xref: /freebsd/sys/netpfil/ipfw/ip_fw_dynamic.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017-2018 Yandex LLC
5  * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipfw.h"
36 #ifndef INET
37 #error IPFIREWALL requires INET.
38 #endif /* INET */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/pcpu.h>
47 #include <sys/queue.h>
48 #include <sys/rmlock.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/vnet.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/ip_fw.h>
62 #include <netinet/tcp_var.h>
63 #include <netinet/udp.h>
64 
65 #include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
66 #ifdef INET6
67 #include <netinet6/in6_var.h>
68 #include <netinet6/ip6_var.h>
69 #include <netinet6/scope6_var.h>
70 #endif
71 
72 #include <netpfil/ipfw/ip_fw_private.h>
73 
74 #include <machine/in_cksum.h>	/* XXX for in_cksum */
75 
76 #ifdef MAC
77 #include <security/mac/mac_framework.h>
78 #endif
79 
80 /*
81  * Description of dynamic states.
82  *
83  * Dynamic states are stored in lists accessed through a hash tables
84  * whose size is curr_dyn_buckets. This value can be modified through
85  * the sysctl variable dyn_buckets.
86  *
87  * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
88  * and dyn_ipv6_parent.
89  *
90  * When a packet is received, its address fields hashed, then matched
91  * against the entries in the corresponding list by addr_type.
92  * Dynamic states can be used for different purposes:
93  *  + stateful rules;
94  *  + enforcing limits on the number of sessions;
95  *  + in-kernel NAT (not implemented yet)
96  *
97  * The lifetime of dynamic states is regulated by dyn_*_lifetime,
98  * measured in seconds and depending on the flags.
99  *
100  * The total number of dynamic states is equal to UMA zone items count.
101  * The max number of dynamic states is dyn_max. When we reach
102  * the maximum number of rules we do not create anymore. This is
103  * done to avoid consuming too much memory, but also too much
104  * time when searching on each packet (ideally, we should try instead
105  * to put a limit on the length of the list on each bucket...).
106  *
107  * Each state holds a pointer to the parent ipfw rule so we know what
108  * action to perform. Dynamic rules are removed when the parent rule is
109  * deleted.
110  *
111  * There are some limitations with dynamic rules -- we do not
112  * obey the 'randomized match', and we do not do multiple
113  * passes through the firewall. XXX check the latter!!!
114  */
115 
116 /* By default use jenkins hash function */
117 #define	IPFIREWALL_JENKINSHASH
118 
119 #define	DYN_COUNTER_INC(d, dir, pktlen)	do {	\
120 	(d)->pcnt_ ## dir++;			\
121 	(d)->bcnt_ ## dir += pktlen;		\
122 	} while (0)
123 
124 #define	DYN_REFERENCED		0x01
125 /*
126  * DYN_REFERENCED flag is used to show that state keeps reference to named
127  * object, and this reference should be released when state becomes expired.
128  */
129 
130 struct dyn_data {
131 	void		*parent;	/* pointer to parent rule */
132 	uint32_t	chain_id;	/* cached ruleset id */
133 	uint32_t	f_pos;		/* cached rule index */
134 
135 	uint32_t	hashval;	/* hash value used for hash resize */
136 	uint16_t	fibnum;		/* fib used to send keepalives */
137 	uint8_t		_pad[3];
138 	uint8_t		flags;		/* internal flags */
139 	uint16_t	rulenum;	/* parent rule number */
140 	uint32_t	ruleid;		/* parent rule id */
141 
142 	uint32_t	state;		/* TCP session state and flags */
143 	uint32_t	ack_fwd;	/* most recent ACKs in forward */
144 	uint32_t	ack_rev;	/* and reverse direction (used */
145 					/* to generate keepalives) */
146 	uint32_t	sync;		/* synchronization time */
147 	uint32_t	expire;		/* expire time */
148 
149 	uint64_t	pcnt_fwd;	/* bytes counter in forward */
150 	uint64_t	bcnt_fwd;	/* packets counter in forward */
151 	uint64_t	pcnt_rev;	/* bytes counter in reverse */
152 	uint64_t	bcnt_rev;	/* packets counter in reverse */
153 };
154 
155 #define	DPARENT_COUNT_DEC(p)	do {			\
156 	MPASS(p->count > 0);				\
157 	ck_pr_dec_32(&(p)->count);			\
158 } while (0)
159 #define	DPARENT_COUNT_INC(p)	ck_pr_inc_32(&(p)->count)
160 #define	DPARENT_COUNT(p)	ck_pr_load_32(&(p)->count)
161 struct dyn_parent {
162 	void		*parent;	/* pointer to parent rule */
163 	uint32_t	count;		/* number of linked states */
164 	uint8_t		_pad[2];
165 	uint16_t	rulenum;	/* parent rule number */
166 	uint32_t	ruleid;		/* parent rule id */
167 	uint32_t	hashval;	/* hash value used for hash resize */
168 	uint32_t	expire;		/* expire time */
169 };
170 
171 struct dyn_ipv4_state {
172 	uint8_t		type;		/* State type */
173 	uint8_t		proto;		/* UL Protocol */
174 	uint16_t	kidx;		/* named object index */
175 	uint16_t	sport, dport;	/* ULP source and destination ports */
176 	in_addr_t	src, dst;	/* IPv4 source and destination */
177 
178 	union {
179 		struct dyn_data	*data;
180 		struct dyn_parent *limit;
181 	};
182 	CK_SLIST_ENTRY(dyn_ipv4_state)	entry;
183 	SLIST_ENTRY(dyn_ipv4_state)	expired;
184 };
185 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
186 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
187 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
188 
189 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
190 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
191 #define	V_dyn_ipv4			VNET(dyn_ipv4)
192 #define	V_dyn_ipv4_parent		VNET(dyn_ipv4_parent)
193 #define	V_dyn_expired_ipv4		VNET(dyn_expired_ipv4)
194 
195 #ifdef INET6
196 struct dyn_ipv6_state {
197 	uint8_t		type;		/* State type */
198 	uint8_t		proto;		/* UL Protocol */
199 	uint16_t	kidx;		/* named object index */
200 	uint16_t	sport, dport;	/* ULP source and destination ports */
201 	struct in6_addr	src, dst;	/* IPv6 source and destination */
202 	uint32_t	zoneid;		/* IPv6 scope zone id */
203 	union {
204 		struct dyn_data	*data;
205 		struct dyn_parent *limit;
206 	};
207 	CK_SLIST_ENTRY(dyn_ipv6_state)	entry;
208 	SLIST_ENTRY(dyn_ipv6_state)	expired;
209 };
210 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
211 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
212 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
213 
214 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
215 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
216 #define	V_dyn_ipv6			VNET(dyn_ipv6)
217 #define	V_dyn_ipv6_parent		VNET(dyn_ipv6_parent)
218 #define	V_dyn_expired_ipv6		VNET(dyn_expired_ipv6)
219 #endif /* INET6 */
220 
221 /*
222  * Per-CPU pointer indicates that specified state is currently in use
223  * and must not be reclaimed by expiration callout.
224  */
225 static void **dyn_hp_cache;
226 DPCPU_DEFINE_STATIC(void *, dyn_hp);
227 #define	DYNSTATE_GET(cpu)	ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
228 #define	DYNSTATE_PROTECT(v)	ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
229 #define	DYNSTATE_RELEASE()	DYNSTATE_PROTECT(NULL)
230 #define	DYNSTATE_CRITICAL_ENTER()	critical_enter()
231 #define	DYNSTATE_CRITICAL_EXIT()	do {	\
232 	DYNSTATE_RELEASE();			\
233 	critical_exit();			\
234 } while (0);
235 
236 /*
237  * We keep two version numbers, one is updated when new entry added to
238  * the list. Second is updated when an entry deleted from the list.
239  * Versions are updated under bucket lock.
240  *
241  * Bucket "add" version number is used to know, that in the time between
242  * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
243  * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
244  * not install some state in this bucket. Using this info we can avoid
245  * additional state lookup, because we are sure that we will not install
246  * the state twice.
247  *
248  * Also doing the tracking of bucket "del" version during lookup we can
249  * be sure, that state entry was not unlinked and freed in time between
250  * we read the state pointer and protect it with hazard pointer.
251  *
252  * An entry unlinked from CK list keeps unchanged until it is freed.
253  * Unlinked entries are linked into expired lists using "expired" field.
254  */
255 
256 /*
257  * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
258  * dyn_bucket_lock is used to get write access to lists in specific bucket.
259  * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
260  * and ipv6_parent lists.
261  */
262 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
263 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
264 #define	V_dyn_expire_lock		VNET(dyn_expire_lock)
265 #define	V_dyn_bucket_lock		VNET(dyn_bucket_lock)
266 
267 /*
268  * Bucket's add/delete generation versions.
269  */
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
272 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
273 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
274 #define	V_dyn_ipv4_add			VNET(dyn_ipv4_add)
275 #define	V_dyn_ipv4_del			VNET(dyn_ipv4_del)
276 #define	V_dyn_ipv4_parent_add		VNET(dyn_ipv4_parent_add)
277 #define	V_dyn_ipv4_parent_del		VNET(dyn_ipv4_parent_del)
278 
279 #ifdef INET6
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
282 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
283 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
284 #define	V_dyn_ipv6_add			VNET(dyn_ipv6_add)
285 #define	V_dyn_ipv6_del			VNET(dyn_ipv6_del)
286 #define	V_dyn_ipv6_parent_add		VNET(dyn_ipv6_parent_add)
287 #define	V_dyn_ipv6_parent_del		VNET(dyn_ipv6_parent_del)
288 #endif /* INET6 */
289 
290 #define	DYN_BUCKET(h, b)		((h) & (b - 1))
291 #define	DYN_BUCKET_VERSION(b, v)	ck_pr_load_32(&V_dyn_ ## v[(b)])
292 #define	DYN_BUCKET_VERSION_BUMP(b, v)	ck_pr_inc_32(&V_dyn_ ## v[(b)])
293 
294 #define	DYN_BUCKET_LOCK_INIT(lock, b)		\
295     mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
296 #define	DYN_BUCKET_LOCK_DESTROY(lock, b)	mtx_destroy(&lock[(b)])
297 #define	DYN_BUCKET_LOCK(b)	mtx_lock(&V_dyn_bucket_lock[(b)])
298 #define	DYN_BUCKET_UNLOCK(b)	mtx_unlock(&V_dyn_bucket_lock[(b)])
299 #define	DYN_BUCKET_ASSERT(b)	mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
300 
301 #define	DYN_EXPIRED_LOCK_INIT()		\
302     mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
303 #define	DYN_EXPIRED_LOCK_DESTROY()	mtx_destroy(&V_dyn_expire_lock)
304 #define	DYN_EXPIRED_LOCK()		mtx_lock(&V_dyn_expire_lock)
305 #define	DYN_EXPIRED_UNLOCK()		mtx_unlock(&V_dyn_expire_lock)
306 
307 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
308 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
309 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
310 #define	V_dyn_buckets_max		VNET(dyn_buckets_max)
311 #define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
312 #define	V_dyn_timeout			VNET(dyn_timeout)
313 
314 /* Maximum length of states chain in a bucket */
315 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
316 #define	V_curr_max_length		VNET(curr_max_length)
317 
318 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
319 #define	V_dyn_keep_states		VNET(dyn_keep_states)
320 
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
322 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
324 #ifdef INET6
325 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
326 #define	V_dyn_ipv6_zone			VNET(dyn_ipv6_zone)
327 #endif /* INET6 */
328 #define	V_dyn_data_zone			VNET(dyn_data_zone)
329 #define	V_dyn_parent_zone		VNET(dyn_parent_zone)
330 #define	V_dyn_ipv4_zone			VNET(dyn_ipv4_zone)
331 
332 /*
333  * Timeouts for various events in handing dynamic rules.
334  */
335 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
339 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
340 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
341 
342 #define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
343 #define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
344 #define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
345 #define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
346 #define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
347 #define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
348 
349 /*
350  * Keepalives are sent if dyn_keepalive is set. They are sent every
351  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
352  * seconds of lifetime of a rule.
353  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
354  * than dyn_keepalive_period.
355  */
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
357 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
358 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
359 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
360 
361 #define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
362 #define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
363 #define	V_dyn_keepalive			VNET(dyn_keepalive)
364 #define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
365 
366 VNET_DEFINE_STATIC(uint32_t, dyn_max);		/* max # of dynamic states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_count);	/* number of states */
368 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max);	/* max # of parent states */
369 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count);	/* number of parent states */
370 
371 #define	V_dyn_max			VNET(dyn_max)
372 #define	V_dyn_count			VNET(dyn_count)
373 #define	V_dyn_parent_max		VNET(dyn_parent_max)
374 #define	V_dyn_parent_count		VNET(dyn_parent_count)
375 
376 #define	DYN_COUNT_DEC(name)	do {			\
377 	MPASS((V_ ## name) > 0);			\
378 	ck_pr_dec_32(&(V_ ## name));			\
379 } while (0)
380 #define	DYN_COUNT_INC(name)	ck_pr_inc_32(&(V_ ## name))
381 #define	DYN_COUNT(name)		ck_pr_load_32(&(V_ ## name))
382 
383 static time_t last_log;	/* Log ratelimiting */
384 
385 /*
386  * Get/set maximum number of dynamic states in given VNET instance.
