1 /*- 2 * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko. 3 * Copyright (c) 2014 Yandex LLC 4 * Copyright (c) 2014 Alexander V. Chernikov 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * Lookup table support for ipfw. 33 * 34 * This file contains handlers for all generic tables' operations: 35 * add/del/flush entries, list/dump tables etc.. 36 * 37 * Table data modification is protected by both UH and runtime lock 38 * while reading configuration/data is protected by UH lock. 39 * 40 * Lookup algorithms for all table types are located in ip_fw_table_algo.c 41 */ 42 43 #include "opt_ipfw.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/rwlock.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/queue.h> 55 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */ 56 #include <net/pfil.h> 57 58 #include <netinet/in.h> 59 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */ 60 #include <netinet/ip_fw.h> 61 62 #include <netpfil/ipfw/ip_fw_private.h> 63 #include <netpfil/ipfw/ip_fw_table.h> 64 65 /* 66 * Table has the following `type` concepts: 67 * 68 * `no.type` represents lookup key type (addr, ifp, uid, etc..) 69 * vmask represents bitmask of table values which are present at the moment. 70 * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old 71 * single-value-for-all approach. 72 */ 73 struct table_config { 74 struct named_object no; 75 uint8_t tflags; /* type flags */ 76 uint8_t locked; /* 1 if locked from changes */ 77 uint8_t linked; /* 1 if already linked */ 78 uint8_t ochanged; /* used by set swapping */ 79 uint8_t vshared; /* 1 if using shared value array */ 80 uint8_t spare[3]; 81 uint32_t count; /* Number of records */ 82 uint32_t limit; /* Max number of records */ 83 uint32_t vmask; /* bitmask with supported values */ 84 uint32_t ocount; /* used by set swapping */ 85 uint64_t gencnt; /* generation count */ 86 char tablename[64]; /* table name */ 87 struct table_algo *ta; /* Callbacks for given algo */ 88 void *astate; /* algorithm state */ 89 struct table_info ti_copy; /* data to put to table_info */ 90 struct namedobj_instance *vi; 91 }; 92 93 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti, 94 struct table_config **tc); 95 static struct table_config *find_table(struct namedobj_instance *ni, 96 struct tid_info *ti); 97 static struct table_config *alloc_table_config(struct ip_fw_chain *ch, 98 struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags); 99 static void free_table_config(struct namedobj_instance *ni, 100 struct table_config *tc); 101 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 102 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref); 103 static void link_table(struct ip_fw_chain *ch, struct table_config *tc); 104 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc); 105 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 106 struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc); 107 #define OP_ADD 1 108 #define OP_DEL 0 109 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 110 struct sockopt_data *sd); 111 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 112 ipfw_xtable_info *i); 113 static int dump_table_tentry(void *e, void *arg); 114 static int dump_table_xentry(void *e, void *arg); 115 116 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 117 struct tid_info *b); 118 119 static int check_table_name(const char *name); 120 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 121 struct table_config *tc, struct table_info *ti, uint32_t count); 122 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti); 123 124 static struct table_algo *find_table_algo(struct tables_config *tableconf, 125 struct tid_info *ti, char *name); 126 127 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti); 128 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti); 129 130 #define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash) 131 #define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k])) 132 133 #define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */ 134 135 void 136 rollback_toperation_state(struct ip_fw_chain *ch, void *object) 137 { 138 struct tables_config *tcfg; 139 struct op_state *os; 140 141 tcfg = CHAIN_TO_TCFG(ch); 142 TAILQ_FOREACH(os, &tcfg->state_list, next) 143 os->func(object, os); 144 } 145 146 void 147 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 148 { 149 struct tables_config *tcfg; 150 151 tcfg = CHAIN_TO_TCFG(ch); 152 TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next); 153 } 154 155 void 156 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) 157 { 158 struct tables_config *tcfg; 159 160 tcfg = CHAIN_TO_TCFG(ch); 161 TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next); 162 } 163 164 void 165 tc_ref(struct table_config *tc) 166 { 167 168 tc->no.refcnt++; 169 } 170 171 void 172 tc_unref(struct table_config *tc) 173 { 174 175 tc->no.refcnt--; 176 } 177 178 static struct table_value * 179 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx) 180 { 181 struct table_value *pval; 182 183 pval = (struct table_value *)ch->valuestate; 184 185 return (&pval[kidx]); 186 } 187 188 189 /* 190 * Checks if we're able to insert/update entry @tei into table 191 * w.r.t @tc limits. 192 * May alter @tei to indicate insertion error / insert 193 * options. 194 * 195 * Returns 0 if operation can be performed/ 196 */ 197 static int 198 check_table_limit(struct table_config *tc, struct tentry_info *tei) 199 { 200 201 if (tc->limit == 0 || tc->count < tc->limit) 202 return (0); 203 204 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) { 205 /* Notify userland on error cause */ 206 tei->flags |= TEI_FLAGS_LIMIT; 207 return (EFBIG); 208 } 209 210 /* 211 * We have UPDATE flag set. 212 * Permit updating record (if found), 213 * but restrict adding new one since we've 214 * already hit the limit. 215 */ 216 tei->flags |= TEI_FLAGS_DONTADD; 217 218 return (0); 219 } 220 221 /* 222 * Convert algorithm callback return code into 223 * one of pre-defined states known by userland. 224 */ 225 static void 226 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num) 227 { 228 int flag; 229 230 flag = 0; 231 232 switch (error) { 233 case 0: 234 if (op == OP_ADD && num != 0) 235 flag = TEI_FLAGS_ADDED; 236 if (op == OP_DEL) 237 flag = TEI_FLAGS_DELETED; 238 break; 239 case ENOENT: 240 flag = TEI_FLAGS_NOTFOUND; 241 break; 242 case EEXIST: 243 flag = TEI_FLAGS_EXISTS; 244 break; 245 default: 246 flag = TEI_FLAGS_ERROR; 247 } 248 249 tei->flags |= flag; 250 } 251 252 /* 253 * Creates and references table with default parameters. 254 * Saves table config, algo and allocated kidx info @ptc, @pta and 255 * @pkidx if non-zero. 256 * Used for table auto-creation to support old binaries. 257 * 258 * Returns 0 on success. 259 */ 260 static int 261 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti, 262 uint16_t *pkidx) 263 { 264 ipfw_xtable_info xi; 265 int error; 266 267 memset(&xi, 0, sizeof(xi)); 268 /* Set default value mask for legacy clients */ 269 xi.vmask = IPFW_VTYPE_LEGACY; 270 271 error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1); 272 if (error != 0) 273 return (error); 274 275 return (0); 276 } 277 278 /* 279 * Find and reference existing table optionally 280 * creating new one. 281 * 282 * Saves found table config into @ptc. 283 * Note function may drop/acquire UH_WLOCK. 284 * Returns 0 if table was found/created and referenced 285 * or non-zero return code. 286 */ 287 static int 288 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, 289 struct tentry_info *tei, uint32_t count, int op, 290 struct table_config **ptc) 291 { 292 struct namedobj_instance *ni; 293 struct table_config *tc; 294 uint16_t kidx; 295 int error; 296 297 IPFW_UH_WLOCK_ASSERT(ch); 298 299 ni = CHAIN_TO_NI(ch); 300 tc = NULL; 301 if ((tc = find_table(ni, ti)) != NULL) { 302 /* check table type */ 303 if (tc->no.subtype != ti->type) 304 return (EINVAL); 305 306 if (tc->locked != 0) 307 return (EACCES); 308 309 /* Try to exit early on limit hit */ 310 if (op == OP_ADD && count == 1 && 311 check_table_limit(tc, tei) != 0) 312 return (EFBIG); 313 314 /* Reference and return */ 315 tc->no.refcnt++; 316 *ptc = tc; 317 return (0); 318 } 319 320 if (op == OP_DEL) 321 return (ESRCH); 322 323 /* Compatibility mode: create new table for old clients */ 324 if ((tei->flags & TEI_FLAGS_COMPAT) == 0) 325 return (ESRCH); 326 327 IPFW_UH_WUNLOCK(ch); 328 error = create_table_compat(ch, ti, &kidx); 329 IPFW_UH_WLOCK(ch); 330 331 if (error != 0) 332 return (error); 333 334 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 335 KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx)); 336 337 /* OK, now we've got referenced table. */ 338 *ptc = tc; 339 return (0); 340 } 341 342 /* 343 * Rolls back already @added to @tc entries using state array @ta_buf_m. 344 * Assume the following layout: 345 * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases 346 * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1]) 347 * for storing deleted state 348 */ 349 static void 350 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc, 351 struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m, 352 uint32_t count, uint32_t added) 353 { 354 struct table_algo *ta; 355 struct tentry_info *ptei; 356 caddr_t v, vv; 357 size_t ta_buf_sz; 358 int error, i; 359 uint32_t num; 360 361 IPFW_UH_WLOCK_ASSERT(ch); 362 363 ta = tc->ta; 364 ta_buf_sz = ta->ta_buf_size; 365 v = ta_buf_m; 366 vv = v + count * ta_buf_sz; 367 for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) { 368 ptei = &tei[i]; 369 if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) { 370 371 /* 372 * We have old value stored by previous 373 * call in @ptei->value. Do add once again 374 * to restore it. 375 */ 376 error = ta->add(tc->astate, tinfo, ptei, v, &num); 377 KASSERT(error == 0, ("rollback UPDATE fail")); 378 KASSERT(num == 0, ("rollback UPDATE fail2")); 379 continue; 380 } 381 382 error = ta->prepare_del(ch, ptei, vv); 383 KASSERT(error == 0, ("pre-rollback INSERT failed")); 384 error = ta->del(tc->astate, tinfo, ptei, vv, &num); 385 KASSERT(error == 0, ("rollback INSERT failed")); 386 tc->count -= num; 387 } 388 } 389 390 /* 391 * Prepares add/del state for all @count entries in @tei. 392 * Uses either stack buffer (@ta_buf) or allocates a new one. 393 * Stores pointer to allocated buffer back to @ta_buf. 394 * 395 * Returns 0 on success. 396 */ 397 static int 398 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 399 struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf) 400 { 401 caddr_t ta_buf_m, v; 402 size_t ta_buf_sz, sz; 403 struct tentry_info *ptei; 404 int error, i; 405 406 error = 0; 407 ta_buf_sz = ta->ta_buf_size; 408 if (count == 1) { 409 /* Single add/delete, use on-stack buffer */ 410 memset(*ta_buf, 0, TA_BUF_SZ); 411 ta_buf_m = *ta_buf; 412 } else { 413 414 /* 415 * Multiple adds/deletes, allocate larger buffer 416 * 417 * Note we need 2xcount buffer for add case: 418 * we have hold both ADD state 419 * and DELETE state (this may be needed 420 * if we need to rollback all changes) 421 */ 422 sz = count * ta_buf_sz; 423 ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP, 424 M_WAITOK | M_ZERO); 425 } 426 427 v = ta_buf_m; 428 for (i = 0; i < count; i++, v += ta_buf_sz) { 429 ptei = &tei[i]; 430 error = (op == OP_ADD) ? 