1 /*- 2 * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko. 3 * Copyright (c) 2014 Yandex LLC 4 * Copyright (c) 2014 Alexander V. Chernikov 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * Lookup table support for ipfw. 33 * 34 * This file contains handlers for all generic tables' operations: 35 * add/del/flush entries, list/dump tables etc.. 36 * 37 * Table data modification is protected by both UH and runtime lock 38 * while reading configuration/data is protected by UH lock. 39 * 40 * Lookup algorithms for all table types are located in ip_fw_table_algo.c 41 */ 42 43 #include "opt_ipfw.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/rwlock.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/queue.h> 55 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */ 56 57 #include <netinet/in.h> 58 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */ 59 #include <netinet/ip_fw.h> 60 61 #include <netpfil/ipfw/ip_fw_private.h> 62 #include <netpfil/ipfw/ip_fw_table.h> 63 64 /* 65 * Table has the following `type` concepts: 66 * 67 * `no.type` represents lookup key type (addr, ifp, uid, etc..) 68 * vmask represents bitmask of table values which are present at the moment. 69 * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old 70 * single-value-for-all approach. 71 */ 72 struct table_config { 73 struct named_object no; 74 uint8_t tflags; /* type flags */ 75 uint8_t locked; /* 1 if locked from changes */ 76 uint8_t linked; /* 1 if already linked */ 77 uint8_t ochanged; /* used by set swapping */ 78 uint8_t vshared; /* 1 if using shared value array */ 79 uint8_t spare[3]; 80 uint32_t count; /* Number of records */ 81 uint32_t limit; /* Max number of records */ 82 uint32_t vmask; /* bitmask with supported values */ 83 uint32_t ocount; /* used by set swapping */ 84 uint64_t gencnt; /* generation count */ 85 char tablename[64]; /* table name */ 86 struct table_algo *ta; /* Callbacks for given algo */ 87 void *astate; /* algorithm state */ 88 struct table_info ti_copy; /* data to put to table_info */ 89 struct namedobj_instance *vi; 90 }; 91 92 static struct table_config *find_table(struct namedobj_instance *ni, 93 struct tid_info *ti); 94 static struct table_config *alloc_table_config(struct ip_fw_chain *ch, 95 struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags); 96 static void free_table_config(struct namedobj_instance *ni, 97 struct table_config *tc); 98 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 99 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref); 100 static void link_table(struct ip_fw_chain *ch, struct table_config *tc); 101 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc); 102 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 103 struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc); 104 #define OP_ADD 1 105 #define OP_DEL 0 106 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 107 struct sockopt_data *sd); 108 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 109 ipfw_xtable_info *i); 110 static int dump_table_tentry(void *e, void *arg); 111 static int dump_table_xentry(void *e, void *arg); 112 113 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 114 struct tid_info *b); 115 116 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 117 struct table_config *tc, struct table_info *ti, uint32_t count); 118 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti); 119 120 static struct table_algo *find_table_algo(struct tables_config *tableconf, 121 struct tid_info *ti, char *name); 122 123 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti); 124 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti); 125 static int classify_table_opcode(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype); 126 127 #define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash) 128 #define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k])) 129 130 #define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */ 131 132 void 133 rollback_toperation_state(struct ip_fw_chain *ch, void *object) 134 { 135 struct tables_config *tcfg; 136 struct op_state *os; 137 138 tcfg = CHAIN_TO_TCFG(ch); 139 TAILQ_FOREACH(os, &tcfg->state_list, next) 140 os->func(object, os); 141 } 142 143 void 144 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 145 { 146 struct tables_config *tcfg; 147 148 tcfg = CHAIN_TO_TCFG(ch); 149 TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next); 150 } 151 152 void 153 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 154 { 155 struct tables_config *tcfg; 156 157 tcfg = CHAIN_TO_TCFG(ch); 158 TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next); 159 } 160 161 void 162 tc_ref(struct table_config *tc) 163 { 164 165 tc->no.refcnt++; 166 } 167 168 void 169 tc_unref(struct table_config *tc) 170 { 171 172 tc->no.refcnt--; 173 } 174 175 static struct table_value * 176 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx) 177 { 178 struct table_value *pval; 179 180 pval = (struct table_value *)ch->valuestate; 181 182 return (&pval[kidx]); 183 } 184 185 186 /* 187 * Checks if we're able to insert/update entry @tei into table 188 * w.r.t @tc limits. 189 * May alter @tei to indicate insertion error / insert 190 * options. 191 * 192 * Returns 0 if operation can be performed/ 193 */ 194 static int 195 check_table_limit(struct table_config *tc, struct tentry_info *tei) 196 { 197 198 if (tc->limit == 0 || tc->count < tc->limit) 199 return (0); 200 201 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) { 202 /* Notify userland on error cause */ 203 tei->flags |= TEI_FLAGS_LIMIT; 204 return (EFBIG); 205 } 206 207 /* 208 * We have UPDATE flag set. 209 * Permit updating record (if found), 210 * but restrict adding new one since we've 211 * already hit the limit. 212 */ 213 tei->flags |= TEI_FLAGS_DONTADD; 214 215 return (0); 216 } 217 218 /* 219 * Convert algorithm callback return code into 220 * one of pre-defined states known by userland. 221 */ 222 static void 223 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num) 224 { 225 int flag; 226 227 flag = 0; 228 229 switch (error) { 230 case 0: 231 if (op == OP_ADD && num != 0) 232 flag = TEI_FLAGS_ADDED; 233 if (op == OP_DEL) 234 flag = TEI_FLAGS_DELETED; 235 break; 236 case ENOENT: 237 flag = TEI_FLAGS_NOTFOUND; 238 break; 239 case EEXIST: 240 flag = TEI_FLAGS_EXISTS; 241 break; 242 default: 243 flag = TEI_FLAGS_ERROR; 244 } 245 246 tei->flags |= flag; 247 } 248 249 /* 250 * Creates and references table with default parameters. 251 * Saves table config, algo and allocated kidx info @ptc, @pta and 252 * @pkidx if non-zero. 253 * Used for table auto-creation to support old binaries. 254 * 255 * Returns 0 on success. 256 */ 257 static int 258 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti, 259 uint16_t *pkidx) 260 { 261 ipfw_xtable_info xi; 262 int error; 263 264 memset(&xi, 0, sizeof(xi)); 265 /* Set default value mask for legacy clients */ 266 xi.vmask = IPFW_VTYPE_LEGACY; 267 268 error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1); 269 if (error != 0) 270 return (error); 271 272 return (0); 273 } 274 275 /* 276 * Find and reference existing table optionally 277 * creating new one. 278 * 279 * Saves found table config into @ptc. 280 * Note function may drop/acquire UH_WLOCK. 281 * Returns 0 if table was found/created and referenced 282 * or non-zero return code. 283 */ 284 static int 285 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 286 struct tentry_info *tei, uint32_t count, int op, 287 struct table_config **ptc) 288 { 289 struct namedobj_instance *ni; 290 struct table_config *tc; 291 uint16_t kidx; 292 int error; 293 294 IPFW_UH_WLOCK_ASSERT(ch); 295 296 ni = CHAIN_TO_NI(ch); 297 tc = NULL; 298 if ((tc = find_table(ni, ti)) != NULL) { 299 /* check table type */ 300 if (tc->no.type != ti->type) 301 return (EINVAL); 302 303 if (tc->locked != 0) 304 return (EACCES); 305 306 /* Try to exit early on limit hit */ 307 if (op == OP_ADD && count == 1 && 308 check_table_limit(tc, tei) != 0) 309 return (EFBIG); 310 311 /* Reference and return */ 312 tc->no.refcnt++; 313 *ptc = tc; 314 return (0); 315 } 316 317 if (op == OP_DEL) 318 return (ESRCH); 319 320 /* Compability mode: create new table for old clients */ 321 if ((tei->flags & TEI_FLAGS_COMPAT) == 0) 322 return (ESRCH); 323 324 IPFW_UH_WUNLOCK(ch); 325 error = create_table_compat(ch, ti, &kidx); 326 IPFW_UH_WLOCK(ch); 327 328 if (error != 0) 329 return (error); 330 331 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 332 KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx)); 333 334 /* OK, now we've got referenced table. */ 335 *ptc = tc; 336 return (0); 337 } 338 339 /* 340 * Rolls back already @added to @tc entries using state array @ta_buf_m. 341 * Assume the following layout: 342 * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases 343 * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1]) 344 * for storing deleted state 345 */ 346 static void 347 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc, 348 struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m, 349 uint32_t count, uint32_t added) 350 { 351 struct table_algo *ta; 352 struct tentry_info *ptei; 353 caddr_t v, vv; 354 size_t ta_buf_sz; 355 int error, i; 356 uint32_t num; 357 358 IPFW_UH_WLOCK_ASSERT(ch); 359 360 ta = tc->ta; 361 ta_buf_sz = ta->ta_buf_size; 362 v = ta_buf_m; 363 vv = v + count * ta_buf_sz; 364 for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) { 365 ptei = &tei[i]; 366 if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) { 367 368 /* 369 * We have old value stored by previous 370 * call in @ptei->value. Do add once again 371 * to restore it. 372 */ 373 error = ta->add(tc->astate, tinfo, ptei, v, &num); 374 KASSERT(error == 0, ("rollback UPDATE fail")); 375 KASSERT(num == 0, ("rollback UPDATE fail2")); 376 continue; 377 } 378 379 error = ta->prepare_del(ch, ptei, vv); 380 KASSERT(error == 0, ("pre-rollback INSERT failed")); 381 error = ta->del(tc->astate, tinfo, ptei, vv, &num); 382 KASSERT(error == 0, ("rollback INSERT failed")); 383 tc->count -= num; 384 } 385 } 386 387 /* 388 * Prepares add/del state for all @count entries in @tei. 389 * Uses either stack buffer (@ta_buf) or allocates a new one. 390 * Stores pointer to allocated buffer back to @ta_buf. 391 * 392 * Returns 0 on success. 393 */ 394 static int 395 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 396 struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf) 397 { 398 caddr_t ta_buf_m, v; 399 size_t ta_buf_sz, sz; 400 struct tentry_info *ptei; 401 int error, i; 402 403 error = 0; 404 ta_buf_sz = ta->ta_buf_size; 405 if (count == 1) { 406 /* Sigle add/delete, use on-stack buffer */ 407 memset(*ta_buf, 0, TA_BUF_SZ); 408 ta_buf_m = *ta_buf; 409 } else { 410 411 /* 412 * Multiple adds/deletes, allocate larger buffer 413 * 414 * Note we need 2xcount buffer for add case: 415 * we have hold both ADD state 416 * and DELETE state (this may be needed 417 * if we need to rollback all changes) 418 */ 419 sz = count * ta_buf_sz; 420 ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP, 421 M_WAITOK | M_ZERO); 422 } 423 424 v = ta_buf_m; 425 for (i = 0; i < count; i++, v += ta_buf_sz) { 426 ptei = &tei[i]; 427 error = (op == OP_ADD) ? 428 ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v); 429 430 /* 431 * Some syntax error (incorrect mask, or address, or 432 * anything). Return error regardless of atomicity 433 * settings. 