1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD$ 28 */ 29 30 #ifndef _IPFW2_PRIVATE_H 31 #define _IPFW2_PRIVATE_H 32 33 /* 34 * Internal constants and data structures used by ipfw components 35 * and not meant to be exported outside the kernel. 36 */ 37 38 #ifdef _KERNEL 39 40 /* 41 * For platforms that do not have SYSCTL support, we wrap the 42 * SYSCTL_* into a function (one per file) to collect the values 43 * into an array at module initialization. The wrapping macros, 44 * SYSBEGIN() and SYSEND, are empty in the default case. 45 */ 46 #ifndef SYSBEGIN 47 #define SYSBEGIN(x) 48 #endif 49 #ifndef SYSEND 50 #define SYSEND 51 #endif 52 53 /* Return values from ipfw_chk() */ 54 enum { 55 IP_FW_PASS = 0, 56 IP_FW_DENY, 57 IP_FW_DIVERT, 58 IP_FW_TEE, 59 IP_FW_DUMMYNET, 60 IP_FW_NETGRAPH, 61 IP_FW_NGTEE, 62 IP_FW_NAT, 63 IP_FW_REASS, 64 IP_FW_NAT64, 65 }; 66 67 /* 68 * Structure for collecting parameters to dummynet for ip6_output forwarding 69 */ 70 struct _ip6dn_args { 71 struct ip6_pktopts *opt_or; 72 int flags_or; 73 struct ip6_moptions *im6o_or; 74 struct ifnet *origifp_or; 75 struct ifnet *ifp_or; 76 struct sockaddr_in6 dst_or; 77 u_long mtu_or; 78 }; 79 80 /* 81 * Arguments for calling ipfw_chk() and dummynet_io(). We put them 82 * all into a structure because this way it is easier and more 83 * efficient to pass variables around and extend the interface. 84 */ 85 struct ip_fw_args { 86 uint32_t flags; 87 #define IPFW_ARGS_ETHER 0x00010000 /* valid ethernet header */ 88 #define IPFW_ARGS_NH4 0x00020000 /* IPv4 next hop in hopstore */ 89 #define IPFW_ARGS_NH6 0x00040000 /* IPv6 next hop in hopstore */ 90 #define IPFW_ARGS_NH4PTR 0x00080000 /* IPv4 next hop in next_hop */ 91 #define IPFW_ARGS_NH6PTR 0x00100000 /* IPv6 next hop in next_hop6 */ 92 #define IPFW_ARGS_REF 0x00200000 /* valid ipfw_rule_ref */ 93 #define IPFW_ARGS_IN 0x00400000 /* called on input */ 94 #define IPFW_ARGS_OUT 0x00800000 /* called on output */ 95 #define IPFW_ARGS_IP4 0x01000000 /* belongs to v4 ISR */ 96 #define IPFW_ARGS_IP6 0x02000000 /* belongs to v6 ISR */ 97 #define IPFW_ARGS_DROP 0x04000000 /* drop it (dummynet) */ 98 #define IPFW_ARGS_LENMASK 0x0000ffff /* length of data in *mem */ 99 #define IPFW_ARGS_LENGTH(f) ((f) & IPFW_ARGS_LENMASK) 100 /* 101 * On return, it points to the matching rule. 102 * On entry, rule.slot > 0 means the info is valid and 103 * contains the starting rule for an ipfw search. 104 * If chain_id == chain->id && slot >0 then jump to that slot. 105 * Otherwise, we locate the first rule >= rulenum:rule_id 106 */ 107 struct ipfw_rule_ref rule; /* match/restart info */ 108 109 struct ifnet *ifp; /* input/output interface */ 110 struct inpcb *inp; 111 union { 112 /* 113 * next_hop[6] pointers can be used to point to next hop 114 * stored in rule's opcode to avoid copying into hopstore. 115 * Also, it is expected that all 0x1-0x10 flags are mutually 116 * exclusive. 117 */ 118 struct sockaddr_in *next_hop; 119 struct sockaddr_in6 *next_hop6; 120 /* ipfw next hop storage */ 121 struct sockaddr_in hopstore; 122 struct ip_fw_nh6 { 123 struct in6_addr sin6_addr; 124 uint32_t sin6_scope_id; 125 uint16_t sin6_port; 126 } hopstore6; 127 }; 128 union { 129 struct mbuf *m; /* the mbuf chain */ 130 void *mem; /* or memory pointer */ 131 }; 132 struct ipfw_flow_id f_id; /* grabbed from IP header */ 133 }; 134 135 MALLOC_DECLARE(M_IPFW); 136 137 /* wrapper for freeing a packet, in case we need to do more work */ 138 #ifndef FREE_PKT 139 #if defined(__linux__) || defined(_WIN32) 140 #define FREE_PKT(m) netisr_dispatch(-1, m) 141 #else 142 #define FREE_PKT(m) m_freem(m) 143 #endif 144 #endif /* !FREE_PKT */ 145 146 /* 147 * Function definitions. 