749 		IPFW_UH_RUNLOCK(ch);
1750 		return (ESRCH);
1751 	}
1752 
1753 	export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1));
1754 	IPFW_UH_RUNLOCK(ch);
1755 
1756 	return (0);
1757 }
1758 
1759 /*
1760  * Modifies existing table.
1761  * Data layout (v0)(current):
1762  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1763  *
1764  * Returns 0 on success
1765  */
1766 static int
1767 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1768     struct sockopt_data *sd)
1769 {
1770 	struct _ipfw_obj_header *oh;
1771 	ipfw_xtable_info *i;
1772 	char *tname;
1773 	struct tid_info ti;
1774 	struct namedobj_instance *ni;
1775 	struct table_config *tc;
1776 
1777 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1778 		return (EINVAL);
1779 
1780 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1781 	i = (ipfw_xtable_info *)(oh + 1);
1782 
1783 	/*
1784 	 * Verify user-supplied strings.
1785 	 * Check for null-terminated/zero-length strings/
1786 	 */
1787 	tname = oh->ntlv.name;
1788 	if (check_table_name(tname) != 0)
1789 		return (EINVAL);
1790 
1791 	objheader_to_ti(oh, &ti);
1792 	ti.type = i->type;
1793 
1794 	IPFW_UH_WLOCK(ch);
1795 	ni = CHAIN_TO_NI(ch);
1796 	if ((tc = find_table(ni, &ti)) == NULL) {
1797 		IPFW_UH_WUNLOCK(ch);
1798 		return (ESRCH);
1799 	}
1800 
1801 	/* Do not support any modifications for readonly tables */
1802 	if ((tc->ta->flags & TA_FLAG_READONLY) != 0) {
1803 		IPFW_UH_WUNLOCK(ch);
1804 		return (EACCES);
1805 	}
1806 
1807 	if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0)
1808 		tc->limit = i->limit;
1809 	if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0)
1810 		tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0);
1811 	IPFW_UH_WUNLOCK(ch);
1812 
1813 	return (0);
1814 }
1815 
1816 /*
1817  * Creates new table.
1818  * Data layout (v0)(current):
1819  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1820  *
1821  * Returns 0 on success
1822  */
1823 static int
1824 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1825     struct sockopt_data *sd)
1826 {
1827 	struct _ipfw_obj_header *oh;
1828 	ipfw_xtable_info *i;
1829 	char *tname, *aname;
1830 	struct tid_info ti;
1831 	struct namedobj_instance *ni;
1832 
1833 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1834 		return (EINVAL);
1835 
1836 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1837 	i = (ipfw_xtable_info *)(oh + 1);
1838 
1839 	/*
1840 	 * Verify user-supplied strings.
1841 	 * Check for null-terminated/zero-length strings/
1842 	 */
1843 	tname = oh->ntlv.name;
1844 	aname = i->algoname;
1845 	if (check_table_name(tname) != 0 ||
1846 	    strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname))
1847 		return (EINVAL);
1848 
1849 	if (aname[0] == '\0') {
1850 		/* Use default algorithm */
1851 		aname = NULL;
1852 	}
1853 
1854 	objheader_to_ti(oh, &ti);
1855 	ti.type = i->type;
1856 
1857 	ni = CHAIN_TO_NI(ch);
1858 
1859 	IPFW_UH_RLOCK(ch);
1860 	if (find_table(ni, &ti) != NULL) {
1861 		IPFW_UH_RUNLOCK(ch);
1862 		return (EEXIST);
1863 	}
1864 	IPFW_UH_RUNLOCK(ch);
1865 
1866 	return (create_table_internal(ch, &ti, aname, i, NULL, 0));
1867 }
1868 
1869 /*
1870  * Creates new table based on @ti and @aname.
1871  *
1872  * Assume @aname to be checked and valid.
1873  * Stores allocated table kidx inside @pkidx (if non-NULL).
1874  * Reference created table if @compat is non-zero.
1875  *
1876  * Returns 0 on success.
1877  */
1878 static int
1879 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
1880     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat)
1881 {
1882 	struct namedobj_instance *ni;
1883 	struct table_config *tc, *tc_new, *tmp;
1884 	struct table_algo *ta;
1885 	uint16_t kidx;
1886 
1887 	ni = CHAIN_TO_NI(ch);
1888 
1889 	ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname);
1890 	if (ta == NULL)
1891 		return (ENOTSUP);
1892 
1893 	tc = alloc_table_config(ch, ti, ta, aname, i->tflags);
1894 	if (tc == NULL)
1895 		return (ENOMEM);
1896 
1897 	tc->vmask = i->vmask;
1898 	tc->limit = i->limit;
1899 	if (ta->flags & TA_FLAG_READONLY)
1900 		tc->locked = 1;
1901 	else
1902 		tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0;
1903 
1904 	IPFW_UH_WLOCK(ch);
1905 
1906 	/* Check if table has been already created */
1907 	tc_new = find_table(ni, ti);
1908 	if (tc_new != NULL) {
1909 
1910 		/*
1911 		 * Compat: do not fail if we're
1912 		 * requesting to create existing table
1913 		 * which has the same type
1914 		 */
1915 		if (compat == 0 || tc_new->no.subtype != tc->no.subtype) {
1916 			IPFW_UH_WUNLOCK(ch);
1917 			free_table_config(ni, tc);
1918 			return (EEXIST);
1919 		}
1920 
1921 		/* Exchange tc and tc_new for proper refcounting & freeing */
1922 		tmp = tc;
1923 		tc = tc_new;
1924 		tc_new = tmp;
1925 	} else {
1926 		/* New table */
1927 		if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) {
1928 			IPFW_UH_WUNLOCK(ch);
1929 			printf("Unable to allocate table index."
1930 			    " Consider increasing net.inet.ip.fw.tables_max");
1931 			free_table_config(ni, tc);
1932 			return (EBUSY);
1933 		}
1934 		tc->no.kidx = kidx;
1935 		tc->no.etlv = IPFW_TLV_TBL_NAME;
1936 
1937 		link_table(ch, tc);
1938 	}
1939 
1940 	if (compat != 0)
1941 		tc->no.refcnt++;
1942 	if (pkidx != NULL)
1943 		*pkidx = tc->no.kidx;
1944 
1945 	IPFW_UH_WUNLOCK(ch);
1946 
1947 	if (tc_new != NULL)
1948 		free_table_config(ni, tc_new);
1949 
1950 	return (0);
1951 }
1952 
1953 static void
1954 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti)
1955 {
1956 
1957 	memset(ti, 0, sizeof(struct tid_info));
1958 	ti->set = ntlv->set;
1959 	ti->uidx = ntlv->idx;
1960 	ti->tlvs = ntlv;
1961 	ti->tlen = ntlv->head.length;
1962 }
1963 
1964 static void
1965 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti)
1966 {
1967 
1968 	ntlv_to_ti(&oh->ntlv, ti);
1969 }
1970 
1971 struct namedobj_instance *
1972 ipfw_get_table_objhash(struct ip_fw_chain *ch)
1973 {
1974 
1975 	return (CHAIN_TO_NI(ch));
1976 }
1977 
1978 /*
1979  * Exports basic table info as name TLV.