434 */ 435 if (error != 0) 436 break; 437 } 438 439 *ta_buf = ta_buf_m; 440 return (error); 441 } 442 443 /* 444 * Flushes allocated state for each @count entries in @tei. 445 * Frees @ta_buf_m if differs from stack buffer @ta_buf. 446 */ 447 static void 448 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 449 struct tentry_info *tei, uint32_t count, int rollback, 450 caddr_t ta_buf_m, caddr_t ta_buf) 451 { 452 caddr_t v; 453 struct tentry_info *ptei; 454 size_t ta_buf_sz; 455 int i; 456 457 ta_buf_sz = ta->ta_buf_size; 458 459 /* Run cleaning callback anyway */ 460 v = ta_buf_m; 461 for (i = 0; i < count; i++, v += ta_buf_sz) { 462 ptei = &tei[i]; 463 ta->flush_entry(ch, ptei, v); 464 if (ptei->ptv != NULL) { 465 free(ptei->ptv, M_IPFW); 466 ptei->ptv = NULL; 467 } 468 } 469 470 /* Clean up "deleted" state in case of rollback */ 471 if (rollback != 0) { 472 v = ta_buf_m + count * ta_buf_sz; 473 for (i = 0; i < count; i++, v += ta_buf_sz) 474 ta->flush_entry(ch, &tei[i], v); 475 } 476 477 if (ta_buf_m != ta_buf) 478 free(ta_buf_m, M_TEMP); 479 } 480 481 482 static void 483 rollback_add_entry(void *object, struct op_state *_state) 484 { 485 struct ip_fw_chain *ch; 486 struct tableop_state *ts; 487 488 ts = (struct tableop_state *)_state; 489 490 if (ts->tc != object && ts->ch != object) 491 return; 492 493 ch = ts->ch; 494 495 IPFW_UH_WLOCK_ASSERT(ch); 496 497 /* Call specifid unlockers */ 498 rollback_table_values(ts); 499 500 /* Indicate we've called */ 501 ts->modified = 1; 502 } 503 504 /* 505 * Adds/updates one or more entries in table @ti. 506 * 507 * Function may drop/reacquire UH wlock multiple times due to 508 * items alloc, algorithm callbacks (check_space), value linkage 509 * (new values, value storage realloc), etc.. 510 * Other processes like other adds (which may involve storage resize), 511 * table swaps (which changes table data and may change algo type), 512 * table modify (which may change value mask) may be executed 513 * simultaneously so we need to deal with it. 514 * 515 * The following approach was implemented: 516 * we have per-chain linked list, protected with UH lock. 517 * add_table_entry prepares special on-stack structure wthich is passed 518 * to its descendants. Users add this structure to this list before unlock. 519 * After performing needed operations and acquiring UH lock back, each user 520 * checks if structure has changed. If true, it rolls local state back and 521 * returns without error to the caller. 522 * add_table_entry() on its own checks if structure has changed and restarts 523 * its operation from the beginning (goto restart). 524 * 525 * Functions which are modifying fields of interest (currently 526 * resize_shared_value_storage() and swap_tables() ) 527 * traverses given list while holding UH lock immediately before 528 * performing their operations calling function provided be list entry 529 * ( currently rollback_add_entry ) which performs rollback for all necessary 530 * state and sets appropriate values in structure indicating rollback 531 * has happened. 532 * 533 * Algo interaction: 534 * Function references @ti first to ensure table won't 535 * disappear or change its type. 536 * After that, prepare_add callback is called for each @tei entry. 537 * Next, we try to add each entry under UH+WHLOCK 538 * using add() callback. 539 * Finally, we free all state by calling flush_entry callback 540 * for each @tei. 541 * 542 * Returns 0 on success. 543 */ 544 int 545 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 546 struct tentry_info *tei, uint8_t flags, uint32_t count) 547 { 548 struct table_config *tc; 549 struct table_algo *ta; 550 uint16_t kidx; 551 int error, first_error, i, rollback; 552 uint32_t num, numadd; 553 struct tentry_info *ptei; 554 struct tableop_state ts; 555 char ta_buf[TA_BUF_SZ]; 556 caddr_t ta_buf_m, v; 557 558 memset(&ts, 0, sizeof(ts)); 559 ta = NULL; 560 IPFW_UH_WLOCK(ch); 561 562 /* 563 * Find and reference existing table. 564 */ 565 restart: 566 if (ts.modified != 0) { 567 IPFW_UH_WUNLOCK(ch); 568 flush_batch_buffer(ch, ta, tei, count, rollback, 569 ta_buf_m, ta_buf); 570 memset(&ts, 0, sizeof(ts)); 571 ta = NULL; 572 IPFW_UH_WLOCK(ch); 573 } 574 575 error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc); 576 if (error != 0) { 577 IPFW_UH_WUNLOCK(ch); 578 return (error); 579 } 580 ta = tc->ta; 581 582 /* Fill in tablestate */ 583 ts.ch = ch; 584 ts.opstate.func = rollback_add_entry; 585 ts.tc = tc; 586 ts.vshared = tc->vshared; 587 ts.vmask = tc->vmask; 588 ts.ta = ta; 589 ts.tei = tei; 590 ts.count = count; 591 rollback = 0; 592 add_toperation_state(ch, &ts); 593 IPFW_UH_WUNLOCK(ch); 594 595 /* Allocate memory and prepare record(s) */ 596 /* Pass stack buffer by default */ 597 ta_buf_m = ta_buf; 598 error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m); 599 if (error != 0) 600 goto cleanup; 601 602 IPFW_UH_WLOCK(ch); 603 /* Drop reference we've used in first search */ 604 tc->no.refcnt--; 605 606 /* 607 * Check if table swap has happened. 608 * (so table algo might be changed). 609 * Restart operation to achieve consistent behavior. 610 */ 611 del_toperation_state(ch, &ts); 612 if (ts.modified != 0) 613 goto restart; 614 615 /* 616 * Link all values values to shared/per-table value array. 617 * 618 * May release/reacquire UH_WLOCK. 619 */ 620 error = ipfw_link_table_values(ch, &ts); 621 if (error != 0) 622 goto cleanup; 623 if (ts.modified != 0) 624 goto restart; 625 626 /* 627 * Ensure we are able to add all entries without additional 628 * memory allocations. May release/reacquire UH_WLOCK. 629 */ 630 kidx = tc->no.kidx; 631 error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count); 632 if (error != 0) 633 goto cleanup; 634 if (ts.modified != 0) 635 goto restart; 636 637 /* We've got valid table in @tc. Let's try to add data */ 638 kidx = tc->no.kidx; 639 ta = tc->ta; 640 numadd = 0; 641 first_error = 0; 642 643 IPFW_WLOCK(ch); 644 645 v = ta_buf_m; 646 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 647 ptei = &tei[i]; 648 num = 0; 649 /* check limit before adding */ 650 if ((error = check_table_limit(tc, ptei)) == 0) { 651 error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx), 652 ptei, v, &num); 653 /* Set status flag to inform userland */ 654 store_tei_result(ptei, OP_ADD, error, num); 655 } 656 if (error == 0) { 657 /* Update number of records to ease limit checking */ 658 tc->count += num; 659 numadd += num; 660 continue; 661 } 662 663 if (first_error == 0) 664 first_error = error; 665 666 /* 667 * Some error have happened. Check our atomicity 668 * settings: continue if atomicity is not required, 669 * rollback changes otherwise. 670 */ 671 if ((flags & IPFW_CTF_ATOMIC) == 0) 672 continue; 673 674 rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx), 675 tei, ta_buf_m, count, i); 676 677 rollback = 1; 678 break; 679 } 680 681 IPFW_WUNLOCK(ch); 682 683 ipfw_garbage_table_values(ch, tc, tei, count, rollback); 684 685 /* Permit post-add algorithm grow/rehash. */ 686 if (numadd != 0) 687 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 688 689 /* Return first error to user, if any */ 690 error = first_error; 691 692 cleanup: 693 IPFW_UH_WUNLOCK(ch); 694 695 flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf); 696 697 return (error); 698 } 699 700 /* 701 * Deletes one or more entries in table @ti. 702 * 703 * Returns 0 on success. 704 */ 705 int 706 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 707 struct tentry_info *tei, uint8_t flags, uint32_t count) 708 { 709 struct table_config *tc; 710 struct table_algo *ta; 711 struct tentry_info *ptei; 712 uint16_t kidx; 713 int error, first_error, i; 714 uint32_t num, numdel; 715 char ta_buf[TA_BUF_SZ]; 716 caddr_t ta_buf_m, v; 717 718 /* 719 * Find and reference existing table. 720 */ 721 IPFW_UH_WLOCK(ch); 722 error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc); 723 if (error != 0) { 724 IPFW_UH_WUNLOCK(ch); 725 return (error); 726 } 727 ta = tc->ta; 728 IPFW_UH_WUNLOCK(ch); 729 730 /* Allocate memory and prepare record(s) */ 731 /* Pass stack buffer by default */ 732 ta_buf_m = ta_buf; 733 error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m); 734 if (error != 0) 735 goto cleanup; 736 737 IPFW_UH_WLOCK(ch); 738 739 /* Drop reference we've used in first search */ 740 tc->no.refcnt--; 741 742 /* 743 * Check if table algo is still the same. 744 * (changed ta may be the result of table swap). 745 */ 746 if (ta != tc->ta) { 747 IPFW_UH_WUNLOCK(ch); 748 error = EINVAL; 749 goto cleanup; 750 } 751 752 kidx = tc->no.kidx; 753 numdel = 0; 754 first_error = 0; 755 756 IPFW_WLOCK(ch); 757 v = ta_buf_m; 758 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 759 ptei = &tei[i]; 760 num = 0; 761 error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v, 762 &num); 763 /* Save state for userland */ 764 store_tei_result(ptei, OP_DEL, error, num); 765 if (error != 0 && first_error == 0) 766 first_error = error; 767 tc->count -= num; 768 numdel += num; 769 } 770 IPFW_WUNLOCK(ch); 771 772 /* Unlink non-used values */ 773 ipfw_garbage_table_values(ch, tc, tei, count, 0); 774 775 if (numdel != 0) { 776 /* Run post-del hook to permit shrinking */ 777 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 778 } 779 780 IPFW_UH_WUNLOCK(ch); 781 782 /* Return first error to user, if any */ 783 error = first_error; 784 785 cleanup: 786 flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf); 787 788 return (error); 789 } 790 791 /* 792 * Ensure that table @tc has enough space to add @count entries without 793 * need for reallocation. 794 * 795 * Callbacks order: 796 * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize. 797 * 798 * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags. 799 * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage 800 * 3) modify (UH_WLOCK + WLOCK) - switch pointers 801 * 4) flush_modify (UH_WLOCK) - free state, if needed 802 * 803 * Returns 0 on success. 804 */ 805 static int 806 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 807 struct table_config *tc, struct table_info *ti, uint32_t count) 808 { 809 struct table_algo *ta; 810 uint64_t pflags; 811 char ta_buf[TA_BUF_SZ]; 812 int error; 813 814 IPFW_UH_WLOCK_ASSERT(ch); 815 816 error = 0; 817 ta = tc->ta; 818 if (ta->need_modify == NULL) 819 return (0); 820 821 /* Acquire reference not to loose @tc between locks/unlocks */ 822 tc->no.refcnt++; 823 824 /* 825 * TODO: think about avoiding race between large add/large delete 826 * operation on algorithm which implements shrinking along with 827 * growing. 828 */ 829 while (true) { 830 pflags = 0; 831 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 832 error = 0; 833 break; 834 } 835 836 /* We have to shrink/grow table */ 837 if (ts != NULL) 838 add_toperation_state(ch, ts); 839 IPFW_UH_WUNLOCK(ch); 840 841 memset(&ta_buf, 0, sizeof(ta_buf)); 842 error = ta->prepare_mod(ta_buf, &pflags); 843 844 IPFW_UH_WLOCK(ch); 845 if (ts != NULL) 846 del_toperation_state(ch, ts); 847 848 if (error != 0) 849 break; 850 851 if (ts != NULL && ts->modified != 0) { 852 853 /* 854 * Swap operation has happened 855 * so we're currently operating on other 856 * table data. Stop doing this. 857 */ 858 ta->flush_mod(ta_buf); 859 break; 860 } 861 862 /* Check if we still need to alter table */ 863 ti = KIDX_TO_TI(ch, tc->no.kidx); 864 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 865 IPFW_UH_WUNLOCK(ch); 866 867 /* 868 * Other thread has already performed resize. 869 * Flush our state and return. 870 */ 871 ta->flush_mod(ta_buf); 872 break; 873 } 874 875 error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags); 876 if (error == 0) { 877 /* Do actual modification */ 878 IPFW_WLOCK(ch); 879 ta->modify(tc->astate, ti, ta_buf, pflags); 880 IPFW_WUNLOCK(ch); 881 } 882 883 /* Anyway, flush data and retry */ 884 ta->flush_mod(ta_buf); 885 } 886 887 tc->no.refcnt--; 888 return (error); 889 } 890 891 /* 892 * Adds or deletes record in table. 