1 /*- 2 * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko. 3 * Copyright (c) 2014 Yandex LLC 4 * Copyright (c) 2014 Alexander V. Chernikov 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * Lookup table support for ipfw. 33 * 34 * This file contains handlers for all generic tables' operations: 35 * add/del/flush entries, list/dump tables etc.. 36 * 37 * Table data modification is protected by both UH and runtime lock 38 * while reading configuration/data is protected by UH lock. 39 * 40 * Lookup algorithms for all table types are located in ip_fw_table_algo.c 41 */ 42 43 #include "opt_ipfw.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/rwlock.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/queue.h> 55 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */ 56 57 #include <netinet/in.h> 58 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */ 59 #include <netinet/ip_fw.h> 60 61 #include <netpfil/ipfw/ip_fw_private.h> 62 #include <netpfil/ipfw/ip_fw_table.h> 63 64 /* 65 * Table has the following `type` concepts: 66 * 67 * `no.type` represents lookup key type (addr, ifp, uid, etc..) 68 * vmask represents bitmask of table values which are present at the moment. 69 * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old 70 * single-value-for-all approach. 71 */ 72 struct table_config { 73 struct named_object no; 74 uint8_t tflags; /* type flags */ 75 uint8_t locked; /* 1 if locked from changes */ 76 uint8_t linked; /* 1 if already linked */ 77 uint8_t ochanged; /* used by set swapping */ 78 uint8_t vshared; /* 1 if using shared value array */ 79 uint8_t spare[3]; 80 uint32_t count; /* Number of records */ 81 uint32_t limit; /* Max number of records */ 82 uint32_t vmask; /* bitmask with supported values */ 83 uint32_t ocount; /* used by set swapping */ 84 uint64_t gencnt; /* generation count */ 85 char tablename[64]; /* table name */ 86 struct table_algo *ta; /* Callbacks for given algo */ 87 void *astate; /* algorithm state */ 88 struct table_info ti_copy; /* data to put to table_info */ 89 struct namedobj_instance *vi; 90 }; 91 92 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti, 93 struct table_config **tc); 94 static struct table_config *find_table(struct namedobj_instance *ni, 95 struct tid_info *ti); 96 static struct table_config *alloc_table_config(struct ip_fw_chain *ch, 97 struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags); 98 static void free_table_config(struct namedobj_instance *ni, 99 struct table_config *tc); 100 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 101 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref); 102 static void link_table(struct ip_fw_chain *ch, struct table_config *tc); 103 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc); 104 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 105 struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc); 106 #define OP_ADD 1 107 #define OP_DEL 0 108 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 109 struct sockopt_data *sd); 110 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 111 ipfw_xtable_info *i); 112 static int dump_table_tentry(void *e, void *arg); 113 static int dump_table_xentry(void *e, void *arg); 114 115 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 116 struct tid_info *b); 117 118 static int check_table_name(const char *name); 119 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 120 struct table_config *tc, struct table_info *ti, uint32_t count); 121 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti); 122 123 static struct table_algo *find_table_algo(struct tables_config *tableconf, 124 struct tid_info *ti, char *name); 125 126 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti); 127 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti); 128 129 #define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash) 130 #define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k])) 131 132 #define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */ 133 134 void 135 rollback_toperation_state(struct ip_fw_chain *ch, void *object) 136 { 137 struct tables_config *tcfg; 138 struct op_state *os; 139 140 tcfg = CHAIN_TO_TCFG(ch); 141 TAILQ_FOREACH(os, &tcfg->state_list, next) 142 os->func(object, os); 143 } 144 145 void 146 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 147 { 148 struct tables_config *tcfg; 149 150 tcfg = CHAIN_TO_TCFG(ch); 151 TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next); 152 } 153 154 void 155 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 156 { 157 struct tables_config *tcfg; 158 159 tcfg = CHAIN_TO_TCFG(ch); 160 TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next); 161 } 162 163 void 164 tc_ref(struct table_config *tc) 165 { 166 167 tc->no.refcnt++; 168 } 169 170 void 171 tc_unref(struct table_config *tc) 172 { 173 174 tc->no.refcnt--; 175 } 176 177 static struct table_value * 178 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx) 179 { 180 struct table_value *pval; 181 182 pval = (struct table_value *)ch->valuestate; 183 184 return (&pval[kidx]); 185 } 186 187 188 /* 189 * Checks if we're able to insert/update entry @tei into table 190 * w.r.t @tc limits. 191 * May alter @tei to indicate insertion error / insert 192 * options. 193 * 194 * Returns 0 if operation can be performed/ 195 */ 196 static int 197 check_table_limit(struct table_config *tc, struct tentry_info *tei) 198 { 199 200 if (tc->limit == 0 || tc->count < tc->limit) 201 return (0); 202 203 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) { 204 /* Notify userland on error cause */ 205 tei->flags |= TEI_FLAGS_LIMIT; 206 return (EFBIG); 207 } 208 209 /* 210 * We have UPDATE flag set. 211 * Permit updating record (if found), 212 * but restrict adding new one since we've 213 * already hit the limit. 214 */ 215 tei->flags |= TEI_FLAGS_DONTADD; 216 217 return (0); 218 } 219 220 /* 221 * Convert algorithm callback return code into 222 * one of pre-defined states known by userland. 223 */ 224 static void 225 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num) 226 { 227 int flag; 228 229 flag = 0; 230 231 switch (error) { 232 case 0: 233 if (op == OP_ADD && num != 0) 234 flag = TEI_FLAGS_ADDED; 235 if (op == OP_DEL) 236 flag = TEI_FLAGS_DELETED; 237 break; 238 case ENOENT: 239 flag = TEI_FLAGS_NOTFOUND; 240 break; 241 case EEXIST: 242 flag = TEI_FLAGS_EXISTS; 243 break; 244 default: 245 flag = TEI_FLAGS_ERROR; 246 } 247 248 tei->flags |= flag; 249 } 250 251 /* 252 * Creates and references table with default parameters. 253 * Saves table config, algo and allocated kidx info @ptc, @pta and 254 * @pkidx if non-zero. 255 * Used for table auto-creation to support old binaries. 256 * 257 * Returns 0 on success. 258 */ 259 static int 260 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti, 261 uint16_t *pkidx) 262 { 263 ipfw_xtable_info xi; 264 int error; 265 266 memset(&xi, 0, sizeof(xi)); 267 /* Set default value mask for legacy clients */ 268 xi.vmask = IPFW_VTYPE_LEGACY; 269 270 error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1); 271 if (error != 0) 272 return (error); 273 274 return (0); 275 } 276 277 /* 278 * Find and reference existing table optionally 279 * creating new one. 280 * 281 * Saves found table config into @ptc. 282 * Note function may drop/acquire UH_WLOCK. 283 * Returns 0 if table was found/created and referenced 284 * or non-zero return code. 285 */ 286 static int 287 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 288 struct tentry_info *tei, uint32_t count, int op, 289 struct table_config **ptc) 290 { 291 struct namedobj_instance *ni; 292 struct table_config *tc; 293 uint16_t kidx; 294 int error; 295 296 IPFW_UH_WLOCK_ASSERT(ch); 297 298 ni = CHAIN_TO_NI(ch); 299 tc = NULL; 300 if ((tc = find_table(ni, ti)) != NULL) { 301 /* check table type */ 302 if (tc->no.subtype != ti->type) 303 return (EINVAL); 304 305 if (tc->locked != 0) 306 return (EACCES); 307 308 /* Try to exit early on limit hit */ 309 if (op == OP_ADD && count == 1 && 310 check_table_limit(tc, tei) != 0) 311 return (EFBIG); 312 313 /* Reference and return */ 314 tc->no.refcnt++; 315 *ptc = tc; 316 return (0); 317 } 318 319 if (op == OP_DEL) 320 return (ESRCH); 321 322 /* Compatibility mode: create new table for old clients */ 323 if ((tei->flags & TEI_FLAGS_COMPAT) == 0) 324 return (ESRCH); 325 326 IPFW_UH_WUNLOCK(ch); 327 error = create_table_compat(ch, ti, &kidx); 328 IPFW_UH_WLOCK(ch); 329 330 if (error != 0) 331 return (error); 332 333 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 334 KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx)); 335 336 /* OK, now we've got referenced table. */ 337 *ptc = tc; 338 return (0); 339 } 340 341 /* 342 * Rolls back already @added to @tc entries using state array @ta_buf_m. 343 * Assume the following layout: 344 * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases 345 * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1]) 346 * for storing deleted state 347 */ 348 static void 349 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc, 350 struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m, 351 uint32_t count, uint32_t added) 352 { 353 struct table_algo *ta; 354 struct tentry_info *ptei; 355 caddr_t v, vv; 356 size_t ta_buf_sz; 357 int error, i; 358 uint32_t num; 359 360 IPFW_UH_WLOCK_ASSERT(ch); 361 362 ta = tc->ta; 363 ta_buf_sz = ta->ta_buf_size; 364 v = ta_buf_m; 365 vv = v + count * ta_buf_sz; 366 for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) { 367 ptei = &tei[i]; 368 if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) { 369 370 /* 371 * We have old value stored by previous 372 * call in @ptei->value. Do add once again 373 * to restore it. 374 */ 375 error = ta->add(tc->astate, tinfo, ptei, v, &num); 376 KASSERT(error == 0, ("rollback UPDATE fail")); 377 KASSERT(num == 0, ("rollback UPDATE fail2")); 378 continue; 379 } 380 381 error = ta->prepare_del(ch, ptei, vv); 382 KASSERT(error == 0, ("pre-rollback INSERT failed")); 383 error = ta->del(tc->astate, tinfo, ptei, vv, &num); 384 KASSERT(error == 0, ("rollback INSERT failed")); 385 tc->count -= num; 386 } 387 } 388 389 /* 390 * Prepares add/del state for all @count entries in @tei. 391 * Uses either stack buffer (@ta_buf) or allocates a new one. 392 * Stores pointer to allocated buffer back to @ta_buf. 393 * 394 * Returns 0 on success. 395 */ 396 static int 397 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 398 struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf) 399 { 400 caddr_t ta_buf_m, v; 401 size_t ta_buf_sz, sz; 402 struct tentry_info *ptei; 403 int error, i; 404 405 error = 0; 406 ta_buf_sz = ta->ta_buf_size; 407 if (count == 1) { 408 /* Sigle add/delete, use on-stack buffer */ 409 memset(*ta_buf, 0, TA_BUF_SZ); 410 ta_buf_m = *ta_buf; 411 } else { 412 413 /* 414 * Multiple adds/deletes, allocate larger buffer 415 * 416 * Note we need 2xcount buffer for add case: 417 * we have hold both ADD state 418 * and DELETE state (this may be needed 419 * if we need to rollback all changes) 420 */ 421 sz = count * ta_buf_sz; 422 ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP, 423 M_WAITOK | M_ZERO); 424 } 425 426 v = ta_buf_m; 427 for (i = 0; i < count; i++, v += ta_buf_sz) { 428 ptei = &tei[i]; 429 error = (op == OP_ADD) ? 