xref: /freebsd/sys/netpfil/ipfw/ip_fw_table.c (revision 23210c9f42af94dc6bcdae3996d8a3d010dd6bfe)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
5  * Copyright (c) 2014 Yandex LLC
6  * Copyright (c) 2014 Alexander V. Chernikov
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Lookup table support for ipfw.
35  *
36  * This file contains handlers for all generic tables' operations:
37  * add/del/flush entries, list/dump tables etc..
38  *
39  * Table data modification is protected by both UH and runtime lock
40  * while reading configuration/data is protected by UH lock.
41  *
42  * Lookup algorithms for all table types are located in ip_fw_table_algo.c
43  */
44 
45 #include "opt_ipfw.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/rmlock.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/queue.h>
57 #include <net/if.h>	/* ip_fw.h requires IFNAMSIZ */
58 
59 #include <netinet/in.h>
60 #include <netinet/ip_var.h>	/* struct ipfw_rule_ref */
61 #include <netinet/ip_fw.h>
62 
63 #include <netpfil/ipfw/ip_fw_private.h>
64 #include <netpfil/ipfw/ip_fw_table.h>
65 
66  /*
67  * Table has the following `type` concepts:
68  *
69  * `no.type` represents lookup key type (addr, ifp, uid, etc..)
70  * vmask represents bitmask of table values which are present at the moment.
71  * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old
72  * single-value-for-all approach.
73  */
74 struct table_config {
75 	struct named_object	no;
76 	uint8_t		tflags;		/* type flags */
77 	uint8_t		locked;		/* 1 if locked from changes */
78 	uint8_t		linked;		/* 1 if already linked */
79 	uint8_t		ochanged;	/* used by set swapping */
80 	uint8_t		vshared;	/* 1 if using shared value array */
81 	uint8_t		spare[3];
82 	uint32_t	count;		/* Number of records */
83 	uint32_t	limit;		/* Max number of records */
84 	uint32_t	vmask;		/* bitmask with supported values */
85 	uint32_t	ocount;		/* used by set swapping */
86 	uint64_t	gencnt;		/* generation count */
87 	char		tablename[64];	/* table name */
88 	struct table_algo	*ta;	/* Callbacks for given algo */
89 	void		*astate;	/* algorithm state */
90 	struct table_info	ti_copy;	/* data to put to table_info */
91 	struct namedobj_instance	*vi;
92 };
93 
94 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
95     struct table_config **tc);
96 static struct table_config *find_table(struct namedobj_instance *ni,
97     struct tid_info *ti);
98 static struct table_config *alloc_table_config(struct ip_fw_chain *ch,
99     struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags);
100 static void free_table_config(struct namedobj_instance *ni,
101     struct table_config *tc);
102 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
103     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref);
104 static void link_table(struct ip_fw_chain *ch, struct table_config *tc);
105 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc);
106 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
107     struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc);
108 #define	OP_ADD	1
109 #define	OP_DEL	0
110 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
111     struct sockopt_data *sd);
112 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
113     ipfw_xtable_info *i);
114 static int dump_table_tentry(void *e, void *arg);
115 static int dump_table_xentry(void *e, void *arg);
116 
117 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
118     struct tid_info *b);
119 
120 static int check_table_name(const char *name);
121 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
122     struct table_config *tc, struct table_info *ti, uint32_t count);
123 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti);
124 
125 static struct table_algo *find_table_algo(struct tables_config *tableconf,
126     struct tid_info *ti, char *name);
127 
128 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti);
129 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti);
130 
131 #define	CHAIN_TO_NI(chain)	(CHAIN_TO_TCFG(chain)->namehash)
132 #define	KIDX_TO_TI(ch, k)	(&(((struct table_info *)(ch)->tablestate)[k]))
133 
134 #define	TA_BUF_SZ	128	/* On-stack buffer for add/delete state */
135 
136 void
137 rollback_toperation_state(struct ip_fw_chain *ch, void *object)
138 {
139 	struct tables_config *tcfg;
140 	struct op_state *os;
141 
142 	tcfg = CHAIN_TO_TCFG(ch);
143 	TAILQ_FOREACH(os, &tcfg->state_list, next)
144 		os->func(object, os);
145 }
146 
147 void
148 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
149 {
150 	struct tables_config *tcfg;
151 
152 	tcfg = CHAIN_TO_TCFG(ch);
153 	TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next);
154 }
155 
156 void
157 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
158 {
159 	struct tables_config *tcfg;
160 
161 	tcfg = CHAIN_TO_TCFG(ch);
162 	TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next);
163 }
164 
165 void
166 tc_ref(struct table_config *tc)
167 {
168 
169 	tc->no.refcnt++;
170 }
171 
172 void
173 tc_unref(struct table_config *tc)
174 {
175 
176 	tc->no.refcnt--;
177 }
178 
179 static struct table_value *
180 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx)
181 {
182 	struct table_value *pval;
183 
184 	pval = (struct table_value *)ch->valuestate;
185 
186 	return (&pval[kidx]);
187 }
188 
189 /*
190  * Checks if we're able to insert/update entry @tei into table
191  * w.r.t @tc limits.
192  * May alter @tei to indicate insertion error / insert
193  * options.
194  *
195  * Returns 0 if operation can be performed/
196  */
197 static int
198 check_table_limit(struct table_config *tc, struct tentry_info *tei)
199 {
200 
201 	if (tc->limit == 0 || tc->count < tc->limit)
202 		return (0);
203 
204 	if ((tei->flags & TEI_FLAGS_UPDATE) == 0) {
205 		/* Notify userland on error cause */
206 		tei->flags |= TEI_FLAGS_LIMIT;
207 		return (EFBIG);
208 	}
209 
210 	/*
211 	 * We have UPDATE flag set.
212 	 * Permit updating record (if found),
213 	 * but restrict adding new one since we've
214 	 * already hit the limit.
215 	 */
216 	tei->flags |= TEI_FLAGS_DONTADD;
217 
218 	return (0);
219 }
220 
221 /*
222  * Convert algorithm callback return code into
223  * one of pre-defined states known by userland.
224  */
225 static void
226 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num)
227 {
228 	int flag;
229 
230 	flag = 0;
231 
232 	switch (error) {
233 	case 0:
234 		if (op == OP_ADD && num != 0)
235 			flag = TEI_FLAGS_ADDED;
236 		if (op == OP_DEL)
237 			flag = TEI_FLAGS_DELETED;
238 		break;
239 	case ENOENT:
240 		flag = TEI_FLAGS_NOTFOUND;
241 		break;
242 	case EEXIST:
243 		flag = TEI_FLAGS_EXISTS;
244 		break;
245 	default:
246 		flag = TEI_FLAGS_ERROR;
247 	}
248 
249 	tei->flags |= flag;
250 }
251 
252 /*
253  * Creates and references table with default parameters.
254  * Saves table config, algo and allocated kidx info @ptc, @pta and
255  * @pkidx if non-zero.
256  * Used for table auto-creation to support old binaries.
257  *
258  * Returns 0 on success.
259  */
260 static int
261 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti,
262     uint16_t *pkidx)
263 {
264 	ipfw_xtable_info xi;
265 	int error;
266 
267 	memset(&xi, 0, sizeof(xi));
268 	/* Set default value mask for legacy clients */
269 	xi.vmask = IPFW_VTYPE_LEGACY;
270 
271 	error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1);
272 	if (error != 0)
273 		return (error);
274 
275 	return (0);
276 }
277 
278 /*
279  * Find and reference existing table optionally
280  * creating new one.
281  *
282  * Saves found table config into @ptc.
283  * Note function may drop/acquire UH_WLOCK.
284  * Returns 0 if table was found/created and referenced
285  * or non-zero return code.
286  */
287 static int
288 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
289     struct tentry_info *tei, uint32_t count, int op,
290     struct table_config **ptc)
291 {
292 	struct namedobj_instance *ni;
293 	struct table_config *tc;
294 	uint16_t kidx;
295 	int error;
296 
297 	IPFW_UH_WLOCK_ASSERT(ch);
298 
299 	ni = CHAIN_TO_NI(ch);
300 	tc = NULL;
301 	if ((tc = find_table(ni, ti)) != NULL) {
302 		/* check table type */
303 		if (tc->no.subtype != ti->type)
304 			return (EINVAL);
305 
306 		if (tc->locked != 0)
307 			return (EACCES);
308 
309 		/* Try to exit early on limit hit */
310 		if (op == OP_ADD && count == 1 &&
311 		    check_table_limit(tc, tei) != 0)
312 			return (EFBIG);
313 
314 		/* Reference and return */
315 		tc->no.refcnt++;
316 		*ptc = tc;
317 		return (0);
318 	}
319 
320 	if (op == OP_DEL)
321 		return (ESRCH);
322 
323 	/* Compatibility mode: create new table for old clients */
324 	if ((tei->flags & TEI_FLAGS_COMPAT) == 0)
325 		return (ESRCH);
326 
327 	IPFW_UH_WUNLOCK(ch);
328 	error = create_table_compat(ch, ti, &kidx);
329 	IPFW_UH_WLOCK(ch);
330 
331 	if (error != 0)
332 		return (error);
333 
334 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
335 	KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx));
336 
337 	/* OK, now we've got referenced table. */
338 	*ptc = tc;
339 	return (0);
340 }
341 
342 /*
343  * Rolls back already @added to @tc entries using state array @ta_buf_m.
344  * Assume the following layout:
345  * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases
346  * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1])
347  *   for storing deleted state
348  */
349 static void
350 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc,
351     struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m,
352     uint32_t count, uint32_t added)
353 {
354 	struct table_algo *ta;
355 	struct tentry_info *ptei;
356 	caddr_t v, vv;
357 	size_t ta_buf_sz;
358 	int error __diagused, i;
359 	uint32_t num;
360 
361 	IPFW_UH_WLOCK_ASSERT(ch);
362 
363 	ta = tc->ta;
364 	ta_buf_sz = ta->ta_buf_size;
365 	v = ta_buf_m;
366 	vv = v + count * ta_buf_sz;
367 	for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) {
368 		ptei = &tei[i];
369 		if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) {
370 			/*
371 			 * We have old value stored by previous
372 			 * call in @ptei->value. Do add once again
373 			 * to restore it.
374 			 */
375 			error = ta->add(tc->astate, tinfo, ptei, v, &num);
376 			KASSERT(error == 0, ("rollback UPDATE fail"));
377 			KASSERT(num == 0, ("rollback UPDATE fail2"));
378 			continue;
379 		}
380 
381 		error = ta->prepare_del(ch, ptei, vv);
382 		KASSERT(error == 0, ("pre-rollback INSERT failed"));
383 		error = ta->del(tc->astate, tinfo, ptei, vv, &num);
384 		KASSERT(error == 0, ("rollback INSERT failed"));
385 		tc->count -= num;
386 	}
387 }
388 
389 /*
390  * Prepares add/del state for all @count entries in @tei.
391  * Uses either stack buffer (@ta_buf) or allocates a new one.
392  * Stores pointer to allocated buffer back to @ta_buf.
393  *
394  * Returns 0 on success.
395  */
396 static int
397 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
398     struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf)
399 {
400 	caddr_t ta_buf_m, v;
401 	size_t ta_buf_sz, sz;
402 	struct tentry_info *ptei;
403 	int error, i;
404 
405 	error = 0;
406 	ta_buf_sz = ta->ta_buf_size;
407 	if (count == 1) {
408 		/* Single add/delete, use on-stack buffer */
409 		memset(*ta_buf, 0, TA_BUF_SZ);
410 		ta_buf_m = *ta_buf;
411 	} else {
412 		/*
413 		 * Multiple adds/deletes, allocate larger buffer
414 		 *
415 		 * Note we need 2xcount buffer for add case:
416 		 * we have hold both ADD state
417 		 * and DELETE state (this may be needed
418 		 * if we need to rollback all changes)
419 		 */
420 		sz = count * ta_buf_sz;
421 		ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP,
422 		    M_WAITOK | M_ZERO);
423 	}
424 
425 	v = ta_buf_m;
426 	for (i = 0; i < count; i++, v += ta_buf_sz) {
427 		ptei = &tei[i];
428 		error = (op == OP_ADD) ?
429 		    ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v);
430 
431 		/*
432 		 * Some syntax error (incorrect mask, or address, or
433 		 * anything). Return error regardless of atomicity
434 		 * settings.
435 		 */
436 		if (error != 0)
437 			break;
438 	}
439 
440 	*ta_buf = ta_buf_m;
441 	return (error);
442 }
443 
444 /*
445  * Flushes allocated state for each @count entries in @tei.
446  * Frees @ta_buf_m if differs from stack buffer @ta_buf.
