xref: /freebsd/sys/netpfil/ipfw/ip_fw_dynamic.c (revision d4ae33f0721c1b170fe37d97e395228ffcfb3f80)
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #define        DEB(x)
30 #define        DDB(x) x
31 
32 /*
33  * Dynamic rule support for ipfw
34  */
35 
36 #include "opt_ipfw.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error IPFIREWALL requires INET.
40 #endif /* INET */
41 #include "opt_inet6.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/socket.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <net/ethernet.h> /* for ETHERTYPE_IP */
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/vnet.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip_var.h>	/* ip_defttl */
61 #include <netinet/ip_fw.h>
62 #include <netinet/tcp_var.h>
63 #include <netinet/udp.h>
64 
65 #include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
66 #ifdef INET6
67 #include <netinet6/in6_var.h>
68 #include <netinet6/ip6_var.h>
69 #endif
70 
71 #include <netpfil/ipfw/ip_fw_private.h>
72 
73 #include <machine/in_cksum.h>	/* XXX for in_cksum */
74 
75 #ifdef MAC
76 #include <security/mac/mac_framework.h>
77 #endif
78 
79 /*
80  * Description of dynamic rules.
81  *
82  * Dynamic rules are stored in lists accessed through a hash table
83  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
84  * be modified through the sysctl variable dyn_buckets which is
85  * updated when the table becomes empty.
86  *
87  * XXX currently there is only one list, ipfw_dyn.
88  *
89  * When a packet is received, its address fields are first masked
90  * with the mask defined for the rule, then hashed, then matched
91  * against the entries in the corresponding list.
92  * Dynamic rules can be used for different purposes:
93  *  + stateful rules;
94  *  + enforcing limits on the number of sessions;
95  *  + in-kernel NAT (not implemented yet)
96  *
97  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
98  * measured in seconds and depending on the flags.
99  *
100  * The total number of dynamic rules is equal to UMA zone items count.
101  * The max number of dynamic rules is dyn_max. When we reach
102  * the maximum number of rules we do not create anymore. This is
103  * done to avoid consuming too much memory, but also too much
104  * time when searching on each packet (ideally, we should try instead
105  * to put a limit on the length of the list on each bucket...).
106  *
107  * Each dynamic rule holds a pointer to the parent ipfw rule so
108  * we know what action to perform. Dynamic rules are removed when
109  * the parent rule is deleted. XXX we should make them survive.
110  *
111  * There are some limitations with dynamic rules -- we do not
112  * obey the 'randomized match', and we do not do multiple
113  * passes through the firewall. XXX check the latter!!!
114  */
115 
116 struct ipfw_dyn_bucket {
117 	struct mtx	mtx;		/* Bucket protecting lock */
118 	ipfw_dyn_rule	*head;		/* Pointer to first rule */
119 };
120 
121 /*
122  * Static variables followed by global ones
123  */
124 static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
125 static VNET_DEFINE(u_int32_t, dyn_buckets_max);
126 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
127 static VNET_DEFINE(struct callout, ipfw_timeout);
128 #define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
129 #define	V_dyn_buckets_max		VNET(dyn_buckets_max)
130 #define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
131 #define V_ipfw_timeout                  VNET(ipfw_timeout)
132 
133 static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
134 #define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
135 
136 #define	IPFW_BUCK_LOCK_INIT(b)	\
137 	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
138 #define	IPFW_BUCK_LOCK_DESTROY(b)	\
139 	mtx_destroy(&(b)->mtx)
140 #define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
141 #define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
142 #define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
143 
144 /*
145  * Timeouts for various events in handing dynamic rules.
146  */
147 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
148 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
149 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
150 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
151 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
152 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
153 
154 #define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
155 #define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
156 #define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
157 #define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
158 #define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
159 #define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
160 
161 /*
162  * Keepalives are sent if dyn_keepalive is set. They are sent every
163  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
164  * seconds of lifetime of a rule.
165  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
166  * than dyn_keepalive_period.
167  */
168 
169 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
170 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
171 static VNET_DEFINE(u_int32_t, dyn_keepalive);
172 static VNET_DEFINE(time_t, dyn_keepalive_last);
173 
174 #define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
175 #define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
176 #define	V_dyn_keepalive			VNET(dyn_keepalive)
177 #define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
178 
179 static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
180 
181 #define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
182 #define	V_dyn_max			VNET(dyn_max)
183 
184 /* for userspace, we emulate the uma_zone_counter with ipfw_dyn_count */
185 static int ipfw_dyn_count;	/* number of objects */
186 
187 #ifdef USERSPACE /* emulation of UMA object counters for userspace */
188 #define uma_zone_get_cur(x)	ipfw_dyn_count
189 #endif /* USERSPACE */
190 
191 static int last_log;	/* Log ratelimiting */
192 
193 static void ipfw_dyn_tick(void *vnetx);
194 static void check_dyn_rules(struct ip_fw_chain *, struct ip_fw *,
195     int, int, int);
196 #ifdef SYSCTL_NODE
197 
198 static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
199 static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
200 
201 SYSBEGIN(f2)
202 
203 SYSCTL_DECL(_net_inet_ip_fw);
204 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
205     CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
206     "Max number of dyn. buckets");
207 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
208     CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
209     "Current Number of dyn. buckets");
210 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
211     CTLTYPE_UINT|CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
212     "Number of dyn. rules");
213 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
214     CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
215     "Max number of dyn. rules");
216 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
217     CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
218     "Lifetime of dyn. rules for acks");
219 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
220     CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
221     "Lifetime of dyn. rules for syn");
222 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
223     CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
224     "Lifetime of dyn. rules for fin");
225 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
226     CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
227     "Lifetime of dyn. rules for rst");
228 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
229     CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
230     "Lifetime of dyn. rules for UDP");
231 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
232     CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
233     "Lifetime of dyn. rules for other situations");
234 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
235     CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
236     "Enable keepalives for dyn. rules");
237 
238 SYSEND
239 
240 #endif /* SYSCTL_NODE */
241 
242 
243 static __inline int
244 hash_packet6(struct ipfw_flow_id *id)
245 {
246 	u_int32_t i;
247 	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
248 	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
249 	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
250 	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
251 	    (id->dst_port) ^ (id->src_port);
252 	return i;
253 }
254 
255 /*
256  * IMPORTANT: the hash function for dynamic rules must be commutative
257  * in source and destination (ip,port), because rules are bidirectional
258  * and we want to find both in the same bucket.