430 ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v); 431 432 /* 433 * Some syntax error (incorrect mask, or address, or 434 * anything). Return error regardless of atomicity 435 * settings. 436 */ 437 if (error != 0) 438 break; 439 } 440 441 *ta_buf = ta_buf_m; 442 return (error); 443 } 444 445 /* 446 * Flushes allocated state for each @count entries in @tei. 447 * Frees @ta_buf_m if differs from stack buffer @ta_buf. 448 */ 449 static void 450 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 451 struct tentry_info *tei, uint32_t count, int rollback, 452 caddr_t ta_buf_m, caddr_t ta_buf) 453 { 454 caddr_t v; 455 struct tentry_info *ptei; 456 size_t ta_buf_sz; 457 int i; 458 459 ta_buf_sz = ta->ta_buf_size; 460 461 /* Run cleaning callback anyway */ 462 v = ta_buf_m; 463 for (i = 0; i < count; i++, v += ta_buf_sz) { 464 ptei = &tei[i]; 465 ta->flush_entry(ch, ptei, v); 466 if (ptei->ptv != NULL) { 467 free(ptei->ptv, M_IPFW); 468 ptei->ptv = NULL; 469 } 470 } 471 472 /* Clean up "deleted" state in case of rollback */ 473 if (rollback != 0) { 474 v = ta_buf_m + count * ta_buf_sz; 475 for (i = 0; i < count; i++, v += ta_buf_sz) 476 ta->flush_entry(ch, &tei[i], v); 477 } 478 479 if (ta_buf_m != ta_buf) 480 free(ta_buf_m, M_TEMP); 481 } 482 483 484 static void 485 rollback_add_entry(void *object, struct op_state *_state) 486 { 487 struct ip_fw_chain *ch; 488 struct tableop_state *ts; 489 490 ts = (struct tableop_state *)_state; 491 492 if (ts->tc != object && ts->ch != object) 493 return; 494 495 ch = ts->ch; 496 497 IPFW_UH_WLOCK_ASSERT(ch); 498 499 /* Call specifid unlockers */ 500 rollback_table_values(ts); 501 502 /* Indicate we've called */ 503 ts->modified = 1; 504 } 505 506 /* 507 * Adds/updates one or more entries in table @ti. 508 * 509 * Function may drop/reacquire UH wlock multiple times due to 510 * items alloc, algorithm callbacks (check_space), value linkage 511 * (new values, value storage realloc), etc.. 512 * Other processes like other adds (which may involve storage resize), 513 * table swaps (which changes table data and may change algo type), 514 * table modify (which may change value mask) may be executed 515 * simultaneously so we need to deal with it. 516 * 517 * The following approach was implemented: 518 * we have per-chain linked list, protected with UH lock. 519 * add_table_entry prepares special on-stack structure wthich is passed 520 * to its descendants. Users add this structure to this list before unlock. 521 * After performing needed operations and acquiring UH lock back, each user 522 * checks if structure has changed. If true, it rolls local state back and 523 * returns without error to the caller. 524 * add_table_entry() on its own checks if structure has changed and restarts 525 * its operation from the beginning (goto restart). 526 * 527 * Functions which are modifying fields of interest (currently 528 * resize_shared_value_storage() and swap_tables() ) 529 * traverses given list while holding UH lock immediately before 530 * performing their operations calling function provided be list entry 531 * ( currently rollback_add_entry ) which performs rollback for all necessary 532 * state and sets appropriate values in structure indicating rollback 533 * has happened. 534 * 535 * Algo interaction: 536 * Function references @ti first to ensure table won't 537 * disappear or change its type. 538 * After that, prepare_add callback is called for each @tei entry. 539 * Next, we try to add each entry under UH+WHLOCK 540 * using add() callback. 541 * Finally, we free all state by calling flush_entry callback 542 * for each @tei. 543 * 544 * Returns 0 on success. 545 */ 546 int 547 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 548 struct tentry_info *tei, uint8_t flags, uint32_t count) 549 { 550 struct table_config *tc; 551 struct table_algo *ta; 552 uint16_t kidx; 553 int error, first_error, i, rollback; 554 uint32_t num, numadd; 555 struct tentry_info *ptei; 556 struct tableop_state ts; 557 char ta_buf[TA_BUF_SZ]; 558 caddr_t ta_buf_m, v; 559 560 memset(&ts, 0, sizeof(ts)); 561 ta = NULL; 562 IPFW_UH_WLOCK(ch); 563 564 /* 565 * Find and reference existing table. 566 */ 567 restart: 568 if (ts.modified != 0) { 569 IPFW_UH_WUNLOCK(ch); 570 flush_batch_buffer(ch, ta, tei, count, rollback, 571 ta_buf_m, ta_buf); 572 memset(&ts, 0, sizeof(ts)); 573 ta = NULL; 574 IPFW_UH_WLOCK(ch); 575 } 576 577 error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc); 578 if (error != 0) { 579 IPFW_UH_WUNLOCK(ch); 580 return (error); 581 } 582 ta = tc->ta; 583 584 /* Fill in tablestate */ 585 ts.ch = ch; 586 ts.opstate.func = rollback_add_entry; 587 ts.tc = tc; 588 ts.vshared = tc->vshared; 589 ts.vmask = tc->vmask; 590 ts.ta = ta; 591 ts.tei = tei; 592 ts.count = count; 593 rollback = 0; 594 add_toperation_state(ch, &ts); 595 IPFW_UH_WUNLOCK(ch); 596 597 /* Allocate memory and prepare record(s) */ 598 /* Pass stack buffer by default */ 599 ta_buf_m = ta_buf; 600 error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m); 601 602 IPFW_UH_WLOCK(ch); 603 del_toperation_state(ch, &ts); 604 /* Drop reference we've used in first search */ 605 tc->no.refcnt--; 606 607 /* Check prepare_batch_buffer() error */ 608 if (error != 0) 609 goto cleanup; 610 611 /* 612 * Check if table swap has happened. 613 * (so table algo might be changed). 614 * Restart operation to achieve consistent behavior. 615 */ 616 if (ts.modified != 0) 617 goto restart; 618 619 /* 620 * Link all values values to shared/per-table value array. 621 * 622 * May release/reacquire UH_WLOCK. 623 */ 624 error = ipfw_link_table_values(ch, &ts); 625 if (error != 0) 626 goto cleanup; 627 if (ts.modified != 0) 628 goto restart; 629 630 /* 631 * Ensure we are able to add all entries without additional 632 * memory allocations. May release/reacquire UH_WLOCK. 633 */ 634 kidx = tc->no.kidx; 635 error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count); 636 if (error != 0) 637 goto cleanup; 638 if (ts.modified != 0) 639 goto restart; 640 641 /* We've got valid table in @tc. Let's try to add data */ 642 kidx = tc->no.kidx; 643 ta = tc->ta; 644 numadd = 0; 645 first_error = 0; 646 647 IPFW_WLOCK(ch); 648 649 v = ta_buf_m; 650 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 651 ptei = &tei[i]; 652 num = 0; 653 /* check limit before adding */ 654 if ((error = check_table_limit(tc, ptei)) == 0) { 655 error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx), 656 ptei, v, &num); 657 /* Set status flag to inform userland */ 658 store_tei_result(ptei, OP_ADD, error, num); 659 } 660 if (error == 0) { 661 /* Update number of records to ease limit checking */ 662 tc->count += num; 663 numadd += num; 664 continue; 665 } 666 667 if (first_error == 0) 668 first_error = error; 669 670 /* 671 * Some error have happened. Check our atomicity 672 * settings: continue if atomicity is not required, 673 * rollback changes otherwise. 674 */ 675 if ((flags & IPFW_CTF_ATOMIC) == 0) 676 continue; 677 678 rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx), 679 tei, ta_buf_m, count, i); 680 681 rollback = 1; 682 break; 683 } 684 685 IPFW_WUNLOCK(ch); 686 687 ipfw_garbage_table_values(ch, tc, tei, count, rollback); 688 689 /* Permit post-add algorithm grow/rehash. */ 690 if (numadd != 0) 691 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 692 693 /* Return first error to user, if any */ 694 error = first_error; 695 696 cleanup: 697 IPFW_UH_WUNLOCK(ch); 698 699 flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf); 700 701 return (error); 702 } 703 704 /* 705 * Deletes one or more entries in table @ti. 706 * 707 * Returns 0 on success. 708 */ 709 int 710 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 711 struct tentry_info *tei, uint8_t flags, uint32_t count) 712 { 713 struct table_config *tc; 714 struct table_algo *ta; 715 struct tentry_info *ptei; 716 uint16_t kidx; 717 int error, first_error, i; 718 uint32_t num, numdel; 719 char ta_buf[TA_BUF_SZ]; 720 caddr_t ta_buf_m, v; 721 722 /* 723 * Find and reference existing table. 724 */ 725 IPFW_UH_WLOCK(ch); 726 error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc); 727 if (error != 0) { 728 IPFW_UH_WUNLOCK(ch); 729 return (error); 730 } 731 ta = tc->ta; 732 IPFW_UH_WUNLOCK(ch); 733 734 /* Allocate memory and prepare record(s) */ 735 /* Pass stack buffer by default */ 736 ta_buf_m = ta_buf; 737 error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m); 738 if (error != 0) 739 goto cleanup; 740 741 IPFW_UH_WLOCK(ch); 742 743 /* Drop reference we've used in first search */ 744 tc->no.refcnt--; 745 746 /* 747 * Check if table algo is still the same. 748 * (changed ta may be the result of table swap). 749 */ 750 if (ta != tc->ta) { 751 IPFW_UH_WUNLOCK(ch); 752 error = EINVAL; 753 goto cleanup; 754 } 755 756 kidx = tc->no.kidx; 757 numdel = 0; 758 first_error = 0; 759 760 IPFW_WLOCK(ch); 761 v = ta_buf_m; 762 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 763 ptei = &tei[i]; 764 num = 0; 765 error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v, 766 &num); 767 /* Save state for userland */ 768 store_tei_result(ptei, OP_DEL, error, num); 769 if (error != 0 && first_error == 0) 770 first_error = error; 771 tc->count -= num; 772 numdel += num; 773 } 774 IPFW_WUNLOCK(ch); 775 776 /* Unlink non-used values */ 777 ipfw_garbage_table_values(ch, tc, tei, count, 0); 778 779 if (numdel != 0) { 780 /* Run post-del hook to permit shrinking */ 781 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 782 } 783 784 IPFW_UH_WUNLOCK(ch); 785 786 /* Return first error to user, if any */ 787 error = first_error; 788 789 cleanup: 790 flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf); 791 792 return (error); 793 } 794 795 /* 796 * Ensure that table @tc has enough space to add @count entries without 797 * need for reallocation. 798 * 799 * Callbacks order: 800 * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize. 801 * 802 * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags. 803 * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage 804 * 3) modify (UH_WLOCK + WLOCK) - switch pointers 805 * 4) flush_modify (UH_WLOCK) - free state, if needed 806 * 807 * Returns 0 on success. 808 */ 809 static int 810 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 811 struct table_config *tc, struct table_info *ti, uint32_t count) 812 { 813 struct table_algo *ta; 814 uint64_t pflags; 815 char ta_buf[TA_BUF_SZ]; 816 int error; 817 818 IPFW_UH_WLOCK_ASSERT(ch); 819 820 error = 0; 821 ta = tc->ta; 822 if (ta->need_modify == NULL) 823 return (0); 824 825 /* Acquire reference not to loose @tc between locks/unlocks */ 826 tc->no.refcnt++; 827 828 /* 829 * TODO: think about avoiding race between large add/large delete 830 * operation on algorithm which implements shrinking along with 831 * growing. 