1980  * Used inside dump_static_rules() to provide info
1981  * about all tables referenced by current ruleset.
1982  *
1983  * Returns 0 on success.
1984  */
1985 int
1986 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx,
1987     struct sockopt_data *sd)
1988 {
1989 	struct namedobj_instance *ni;
1990 	struct named_object *no;
1991 	ipfw_obj_ntlv *ntlv;
1992 
1993 	ni = CHAIN_TO_NI(ch);
1994 
1995 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1996 	KASSERT(no != NULL, ("invalid table kidx passed"));
1997 
1998 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1999 	if (ntlv == NULL)
2000 		return (ENOMEM);
2001 
2002 	ntlv->head.type = IPFW_TLV_TBL_NAME;
2003 	ntlv->head.length = sizeof(*ntlv);
2004 	ntlv->idx = no->kidx;
2005 	strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
2006 
2007 	return (0);
2008 }
2009 
2010 struct dump_args {
2011 	struct ip_fw_chain *ch;
2012 	struct table_info *ti;
2013 	struct table_config *tc;
2014 	struct sockopt_data *sd;
2015 	uint32_t cnt;
2016 	uint16_t uidx;
2017 	int error;
2018 	uint32_t size;
2019 	ipfw_table_entry *ent;
2020 	ta_foreach_f *f;
2021 	void *farg;
2022 	ipfw_obj_tentry tent;
2023 };
2024 
2025 static int
2026 count_ext_entries(void *e, void *arg)
2027 {
2028 	struct dump_args *da;
2029 
2030 	da = (struct dump_args *)arg;
2031 	da->cnt++;
2032 
2033 	return (0);
2034 }
2035 
2036 /*
2037  * Gets number of items from table either using
2038  * internal counter or calling algo callback for
2039  * externally-managed tables.
2040  *
2041  * Returns number of records.
2042  */
2043 static uint32_t
2044 table_get_count(struct ip_fw_chain *ch, struct table_config *tc)
2045 {
2046 	struct table_info *ti;
2047 	struct table_algo *ta;
2048 	struct dump_args da;
2049 
2050 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2051 	ta = tc->ta;
2052 
2053 	/* Use internal counter for self-managed tables */
2054 	if ((ta->flags & TA_FLAG_READONLY) == 0)
2055 		return (tc->count);
2056 
2057 	/* Use callback to quickly get number of items */
2058 	if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0)
2059 		return (ta->get_count(tc->astate, ti));
2060 
2061 	/* Count number of iterms ourselves */
2062 	memset(&da, 0, sizeof(da));
2063 	ta->foreach(tc->astate, ti, count_ext_entries, &da);
2064 
2065 	return (da.cnt);
2066 }
2067 
2068 /*
2069  * Exports table @tc info into standard ipfw_xtable_info format.
2070  */
2071 static void
2072 export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
2073     ipfw_xtable_info *i)
2074 {
2075 	struct table_info *ti;
2076 	struct table_algo *ta;
2077 
2078 	i->type = tc->no.subtype;
2079 	i->tflags = tc->tflags;
2080 	i->vmask = tc->vmask;
2081 	i->set = tc->no.set;
2082 	i->kidx = tc->no.kidx;
2083 	i->refcnt = tc->no.refcnt;
2084 	i->count = table_get_count(ch, tc);
2085 	i->limit = tc->limit;
2086 	i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0;
2087 	i->size = i->count * sizeof(ipfw_obj_tentry);
2088 	i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2089 	strlcpy(i->tablename, tc->tablename, sizeof(i->tablename));
2090 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2091 	ta = tc->ta;
2092 	if (ta->print_config != NULL) {
2093 		/* Use algo function to print table config to string */
2094 		ta->print_config(tc->astate, ti, i->algoname,
2095 		    sizeof(i->algoname));
2096 	} else
2097 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2098 	/* Dump algo-specific data, if possible */
2099 	if (ta->dump_tinfo != NULL) {
2100 		ta->dump_tinfo(tc->astate, ti, &i->ta_info);
2101 		i->ta_info.flags |= IPFW_TATFLAGS_DATA;
2102 	}
2103 }
2104 
2105 struct dump_table_args {
2106 	struct ip_fw_chain *ch;
2107 	struct sockopt_data *sd;
2108 };
2109 
2110 static int
2111 export_table_internal(struct namedobj_instance *ni, struct named_object *no,
2112     void *arg)
2113 {
2114 	ipfw_xtable_info *i;
2115 	struct dump_table_args *dta;
2116 
2117 	dta = (struct dump_table_args *)arg;
2118 
2119 	i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i));
2120 	KASSERT(i != NULL, ("previously checked buffer is not enough"));
2121 
2122 	export_table_info(dta->ch, (struct table_config *)no, i);
2123 	return (0);
2124 }
2125 
2126 /*
2127  * Export all tables as ipfw_xtable_info structures to
2128  * storage provided by @sd.
2129  *
2130  * If supplied buffer is too small, fills in required size
2131  * and returns ENOMEM.
2132  * Returns 0 on success.
