xref: /freebsd/sys/netpfil/ipfw/ip_fw_dynamic.c (revision c5fda9bac0325eb8c5b447717862d279006f318f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017-2018 Yandex LLC
5  * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipfw.h"
36 #ifndef INET
37 #error IPFIREWALL requires INET.
38 #endif /* INET */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/pcpu.h>
47 #include <sys/queue.h>
48 #include <sys/rmlock.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/pfil.h>
57 #include <net/vnet.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/ip_fw.h>
63 #include <netinet/tcp_var.h>
64 #include <netinet/udp.h>
65 
66 #include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
67 #ifdef INET6
68 #include <netinet6/in6_var.h>
69 #include <netinet6/ip6_var.h>
70 #include <netinet6/scope6_var.h>
71 #endif
72 
73 #include <netpfil/ipfw/ip_fw_private.h>
74 
75 #include <machine/in_cksum.h>	/* XXX for in_cksum */
76 
77 #ifdef MAC
78 #include <security/mac/mac_framework.h>
79 #endif
80 
81 /*
82  * Description of dynamic states.
83  *
84  * Dynamic states are stored in lists accessed through a hash tables
85  * whose size is curr_dyn_buckets. This value can be modified through
86  * the sysctl variable dyn_buckets.
87  *
88  * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
89  * and dyn_ipv6_parent.
90  *
91  * When a packet is received, its address fields hashed, then matched
92  * against the entries in the corresponding list by addr_type.
93  * Dynamic states can be used for different purposes:
94  *  + stateful rules;
95  *  + enforcing limits on the number of sessions;
96  *  + in-kernel NAT (not implemented yet)
97  *
98  * The lifetime of dynamic states is regulated by dyn_*_lifetime,
99  * measured in seconds and depending on the flags.
100  *
101  * The total number of dynamic states is equal to UMA zone items count.
102  * The max number of dynamic states is dyn_max. When we reach
103  * the maximum number of rules we do not create anymore. This is
104  * done to avoid consuming too much memory, but also too much
105  * time when searching on each packet (ideally, we should try instead
106  * to put a limit on the length of the list on each bucket...).
107  *
108  * Each state holds a pointer to the parent ipfw rule so we know what
109  * action to perform. Dynamic rules are removed when the parent rule is
110  * deleted.
111  *
112  * There are some limitations with dynamic rules -- we do not
113  * obey the 'randomized match', and we do not do multiple
114  * passes through the firewall. XXX check the latter!!!
115  */
116 
117 /* By default use jenkins hash function */
118 #define	IPFIREWALL_JENKINSHASH
119 
120 #define	DYN_COUNTER_INC(d, dir, pktlen)	do {	\
121 	(d)->pcnt_ ## dir++;			\
122 	(d)->bcnt_ ## dir += pktlen;		\
123 	} while (0)
124 
125 struct dyn_data {
126 	void		*parent;	/* pointer to parent rule */
127 	uint32_t	chain_id;	/* cached ruleset id */
128 	uint32_t	f_pos;		/* cached rule index */
129 
130 	uint32_t	hashval;	/* hash value used for hash resize */
131 	uint16_t	fibnum;		/* fib used to send keepalives */
132 	uint8_t		_pad[3];
133 	uint8_t		set;		/* parent rule set number */
134 	uint16_t	rulenum;	/* parent rule number */
135 	uint32_t	ruleid;		/* parent rule id */
136 
137 	uint32_t	state;		/* TCP session state and flags */
138 	uint32_t	ack_fwd;	/* most recent ACKs in forward */
139 	uint32_t	ack_rev;	/* and reverse direction (used */
140 					/* to generate keepalives) */
141 	uint32_t	sync;		/* synchronization time */
142 	uint32_t	expire;		/* expire time */
143 
144 	uint64_t	pcnt_fwd;	/* bytes counter in forward */
145 	uint64_t	bcnt_fwd;	/* packets counter in forward */
146 	uint64_t	pcnt_rev;	/* bytes counter in reverse */
147 	uint64_t	bcnt_rev;	/* packets counter in reverse */
148 };
149 
150 #define	DPARENT_COUNT_DEC(p)	do {			\
151 	MPASS(p->count > 0);				\
152 	ck_pr_dec_32(&(p)->count);			\
153 } while (0)
154 #define	DPARENT_COUNT_INC(p)	ck_pr_inc_32(&(p)->count)
155 #define	DPARENT_COUNT(p)	ck_pr_load_32(&(p)->count)
156 struct dyn_parent {
157 	void		*parent;	/* pointer to parent rule */
158 	uint32_t	count;		/* number of linked states */
159 	uint8_t		_pad;
160 	uint8_t		set;		/* parent rule set number */