387  */
388 static int
389 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
390 {
391 	uint32_t nstates;
392 	int error;
393 
394 	nstates = V_dyn_max;
395 	error = sysctl_handle_32(oidp, &nstates, 0, req);
396 	/* Read operation or some error */
397 	if ((error != 0) || (req->newptr == NULL))
398 		return (error);
399 
400 	V_dyn_max = nstates;
401 	uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
402 	return (0);
403 }
404 
405 static int
406 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
407 {
408 	uint32_t nstates;
409 	int error;
410 
411 	nstates = V_dyn_parent_max;
412 	error = sysctl_handle_32(oidp, &nstates, 0, req);
413 	/* Read operation or some error */
414 	if ((error != 0) || (req->newptr == NULL))
415 		return (error);
416 
417 	V_dyn_parent_max = nstates;
418 	uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
419 	return (0);
420 }
421 
422 static int
423 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
424 {
425 	uint32_t nbuckets;
426 	int error;
427 
428 	nbuckets = V_dyn_buckets_max;
429 	error = sysctl_handle_32(oidp, &nbuckets, 0, req);
430 	/* Read operation or some error */
431 	if ((error != 0) || (req->newptr == NULL))
432 		return (error);
433 
434 	if (nbuckets > 256)
435 		V_dyn_buckets_max = 1 << fls(nbuckets - 1);
436 	else
437 		return (EINVAL);
438 	return (0);
439 }
440 
441 SYSCTL_DECL(_net_inet_ip_fw);
442 
443 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
444     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
445     "Current number of dynamic states.");
446 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
447     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
448     "Current number of parent states. ");
449 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
450     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
451     "Current number of buckets for states hash table.");
452 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
453     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
454     "Current maximum length of states chains in hash buckets.");
455 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
456     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
457     0, 0, sysctl_dyn_buckets, "IU",
458     "Max number of buckets for dynamic states hash table.");
459 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
460     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
461     0, 0, sysctl_dyn_max, "IU",
462     "Max number of dynamic states.");
463 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
464     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
465     0, 0, sysctl_dyn_parent_max, "IU",
466     "Max number of parent dynamic states.");
467 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
468     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
469     "Lifetime of dynamic states for TCP ACK.");
470 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
471     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
472     "Lifetime of dynamic states for TCP SYN.");
473 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
474     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
475     "Lifetime of dynamic states for TCP FIN.");
476 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
477     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
478     "Lifetime of dynamic states for TCP RST.");
479 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
480     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
481     "Lifetime of dynamic states for UDP.");
482 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
483     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
484     "Lifetime of dynamic states for other situations.");
485 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
486     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
487     "Enable keepalives for dynamic states.");
488 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
489     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
490     "Do not flush dynamic states on rule deletion");
491 
492 #ifdef IPFIREWALL_DYNDEBUG
493 #define	DYN_DEBUG(fmt, ...)	do {			\
494 	printf("%s: " fmt "\n", __func__, __VA_ARGS__);	\
495 } while (0)
496 #else
497 #define	DYN_DEBUG(fmt, ...)
498 #endif /* !IPFIREWALL_DYNDEBUG */
499 
500 #ifdef INET6
501 /* Functions to work with IPv6 states */
502 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
503     const struct ipfw_flow_id *, uint32_t, const void *,
504     struct ipfw_dyn_info *, int);
505 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
506     uint32_t, const void *, int, uint32_t, uint16_t);
507 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
508     const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
509 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t,
510     const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
511     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
512 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
513     ipfw_dyn_rule *);
514 
515 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
516 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
517     const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
518     uint16_t);
519 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
520     const struct dyn_ipv6_state *);
521 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
522 
523 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
524     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
525     uint32_t);
526 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
527     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
528     uint32_t);
529 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
530     const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint16_t);
531 #endif /* INET6 */
532 
533 /* Functions to work with limit states */
534 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
535     struct ip_fw *, uint32_t, uint32_t, uint16_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
537     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
538 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
539     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
540 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
541     uint32_t);
542 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
543     const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
544 
545 static void dyn_tick(void *);
546 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
547 static void dyn_free_states(struct ip_fw_chain *);
548 static void dyn_export_parent(const struct dyn_parent *, uint16_t, uint8_t,
549     ipfw_dyn_rule *);
550 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
551     uint8_t, ipfw_dyn_rule *);
552 static uint32_t dyn_update_tcp_state(struct dyn_data *,
553     const struct ipfw_flow_id *, const struct tcphdr *, int);
554 static void dyn_update_proto_state(struct dyn_data *,
555     const struct ipfw_flow_id *, const void *, int, int);
556 
557 /* Functions to work with IPv4 states */
558 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
559     const void *, struct ipfw_dyn_info *, int);
560 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
561     const void *, int, uint32_t, uint16_t);
562 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
563     const struct ipfw_flow_id *, uint16_t, uint8_t);
564 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t,
565     const struct ipfw_flow_id *, const void *, int, uint32_t,
566     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
567 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
568     ipfw_dyn_rule *);
569 
570 /*
571  * Named states support.
572  */
573 static char *default_state_name = "default";
574 struct dyn_state_obj {
575 	struct named_object	no;
576 	char			name[64];
577 };
578 
579 #define	DYN_STATE_OBJ(ch, cmd)	\
580     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
581 /*
582  * Classifier callback.
583  * Return 0 if opcode contains object that should be referenced
584  * or rewritten.
585  */
586 static int
587 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
588 {
589 
590 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
591 	/* Don't rewrite "check-state any" */
592 	if (cmd->arg1 == 0 &&
593 	    cmd->opcode == O_CHECK_STATE)
594 		return (1);
595 
596 	*puidx = cmd->arg1;
597 	*ptype = 0;
598 	return (0);
599 }
600 
601 static void
602 dyn_update(ipfw_insn *cmd, uint16_t idx)
603 {
604 
605 	cmd->arg1 = idx;
606 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
607 }
608 
609 static int
610 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
611     struct named_object **pno)
612 {
613 	ipfw_obj_ntlv *ntlv;
614 	const char *name;
615 
616 	DYN_DEBUG("uidx %d", ti->uidx);
617 	if (ti->uidx != 0) {
618 		if (ti->tlvs == NULL)
619 			return (EINVAL);
620 		/* Search ntlv in the buffer provided by user */
621 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
622 		    IPFW_TLV_STATE_NAME);
623 		if (ntlv == NULL)
624 			return (EINVAL);
625 		name = ntlv->name;
626 	} else
627 		name = default_state_name;
628 	/*
629 	 * Search named object with corresponding name.
630 	 * Since states objects are global - ignore the set value
631 	 * and use zero instead.
632 	 */
633 	*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
634 	    IPFW_TLV_STATE_NAME, name);
635 	/*
636 	 * We always return success here.
637 	 * The caller will check *pno and mark object as unresolved,
638 	 * then it will automatically create "default" object.
639 	 */
640 	return (0);
641 }
642 
643 static struct named_object *
644 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
645 {
646 
647 	DYN_DEBUG("kidx %d", idx);
648 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
649 }
650 
651 static int
652 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
653     uint16_t *pkidx)
654 {
655 	struct namedobj_instance *ni;
656 	struct dyn_state_obj *obj;
657 	struct named_object *no;
658 	ipfw_obj_ntlv *ntlv;
659 	char *name;
660 
661 	DYN_DEBUG("uidx %d", ti->uidx);
662 	if (ti->uidx != 0) {
663 		if (ti->tlvs == NULL)
664 			return (EINVAL);
665 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
666 		    IPFW_TLV_STATE_NAME);
667 		if (ntlv == NULL)
668 			return (EINVAL);
669 		name = ntlv->name;
670 	} else
671 		name = default_state_name;
672 
673 	ni = CHAIN_TO_SRV(ch);
674 	obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
675 	obj->no.name = obj->name;
676 	obj->no.etlv = IPFW_TLV_STATE_NAME;
677 	strlcpy(obj->name, name, sizeof(obj->name));
678 
679 	IPFW_UH_WLOCK(ch);
680 	no = ipfw_objhash_lookup_name_type(ni, 0,
681 	    IPFW_TLV_STATE_NAME, name);
682 	if (no != NULL) {
683 		/*
684 		 * Object is already created.
685 		 * Just return its kidx and bump refcount.
686 		 */
687 		*pkidx = no->kidx;
688 		no->refcnt++;
689 		IPFW_UH_WUNLOCK(ch);
690 		free(obj, M_IPFW);
691 		DYN_DEBUG("\tfound kidx %d", *pkidx);
692 		return (0);
693 	}
694 	if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
695 		DYN_DEBUG("\talloc_idx failed for %s", name);
696 		IPFW_UH_WUNLOCK(ch);
697 		free(obj, M_IPFW);
698 		return (ENOSPC);
699 	}
700 	ipfw_objhash_add(ni, &obj->no);
701 	SRV_OBJECT(ch, obj->no.kidx) = obj;
702 	obj->no.refcnt++;
703 	*pkidx = obj->no.kidx;
704 	IPFW_UH_WUNLOCK(ch);
705 	DYN_DEBUG("\tcreated kidx %d", *pkidx);
706 	return (0);
707 }
708 
709 static void
710 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
711 {
712 	struct dyn_state_obj *obj;
713 
714 	IPFW_UH_WLOCK_ASSERT(ch);
715 
716 	KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
717 	    ("%s: wrong object type %u", __func__, no->etlv));
718 	KASSERT(no->refcnt == 1,
719 	    ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
720 	    no->name, no->etlv, no->kidx, no->refcnt));
721 	DYN_DEBUG("kidx %d", no->kidx);
722 	obj = SRV_OBJECT(ch, no->kidx);
723 	SRV_OBJECT(ch, no->kidx) = NULL;
724 	ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
725 	ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
726 
727 	free(obj, M_IPFW);
728 }
729 
730 static struct opcode_obj_rewrite dyn_opcodes[] = {
731 	{
732 		O_KEEP_STATE, IPFW_TLV_STATE_NAME,
733 		dyn_classify, dyn_update,
734 		dyn_findbyname, dyn_findbykidx,
735 		dyn_create, dyn_destroy
736 	},
737 	{
738 		O_CHECK_STATE, IPFW_TLV_STATE_NAME,
739 		dyn_classify, dyn_update,
740 		dyn_findbyname, dyn_findbykidx,
741 		dyn_create, dyn_destroy
742 	},
743 	{
744 		O_PROBE_STATE, IPFW_TLV_STATE_NAME,
745 		dyn_classify, dyn_update,
746 		dyn_findbyname, dyn_findbykidx,
747 		dyn_create, dyn_destroy
748 	},
749 	{
750 		O_LIMIT, IPFW_TLV_STATE_NAME,
751 		dyn_classify, dyn_update,
752 		dyn_findbyname, dyn_findbykidx,
753 		dyn_create, dyn_destroy
754 	},
755 };
756 
757 /*
758  * IMPORTANT: the hash function for dynamic rules must be commutative
759  * in source and destination (ip,port), because rules are bidirectional
760  * and we want to find both in the same bucket.
761  */
762 #ifndef IPFIREWALL_JENKINSHASH
763 static __inline uint32_t
764 hash_packet(const struct ipfw_flow_id *id)
765 {
766 	uint32_t i;
767 
768 #ifdef INET6
769 	if (IS_IP6_FLOW_ID(id))
770 		i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
771 		    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
772 		    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
773 		    (id->src_ip6.__u6_addr.__u6_addr32[3]));
774 	else
775 #endif /* INET6 */
776 	i = (id->dst_ip) ^ (id->src_ip);
777 	i ^= (id->dst_port) ^ (id->src_port);
778 	return (i);
779 }
780 
781 static __inline uint32_t
782 hash_parent(const struct ipfw_flow_id *id, const void *rule)
783 {
784 
785 	return (hash_packet(id) ^ ((uintptr_t)rule));
786 }
787 
788 #else /* IPFIREWALL_JENKINSHASH */
789 
790 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
791 #define	V_dyn_hashseed		VNET(dyn_hashseed)
792 
793 static __inline int
794 addrcmp4(const struct ipfw_flow_id *id)
795 {
796 
797 	if (id->src_ip < id->dst_ip)
798 		return (0);
799 	if (id->src_ip > id->dst_ip)
800 		return (1);
801 	if (id->src_port <= id->dst_port)
802 		return (0);
803 	return (1);
804 }
805 
806 #ifdef INET6
807 static __inline int
808 addrcmp6(const struct ipfw_flow_id *id)
809 {
810 	int ret;
811 
812 	ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
813 	if (ret < 0)
814 		return (0);
815 	if (ret > 0)
816 		return (1);
817 	if (id->src_port <= id->dst_port)
818 		return (0);
819 	return (1);
820 }
821 
822 static __inline uint32_t
823 hash_packet6(const struct ipfw_flow_id *id)
824 {
825 	struct tuple6 {
826 		struct in6_addr	addr[2];
827 		uint16_t	port[2];
828 	} t6;
829 
830 	if (addrcmp6(id) == 0) {
831 		t6.addr[0] = id->src_ip6;
832 		t6.addr[1] = id->dst_ip6;
833 		t6.port[0] = id->src_port;
834 		t6.port[1] = id->dst_port;
835 	} else {
836 		t6.addr[0] = id->dst_ip6;
837 		t6.addr[1] = id->src_ip6;
838 		t6.port[0] = id->dst_port;
839 		t6.port[1] = id->src_port;
840 	}
841 	return (jenkins_hash32((const uint32_t *)&t6,
842 	    sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
843 }
844 #endif
845 
846 static __inline uint32_t
847 hash_packet(const struct ipfw_flow_id *id)
848 {
849 	struct tuple4 {
850 		in_addr_t	addr[2];
851 		uint16_t	port[2];
852 	} t4;
853 
854 	if (IS_IP4_FLOW_ID(id)) {
855 		/* All fields are in host byte order */
856 		if (addrcmp4(id) == 0) {
857 			t4.addr[0] = id->src_ip;
858 			t4.addr[1] = id->dst_ip;
859 			t4.port[0] = id->src_port;
860 			t4.port[1] = id->dst_port;
861 		} else {
862 			t4.addr[0] = id->dst_ip;
863 			t4.addr[1] = id->src_ip;
864 			t4.port[0] = id->dst_port;
865 			t4.port[1] = id->src_port;
866 		}
867 		return (jenkins_hash32((const uint32_t *)&t4,
868 		    sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
869 	} else
870 #ifdef INET6
871 	if (IS_IP6_FLOW_ID(id))
872 		return (hash_packet6(id));
873 #endif
874 	return (0);
875 }
876 
877 static __inline uint32_t
878 hash_parent(const struct ipfw_flow_id *id, const void *rule)
879 {
880 
881 	return (jenkins_hash32((const uint32_t *)&rule,
882 	    sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
883 }
884 #endif /* IPFIREWALL_JENKINSHASH */
885 
886 /*
887  * Print customizable flow id description via log(9) facility.