2133  */
2134 static int
2135 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
2136     struct sockopt_data *sd)
2137 {
2138 	uint32_t size;
2139 	uint32_t count;
2140 	struct dump_table_args dta;
2141 
2142 	count = ipfw_objhash_count(CHAIN_TO_NI(ch));
2143 	size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader);
2144 
2145 	/* Fill in header regadless of buffer size */
2146 	olh->count = count;
2147 	olh->objsize = sizeof(ipfw_xtable_info);
2148 
2149 	if (size > olh->size) {
2150 		olh->size = size;
2151 		return (ENOMEM);
2152 	}
2153 
2154 	olh->size = size;
2155 
2156 	dta.ch = ch;
2157 	dta.sd = sd;
2158 
2159 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta);
2160 
2161 	return (0);
2162 }
2163 
2164 /*
2165  * Dumps all table data
2166  * Data layout (v1)(current):
2167  * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size
2168  * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ]
2169  *
2170  * Returns 0 on success
2171  */
2172 static int
2173 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2174     struct sockopt_data *sd)
2175 {
2176 	struct _ipfw_obj_header *oh;
2177 	ipfw_xtable_info *i;
2178 	struct tid_info ti;
2179 	struct table_config *tc;
2180 	struct table_algo *ta;
2181 	struct dump_args da;
2182 	uint32_t sz;
2183 
2184 	sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2185 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
2186 	if (oh == NULL)
2187 		return (EINVAL);
2188 
2189 	i = (ipfw_xtable_info *)(oh + 1);
2190 	objheader_to_ti(oh, &ti);
2191 
2192 	IPFW_UH_RLOCK(ch);
2193 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2194 		IPFW_UH_RUNLOCK(ch);
2195 		return (ESRCH);
2196 	}
2197 	export_table_info(ch, tc, i);
2198 
2199 	if (sd->valsize < i->size) {
2200 
2201 		/*
2202 		 * Submitted buffer size is not enough.
2203 		 * WE've already filled in @i structure with
2204 		 * relevant table info including size, so we
2205 		 * can return. Buffer will be flushed automatically.
2206 		 */
2207 		IPFW_UH_RUNLOCK(ch);
2208 		return (ENOMEM);
2209 	}
2210 
2211 	/*
2212 	 * Do the actual dump in eXtended format
2213 	 */
2214 	memset(&da, 0, sizeof(da));
2215 	da.ch = ch;
2216 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2217 	da.tc = tc;
2218 	da.sd = sd;
2219 
2220 	ta = tc->ta;
2221 
2222 	ta->foreach(tc->astate, da.ti, dump_table_tentry, &da);
2223 	IPFW_UH_RUNLOCK(ch);
2224 
2225 	return (da.error);
2226 }
2227 
2228 /*
2229  * Dumps all table data
2230  * Data layout (version 0)(legacy):
2231  * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE()
2232  * Reply: [ ipfw_xtable ipfw_table_xentry x N ]
2233  *
2234  * Returns 0 on success
2235  */
2236 static int
2237 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2238     struct sockopt_data *sd)
2239 {
2240 	ipfw_xtable *xtbl;
2241 	struct tid_info ti;
2242 	struct table_config *tc;
2243 	struct table_algo *ta;
2244 	struct dump_args da;
2245 	size_t sz, count;
2246 
2247 	xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable));
2248 	if (xtbl == NULL)
2249 		return (EINVAL);
2250 
2251 	memset(&ti, 0, sizeof(ti));
2252 	ti.uidx = xtbl->tbl;
2253 
2254 	IPFW_UH_RLOCK(ch);
2255 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2256 		IPFW_UH_RUNLOCK(ch);
2257 		return (0);
2258 	}
2259 	count = table_get_count(ch, tc);
2260 	sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable);
2261 
2262 	xtbl->cnt = count;
2263 	xtbl->size = sz;
2264 	xtbl->type = tc->no.subtype;
2265 	xtbl->tbl = ti.uidx;
2266 
2267 	if (sd->valsize < sz) {
2268 
2269 		/*
2270 		 * Submitted buffer size is not enough.
2271 		 * WE've already filled in @i structure with
2272 		 * relevant table info including size, so we
2273 		 * can return. Buffer will be flushed automatically.
2274 		 */
2275 		IPFW_UH_RUNLOCK(ch);
2276 		return (ENOMEM);
2277 	}
2278 
2279 	/* Do the actual dump in eXtended format */
2280 	memset(&da, 0, sizeof(da));
2281 	da.ch = ch;
2282 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2283 	da.tc = tc;
2284 	da.sd = sd;
2285 
2286 	ta = tc->ta;
2287 
2288 	ta->foreach(tc->astate, da.ti, dump_table_xentry, &da);
2289 	IPFW_UH_RUNLOCK(ch);
2290 
2291 	return (0);
2292 }
2293 
2294 /*
2295  * Legacy function to retrieve number of items in table.
2296  */
2297 static int
2298 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2299     struct sockopt_data *sd)
2300 {
2301 	uint32_t *tbl;
2302 	struct tid_info ti;
2303 	size_t sz;
2304 	int error;
2305 
2306 	sz = sizeof(*op3) + sizeof(uint32_t);
2307 	op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz);
2308 	if (op3 == NULL)
2309 		return (EINVAL);
2310 
2311 	tbl = (uint32_t *)(op3 + 1);
2312 	memset(&ti, 0, sizeof(ti));
2313 	ti.uidx = *tbl;
2314 	IPFW_UH_RLOCK(ch);
2315 	error = ipfw_count_xtable(ch, &ti, tbl);
2316 	IPFW_UH_RUNLOCK(ch);
2317 	return (error);
2318 }
2319 
2320 /*
2321  * Legacy IP_FW_TABLE_GETSIZE handler
2322  */
2323 int
2324 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2325 {
2326 	struct table_config *tc;
2327 
2328 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2329 		return (ESRCH);
2330 	*cnt = table_get_count(ch, tc);
2331 	return (0);
2332 }
2333 
2334 /*
2335  * Legacy IP_FW_TABLE_XGETSIZE handler
2336  */
2337 int
2338 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2339 {
2340 	struct table_config *tc;
2341 	uint32_t count;
2342 
2343 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) {
2344 		*cnt = 0;
2345 		return (0); /* 'table all list' requires success */
2346 	}
2347 
2348 	count = table_get_count(ch, tc);
2349 	*cnt = count * sizeof(ipfw_table_xentry);
2350 	if (count > 0)
2351 		*cnt += sizeof(ipfw_xtable);
2352 	return (0);
2353 }
2354 
2355 static int
2356 dump_table_entry(void *e, void *arg)
2357 {
2358 	struct dump_args *da;
2359 	struct table_config *tc;
2360 	struct table_algo *ta;
2361 	ipfw_table_entry *ent;
2362 	struct table_value *pval;
2363 	int error;
2364 
2365 	da = (struct dump_args *)arg;
2366 
2367 	tc = da->tc;
2368 	ta = tc->ta;
2369 
2370 	/* Out of memory, returning */
2371 	if (da->cnt == da->size)
2372 		return (1);
2373 	ent = da->ent++;
2374 	ent->tbl = da->uidx;
2375 	da->cnt++;
2376 
2377 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2378 	if (error != 0)
2379 		return (error);
2380 
2381 	ent->addr = da->tent.k.addr.s_addr;
2382 	ent->masklen = da->tent.masklen;
2383 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2384 	ent->value = ipfw_export_table_value_legacy(pval);
2385 
2386 	return (0);
2387 }
2388 
2389 /*
2390  * Dumps table in pre-8.1 legacy format.