832 */ 833 while (true) { 834 pflags = 0; 835 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 836 error = 0; 837 break; 838 } 839 840 /* We have to shrink/grow table */ 841 if (ts != NULL) 842 add_toperation_state(ch, ts); 843 IPFW_UH_WUNLOCK(ch); 844 845 memset(&ta_buf, 0, sizeof(ta_buf)); 846 error = ta->prepare_mod(ta_buf, &pflags); 847 848 IPFW_UH_WLOCK(ch); 849 if (ts != NULL) 850 del_toperation_state(ch, ts); 851 852 if (error != 0) 853 break; 854 855 if (ts != NULL && ts->modified != 0) { 856 857 /* 858 * Swap operation has happened 859 * so we're currently operating on other 860 * table data. Stop doing this. 861 */ 862 ta->flush_mod(ta_buf); 863 break; 864 } 865 866 /* Check if we still need to alter table */ 867 ti = KIDX_TO_TI(ch, tc->no.kidx); 868 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 869 IPFW_UH_WUNLOCK(ch); 870 871 /* 872 * Other thread has already performed resize. 873 * Flush our state and return. 874 */ 875 ta->flush_mod(ta_buf); 876 break; 877 } 878 879 error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags); 880 if (error == 0) { 881 /* Do actual modification */ 882 IPFW_WLOCK(ch); 883 ta->modify(tc->astate, ti, ta_buf, pflags); 884 IPFW_WUNLOCK(ch); 885 } 886 887 /* Anyway, flush data and retry */ 888 ta->flush_mod(ta_buf); 889 } 890 891 tc->no.refcnt--; 892 return (error); 893 } 894 895 /* 896 * Adds or deletes record in table. 897 * Data layout (v0): 898 * Request: [ ip_fw3_opheader ipfw_table_xentry ] 899 * 900 * Returns 0 on success 901 */ 902 static int 903 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 904 struct sockopt_data *sd) 905 { 906 ipfw_table_xentry *xent; 907 struct tentry_info tei; 908 struct tid_info ti; 909 struct table_value v; 910 int error, hdrlen, read; 911 912 hdrlen = offsetof(ipfw_table_xentry, k); 913 914 /* Check minimum header size */ 915 if (sd->valsize < (sizeof(*op3) + hdrlen)) 916 return (EINVAL); 917 918 read = sizeof(ip_fw3_opheader); 919 920 /* Check if xentry len field is valid */ 921 xent = (ipfw_table_xentry *)(op3 + 1); 922 if (xent->len < hdrlen || xent->len + read > sd->valsize) 923 return (EINVAL); 924 925 memset(&tei, 0, sizeof(tei)); 926 tei.paddr = &xent->k; 927 tei.masklen = xent->masklen; 928 ipfw_import_table_value_legacy(xent->value, &v); 929 tei.pvalue = &v; 930 /* Old requests compatibility */ 931 tei.flags = TEI_FLAGS_COMPAT; 932 if (xent->type == IPFW_TABLE_ADDR) { 933 if (xent->len - hdrlen == sizeof(in_addr_t)) 934 tei.subtype = AF_INET; 935 else 936 tei.subtype = AF_INET6; 937 } 938 939 memset(&ti, 0, sizeof(ti)); 940 ti.uidx = xent->tbl; 941 ti.type = xent->type; 942 943 error = (op3->opcode == IP_FW_TABLE_XADD) ? 944 add_table_entry(ch, &ti, &tei, 0, 1) : 945 del_table_entry(ch, &ti, &tei, 0, 1); 946 947 return (error); 948 } 949 950 /* 951 * Adds or deletes record in table. 952 * Data layout (v1)(current): 953 * Request: [ ipfw_obj_header 954 * ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ] 955 * ] 956 * 957 * Returns 0 on success 958 */ 959 static int 960 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 961 struct sockopt_data *sd) 962 { 963 ipfw_obj_tentry *tent, *ptent; 964 ipfw_obj_ctlv *ctlv; 965 ipfw_obj_header *oh; 966 struct tentry_info *ptei, tei, *tei_buf; 967 struct tid_info ti; 968 int error, i, kidx, read; 969 970 /* Check minimum header size */ 971 if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv))) 972 return (EINVAL); 973 974 /* Check if passed data is too long */ 975 if (sd->valsize != sd->kavail) 976 return (EINVAL); 977 978 oh = (ipfw_obj_header *)sd->kbuf; 979 980 /* Basic length checks for TLVs */ 981 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 982 return (EINVAL); 983 984 read = sizeof(*oh); 985 986 ctlv = (ipfw_obj_ctlv *)(oh + 1); 987 if (ctlv->head.length + read != sd->valsize) 988 return (EINVAL); 989 990 read += sizeof(*ctlv); 991 tent = (ipfw_obj_tentry *)(ctlv + 1); 992 if (ctlv->count * sizeof(*tent) + read != sd->valsize) 993 return (EINVAL); 994 995 if (ctlv->count == 0) 996 return (0); 997 998 /* 999 * Mark entire buffer as "read". 1000 * This instructs sopt api write it back 1001 * after function return. 1002 */ 1003 ipfw_get_sopt_header(sd, sd->valsize); 1004 1005 /* Perform basic checks for each entry */ 1006 ptent = tent; 1007 kidx = tent->idx; 1008 for (i = 0; i < ctlv->count; i++, ptent++) { 1009 if (ptent->head.length != sizeof(*ptent)) 1010 return (EINVAL); 1011 if (ptent->idx != kidx) 1012 return (ENOTSUP); 1013 } 1014 1015 /* Convert data into kernel request objects */ 1016 objheader_to_ti(oh, &ti); 1017 ti.type = oh->ntlv.type; 1018 ti.uidx = kidx; 1019 1020 /* Use on-stack buffer for single add/del */ 1021 if (ctlv->count == 1) { 1022 memset(&tei, 0, sizeof(tei)); 1023 tei_buf = &tei; 1024 } else 1025 tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP, 1026 M_WAITOK | M_ZERO); 1027 1028 ptei = tei_buf; 1029 ptent = tent; 1030 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1031 ptei->paddr = &ptent->k; 1032 ptei->subtype = ptent->subtype; 1033 ptei->masklen = ptent->masklen; 1034 if (ptent->head.flags & IPFW_TF_UPDATE) 1035 ptei->flags |= TEI_FLAGS_UPDATE; 1036 1037 ipfw_import_table_value_v1(&ptent->v.value); 1038 ptei->pvalue = (struct table_value *)&ptent->v.value; 1039 } 1040 1041 error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ? 1042 add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) : 1043 del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count); 1044 1045 /* Translate result back to userland */ 1046 ptei = tei_buf; 1047 ptent = tent; 1048 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1049 if (ptei->flags & TEI_FLAGS_ADDED) 1050 ptent->result = IPFW_TR_ADDED; 1051 else if (ptei->flags & TEI_FLAGS_DELETED) 1052 ptent->result = IPFW_TR_DELETED; 1053 else if (ptei->flags & TEI_FLAGS_UPDATED) 1054 ptent->result = IPFW_TR_UPDATED; 1055 else if (ptei->flags & TEI_FLAGS_LIMIT) 1056 ptent->result = IPFW_TR_LIMIT; 1057 else if (ptei->flags & TEI_FLAGS_ERROR) 1058 ptent->result = IPFW_TR_ERROR; 1059 else if (ptei->flags & TEI_FLAGS_NOTFOUND) 1060 ptent->result = IPFW_TR_NOTFOUND; 1061 else if (ptei->flags & TEI_FLAGS_EXISTS) 1062 ptent->result = IPFW_TR_EXISTS; 1063 ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value); 1064 } 1065 1066 if (tei_buf != &tei) 1067 free(tei_buf, M_TEMP); 1068 1069 return (error); 1070 } 1071 1072 /* 1073 * Looks up an entry in given table. 1074 * Data layout (v0)(current): 1075 * Request: [ ipfw_obj_header ipfw_obj_tentry ] 1076 * Reply: [ ipfw_obj_header ipfw_obj_tentry ] 1077 * 1078 * Returns 0 on success 1079 */ 1080 static int 1081 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1082 struct sockopt_data *sd) 1083 { 1084 ipfw_obj_tentry *tent; 1085 ipfw_obj_header *oh; 1086 struct tid_info ti; 1087 struct table_config *tc; 1088 struct table_algo *ta; 1089 struct table_info *kti; 1090 struct namedobj_instance *ni; 1091 int error; 1092 size_t sz; 1093 1094 /* Check minimum header size */ 1095 sz = sizeof(*oh) + sizeof(*tent); 1096 if (sd->valsize != sz) 1097 return (EINVAL); 1098 1099 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1100 tent = (ipfw_obj_tentry *)(oh + 1); 1101 1102 /* Basic length checks for TLVs */ 1103 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 1104 return (EINVAL); 1105 1106 objheader_to_ti(oh, &ti); 1107 ti.type = oh->ntlv.type; 1108 ti.uidx = tent->idx; 1109 1110 IPFW_UH_RLOCK(ch); 1111 ni = CHAIN_TO_NI(ch); 1112 1113 /* 1114 * Find existing table and check its type . 1115 */ 1116 ta = NULL; 1117 if ((tc = find_table(ni, &ti)) == NULL) { 1118 IPFW_UH_RUNLOCK(ch); 1119 return (ESRCH); 1120 } 1121 1122 /* check table type */ 1123 if (tc->no.subtype != ti.type) { 1124 IPFW_UH_RUNLOCK(ch); 1125 return (EINVAL); 1126 } 1127 1128 kti = KIDX_TO_TI(ch, tc->no.kidx); 1129 ta = tc->ta; 1130 1131 if (ta->find_tentry == NULL) 1132 return (ENOTSUP); 1133 1134 error = ta->find_tentry(tc->astate, kti, tent); 1135 1136 IPFW_UH_RUNLOCK(ch); 1137 1138 return (error); 1139 } 1140 1141 /* 1142 * Flushes all entries or destroys given table. 1143 * Data layout (v0)(current): 1144 * Request: [ ipfw_obj_header ] 1145 * 1146 * Returns 0 on success 1147 */ 1148 static int 1149 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1150 struct sockopt_data *sd) 1151 { 1152 int error; 1153 struct _ipfw_obj_header *oh; 1154 struct tid_info ti; 1155 1156 if (sd->valsize != sizeof(*oh)) 1157 return (EINVAL); 1158 1159 oh = (struct _ipfw_obj_header *)op3; 1160 objheader_to_ti(oh, &ti); 1161 1162 if (op3->opcode == IP_FW_TABLE_XDESTROY) 1163 error = destroy_table(ch, &ti); 1164 else if (op3->opcode == IP_FW_TABLE_XFLUSH) 1165 error = flush_table(ch, &ti); 1166 else 1167 return (ENOTSUP); 1168 1169 return (error); 1170 } 1171 1172 static void 1173 restart_flush(void *object, struct op_state *_state) 1174 { 1175 struct tableop_state *ts; 1176 1177 ts = (struct tableop_state *)_state; 1178 1179 if (ts->tc != object) 1180 return; 1181 1182 /* Indicate we've called */ 1183 ts->modified = 1; 1184 } 1185 1186 /* 1187 * Flushes given table. 1188 * 1189 * Function create new table instance with the same 1190 * parameters, swaps it with old one and 1191 * flushes state without holding runtime WLOCK. 1192 * 1193 * Returns 0 on success. 1194 */ 1195 int 1196 flush_table(struct ip_fw_chain *ch, struct tid_info *ti) 1197 { 1198 struct namedobj_instance *ni; 1199 struct table_config *tc; 1200 struct table_algo *ta; 1201 struct table_info ti_old, ti_new, *tablestate; 1202 void *astate_old, *astate_new; 1203 char algostate[64], *pstate; 1204 struct tableop_state ts; 1205 int error, need_gc; 1206 uint16_t kidx; 1207 uint8_t tflags; 1208 1209 /* 1210 * Stage 1: save table algorithm. 1211 * Reference found table to ensure it won't disappear. 1212 */ 1213 IPFW_UH_WLOCK(ch); 1214 ni = CHAIN_TO_NI(ch); 1215 if ((tc = find_table(ni, ti)) == NULL) { 1216 IPFW_UH_WUNLOCK(ch); 1217 return (ESRCH); 1218 } 1219 need_gc = 0; 1220 astate_new = NULL; 1221 memset(&ti_new, 0, sizeof(ti_new)); 1222 restart: 1223 /* Set up swap handler */ 1224 memset(&ts, 0, sizeof(ts)); 1225 ts.opstate.func = restart_flush; 1226 ts.tc = tc; 1227 1228 ta = tc->ta; 1229 /* Do not flush readonly tables */ 1230 if ((ta->flags & TA_FLAG_READONLY) != 0) { 1231 IPFW_UH_WUNLOCK(ch); 1232 return (EACCES); 1233 } 1234 /* Save startup algo parameters */ 1235 if (ta->print_config != NULL) { 1236 ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx), 1237 algostate, sizeof(algostate)); 1238 pstate = algostate; 1239 } else 1240 pstate = NULL; 1241 tflags = tc->tflags; 1242 tc->no.refcnt++; 1243 add_toperation_state(ch, &ts); 1244 IPFW_UH_WUNLOCK(ch); 1245 1246 /* 1247 * Stage 1.5: if this is not the first attempt, destroy previous state 1248 */ 1249 if (need_gc != 0) { 1250 ta->destroy(astate_new, &ti_new); 1251 need_gc = 0; 1252 } 1253 1254 /* 1255 * Stage 2: allocate new table instance using same algo. 1256 */ 1257 memset(&ti_new, 0, sizeof(struct table_info)); 1258 error = ta->init(ch, &astate_new, &ti_new, pstate, tflags); 1259 1260 /* 1261 * Stage 3: swap old state pointers with newly-allocated ones. 1262 * Decrease refcount. 