888  */
889 static void
890 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
891     int log_flags, char *prefix, char *postfix)
892 {
893 	struct in_addr da;
894 #ifdef INET6
895 	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
896 #else
897 	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
898 #endif
899 
900 #ifdef INET6
901 	if (IS_IP6_FLOW_ID(id)) {
902 		ip6_sprintf(src, &id->src_ip6);
903 		ip6_sprintf(dst, &id->dst_ip6);
904 	} else
905 #endif
906 	{
907 		da.s_addr = htonl(id->src_ip);
908 		inet_ntop(AF_INET, &da, src, sizeof(src));
909 		da.s_addr = htonl(id->dst_ip);
910 		inet_ntop(AF_INET, &da, dst, sizeof(dst));
911 	}
912 	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
913 	    prefix, dyn_type, src, id->src_port, dst,
914 	    id->dst_port, V_dyn_count, postfix);
915 }
916 
917 #define	print_dyn_rule(id, dtype, prefix, postfix)	\
918 	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
919 
920 #define	TIME_LEQ(a,b)	((int)((a)-(b)) <= 0)
921 #define	TIME_LE(a,b)	((int)((a)-(b)) < 0)
922 #define	_SEQ_GE(a,b)	((int)((a)-(b)) >= 0)
923 #define	BOTH_SYN	(TH_SYN | (TH_SYN << 8))
924 #define	BOTH_FIN	(TH_FIN | (TH_FIN << 8))
925 #define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
926 #define	ACK_FWD		0x00010000	/* fwd ack seen */
927 #define	ACK_REV		0x00020000	/* rev ack seen */
928 #define	ACK_BOTH	(ACK_FWD | ACK_REV)
929 
930 static uint32_t
931 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
932     const struct tcphdr *tcp, int dir)
933 {
934 	uint32_t ack, expire;
935 	uint32_t state, old;
936 	uint8_t th_flags;
937 
938 	expire = data->expire;
939 	old = state = data->state;
940 	th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
941 	state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
942 	switch (state & TCP_FLAGS) {
943 	case TH_SYN:			/* opening */
944 		expire = time_uptime + V_dyn_syn_lifetime;
945 		break;
946 
947 	case BOTH_SYN:			/* move to established */
948 	case BOTH_SYN | TH_FIN:		/* one side tries to close */
949 	case BOTH_SYN | (TH_FIN << 8):
950 		if (tcp == NULL)
951 			break;
952 		ack = ntohl(tcp->th_ack);
953 		if (dir == MATCH_FORWARD) {
954 			if (data->ack_fwd == 0 ||
955 			    _SEQ_GE(ack, data->ack_fwd)) {
956 				state |= ACK_FWD;
957 				if (data->ack_fwd != ack)
958 					ck_pr_store_32(&data->ack_fwd, ack);
959 			}
960 		} else {
961 			if (data->ack_rev == 0 ||
962 			    _SEQ_GE(ack, data->ack_rev)) {
963 				state |= ACK_REV;
964 				if (data->ack_rev != ack)
965 					ck_pr_store_32(&data->ack_rev, ack);
966 			}
967 		}
968 		if ((state & ACK_BOTH) == ACK_BOTH) {
969 			/*
970 			 * Set expire time to V_dyn_ack_lifetime only if
971 			 * we got ACKs for both directions.
972 			 * We use XOR here to avoid possible state
973 			 * overwriting in concurrent thread.
974 			 */
975 			expire = time_uptime + V_dyn_ack_lifetime;
976 			ck_pr_xor_32(&data->state, ACK_BOTH);
977 		} else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
978 			ck_pr_or_32(&data->state, state & ACK_BOTH);
979 		break;
980 
981 	case BOTH_SYN | BOTH_FIN:	/* both sides closed */
982 		if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
983 			V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
984 		expire = time_uptime + V_dyn_fin_lifetime;
985 		break;
986 
987 	default:
988 		if (V_dyn_keepalive != 0 &&
989 		    V_dyn_rst_lifetime >= V_dyn_keepalive_period)
990 			V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
991 		expire = time_uptime + V_dyn_rst_lifetime;
992 	}
993 	/* Save TCP state if it was changed */
994 	if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
995 		ck_pr_or_32(&data->state, state & TCP_FLAGS);
996 	return (expire);
997 }
998 
999 /*
1000  * Update ULP specific state.
1001  * For TCP we keep sequence numbers and flags. For other protocols
1002  * currently we update only expire time. Packets and bytes counters
1003  * are also updated here.
1004  */
1005 static void
1006 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1007     const void *ulp, int pktlen, int dir)
1008 {
1009 	uint32_t expire;
1010 
1011 	/* NOTE: we are in critical section here. */
1012 	switch (pkt->proto) {
1013 	case IPPROTO_UDP:
1014 	case IPPROTO_UDPLITE:
1015 		expire = time_uptime + V_dyn_udp_lifetime;
1016 		break;
1017 	case IPPROTO_TCP:
1018 		expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1019 		break;
1020 	default:
1021 		expire = time_uptime + V_dyn_short_lifetime;
1022 	}
1023 	/*
1024 	 * Expiration timer has the per-second granularity, no need to update
1025 	 * it every time when state is matched.
1026 	 */
1027 	if (data->expire != expire)
1028 		ck_pr_store_32(&data->expire, expire);
1029 
1030 	if (dir == MATCH_FORWARD)
1031 		DYN_COUNTER_INC(data, fwd, pktlen);
1032 	else
1033 		DYN_COUNTER_INC(data, rev, pktlen);
1034 }
1035 
1036 /*
1037  * Lookup IPv4 state.
1038  * Must be called in critical section.
1039  */
1040 struct dyn_ipv4_state *
1041 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1042     struct ipfw_dyn_info *info, int pktlen)
1043 {
1044 	struct dyn_ipv4_state *s;
1045 	uint32_t version, bucket;
1046 
1047 	bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1048 	info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1049 restart:
1050 	version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1051 	CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1052 		DYNSTATE_PROTECT(s);
1053 		if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1054 			goto restart;
1055 		if (s->proto != pkt->proto)
1056 			continue;
1057 		if (info->kidx != 0 && s->kidx != info->kidx)
1058 			continue;
1059 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1060 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1061 			info->direction = MATCH_FORWARD;
1062 			break;
1063 		}
1064 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1065 		    s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1066 			info->direction = MATCH_REVERSE;
1067 			break;
1068 		}
1069 	}
1070 
1071 	if (s != NULL)
1072 		dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1073 		    info->direction);
1074 	return (s);
1075 }
1076 
1077 /*
1078  * Lookup IPv4 state.
1079  * Simplifed version is used to check that matching state doesn't exist.
1080  */
1081 static int
1082 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1083     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1084 {
1085 	struct dyn_ipv4_state *s;
1086 	int dir;
1087 
1088 	dir = MATCH_NONE;
1089 	DYN_BUCKET_ASSERT(bucket);
1090 	CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1091 		if (s->proto != pkt->proto ||
1092 		    s->kidx != kidx)
1093 			continue;
1094 		if (s->sport == pkt->src_port &&
1095 		    s->dport == pkt->dst_port &&
1096 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1097 			dir = MATCH_FORWARD;
1098 			break;
1099 		}
1100 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1101 		    s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1102 			dir = MATCH_REVERSE;
1103 			break;
1104 		}
1105 	}
1106 	if (s != NULL)
1107 		dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1108 	return (s != NULL);
1109 }
1110 
1111 struct dyn_ipv4_state *
1112 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1113     uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1114 {
1115 	struct dyn_ipv4_state *s;
1116 	uint32_t version, bucket;
1117 
1118 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1119 restart:
1120 	version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1121 	CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1122 		DYNSTATE_PROTECT(s);
1123 		if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1124 			goto restart;
1125 		/*
1126 		 * NOTE: we do not need to check kidx, because parent rule
1127 		 * can not create states with different kidx.
1128 		 * And parent rule always created for forward direction.
1129 		 */
1130 		if (s->limit->parent == rule &&
1131 		    s->limit->ruleid == ruleid &&
1132 		    s->limit->rulenum == rulenum &&
1133 		    s->proto == pkt->proto &&
1134 		    s->sport == pkt->src_port &&
1135 		    s->dport == pkt->dst_port &&
1136 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1137 			if (s->limit->expire != time_uptime +
1138 			    V_dyn_short_lifetime)
1139 				ck_pr_store_32(&s->limit->expire,
1140 				    time_uptime + V_dyn_short_lifetime);
1141 			break;
1142 		}
1143 	}
1144 	return (s);
1145 }
1146 
1147 static struct dyn_ipv4_state *
1148 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1149     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1150 {
1151 	struct dyn_ipv4_state *s;
1152 
1153 	DYN_BUCKET_ASSERT(bucket);
1154 	CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1155 		if (s->limit->parent == rule &&
1156 		    s->limit->ruleid == ruleid &&
1157 		    s->limit->rulenum == rulenum &&
1158 		    s->proto == pkt->proto &&
1159 		    s->sport == pkt->src_port &&
1160 		    s->dport == pkt->dst_port &&
1161 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1162 			break;
1163 	}
1164 	return (s);
1165 }
1166 
1167 #ifdef INET6
1168 static uint32_t
1169 dyn_getscopeid(const struct ip_fw_args *args)
1170 {
1171 
1172 	/*
1173 	 * If source or destination address is an scopeid address, we need
1174 	 * determine the scope zone id to resolve address scope ambiguity.
1175 	 */
1176 	if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1177 	    IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1178 		return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1179 
1180 	return (0);
1181 }
1182 
1183 /*
1184  * Lookup IPv6 state.
1185  * Must be called in critical section.
1186  */
1187 static struct dyn_ipv6_state *
1188 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1189     const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1190 {
1191 	struct dyn_ipv6_state *s;
1192 	uint32_t version, bucket;
1193 
1194 	bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1195 	info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1196 restart:
1197 	version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1198 	CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1199 		DYNSTATE_PROTECT(s);
1200 		if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1201 			goto restart;
1202 		if (s->proto != pkt->proto || s->zoneid != zoneid)
1203 			continue;
1204 		if (info->kidx != 0 && s->kidx != info->kidx)
1205 			continue;
1206 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1207 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1208 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1209 			info->direction = MATCH_FORWARD;
1210 			break;
1211 		}
1212 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1213 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1214 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1215 			info->direction = MATCH_REVERSE;
1216 			break;
1217 		}
1218 	}
1219 	if (s != NULL)
1220 		dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1221 		    info->direction);
1222 	return (s);
1223 }
1224 
1225 /*
1226  * Lookup IPv6 state.
1227  * Simplifed version is used to check that matching state doesn't exist.
1228  */
1229 static int
1230 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1231     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1232 {
1233 	struct dyn_ipv6_state *s;
1234 	int dir;
1235 
1236 	dir = MATCH_NONE;
1237 	DYN_BUCKET_ASSERT(bucket);
1238 	CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1239 		if (s->proto != pkt->proto || s->kidx != kidx ||
1240 		    s->zoneid != zoneid)
1241 			continue;
1242 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1243 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1244 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1245 			dir = MATCH_FORWARD;
1246 			break;
1247 		}
1248 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1249 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1250 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1251 			dir = MATCH_REVERSE;
1252 			break;
1253 		}
1254 	}
1255 	if (s != NULL)
1256 		dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1257 	return (s != NULL);
1258 }
1259 
1260 static struct dyn_ipv6_state *
1261 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1262     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1263 {
1264 	struct dyn_ipv6_state *s;
1265 	uint32_t version, bucket;
1266 
1267 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1268 restart:
1269 	version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1270 	CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1271 		DYNSTATE_PROTECT(s);
1272 		if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1273 			goto restart;
1274 		/*
1275 		 * NOTE: we do not need to check kidx, because parent rule
1276 		 * can not create states with different kidx.
1277 		 * Also parent rule always created for forward direction.
