xref: /freebsd/sys/netpfil/ipfw/ip_fw_dynamic.c (revision d96700a6da2afa88607fbd7405ade439424d10d9)
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #define        DEB(x)
30 #define        DDB(x) x
31 
32 /*
33  * Dynamic rule support for ipfw
34  */
35 
36 #include "opt_ipfw.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error IPFIREWALL requires INET.
40 #endif /* INET */
41 #include "opt_inet6.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/rmlock.h>
51 #include <sys/socket.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <net/ethernet.h> /* for ETHERTYPE_IP */
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/vnet.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip_var.h>	/* ip_defttl */
62 #include <netinet/ip_fw.h>
63 #include <netinet/tcp_var.h>
64 #include <netinet/udp.h>
65 
66 #include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
67 #ifdef INET6
68 #include <netinet6/in6_var.h>
69 #include <netinet6/ip6_var.h>
70 #endif
71 
72 #include <netpfil/ipfw/ip_fw_private.h>
73 
74 #include <machine/in_cksum.h>	/* XXX for in_cksum */
75 
76 #ifdef MAC
77 #include <security/mac/mac_framework.h>
78 #endif
79 
80 /*
81  * Description of dynamic rules.
82  *
83  * Dynamic rules are stored in lists accessed through a hash table
84  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
85  * be modified through the sysctl variable dyn_buckets which is
86  * updated when the table becomes empty.
87  *
88  * XXX currently there is only one list, ipfw_dyn.
89  *
90  * When a packet is received, its address fields are first masked
91  * with the mask defined for the rule, then hashed, then matched
92  * against the entries in the corresponding list.
93  * Dynamic rules can be used for different purposes:
94  *  + stateful rules;
95  *  + enforcing limits on the number of sessions;
96  *  + in-kernel NAT (not implemented yet)
97  *
98  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
99  * measured in seconds and depending on the flags.
100  *
101  * The total number of dynamic rules is equal to UMA zone items count.
102  * The max number of dynamic rules is dyn_max. When we reach
103  * the maximum number of rules we do not create anymore. This is
104  * done to avoid consuming too much memory, but also too much
105  * time when searching on each packet (ideally, we should try instead
106  * to put a limit on the length of the list on each bucket...).
107  *
108  * Each dynamic rule holds a pointer to the parent ipfw rule so
109  * we know what action to perform. Dynamic rules are removed when
110  * the parent rule is deleted. This can be changed by dyn_keep_states
111  * sysctl.
112  *
113  * There are some limitations with dynamic rules -- we do not
114  * obey the 'randomized match', and we do not do multiple
115  * passes through the firewall. XXX check the latter!!!
116  */
117 
118 struct ipfw_dyn_bucket {
119 	struct mtx	mtx;		/* Bucket protecting lock */
120 	ipfw_dyn_rule	*head;		/* Pointer to first rule */
121 };
122 
123 /*
124  * Static variables followed by global ones
125  */
126 static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
127 static VNET_DEFINE(u_int32_t, dyn_buckets_max);
128 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
129 static VNET_DEFINE(struct callout, ipfw_timeout);
130 #define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
131 #define	V_dyn_buckets_max		VNET(dyn_buckets_max)
132 #define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
133 #define V_ipfw_timeout                  VNET(ipfw_timeout)
134 
135 static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
136 #define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
137 
138 #define	IPFW_BUCK_LOCK_INIT(b)	\
139 	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
140 #define	IPFW_BUCK_LOCK_DESTROY(b)	\
141 	mtx_destroy(&(b)->mtx)
142 #define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
143 #define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
144 #define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
145 
146 
147 static VNET_DEFINE(int, dyn_keep_states);
148 #define	V_dyn_keep_states		VNET(dyn_keep_states)
149 
150 /*
151  * Timeouts for various events in handing dynamic rules.
152  */
153 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
154 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
155 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
156 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
157 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
158 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
159 
160 #define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
161 #define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
162 #define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
163 #define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
164 #define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
165 #define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
166 
167 /*
168  * Keepalives are sent if dyn_keepalive is set. They are sent every
169  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
170  * seconds of lifetime of a rule.
171  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
172  * than dyn_keepalive_period.
173  */
174 
175 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
176 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
177 static VNET_DEFINE(u_int32_t, dyn_keepalive);
178 static VNET_DEFINE(time_t, dyn_keepalive_last);
179 
180 #define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
181 #define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
182 #define	V_dyn_keepalive			VNET(dyn_keepalive)
183 #define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
184 
185 static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
186 
187 #define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
188 #define	V_dyn_max			VNET(dyn_max)
189 
190 /* for userspace, we emulate the uma_zone_counter with ipfw_dyn_count */
191 static int ipfw_dyn_count;	/* number of objects */
192 
193 #ifdef USERSPACE /* emulation of UMA object counters for userspace */
194 #define uma_zone_get_cur(x)	ipfw_dyn_count
195 #endif /* USERSPACE */
196 
197 static int last_log;	/* Log ratelimiting */
198 
199 static void ipfw_dyn_tick(void *vnetx);
200 static void check_dyn_rules(struct ip_fw_chain *, ipfw_range_tlv *, int, int);
201 #ifdef SYSCTL_NODE
202 
203 static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
204 static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
205 
206 SYSBEGIN(f2)
207 
208 SYSCTL_DECL(_net_inet_ip_fw);
209 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
210     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
211     "Max number of dyn. buckets");
212 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
213     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
214     "Current Number of dyn. buckets");
215 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
216     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
217     "Number of dyn. rules");
218 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
219     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
220     "Max number of dyn. rules");
221 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
222     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
223     "Lifetime of dyn. rules for acks");
224 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
225     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
226     "Lifetime of dyn. rules for syn");
227 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
228     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
229     "Lifetime of dyn. rules for fin");
230 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
231     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
232     "Lifetime of dyn. rules for rst");
233 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
234     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
235     "Lifetime of dyn. rules for UDP");
236 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
237     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
238     "Lifetime of dyn. rules for other situations");
239 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
240     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
241     "Enable keepalives for dyn. rules");
242 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
243     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
244     "Do not flush dynamic states on rule deletion");
245 
246 SYSEND
247 
248 #endif /* SYSCTL_NODE */
249 
250 
251 #ifdef INET6
252 static __inline int
253 hash_packet6(struct ipfw_flow_id *id)
254 {
255 	u_int32_t i;
256 	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
257 	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
258 	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
259 	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
260 	    (id->dst_port) ^ (id->src_port);
261 	return i;
262 }
263 #endif
264 
265 /*
266  * IMPORTANT: the hash function for dynamic rules must be commutative
267  * in source and destination (ip,port), because rules are bidirectional
268  * and we want to find both in the same bucket.
269  */
270 static __inline int
271 hash_packet(struct ipfw_flow_id *id, int buckets)
272 {
273 	u_int32_t i;
274 
275 #ifdef INET6
276 	if (IS_IP6_FLOW_ID(id))
277 		i = hash_packet6(id);
278 	else
279 #endif /* INET6 */
280 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
281 	i &= (buckets - 1);
282 	return i;
283 }
284 
285 #if 0
286 #define	DYN_DEBUG(fmt, ...)	do {			\
287 	printf("%s: " fmt "\n", __func__, __VA_ARGS__);	\
288 } while (0)
289 #else
290 #define	DYN_DEBUG(fmt, ...)