148 */ 149 int ipfw_chk(struct ip_fw_args *args); 150 struct mbuf *ipfw_send_pkt(struct mbuf *, struct ipfw_flow_id *, 151 u_int32_t, u_int32_t, int); 152 153 int ipfw_attach_hooks(void); 154 void ipfw_detach_hooks(void); 155 #ifdef NOTYET 156 void ipfw_nat_destroy(void); 157 #endif 158 159 /* In ip_fw_log.c */ 160 struct ip; 161 struct ip_fw_chain; 162 163 void ipfw_bpf_init(int); 164 void ipfw_bpf_uninit(int); 165 void ipfw_bpf_tap(u_char *, u_int); 166 void ipfw_bpf_mtap(struct mbuf *); 167 void ipfw_bpf_mtap2(void *, u_int, struct mbuf *); 168 void ipfw_log(struct ip_fw_chain *chain, struct ip_fw *f, u_int hlen, 169 struct ip_fw_args *args, u_short offset, uint32_t tablearg, struct ip *ip); 170 VNET_DECLARE(u_int64_t, norule_counter); 171 #define V_norule_counter VNET(norule_counter) 172 VNET_DECLARE(int, verbose_limit); 173 #define V_verbose_limit VNET(verbose_limit) 174 175 /* In ip_fw_dynamic.c */ 176 struct sockopt_data; 177 178 enum { /* result for matching dynamic rules */ 179 MATCH_REVERSE = 0, 180 MATCH_FORWARD, 181 MATCH_NONE, 182 MATCH_UNKNOWN, 183 }; 184 185 /* 186 * Macro to determine that we need to do or redo dynamic state lookup. 187 * direction == MATCH_UNKNOWN means that this is first lookup, then we need 188 * to do lookup. 189 * Otherwise check the state name, if previous lookup was for "any" name, 190 * this means there is no state with specific name. Thus no need to do 191 * lookup. If previous name was not "any", redo lookup for specific name. 192 */ 193 #define DYN_LOOKUP_NEEDED(p, cmd) \ 194 ((p)->direction == MATCH_UNKNOWN || \ 195 ((p)->kidx != 0 && (p)->kidx != (cmd)->arg1)) 196 #define DYN_INFO_INIT(p) do { \ 197 (p)->direction = MATCH_UNKNOWN; \ 198 (p)->kidx = 0; \ 199 } while (0) 200 struct ipfw_dyn_info { 201 uint16_t direction; /* match direction */ 202 uint16_t kidx; /* state name kidx */ 203 uint32_t hashval; /* hash value */ 204 uint32_t version; /* bucket version */ 205 uint32_t f_pos; 206 }; 207 int ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule, 208 const ipfw_insn_limit *cmd, const struct ip_fw_args *args, 209 const void *ulp, int pktlen, struct ipfw_dyn_info *info, 210 uint32_t tablearg); 211 struct ip_fw *ipfw_dyn_lookup_state(const struct ip_fw_args *args, 212 const void *ulp, int pktlen, const ipfw_insn *cmd, 213 struct ipfw_dyn_info *info); 214 215 int ipfw_is_dyn_rule(struct ip_fw *rule); 216 void ipfw_expire_dyn_states(struct ip_fw_chain *, ipfw_range_tlv *); 217 void ipfw_get_dynamic(struct ip_fw_chain *chain, char **bp, const char *ep); 218 int ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd); 219 220 void ipfw_dyn_init(struct ip_fw_chain *); /* per-vnet initialization */ 221 void ipfw_dyn_uninit(int); /* per-vnet deinitialization */ 222 int ipfw_dyn_len(void); 223 uint32_t ipfw_dyn_get_count(uint32_t *, int *); 224 void ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id, 225 uint16_t default_id, uint16_t instance_id); 226 227 /* common variables */ 228 VNET_DECLARE(int, fw_one_pass); 229 #define V_fw_one_pass VNET(fw_one_pass) 230 231 VNET_DECLARE(int, fw_verbose); 232 #define V_fw_verbose VNET(fw_verbose) 233 234 VNET_DECLARE(struct ip_fw_chain, layer3_chain); 235 #define V_layer3_chain VNET(layer3_chain) 236 237 VNET_DECLARE(int, ipfw_vnet_ready); 238 #define V_ipfw_vnet_ready VNET(ipfw_vnet_ready) 239 240 VNET_DECLARE(u_int32_t, set_disable); 241 #define V_set_disable VNET(set_disable) 242 243 VNET_DECLARE(int, autoinc_step); 244 #define V_autoinc_step VNET(autoinc_step) 245 246 VNET_DECLARE(unsigned int, fw_tables_max); 247 #define V_fw_tables_max VNET(fw_tables_max) 248 249 VNET_DECLARE(unsigned int, fw_tables_sets); 250 #define V_fw_tables_sets VNET(fw_tables_sets) 251 252 struct tables_config; 253 254 #ifdef _KERNEL 255 /* 256 * Here we have the structure representing an ipfw rule. 257 * 258 * It starts with a general area 259 * followed by an array of one or more instructions, which the code 260 * accesses as an array of 32-bit values. 