1263 */ 1264 IPFW_UH_WLOCK(ch); 1265 tc->no.refcnt--; 1266 del_toperation_state(ch, &ts); 1267 1268 if (error != 0) { 1269 IPFW_UH_WUNLOCK(ch); 1270 return (error); 1271 } 1272 1273 /* 1274 * Restart operation if table swap has happened: 1275 * even if algo may be the same, algo init parameters 1276 * may change. Restart operation instead of doing 1277 * complex checks. 1278 */ 1279 if (ts.modified != 0) { 1280 /* Delay destroying data since we're holding UH lock */ 1281 need_gc = 1; 1282 goto restart; 1283 } 1284 1285 ni = CHAIN_TO_NI(ch); 1286 kidx = tc->no.kidx; 1287 tablestate = (struct table_info *)ch->tablestate; 1288 1289 IPFW_WLOCK(ch); 1290 ti_old = tablestate[kidx]; 1291 tablestate[kidx] = ti_new; 1292 IPFW_WUNLOCK(ch); 1293 1294 astate_old = tc->astate; 1295 tc->astate = astate_new; 1296 tc->ti_copy = ti_new; 1297 tc->count = 0; 1298 1299 /* Notify algo on real @ti address */ 1300 if (ta->change_ti != NULL) 1301 ta->change_ti(tc->astate, &tablestate[kidx]); 1302 1303 /* 1304 * Stage 4: unref values. 1305 */ 1306 ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old); 1307 IPFW_UH_WUNLOCK(ch); 1308 1309 /* 1310 * Stage 5: perform real flush/destroy. 1311 */ 1312 ta->destroy(astate_old, &ti_old); 1313 1314 return (0); 1315 } 1316 1317 /* 1318 * Swaps two tables. 1319 * Data layout (v0)(current): 1320 * Request: [ ipfw_obj_header ipfw_obj_ntlv ] 1321 * 1322 * Returns 0 on success 1323 */ 1324 static int 1325 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1326 struct sockopt_data *sd) 1327 { 1328 int error; 1329 struct _ipfw_obj_header *oh; 1330 struct tid_info ti_a, ti_b; 1331 1332 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv)) 1333 return (EINVAL); 1334 1335 oh = (struct _ipfw_obj_header *)op3; 1336 ntlv_to_ti(&oh->ntlv, &ti_a); 1337 ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b); 1338 1339 error = swap_tables(ch, &ti_a, &ti_b); 1340 1341 return (error); 1342 } 1343 1344 /* 1345 * Swaps two tables of the same type/valtype. 1346 * 1347 * Checks if tables are compatible and limits 1348 * permits swap, than actually perform swap. 1349 * 1350 * Each table consists of 2 different parts: 1351 * config: 1352 * @tc (with name, set, kidx) and rule bindings, which is "stable". 1353 * number of items 1354 * table algo 1355 * runtime: 1356 * runtime data @ti (ch->tablestate) 1357 * runtime cache in @tc 1358 * algo-specific data (@tc->astate) 1359 * 1360 * So we switch: 1361 * all runtime data 1362 * number of items 1363 * table algo 1364 * 1365 * After that we call @ti change handler for each table. 1366 * 1367 * Note that referencing @tc won't protect tc->ta from change. 1368 * XXX: Do we need to restrict swap between locked tables? 1369 * XXX: Do we need to exchange ftype? 1370 * 1371 * Returns 0 on success. 1372 */ 1373 static int 1374 swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 1375 struct tid_info *b) 1376 { 1377 struct namedobj_instance *ni; 1378 struct table_config *tc_a, *tc_b; 1379 struct table_algo *ta; 1380 struct table_info ti, *tablestate; 1381 void *astate; 1382 uint32_t count; 1383 1384 /* 1385 * Stage 1: find both tables and ensure they are of 1386 * the same type. 1387 */ 1388 IPFW_UH_WLOCK(ch); 1389 ni = CHAIN_TO_NI(ch); 1390 if ((tc_a = find_table(ni, a)) == NULL) { 1391 IPFW_UH_WUNLOCK(ch); 1392 return (ESRCH); 1393 } 1394 if ((tc_b = find_table(ni, b)) == NULL) { 1395 IPFW_UH_WUNLOCK(ch); 1396 return (ESRCH); 1397 } 1398 1399 /* It is very easy to swap between the same table */ 1400 if (tc_a == tc_b) { 1401 IPFW_UH_WUNLOCK(ch); 1402 return (0); 1403 } 1404 1405 /* Check type and value are the same */ 1406 if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) { 1407 IPFW_UH_WUNLOCK(ch); 1408 return (EINVAL); 1409 } 1410 1411 /* Check limits before swap */ 1412 if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) || 1413 (tc_b->limit != 0 && tc_a->count > tc_b->limit)) { 1414 IPFW_UH_WUNLOCK(ch); 1415 return (EFBIG); 1416 } 1417 1418 /* Check if one of the tables is readonly */ 1419 if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) { 1420 IPFW_UH_WUNLOCK(ch); 1421 return (EACCES); 1422 } 1423 1424 /* Notify we're going to swap */ 1425 rollback_toperation_state(ch, tc_a); 1426 rollback_toperation_state(ch, tc_b); 1427 1428 /* Everything is fine, prepare to swap */ 1429 tablestate = (struct table_info *)ch->tablestate; 1430 ti = tablestate[tc_a->no.kidx]; 1431 ta = tc_a->ta; 1432 astate = tc_a->astate; 1433 count = tc_a->count; 1434 1435 IPFW_WLOCK(ch); 1436 /* a <- b */ 1437 tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx]; 1438 tc_a->ta = tc_b->ta; 1439 tc_a->astate = tc_b->astate; 1440 tc_a->count = tc_b->count; 1441 /* b <- a */ 1442 tablestate[tc_b->no.kidx] = ti; 1443 tc_b->ta = ta; 1444 tc_b->astate = astate; 1445 tc_b->count = count; 1446 IPFW_WUNLOCK(ch); 1447 1448 /* Ensure tc.ti copies are in sync */ 1449 tc_a->ti_copy = tablestate[tc_a->no.kidx]; 1450 tc_b->ti_copy = tablestate[tc_b->no.kidx]; 1451 1452 /* Notify both tables on @ti change */ 1453 if (tc_a->ta->change_ti != NULL) 1454 tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]); 1455 if (tc_b->ta->change_ti != NULL) 1456 tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]); 1457 1458 IPFW_UH_WUNLOCK(ch); 1459 1460 return (0); 1461 } 1462 1463 /* 1464 * Destroys table specified by @ti. 1465 * Data layout (v0)(current): 1466 * Request: [ ip_fw3_opheader ] 1467 * 1468 * Returns 0 on success 1469 */ 1470 static int 1471 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti) 1472 { 1473 struct namedobj_instance *ni; 1474 struct table_config *tc; 1475 1476 IPFW_UH_WLOCK(ch); 1477 1478 ni = CHAIN_TO_NI(ch); 1479 if ((tc = find_table(ni, ti)) == NULL) { 1480 IPFW_UH_WUNLOCK(ch); 1481 return (ESRCH); 1482 } 1483 1484 /* Do not permit destroying referenced tables */ 1485 if (tc->no.refcnt > 0) { 1486 IPFW_UH_WUNLOCK(ch); 1487 return (EBUSY); 1488 } 1489 1490 IPFW_WLOCK(ch); 1491 unlink_table(ch, tc); 1492 IPFW_WUNLOCK(ch); 1493 1494 /* Free obj index */ 1495 if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0) 1496 printf("Error unlinking kidx %d from table %s\n", 1497 tc->no.kidx, tc->tablename); 1498 1499 /* Unref values used in tables while holding UH lock */ 1500 ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy); 1501 IPFW_UH_WUNLOCK(ch); 1502 1503 free_table_config(ni, tc); 1504 1505 return (0); 1506 } 1507 1508 static uint32_t 1509 roundup2p(uint32_t v) 1510 { 1511 1512 v--; 1513 v |= v >> 1; 1514 v |= v >> 2; 1515 v |= v >> 4; 1516 v |= v >> 8; 1517 v |= v >> 16; 1518 v++; 1519 1520 return (v); 1521 } 1522 1523 /* 1524 * Grow tables index. 1525 * 1526 * Returns 0 on success. 1527 */ 1528 int 1529 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables) 1530 { 1531 unsigned int ntables_old, tbl; 1532 struct namedobj_instance *ni; 1533 void *new_idx, *old_tablestate, *tablestate; 1534 struct table_info *ti; 1535 struct table_config *tc; 1536 int i, new_blocks; 1537 1538 /* Check new value for validity */ 1539 if (ntables == 0) 1540 return (EINVAL); 1541 if (ntables > IPFW_TABLES_MAX) 1542 ntables = IPFW_TABLES_MAX; 1543 /* Alight to nearest power of 2 */ 1544 ntables = (unsigned int)roundup2p(ntables); 1545 1546 /* Allocate new pointers */ 1547 tablestate = malloc(ntables * sizeof(struct table_info), 1548 M_IPFW, M_WAITOK | M_ZERO); 1549 1550 ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks); 1551 1552 IPFW_UH_WLOCK(ch); 1553 1554 tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables; 1555 ni = CHAIN_TO_NI(ch); 1556 1557 /* Temporary restrict decreasing max_tables */ 1558 if (ntables < V_fw_tables_max) { 1559 1560 /* 1561 * FIXME: Check if we really can shrink 1562 */ 1563 IPFW_UH_WUNLOCK(ch); 1564 return (EINVAL); 1565 } 1566 1567 /* Copy table info/indices */ 1568 memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl); 1569 ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks); 1570 1571 IPFW_WLOCK(ch); 1572 1573 /* Change pointers */ 1574 old_tablestate = ch->tablestate; 1575 ch->tablestate = tablestate; 1576 ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks); 1577 1578 ntables_old = V_fw_tables_max; 1579 V_fw_tables_max = ntables; 1580 1581 IPFW_WUNLOCK(ch); 1582 1583 /* Notify all consumers that their @ti pointer has changed */ 1584 ti = (struct table_info *)ch->tablestate; 1585 for (i = 0; i < tbl; i++, ti++) { 1586 if (ti->lookup == NULL) 1587 continue; 1588 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i); 1589 if (tc == NULL || tc->ta->change_ti == NULL) 1590 continue; 1591 1592 tc->ta->change_ti(tc->astate, ti); 1593 } 1594 1595 IPFW_UH_WUNLOCK(ch); 1596 1597 /* Free old pointers */ 1598 free(old_tablestate, M_IPFW); 1599 ipfw_objhash_bitmap_free(new_idx, new_blocks); 1600 1601 return (0); 1602 } 1603 1604 /* 1605 * Lookup table's named object by its @kidx. 1606 */ 1607 struct named_object * 1608 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx) 1609 { 1610 1611 return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx)); 1612 } 1613 1614 /* 1615 * Take reference to table specified in @ntlv. 1616 * On success return its @kidx. 1617 */ 1618 int 1619 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx) 1620 { 1621 struct tid_info ti; 1622 struct table_config *tc; 1623 int error; 1624 1625 IPFW_UH_WLOCK_ASSERT(ch); 1626 1627 ntlv_to_ti(ntlv, &ti); 1628 error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc); 1629 if (error != 0) 1630 return (error); 1631 1632 if (tc == NULL) 1633 return (ESRCH); 1634 1635 tc_ref(tc); 1636 *kidx = tc->no.kidx; 1637 1638 return (0); 1639 } 1640 1641 void 1642 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx) 1643 { 1644 1645 struct namedobj_instance *ni; 1646 struct named_object *no; 1647 1648 IPFW_UH_WLOCK_ASSERT(ch); 1649 ni = CHAIN_TO_NI(ch); 1650 no = ipfw_objhash_lookup_kidx(ni, kidx); 1651 KASSERT(no != NULL, ("Table with index %d not found", kidx)); 1652 no->refcnt--; 1653 } 1654 1655 /* 1656 * Lookup an IP @addr in table @tbl. 1657 * Stores found value in @val. 1658 * 1659 * Returns 1 if @addr was found. 1660 */ 1661 int 1662 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr, 1663 uint32_t *val) 1664 { 1665 struct table_info *ti; 1666 1667 ti = KIDX_TO_TI(ch, tbl); 1668 1669 return (ti->lookup(ti, &addr, sizeof(in_addr_t), val)); 1670 } 1671 1672 /* 1673 * Lookup an arbtrary key @paddr of legth @plen in table @tbl. 1674 * Stores found value in @val. 1675 * 1676 * Returns 1 if key was found. 