291 #endif
292 
293 static char *default_state_name = "default";
294 struct dyn_state_obj {
295 	struct named_object	no;
296 	char			name[64];
297 };
298 
299 #define	DYN_STATE_OBJ(ch, cmd)	\
300     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
301 /*
302  * Classifier callback.
303  * Return 0 if opcode contains object that should be referenced
304  * or rewritten.
305  */
306 static int
307 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
308 {
309 
310 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
311 	/* Don't rewrite "check-state any" */
312 	if (cmd->arg1 == 0 &&
313 	    cmd->opcode == O_CHECK_STATE)
314 		return (1);
315 
316 	*puidx = cmd->arg1;
317 	*ptype = 0;
318 	return (0);
319 }
320 
321 static void
322 dyn_update(ipfw_insn *cmd, uint16_t idx)
323 {
324 
325 	cmd->arg1 = idx;
326 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
327 }
328 
329 static int
330 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
331     struct named_object **pno)
332 {
333 	ipfw_obj_ntlv *ntlv;
334 	const char *name;
335 
336 	DYN_DEBUG("uidx %d", ti->uidx);
337 	if (ti->uidx != 0) {
338 		if (ti->tlvs == NULL)
339 			return (EINVAL);
340 		/* Search ntlv in the buffer provided by user */
341 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
342 		    IPFW_TLV_STATE_NAME);
343 		if (ntlv == NULL)
344 			return (EINVAL);
345 		name = ntlv->name;
346 	} else
347 		name = default_state_name;
348 	/*
349 	 * Search named object with corresponding name.
350 	 * Since states objects are global - ignore the set value
351 	 * and use zero instead.
352 	 */
353 	*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
354 	    IPFW_TLV_STATE_NAME, name);
355 	/*
356 	 * We always return success here.
357 	 * The caller will check *pno and mark object as unresolved,
358 	 * then it will automatically create "default" object.
359 	 */
360 	return (0);
361 }
362 
363 static struct named_object *
364 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
365 {
366 
367 	DYN_DEBUG("kidx %d", idx);
368 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
369 }
370 
371 static int
372 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
373     uint16_t *pkidx)
374 {
375 	struct namedobj_instance *ni;
376 	struct dyn_state_obj *obj;
377 	struct named_object *no;
378 	ipfw_obj_ntlv *ntlv;
379 	char *name;
380 
381 	DYN_DEBUG("uidx %d", ti->uidx);
382 	if (ti->uidx != 0) {
383 		if (ti->tlvs == NULL)
384 			return (EINVAL);
385 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
386 		    IPFW_TLV_STATE_NAME);
387 		if (ntlv == NULL)
388 			return (EINVAL);
389 		name = ntlv->name;
390 	} else
391 		name = default_state_name;
392 
393 	ni = CHAIN_TO_SRV(ch);
394 	obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
395 	obj->no.name = obj->name;
396 	obj->no.etlv = IPFW_TLV_STATE_NAME;
397 	strlcpy(obj->name, name, sizeof(obj->name));
398 
399 	IPFW_UH_WLOCK(ch);
400 	no = ipfw_objhash_lookup_name_type(ni, 0,
401 	    IPFW_TLV_STATE_NAME, name);
402 	if (no != NULL) {
403 		/*
404 		 * Object is already created.
405 		 * Just return its kidx and bump refcount.
406 		 */
407 		*pkidx = no->kidx;
408 		no->refcnt++;
409 		IPFW_UH_WUNLOCK(ch);
410 		free(obj, M_IPFW);
411 		DYN_DEBUG("\tfound kidx %d", *pkidx);
412 		return (0);
413 	}
414 	if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
415 		DYN_DEBUG("\talloc_idx failed for %s", name);
416 		IPFW_UH_WUNLOCK(ch);
417 		free(obj, M_IPFW);
418 		return (ENOSPC);
419 	}
420 	ipfw_objhash_add(ni, &obj->no);
421 	IPFW_WLOCK(ch);
422 	SRV_OBJECT(ch, obj->no.kidx) = obj;
423 	IPFW_WUNLOCK(ch);
424 	obj->no.refcnt++;
425 	*pkidx = obj->no.kidx;
426 	IPFW_UH_WUNLOCK(ch);
427 	DYN_DEBUG("\tcreated kidx %d", *pkidx);
428 	return (0);
429 }
430 
431 static void
432 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
433 {
434 	struct dyn_state_obj *obj;
435 
436 	IPFW_UH_WLOCK_ASSERT(ch);
437 
438 	KASSERT(no->refcnt == 1,
439 	    ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
440 	    no->name, no->etlv, no->kidx, no->refcnt));
441 
442 	DYN_DEBUG("kidx %d", no->kidx);
443 	IPFW_WLOCK(ch);
444 	obj = SRV_OBJECT(ch, no->kidx);
445 	SRV_OBJECT(ch, no->kidx) = NULL;
446 	IPFW_WUNLOCK(ch);
447 	ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
448 	ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
449 
450 	free(obj, M_IPFW);
451 }
452 
453 static struct opcode_obj_rewrite dyn_opcodes[] = {
454 	{
455 		O_KEEP_STATE, IPFW_TLV_STATE_NAME,
456 		dyn_classify, dyn_update,
457 		dyn_findbyname, dyn_findbykidx,
458 		dyn_create, dyn_destroy
459 	},
460 	{
461 		O_CHECK_STATE, IPFW_TLV_STATE_NAME,
462 		dyn_classify, dyn_update,
463 		dyn_findbyname, dyn_findbykidx,
464 		dyn_create, dyn_destroy
465 	},
466 	{
467 		O_PROBE_STATE, IPFW_TLV_STATE_NAME,
468 		dyn_classify, dyn_update,
469 		dyn_findbyname, dyn_findbykidx,
470 		dyn_create, dyn_destroy
471 	},
472 	{
473 		O_LIMIT, IPFW_TLV_STATE_NAME,
474 		dyn_classify, dyn_update,
475 		dyn_findbyname, dyn_findbykidx,
476 		dyn_create, dyn_destroy
477 	},
478 };
479 /**
480  * Print customizable flow id description via log(9) facility.