431 ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v); 432 433 /* 434 * Some syntax error (incorrect mask, or address, or 435 * anything). Return error regardless of atomicity 436 * settings. 437 */ 438 if (error != 0) 439 break; 440 } 441 442 *ta_buf = ta_buf_m; 443 return (error); 444 } 445 446 /* 447 * Flushes allocated state for each @count entries in @tei. 448 * Frees @ta_buf_m if differs from stack buffer @ta_buf. 449 */ 450 static void 451 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, 452 struct tentry_info *tei, uint32_t count, int rollback, 453 caddr_t ta_buf_m, caddr_t ta_buf) 454 { 455 caddr_t v; 456 struct tentry_info *ptei; 457 size_t ta_buf_sz; 458 int i; 459 460 ta_buf_sz = ta->ta_buf_size; 461 462 /* Run cleaning callback anyway */ 463 v = ta_buf_m; 464 for (i = 0; i < count; i++, v += ta_buf_sz) { 465 ptei = &tei[i]; 466 ta->flush_entry(ch, ptei, v); 467 if (ptei->ptv != NULL) { 468 free(ptei->ptv, M_IPFW); 469 ptei->ptv = NULL; 470 } 471 } 472 473 /* Clean up "deleted" state in case of rollback */ 474 if (rollback != 0) { 475 v = ta_buf_m + count * ta_buf_sz; 476 for (i = 0; i < count; i++, v += ta_buf_sz) 477 ta->flush_entry(ch, &tei[i], v); 478 } 479 480 if (ta_buf_m != ta_buf) 481 free(ta_buf_m, M_TEMP); 482 } 483 484 485 static void 486 rollback_add_entry(void *object, struct op_state *_state) 487 { 488 struct ip_fw_chain *ch; 489 struct tableop_state *ts; 490 491 ts = (struct tableop_state *)_state; 492 493 if (ts->tc != object && ts->ch != object) 494 return; 495 496 ch = ts->ch; 497 498 IPFW_UH_WLOCK_ASSERT(ch); 499 500 /* Call specifid unlockers */ 501 rollback_table_values(ts); 502 503 /* Indicate we've called */ 504 ts->modified = 1; 505 } 506 507 /* 508 * Adds/updates one or more entries in table @ti. 509 * 510 * Function may drop/reacquire UH wlock multiple times due to 511 * items alloc, algorithm callbacks (check_space), value linkage 512 * (new values, value storage realloc), etc.. 513 * Other processes like other adds (which may involve storage resize), 514 * table swaps (which changes table data and may change algo type), 515 * table modify (which may change value mask) may be executed 516 * simultaneously so we need to deal with it. 517 * 518 * The following approach was implemented: 519 * we have per-chain linked list, protected with UH lock. 520 * add_table_entry prepares special on-stack structure wthich is passed 521 * to its descendants. Users add this structure to this list before unlock. 522 * After performing needed operations and acquiring UH lock back, each user 523 * checks if structure has changed. If true, it rolls local state back and 524 * returns without error to the caller. 525 * add_table_entry() on its own checks if structure has changed and restarts 526 * its operation from the beginning (goto restart). 527 * 528 * Functions which are modifying fields of interest (currently 529 * resize_shared_value_storage() and swap_tables() ) 530 * traverses given list while holding UH lock immediately before 531 * performing their operations calling function provided be list entry 532 * ( currently rollback_add_entry ) which performs rollback for all necessary 533 * state and sets appropriate values in structure indicating rollback 534 * has happened. 535 * 536 * Algo interaction: 537 * Function references @ti first to ensure table won't 538 * disappear or change its type. 539 * After that, prepare_add callback is called for each @tei entry. 540 * Next, we try to add each entry under UH+WHLOCK 541 * using add() callback. 542 * Finally, we free all state by calling flush_entry callback 543 * for each @tei. 544 * 545 * Returns 0 on success. 546 */ 547 int 548 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 549 struct tentry_info *tei, uint8_t flags, uint32_t count) 550 { 551 struct table_config *tc; 552 struct table_algo *ta; 553 uint16_t kidx; 554 int error, first_error, i, rollback; 555 uint32_t num, numadd; 556 struct tentry_info *ptei; 557 struct tableop_state ts; 558 char ta_buf[TA_BUF_SZ]; 559 caddr_t ta_buf_m, v; 560 561 memset(&ts, 0, sizeof(ts)); 562 ta = NULL; 563 IPFW_UH_WLOCK(ch); 564 565 /* 566 * Find and reference existing table. 567 */ 568 restart: 569 if (ts.modified != 0) { 570 IPFW_UH_WUNLOCK(ch); 571 flush_batch_buffer(ch, ta, tei, count, rollback, 572 ta_buf_m, ta_buf); 573 memset(&ts, 0, sizeof(ts)); 574 ta = NULL; 575 IPFW_UH_WLOCK(ch); 576 } 577 578 error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc); 579 if (error != 0) { 580 IPFW_UH_WUNLOCK(ch); 581 return (error); 582 } 583 ta = tc->ta; 584 585 /* Fill in tablestate */ 586 ts.ch = ch; 587 ts.opstate.func = rollback_add_entry; 588 ts.tc = tc; 589 ts.vshared = tc->vshared; 590 ts.vmask = tc->vmask; 591 ts.ta = ta; 592 ts.tei = tei; 593 ts.count = count; 594 rollback = 0; 595 add_toperation_state(ch, &ts); 596 IPFW_UH_WUNLOCK(ch); 597 598 /* Allocate memory and prepare record(s) */ 599 /* Pass stack buffer by default */ 600 ta_buf_m = ta_buf; 601 error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m); 602 603 IPFW_UH_WLOCK(ch); 604 del_toperation_state(ch, &ts); 605 /* Drop reference we've used in first search */ 606 tc->no.refcnt--; 607 608 /* Check prepare_batch_buffer() error */ 609 if (error != 0) 610 goto cleanup; 611 612 /* 613 * Check if table swap has happened. 614 * (so table algo might be changed). 615 * Restart operation to achieve consistent behavior. 616 */ 617 if (ts.modified != 0) 618 goto restart; 619 620 /* 621 * Link all values values to shared/per-table value array. 622 * 623 * May release/reacquire UH_WLOCK. 624 */ 625 error = ipfw_link_table_values(ch, &ts); 626 if (error != 0) 627 goto cleanup; 628 if (ts.modified != 0) 629 goto restart; 630 631 /* 632 * Ensure we are able to add all entries without additional 633 * memory allocations. May release/reacquire UH_WLOCK. 634 */ 635 kidx = tc->no.kidx; 636 error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count); 637 if (error != 0) 638 goto cleanup; 639 if (ts.modified != 0) 640 goto restart; 641 642 /* We've got valid table in @tc. Let's try to add data */ 643 kidx = tc->no.kidx; 644 ta = tc->ta; 645 numadd = 0; 646 first_error = 0; 647 648 IPFW_WLOCK(ch); 649 650 v = ta_buf_m; 651 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 652 ptei = &tei[i]; 653 num = 0; 654 /* check limit before adding */ 655 if ((error = check_table_limit(tc, ptei)) == 0) { 656 error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx), 657 ptei, v, &num); 658 /* Set status flag to inform userland */ 659 store_tei_result(ptei, OP_ADD, error, num); 660 } 661 if (error == 0) { 662 /* Update number of records to ease limit checking */ 663 tc->count += num; 664 numadd += num; 665 continue; 666 } 667 668 if (first_error == 0) 669 first_error = error; 670 671 /* 672 * Some error have happened. Check our atomicity 673 * settings: continue if atomicity is not required, 674 * rollback changes otherwise. 675 */ 676 if ((flags & IPFW_CTF_ATOMIC) == 0) 677 continue; 678 679 rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx), 680 tei, ta_buf_m, count, i); 681 682 rollback = 1; 683 break; 684 } 685 686 IPFW_WUNLOCK(ch); 687 688 ipfw_garbage_table_values(ch, tc, tei, count, rollback); 689 690 /* Permit post-add algorithm grow/rehash. */ 691 if (numadd != 0) 692 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 693 694 /* Return first error to user, if any */ 695 error = first_error; 696 697 cleanup: 698 IPFW_UH_WUNLOCK(ch); 699 700 flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf); 701 702 return (error); 703 } 704 705 /* 706 * Deletes one or more entries in table @ti. 707 * 708 * Returns 0 on success. 709 */ 710 int 711 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, 712 struct tentry_info *tei, uint8_t flags, uint32_t count) 713 { 714 struct table_config *tc; 715 struct table_algo *ta; 716 struct tentry_info *ptei; 717 uint16_t kidx; 718 int error, first_error, i; 719 uint32_t num, numdel; 720 char ta_buf[TA_BUF_SZ]; 721 caddr_t ta_buf_m, v; 722 723 /* 724 * Find and reference existing table. 725 */ 726 IPFW_UH_WLOCK(ch); 727 error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc); 728 if (error != 0) { 729 IPFW_UH_WUNLOCK(ch); 730 return (error); 731 } 732 ta = tc->ta; 733 IPFW_UH_WUNLOCK(ch); 734 735 /* Allocate memory and prepare record(s) */ 736 /* Pass stack buffer by default */ 737 ta_buf_m = ta_buf; 738 error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m); 739 if (error != 0) 740 goto cleanup; 741 742 IPFW_UH_WLOCK(ch); 743 744 /* Drop reference we've used in first search */ 745 tc->no.refcnt--; 746 747 /* 748 * Check if table algo is still the same. 749 * (changed ta may be the result of table swap). 750 */ 751 if (ta != tc->ta) { 752 IPFW_UH_WUNLOCK(ch); 753 error = EINVAL; 754 goto cleanup; 755 } 756 757 kidx = tc->no.kidx; 758 numdel = 0; 759 first_error = 0; 760 761 IPFW_WLOCK(ch); 762 v = ta_buf_m; 763 for (i = 0; i < count; i++, v += ta->ta_buf_size) { 764 ptei = &tei[i]; 765 num = 0; 766 error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v, 767 &num); 768 /* Save state for userland */ 769 store_tei_result(ptei, OP_DEL, error, num); 770 if (error != 0 && first_error == 0) 771 first_error = error; 772 tc->count -= num; 773 numdel += num; 774 } 775 IPFW_WUNLOCK(ch); 776 777 /* Unlink non-used values */ 778 ipfw_garbage_table_values(ch, tc, tei, count, 0); 779 780 if (numdel != 0) { 781 /* Run post-del hook to permit shrinking */ 782 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); 783 } 784 785 IPFW_UH_WUNLOCK(ch); 786 787 /* Return first error to user, if any */ 788 error = first_error; 789 790 cleanup: 791 flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf); 792 793 return (error); 794 } 795 796 /* 797 * Ensure that table @tc has enough space to add @count entries without 798 * need for reallocation. 799 * 800 * Callbacks order: 801 * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize. 802 * 803 * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags. 804 * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage 805 * 3) modify (UH_WLOCK + WLOCK) - switch pointers 806 * 4) flush_modify (UH_WLOCK) - free state, if needed 807 * 808 * Returns 0 on success. 809 */ 810 static int 811 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, 812 struct table_config *tc, struct table_info *ti, uint32_t count) 813 { 814 struct table_algo *ta; 815 uint64_t pflags; 816 char ta_buf[TA_BUF_SZ]; 817 int error; 818 819 IPFW_UH_WLOCK_ASSERT(ch); 820 821 error = 0; 822 ta = tc->ta; 823 if (ta->need_modify == NULL) 824 return (0); 825 826 /* Acquire reference not to loose @tc between locks/unlocks */ 827 tc->no.refcnt++; 828 829 /* 830 * TODO: think about avoiding race between large add/large delete 831 * operation on algorithm which implements shrinking along with 832 * growing. 