1278 		 */
1279 		if (s->limit->parent == rule &&
1280 		    s->limit->ruleid == ruleid &&
1281 		    s->limit->rulenum == rulenum &&
1282 		    s->proto == pkt->proto &&
1283 		    s->sport == pkt->src_port &&
1284 		    s->dport == pkt->dst_port && s->zoneid == zoneid &&
1285 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1286 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1287 			if (s->limit->expire != time_uptime +
1288 			    V_dyn_short_lifetime)
1289 				ck_pr_store_32(&s->limit->expire,
1290 				    time_uptime + V_dyn_short_lifetime);
1291 			break;
1292 		}
1293 	}
1294 	return (s);
1295 }
1296 
1297 static struct dyn_ipv6_state *
1298 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1299     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1300 {
1301 	struct dyn_ipv6_state *s;
1302 
1303 	DYN_BUCKET_ASSERT(bucket);
1304 	CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1305 		if (s->limit->parent == rule &&
1306 		    s->limit->ruleid == ruleid &&
1307 		    s->limit->rulenum == rulenum &&
1308 		    s->proto == pkt->proto &&
1309 		    s->sport == pkt->src_port &&
1310 		    s->dport == pkt->dst_port && s->zoneid == zoneid &&
1311 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1312 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1313 			break;
1314 	}
1315 	return (s);
1316 }
1317 
1318 #endif /* INET6 */
1319 
1320 /*
1321  * Lookup dynamic state.
1322  *  pkt - filled by ipfw_chk() ipfw_flow_id;
1323  *  ulp - determined by ipfw_chk() upper level protocol header;
1324  *  dyn_info - info about matched state to return back;
1325  * Returns pointer to state's parent rule and dyn_info. If there is
1326  * no state, NULL is returned.
1327  * On match ipfw_dyn_lookup() updates state's counters.
1328  */
1329 struct ip_fw *
1330 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1331     int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1332 {
1333 	struct dyn_data *data;
1334 	struct ip_fw *rule;
1335 
1336 	IPFW_RLOCK_ASSERT(&V_layer3_chain);
1337 
1338 	data = NULL;
1339 	rule = NULL;
1340 	info->kidx = cmd->arg1;
1341 	info->direction = MATCH_NONE;
1342 	info->hashval = hash_packet(&args->f_id);
1343 
1344 	DYNSTATE_CRITICAL_ENTER();
1345 	if (IS_IP4_FLOW_ID(&args->f_id)) {
1346 		struct dyn_ipv4_state *s;
1347 
1348 		s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1349 		if (s != NULL) {
1350 			/*
1351 			 * Dynamic states are created using the same 5-tuple,
1352 			 * so it is assumed, that parent rule for O_LIMIT
1353 			 * state has the same address family.
1354 			 */
1355 			data = s->data;
1356 			if (s->type == O_LIMIT) {
1357 				s = data->parent;
1358 				rule = s->limit->parent;
1359 			} else
1360 				rule = data->parent;
1361 		}
1362 	}
1363 #ifdef INET6
1364 	else if (IS_IP6_FLOW_ID(&args->f_id)) {
1365 		struct dyn_ipv6_state *s;
1366 
1367 		s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1368 		    ulp, info, pktlen);
1369 		if (s != NULL) {
1370 			data = s->data;
1371 			if (s->type == O_LIMIT) {
1372 				s = data->parent;
1373 				rule = s->limit->parent;
1374 			} else
1375 				rule = data->parent;
1376 		}
1377 	}
1378 #endif
1379 	if (data != NULL) {
1380 		/*
1381 		 * If cached chain id is the same, we can avoid rule index
1382 		 * lookup. Otherwise do lookup and update chain_id and f_pos.
1383 		 * It is safe even if there is concurrent thread that want
1384 		 * update the same state, because chain->id can be changed
1385 		 * only under IPFW_WLOCK().
1386 		 */
1387 		if (data->chain_id != V_layer3_chain.id) {
1388 			data->f_pos = ipfw_find_rule(&V_layer3_chain,
1389 			    data->rulenum, data->ruleid);
1390 			/*
1391 			 * Check that found state has not orphaned.
1392 			 * When chain->id being changed the parent
1393 			 * rule can be deleted. If found rule doesn't
1394 			 * match the parent pointer, consider this
1395 			 * result as MATCH_NONE and return NULL.
1396 			 *
1397 			 * This will lead to creation of new similar state
1398 			 * that will be added into head of this bucket.
1399 			 * And the state that we currently have matched
1400 			 * should be deleted by dyn_expire_states().
1401 			 *
1402 			 * In case when dyn_keep_states is enabled, return
1403 			 * pointer to deleted rule and f_pos value
1404 			 * corresponding to penultimate rule.
1405 			 * When we have enabled V_dyn_keep_states, states
1406 			 * that become orphaned will get the DYN_REFERENCED
1407 			 * flag and rule will keep around. So we can return
1408 			 * it. But since it is not in the rules map, we need
1409 			 * return such f_pos value, so after the state
1410 			 * handling if the search will continue, the next rule
1411 			 * will be the last one - the default rule.
1412 			 */
1413 			if (V_layer3_chain.map[data->f_pos] == rule) {
1414 				data->chain_id = V_layer3_chain.id;
1415 				info->f_pos = data->f_pos;
1416 			} else if (V_dyn_keep_states != 0) {
1417 				/*
1418 				 * The original rule pointer is still usable.
1419 				 * So, we return it, but f_pos need to be
1420 				 * changed to point to the penultimate rule.
1421 				 */
1422 				MPASS(V_layer3_chain.n_rules > 1);
1423 				data->chain_id = V_layer3_chain.id;
1424 				data->f_pos = V_layer3_chain.n_rules - 2;
1425 				info->f_pos = data->f_pos;
1426 			} else {
1427 				rule = NULL;
1428 				info->direction = MATCH_NONE;
1429 				DYN_DEBUG("rule %p  [%u, %u] is considered "
1430 				    "invalid in data %p", rule, data->ruleid,
1431 				    data->rulenum, data);
1432 				/* info->f_pos doesn't matter here. */
1433 			}
1434 		} else
1435 			info->f_pos = data->f_pos;
1436 	}
1437 	DYNSTATE_CRITICAL_EXIT();
1438 #if 0
1439 	/*
1440 	 * Return MATCH_NONE if parent rule is in disabled set.
1441 	 * This will lead to creation of new similar state that
1442 	 * will be added into head of this bucket.
1443 	 *
1444 	 * XXXAE: we need to be able update state's set when parent
1445 	 *	  rule set is changed.
1446 	 */
1447 	if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1448 		rule = NULL;
1449 		info->direction = MATCH_NONE;
1450 	}
1451 #endif
1452 	return (rule);
1453 }
1454 
1455 static struct dyn_parent *
1456 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1457     uint32_t hashval)
1458 {
1459 	struct dyn_parent *limit;
1460 
1461 	limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1462 	if (limit == NULL) {
1463 		if (last_log != time_uptime) {
1464 			last_log = time_uptime;
1465 			log(LOG_DEBUG,
1466 			    "ipfw: Cannot allocate parent dynamic state, "
1467 			    "consider increasing "
1468 			    "net.inet.ip.fw.dyn_parent_max\n");
1469 		}
1470 		return (NULL);
1471 	}
1472 
1473 	limit->parent = parent;
1474 	limit->ruleid = ruleid;
1475 	limit->rulenum = rulenum;
1476 	limit->hashval = hashval;
1477 	limit->expire = time_uptime + V_dyn_short_lifetime;
1478 	return (limit);
1479 }
1480 
1481 static struct dyn_data *
1482 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1483     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1484     uint32_t hashval, uint16_t fibnum)
1485 {
1486 	struct dyn_data *data;
1487 
1488 	data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1489 	if (data == NULL) {
1490 		if (last_log != time_uptime) {
1491 			last_log = time_uptime;
1492 			log(LOG_DEBUG,
1493 			    "ipfw: Cannot allocate dynamic state, "
1494 			    "consider increasing net.inet.ip.fw.dyn_max\n");
1495 		}
1496 		return (NULL);
1497 	}
1498 
1499 	data->parent = parent;
1500 	data->ruleid = ruleid;
1501 	data->rulenum = rulenum;
1502 	data->fibnum = fibnum;
1503 	data->hashval = hashval;
1504 	data->expire = time_uptime + V_dyn_syn_lifetime;
1505 	dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1506 	return (data);
1507 }
1508 
1509 static struct dyn_ipv4_state *
1510 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1511     uint8_t type)
1512 {
1513 	struct dyn_ipv4_state *s;
1514 
1515 	s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1516 	if (s == NULL)
1517 		return (NULL);
1518 
1519 	s->type = type;
1520 	s->kidx = kidx;
1521 	s->proto = pkt->proto;
1522 	s->sport = pkt->src_port;
1523 	s->dport = pkt->dst_port;
1524 	s->src = pkt->src_ip;
1525 	s->dst = pkt->dst_ip;
1526 	return (s);
1527 }
1528 
1529 /*
1530  * Add IPv4 parent state.
1531  * Returns pointer to parent state. When it is not NULL we are in
1532  * critical section and pointer protected by hazard pointer.
1533  * When some error occurs, it returns NULL and exit from critical section
1534  * is not needed.
1535  */
1536 static struct dyn_ipv4_state *
1537 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1538     const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1539     uint16_t kidx)
1540 {
1541 	struct dyn_ipv4_state *s;
1542 	struct dyn_parent *limit;
1543 	uint32_t bucket;
1544 
1545 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1546 	DYN_BUCKET_LOCK(bucket);
1547 	if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1548 		/*
1549 		 * Bucket version has been changed since last lookup,
1550 		 * do lookup again to be sure that state does not exist.
1551 		 */
1552 		s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1553 		    rulenum, bucket);
1554 		if (s != NULL) {
1555 			/*
1556 			 * Simultaneous thread has already created this
1557 			 * state. Just return it.
1558 			 */
1559 			DYNSTATE_CRITICAL_ENTER();
1560 			DYNSTATE_PROTECT(s);
1561 			DYN_BUCKET_UNLOCK(bucket);
1562 			return (s);
1563 		}
1564 	}
1565 
1566 	limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1567 	if (limit == NULL) {
1568 		DYN_BUCKET_UNLOCK(bucket);
1569 		return (NULL);
1570 	}
1571 
1572 	s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1573 	if (s == NULL) {
1574 		DYN_BUCKET_UNLOCK(bucket);
1575 		uma_zfree(V_dyn_parent_zone, limit);
1576 		return (NULL);
1577 	}
1578 
1579 	s->limit = limit;
1580 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1581 	DYN_COUNT_INC(dyn_parent_count);
1582 	DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1583 	DYNSTATE_CRITICAL_ENTER();
1584 	DYNSTATE_PROTECT(s);
1585 	DYN_BUCKET_UNLOCK(bucket);
1586 	return (s);
1587 }
1588 
1589 static int
1590 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1591     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1592     uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1593     uint16_t kidx, uint8_t type)
1594 {
1595 	struct dyn_ipv4_state *s;
1596 	void *data;
1597 	uint32_t bucket;
1598 
1599 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1600 	DYN_BUCKET_LOCK(bucket);
1601 	if (info->direction == MATCH_UNKNOWN ||
1602 	    info->kidx != kidx ||
1603 	    info->hashval != hashval ||
1604 	    info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1605 		/*
1606 		 * Bucket version has been changed since last lookup,
1607 		 * do lookup again to be sure that state does not exist.
1608 		 */
1609 		if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1610 		    bucket, kidx) != 0) {
1611 			DYN_BUCKET_UNLOCK(bucket);
1612 			return (EEXIST);
1613 		}
1614 	}
1615 
1616 	data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1617 	    pktlen, hashval, fibnum);
1618 	if (data == NULL) {
1619 		DYN_BUCKET_UNLOCK(bucket);
1620 		return (ENOMEM);
1621 	}
1622 
1623 	s = dyn_alloc_ipv4_state(pkt, kidx, type);
1624 	if (s == NULL) {
1625 		DYN_BUCKET_UNLOCK(bucket);
1626 		uma_zfree(V_dyn_data_zone, data);
1627 		return (ENOMEM);
1628 	}
1629 
1630 	s->data = data;
1631 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1632 	DYN_COUNT_INC(dyn_count);
1633 	DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1634 	DYN_BUCKET_UNLOCK(bucket);
1635 	return (0);
1636 }
1637 
1638 #ifdef INET6
1639 static struct dyn_ipv6_state *
1640 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1641     uint16_t kidx, uint8_t type)
1642 {
1643 	struct dyn_ipv6_state *s;
1644 
1645 	s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1646 	if (s == NULL)
1647 		return (NULL);
1648 
1649 	s->type = type;
1650 	s->kidx = kidx;
1651 	s->zoneid = zoneid;
1652 	s->proto = pkt->proto;
1653 	s->sport = pkt->src_port;
1654 	s->dport = pkt->dst_port;
1655 	s->src = pkt->src_ip6;
1656 	s->dst = pkt->dst_ip6;
1657 	return (s);
1658 }
1659 
1660 /*
1661  * Add IPv6 parent state.
1662  * Returns pointer to parent state. When it is not NULL we are in
1663  * critical section and pointer protected by hazard pointer.
1664  * When some error occurs, it return NULL and exit from critical section
1665  * is not needed.
1666  */
1667 static struct dyn_ipv6_state *
1668 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1669     const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1670     uint32_t version, uint16_t kidx)
1671 {
1672 	struct dyn_ipv6_state *s;
1673 	struct dyn_parent *limit;
1674 	uint32_t bucket;
1675 
1676 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1677 	DYN_BUCKET_LOCK(bucket);
1678 	if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1679 		/*
1680 		 * Bucket version has been changed since last lookup,
1681 		 * do lookup again to be sure that state does not exist.
1682 		 */
1683 		s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1684 		    rulenum, bucket);
1685 		if (s != NULL) {
1686 			/*
1687 			 * Simultaneous thread has already created this
1688 			 * state. Just return it.