893 * Data layout (v0): 894 * Request: [ ip_fw3_opheader ipfw_table_xentry ] 895 * 896 * Returns 0 on success 897 */ 898 static int 899 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 900 struct sockopt_data *sd) 901 { 902 ipfw_table_xentry *xent; 903 struct tentry_info tei; 904 struct tid_info ti; 905 struct table_value v; 906 int error, hdrlen, read; 907 908 hdrlen = offsetof(ipfw_table_xentry, k); 909 910 /* Check minimum header size */ 911 if (sd->valsize < (sizeof(*op3) + hdrlen)) 912 return (EINVAL); 913 914 read = sizeof(ip_fw3_opheader); 915 916 /* Check if xentry len field is valid */ 917 xent = (ipfw_table_xentry *)(op3 + 1); 918 if (xent->len < hdrlen || xent->len + read > sd->valsize) 919 return (EINVAL); 920 921 memset(&tei, 0, sizeof(tei)); 922 tei.paddr = &xent->k; 923 tei.masklen = xent->masklen; 924 ipfw_import_table_value_legacy(xent->value, &v); 925 tei.pvalue = &v; 926 /* Old requests compability */ 927 tei.flags = TEI_FLAGS_COMPAT; 928 if (xent->type == IPFW_TABLE_ADDR) { 929 if (xent->len - hdrlen == sizeof(in_addr_t)) 930 tei.subtype = AF_INET; 931 else 932 tei.subtype = AF_INET6; 933 } 934 935 memset(&ti, 0, sizeof(ti)); 936 ti.uidx = xent->tbl; 937 ti.type = xent->type; 938 939 error = (op3->opcode == IP_FW_TABLE_XADD) ? 940 add_table_entry(ch, &ti, &tei, 0, 1) : 941 del_table_entry(ch, &ti, &tei, 0, 1); 942 943 return (error); 944 } 945 946 /* 947 * Adds or deletes record in table. 948 * Data layout (v1)(current): 949 * Request: [ ipfw_obj_header 950 * ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ] 951 * ] 952 * 953 * Returns 0 on success 954 */ 955 static int 956 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 957 struct sockopt_data *sd) 958 { 959 ipfw_obj_tentry *tent, *ptent; 960 ipfw_obj_ctlv *ctlv; 961 ipfw_obj_header *oh; 962 struct tentry_info *ptei, tei, *tei_buf; 963 struct tid_info ti; 964 int error, i, kidx, read; 965 966 /* Check minimum header size */ 967 if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv))) 968 return (EINVAL); 969 970 /* Check if passed data is too long */ 971 if (sd->valsize != sd->kavail) 972 return (EINVAL); 973 974 oh = (ipfw_obj_header *)sd->kbuf; 975 976 /* Basic length checks for TLVs */ 977 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 978 return (EINVAL); 979 980 read = sizeof(*oh); 981 982 ctlv = (ipfw_obj_ctlv *)(oh + 1); 983 if (ctlv->head.length + read != sd->valsize) 984 return (EINVAL); 985 986 read += sizeof(*ctlv); 987 tent = (ipfw_obj_tentry *)(ctlv + 1); 988 if (ctlv->count * sizeof(*tent) + read != sd->valsize) 989 return (EINVAL); 990 991 if (ctlv->count == 0) 992 return (0); 993 994 /* 995 * Mark entire buffer as "read". 996 * This instructs sopt api write it back 997 * after function return. 998 */ 999 ipfw_get_sopt_header(sd, sd->valsize); 1000 1001 /* Perform basic checks for each entry */ 1002 ptent = tent; 1003 kidx = tent->idx; 1004 for (i = 0; i < ctlv->count; i++, ptent++) { 1005 if (ptent->head.length != sizeof(*ptent)) 1006 return (EINVAL); 1007 if (ptent->idx != kidx) 1008 return (ENOTSUP); 1009 } 1010 1011 /* Convert data into kernel request objects */ 1012 objheader_to_ti(oh, &ti); 1013 ti.type = oh->ntlv.type; 1014 ti.uidx = kidx; 1015 1016 /* Use on-stack buffer for single add/del */ 1017 if (ctlv->count == 1) { 1018 memset(&tei, 0, sizeof(tei)); 1019 tei_buf = &tei; 1020 } else 1021 tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP, 1022 M_WAITOK | M_ZERO); 1023 1024 ptei = tei_buf; 1025 ptent = tent; 1026 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1027 ptei->paddr = &ptent->k; 1028 ptei->subtype = ptent->subtype; 1029 ptei->masklen = ptent->masklen; 1030 if (ptent->head.flags & IPFW_TF_UPDATE) 1031 ptei->flags |= TEI_FLAGS_UPDATE; 1032 1033 ipfw_import_table_value_v1(&ptent->v.value); 1034 ptei->pvalue = (struct table_value *)&ptent->v.value; 1035 } 1036 1037 error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ? 1038 add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) : 1039 del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count); 1040 1041 /* Translate result back to userland */ 1042 ptei = tei_buf; 1043 ptent = tent; 1044 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1045 if (ptei->flags & TEI_FLAGS_ADDED) 1046 ptent->result = IPFW_TR_ADDED; 1047 else if (ptei->flags & TEI_FLAGS_DELETED) 1048 ptent->result = IPFW_TR_DELETED; 1049 else if (ptei->flags & TEI_FLAGS_UPDATED) 1050 ptent->result = IPFW_TR_UPDATED; 1051 else if (ptei->flags & TEI_FLAGS_LIMIT) 1052 ptent->result = IPFW_TR_LIMIT; 1053 else if (ptei->flags & TEI_FLAGS_ERROR) 1054 ptent->result = IPFW_TR_ERROR; 1055 else if (ptei->flags & TEI_FLAGS_NOTFOUND) 1056 ptent->result = IPFW_TR_NOTFOUND; 1057 else if (ptei->flags & TEI_FLAGS_EXISTS) 1058 ptent->result = IPFW_TR_EXISTS; 1059 ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value); 1060 } 1061 1062 if (tei_buf != &tei) 1063 free(tei_buf, M_TEMP); 1064 1065 return (error); 1066 } 1067 1068 /* 1069 * Looks up an entry in given table. 1070 * Data layout (v0)(current): 1071 * Request: [ ipfw_obj_header ipfw_obj_tentry ] 1072 * Reply: [ ipfw_obj_header ipfw_obj_tentry ] 1073 * 1074 * Returns 0 on success 1075 */ 1076 static int 1077 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1078 struct sockopt_data *sd) 1079 { 1080 ipfw_obj_tentry *tent; 1081 ipfw_obj_header *oh; 1082 struct tid_info ti; 1083 struct table_config *tc; 1084 struct table_algo *ta; 1085 struct table_info *kti; 1086 struct namedobj_instance *ni; 1087 int error; 1088 size_t sz; 1089 1090 /* Check minimum header size */ 1091 sz = sizeof(*oh) + sizeof(*tent); 1092 if (sd->valsize != sz) 1093 return (EINVAL); 1094 1095 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1096 tent = (ipfw_obj_tentry *)(oh + 1); 1097 1098 /* Basic length checks for TLVs */ 1099 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 1100 return (EINVAL); 1101 1102 objheader_to_ti(oh, &ti); 1103 ti.type = oh->ntlv.type; 1104 ti.uidx = tent->idx; 1105 1106 IPFW_UH_RLOCK(ch); 1107 ni = CHAIN_TO_NI(ch); 1108 1109 /* 1110 * Find existing table and check its type . 1111 */ 1112 ta = NULL; 1113 if ((tc = find_table(ni, &ti)) == NULL) { 1114 IPFW_UH_RUNLOCK(ch); 1115 return (ESRCH); 1116 } 1117 1118 /* check table type */ 1119 if (tc->no.type != ti.type) { 1120 IPFW_UH_RUNLOCK(ch); 1121 return (EINVAL); 1122 } 1123 1124 kti = KIDX_TO_TI(ch, tc->no.kidx); 1125 ta = tc->ta; 1126 1127 if (ta->find_tentry == NULL) 1128 return (ENOTSUP); 1129 1130 error = ta->find_tentry(tc->astate, kti, tent); 1131 1132 IPFW_UH_RUNLOCK(ch); 1133 1134 return (error); 1135 } 1136 1137 /* 1138 * Flushes all entries or destroys given table. 1139 * Data layout (v0)(current): 1140 * Request: [ ipfw_obj_header ] 1141 * 1142 * Returns 0 on success 1143 */ 1144 static int 1145 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1146 struct sockopt_data *sd) 1147 { 1148 int error; 1149 struct _ipfw_obj_header *oh; 1150 struct tid_info ti; 1151 1152 if (sd->valsize != sizeof(*oh)) 1153 return (EINVAL); 1154 1155 oh = (struct _ipfw_obj_header *)op3; 1156 objheader_to_ti(oh, &ti); 1157 1158 if (op3->opcode == IP_FW_TABLE_XDESTROY) 1159 error = destroy_table(ch, &ti); 1160 else if (op3->opcode == IP_FW_TABLE_XFLUSH) 1161 error = flush_table(ch, &ti); 1162 else 1163 return (ENOTSUP); 1164 1165 return (error); 1166 } 1167 1168 static void 1169 restart_flush(void *object, struct op_state *_state) 1170 { 1171 struct tableop_state *ts; 1172 1173 ts = (struct tableop_state *)_state; 1174 1175 if (ts->tc != object) 1176 return; 1177 1178 /* Indicate we've called */ 1179 ts->modified = 1; 1180 } 1181 1182 /* 1183 * Flushes given table. 1184 * 1185 * Function create new table instance with the same 1186 * parameters, swaps it with old one and 1187 * flushes state without holding runtime WLOCK. 1188 * 1189 * Returns 0 on success. 1190 */ 1191 int 1192 flush_table(struct ip_fw_chain *ch, struct tid_info *ti) 1193 { 1194 struct namedobj_instance *ni; 1195 struct table_config *tc; 1196 struct table_algo *ta; 1197 struct table_info ti_old, ti_new, *tablestate; 1198 void *astate_old, *astate_new; 1199 char algostate[64], *pstate; 1200 struct tableop_state ts; 1201 int error; 1202 uint16_t kidx; 1203 uint8_t tflags; 1204 1205 /* 1206 * Stage 1: save table algoritm. 1207 * Reference found table to ensure it won't disappear. 1208 */ 1209 IPFW_UH_WLOCK(ch); 1210 ni = CHAIN_TO_NI(ch); 1211 if ((tc = find_table(ni, ti)) == NULL) { 1212 IPFW_UH_WUNLOCK(ch); 1213 return (ESRCH); 1214 } 1215 restart: 1216 /* Set up swap handler */ 1217 memset(&ts, 0, sizeof(ts)); 1218 ts.opstate.func = restart_flush; 1219 ts.tc = tc; 1220 1221 ta = tc->ta; 1222 /* Do not flush readonly tables */ 1223 if ((ta->flags & TA_FLAG_READONLY) != 0) { 1224 IPFW_UH_WUNLOCK(ch); 1225 return (EACCES); 1226 } 1227 /* Save startup algo parameters */ 1228 if (ta->print_config != NULL) { 1229 ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx), 1230 algostate, sizeof(algostate)); 1231 pstate = algostate; 1232 } else 1233 pstate = NULL; 1234 tflags = tc->tflags; 1235 tc->no.refcnt++; 1236 add_toperation_state(ch, &ts); 1237 IPFW_UH_WUNLOCK(ch); 1238 1239 /* 1240 * Stage 2: allocate new table instance using same algo. 1241 */ 1242 memset(&ti_new, 0, sizeof(struct table_info)); 1243 error = ta->init(ch, &astate_new, &ti_new, pstate, tflags); 1244 1245 /* 1246 * Stage 3: swap old state pointers with newly-allocated ones. 1247 * Decrease refcount. 1248 */ 1249 IPFW_UH_WLOCK(ch); 1250 tc->no.refcnt--; 1251 del_toperation_state(ch, &ts); 1252 1253 if (error != 0) { 1254 IPFW_UH_WUNLOCK(ch); 1255 return (error); 1256 } 1257 1258 /* 1259 * Restart operation if table swap has happened: 1260 * even if algo may be the same, algo init parameters 1261 * may change. Restart operation instead of doing 1262 * complex checks. 1263 */ 1264 if (ts.modified != 0) { 1265 ta->destroy(astate_new, &ti_new); 1266 goto restart; 1267 } 1268 1269 ni = CHAIN_TO_NI(ch); 1270 kidx = tc->no.kidx; 1271 tablestate = (struct table_info *)ch->tablestate; 1272 1273 IPFW_WLOCK(ch); 1274 ti_old = tablestate[kidx]; 1275 tablestate[kidx] = ti_new; 1276 IPFW_WUNLOCK(ch); 1277 1278 astate_old = tc->astate; 1279 tc->astate = astate_new; 1280 tc->ti_copy = ti_new; 1281 tc->count = 0; 1282 1283 /* Notify algo on real @ti address */ 1284 if (ta->change_ti != NULL) 1285 ta->change_ti(tc->astate, &tablestate[kidx]); 1286 1287 /* 1288 * Stage 4: unref values. 1289 */ 1290 ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old); 1291 IPFW_UH_WUNLOCK(ch); 1292 1293 /* 1294 * Stage 5: perform real flush/destroy. 1295 */ 1296 ta->destroy(astate_old, &ti_old); 1297 1298 return (0); 1299 } 1300 1301 /* 1302 * Swaps two tables. 1303 * Data layout (v0)(current): 1304 * Request: [ ipfw_obj_header ipfw_obj_ntlv ] 1305 * 1306 * Returns 0 on success 1307 */ 1308 static int 1309 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1310 struct sockopt_data *sd) 1311 { 1312 int error; 1313 struct _ipfw_obj_header *oh; 1314 struct tid_info ti_a, ti_b; 1315 1316 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv)) 1317 return (EINVAL); 1318 1319 oh = (struct _ipfw_obj_header *)op3; 1320 ntlv_to_ti(&oh->ntlv, &ti_a); 1321 ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b); 1322 1323 error = swap_tables(ch, &ti_a, &ti_b); 1324 1325 return (error); 1326 } 1327 1328 /* 1329 * Swaps two tables of the same type/valtype. 1330 * 1331 * Checks if tables are compatible and limits 1332 * permits swap, than actually perform swap. 1333 * 1334 * Each table consists of 2 different parts: 1335 * config: 1336 * @tc (with name, set, kidx) and rule bindings, which is "stable". 1337 * number of items 1338 * table algo 1339 * runtime: 1340 * runtime data @ti (ch->tablestate) 1341 * runtime cache in @tc 1342 * algo-specific data (@tc->astate) 1343 * 1344 * So we switch: 1345 * all runtime data 1346 * number of items 1347 * table algo 1348 * 1349 * After that we call @ti change handler for each table. 