447  */
448 static void
449 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
450     struct tentry_info *tei, uint32_t count, int rollback,
451     caddr_t ta_buf_m, caddr_t ta_buf)
452 {
453 	caddr_t v;
454 	struct tentry_info *ptei;
455 	size_t ta_buf_sz;
456 	int i;
457 
458 	ta_buf_sz = ta->ta_buf_size;
459 
460 	/* Run cleaning callback anyway */
461 	v = ta_buf_m;
462 	for (i = 0; i < count; i++, v += ta_buf_sz) {
463 		ptei = &tei[i];
464 		ta->flush_entry(ch, ptei, v);
465 		if (ptei->ptv != NULL) {
466 			free(ptei->ptv, M_IPFW);
467 			ptei->ptv = NULL;
468 		}
469 	}
470 
471 	/* Clean up "deleted" state in case of rollback */
472 	if (rollback != 0) {
473 		v = ta_buf_m + count * ta_buf_sz;
474 		for (i = 0; i < count; i++, v += ta_buf_sz)
475 			ta->flush_entry(ch, &tei[i], v);
476 	}
477 
478 	if (ta_buf_m != ta_buf)
479 		free(ta_buf_m, M_TEMP);
480 }
481 
482 static void
483 rollback_add_entry(void *object, struct op_state *_state)
484 {
485 	struct ip_fw_chain *ch __diagused;
486 	struct tableop_state *ts;
487 
488 	ts = (struct tableop_state *)_state;
489 
490 	if (ts->tc != object && ts->ch != object)
491 		return;
492 
493 	ch = ts->ch;
494 
495 	IPFW_UH_WLOCK_ASSERT(ch);
496 
497 	/* Call specifid unlockers */
498 	rollback_table_values(ts);
499 
500 	/* Indicate we've called */
501 	ts->modified = 1;
502 }
503 
504 /*
505  * Adds/updates one or more entries in table @ti.
506  *
507  * Function may drop/reacquire UH wlock multiple times due to
508  * items alloc, algorithm callbacks (check_space), value linkage
509  * (new values, value storage realloc), etc..
510  * Other processes like other adds (which may involve storage resize),
511  * table swaps (which changes table data and may change algo type),
512  * table modify (which may change value mask) may be executed
513  * simultaneously so we need to deal with it.
514  *
515  * The following approach was implemented:
516  * we have per-chain linked list, protected with UH lock.
517  * add_table_entry prepares special on-stack structure wthich is passed
518  * to its descendants. Users add this structure to this list before unlock.
519  * After performing needed operations and acquiring UH lock back, each user
520  * checks if structure has changed. If true, it rolls local state back and
521  * returns without error to the caller.
522  * add_table_entry() on its own checks if structure has changed and restarts
523  * its operation from the beginning (goto restart).
524  *
525  * Functions which are modifying fields of interest (currently
526  *   resize_shared_value_storage() and swap_tables() )
527  * traverses given list while holding UH lock immediately before
528  * performing their operations calling function provided be list entry
529  * ( currently rollback_add_entry  ) which performs rollback for all necessary
530  * state and sets appropriate values in structure indicating rollback
531  * has happened.
532  *
533  * Algo interaction:
534  * Function references @ti first to ensure table won't
535  * disappear or change its type.
536  * After that, prepare_add callback is called for each @tei entry.
537  * Next, we try to add each entry under UH+WHLOCK
538  * using add() callback.
539  * Finally, we free all state by calling flush_entry callback
540  * for each @tei.
541  *
542  * Returns 0 on success.
543  */
544 int
545 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
546     struct tentry_info *tei, uint8_t flags, uint32_t count)
547 {
548 	struct table_config *tc;
549 	struct table_algo *ta;
550 	uint16_t kidx;
551 	int error, first_error, i, rollback;
552 	uint32_t num, numadd;
553 	struct tentry_info *ptei;
554 	struct tableop_state ts;
555 	char ta_buf[TA_BUF_SZ];
556 	caddr_t ta_buf_m, v;
557 
558 	memset(&ts, 0, sizeof(ts));
559 	ta = NULL;
560 	IPFW_UH_WLOCK(ch);
561 
562 	/*
563 	 * Find and reference existing table.
564 	 */
565 restart:
566 	if (ts.modified != 0) {
567 		IPFW_UH_WUNLOCK(ch);
568 		flush_batch_buffer(ch, ta, tei, count, rollback,
569 		    ta_buf_m, ta_buf);
570 		memset(&ts, 0, sizeof(ts));
571 		ta = NULL;
572 		IPFW_UH_WLOCK(ch);
573 	}
574 
575 	error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc);
576 	if (error != 0) {
577 		IPFW_UH_WUNLOCK(ch);
578 		return (error);
579 	}
580 	ta = tc->ta;
581 
582 	/* Fill in tablestate */
583 	ts.ch = ch;
584 	ts.opstate.func = rollback_add_entry;
585 	ts.tc = tc;
586 	ts.vshared = tc->vshared;
587 	ts.vmask = tc->vmask;
588 	ts.ta = ta;
589 	ts.tei = tei;
590 	ts.count = count;
591 	rollback = 0;
592 	add_toperation_state(ch, &ts);
593 	IPFW_UH_WUNLOCK(ch);
594 
595 	/* Allocate memory and prepare record(s) */
596 	/* Pass stack buffer by default */
597 	ta_buf_m = ta_buf;
598 	error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m);
599 
600 	IPFW_UH_WLOCK(ch);
601 	del_toperation_state(ch, &ts);
602 	/* Drop reference we've used in first search */
603 	tc->no.refcnt--;
604 
605 	/* Check prepare_batch_buffer() error */
606 	if (error != 0)
607 		goto cleanup;
608 
609 	/*
610 	 * Check if table swap has happened.
611 	 * (so table algo might be changed).
612 	 * Restart operation to achieve consistent behavior.
613 	 */
614 	if (ts.modified != 0)
615 		goto restart;
616 
617 	/*
618 	 * Link all values values to shared/per-table value array.
619 	 *
620 	 * May release/reacquire UH_WLOCK.
621 	 */
622 	error = ipfw_link_table_values(ch, &ts, flags);
623 	if (error != 0)
624 		goto cleanup;
625 	if (ts.modified != 0)
626 		goto restart;
627 
628 	/*
629 	 * Ensure we are able to add all entries without additional
630 	 * memory allocations. May release/reacquire UH_WLOCK.
631 	 */
632 	kidx = tc->no.kidx;
633 	error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count);
634 	if (error != 0)
635 		goto cleanup;
636 	if (ts.modified != 0)
637 		goto restart;
638 
639 	/* We've got valid table in @tc. Let's try to add data */
640 	kidx = tc->no.kidx;
641 	ta = tc->ta;
642 	numadd = 0;
643 	first_error = 0;
644 
645 	IPFW_WLOCK(ch);
646 
647 	v = ta_buf_m;
648 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
649 		ptei = &tei[i];
650 		num = 0;
651 		/* check limit before adding */
652 		if ((error = check_table_limit(tc, ptei)) == 0) {
653 			/*
654 			 * It should be safe to insert a record w/o
655 			 * a properly-linked value if atomicity is
656 			 * not required.
657 			 *
658 			 * If the added item does not have a valid value
659 			 * index, it would get rejected by ta->add().
660 			 * */
661 			error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx),
662 			    ptei, v, &num);
663 			/* Set status flag to inform userland */
664 			store_tei_result(ptei, OP_ADD, error, num);
665 		}
666 		if (error == 0) {
667 			/* Update number of records to ease limit checking */
668 			tc->count += num;
669 			numadd += num;
670 			continue;
671 		}
672 
673 		if (first_error == 0)
674 			first_error = error;
675 
676 		/*
677 		 * Some error have happened. Check our atomicity
678 		 * settings: continue if atomicity is not required,
679 		 * rollback changes otherwise.
680 		 */
681 		if ((flags & IPFW_CTF_ATOMIC) == 0)
682 			continue;
683 
684 		rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx),
685 		    tei, ta_buf_m, count, i);
686 
687 		rollback = 1;
688 		break;
689 	}
690 
691 	IPFW_WUNLOCK(ch);
692 
693 	ipfw_garbage_table_values(ch, tc, tei, count, rollback);
694 
695 	/* Permit post-add algorithm grow/rehash. */
696 	if (numadd != 0)
697 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
698 
699 	/* Return first error to user, if any */
700 	error = first_error;
701 
702 cleanup:
703 	IPFW_UH_WUNLOCK(ch);
704 
705 	flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf);
706 
707 	return (error);
708 }
709 
710 /*
711  * Deletes one or more entries in table @ti.
712  *
713  * Returns 0 on success.
714  */
715 int
716 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
717     struct tentry_info *tei, uint8_t flags, uint32_t count)
718 {
719 	struct table_config *tc;
720 	struct table_algo *ta;
721 	struct tentry_info *ptei;
722 	uint16_t kidx;
723 	int error, first_error, i;
724 	uint32_t num, numdel;
725 	char ta_buf[TA_BUF_SZ];
726 	caddr_t ta_buf_m, v;
727 
728 	/*
729 	 * Find and reference existing table.
730 	 */
731 	IPFW_UH_WLOCK(ch);
732 	error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc);
733 	if (error != 0) {
734 		IPFW_UH_WUNLOCK(ch);
735 		return (error);
736 	}
737 	ta = tc->ta;
738 	IPFW_UH_WUNLOCK(ch);
739 
740 	/* Allocate memory and prepare record(s) */
741 	/* Pass stack buffer by default */
742 	ta_buf_m = ta_buf;
743 	error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m);
744 	if (error != 0)
745 		goto cleanup;
746 
747 	IPFW_UH_WLOCK(ch);
748 
749 	/* Drop reference we've used in first search */
750 	tc->no.refcnt--;
751 
752 	/*
753 	 * Check if table algo is still the same.
754 	 * (changed ta may be the result of table swap).
755 	 */
756 	if (ta != tc->ta) {
757 		IPFW_UH_WUNLOCK(ch);
758 		error = EINVAL;
759 		goto cleanup;
760 	}
761 
762 	kidx = tc->no.kidx;
763 	numdel = 0;
764 	first_error = 0;
765 
766 	IPFW_WLOCK(ch);
767 	v = ta_buf_m;
768 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
769 		ptei = &tei[i];
770 		num = 0;
771 		error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v,
772 		    &num);
773 		/* Save state for userland */
774 		store_tei_result(ptei, OP_DEL, error, num);
775 		if (error != 0 && first_error == 0)
776 			first_error = error;
777 		tc->count -= num;
778 		numdel += num;
779 	}
780 	IPFW_WUNLOCK(ch);
781 
782 	/* Unlink non-used values */
783 	ipfw_garbage_table_values(ch, tc, tei, count, 0);
784 
785 	if (numdel != 0) {
786 		/* Run post-del hook to permit shrinking */
787 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
788 	}
789 
790 	IPFW_UH_WUNLOCK(ch);
791 
792 	/* Return first error to user, if any */
793 	error = first_error;
794 
795 cleanup:
796 	flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf);
797 
798 	return (error);
799 }
800 
801 /*
802  * Ensure that table @tc has enough space to add @count entries without
803  * need for reallocation.
804  *
805  * Callbacks order:
806  * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize.
807  *
808  * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags.
809  * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage
810  * 3) modify (UH_WLOCK + WLOCK) - switch pointers
811  * 4) flush_modify (UH_WLOCK) - free state, if needed
812  *
813  * Returns 0 on success.
814  */
815 static int
816 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
817     struct table_config *tc, struct table_info *ti, uint32_t count)
818 {
819 	struct table_algo *ta;
820 	uint64_t pflags;
821 	char ta_buf[TA_BUF_SZ];
822 	int error;
823 
824 	IPFW_UH_WLOCK_ASSERT(ch);
825 
826 	error = 0;
827 	ta = tc->ta;
828 	if (ta->need_modify == NULL)
829 		return (0);
830 
831 	/* Acquire reference not to loose @tc between locks/unlocks */
832 	tc->no.refcnt++;
833 
834 	/*
835 	 * TODO: think about avoiding race between large add/large delete
836 	 * operation on algorithm which implements shrinking along with
837 	 * growing.
838 	 */
839 	while (true) {
840 		pflags = 0;
841 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
842 			error = 0;
843 			break;
844 		}
845 
846 		/* We have to shrink/grow table */
847 		if (ts != NULL)
848 			add_toperation_state(ch, ts);
849 		IPFW_UH_WUNLOCK(ch);
850 
851 		memset(&ta_buf, 0, sizeof(ta_buf));
852 		error = ta->prepare_mod(ta_buf, &pflags);
853 
854 		IPFW_UH_WLOCK(ch);
855 		if (ts != NULL)
856 			del_toperation_state(ch, ts);
857 
858 		if (error != 0)
859 			break;
860 
861 		if (ts != NULL && ts->modified != 0) {
862 			/*
863 			 * Swap operation has happened
864 			 * so we're currently operating on other
865 			 * table data. Stop doing this.
866 			 */
867 			ta->flush_mod(ta_buf);
868 			break;
869 		}
870 
871 		/* Check if we still need to alter table */
872 		ti = KIDX_TO_TI(ch, tc->no.kidx);
873 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
874 			IPFW_UH_WUNLOCK(ch);
875 
876 			/*
877 			 * Other thread has already performed resize.
878 			 * Flush our state and return.
879 			 */
880 			ta->flush_mod(ta_buf);
881 			break;
882 		}
883 
884 		error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags);
885 		if (error == 0) {
886 			/* Do actual modification */
887 			IPFW_WLOCK(ch);
888 			ta->modify(tc->astate, ti, ta_buf, pflags);
889 			IPFW_WUNLOCK(ch);
890 		}
891 
892 		/* Anyway, flush data and retry */
893 		ta->flush_mod(ta_buf);
894 	}
895 
896 	tc->no.refcnt--;
897 	return (error);
898 }
899 
900 /*
901  * Adds or deletes record in table.