259  */
260 static __inline int
261 hash_packet(struct ipfw_flow_id *id, int buckets)
262 {
263 	u_int32_t i;
264 
265 #ifdef INET6
266 	if (IS_IP6_FLOW_ID(id))
267 		i = hash_packet6(id);
268 	else
269 #endif /* INET6 */
270 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
271 	i &= (buckets - 1);
272 	return i;
273 }
274 
275 /**
276  * Print customizable flow id description via log(9) facility.
277  */
278 static void
279 print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
280     char *prefix, char *postfix)
281 {
282 	struct in_addr da;
283 #ifdef INET6
284 	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
285 #else
286 	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
287 #endif
288 
289 #ifdef INET6
290 	if (IS_IP6_FLOW_ID(id)) {
291 		ip6_sprintf(src, &id->src_ip6);
292 		ip6_sprintf(dst, &id->dst_ip6);
293 	} else
294 #endif
295 	{
296 		da.s_addr = htonl(id->src_ip);
297 		inet_ntop(AF_INET, &da, src, sizeof(src));
298 		da.s_addr = htonl(id->dst_ip);
299 		inet_ntop(AF_INET, &da, dst, sizeof(dst));
300 	}
301 	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
302 	    prefix, dyn_type, src, id->src_port, dst,
303 	    id->dst_port, DYN_COUNT, postfix);
304 }
305 
306 #define	print_dyn_rule(id, dtype, prefix, postfix)	\
307 	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
308 
309 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
310 
311 /*
312  * Lookup a dynamic rule, locked version.
313  */
314 static ipfw_dyn_rule *
315 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
316     struct tcphdr *tcp)
317 {
318 	/*
319 	 * Stateful ipfw extensions.
320 	 * Lookup into dynamic session queue.
321 	 */
322 #define MATCH_REVERSE	0
323 #define MATCH_FORWARD	1
324 #define MATCH_NONE	2
325 #define MATCH_UNKNOWN	3
326 	int dir = MATCH_NONE;
327 	ipfw_dyn_rule *prev, *q = NULL;
328 
329 	IPFW_BUCK_ASSERT(i);
330 
331 	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
332 		if (q->dyn_type == O_LIMIT_PARENT && q->count)
333 			continue;
334 
335 		if (pkt->proto != q->id.proto || q->dyn_type == O_LIMIT_PARENT)
336 			continue;
337 
338 		if (IS_IP6_FLOW_ID(pkt)) {
339 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
340 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
341 			    pkt->src_port == q->id.src_port &&
342 			    pkt->dst_port == q->id.dst_port) {
343 				dir = MATCH_FORWARD;
344 				break;
345 			}
346 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
347 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
348 			    pkt->src_port == q->id.dst_port &&
349 			    pkt->dst_port == q->id.src_port) {
350 				dir = MATCH_REVERSE;
351 				break;
352 			}
353 		} else {
354 			if (pkt->src_ip == q->id.src_ip &&
355 			    pkt->dst_ip == q->id.dst_ip &&
356 			    pkt->src_port == q->id.src_port &&
357 			    pkt->dst_port == q->id.dst_port) {
358 				dir = MATCH_FORWARD;
359 				break;
360 			}
361 			if (pkt->src_ip == q->id.dst_ip &&
362 			    pkt->dst_ip == q->id.src_ip &&
363 			    pkt->src_port == q->id.dst_port &&
364 			    pkt->dst_port == q->id.src_port) {
365 				dir = MATCH_REVERSE;
366 				break;
367 			}
368 		}
369 	}
370 	if (q == NULL)
371 		goto done;	/* q = NULL, not found */
372 
373 	if (prev != NULL) {	/* found and not in front */
374 		prev->next = q->next;
375 		q->next = V_ipfw_dyn_v[i].head;
376 		V_ipfw_dyn_v[i].head = q;
377 	}
378 	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
379 		uint32_t ack;
380 		u_char flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
381 
382 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
383 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
384 #define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
385 #define	ACK_FWD		0x10000			/* fwd ack seen */
386 #define	ACK_REV		0x20000			/* rev ack seen */
387 
388 		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
389 		switch (q->state & TCP_FLAGS) {
390 		case TH_SYN:			/* opening */
391 			q->expire = time_uptime + V_dyn_syn_lifetime;
392 			break;
393 
394 		case BOTH_SYN:			/* move to established */
395 		case BOTH_SYN | TH_FIN:		/* one side tries to close */
396 		case BOTH_SYN | (TH_FIN << 8):
397 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
398 			if (tcp == NULL)
399 				break;
400 
401 			ack = ntohl(tcp->th_ack);
402 			if (dir == MATCH_FORWARD) {
403 				if (q->ack_fwd == 0 ||
404 				    _SEQ_GE(ack, q->ack_fwd)) {
405 					q->ack_fwd = ack;
406 					q->state |= ACK_FWD;
407 				}
408 			} else {
409 				if (q->ack_rev == 0 ||
410 				    _SEQ_GE(ack, q->ack_rev)) {
411 					q->ack_rev = ack;
412 					q->state |= ACK_REV;
413 				}
414 			}
415 			if ((q->state & (ACK_FWD | ACK_REV)) ==
416 			    (ACK_FWD | ACK_REV)) {
417 				q->expire = time_uptime + V_dyn_ack_lifetime;
418 				q->state &= ~(ACK_FWD | ACK_REV);
419 			}
420 			break;
421 
422 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
423 			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
424 				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
425 			q->expire = time_uptime + V_dyn_fin_lifetime;
426 			break;
427 
428 		default:
429 #if 0
430 			/*
431 			 * reset or some invalid combination, but can also
432 			 * occur if we use keep-state the wrong way.