1689 			 */
1690 			DYNSTATE_CRITICAL_ENTER();
1691 			DYNSTATE_PROTECT(s);
1692 			DYN_BUCKET_UNLOCK(bucket);
1693 			return (s);
1694 		}
1695 	}
1696 
1697 	limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1698 	if (limit == NULL) {
1699 		DYN_BUCKET_UNLOCK(bucket);
1700 		return (NULL);
1701 	}
1702 
1703 	s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1704 	if (s == NULL) {
1705 		DYN_BUCKET_UNLOCK(bucket);
1706 		uma_zfree(V_dyn_parent_zone, limit);
1707 		return (NULL);
1708 	}
1709 
1710 	s->limit = limit;
1711 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1712 	DYN_COUNT_INC(dyn_parent_count);
1713 	DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1714 	DYNSTATE_CRITICAL_ENTER();
1715 	DYNSTATE_PROTECT(s);
1716 	DYN_BUCKET_UNLOCK(bucket);
1717 	return (s);
1718 }
1719 
1720 static int
1721 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1722     const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1723     int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1724     uint16_t fibnum, uint16_t kidx, uint8_t type)
1725 {
1726 	struct dyn_ipv6_state *s;
1727 	struct dyn_data *data;
1728 	uint32_t bucket;
1729 
1730 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1731 	DYN_BUCKET_LOCK(bucket);
1732 	if (info->direction == MATCH_UNKNOWN ||
1733 	    info->kidx != kidx ||
1734 	    info->hashval != hashval ||
1735 	    info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1736 		/*
1737 		 * Bucket version has been changed since last lookup,
1738 		 * do lookup again to be sure that state does not exist.
1739 		 */
1740 		if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1741 		    bucket, kidx) != 0) {
1742 			DYN_BUCKET_UNLOCK(bucket);
1743 			return (EEXIST);
1744 		}
1745 	}
1746 
1747 	data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1748 	    pktlen, hashval, fibnum);
1749 	if (data == NULL) {
1750 		DYN_BUCKET_UNLOCK(bucket);
1751 		return (ENOMEM);
1752 	}
1753 
1754 	s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1755 	if (s == NULL) {
1756 		DYN_BUCKET_UNLOCK(bucket);
1757 		uma_zfree(V_dyn_data_zone, data);
1758 		return (ENOMEM);
1759 	}
1760 
1761 	s->data = data;
1762 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1763 	DYN_COUNT_INC(dyn_count);
1764 	DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1765 	DYN_BUCKET_UNLOCK(bucket);
1766 	return (0);
1767 }
1768 #endif /* INET6 */
1769 
1770 static void *
1771 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1772     struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1773 {
1774 	char sbuf[24];
1775 	struct dyn_parent *p;
1776 	void *ret;
1777 	uint32_t bucket, version;
1778 
1779 	p = NULL;
1780 	ret = NULL;
1781 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1782 	DYNSTATE_CRITICAL_ENTER();
1783 	if (IS_IP4_FLOW_ID(pkt)) {
1784 		struct dyn_ipv4_state *s;
1785 
1786 		version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1787 		s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1788 		    rule->rulenum, bucket);
1789 		if (s == NULL) {
1790 			/*
1791 			 * Exit from critical section because dyn_add_parent()
1792 			 * will acquire bucket lock.
1793 			 */
1794 			DYNSTATE_CRITICAL_EXIT();
1795 
1796 			s = dyn_add_ipv4_parent(rule, rule->id,
1797 			    rule->rulenum, pkt, hashval, version, kidx);
1798 			if (s == NULL)
1799 				return (NULL);
1800 			/* Now we are in critical section again. */
1801 		}
1802 		ret = s;
1803 		p = s->limit;
1804 	}
1805 #ifdef INET6
1806 	else if (IS_IP6_FLOW_ID(pkt)) {
1807 		struct dyn_ipv6_state *s;
1808 
1809 		version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1810 		s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1811 		    rule->rulenum, bucket);
1812 		if (s == NULL) {
1813 			/*
1814 			 * Exit from critical section because dyn_add_parent()
1815 			 * can acquire bucket mutex.
1816 			 */
1817 			DYNSTATE_CRITICAL_EXIT();
1818 
1819 			s = dyn_add_ipv6_parent(rule, rule->id,
1820 			    rule->rulenum, pkt, zoneid, hashval, version,
1821 			    kidx);
1822 			if (s == NULL)
1823 				return (NULL);
1824 			/* Now we are in critical section again. */
1825 		}
1826 		ret = s;
1827 		p = s->limit;
1828 	}
1829 #endif
1830 	else {
1831 		DYNSTATE_CRITICAL_EXIT();
1832 		return (NULL);
1833 	}
1834 
1835 	/* Check the limit */
1836 	if (DPARENT_COUNT(p) >= limit) {
1837 		DYNSTATE_CRITICAL_EXIT();
1838 		if (V_fw_verbose && last_log != time_uptime) {
1839 			last_log = time_uptime;
1840 			snprintf(sbuf, sizeof(sbuf), "%u drop session",
1841 			    rule->rulenum);
1842 			print_dyn_rule_flags(pkt, O_LIMIT,
1843 			    LOG_SECURITY | LOG_DEBUG, sbuf,
1844 			    "too many entries");
1845 		}
1846 		return (NULL);
1847 	}
1848 
1849 	/* Take new session into account. */
1850 	DPARENT_COUNT_INC(p);
1851 	/*
1852 	 * We must exit from critical section because the following code
1853 	 * can acquire bucket mutex.
1854 	 * We rely on the the 'count' field. The state will not expire
1855 	 * until it has some child states, i.e. 'count' field is not zero.
1856 	 * Return state pointer, it will be used by child states as parent.
1857 	 */
1858 	DYNSTATE_CRITICAL_EXIT();
1859 	return (ret);
1860 }
1861 
1862 static int
1863 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1864     uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1865     struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1866     uint16_t kidx, uint8_t type)
1867 {
1868 	struct ipfw_flow_id id;
1869 	uint32_t hashval, parent_hashval, ruleid, rulenum;
1870 	int ret;
1871 
1872 	MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1873 
1874 	ruleid = rule->id;
1875 	rulenum = rule->rulenum;
1876 	if (type == O_LIMIT) {
1877 		/* Create masked flow id and calculate bucket */
1878 		id.addr_type = pkt->addr_type;
1879 		id.proto = pkt->proto;
1880 		id.fib = fibnum; /* unused */
1881 		id.src_port = (limit_mask & DYN_SRC_PORT) ?
1882 		    pkt->src_port: 0;
1883 		id.dst_port = (limit_mask & DYN_DST_PORT) ?
1884 		    pkt->dst_port: 0;
1885 		if (IS_IP4_FLOW_ID(pkt)) {
1886 			id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1887 			    pkt->src_ip: 0;
1888 			id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1889 			    pkt->dst_ip: 0;
1890 		}
1891 #ifdef INET6
1892 		else if (IS_IP6_FLOW_ID(pkt)) {
1893 			if (limit_mask & DYN_SRC_ADDR)
1894 				id.src_ip6 = pkt->src_ip6;
1895 			else
1896 				memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1897 			if (limit_mask & DYN_DST_ADDR)
1898 				id.dst_ip6 = pkt->dst_ip6;
1899 			else
1900 				memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1901 		}
1902 #endif
1903 		else
1904 			return (EAFNOSUPPORT);
1905 
1906 		parent_hashval = hash_parent(&id, rule);
1907 		rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1908 		    limit, kidx);
1909 		if (rule == NULL) {
1910 #if 0
1911 			if (V_fw_verbose && last_log != time_uptime) {
1912 				last_log = time_uptime;
1913 				snprintf(sbuf, sizeof(sbuf),
1914 				    "%u drop session", rule->rulenum);
1915 			print_dyn_rule_flags(pkt, O_LIMIT,
1916 			    LOG_SECURITY | LOG_DEBUG, sbuf,
1917 			    "too many entries");
1918 			}
1919 #endif
1920 			return (EACCES);
1921 		}
1922 		/*
1923 		 * Limit is not reached, create new state.
1924 		 * Now rule points to parent state.
1925 		 */
1926 	}
1927 
1928 	hashval = hash_packet(pkt);
1929 	if (IS_IP4_FLOW_ID(pkt))
1930 		ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1931 		    ulp, pktlen, hashval, info, fibnum, kidx, type);
1932 #ifdef INET6
1933 	else if (IS_IP6_FLOW_ID(pkt))
1934 		ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1935 		    zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1936 #endif /* INET6 */
1937 	else
1938 		ret = EAFNOSUPPORT;
1939 
1940 	if (type == O_LIMIT) {
1941 		if (ret != 0) {
1942 			/*
1943 			 * We failed to create child state for O_LIMIT
1944 			 * opcode. Since we already counted it in the parent,
1945 			 * we must revert counter back. The 'rule' points to
1946 			 * parent state, use it to get dyn_parent.
1947 			 *
1948 			 * XXXAE: it should be safe to use 'rule' pointer
1949 			 * without extra lookup, parent state is referenced
1950 			 * and should not be freed.
1951 			 */
1952 			if (IS_IP4_FLOW_ID(&id))
1953 				DPARENT_COUNT_DEC(
1954 				    ((struct dyn_ipv4_state *)rule)->limit);
1955 #ifdef INET6
1956 			else if (IS_IP6_FLOW_ID(&id))
1957 				DPARENT_COUNT_DEC(
1958 				    ((struct dyn_ipv6_state *)rule)->limit);
1959 #endif
1960 		}
1961 	}
1962 	/*
1963 	 * EEXIST means that simultaneous thread has created this
1964 	 * state. Consider this as success.
1965 	 *
1966 	 * XXXAE: should we invalidate 'info' content here?
1967 	 */
1968 	if (ret == EEXIST)
1969 		return (0);
1970 	return (ret);
1971 }
1972 
1973 /*
1974  * Install dynamic state.
1975  *  chain - ipfw's instance;
1976  *  rule - the parent rule that installs the state;
1977  *  cmd - opcode that installs the state;
1978  *  args - ipfw arguments;
1979  *  ulp - upper level protocol header;
1980  *  pktlen - packet length;
1981  *  info - dynamic state lookup info;
1982  *  tablearg - tablearg id.
1983  *
1984  * Returns non-zero value (failure) if state is not installed because
1985  * of errors or because session limitations are enforced.
1986  */
1987 int
1988 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1989     const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1990     const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1991     uint32_t tablearg)
1992 {
1993 	uint32_t limit;
1994 	uint16_t limit_mask;
1995 
1996 	if (cmd->o.opcode == O_LIMIT) {
1997 		limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
1998 		limit_mask = cmd->limit_mask;
1999 	} else {
2000 		limit = 0;
2001 		limit_mask = 0;
2002 	}
2003 	return (dyn_install_state(&args->f_id,
2004 #ifdef INET6
2005 	    IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2006 #endif
2007 	    0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2008 	    limit_mask, cmd->o.arg1, cmd->o.opcode));
2009 }
2010 
2011 /*
2012  * Free safe to remove state entries from expired lists.
2013  */
2014 static void
2015 dyn_free_states(struct ip_fw_chain *chain)
2016 {
2017 	struct dyn_ipv4_state *s4, *s4n;
2018 #ifdef INET6
2019 	struct dyn_ipv6_state *s6, *s6n;
2020 #endif
2021 	int cached_count, i;
2022 
2023 	/*
2024 	 * We keep pointers to objects that are in use on each CPU
2025 	 * in the per-cpu dyn_hp pointer. When object is going to be
2026 	 * removed, first of it is unlinked from the corresponding
2027 	 * list. This leads to changing of dyn_bucket_xxx_delver version.
2028 	 * Unlinked objects is placed into corresponding dyn_expired_xxx
2029 	 * list. Reader that is going to dereference object pointer checks
2030 	 * dyn_bucket_xxx_delver version before and after storing pointer
2031 	 * into dyn_hp. If version is the same, the object is protected
2032 	 * from freeing and it is safe to dereference. Othervise reader
2033 	 * tries to iterate list again from the beginning, but this object
2034 	 * now unlinked and thus will not be accessible.
2035 	 *
2036 	 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2037 	 * It does not matter that some pointer can be changed in
2038 	 * time while we are copying. We need to check, that objects
2039 	 * removed in the previous pass are not in use. And if dyn_hp
2040 	 * pointer does not contain it in the time when we are copying,
2041 	 * it will not appear there, because it is already unlinked.
2042 	 * And for new pointers we will not free objects that will be
2043 	 * unlinked in this pass.
2044 	 */
2045 	cached_count = 0;
2046 	CPU_FOREACH(i) {
2047 		dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2048 		if (dyn_hp_cache[cached_count] != NULL)
2049 			cached_count++;
2050 	}
2051 
2052 	/*
2053 	 * Free expired states that are safe to free.
2054 	 * Check each entry from previous pass in the dyn_expired_xxx
2055 	 * list, if pointer to the object is in the dyn_hp_cache array,
2056 	 * keep it until next pass. Otherwise it is safe to free the
2057 	 * object.