833 */ 834 while (true) { 835 pflags = 0; 836 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 837 error = 0; 838 break; 839 } 840 841 /* We have to shrink/grow table */ 842 if (ts != NULL) 843 add_toperation_state(ch, ts); 844 IPFW_UH_WUNLOCK(ch); 845 846 memset(&ta_buf, 0, sizeof(ta_buf)); 847 error = ta->prepare_mod(ta_buf, &pflags); 848 849 IPFW_UH_WLOCK(ch); 850 if (ts != NULL) 851 del_toperation_state(ch, ts); 852 853 if (error != 0) 854 break; 855 856 if (ts != NULL && ts->modified != 0) { 857 858 /* 859 * Swap operation has happened 860 * so we're currently operating on other 861 * table data. Stop doing this. 862 */ 863 ta->flush_mod(ta_buf); 864 break; 865 } 866 867 /* Check if we still need to alter table */ 868 ti = KIDX_TO_TI(ch, tc->no.kidx); 869 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { 870 IPFW_UH_WUNLOCK(ch); 871 872 /* 873 * Other thread has already performed resize. 874 * Flush our state and return. 875 */ 876 ta->flush_mod(ta_buf); 877 break; 878 } 879 880 error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags); 881 if (error == 0) { 882 /* Do actual modification */ 883 IPFW_WLOCK(ch); 884 ta->modify(tc->astate, ti, ta_buf, pflags); 885 IPFW_WUNLOCK(ch); 886 } 887 888 /* Anyway, flush data and retry */ 889 ta->flush_mod(ta_buf); 890 } 891 892 tc->no.refcnt--; 893 return (error); 894 } 895 896 /* 897 * Adds or deletes record in table. 898 * Data layout (v0): 899 * Request: [ ip_fw3_opheader ipfw_table_xentry ] 900 * 901 * Returns 0 on success 902 */ 903 static int 904 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 905 struct sockopt_data *sd) 906 { 907 ipfw_table_xentry *xent; 908 struct tentry_info tei; 909 struct tid_info ti; 910 struct table_value v; 911 int error, hdrlen, read; 912 913 hdrlen = offsetof(ipfw_table_xentry, k); 914 915 /* Check minimum header size */ 916 if (sd->valsize < (sizeof(*op3) + hdrlen)) 917 return (EINVAL); 918 919 read = sizeof(ip_fw3_opheader); 920 921 /* Check if xentry len field is valid */ 922 xent = (ipfw_table_xentry *)(op3 + 1); 923 if (xent->len < hdrlen || xent->len + read > sd->valsize) 924 return (EINVAL); 925 926 memset(&tei, 0, sizeof(tei)); 927 tei.paddr = &xent->k; 928 tei.masklen = xent->masklen; 929 ipfw_import_table_value_legacy(xent->value, &v); 930 tei.pvalue = &v; 931 /* Old requests compatibility */ 932 tei.flags = TEI_FLAGS_COMPAT; 933 if (xent->type == IPFW_TABLE_ADDR) { 934 if (xent->len - hdrlen == sizeof(in_addr_t)) 935 tei.subtype = AF_INET; 936 else 937 tei.subtype = AF_INET6; 938 } 939 940 memset(&ti, 0, sizeof(ti)); 941 ti.uidx = xent->tbl; 942 ti.type = xent->type; 943 944 error = (op3->opcode == IP_FW_TABLE_XADD) ? 945 add_table_entry(ch, &ti, &tei, 0, 1) : 946 del_table_entry(ch, &ti, &tei, 0, 1); 947 948 return (error); 949 } 950 951 /* 952 * Adds or deletes record in table. 953 * Data layout (v1)(current): 954 * Request: [ ipfw_obj_header 955 * ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ] 956 * ] 957 * 958 * Returns 0 on success 959 */ 960 static int 961 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 962 struct sockopt_data *sd) 963 { 964 ipfw_obj_tentry *tent, *ptent; 965 ipfw_obj_ctlv *ctlv; 966 ipfw_obj_header *oh; 967 struct tentry_info *ptei, tei, *tei_buf; 968 struct tid_info ti; 969 int error, i, kidx, read; 970 971 /* Check minimum header size */ 972 if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv))) 973 return (EINVAL); 974 975 /* Check if passed data is too long */ 976 if (sd->valsize != sd->kavail) 977 return (EINVAL); 978 979 oh = (ipfw_obj_header *)sd->kbuf; 980 981 /* Basic length checks for TLVs */ 982 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 983 return (EINVAL); 984 985 read = sizeof(*oh); 986 987 ctlv = (ipfw_obj_ctlv *)(oh + 1); 988 if (ctlv->head.length + read != sd->valsize) 989 return (EINVAL); 990 991 read += sizeof(*ctlv); 992 tent = (ipfw_obj_tentry *)(ctlv + 1); 993 if (ctlv->count * sizeof(*tent) + read != sd->valsize) 994 return (EINVAL); 995 996 if (ctlv->count == 0) 997 return (0); 998 999 /* 1000 * Mark entire buffer as "read". 1001 * This instructs sopt api write it back 1002 * after function return. 1003 */ 1004 ipfw_get_sopt_header(sd, sd->valsize); 1005 1006 /* Perform basic checks for each entry */ 1007 ptent = tent; 1008 kidx = tent->idx; 1009 for (i = 0; i < ctlv->count; i++, ptent++) { 1010 if (ptent->head.length != sizeof(*ptent)) 1011 return (EINVAL); 1012 if (ptent->idx != kidx) 1013 return (ENOTSUP); 1014 } 1015 1016 /* Convert data into kernel request objects */ 1017 objheader_to_ti(oh, &ti); 1018 ti.type = oh->ntlv.type; 1019 ti.uidx = kidx; 1020 1021 /* Use on-stack buffer for single add/del */ 1022 if (ctlv->count == 1) { 1023 memset(&tei, 0, sizeof(tei)); 1024 tei_buf = &tei; 1025 } else 1026 tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP, 1027 M_WAITOK | M_ZERO); 1028 1029 ptei = tei_buf; 1030 ptent = tent; 1031 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1032 ptei->paddr = &ptent->k; 1033 ptei->subtype = ptent->subtype; 1034 ptei->masklen = ptent->masklen; 1035 if (ptent->head.flags & IPFW_TF_UPDATE) 1036 ptei->flags |= TEI_FLAGS_UPDATE; 1037 1038 ipfw_import_table_value_v1(&ptent->v.value); 1039 ptei->pvalue = (struct table_value *)&ptent->v.value; 1040 } 1041 1042 error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ? 1043 add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) : 1044 del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count); 1045 1046 /* Translate result back to userland */ 1047 ptei = tei_buf; 1048 ptent = tent; 1049 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { 1050 if (ptei->flags & TEI_FLAGS_ADDED) 1051 ptent->result = IPFW_TR_ADDED; 1052 else if (ptei->flags & TEI_FLAGS_DELETED) 1053 ptent->result = IPFW_TR_DELETED; 1054 else if (ptei->flags & TEI_FLAGS_UPDATED) 1055 ptent->result = IPFW_TR_UPDATED; 1056 else if (ptei->flags & TEI_FLAGS_LIMIT) 1057 ptent->result = IPFW_TR_LIMIT; 1058 else if (ptei->flags & TEI_FLAGS_ERROR) 1059 ptent->result = IPFW_TR_ERROR; 1060 else if (ptei->flags & TEI_FLAGS_NOTFOUND) 1061 ptent->result = IPFW_TR_NOTFOUND; 1062 else if (ptei->flags & TEI_FLAGS_EXISTS) 1063 ptent->result = IPFW_TR_EXISTS; 1064 ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value); 1065 } 1066 1067 if (tei_buf != &tei) 1068 free(tei_buf, M_TEMP); 1069 1070 return (error); 1071 } 1072 1073 /* 1074 * Looks up an entry in given table. 1075 * Data layout (v0)(current): 1076 * Request: [ ipfw_obj_header ipfw_obj_tentry ] 1077 * Reply: [ ipfw_obj_header ipfw_obj_tentry ] 1078 * 1079 * Returns 0 on success 1080 */ 1081 static int 1082 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1083 struct sockopt_data *sd) 1084 { 1085 ipfw_obj_tentry *tent; 1086 ipfw_obj_header *oh; 1087 struct tid_info ti; 1088 struct table_config *tc; 1089 struct table_algo *ta; 1090 struct table_info *kti; 1091 struct table_value *pval; 1092 struct namedobj_instance *ni; 1093 int error; 1094 size_t sz; 1095 1096 /* Check minimum header size */ 1097 sz = sizeof(*oh) + sizeof(*tent); 1098 if (sd->valsize != sz) 1099 return (EINVAL); 1100 1101 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1102 tent = (ipfw_obj_tentry *)(oh + 1); 1103 1104 /* Basic length checks for TLVs */ 1105 if (oh->ntlv.head.length != sizeof(oh->ntlv)) 1106 return (EINVAL); 1107 1108 objheader_to_ti(oh, &ti); 1109 ti.type = oh->ntlv.type; 1110 ti.uidx = tent->idx; 1111 1112 IPFW_UH_RLOCK(ch); 1113 ni = CHAIN_TO_NI(ch); 1114 1115 /* 1116 * Find existing table and check its type . 1117 */ 1118 ta = NULL; 1119 if ((tc = find_table(ni, &ti)) == NULL) { 1120 IPFW_UH_RUNLOCK(ch); 1121 return (ESRCH); 1122 } 1123 1124 /* check table type */ 1125 if (tc->no.subtype != ti.type) { 1126 IPFW_UH_RUNLOCK(ch); 1127 return (EINVAL); 1128 } 1129 1130 kti = KIDX_TO_TI(ch, tc->no.kidx); 1131 ta = tc->ta; 1132 1133 if (ta->find_tentry == NULL) 1134 return (ENOTSUP); 1135 1136 error = ta->find_tentry(tc->astate, kti, tent); 1137 if (error == 0) { 1138 pval = get_table_value(ch, tc, tent->v.kidx); 1139 ipfw_export_table_value_v1(pval, &tent->v.value); 1140 } 1141 IPFW_UH_RUNLOCK(ch); 1142 1143 return (error); 1144 } 1145 1146 /* 1147 * Flushes all entries or destroys given table. 1148 * Data layout (v0)(current): 1149 * Request: [ ipfw_obj_header ] 1150 * 1151 * Returns 0 on success 1152 */ 1153 static int 1154 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1155 struct sockopt_data *sd) 1156 { 1157 int error; 1158 struct _ipfw_obj_header *oh; 1159 struct tid_info ti; 1160 1161 if (sd->valsize != sizeof(*oh)) 1162 return (EINVAL); 1163 1164 oh = (struct _ipfw_obj_header *)op3; 1165 objheader_to_ti(oh, &ti); 1166 1167 if (op3->opcode == IP_FW_TABLE_XDESTROY) 1168 error = destroy_table(ch, &ti); 1169 else if (op3->opcode == IP_FW_TABLE_XFLUSH) 1170 error = flush_table(ch, &ti); 1171 else 1172 return (ENOTSUP); 1173 1174 return (error); 1175 } 1176 1177 static void 1178 restart_flush(void *object, struct op_state *_state) 1179 { 1180 struct tableop_state *ts; 1181 1182 ts = (struct tableop_state *)_state; 1183 1184 if (ts->tc != object) 1185 return; 1186 1187 /* Indicate we've called */ 1188 ts->modified = 1; 1189 } 1190 1191 /* 1192 * Flushes given table. 1193 * 1194 * Function create new table instance with the same 1195 * parameters, swaps it with old one and 1196 * flushes state without holding runtime WLOCK. 1197 * 1198 * Returns 0 on success. 1199 */ 1200 int 1201 flush_table(struct ip_fw_chain *ch, struct tid_info *ti) 1202 { 1203 struct namedobj_instance *ni; 1204 struct table_config *tc; 1205 struct table_algo *ta; 1206 struct table_info ti_old, ti_new, *tablestate; 1207 void *astate_old, *astate_new; 1208 char algostate[64], *pstate; 1209 struct tableop_state ts; 1210 int error, need_gc; 1211 uint16_t kidx; 1212 uint8_t tflags; 1213 1214 /* 1215 * Stage 1: save table algorithm. 1216 * Reference found table to ensure it won't disappear. 1217 */ 1218 IPFW_UH_WLOCK(ch); 1219 ni = CHAIN_TO_NI(ch); 1220 if ((tc = find_table(ni, ti)) == NULL) { 1221 IPFW_UH_WUNLOCK(ch); 1222 return (ESRCH); 1223 } 1224 need_gc = 0; 1225 astate_new = NULL; 1226 memset(&ti_new, 0, sizeof(ti_new)); 1227 restart: 1228 /* Set up swap handler */ 1229 memset(&ts, 0, sizeof(ts)); 1230 ts.opstate.func = restart_flush; 1231 ts.tc = tc; 1232 1233 ta = tc->ta; 1234 /* Do not flush readonly tables */ 1235 if ((ta->flags & TA_FLAG_READONLY) != 0) { 1236 IPFW_UH_WUNLOCK(ch); 1237 return (EACCES); 1238 } 1239 /* Save startup algo parameters */ 1240 if (ta->print_config != NULL) { 1241 ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx), 1242 algostate, sizeof(algostate)); 1243 pstate = algostate; 1244 } else 1245 pstate = NULL; 1246 tflags = tc->tflags; 1247 tc->no.refcnt++; 1248 add_toperation_state(ch, &ts); 1249 IPFW_UH_WUNLOCK(ch); 1250 1251 /* 1252 * Stage 1.5: if this is not the first attempt, destroy previous state 1253 */ 1254 if (need_gc != 0) { 1255 ta->destroy(astate_new, &ti_new); 1256 need_gc = 0; 1257 } 1258 1259 /* 1260 * Stage 2: allocate new table instance using same algo. 1261 */ 1262 memset(&ti_new, 0, sizeof(struct table_info)); 1263 error = ta->init(ch, &astate_new, &ti_new, pstate, tflags); 1264 1265 /* 1266 * Stage 3: swap old state pointers with newly-allocated ones. 1267 * Decrease refcount. 