1350 * 1351 * Note that referencing @tc won't protect tc->ta from change. 1352 * XXX: Do we need to restrict swap between locked tables? 1353 * XXX: Do we need to exchange ftype? 1354 * 1355 * Returns 0 on success. 1356 */ 1357 static int 1358 swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 1359 struct tid_info *b) 1360 { 1361 struct namedobj_instance *ni; 1362 struct table_config *tc_a, *tc_b; 1363 struct table_algo *ta; 1364 struct table_info ti, *tablestate; 1365 void *astate; 1366 uint32_t count; 1367 1368 /* 1369 * Stage 1: find both tables and ensure they are of 1370 * the same type. 1371 */ 1372 IPFW_UH_WLOCK(ch); 1373 ni = CHAIN_TO_NI(ch); 1374 if ((tc_a = find_table(ni, a)) == NULL) { 1375 IPFW_UH_WUNLOCK(ch); 1376 return (ESRCH); 1377 } 1378 if ((tc_b = find_table(ni, b)) == NULL) { 1379 IPFW_UH_WUNLOCK(ch); 1380 return (ESRCH); 1381 } 1382 1383 /* It is very easy to swap between the same table */ 1384 if (tc_a == tc_b) { 1385 IPFW_UH_WUNLOCK(ch); 1386 return (0); 1387 } 1388 1389 /* Check type and value are the same */ 1390 if (tc_a->no.type != tc_b->no.type || tc_a->tflags != tc_b->tflags) { 1391 IPFW_UH_WUNLOCK(ch); 1392 return (EINVAL); 1393 } 1394 1395 /* Check limits before swap */ 1396 if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) || 1397 (tc_b->limit != 0 && tc_a->count > tc_b->limit)) { 1398 IPFW_UH_WUNLOCK(ch); 1399 return (EFBIG); 1400 } 1401 1402 /* Check if one of the tables is readonly */ 1403 if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) { 1404 IPFW_UH_WUNLOCK(ch); 1405 return (EACCES); 1406 } 1407 1408 /* Notify we're going to swap */ 1409 rollback_toperation_state(ch, tc_a); 1410 rollback_toperation_state(ch, tc_b); 1411 1412 /* Everything is fine, prepare to swap */ 1413 tablestate = (struct table_info *)ch->tablestate; 1414 ti = tablestate[tc_a->no.kidx]; 1415 ta = tc_a->ta; 1416 astate = tc_a->astate; 1417 count = tc_a->count; 1418 1419 IPFW_WLOCK(ch); 1420 /* a <- b */ 1421 tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx]; 1422 tc_a->ta = tc_b->ta; 1423 tc_a->astate = tc_b->astate; 1424 tc_a->count = tc_b->count; 1425 /* b <- a */ 1426 tablestate[tc_b->no.kidx] = ti; 1427 tc_b->ta = ta; 1428 tc_b->astate = astate; 1429 tc_b->count = count; 1430 IPFW_WUNLOCK(ch); 1431 1432 /* Ensure tc.ti copies are in sync */ 1433 tc_a->ti_copy = tablestate[tc_a->no.kidx]; 1434 tc_b->ti_copy = tablestate[tc_b->no.kidx]; 1435 1436 /* Notify both tables on @ti change */ 1437 if (tc_a->ta->change_ti != NULL) 1438 tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]); 1439 if (tc_b->ta->change_ti != NULL) 1440 tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]); 1441 1442 IPFW_UH_WUNLOCK(ch); 1443 1444 return (0); 1445 } 1446 1447 /* 1448 * Destroys table specified by @ti. 1449 * Data layout (v0)(current): 1450 * Request: [ ip_fw3_opheader ] 1451 * 1452 * Returns 0 on success 1453 */ 1454 static int 1455 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti) 1456 { 1457 struct namedobj_instance *ni; 1458 struct table_config *tc; 1459 1460 IPFW_UH_WLOCK(ch); 1461 1462 ni = CHAIN_TO_NI(ch); 1463 if ((tc = find_table(ni, ti)) == NULL) { 1464 IPFW_UH_WUNLOCK(ch); 1465 return (ESRCH); 1466 } 1467 1468 /* Do not permit destroying referenced tables */ 1469 if (tc->no.refcnt > 0) { 1470 IPFW_UH_WUNLOCK(ch); 1471 return (EBUSY); 1472 } 1473 1474 IPFW_WLOCK(ch); 1475 unlink_table(ch, tc); 1476 IPFW_WUNLOCK(ch); 1477 1478 /* Free obj index */ 1479 if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0) 1480 printf("Error unlinking kidx %d from table %s\n", 1481 tc->no.kidx, tc->tablename); 1482 1483 /* Unref values used in tables while holding UH lock */ 1484 ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy); 1485 IPFW_UH_WUNLOCK(ch); 1486 1487 free_table_config(ni, tc); 1488 1489 return (0); 1490 } 1491 1492 static uint32_t 1493 roundup2p(uint32_t v) 1494 { 1495 1496 v--; 1497 v |= v >> 1; 1498 v |= v >> 2; 1499 v |= v >> 4; 1500 v |= v >> 8; 1501 v |= v >> 16; 1502 v++; 1503 1504 return (v); 1505 } 1506 1507 /* 1508 * Grow tables index. 1509 * 1510 * Returns 0 on success. 1511 */ 1512 int 1513 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables) 1514 { 1515 unsigned int ntables_old, tbl; 1516 struct namedobj_instance *ni; 1517 void *new_idx, *old_tablestate, *tablestate; 1518 struct table_info *ti; 1519 struct table_config *tc; 1520 int i, new_blocks; 1521 1522 /* Check new value for validity */ 1523 if (ntables == 0) 1524 return (EINVAL); 1525 if (ntables > IPFW_TABLES_MAX) 1526 ntables = IPFW_TABLES_MAX; 1527 /* Alight to nearest power of 2 */ 1528 ntables = (unsigned int)roundup2p(ntables); 1529 1530 /* Allocate new pointers */ 1531 tablestate = malloc(ntables * sizeof(struct table_info), 1532 M_IPFW, M_WAITOK | M_ZERO); 1533 1534 ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks); 1535 1536 IPFW_UH_WLOCK(ch); 1537 1538 tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables; 1539 ni = CHAIN_TO_NI(ch); 1540 1541 /* Temporary restrict decreasing max_tables */ 1542 if (ntables < V_fw_tables_max) { 1543 1544 /* 1545 * FIXME: Check if we really can shrink 1546 */ 1547 IPFW_UH_WUNLOCK(ch); 1548 return (EINVAL); 1549 } 1550 1551 /* Copy table info/indices */ 1552 memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl); 1553 ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks); 1554 1555 IPFW_WLOCK(ch); 1556 1557 /* Change pointers */ 1558 old_tablestate = ch->tablestate; 1559 ch->tablestate = tablestate; 1560 ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks); 1561 1562 ntables_old = V_fw_tables_max; 1563 V_fw_tables_max = ntables; 1564 1565 IPFW_WUNLOCK(ch); 1566 1567 /* Notify all consumers that their @ti pointer has changed */ 1568 ti = (struct table_info *)ch->tablestate; 1569 for (i = 0; i < tbl; i++, ti++) { 1570 if (ti->lookup == NULL) 1571 continue; 1572 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i); 1573 if (tc == NULL || tc->ta->change_ti == NULL) 1574 continue; 1575 1576 tc->ta->change_ti(tc->astate, ti); 1577 } 1578 1579 IPFW_UH_WUNLOCK(ch); 1580 1581 /* Free old pointers */ 1582 free(old_tablestate, M_IPFW); 1583 ipfw_objhash_bitmap_free(new_idx, new_blocks); 1584 1585 return (0); 1586 } 1587 1588 /* 1589 * Switch between "set 0" and "rule's set" table binding, 1590 * Check all ruleset bindings and permits changing 1591 * IFF each binding has both rule AND table in default set (set 0). 1592 * 1593 * Returns 0 on success. 1594 */ 1595 int 1596 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets) 1597 { 1598 struct namedobj_instance *ni; 1599 struct named_object *no; 1600 struct ip_fw *rule; 1601 ipfw_insn *cmd; 1602 int cmdlen, i, l; 1603 uint16_t kidx; 1604 uint8_t type; 1605 1606 IPFW_UH_WLOCK(ch); 1607 1608 if (V_fw_tables_sets == sets) { 1609 IPFW_UH_WUNLOCK(ch); 1610 return (0); 1611 } 1612 1613 ni = CHAIN_TO_NI(ch); 1614 1615 /* 1616 * Scan all rules and examine tables opcodes. 1617 */ 1618 for (i = 0; i < ch->n_rules; i++) { 1619 rule = ch->map[i]; 1620 1621 l = rule->cmd_len; 1622 cmd = rule->cmd; 1623 cmdlen = 0; 1624 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 1625 cmdlen = F_LEN(cmd); 1626 1627 if (classify_table_opcode(cmd, &kidx, &type) != 0) 1628 continue; 1629 1630 no = ipfw_objhash_lookup_kidx(ni, kidx); 1631 1632 /* Check if both table object and rule has the set 0 */ 1633 if (no->set != 0 || rule->set != 0) { 1634 IPFW_UH_WUNLOCK(ch); 1635 return (EBUSY); 1636 } 1637 1638 } 1639 } 1640 V_fw_tables_sets = sets; 1641 1642 IPFW_UH_WUNLOCK(ch); 1643 1644 return (0); 1645 } 1646 1647 /* 1648 * Lookup an IP @addr in table @tbl. 1649 * Stores found value in @val. 1650 * 1651 * Returns 1 if @addr was found. 1652 */ 1653 int 1654 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr, 1655 uint32_t *val) 1656 { 1657 struct table_info *ti; 1658 1659 ti = KIDX_TO_TI(ch, tbl); 1660 1661 return (ti->lookup(ti, &addr, sizeof(in_addr_t), val)); 1662 } 1663 1664 /* 1665 * Lookup an arbtrary key @paddr of legth @plen in table @tbl. 1666 * Stores found value in @val. 1667 * 1668 * Returns 1 if key was found. 1669 */ 1670 int 1671 ipfw_lookup_table_extended(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen, 1672 void *paddr, uint32_t *val) 1673 { 1674 struct table_info *ti; 1675 1676 ti = KIDX_TO_TI(ch, tbl); 1677 1678 return (ti->lookup(ti, paddr, plen, val)); 1679 } 1680 1681 /* 1682 * Info/List/dump support for tables. 1683 * 1684 */ 1685 1686 /* 1687 * High-level 'get' cmds sysctl handlers 1688 */ 1689 1690 /* 1691 * Lists all tables currently available in kernel. 1692 * Data layout (v0)(current): 1693 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 1694 * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ] 1695 * 1696 * Returns 0 on success 1697 */ 1698 static int 1699 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1700 struct sockopt_data *sd) 1701 { 1702 struct _ipfw_obj_lheader *olh; 1703 int error; 1704 1705 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 1706 if (olh == NULL) 1707 return (EINVAL); 1708 if (sd->valsize < olh->size) 1709 return (EINVAL); 1710 1711 IPFW_UH_RLOCK(ch); 1712 error = export_tables(ch, olh, sd); 1713 IPFW_UH_RUNLOCK(ch); 1714 1715 return (error); 1716 } 1717 1718 /* 1719 * Store table info to buffer provided by @sd. 1720 * Data layout (v0)(current): 1721 * Request: [ ipfw_obj_header ipfw_xtable_info(empty)] 1722 * Reply: [ ipfw_obj_header ipfw_xtable_info ] 1723 * 1724 * Returns 0 on success. 1725 */ 1726 static int 1727 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1728 struct sockopt_data *sd) 1729 { 1730 struct _ipfw_obj_header *oh; 1731 struct table_config *tc; 1732 struct tid_info ti; 1733 size_t sz; 1734 1735 sz = sizeof(*oh) + sizeof(ipfw_xtable_info); 1736 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1737 if (oh == NULL) 1738 return (EINVAL); 1739 1740 objheader_to_ti(oh, &ti); 1741 1742 IPFW_UH_RLOCK(ch); 1743 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 1744 IPFW_UH_RUNLOCK(ch); 1745 return (ESRCH); 1746 } 1747 1748 export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1)); 1749 IPFW_UH_RUNLOCK(ch); 1750 1751 return (0); 1752 } 1753 1754 /* 1755 * Modifies existing table. 1756 * Data layout (v0)(current): 1757 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1758 * 1759 * Returns 0 on success 1760 */ 1761 static int 1762 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1763 struct sockopt_data *sd) 1764 { 1765 struct _ipfw_obj_header *oh; 1766 ipfw_xtable_info *i; 1767 char *tname; 1768 struct tid_info ti; 1769 struct namedobj_instance *ni; 1770 struct table_config *tc; 1771 1772 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1773 return (EINVAL); 1774 1775 oh = (struct _ipfw_obj_header *)sd->kbuf; 1776 i = (ipfw_xtable_info *)(oh + 1); 1777 1778 /* 1779 * Verify user-supplied strings. 1780 * Check for null-terminated/zero-length strings/ 1781 */ 1782 tname = oh->ntlv.name; 1783 if (ipfw_check_table_name(tname) != 0) 1784 return (EINVAL); 1785 1786 objheader_to_ti(oh, &ti); 1787 ti.type = i->type; 1788 1789 IPFW_UH_WLOCK(ch); 1790 ni = CHAIN_TO_NI(ch); 1791 if ((tc = find_table(ni, &ti)) == NULL) { 1792 IPFW_UH_WUNLOCK(ch); 1793 return (ESRCH); 1794 } 1795 1796 /* Do not support any modifications for readonly tables */ 1797 if ((tc->ta->flags & TA_FLAG_READONLY) != 0) { 1798 IPFW_UH_WUNLOCK(ch); 1799 return (EACCES); 1800 } 1801 1802 if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0) 1803 tc->limit = i->limit; 1804 if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0) 1805 tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0); 1806 IPFW_UH_WUNLOCK(ch); 1807 1808 return (0); 1809 } 1810 1811 /* 1812 * Creates new table. 