2391  */
2392 int
2393 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti,
2394     ipfw_table *tbl)
2395 {
2396 	struct table_config *tc;
2397 	struct table_algo *ta;
2398 	struct dump_args da;
2399 
2400 	tbl->cnt = 0;
2401 
2402 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2403 		return (0);	/* XXX: We should return ESRCH */
2404 
2405 	ta = tc->ta;
2406 
2407 	/* This dump format supports IPv4 only */
2408 	if (tc->no.subtype != IPFW_TABLE_ADDR)
2409 		return (0);
2410 
2411 	memset(&da, 0, sizeof(da));
2412 	da.ch = ch;
2413 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2414 	da.tc = tc;
2415 	da.ent = &tbl->ent[0];
2416 	da.size = tbl->size;
2417 
2418 	tbl->cnt = 0;
2419 	ta->foreach(tc->astate, da.ti, dump_table_entry, &da);
2420 	tbl->cnt = da.cnt;
2421 
2422 	return (0);
2423 }
2424 
2425 /*
2426  * Dumps table entry in eXtended format (v1)(current).
2427  */
2428 static int
2429 dump_table_tentry(void *e, void *arg)
2430 {
2431 	struct dump_args *da;
2432 	struct table_config *tc;
2433 	struct table_algo *ta;
2434 	struct table_value *pval;
2435 	ipfw_obj_tentry *tent;
2436 	int error;
2437 
2438 	da = (struct dump_args *)arg;
2439 
2440 	tc = da->tc;
2441 	ta = tc->ta;
2442 
2443 	tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent));
2444 	/* Out of memory, returning */
2445 	if (tent == NULL) {
2446 		da->error = ENOMEM;
2447 		return (1);
2448 	}
2449 	tent->head.length = sizeof(ipfw_obj_tentry);
2450 	tent->idx = da->uidx;
2451 
2452 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2453 	if (error != 0)
2454 		return (error);
2455 
2456 	pval = get_table_value(da->ch, da->tc, tent->v.kidx);
2457 	ipfw_export_table_value_v1(pval, &tent->v.value);
2458 
2459 	return (0);
2460 }
2461 
2462 /*
2463  * Dumps table entry in eXtended format (v0).
2464  */
2465 static int
2466 dump_table_xentry(void *e, void *arg)
2467 {
2468 	struct dump_args *da;
2469 	struct table_config *tc;
2470 	struct table_algo *ta;
2471 	ipfw_table_xentry *xent;
2472 	ipfw_obj_tentry *tent;
2473 	struct table_value *pval;
2474 	int error;
2475 
2476 	da = (struct dump_args *)arg;
2477 
2478 	tc = da->tc;
2479 	ta = tc->ta;
2480 
2481 	xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent));
2482 	/* Out of memory, returning */
2483 	if (xent == NULL)
2484 		return (1);
2485 	xent->len = sizeof(ipfw_table_xentry);
2486 	xent->tbl = da->uidx;
2487 
2488 	memset(&da->tent, 0, sizeof(da->tent));
2489 	tent = &da->tent;
2490 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2491 	if (error != 0)
2492 		return (error);
2493 
2494 	/* Convert current format to previous one */
2495 	xent->masklen = tent->masklen;
2496 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2497 	xent->value = ipfw_export_table_value_legacy(pval);
2498 	/* Apply some hacks */
2499 	if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) {
2500 		xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr;
2501 		xent->flags = IPFW_TCF_INET;
2502 	} else
2503 		memcpy(&xent->k, &tent->k, sizeof(xent->k));
2504 
2505 	return (0);
2506 }
2507 
2508 /*
2509  * Helper function to export table algo data
2510  * to tentry format before calling user function.
2511  *
2512  * Returns 0 on success.
2513  */
2514 static int
2515 prepare_table_tentry(void *e, void *arg)
2516 {
2517 	struct dump_args *da;
2518 	struct table_config *tc;
2519 	struct table_algo *ta;
2520 	int error;
2521 
2522 	da = (struct dump_args *)arg;
2523 
2524 	tc = da->tc;
2525 	ta = tc->ta;
2526 
2527 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2528 	if (error != 0)
2529 		return (error);
2530 
2531 	da->f(&da->tent, da->farg);
2532 
2533 	return (0);
2534 }
2535 
2536 /*
2537  * Allow external consumers to read table entries in standard format.
2538  */
2539 int
2540 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx,
2541     ta_foreach_f *f, void *arg)
2542 {
2543 	struct namedobj_instance *ni;
2544 	struct table_config *tc;
2545 	struct table_algo *ta;
2546 	struct dump_args da;
2547 
2548 	ni = CHAIN_TO_NI(ch);
2549 
2550 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
2551 	if (tc == NULL)
2552 		return (ESRCH);
2553 
2554 	ta = tc->ta;
2555 
2556 	memset(&da, 0, sizeof(da));
2557 	da.ch = ch;
2558 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2559 	da.tc = tc;
2560 	da.f = f;
2561 	da.farg = arg;
2562 
2563 	ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da);
2564 
2565 	return (0);
2566 }
2567 
2568 /*
2569  * Table algorithms
2570  */
2571 
2572 /*
2573  * Finds algorithm by index, table type or supplied name.
2574  *
2575  * Returns pointer to algo or NULL.
2576  */
2577 static struct table_algo *
2578 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name)
2579 {
2580 	int i, l;
2581 	struct table_algo *ta;
2582 
2583 	if (ti->type > IPFW_TABLE_MAXTYPE)
2584 		return (NULL);
2585 
2586 	/* Search by index */
2587 	if (ti->atype != 0) {
2588 		if (ti->atype > tcfg->algo_count)
2589 			return (NULL);
2590 		return (tcfg->algo[ti->atype]);
2591 	}
2592 
2593 	if (name == NULL) {
2594 		/* Return default algorithm for given type if set */
2595 		return (tcfg->def_algo[ti->type]);
2596 	}
2597 
2598 	/* Search by name */
2599 	/* TODO: better search */
2600 	for (i = 1; i <= tcfg->algo_count; i++) {
2601 		ta = tcfg->algo[i];
2602 
2603 		/*
2604 		 * One can supply additional algorithm
2605 		 * parameters so we compare only the first word
2606 		 * of supplied name:
2607 		 * 'addr:chash hsize=32'
2608 		 * '^^^^^^^^^'
2609 		 *
2610 		 */
2611 		l = strlen(ta->name);
2612 		if (strncmp(name, ta->name, l) != 0)
2613 			continue;
2614 		if (name[l] != '\0' && name[l] != ' ')
2615 			continue;
2616 		/* Check if we're requesting proper table type */
2617 		if (ti->type != 0 && ti->type != ta->type)
2618 			return (NULL);
2619 		return (ta);
2620 	}
2621 
2622 	return (NULL);
2623 }
2624 
2625 /*
2626  * Register new table algo @ta.