902  * Data layout (v0):
903  * Request: [ ip_fw3_opheader ipfw_table_xentry ]
904  *
905  * Returns 0 on success
906  */
907 static int
908 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
909     struct sockopt_data *sd)
910 {
911 	ipfw_table_xentry *xent;
912 	struct tentry_info tei;
913 	struct tid_info ti;
914 	struct table_value v;
915 	int error, hdrlen, read;
916 
917 	hdrlen = offsetof(ipfw_table_xentry, k);
918 
919 	/* Check minimum header size */
920 	if (sd->valsize < (sizeof(*op3) + hdrlen))
921 		return (EINVAL);
922 
923 	read = sizeof(ip_fw3_opheader);
924 
925 	/* Check if xentry len field is valid */
926 	xent = (ipfw_table_xentry *)(op3 + 1);
927 	if (xent->len < hdrlen || xent->len + read > sd->valsize)
928 		return (EINVAL);
929 
930 	memset(&tei, 0, sizeof(tei));
931 	tei.paddr = &xent->k;
932 	tei.masklen = xent->masklen;
933 	ipfw_import_table_value_legacy(xent->value, &v);
934 	tei.pvalue = &v;
935 	/* Old requests compatibility */
936 	tei.flags = TEI_FLAGS_COMPAT;
937 	if (xent->type == IPFW_TABLE_ADDR) {
938 		if (xent->len - hdrlen == sizeof(in_addr_t))
939 			tei.subtype = AF_INET;
940 		else
941 			tei.subtype = AF_INET6;
942 	}
943 
944 	memset(&ti, 0, sizeof(ti));
945 	ti.uidx = xent->tbl;
946 	ti.type = xent->type;
947 
948 	error = (op3->opcode == IP_FW_TABLE_XADD) ?
949 	    add_table_entry(ch, &ti, &tei, 0, 1) :
950 	    del_table_entry(ch, &ti, &tei, 0, 1);
951 
952 	return (error);
953 }
954 
955 /*
956  * Adds or deletes record in table.
957  * Data layout (v1)(current):
958  * Request: [ ipfw_obj_header
959  *   ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ]
960  * ]
961  *
962  * Returns 0 on success
963  */
964 static int
965 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
966     struct sockopt_data *sd)
967 {
968 	ipfw_obj_tentry *tent, *ptent;
969 	ipfw_obj_ctlv *ctlv;
970 	ipfw_obj_header *oh;
971 	struct tentry_info *ptei, tei, *tei_buf;
972 	struct tid_info ti;
973 	int error, i, kidx, read;
974 
975 	/* Check minimum header size */
976 	if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv)))
977 		return (EINVAL);
978 
979 	/* Check if passed data is too long */
980 	if (sd->valsize != sd->kavail)
981 		return (EINVAL);
982 
983 	oh = (ipfw_obj_header *)sd->kbuf;
984 
985 	/* Basic length checks for TLVs */
986 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
987 		return (EINVAL);
988 
989 	read = sizeof(*oh);
990 
991 	ctlv = (ipfw_obj_ctlv *)(oh + 1);
992 	if (ctlv->head.length + read != sd->valsize)
993 		return (EINVAL);
994 
995 	read += sizeof(*ctlv);
996 	tent = (ipfw_obj_tentry *)(ctlv + 1);
997 	if (ctlv->count * sizeof(*tent) + read != sd->valsize)
998 		return (EINVAL);
999 
1000 	if (ctlv->count == 0)
1001 		return (0);
1002 
1003 	/*
1004 	 * Mark entire buffer as "read".
1005 	 * This instructs sopt api write it back
1006 	 * after function return.
1007 	 */
1008 	ipfw_get_sopt_header(sd, sd->valsize);
1009 
1010 	/* Perform basic checks for each entry */
1011 	ptent = tent;
1012 	kidx = tent->idx;
1013 	for (i = 0; i < ctlv->count; i++, ptent++) {
1014 		if (ptent->head.length != sizeof(*ptent))
1015 			return (EINVAL);
1016 		if (ptent->idx != kidx)
1017 			return (ENOTSUP);
1018 	}
1019 
1020 	/* Convert data into kernel request objects */
1021 	objheader_to_ti(oh, &ti);
1022 	ti.type = oh->ntlv.type;
1023 	ti.uidx = kidx;
1024 
1025 	/* Use on-stack buffer for single add/del */
1026 	if (ctlv->count == 1) {
1027 		memset(&tei, 0, sizeof(tei));
1028 		tei_buf = &tei;
1029 	} else
1030 		tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP,
1031 		    M_WAITOK | M_ZERO);
1032 
1033 	ptei = tei_buf;
1034 	ptent = tent;
1035 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1036 		ptei->paddr = &ptent->k;
1037 		ptei->subtype = ptent->subtype;
1038 		ptei->masklen = ptent->masklen;
1039 		if (ptent->head.flags & IPFW_TF_UPDATE)
1040 			ptei->flags |= TEI_FLAGS_UPDATE;
1041 
1042 		ipfw_import_table_value_v1(&ptent->v.value);
1043 		ptei->pvalue = (struct table_value *)&ptent->v.value;
1044 	}
1045 
1046 	error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ?
1047 	    add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) :
1048 	    del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count);
1049 
1050 	/* Translate result back to userland */
1051 	ptei = tei_buf;
1052 	ptent = tent;
1053 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1054 		if (ptei->flags & TEI_FLAGS_ADDED)
1055 			ptent->result = IPFW_TR_ADDED;
1056 		else if (ptei->flags & TEI_FLAGS_DELETED)
1057 			ptent->result = IPFW_TR_DELETED;
1058 		else if (ptei->flags & TEI_FLAGS_UPDATED)
1059 			ptent->result = IPFW_TR_UPDATED;
1060 		else if (ptei->flags & TEI_FLAGS_LIMIT)
1061 			ptent->result = IPFW_TR_LIMIT;
1062 		else if (ptei->flags & TEI_FLAGS_ERROR)
1063 			ptent->result = IPFW_TR_ERROR;
1064 		else if (ptei->flags & TEI_FLAGS_NOTFOUND)
1065 			ptent->result = IPFW_TR_NOTFOUND;
1066 		else if (ptei->flags & TEI_FLAGS_EXISTS)
1067 			ptent->result = IPFW_TR_EXISTS;
1068 		ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value);
1069 	}
1070 
1071 	if (tei_buf != &tei)
1072 		free(tei_buf, M_TEMP);
1073 
1074 	return (error);
1075 }
1076 
1077 /*
1078  * Looks up an entry in given table.
1079  * Data layout (v0)(current):
1080  * Request: [ ipfw_obj_header ipfw_obj_tentry ]
1081  * Reply: [ ipfw_obj_header ipfw_obj_tentry ]
1082  *
1083  * Returns 0 on success
1084  */
1085 static int
1086 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1087     struct sockopt_data *sd)
1088 {
1089 	ipfw_obj_tentry *tent;
1090 	ipfw_obj_header *oh;
1091 	struct tid_info ti;
1092 	struct table_config *tc;
1093 	struct table_algo *ta;
1094 	struct table_info *kti;
1095 	struct table_value *pval;
1096 	struct namedobj_instance *ni;
1097 	int error;
1098 	size_t sz;
1099 
1100 	/* Check minimum header size */
1101 	sz = sizeof(*oh) + sizeof(*tent);
1102 	if (sd->valsize != sz)
1103 		return (EINVAL);
1104 
1105 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1106 	tent = (ipfw_obj_tentry *)(oh + 1);
1107 
1108 	/* Basic length checks for TLVs */
1109 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
1110 		return (EINVAL);
1111 
1112 	objheader_to_ti(oh, &ti);
1113 	ti.type = oh->ntlv.type;
1114 	ti.uidx = tent->idx;
1115 
1116 	IPFW_UH_RLOCK(ch);
1117 	ni = CHAIN_TO_NI(ch);
1118 
1119 	/*
1120 	 * Find existing table and check its type .
1121 	 */
1122 	ta = NULL;
1123 	if ((tc = find_table(ni, &ti)) == NULL) {
1124 		IPFW_UH_RUNLOCK(ch);
1125 		return (ESRCH);
1126 	}
1127 
1128 	/* check table type */
1129 	if (tc->no.subtype != ti.type) {
1130 		IPFW_UH_RUNLOCK(ch);
1131 		return (EINVAL);
1132 	}
1133 
1134 	kti = KIDX_TO_TI(ch, tc->no.kidx);
1135 	ta = tc->ta;
1136 
1137 	if (ta->find_tentry == NULL)
1138 		return (ENOTSUP);
1139 
1140 	error = ta->find_tentry(tc->astate, kti, tent);
1141 	if (error == 0) {
1142 		pval = get_table_value(ch, tc, tent->v.kidx);
1143 		ipfw_export_table_value_v1(pval, &tent->v.value);
1144 	}
1145 	IPFW_UH_RUNLOCK(ch);
1146 
1147 	return (error);
1148 }
1149 
1150 /*
1151  * Flushes all entries or destroys given table.
1152  * Data layout (v0)(current):
1153  * Request: [ ipfw_obj_header ]
1154  *
1155  * Returns 0 on success
1156  */
1157 static int
1158 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1159     struct sockopt_data *sd)
1160 {
1161 	int error;
1162 	struct _ipfw_obj_header *oh;
1163 	struct tid_info ti;
1164 
1165 	if (sd->valsize != sizeof(*oh))
1166 		return (EINVAL);
1167 
1168 	oh = (struct _ipfw_obj_header *)op3;
1169 	objheader_to_ti(oh, &ti);
1170 
1171 	if (op3->opcode == IP_FW_TABLE_XDESTROY)
1172 		error = destroy_table(ch, &ti);
1173 	else if (op3->opcode == IP_FW_TABLE_XFLUSH)
1174 		error = flush_table(ch, &ti);
1175 	else
1176 		return (ENOTSUP);
1177 
1178 	return (error);
1179 }
1180 
1181 static void
1182 restart_flush(void *object, struct op_state *_state)
1183 {
1184 	struct tableop_state *ts;
1185 
1186 	ts = (struct tableop_state *)_state;
1187 
1188 	if (ts->tc != object)
1189 		return;
1190 
1191 	/* Indicate we've called */
1192 	ts->modified = 1;
1193 }
1194 
1195 /*
1196  * Flushes given table.
1197  *
1198  * Function create new table instance with the same
1199  * parameters, swaps it with old one and
1200  * flushes state without holding runtime WLOCK.
1201  *
1202  * Returns 0 on success.
1203  */
1204 int
1205 flush_table(struct ip_fw_chain *ch, struct tid_info *ti)
1206 {
1207 	struct namedobj_instance *ni;
1208 	struct table_config *tc;
1209 	struct table_algo *ta;
1210 	struct table_info ti_old, ti_new, *tablestate;
1211 	void *astate_old, *astate_new;
1212 	char algostate[64], *pstate;
1213 	struct tableop_state ts;
1214 	int error, need_gc;
1215 	uint16_t kidx;
1216 	uint8_t tflags;
1217 
1218 	/*
1219 	 * Stage 1: save table algorithm.
1220 	 * Reference found table to ensure it won't disappear.
1221 	 */
1222 	IPFW_UH_WLOCK(ch);
1223 	ni = CHAIN_TO_NI(ch);
1224 	if ((tc = find_table(ni, ti)) == NULL) {
1225 		IPFW_UH_WUNLOCK(ch);
1226 		return (ESRCH);
1227 	}
1228 	need_gc = 0;
1229 	astate_new = NULL;
1230 	memset(&ti_new, 0, sizeof(ti_new));
1231 restart:
1232 	/* Set up swap handler */
1233 	memset(&ts, 0, sizeof(ts));
1234 	ts.opstate.func = restart_flush;
1235 	ts.tc = tc;
1236 
1237 	ta = tc->ta;
1238 	/* Do not flush readonly tables */
1239 	if ((ta->flags & TA_FLAG_READONLY) != 0) {
1240 		IPFW_UH_WUNLOCK(ch);
1241 		return (EACCES);
1242 	}
1243 	/* Save startup algo parameters */
1244 	if (ta->print_config != NULL) {
1245 		ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx),
1246 		    algostate, sizeof(algostate));
1247 		pstate = algostate;
1248 	} else
1249 		pstate = NULL;
1250 	tflags = tc->tflags;
1251 	tc->no.refcnt++;
1252 	add_toperation_state(ch, &ts);
1253 	IPFW_UH_WUNLOCK(ch);
1254 
1255 	/*
1256 	 * Stage 1.5: if this is not the first attempt, destroy previous state
1257 	 */
1258 	if (need_gc != 0) {
1259 		ta->destroy(astate_new, &ti_new);
1260 		need_gc = 0;
1261 	}
1262 
1263 	/*
1264 	 * Stage 2: allocate new table instance using same algo.
1265 	 */
1266 	memset(&ti_new, 0, sizeof(struct table_info));
1267 	error = ta->init(ch, &astate_new, &ti_new, pstate, tflags);
1268 
1269 	/*
1270 	 * Stage 3: swap old state pointers with newly-allocated ones.