161 	uint16_t	rulenum;	/* parent rule number */
162 	uint32_t	ruleid;		/* parent rule id */
163 	uint32_t	hashval;	/* hash value used for hash resize */
164 	uint32_t	expire;		/* expire time */
165 };
166 
167 struct dyn_ipv4_state {
168 	uint8_t		type;		/* State type */
169 	uint8_t		proto;		/* UL Protocol */
170 	uint16_t	kidx;		/* named object index */
171 	uint16_t	sport, dport;	/* ULP source and destination ports */
172 	in_addr_t	src, dst;	/* IPv4 source and destination */
173 
174 	union {
175 		struct dyn_data	*data;
176 		struct dyn_parent *limit;
177 	};
178 	CK_SLIST_ENTRY(dyn_ipv4_state)	entry;
179 	SLIST_ENTRY(dyn_ipv4_state)	expired;
180 };
181 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
182 static VNET_DEFINE(struct dyn_ipv4ck_slist *, dyn_ipv4);
183 static VNET_DEFINE(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
184 
185 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
186 static VNET_DEFINE(struct dyn_ipv4_slist, dyn_expired_ipv4);
187 #define	V_dyn_ipv4			VNET(dyn_ipv4)
188 #define	V_dyn_ipv4_parent		VNET(dyn_ipv4_parent)
189 #define	V_dyn_expired_ipv4		VNET(dyn_expired_ipv4)
190 
191 #ifdef INET6
192 struct dyn_ipv6_state {
193 	uint8_t		type;		/* State type */
194 	uint8_t		proto;		/* UL Protocol */
195 	uint16_t	kidx;		/* named object index */
196 	uint16_t	sport, dport;	/* ULP source and destination ports */
197 	struct in6_addr	src, dst;	/* IPv6 source and destination */
198 	uint32_t	zoneid;		/* IPv6 scope zone id */
199 	union {
200 		struct dyn_data	*data;
201 		struct dyn_parent *limit;
202 	};
203 	CK_SLIST_ENTRY(dyn_ipv6_state)	entry;
204 	SLIST_ENTRY(dyn_ipv6_state)	expired;
205 };
206 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
207 static VNET_DEFINE(struct dyn_ipv6ck_slist *, dyn_ipv6);
208 static VNET_DEFINE(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
209 
210 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
211 static VNET_DEFINE(struct dyn_ipv6_slist, dyn_expired_ipv6);
212 #define	V_dyn_ipv6			VNET(dyn_ipv6)
213 #define	V_dyn_ipv6_parent		VNET(dyn_ipv6_parent)
214 #define	V_dyn_expired_ipv6		VNET(dyn_expired_ipv6)
215 #endif /* INET6 */
216 
217 /*
218  * Per-CPU pointer indicates that specified state is currently in use
219  * and must not be reclaimed by expiration callout.
220  */
221 static void **dyn_hp_cache;
222 static DPCPU_DEFINE(void *, dyn_hp);
223 #define	DYNSTATE_GET(cpu)	ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
224 #define	DYNSTATE_PROTECT(v)	ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
225 #define	DYNSTATE_RELEASE()	DYNSTATE_PROTECT(NULL)
226 #define	DYNSTATE_CRITICAL_ENTER()	critical_enter()
227 #define	DYNSTATE_CRITICAL_EXIT()	do {	\
228 	DYNSTATE_RELEASE();			\
229 	critical_exit();			\
230 } while (0);
231 
232 /*
233  * We keep two version numbers, one is updated when new entry added to
234  * the list. Second is updated when an entry deleted from the list.
235  * Versions are updated under bucket lock.
236  *
237  * Bucket "add" version number is used to know, that in the time between
238  * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
239  * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
240  * not install some state in this bucket. Using this info we can avoid
241  * additional state lookup, because we are sure that we will not install
242  * the state twice.
243  *
244  * Also doing the tracking of bucket "del" version during lookup we can
245  * be sure, that state entry was not unlinked and freed in time between
246  * we read the state pointer and protect it with hazard pointer.
247  *
248  * An entry unlinked from CK list keeps unchanged until it is freed.
249  * Unlinked entries are linked into expired lists using "expired" field.
250  */
251 
252 /*
253  * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
254  * dyn_bucket_lock is used to get write access to lists in specific bucket.
255  * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
256  * and ipv6_parent lists.
257  */
258 static VNET_DEFINE(struct mtx, dyn_expire_lock);
259 static VNET_DEFINE(struct mtx *, dyn_bucket_lock);
260 #define	V_dyn_expire_lock		VNET(dyn_expire_lock)
261 #define	V_dyn_bucket_lock		VNET(dyn_bucket_lock)
262 
263 /*
264  * Bucket's add/delete generation versions.