2058 	 *
2059 	 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2060 	 */
2061 #define	DYN_FREE_STATES(s, next, name)		do {			\
2062 	s = SLIST_FIRST(&V_dyn_expired_ ## name);			\
2063 	while (s != NULL) {						\
2064 		next = SLIST_NEXT(s, expired);				\
2065 		for (i = 0; i < cached_count; i++)			\
2066 			if (dyn_hp_cache[i] == s)			\
2067 				break;					\
2068 		if (i == cached_count) {				\
2069 			if (s->type == O_LIMIT_PARENT &&		\
2070 			    s->limit->count != 0) {			\
2071 				s = next;				\
2072 				continue;				\
2073 			}						\
2074 			SLIST_REMOVE(&V_dyn_expired_ ## name,		\
2075 			    s, dyn_ ## name ## _state, expired);	\
2076 			if (s->type == O_LIMIT_PARENT)			\
2077 				uma_zfree(V_dyn_parent_zone, s->limit);	\
2078 			else						\
2079 				uma_zfree(V_dyn_data_zone, s->data);	\
2080 			uma_zfree(V_dyn_ ## name ## _zone, s);		\
2081 		}							\
2082 		s = next;						\
2083 	}								\
2084 } while (0)
2085 
2086 	/*
2087 	 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2088 	 * Userland can invoke ipfw_expire_dyn_states() to delete
2089 	 * specific states, this will lead to modification of expired
2090 	 * lists.
2091 	 *
2092 	 * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2093 	 *	  IPFW_UH_WLOCK to protect access to these lists.
2094 	 */
2095 	DYN_EXPIRED_LOCK();
2096 	DYN_FREE_STATES(s4, s4n, ipv4);
2097 #ifdef INET6
2098 	DYN_FREE_STATES(s6, s6n, ipv6);
2099 #endif
2100 	DYN_EXPIRED_UNLOCK();
2101 #undef DYN_FREE_STATES
2102 }
2103 
2104 /*
2105  * Returns:
2106  * 0 when state is not matched by specified range;
2107  * 1 when state is matched by specified range;
2108  * 2 when state is matched by specified range and requested deletion of
2109  *   dynamic states.
2110  */
2111 static int
2112 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2113 {
2114 
2115 	MPASS(rt != NULL);
2116 	/* flush all states */
2117 	if (rt->flags & IPFW_RCFLAG_ALL) {
2118 		if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2119 			return (2); /* forced */
2120 		return (1);
2121 	}
2122 	if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2123 		return (0);
2124 	if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2125 	    (rulenum < rt->start_rule || rulenum > rt->end_rule))
2126 		return (0);
2127 	if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2128 		return (2);
2129 	return (1);
2130 }
2131 
2132 static void
2133 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2134     struct ip_fw *rule, uint16_t kidx)
2135 {
2136 	struct dyn_state_obj *obj;
2137 
2138 	/*
2139 	 * Do not acquire reference twice.
2140 	 * This can happen when rule deletion executed for
2141 	 * the same range, but different ruleset id.
2142 	 */
2143 	if (data->flags & DYN_REFERENCED)
2144 		return;
2145 
2146 	IPFW_UH_WLOCK_ASSERT(ch);
2147 	MPASS(kidx != 0);
2148 
2149 	data->flags |= DYN_REFERENCED;
2150 	/* Reference the named object */
2151 	obj = SRV_OBJECT(ch, kidx);
2152 	obj->no.refcnt++;
2153 	MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2154 
2155 	/* Reference the parent rule */
2156 	rule->refcnt++;
2157 }
2158 
2159 static void
2160 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2161     struct ip_fw *rule, uint16_t kidx)
2162 {
2163 	struct dyn_state_obj *obj;
2164 
2165 	IPFW_UH_WLOCK_ASSERT(ch);
2166 	MPASS(kidx != 0);
2167 
2168 	obj = SRV_OBJECT(ch, kidx);
2169 	if (obj->no.refcnt == 1)
2170 		dyn_destroy(ch, &obj->no);
2171 	else
2172 		obj->no.refcnt--;
2173 
2174 	if (--rule->refcnt == 1)
2175 		ipfw_free_rule(rule);
2176 }
2177 
2178 /*
2179  * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2180  * O_LIMIT state is created when new connection is going to be established
2181  * and there is no matching state. So, since the old parent rule was deleted
2182  * we can't create new states with old parent, and thus we can not account
2183  * new connections with already established connections, and can not do
2184  * proper limiting.
2185  */
2186 static int
2187 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2188     const ipfw_range_tlv *rt)
2189 {
2190 	struct ip_fw *rule;
2191 	int ret;
2192 
2193 	if (s->type == O_LIMIT_PARENT) {
2194 		rule = s->limit->parent;
2195 		return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2196 	}
2197 
2198 	rule = s->data->parent;
2199 	if (s->type == O_LIMIT)
2200 		rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2201 
2202 	ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2203 	if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2204 		return (ret);
2205 
2206 	dyn_acquire_rule(ch, s->data, rule, s->kidx);
2207 	return (0);
2208 }
2209 
2210 #ifdef INET6
2211 static int
2212 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2213     const ipfw_range_tlv *rt)
2214 {
2215 	struct ip_fw *rule;
2216 	int ret;
2217 
2218 	if (s->type == O_LIMIT_PARENT) {
2219 		rule = s->limit->parent;
2220 		return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2221 	}
2222 
2223 	rule = s->data->parent;
2224 	if (s->type == O_LIMIT)
2225 		rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2226 
2227 	ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2228 	if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2229 		return (ret);
2230 
2231 	dyn_acquire_rule(ch, s->data, rule, s->kidx);
2232 	return (0);
2233 }
2234 #endif
2235 
2236 /*
2237  * Unlink expired entries from states lists.
2238  * @rt can be used to specify the range of states for deletion.
2239  */
2240 static void
2241 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2242 {
2243 	struct dyn_ipv4_slist expired_ipv4;
2244 #ifdef INET6
2245 	struct dyn_ipv6_slist expired_ipv6;
2246 	struct dyn_ipv6_state *s6, *s6n, *s6p;
2247 #endif
2248 	struct dyn_ipv4_state *s4, *s4n, *s4p;
2249 	void *rule;
2250 	int bucket, removed, length, max_length;
2251 
2252 	IPFW_UH_WLOCK_ASSERT(ch);
2253 
2254 	/*
2255 	 * Unlink expired states from each bucket.
2256 	 * With acquired bucket lock iterate entries of each lists:
2257 	 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2258 	 * and unlink entry from the list, link entry into temporary
2259 	 * expired_xxx lists then bump "del" bucket version.
2260 	 *
2261 	 * When an entry is removed, corresponding states counter is
2262 	 * decremented. If entry has O_LIMIT type, parent's reference
2263 	 * counter is decremented.
2264 	 *
2265 	 * NOTE: this function can be called from userspace context
2266 	 * when user deletes rules. In this case all matched states
2267 	 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2268 	 * in the expired lists until reference counter become zero.
2269 	 */
2270 #define	DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra)	do {	\
2271 	length = 0;							\
2272 	removed = 0;							\
2273 	prev = NULL;							\
2274 	s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]);			\
2275 	while (s != NULL) {						\
2276 		next = CK_SLIST_NEXT(s, entry);				\
2277 		if ((TIME_LEQ((s)->exp, time_uptime) && extra) ||	\
2278 		    (rt != NULL &&					\
2279 		     dyn_match_ ## af ## _state(ch, s, rt))) {		\
2280 			if (prev != NULL)				\
2281 				CK_SLIST_REMOVE_AFTER(prev, entry);	\
2282 			else						\
2283 				CK_SLIST_REMOVE_HEAD(			\
2284 				    &V_dyn_ ## name [bucket], entry);	\
2285 			removed++;					\
2286 			SLIST_INSERT_HEAD(&expired_ ## af, s, expired);	\
2287 			if (s->type == O_LIMIT_PARENT)			\
2288 				DYN_COUNT_DEC(dyn_parent_count);	\
2289 			else {						\
2290 				DYN_COUNT_DEC(dyn_count);		\
2291 				if (s->data->flags & DYN_REFERENCED) {	\
2292 					rule = s->data->parent;		\
2293 					if (s->type == O_LIMIT)		\
2294 						rule = ((__typeof(s))	\
2295 						    rule)->limit->parent;\
2296 					dyn_release_rule(ch, s->data,	\
2297 					    rule, s->kidx);		\
2298 				}					\
2299 				if (s->type == O_LIMIT)	{		\
2300 					s = s->data->parent;		\
2301 					DPARENT_COUNT_DEC(s->limit);	\
2302 				}					\
2303 			}						\
2304 		} else {						\
2305 			prev = s;					\
2306 			length++;					\
2307 		}							\
2308 		s = next;						\
2309 	}								\
2310 	if (removed != 0)						\
2311 		DYN_BUCKET_VERSION_BUMP(bucket, name ## _del);		\
2312 	if (length > max_length)				\
2313 		max_length = length;				\
2314 } while (0)
2315 
2316 	SLIST_INIT(&expired_ipv4);
2317 #ifdef INET6
2318 	SLIST_INIT(&expired_ipv6);
2319 #endif
2320 	max_length = 0;
2321 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2322 		DYN_BUCKET_LOCK(bucket);
2323 		DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2324 		DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2325 		    ipv4_parent, (s4->limit->count == 0));
2326 #ifdef INET6
2327 		DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2328 		DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2329 		    ipv6_parent, (s6->limit->count == 0));
2330 #endif
2331 		DYN_BUCKET_UNLOCK(bucket);
2332 	}
2333 	/* Update curr_max_length for statistics. */
2334 	V_curr_max_length = max_length;
2335 	/*
2336 	 * Concatenate temporary lists with global expired lists.
2337 	 */
2338 	DYN_EXPIRED_LOCK();
2339 	SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2340 	    dyn_ipv4_state, expired);
2341 #ifdef INET6
2342 	SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2343 	    dyn_ipv6_state, expired);
2344 #endif
2345 	DYN_EXPIRED_UNLOCK();
2346 #undef DYN_UNLINK_STATES
2347 #undef DYN_UNREF_STATES
2348 }
2349 
2350 static struct mbuf *
2351 dyn_mgethdr(int len, uint16_t fibnum)
2352 {
2353 	struct mbuf *m;
2354 
2355 	m = m_gethdr(M_NOWAIT, MT_DATA);
2356 	if (m == NULL)
2357 		return (NULL);
2358 #ifdef MAC
2359 	mac_netinet_firewall_send(m);
2360 #endif
2361 	M_SETFIB(m, fibnum);
2362 	m->m_data += max_linkhdr;
2363 	m->m_flags |= M_SKIP_FIREWALL;
2364 	m->m_len = m->m_pkthdr.len = len;
2365 	bzero(m->m_data, len);
2366 	return (m);
2367 }
2368 
2369 static void
2370 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2371     uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2372 {
2373 	struct tcphdr *tcp;
2374 	struct ip *ip;
2375 
2376 	ip = mtod(m, struct ip *);
2377 	ip->ip_v = 4;
2378 	ip->ip_hl = sizeof(*ip) >> 2;
2379 	ip->ip_tos = IPTOS_LOWDELAY;
2380 	ip->ip_len = htons(m->m_len);
2381 	ip->ip_off |= htons(IP_DF);
2382 	ip->ip_ttl = V_ip_defttl;
2383 	ip->ip_p = IPPROTO_TCP;
2384 	ip->ip_src.s_addr = htonl(src);
2385 	ip->ip_dst.s_addr = htonl(dst);
2386 
2387 	tcp = mtodo(m, sizeof(struct ip));
2388 	tcp->th_sport = htons(sport);
2389 	tcp->th_dport = htons(dport);
2390 	tcp->th_off = sizeof(struct tcphdr) >> 2;
2391 	tcp->th_seq = htonl(seq);
2392 	tcp->th_ack = htonl(ack);
2393 	tcp->th_flags = TH_ACK;
2394 	tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2395 	    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2396 
2397 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2398 	m->m_pkthdr.csum_flags = CSUM_TCP;
2399 }
2400 
2401 static void
2402 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2403 {
2404 	struct mbuf *m;
2405 
2406 	if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2407 		m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2408 		    s->data->fibnum);
2409 		if (m != NULL) {
2410 			dyn_make_keepalive_ipv4(m, s->dst, s->src,
2411 			    s->data->ack_fwd - 1, s->data->ack_rev,
2412 			    s->dport, s->sport);
2413 			if (mbufq_enqueue(q, m)) {
2414 				m_freem(m);
2415 				log(LOG_DEBUG, "ipfw: limit for IPv4 "
2416 				    "keepalive queue is reached.\n");
2417 				return;
2418 			}
2419 		}
2420 	}
2421 
2422 	if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2423 		m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2424 		    s->data->fibnum);
2425 		if (m != NULL) {
2426 			dyn_make_keepalive_ipv4(m, s->src, s->dst,
2427 			    s->data->ack_rev - 1, s->data->ack_fwd,
2428 			    s->sport, s->dport);
2429 			if (mbufq_enqueue(q, m)) {
2430 				m_freem(m);
2431 				log(LOG_DEBUG, "ipfw: limit for IPv4 "
2432 				    "keepalive queue is reached.\n");
2433 				return;
2434 			}
2435 		}
2436 	}
2437 }
2438 
2439 /*
2440  * Prepare and send keep-alive packets.
2441  */
2442 static void
2443 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2444 {
2445 	struct mbufq q;
2446 	struct mbuf *m;
2447 	struct dyn_ipv4_state *s;
2448 	uint32_t bucket;
2449 
2450 	mbufq_init(&q, INT_MAX);
2451 	IPFW_UH_RLOCK(chain);
2452 	/*
2453 	 * It is safe to not use hazard pointer and just do lockless
2454 	 * access to the lists, because states entries can not be deleted
2455 	 * while we hold IPFW_UH_RLOCK.
2456 	 */
2457 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2458 		CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2459 			/*
2460 			 * Only established TCP connections that will
2461 			 * become expired withing dyn_keepalive_interval.