1271 	 * Decrease refcount.
1272 	 */
1273 	IPFW_UH_WLOCK(ch);
1274 	tc->no.refcnt--;
1275 	del_toperation_state(ch, &ts);
1276 
1277 	if (error != 0) {
1278 		IPFW_UH_WUNLOCK(ch);
1279 		return (error);
1280 	}
1281 
1282 	/*
1283 	 * Restart operation if table swap has happened:
1284 	 * even if algo may be the same, algo init parameters
1285 	 * may change. Restart operation instead of doing
1286 	 * complex checks.
1287 	 */
1288 	if (ts.modified != 0) {
1289 		/* Delay destroying data since we're holding UH lock */
1290 		need_gc = 1;
1291 		goto restart;
1292 	}
1293 
1294 	ni = CHAIN_TO_NI(ch);
1295 	kidx = tc->no.kidx;
1296 	tablestate = (struct table_info *)ch->tablestate;
1297 
1298 	IPFW_WLOCK(ch);
1299 	ti_old = tablestate[kidx];
1300 	tablestate[kidx] = ti_new;
1301 	IPFW_WUNLOCK(ch);
1302 
1303 	astate_old = tc->astate;
1304 	tc->astate = astate_new;
1305 	tc->ti_copy = ti_new;
1306 	tc->count = 0;
1307 
1308 	/* Notify algo on real @ti address */
1309 	if (ta->change_ti != NULL)
1310 		ta->change_ti(tc->astate, &tablestate[kidx]);
1311 
1312 	/*
1313 	 * Stage 4: unref values.
1314 	 */
1315 	ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old);
1316 	IPFW_UH_WUNLOCK(ch);
1317 
1318 	/*
1319 	 * Stage 5: perform real flush/destroy.
1320 	 */
1321 	ta->destroy(astate_old, &ti_old);
1322 
1323 	return (0);
1324 }
1325 
1326 /*
1327  * Swaps two tables.
1328  * Data layout (v0)(current):
1329  * Request: [ ipfw_obj_header ipfw_obj_ntlv ]
1330  *
1331  * Returns 0 on success
1332  */
1333 static int
1334 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1335     struct sockopt_data *sd)
1336 {
1337 	int error;
1338 	struct _ipfw_obj_header *oh;
1339 	struct tid_info ti_a, ti_b;
1340 
1341 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv))
1342 		return (EINVAL);
1343 
1344 	oh = (struct _ipfw_obj_header *)op3;
1345 	ntlv_to_ti(&oh->ntlv, &ti_a);
1346 	ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b);
1347 
1348 	error = swap_tables(ch, &ti_a, &ti_b);
1349 
1350 	return (error);
1351 }
1352 
1353 /*
1354  * Swaps two tables of the same type/valtype.
1355  *
1356  * Checks if tables are compatible and limits
1357  * permits swap, than actually perform swap.
1358  *
1359  * Each table consists of 2 different parts:
1360  * config:
1361  *   @tc (with name, set, kidx) and rule bindings, which is "stable".
1362  *   number of items
1363  *   table algo
1364  * runtime:
1365  *   runtime data @ti (ch->tablestate)
1366  *   runtime cache in @tc
1367  *   algo-specific data (@tc->astate)
1368  *
1369  * So we switch:
1370  *  all runtime data
1371  *   number of items
1372  *   table algo
1373  *
1374  * After that we call @ti change handler for each table.
1375  *
1376  * Note that referencing @tc won't protect tc->ta from change.
1377  * XXX: Do we need to restrict swap between locked tables?
1378  * XXX: Do we need to exchange ftype?
1379  *
1380  * Returns 0 on success.
1381  */
1382 static int
1383 swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
1384     struct tid_info *b)
1385 {
1386 	struct namedobj_instance *ni;
1387 	struct table_config *tc_a, *tc_b;
1388 	struct table_algo *ta;
1389 	struct table_info ti, *tablestate;
1390 	void *astate;
1391 	uint32_t count;
1392 
1393 	/*
1394 	 * Stage 1: find both tables and ensure they are of
1395 	 * the same type.
1396 	 */
1397 	IPFW_UH_WLOCK(ch);
1398 	ni = CHAIN_TO_NI(ch);
1399 	if ((tc_a = find_table(ni, a)) == NULL) {
1400 		IPFW_UH_WUNLOCK(ch);
1401 		return (ESRCH);
1402 	}
1403 	if ((tc_b = find_table(ni, b)) == NULL) {
1404 		IPFW_UH_WUNLOCK(ch);
1405 		return (ESRCH);
1406 	}
1407 
1408 	/* It is very easy to swap between the same table */
1409 	if (tc_a == tc_b) {
1410 		IPFW_UH_WUNLOCK(ch);
1411 		return (0);
1412 	}
1413 
1414 	/* Check type and value are the same */
1415 	if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) {
1416 		IPFW_UH_WUNLOCK(ch);
1417 		return (EINVAL);
1418 	}
1419 
1420 	/* Check limits before swap */
1421 	if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) ||
1422 	    (tc_b->limit != 0 && tc_a->count > tc_b->limit)) {
1423 		IPFW_UH_WUNLOCK(ch);
1424 		return (EFBIG);
1425 	}
1426 
1427 	/* Check if one of the tables is readonly */
1428 	if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) {
1429 		IPFW_UH_WUNLOCK(ch);
1430 		return (EACCES);
1431 	}
1432 
1433 	/* Notify we're going to swap */
1434 	rollback_toperation_state(ch, tc_a);
1435 	rollback_toperation_state(ch, tc_b);
1436 
1437 	/* Everything is fine, prepare to swap */
1438 	tablestate = (struct table_info *)ch->tablestate;
1439 	ti = tablestate[tc_a->no.kidx];
1440 	ta = tc_a->ta;
1441 	astate = tc_a->astate;
1442 	count = tc_a->count;
1443 
1444 	IPFW_WLOCK(ch);
1445 	/* a <- b */
1446 	tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx];
1447 	tc_a->ta = tc_b->ta;
1448 	tc_a->astate = tc_b->astate;
1449 	tc_a->count = tc_b->count;
1450 	/* b <- a */
1451 	tablestate[tc_b->no.kidx] = ti;
1452 	tc_b->ta = ta;
1453 	tc_b->astate = astate;
1454 	tc_b->count = count;
1455 	IPFW_WUNLOCK(ch);
1456 
1457 	/* Ensure tc.ti copies are in sync */
1458 	tc_a->ti_copy = tablestate[tc_a->no.kidx];
1459 	tc_b->ti_copy = tablestate[tc_b->no.kidx];
1460 
1461 	/* Notify both tables on @ti change */
1462 	if (tc_a->ta->change_ti != NULL)
1463 		tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]);
1464 	if (tc_b->ta->change_ti != NULL)
1465 		tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]);
1466 
1467 	IPFW_UH_WUNLOCK(ch);
1468 
1469 	return (0);
1470 }
1471 
1472 /*
1473  * Destroys table specified by @ti.
1474  * Data layout (v0)(current):
1475  * Request: [ ip_fw3_opheader ]
1476  *
1477  * Returns 0 on success
1478  */
1479 static int
1480 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti)
1481 {
1482 	struct namedobj_instance *ni;
1483 	struct table_config *tc;
1484 
1485 	IPFW_UH_WLOCK(ch);
1486 
1487 	ni = CHAIN_TO_NI(ch);
1488 	if ((tc = find_table(ni, ti)) == NULL) {
1489 		IPFW_UH_WUNLOCK(ch);
1490 		return (ESRCH);
1491 	}
1492 
1493 	/* Do not permit destroying referenced tables */
1494 	if (tc->no.refcnt > 0) {
1495 		IPFW_UH_WUNLOCK(ch);
1496 		return (EBUSY);
1497 	}
1498 
1499 	IPFW_WLOCK(ch);
1500 	unlink_table(ch, tc);
1501 	IPFW_WUNLOCK(ch);
1502 
1503 	/* Free obj index */
1504 	if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0)
1505 		printf("Error unlinking kidx %d from table %s\n",
1506 		    tc->no.kidx, tc->tablename);
1507 
1508 	/* Unref values used in tables while holding UH lock */
1509 	ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy);
1510 	IPFW_UH_WUNLOCK(ch);
1511 
1512 	free_table_config(ni, tc);
1513 
1514 	return (0);
1515 }
1516 
1517 static uint32_t
1518 roundup2p(uint32_t v)
1519 {
1520 
1521 	v--;
1522 	v |= v >> 1;
1523 	v |= v >> 2;
1524 	v |= v >> 4;
1525 	v |= v >> 8;
1526 	v |= v >> 16;
1527 	v++;
1528 
1529 	return (v);
1530 }
1531 
1532 /*
1533  * Grow tables index.
1534  *
1535  * Returns 0 on success.
1536  */
1537 int
1538 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
1539 {
1540 	unsigned int tbl;
1541 	struct namedobj_instance *ni;
1542 	void *new_idx, *old_tablestate, *tablestate;
1543 	struct table_info *ti;
1544 	struct table_config *tc;
1545 	int i, new_blocks;
1546 
1547 	/* Check new value for validity */
1548 	if (ntables == 0)
1549 		return (EINVAL);
1550 	if (ntables > IPFW_TABLES_MAX)
1551 		ntables = IPFW_TABLES_MAX;
1552 	/* Alight to nearest power of 2 */
1553 	ntables = (unsigned int)roundup2p(ntables);
1554 
1555 	/* Allocate new pointers */
1556 	tablestate = malloc(ntables * sizeof(struct table_info),
1557 	    M_IPFW, M_WAITOK | M_ZERO);
1558 
1559 	ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks);
1560 
1561 	IPFW_UH_WLOCK(ch);
1562 
1563 	tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
1564 	ni = CHAIN_TO_NI(ch);
1565 
1566 	/* Temporary restrict decreasing max_tables */
1567 	if (ntables < V_fw_tables_max) {
1568 		/*
1569 		 * FIXME: Check if we really can shrink
1570 		 */
1571 		IPFW_UH_WUNLOCK(ch);
1572 		return (EINVAL);
1573 	}
1574 
1575 	/* Copy table info/indices */
1576 	memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl);
1577 	ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks);
1578 
1579 	IPFW_WLOCK(ch);
1580 
1581 	/* Change pointers */
1582 	old_tablestate = ch->tablestate;
1583 	ch->tablestate = tablestate;
1584 	ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks);
1585 
1586 	V_fw_tables_max = ntables;
1587 
1588 	IPFW_WUNLOCK(ch);
1589 
1590 	/* Notify all consumers that their @ti pointer has changed */
1591 	ti = (struct table_info *)ch->tablestate;
1592 	for (i = 0; i < tbl; i++, ti++) {
1593 		if (ti->lookup == NULL)
1594 			continue;
1595 		tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i);
1596 		if (tc == NULL || tc->ta->change_ti == NULL)
1597 			continue;
1598 
1599 		tc->ta->change_ti(tc->astate, ti);
1600 	}
1601 
1602 	IPFW_UH_WUNLOCK(ch);
1603 
1604 	/* Free old pointers */
1605 	free(old_tablestate, M_IPFW);
1606 	ipfw_objhash_bitmap_free(new_idx, new_blocks);
1607 
1608 	return (0);
1609 }
1610 
1611 /*
1612  * Lookup table's named object by its @kidx.
1613  */
1614 struct named_object *
1615 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx)
1616 {
1617 
1618 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx));
1619 }
1620 
1621 /*
1622  * Take reference to table specified in @ntlv.
1623  * On success return its @kidx.
1624  */
1625 int
1626 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx)
1627 {
1628 	struct tid_info ti;
1629 	struct table_config *tc;
1630 	int error;
1631 
1632 	IPFW_UH_WLOCK_ASSERT(ch);
1633 
1634 	ntlv_to_ti(ntlv, &ti);
1635 	error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc);
1636 	if (error != 0)
1637 		return (error);
1638 
1639 	if (tc == NULL)
1640 		return (ESRCH);
1641 
1642 	tc_ref(tc);
1643 	*kidx = tc->no.kidx;
1644 
1645 	return (0);
1646 }
1647 
1648 void
1649 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx)
1650 {
1651 
1652 	struct namedobj_instance *ni;
1653 	struct named_object *no;
1654 
1655 	IPFW_UH_WLOCK_ASSERT(ch);
1656 	ni = CHAIN_TO_NI(ch);
1657 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1658 	KASSERT(no != NULL, ("Table with index %d not found", kidx));
1659 	no->refcnt--;
1660 }
1661 
1662 /*
1663  * Lookup an arbitrary key @paddr of length @plen in table @tbl.
1664  * Stores found value in @val.
1665  *
1666  * Returns 1 if key was found.
1667  */
1668 int
1669 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
1670     void *paddr, uint32_t *val)
1671 {
1672 	struct table_info *ti;
1673 
1674 	ti = KIDX_TO_TI(ch, tbl);
1675 
1676 	return (ti->lookup(ti, paddr, plen, val));
1677 }
1678 
1679 /*
1680  * Info/List/dump support for tables.
1681  *
1682  */
1683 
1684 /*
1685  * High-level 'get' cmds sysctl handlers
1686  */
1687 
1688 /*
1689  * Lists all tables currently available in kernel.