1268 */ 1269 IPFW_UH_WLOCK(ch); 1270 tc->no.refcnt--; 1271 del_toperation_state(ch, &ts); 1272 1273 if (error != 0) { 1274 IPFW_UH_WUNLOCK(ch); 1275 return (error); 1276 } 1277 1278 /* 1279 * Restart operation if table swap has happened: 1280 * even if algo may be the same, algo init parameters 1281 * may change. Restart operation instead of doing 1282 * complex checks. 1283 */ 1284 if (ts.modified != 0) { 1285 /* Delay destroying data since we're holding UH lock */ 1286 need_gc = 1; 1287 goto restart; 1288 } 1289 1290 ni = CHAIN_TO_NI(ch); 1291 kidx = tc->no.kidx; 1292 tablestate = (struct table_info *)ch->tablestate; 1293 1294 IPFW_WLOCK(ch); 1295 ti_old = tablestate[kidx]; 1296 tablestate[kidx] = ti_new; 1297 IPFW_WUNLOCK(ch); 1298 1299 astate_old = tc->astate; 1300 tc->astate = astate_new; 1301 tc->ti_copy = ti_new; 1302 tc->count = 0; 1303 1304 /* Notify algo on real @ti address */ 1305 if (ta->change_ti != NULL) 1306 ta->change_ti(tc->astate, &tablestate[kidx]); 1307 1308 /* 1309 * Stage 4: unref values. 1310 */ 1311 ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old); 1312 IPFW_UH_WUNLOCK(ch); 1313 1314 /* 1315 * Stage 5: perform real flush/destroy. 1316 */ 1317 ta->destroy(astate_old, &ti_old); 1318 1319 return (0); 1320 } 1321 1322 /* 1323 * Swaps two tables. 1324 * Data layout (v0)(current): 1325 * Request: [ ipfw_obj_header ipfw_obj_ntlv ] 1326 * 1327 * Returns 0 on success 1328 */ 1329 static int 1330 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1331 struct sockopt_data *sd) 1332 { 1333 int error; 1334 struct _ipfw_obj_header *oh; 1335 struct tid_info ti_a, ti_b; 1336 1337 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv)) 1338 return (EINVAL); 1339 1340 oh = (struct _ipfw_obj_header *)op3; 1341 ntlv_to_ti(&oh->ntlv, &ti_a); 1342 ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b); 1343 1344 error = swap_tables(ch, &ti_a, &ti_b); 1345 1346 return (error); 1347 } 1348 1349 /* 1350 * Swaps two tables of the same type/valtype. 1351 * 1352 * Checks if tables are compatible and limits 1353 * permits swap, than actually perform swap. 1354 * 1355 * Each table consists of 2 different parts: 1356 * config: 1357 * @tc (with name, set, kidx) and rule bindings, which is "stable". 1358 * number of items 1359 * table algo 1360 * runtime: 1361 * runtime data @ti (ch->tablestate) 1362 * runtime cache in @tc 1363 * algo-specific data (@tc->astate) 1364 * 1365 * So we switch: 1366 * all runtime data 1367 * number of items 1368 * table algo 1369 * 1370 * After that we call @ti change handler for each table. 1371 * 1372 * Note that referencing @tc won't protect tc->ta from change. 1373 * XXX: Do we need to restrict swap between locked tables? 1374 * XXX: Do we need to exchange ftype? 1375 * 1376 * Returns 0 on success. 1377 */ 1378 static int 1379 swap_tables(struct ip_fw_chain *ch, struct tid_info *a, 1380 struct tid_info *b) 1381 { 1382 struct namedobj_instance *ni; 1383 struct table_config *tc_a, *tc_b; 1384 struct table_algo *ta; 1385 struct table_info ti, *tablestate; 1386 void *astate; 1387 uint32_t count; 1388 1389 /* 1390 * Stage 1: find both tables and ensure they are of 1391 * the same type. 1392 */ 1393 IPFW_UH_WLOCK(ch); 1394 ni = CHAIN_TO_NI(ch); 1395 if ((tc_a = find_table(ni, a)) == NULL) { 1396 IPFW_UH_WUNLOCK(ch); 1397 return (ESRCH); 1398 } 1399 if ((tc_b = find_table(ni, b)) == NULL) { 1400 IPFW_UH_WUNLOCK(ch); 1401 return (ESRCH); 1402 } 1403 1404 /* It is very easy to swap between the same table */ 1405 if (tc_a == tc_b) { 1406 IPFW_UH_WUNLOCK(ch); 1407 return (0); 1408 } 1409 1410 /* Check type and value are the same */ 1411 if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) { 1412 IPFW_UH_WUNLOCK(ch); 1413 return (EINVAL); 1414 } 1415 1416 /* Check limits before swap */ 1417 if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) || 1418 (tc_b->limit != 0 && tc_a->count > tc_b->limit)) { 1419 IPFW_UH_WUNLOCK(ch); 1420 return (EFBIG); 1421 } 1422 1423 /* Check if one of the tables is readonly */ 1424 if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) { 1425 IPFW_UH_WUNLOCK(ch); 1426 return (EACCES); 1427 } 1428 1429 /* Notify we're going to swap */ 1430 rollback_toperation_state(ch, tc_a); 1431 rollback_toperation_state(ch, tc_b); 1432 1433 /* Everything is fine, prepare to swap */ 1434 tablestate = (struct table_info *)ch->tablestate; 1435 ti = tablestate[tc_a->no.kidx]; 1436 ta = tc_a->ta; 1437 astate = tc_a->astate; 1438 count = tc_a->count; 1439 1440 IPFW_WLOCK(ch); 1441 /* a <- b */ 1442 tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx]; 1443 tc_a->ta = tc_b->ta; 1444 tc_a->astate = tc_b->astate; 1445 tc_a->count = tc_b->count; 1446 /* b <- a */ 1447 tablestate[tc_b->no.kidx] = ti; 1448 tc_b->ta = ta; 1449 tc_b->astate = astate; 1450 tc_b->count = count; 1451 IPFW_WUNLOCK(ch); 1452 1453 /* Ensure tc.ti copies are in sync */ 1454 tc_a->ti_copy = tablestate[tc_a->no.kidx]; 1455 tc_b->ti_copy = tablestate[tc_b->no.kidx]; 1456 1457 /* Notify both tables on @ti change */ 1458 if (tc_a->ta->change_ti != NULL) 1459 tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]); 1460 if (tc_b->ta->change_ti != NULL) 1461 tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]); 1462 1463 IPFW_UH_WUNLOCK(ch); 1464 1465 return (0); 1466 } 1467 1468 /* 1469 * Destroys table specified by @ti. 1470 * Data layout (v0)(current): 1471 * Request: [ ip_fw3_opheader ] 1472 * 1473 * Returns 0 on success 1474 */ 1475 static int 1476 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti) 1477 { 1478 struct namedobj_instance *ni; 1479 struct table_config *tc; 1480 1481 IPFW_UH_WLOCK(ch); 1482 1483 ni = CHAIN_TO_NI(ch); 1484 if ((tc = find_table(ni, ti)) == NULL) { 1485 IPFW_UH_WUNLOCK(ch); 1486 return (ESRCH); 1487 } 1488 1489 /* Do not permit destroying referenced tables */ 1490 if (tc->no.refcnt > 0) { 1491 IPFW_UH_WUNLOCK(ch); 1492 return (EBUSY); 1493 } 1494 1495 IPFW_WLOCK(ch); 1496 unlink_table(ch, tc); 1497 IPFW_WUNLOCK(ch); 1498 1499 /* Free obj index */ 1500 if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0) 1501 printf("Error unlinking kidx %d from table %s\n", 1502 tc->no.kidx, tc->tablename); 1503 1504 /* Unref values used in tables while holding UH lock */ 1505 ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy); 1506 IPFW_UH_WUNLOCK(ch); 1507 1508 free_table_config(ni, tc); 1509 1510 return (0); 1511 } 1512 1513 static uint32_t 1514 roundup2p(uint32_t v) 1515 { 1516 1517 v--; 1518 v |= v >> 1; 1519 v |= v >> 2; 1520 v |= v >> 4; 1521 v |= v >> 8; 1522 v |= v >> 16; 1523 v++; 1524 1525 return (v); 1526 } 1527 1528 /* 1529 * Grow tables index. 1530 * 1531 * Returns 0 on success. 1532 */ 1533 int 1534 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables) 1535 { 1536 unsigned int ntables_old, tbl; 1537 struct namedobj_instance *ni; 1538 void *new_idx, *old_tablestate, *tablestate; 1539 struct table_info *ti; 1540 struct table_config *tc; 1541 int i, new_blocks; 1542 1543 /* Check new value for validity */ 1544 if (ntables == 0) 1545 return (EINVAL); 1546 if (ntables > IPFW_TABLES_MAX) 1547 ntables = IPFW_TABLES_MAX; 1548 /* Alight to nearest power of 2 */ 1549 ntables = (unsigned int)roundup2p(ntables); 1550 1551 /* Allocate new pointers */ 1552 tablestate = malloc(ntables * sizeof(struct table_info), 1553 M_IPFW, M_WAITOK | M_ZERO); 1554 1555 ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks); 1556 1557 IPFW_UH_WLOCK(ch); 1558 1559 tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables; 1560 ni = CHAIN_TO_NI(ch); 1561 1562 /* Temporary restrict decreasing max_tables */ 1563 if (ntables < V_fw_tables_max) { 1564 1565 /* 1566 * FIXME: Check if we really can shrink 1567 */ 1568 IPFW_UH_WUNLOCK(ch); 1569 return (EINVAL); 1570 } 1571 1572 /* Copy table info/indices */ 1573 memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl); 1574 ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks); 1575 1576 IPFW_WLOCK(ch); 1577 1578 /* Change pointers */ 1579 old_tablestate = ch->tablestate; 1580 ch->tablestate = tablestate; 1581 ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks); 1582 1583 ntables_old = V_fw_tables_max; 1584 V_fw_tables_max = ntables; 1585 1586 IPFW_WUNLOCK(ch); 1587 1588 /* Notify all consumers that their @ti pointer has changed */ 1589 ti = (struct table_info *)ch->tablestate; 1590 for (i = 0; i < tbl; i++, ti++) { 1591 if (ti->lookup == NULL) 1592 continue; 1593 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i); 1594 if (tc == NULL || tc->ta->change_ti == NULL) 1595 continue; 1596 1597 tc->ta->change_ti(tc->astate, ti); 1598 } 1599 1600 IPFW_UH_WUNLOCK(ch); 1601 1602 /* Free old pointers */ 1603 free(old_tablestate, M_IPFW); 1604 ipfw_objhash_bitmap_free(new_idx, new_blocks); 1605 1606 return (0); 1607 } 1608 1609 /* 1610 * Lookup table's named object by its @kidx. 1611 */ 1612 struct named_object * 1613 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx) 1614 { 1615 1616 return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx)); 1617 } 1618 1619 /* 1620 * Take reference to table specified in @ntlv. 1621 * On success return its @kidx. 1622 */ 1623 int 1624 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx) 1625 { 1626 struct tid_info ti; 1627 struct table_config *tc; 1628 int error; 1629 1630 IPFW_UH_WLOCK_ASSERT(ch); 1631 1632 ntlv_to_ti(ntlv, &ti); 1633 error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc); 1634 if (error != 0) 1635 return (error); 1636 1637 if (tc == NULL) 1638 return (ESRCH); 1639 1640 tc_ref(tc); 1641 *kidx = tc->no.kidx; 1642 1643 return (0); 1644 } 1645 1646 void 1647 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx) 1648 { 1649 1650 struct namedobj_instance *ni; 1651 struct named_object *no; 1652 1653 IPFW_UH_WLOCK_ASSERT(ch); 1654 ni = CHAIN_TO_NI(ch); 1655 no = ipfw_objhash_lookup_kidx(ni, kidx); 1656 KASSERT(no != NULL, ("Table with index %d not found", kidx)); 1657 no->refcnt--; 1658 } 1659 1660 /* 1661 * Lookup an arbitrary key @paddr of length @plen in table @tbl. 1662 * Stores found value in @val. 1663 * 1664 * Returns 1 if key was found. 1665 */ 1666 int 1667 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen, 1668 void *paddr, uint32_t *val) 1669 { 1670 struct table_info *ti; 1671 1672 ti = KIDX_TO_TI(ch, tbl); 1673 1674 return (ti->lookup(ti, paddr, plen, val)); 1675 } 1676 1677 /* 1678 * Info/List/dump support for tables. 