481  */
482 static void
483 print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
484     char *prefix, char *postfix)
485 {
486 	struct in_addr da;
487 #ifdef INET6
488 	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
489 #else
490 	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
491 #endif
492 
493 #ifdef INET6
494 	if (IS_IP6_FLOW_ID(id)) {
495 		ip6_sprintf(src, &id->src_ip6);
496 		ip6_sprintf(dst, &id->dst_ip6);
497 	} else
498 #endif
499 	{
500 		da.s_addr = htonl(id->src_ip);
501 		inet_ntop(AF_INET, &da, src, sizeof(src));
502 		da.s_addr = htonl(id->dst_ip);
503 		inet_ntop(AF_INET, &da, dst, sizeof(dst));
504 	}
505 	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
506 	    prefix, dyn_type, src, id->src_port, dst,
507 	    id->dst_port, DYN_COUNT, postfix);
508 }
509 
510 #define	print_dyn_rule(id, dtype, prefix, postfix)	\
511 	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
512 
513 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
514 #define TIME_LE(a,b)       ((int)((a)-(b)) < 0)
515 
516 static void
517 dyn_update_proto_state(ipfw_dyn_rule *q, const struct ipfw_flow_id *id,
518     const struct tcphdr *tcp, int dir)
519 {
520 	uint32_t ack;
521 	u_char flags;
522 
523 	if (id->proto == IPPROTO_TCP) {
524 		flags = id->_flags & (TH_FIN | TH_SYN | TH_RST);
525 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
526 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
527 #define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
528 #define	ACK_FWD		0x10000			/* fwd ack seen */
529 #define	ACK_REV		0x20000			/* rev ack seen */
530 
531 		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
532 		switch (q->state & TCP_FLAGS) {
533 		case TH_SYN:			/* opening */
534 			q->expire = time_uptime + V_dyn_syn_lifetime;
535 			break;
536 
537 		case BOTH_SYN:			/* move to established */
538 		case BOTH_SYN | TH_FIN:		/* one side tries to close */
539 		case BOTH_SYN | (TH_FIN << 8):
540 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
541 			if (tcp == NULL)
542 				break;
543 
544 			ack = ntohl(tcp->th_ack);
545 			if (dir == MATCH_FORWARD) {
546 				if (q->ack_fwd == 0 ||
547 				    _SEQ_GE(ack, q->ack_fwd)) {
548 					q->ack_fwd = ack;
549 					q->state |= ACK_FWD;
550 				}
551 			} else {
552 				if (q->ack_rev == 0 ||
553 				    _SEQ_GE(ack, q->ack_rev)) {
554 					q->ack_rev = ack;
555 					q->state |= ACK_REV;
556 				}
557 			}
558 			if ((q->state & (ACK_FWD | ACK_REV)) ==
559 			    (ACK_FWD | ACK_REV)) {
560 				q->expire = time_uptime + V_dyn_ack_lifetime;
561 				q->state &= ~(ACK_FWD | ACK_REV);
562 			}
563 			break;
564 
565 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
566 			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
567 				V_dyn_fin_lifetime =
568 				    V_dyn_keepalive_period - 1;
569 			q->expire = time_uptime + V_dyn_fin_lifetime;
570 			break;
571 
572 		default:
573 #if 0
574 			/*
575 			 * reset or some invalid combination, but can also
576 			 * occur if we use keep-state the wrong way.
577 			 */
578 			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
579 				printf("invalid state: 0x%x\n", q->state);
580 #endif
581 			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
582 				V_dyn_rst_lifetime =
583 				    V_dyn_keepalive_period - 1;
584 			q->expire = time_uptime + V_dyn_rst_lifetime;
585 			break;
586 		}
587 	} else if (id->proto == IPPROTO_UDP) {
588 		q->expire = time_uptime + V_dyn_udp_lifetime;
589 	} else {
590 		/* other protocols */
591 		q->expire = time_uptime + V_dyn_short_lifetime;
592 	}
593 }
594 
595 /*
596  * Lookup a dynamic rule, locked version.
597  */
598 static ipfw_dyn_rule *
599 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
600     struct tcphdr *tcp, uint16_t kidx)
601 {
602 	/*
603 	 * Stateful ipfw extensions.
604 	 * Lookup into dynamic session queue.
605 	 */
606 	ipfw_dyn_rule *prev, *q = NULL;
607 	int dir;
608 
609 	IPFW_BUCK_ASSERT(i);
610 
611 	dir = MATCH_NONE;
612 	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
613 		if (q->dyn_type == O_LIMIT_PARENT)
614 			continue;
615 
616 		if (pkt->proto != q->id.proto)
617 			continue;
618 
619 		if (kidx != 0 && kidx != q->kidx)
620 			continue;
621 
622 		if (IS_IP6_FLOW_ID(pkt)) {
623 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
624 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
625 			    pkt->src_port == q->id.src_port &&
626 			    pkt->dst_port == q->id.dst_port) {
627 				dir = MATCH_FORWARD;
628 				break;
629 			}
630 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
631 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
632 			    pkt->src_port == q->id.dst_port &&
633 			    pkt->dst_port == q->id.src_port) {
634 				dir = MATCH_REVERSE;
635 				break;
636 			}
637 		} else {
638 			if (pkt->src_ip == q->id.src_ip &&
639 			    pkt->dst_ip == q->id.dst_ip &&
640 			    pkt->src_port == q->id.src_port &&
641 			    pkt->dst_port == q->id.dst_port) {
642 				dir = MATCH_FORWARD;
643 				break;
644 			}
645 			if (pkt->src_ip == q->id.dst_ip &&
646 			    pkt->dst_ip == q->id.src_ip &&
647 			    pkt->src_port == q->id.dst_port &&
648 			    pkt->dst_port == q->id.src_port) {
649 				dir = MATCH_REVERSE;
650 				break;
651 			}
652 		}
653 	}
654 	if (q == NULL)
655 		goto done;	/* q = NULL, not found */
656 
657 	if (prev != NULL) {	/* found and not in front */
658 		prev->next = q->next;
659 		q->next = V_ipfw_dyn_v[i].head;
660 		V_ipfw_dyn_v[i].head = q;
661 	}
662 
663 	/* update state according to flags */
664 	dyn_update_proto_state(q, pkt, tcp, dir);
665 done:
666 	if (match_direction != NULL)
667 		*match_direction = dir;
668 	return (q);
669 }
670 
671 ipfw_dyn_rule *
672 ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
673     struct tcphdr *tcp, uint16_t kidx)
674 {
675 	ipfw_dyn_rule *q;
676 	int i;
677 
678 	i = hash_packet(pkt, V_curr_dyn_buckets);
679 
680 	IPFW_BUCK_LOCK(i);
681 	q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp, kidx);
682 	if (q == NULL)
683 		IPFW_BUCK_UNLOCK(i);
684 	/* NB: return table locked when q is not NULL */
685 	return q;
686 }
687 
688 /*
689  * Unlock bucket mtx
690  * @p - pointer to dynamic rule
691  */
692 void
693 ipfw_dyn_unlock(ipfw_dyn_rule *q)
694 {
695 
696 	IPFW_BUCK_UNLOCK(q->bucket);
697 }
698 
699 static int
700 resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
701 {
702 	int i, k, nbuckets_old;
703 	ipfw_dyn_rule *q;
704 	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
705 
706 	/* Check if given number is power of 2 and less than 64k */
707 	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
708 		return 1;
709 
710 	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
711 	    V_curr_dyn_buckets, nbuckets);
712 
713 	/* Allocate and initialize new hash */
714 	dyn_v = malloc(nbuckets * sizeof(*dyn_v), M_IPFW,
715 	    M_WAITOK | M_ZERO);
716 
717 	for (i = 0 ; i < nbuckets; i++)
718 		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
719 
720 	/*
721 	 * Call upper half lock, as get_map() do to ease
722 	 * read-only access to dynamic rules hash from sysctl
723 	 */
724 	IPFW_UH_WLOCK(chain);
725 
726 	/*
727 	 * Acquire chain write lock to permit hash access
728 	 * for main traffic path without additional locks
729 	 */
730 	IPFW_WLOCK(chain);
731 
732 	/* Save old values */
733 	nbuckets_old = V_curr_dyn_buckets;
734 	dyn_v_old = V_ipfw_dyn_v;
735 
736 	/* Skip relinking if array is not set up */
737 	if (V_ipfw_dyn_v == NULL)
738 		V_curr_dyn_buckets = 0;
739 
740 	/* Re-link all dynamic states */
741 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
742 		while (V_ipfw_dyn_v[i].head != NULL) {
743 			/* Remove from current chain */
744 			q = V_ipfw_dyn_v[i].head;
745 			V_ipfw_dyn_v[i].head = q->next;
746 
747 			/* Get new hash value */
748 			k = hash_packet(&q->id, nbuckets);
749 			q->bucket = k;
750 			/* Add to the new head */
751 			q->next = dyn_v[k].head;
752 			dyn_v[k].head = q;
753              }
754 	}
755 
756 	/* Update current pointers/buckets values */
757 	V_curr_dyn_buckets = nbuckets;
758 	V_ipfw_dyn_v = dyn_v;
759 
760 	IPFW_WUNLOCK(chain);
761 
762 	IPFW_UH_WUNLOCK(chain);
763 
764 	/* Start periodic callout on initial creation */
765 	if (dyn_v_old == NULL) {
766         	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
767 		return (0);
768 	}
769 
770 	/* Destroy all mutexes */
771 	for (i = 0 ; i < nbuckets_old ; i++)
772 		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
773 
774 	/* Free old hash */
775 	free(dyn_v_old, M_IPFW);
776 
777 	return 0;
778 }
779 
780 /**
781  * Install state of type 'type' for a dynamic session.