2627  * Stores algo id inside @idx.
2628  *
2629  * Returns 0 on success.
2630  */
2631 int
2632 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size,
2633     int *idx)
2634 {
2635 	struct tables_config *tcfg;
2636 	struct table_algo *ta_new;
2637 	size_t sz;
2638 
2639 	if (size > sizeof(struct table_algo))
2640 		return (EINVAL);
2641 
2642 	/* Check for the required on-stack size for add/del */
2643 	sz = roundup2(ta->ta_buf_size, sizeof(void *));
2644 	if (sz > TA_BUF_SZ)
2645 		return (EINVAL);
2646 
2647 	KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE"));
2648 
2649 	/* Copy algorithm data to stable storage. */
2650 	ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO);
2651 	memcpy(ta_new, ta, size);
2652 
2653 	tcfg = CHAIN_TO_TCFG(ch);
2654 
2655 	KASSERT(tcfg->algo_count < 255, ("Increase algo array size"));
2656 
2657 	tcfg->algo[++tcfg->algo_count] = ta_new;
2658 	ta_new->idx = tcfg->algo_count;
2659 
2660 	/* Set algorithm as default one for given type */
2661 	if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 &&
2662 	    tcfg->def_algo[ta_new->type] == NULL)
2663 		tcfg->def_algo[ta_new->type] = ta_new;
2664 
2665 	*idx = ta_new->idx;
2666 
2667 	return (0);
2668 }
2669 
2670 /*
2671  * Unregisters table algo using @idx as id.
2672  * XXX: It is NOT safe to call this function in any place
2673  * other than ipfw instance destroy handler.
2674  */
2675 void
2676 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx)
2677 {
2678 	struct tables_config *tcfg;
2679 	struct table_algo *ta;
2680 
2681 	tcfg = CHAIN_TO_TCFG(ch);
2682 
2683 	KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d",
2684 	    idx, tcfg->algo_count));
2685 
2686 	ta = tcfg->algo[idx];
2687 	KASSERT(ta != NULL, ("algo idx %d is NULL", idx));
2688 
2689 	if (tcfg->def_algo[ta->type] == ta)
2690 		tcfg->def_algo[ta->type] = NULL;
2691 
2692 	free(ta, M_IPFW);
2693 }
2694 
2695 /*
2696  * Lists all table algorithms currently available.
2697  * Data layout (v0)(current):
2698  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2699  * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ]
2700  *
2701  * Returns 0 on success
2702  */
2703 static int
2704 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2705     struct sockopt_data *sd)
2706 {
2707 	struct _ipfw_obj_lheader *olh;
2708 	struct tables_config *tcfg;
2709 	ipfw_ta_info *i;
2710 	struct table_algo *ta;
2711 	uint32_t count, n, size;
2712 
2713 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
2714 	if (olh == NULL)
2715 		return (EINVAL);
2716 	if (sd->valsize < olh->size)
2717 		return (EINVAL);
2718 
2719 	IPFW_UH_RLOCK(ch);
2720 	tcfg = CHAIN_TO_TCFG(ch);
2721 	count = tcfg->algo_count;
2722 	size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader);
2723 
2724 	/* Fill in header regadless of buffer size */
2725 	olh->count = count;
2726 	olh->objsize = sizeof(ipfw_ta_info);
2727 
2728 	if (size > olh->size) {
2729 		olh->size = size;
2730 		IPFW_UH_RUNLOCK(ch);
2731 		return (ENOMEM);
2732 	}
2733 	olh->size = size;
2734 
2735 	for (n = 1; n <= count; n++) {
2736 		i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2737 		KASSERT(i != NULL, ("previously checked buffer is not enough"));
2738 		ta = tcfg->algo[n];
2739 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2740 		i->type = ta->type;
2741 		i->refcnt = ta->refcnt;
2742 	}
2743 
2744 	IPFW_UH_RUNLOCK(ch);
2745 
2746 	return (0);
2747 }
2748 
2749 static int
2750 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2751 {
2752 	/* Basic IPv4/IPv6 or u32 lookups */
2753 	*puidx = cmd->arg1;
2754 	/* Assume ADDR by default */
2755 	*ptype = IPFW_TABLE_ADDR;
2756 	int v;
2757 
2758 	if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) {
2759 		/*
2760 		 * generic lookup. The key must be
2761 		 * in 32bit big-endian format.