1679 * 1680 */ 1681 1682 /* 1683 * High-level 'get' cmds sysctl handlers 1684 */ 1685 1686 /* 1687 * Lists all tables currently available in kernel. 1688 * Data layout (v0)(current): 1689 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 1690 * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ] 1691 * 1692 * Returns 0 on success 1693 */ 1694 static int 1695 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1696 struct sockopt_data *sd) 1697 { 1698 struct _ipfw_obj_lheader *olh; 1699 int error; 1700 1701 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 1702 if (olh == NULL) 1703 return (EINVAL); 1704 if (sd->valsize < olh->size) 1705 return (EINVAL); 1706 1707 IPFW_UH_RLOCK(ch); 1708 error = export_tables(ch, olh, sd); 1709 IPFW_UH_RUNLOCK(ch); 1710 1711 return (error); 1712 } 1713 1714 /* 1715 * Store table info to buffer provided by @sd. 1716 * Data layout (v0)(current): 1717 * Request: [ ipfw_obj_header ipfw_xtable_info(empty)] 1718 * Reply: [ ipfw_obj_header ipfw_xtable_info ] 1719 * 1720 * Returns 0 on success. 1721 */ 1722 static int 1723 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1724 struct sockopt_data *sd) 1725 { 1726 struct _ipfw_obj_header *oh; 1727 struct table_config *tc; 1728 struct tid_info ti; 1729 size_t sz; 1730 1731 sz = sizeof(*oh) + sizeof(ipfw_xtable_info); 1732 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 1733 if (oh == NULL) 1734 return (EINVAL); 1735 1736 objheader_to_ti(oh, &ti); 1737 1738 IPFW_UH_RLOCK(ch); 1739 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 1740 IPFW_UH_RUNLOCK(ch); 1741 return (ESRCH); 1742 } 1743 1744 export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1)); 1745 IPFW_UH_RUNLOCK(ch); 1746 1747 return (0); 1748 } 1749 1750 /* 1751 * Modifies existing table. 1752 * Data layout (v0)(current): 1753 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1754 * 1755 * Returns 0 on success 1756 */ 1757 static int 1758 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1759 struct sockopt_data *sd) 1760 { 1761 struct _ipfw_obj_header *oh; 1762 ipfw_xtable_info *i; 1763 char *tname; 1764 struct tid_info ti; 1765 struct namedobj_instance *ni; 1766 struct table_config *tc; 1767 1768 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1769 return (EINVAL); 1770 1771 oh = (struct _ipfw_obj_header *)sd->kbuf; 1772 i = (ipfw_xtable_info *)(oh + 1); 1773 1774 /* 1775 * Verify user-supplied strings. 1776 * Check for null-terminated/zero-length strings/ 1777 */ 1778 tname = oh->ntlv.name; 1779 if (check_table_name(tname) != 0) 1780 return (EINVAL); 1781 1782 objheader_to_ti(oh, &ti); 1783 ti.type = i->type; 1784 1785 IPFW_UH_WLOCK(ch); 1786 ni = CHAIN_TO_NI(ch); 1787 if ((tc = find_table(ni, &ti)) == NULL) { 1788 IPFW_UH_WUNLOCK(ch); 1789 return (ESRCH); 1790 } 1791 1792 /* Do not support any modifications for readonly tables */ 1793 if ((tc->ta->flags & TA_FLAG_READONLY) != 0) { 1794 IPFW_UH_WUNLOCK(ch); 1795 return (EACCES); 1796 } 1797 1798 if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0) 1799 tc->limit = i->limit; 1800 if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0) 1801 tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0); 1802 IPFW_UH_WUNLOCK(ch); 1803 1804 return (0); 1805 } 1806 1807 /* 1808 * Creates new table. 1809 * Data layout (v0)(current): 1810 * Request: [ ipfw_obj_header ipfw_xtable_info ] 1811 * 1812 * Returns 0 on success 1813 */ 1814 static int 1815 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 1816 struct sockopt_data *sd) 1817 { 1818 struct _ipfw_obj_header *oh; 1819 ipfw_xtable_info *i; 1820 char *tname, *aname; 1821 struct tid_info ti; 1822 struct namedobj_instance *ni; 1823 1824 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) 1825 return (EINVAL); 1826 1827 oh = (struct _ipfw_obj_header *)sd->kbuf; 1828 i = (ipfw_xtable_info *)(oh + 1); 1829 1830 /* 1831 * Verify user-supplied strings. 1832 * Check for null-terminated/zero-length strings/ 1833 */ 1834 tname = oh->ntlv.name; 1835 aname = i->algoname; 1836 if (check_table_name(tname) != 0 || 1837 strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname)) 1838 return (EINVAL); 1839 1840 if (aname[0] == '\0') { 1841 /* Use default algorithm */ 1842 aname = NULL; 1843 } 1844 1845 objheader_to_ti(oh, &ti); 1846 ti.type = i->type; 1847 1848 ni = CHAIN_TO_NI(ch); 1849 1850 IPFW_UH_RLOCK(ch); 1851 if (find_table(ni, &ti) != NULL) { 1852 IPFW_UH_RUNLOCK(ch); 1853 return (EEXIST); 1854 } 1855 IPFW_UH_RUNLOCK(ch); 1856 1857 return (create_table_internal(ch, &ti, aname, i, NULL, 0)); 1858 } 1859 1860 /* 1861 * Creates new table based on @ti and @aname. 1862 * 1863 * Assume @aname to be checked and valid. 1864 * Stores allocated table kidx inside @pkidx (if non-NULL). 1865 * Reference created table if @compat is non-zero. 1866 * 1867 * Returns 0 on success. 1868 */ 1869 static int 1870 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, 1871 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat) 1872 { 1873 struct namedobj_instance *ni; 1874 struct table_config *tc, *tc_new, *tmp; 1875 struct table_algo *ta; 1876 uint16_t kidx; 1877 1878 ni = CHAIN_TO_NI(ch); 1879 1880 ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname); 1881 if (ta == NULL) 1882 return (ENOTSUP); 1883 1884 tc = alloc_table_config(ch, ti, ta, aname, i->tflags); 1885 if (tc == NULL) 1886 return (ENOMEM); 1887 1888 tc->vmask = i->vmask; 1889 tc->limit = i->limit; 1890 if (ta->flags & TA_FLAG_READONLY) 1891 tc->locked = 1; 1892 else 1893 tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0; 1894 1895 IPFW_UH_WLOCK(ch); 1896 1897 /* Check if table has been already created */ 1898 tc_new = find_table(ni, ti); 1899 if (tc_new != NULL) { 1900 1901 /* 1902 * Compat: do not fail if we're 1903 * requesting to create existing table 1904 * which has the same type 1905 */ 1906 if (compat == 0 || tc_new->no.subtype != tc->no.subtype) { 1907 IPFW_UH_WUNLOCK(ch); 1908 free_table_config(ni, tc); 1909 return (EEXIST); 1910 } 1911 1912 /* Exchange tc and tc_new for proper refcounting & freeing */ 1913 tmp = tc; 1914 tc = tc_new; 1915 tc_new = tmp; 1916 } else { 1917 /* New table */ 1918 if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) { 1919 IPFW_UH_WUNLOCK(ch); 1920 printf("Unable to allocate table index." 1921 " Consider increasing net.inet.ip.fw.tables_max"); 1922 free_table_config(ni, tc); 1923 return (EBUSY); 1924 } 1925 tc->no.kidx = kidx; 1926 tc->no.etlv = IPFW_TLV_TBL_NAME; 1927 1928 IPFW_WLOCK(ch); 1929 link_table(ch, tc); 1930 IPFW_WUNLOCK(ch); 1931 } 1932 1933 if (compat != 0) 1934 tc->no.refcnt++; 1935 if (pkidx != NULL) 1936 *pkidx = tc->no.kidx; 1937 1938 IPFW_UH_WUNLOCK(ch); 1939 1940 if (tc_new != NULL) 1941 free_table_config(ni, tc_new); 1942 1943 return (0); 1944 } 1945 1946 static void 1947 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti) 1948 { 1949 1950 memset(ti, 0, sizeof(struct tid_info)); 1951 ti->set = ntlv->set; 1952 ti->uidx = ntlv->idx; 1953 ti->tlvs = ntlv; 1954 ti->tlen = ntlv->head.length; 1955 } 1956 1957 static void 1958 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti) 1959 { 1960 1961 ntlv_to_ti(&oh->ntlv, ti); 1962 } 1963 1964 struct namedobj_instance * 1965 ipfw_get_table_objhash(struct ip_fw_chain *ch) 1966 { 1967 1968 return (CHAIN_TO_NI(ch)); 1969 } 1970 1971 /* 1972 * Exports basic table info as name TLV. 1973 * Used inside dump_static_rules() to provide info 1974 * about all tables referenced by current ruleset. 1975 * 1976 * Returns 0 on success. 1977 */ 1978 int 1979 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx, 1980 struct sockopt_data *sd) 1981 { 1982 struct namedobj_instance *ni; 1983 struct named_object *no; 1984 ipfw_obj_ntlv *ntlv; 1985 1986 ni = CHAIN_TO_NI(ch); 1987 1988 no = ipfw_objhash_lookup_kidx(ni, kidx); 1989 KASSERT(no != NULL, ("invalid table kidx passed")); 1990 1991 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv)); 1992 if (ntlv == NULL) 1993 return (ENOMEM); 1994 1995 ntlv->head.type = IPFW_TLV_TBL_NAME; 1996 ntlv->head.length = sizeof(*ntlv); 1997 ntlv->idx = no->kidx; 1998 strlcpy(ntlv->name, no->name, sizeof(ntlv->name)); 1999 2000 return (0); 2001 } 2002 2003 struct dump_args { 2004 struct ip_fw_chain *ch; 2005 struct table_info *ti; 2006 struct table_config *tc; 2007 struct sockopt_data *sd; 2008 uint32_t cnt; 2009 uint16_t uidx; 2010 int error; 2011 uint32_t size; 2012 ipfw_table_entry *ent; 2013 ta_foreach_f *f; 2014 void *farg; 2015 ipfw_obj_tentry tent; 2016 }; 2017 2018 static int 2019 count_ext_entries(void *e, void *arg) 2020 { 2021 struct dump_args *da; 2022 2023 da = (struct dump_args *)arg; 2024 da->cnt++; 2025 2026 return (0); 2027 } 2028 2029 /* 2030 * Gets number of items from table either using 2031 * internal counter or calling algo callback for 2032 * externally-managed tables. 2033 * 2034 * Returns number of records. 2035 */ 2036 static uint32_t 2037 table_get_count(struct ip_fw_chain *ch, struct table_config *tc) 2038 { 2039 struct table_info *ti; 2040 struct table_algo *ta; 2041 struct dump_args da; 2042 2043 ti = KIDX_TO_TI(ch, tc->no.kidx); 2044 ta = tc->ta; 2045 2046 /* Use internal counter for self-managed tables */ 2047 if ((ta->flags & TA_FLAG_READONLY) == 0) 2048 return (tc->count); 2049 2050 /* Use callback to quickly get number of items */ 2051 if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0) 2052 return (ta->get_count(tc->astate, ti)); 2053 2054 /* Count number of iterms ourselves */ 2055 memset(&da, 0, sizeof(da)); 2056 ta->foreach(tc->astate, ti, count_ext_entries, &da); 2057 2058 return (da.cnt); 2059 } 2060 2061 /* 2062 * Exports table @tc info into standard ipfw_xtable_info format. 2063 */ 2064 static void 2065 export_table_info(struct ip_fw_chain *ch, struct table_config *tc, 2066 ipfw_xtable_info *i) 2067 { 2068 struct table_info *ti; 2069 struct table_algo *ta; 2070 2071 i->type = tc->no.subtype; 2072 i->tflags = tc->tflags; 2073 i->vmask = tc->vmask; 2074 i->set = tc->no.set; 2075 i->kidx = tc->no.kidx; 2076 i->refcnt = tc->no.refcnt; 2077 i->count = table_get_count(ch, tc); 2078 i->limit = tc->limit; 2079 i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0; 2080 i->size = i->count * sizeof(ipfw_obj_tentry); 2081 i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2082 strlcpy(i->tablename, tc->tablename, sizeof(i->tablename)); 2083 ti = KIDX_TO_TI(ch, tc->no.kidx); 2084 ta = tc->ta; 2085 if (ta->print_config != NULL) { 2086 /* Use algo function to print table config to string */ 2087 ta->print_config(tc->astate, ti, i->algoname, 2088 sizeof(i->algoname)); 2089 } else 2090 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2091 /* Dump algo-specific data, if possible */ 2092 if (ta->dump_tinfo != NULL) { 2093 ta->dump_tinfo(tc->astate, ti, &i->ta_info); 2094 i->ta_info.flags |= IPFW_TATFLAGS_DATA; 2095 } 2096 } 2097 2098 struct dump_table_args { 2099 struct ip_fw_chain *ch; 2100 struct sockopt_data *sd; 2101 }; 2102 2103 static int 2104 export_table_internal(struct namedobj_instance *ni, struct named_object *no, 2105 void *arg) 2106 { 2107 ipfw_xtable_info *i; 2108 struct dump_table_args *dta; 2109 2110 dta = (struct dump_table_args *)arg; 2111 2112 i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i)); 2113 KASSERT(i != NULL, ("previously checked buffer is not enough")); 2114 2115 export_table_info(dta->ch, (struct table_config *)no, i); 2116 return (0); 2117 } 2118 2119 /* 2120 * Export all tables as ipfw_xtable_info structures to 2121 * storage provided by @sd. 2122 * 2123 * If supplied buffer is too small, fills in required size 2124 * and returns ENOMEM. 