1813 * Data layout (v0)(current): 1814 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1815 * 1816 * Returns 0 on success 1817 */ 1818 static int 1819 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1820 struct sockopt_data *sd) 1821 { 1822 struct _ipfw_obj_header *oh; 1823 ipfw_xtable_info *i; 1824 char *tname, *aname; 1825 struct tid_info ti; 1826 struct namedobj_instance *ni; 1827 struct table_config *tc; 1828 1829 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1830 return (EINVAL); 1831 1832 oh = (struct _ipfw_obj_header *)sd->kbuf; 1833 i = (ipfw_xtable_info *)(oh + 1); 1834 1835 /* 1836 * Verify user-supplied strings. 1837 * Check for null-terminated/zero-length strings/ 1838 */ 1839 tname = oh->ntlv.name; 1840 aname = i->algoname; 1841 if (ipfw_check_table_name(tname) != 0 || 1842 strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname)) 1843 return (EINVAL); 1844 1845 if (aname[0] == '\0') { 1846 /* Use default algorithm */ 1847 aname = NULL; 1848 } 1849 1850 objheader_to_ti(oh, &ti); 1851 ti.type = i->type; 1852 1853 ni = CHAIN_TO_NI(ch); 1854 1855 IPFW_UH_RLOCK(ch); 1856 if ((tc = find_table(ni, &ti)) != NULL) { 1857 IPFW_UH_RUNLOCK(ch); 1858 return (EEXIST); 1859 } 1860 IPFW_UH_RUNLOCK(ch); 1861 1862 return (create_table_internal(ch, &ti, aname, i, NULL, 0)); 1863 } 1864 1865 /* 1866 * Creates new table based on @ti and @aname. 1867 * 1868 * Relies on table name checking inside find_name_tlv() 1869 * Assume @aname to be checked and valid. 1870 * Stores allocated table kidx inside @pkidx (if non-NULL). 1871 * Reference created table if @compat is non-zero. 1872 * 1873 * Returns 0 on success. 1874 */ 1875 static int 1876 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 1877 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat) 1878 { 1879 struct namedobj_instance *ni; 1880 struct table_config *tc, *tc_new, *tmp; 1881 struct table_algo *ta; 1882 uint16_t kidx; 1883 1884 ni = CHAIN_TO_NI(ch); 1885 1886 ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname); 1887 if (ta == NULL) 1888 return (ENOTSUP); 1889 1890 tc = alloc_table_config(ch, ti, ta, aname, i->tflags); 1891 if (tc == NULL) 1892 return (ENOMEM); 1893 1894 tc->vmask = i->vmask; 1895 tc->limit = i->limit; 1896 if (ta->flags & TA_FLAG_READONLY) 1897 tc->locked = 1; 1898 else 1899 tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0; 1900 1901 IPFW_UH_WLOCK(ch); 1902 1903 /* Check if table has been already created */ 1904 tc_new = find_table(ni, ti); 1905 if (tc_new != NULL) { 1906 1907 /* 1908 * Compat: do not fail if we're 1909 * requesting to create existing table 1910 * which has the same type 1911 */ 1912 if (compat == 0 || tc_new->no.type != tc->no.type) { 1913 IPFW_UH_WUNLOCK(ch); 1914 free_table_config(ni, tc); 1915 return (EEXIST); 1916 } 1917 1918 /* Exchange tc and tc_new for proper refcounting & freeing */ 1919 tmp = tc; 1920 tc = tc_new; 1921 tc_new = tmp; 1922 } else { 1923 /* New table */ 1924 if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) { 1925 IPFW_UH_WUNLOCK(ch); 1926 printf("Unable to allocate table index." 1927 " Consider increasing net.inet.ip.fw.tables_max"); 1928 free_table_config(ni, tc); 1929 return (EBUSY); 1930 } 1931 tc->no.kidx = kidx; 1932 1933 IPFW_WLOCK(ch); 1934 link_table(ch, tc); 1935 IPFW_WUNLOCK(ch); 1936 } 1937 1938 if (compat != 0) 1939 tc->no.refcnt++; 1940 if (pkidx != NULL) 1941 *pkidx = tc->no.kidx; 1942 1943 IPFW_UH_WUNLOCK(ch); 1944 1945 if (tc_new != NULL) 1946 free_table_config(ni, tc_new); 1947 1948 return (0); 1949 } 1950 1951 static void 1952 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti) 1953 { 1954 1955 memset(ti, 0, sizeof(struct tid_info)); 1956 ti->set = ntlv->set; 1957 ti->uidx = ntlv->idx; 1958 ti->tlvs = ntlv; 1959 ti->tlen = ntlv->head.length; 1960 } 1961 1962 static void 1963 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti) 1964 { 1965 1966 ntlv_to_ti(&oh->ntlv, ti); 1967 } 1968 1969 /* 1970 * Exports basic table info as name TLV. 1971 * Used inside dump_static_rules() to provide info 1972 * about all tables referenced by current ruleset. 1973 * 1974 * Returns 0 on success. 1975 */ 1976 int 1977 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx, 1978 struct sockopt_data *sd) 1979 { 1980 struct namedobj_instance *ni; 1981 struct named_object *no; 1982 ipfw_obj_ntlv *ntlv; 1983 1984 ni = CHAIN_TO_NI(ch); 1985 1986 no = ipfw_objhash_lookup_kidx(ni, kidx); 1987 KASSERT(no != NULL, ("invalid table kidx passed")); 1988 1989 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv)); 1990 if (ntlv == NULL) 1991 return (ENOMEM); 1992 1993 ntlv->head.type = IPFW_TLV_TBL_NAME; 1994 ntlv->head.length = sizeof(*ntlv); 1995 ntlv->idx = no->kidx; 1996 strlcpy(ntlv->name, no->name, sizeof(ntlv->name)); 1997 1998 return (0); 1999 } 2000 2001 /* 2002 * Marks every table kidx used in @rule with bit in @bmask. 2003 * Used to generate bitmask of referenced tables for given ruleset. 2004 * 2005 * Returns number of newly-referenced tables. 2006 */ 2007 int 2008 ipfw_mark_table_kidx(struct ip_fw_chain *chain, struct ip_fw *rule, 2009 uint32_t *bmask) 2010 { 2011 int cmdlen, l, count; 2012 ipfw_insn *cmd; 2013 uint16_t kidx; 2014 uint8_t type; 2015 2016 l = rule->cmd_len; 2017 cmd = rule->cmd; 2018 cmdlen = 0; 2019 count = 0; 2020 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 2021 cmdlen = F_LEN(cmd); 2022 2023 if (classify_table_opcode(cmd, &kidx, &type) != 0) 2024 continue; 2025 2026 if ((bmask[kidx / 32] & (1 << (kidx % 32))) == 0) 2027 count++; 2028 2029 bmask[kidx / 32] |= 1 << (kidx % 32); 2030 } 2031 2032 return (count); 2033 } 2034 2035 struct dump_args { 2036 struct ip_fw_chain *ch; 2037 struct table_info *ti; 2038 struct table_config *tc; 2039 struct sockopt_data *sd; 2040 uint32_t cnt; 2041 uint16_t uidx; 2042 int error; 2043 uint32_t size; 2044 ipfw_table_entry *ent; 2045 ta_foreach_f *f; 2046 void *farg; 2047 ipfw_obj_tentry tent; 2048 }; 2049 2050 static int 2051 count_ext_entries(void *e, void *arg) 2052 { 2053 struct dump_args *da; 2054 2055 da = (struct dump_args *)arg; 2056 da->cnt++; 2057 2058 return (0); 2059 } 2060 2061 /* 2062 * Gets number of items from table either using 2063 * internal counter or calling algo callback for 2064 * externally-managed tables. 2065 * 2066 * Returns number of records. 2067 */ 2068 static uint32_t 2069 table_get_count(struct ip_fw_chain *ch, struct table_config *tc) 2070 { 2071 struct table_info *ti; 2072 struct table_algo *ta; 2073 struct dump_args da; 2074 2075 ti = KIDX_TO_TI(ch, tc->no.kidx); 2076 ta = tc->ta; 2077 2078 /* Use internal counter for self-managed tables */ 2079 if ((ta->flags & TA_FLAG_READONLY) == 0) 2080 return (tc->count); 2081 2082 /* Use callback to quickly get number of items */ 2083 if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0) 2084 return (ta->get_count(tc->astate, ti)); 2085 2086 /* Count number of iterms ourselves */ 2087 memset(&da, 0, sizeof(da)); 2088 ta->foreach(tc->astate, ti, count_ext_entries, &da); 2089 2090 return (da.cnt); 2091 } 2092 2093 /* 2094 * Exports table @tc info into standard ipfw_xtable_info format. 2095 */ 2096 static void 2097 export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 2098 ipfw_xtable_info *i) 2099 { 2100 struct table_info *ti; 2101 struct table_algo *ta; 2102 2103 i->type = tc->no.type; 2104 i->tflags = tc->tflags; 2105 i->vmask = tc->vmask; 2106 i->set = tc->no.set; 2107 i->kidx = tc->no.kidx; 2108 i->refcnt = tc->no.refcnt; 2109 i->count = table_get_count(ch, tc); 2110 i->limit = tc->limit; 2111 i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0; 2112 i->size = tc->count * sizeof(ipfw_obj_tentry); 2113 i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2114 strlcpy(i->tablename, tc->tablename, sizeof(i->tablename)); 2115 ti = KIDX_TO_TI(ch, tc->no.kidx); 2116 ta = tc->ta; 2117 if (ta->print_config != NULL) { 2118 /* Use algo function to print table config to string */ 2119 ta->print_config(tc->astate, ti, i->algoname, 2120 sizeof(i->algoname)); 2121 } else 2122 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2123 /* Dump algo-specific data, if possible */ 2124 if (ta->dump_tinfo != NULL) { 2125 ta->dump_tinfo(tc->astate, ti, &i->ta_info); 2126 i->ta_info.flags |= IPFW_TATFLAGS_DATA; 2127 } 2128 } 2129 2130 struct dump_table_args { 2131 struct ip_fw_chain *ch; 2132 struct sockopt_data *sd; 2133 }; 2134 2135 static void 2136 export_table_internal(struct namedobj_instance *ni, struct named_object *no, 2137 void *arg) 2138 { 2139 ipfw_xtable_info *i; 2140 struct dump_table_args *dta; 2141 2142 dta = (struct dump_table_args *)arg; 2143 2144 i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i)); 2145 KASSERT(i != 0, ("previously checked buffer is not enough")); 2146 2147 export_table_info(dta->ch, (struct table_config *)no, i); 2148 } 2149 2150 /* 2151 * Export all tables as ipfw_xtable_info structures to 2152 * storage provided by @sd. 2153 * 2154 * If supplied buffer is too small, fills in required size 2155 * and returns ENOMEM. 2156 * Returns 0 on success. 2157 */ 2158 static int 2159 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 2160 struct sockopt_data *sd) 2161 { 2162 uint32_t size; 2163 uint32_t count; 2164 struct dump_table_args dta; 2165 2166 count = ipfw_objhash_count(CHAIN_TO_NI(ch)); 2167 size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader); 2168 2169 /* Fill in header regadless of buffer size */ 2170 olh->count = count; 2171 olh->objsize = sizeof(ipfw_xtable_info); 2172 2173 if (size > olh->size) { 2174 olh->size = size; 2175 return (ENOMEM); 2176 } 2177 2178 olh->size = size; 2179 2180 dta.ch = ch; 2181 dta.sd = sd; 2182 2183 ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta); 2184 2185 return (0); 2186 } 2187 2188 /* 2189 * Dumps all table data 2190 * Data layout (v1)(current): 2191 * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size 2192 * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ] 2193 * 2194 * Returns 0 on success 2195 */ 2196 static int 2197 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2198 struct sockopt_data *sd) 2199 { 2200 struct _ipfw_obj_header *oh; 2201 ipfw_xtable_info *i; 2202 struct tid_info ti; 2203 struct table_config *tc; 2204 struct table_algo *ta; 2205 struct dump_args da; 2206 uint32_t sz; 2207 2208 sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2209 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 2210 if (oh == NULL) 2211 return (EINVAL); 2212 2213 i = (ipfw_xtable_info *)(oh + 1); 2214 objheader_to_ti(oh, &ti); 2215 2216 IPFW_UH_RLOCK(ch); 2217 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2218 IPFW_UH_RUNLOCK(ch); 2219 return (ESRCH); 2220 } 2221 export_table_info(ch, tc, i); 2222 2223 if (sd->valsize < i->size) { 2224 2225 /* 2226 * Submitted buffer size is not enough. 2227 * WE've already filled in @i structure with 2228 * relevant table info including size, so we 2229 * can return. Buffer will be flushed automatically. 