433 			 */
434 			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
435 				printf("invalid state: 0x%x\n", q->state);
436 #endif
437 			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
438 				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
439 			q->expire = time_uptime + V_dyn_rst_lifetime;
440 			break;
441 		}
442 	} else if (pkt->proto == IPPROTO_UDP) {
443 		q->expire = time_uptime + V_dyn_udp_lifetime;
444 	} else {
445 		/* other protocols */
446 		q->expire = time_uptime + V_dyn_short_lifetime;
447 	}
448 done:
449 	if (match_direction != NULL)
450 		*match_direction = dir;
451 	return (q);
452 }
453 
454 ipfw_dyn_rule *
455 ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
456     struct tcphdr *tcp)
457 {
458 	ipfw_dyn_rule *q;
459 	int i;
460 
461 	i = hash_packet(pkt, V_curr_dyn_buckets);
462 
463 	IPFW_BUCK_LOCK(i);
464 	q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp);
465 	if (q == NULL)
466 		IPFW_BUCK_UNLOCK(i);
467 	/* NB: return table locked when q is not NULL */
468 	return q;
469 }
470 
471 /*
472  * Unlock bucket mtx
473  * @p - pointer to dynamic rule
474  */
475 void
476 ipfw_dyn_unlock(ipfw_dyn_rule *q)
477 {
478 
479 	IPFW_BUCK_UNLOCK(q->bucket);
480 }
481 
482 static int
483 resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
484 {
485 	int i, k, nbuckets_old;
486 	ipfw_dyn_rule *q;
487 	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
488 
489 	/* Check if given number is power of 2 and less than 64k */
490 	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
491 		return 1;
492 
493 	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
494 	    V_curr_dyn_buckets, nbuckets);
495 
496 	/* Allocate and initialize new hash */
497 	dyn_v = malloc(nbuckets * sizeof(ipfw_dyn_rule), M_IPFW,
498 	    M_WAITOK | M_ZERO);
499 
500 	for (i = 0 ; i < nbuckets; i++)
501 		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
502 
503 	/*
504 	 * Call upper half lock, as get_map() do to ease
505 	 * read-only access to dynamic rules hash from sysctl
506 	 */
507 	IPFW_UH_WLOCK(chain);
508 
509 	/*
510 	 * Acquire chain write lock to permit hash access
511 	 * for main traffic path without additional locks
512 	 */
513 	IPFW_WLOCK(chain);
514 
515 	/* Save old values */
516 	nbuckets_old = V_curr_dyn_buckets;
517 	dyn_v_old = V_ipfw_dyn_v;
518 
519 	/* Skip relinking if array is not set up */
520 	if (V_ipfw_dyn_v == NULL)
521 		V_curr_dyn_buckets = 0;
522 
523 	/* Re-link all dynamic states */
524 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
525 		while (V_ipfw_dyn_v[i].head != NULL) {
526 			/* Remove from current chain */
527 			q = V_ipfw_dyn_v[i].head;
528 			V_ipfw_dyn_v[i].head = q->next;
529 
530 			/* Get new hash value */
531 			k = hash_packet(&q->id, nbuckets);
532 			q->bucket = k;
533 			/* Add to the new head */
534 			q->next = dyn_v[k].head;
535 			dyn_v[k].head = q;
536              }
537 	}
538 
539 	/* Update current pointers/buckets values */
540 	V_curr_dyn_buckets = nbuckets;
541 	V_ipfw_dyn_v = dyn_v;
542 
543 	IPFW_WUNLOCK(chain);
544 
545 	IPFW_UH_WUNLOCK(chain);
546 
547 	/* Start periodic callout on initial creation */
548 	if (dyn_v_old == NULL) {
549         	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
550 		return (0);
551 	}
552 
553 	/* Destroy all mutexes */
554 	for (i = 0 ; i < nbuckets_old ; i++)
555 		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
556 
557 	/* Free old hash */
558 	free(dyn_v_old, M_IPFW);
559 
560 	return 0;
561 }
562 
563 /**
564  * Install state of type 'type' for a dynamic session.
565  * The hash table contains two type of rules:
566  * - regular rules (O_KEEP_STATE)
567  * - rules for sessions with limited number of sess per user
568  *   (O_LIMIT). When they are created, the parent is
569  *   increased by 1, and decreased on delete. In this case,
570  *   the third parameter is the parent rule and not the chain.
571  * - "parent" rules for the above (O_LIMIT_PARENT).
572  */
573 static ipfw_dyn_rule *
574 add_dyn_rule(struct ipfw_flow_id *id, int i, u_int8_t dyn_type, struct ip_fw *rule)
575 {
576 	ipfw_dyn_rule *r;
577 
578 	IPFW_BUCK_ASSERT(i);
579 
580 	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
581 	if (r == NULL) {
582 		if (last_log != time_uptime) {
583 			last_log = time_uptime;
584 			log(LOG_DEBUG, "ipfw: %s: Cannot allocate rule\n",
585 			    __func__);
586 		}
587 		return NULL;
588 	}
589 	ipfw_dyn_count++;
590 
591 	/*
592 	 * refcount on parent is already incremented, so
593 	 * it is safe to use parent unlocked.