2125 * Returns 0 on success. 2126 */ 2127 static int 2128 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, 2129 struct sockopt_data *sd) 2130 { 2131 uint32_t size; 2132 uint32_t count; 2133 struct dump_table_args dta; 2134 2135 count = ipfw_objhash_count(CHAIN_TO_NI(ch)); 2136 size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader); 2137 2138 /* Fill in header regadless of buffer size */ 2139 olh->count = count; 2140 olh->objsize = sizeof(ipfw_xtable_info); 2141 2142 if (size > olh->size) { 2143 olh->size = size; 2144 return (ENOMEM); 2145 } 2146 2147 olh->size = size; 2148 2149 dta.ch = ch; 2150 dta.sd = sd; 2151 2152 ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta); 2153 2154 return (0); 2155 } 2156 2157 /* 2158 * Dumps all table data 2159 * Data layout (v1)(current): 2160 * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size 2161 * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ] 2162 * 2163 * Returns 0 on success 2164 */ 2165 static int 2166 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2167 struct sockopt_data *sd) 2168 { 2169 struct _ipfw_obj_header *oh; 2170 ipfw_xtable_info *i; 2171 struct tid_info ti; 2172 struct table_config *tc; 2173 struct table_algo *ta; 2174 struct dump_args da; 2175 uint32_t sz; 2176 2177 sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); 2178 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); 2179 if (oh == NULL) 2180 return (EINVAL); 2181 2182 i = (ipfw_xtable_info *)(oh + 1); 2183 objheader_to_ti(oh, &ti); 2184 2185 IPFW_UH_RLOCK(ch); 2186 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2187 IPFW_UH_RUNLOCK(ch); 2188 return (ESRCH); 2189 } 2190 export_table_info(ch, tc, i); 2191 2192 if (sd->valsize < i->size) { 2193 2194 /* 2195 * Submitted buffer size is not enough. 2196 * WE've already filled in @i structure with 2197 * relevant table info including size, so we 2198 * can return. Buffer will be flushed automatically. 2199 */ 2200 IPFW_UH_RUNLOCK(ch); 2201 return (ENOMEM); 2202 } 2203 2204 /* 2205 * Do the actual dump in eXtended format 2206 */ 2207 memset(&da, 0, sizeof(da)); 2208 da.ch = ch; 2209 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2210 da.tc = tc; 2211 da.sd = sd; 2212 2213 ta = tc->ta; 2214 2215 ta->foreach(tc->astate, da.ti, dump_table_tentry, &da); 2216 IPFW_UH_RUNLOCK(ch); 2217 2218 return (da.error); 2219 } 2220 2221 /* 2222 * Dumps all table data 2223 * Data layout (version 0)(legacy): 2224 * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE() 2225 * Reply: [ ipfw_xtable ipfw_table_xentry x N ] 2226 * 2227 * Returns 0 on success 2228 */ 2229 static int 2230 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2231 struct sockopt_data *sd) 2232 { 2233 ipfw_xtable *xtbl; 2234 struct tid_info ti; 2235 struct table_config *tc; 2236 struct table_algo *ta; 2237 struct dump_args da; 2238 size_t sz, count; 2239 2240 xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable)); 2241 if (xtbl == NULL) 2242 return (EINVAL); 2243 2244 memset(&ti, 0, sizeof(ti)); 2245 ti.uidx = xtbl->tbl; 2246 2247 IPFW_UH_RLOCK(ch); 2248 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { 2249 IPFW_UH_RUNLOCK(ch); 2250 return (0); 2251 } 2252 count = table_get_count(ch, tc); 2253 sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable); 2254 2255 xtbl->cnt = count; 2256 xtbl->size = sz; 2257 xtbl->type = tc->no.subtype; 2258 xtbl->tbl = ti.uidx; 2259 2260 if (sd->valsize < sz) { 2261 2262 /* 2263 * Submitted buffer size is not enough. 2264 * WE've already filled in @i structure with 2265 * relevant table info including size, so we 2266 * can return. Buffer will be flushed automatically. 2267 */ 2268 IPFW_UH_RUNLOCK(ch); 2269 return (ENOMEM); 2270 } 2271 2272 /* Do the actual dump in eXtended format */ 2273 memset(&da, 0, sizeof(da)); 2274 da.ch = ch; 2275 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2276 da.tc = tc; 2277 da.sd = sd; 2278 2279 ta = tc->ta; 2280 2281 ta->foreach(tc->astate, da.ti, dump_table_xentry, &da); 2282 IPFW_UH_RUNLOCK(ch); 2283 2284 return (0); 2285 } 2286 2287 /* 2288 * Legacy function to retrieve number of items in table. 2289 */ 2290 static int 2291 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2292 struct sockopt_data *sd) 2293 { 2294 uint32_t *tbl; 2295 struct tid_info ti; 2296 size_t sz; 2297 int error; 2298 2299 sz = sizeof(*op3) + sizeof(uint32_t); 2300 op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz); 2301 if (op3 == NULL) 2302 return (EINVAL); 2303 2304 tbl = (uint32_t *)(op3 + 1); 2305 memset(&ti, 0, sizeof(ti)); 2306 ti.uidx = *tbl; 2307 IPFW_UH_RLOCK(ch); 2308 error = ipfw_count_xtable(ch, &ti, tbl); 2309 IPFW_UH_RUNLOCK(ch); 2310 return (error); 2311 } 2312 2313 /* 2314 * Legacy IP_FW_TABLE_GETSIZE handler 2315 */ 2316 int 2317 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2318 { 2319 struct table_config *tc; 2320 2321 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2322 return (ESRCH); 2323 *cnt = table_get_count(ch, tc); 2324 return (0); 2325 } 2326 2327 /* 2328 * Legacy IP_FW_TABLE_XGETSIZE handler 2329 */ 2330 int 2331 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) 2332 { 2333 struct table_config *tc; 2334 uint32_t count; 2335 2336 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) { 2337 *cnt = 0; 2338 return (0); /* 'table all list' requires success */ 2339 } 2340 2341 count = table_get_count(ch, tc); 2342 *cnt = count * sizeof(ipfw_table_xentry); 2343 if (count > 0) 2344 *cnt += sizeof(ipfw_xtable); 2345 return (0); 2346 } 2347 2348 static int 2349 dump_table_entry(void *e, void *arg) 2350 { 2351 struct dump_args *da; 2352 struct table_config *tc; 2353 struct table_algo *ta; 2354 ipfw_table_entry *ent; 2355 struct table_value *pval; 2356 int error; 2357 2358 da = (struct dump_args *)arg; 2359 2360 tc = da->tc; 2361 ta = tc->ta; 2362 2363 /* Out of memory, returning */ 2364 if (da->cnt == da->size) 2365 return (1); 2366 ent = da->ent++; 2367 ent->tbl = da->uidx; 2368 da->cnt++; 2369 2370 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2371 if (error != 0) 2372 return (error); 2373 2374 ent->addr = da->tent.k.addr.s_addr; 2375 ent->masklen = da->tent.masklen; 2376 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2377 ent->value = ipfw_export_table_value_legacy(pval); 2378 2379 return (0); 2380 } 2381 2382 /* 2383 * Dumps table in pre-8.1 legacy format. 2384 */ 2385 int 2386 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti, 2387 ipfw_table *tbl) 2388 { 2389 struct table_config *tc; 2390 struct table_algo *ta; 2391 struct dump_args da; 2392 2393 tbl->cnt = 0; 2394 2395 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) 2396 return (0); /* XXX: We should return ESRCH */ 2397 2398 ta = tc->ta; 2399 2400 /* This dump format supports IPv4 only */ 2401 if (tc->no.subtype != IPFW_TABLE_ADDR) 2402 return (0); 2403 2404 memset(&da, 0, sizeof(da)); 2405 da.ch = ch; 2406 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2407 da.tc = tc; 2408 da.ent = &tbl->ent[0]; 2409 da.size = tbl->size; 2410 2411 tbl->cnt = 0; 2412 ta->foreach(tc->astate, da.ti, dump_table_entry, &da); 2413 tbl->cnt = da.cnt; 2414 2415 return (0); 2416 } 2417 2418 /* 2419 * Dumps table entry in eXtended format (v1)(current). 2420 */ 2421 static int 2422 dump_table_tentry(void *e, void *arg) 2423 { 2424 struct dump_args *da; 2425 struct table_config *tc; 2426 struct table_algo *ta; 2427 struct table_value *pval; 2428 ipfw_obj_tentry *tent; 2429 int error; 2430 2431 da = (struct dump_args *)arg; 2432 2433 tc = da->tc; 2434 ta = tc->ta; 2435 2436 tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent)); 2437 /* Out of memory, returning */ 2438 if (tent == NULL) { 2439 da->error = ENOMEM; 2440 return (1); 2441 } 2442 tent->head.length = sizeof(ipfw_obj_tentry); 2443 tent->idx = da->uidx; 2444 2445 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2446 if (error != 0) 2447 return (error); 2448 2449 pval = get_table_value(da->ch, da->tc, tent->v.kidx); 2450 ipfw_export_table_value_v1(pval, &tent->v.value); 2451 2452 return (0); 2453 } 2454 2455 /* 2456 * Dumps table entry in eXtended format (v0). 2457 */ 2458 static int 2459 dump_table_xentry(void *e, void *arg) 2460 { 2461 struct dump_args *da; 2462 struct table_config *tc; 2463 struct table_algo *ta; 2464 ipfw_table_xentry *xent; 2465 ipfw_obj_tentry *tent; 2466 struct table_value *pval; 2467 int error; 2468 2469 da = (struct dump_args *)arg; 2470 2471 tc = da->tc; 2472 ta = tc->ta; 2473 2474 xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent)); 2475 /* Out of memory, returning */ 2476 if (xent == NULL) 2477 return (1); 2478 xent->len = sizeof(ipfw_table_xentry); 2479 xent->tbl = da->uidx; 2480 2481 memset(&da->tent, 0, sizeof(da->tent)); 2482 tent = &da->tent; 2483 error = ta->dump_tentry(tc->astate, da->ti, e, tent); 2484 if (error != 0) 2485 return (error); 2486 2487 /* Convert current format to previous one */ 2488 xent->masklen = tent->masklen; 2489 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); 2490 xent->value = ipfw_export_table_value_legacy(pval); 2491 /* Apply some hacks */ 2492 if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) { 2493 xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr; 2494 xent->flags = IPFW_TCF_INET; 2495 } else 2496 memcpy(&xent->k, &tent->k, sizeof(xent->k)); 2497 2498 return (0); 2499 } 2500 2501 /* 2502 * Helper function to export table algo data 2503 * to tentry format before calling user function. 2504 * 2505 * Returns 0 on success. 2506 */ 2507 static int 2508 prepare_table_tentry(void *e, void *arg) 2509 { 2510 struct dump_args *da; 2511 struct table_config *tc; 2512 struct table_algo *ta; 2513 int error; 2514 2515 da = (struct dump_args *)arg; 2516 2517 tc = da->tc; 2518 ta = tc->ta; 2519 2520 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); 2521 if (error != 0) 2522 return (error); 2523 2524 da->f(&da->tent, da->farg); 2525 2526 return (0); 2527 } 2528 2529 /* 2530 * Allow external consumers to read table entries in standard format. 