782  * The hash table contains two type of rules:
783  * - regular rules (O_KEEP_STATE)
784  * - rules for sessions with limited number of sess per user
785  *   (O_LIMIT). When they are created, the parent is
786  *   increased by 1, and decreased on delete. In this case,
787  *   the third parameter is the parent rule and not the chain.
788  * - "parent" rules for the above (O_LIMIT_PARENT).
789  */
790 static ipfw_dyn_rule *
791 add_dyn_rule(struct ipfw_flow_id *id, int i, uint8_t dyn_type,
792     struct ip_fw *rule, uint16_t kidx)
793 {
794 	ipfw_dyn_rule *r;
795 
796 	IPFW_BUCK_ASSERT(i);
797 
798 	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
799 	if (r == NULL) {
800 		if (last_log != time_uptime) {
801 			last_log = time_uptime;
802 			log(LOG_DEBUG,
803 			    "ipfw: Cannot allocate dynamic state, "
804 			    "consider increasing net.inet.ip.fw.dyn_max\n");
805 		}
806 		return NULL;
807 	}
808 	ipfw_dyn_count++;
809 
810 	/*
811 	 * refcount on parent is already incremented, so
812 	 * it is safe to use parent unlocked.
813 	 */
814 	if (dyn_type == O_LIMIT) {
815 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
816 		if ( parent->dyn_type != O_LIMIT_PARENT)
817 			panic("invalid parent");
818 		r->parent = parent;
819 		rule = parent->rule;
820 	}
821 
822 	r->id = *id;
823 	r->expire = time_uptime + V_dyn_syn_lifetime;
824 	r->rule = rule;
825 	r->dyn_type = dyn_type;
826 	IPFW_ZERO_DYN_COUNTER(r);
827 	r->count = 0;
828 	r->kidx = kidx;
829 	r->bucket = i;
830 	r->next = V_ipfw_dyn_v[i].head;
831 	V_ipfw_dyn_v[i].head = r;
832 	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
833 	return r;
834 }
835 
836 /**
837  * lookup dynamic parent rule using pkt and rule as search keys.
838  * If the lookup fails, then install one.
839  */
840 static ipfw_dyn_rule *
841 lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule,
842     uint16_t kidx)
843 {
844 	ipfw_dyn_rule *q;
845 	int i, is_v6;
846 
847 	is_v6 = IS_IP6_FLOW_ID(pkt);
848 	i = hash_packet( pkt, V_curr_dyn_buckets );
849 	*pindex = i;
850 	IPFW_BUCK_LOCK(i);
851 	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
852 		if (q->dyn_type == O_LIMIT_PARENT &&
853 		    kidx == q->kidx &&
854 		    rule == q->rule &&
855 		    pkt->proto == q->id.proto &&
856 		    pkt->src_port == q->id.src_port &&
857 		    pkt->dst_port == q->id.dst_port &&
858 		    (
859 			(is_v6 &&
860 			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
861 				&(q->id.src_ip6)) &&
862 			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
863 				&(q->id.dst_ip6))) ||
864 			(!is_v6 &&
865 			 pkt->src_ip == q->id.src_ip &&
866 			 pkt->dst_ip == q->id.dst_ip)
867 		    )
868 		) {
869 			q->expire = time_uptime + V_dyn_short_lifetime;
870 			DEB(print_dyn_rule(pkt, q->dyn_type,
871 			    "lookup_dyn_parent found", "");)
872 			return q;
873 		}
874 
875 	/* Add virtual limiting rule */
876 	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule, kidx);
877 }
878 
879 /**
880  * Install dynamic state for rule type cmd->o.opcode
881  *
882  * Returns 1 (failure) if state is not installed because of errors or because
883  * session limitations are enforced.
884  */
885 int
886 ipfw_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
887     ipfw_insn_limit *cmd, struct ip_fw_args *args, uint32_t tablearg)
888 {
889 	ipfw_dyn_rule *q;
890 	int i;
891 
892 	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state",
893 	    (cmd->o.arg1 == 0 ? "": DYN_STATE_OBJ(chain, &cmd->o)->name));)
894 
895 	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
896 
897 	IPFW_BUCK_LOCK(i);
898 
899 	q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL, cmd->o.arg1);
900 	if (q != NULL) {	/* should never occur */
901 		DEB(
902 		if (last_log != time_uptime) {
903 			last_log = time_uptime;
904 			printf("ipfw: %s: entry already present, done\n",
905 			    __func__);
906 		})
907 		IPFW_BUCK_UNLOCK(i);
908 		return (0);
909 	}
910 
911 	/*
912 	 * State limiting is done via uma(9) zone limiting.
913 	 * Save pointer to newly-installed rule and reject
914 	 * packet if add_dyn_rule() returned NULL.
915 	 * Note q is currently set to NULL.