594 	 */
595 	if (dyn_type == O_LIMIT) {
596 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
597 		if ( parent->dyn_type != O_LIMIT_PARENT)
598 			panic("invalid parent");
599 		r->parent = parent;
600 		rule = parent->rule;
601 	}
602 
603 	r->id = *id;
604 	r->expire = time_uptime + V_dyn_syn_lifetime;
605 	r->rule = rule;
606 	r->dyn_type = dyn_type;
607 	IPFW_ZERO_DYN_COUNTER(r);
608 	r->count = 0;
609 
610 	r->bucket = i;
611 	r->next = V_ipfw_dyn_v[i].head;
612 	V_ipfw_dyn_v[i].head = r;
613 	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
614 	return r;
615 }
616 
617 /**
618  * lookup dynamic parent rule using pkt and rule as search keys.
619  * If the lookup fails, then install one.
620  */
621 static ipfw_dyn_rule *
622 lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule)
623 {
624 	ipfw_dyn_rule *q;
625 	int i, is_v6;
626 
627 	is_v6 = IS_IP6_FLOW_ID(pkt);
628 	i = hash_packet( pkt, V_curr_dyn_buckets );
629 	*pindex = i;
630 	IPFW_BUCK_LOCK(i);
631 	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
632 		if (q->dyn_type == O_LIMIT_PARENT &&
633 		    rule== q->rule &&
634 		    pkt->proto == q->id.proto &&
635 		    pkt->src_port == q->id.src_port &&
636 		    pkt->dst_port == q->id.dst_port &&
637 		    (
638 			(is_v6 &&
639 			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
640 				&(q->id.src_ip6)) &&
641 			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
642 				&(q->id.dst_ip6))) ||
643 			(!is_v6 &&
644 			 pkt->src_ip == q->id.src_ip &&
645 			 pkt->dst_ip == q->id.dst_ip)
646 		    )
647 		) {
648 			q->expire = time_uptime + V_dyn_short_lifetime;
649 			DEB(print_dyn_rule(pkt, q->dyn_type,
650 			    "lookup_dyn_parent found", "");)
651 			return q;
652 		}
653 
654 	/* Add virtual limiting rule */
655 	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule);
656 }
657 
658 /**
659  * Install dynamic state for rule type cmd->o.opcode
660  *
661  * Returns 1 (failure) if state is not installed because of errors or because
662  * session limitations are enforced.
663  */
664 int
665 ipfw_install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
666     struct ip_fw_args *args, uint32_t tablearg)
667 {
668 	ipfw_dyn_rule *q;
669 	int i;
670 
671 	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state", "");)
672 
673 	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
674 
675 	IPFW_BUCK_LOCK(i);
676 
677 	q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
678 
679 	if (q != NULL) {	/* should never occur */
680 		DEB(
681 		if (last_log != time_uptime) {
682 			last_log = time_uptime;
683 			printf("ipfw: %s: entry already present, done\n",
684 			    __func__);
685 		})
686 		IPFW_BUCK_UNLOCK(i);
687 		return (0);
688 	}
689 
690 	/*
691 	 * State limiting is done via uma(9) zone limiting.
692 	 * Save pointer to newly-installed rule and reject
693 	 * packet if add_dyn_rule() returned NULL.
694 	 * Note q is currently set to NULL.
695 	 */
696 
697 	switch (cmd->o.opcode) {
698 	case O_KEEP_STATE:	/* bidir rule */
699 		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule);
700 		break;
701 
702 	case O_LIMIT: {		/* limit number of sessions */
703 		struct ipfw_flow_id id;
704 		ipfw_dyn_rule *parent;
705 		uint32_t conn_limit;
706 		uint16_t limit_mask = cmd->limit_mask;
707 		int pindex;
708 
709 		conn_limit = IP_FW_ARG_TABLEARG(cmd->conn_limit);
710 
711 		DEB(
712 		if (cmd->conn_limit == IP_FW_TABLEARG)
713 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
714 			    "(tablearg)\n", __func__, conn_limit);
715 		else
716 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
717 			    __func__, conn_limit);
718 		)
719 
720 		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
721 		id.proto = args->f_id.proto;
722 		id.addr_type = args->f_id.addr_type;
723 		id.fib = M_GETFIB(args->m);
724 
725 		if (IS_IP6_FLOW_ID (&(args->f_id))) {
726 			if (limit_mask & DYN_SRC_ADDR)
727 				id.src_ip6 = args->f_id.src_ip6;
728 			if (limit_mask & DYN_DST_ADDR)
729 				id.dst_ip6 = args->f_id.dst_ip6;
730 		} else {
731 			if (limit_mask & DYN_SRC_ADDR)
732 				id.src_ip = args->f_id.src_ip;
733 			if (limit_mask & DYN_DST_ADDR)
734 				id.dst_ip = args->f_id.dst_ip;
735 		}
736 		if (limit_mask & DYN_SRC_PORT)
737 			id.src_port = args->f_id.src_port;
738 		if (limit_mask & DYN_DST_PORT)
739 			id.dst_port = args->f_id.dst_port;
740 
741 		/*
742 		 * We have to release lock for previous bucket to
743 		 * avoid possible deadlock
744 		 */
745 		IPFW_BUCK_UNLOCK(i);
746 
747 		if ((parent = lookup_dyn_parent(&id, &pindex, rule)) == NULL) {
748 			printf("ipfw: %s: add parent failed\n", __func__);
749 			IPFW_BUCK_UNLOCK(pindex);
750 			return (1);
751 		}
752 
753 		if (parent->count >= conn_limit) {
754 			if (V_fw_verbose && last_log != time_uptime) {
755 				last_log = time_uptime;
756 				char sbuf[24];
757 				last_log = time_uptime;
758 				snprintf(sbuf, sizeof(sbuf),
759 				    "%d drop session",
760 				    parent->rule->rulenum);
761 				print_dyn_rule_flags(&args->f_id,
762 				    cmd->o.opcode,
763 				    LOG_SECURITY | LOG_DEBUG,
764 				    sbuf, "too many entries");
765 			}
766 			IPFW_BUCK_UNLOCK(pindex);
767 			return (1);
768 		}
769 		/* Increment counter on parent */
770 		parent->count++;
771 		IPFW_BUCK_UNLOCK(pindex);
772 
773 		IPFW_BUCK_LOCK(i);
774 		q = add_dyn_rule(&args->f_id, i, O_LIMIT, (struct ip_fw *)parent);
775 		if (q == NULL) {
776 			/* Decrement index and notify caller */
777 			IPFW_BUCK_UNLOCK(i);
778 			IPFW_BUCK_LOCK(pindex);
779 			parent->count--;
780 			IPFW_BUCK_UNLOCK(pindex);
781 			return (1);
782 		}
783 		break;
784 	}
785 	default:
786 		printf("ipfw: %s: unknown dynamic rule type %u\n",
787 		    __func__, cmd->o.opcode);
788 	}
789 
790 	if (q == NULL) {
791 		IPFW_BUCK_UNLOCK(i);
792 		return (1);	/* Notify caller about failure */
793 	}
794 
795 	/* XXX just set lifetime */
796 	lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
797 
798 	IPFW_BUCK_UNLOCK(i);
799 	return (0);
800 }
801 
802 /*
803  * Generate a TCP packet, containing either a RST or a keepalive.