261 * 262 * Given a rule pointer r: 263 * 264 * r->cmd is the start of the first instruction. 265 * ACTION_PTR(r) is the start of the first action (things to do 266 * once a rule matched). 267 */ 268 struct ip_fw_jump_cache { 269 union { 270 struct { 271 uint32_t id; 272 uint32_t pos; 273 }; 274 uint64_t raw_value; 275 }; 276 }; 277 278 struct ip_fw { 279 uint16_t act_ofs; /* offset of action in 32-bit units */ 280 uint16_t cmd_len; /* # of 32-bit words in cmd */ 281 uint16_t rulenum; /* rule number */ 282 uint8_t set; /* rule set (0..31) */ 283 uint8_t flags; /* currently unused */ 284 counter_u64_t cntr; /* Pointer to rule counters */ 285 struct ip_fw_jump_cache cache; /* used by jump_fast */ 286 uint32_t timestamp; /* tv_sec of last match */ 287 uint32_t id; /* rule id */ 288 uint32_t refcnt; /* number of references */ 289 290 struct ip_fw *next; /* linked list of deleted rules */ 291 ipfw_insn cmd[1]; /* storage for commands */ 292 }; 293 294 #define IPFW_RULE_CNTR_SIZE (2 * sizeof(uint64_t)) 295 296 #endif 297 298 struct ip_fw_chain { 299 struct ip_fw **map; /* array of rule ptrs to ease lookup */ 300 uint32_t id; /* ruleset id */ 301 int n_rules; /* number of static rules */ 302 void *tablestate; /* runtime table info */ 303 void *valuestate; /* runtime table value info */ 304 int *idxmap; /* skipto array of rules */ 305 void **srvstate; /* runtime service mappings */ 306 #if defined( __linux__ ) || defined( _WIN32 ) 307 spinlock_t rwmtx; 308 #else 309 struct rmlock rwmtx; 310 #endif 311 int static_len; /* total len of static rules (v0) */ 312 uint32_t gencnt; /* NAT generation count */ 313 LIST_HEAD(nat_list, cfg_nat) nat; /* list of nat entries */ 314 struct ip_fw *default_rule; 315 struct tables_config *tblcfg; /* tables module data */ 316 void *ifcfg; /* interface module data */ 317 int *idxmap_back; /* standby skipto array of rules */ 318 struct namedobj_instance *srvmap; /* cfg name->number mappings */ 319 #if defined( __linux__ ) || defined( _WIN32 ) 320 spinlock_t uh_lock; 321 #else 322 struct rwlock uh_lock; /* lock for upper half */ 323 #endif 324 }; 325 326 /* 64-byte structure representing multi-field table value */ 327 struct table_value { 328 uint32_t tag; /* O_TAG/O_TAGGED */ 329 uint32_t pipe; /* O_PIPE/O_QUEUE */ 330 uint16_t divert; /* O_DIVERT/O_TEE */ 331 uint16_t skipto; /* skipto, CALLRET */ 332 uint32_t netgraph; /* O_NETGRAPH/O_NGTEE */ 333 uint32_t fib; /* O_SETFIB */ 334 uint32_t nat; /* O_NAT */ 335 uint32_t nh4; 336 uint8_t dscp; 337 uint8_t spare0; 338 uint16_t spare1; 339 /* -- 32 bytes -- */ 340 struct in6_addr nh6; 341 uint32_t limit; /* O_LIMIT */ 342 uint32_t zoneid; /* scope zone id for nh6 */ 343 uint64_t refcnt; /* Number of references */ 344 }; 345 346 struct named_object { 347 TAILQ_ENTRY(named_object) nn_next; /* namehash */ 348 TAILQ_ENTRY(named_object) nv_next; /* valuehash */ 349 char *name; /* object name */ 350 uint16_t etlv; /* Export TLV id */ 351 uint8_t subtype;/* object subtype within class */ 352 uint8_t set; /* set object belongs to */ 353 uint16_t kidx; /* object kernel index */ 354 uint16_t spare; 355 uint32_t ocnt; /* object counter for internal use */ 356 uint32_t refcnt; /* number of references */ 357 }; 358 TAILQ_HEAD(namedobjects_head, named_object); 359 360 struct sockopt; /* used by tcp_var.h */ 361 struct sockopt_data { 362 caddr_t kbuf; /* allocated buffer */ 363 size_t