916 	 */
917 
918 	switch (cmd->o.opcode) {
919 	case O_KEEP_STATE:	/* bidir rule */
920 		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule,
921 		    cmd->o.arg1);
922 		break;
923 
924 	case O_LIMIT: {		/* limit number of sessions */
925 		struct ipfw_flow_id id;
926 		ipfw_dyn_rule *parent;
927 		uint32_t conn_limit;
928 		uint16_t limit_mask = cmd->limit_mask;
929 		int pindex;
930 
931 		conn_limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
932 
933 		DEB(
934 		if (cmd->conn_limit == IP_FW_TARG)
935 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
936 			    "(tablearg)\n", __func__, conn_limit);
937 		else
938 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
939 			    __func__, conn_limit);
940 		)
941 
942 		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
943 		id.proto = args->f_id.proto;
944 		id.addr_type = args->f_id.addr_type;
945 		id.fib = M_GETFIB(args->m);
946 
947 		if (IS_IP6_FLOW_ID (&(args->f_id))) {
948 			bzero(&id.src_ip6, sizeof(id.src_ip6));
949 			bzero(&id.dst_ip6, sizeof(id.dst_ip6));
950 
951 			if (limit_mask & DYN_SRC_ADDR)
952 				id.src_ip6 = args->f_id.src_ip6;
953 			if (limit_mask & DYN_DST_ADDR)
954 				id.dst_ip6 = args->f_id.dst_ip6;
955 		} else {
956 			if (limit_mask & DYN_SRC_ADDR)
957 				id.src_ip = args->f_id.src_ip;
958 			if (limit_mask & DYN_DST_ADDR)
959 				id.dst_ip = args->f_id.dst_ip;
960 		}
961 		if (limit_mask & DYN_SRC_PORT)
962 			id.src_port = args->f_id.src_port;
963 		if (limit_mask & DYN_DST_PORT)
964 			id.dst_port = args->f_id.dst_port;
965 
966 		/*
967 		 * We have to release lock for previous bucket to
968 		 * avoid possible deadlock
969 		 */
970 		IPFW_BUCK_UNLOCK(i);
971 
972 		parent = lookup_dyn_parent(&id, &pindex, rule, cmd->o.arg1);
973 		if (parent == NULL) {
974 			printf("ipfw: %s: add parent failed\n", __func__);
975 			IPFW_BUCK_UNLOCK(pindex);
976 			return (1);
977 		}
978 
979 		if (parent->count >= conn_limit) {
980 			if (V_fw_verbose && last_log != time_uptime) {
981 				last_log = time_uptime;
982 				char sbuf[24];
983 				last_log = time_uptime;
984 				snprintf(sbuf, sizeof(sbuf),
985 				    "%d drop session",
986 				    parent->rule->rulenum);
987 				print_dyn_rule_flags(&args->f_id,
988 				    cmd->o.opcode,
989 				    LOG_SECURITY | LOG_DEBUG,
990 				    sbuf, "too many entries");
991 			}
992 			IPFW_BUCK_UNLOCK(pindex);
993 			return (1);
994 		}
995 		/* Increment counter on parent */
996 		parent->count++;
997 		IPFW_BUCK_UNLOCK(pindex);
998 
999 		IPFW_BUCK_LOCK(i);
1000 		q = add_dyn_rule(&args->f_id, i, O_LIMIT,
1001 		    (struct ip_fw *)parent, cmd->o.arg1);
1002 		if (q == NULL) {
1003 			/* Decrement index and notify caller */
1004 			IPFW_BUCK_UNLOCK(i);
1005 			IPFW_BUCK_LOCK(pindex);
1006 			parent->count--;
1007 			IPFW_BUCK_UNLOCK(pindex);
1008 			return (1);
1009 		}
1010 		break;
1011 	}
1012 	default:
1013 		printf("ipfw: %s: unknown dynamic rule type %u\n",
1014 		    __func__, cmd->o.opcode);
1015 	}
1016 
1017 	if (q == NULL) {
1018 		IPFW_BUCK_UNLOCK(i);
1019 		return (1);	/* Notify caller about failure */
1020 	}
1021 
1022 	dyn_update_proto_state(q, &args->f_id, NULL, MATCH_FORWARD);
1023 	IPFW_BUCK_UNLOCK(i);
1024 	return (0);
1025 }
1026 
1027 /*
1028  * Generate a TCP packet, containing either a RST or a keepalive.
1029  * When flags & TH_RST, we are sending a RST packet, because of a
1030  * "reset" action matched the packet.
1031  * Otherwise we are sending a keepalive, and flags & TH_
1032  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1033  * so that MAC can label the reply appropriately.
1034  */
1035 struct mbuf *
1036 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1037     u_int32_t ack, int flags)
1038 {
1039 	struct mbuf *m = NULL;		/* stupid compiler */
1040 	int len, dir;
1041 	struct ip *h = NULL;		/* stupid compiler */
1042 #ifdef INET6
1043 	struct ip6_hdr *h6 = NULL;
1044 #endif
1045 	struct tcphdr *th = NULL;
1046 
1047 	MGETHDR(m, M_NOWAIT, MT_DATA);
1048 	if (m == NULL)
1049 		return (NULL);
1050 
1051 	M_SETFIB(m, id->fib);
1052 #ifdef MAC
1053 	if (replyto != NULL)
1054 		mac_netinet_firewall_reply(replyto, m);
1055 	else
1056 		mac_netinet_firewall_send(m);
1057 #else
1058 	(void)replyto;		/* don't warn about unused arg */
1059 #endif
1060 
1061 	switch (id->addr_type) {
1062 	case 4:
1063 		len = sizeof(struct ip) + sizeof(struct tcphdr);
1064 		break;
1065 #ifdef INET6
1066 	case 6:
1067 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1068 		break;
1069 #endif
1070 	default:
1071 		/* XXX: log me?!? */
1072 		FREE_PKT(m);
1073 		return (NULL);
1074 	}
1075 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
1076 
1077 	m->m_data += max_linkhdr;
1078 	m->m_flags |= M_SKIP_FIREWALL;
1079 	m->m_pkthdr.len = m->m_len = len;
1080 	m->m_pkthdr.rcvif = NULL;
1081 	bzero(m->m_data, len);
1082 
1083 	switch (id->addr_type) {
1084 	case 4:
1085 		h = mtod(m, struct ip *);
1086 
1087 		/* prepare for checksum */
1088 		h->ip_p = IPPROTO_TCP;
1089 		h->ip_len = htons(sizeof(struct tcphdr));
1090 		if (dir) {
1091 			h->ip_src.s_addr = htonl(id->src_ip);
1092 			h->ip_dst.s_addr = htonl(id->dst_ip);
1093 		} else {
1094 			h->ip_src.s_addr = htonl(id->dst_ip);
1095 			h->ip_dst.s_addr = htonl(id->src_ip);
1096 		}
1097 
1098 		th = (struct tcphdr *)(h + 1);
1099 		break;
1100 #ifdef INET6
1101 	case 6:
1102 		h6 = mtod(m, struct ip6_hdr *);
1103 
1104 		/* prepare for checksum */
1105 		h6->ip6_nxt = IPPROTO_TCP;
1106 		h6->ip6_plen = htons(sizeof(struct tcphdr));
1107 		if (dir) {
1108 			h6->ip6_src = id->src_ip6;
1109 			h6->ip6_dst = id->dst_ip6;
1110 		} else {
1111 			h6->ip6_src = id->dst_ip6;
1112 			h6->ip6_dst = id->src_ip6;
1113 		}
1114 
1115 		th = (struct tcphdr *)(h6 + 1);
1116 		break;
1117 #endif
1118 	}
1119 
1120 	if (dir) {
1121 		th->th_sport = htons(id->src_port);
1122 		th->th_dport = htons(id->dst_port);
1123 	} else {
1124 		th->th_sport = htons(id->dst_port);
1125 		th->th_dport = htons(id->src_port);
1126 	}
1127 	th->th_off = sizeof(struct tcphdr) >> 2;
1128 
1129 	if (flags & TH_RST) {
1130 		if (flags & TH_ACK) {
1131 			th->th_seq = htonl(ack);
1132 			th->th_flags = TH_RST;
1133 		} else {
1134 			if (flags & TH_SYN)
1135 				seq++;
1136 			th->th_ack = htonl(seq);
1137 			th->th_flags = TH_RST | TH_ACK;
1138 		}
1139 	} else {
1140 		/*
1141 		 * Keepalive - use caller provided sequence numbers
1142 		 */
1143 		th->th_seq = htonl(seq);
1144 		th->th_ack = htonl(ack);
1145 		th->th_flags = TH_ACK;
1146 	}
1147 
1148 	switch (id->addr_type) {
1149 	case 4:
1150 		th->th_sum = in_cksum(m, len);
1151 
1152 		/* finish the ip header */
1153 		h->ip_v = 4;
1154 		h->ip_hl = sizeof(*h) >> 2;
1155 		h->ip_tos = IPTOS_LOWDELAY;
1156 		h->ip_off = htons(0);
1157 		h->ip_len = htons(len);
1158 		h->ip_ttl = V_ip_defttl;
1159 		h->ip_sum = 0;
1160 		break;
1161 #ifdef INET6
1162 	case 6:
1163 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
1164 		    sizeof(struct tcphdr));
1165 
1166 		/* finish the ip6 header */
1167 		h6->ip6_vfc |= IPV6_VERSION;
1168 		h6->ip6_hlim = IPV6_DEFHLIM;
1169 		break;
1170 #endif
1171 	}
1172 
1173 	return (m);
1174 }
1175 
1176 /*
1177  * Queue keepalive packets for given dynamic rule
1178  */
1179 static struct mbuf **
1180 ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
1181 {
1182 	struct mbuf *m_rev, *m_fwd;
1183 
1184 	m_rev = (q->state & ACK_REV) ? NULL :
1185 	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
1186 	m_fwd = (q->state & ACK_FWD) ? NULL :
1187 	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
1188 
1189 	if (m_rev != NULL) {
1190 		*mtailp = m_rev;
1191 		mtailp = &(*mtailp)->m_nextpkt;
1192 	}
1193 	if (m_fwd != NULL) {
1194 		*mtailp = m_fwd;
1195 		mtailp = &(*mtailp)->m_nextpkt;
1196 	}
1197 
1198 	return (mtailp);
1199 }
1200 
1201 /*
1202  * This procedure is used to perform various maintenance
1203  * on dynamic hash list. Currently it is called every second.