1677 */ 1678 int 1679 ipfw_lookup_table_extended(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen, 1680 void *paddr, uint32_t *val) 1681 { 1682 struct table_info *ti; 1683 1684 ti = KIDX_TO_TI(ch, tbl); 1685 1686 return (ti->lookup(ti, paddr, plen, val)); 1687 } 1688 1689 /* 1690 * Info/List/dump support for tables. 1691 * 1692 */ 1693 1694 /* 1695 * High-level 'get' cmds sysctl handlers 1696 */ 1697 1698 /* 1699 * Lists all tables currently available in kernel. 1700 * Data layout (v0)(current): 1701 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 1702 * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ] 1703 * 1704 * Returns 0 on success 1705 */ 1706 static int 1707 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1708 struct sockopt_data *sd) 1709 { 1710 struct _ipfw_obj_lheader *olh; 1711 int error; 1712 1713 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 1714 if (olh == NULL) 1715 return (EINVAL); 1716 if (sd->valsize < olh->size) 1717 return (EINVAL); 1718 1719 IPFW_UH_RLOCK(ch); 1720 error = export_tables(ch, olh, sd); 1721 IPFW_UH_RUNLOCK(ch); 1722 1723 return (error); 1724 } 1725 1726 /* 1727 * Store table info to buffer provided by @sd. 1728 * Data layout (v0)(current): 1729 * Request: [ ipfw_obj_header ipfw_xtable_info(empty)] 1730 * Reply: [ ipfw_obj_header ipfw_xtable_info ] 1731 * 1732 * Returns 0 on success. 1733 */ 1734 static int 1735 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1736 struct sockopt_data *sd) 1737 { 1738 struct _ipfw_obj_header *oh; 1739 struct table_config *tc; 1740 struct tid_info ti; 1741 size_t sz; 1742 1743 sz = sizeof(*oh) + sizeof(ipfw_xtable_info); 1744 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1745 if (oh == NULL) 1746 return (EINVAL); 1747 1748 objheader_to_ti(oh, &ti); 1749 1750 IPFW_UH_RLOCK(ch); 1751 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 1752 IPFW_UH_RUNLOCK(ch); 1753 return (ESRCH); 1754 } 1755 1756 export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1)); 1757 IPFW_UH_RUNLOCK(ch); 1758 1759 return (0); 1760 } 1761 1762 /* 1763 * Modifies existing table. 1764 * Data layout (v0)(current): 1765 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1766 * 1767 * Returns 0 on success 1768 */ 1769 static int 1770 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1771 struct sockopt_data *sd) 1772 { 1773 struct _ipfw_obj_header *oh; 1774 ipfw_xtable_info *i; 1775 char *tname; 1776 struct tid_info ti; 1777 struct namedobj_instance *ni; 1778 struct table_config *tc; 1779 1780 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1781 return (EINVAL); 1782 1783 oh = (struct _ipfw_obj_header *)sd->kbuf; 1784 i = (ipfw_xtable_info *)(oh + 1); 1785 1786 /* 1787 * Verify user-supplied strings. 1788 * Check for null-terminated/zero-length strings/ 1789 */ 1790 tname = oh->ntlv.name; 1791 if (check_table_name(tname) != 0) 1792 return (EINVAL); 1793 1794 objheader_to_ti(oh, &ti); 1795 ti.type = i->type; 1796 1797 IPFW_UH_WLOCK(ch); 1798 ni = CHAIN_TO_NI(ch); 1799 if ((tc = find_table(ni, &ti)) == NULL) { 1800 IPFW_UH_WUNLOCK(ch); 1801 return (ESRCH); 1802 } 1803 1804 /* Do not support any modifications for readonly tables */ 1805 if ((tc->ta->flags & TA_FLAG_READONLY) != 0) { 1806 IPFW_UH_WUNLOCK(ch); 1807 return (EACCES); 1808 } 1809 1810 if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0) 1811 tc->limit = i->limit; 1812 if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0) 1813 tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0); 1814 IPFW_UH_WUNLOCK(ch); 1815 1816 return (0); 1817 } 1818 1819 /* 1820 * Creates new table. 1821 * Data layout (v0)(current): 1822 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1823 * 1824 * Returns 0 on success 1825 */ 1826 static int 1827 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1828 struct sockopt_data *sd) 1829 { 1830 struct _ipfw_obj_header *oh; 1831 ipfw_xtable_info *i; 1832 char *tname, *aname; 1833 struct tid_info ti; 1834 struct namedobj_instance *ni; 1835 1836 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1837 return (EINVAL); 1838 1839 oh = (struct _ipfw_obj_header *)sd->kbuf; 1840 i = (ipfw_xtable_info *)(oh + 1); 1841 1842 /* 1843 * Verify user-supplied strings. 1844 * Check for null-terminated/zero-length strings/ 1845 */ 1846 tname = oh->ntlv.name; 1847 aname = i->algoname; 1848 if (check_table_name(tname) != 0 || 1849 strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname)) 1850 return (EINVAL); 1851 1852 if (aname[0] == '\0') { 1853 /* Use default algorithm */ 1854 aname = NULL; 1855 } 1856 1857 objheader_to_ti(oh, &ti); 1858 ti.type = i->type; 1859 1860 ni = CHAIN_TO_NI(ch); 1861 1862 IPFW_UH_RLOCK(ch); 1863 if (find_table(ni, &ti) != NULL) { 1864 IPFW_UH_RUNLOCK(ch); 1865 return (EEXIST); 1866 } 1867 IPFW_UH_RUNLOCK(ch); 1868 1869 return (create_table_internal(ch, &ti, aname, i, NULL, 0)); 1870 } 1871 1872 /* 1873 * Creates new table based on @ti and @aname. 1874 * 1875 * Assume @aname to be checked and valid. 1876 * Stores allocated table kidx inside @pkidx (if non-NULL). 1877 * Reference created table if @compat is non-zero. 1878 * 1879 * Returns 0 on success. 1880 */ 1881 static int 1882 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 1883 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat) 1884 { 1885 struct namedobj_instance *ni; 1886 struct table_config *tc, *tc_new, *tmp; 1887 struct table_algo *ta; 1888 uint16_t kidx; 1889 1890 ni = CHAIN_TO_NI(ch); 1891 1892 ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname); 1893 if (ta == NULL) 1894 return (ENOTSUP); 1895 1896 tc = alloc_table_config(ch, ti, ta, aname, i->tflags); 1897 if (tc == NULL) 1898 return (ENOMEM); 1899 1900 tc->vmask = i->vmask; 1901 tc->limit = i->limit; 1902 if (ta->flags & TA_FLAG_READONLY) 1903 tc->locked = 1; 1904 else 1905 tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0; 1906 1907 IPFW_UH_WLOCK(ch); 1908 1909 /* Check if table has been already created */ 1910 tc_new = find_table(ni, ti); 1911 if (tc_new != NULL) { 1912 1913 /* 1914 * Compat: do not fail if we're 1915 * requesting to create existing table 1916 * which has the same type 1917 */ 1918 if (compat == 0 || tc_new->no.subtype != tc->no.subtype) { 1919 IPFW_UH_WUNLOCK(ch); 1920 free_table_config(ni, tc); 1921 return (EEXIST); 1922 } 1923 1924 /* Exchange tc and tc_new for proper refcounting & freeing */ 1925 tmp = tc; 1926 tc = tc_new; 1927 tc_new = tmp; 1928 } else { 1929 /* New table */ 1930 if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) { 1931 IPFW_UH_WUNLOCK(ch); 1932 printf("Unable to allocate table index." 1933 " Consider increasing net.inet.ip.fw.tables_max"); 1934 free_table_config(ni, tc); 1935 return (EBUSY); 1936 } 1937 tc->no.kidx = kidx; 1938 tc->no.etlv = IPFW_TLV_TBL_NAME; 1939 1940 IPFW_WLOCK(ch); 1941 link_table(ch, tc); 1942 IPFW_WUNLOCK(ch); 1943 } 1944 1945 if (compat != 0) 1946 tc->no.refcnt++; 1947 if (pkidx != NULL) 1948 *pkidx = tc->no.kidx; 1949 1950 IPFW_UH_WUNLOCK(ch); 1951 1952 if (tc_new != NULL) 1953 free_table_config(ni, tc_new); 1954 1955 return (0); 1956 } 1957 1958 static void 1959 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti) 1960 { 1961 1962 memset(ti, 0, sizeof(struct tid_info)); 1963 ti->set = ntlv->set; 1964 ti->uidx = ntlv->idx; 1965 ti->tlvs = ntlv; 1966 ti->tlen = ntlv->head.length; 1967 } 1968 1969 static void 1970 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti) 1971 { 1972 1973 ntlv_to_ti(&oh->ntlv, ti); 1974 } 1975 1976 struct namedobj_instance * 1977 ipfw_get_table_objhash(struct ip_fw_chain *ch) 1978 { 1979 1980 return (CHAIN_TO_NI(ch)); 1981 } 1982 1983 /* 1984 * Exports basic table info as name TLV. 1985 * Used inside dump_static_rules() to provide info 1986 * about all tables referenced by current ruleset. 1987 * 1988 * Returns 0 on success. 1989 */ 1990 int 1991 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx, 1992 struct sockopt_data *sd) 1993 { 1994 struct namedobj_instance *ni; 1995 struct named_object *no; 1996 ipfw_obj_ntlv *ntlv; 1997 1998 ni = CHAIN_TO_NI(ch); 1999 2000 no = ipfw_objhash_lookup_kidx(ni, kidx); 2001 KASSERT(no != NULL, ("invalid table kidx passed")); 2002 2003 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv)); 2004 if (ntlv == NULL) 2005 return (ENOMEM); 2006 2007 ntlv->head.type = IPFW_TLV_TBL_NAME; 2008 ntlv->head.length = sizeof(*ntlv); 2009 ntlv->idx = no->kidx; 2010 strlcpy(ntlv->name, no->name, sizeof(ntlv->name)); 2011 2012 return (0); 2013 } 2014 2015 struct dump_args { 2016 struct ip_fw_chain *ch; 2017 struct table_info *ti; 2018 struct table_config *tc; 2019 struct sockopt_data *sd; 2020 uint32_t cnt; 2021 uint16_t uidx; 2022 int error; 2023 uint32_t size; 2024 ipfw_table_entry *ent; 2025 ta_foreach_f *f; 2026 void *farg; 2027 ipfw_obj_tentry tent; 2028 }; 2029 2030 static int 2031 count_ext_entries(void *e, void *arg) 2032 { 2033 struct dump_args *da; 2034 2035 da = (struct dump_args *)arg; 2036 da->cnt++; 2037 2038 return (0); 2039 } 2040 2041 /* 2042 * Gets number of items from table either using 2043 * internal counter or calling algo callback for 2044 * externally-managed tables. 2045 * 2046 * Returns number of records. 2047 */ 2048 static uint32_t 2049 table_get_count(struct ip_fw_chain *ch, struct table_config *tc) 2050 { 2051 struct table_info *ti; 2052 struct table_algo *ta; 2053 struct dump_args da; 2054 2055 ti = KIDX_TO_TI(ch, tc->no.kidx); 2056 ta = tc->ta; 2057 2058 /* Use internal counter for self-managed tables */ 2059 if ((ta->flags & TA_FLAG_READONLY) == 0) 2060 return (tc->count); 2061 2062 /* Use callback to quickly get number of items */ 2063 if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0) 2064 return (ta->get_count(tc->astate, ti)); 2065 2066 /* Count number of iterms ourselves */ 2067 memset(&da, 0, sizeof(da)); 2068 ta->foreach(tc->astate, ti, count_ext_entries, &da); 2069 2070 return (da.cnt); 2071 } 2072 2073 /* 2074 * Exports table @tc info into standard ipfw_xtable_info format. 2075 */ 2076 static void 2077 export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 2078 ipfw_xtable_info *i) 2079 { 2080 struct table_info *ti; 2081 struct table_algo *ta; 2082 2083 i->type = tc->no.subtype; 2084 i->tflags = tc->tflags; 2085 i->vmask = tc->vmask; 2086 i->set = tc->no.set; 2087 i->kidx = tc->no.kidx; 2088 i->refcnt = tc->no.refcnt; 2089 i->count = table_get_count(ch, tc); 2090 i->limit = tc->limit; 2091 i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0; 2092 i->size = i->count * sizeof(ipfw_obj_tentry); 2093 i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2094 strlcpy(i->tablename, tc->tablename, sizeof(i->tablename)); 2095 ti = KIDX_TO_TI(ch, tc->no.kidx); 2096 ta = tc->ta; 2097 if (ta->print_config != NULL) { 2098 /* Use algo function to print table config to string */ 2099 ta->print_config(tc->astate, ti, i->algoname, 2100 sizeof(i->algoname)); 2101 } else 2102 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2103 /* Dump algo-specific data, if possible */ 2104 if (ta->dump_tinfo != NULL) { 2105 ta->dump_tinfo(tc->astate, ti, &i->ta_info); 2106 i->ta_info.flags |= IPFW_TATFLAGS_DATA; 2107 } 2108 } 2109 2110 struct dump_table_args { 2111 struct ip_fw_chain *ch; 2112 struct sockopt_data *sd; 2113 }; 2114 2115 static int 2116 export_table_internal(struct namedobj_instance *ni, struct named_object *no, 2117 void *arg) 2118 { 2119 ipfw_xtable_info *i; 2120 struct dump_table_args *dta; 2121 2122 dta = (struct dump_table_args *)arg; 2123 2124 i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i)); 2125 KASSERT(i != NULL, ("previously checked buffer is not enough")); 2126 2127 export_table_info(dta->ch, (struct table_config *)no, i); 2128 return (0); 2129 } 2130 2131 /* 2132 * Export all tables as ipfw_xtable_info structures to 2133 * storage provided by @sd. 2134 * 2135 * If supplied buffer is too small, fills in required size 2136 * and returns ENOMEM. 