ksize; /* given buffer size */ 364 size_t koff; /* data already used */ 365 size_t kavail; /* number of bytes available */ 366 size_t ktotal; /* total bytes pushed */ 367 struct sockopt *sopt; /* socket data */ 368 caddr_t sopt_val; /* sopt user buffer */ 369 size_t valsize; /* original data size */ 370 }; 371 372 struct ipfw_ifc; 373 374 typedef void (ipfw_ifc_cb)(struct ip_fw_chain *ch, void *cbdata, 375 uint16_t ifindex); 376 377 struct ipfw_iface { 378 struct named_object no; 379 char ifname[64]; 380 int resolved; 381 uint16_t ifindex; 382 uint16_t spare; 383 uint64_t gencnt; 384 TAILQ_HEAD(, ipfw_ifc) consumers; 385 }; 386 387 struct ipfw_ifc { 388 TAILQ_ENTRY(ipfw_ifc) next; 389 struct ipfw_iface *iface; 390 ipfw_ifc_cb *cb; 391 void *cbdata; 392 }; 393 394 /* Macro for working with various counters */ 395 #define IPFW_INC_RULE_COUNTER(_cntr, _bytes) do { \ 396 counter_u64_add((_cntr)->cntr, 1); \ 397 counter_u64_add((_cntr)->cntr + 1, _bytes); \ 398 if ((_cntr)->timestamp != time_uptime) \ 399 (_cntr)->timestamp = time_uptime; \ 400 } while (0) 401 402 #define IPFW_INC_DYN_COUNTER(_cntr, _bytes) do { \ 403 (_cntr)->pcnt++; \ 404 (_cntr)->bcnt += _bytes; \ 405 } while (0) 406 407 #define IPFW_ZERO_RULE_COUNTER(_cntr) do { \ 408 counter_u64_zero((_cntr)->cntr); \ 409 counter_u64_zero((_cntr)->cntr + 1); \ 410 (_cntr)->timestamp = 0; \ 411 } while (0) 412 413 #define IPFW_ZERO_DYN_COUNTER(_cntr) do { \ 414 (_cntr)->pcnt = 0; \ 415 (_cntr)->bcnt = 0; \ 416 } while (0) 417 418 #define TARG_VAL(ch, k, f) ((struct table_value *)((ch)->valuestate))[k].f 419 #define IP_FW_ARG_TABLEARG(ch, a, f) \ 420 (((a) == IP_FW_TARG) ? TARG_VAL(ch, tablearg, f) : (a)) 421 /* 422 * The lock is heavily used by ip_fw2.c (the main file) and ip_fw_nat.c 423 * so the variable and the macros must be here. 424 */ 425 426 #if defined( __linux__ ) || defined( _WIN32 ) 427 #define IPFW_LOCK_INIT(_chain) do { \ 428 rw_init(&(_chain)->rwmtx, "IPFW static rules"); \ 429 rw_init(&(_chain)->uh_lock, "IPFW UH lock"); \ 430 } while (0) 431 432 #define IPFW_LOCK_DESTROY(_chain) do { \ 433 rw_destroy(&(_chain)->rwmtx); \ 434 rw_destroy(&(_chain)->uh_lock); \ 435 } while (0) 436 437 #define IPFW_RLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_RLOCKED) 438 #define IPFW_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_WLOCKED) 439 440 #define IPFW_RLOCK_TRACKER 441 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx) 442 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx) 443 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx) 444 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx) 445 #define IPFW_PF_RLOCK(p) IPFW_RLOCK(p) 446 #define IPFW_PF_RUNLOCK(p) IPFW_RUNLOCK(p) 447 #else /* FreeBSD */ 448 #define IPFW_LOCK_INIT(_chain) do { \ 449 rm_init_flags(&(_chain)->rwmtx, "IPFW static rules", RM_RECURSE); \ 450 rw_init(&(_chain)->uh_lock, "IPFW UH lock"); \ 451 } while (0) 452 453 #define IPFW_LOCK_DESTROY(_chain) do { \ 454 rm_destroy(&(_chain)->rwmtx); \ 455 rw_destroy(&(_chain)->uh_lock); \ 456 } while (0) 457 458 #define IPFW_RLOCK_ASSERT(_chain) rm_assert(&(_chain)->rwmtx, RA_RLOCKED) 459 #define IPFW_WLOCK_ASSERT(_chain) rm_assert(&(_chain)->rwmtx, RA_WLOCKED) 460 461 #define IPFW_RLOCK_TRACKER struct rm_priotracker _tracker 462 #define IPFW_RLOCK(p) rm_rlock(&(p)->rwmtx, &_tracker) 463 #define IPFW_RUNLOCK(p) rm_runlock(&(p)->rwmtx, &_tracker) 464 #define IPFW_WLOCK(p) rm_wlock(&(p)->rwmtx) 465 #define IPFW_WUNLOCK(p) rm_wunlock(&(p)->rwmtx) 466 #define IPFW_PF_RLOCK(p) IPFW_RLOCK(p) 467 #define IPFW_PF_RUNLOCK(p) IPFW_RUNLOCK(p) 468 #endif 469 470 #define IPFW_UH_RLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_RLOCKED) 471 #define