2531 */ 2532 int 2533 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx, 2534 ta_foreach_f *f, void *arg) 2535 { 2536 struct namedobj_instance *ni; 2537 struct table_config *tc; 2538 struct table_algo *ta; 2539 struct dump_args da; 2540 2541 ni = CHAIN_TO_NI(ch); 2542 2543 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); 2544 if (tc == NULL) 2545 return (ESRCH); 2546 2547 ta = tc->ta; 2548 2549 memset(&da, 0, sizeof(da)); 2550 da.ch = ch; 2551 da.ti = KIDX_TO_TI(ch, tc->no.kidx); 2552 da.tc = tc; 2553 da.f = f; 2554 da.farg = arg; 2555 2556 ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da); 2557 2558 return (0); 2559 } 2560 2561 /* 2562 * Table algorithms 2563 */ 2564 2565 /* 2566 * Finds algorithm by index, table type or supplied name. 2567 * 2568 * Returns pointer to algo or NULL. 2569 */ 2570 static struct table_algo * 2571 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name) 2572 { 2573 int i, l; 2574 struct table_algo *ta; 2575 2576 if (ti->type > IPFW_TABLE_MAXTYPE) 2577 return (NULL); 2578 2579 /* Search by index */ 2580 if (ti->atype != 0) { 2581 if (ti->atype > tcfg->algo_count) 2582 return (NULL); 2583 return (tcfg->algo[ti->atype]); 2584 } 2585 2586 if (name == NULL) { 2587 /* Return default algorithm for given type if set */ 2588 return (tcfg->def_algo[ti->type]); 2589 } 2590 2591 /* Search by name */ 2592 /* TODO: better search */ 2593 for (i = 1; i <= tcfg->algo_count; i++) { 2594 ta = tcfg->algo[i]; 2595 2596 /* 2597 * One can supply additional algorithm 2598 * parameters so we compare only the first word 2599 * of supplied name: 2600 * 'addr:chash hsize=32' 2601 * '^^^^^^^^^' 2602 * 2603 */ 2604 l = strlen(ta->name); 2605 if (strncmp(name, ta->name, l) != 0) 2606 continue; 2607 if (name[l] != '\0' && name[l] != ' ') 2608 continue; 2609 /* Check if we're requesting proper table type */ 2610 if (ti->type != 0 && ti->type != ta->type) 2611 return (NULL); 2612 return (ta); 2613 } 2614 2615 return (NULL); 2616 } 2617 2618 /* 2619 * Register new table algo @ta. 2620 * Stores algo id inside @idx. 2621 * 2622 * Returns 0 on success. 2623 */ 2624 int 2625 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size, 2626 int *idx) 2627 { 2628 struct tables_config *tcfg; 2629 struct table_algo *ta_new; 2630 size_t sz; 2631 2632 if (size > sizeof(struct table_algo)) 2633 return (EINVAL); 2634 2635 /* Check for the required on-stack size for add/del */ 2636 sz = roundup2(ta->ta_buf_size, sizeof(void *)); 2637 if (sz > TA_BUF_SZ) 2638 return (EINVAL); 2639 2640 KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE")); 2641 2642 /* Copy algorithm data to stable storage. */ 2643 ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO); 2644 memcpy(ta_new, ta, size); 2645 2646 tcfg = CHAIN_TO_TCFG(ch); 2647 2648 KASSERT(tcfg->algo_count < 255, ("Increase algo array size")); 2649 2650 tcfg->algo[++tcfg->algo_count] = ta_new; 2651 ta_new->idx = tcfg->algo_count; 2652 2653 /* Set algorithm as default one for given type */ 2654 if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 && 2655 tcfg->def_algo[ta_new->type] == NULL) 2656 tcfg->def_algo[ta_new->type] = ta_new; 2657 2658 *idx = ta_new->idx; 2659 2660 return (0); 2661 } 2662 2663 /* 2664 * Unregisters table algo using @idx as id. 2665 * XXX: It is NOT safe to call this function in any place 2666 * other than ipfw instance destroy handler. 2667 */ 2668 void 2669 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx) 2670 { 2671 struct tables_config *tcfg; 2672 struct table_algo *ta; 2673 2674 tcfg = CHAIN_TO_TCFG(ch); 2675 2676 KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d", 2677 idx, tcfg->algo_count)); 2678 2679 ta = tcfg->algo[idx]; 2680 KASSERT(ta != NULL, ("algo idx %d is NULL", idx)); 2681 2682 if (tcfg->def_algo[ta->type] == ta) 2683 tcfg->def_algo[ta->type] = NULL; 2684 2685 free(ta, M_IPFW); 2686 } 2687 2688 /* 2689 * Lists all table algorithms currently available. 2690 * Data layout (v0)(current): 2691 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size 2692 * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ] 2693 * 2694 * Returns 0 on success 2695 */ 2696 static int 2697 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3, 2698 struct sockopt_data *sd) 2699 { 2700 struct _ipfw_obj_lheader *olh; 2701 struct tables_config *tcfg; 2702 ipfw_ta_info *i; 2703 struct table_algo *ta; 2704 uint32_t count, n, size; 2705 2706 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); 2707 if (olh == NULL) 2708 return (EINVAL); 2709 if (sd->valsize < olh->size) 2710 return (EINVAL); 2711 2712 IPFW_UH_RLOCK(ch); 2713 tcfg = CHAIN_TO_TCFG(ch); 2714 count = tcfg->algo_count; 2715 size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader); 2716 2717 /* Fill in header regadless of buffer size */ 2718 olh->count = count; 2719 olh->objsize = sizeof(ipfw_ta_info); 2720 2721 if (size > olh->size) { 2722 olh->size = size; 2723 IPFW_UH_RUNLOCK(ch); 2724 return (ENOMEM); 2725 } 2726 olh->size = size; 2727 2728 for (n = 1; n <= count; n++) { 2729 i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i)); 2730 KASSERT(i != NULL, ("previously checked buffer is not enough")); 2731 ta = tcfg->algo[n]; 2732 strlcpy(i->algoname, ta->name, sizeof(i->algoname)); 2733 i->type = ta->type; 2734 i->refcnt = ta->refcnt; 2735 } 2736 2737 IPFW_UH_RUNLOCK(ch); 2738 2739 return (0); 2740 } 2741 2742 static int 2743 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2744 { 2745 /* Basic IPv4/IPv6 or u32 lookups */ 2746 *puidx = cmd->arg1; 2747 /* Assume ADDR by default */ 2748 *ptype = IPFW_TABLE_ADDR; 2749 int v; 2750 2751 if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) { 2752 /* 2753 * generic lookup. The key must be 2754 * in 32bit big-endian format. 2755 */ 2756 v = ((ipfw_insn_u32 *)cmd)->d[1]; 2757 switch (v) { 2758 case 0: 2759 case 1: 2760 /* IPv4 src/dst */ 2761 break; 2762 case 2: 2763 case 3: 2764 /* src/dst port */ 2765 *ptype = IPFW_TABLE_NUMBER; 2766 break; 2767 case 4: 2768 /* uid/gid */ 2769 *ptype = IPFW_TABLE_NUMBER; 2770 break; 2771 case 5: 2772 /* jid */ 2773 *ptype = IPFW_TABLE_NUMBER; 2774 break; 2775 case 6: 2776 /* dscp */ 2777 *ptype = IPFW_TABLE_NUMBER; 2778 break; 2779 } 2780 } 2781 2782 return (0); 2783 } 2784 2785 static int 2786 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2787 { 2788 ipfw_insn_if *cmdif; 2789 2790 /* Interface table, possibly */ 2791 cmdif = (ipfw_insn_if *)cmd; 2792 if (cmdif->name[0] != '\1') 2793 return (1); 2794 2795 *ptype = IPFW_TABLE_INTERFACE; 2796 *puidx = cmdif->p.kidx; 2797 2798 return (0); 2799 } 2800 2801 static int 2802 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) 2803 { 2804 2805 *puidx = cmd->arg1; 2806 *ptype = IPFW_TABLE_FLOW; 2807 2808 return (0); 2809 } 2810 2811 static void 2812 update_arg1(ipfw_insn *cmd, uint16_t idx) 2813 { 2814 2815 cmd->arg1 = idx; 2816 } 2817 2818 static void 2819 update_via(ipfw_insn *cmd, uint16_t idx) 2820 { 2821 ipfw_insn_if *cmdif; 2822 2823 cmdif = (ipfw_insn_if *)cmd; 2824 cmdif->p.kidx = idx; 2825 } 2826 2827 static int 2828 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti, 2829 struct named_object **pno) 2830 { 2831 struct table_config *tc; 2832 int error; 2833 2834 IPFW_UH_WLOCK_ASSERT(ch); 2835 2836 error = find_table_err(CHAIN_TO_NI(ch), ti, &tc); 2837 if (error != 0) 2838 return (error); 2839 2840 *pno = &tc->no; 2841 return (0); 2842 } 2843 2844 /* XXX: sets-sets! */ 2845 static struct named_object * 2846 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx) 2847 { 2848 struct namedobj_instance *ni; 2849 struct table_config *tc; 2850 2851 IPFW_UH_WLOCK_ASSERT(ch); 2852 ni = CHAIN_TO_NI(ch); 2853 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx); 2854 KASSERT(tc != NULL, ("Table with index %d not found", idx)); 2855 2856 return (&tc->no); 2857 } 2858 2859 static int 2860 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set, 2861 enum ipfw_sets_cmd cmd) 2862 { 2863 2864 switch (cmd) { 2865 case SWAP_ALL: 2866 case TEST_ALL: 2867 case MOVE_ALL: 2868 /* 2869 * Always return success, the real action and decision 2870 * should make table_manage_sets_all(). 2871 */ 2872 return (0); 2873 case TEST_ONE: 2874 case MOVE_ONE: 2875 /* 2876 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add 2877 * if set number will be used in hash function. Currently 2878 * we can just use generic handler that replaces set value. 2879 */ 2880 if (V_fw_tables_sets == 0) 2881 return (0); 2882 break; 2883 case COUNT_ONE: 2884 /* 2885 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is 2886 * disabled. This allow skip table's opcodes from additional 2887 * checks when specific rules moved to another set. 2888 */ 2889 if (V_fw_tables_sets == 0) 2890 return (EOPNOTSUPP); 2891 } 2892 /* Use generic sets handler when per-set sysctl is enabled. */ 2893 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME, 2894 set, new_set, cmd)); 2895 } 2896 2897 /* 2898 * We register several opcode rewriters for lookup tables. 2899 * All tables opcodes have the same ETLV type, but different subtype. 2900 * To avoid invoking sets handler several times for XXX_ALL commands, 2901 * we use separate manage_sets handler. O_RECV has the lowest value, 2902 * so it should be called first. 2903 */ 2904 static int 2905 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set, 2906 enum ipfw_sets_cmd cmd) 2907 { 2908 2909 switch (cmd) { 2910 case SWAP_ALL: 2911 case TEST_ALL: 2912 /* 2913 * Return success for TEST_ALL, since nothing prevents 2914 * move rules from one set to another. All tables are 2915 * accessible from all sets when per-set tables sysctl 2916 * is disabled. 2917 */ 2918 case MOVE_ALL: 2919 if (V_fw_tables_sets == 0) 2920 return (0); 2921 break; 2922 default: 2923 return (table_manage_sets(ch, set, new_set, cmd)); 2924 } 2925 /* Use generic sets handler when per-set sysctl is enabled. */ 2926 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME, 2927 set, new_set, cmd)); 2928 } 2929 2930 static struct opcode_obj_rewrite opcodes[] = { 2931 { 2932 .opcode = O_IP_SRC_LOOKUP, 2933 .etlv = IPFW_TLV_TBL_NAME, 2934 .classifier = classify_srcdst, 2935 .update = update_arg1, 2936 .find_byname = table_findbyname, 2937 .find_bykidx = table_findbykidx, 2938 .create_object = create_table_compat, 2939 .manage_sets = table_manage_sets, 2940 }, 2941 { 2942 .opcode = O_IP_DST_LOOKUP, 2943 .etlv = IPFW_TLV_TBL_NAME, 2944 .classifier = classify_srcdst, 2945 .update = update_arg1, 2946 .find_byname = table_findbyname, 2947 .find_bykidx = table_findbykidx, 2948 .create_object = create_table_compat, 2949 .manage_sets = table_manage_sets, 2950 }, 2951 { 2952 .opcode = O_IP_FLOW_LOOKUP, 2953 .etlv = IPFW_TLV_TBL_NAME, 2954 .classifier = classify_flow, 2955 .update = update_arg1, 2956 .find_byname = table_findbyname, 2957 .find_bykidx = table_findbykidx, 2958 .create_object = create_table_compat, 2959 .manage_sets = table_manage_sets, 2960 }, 2961 { 2962 .opcode = O_XMIT, 2963 .etlv = IPFW_TLV_TBL_NAME, 2964 .classifier = classify_via, 2965 .update = update_via, 2966 .find_byname = table_findbyname, 2967 .find_bykidx = table_findbykidx, 2968 .create_object = create_table_compat, 2969 .manage_sets = table_manage_sets, 2970 }, 2971 { 2972 .opcode = O_RECV, 2973 .etlv = IPFW_TLV_TBL_NAME, 2974 .classifier = classify_via, 2975 .update = update_via, 2976 .find_byname = table_findbyname, 2977 .find_bykidx = table_findbykidx, 2978 .create_object = create_table_compat, 2979 .manage_sets = table_manage_sets_all, 2980 }, 2981 { 2982 .opcode = O_VIA, 2983 .etlv = IPFW_TLV_TBL_NAME, 2984 .classifier = classify_via, 2985 .update = update_via, 2986 .find_byname = table_findbyname, 2987 .find_bykidx = table_findbykidx, 2988 .create_object = create_table_compat, 2989 .manage_sets = table_manage_sets, 2990 }, 2991 }; 2992 2993 static int 2994 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no, 2995 void *arg __unused) 2996 { 2997 2998 /* Check that there aren't any tables in not default set */ 2999 if (no->set != 0) 3000 return (EBUSY); 3001 return (0); 3002 } 3003 3004 /* 3005 * Switch between "set 0" and "rule's set" table binding, 3006 * Check all ruleset bindings and permits changing 3007 * IFF each binding has both rule AND table in default set (set 0). 