1690  * Data layout (v0)(current):
1691  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
1692  * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ]
1693  *
1694  * Returns 0 on success
1695  */
1696 static int
1697 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1698     struct sockopt_data *sd)
1699 {
1700 	struct _ipfw_obj_lheader *olh;
1701 	int error;
1702 
1703 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
1704 	if (olh == NULL)
1705 		return (EINVAL);
1706 	if (sd->valsize < olh->size)
1707 		return (EINVAL);
1708 
1709 	IPFW_UH_RLOCK(ch);
1710 	error = export_tables(ch, olh, sd);
1711 	IPFW_UH_RUNLOCK(ch);
1712 
1713 	return (error);
1714 }
1715 
1716 /*
1717  * Store table info to buffer provided by @sd.
1718  * Data layout (v0)(current):
1719  * Request: [ ipfw_obj_header ipfw_xtable_info(empty)]
1720  * Reply: [ ipfw_obj_header ipfw_xtable_info ]
1721  *
1722  * Returns 0 on success.
1723  */
1724 static int
1725 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1726     struct sockopt_data *sd)
1727 {
1728 	struct _ipfw_obj_header *oh;
1729 	struct table_config *tc;
1730 	struct tid_info ti;
1731 	size_t sz;
1732 
1733 	sz = sizeof(*oh) + sizeof(ipfw_xtable_info);
1734 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1735 	if (oh == NULL)
1736 		return (EINVAL);
1737 
1738 	objheader_to_ti(oh, &ti);
1739 
1740 	IPFW_UH_RLOCK(ch);
1741 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
1742 		IPFW_UH_RUNLOCK(ch);
1743 		return (ESRCH);
1744 	}
1745 
1746 	export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1));
1747 	IPFW_UH_RUNLOCK(ch);
1748 
1749 	return (0);
1750 }
1751 
1752 /*
1753  * Modifies existing table.
1754  * Data layout (v0)(current):
1755  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1756  *
1757  * Returns 0 on success
1758  */
1759 static int
1760 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1761     struct sockopt_data *sd)
1762 {
1763 	struct _ipfw_obj_header *oh;
1764 	ipfw_xtable_info *i;
1765 	char *tname;
1766 	struct tid_info ti;
1767 	struct namedobj_instance *ni;
1768 	struct table_config *tc;
1769 
1770 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1771 		return (EINVAL);
1772 
1773 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1774 	i = (ipfw_xtable_info *)(oh + 1);
1775 
1776 	/*
1777 	 * Verify user-supplied strings.
1778 	 * Check for null-terminated/zero-length strings/
1779 	 */
1780 	tname = oh->ntlv.name;
1781 	if (check_table_name(tname) != 0)
1782 		return (EINVAL);
1783 
1784 	objheader_to_ti(oh, &ti);
1785 	ti.type = i->type;
1786 
1787 	IPFW_UH_WLOCK(ch);
1788 	ni = CHAIN_TO_NI(ch);
1789 	if ((tc = find_table(ni, &ti)) == NULL) {
1790 		IPFW_UH_WUNLOCK(ch);
1791 		return (ESRCH);
1792 	}
1793 
1794 	/* Do not support any modifications for readonly tables */
1795 	if ((tc->ta->flags & TA_FLAG_READONLY) != 0) {
1796 		IPFW_UH_WUNLOCK(ch);
1797 		return (EACCES);
1798 	}
1799 
1800 	if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0)
1801 		tc->limit = i->limit;
1802 	if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0)
1803 		tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0);
1804 	IPFW_UH_WUNLOCK(ch);
1805 
1806 	return (0);
1807 }
1808 
1809 /*
1810  * Creates new table.
1811  * Data layout (v0)(current):
1812  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1813  *
1814  * Returns 0 on success
1815  */
1816 static int
1817 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1818     struct sockopt_data *sd)
1819 {
1820 	struct _ipfw_obj_header *oh;
1821 	ipfw_xtable_info *i;
1822 	char *tname, *aname;
1823 	struct tid_info ti;
1824 	struct namedobj_instance *ni;
1825 
1826 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1827 		return (EINVAL);
1828 
1829 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1830 	i = (ipfw_xtable_info *)(oh + 1);
1831 
1832 	/*
1833 	 * Verify user-supplied strings.
1834 	 * Check for null-terminated/zero-length strings/
1835 	 */
1836 	tname = oh->ntlv.name;
1837 	aname = i->algoname;
1838 	if (check_table_name(tname) != 0 ||
1839 	    strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname))
1840 		return (EINVAL);
1841 
1842 	if (aname[0] == '\0') {
1843 		/* Use default algorithm */
1844 		aname = NULL;
1845 	}
1846 
1847 	objheader_to_ti(oh, &ti);
1848 	ti.type = i->type;
1849 
1850 	ni = CHAIN_TO_NI(ch);
1851 
1852 	IPFW_UH_RLOCK(ch);
1853 	if (find_table(ni, &ti) != NULL) {
1854 		IPFW_UH_RUNLOCK(ch);
1855 		return (EEXIST);
1856 	}
1857 	IPFW_UH_RUNLOCK(ch);
1858 
1859 	return (create_table_internal(ch, &ti, aname, i, NULL, 0));
1860 }
1861 
1862 /*
1863  * Creates new table based on @ti and @aname.
1864  *
1865  * Assume @aname to be checked and valid.
1866  * Stores allocated table kidx inside @pkidx (if non-NULL).
1867  * Reference created table if @compat is non-zero.
1868  *
1869  * Returns 0 on success.
1870  */
1871 static int
1872 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
1873     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat)
1874 {
1875 	struct namedobj_instance *ni;
1876 	struct table_config *tc, *tc_new, *tmp;
1877 	struct table_algo *ta;
1878 	uint16_t kidx;
1879 
1880 	ni = CHAIN_TO_NI(ch);
1881 
1882 	ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname);
1883 	if (ta == NULL)
1884 		return (ENOTSUP);
1885 
1886 	tc = alloc_table_config(ch, ti, ta, aname, i->tflags);
1887 	if (tc == NULL)
1888 		return (ENOMEM);
1889 
1890 	tc->vmask = i->vmask;
1891 	tc->limit = i->limit;
1892 	if (ta->flags & TA_FLAG_READONLY)
1893 		tc->locked = 1;
1894 	else
1895 		tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0;
1896 
1897 	IPFW_UH_WLOCK(ch);
1898 
1899 	/* Check if table has been already created */
1900 	tc_new = find_table(ni, ti);
1901 	if (tc_new != NULL) {
1902 		/*
1903 		 * Compat: do not fail if we're
1904 		 * requesting to create existing table
1905 		 * which has the same type
1906 		 */
1907 		if (compat == 0 || tc_new->no.subtype != tc->no.subtype) {
1908 			IPFW_UH_WUNLOCK(ch);
1909 			free_table_config(ni, tc);
1910 			return (EEXIST);
1911 		}
1912 
1913 		/* Exchange tc and tc_new for proper refcounting & freeing */
1914 		tmp = tc;
1915 		tc = tc_new;
1916 		tc_new = tmp;
1917 	} else {
1918 		/* New table */
1919 		if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) {
1920 			IPFW_UH_WUNLOCK(ch);
1921 			printf("Unable to allocate table index."
1922 			    " Consider increasing net.inet.ip.fw.tables_max");
1923 			free_table_config(ni, tc);
1924 			return (EBUSY);
1925 		}
1926 		tc->no.kidx = kidx;
1927 		tc->no.etlv = IPFW_TLV_TBL_NAME;
1928 
1929 		link_table(ch, tc);
1930 	}
1931 
1932 	if (compat != 0)
1933 		tc->no.refcnt++;
1934 	if (pkidx != NULL)
1935 		*pkidx = tc->no.kidx;
1936 
1937 	IPFW_UH_WUNLOCK(ch);
1938 
1939 	if (tc_new != NULL)
1940 		free_table_config(ni, tc_new);
1941 
1942 	return (0);
1943 }
1944 
1945 static void
1946 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti)
1947 {
1948 
1949 	memset(ti, 0, sizeof(struct tid_info));
1950 	ti->set = ntlv->set;
1951 	ti->uidx = ntlv->idx;
1952 	ti->tlvs = ntlv;
1953 	ti->tlen = ntlv->head.length;
1954 }
1955 
1956 static void
1957 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti)
1958 {
1959 
1960 	ntlv_to_ti(&oh->ntlv, ti);
1961 }
1962 
1963 struct namedobj_instance *
1964 ipfw_get_table_objhash(struct ip_fw_chain *ch)
1965 {
1966 
1967 	return (CHAIN_TO_NI(ch));
1968 }
1969 
1970 /*
1971  * Exports basic table info as name TLV.
1972  * Used inside dump_static_rules() to provide info
1973  * about all tables referenced by current ruleset.
1974  *
1975  * Returns 0 on success.
1976  */
1977 int
1978 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx,
1979     struct sockopt_data *sd)
1980 {
1981 	struct namedobj_instance *ni;
1982 	struct named_object *no;
1983 	ipfw_obj_ntlv *ntlv;
1984 
1985 	ni = CHAIN_TO_NI(ch);
1986 
1987 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1988 	KASSERT(no != NULL, ("invalid table kidx passed"));
1989 
1990 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1991 	if (ntlv == NULL)
1992 		return (ENOMEM);
1993 
1994 	ntlv->head.type = IPFW_TLV_TBL_NAME;
1995 	ntlv->head.length = sizeof(*ntlv);
1996 	ntlv->idx = no->kidx;
1997 	strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1998 
1999 	return (0);
2000 }
2001 
2002 struct dump_args {
2003 	struct ip_fw_chain *ch;
2004 	struct table_info *ti;
2005 	struct table_config *tc;
2006 	struct sockopt_data *sd;
2007 	uint32_t cnt;
2008 	uint16_t uidx;
2009 	int error;
2010 	uint32_t size;
2011 	ipfw_table_entry *ent;
2012 	ta_foreach_f *f;
2013 	void *farg;
2014 	ipfw_obj_tentry tent;
2015 };
2016 
2017 static int
2018 count_ext_entries(void *e, void *arg)
2019 {
2020 	struct dump_args *da;
2021 
2022 	da = (struct dump_args *)arg;
2023 	da->cnt++;
2024 
2025 	return (0);
2026 }
2027 
2028 /*
2029  * Gets number of items from table either using
2030  * internal counter or calling algo callback for
2031  * externally-managed tables.
2032  *
2033  * Returns number of records.
2034  */
2035 static uint32_t
2036 table_get_count(struct ip_fw_chain *ch, struct table_config *tc)
2037 {
2038 	struct table_info *ti;
2039 	struct table_algo *ta;
2040 	struct dump_args da;
2041 
2042 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2043 	ta = tc->ta;
2044 
2045 	/* Use internal counter for self-managed tables */
2046 	if ((ta->flags & TA_FLAG_READONLY) == 0)
2047 		return (tc->count);
2048 
2049 	/* Use callback to quickly get number of items */
2050 	if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0)
2051 		return (ta->get_count(tc->astate, ti));
2052 
2053 	/* Count number of iterms ourselves */
2054 	memset(&da, 0, sizeof(da));
2055 	ta->foreach(tc->astate, ti, count_ext_entries, &da);
2056 
2057 	return (da.cnt);
2058 }
2059 
2060 /*
2061  * Exports table @tc info into standard ipfw_xtable_info format.
2062  */
2063 static void
2064 export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
2065     ipfw_xtable_info *i)
2066 {
2067 	struct table_info *ti;
2068 	struct table_algo *ta;
2069 
2070 	i->type = tc->no.subtype;
2071 	i->tflags = tc->tflags;
2072 	i->vmask = tc->vmask;
2073 	i->set = tc->no.set;
2074 	i->kidx = tc->no.kidx;
2075 	i->refcnt = tc->no.refcnt;
2076 	i->count = table_get_count(ch, tc);
2077 	i->limit = tc->limit;
2078 	i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0;
2079 	i->size = i->count * sizeof(ipfw_obj_tentry);
2080 	i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2081 	strlcpy(i->tablename, tc->tablename, sizeof(i->tablename));
2082 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2083 	ta = tc->ta;
2084 	if (ta->print_config != NULL) {
2085 		/* Use algo function to print table config to string */
2086 		ta->print_config(tc->astate, ti, i->algoname,
2087 		    sizeof(i->algoname));
2088 	} else
2089 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2090 	/* Dump algo-specific data, if possible */
2091 	if (ta->dump_tinfo != NULL) {
2092 		ta->dump_tinfo(tc->astate, ti, &i->ta_info);
2093 		i->ta_info.flags |= IPFW_TATFLAGS_DATA;
2094 	}
2095 }
2096 
2097 struct dump_table_args {
2098 	struct ip_fw_chain *ch;
2099 	struct sockopt_data *sd;
2100 };
2101 
2102 static int
2103 export_table_internal(struct namedobj_instance *ni, struct named_object *no,
2104     void *arg)
2105 {
2106 	ipfw_xtable_info *i;
2107 	struct dump_table_args *dta;
2108 
2109 	dta = (struct dump_table_args *)arg;
2110 
2111 	i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i));
2112 	KASSERT(i != NULL, ("previously checked buffer is not enough"));
2113 
2114 	export_table_info(dta->ch, (struct table_config *)no, i);
2115 	return (0);
2116 }
2117 
2118 /*
2119  * Export all tables as ipfw_xtable_info structures to
2120  * storage provided by @sd.