1204  */
1205 static void
1206 ipfw_dyn_tick(void * vnetx)
1207 {
1208 	struct ip_fw_chain *chain;
1209 	int check_ka = 0;
1210 #ifdef VIMAGE
1211 	struct vnet *vp = vnetx;
1212 #endif
1213 
1214 	CURVNET_SET(vp);
1215 
1216 	chain = &V_layer3_chain;
1217 
1218 	/* Run keepalive checks every keepalive_period iff ka is enabled */
1219 	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
1220 	    (V_dyn_keepalive != 0)) {
1221 		V_dyn_keepalive_last = time_uptime;
1222 		check_ka = 1;
1223 	}
1224 
1225 	check_dyn_rules(chain, NULL, check_ka, 1);
1226 
1227 	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
1228 
1229 	CURVNET_RESTORE();
1230 }
1231 
1232 
1233 /*
1234  * Walk through all dynamic states doing generic maintenance:
1235  * 1) free expired states
1236  * 2) free all states based on deleted rule / set
1237  * 3) send keepalives for states if needed
1238  *
1239  * @chain - pointer to current ipfw rules chain
1240  * @rule - delete all states originated by given rule if != NULL
1241  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1242  * @check_ka - perform checking/sending keepalives
1243  * @timer - indicate call from timer routine.
1244  *
1245  * Timer routine must call this function unlocked to permit
1246  * sending keepalives/resizing table.
1247  *
1248  * Others has to call function with IPFW_UH_WLOCK held.
1249  * Additionally, function assume that dynamic rule/set is
1250  * ALREADY deleted so no new states can be generated by
1251  * 'deleted' rules.
1252  *
1253  * Write lock is needed to ensure that unused parent rules
1254  * are not freed by other instance (see stage 2, 3)
1255  */
1256 static void
1257 check_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt,
1258     int check_ka, int timer)
1259 {
1260 	struct mbuf *m0, *m, *mnext, **mtailp;
1261 	struct ip *h;
1262 	int i, dyn_count, new_buckets = 0, max_buckets;
1263 	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1264 	ipfw_dyn_rule *q, *q_prev, *q_next;
1265 	ipfw_dyn_rule *exp_head, **exptailp;
1266 	ipfw_dyn_rule *exp_lhead, **expltailp;
1267 
1268 	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1269 	    __func__));
1270 
1271 	/* Avoid possible LOR */
1272 	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1273 	    __func__));
1274 
1275 	/*
1276 	 * Do not perform any checks if we currently have no dynamic states
1277 	 */
1278 	if (DYN_COUNT == 0)
1279 		return;
1280 
1281 	/* Expired states */
1282 	exp_head = NULL;
1283 	exptailp = &exp_head;
1284 
1285 	/* Expired limit states */
1286 	exp_lhead = NULL;
1287 	expltailp = &exp_lhead;
1288 
1289 	/*
1290 	 * We make a chain of packets to go out here -- not deferring
1291 	 * until after we drop the IPFW dynamic rule lock would result
1292 	 * in a lock order reversal with the normal packet input -> ipfw
1293 	 * call stack.
1294 	 */
1295 	m0 = NULL;
1296 	mtailp = &m0;
1297 
1298 	/* Protect from hash resizing */
1299 	if (timer != 0)
1300 		IPFW_UH_WLOCK(chain);
1301 	else
1302 		IPFW_UH_WLOCK_ASSERT(chain);
1303 
1304 #define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1305 
1306 	/* Stage 1: perform requested deletion */
1307 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1308 		IPFW_BUCK_LOCK(i);
1309 		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1310 			/* account every rule */
1311 			total++;
1312 
1313 			/* Skip parent rules at all */
1314 			if (q->dyn_type == O_LIMIT_PARENT) {
1315 				parents++;
1316 				NEXT_RULE();
1317 			}
1318 
1319 			/*
1320 			 * Remove rules which are:
1321 			 * 1) expired
1322 			 * 2) matches deletion range
1323 			 */
1324 			if ((TIME_LEQ(q->expire, time_uptime)) ||
1325 			    (rt != NULL && ipfw_match_range(q->rule, rt))) {
1326 				if (TIME_LE(time_uptime, q->expire) &&
1327 				    q->dyn_type == O_KEEP_STATE &&
1328 				    V_dyn_keep_states != 0) {
1329 					/*
1330 					 * Do not delete state if
1331 					 * it is not expired and
1332 					 * dyn_keep_states is ON.