3008 * 3009 * Returns 0 on success. 3010 */ 3011 int 3012 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets) 3013 { 3014 struct opcode_obj_rewrite *rw; 3015 struct namedobj_instance *ni; 3016 struct named_object *no; 3017 struct ip_fw *rule; 3018 ipfw_insn *cmd; 3019 int cmdlen, i, l; 3020 uint16_t kidx; 3021 uint8_t subtype; 3022 3023 IPFW_UH_WLOCK(ch); 3024 3025 if (V_fw_tables_sets == sets) { 3026 IPFW_UH_WUNLOCK(ch); 3027 return (0); 3028 } 3029 ni = CHAIN_TO_NI(ch); 3030 if (sets == 0) { 3031 /* 3032 * Prevent disabling sets support if we have some tables 3033 * in not default sets. 3034 */ 3035 if (ipfw_objhash_foreach_type(ni, test_sets_cb, 3036 NULL, IPFW_TLV_TBL_NAME) != 0) { 3037 IPFW_UH_WUNLOCK(ch); 3038 return (EBUSY); 3039 } 3040 } 3041 /* 3042 * Scan all rules and examine tables opcodes. 3043 */ 3044 for (i = 0; i < ch->n_rules; i++) { 3045 rule = ch->map[i]; 3046 3047 l = rule->cmd_len; 3048 cmd = rule->cmd; 3049 cmdlen = 0; 3050 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { 3051 cmdlen = F_LEN(cmd); 3052 /* Check only tables opcodes */ 3053 for (kidx = 0, rw = opcodes; 3054 rw < opcodes + nitems(opcodes); rw++) { 3055 if (rw->opcode != cmd->opcode) 3056 continue; 3057 if (rw->classifier(cmd, &kidx, &subtype) == 0) 3058 break; 3059 } 3060 if (kidx == 0) 3061 continue; 3062 no = ipfw_objhash_lookup_kidx(ni, kidx); 3063 /* Check if both table object and rule has the set 0 */ 3064 if (no->set != 0 || rule->set != 0) { 3065 IPFW_UH_WUNLOCK(ch); 3066 return (EBUSY); 3067 } 3068 3069 } 3070 } 3071 V_fw_tables_sets = sets; 3072 IPFW_UH_WUNLOCK(ch); 3073 return (0); 3074 } 3075 3076 /* 3077 * Checks table name for validity. 3078 * Enforce basic length checks, the rest 3079 * should be done in userland. 3080 * 3081 * Returns 0 if name is considered valid. 3082 */ 3083 static int 3084 check_table_name(const char *name) 3085 { 3086 3087 /* 3088 * TODO: do some more complicated checks 3089 */ 3090 return (ipfw_check_object_name_generic(name)); 3091 } 3092 3093 /* 3094 * Finds table config based on either legacy index 3095 * or name in ntlv. 3096 * Note @ti structure contains unchecked data from userland. 3097 * 3098 * Returns 0 in success and fills in @tc with found config 3099 */ 3100 static int 3101 find_table_err(struct namedobj_instance *ni, struct tid_info *ti, 3102 struct table_config **tc) 3103 { 3104 char *name, bname[16]; 3105 struct named_object *no; 3106 ipfw_obj_ntlv *ntlv; 3107 uint32_t set; 3108 3109 if (ti->tlvs != NULL) { 3110 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, 3111 IPFW_TLV_TBL_NAME); 3112 if (ntlv == NULL) 3113 return (EINVAL); 3114 name = ntlv->name; 3115 3116 /* 3117 * Use set provided by @ti instead of @ntlv one. 3118 * This is needed due to different sets behavior 3119 * controlled by V_fw_tables_sets. 3120 */ 3121 set = (V_fw_tables_sets != 0) ? ti->set : 0; 3122 } else { 3123 snprintf(bname, sizeof(bname), "%d", ti->uidx); 3124 name = bname; 3125 set = 0; 3126 } 3127 3128 no = ipfw_objhash_lookup_name(ni, set, name); 3129 *tc = (struct table_config *)no; 3130 3131 return (0); 3132 } 3133 3134 /* 3135 * Finds table config based on either legacy index 3136 * or name in ntlv. 3137 * Note @ti structure contains unchecked data from userland. 3138 * 3139 * Returns pointer to table_config or NULL. 3140 */ 3141 static struct table_config * 3142 find_table(struct namedobj_instance *ni, struct tid_info *ti) 3143 { 3144 struct table_config *tc; 3145 3146 if (find_table_err(ni, ti, &tc) != 0) 3147 return (NULL); 3148 3149 return (tc); 3150 } 3151 3152 /* 3153 * Allocate new table config structure using 3154 * specified @algo and @aname. 3155 * 3156 * Returns pointer to config or NULL. 3157 */ 3158 static struct table_config * 3159 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti, 3160 struct table_algo *ta, char *aname, uint8_t tflags) 3161 { 3162 char *name, bname[16]; 3163 struct table_config *tc; 3164 int error; 3165 ipfw_obj_ntlv *ntlv; 3166 uint32_t set; 3167 3168 if (ti->tlvs != NULL) { 3169 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, 3170 IPFW_TLV_TBL_NAME); 3171 if (ntlv == NULL) 3172 return (NULL); 3173 name = ntlv->name; 3174 set = ntlv->set; 3175 } else { 3176 /* Compat part: convert number to string representation */ 3177 snprintf(bname, sizeof(bname), "%d", ti->uidx); 3178 name = bname; 3179 set = 0; 3180 } 3181 3182 tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO); 3183 tc->no.name = tc->tablename; 3184 tc->no.subtype = ta->type; 3185 tc->no.set = set; 3186 tc->tflags = tflags; 3187 tc->ta = ta; 3188 strlcpy(tc->tablename, name, sizeof(tc->tablename)); 3189 /* Set "shared" value type by default */ 3190 tc->vshared = 1; 3191 3192 /* Preallocate data structures for new tables */ 3193 error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags); 3194 if (error != 0) { 3195 free(tc, M_IPFW); 3196 return (NULL); 3197 } 3198 3199 return (tc); 3200 } 3201 3202 /* 3203 * Destroys table state and config. 3204 */ 3205 static void 3206 free_table_config(struct namedobj_instance *ni, struct table_config *tc) 3207 { 3208 3209 KASSERT(tc->linked == 0, ("free() on linked config")); 3210 /* UH lock MUST NOT be held */ 3211 3212 /* 3213 * We're using ta without any locking/referencing. 3214 * TODO: fix this if we're going to use unloadable algos. 3215 */ 3216 tc->ta->destroy(tc->astate, &tc->ti_copy); 3217 free(tc, M_IPFW); 3218 } 3219 3220 /* 3221 * Links @tc to @chain table named instance. 3222 * Sets appropriate type/states in @chain table info. 3223 */ 3224 static void 3225 link_table(struct ip_fw_chain *ch, struct table_config *tc) 3226 { 3227 struct namedobj_instance *ni; 3228 struct table_info *ti; 3229 uint16_t kidx; 3230 3231 IPFW_UH_WLOCK_ASSERT(ch); 3232 IPFW_WLOCK_ASSERT(ch); 3233 3234 ni = CHAIN_TO_NI(ch); 3235 kidx = tc->no.kidx; 3236 3237 ipfw_objhash_add(ni, &tc->no); 3238 3239 ti = KIDX_TO_TI(ch, kidx); 3240 *ti = tc->ti_copy; 3241 3242 /* Notify algo on real @ti address */ 3243 if (tc->ta->change_ti != NULL) 3244 tc->ta->change_ti(tc->astate, ti); 3245 3246 tc->linked = 1; 3247 tc->ta->refcnt++; 3248 } 3249 3250 /* 3251 * Unlinks @tc from @chain table named instance. 3252 * Zeroes states in @chain and stores them in @tc. 3253 */ 3254 static void 3255 unlink_table(struct ip_fw_chain *ch, struct table_config *tc) 3256 { 3257 struct namedobj_instance *ni; 3258 struct table_info *ti; 3259 uint16_t kidx; 3260 3261 IPFW_UH_WLOCK_ASSERT(ch); 3262 IPFW_WLOCK_ASSERT(ch); 3263 3264 ni = CHAIN_TO_NI(ch); 3265 kidx = tc->no.kidx; 3266 3267 /* Clear state. @ti copy is already saved inside @tc */ 3268 ipfw_objhash_del(ni, &tc->no); 3269 ti = KIDX_TO_TI(ch, kidx); 3270 memset(ti, 0, sizeof(struct table_info)); 3271 tc->linked = 0; 3272 tc->ta->refcnt--; 3273 3274 /* Notify algo on real @ti address */ 3275 if (tc->ta->change_ti != NULL) 3276 tc->ta->change_ti(tc->astate, NULL); 3277 } 3278 3279 static struct ipfw_sopt_handler scodes[] = { 3280 { IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table }, 3281 { IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 }, 3282 { IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 }, 3283 { IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table }, 3284 { IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table }, 3285 { IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables }, 3286 { IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 }, 3287 { IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 }, 3288 { IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 }, 3289 { IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 }, 3290 { IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 }, 3291 { IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 }, 3292 { IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry }, 3293 { IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table }, 3294 { IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo }, 3295 { IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size }, 3296 }; 3297 3298 static int 3299 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no, 3300 void *arg) 3301 { 3302 3303 unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no); 3304 if (ipfw_objhash_free_idx(ni, no->kidx) != 0) 3305 printf("Error unlinking kidx %d from table %s\n", 3306 no->kidx, no->name); 3307 free_table_config(ni, (struct table_config *)no); 3308 return (0); 3309 } 3310 3311 /* 3312 * Shuts tables module down. 3313 */ 3314 void 3315 ipfw_destroy_tables(struct ip_fw_chain *ch, int last) 3316 { 3317 3318 IPFW_DEL_SOPT_HANDLER(last, scodes); 3319 IPFW_DEL_OBJ_REWRITER(last, opcodes); 3320 3321 /* Remove all tables from working set */ 3322 IPFW_UH_WLOCK(ch); 3323 IPFW_WLOCK(ch); 3324 ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch); 3325 IPFW_WUNLOCK(ch); 3326 IPFW_UH_WUNLOCK(ch); 3327 3328 /* Free pointers itself */ 3329 free(ch->tablestate, M_IPFW); 3330 3331 ipfw_table_value_destroy(ch, last); 3332 ipfw_table_algo_destroy(ch); 3333 3334 ipfw_objhash_destroy(CHAIN_TO_NI(ch)); 3335 free(CHAIN_TO_TCFG(ch), M_IPFW); 3336 } 3337 3338 /* 3339 * Starts tables module. 3340 */ 3341 int 3342 ipfw_init_tables(struct ip_fw_chain *ch, int first) 3343 { 3344 struct tables_config *tcfg; 3345 3346 /* Allocate pointers */ 3347 ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info), 3348 M_IPFW, M_WAITOK | M_ZERO); 3349 3350 tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO); 3351 tcfg->namehash = ipfw_objhash_create(V_fw_tables_max); 3352 ch->tblcfg = tcfg; 3353 3354 ipfw_table_value_init(ch, first); 3355 ipfw_table_algo_init(ch); 3356 3357 IPFW_ADD_OBJ_REWRITER(first, opcodes); 3358 IPFW_ADD_SOPT_HANDLER(first, scodes); 3359 return (0); 3360 } 3361 3362 3363 3364