804  * When flags & TH_RST, we are sending a RST packet, because of a
805  * "reset" action matched the packet.
806  * Otherwise we are sending a keepalive, and flags & TH_
807  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
808  * so that MAC can label the reply appropriately.
809  */
810 struct mbuf *
811 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
812     u_int32_t ack, int flags)
813 {
814 	struct mbuf *m = NULL;		/* stupid compiler */
815 	int len, dir;
816 	struct ip *h = NULL;		/* stupid compiler */
817 #ifdef INET6
818 	struct ip6_hdr *h6 = NULL;
819 #endif
820 	struct tcphdr *th = NULL;
821 
822 	MGETHDR(m, M_NOWAIT, MT_DATA);
823 	if (m == NULL)
824 		return (NULL);
825 
826 	M_SETFIB(m, id->fib);
827 #ifdef MAC
828 	if (replyto != NULL)
829 		mac_netinet_firewall_reply(replyto, m);
830 	else
831 		mac_netinet_firewall_send(m);
832 #else
833 	(void)replyto;		/* don't warn about unused arg */
834 #endif
835 
836 	switch (id->addr_type) {
837 	case 4:
838 		len = sizeof(struct ip) + sizeof(struct tcphdr);
839 		break;
840 #ifdef INET6
841 	case 6:
842 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
843 		break;
844 #endif
845 	default:
846 		/* XXX: log me?!? */
847 		FREE_PKT(m);
848 		return (NULL);
849 	}
850 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
851 
852 	m->m_data += max_linkhdr;
853 	m->m_flags |= M_SKIP_FIREWALL;
854 	m->m_pkthdr.len = m->m_len = len;
855 	m->m_pkthdr.rcvif = NULL;
856 	bzero(m->m_data, len);
857 
858 	switch (id->addr_type) {
859 	case 4:
860 		h = mtod(m, struct ip *);
861 
862 		/* prepare for checksum */
863 		h->ip_p = IPPROTO_TCP;
864 		h->ip_len = htons(sizeof(struct tcphdr));
865 		if (dir) {
866 			h->ip_src.s_addr = htonl(id->src_ip);
867 			h->ip_dst.s_addr = htonl(id->dst_ip);
868 		} else {
869 			h->ip_src.s_addr = htonl(id->dst_ip);
870 			h->ip_dst.s_addr = htonl(id->src_ip);
871 		}
872 
873 		th = (struct tcphdr *)(h + 1);
874 		break;
875 #ifdef INET6
876 	case 6:
877 		h6 = mtod(m, struct ip6_hdr *);
878 
879 		/* prepare for checksum */
880 		h6->ip6_nxt = IPPROTO_TCP;
881 		h6->ip6_plen = htons(sizeof(struct tcphdr));
882 		if (dir) {
883 			h6->ip6_src = id->src_ip6;
884 			h6->ip6_dst = id->dst_ip6;
885 		} else {
886 			h6->ip6_src = id->dst_ip6;
887 			h6->ip6_dst = id->src_ip6;
888 		}
889 
890 		th = (struct tcphdr *)(h6 + 1);
891 		break;
892 #endif
893 	}
894 
895 	if (dir) {
896 		th->th_sport = htons(id->src_port);
897 		th->th_dport = htons(id->dst_port);
898 	} else {
899 		th->th_sport = htons(id->dst_port);
900 		th->th_dport = htons(id->src_port);
901 	}
902 	th->th_off = sizeof(struct tcphdr) >> 2;
903 
904 	if (flags & TH_RST) {
905 		if (flags & TH_ACK) {
906 			th->th_seq = htonl(ack);
907 			th->th_flags = TH_RST;
908 		} else {
909 			if (flags & TH_SYN)
910 				seq++;
911 			th->th_ack = htonl(seq);
912 			th->th_flags = TH_RST | TH_ACK;
913 		}
914 	} else {
915 		/*
916 		 * Keepalive - use caller provided sequence numbers
917 		 */
918 		th->th_seq = htonl(seq);
919 		th->th_ack = htonl(ack);
920 		th->th_flags = TH_ACK;
921 	}
922 
923 	switch (id->addr_type) {
924 	case 4:
925 		th->th_sum = in_cksum(m, len);
926 
927 		/* finish the ip header */
928 		h->ip_v = 4;
929 		h->ip_hl = sizeof(*h) >> 2;
930 		h->ip_tos = IPTOS_LOWDELAY;
931 		h->ip_off = htons(0);
932 		h->ip_len = htons(len);
933 		h->ip_ttl = V_ip_defttl;
934 		h->ip_sum = 0;
935 		break;
936 #ifdef INET6
937 	case 6:
938 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
939 		    sizeof(struct tcphdr));
940 
941 		/* finish the ip6 header */
942 		h6->ip6_vfc |= IPV6_VERSION;
943 		h6->ip6_hlim = IPV6_DEFHLIM;
944 		break;
945 #endif
946 	}
947 
948 	return (m);
949 }
950 
951 /*
952  * Queue keepalive packets for given dynamic rule
953  */
954 static struct mbuf **
955 ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
956 {
957 	struct mbuf *m_rev, *m_fwd;
958 
959 	m_rev = (q->state & ACK_REV) ? NULL :
960 	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
961 	m_fwd = (q->state & ACK_FWD) ? NULL :
962 	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
963 
964 	if (m_rev != NULL) {
965 		*mtailp = m_rev;
966 		mtailp = &(*mtailp)->m_nextpkt;
967 	}
968 	if (m_fwd != NULL) {
969 		*mtailp = m_fwd;
970 		mtailp = &(*mtailp)->m_nextpkt;
971 	}
972 
973 	return (mtailp);
974 }
975 
976 /*
977  * This procedure is used to perform various maintance
978  * on dynamic hash list. Currently it is called every second.