2137 * Returns 0 on success. 2138 */ 2139 static int 2140 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 2141 struct sockopt_data *sd) 2142 { 2143 uint32_t size; 2144 uint32_t count; 2145 struct dump_table_args dta; 2146 2147 count = ipfw_objhash_count(CHAIN_TO_NI(ch)); 2148 size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader); 2149 2150 /* Fill in header regadless of buffer size */ 2151 olh->count = count; 2152 olh->objsize = sizeof(ipfw_xtable_info); 2153 2154 if (size > olh->size) { 2155 olh->size = size; 2156 return (ENOMEM); 2157 } 2158 2159 olh->size = size; 2160 2161 dta.ch = ch; 2162 dta.sd = sd; 2163 2164 ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta); 2165 2166 return (0); 2167 } 2168 2169 /* 2170 * Dumps all table data 2171 * Data layout (v1)(current): 2172 * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size 2173 * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ] 2174 * 2175 * Returns 0 on success 2176 */ 2177 static int 2178 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2179 struct sockopt_data *sd) 2180 { 2181 struct _ipfw_obj_header *oh; 2182 ipfw_xtable_info *i; 2183 struct tid_info ti; 2184 struct table_config *tc; 2185 struct table_algo *ta; 2186 struct dump_args da; 2187 uint32_t sz; 2188 2189 sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2190 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 2191 if (oh == NULL) 2192 return (EINVAL); 2193 2194 i = (ipfw_xtable_info *)(oh + 1); 2195 objheader_to_ti(oh, &ti); 2196 2197 IPFW_UH_RLOCK(ch); 2198 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2199 IPFW_UH_RUNLOCK(ch); 2200 return (ESRCH); 2201 } 2202 export_table_info(ch, tc, i); 2203 2204 if (sd->valsize < i->size) { 2205 2206 /* 2207 * Submitted buffer size is not enough. 2208 * WE've already filled in @i structure with 2209 * relevant table info including size, so we 2210 * can return. Buffer will be flushed automatically. 2211 */ 2212 IPFW_UH_RUNLOCK(ch); 2213 return (ENOMEM); 2214 } 2215 2216 /* 2217 * Do the actual dump in eXtended format 2218 */ 2219 memset(&da, 0, sizeof(da)); 2220 da.ch = ch; 2221 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2222 da.tc = tc; 2223 da.sd = sd; 2224 2225 ta = tc->ta; 2226 2227 ta->foreach(tc->astate, da.ti, dump_table_tentry, &da); 2228 IPFW_UH_RUNLOCK(ch); 2229 2230 return (da.error); 2231 } 2232 2233 /* 2234 * Dumps all table data 2235 * Data layout (version 0)(legacy): 2236 * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE() 2237 * Reply: [ ipfw_xtable ipfw_table_xentry x N ] 2238 * 2239 * Returns 0 on success 2240 */ 2241 static int 2242 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2243 struct sockopt_data *sd) 2244 { 2245 ipfw_xtable *xtbl; 2246 struct tid_info ti; 2247 struct table_config *tc; 2248 struct table_algo *ta; 2249 struct dump_args da; 2250 size_t sz, count; 2251 2252 xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable)); 2253 if (xtbl == NULL) 2254 return (EINVAL); 2255 2256 memset(&ti, 0, sizeof(ti)); 2257 ti.uidx = xtbl->tbl; 2258 2259 IPFW_UH_RLOCK(ch); 2260 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2261 IPFW_UH_RUNLOCK(ch); 2262 return (0); 2263 } 2264 count = table_get_count(ch, tc); 2265 sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable); 2266 2267 xtbl->cnt = count; 2268 xtbl->size = sz; 2269 xtbl->type = tc->no.subtype; 2270 xtbl->tbl = ti.uidx; 2271 2272 if (sd->valsize < sz) { 2273 2274 /* 2275 * Submitted buffer size is not enough. 2276 * WE've already filled in @i structure with 2277 * relevant table info including size, so we 2278 * can return. Buffer will be flushed automatically. 2279 */ 2280 IPFW_UH_RUNLOCK(ch); 2281 return (ENOMEM); 2282 } 2283 2284 /* Do the actual dump in eXtended format */ 2285 memset(&da, 0, sizeof(da)); 2286 da.ch = ch; 2287 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2288 da.tc = tc; 2289 da.sd = sd; 2290 2291 ta = tc->ta; 2292 2293 ta->foreach(tc->astate, da.ti, dump_table_xentry, &da); 2294 IPFW_UH_RUNLOCK(ch); 2295 2296 return (0); 2297 } 2298 2299 /* 2300 * Legacy function to retrieve number of items in table. 2301 */ 2302 static int 2303 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2304 struct sockopt_data *sd) 2305 { 2306 uint32_t *tbl; 2307 struct tid_info ti; 2308 size_t sz; 2309 int error; 2310 2311 sz = sizeof(*op3) + sizeof(uint32_t); 2312 op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz); 2313 if (op3 == NULL) 2314 return (EINVAL); 2315 2316 tbl = (uint32_t *)(op3 + 1); 2317 memset(&ti, 0, sizeof(ti)); 2318 ti.uidx = *tbl; 2319 IPFW_UH_RLOCK(ch); 2320 error = ipfw_count_xtable(ch, &ti, tbl); 2321 IPFW_UH_RUNLOCK(ch); 2322 return (error); 2323 } 2324 2325 /* 2326 * Legacy IP_FW_TABLE_GETSIZE handler 2327 */ 2328 int 2329 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2330 { 2331 struct table_config *tc; 2332 2333 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2334 return (ESRCH); 2335 *cnt = table_get_count(ch, tc); 2336 return (0); 2337 } 2338 2339 /* 2340 * Legacy IP_FW_TABLE_XGETSIZE handler 2341 */ 2342 int 2343 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2344 { 2345 struct table_config *tc; 2346 uint32_t count; 2347 2348 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) { 2349 *cnt = 0; 2350 return (0); /* 'table all list' requires success */ 2351 } 2352 2353 count = table_get_count(ch, tc); 2354 *cnt = count * sizeof(ipfw_table_xentry); 2355 if (count > 0) 2356 *cnt += sizeof(ipfw_xtable); 2357 return (0); 2358 } 2359 2360 static int 2361 dump_table_entry(void *e, void *arg) 2362 { 2363 struct dump_args *da; 2364 struct table_config *tc; 2365 struct table_algo *ta; 2366 ipfw_table_entry *ent; 2367 struct table_value *pval; 2368 int error; 2369 2370 da = (struct dump_args *)arg; 2371 2372 tc = da->tc; 2373 ta = tc->ta; 2374 2375 /* Out of memory, returning */ 2376 if (da->cnt == da->size) 2377 return (1); 2378 ent = da->ent++; 2379 ent->tbl = da->uidx; 2380 da->cnt++; 2381 2382 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2383 if (error != 0) 2384 return (error); 2385 2386 ent->addr = da->tent.k.addr.s_addr; 2387 ent->masklen = da->tent.masklen; 2388 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2389 ent->value = ipfw_export_table_value_legacy(pval); 2390 2391 return (0); 2392 } 2393 2394 /* 2395 * Dumps table in pre-8.1 legacy format. 2396 */ 2397 int 2398 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti, 2399 ipfw_table *tbl) 2400 { 2401 struct table_config *tc; 2402 struct table_algo *ta; 2403 struct dump_args da; 2404 2405 tbl->cnt = 0; 2406 2407 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2408 return (0); /* XXX: We should return ESRCH */ 2409 2410 ta = tc->ta; 2411 2412 /* This dump format supports IPv4 only */ 2413 if (tc->no.subtype != IPFW_TABLE_ADDR) 2414 return (0); 2415 2416 memset(&da, 0, sizeof(da)); 2417 da.ch = ch; 2418 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2419 da.tc = tc; 2420 da.ent = &tbl->ent[0]; 2421 da.size = tbl->size; 2422 2423 tbl->cnt = 0; 2424 ta->foreach(tc->astate, da.ti, dump_table_entry, &da); 2425 tbl->cnt = da.cnt; 2426 2427 return (0); 2428 } 2429 2430 /* 2431 * Dumps table entry in eXtended format (v1)(current). 2432 */ 2433 static int 2434 dump_table_tentry(void *e, void *arg) 2435 { 2436 struct dump_args *da; 2437 struct table_config *tc; 2438 struct table_algo *ta; 2439 struct table_value *pval; 2440 ipfw_obj_tentry *tent; 2441 int error; 2442 2443 da = (struct dump_args *)arg; 2444 2445 tc = da->tc; 2446 ta = tc->ta; 2447 2448 tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent)); 2449 /* Out of memory, returning */ 2450 if (tent == NULL) { 2451 da->error = ENOMEM; 2452 return (1); 2453 } 2454 tent->head.length = sizeof(ipfw_obj_tentry); 2455 tent->idx = da->uidx; 2456 2457 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2458 if (error != 0) 2459 return (error); 2460 2461 pval = get_table_value(da->ch, da->tc, tent->v.kidx); 2462 ipfw_export_table_value_v1(pval, &tent->v.value); 2463 2464 return (0); 2465 } 2466 2467 /* 2468 * Dumps table entry in eXtended format (v0). 2469 */ 2470 static int 2471 dump_table_xentry(void *e, void *arg) 2472 { 2473 struct dump_args *da; 2474 struct table_config *tc; 2475 struct table_algo *ta; 2476 ipfw_table_xentry *xent; 2477 ipfw_obj_tentry *tent; 2478 struct table_value *pval; 2479 int error; 2480 2481 da = (struct dump_args *)arg; 2482 2483 tc = da->tc; 2484 ta = tc->ta; 2485 2486 xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent)); 2487 /* Out of memory, returning */ 2488 if (xent == NULL) 2489 return (1); 2490 xent->len = sizeof(ipfw_table_xentry); 2491 xent->tbl = da->uidx; 2492 2493 memset(&da->tent, 0, sizeof(da->tent)); 2494 tent = &da->tent; 2495 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2496 if (error != 0) 2497 return (error); 2498 2499 /* Convert current format to previous one */ 2500 xent->masklen = tent->masklen; 2501 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2502 xent->value = ipfw_export_table_value_legacy(pval); 2503 /* Apply some hacks */ 2504 if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) { 2505 xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr; 2506 xent->flags = IPFW_TCF_INET; 2507 } else 2508 memcpy(&xent->k, &tent->k, sizeof(xent->k)); 2509 2510 return (0); 2511 } 2512 2513 /* 2514 * Helper function to export table algo data 2515 * to tentry format before calling user function. 2516 * 2517 * Returns 0 on success. 2518 */ 2519 static int 2520 prepare_table_tentry(void *e, void *arg) 2521 { 2522 struct dump_args *da; 2523 struct table_config *tc; 2524 struct table_algo *ta; 2525 int error; 2526 2527 da = (struct dump_args *)arg; 2528 2529 tc = da->tc; 2530 ta = tc->ta; 2531 2532 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2533 if (error != 0) 2534 return (error); 2535 2536 da->f(&da->tent, da->farg); 2537 2538 return (0); 2539 } 2540 2541 /* 2542 * Allow external consumers to read table entries in standard format. 