2762 		 */
2763 		v = ((ipfw_insn_u32 *)cmd)->d[1];
2764 		switch (v) {
2765 		case 0:
2766 		case 1:
2767 			/* IPv4 src/dst */
2768 			break;
2769 		case 2:
2770 		case 3:
2771 			/* src/dst port */
2772 			*ptype = IPFW_TABLE_NUMBER;
2773 			break;
2774 		case 4:
2775 			/* uid/gid */
2776 			*ptype = IPFW_TABLE_NUMBER;
2777 			break;
2778 		case 5:
2779 			/* jid */
2780 			*ptype = IPFW_TABLE_NUMBER;
2781 			break;
2782 		case 6:
2783 			/* dscp */
2784 			*ptype = IPFW_TABLE_NUMBER;
2785 			break;
2786 		}
2787 	}
2788 
2789 	return (0);
2790 }
2791 
2792 static int
2793 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2794 {
2795 	ipfw_insn_if *cmdif;
2796 
2797 	/* Interface table, possibly */
2798 	cmdif = (ipfw_insn_if *)cmd;
2799 	if (cmdif->name[0] != '\1')
2800 		return (1);
2801 
2802 	*ptype = IPFW_TABLE_INTERFACE;
2803 	*puidx = cmdif->p.kidx;
2804 
2805 	return (0);
2806 }
2807 
2808 static int
2809 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2810 {
2811 
2812 	*puidx = cmd->arg1;
2813 	*ptype = IPFW_TABLE_FLOW;
2814 
2815 	return (0);
2816 }
2817 
2818 static void
2819 update_arg1(ipfw_insn *cmd, uint16_t idx)
2820 {
2821 
2822 	cmd->arg1 = idx;
2823 }
2824 
2825 static void
2826 update_via(ipfw_insn *cmd, uint16_t idx)
2827 {
2828 	ipfw_insn_if *cmdif;
2829 
2830 	cmdif = (ipfw_insn_if *)cmd;
2831 	cmdif->p.kidx = idx;
2832 }
2833 
2834 static int
2835 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
2836     struct named_object **pno)
2837 {
2838 	struct table_config *tc;
2839 	int error;
2840 
2841 	IPFW_UH_WLOCK_ASSERT(ch);
2842 
2843 	error = find_table_err(CHAIN_TO_NI(ch), ti, &tc);
2844 	if (error != 0)
2845 		return (error);
2846 
2847 	*pno = &tc->no;
2848 	return (0);
2849 }
2850 
2851 /* XXX: sets-sets! */
2852 static struct named_object *
2853 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
2854 {
2855 	struct namedobj_instance *ni;
2856 	struct table_config *tc;
2857 
2858 	IPFW_UH_WLOCK_ASSERT(ch);
2859 	ni = CHAIN_TO_NI(ch);
2860 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx);
2861 	KASSERT(tc != NULL, ("Table with index %d not found", idx));
2862 
2863 	return (&tc->no);
2864 }
2865 
2866 static int
2867 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2868     enum ipfw_sets_cmd cmd)
2869 {
2870 
2871 	switch (cmd) {
2872 	case SWAP_ALL:
2873 	case TEST_ALL:
2874 	case MOVE_ALL:
2875 		/*
2876 		 * Always return success, the real action and decision
2877 		 * should make table_manage_sets_all().
2878 		 */
2879 		return (0);
2880 	case TEST_ONE:
2881 	case MOVE_ONE:
2882 		/*
2883 		 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add
2884 		 * if set number will be used in hash function. Currently
2885 		 * we can just use generic handler that replaces set value.
2886 		 */
2887 		if (V_fw_tables_sets == 0)
2888 			return (0);
2889 		break;
2890 	case COUNT_ONE:
2891 		/*
2892 		 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is
2893 		 * disabled. This allow skip table's opcodes from additional
2894 		 * checks when specific rules moved to another set.
2895 		 */
2896 		if (V_fw_tables_sets == 0)
2897 			return (EOPNOTSUPP);
2898 	}
2899 	/* Use generic sets handler when per-set sysctl is enabled. */
2900 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2901 	    set, new_set, cmd));
2902 }
2903 
2904 /*
2905  * We register several opcode rewriters for lookup tables.
2906  * All tables opcodes have the same ETLV type, but different subtype.
2907  * To avoid invoking sets handler several times for XXX_ALL commands,
2908  * we use separate manage_sets handler. O_RECV has the lowest value,
2909  * so it should be called first.
2910  */
2911 static int
2912 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2913     enum ipfw_sets_cmd cmd)
2914 {
2915 
2916 	switch (cmd) {
2917 	case SWAP_ALL:
2918 	case TEST_ALL:
2919 		/*
2920 		 * Return success for TEST_ALL, since nothing prevents
2921 		 * move rules from one set to another. All tables are
2922 		 * accessible from all sets when per-set tables sysctl
2923 		 * is disabled.
2924 		 */
2925 	case MOVE_ALL:
2926 		if (V_fw_tables_sets == 0)
2927 			return (0);
2928 		break;
2929 	default:
2930 		return (table_manage_sets(ch, set, new_set, cmd));
2931 	}
2932 	/* Use generic sets handler when per-set sysctl is enabled. */
2933 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2934 	    set, new_set, cmd));
2935 }
2936 
2937 static struct opcode_obj_rewrite opcodes[] = {
2938 	{
2939 		.opcode = O_IP_SRC_LOOKUP,
2940 		.etlv = IPFW_TLV_TBL_NAME,
2941 		.classifier = classify_srcdst,
2942 		.update = update_arg1,
2943 		.find_byname = table_findbyname,
2944 		.find_bykidx = table_findbykidx,
2945 		.create_object = create_table_compat,
2946 		.manage_sets = table_manage_sets,
2947 	},
2948 	{
2949 		.opcode = O_IP_DST_LOOKUP,
2950 		.etlv = IPFW_TLV_TBL_NAME,
2951 		.classifier = classify_srcdst,
2952 		.update = update_arg1,
2953 		.find_byname = table_findbyname,
2954 		.find_bykidx = table_findbykidx,
2955 		.create_object = create_table_compat,
2956 		.manage_sets = table_manage_sets,
2957 	},
2958 	{
2959 		.opcode = O_IP_FLOW_LOOKUP,
2960 		.etlv = IPFW_TLV_TBL_NAME,
2961 		.classifier = classify_flow,
2962 		.update = update_arg1,
2963 		.find_byname = table_findbyname,
2964 		.find_bykidx = table_findbykidx,
2965 		.create_object = create_table_compat,
2966 		.manage_sets = table_manage_sets,
2967 	},
2968 	{
2969 		.opcode = O_XMIT,
2970 		.etlv = IPFW_TLV_TBL_NAME,
2971 		.classifier = classify_via,
2972 		.update = update_via,
2973 		.find_byname = table_findbyname,
2974 		.find_bykidx = table_findbykidx,
2975 		.create_object = create_table_compat,
2976 		.manage_sets = table_manage_sets,
2977 	},
2978 	{
2979 		.opcode = O_RECV,
2980 		.etlv = IPFW_TLV_TBL_NAME,
2981 		.classifier = classify_via,
2982 		.update = update_via,
2983 		.find_byname = table_findbyname,
2984 		.find_bykidx = table_findbykidx,
2985 		.create_object = create_table_compat,
2986 		.manage_sets = table_manage_sets_all,
2987 	},
2988 	{
2989 		.opcode = O_VIA,
2990 		.etlv = IPFW_TLV_TBL_NAME,
2991 		.classifier = classify_via,
2992 		.update = update_via,
2993 		.find_byname = table_findbyname,
2994 		.find_bykidx = table_findbykidx,
2995 		.create_object = create_table_compat,
2996 		.manage_sets = table_manage_sets,
2997 	},
2998 };
2999 
3000 static int
3001 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no,
3002     void *arg __unused)
3003 {
3004 
3005 	/* Check that there aren't any tables in not default set */
3006 	if (no->set != 0)
3007 		return (EBUSY);
3008 	return (0);
3009 }
3010 
3011 /*
3012  * Switch between "set 0" and "rule's set" table binding,
3013  * Check all ruleset bindings and permits changing
3014  * IFF each binding has both rule AND table in default set (set 0).