979  */
980 static void
981 ipfw_dyn_tick(void * vnetx)
982 {
983 	struct ip_fw_chain *chain;
984 	int check_ka = 0;
985 #ifdef VIMAGE
986 	struct vnet *vp = vnetx;
987 #endif
988 
989 	CURVNET_SET(vp);
990 
991 	chain = &V_layer3_chain;
992 
993 	/* Run keepalive checks every keepalive_period iff ka is enabled */
994 	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
995 	    (V_dyn_keepalive != 0)) {
996 		V_dyn_keepalive_last = time_uptime;
997 		check_ka = 1;
998 	}
999 
1000 	check_dyn_rules(chain, NULL, RESVD_SET, check_ka, 1);
1001 
1002 	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
1003 
1004 	CURVNET_RESTORE();
1005 }
1006 
1007 
1008 /*
1009  * Walk thru all dynamic states doing generic maintance:
1010  * 1) free expired states
1011  * 2) free all states based on deleted rule / set
1012  * 3) send keepalives for states if needed
1013  *
1014  * @chain - pointer to current ipfw rules chain
1015  * @rule - delete all states originated by given rule if != NULL
1016  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1017  * @check_ka - perform checking/sending keepalives
1018  * @timer - indicate call from timer routine.
1019  *
1020  * Timer routine must call this function unlocked to permit
1021  * sending keepalives/resizing table.
1022  *
1023  * Others has to call function with IPFW_UH_WLOCK held.
1024  * Additionally, function assume that dynamic rule/set is
1025  * ALREADY deleted so no new states can be generated by
1026  * 'deleted' rules.
1027  *
1028  * Write lock is needed to ensure that unused parent rules
1029  * are not freed by other instance (see stage 2, 3)
1030  */
1031 static void
1032 check_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule,
1033     int set, int check_ka, int timer)
1034 {
1035 	struct mbuf *m0, *m, *mnext, **mtailp;
1036 	struct ip *h;
1037 	int i, dyn_count, new_buckets = 0, max_buckets;
1038 	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1039 	ipfw_dyn_rule *q, *q_prev, *q_next;
1040 	ipfw_dyn_rule *exp_head, **exptailp;
1041 	ipfw_dyn_rule *exp_lhead, **expltailp;
1042 
1043 	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1044 	    __func__));
1045 
1046 	/* Avoid possible LOR */
1047 	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1048 	    __func__));
1049 
1050 	/*
1051 	 * Do not perform any checks if we currently have no dynamic states
1052 	 */
1053 	if (DYN_COUNT == 0)
1054 		return;
1055 
1056 	/* Expired states */
1057 	exp_head = NULL;
1058 	exptailp = &exp_head;
1059 
1060 	/* Expired limit states */
1061 	exp_lhead = NULL;
1062 	expltailp = &exp_lhead;
1063 
1064 	/*
1065 	 * We make a chain of packets to go out here -- not deferring
1066 	 * until after we drop the IPFW dynamic rule lock would result
1067 	 * in a lock order reversal with the normal packet input -> ipfw
1068 	 * call stack.
1069 	 */
1070 	m0 = NULL;
1071 	mtailp = &m0;
1072 
1073 	/* Protect from hash resizing */
1074 	if (timer != 0)
1075 		IPFW_UH_WLOCK(chain);
1076 	else
1077 		IPFW_UH_WLOCK_ASSERT(chain);
1078 
1079 #define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1080 
1081 	/* Stage 1: perform requested deletion */
1082 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1083 		IPFW_BUCK_LOCK(i);
1084 		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1085 			/* account every rule */
1086 			total++;
1087 
1088 			/* Skip parent rules at all */
1089 			if (q->dyn_type == O_LIMIT_PARENT) {
1090 				parents++;
1091 				NEXT_RULE();
1092 			}
1093 
1094 			/*
1095 			 * Remove rules which are:
1096 			 * 1) expired
1097 			 * 2) created by given rule
1098 			 * 3) created by any rule in given set
1099 			 */
1100 			if ((TIME_LEQ(q->expire, time_uptime)) ||
1101 			    ((rule != NULL) && (q->rule == rule)) ||
1102 			    ((set != RESVD_SET) && (q->rule->set == set))) {
1103 				/* Unlink q from current list */
1104 				q_next = q->next;
1105 				if (q == V_ipfw_dyn_v[i].head)
1106 					V_ipfw_dyn_v[i].head = q_next;
1107 				else
1108 					q_prev->next = q_next;
1109 
1110 				q->next = NULL;
1111 
1112 				/* queue q to expire list */
1113 				if (q->dyn_type != O_LIMIT) {
1114 					*exptailp = q;
1115 					exptailp = &(*exptailp)->next;
1116 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1117 					    "unlink entry", "left");
1118 					)
1119 				} else {
1120 					/* Separate list for limit rules */
1121 					*expltailp = q;
1122 					expltailp = &(*expltailp)->next;
1123 					expired_limits++;
1124 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1125 					    "unlink limit entry", "left");
1126 					)
1127 				}
1128 
1129 				q = q_next;
1130 				expired++;
1131 				continue;
1132 			}
1133 
1134 			/*
1135 			 * Check if we need to send keepalive:
1136 			 * we need to ensure if is time to do KA,