IPFW_UH_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_WLOCKED) 472 #define IPFW_UH_UNLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_UNLOCKED) 473 474 #define IPFW_UH_RLOCK(p) rw_rlock(&(p)->uh_lock) 475 #define IPFW_UH_RUNLOCK(p) rw_runlock(&(p)->uh_lock) 476 #define IPFW_UH_WLOCK(p) rw_wlock(&(p)->uh_lock) 477 #define IPFW_UH_WUNLOCK(p) rw_wunlock(&(p)->uh_lock) 478 479 struct obj_idx { 480 uint16_t uidx; /* internal index supplied by userland */ 481 uint16_t kidx; /* kernel object index */ 482 uint16_t off; /* tlv offset from rule end in 4-byte words */ 483 uint8_t spare; 484 uint8_t type; /* object type within its category */ 485 }; 486 487 struct rule_check_info { 488 uint16_t flags; /* rule-specific check flags */ 489 uint16_t object_opcodes; /* num of opcodes referencing objects */ 490 uint16_t urule_numoff; /* offset of rulenum in bytes */ 491 uint8_t version; /* rule version */ 492 uint8_t spare; 493 ipfw_obj_ctlv *ctlv; /* name TLV containter */ 494 struct ip_fw *krule; /* resulting rule pointer */ 495 caddr_t urule; /* original rule pointer */ 496 struct obj_idx obuf[8]; /* table references storage */ 497 }; 498 499 /* Legacy interface support */ 500 /* 501 * FreeBSD 8 export rule format 502 */ 503 struct ip_fw_rule0 { 504 struct ip_fw *x_next; /* linked list of rules */ 505 struct ip_fw *next_rule; /* ptr to next [skipto] rule */ 506 /* 'next_rule' is used to pass up 'set_disable' status */ 507 508 uint16_t act_ofs; /* offset of action in 32-bit units */ 509 uint16_t cmd_len; /* # of 32-bit words in cmd */ 510 uint16_t rulenum; /* rule number */ 511 uint8_t set; /* rule set (0..31) */ 512 uint8_t _pad; /* padding */ 513 uint32_t id; /* rule id */ 514 515 /* These fields are present in all rules. */ 516 uint64_t pcnt; /* Packet counter */ 517 uint64_t bcnt; /* Byte counter */ 518 uint32_t timestamp; /* tv_sec of last match */ 519 520 ipfw_insn cmd[1]; /* storage for commands */ 521 }; 522 523 struct ip_fw_bcounter0 { 524 uint64_t pcnt; /* Packet counter */ 525 uint64_t bcnt; /* Byte counter */ 526 uint32_t timestamp; /* tv_sec of last match */ 527 }; 528 529 /* Kernel rule length */ 530 /* 531 * RULE _K_ SIZE _V_ -> 532 * get kernel size from userland rool version _V_. 533 * RULE _U_ SIZE _V_ -> 534 * get user size version _V_ from kernel rule 535 * RULESIZE _V_ -> 536 * get user size rule length 537 */ 538 /* FreeBSD8 <> current kernel format */ 539 #define RULEUSIZE0(r) (sizeof(struct ip_fw_rule0) + (r)->cmd_len * 4 - 4) 540 #define RULEKSIZE0(r) roundup2((sizeof(struct ip_fw) + (r)->cmd_len*4 - 4), 8) 541 /* FreeBSD11 <> current kernel format */ 542 #define RULEUSIZE1(r) (roundup2(sizeof(struct ip_fw_rule) + \ 543 (r)->cmd_len * 4 - 4, 8)) 544 #define RULEKSIZE1(r) roundup2((sizeof(struct ip_fw) + (r)->cmd_len*4 - 4), 8) 545 546 /* 547 * Tables/Objects index rewriting code 548 */ 549 550 /* Default and maximum number of ipfw tables/objects. */ 551 #define IPFW_TABLES_MAX 65536 552 #define IPFW_TABLES_DEFAULT 128 553 #define IPFW_OBJECTS_MAX 65536 554 #define IPFW_OBJECTS_DEFAULT 1024 555 556 #define CHAIN_TO_SRV(ch) ((ch)->srvmap) 557 #define SRV_OBJECT(ch, idx) ((ch)->srvstate[(idx)]) 558 559 struct tid_info { 560 uint32_t set; /* table set */ 561 uint16_t uidx; /* table index */ 562 uint8_t type; /* table type */ 563 uint8_t atype; 564 uint8_t spare; 565 int tlen; /* Total TLV size block */ 566 void *tlvs; /* Pointer to first TLV */ 567 }; 568 569 /* 570 * Classifier callback. Checks if @cmd opcode contains kernel object reference. 571 * If true, returns its index and type. 572 * Returns 0 if match is found, 1 overwise. 