3015  *
3016  * Returns 0 on success.
3017  */
3018 int
3019 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets)
3020 {
3021 	struct opcode_obj_rewrite *rw;
3022 	struct namedobj_instance *ni;
3023 	struct named_object *no;
3024 	struct ip_fw *rule;
3025 	ipfw_insn *cmd;
3026 	int cmdlen, i, l;
3027 	uint16_t kidx;
3028 	uint8_t subtype;
3029 
3030 	IPFW_UH_WLOCK(ch);
3031 
3032 	if (V_fw_tables_sets == sets) {
3033 		IPFW_UH_WUNLOCK(ch);
3034 		return (0);
3035 	}
3036 	ni = CHAIN_TO_NI(ch);
3037 	if (sets == 0) {
3038 		/*
3039 		 * Prevent disabling sets support if we have some tables
3040 		 * in not default sets.
3041 		 */
3042 		if (ipfw_objhash_foreach_type(ni, test_sets_cb,
3043 		    NULL, IPFW_TLV_TBL_NAME) != 0) {
3044 			IPFW_UH_WUNLOCK(ch);
3045 			return (EBUSY);
3046 		}
3047 	}
3048 	/*
3049 	 * Scan all rules and examine tables opcodes.
3050 	 */
3051 	for (i = 0; i < ch->n_rules; i++) {
3052 		rule = ch->map[i];
3053 
3054 		l = rule->cmd_len;
3055 		cmd = rule->cmd;
3056 		cmdlen = 0;
3057 		for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
3058 			cmdlen = F_LEN(cmd);
3059 			/* Check only tables opcodes */
3060 			for (kidx = 0, rw = opcodes;
3061 			    rw < opcodes + nitems(opcodes); rw++) {
3062 				if (rw->opcode != cmd->opcode)
3063 					continue;
3064 				if (rw->classifier(cmd, &kidx, &subtype) == 0)
3065 					break;
3066 			}
3067 			if (kidx == 0)
3068 				continue;
3069 			no = ipfw_objhash_lookup_kidx(ni, kidx);
3070 			/* Check if both table object and rule has the set 0 */
3071 			if (no->set != 0 || rule->set != 0) {
3072 				IPFW_UH_WUNLOCK(ch);
3073 				return (EBUSY);
3074 			}
3075 
3076 		}
3077 	}
3078 	V_fw_tables_sets = sets;
3079 	IPFW_UH_WUNLOCK(ch);
3080 	return (0);
3081 }
3082 
3083 /*
3084  * Checks table name for validity.
3085  * Enforce basic length checks, the rest
3086  * should be done in userland.
3087  *
3088  * Returns 0 if name is considered valid.
3089  */
3090 static int
3091 check_table_name(const char *name)
3092 {
3093 
3094 	/*
3095 	 * TODO: do some more complicated checks
3096 	 */
3097 	return (ipfw_check_object_name_generic(name));
3098 }
3099 
3100 /*
3101  * Finds table config based on either legacy index
3102  * or name in ntlv.
3103  * Note @ti structure contains unchecked data from userland.
3104  *
3105  * Returns 0 in success and fills in @tc with found config
3106  */
3107 static int
3108 find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
3109     struct table_config **tc)
3110 {
3111 	char *name, bname[16];
3112 	struct named_object *no;
3113 	ipfw_obj_ntlv *ntlv;
3114 	uint32_t set;
3115 
3116 	if (ti->tlvs != NULL) {
3117 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3118 		    IPFW_TLV_TBL_NAME);
3119 		if (ntlv == NULL)
3120 			return (EINVAL);
3121 		name = ntlv->name;
3122 
3123 		/*
3124 		 * Use set provided by @ti instead of @ntlv one.
3125 		 * This is needed due to different sets behavior
3126 		 * controlled by V_fw_tables_sets.
3127 		 */
3128 		set = (V_fw_tables_sets != 0) ? ti->set : 0;
3129 	} else {
3130 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3131 		name = bname;
3132 		set = 0;
3133 	}
3134 
3135 	no = ipfw_objhash_lookup_name(ni, set, name);
3136 	*tc = (struct table_config *)no;
3137 
3138 	return (0);
3139 }
3140 
3141 /*
3142  * Finds table config based on either legacy index
3143  * or name in ntlv.
3144  * Note @ti structure contains unchecked data from userland.
3145  *
3146  * Returns pointer to table_config or NULL.
3147  */
3148 static struct table_config *
3149 find_table(struct namedobj_instance *ni, struct tid_info *ti)
3150 {
3151 	struct table_config *tc;
3152 
3153 	if (find_table_err(ni, ti, &tc) != 0)
3154 		return (NULL);
3155 
3156 	return (tc);
3157 }
3158 
3159 /*
3160  * Allocate new table config structure using
3161  * specified @algo and @aname.
3162  *
3163  * Returns pointer to config or NULL.
3164  */
3165 static struct table_config *
3166 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti,
3167     struct table_algo *ta, char *aname, uint8_t tflags)
3168 {
3169 	char *name, bname[16];
3170 	struct table_config *tc;
3171 	int error;
3172 	ipfw_obj_ntlv *ntlv;
3173 	uint32_t set;
3174 
3175 	if (ti->tlvs != NULL) {
3176 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3177 		    IPFW_TLV_TBL_NAME);
3178 		if (ntlv == NULL)
3179 			return (NULL);
3180 		name = ntlv->name;
3181 		set = (V_fw_tables_sets == 0) ? 0 : ntlv->set;
3182 	} else {
3183 		/* Compat part: convert number to string representation */
3184 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3185 		name = bname;
3186 		set = 0;
3187 	}
3188 
3189 	tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO);
3190 	tc->no.name = tc->tablename;
3191 	tc->no.subtype = ta->type;
3192 	tc->no.set = set;
3193 	tc->tflags = tflags;
3194 	tc->ta = ta;
3195 	strlcpy(tc->tablename, name, sizeof(tc->tablename));
3196 	/* Set "shared" value type by default */
3197 	tc->vshared = 1;
3198 
3199 	/* Preallocate data structures for new tables */
3200 	error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags);
3201 	if (error != 0) {
3202 		free(tc, M_IPFW);
3203 		return (NULL);
3204 	}
3205 
3206 	return (tc);
3207 }
3208 
3209 /*
3210  * Destroys table state and config.