1333 					 * However we need to re-link it
1334 					 * to any other stable rule
1335 					 */
1336 					q->rule = chain->default_rule;
1337 					NEXT_RULE();
1338 				}
1339 
1340 				/* Unlink q from current list */
1341 				q_next = q->next;
1342 				if (q == V_ipfw_dyn_v[i].head)
1343 					V_ipfw_dyn_v[i].head = q_next;
1344 				else
1345 					q_prev->next = q_next;
1346 
1347 				q->next = NULL;
1348 
1349 				/* queue q to expire list */
1350 				if (q->dyn_type != O_LIMIT) {
1351 					*exptailp = q;
1352 					exptailp = &(*exptailp)->next;
1353 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1354 					    "unlink entry", "left");
1355 					)
1356 				} else {
1357 					/* Separate list for limit rules */
1358 					*expltailp = q;
1359 					expltailp = &(*expltailp)->next;
1360 					expired_limits++;
1361 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1362 					    "unlink limit entry", "left");
1363 					)
1364 				}
1365 
1366 				q = q_next;
1367 				expired++;
1368 				continue;
1369 			}
1370 
1371 			/*
1372 			 * Check if we need to send keepalive:
1373 			 * we need to ensure if is time to do KA,
1374 			 * this is established TCP session, and
1375 			 * expire time is within keepalive interval
1376 			 */
1377 			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1378 			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1379 			    (TIME_LEQ(q->expire, time_uptime +
1380 			      V_dyn_keepalive_interval)))
1381 				mtailp = ipfw_dyn_send_ka(mtailp, q);
1382 
1383 			NEXT_RULE();
1384 		}
1385 		IPFW_BUCK_UNLOCK(i);
1386 	}
1387 
1388 	/* Stage 2: decrement counters from O_LIMIT parents */
1389 	if (expired_limits != 0) {
1390 		/*
1391 		 * XXX: Note that deleting set with more than one
1392 		 * heavily-used LIMIT rules can result in overwhelming
1393 		 * locking due to lack of per-hash value sorting
1394 		 *
1395 		 * We should probably think about:
1396 		 * 1) pre-allocating hash of size, say,
1397 		 * MAX(16, V_curr_dyn_buckets / 1024)
1398 		 * 2) checking if expired_limits is large enough
1399 		 * 3) If yes, init hash (or its part), re-link
1400 		 * current list and start decrementing procedure in
1401 		 * each bucket separately
1402 		 */
1403 
1404 		/*
1405 		 * Small optimization: do not unlock bucket until
1406 		 * we see the next item resides in different bucket
1407 		 */
1408 		if (exp_lhead != NULL) {
1409 			i = exp_lhead->parent->bucket;
1410 			IPFW_BUCK_LOCK(i);
1411 		}
1412 		for (q = exp_lhead; q != NULL; q = q->next) {
1413 			if (i != q->parent->bucket) {
1414 				IPFW_BUCK_UNLOCK(i);
1415 				i = q->parent->bucket;
1416 				IPFW_BUCK_LOCK(i);
1417 			}
1418 
1419 			/* Decrease parent refcount */
1420 			q->parent->count--;
1421 		}
1422 		if (exp_lhead != NULL)
1423 			IPFW_BUCK_UNLOCK(i);
1424 	}
1425 
1426 	/*
1427 	 * We protectet ourselves from unused parent deletion
1428 	 * (from the timer function) by holding UH write lock.
1429 	 */
1430 
1431 	/* Stage 3: remove unused parent rules */
1432 	if ((parents != 0) && (expired != 0)) {
1433 		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1434 			IPFW_BUCK_LOCK(i);
1435 			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1436 				if (q->dyn_type != O_LIMIT_PARENT)
1437 					NEXT_RULE();
1438 
1439 				if (q->count != 0)
1440 					NEXT_RULE();
1441 
1442 				/* Parent rule without consumers */
1443 
1444 				/* Unlink q from current list */
1445 				q_next = q->next;
1446 				if (q == V_ipfw_dyn_v[i].head)
1447 					V_ipfw_dyn_v[i].head = q_next;
1448 				else
1449 					q_prev->next = q_next;
1450 
1451 				q->next = NULL;
1452 
1453 				/* Add to expired list */
1454 				*exptailp = q;
1455 				exptailp = &(*exptailp)->next;
1456 
1457 				DEB(print_dyn_rule(&q->id, q->dyn_type,
1458 				    "unlink parent entry", "left");
1459 				)
1460 
1461 				expired++;
1462 
1463 				q = q_next;
1464 			}
1465 			IPFW_BUCK_UNLOCK(i);
1466 		}
1467 	}
1468 
1469 #undef NEXT_RULE
1470 
1471 	if (timer != 0) {
1472 		/*
1473 		 * Check if we need to resize hash:
1474 		 * if current number of states exceeds number of buckes in hash,
1475 		 * grow hash size to the minimum power of 2 which is bigger than
1476 		 * current states count. Limit hash size by 64k.
1477 		 */
1478 		max_buckets = (V_dyn_buckets_max > 65536) ?
1479 		    65536 : V_dyn_buckets_max;
1480 
1481 		dyn_count = DYN_COUNT;
1482 
1483 		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1484 		    (dyn_count < max_buckets)) {
1485 			new_buckets = V_curr_dyn_buckets;
1486 			while (new_buckets < dyn_count) {
1487 				new_buckets *= 2;
1488 
1489 				if (new_buckets >= max_buckets)
1490 					break;
1491 			}
1492 		}
1493 
1494 		IPFW_UH_WUNLOCK(chain);
1495 	}
1496 
1497 	/* Finally delete old states ad limits if any */
1498 	for (q = exp_head; q != NULL; q = q_next) {
1499 		q_next = q->next;
1500 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1501 		ipfw_dyn_count--;
1502 	}
1503 
1504 	for (q = exp_lhead; q != NULL; q = q_next) {
1505 		q_next = q->next;
1506 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1507 		ipfw_dyn_count--;
1508 	}
1509 
1510 	/*
1511 	 * The rest code MUST be called from timer routine only
1512 	 * without holding any locks
1513 	 */
1514 	if (timer == 0)
1515 		return;
1516 
1517 	/* Send keepalive packets if any */
1518 	for (m = m0; m != NULL; m = mnext) {
1519 		mnext = m->m_nextpkt;
1520 		m->m_nextpkt = NULL;
1521 		h = mtod(m, struct ip *);
1522 		if (h->ip_v == 4)
1523 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1524 #ifdef INET6
1525 		else
1526 			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1527 #endif
1528 	}
1529 
1530 	/* Run table resize without holding any locks */
1531 	if (new_buckets != 0)
1532 		resize_dynamic_table(chain, new_buckets);
1533 }
1534 
1535 /*
1536  * Deletes all dynamic rules originated by given rule or all rules in
1537  * given set. Specify RESVD_SET to indicate set should not be used.
1538  * @chain - pointer to current ipfw rules chain
1539  * @rr - delete all states originated by rules in matched range.
1540  *
1541  * Function has to be called with IPFW_UH_WLOCK held.
1542  * Additionally, function assume that dynamic rule/set is
1543  * ALREADY deleted so no new states can be generated by
1544  * 'deleted' rules.
1545  */
1546 void
1547 ipfw_expire_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1548 {
1549 
1550 	check_dyn_rules(chain, rt, 0, 0);
1551 }
1552 
1553 /*
1554  * Check if rule contains at least one dynamic opcode.
1555  *
1556  * Returns 1 if such opcode is found, 0 otherwise.