573 */ 574 typedef int (ipfw_obj_rw_cl)(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype); 575 /* 576 * Updater callback. Sets kernel object reference index to @puidx 577 */ 578 typedef void (ipfw_obj_rw_upd)(ipfw_insn *cmd, uint16_t puidx); 579 /* 580 * Finder callback. Tries to find named object by name (specified via @ti). 581 * Stores found named object pointer in @pno. 582 * If object was not found, NULL is stored. 583 * 584 * Return 0 if input data was valid. 585 */ 586 typedef int (ipfw_obj_fname_cb)(struct ip_fw_chain *ch, 587 struct tid_info *ti, struct named_object **pno); 588 /* 589 * Another finder callback. Tries to findex named object by kernel index. 590 * 591 * Returns pointer to named object or NULL. 592 */ 593 typedef struct named_object *(ipfw_obj_fidx_cb)(struct ip_fw_chain *ch, 594 uint16_t kidx); 595 /* 596 * Object creator callback. Tries to create object specified by @ti. 597 * Stores newly-allocated object index in @pkidx. 598 * 599 * Returns 0 on success. 600 */ 601 typedef int (ipfw_obj_create_cb)(struct ip_fw_chain *ch, struct tid_info *ti, 602 uint16_t *pkidx); 603 /* 604 * Object destroy callback. Intended to free resources allocated by 605 * create_object callback. 606 */ 607 typedef void (ipfw_obj_destroy_cb)(struct ip_fw_chain *ch, 608 struct named_object *no); 609 /* 610 * Sets handler callback. Handles moving and swaping set of named object. 611 * SWAP_ALL moves all named objects from set `set' to `new_set' and vise versa; 612 * TEST_ALL checks that there aren't any named object with conflicting names; 613 * MOVE_ALL moves all named objects from set `set' to `new_set'; 614 * COUNT_ONE used to count number of references used by object with kidx `set'; 615 * TEST_ONE checks that named object with kidx `set' can be moved to `new_set`; 616 * MOVE_ONE moves named object with kidx `set' to set `new_set'. 617 */ 618 enum ipfw_sets_cmd { 619 SWAP_ALL = 0, TEST_ALL, MOVE_ALL, COUNT_ONE, TEST_ONE, MOVE_ONE 620 }; 621 typedef int (ipfw_obj_sets_cb)(struct ip_fw_chain *ch, 622 uint16_t set, uint8_t new_set, enum ipfw_sets_cmd cmd); 623 624 struct opcode_obj_rewrite { 625 uint32_t opcode; /* Opcode to act upon */ 626 uint32_t etlv; /* Relevant export TLV id */ 627 ipfw_obj_rw_cl *classifier; /* Check if rewrite is needed */ 628 ipfw_obj_rw_upd *update; /* update cmd with new value */ 629 ipfw_obj_fname_cb *find_byname; /* Find named object by name */ 630 ipfw_obj_fidx_cb *find_bykidx; /* Find named object by kidx */ 631 ipfw_obj_create_cb *create_object; /* Create named object */ 632 ipfw_obj_destroy_cb *destroy_object;/* Destroy named object */ 633 ipfw_obj_sets_cb *manage_sets; /* Swap or move sets */ 634 }; 635 636 #define IPFW_ADD_OBJ_REWRITER(f, c) do { \ 637 if ((f) != 0) \ 638 ipfw_add_obj_rewriter(c, \ 639 sizeof(c) / sizeof(c[0])); \ 640 } while(0) 641 #define IPFW_DEL_OBJ_REWRITER(l, c) do { \ 642 if ((l) != 0) \ 643 ipfw_del_obj_rewriter(c, \ 644 sizeof(c) / sizeof(c[0])); \ 645 } while(0) 646 647 /* In ip_fw_iface.c */ 648 int ipfw_iface_init(void); 649 void ipfw_iface_destroy(void); 650 void vnet_ipfw_iface_destroy(struct ip_fw_chain *ch); 651 int ipfw_iface_ref(struct ip_fw_chain *ch, char *name, 652 struct ipfw_ifc *ic); 653 void ipfw_iface_unref(struct ip_fw_chain *ch, struct ipfw_ifc *ic); 654 void ipfw_iface_add_notify(struct ip_fw_chain *ch, struct ipfw_ifc *ic); 655 void ipfw_iface_del_notify(struct ip_fw_chain *ch, struct ipfw_ifc *ic); 656 657 /* In ip_fw_sockopt.c */ 658 void ipfw_init_skipto_cache(struct ip_fw_chain *chain); 659 void ipfw_destroy_skipto_cache(struct ip_fw_chain *chain); 660 int ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id); 661 int ipfw_ctl3(struct sockopt *sopt); 662 int ipfw_add_protected_rule(struct ip_fw_chain *chain, struct