2230 */ 2231 IPFW_UH_RUNLOCK(ch); 2232 return (ENOMEM); 2233 } 2234 2235 /* 2236 * Do the actual dump in eXtended format 2237 */ 2238 memset(&da, 0, sizeof(da)); 2239 da.ch = ch; 2240 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2241 da.tc = tc; 2242 da.sd = sd; 2243 2244 ta = tc->ta; 2245 2246 ta->foreach(tc->astate, da.ti, dump_table_tentry, &da); 2247 IPFW_UH_RUNLOCK(ch); 2248 2249 return (da.error); 2250 } 2251 2252 /* 2253 * Dumps all table data 2254 * Data layout (version 0)(legacy): 2255 * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE() 2256 * Reply: [ ipfw_xtable ipfw_table_xentry x N ] 2257 * 2258 * Returns 0 on success 2259 */ 2260 static int 2261 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2262 struct sockopt_data *sd) 2263 { 2264 ipfw_xtable *xtbl; 2265 struct tid_info ti; 2266 struct table_config *tc; 2267 struct table_algo *ta; 2268 struct dump_args da; 2269 size_t sz, count; 2270 2271 xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable)); 2272 if (xtbl == NULL) 2273 return (EINVAL); 2274 2275 memset(&ti, 0, sizeof(ti)); 2276 ti.uidx = xtbl->tbl; 2277 2278 IPFW_UH_RLOCK(ch); 2279 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2280 IPFW_UH_RUNLOCK(ch); 2281 return (0); 2282 } 2283 count = table_get_count(ch, tc); 2284 sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable); 2285 2286 xtbl->cnt = count; 2287 xtbl->size = sz; 2288 xtbl->type = tc->no.type; 2289 xtbl->tbl = ti.uidx; 2290 2291 if (sd->valsize < sz) { 2292 2293 /* 2294 * Submitted buffer size is not enough. 2295 * WE've already filled in @i structure with 2296 * relevant table info including size, so we 2297 * can return. Buffer will be flushed automatically. 2298 */ 2299 IPFW_UH_RUNLOCK(ch); 2300 return (ENOMEM); 2301 } 2302 2303 /* Do the actual dump in eXtended format */ 2304 memset(&da, 0, sizeof(da)); 2305 da.ch = ch; 2306 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2307 da.tc = tc; 2308 da.sd = sd; 2309 2310 ta = tc->ta; 2311 2312 ta->foreach(tc->astate, da.ti, dump_table_xentry, &da); 2313 IPFW_UH_RUNLOCK(ch); 2314 2315 return (0); 2316 } 2317 2318 /* 2319 * Legacy function to retrieve number of items in table. 2320 */ 2321 static int 2322 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2323 struct sockopt_data *sd) 2324 { 2325 uint32_t *tbl; 2326 struct tid_info ti; 2327 size_t sz; 2328 int error; 2329 2330 sz = sizeof(*op3) + sizeof(uint32_t); 2331 op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz); 2332 if (op3 == NULL) 2333 return (EINVAL); 2334 2335 tbl = (uint32_t *)(op3 + 1); 2336 memset(&ti, 0, sizeof(ti)); 2337 ti.uidx = *tbl; 2338 IPFW_UH_RLOCK(ch); 2339 error = ipfw_count_xtable(ch, &ti, tbl); 2340 IPFW_UH_RUNLOCK(ch); 2341 return (error); 2342 } 2343 2344 /* 2345 * Legacy IP_FW_TABLE_GETSIZE handler 2346 */ 2347 int 2348 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2349 { 2350 struct table_config *tc; 2351 2352 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2353 return (ESRCH); 2354 *cnt = table_get_count(ch, tc); 2355 return (0); 2356 } 2357 2358 /* 2359 * Legacy IP_FW_TABLE_XGETSIZE handler 2360 */ 2361 int 2362 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2363 { 2364 struct table_config *tc; 2365 uint32_t count; 2366 2367 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) { 2368 *cnt = 0; 2369 return (0); /* 'table all list' requires success */ 2370 } 2371 2372 count = table_get_count(ch, tc); 2373 *cnt = count * sizeof(ipfw_table_xentry); 2374 if (count > 0) 2375 *cnt += sizeof(ipfw_xtable); 2376 return (0); 2377 } 2378 2379 static int 2380 dump_table_entry(void *e, void *arg) 2381 { 2382 struct dump_args *da; 2383 struct table_config *tc; 2384 struct table_algo *ta; 2385 ipfw_table_entry *ent; 2386 struct table_value *pval; 2387 int error; 2388 2389 da = (struct dump_args *)arg; 2390 2391 tc = da->tc; 2392 ta = tc->ta; 2393 2394 /* Out of memory, returning */ 2395 if (da->cnt == da->size) 2396 return (1); 2397 ent = da->ent++; 2398 ent->tbl = da->uidx; 2399 da->cnt++; 2400 2401 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2402 if (error != 0) 2403 return (error); 2404 2405 ent->addr = da->tent.k.addr.s_addr; 2406 ent->masklen = da->tent.masklen; 2407 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2408 ent->value = ipfw_export_table_value_legacy(pval); 2409 2410 return (0); 2411 } 2412 2413 /* 2414 * Dumps table in pre-8.1 legacy format. 2415 */ 2416 int 2417 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti, 2418 ipfw_table *tbl) 2419 { 2420 struct table_config *tc; 2421 struct table_algo *ta; 2422 struct dump_args da; 2423 2424 tbl->cnt = 0; 2425 2426 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2427 return (0); /* XXX: We should return ESRCH */ 2428 2429 ta = tc->ta; 2430 2431 /* This dump format supports IPv4 only */ 2432 if (tc->no.type != IPFW_TABLE_ADDR) 2433 return (0); 2434 2435 memset(&da, 0, sizeof(da)); 2436 da.ch = ch; 2437 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2438 da.tc = tc; 2439 da.ent = &tbl->ent[0]; 2440 da.size = tbl->size; 2441 2442 tbl->cnt = 0; 2443 ta->foreach(tc->astate, da.ti, dump_table_entry, &da); 2444 tbl->cnt = da.cnt; 2445 2446 return (0); 2447 } 2448 2449 /* 2450 * Dumps table entry in eXtended format (v1)(current). 2451 */ 2452 static int 2453 dump_table_tentry(void *e, void *arg) 2454 { 2455 struct dump_args *da; 2456 struct table_config *tc; 2457 struct table_algo *ta; 2458 struct table_value *pval; 2459 ipfw_obj_tentry *tent; 2460 int error; 2461 2462 da = (struct dump_args *)arg; 2463 2464 tc = da->tc; 2465 ta = tc->ta; 2466 2467 tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent)); 2468 /* Out of memory, returning */ 2469 if (tent == NULL) { 2470 da->error = ENOMEM; 2471 return (1); 2472 } 2473 tent->head.length = sizeof(ipfw_obj_tentry); 2474 tent->idx = da->uidx; 2475 2476 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2477 if (error != 0) 2478 return (error); 2479 2480 pval = get_table_value(da->ch, da->tc, tent->v.kidx); 2481 ipfw_export_table_value_v1(pval, &tent->v.value); 2482 2483 return (0); 2484 } 2485 2486 /* 2487 * Dumps table entry in eXtended format (v0). 2488 */ 2489 static int 2490 dump_table_xentry(void *e, void *arg) 2491 { 2492 struct dump_args *da; 2493 struct table_config *tc; 2494 struct table_algo *ta; 2495 ipfw_table_xentry *xent; 2496 ipfw_obj_tentry *tent; 2497 struct table_value *pval; 2498 int error; 2499 2500 da = (struct dump_args *)arg; 2501 2502 tc = da->tc; 2503 ta = tc->ta; 2504 2505 xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent)); 2506 /* Out of memory, returning */ 2507 if (xent == NULL) 2508 return (1); 2509 xent->len = sizeof(ipfw_table_xentry); 2510 xent->tbl = da->uidx; 2511 2512 memset(&da->tent, 0, sizeof(da->tent)); 2513 tent = &da->tent; 2514 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2515 if (error != 0) 2516 return (error); 2517 2518 /* Convert current format to previous one */ 2519 xent->masklen = tent->masklen; 2520 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2521 xent->value = ipfw_export_table_value_legacy(pval); 2522 /* Apply some hacks */ 2523 if (tc->no.type == IPFW_TABLE_ADDR && tent->subtype == AF_INET) { 2524 xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr; 2525 xent->flags = IPFW_TCF_INET; 2526 } else 2527 memcpy(&xent->k, &tent->k, sizeof(xent->k)); 2528 2529 return (0); 2530 } 2531 2532 /* 2533 * Helper function to export table algo data 2534 * to tentry format before calling user function. 2535 * 2536 * Returns 0 on success. 2537 */ 2538 static int 2539 prepare_table_tentry(void *e, void *arg) 2540 { 2541 struct dump_args *da; 2542 struct table_config *tc; 2543 struct table_algo *ta; 2544 int error; 2545 2546 da = (struct dump_args *)arg; 2547 2548 tc = da->tc; 2549 ta = tc->ta; 2550 2551 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2552 if (error != 0) 2553 return (error); 2554 2555 da->f(&da->tent, da->farg); 2556 2557 return (0); 2558 } 2559 2560 /* 2561 * Allow external consumers to read table entries in standard format. 2562 */ 2563 int 2564 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx, 2565 ta_foreach_f *f, void *arg) 2566 { 2567 struct namedobj_instance *ni; 2568 struct table_config *tc; 2569 struct table_algo *ta; 2570 struct dump_args da; 2571 2572 ni = CHAIN_TO_NI(ch); 2573 2574 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 2575 if (tc == NULL) 2576 return (ESRCH); 2577 2578 ta = tc->ta; 2579 2580 memset(&da, 0, sizeof(da)); 2581 da.ch = ch; 2582 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2583 da.tc = tc; 2584 da.f = f; 2585 da.farg = arg; 2586 2587 ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da); 2588 2589 return (0); 2590 } 2591 2592 /* 2593 * Table algorithms 2594 */ 2595 2596 /* 2597 * Finds algoritm by index, table type or supplied name. 2598 * 2599 * Returns pointer to algo or NULL. 2600 */ 2601 static struct table_algo * 2602 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name) 2603 { 2604 int i, l; 2605 struct table_algo *ta; 2606 2607 if (ti->type > IPFW_TABLE_MAXTYPE) 2608 return (NULL); 2609 2610 /* Search by index */ 2611 if (ti->atype != 0) { 2612 if (ti->atype > tcfg->algo_count) 2613 return (NULL); 2614 return (tcfg->algo[ti->atype]); 2615 } 2616 2617 if (name == NULL) { 2618 /* Return default algorithm for given type if set */ 2619 return (tcfg->def_algo[ti->type]); 2620 } 2621 2622 /* Search by name */ 2623 /* TODO: better search */ 2624 for (i = 1; i <= tcfg->algo_count; i++) { 2625 ta = tcfg->algo[i]; 2626 2627 /* 2628 * One can supply additional algorithm 2629 * parameters so we compare only the first word 2630 * of supplied name: 2631 * 'addr:chash hsize=32' 2632 * '^^^^^^^^^' 2633 * 2634 */ 2635 l = strlen(ta->name); 2636 if (strncmp(name, ta->name, l) != 0) 2637 continue; 2638 if (name[l] != '\0' && name[l] != ' ') 2639 continue; 2640 /* Check if we're requesting proper table type */ 2641 if (ti->type != 0 && ti->type != ta->type) 2642 return (NULL); 2643 return (ta); 2644 } 2645 2646 return (NULL); 2647 } 2648 2649 /* 2650 * Register new table algo @ta. 2651 * Stores algo id inside @idx. 2652 * 2653 * Returns 0 on success. 2654 */ 2655 int 2656 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size, 2657 int *idx) 2658 { 2659 struct tables_config *tcfg; 2660 struct table_algo *ta_new; 2661 size_t sz; 2662 2663 if (size > sizeof(struct table_algo)) 2664 return (EINVAL); 2665 2666 /* Check for the required on-stack size for add/del */ 2667 sz = roundup2(ta->ta_buf_size, sizeof(void *)); 2668 if (sz > TA_BUF_SZ) 2669 return (EINVAL); 2670 2671 KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE")); 2672 2673 /* Copy algorithm data to stable storage. */ 2674 ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO); 2675 memcpy(ta_new, ta, size); 2676 2677 tcfg = CHAIN_TO_TCFG(ch); 2678 2679 KASSERT(tcfg->algo_count < 255, ("Increase algo array size")); 2680 2681 tcfg->algo[++tcfg->algo_count] = ta_new; 2682 ta_new->idx = tcfg->algo_count; 2683 2684 /* Set algorithm as default one for given type */ 2685 if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 && 2686 tcfg->def_algo[ta_new->type] == NULL) 2687 tcfg->def_algo[ta_new->type] = ta_new; 2688 2689 *idx = ta_new->idx; 2690 2691 return (0); 2692 } 2693 2694 /* 2695 * Unregisters table algo using @idx as id. 2696 * XXX: It is NOT safe to call this function in any place 2697 * other than ipfw instance destroy handler. 2698 */ 2699 void 2700 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx) 2701 { 2702 struct tables_config *tcfg; 2703 struct table_algo *ta; 2704 2705 tcfg = CHAIN_TO_TCFG(ch); 2706 2707 KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d", 2708 idx, tcfg->algo_count)); 2709 2710 ta = tcfg->algo[idx]; 2711 KASSERT(ta != NULL, ("algo idx %d is NULL", idx)); 2712 2713 if (tcfg->def_algo[ta->type] == ta) 2714 tcfg->def_algo[ta->type] = NULL; 2715 2716 free(ta, M_IPFW); 2717 } 2718 2719 /* 2720 * Lists all table algorithms currently available. 