2121  *
2122  * If supplied buffer is too small, fills in required size
2123  * and returns ENOMEM.
2124  * Returns 0 on success.
2125  */
2126 static int
2127 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
2128     struct sockopt_data *sd)
2129 {
2130 	uint32_t size;
2131 	uint32_t count;
2132 	struct dump_table_args dta;
2133 
2134 	count = ipfw_objhash_count(CHAIN_TO_NI(ch));
2135 	size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader);
2136 
2137 	/* Fill in header regadless of buffer size */
2138 	olh->count = count;
2139 	olh->objsize = sizeof(ipfw_xtable_info);
2140 
2141 	if (size > olh->size) {
2142 		olh->size = size;
2143 		return (ENOMEM);
2144 	}
2145 
2146 	olh->size = size;
2147 
2148 	dta.ch = ch;
2149 	dta.sd = sd;
2150 
2151 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta);
2152 
2153 	return (0);
2154 }
2155 
2156 /*
2157  * Dumps all table data
2158  * Data layout (v1)(current):
2159  * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size
2160  * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ]
2161  *
2162  * Returns 0 on success
2163  */
2164 static int
2165 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2166     struct sockopt_data *sd)
2167 {
2168 	struct _ipfw_obj_header *oh;
2169 	ipfw_xtable_info *i;
2170 	struct tid_info ti;
2171 	struct table_config *tc;
2172 	struct table_algo *ta;
2173 	struct dump_args da;
2174 	uint32_t sz;
2175 
2176 	sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2177 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
2178 	if (oh == NULL)
2179 		return (EINVAL);
2180 
2181 	i = (ipfw_xtable_info *)(oh + 1);
2182 	objheader_to_ti(oh, &ti);
2183 
2184 	IPFW_UH_RLOCK(ch);
2185 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2186 		IPFW_UH_RUNLOCK(ch);
2187 		return (ESRCH);
2188 	}
2189 	export_table_info(ch, tc, i);
2190 
2191 	if (sd->valsize < i->size) {
2192 		/*
2193 		 * Submitted buffer size is not enough.
2194 		 * WE've already filled in @i structure with
2195 		 * relevant table info including size, so we
2196 		 * can return. Buffer will be flushed automatically.
2197 		 */
2198 		IPFW_UH_RUNLOCK(ch);
2199 		return (ENOMEM);
2200 	}
2201 
2202 	/*
2203 	 * Do the actual dump in eXtended format
2204 	 */
2205 	memset(&da, 0, sizeof(da));
2206 	da.ch = ch;
2207 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2208 	da.tc = tc;
2209 	da.sd = sd;
2210 
2211 	ta = tc->ta;
2212 
2213 	ta->foreach(tc->astate, da.ti, dump_table_tentry, &da);
2214 	IPFW_UH_RUNLOCK(ch);
2215 
2216 	return (da.error);
2217 }
2218 
2219 /*
2220  * Dumps all table data
2221  * Data layout (version 0)(legacy):
2222  * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE()
2223  * Reply: [ ipfw_xtable ipfw_table_xentry x N ]
2224  *
2225  * Returns 0 on success
2226  */
2227 static int
2228 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2229     struct sockopt_data *sd)
2230 {
2231 	ipfw_xtable *xtbl;
2232 	struct tid_info ti;
2233 	struct table_config *tc;
2234 	struct table_algo *ta;
2235 	struct dump_args da;
2236 	size_t sz, count;
2237 
2238 	xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable));
2239 	if (xtbl == NULL)
2240 		return (EINVAL);
2241 
2242 	memset(&ti, 0, sizeof(ti));
2243 	ti.uidx = xtbl->tbl;
2244 
2245 	IPFW_UH_RLOCK(ch);
2246 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2247 		IPFW_UH_RUNLOCK(ch);
2248 		return (0);
2249 	}
2250 	count = table_get_count(ch, tc);
2251 	sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable);
2252 
2253 	xtbl->cnt = count;
2254 	xtbl->size = sz;
2255 	xtbl->type = tc->no.subtype;
2256 	xtbl->tbl = ti.uidx;
2257 
2258 	if (sd->valsize < sz) {
2259 		/*
2260 		 * Submitted buffer size is not enough.
2261 		 * WE've already filled in @i structure with
2262 		 * relevant table info including size, so we
2263 		 * can return. Buffer will be flushed automatically.
2264 		 */
2265 		IPFW_UH_RUNLOCK(ch);
2266 		return (ENOMEM);
2267 	}
2268 
2269 	/* Do the actual dump in eXtended format */
2270 	memset(&da, 0, sizeof(da));
2271 	da.ch = ch;
2272 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2273 	da.tc = tc;
2274 	da.sd = sd;
2275 
2276 	ta = tc->ta;
2277 
2278 	ta->foreach(tc->astate, da.ti, dump_table_xentry, &da);
2279 	IPFW_UH_RUNLOCK(ch);
2280 
2281 	return (0);
2282 }
2283 
2284 /*
2285  * Legacy function to retrieve number of items in table.
2286  */
2287 static int
2288 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2289     struct sockopt_data *sd)
2290 {
2291 	uint32_t *tbl;
2292 	struct tid_info ti;
2293 	size_t sz;
2294 	int error;
2295 
2296 	sz = sizeof(*op3) + sizeof(uint32_t);
2297 	op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz);
2298 	if (op3 == NULL)
2299 		return (EINVAL);
2300 
2301 	tbl = (uint32_t *)(op3 + 1);
2302 	memset(&ti, 0, sizeof(ti));
2303 	ti.uidx = *tbl;
2304 	IPFW_UH_RLOCK(ch);
2305 	error = ipfw_count_xtable(ch, &ti, tbl);
2306 	IPFW_UH_RUNLOCK(ch);
2307 	return (error);
2308 }
2309 
2310 /*
2311  * Legacy IP_FW_TABLE_GETSIZE handler
2312  */
2313 int
2314 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2315 {
2316 	struct table_config *tc;
2317 
2318 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2319 		return (ESRCH);
2320 	*cnt = table_get_count(ch, tc);
2321 	return (0);
2322 }
2323 
2324 /*
2325  * Legacy IP_FW_TABLE_XGETSIZE handler
2326  */
2327 int
2328 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2329 {
2330 	struct table_config *tc;
2331 	uint32_t count;
2332 
2333 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) {
2334 		*cnt = 0;
2335 		return (0); /* 'table all list' requires success */
2336 	}
2337 
2338 	count = table_get_count(ch, tc);
2339 	*cnt = count * sizeof(ipfw_table_xentry);
2340 	if (count > 0)
2341 		*cnt += sizeof(ipfw_xtable);
2342 	return (0);
2343 }
2344 
2345 static int
2346 dump_table_entry(void *e, void *arg)
2347 {
2348 	struct dump_args *da;
2349 	struct table_config *tc;
2350 	struct table_algo *ta;
2351 	ipfw_table_entry *ent;
2352 	struct table_value *pval;
2353 	int error;
2354 
2355 	da = (struct dump_args *)arg;
2356 
2357 	tc = da->tc;
2358 	ta = tc->ta;
2359 
2360 	/* Out of memory, returning */
2361 	if (da->cnt == da->size)
2362 		return (1);
2363 	ent = da->ent++;
2364 	ent->tbl = da->uidx;
2365 	da->cnt++;
2366 
2367 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2368 	if (error != 0)
2369 		return (error);
2370 
2371 	ent->addr = da->tent.k.addr.s_addr;
2372 	ent->masklen = da->tent.masklen;
2373 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2374 	ent->value = ipfw_export_table_value_legacy(pval);
2375 
2376 	return (0);
2377 }
2378 
2379 /*
2380  * Dumps table in pre-8.1 legacy format.
2381  */
2382 int
2383 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti,
2384     ipfw_table *tbl)
2385 {
2386 	struct table_config *tc;
2387 	struct table_algo *ta;
2388 	struct dump_args da;
2389 
2390 	tbl->cnt = 0;
2391 
2392 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2393 		return (0);	/* XXX: We should return ESRCH */
2394 
2395 	ta = tc->ta;
2396 
2397 	/* This dump format supports IPv4 only */
2398 	if (tc->no.subtype != IPFW_TABLE_ADDR)
2399 		return (0);
2400 
2401 	memset(&da, 0, sizeof(da));
2402 	da.ch = ch;
2403 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2404 	da.tc = tc;
2405 	da.ent = &tbl->ent[0];
2406 	da.size = tbl->size;
2407 
2408 	tbl->cnt = 0;
2409 	ta->foreach(tc->astate, da.ti, dump_table_entry, &da);
2410 	tbl->cnt = da.cnt;
2411 
2412 	return (0);
2413 }
2414 
2415 /*
2416  * Dumps table entry in eXtended format (v1)(current).
2417  */
2418 static int
2419 dump_table_tentry(void *e, void *arg)
2420 {
2421 	struct dump_args *da;
2422 	struct table_config *tc;
2423 	struct table_algo *ta;
2424 	struct table_value *pval;
2425 	ipfw_obj_tentry *tent;
2426 	int error;
2427 
2428 	da = (struct dump_args *)arg;
2429 
2430 	tc = da->tc;
2431 	ta = tc->ta;
2432 
2433 	tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent));
2434 	/* Out of memory, returning */
2435 	if (tent == NULL) {
2436 		da->error = ENOMEM;
2437 		return (1);
2438 	}
2439 	tent->head.length = sizeof(ipfw_obj_tentry);
2440 	tent->idx = da->uidx;
2441 
2442 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2443 	if (error != 0)
2444 		return (error);
2445 
2446 	pval = get_table_value(da->ch, da->tc, tent->v.kidx);
2447 	ipfw_export_table_value_v1(pval, &tent->v.value);
2448 
2449 	return (0);
2450 }
2451 
2452 /*
2453  * Dumps table entry in eXtended format (v0).
2454  */
2455 static int
2456 dump_table_xentry(void *e, void *arg)
2457 {
2458 	struct dump_args *da;
2459 	struct table_config *tc;
2460 	struct table_algo *ta;
2461 	ipfw_table_xentry *xent;
2462 	ipfw_obj_tentry *tent;
2463 	struct table_value *pval;
2464 	int error;
2465 
2466 	da = (struct dump_args *)arg;
2467 
2468 	tc = da->tc;
2469 	ta = tc->ta;
2470 
2471 	xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent));
2472 	/* Out of memory, returning */
2473 	if (xent == NULL)
2474 		return (1);
2475 	xent->len = sizeof(ipfw_table_xentry);
2476 	xent->tbl = da->uidx;
2477 
2478 	memset(&da->tent, 0, sizeof(da->tent));
2479 	tent = &da->tent;
2480 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2481 	if (error != 0)
2482 		return (error);
2483 
2484 	/* Convert current format to previous one */
2485 	xent->masklen = tent->masklen;
2486 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2487 	xent->value = ipfw_export_table_value_legacy(pval);
2488 	/* Apply some hacks */
2489 	if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) {
2490 		xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr;
2491 		xent->flags = IPFW_TCF_INET;
2492 	} else
2493 		memcpy(&xent->k, &tent->k, sizeof(xent->k));
2494 
2495 	return (0);
2496 }
2497 
2498 /*
2499  * Helper function to export table algo data
2500  * to tentry format before calling user function.
2501  *
2502  * Returns 0 on success.
2503  */
2504 static int
2505 prepare_table_tentry(void *e, void *arg)
2506 {
2507 	struct dump_args *da;
2508 	struct table_config *tc;
2509 	struct table_algo *ta;
2510 	int error;
2511 
2512 	da = (struct dump_args *)arg;
2513 
2514 	tc = da->tc;
2515 	ta = tc->ta;
2516 
2517 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2518 	if (error != 0)
2519 		return (error);
2520 
2521 	da->f(&da->tent, da->farg);
2522 
2523 	return (0);
2524 }
2525 
2526 /*
2527  * Allow external consumers to read table entries in standard format.
2528  */
2529 int
2530 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx,
2531     ta_foreach_f *f, void *arg)
2532 {
2533 	struct namedobj_instance *ni;
2534 	struct table_config *tc;
2535 	struct table_algo *ta;
2536 	struct dump_args da;
2537 
2538 	ni = CHAIN_TO_NI(ch);
2539 
2540 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
2541 	if (tc == NULL)
2542 		return (ESRCH);
2543 
2544 	ta = tc->ta;
2545 
2546 	memset(&da, 0, sizeof(da));
2547 	da.ch = ch;
2548 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2549 	da.tc = tc;
2550 	da.f = f;
2551 	da.farg = arg;
2552 
2553 	ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da);
2554 
2555 	return (0);
2556 }
2557 
2558 /*
2559  * Table algorithms
2560  */
2561 
2562 /*
2563  * Finds algorithm by index, table type or supplied name.
2564  *
2565  * Returns pointer to algo or NULL.