ip_fw *rule, 663 int locked); 664 void ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head, 665 struct ip_fw *rule); 666 void ipfw_reap_rules(struct ip_fw *head); 667 void ipfw_init_counters(void); 668 void ipfw_destroy_counters(void); 669 struct ip_fw *ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize); 670 void ipfw_free_rule(struct ip_fw *rule); 671 int ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt); 672 int ipfw_mark_object_kidx(uint32_t *bmask, uint16_t etlv, uint16_t kidx); 673 ipfw_insn *ipfw_get_action(struct ip_fw *); 674 675 typedef int (sopt_handler_f)(struct ip_fw_chain *ch, 676 ip_fw3_opheader *op3, struct sockopt_data *sd); 677 struct ipfw_sopt_handler { 678 uint16_t opcode; 679 uint8_t version; 680 uint8_t dir; 681 sopt_handler_f *handler; 682 uint64_t refcnt; 683 }; 684 #define HDIR_SET 0x01 /* Handler is used to set some data */ 685 #define HDIR_GET 0x02 /* Handler is used to retrieve data */ 686 #define HDIR_BOTH HDIR_GET|HDIR_SET 687 688 void ipfw_init_sopt_handler(void); 689 void ipfw_destroy_sopt_handler(void); 690 void ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count); 691 int ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count); 692 caddr_t ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed); 693 caddr_t ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed); 694 #define IPFW_ADD_SOPT_HANDLER(f, c) do { \ 695 if ((f) != 0) \ 696 ipfw_add_sopt_handler(c, \ 697 sizeof(c) / sizeof(c[0])); \ 698 } while(0) 699 #define IPFW_DEL_SOPT_HANDLER(l, c) do { \ 700 if ((l) != 0) \ 701 ipfw_del_sopt_handler(c, \ 702 sizeof(c) / sizeof(c[0])); \ 703 } while(0) 704 705 struct namedobj_instance; 706 typedef int (objhash_cb_t)(struct namedobj_instance *ni, struct named_object *, 707 void *arg); 708 typedef uint32_t (objhash_hash_f)(struct namedobj_instance *ni, const void *key, 709 uint32_t kopt); 710 typedef int (objhash_cmp_f)(struct named_object *no, const void *key, 711 uint32_t kopt); 712 struct namedobj_instance *ipfw_objhash_create(uint32_t items); 713 void ipfw_objhash_destroy(struct namedobj_instance *); 714 void ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks); 715 void ipfw_objhash_bitmap_merge(struct namedobj_instance *ni, 716 void **idx, int *blocks); 717 void ipfw_objhash_bitmap_swap(struct namedobj_instance *ni, 718 void **idx, int *blocks); 719 void ipfw_objhash_bitmap_free(void *idx, int blocks); 720 void ipfw_objhash_set_hashf(struct namedobj_instance *ni, objhash_hash_f *f); 721 struct named_object *ipfw_objhash_lookup_name(struct namedobj_instance *ni, 722 uint32_t set, char *name); 723 struct named_object *ipfw_objhash_lookup_name_type(struct namedobj_instance *ni, 724 uint32_t set, uint32_t type, const char *name); 725 struct named_object *ipfw_objhash_lookup_kidx(struct namedobj_instance *ni, 726 uint16_t idx); 727 int ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a, 728 struct named_object *b); 729 void ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no); 730 void ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no); 731 uint32_t ipfw_objhash_count(struct namedobj_instance *ni); 732 uint32_t ipfw_objhash_count_type(struct namedobj_instance *ni, uint16_t type); 733 int ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f, 734 void *arg); 735 int ipfw_objhash_foreach_type(struct namedobj_instance *ni, objhash_cb_t *f, 736 void *arg, uint16_t type); 737 int ipfw_objhash_free_idx(struct namedobj_instance *ni, uint16_t idx); 738 int ipfw_objhash_alloc_idx(void *n, uint16_t *pidx); 739 void ipfw_objhash_set_funcs(struct namedobj_instance *ni, 740 objhash_hash_f *hash_f, objhash_cmp_f *cmp_f); 741 int ipfw_objhash_find_type(struct namedobj_instance *ni, struct tid_info *ti, 742 uint32_t etlv, struct named_object **pno); 743 void ipfw_export_obj_ntlv(struct named_object *no, ipfw_obj_ntlv *ntlv); 744 ipfw_obj_ntlv *ipfw_find_name_tlv_type(void *tlvs, int len, uint16_t uidx, 745 uint32_t etlv); 746 void ipfw_init_obj_rewriter(void); 747 void ipfw_destroy_obj_rewriter(void); 748 void ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count); 749 int ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count); 750 751 int create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd, 752 struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti); 753 void update_opcode_kidx(ipfw_insn *cmd, uint16_t idx); 754 int classify_opcode_kidx(ipfw_insn *cmd, uint16_t *puidx); 755 void ipfw_init_srv(struct ip_fw_chain *ch); 756 void ipfw_destroy_srv(struct ip_fw_chain *ch); 757 int ipfw_check_object_name_generic(const char *name); 758 int ipfw_obj_manage_sets(struct namedobj_instance *ni, uint16_t type, 759 uint16_t set, uint8_t new_set, enum ipfw_sets_cmd cmd); 760 761 /* In ip_fw_eaction.c */ 762 typedef int (ipfw_eaction_t)(struct ip_fw_chain *ch, struct ip_fw_args *args, 763 ipfw_insn *cmd, int *done); 764 int ipfw_eaction_init(struct ip_fw_chain *ch, int first); 765 void ipfw_eaction_uninit(struct ip_fw_chain *ch, int last); 766 767 uint16_t ipfw_add_eaction(struct ip_fw_chain *ch, ipfw_eaction_t handler, 768 const char *name); 769 int ipfw_del_eaction(struct ip_fw_chain *ch, uint16_t eaction_id); 770 int ipfw_run_eaction(struct ip_fw_chain *ch, struct ip_fw_args *args, 771 ipfw_insn *cmd, int *done); 772 int ipfw_reset_eaction(struct ip_fw_chain *ch, struct ip_fw *rule, 773 uint16_t eaction_id, uint16_t default_id, uint16_t instance_id); 774 int ipfw_reset_eaction_instance(struct ip_fw_chain *ch, uint16_t eaction_id, 775 uint16_t instance_id); 776 777 /* In ip_fw_table.c */ 778 struct table_info; 779 780 typedef int (table_lookup_t)(struct table_info *ti, void *key, uint32_t keylen, 781 uint32_t *val); 782 783 int ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen, 784 void *paddr, uint32_t *val); 785 struct named_object *ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, 786 uint16_t kidx); 787 int ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx); 788 void ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx); 789 int ipfw_init_tables(struct ip_fw_chain *ch, int first); 790 int ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables); 791 int ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int nsets); 792 void ipfw_destroy_tables(struct ip_fw_chain *ch, int last); 793 794 /* In ip_fw_nat.c -- XXX to be moved to ip_var.h */ 795 796 extern struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int); 797 798 typedef int ipfw_nat_t(struct ip_fw_args *, struct cfg_nat *, struct mbuf *); 799 typedef int ipfw_nat_cfg_t(struct sockopt *); 800 801 VNET_DECLARE(int, ipfw_nat_ready); 802 #define V_ipfw_nat_ready VNET(ipfw_nat_ready) 803 #define IPFW_NAT_LOADED (V_ipfw_nat_ready) 804 805 extern ipfw_nat_t *ipfw_nat_ptr; 806 extern ipfw_nat_cfg_t *ipfw_nat_cfg_ptr; 807 extern ipfw_nat_cfg_t *ipfw_nat_del_ptr; 808 extern ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr; 809 extern ipfw_nat_cfg_t *ipfw_nat_get_log_ptr; 810 811 /* Helper functions for IP checksum adjustment */ 812 static __inline uint16_t 813 cksum_add(uint16_t sum, uint16_t a) 814 { 815 uint16_t res; 816 817 res = sum + a; 818 return (res + (res < a)); 819 } 820 821 static __inline uint16_t 822 cksum_adjust(uint16_t oldsum, uint16_t old, uint16_t new) 823 { 824 825 return (~cksum_add(cksum_add(~oldsum, ~old), new)); 826 } 827 828 #endif /* _KERNEL */ 829 #endif /* _IPFW2_PRIVATE_H */ 830