2543 */ 2544 int 2545 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx, 2546 ta_foreach_f *f, void *arg) 2547 { 2548 struct namedobj_instance *ni; 2549 struct table_config *tc; 2550 struct table_algo *ta; 2551 struct dump_args da; 2552 2553 ni = CHAIN_TO_NI(ch); 2554 2555 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 2556 if (tc == NULL) 2557 return (ESRCH); 2558 2559 ta = tc->ta; 2560 2561 memset(&da, 0, sizeof(da)); 2562 da.ch = ch; 2563 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2564 da.tc = tc; 2565 da.f = f; 2566 da.farg = arg; 2567 2568 ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da); 2569 2570 return (0); 2571 } 2572 2573 /* 2574 * Table algorithms 2575 */ 2576 2577 /* 2578 * Finds algorithm by index, table type or supplied name. 2579 * 2580 * Returns pointer to algo or NULL. 2581 */ 2582 static struct table_algo * 2583 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name) 2584 { 2585 int i, l; 2586 struct table_algo *ta; 2587 2588 if (ti->type > IPFW_TABLE_MAXTYPE) 2589 return (NULL); 2590 2591 /* Search by index */ 2592 if (ti->atype != 0) { 2593 if (ti->atype > tcfg->algo_count) 2594 return (NULL); 2595 return (tcfg->algo[ti->atype]); 2596 } 2597 2598 if (name == NULL) { 2599 /* Return default algorithm for given type if set */ 2600 return (tcfg->def_algo[ti->type]); 2601 } 2602 2603 /* Search by name */ 2604 /* TODO: better search */ 2605 for (i = 1; i <= tcfg->algo_count; i++) { 2606 ta = tcfg->algo[i]; 2607 2608 /* 2609 * One can supply additional algorithm 2610 * parameters so we compare only the first word 2611 * of supplied name: 2612 * 'addr:chash hsize=32' 2613 * '^^^^^^^^^' 2614 * 2615 */ 2616 l = strlen(ta->name); 2617 if (strncmp(name, ta->name, l) != 0) 2618 continue; 2619 if (name[l] != '\0' && name[l] != ' ') 2620 continue; 2621 /* Check if we're requesting proper table type */ 2622 if (ti->type != 0 && ti->type != ta->type) 2623 return (NULL); 2624 return (ta); 2625 } 2626 2627 return (NULL); 2628 } 2629 2630 /* 2631 * Register new table algo @ta. 2632 * Stores algo id inside @idx. 2633 * 2634 * Returns 0 on success. 2635 */ 2636 int 2637 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size, 2638 int *idx) 2639 { 2640 struct tables_config *tcfg; 2641 struct table_algo *ta_new; 2642 size_t sz; 2643 2644 if (size > sizeof(struct table_algo)) 2645 return (EINVAL); 2646 2647 /* Check for the required on-stack size for add/del */ 2648 sz = roundup2(ta->ta_buf_size, sizeof(void *)); 2649 if (sz > TA_BUF_SZ) 2650 return (EINVAL); 2651 2652 KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE")); 2653 2654 /* Copy algorithm data to stable storage. */ 2655 ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO); 2656 memcpy(ta_new, ta, size); 2657 2658 tcfg = CHAIN_TO_TCFG(ch); 2659 2660 KASSERT(tcfg->algo_count < 255, ("Increase algo array size")); 2661 2662 tcfg->algo[++tcfg->algo_count] = ta_new; 2663 ta_new->idx = tcfg->algo_count; 2664 2665 /* Set algorithm as default one for given type */ 2666 if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 && 2667 tcfg->def_algo[ta_new->type] == NULL) 2668 tcfg->def_algo[ta_new->type] = ta_new; 2669 2670 *idx = ta_new->idx; 2671 2672 return (0); 2673 } 2674 2675 /* 2676 * Unregisters table algo using @idx as id. 2677 * XXX: It is NOT safe to call this function in any place 2678 * other than ipfw instance destroy handler. 2679 */ 2680 void 2681 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx) 2682 { 2683 struct tables_config *tcfg; 2684 struct table_algo *ta; 2685 2686 tcfg = CHAIN_TO_TCFG(ch); 2687 2688 KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d", 2689 idx, tcfg->algo_count)); 2690 2691 ta = tcfg->algo[idx]; 2692 KASSERT(ta != NULL, ("algo idx %d is NULL", idx)); 2693 2694 if (tcfg->def_algo[ta->type] == ta) 2695 tcfg->def_algo[ta->type] = NULL; 2696 2697 free(ta, M_IPFW); 2698 } 2699 2700 /* 2701 * Lists all table algorithms currently available. 2702 * Data layout (v0)(current): 2703 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 2704 * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ] 2705 * 2706 * Returns 0 on success 2707 */ 2708 static int 2709 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2710 struct sockopt_data *sd) 2711 { 2712 struct _ipfw_obj_lheader *olh; 2713 struct tables_config *tcfg; 2714 ipfw_ta_info *i; 2715 struct table_algo *ta; 2716 uint32_t count, n, size; 2717 2718 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 2719 if (olh == NULL) 2720 return (EINVAL); 2721 if (sd->valsize < olh->size) 2722 return (EINVAL); 2723 2724 IPFW_UH_RLOCK(ch); 2725 tcfg = CHAIN_TO_TCFG(ch); 2726 count = tcfg->algo_count; 2727 size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader); 2728 2729 /* Fill in header regadless of buffer size */ 2730 olh->count = count; 2731 olh->objsize = sizeof(ipfw_ta_info); 2732 2733 if (size > olh->size) { 2734 olh->size = size; 2735 IPFW_UH_RUNLOCK(ch); 2736 return (ENOMEM); 2737 } 2738 olh->size = size; 2739 2740 for (n = 1; n <= count; n++) { 2741 i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i)); 2742 KASSERT(i != NULL, ("previously checked buffer is not enough")); 2743 ta = tcfg->algo[n]; 2744 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2745 i->type = ta->type; 2746 i->refcnt = ta->refcnt; 2747 } 2748 2749 IPFW_UH_RUNLOCK(ch); 2750 2751 return (0); 2752 } 2753 2754 static int 2755 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2756 { 2757 /* Basic IPv4/IPv6 or u32 lookups */ 2758 *puidx = cmd->arg1; 2759 /* Assume ADDR by default */ 2760 *ptype = IPFW_TABLE_ADDR; 2761 int v; 2762 2763 if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) { 2764 /* 2765 * generic lookup. The key must be 2766 * in 32bit big-endian format. 2767 */ 2768 v = ((ipfw_insn_u32 *)cmd)->d[1]; 2769 switch (v) { 2770 case 0: 2771 case 1: 2772 /* IPv4 src/dst */ 2773 break; 2774 case 2: 2775 case 3: 2776 /* src/dst port */ 2777 *ptype = IPFW_TABLE_NUMBER; 2778 break; 2779 case 4: 2780 /* uid/gid */ 2781 *ptype = IPFW_TABLE_NUMBER; 2782 break; 2783 case 5: 2784 /* jid */ 2785 *ptype = IPFW_TABLE_NUMBER; 2786 break; 2787 case 6: 2788 /* dscp */ 2789 *ptype = IPFW_TABLE_NUMBER; 2790 break; 2791 } 2792 } 2793 2794 return (0); 2795 } 2796 2797 static int 2798 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2799 { 2800 ipfw_insn_if *cmdif; 2801 2802 /* Interface table, possibly */ 2803 cmdif = (ipfw_insn_if *)cmd; 2804 if (cmdif->name[0] != '\1') 2805 return (1); 2806 2807 *ptype = IPFW_TABLE_INTERFACE; 2808 *puidx = cmdif->p.kidx; 2809 2810 return (0); 2811 } 2812 2813 static int 2814 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2815 { 2816 2817 *puidx = cmd->arg1; 2818 *ptype = IPFW_TABLE_FLOW; 2819 2820 return (0); 2821 } 2822 2823 static void 2824 update_arg1(ipfw_insn *cmd, uint16_t idx) 2825 { 2826 2827 cmd->arg1 = idx; 2828 } 2829 2830 static void 2831 update_via(ipfw_insn *cmd, uint16_t idx) 2832 { 2833 ipfw_insn_if *cmdif; 2834 2835 cmdif = (ipfw_insn_if *)cmd; 2836 cmdif->p.kidx = idx; 2837 } 2838 2839 static int 2840 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti, 2841 struct named_object **pno) 2842 { 2843 struct table_config *tc; 2844 int error; 2845 2846 IPFW_UH_WLOCK_ASSERT(ch); 2847 2848 error = find_table_err(CHAIN_TO_NI(ch), ti, &tc); 2849 if (error != 0) 2850 return (error); 2851 2852 *pno = &tc->no; 2853 return (0); 2854 } 2855 2856 /* XXX: sets-sets! */ 2857 static struct named_object * 2858 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx) 2859 { 2860 struct namedobj_instance *ni; 2861 struct table_config *tc; 2862 2863 IPFW_UH_WLOCK_ASSERT(ch); 2864 ni = CHAIN_TO_NI(ch); 2865 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx); 2866 KASSERT(tc != NULL, ("Table with index %d not found", idx)); 2867 2868 return (&tc->no); 2869 } 2870 2871 static int 2872 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set, 2873 enum ipfw_sets_cmd cmd) 2874 { 2875 2876 switch (cmd) { 2877 case SWAP_ALL: 2878 case TEST_ALL: 2879 case MOVE_ALL: 2880 /* 2881 * Always return success, the real action and decision 2882 * should make table_manage_sets_all(). 2883 */ 2884 return (0); 2885 case TEST_ONE: 2886 case MOVE_ONE: 2887 /* 2888 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add 2889 * if set number will be used in hash function. Currently 2890 * we can just use generic handler that replaces set value. 2891 */ 2892 if (V_fw_tables_sets == 0) 2893 return (0); 2894 break; 2895 case COUNT_ONE: 2896 /* 2897 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is 2898 * disabled. This allow skip table's opcodes from additional 2899 * checks when specific rules moved to another set. 2900 */ 2901 if (V_fw_tables_sets == 0) 2902 return (EOPNOTSUPP); 2903 } 2904 /* Use generic sets handler when per-set sysctl is enabled. */ 2905 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME, 2906 set, new_set, cmd)); 2907 } 2908 2909 /* 2910 * We register several opcode rewriters for lookup tables. 2911 * All tables opcodes have the same ETLV type, but different subtype. 2912 * To avoid invoking sets handler several times for XXX_ALL commands, 2913 * we use separate manage_sets handler. O_RECV has the lowest value, 2914 * so it should be called first. 2915 */ 2916 static int 2917 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set, 2918 enum ipfw_sets_cmd cmd) 2919 { 2920 2921 switch (cmd) { 2922 case SWAP_ALL: 2923 case TEST_ALL: 2924 /* 2925 * Return success for TEST_ALL, since nothing prevents 2926 * move rules from one set to another. All tables are 2927 * accessible from all sets when per-set tables sysctl 2928 * is disabled. 2929 */ 2930 case MOVE_ALL: 2931 if (V_fw_tables_sets == 0) 2932 return (0); 2933 break; 2934 default: 2935 return (table_manage_sets(ch, set, new_set, cmd)); 2936 } 2937 /* Use generic sets handler when per-set sysctl is enabled. */ 2938 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME, 2939 set, new_set, cmd)); 2940 } 2941 2942 static struct opcode_obj_rewrite opcodes[] = { 2943 { 2944 .opcode = O_IP_SRC_LOOKUP, 2945 .etlv = IPFW_TLV_TBL_NAME, 2946 .classifier = classify_srcdst, 2947 .update = update_arg1, 2948 .find_byname = table_findbyname, 2949 .find_bykidx = table_findbykidx, 2950 .create_object = create_table_compat, 2951 .manage_sets = table_manage_sets, 2952 }, 2953 { 2954 .opcode = O_IP_DST_LOOKUP, 2955 .etlv = IPFW_TLV_TBL_NAME, 2956 .classifier = classify_srcdst, 2957 .update = update_arg1, 2958 .find_byname = table_findbyname, 2959 .find_bykidx = table_findbykidx, 2960 .create_object = create_table_compat, 2961 .manage_sets = table_manage_sets, 2962 }, 2963 { 2964 .opcode = O_IP_FLOW_LOOKUP, 2965 .etlv = IPFW_TLV_TBL_NAME, 2966 .classifier = classify_flow, 2967 .update = update_arg1, 2968 .find_byname = table_findbyname, 2969 .find_bykidx = table_findbykidx, 2970 .create_object = create_table_compat, 2971 .manage_sets = table_manage_sets, 2972 }, 2973 { 2974 .opcode = O_XMIT, 2975 .etlv = IPFW_TLV_TBL_NAME, 2976 .classifier = classify_via, 2977 .update = update_via, 2978 .find_byname = table_findbyname, 2979 .find_bykidx = table_findbykidx, 2980 .create_object = create_table_compat, 2981 .manage_sets = table_manage_sets, 2982 }, 2983 { 2984 .opcode = O_RECV, 2985 .etlv = IPFW_TLV_TBL_NAME, 2986 .classifier = classify_via, 2987 .update = update_via, 2988 .find_byname = table_findbyname, 2989 .find_bykidx = table_findbykidx, 2990 .create_object = create_table_compat, 2991 .manage_sets = table_manage_sets_all, 2992 }, 2993 { 2994 .opcode = O_VIA, 2995 .etlv = IPFW_TLV_TBL_NAME, 2996 .classifier = classify_via, 2997 .update = update_via, 2998 .find_byname = table_findbyname, 2999 .find_bykidx = table_findbykidx, 3000 .create_object = create_table_compat, 3001 .manage_sets = table_manage_sets, 3002 }, 3003 }; 3004 3005 static int 3006 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no, 3007 void *arg __unused) 3008 { 3009 3010 /* Check that there aren't any tables in not default set */ 3011 if (no->set != 0) 3012 return (EBUSY); 3013 return (0); 3014 } 3015 3016 /* 3017 * Switch between "set 0" and "rule's set" table binding, 3018 * Check all ruleset bindings and permits changing 3019 * IFF each binding has both rule AND table in default set (set 0). 