2462 			 */
2463 			if (s->proto != IPPROTO_TCP ||
2464 			    (s->data->state & BOTH_SYN) != BOTH_SYN ||
2465 			    TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2466 				s->data->expire))
2467 				continue;
2468 			dyn_enqueue_keepalive_ipv4(&q, s);
2469 		}
2470 	}
2471 	IPFW_UH_RUNLOCK(chain);
2472 	while ((m = mbufq_dequeue(&q)) != NULL)
2473 		ip_output(m, NULL, NULL, 0, NULL, NULL);
2474 }
2475 
2476 #ifdef INET6
2477 static void
2478 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2479     const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2480     uint16_t sport, uint16_t dport)
2481 {
2482 	struct tcphdr *tcp;
2483 	struct ip6_hdr *ip6;
2484 
2485 	ip6 = mtod(m, struct ip6_hdr *);
2486 	ip6->ip6_vfc |= IPV6_VERSION;
2487 	ip6->ip6_plen = htons(sizeof(struct tcphdr));
2488 	ip6->ip6_nxt = IPPROTO_TCP;
2489 	ip6->ip6_hlim = IPV6_DEFHLIM;
2490 	ip6->ip6_src = *src;
2491 	if (IN6_IS_ADDR_LINKLOCAL(src))
2492 		ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2493 	ip6->ip6_dst = *dst;
2494 	if (IN6_IS_ADDR_LINKLOCAL(dst))
2495 		ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2496 
2497 	tcp = mtodo(m, sizeof(struct ip6_hdr));
2498 	tcp->th_sport = htons(sport);
2499 	tcp->th_dport = htons(dport);
2500 	tcp->th_off = sizeof(struct tcphdr) >> 2;
2501 	tcp->th_seq = htonl(seq);
2502 	tcp->th_ack = htonl(ack);
2503 	tcp->th_flags = TH_ACK;
2504 	tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2505 	    IPPROTO_TCP, 0);
2506 
2507 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2508 	m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2509 }
2510 
2511 static void
2512 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2513 {
2514 	struct mbuf *m;
2515 
2516 	if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2517 		m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2518 		    sizeof(struct tcphdr), s->data->fibnum);
2519 		if (m != NULL) {
2520 			dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2521 			    s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2522 			    s->dport, s->sport);
2523 			if (mbufq_enqueue(q, m)) {
2524 				m_freem(m);
2525 				log(LOG_DEBUG, "ipfw: limit for IPv6 "
2526 				    "keepalive queue is reached.\n");
2527 				return;
2528 			}
2529 		}
2530 	}
2531 
2532 	if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2533 		m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2534 		    sizeof(struct tcphdr), s->data->fibnum);
2535 		if (m != NULL) {
2536 			dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2537 			    s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2538 			    s->sport, s->dport);
2539 			if (mbufq_enqueue(q, m)) {
2540 				m_freem(m);
2541 				log(LOG_DEBUG, "ipfw: limit for IPv6 "
2542 				    "keepalive queue is reached.\n");
2543 				return;
2544 			}
2545 		}
2546 	}
2547 }
2548 
2549 static void
2550 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2551 {
2552 	struct mbufq q;
2553 	struct mbuf *m;
2554 	struct dyn_ipv6_state *s;
2555 	uint32_t bucket;
2556 
2557 	mbufq_init(&q, INT_MAX);
2558 	IPFW_UH_RLOCK(chain);
2559 	/*
2560 	 * It is safe to not use hazard pointer and just do lockless
2561 	 * access to the lists, because states entries can not be deleted
2562 	 * while we hold IPFW_UH_RLOCK.
2563 	 */
2564 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2565 		CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2566 			/*
2567 			 * Only established TCP connections that will
2568 			 * become expired withing dyn_keepalive_interval.
2569 			 */
2570 			if (s->proto != IPPROTO_TCP ||
2571 			    (s->data->state & BOTH_SYN) != BOTH_SYN ||
2572 			    TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2573 				s->data->expire))
2574 				continue;
2575 			dyn_enqueue_keepalive_ipv6(&q, s);
2576 		}
2577 	}
2578 	IPFW_UH_RUNLOCK(chain);
2579 	while ((m = mbufq_dequeue(&q)) != NULL)
2580 		ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2581 }
2582 #endif /* INET6 */
2583 
2584 static void
2585 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new)
2586 {
2587 #ifdef INET6
2588 	struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2589 	uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2590 	struct dyn_ipv6_state *s6;
2591 #endif
2592 	struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2593 	uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2594 	struct dyn_ipv4_state *s4;
2595 	struct mtx *bucket_lock;
2596 	void *tmp;
2597 	uint32_t bucket;
2598 
2599 	MPASS(powerof2(new));
2600 	DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2601 	/*
2602 	 * Allocate and initialize new lists.
2603 	 * XXXAE: on memory pressure this can disable callout timer.
2604 	 */
2605 	bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2606 	    M_WAITOK | M_ZERO);
2607 	ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2608 	    M_WAITOK | M_ZERO);
2609 	ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2610 	    M_WAITOK | M_ZERO);
2611 	ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2612 	ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2613 	ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2614 	    M_WAITOK | M_ZERO);
2615 	ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2616 	    M_WAITOK | M_ZERO);
2617 #ifdef INET6
2618 	ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2619 	    M_WAITOK | M_ZERO);
2620 	ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2621 	    M_WAITOK | M_ZERO);
2622 	ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2623 	ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2624 	ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2625 	    M_WAITOK | M_ZERO);
2626 	ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2627 	    M_WAITOK | M_ZERO);
2628 #endif
2629 	for (bucket = 0; bucket < new; bucket++) {
2630 		DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2631 		CK_SLIST_INIT(&ipv4[bucket]);
2632 		CK_SLIST_INIT(&ipv4_parent[bucket]);
2633 #ifdef INET6
2634 		CK_SLIST_INIT(&ipv6[bucket]);
2635 		CK_SLIST_INIT(&ipv6_parent[bucket]);
2636 #endif
2637 	}
2638 
2639 #define DYN_RELINK_STATES(s, hval, i, head, ohead)	do {		\
2640 	while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) {	\
2641 		CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry);	\
2642 		CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)],	\
2643 		    s, entry);						\
2644 	}								\
2645 } while (0)
2646 	/*
2647 	 * Prevent rules changing from userland.
2648 	 */
2649 	IPFW_UH_WLOCK(chain);
2650 	/*
2651 	 * Hold traffic processing until we finish resize to
2652 	 * prevent access to states lists.
2653 	 */
2654 	IPFW_WLOCK(chain);
2655 	/* Re-link all dynamic states */
2656 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2657 		DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2658 		DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2659 		    ipv4_parent);
2660 #ifdef INET6
2661 		DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2662 		DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2663 		    ipv6_parent);
2664 #endif
2665 	}
2666 
2667 #define	DYN_SWAP_PTR(old, new, tmp)	do {		\
2668 	tmp = old;					\
2669 	old = new;					\
2670 	new = tmp;					\
2671 } while (0)
2672 	/* Swap pointers */
2673 	DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2674 	DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2675 	DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2676 	DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2677 	DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2678 	DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2679 	DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2680 
2681 #ifdef INET6
2682 	DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2683 	DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2684 	DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2685 	DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2686 	DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2687 	DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2688 #endif
2689 	bucket = V_curr_dyn_buckets;
2690 	V_curr_dyn_buckets = new;
2691 
2692 	IPFW_WUNLOCK(chain);
2693 	IPFW_UH_WUNLOCK(chain);
2694 
2695 	/* Release old resources */
2696 	while (bucket-- != 0)
2697 		DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2698 	free(bucket_lock, M_IPFW);
2699 	free(ipv4, M_IPFW);
2700 	free(ipv4_parent, M_IPFW);
2701 	free(ipv4_add, M_IPFW);
2702 	free(ipv4_parent_add, M_IPFW);
2703 	free(ipv4_del, M_IPFW);
2704 	free(ipv4_parent_del, M_IPFW);
2705 #ifdef INET6
2706 	free(ipv6, M_IPFW);
2707 	free(ipv6_parent, M_IPFW);
2708 	free(ipv6_add, M_IPFW);
2709 	free(ipv6_parent_add, M_IPFW);
2710 	free(ipv6_del, M_IPFW);
2711 	free(ipv6_parent_del, M_IPFW);
2712 #endif
2713 }
2714 
2715 /*
2716  * This function is used to perform various maintenance
2717  * on dynamic hash lists. Currently it is called every second.
2718  */
2719 static void
2720 dyn_tick(void *vnetx)
2721 {
2722 	struct epoch_tracker et;
2723 	uint32_t buckets;
2724 
2725 	CURVNET_SET((struct vnet *)vnetx);
2726 	/*
2727 	 * First free states unlinked in previous passes.
2728 	 */
2729 	dyn_free_states(&V_layer3_chain);
2730 	/*
2731 	 * Now unlink others expired states.
2732 	 * We use IPFW_UH_WLOCK to avoid concurrent call of
2733 	 * dyn_expire_states(). It is the only function that does
2734 	 * deletion of state entries from states lists.
2735 	 */
2736 	IPFW_UH_WLOCK(&V_layer3_chain);
2737 	dyn_expire_states(&V_layer3_chain, NULL);
2738 	IPFW_UH_WUNLOCK(&V_layer3_chain);
2739 	/*
2740 	 * Send keepalives if they are enabled and the time has come.
2741 	 */
2742 	if (V_dyn_keepalive != 0 &&
2743 	    V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2744 		V_dyn_keepalive_last = time_uptime;
2745 		NET_EPOCH_ENTER(et);
2746 		dyn_send_keepalive_ipv4(&V_layer3_chain);
2747 #ifdef INET6
2748 		dyn_send_keepalive_ipv6(&V_layer3_chain);
2749 #endif
2750 		NET_EPOCH_EXIT(et);
2751 	}
2752 	/*
2753 	 * Check if we need to resize the hash:
2754 	 * if current number of states exceeds number of buckets in hash,
2755 	 * and dyn_buckets_max permits to grow the number of buckets, then
2756 	 * do it. Grow hash size to the minimum power of 2 which is bigger
2757 	 * than current states count.
2758 	 */
2759 	if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2760 	    (V_curr_dyn_buckets < V_dyn_count / 2 || (
2761 	    V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2762 		buckets = 1 << fls(V_dyn_count);
2763 		if (buckets > V_dyn_buckets_max)
2764 			buckets = V_dyn_buckets_max;
2765 		dyn_grow_hashtable(&V_layer3_chain, buckets);
2766 	}
2767 
2768 	callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2769 	CURVNET_RESTORE();
2770 }
2771 
2772 void
2773 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2774 {
2775 	/*
2776 	 * Do not perform any checks if we currently have no dynamic states
2777 	 */
2778 	if (V_dyn_count == 0)
2779 		return;
2780 
2781 	IPFW_UH_WLOCK_ASSERT(chain);
2782 	dyn_expire_states(chain, rt);
2783 }
2784 
2785 /*
2786  * Pass through all states and reset eaction for orphaned rules.
2787  */
2788 void
2789 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id,
2790     uint16_t default_id, uint16_t instance_id)
2791 {
2792 #ifdef INET6
2793 	struct dyn_ipv6_state *s6;
2794 #endif
2795 	struct dyn_ipv4_state *s4;
2796 	struct ip_fw *rule;
2797 	uint32_t bucket;
2798 
2799 #define	DYN_RESET_EACTION(s, h, b)					\
2800 	CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {			\
2801 		if ((s->data->flags & DYN_REFERENCED) == 0)		\
2802 			continue;					\
2803 		rule = s->data->parent;					\
2804 		if (s->type == O_LIMIT)					\
2805 			rule = ((__typeof(s))rule)->limit->parent;	\
2806 		ipfw_reset_eaction(ch, rule, eaction_id,		\
2807 		    default_id, instance_id);				\
2808 	}
2809 
2810 	IPFW_UH_WLOCK_ASSERT(ch);
2811 	if (V_dyn_count == 0)
2812 		return;
2813 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2814 		DYN_RESET_EACTION(s4, ipv4, bucket);
2815 #ifdef INET6
2816 		DYN_RESET_EACTION(s6, ipv6, bucket);
2817 #endif
2818 	}
2819 }
2820 
2821 /*
2822  * Returns size of dynamic states in legacy format
2823  */
2824 int
2825 ipfw_dyn_len(void)
2826 {
2827 
2828 	return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2829 }
2830 
2831 /*
2832  * Returns number of dynamic states.
2833  * Marks every named object index used by dynamic states with bit in @bmask.
2834  * Returns number of named objects accounted in bmask via @nocnt.
2835  * Used by dump format v1 (current).
2836  */
2837 uint32_t
2838 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2839 {
2840 #ifdef INET6
2841 	struct dyn_ipv6_state *s6;
2842 #endif
2843 	struct dyn_ipv4_state *s4;
2844 	uint32_t bucket;
2845 
2846 #define	DYN_COUNT_OBJECTS(s, h, b)					\
2847 	CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {			\
2848 		MPASS(s->kidx != 0);					\
2849 		if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME,	\
2850 		    s->kidx) != 0)					\
2851 			(*nocnt)++;					\
2852 	}
2853 
2854 	IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2855 
2856 	/* No need to pass through all the buckets. */
2857 	*nocnt = 0;
2858 	if (V_dyn_count + V_dyn_parent_count == 0)
2859 		return (0);
2860 
2861 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2862 		DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2863 #ifdef INET6
2864 		DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2865 #endif
2866 	}
2867 
2868 	return (V_dyn_count + V_dyn_parent_count);
2869 }
2870 
2871 /*
2872  * Check if rule contains at least one dynamic opcode.
2873  *
2874  * Returns 1 if such opcode is found, 0 otherwise.