2566  */
2567 static struct table_algo *
2568 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name)
2569 {
2570 	int i, l;
2571 	struct table_algo *ta;
2572 
2573 	if (ti->type > IPFW_TABLE_MAXTYPE)
2574 		return (NULL);
2575 
2576 	/* Search by index */
2577 	if (ti->atype != 0) {
2578 		if (ti->atype > tcfg->algo_count)
2579 			return (NULL);
2580 		return (tcfg->algo[ti->atype]);
2581 	}
2582 
2583 	if (name == NULL) {
2584 		/* Return default algorithm for given type if set */
2585 		return (tcfg->def_algo[ti->type]);
2586 	}
2587 
2588 	/* Search by name */
2589 	/* TODO: better search */
2590 	for (i = 1; i <= tcfg->algo_count; i++) {
2591 		ta = tcfg->algo[i];
2592 
2593 		/*
2594 		 * One can supply additional algorithm
2595 		 * parameters so we compare only the first word
2596 		 * of supplied name:
2597 		 * 'addr:chash hsize=32'
2598 		 * '^^^^^^^^^'
2599 		 *
2600 		 */
2601 		l = strlen(ta->name);
2602 		if (strncmp(name, ta->name, l) != 0)
2603 			continue;
2604 		if (name[l] != '\0' && name[l] != ' ')
2605 			continue;
2606 		/* Check if we're requesting proper table type */
2607 		if (ti->type != 0 && ti->type != ta->type)
2608 			return (NULL);
2609 		return (ta);
2610 	}
2611 
2612 	return (NULL);
2613 }
2614 
2615 /*
2616  * Register new table algo @ta.
2617  * Stores algo id inside @idx.
2618  *
2619  * Returns 0 on success.
2620  */
2621 int
2622 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size,
2623     int *idx)
2624 {
2625 	struct tables_config *tcfg;
2626 	struct table_algo *ta_new;
2627 	size_t sz;
2628 
2629 	if (size > sizeof(struct table_algo))
2630 		return (EINVAL);
2631 
2632 	/* Check for the required on-stack size for add/del */
2633 	sz = roundup2(ta->ta_buf_size, sizeof(void *));
2634 	if (sz > TA_BUF_SZ)
2635 		return (EINVAL);
2636 
2637 	KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE"));
2638 
2639 	/* Copy algorithm data to stable storage. */
2640 	ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO);
2641 	memcpy(ta_new, ta, size);
2642 
2643 	tcfg = CHAIN_TO_TCFG(ch);
2644 
2645 	KASSERT(tcfg->algo_count < 255, ("Increase algo array size"));
2646 
2647 	tcfg->algo[++tcfg->algo_count] = ta_new;
2648 	ta_new->idx = tcfg->algo_count;
2649 
2650 	/* Set algorithm as default one for given type */
2651 	if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 &&
2652 	    tcfg->def_algo[ta_new->type] == NULL)
2653 		tcfg->def_algo[ta_new->type] = ta_new;
2654 
2655 	*idx = ta_new->idx;
2656 
2657 	return (0);
2658 }
2659 
2660 /*
2661  * Unregisters table algo using @idx as id.
2662  * XXX: It is NOT safe to call this function in any place
2663  * other than ipfw instance destroy handler.
2664  */
2665 void
2666 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx)
2667 {
2668 	struct tables_config *tcfg;
2669 	struct table_algo *ta;
2670 
2671 	tcfg = CHAIN_TO_TCFG(ch);
2672 
2673 	KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d",
2674 	    idx, tcfg->algo_count));
2675 
2676 	ta = tcfg->algo[idx];
2677 	KASSERT(ta != NULL, ("algo idx %d is NULL", idx));
2678 
2679 	if (tcfg->def_algo[ta->type] == ta)
2680 		tcfg->def_algo[ta->type] = NULL;
2681 
2682 	free(ta, M_IPFW);
2683 }
2684 
2685 /*
2686  * Lists all table algorithms currently available.
2687  * Data layout (v0)(current):
2688  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2689  * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ]
2690  *
2691  * Returns 0 on success
2692  */
2693 static int
2694 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2695     struct sockopt_data *sd)
2696 {
2697 	struct _ipfw_obj_lheader *olh;
2698 	struct tables_config *tcfg;
2699 	ipfw_ta_info *i;
2700 	struct table_algo *ta;
2701 	uint32_t count, n, size;
2702 
2703 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
2704 	if (olh == NULL)
2705 		return (EINVAL);
2706 	if (sd->valsize < olh->size)
2707 		return (EINVAL);
2708 
2709 	IPFW_UH_RLOCK(ch);
2710 	tcfg = CHAIN_TO_TCFG(ch);
2711 	count = tcfg->algo_count;
2712 	size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader);
2713 
2714 	/* Fill in header regadless of buffer size */
2715 	olh->count = count;
2716 	olh->objsize = sizeof(ipfw_ta_info);
2717 
2718 	if (size > olh->size) {
2719 		olh->size = size;
2720 		IPFW_UH_RUNLOCK(ch);
2721 		return (ENOMEM);
2722 	}
2723 	olh->size = size;
2724 
2725 	for (n = 1; n <= count; n++) {
2726 		i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2727 		KASSERT(i != NULL, ("previously checked buffer is not enough"));
2728 		ta = tcfg->algo[n];
2729 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2730 		i->type = ta->type;
2731 		i->refcnt = ta->refcnt;
2732 	}
2733 
2734 	IPFW_UH_RUNLOCK(ch);
2735 
2736 	return (0);
2737 }
2738 
2739 static int
2740 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2741 {
2742 	/* Basic IPv4/IPv6 or u32 lookups */
2743 	*puidx = cmd->arg1;
2744 	/* Assume ADDR by default */
2745 	*ptype = IPFW_TABLE_ADDR;
2746 	int v;
2747 
2748 	if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) {
2749 		/*
2750 		 * generic lookup. The key must be
2751 		 * in 32bit big-endian format.
2752 		 */
2753 		v = ((ipfw_insn_u32 *)cmd)->d[1];
2754 		switch (v) {
2755 		case 0:
2756 		case 1:
2757 			/* IPv4 src/dst */
2758 			break;
2759 		case 2:
2760 		case 3:
2761 			/* src/dst port */
2762 			*ptype = IPFW_TABLE_NUMBER;
2763 			break;
2764 		case 4:
2765 			/* uid/gid */
2766 			*ptype = IPFW_TABLE_NUMBER;
2767 			break;
2768 		case 5:
2769 			/* jid */
2770 			*ptype = IPFW_TABLE_NUMBER;
2771 			break;
2772 		case 6:
2773 			/* dscp */
2774 			*ptype = IPFW_TABLE_NUMBER;
2775 			break;
2776 		}
2777 	}
2778 
2779 	return (0);
2780 }
2781 
2782 static int
2783 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2784 {
2785 	ipfw_insn_if *cmdif;
2786 
2787 	/* Interface table, possibly */
2788 	cmdif = (ipfw_insn_if *)cmd;
2789 	if (cmdif->name[0] != '\1')
2790 		return (1);
2791 
2792 	*ptype = IPFW_TABLE_INTERFACE;
2793 	*puidx = cmdif->p.kidx;
2794 
2795 	return (0);
2796 }
2797 
2798 static int
2799 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2800 {
2801 
2802 	*puidx = cmd->arg1;
2803 	*ptype = IPFW_TABLE_FLOW;
2804 
2805 	return (0);
2806 }
2807 
2808 static void
2809 update_arg1(ipfw_insn *cmd, uint16_t idx)
2810 {
2811 
2812 	cmd->arg1 = idx;
2813 }
2814 
2815 static void
2816 update_via(ipfw_insn *cmd, uint16_t idx)
2817 {
2818 	ipfw_insn_if *cmdif;
2819 
2820 	cmdif = (ipfw_insn_if *)cmd;
2821 	cmdif->p.kidx = idx;
2822 }
2823 
2824 static int
2825 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
2826     struct named_object **pno)
2827 {
2828 	struct table_config *tc;
2829 	int error;
2830 
2831 	IPFW_UH_WLOCK_ASSERT(ch);
2832 
2833 	error = find_table_err(CHAIN_TO_NI(ch), ti, &tc);
2834 	if (error != 0)
2835 		return (error);
2836 
2837 	*pno = &tc->no;
2838 	return (0);
2839 }
2840 
2841 /* XXX: sets-sets! */
2842 static struct named_object *
2843 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
2844 {
2845 	struct namedobj_instance *ni;
2846 	struct table_config *tc;
2847 
2848 	IPFW_UH_WLOCK_ASSERT(ch);
2849 	ni = CHAIN_TO_NI(ch);
2850 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx);
2851 	KASSERT(tc != NULL, ("Table with index %d not found", idx));
2852 
2853 	return (&tc->no);
2854 }
2855 
2856 static int
2857 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2858     enum ipfw_sets_cmd cmd)
2859 {
2860 
2861 	switch (cmd) {
2862 	case SWAP_ALL:
2863 	case TEST_ALL:
2864 	case MOVE_ALL:
2865 		/*
2866 		 * Always return success, the real action and decision
2867 		 * should make table_manage_sets_all().
2868 		 */
2869 		return (0);
2870 	case TEST_ONE:
2871 	case MOVE_ONE:
2872 		/*
2873 		 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add
2874 		 * if set number will be used in hash function. Currently
2875 		 * we can just use generic handler that replaces set value.
2876 		 */
2877 		if (V_fw_tables_sets == 0)
2878 			return (0);
2879 		break;
2880 	case COUNT_ONE:
2881 		/*
2882 		 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is
2883 		 * disabled. This allow skip table's opcodes from additional
2884 		 * checks when specific rules moved to another set.
2885 		 */
2886 		if (V_fw_tables_sets == 0)
2887 			return (EOPNOTSUPP);
2888 	}
2889 	/* Use generic sets handler when per-set sysctl is enabled. */
2890 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2891 	    set, new_set, cmd));
2892 }
2893 
2894 /*
2895  * We register several opcode rewriters for lookup tables.
2896  * All tables opcodes have the same ETLV type, but different subtype.
2897  * To avoid invoking sets handler several times for XXX_ALL commands,
2898  * we use separate manage_sets handler. O_RECV has the lowest value,
2899  * so it should be called first.
2900  */
2901 static int
2902 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2903     enum ipfw_sets_cmd cmd)
2904 {
2905 
2906 	switch (cmd) {
2907 	case SWAP_ALL:
2908 	case TEST_ALL:
2909 		/*
2910 		 * Return success for TEST_ALL, since nothing prevents
2911 		 * move rules from one set to another. All tables are
2912 		 * accessible from all sets when per-set tables sysctl
2913 		 * is disabled.
2914 		 */
2915 	case MOVE_ALL:
2916 		if (V_fw_tables_sets == 0)
2917 			return (0);
2918 		break;
2919 	default:
2920 		return (table_manage_sets(ch, set, new_set, cmd));
2921 	}
2922 	/* Use generic sets handler when per-set sysctl is enabled. */
2923 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2924 	    set, new_set, cmd));
2925 }
2926 
2927 static struct opcode_obj_rewrite opcodes[] = {
2928 	{
2929 		.opcode = O_IP_SRC_LOOKUP,
2930 		.etlv = IPFW_TLV_TBL_NAME,
2931 		.classifier = classify_srcdst,
2932 		.update = update_arg1,
2933 		.find_byname = table_findbyname,
2934 		.find_bykidx = table_findbykidx,
2935 		.create_object = create_table_compat,
2936 		.manage_sets = table_manage_sets,
2937 	},
2938 	{
2939 		.opcode = O_IP_DST_LOOKUP,
2940 		.etlv = IPFW_TLV_TBL_NAME,
2941 		.classifier = classify_srcdst,
2942 		.update = update_arg1,
2943 		.find_byname = table_findbyname,
2944 		.find_bykidx = table_findbykidx,
2945 		.create_object = create_table_compat,
2946 		.manage_sets = table_manage_sets,
2947 	},
2948 	{
2949 		.opcode = O_IP_FLOW_LOOKUP,
2950 		.etlv = IPFW_TLV_TBL_NAME,
2951 		.classifier = classify_flow,
2952 		.update = update_arg1,
2953 		.find_byname = table_findbyname,
2954 		.find_bykidx = table_findbykidx,
2955 		.create_object = create_table_compat,
2956 		.manage_sets = table_manage_sets,
2957 	},
2958 	{
2959 		.opcode = O_XMIT,
2960 		.etlv = IPFW_TLV_TBL_NAME,
2961 		.classifier = classify_via,
2962 		.update = update_via,
2963 		.find_byname = table_findbyname,
2964 		.find_bykidx = table_findbykidx,
2965 		.create_object = create_table_compat,
2966 		.manage_sets = table_manage_sets,
2967 	},
2968 	{
2969 		.opcode = O_RECV,
2970 		.etlv = IPFW_TLV_TBL_NAME,
2971 		.classifier = classify_via,
2972 		.update = update_via,
2973 		.find_byname = table_findbyname,
2974 		.find_bykidx = table_findbykidx,
2975 		.create_object = create_table_compat,
2976 		.manage_sets = table_manage_sets_all,
2977 	},
2978 	{
2979 		.opcode = O_VIA,
2980 		.etlv = IPFW_TLV_TBL_NAME,
2981 		.classifier = classify_via,
2982 		.update = update_via,
2983 		.find_byname = table_findbyname,
2984 		.find_bykidx = table_findbykidx,
2985 		.create_object = create_table_compat,
2986 		.manage_sets = table_manage_sets,
2987 	},
2988 };
2989 
2990 static int
2991 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no,
2992     void *arg __unused)
2993 {
2994 
2995 	/* Check that there aren't any tables in not default set */
2996 	if (no->set != 0)
2997 		return (EBUSY);
2998 	return (0);
2999 }
3000 
3001 /*
3002  * Switch between "set 0" and "rule's set" table binding,
3003  * Check all ruleset bindings and permits changing
3004  * IFF each binding has both rule AND table in default set (set 0).