2721 * Data layout (v0)(current): 2722 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 2723 * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ] 2724 * 2725 * Returns 0 on success 2726 */ 2727 static int 2728 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2729 struct sockopt_data *sd) 2730 { 2731 struct _ipfw_obj_lheader *olh; 2732 struct tables_config *tcfg; 2733 ipfw_ta_info *i; 2734 struct table_algo *ta; 2735 uint32_t count, n, size; 2736 2737 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 2738 if (olh == NULL) 2739 return (EINVAL); 2740 if (sd->valsize < olh->size) 2741 return (EINVAL); 2742 2743 IPFW_UH_RLOCK(ch); 2744 tcfg = CHAIN_TO_TCFG(ch); 2745 count = tcfg->algo_count; 2746 size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader); 2747 2748 /* Fill in header regadless of buffer size */ 2749 olh->count = count; 2750 olh->objsize = sizeof(ipfw_ta_info); 2751 2752 if (size > olh->size) { 2753 olh->size = size; 2754 IPFW_UH_RUNLOCK(ch); 2755 return (ENOMEM); 2756 } 2757 olh->size = size; 2758 2759 for (n = 1; n <= count; n++) { 2760 i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i)); 2761 KASSERT(i != 0, ("previously checked buffer is not enough")); 2762 ta = tcfg->algo[n]; 2763 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2764 i->type = ta->type; 2765 i->refcnt = ta->refcnt; 2766 } 2767 2768 IPFW_UH_RUNLOCK(ch); 2769 2770 return (0); 2771 } 2772 2773 /* 2774 * Tables rewriting code 2775 */ 2776 2777 /* 2778 * Determine table number and lookup type for @cmd. 2779 * Fill @tbl and @type with appropriate values. 2780 * Returns 0 for relevant opcodes, 1 otherwise. 2781 */ 2782 static int 2783 classify_table_opcode(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2784 { 2785 ipfw_insn_if *cmdif; 2786 int skip; 2787 uint16_t v; 2788 2789 skip = 1; 2790 2791 switch (cmd->opcode) { 2792 case O_IP_SRC_LOOKUP: 2793 case O_IP_DST_LOOKUP: 2794 /* Basic IPv4/IPv6 or u32 lookups */ 2795 *puidx = cmd->arg1; 2796 /* Assume ADDR by default */ 2797 *ptype = IPFW_TABLE_ADDR; 2798 skip = 0; 2799 2800 if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) { 2801 /* 2802 * generic lookup. The key must be 2803 * in 32bit big-endian format. 2804 */ 2805 v = ((ipfw_insn_u32 *)cmd)->d[1]; 2806 switch (v) { 2807 case 0: 2808 case 1: 2809 /* IPv4 src/dst */ 2810 break; 2811 case 2: 2812 case 3: 2813 /* src/dst port */ 2814 *ptype = IPFW_TABLE_NUMBER; 2815 break; 2816 case 4: 2817 /* uid/gid */ 2818 *ptype = IPFW_TABLE_NUMBER; 2819 break; 2820 case 5: 2821 /* jid */ 2822 *ptype = IPFW_TABLE_NUMBER; 2823 break; 2824 case 6: 2825 /* dscp */ 2826 *ptype = IPFW_TABLE_NUMBER; 2827 break; 2828 } 2829 } 2830 break; 2831 case O_XMIT: 2832 case O_RECV: 2833 case O_VIA: 2834 /* Interface table, possibly */ 2835 cmdif = (ipfw_insn_if *)cmd; 2836 if (cmdif->name[0] != '\1') 2837 break; 2838 2839 *ptype = IPFW_TABLE_INTERFACE; 2840 *puidx = cmdif->p.kidx; 2841 skip = 0; 2842 break; 2843 case O_IP_FLOW_LOOKUP: 2844 *puidx = cmd->arg1; 2845 *ptype = IPFW_TABLE_FLOW; 2846 skip = 0; 2847 break; 2848 } 2849 2850 return (skip); 2851 } 2852 2853 /* 2854 * Sets new table value for given opcode. 2855 * Assume the same opcodes as classify_table_opcode() 2856 */ 2857 static void 2858 update_table_opcode(ipfw_insn *cmd, uint16_t idx) 2859 { 2860 ipfw_insn_if *cmdif; 2861 2862 switch (cmd->opcode) { 2863 case O_IP_SRC_LOOKUP: 2864 case O_IP_DST_LOOKUP: 2865 /* Basic IPv4/IPv6 or u32 lookups */ 2866 cmd->arg1 = idx; 2867 break; 2868 case O_XMIT: 2869 case O_RECV: 2870 case O_VIA: 2871 /* Interface table, possibly */ 2872 cmdif = (ipfw_insn_if *)cmd; 2873 cmdif->p.kidx = idx; 2874 break; 2875 case O_IP_FLOW_LOOKUP: 2876 cmd->arg1 = idx; 2877 break; 2878 } 2879 } 2880 2881 /* 2882 * Checks table name for validity. 2883 * Enforce basic length checks, the rest 2884 * should be done in userland. 2885 * 2886 * Returns 0 if name is considered valid. 2887 */ 2888 int 2889 ipfw_check_table_name(char *name) 2890 { 2891 int nsize; 2892 ipfw_obj_ntlv *ntlv = NULL; 2893 2894 nsize = sizeof(ntlv->name); 2895 2896 if (strnlen(name, nsize) == nsize) 2897 return (EINVAL); 2898 2899 if (name[0] == '\0') 2900 return (EINVAL); 2901 2902 /* 2903 * TODO: do some more complicated checks 2904 */ 2905 2906 return (0); 2907 } 2908 2909 /* 2910 * Find tablename TLV by @uid. 2911 * Check @tlvs for valid data inside. 2912 * 2913 * Returns pointer to found TLV or NULL. 2914 */ 2915 static ipfw_obj_ntlv * 2916 find_name_tlv(void *tlvs, int len, uint16_t uidx) 2917 { 2918 ipfw_obj_ntlv *ntlv; 2919 uintptr_t pa, pe; 2920 int l; 2921 2922 pa = (uintptr_t)tlvs; 2923 pe = pa + len; 2924 l = 0; 2925 for (; pa < pe; pa += l) { 2926 ntlv = (ipfw_obj_ntlv *)pa; 2927 l = ntlv->head.length; 2928 2929 if (l != sizeof(*ntlv)) 2930 return (NULL); 2931 2932 if (ntlv->head.type != IPFW_TLV_TBL_NAME) 2933 continue; 2934 2935 if (ntlv->idx != uidx) 2936 continue; 2937 2938 if (ipfw_check_table_name(ntlv->name) != 0) 2939 return (NULL); 2940 2941 return (ntlv); 2942 } 2943 2944 return (NULL); 2945 } 2946 2947 /* 2948 * Finds table config based on either legacy index 2949 * or name in ntlv. 2950 * Note @ti structure contains unchecked data from userland. 2951 * 2952 * Returns pointer to table_config or NULL. 2953 */ 2954 static struct table_config * 2955 find_table(struct namedobj_instance *ni, struct tid_info *ti) 2956 { 2957 char *name, bname[16]; 2958 struct named_object *no; 2959 ipfw_obj_ntlv *ntlv; 2960 uint32_t set; 2961 2962 if (ti->tlvs != NULL) { 2963 ntlv = find_name_tlv(ti->tlvs, ti->tlen, ti->uidx); 2964 if (ntlv == NULL) 2965 return (NULL); 2966 name = ntlv->name; 2967 2968 /* 2969 * Use set provided by @ti instead of @ntlv one. 2970 * This is needed due to different sets behavior 2971 * controlled by V_fw_tables_sets. 2972 */ 2973 set = ti->set; 2974 } else { 2975 snprintf(bname, sizeof(bname), "%d", ti->uidx); 2976 name = bname; 2977 set = 0; 2978 } 2979 2980 no = ipfw_objhash_lookup_name(ni, set, name); 2981 2982 return ((struct table_config *)no); 2983 } 2984 2985 /* 2986 * Allocate new table config structure using 2987 * specified @algo and @aname. 2988 * 2989 * Returns pointer to config or NULL. 2990 */ 2991 static struct table_config * 2992 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti, 2993 struct table_algo *ta, char *aname, uint8_t tflags) 2994 { 2995 char *name, bname[16]; 2996 struct table_config *tc; 2997 int error; 2998 ipfw_obj_ntlv *ntlv; 2999 uint32_t set; 3000 3001 if (ti->tlvs != NULL) { 3002 ntlv = find_name_tlv(ti->tlvs, ti->tlen, ti->uidx); 3003 if (ntlv == NULL) 3004 return (NULL); 3005 name = ntlv->name; 3006 set = ntlv->set; 3007 } else { 3008 snprintf(bname, sizeof(bname), "%d", ti->uidx); 3009 name = bname; 3010 set = 0; 3011 } 3012 3013 tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO); 3014 tc->no.name = tc->tablename; 3015 tc->no.type = ta->type; 3016 tc->no.set = set; 3017 tc->tflags = tflags; 3018 tc->ta = ta; 3019 strlcpy(tc->tablename, name, sizeof(tc->tablename)); 3020 /* Set "shared" value type by default */ 3021 tc->vshared = 1; 3022 3023 if (ti->tlvs == NULL) { 3024 tc->no.compat = 1; 3025 tc->no.uidx = ti->uidx; 3026 } 3027 3028 /* Preallocate data structures for new tables */ 3029 error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags); 3030 if (error != 0) { 3031 free(tc, M_IPFW); 3032 return (NULL); 3033 } 3034 3035 return (tc); 3036 } 3037 3038 /* 3039 * Destroys table state and config. 3040 */ 3041 static void 3042 free_table_config(struct namedobj_instance *ni, struct table_config *tc) 3043 { 3044 3045 KASSERT(tc->linked == 0, ("free() on linked config")); 3046 3047 /* 3048 * We're using ta without any locking/referencing. 3049 * TODO: fix this if we're going to use unloadable algos. 3050 */ 3051 tc->ta->destroy(tc->astate, &tc->ti_copy); 3052 free(tc, M_IPFW); 3053 } 3054 3055 /* 3056 * Links @tc to @chain table named instance. 3057 * Sets appropriate type/states in @chain table info. 3058 */ 3059 static void 3060 link_table(struct ip_fw_chain *ch, struct table_config *tc) 3061 { 3062 struct namedobj_instance *ni; 3063 struct table_info *ti; 3064 uint16_t kidx; 3065 3066 IPFW_UH_WLOCK_ASSERT(ch); 3067 IPFW_WLOCK_ASSERT(ch); 3068 3069 ni = CHAIN_TO_NI(ch); 3070 kidx = tc->no.kidx; 3071 3072 ipfw_objhash_add(ni, &tc->no); 3073 3074 ti = KIDX_TO_TI(ch, kidx); 3075 *ti = tc->ti_copy; 3076 3077 /* Notify algo on real @ti address */ 3078 if (tc->ta->change_ti != NULL) 3079 tc->ta->change_ti(tc->astate, ti); 3080 3081 tc->linked = 1; 3082 tc->ta->refcnt++; 3083 } 3084 3085 /* 3086 * Unlinks @tc from @chain table named instance. 3087 * Zeroes states in @chain and stores them in @tc. 3088 */ 3089 static void 3090 unlink_table(struct ip_fw_chain *ch, struct table_config *tc) 3091 { 3092 struct namedobj_instance *ni; 3093 struct table_info *ti; 3094 uint16_t kidx; 3095 3096 IPFW_UH_WLOCK_ASSERT(ch); 3097 IPFW_WLOCK_ASSERT(ch); 3098 3099 ni = CHAIN_TO_NI(ch); 3100 kidx = tc->no.kidx; 3101 3102 /* Clear state. @ti copy is already saved inside @tc */ 3103 ipfw_objhash_del(ni, &tc->no); 3104 ti = KIDX_TO_TI(ch, kidx); 3105 memset(ti, 0, sizeof(struct table_info)); 3106 tc->linked = 0; 3107 tc->ta->refcnt--; 3108 3109 /* Notify algo on real @ti address */ 3110 if (tc->ta->change_ti != NULL) 3111 tc->ta->change_ti(tc->astate, NULL); 3112 } 3113 3114 struct swap_table_args { 3115 int set; 3116 int new_set; 3117 int mv; 3118 }; 3119 3120 /* 3121 * Change set for each matching table. 3122 * 3123 * Ensure we dispatch each table once by setting/checking ochange 3124 * fields. 3125 */ 3126 static void 3127 swap_table_set(struct namedobj_instance *ni, struct named_object *no, 3128 void *arg) 3129 { 3130 struct table_config *tc; 3131 struct swap_table_args *sta; 3132 3133 tc = (struct table_config *)no; 3134 sta = (struct swap_table_args *)arg; 3135 3136 if (no->set != sta->set && (no->set != sta->new_set || sta->mv != 0)) 3137 return; 3138 3139 if (tc->ochanged != 0) 3140 return; 3141 3142 tc->ochanged = 1; 3143 ipfw_objhash_del(ni, no); 3144 if (no->set == sta->set) 3145 no->set = sta->new_set; 3146 else 3147 no->set = sta->set; 3148 ipfw_objhash_add(ni, no); 3149 } 3150 3151 /* 3152 * Cleans up ochange field for all tables. 3153 */ 3154 static void 3155 clean_table_set_data(struct namedobj_instance *ni, struct named_object *no, 3156 void *arg) 3157 { 3158 struct table_config *tc; 3159 struct swap_table_args *sta; 3160 3161 tc = (struct table_config *)no; 3162 sta = (struct swap_table_args *)arg; 3163 3164 tc->ochanged = 0; 3165 } 3166 3167 /* 3168 * Swaps tables within two sets. 3169 */ 3170 void 3171 ipfw_swap_tables_sets(struct ip_fw_chain *ch, uint32_t set, 3172 uint32_t new_set, int mv) 3173 { 3174 struct swap_table_args sta; 3175 3176 IPFW_UH_WLOCK_ASSERT(ch); 3177 3178 sta.set = set; 3179 sta.new_set = new_set; 3180 sta.mv = mv; 3181 3182 ipfw_objhash_foreach(CHAIN_TO_NI(ch), swap_table_set, &sta); 3183 ipfw_objhash_foreach(CHAIN_TO_NI(ch), clean_table_set_data, &sta); 3184 } 3185 3186 /* 3187 * Move all tables which are reference by rules in @rr to set @new_set. 3188 * Makes sure that all relevant tables are referenced ONLLY by given rules. 3189 * 3190 * Retuns 0 on success, 3191 */ 3192 int 3193 ipfw_move_tables_sets(struct ip_fw_chain *ch, ipfw_range_tlv *rt, 3194 uint32_t new_set) 3195 { 3196 struct ip_fw *rule; 3197 struct table_config *tc; 3198 struct named_object *no; 3199 struct namedobj_instance *ni; 3200 int bad, i, l, cmdlen; 3201 uint16_t kidx; 3202 uint8_t type; 3203 ipfw_insn *cmd; 3204 3205 IPFW_UH_WLOCK_ASSERT(ch); 3206 3207 ni = CHAIN_TO_NI(ch); 3208 3209 /* Stage 1: count number of references by given rules */ 3210 for (i = 0; i < ch->n_rules - 1; i++) { 3211 rule = ch->map[i]; 3212 if (ipfw_match_range(rule, rt) == 0) 3213 continue; 3214 3215 l = rule->cmd_len; 3216 cmd = rule->cmd; 3217 cmdlen = 0; 3218 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3219 cmdlen = F_LEN(cmd); 3220 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3221 continue; 3222 no = ipfw_objhash_lookup_kidx(ni, kidx); 3223 KASSERT(no != NULL, 3224 ("objhash lookup failed on index %d", kidx)); 3225 tc = (struct table_config *)no; 3226 tc->ocount++; 3227 } 3228 3229 } 3230 3231 /* Stage 2: verify "ownership" */ 3232 bad = 0; 3233 for (i = 0; i < ch->n_rules - 1; i++) { 3234 rule = ch->map[i]; 3235 if (ipfw_match_range(rule, rt) == 0) 3236 continue; 3237 3238 l = rule->cmd_len; 3239 cmd = rule->cmd; 3240 cmdlen = 0; 3241 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3242 cmdlen = F_LEN(cmd); 3243 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3244 continue; 3245 no = ipfw_objhash_lookup_kidx(ni, kidx); 3246 KASSERT(no != NULL, 3247 ("objhash lookup failed on index %d", kidx)); 3248 tc = (struct table_config *)no; 3249 if (tc->no.refcnt != tc->ocount) { 3250 3251 /* 3252 * Number of references differ: 3253 * Other rule(s) are holding reference to given 3254 * table, so it is not possible to change its set. 3255 * 3256 * Note that refcnt may account 3257 * references to some going-to-be-added rules. 