2875  */
2876 int
2877 ipfw_is_dyn_rule(struct ip_fw *rule)
2878 {
2879 	int cmdlen, l;
2880 	ipfw_insn *cmd;
2881 
2882 	l = rule->cmd_len;
2883 	cmd = rule->cmd;
2884 	cmdlen = 0;
2885 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
2886 		cmdlen = F_LEN(cmd);
2887 
2888 		switch (cmd->opcode) {
2889 		case O_LIMIT:
2890 		case O_KEEP_STATE:
2891 		case O_PROBE_STATE:
2892 		case O_CHECK_STATE:
2893 			return (1);
2894 		}
2895 	}
2896 
2897 	return (0);
2898 }
2899 
2900 static void
2901 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx, uint8_t set,
2902     ipfw_dyn_rule *dst)
2903 {
2904 
2905 	dst->dyn_type = O_LIMIT_PARENT;
2906 	dst->kidx = kidx;
2907 	dst->count = (uint16_t)DPARENT_COUNT(p);
2908 	dst->expire = TIME_LEQ(p->expire, time_uptime) ?  0:
2909 	    p->expire - time_uptime;
2910 
2911 	/* 'rule' is used to pass up the rule number and set */
2912 	memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2913 
2914 	/* store set number into high word of dst->rule pointer. */
2915 	memcpy((char *)&dst->rule + sizeof(p->rulenum), &set, sizeof(set));
2916 
2917 	/* unused fields */
2918 	dst->pcnt = 0;
2919 	dst->bcnt = 0;
2920 	dst->parent = NULL;
2921 	dst->state = 0;
2922 	dst->ack_fwd = 0;
2923 	dst->ack_rev = 0;
2924 	dst->bucket = p->hashval;
2925 	/*
2926 	 * The legacy userland code will interpret a NULL here as a marker
2927 	 * for the last dynamic rule.
2928 	 */
2929 	dst->next = (ipfw_dyn_rule *)1;
2930 }
2931 
2932 static void
2933 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2934     uint8_t set, ipfw_dyn_rule *dst)
2935 {
2936 
2937 	dst->dyn_type = type;
2938 	dst->kidx = kidx;
2939 	dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2940 	dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2941 	dst->expire = TIME_LEQ(data->expire, time_uptime) ?  0:
2942 	    data->expire - time_uptime;
2943 
2944 	/* 'rule' is used to pass up the rule number and set */
2945 	memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2946 
2947 	/* store set number into high word of dst->rule pointer. */
2948 	memcpy((char *)&dst->rule + sizeof(data->rulenum), &set, sizeof(set));
2949 
2950 	dst->state = data->state;
2951 	if (data->flags & DYN_REFERENCED)
2952 		dst->state |= IPFW_DYN_ORPHANED;
2953 
2954 	/* unused fields */
2955 	dst->parent = NULL;
2956 	dst->ack_fwd = data->ack_fwd;
2957 	dst->ack_rev = data->ack_rev;
2958 	dst->count = 0;
2959 	dst->bucket = data->hashval;
2960 	/*
2961 	 * The legacy userland code will interpret a NULL here as a marker
2962 	 * for the last dynamic rule.
2963 	 */
2964 	dst->next = (ipfw_dyn_rule *)1;
2965 }
2966 
2967 static void
2968 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2969 {
2970 	struct ip_fw *rule;
2971 
2972 	switch (s->type) {
2973 	case O_LIMIT_PARENT:
2974 		rule = s->limit->parent;
2975 		dyn_export_parent(s->limit, s->kidx, rule->set, dst);
2976 		break;
2977 	default:
2978 		rule = s->data->parent;
2979 		if (s->type == O_LIMIT)
2980 			rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2981 		dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
2982 	}
2983 
2984 	dst->id.dst_ip = s->dst;
2985 	dst->id.src_ip = s->src;
2986 	dst->id.dst_port = s->dport;
2987 	dst->id.src_port = s->sport;
2988 	dst->id.fib = s->data->fibnum;
2989 	dst->id.proto = s->proto;
2990 	dst->id._flags = 0;
2991 	dst->id.addr_type = 4;
2992 
2993 	memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
2994 	memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
2995 	dst->id.flow_id6 = dst->id.extra = 0;
2996 }
2997 
2998 #ifdef INET6
2999 static void
3000 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3001 {
3002 	struct ip_fw *rule;
3003 
3004 	switch (s->type) {
3005 	case O_LIMIT_PARENT:
3006 		rule = s->limit->parent;
3007 		dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3008 		break;
3009 	default:
3010 		rule = s->data->parent;
3011 		if (s->type == O_LIMIT)
3012 			rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3013 		dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3014 	}
3015 
3016 	dst->id.src_ip6 = s->src;
3017 	dst->id.dst_ip6 = s->dst;
3018 	dst->id.dst_port = s->dport;
3019 	dst->id.src_port = s->sport;
3020 	dst->id.fib = s->data->fibnum;
3021 	dst->id.proto = s->proto;
3022 	dst->id._flags = 0;
3023 	dst->id.addr_type = 6;
3024 
3025 	dst->id.dst_ip = dst->id.src_ip = 0;
3026 	dst->id.flow_id6 = dst->id.extra = 0;
3027 }
3028 #endif /* INET6 */
3029 
3030 /*
3031  * Fills the buffer given by @sd with dynamic states.
3032  * Used by dump format v1 (current).
3033  *
3034  * Returns 0 on success.
3035  */
3036 int
3037 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3038 {
3039 #ifdef INET6
3040 	struct dyn_ipv6_state *s6;
3041 #endif
3042 	struct dyn_ipv4_state *s4;
3043 	ipfw_obj_dyntlv *dst, *last;
3044 	ipfw_obj_ctlv *ctlv;
3045 	uint32_t bucket;
3046 
3047 	if (V_dyn_count == 0)
3048 		return (0);
3049 
3050 	/*
3051 	 * IPFW_UH_RLOCK garantees that another userland request
3052 	 * and callout thread will not delete entries from states
3053 	 * lists.
3054 	 */
3055 	IPFW_UH_RLOCK_ASSERT(chain);
3056 
3057 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3058 	if (ctlv == NULL)
3059 		return (ENOMEM);
3060 	ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3061 	ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3062 	last = NULL;
3063 
3064 #define	DYN_EXPORT_STATES(s, af, h, b)				\
3065 	CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {			\
3066 		dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd,	\
3067 		    sizeof(ipfw_obj_dyntlv));				\
3068 		if (dst == NULL)					\
3069 			return (ENOMEM);				\
3070 		dyn_export_ ## af ## _state(s, &dst->state);		\
3071 		dst->head.length = sizeof(ipfw_obj_dyntlv);		\
3072 		dst->head.type = IPFW_TLV_DYN_ENT;			\
3073 		last = dst;						\
3074 	}
3075 
3076 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3077 		DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3078 		DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3079 #ifdef INET6
3080 		DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3081 		DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3082 #endif /* INET6 */
3083 	}
3084 
3085 	/* mark last dynamic rule */
3086 	if (last != NULL)
3087 		last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3088 	return (0);
3089 #undef DYN_EXPORT_STATES
3090 }
3091 
3092 /*
3093  * Fill given buffer with dynamic states (legacy format).
3094  * IPFW_UH_RLOCK has to be held while calling.
3095  */
3096 void
3097 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
3098 {
3099 #ifdef INET6
3100 	struct dyn_ipv6_state *s6;
3101 #endif
3102 	struct dyn_ipv4_state *s4;
3103 	ipfw_dyn_rule *p, *last = NULL;
3104 	char *bp;
3105 	uint32_t bucket;
3106 
3107 	if (V_dyn_count == 0)
3108 		return;
3109 	bp = *pbp;
3110 
3111 	IPFW_UH_RLOCK_ASSERT(chain);
3112 
3113 #define	DYN_EXPORT_STATES(s, af, head, b)				\
3114 	CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) {		\
3115 		if (bp + sizeof(*p) > ep)				\
3116 			break;						\
3117 		p = (ipfw_dyn_rule *)bp;				\
3118 		dyn_export_ ## af ## _state(s, p);			\
3119 		last = p;						\
3120 		bp += sizeof(*p);					\
3121 	}
3122 
3123 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3124 		DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3125 		DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3126 #ifdef INET6
3127 		DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3128 		DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3129 #endif /* INET6 */
3130 	}
3131 
3132 	if (last != NULL) /* mark last dynamic rule */
3133 		last->next = NULL;
3134 	*pbp = bp;
3135 #undef DYN_EXPORT_STATES
3136 }
3137 
3138 void
3139 ipfw_dyn_init(struct ip_fw_chain *chain)
3140 {
3141 
3142 #ifdef IPFIREWALL_JENKINSHASH
3143 	V_dyn_hashseed = arc4random();
3144 #endif
3145 	V_dyn_max = 16384;		/* max # of states */
3146 	V_dyn_parent_max = 4096;	/* max # of parent states */
3147 	V_dyn_buckets_max = 8192;	/* must be power of 2 */
3148 
3149 	V_dyn_ack_lifetime = 300;
3150 	V_dyn_syn_lifetime = 20;
3151 	V_dyn_fin_lifetime = 1;
3152 	V_dyn_rst_lifetime = 1;
3153 	V_dyn_udp_lifetime = 10;
3154 	V_dyn_short_lifetime = 5;
3155 
3156 	V_dyn_keepalive_interval = 20;
3157 	V_dyn_keepalive_period = 5;
3158 	V_dyn_keepalive = 1;		/* send keepalives */
3159 	V_dyn_keepalive_last = time_uptime;
3160 
3161 	V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3162 	    sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3163 	    UMA_ALIGN_PTR, 0);
3164 	uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3165 
3166 	V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3167 	    sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3168 	    UMA_ALIGN_PTR, 0);
3169 	uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3170 
3171 	SLIST_INIT(&V_dyn_expired_ipv4);
3172 	V_dyn_ipv4 = NULL;
3173 	V_dyn_ipv4_parent = NULL;
3174 	V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3175 	    sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3176 	    UMA_ALIGN_PTR, 0);
3177 
3178 #ifdef INET6
3179 	SLIST_INIT(&V_dyn_expired_ipv6);
3180 	V_dyn_ipv6 = NULL;
3181 	V_dyn_ipv6_parent = NULL;
3182 	V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3183 	    sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3184 	    UMA_ALIGN_PTR, 0);
3185 #endif
3186 
3187 	/* Initialize buckets. */
3188 	V_curr_dyn_buckets = 0;
3189 	V_dyn_bucket_lock = NULL;
3190 	dyn_grow_hashtable(chain, 256);
3191 
3192 	if (IS_DEFAULT_VNET(curvnet))
3193 		dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3194 		    M_WAITOK | M_ZERO);
3195 
3196 	DYN_EXPIRED_LOCK_INIT();
3197 	callout_init(&V_dyn_timeout, 1);
3198 	callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3199 	IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3200 }
3201 
3202 void
3203 ipfw_dyn_uninit(int pass)
3204 {
3205 #ifdef INET6
3206 	struct dyn_ipv6_state *s6;
3207 #endif
3208 	struct dyn_ipv4_state *s4;
3209 	int bucket;
3210 
3211 	if (pass == 0) {
3212 		callout_drain(&V_dyn_timeout);
3213 		return;
3214 	}
3215 	IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3216 	DYN_EXPIRED_LOCK_DESTROY();
3217 
3218 #define	DYN_FREE_STATES_FORCED(CK, s, af, name, en)	do {		\
3219 	while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) {	\
3220 		CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en);	\
3221 		if (s->type == O_LIMIT_PARENT)				\
3222 			uma_zfree(V_dyn_parent_zone, s->limit);		\
3223 		else							\
3224 			uma_zfree(V_dyn_data_zone, s->data);		\
3225 		uma_zfree(V_dyn_ ## af ## _zone, s);			\
3226 	}								\
3227 } while (0)
3228 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3229 		DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3230 
3231 		DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3232 		DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3233 		    entry);
3234 #ifdef INET6
3235 		DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3236 		DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3237 		    entry);
3238 #endif /* INET6 */
3239 	}
3240 	DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3241 #ifdef INET6
3242 	DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3243 #endif
3244 #undef DYN_FREE_STATES_FORCED
3245 
3246 	uma_zdestroy(V_dyn_ipv4_zone);
3247 	uma_zdestroy(V_dyn_data_zone);
3248 	uma_zdestroy(V_dyn_parent_zone);
3249 #ifdef INET6
3250 	uma_zdestroy(V_dyn_ipv6_zone);
3251 	free(V_dyn_ipv6, M_IPFW);
3252 	free(V_dyn_ipv6_parent, M_IPFW);
3253 	free(V_dyn_ipv6_add, M_IPFW);
3254 	free(V_dyn_ipv6_parent_add, M_IPFW);
3255 	free(V_dyn_ipv6_del, M_IPFW);
3256 	free(V_dyn_ipv6_parent_del, M_IPFW);
3257 #endif
3258 	free(V_dyn_bucket_lock, M_IPFW);
3259 	free(V_dyn_ipv4, M_IPFW);
3260 	free(V_dyn_ipv4_parent, M_IPFW);
3261 	free(V_dyn_ipv4_add, M_IPFW);
3262 	free(V_dyn_ipv4_parent_add, M_IPFW);
3263 	free(V_dyn_ipv4_del, M_IPFW);
3264 	free(V_dyn_ipv4_parent_del, M_IPFW);
3265 	if (IS_DEFAULT_VNET(curvnet))
3266 		free(dyn_hp_cache, M_IPFW);
3267 }
3268