1137 			 * this is established TCP session, and
1138 			 * expire time is within keepalive interval
1139 			 */
1140 			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1141 			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1142 			    (TIME_LEQ(q->expire, time_uptime +
1143 			      V_dyn_keepalive_interval)))
1144 				mtailp = ipfw_dyn_send_ka(mtailp, q);
1145 
1146 			NEXT_RULE();
1147 		}
1148 		IPFW_BUCK_UNLOCK(i);
1149 	}
1150 
1151 	/* Stage 2: decrement counters from O_LIMIT parents */
1152 	if (expired_limits != 0) {
1153 		/*
1154 		 * XXX: Note that deleting set with more than one
1155 		 * heavily-used LIMIT rules can result in overwhelming
1156 		 * locking due to lack of per-hash value sorting
1157 		 *
1158 		 * We should probably think about:
1159 		 * 1) pre-allocating hash of size, say,
1160 		 * MAX(16, V_curr_dyn_buckets / 1024)
1161 		 * 2) checking if expired_limits is large enough
1162 		 * 3) If yes, init hash (or its part), re-link
1163 		 * current list and start decrementing procedure in
1164 		 * each bucket separately
1165 		 */
1166 
1167 		/*
1168 		 * Small optimization: do not unlock bucket until
1169 		 * we see the next item resides in different bucket
1170 		 */
1171 		if (exp_lhead != NULL) {
1172 			i = exp_lhead->parent->bucket;
1173 			IPFW_BUCK_LOCK(i);
1174 		}
1175 		for (q = exp_lhead; q != NULL; q = q->next) {
1176 			if (i != q->parent->bucket) {
1177 				IPFW_BUCK_UNLOCK(i);
1178 				i = q->parent->bucket;
1179 				IPFW_BUCK_LOCK(i);
1180 			}
1181 
1182 			/* Decrease parent refcount */
1183 			q->parent->count--;
1184 		}
1185 		if (exp_lhead != NULL)
1186 			IPFW_BUCK_UNLOCK(i);
1187 	}
1188 
1189 	/*
1190 	 * We protectet ourselves from unused parent deletion
1191 	 * (from the timer function) by holding UH write lock.
1192 	 */
1193 
1194 	/* Stage 3: remove unused parent rules */
1195 	if ((parents != 0) && (expired != 0)) {
1196 		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1197 			IPFW_BUCK_LOCK(i);
1198 			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1199 				if (q->dyn_type != O_LIMIT_PARENT)
1200 					NEXT_RULE();
1201 
1202 				if (q->count != 0)
1203 					NEXT_RULE();
1204 
1205 				/* Parent rule without consumers */
1206 
1207 				/* Unlink q from current list */
1208 				q_next = q->next;
1209 				if (q == V_ipfw_dyn_v[i].head)
1210 					V_ipfw_dyn_v[i].head = q_next;
1211 				else
1212 					q_prev->next = q_next;
1213 
1214 				q->next = NULL;
1215 
1216 				/* Add to expired list */
1217 				*exptailp = q;
1218 				exptailp = &(*exptailp)->next;
1219 
1220 				DEB(print_dyn_rule(&q->id, q->dyn_type,
1221 				    "unlink parent entry", "left");
1222 				)
1223 
1224 				expired++;
1225 
1226 				q = q_next;
1227 			}
1228 			IPFW_BUCK_UNLOCK(i);
1229 		}
1230 	}
1231 
1232 #undef NEXT_RULE
1233 
1234 	if (timer != 0) {
1235 		/*
1236 		 * Check if we need to resize hash:
1237 		 * if current number of states exceeds number of buckes in hash,
1238 		 * grow hash size to the minimum power of 2 which is bigger than
1239 		 * current states count. Limit hash size by 64k.
1240 		 */
1241 		max_buckets = (V_dyn_buckets_max > 65536) ?
1242 		    65536 : V_dyn_buckets_max;
1243 
1244 		dyn_count = DYN_COUNT;
1245 
1246 		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1247 		    (dyn_count < max_buckets)) {
1248 			new_buckets = V_curr_dyn_buckets;
1249 			while (new_buckets < dyn_count) {
1250 				new_buckets *= 2;
1251 
1252 				if (new_buckets >= max_buckets)
1253 					break;
1254 			}
1255 		}
1256 
1257 		IPFW_UH_WUNLOCK(chain);
1258 	}
1259 
1260 	/* Finally delete old states ad limits if any */
1261 	for (q = exp_head; q != NULL; q = q_next) {
1262 		q_next = q->next;
1263 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1264 		ipfw_dyn_count--;
1265 	}
1266 
1267 	for (q = exp_lhead; q != NULL; q = q_next) {
1268 		q_next = q->next;
1269 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1270 		ipfw_dyn_count--;
1271 	}
1272 
1273 	/*
1274 	 * The rest code MUST be called from timer routine only
1275 	 * without holding any locks
1276 	 */
1277 	if (timer == 0)
1278 		return;
1279 
1280 	/* Send keepalive packets if any */
1281 	for (m = m0; m != NULL; m = mnext) {
1282 		mnext = m->m_nextpkt;
1283 		m->m_nextpkt = NULL;
1284 		h = mtod(m, struct ip *);
1285 		if (h->ip_v == 4)
1286 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1287 #ifdef INET6
1288 		else
1289 			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1290 #endif
1291 	}
1292 
1293 	/* Run table resize without holding any locks */
1294 	if (new_buckets != 0)
1295 		resize_dynamic_table(chain, new_buckets);
1296 }
1297 
1298 /*
1299  * Deletes all dynamic rules originated by given rule or all rules in
1300  * given set. Specify RESVD_SET to indicate set should not be used.