3211  */
3212 static void
3213 free_table_config(struct namedobj_instance *ni, struct table_config *tc)
3214 {
3215 
3216 	KASSERT(tc->linked == 0, ("free() on linked config"));
3217 	/* UH lock MUST NOT be held */
3218 
3219 	/*
3220 	 * We're using ta without any locking/referencing.
3221 	 * TODO: fix this if we're going to use unloadable algos.
3222 	 */
3223 	tc->ta->destroy(tc->astate, &tc->ti_copy);
3224 	free(tc, M_IPFW);
3225 }
3226 
3227 /*
3228  * Links @tc to @chain table named instance.
3229  * Sets appropriate type/states in @chain table info.
3230  */
3231 static void
3232 link_table(struct ip_fw_chain *ch, struct table_config *tc)
3233 {
3234 	struct namedobj_instance *ni;
3235 	struct table_info *ti;
3236 	uint16_t kidx;
3237 
3238 	IPFW_UH_WLOCK_ASSERT(ch);
3239 
3240 	ni = CHAIN_TO_NI(ch);
3241 	kidx = tc->no.kidx;
3242 
3243 	ipfw_objhash_add(ni, &tc->no);
3244 
3245 	ti = KIDX_TO_TI(ch, kidx);
3246 	*ti = tc->ti_copy;
3247 
3248 	/* Notify algo on real @ti address */
3249 	if (tc->ta->change_ti != NULL)
3250 		tc->ta->change_ti(tc->astate, ti);
3251 
3252 	tc->linked = 1;
3253 	tc->ta->refcnt++;
3254 }
3255 
3256 /*
3257  * Unlinks @tc from @chain table named instance.
3258  * Zeroes states in @chain and stores them in @tc.
3259  */
3260 static void
3261 unlink_table(struct ip_fw_chain *ch, struct table_config *tc)
3262 {
3263 	struct namedobj_instance *ni;
3264 	struct table_info *ti;
3265 	uint16_t kidx;
3266 
3267 	IPFW_UH_WLOCK_ASSERT(ch);
3268 	IPFW_WLOCK_ASSERT(ch);
3269 
3270 	ni = CHAIN_TO_NI(ch);
3271 	kidx = tc->no.kidx;
3272 
3273 	/* Clear state. @ti copy is already saved inside @tc */
3274 	ipfw_objhash_del(ni, &tc->no);
3275 	ti = KIDX_TO_TI(ch, kidx);
3276 	memset(ti, 0, sizeof(struct table_info));
3277 	tc->linked = 0;
3278 	tc->ta->refcnt--;
3279 
3280 	/* Notify algo on real @ti address */
3281 	if (tc->ta->change_ti != NULL)
3282 		tc->ta->change_ti(tc->astate, NULL);
3283 }
3284 
3285 static struct ipfw_sopt_handler	scodes[] = {
3286 	{ IP_FW_TABLE_XCREATE,	0,	HDIR_SET,	create_table },
3287 	{ IP_FW_TABLE_XDESTROY,	0,	HDIR_SET,	flush_table_v0 },
3288 	{ IP_FW_TABLE_XFLUSH,	0,	HDIR_SET,	flush_table_v0 },
3289 	{ IP_FW_TABLE_XMODIFY,	0,	HDIR_BOTH,	modify_table },
3290 	{ IP_FW_TABLE_XINFO,	0,	HDIR_GET,	describe_table },
3291 	{ IP_FW_TABLES_XLIST,	0,	HDIR_GET,	list_tables },
3292 	{ IP_FW_TABLE_XLIST,	0,	HDIR_GET,	dump_table_v0 },
3293 	{ IP_FW_TABLE_XLIST,	1,	HDIR_GET,	dump_table_v1 },
3294 	{ IP_FW_TABLE_XADD,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3295 	{ IP_FW_TABLE_XADD,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3296 	{ IP_FW_TABLE_XDEL,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3297 	{ IP_FW_TABLE_XDEL,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3298 	{ IP_FW_TABLE_XFIND,	0,	HDIR_GET,	find_table_entry },
3299 	{ IP_FW_TABLE_XSWAP,	0,	HDIR_SET,	swap_table },
3300 	{ IP_FW_TABLES_ALIST,	0,	HDIR_GET,	list_table_algo },
3301 	{ IP_FW_TABLE_XGETSIZE,	0,	HDIR_GET,	get_table_size },
3302 };
3303 
3304 static int
3305 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no,
3306     void *arg)
3307 {
3308 
3309 	unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no);
3310 	if (ipfw_objhash_free_idx(ni, no->kidx) != 0)
3311 		printf("Error unlinking kidx %d from table %s\n",
3312 		    no->kidx, no->name);
3313 	free_table_config(ni, (struct table_config *)no);
3314 	return (0);
3315 }
3316 
3317 /*
3318  * Shuts tables module down.
3319  */
3320 void
3321 ipfw_destroy_tables(struct ip_fw_chain *ch, int last)
3322 {
3323 
3324 	IPFW_DEL_SOPT_HANDLER(last, scodes);
3325 	IPFW_DEL_OBJ_REWRITER(last, opcodes);
3326 
3327 	/* Remove all tables from working set */
3328 	IPFW_UH_WLOCK(ch);
3329 	IPFW_WLOCK(ch);
3330 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch);
3331 	IPFW_WUNLOCK(ch);
3332 	IPFW_UH_WUNLOCK(ch);
3333 
3334 	/* Free pointers itself */
3335 	free(ch->tablestate, M_IPFW);
3336 
3337 	ipfw_table_value_destroy(ch, last);
3338 	ipfw_table_algo_destroy(ch);
3339 
3340 	ipfw_objhash_destroy(CHAIN_TO_NI(ch));
3341 	free(CHAIN_TO_TCFG(ch), M_IPFW);
3342 }
3343 
3344 /*
3345  * Starts tables module.
3346  */
3347 int
3348 ipfw_init_tables(struct ip_fw_chain *ch, int first)
3349 {
3350 	struct tables_config *tcfg;
3351 
3352 	/* Allocate pointers */
3353 	ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info),
3354 	    M_IPFW, M_WAITOK | M_ZERO);
3355 
3356 	tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO);
3357 	tcfg->namehash = ipfw_objhash_create(V_fw_tables_max);
3358 	ch->tblcfg = tcfg;
3359 
3360 	ipfw_table_value_init(ch, first);
3361 	ipfw_table_algo_init(ch);
3362 
3363 	IPFW_ADD_OBJ_REWRITER(first, opcodes);
3364 	IPFW_ADD_SOPT_HANDLER(first, scodes);
3365 	return (0);
3366 }
3367 
3368 
3369 
3370