3005  *
3006  * Returns 0 on success.
3007  */
3008 int
3009 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets)
3010 {
3011 	struct opcode_obj_rewrite *rw;
3012 	struct namedobj_instance *ni;
3013 	struct named_object *no;
3014 	struct ip_fw *rule;
3015 	ipfw_insn *cmd;
3016 	int cmdlen, i, l;
3017 	uint16_t kidx;
3018 	uint8_t subtype;
3019 
3020 	IPFW_UH_WLOCK(ch);
3021 
3022 	if (V_fw_tables_sets == sets) {
3023 		IPFW_UH_WUNLOCK(ch);
3024 		return (0);
3025 	}
3026 	ni = CHAIN_TO_NI(ch);
3027 	if (sets == 0) {
3028 		/*
3029 		 * Prevent disabling sets support if we have some tables
3030 		 * in not default sets.
3031 		 */
3032 		if (ipfw_objhash_foreach_type(ni, test_sets_cb,
3033 		    NULL, IPFW_TLV_TBL_NAME) != 0) {
3034 			IPFW_UH_WUNLOCK(ch);
3035 			return (EBUSY);
3036 		}
3037 	}
3038 	/*
3039 	 * Scan all rules and examine tables opcodes.
3040 	 */
3041 	for (i = 0; i < ch->n_rules; i++) {
3042 		rule = ch->map[i];
3043 
3044 		l = rule->cmd_len;
3045 		cmd = rule->cmd;
3046 		cmdlen = 0;
3047 		for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
3048 			cmdlen = F_LEN(cmd);
3049 			/* Check only tables opcodes */
3050 			for (kidx = 0, rw = opcodes;
3051 			    rw < opcodes + nitems(opcodes); rw++) {
3052 				if (rw->opcode != cmd->opcode)
3053 					continue;
3054 				if (rw->classifier(cmd, &kidx, &subtype) == 0)
3055 					break;
3056 			}
3057 			if (kidx == 0)
3058 				continue;
3059 			no = ipfw_objhash_lookup_kidx(ni, kidx);
3060 			/* Check if both table object and rule has the set 0 */
3061 			if (no->set != 0 || rule->set != 0) {
3062 				IPFW_UH_WUNLOCK(ch);
3063 				return (EBUSY);
3064 			}
3065 		}
3066 	}
3067 	V_fw_tables_sets = sets;
3068 	IPFW_UH_WUNLOCK(ch);
3069 	return (0);
3070 }
3071 
3072 /*
3073  * Checks table name for validity.
3074  * Enforce basic length checks, the rest
3075  * should be done in userland.
3076  *
3077  * Returns 0 if name is considered valid.
3078  */
3079 static int
3080 check_table_name(const char *name)
3081 {
3082 
3083 	/*
3084 	 * TODO: do some more complicated checks
3085 	 */
3086 	return (ipfw_check_object_name_generic(name));
3087 }
3088 
3089 /*
3090  * Finds table config based on either legacy index
3091  * or name in ntlv.
3092  * Note @ti structure contains unchecked data from userland.
3093  *
3094  * Returns 0 in success and fills in @tc with found config
3095  */
3096 static int
3097 find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
3098     struct table_config **tc)
3099 {
3100 	char *name, bname[16];
3101 	struct named_object *no;
3102 	ipfw_obj_ntlv *ntlv;
3103 	uint32_t set;
3104 
3105 	if (ti->tlvs != NULL) {
3106 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3107 		    IPFW_TLV_TBL_NAME);
3108 		if (ntlv == NULL)
3109 			return (EINVAL);
3110 		name = ntlv->name;
3111 
3112 		/*
3113 		 * Use set provided by @ti instead of @ntlv one.
3114 		 * This is needed due to different sets behavior
3115 		 * controlled by V_fw_tables_sets.
3116 		 */
3117 		set = (V_fw_tables_sets != 0) ? ti->set : 0;
3118 	} else {
3119 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3120 		name = bname;
3121 		set = 0;
3122 	}
3123 
3124 	no = ipfw_objhash_lookup_name(ni, set, name);
3125 	*tc = (struct table_config *)no;
3126 
3127 	return (0);
3128 }
3129 
3130 /*
3131  * Finds table config based on either legacy index
3132  * or name in ntlv.
3133  * Note @ti structure contains unchecked data from userland.
3134  *
3135  * Returns pointer to table_config or NULL.
3136  */
3137 static struct table_config *
3138 find_table(struct namedobj_instance *ni, struct tid_info *ti)
3139 {
3140 	struct table_config *tc;
3141 
3142 	if (find_table_err(ni, ti, &tc) != 0)
3143 		return (NULL);
3144 
3145 	return (tc);
3146 }
3147 
3148 /*
3149  * Allocate new table config structure using
3150  * specified @algo and @aname.
3151  *
3152  * Returns pointer to config or NULL.
3153  */
3154 static struct table_config *
3155 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti,
3156     struct table_algo *ta, char *aname, uint8_t tflags)
3157 {
3158 	char *name, bname[16];
3159 	struct table_config *tc;
3160 	int error;
3161 	ipfw_obj_ntlv *ntlv;
3162 	uint32_t set;
3163 
3164 	if (ti->tlvs != NULL) {
3165 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3166 		    IPFW_TLV_TBL_NAME);
3167 		if (ntlv == NULL)
3168 			return (NULL);
3169 		name = ntlv->name;
3170 		set = (V_fw_tables_sets == 0) ? 0 : ntlv->set;
3171 	} else {
3172 		/* Compat part: convert number to string representation */
3173 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3174 		name = bname;
3175 		set = 0;
3176 	}
3177 
3178 	tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO);
3179 	tc->no.name = tc->tablename;
3180 	tc->no.subtype = ta->type;
3181 	tc->no.set = set;
3182 	tc->tflags = tflags;
3183 	tc->ta = ta;
3184 	strlcpy(tc->tablename, name, sizeof(tc->tablename));
3185 	/* Set "shared" value type by default */
3186 	tc->vshared = 1;
3187 
3188 	/* Preallocate data structures for new tables */
3189 	error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags);
3190 	if (error != 0) {
3191 		free(tc, M_IPFW);
3192 		return (NULL);
3193 	}
3194 
3195 	return (tc);
3196 }
3197 
3198 /*
3199  * Destroys table state and config.
3200  */
3201 static void
3202 free_table_config(struct namedobj_instance *ni, struct table_config *tc)
3203 {
3204 
3205 	KASSERT(tc->linked == 0, ("free() on linked config"));
3206 	/* UH lock MUST NOT be held */
3207 
3208 	/*
3209 	 * We're using ta without any locking/referencing.
3210 	 * TODO: fix this if we're going to use unloadable algos.
3211 	 */
3212 	tc->ta->destroy(tc->astate, &tc->ti_copy);
3213 	free(tc, M_IPFW);
3214 }
3215 
3216 /*
3217  * Links @tc to @chain table named instance.
3218  * Sets appropriate type/states in @chain table info.
3219  */
3220 static void
3221 link_table(struct ip_fw_chain *ch, struct table_config *tc)
3222 {
3223 	struct namedobj_instance *ni;
3224 	struct table_info *ti;
3225 	uint16_t kidx;
3226 
3227 	IPFW_UH_WLOCK_ASSERT(ch);
3228 
3229 	ni = CHAIN_TO_NI(ch);
3230 	kidx = tc->no.kidx;
3231 
3232 	ipfw_objhash_add(ni, &tc->no);
3233 
3234 	ti = KIDX_TO_TI(ch, kidx);
3235 	*ti = tc->ti_copy;
3236 
3237 	/* Notify algo on real @ti address */
3238 	if (tc->ta->change_ti != NULL)
3239 		tc->ta->change_ti(tc->astate, ti);
3240 
3241 	tc->linked = 1;
3242 	tc->ta->refcnt++;
3243 }
3244 
3245 /*
3246  * Unlinks @tc from @chain table named instance.
3247  * Zeroes states in @chain and stores them in @tc.
3248  */
3249 static void
3250 unlink_table(struct ip_fw_chain *ch, struct table_config *tc)
3251 {
3252 	struct namedobj_instance *ni;
3253 	struct table_info *ti;
3254 	uint16_t kidx;
3255 
3256 	IPFW_UH_WLOCK_ASSERT(ch);
3257 	IPFW_WLOCK_ASSERT(ch);
3258 
3259 	ni = CHAIN_TO_NI(ch);
3260 	kidx = tc->no.kidx;
3261 
3262 	/* Clear state. @ti copy is already saved inside @tc */
3263 	ipfw_objhash_del(ni, &tc->no);
3264 	ti = KIDX_TO_TI(ch, kidx);
3265 	memset(ti, 0, sizeof(struct table_info));
3266 	tc->linked = 0;
3267 	tc->ta->refcnt--;
3268 
3269 	/* Notify algo on real @ti address */
3270 	if (tc->ta->change_ti != NULL)
3271 		tc->ta->change_ti(tc->astate, NULL);
3272 }
3273 
3274 static struct ipfw_sopt_handler	scodes[] = {
3275 	{ IP_FW_TABLE_XCREATE,	0,	HDIR_SET,	create_table },
3276 	{ IP_FW_TABLE_XDESTROY,	0,	HDIR_SET,	flush_table_v0 },
3277 	{ IP_FW_TABLE_XFLUSH,	0,	HDIR_SET,	flush_table_v0 },
3278 	{ IP_FW_TABLE_XMODIFY,	0,	HDIR_BOTH,	modify_table },
3279 	{ IP_FW_TABLE_XINFO,	0,	HDIR_GET,	describe_table },
3280 	{ IP_FW_TABLES_XLIST,	0,	HDIR_GET,	list_tables },
3281 	{ IP_FW_TABLE_XLIST,	0,	HDIR_GET,	dump_table_v0 },
3282 	{ IP_FW_TABLE_XLIST,	1,	HDIR_GET,	dump_table_v1 },
3283 	{ IP_FW_TABLE_XADD,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3284 	{ IP_FW_TABLE_XADD,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3285 	{ IP_FW_TABLE_XDEL,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3286 	{ IP_FW_TABLE_XDEL,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3287 	{ IP_FW_TABLE_XFIND,	0,	HDIR_GET,	find_table_entry },
3288 	{ IP_FW_TABLE_XSWAP,	0,	HDIR_SET,	swap_table },
3289 	{ IP_FW_TABLES_ALIST,	0,	HDIR_GET,	list_table_algo },
3290 	{ IP_FW_TABLE_XGETSIZE,	0,	HDIR_GET,	get_table_size },
3291 };
3292 
3293 static int
3294 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no,
3295     void *arg)
3296 {
3297 
3298 	unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no);
3299 	if (ipfw_objhash_free_idx(ni, no->kidx) != 0)
3300 		printf("Error unlinking kidx %d from table %s\n",
3301 		    no->kidx, no->name);
3302 	free_table_config(ni, (struct table_config *)no);
3303 	return (0);
3304 }
3305 
3306 /*
3307  * Shuts tables module down.
3308  */
3309 void
3310 ipfw_destroy_tables(struct ip_fw_chain *ch, int last)
3311 {
3312 
3313 	IPFW_DEL_SOPT_HANDLER(last, scodes);
3314 	IPFW_DEL_OBJ_REWRITER(last, opcodes);
3315 
3316 	/* Remove all tables from working set */
3317 	IPFW_UH_WLOCK(ch);
3318 	IPFW_WLOCK(ch);
3319 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch);
3320 	IPFW_WUNLOCK(ch);
3321 	IPFW_UH_WUNLOCK(ch);
3322 
3323 	/* Free pointers itself */
3324 	free(ch->tablestate, M_IPFW);
3325 
3326 	ipfw_table_value_destroy(ch, last);
3327 	ipfw_table_algo_destroy(ch);
3328 
3329 	ipfw_objhash_destroy(CHAIN_TO_NI(ch));
3330 	free(CHAIN_TO_TCFG(ch), M_IPFW);
3331 }
3332 
3333 /*
3334  * Starts tables module.
3335  */
3336 int
3337 ipfw_init_tables(struct ip_fw_chain *ch, int first)
3338 {
3339 	struct tables_config *tcfg;
3340 
3341 	/* Allocate pointers */
3342 	ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info),
3343 	    M_IPFW, M_WAITOK | M_ZERO);
3344 
3345 	tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO);
3346 	tcfg->namehash = ipfw_objhash_create(V_fw_tables_max);
3347 	ch->tblcfg = tcfg;
3348 
3349 	ipfw_table_value_init(ch, first);
3350 	ipfw_table_algo_init(ch);
3351 
3352 	IPFW_ADD_OBJ_REWRITER(first, opcodes);
3353 	IPFW_ADD_SOPT_HANDLER(first, scodes);
3354 	return (0);
3355 }
3356