1557  */
1558 int
1559 ipfw_is_dyn_rule(struct ip_fw *rule)
1560 {
1561 	int cmdlen, l;
1562 	ipfw_insn *cmd;
1563 
1564 	l = rule->cmd_len;
1565 	cmd = rule->cmd;
1566 	cmdlen = 0;
1567 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
1568 		cmdlen = F_LEN(cmd);
1569 
1570 		switch (cmd->opcode) {
1571 		case O_LIMIT:
1572 		case O_KEEP_STATE:
1573 		case O_PROBE_STATE:
1574 		case O_CHECK_STATE:
1575 			return (1);
1576 		}
1577 	}
1578 
1579 	return (0);
1580 }
1581 
1582 void
1583 ipfw_dyn_init(struct ip_fw_chain *chain)
1584 {
1585 
1586         V_ipfw_dyn_v = NULL;
1587         V_dyn_buckets_max = 256; /* must be power of 2 */
1588         V_curr_dyn_buckets = 256; /* must be power of 2 */
1589 
1590         V_dyn_ack_lifetime = 300;
1591         V_dyn_syn_lifetime = 20;
1592         V_dyn_fin_lifetime = 1;
1593         V_dyn_rst_lifetime = 1;
1594         V_dyn_udp_lifetime = 10;
1595         V_dyn_short_lifetime = 5;
1596 
1597         V_dyn_keepalive_interval = 20;
1598         V_dyn_keepalive_period = 5;
1599         V_dyn_keepalive = 1;    /* do send keepalives */
1600 	V_dyn_keepalive_last = time_uptime;
1601 
1602         V_dyn_max = 16384; /* max # of dynamic rules */
1603 
1604 	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1605 	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1606 	    UMA_ALIGN_PTR, 0);
1607 
1608 	/* Enforce limit on dynamic rules */
1609 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1610 
1611         callout_init(&V_ipfw_timeout, 1);
1612 
1613 	/*
1614 	 * This can potentially be done on first dynamic rule
1615 	 * being added to chain.
1616 	 */
1617 	resize_dynamic_table(chain, V_curr_dyn_buckets);
1618 	IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1619 }
1620 
1621 void
1622 ipfw_dyn_uninit(int pass)
1623 {
1624 	int i;
1625 
1626 	if (pass == 0) {
1627 		callout_drain(&V_ipfw_timeout);
1628 		return;
1629 	}
1630 	IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1631 
1632 	if (V_ipfw_dyn_v != NULL) {
1633 		/*
1634 		 * Skip deleting all dynamic states -
1635 		 * uma_zdestroy() does this more efficiently;
1636 		 */
1637 
1638 		/* Destroy all mutexes */
1639 		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1640 			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1641 		free(V_ipfw_dyn_v, M_IPFW);
1642 		V_ipfw_dyn_v = NULL;
1643 	}
1644 
1645         uma_zdestroy(V_ipfw_dyn_rule_zone);
1646 }
1647 
1648 #ifdef SYSCTL_NODE
1649 /*
1650  * Get/set maximum number of dynamic states in given VNET instance.
1651  */
1652 static int
1653 sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1654 {
1655 	int error;
1656 	unsigned int nstates;
1657 
1658 	nstates = V_dyn_max;
1659 
1660 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1661 	/* Read operation or some error */
1662 	if ((error != 0) || (req->newptr == NULL))
1663 		return (error);
1664 
1665 	V_dyn_max = nstates;
1666 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1667 
1668 	return (0);
1669 }
1670 
1671 /*
1672  * Get current number of dynamic states in given VNET instance.
1673  */
1674 static int
1675 sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1676 {
1677 	int error;
1678 	unsigned int nstates;
1679 
1680 	nstates = DYN_COUNT;
1681 
1682 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1683 
1684 	return (error);
1685 }
1686 #endif
1687 
1688 /*
1689  * Returns size of dynamic states in legacy format
1690  */
1691 int
1692 ipfw_dyn_len(void)
1693 {
1694 
1695 	return (V_ipfw_dyn_v == NULL) ? 0 :
1696 		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1697 }
1698 
1699 /*
1700  * Returns number of dynamic states.
1701  * Used by dump format v1 (current).
1702  */
1703 int
1704 ipfw_dyn_get_count(void)
1705 {
1706 
1707 	return (V_ipfw_dyn_v == NULL) ? 0 : DYN_COUNT;
1708 }
1709 
1710 static void
1711 export_dyn_rule(ipfw_dyn_rule *src, ipfw_dyn_rule *dst)
1712 {
1713 
1714 	memcpy(dst, src, sizeof(*src));
1715 	memcpy(&(dst->rule), &(src->rule->rulenum), sizeof(src->rule->rulenum));
1716 	/*
1717 	 * store set number into high word of
1718 	 * dst->rule pointer.
1719 	 */
1720 	memcpy((char *)&dst->rule + sizeof(src->rule->rulenum),
1721 	    &(src->rule->set), sizeof(src->rule->set));
1722 	/*
1723 	 * store a non-null value in "next".
1724 	 * The userland code will interpret a
1725 	 * NULL here as a marker
1726 	 * for the last dynamic rule.
1727 	 */
1728 	memcpy(&dst->next, &dst, sizeof(dst));
1729 	dst->expire =
1730 	    TIME_LEQ(dst->expire, time_uptime) ?  0 : dst->expire - time_uptime;
1731 }
1732 
1733 /*
1734  * Fills int buffer given by @sd with dynamic states.
1735  * Used by dump format v1 (current).
1736  *
1737  * Returns 0 on success.
1738  */
1739 int
1740 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
1741 {
1742 	ipfw_dyn_rule *p;
1743 	ipfw_obj_dyntlv *dst, *last;
1744 	ipfw_obj_ctlv *ctlv;
1745 	int i;
1746 	size_t sz;
1747 
1748 	if (V_ipfw_dyn_v == NULL)
1749 		return (0);
1750 
1751 	IPFW_UH_RLOCK_ASSERT(chain);
1752 
1753 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1754 	if (ctlv == NULL)
1755 		return (ENOMEM);
1756 	sz = sizeof(ipfw_obj_dyntlv);
1757 	ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
1758 	ctlv->objsize = sz;
1759 	last = NULL;
1760 
1761 	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1762 		IPFW_BUCK_LOCK(i);
1763 		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1764 			dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, sz);
1765 			if (dst == NULL) {
1766 				IPFW_BUCK_UNLOCK(i);
1767 				return (ENOMEM);
1768 			}
1769 
1770 			export_dyn_rule(p, &dst->state);
1771 			dst->head.length = sz;
1772 			dst->head.type = IPFW_TLV_DYN_ENT;
1773 			last = dst;
1774 		}
1775 		IPFW_BUCK_UNLOCK(i);
1776 	}
1777 
1778 	if (last != NULL) /* mark last dynamic rule */
1779 		last->head.flags = IPFW_DF_LAST;
1780 
1781 	return (0);
1782 }
1783 
1784 /*
1785  * Fill given buffer with dynamic states (legacy format).
1786  * IPFW_UH_RLOCK has to be held while calling.
1787  */
1788 void
1789 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1790 {
1791 	ipfw_dyn_rule *p, *last = NULL;
1792 	char *bp;
1793 	int i;
1794 
1795 	if (V_ipfw_dyn_v == NULL)
1796 		return;
1797 	bp = *pbp;
1798 
1799 	IPFW_UH_RLOCK_ASSERT(chain);
1800 
1801 	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1802 		IPFW_BUCK_LOCK(i);
1803 		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1804 			if (bp + sizeof *p <= ep) {
1805 				ipfw_dyn_rule *dst =
1806 					(ipfw_dyn_rule *)bp;
1807 
1808 				export_dyn_rule(p, dst);
1809 				last = dst;
1810 				bp += sizeof(ipfw_dyn_rule);
1811 			}
1812 		}
1813 		IPFW_BUCK_UNLOCK(i);
1814 	}
1815 
1816 	if (last != NULL) /* mark last dynamic rule */
1817 		bzero(&last->next, sizeof(last));
1818 	*pbp = bp;
1819 }
1820 /* end of file */
1821