1301  * @chain - pointer to current ipfw rules chain
1302  * @rule - delete all states originated by given rule if != NULL
1303  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1304  *
1305  * Function has to be called with IPFW_UH_WLOCK held.
1306  * Additionally, function assume that dynamic rule/set is
1307  * ALREADY deleted so no new states can be generated by
1308  * 'deleted' rules.
1309  */
1310 void
1311 ipfw_expire_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule, int set)
1312 {
1313 
1314 	check_dyn_rules(chain, rule, set, 0, 0);
1315 }
1316 
1317 void
1318 ipfw_dyn_init(struct ip_fw_chain *chain)
1319 {
1320 
1321         V_ipfw_dyn_v = NULL;
1322         V_dyn_buckets_max = 256; /* must be power of 2 */
1323         V_curr_dyn_buckets = 256; /* must be power of 2 */
1324 
1325         V_dyn_ack_lifetime = 300;
1326         V_dyn_syn_lifetime = 20;
1327         V_dyn_fin_lifetime = 1;
1328         V_dyn_rst_lifetime = 1;
1329         V_dyn_udp_lifetime = 10;
1330         V_dyn_short_lifetime = 5;
1331 
1332         V_dyn_keepalive_interval = 20;
1333         V_dyn_keepalive_period = 5;
1334         V_dyn_keepalive = 1;    /* do send keepalives */
1335 	V_dyn_keepalive_last = time_uptime;
1336 
1337         V_dyn_max = 4096;       /* max # of dynamic rules */
1338 
1339 	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1340 	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1341 	    UMA_ALIGN_PTR, 0);
1342 
1343 	/* Enforce limit on dynamic rules */
1344 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1345 
1346         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
1347 
1348 	/*
1349 	 * This can potentially be done on first dynamic rule
1350 	 * being added to chain.
1351 	 */
1352 	resize_dynamic_table(chain, V_curr_dyn_buckets);
1353 }
1354 
1355 void
1356 ipfw_dyn_uninit(int pass)
1357 {
1358 	int i;
1359 
1360 	if (pass == 0) {
1361 		callout_drain(&V_ipfw_timeout);
1362 		return;
1363 	}
1364 
1365 	if (V_ipfw_dyn_v != NULL) {
1366 		/*
1367 		 * Skip deleting all dynamic states -
1368 		 * uma_zdestroy() does this more efficiently;
1369 		 */
1370 
1371 		/* Destroy all mutexes */
1372 		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1373 			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1374 		free(V_ipfw_dyn_v, M_IPFW);
1375 		V_ipfw_dyn_v = NULL;
1376 	}
1377 
1378         uma_zdestroy(V_ipfw_dyn_rule_zone);
1379 }
1380 
1381 #ifdef SYSCTL_NODE
1382 /*
1383  * Get/set maximum number of dynamic states in given VNET instance.
1384  */
1385 static int
1386 sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1387 {
1388 	int error;
1389 	unsigned int nstates;
1390 
1391 	nstates = V_dyn_max;
1392 
1393 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1394 	/* Read operation or some error */
1395 	if ((error != 0) || (req->newptr == NULL))
1396 		return (error);
1397 
1398 	V_dyn_max = nstates;
1399 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1400 
1401 	return (0);
1402 }
1403 
1404 /*
1405  * Get current number of dynamic states in given VNET instance.
1406  */
1407 static int
1408 sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1409 {
1410 	int error;
1411 	unsigned int nstates;
1412 
1413 	nstates = DYN_COUNT;
1414 
1415 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1416 
1417 	return (error);
1418 }
1419 #endif
1420 
1421 /*
1422  * Returns number of dynamic rules.
1423  */
1424 int
1425 ipfw_dyn_len(void)
1426 {
1427 
1428 	return (V_ipfw_dyn_v == NULL) ? 0 :
1429 		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1430 }
1431 
1432 /*
1433  * Fill given buffer with dynamic states.
1434  * IPFW_UH_RLOCK has to be held while calling.
1435  */
1436 void
1437 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1438 {
1439 	ipfw_dyn_rule *p, *last = NULL;
1440 	char *bp;
1441 	int i;
1442 
1443 	if (V_ipfw_dyn_v == NULL)
1444 		return;
1445 	bp = *pbp;
1446 
1447 	IPFW_UH_RLOCK_ASSERT(chain);
1448 
1449 	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1450 		IPFW_BUCK_LOCK(i);
1451 		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1452 			if (bp + sizeof *p <= ep) {
1453 				ipfw_dyn_rule *dst =
1454 					(ipfw_dyn_rule *)bp;
1455 				bcopy(p, dst, sizeof *p);
1456 				bcopy(&(p->rule->rulenum), &(dst->rule),
1457 				    sizeof(p->rule->rulenum));
1458 				/*
1459 				 * store set number into high word of
1460 				 * dst->rule pointer.
1461 				 */
1462 				bcopy(&(p->rule->set),
1463 				    (char *)&dst->rule +
1464 				    sizeof(p->rule->rulenum),
1465 				    sizeof(p->rule->set));
1466 				/*
1467 				 * store a non-null value in "next".
1468 				 * The userland code will interpret a
1469 				 * NULL here as a marker
1470 				 * for the last dynamic rule.
1471 				 */
1472 				bcopy(&dst, &dst->next, sizeof(dst));
1473 				last = dst;
1474 				dst->expire =
1475 				    TIME_LEQ(dst->expire, time_uptime) ?
1476 					0 : dst->expire - time_uptime ;
1477 				bp += sizeof(ipfw_dyn_rule);
1478 			}
1479 		}
1480 		IPFW_BUCK_UNLOCK(i);
1481 	}
1482 
1483 	if (last != NULL) /* mark last dynamic rule */
1484 		bzero(&last->next, sizeof(last));
1485 	*pbp = bp;
1486 }
1487 /* end of file */
1488