3020 * 3021 * Returns 0 on success. 3022 */ 3023 int 3024 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets) 3025 { 3026 struct opcode_obj_rewrite *rw; 3027 struct namedobj_instance *ni; 3028 struct named_object *no; 3029 struct ip_fw *rule; 3030 ipfw_insn *cmd; 3031 int cmdlen, i, l; 3032 uint16_t kidx; 3033 uint8_t subtype; 3034 3035 IPFW_UH_WLOCK(ch); 3036 3037 if (V_fw_tables_sets == sets) { 3038 IPFW_UH_WUNLOCK(ch); 3039 return (0); 3040 } 3041 ni = CHAIN_TO_NI(ch); 3042 if (sets == 0) { 3043 /* 3044 * Prevent disabling sets support if we have some tables 3045 * in not default sets. 3046 */ 3047 if (ipfw_objhash_foreach_type(ni, test_sets_cb, 3048 NULL, IPFW_TLV_TBL_NAME) != 0) { 3049 IPFW_UH_WUNLOCK(ch); 3050 return (EBUSY); 3051 } 3052 } 3053 /* 3054 * Scan all rules and examine tables opcodes. 3055 */ 3056 for (i = 0; i < ch->n_rules; i++) { 3057 rule = ch->map[i]; 3058 3059 l = rule->cmd_len; 3060 cmd = rule->cmd; 3061 cmdlen = 0; 3062 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3063 cmdlen = F_LEN(cmd); 3064 /* Check only tables opcodes */ 3065 for (kidx = 0, rw = opcodes; 3066 rw < opcodes + nitems(opcodes); rw++) { 3067 if (rw->opcode != cmd->opcode) 3068 continue; 3069 if (rw->classifier(cmd, &kidx, &subtype) == 0) 3070 break; 3071 } 3072 if (kidx == 0) 3073 continue; 3074 no = ipfw_objhash_lookup_kidx(ni, kidx); 3075 /* Check if both table object and rule has the set 0 */ 3076 if (no->set != 0 || rule->set != 0) { 3077 IPFW_UH_WUNLOCK(ch); 3078 return (EBUSY); 3079 } 3080 3081 } 3082 } 3083 V_fw_tables_sets = sets; 3084 IPFW_UH_WUNLOCK(ch); 3085 return (0); 3086 } 3087 3088 /* 3089 * Checks table name for validity. 3090 * Enforce basic length checks, the rest 3091 * should be done in userland. 3092 * 3093 * Returns 0 if name is considered valid. 3094 */ 3095 static int 3096 check_table_name(const char *name) 3097 { 3098 3099 /* 3100 * TODO: do some more complicated checks 3101 */ 3102 return (ipfw_check_object_name_generic(name)); 3103 } 3104 3105 /* 3106 * Finds table config based on either legacy index 3107 * or name in ntlv. 3108 * Note @ti structure contains unchecked data from userland. 3109 * 3110 * Returns 0 in success and fills in @tc with found config 3111 */ 3112 static int 3113 find_table_err(struct namedobj_instance *ni, struct tid_info *ti, 3114 struct table_config **tc) 3115 { 3116 char *name, bname[16]; 3117 struct named_object *no; 3118 ipfw_obj_ntlv *ntlv; 3119 uint32_t set; 3120 3121 if (ti->tlvs != NULL) { 3122 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, 3123 IPFW_TLV_TBL_NAME); 3124 if (ntlv == NULL) 3125 return (EINVAL); 3126 name = ntlv->name; 3127 3128 /* 3129 * Use set provided by @ti instead of @ntlv one. 3130 * This is needed due to different sets behavior 3131 * controlled by V_fw_tables_sets. 3132 */ 3133 set = (V_fw_tables_sets != 0) ? ti->set : 0; 3134 } else { 3135 snprintf(bname, sizeof(bname), "%d", ti->uidx); 3136 name = bname; 3137 set = 0; 3138 } 3139 3140 no = ipfw_objhash_lookup_name(ni, set, name); 3141 *tc = (struct table_config *)no; 3142 3143 return (0); 3144 } 3145 3146 /* 3147 * Finds table config based on either legacy index 3148 * or name in ntlv. 3149 * Note @ti structure contains unchecked data from userland. 3150 * 3151 * Returns pointer to table_config or NULL. 3152 */ 3153 static struct table_config * 3154 find_table(struct namedobj_instance *ni, struct tid_info *ti) 3155 { 3156 struct table_config *tc; 3157 3158 if (find_table_err(ni, ti, &tc) != 0) 3159 return (NULL); 3160 3161 return (tc); 3162 } 3163 3164 /* 3165 * Allocate new table config structure using 3166 * specified @algo and @aname. 3167 * 3168 * Returns pointer to config or NULL. 3169 */ 3170 static struct table_config * 3171 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti, 3172 struct table_algo *ta, char *aname, uint8_t tflags) 3173 { 3174 char *name, bname[16]; 3175 struct table_config *tc; 3176 int error; 3177 ipfw_obj_ntlv *ntlv; 3178 uint32_t set; 3179 3180 if (ti->tlvs != NULL) { 3181 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, 3182 IPFW_TLV_TBL_NAME); 3183 if (ntlv == NULL) 3184 return (NULL); 3185 name = ntlv->name; 3186 set = ntlv->set; 3187 } else { 3188 /* Compat part: convert number to string representation */ 3189 snprintf(bname, sizeof(bname), "%d", ti->uidx); 3190 name = bname; 3191 set = 0; 3192 } 3193 3194 tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO); 3195 tc->no.name = tc->tablename; 3196 tc->no.subtype = ta->type; 3197 tc->no.set = set; 3198 tc->tflags = tflags; 3199 tc->ta = ta; 3200 strlcpy(tc->tablename, name, sizeof(tc->tablename)); 3201 /* Set "shared" value type by default */ 3202 tc->vshared = 1; 3203 3204 /* Preallocate data structures for new tables */ 3205 error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags); 3206 if (error != 0) { 3207 free(tc, M_IPFW); 3208 return (NULL); 3209 } 3210 3211 return (tc); 3212 } 3213 3214 /* 3215 * Destroys table state and config. 3216 */ 3217 static void 3218 free_table_config(struct namedobj_instance *ni, struct table_config *tc) 3219 { 3220 3221 KASSERT(tc->linked == 0, ("free() on linked config")); 3222 /* UH lock MUST NOT be held */ 3223 3224 /* 3225 * We're using ta without any locking/referencing. 3226 * TODO: fix this if we're going to use unloadable algos. 3227 */ 3228 tc->ta->destroy(tc->astate, &tc->ti_copy); 3229 free(tc, M_IPFW); 3230 } 3231 3232 /* 3233 * Links @tc to @chain table named instance. 3234 * Sets appropriate type/states in @chain table info. 3235 */ 3236 static void 3237 link_table(struct ip_fw_chain *ch, struct table_config *tc) 3238 { 3239 struct namedobj_instance *ni; 3240 struct table_info *ti; 3241 uint16_t kidx; 3242 3243 IPFW_UH_WLOCK_ASSERT(ch); 3244 IPFW_WLOCK_ASSERT(ch); 3245 3246 ni = CHAIN_TO_NI(ch); 3247 kidx = tc->no.kidx; 3248 3249 ipfw_objhash_add(ni, &tc->no); 3250 3251 ti = KIDX_TO_TI(ch, kidx); 3252 *ti = tc->ti_copy; 3253 3254 /* Notify algo on real @ti address */ 3255 if (tc->ta->change_ti != NULL) 3256 tc->ta->change_ti(tc->astate, ti); 3257 3258 tc->linked = 1; 3259 tc->ta->refcnt++; 3260 } 3261 3262 /* 3263 * Unlinks @tc from @chain table named instance. 3264 * Zeroes states in @chain and stores them in @tc. 3265 */ 3266 static void 3267 unlink_table(struct ip_fw_chain *ch, struct table_config *tc) 3268 { 3269 struct namedobj_instance *ni; 3270 struct table_info *ti; 3271 uint16_t kidx; 3272 3273 IPFW_UH_WLOCK_ASSERT(ch); 3274 IPFW_WLOCK_ASSERT(ch); 3275 3276 ni = CHAIN_TO_NI(ch); 3277 kidx = tc->no.kidx; 3278 3279 /* Clear state. @ti copy is already saved inside @tc */ 3280 ipfw_objhash_del(ni, &tc->no); 3281 ti = KIDX_TO_TI(ch, kidx); 3282 memset(ti, 0, sizeof(struct table_info)); 3283 tc->linked = 0; 3284 tc->ta->refcnt--; 3285 3286 /* Notify algo on real @ti address */ 3287 if (tc->ta->change_ti != NULL) 3288 tc->ta->change_ti(tc->astate, NULL); 3289 } 3290 3291 static struct ipfw_sopt_handler scodes[] = { 3292 { IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table }, 3293 { IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 }, 3294 { IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 }, 3295 { IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table }, 3296 { IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table }, 3297 { IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables }, 3298 { IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 }, 3299 { IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 }, 3300 { IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 }, 3301 { IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 }, 3302 { IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 }, 3303 { IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 }, 3304 { IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry }, 3305 { IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table }, 3306 { IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo }, 3307 { IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size }, 3308 }; 3309 3310 static int 3311 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no, 3312 void *arg) 3313 { 3314 3315 unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no); 3316 if (ipfw_objhash_free_idx(ni, no->kidx) != 0) 3317 printf("Error unlinking kidx %d from table %s\n", 3318 no->kidx, no->name); 3319 free_table_config(ni, (struct table_config *)no); 3320 return (0); 3321 } 3322 3323 /* 3324 * Shuts tables module down. 3325 */ 3326 void 3327 ipfw_destroy_tables(struct ip_fw_chain *ch, int last) 3328 { 3329 3330 IPFW_DEL_SOPT_HANDLER(last, scodes); 3331 IPFW_DEL_OBJ_REWRITER(last, opcodes); 3332 3333 /* Remove all tables from working set */ 3334 IPFW_UH_WLOCK(ch); 3335 IPFW_WLOCK(ch); 3336 ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch); 3337 IPFW_WUNLOCK(ch); 3338 IPFW_UH_WUNLOCK(ch); 3339 3340 /* Free pointers itself */ 3341 free(ch->tablestate, M_IPFW); 3342 3343 ipfw_table_value_destroy(ch, last); 3344 ipfw_table_algo_destroy(ch); 3345 3346 ipfw_objhash_destroy(CHAIN_TO_NI(ch)); 3347 free(CHAIN_TO_TCFG(ch), M_IPFW); 3348 } 3349 3350 /* 3351 * Starts tables module. 3352 */ 3353 int 3354 ipfw_init_tables(struct ip_fw_chain *ch, int first) 3355 { 3356 struct tables_config *tcfg; 3357 3358 /* Allocate pointers */ 3359 ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info), 3360 M_IPFW, M_WAITOK | M_ZERO); 3361 3362 tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO); 3363 tcfg->namehash = ipfw_objhash_create(V_fw_tables_max); 3364 ch->tblcfg = tcfg; 3365 3366 ipfw_table_value_init(ch, first); 3367 ipfw_table_algo_init(ch); 3368 3369 IPFW_ADD_OBJ_REWRITER(first, opcodes); 3370 IPFW_ADD_SOPT_HANDLER(first, scodes); 3371 return (0); 3372 } 3373 3374 3375 3376