3258 * Since we don't know their numbers (and event 3259 * if they will be added) it is perfectly OK 3260 * to return error here. 3261 */ 3262 bad = 1; 3263 break; 3264 } 3265 } 3266 3267 if (bad != 0) 3268 break; 3269 } 3270 3271 /* Stage 3: change set or cleanup */ 3272 for (i = 0; i < ch->n_rules - 1; i++) { 3273 rule = ch->map[i]; 3274 if (ipfw_match_range(rule, rt) == 0) 3275 continue; 3276 3277 l = rule->cmd_len; 3278 cmd = rule->cmd; 3279 cmdlen = 0; 3280 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3281 cmdlen = F_LEN(cmd); 3282 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3283 continue; 3284 no = ipfw_objhash_lookup_kidx(ni, kidx); 3285 KASSERT(no != NULL, 3286 ("objhash lookup failed on index %d", kidx)); 3287 tc = (struct table_config *)no; 3288 3289 tc->ocount = 0; 3290 if (bad != 0) 3291 continue; 3292 3293 /* Actually change set. */ 3294 ipfw_objhash_del(ni, no); 3295 no->set = new_set; 3296 ipfw_objhash_add(ni, no); 3297 } 3298 } 3299 3300 return (bad); 3301 } 3302 3303 /* 3304 * Finds and bumps refcount for tables referenced by given @rule. 3305 * Auto-creates non-existing tables. 3306 * Fills in @oib array with userland/kernel indexes. 3307 * First free oidx pointer is saved back in @oib. 3308 * 3309 * Returns 0 on success. 3310 */ 3311 static int 3312 find_ref_rule_tables(struct ip_fw_chain *ch, struct ip_fw *rule, 3313 struct rule_check_info *ci, struct obj_idx **oib, struct tid_info *ti) 3314 { 3315 struct table_config *tc; 3316 struct namedobj_instance *ni; 3317 struct named_object *no; 3318 int cmdlen, error, l, numnew; 3319 uint16_t kidx; 3320 ipfw_insn *cmd; 3321 struct obj_idx *pidx, *pidx_first, *p; 3322 3323 pidx_first = *oib; 3324 pidx = pidx_first; 3325 l = rule->cmd_len; 3326 cmd = rule->cmd; 3327 cmdlen = 0; 3328 error = 0; 3329 numnew = 0; 3330 3331 IPFW_UH_WLOCK(ch); 3332 ni = CHAIN_TO_NI(ch); 3333 3334 /* Increase refcount on each existing referenced table. */ 3335 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3336 cmdlen = F_LEN(cmd); 3337 3338 if (classify_table_opcode(cmd, &ti->uidx, &ti->type) != 0) 3339 continue; 3340 3341 pidx->uidx = ti->uidx; 3342 pidx->type = ti->type; 3343 3344 if ((tc = find_table(ni, ti)) != NULL) { 3345 if (tc->no.type != ti->type) { 3346 /* Incompatible types */ 3347 error = EINVAL; 3348 break; 3349 } 3350 3351 /* Reference found table and save kidx */ 3352 tc->no.refcnt++; 3353 pidx->kidx = tc->no.kidx; 3354 pidx++; 3355 continue; 3356 } 3357 3358 /* 3359 * Compability stuff for old clients: 3360 * prepare to manually create non-existing tables. 3361 */ 3362 pidx++; 3363 numnew++; 3364 } 3365 3366 if (error != 0) { 3367 /* Unref everything we have already done */ 3368 for (p = *oib; p < pidx; p++) { 3369 if (p->kidx == 0) 3370 continue; 3371 3372 /* Find & unref by existing idx */ 3373 no = ipfw_objhash_lookup_kidx(ni, p->kidx); 3374 KASSERT(no != NULL, ("Ref'd table %d disappeared", 3375 p->kidx)); 3376 3377 no->refcnt--; 3378 } 3379 } 3380 3381 IPFW_UH_WUNLOCK(ch); 3382 3383 if (numnew == 0) { 3384 *oib = pidx; 3385 return (error); 3386 } 3387 3388 /* 3389 * Compatibility stuff: do actual creation for non-existing, 3390 * but referenced tables. 3391 */ 3392 for (p = pidx_first; p < pidx; p++) { 3393 if (p->kidx != 0) 3394 continue; 3395 3396 ti->uidx = p->uidx; 3397 ti->type = p->type; 3398 ti->atype = 0; 3399 3400 error = create_table_compat(ch, ti, &kidx); 3401 if (error == 0) { 3402 p->kidx = kidx; 3403 continue; 3404 } 3405 3406 /* Error. We have to drop references */ 3407 IPFW_UH_WLOCK(ch); 3408 for (p = pidx_first; p < pidx; p++) { 3409 if (p->kidx == 0) 3410 continue; 3411 3412 /* Find & unref by existing idx */ 3413 no = ipfw_objhash_lookup_kidx(ni, p->kidx); 3414 KASSERT(no != NULL, ("Ref'd table %d disappeared", 3415 p->kidx)); 3416 3417 no->refcnt--; 3418 } 3419 IPFW_UH_WUNLOCK(ch); 3420 3421 return (error); 3422 } 3423 3424 *oib = pidx; 3425 3426 return (error); 3427 } 3428 3429 /* 3430 * Remove references from every table used in @rule. 3431 */ 3432 void 3433 ipfw_unref_rule_tables(struct ip_fw_chain *chain, struct ip_fw *rule) 3434 { 3435 int cmdlen, l; 3436 ipfw_insn *cmd; 3437 struct namedobj_instance *ni; 3438 struct named_object *no; 3439 uint16_t kidx; 3440 uint8_t type; 3441 3442 IPFW_UH_WLOCK_ASSERT(chain); 3443 ni = CHAIN_TO_NI(chain); 3444 3445 l = rule->cmd_len; 3446 cmd = rule->cmd; 3447 cmdlen = 0; 3448 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3449 cmdlen = F_LEN(cmd); 3450 3451 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3452 continue; 3453 3454 no = ipfw_objhash_lookup_kidx(ni, kidx); 3455 3456 KASSERT(no != NULL, ("table id %d not found", kidx)); 3457 KASSERT(no->type == type, ("wrong type %d (%d) for table id %d", 3458 no->type, type, kidx)); 3459 KASSERT(no->refcnt > 0, ("refcount for table %d is %d", 3460 kidx, no->refcnt)); 3461 3462 no->refcnt--; 3463 } 3464 } 3465 3466 /* 3467 * Compatibility function for old ipfw(8) binaries. 3468 * Rewrites table kernel indices with userland ones. 3469 * Convert tables matching '/^\d+$/' to their atoi() value. 3470 * Use number 65535 for other tables. 3471 * 3472 * Returns 0 on success. 3473 */ 3474 int 3475 ipfw_rewrite_table_kidx(struct ip_fw_chain *chain, struct ip_fw_rule0 *rule) 3476 { 3477 int cmdlen, error, l; 3478 ipfw_insn *cmd; 3479 uint16_t kidx, uidx; 3480 uint8_t type; 3481 struct named_object *no; 3482 struct namedobj_instance *ni; 3483 3484 ni = CHAIN_TO_NI(chain); 3485 error = 0; 3486 3487 l = rule->cmd_len; 3488 cmd = rule->cmd; 3489 cmdlen = 0; 3490 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3491 cmdlen = F_LEN(cmd); 3492 3493 if (classify_table_opcode(cmd, &kidx, &type) != 0) 3494 continue; 3495 3496 if ((no = ipfw_objhash_lookup_kidx(ni, kidx)) == NULL) 3497 return (1); 3498 3499 uidx = no->uidx; 3500 if (no->compat == 0) { 3501 3502 /* 3503 * We are called via legacy opcode. 3504 * Save error and show table as fake number 3505 * not to make ipfw(8) hang. 3506 */ 3507 uidx = 65535; 3508 error = 2; 3509 } 3510 3511 update_table_opcode(cmd, uidx); 3512 } 3513 3514 return (error); 3515 } 3516 3517 /* 3518 * Checks is opcode is referencing table of appropriate type. 3519 * Adds reference count for found table if true. 3520 * Rewrites user-supplied opcode values with kernel ones. 3521 * 3522 * Returns 0 on success and appropriate error code otherwise. 3523 */ 3524 int 3525 ipfw_rewrite_table_uidx(struct ip_fw_chain *chain, 3526 struct rule_check_info *ci) 3527 { 3528 int cmdlen, error, l; 3529 ipfw_insn *cmd; 3530 uint16_t uidx; 3531 uint8_t type; 3532 struct namedobj_instance *ni; 3533 struct obj_idx *p, *pidx_first, *pidx_last; 3534 struct tid_info ti; 3535 3536 ni = CHAIN_TO_NI(chain); 3537 3538 /* 3539 * Prepare an array for storing opcode indices. 3540 * Use stack allocation by default. 3541 */ 3542 if (ci->table_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) { 3543 /* Stack */ 3544 pidx_first = ci->obuf; 3545 } else 3546 pidx_first = malloc(ci->table_opcodes * sizeof(struct obj_idx), 3547 M_IPFW, M_WAITOK | M_ZERO); 3548 3549 pidx_last = pidx_first; 3550 error = 0; 3551 type = 0; 3552 memset(&ti, 0, sizeof(ti)); 3553 3554 /* 3555 * Use default set for looking up tables (old way) or 3556 * use set rule is assigned to (new way). 3557 */ 3558 ti.set = (V_fw_tables_sets != 0) ? ci->krule->set : 0; 3559 if (ci->ctlv != NULL) { 3560 ti.tlvs = (void *)(ci->ctlv + 1); 3561 ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv); 3562 } 3563 3564 /* Reference all used tables */ 3565 error = find_ref_rule_tables(chain, ci->krule, ci, &pidx_last, &ti); 3566 if (error != 0) 3567 goto free; 3568 3569 IPFW_UH_WLOCK(chain); 3570 3571 /* Perform rule rewrite */ 3572 l = ci->krule->cmd_len; 3573 cmd = ci->krule->cmd; 3574 cmdlen = 0; 3575 p = pidx_first; 3576 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3577 cmdlen = F_LEN(cmd); 3578 if (classify_table_opcode(cmd, &uidx, &type) != 0) 3579 continue; 3580 update_table_opcode(cmd, p->kidx); 3581 p++; 3582 } 3583 3584 IPFW_UH_WUNLOCK(chain); 3585 3586 free: 3587 if (pidx_first != ci->obuf) 3588 free(pidx_first, M_IPFW); 3589 3590 return (error); 3591 } 3592 3593 static struct ipfw_sopt_handler scodes[] = { 3594 { IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table }, 3595 { IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 }, 3596 { IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 }, 3597 { IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table }, 3598 { IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table }, 3599 { IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables }, 3600 { IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 }, 3601 { IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 }, 3602 { IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 }, 3603 { IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 }, 3604 { IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 }, 3605 { IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 }, 3606 { IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry }, 3607 { IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table }, 3608 { IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo }, 3609 { IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size }, 3610 }; 3611 3612 static void 3613 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no, 3614 void *arg) 3615 { 3616 3617 unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no); 3618 if (ipfw_objhash_free_idx(ni, no->kidx) != 0) 3619 printf("Error unlinking kidx %d from table %s\n", 3620 no->kidx, no->name); 3621 free_table_config(ni, (struct table_config *)no); 3622 } 3623 3624 /* 3625 * Shuts tables module down. 3626 */ 3627 void 3628 ipfw_destroy_tables(struct ip_fw_chain *ch, int last) 3629 { 3630 3631 IPFW_DEL_SOPT_HANDLER(last, scodes); 3632 3633 /* Remove all tables from working set */ 3634 IPFW_UH_WLOCK(ch); 3635 IPFW_WLOCK(ch); 3636 ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch); 3637 IPFW_WUNLOCK(ch); 3638 IPFW_UH_WUNLOCK(ch); 3639 3640 /* Free pointers itself */ 3641 free(ch->tablestate, M_IPFW); 3642 3643 ipfw_table_value_destroy(ch, last); 3644 ipfw_table_algo_destroy(ch); 3645 3646 ipfw_objhash_destroy(CHAIN_TO_NI(ch)); 3647 free(CHAIN_TO_TCFG(ch), M_IPFW); 3648 } 3649 3650 /* 3651 * Starts tables module. 3652 */ 3653 int 3654 ipfw_init_tables(struct ip_fw_chain *ch, int first) 3655 { 3656 struct tables_config *tcfg; 3657 3658 /* Allocate pointers */ 3659 ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info), 3660 M_IPFW, M_WAITOK | M_ZERO); 3661 3662 tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO); 3663 tcfg->namehash = ipfw_objhash_create(V_fw_tables_max); 3664 ch->tblcfg = tcfg; 3665 3666 ipfw_table_value_init(ch, first); 3667 ipfw_table_algo_init(ch); 3668 3669 IPFW_ADD_SOPT_HANDLER(first, scodes); 3670 return (0); 3671 } 3672 3673 3674 3675