265  */
266 static VNET_DEFINE(uint32_t *, dyn_ipv4_add);
267 static VNET_DEFINE(uint32_t *, dyn_ipv4_del);
268 static VNET_DEFINE(uint32_t *, dyn_ipv4_parent_add);
269 static VNET_DEFINE(uint32_t *, dyn_ipv4_parent_del);
270 #define	V_dyn_ipv4_add			VNET(dyn_ipv4_add)
271 #define	V_dyn_ipv4_del			VNET(dyn_ipv4_del)
272 #define	V_dyn_ipv4_parent_add		VNET(dyn_ipv4_parent_add)
273 #define	V_dyn_ipv4_parent_del		VNET(dyn_ipv4_parent_del)
274 
275 #ifdef INET6
276 static VNET_DEFINE(uint32_t *, dyn_ipv6_add);
277 static VNET_DEFINE(uint32_t *, dyn_ipv6_del);
278 static VNET_DEFINE(uint32_t *, dyn_ipv6_parent_add);
279 static VNET_DEFINE(uint32_t *, dyn_ipv6_parent_del);
280 #define	V_dyn_ipv6_add			VNET(dyn_ipv6_add)
281 #define	V_dyn_ipv6_del			VNET(dyn_ipv6_del)
282 #define	V_dyn_ipv6_parent_add		VNET(dyn_ipv6_parent_add)
283 #define	V_dyn_ipv6_parent_del		VNET(dyn_ipv6_parent_del)
284 #endif /* INET6 */
285 
286 #define	DYN_BUCKET(h, b)		((h) & (b - 1))
287 #define	DYN_BUCKET_VERSION(b, v)	ck_pr_load_32(&V_dyn_ ## v[(b)])
288 #define	DYN_BUCKET_VERSION_BUMP(b, v)	ck_pr_inc_32(&V_dyn_ ## v[(b)])
289 
290 #define	DYN_BUCKET_LOCK_INIT(lock, b)		\
291     mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
292 #define	DYN_BUCKET_LOCK_DESTROY(lock, b)	mtx_destroy(&lock[(b)])
293 #define	DYN_BUCKET_LOCK(b)	mtx_lock(&V_dyn_bucket_lock[(b)])
294 #define	DYN_BUCKET_UNLOCK(b)	mtx_unlock(&V_dyn_bucket_lock[(b)])
295 #define	DYN_BUCKET_ASSERT(b)	mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
296 
297 #define	DYN_EXPIRED_LOCK_INIT()		\
298     mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
299 #define	DYN_EXPIRED_LOCK_DESTROY()	mtx_destroy(&V_dyn_expire_lock)
300 #define	DYN_EXPIRED_LOCK()		mtx_lock(&V_dyn_expire_lock)
301 #define	DYN_EXPIRED_UNLOCK()		mtx_unlock(&V_dyn_expire_lock)
302 
303 static VNET_DEFINE(uint32_t, dyn_buckets_max);
304 static VNET_DEFINE(uint32_t, curr_dyn_buckets);
305 static VNET_DEFINE(struct callout, dyn_timeout);
306 #define	V_dyn_buckets_max		VNET(dyn_buckets_max)
307 #define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
308 #define	V_dyn_timeout			VNET(dyn_timeout)
309 
310 /* Maximum length of states chain in a bucket */
311 static VNET_DEFINE(uint32_t, curr_max_length);
312 #define	V_curr_max_length		VNET(curr_max_length)
313 
314 static VNET_DEFINE(uint32_t, dyn_keep_states);
315 #define	V_dyn_keep_states		VNET(dyn_keep_states)
316 
317 static VNET_DEFINE(uma_zone_t, dyn_data_zone);
318 static VNET_DEFINE(uma_zone_t, dyn_parent_zone);
319 static VNET_DEFINE(uma_zone_t, dyn_ipv4_zone);
320 #ifdef INET6
321 static VNET_DEFINE(uma_zone_t, dyn_ipv6_zone);
322 #define	V_dyn_ipv6_zone			VNET(dyn_ipv6_zone)
323 #endif /* INET6 */
324 #define	V_dyn_data_zone			VNET(dyn_data_zone)
325 #define	V_dyn_parent_zone		VNET(dyn_parent_zone)
326 #define	V_dyn_ipv4_zone			VNET(dyn_ipv4_zone)
327 
328 /*
329  * Timeouts for various events in handing dynamic rules.
330  */
331 static VNET_DEFINE(uint32_t, dyn_ack_lifetime);
332 static VNET_DEFINE(uint32_t, dyn_syn_lifetime);
333 static VNET_DEFINE(uint32_t, dyn_fin_lifetime);
334 static VNET_DEFINE(uint32_t, dyn_rst_lifetime);
335 static VNET_DEFINE(uint32_t, dyn_udp_lifetime);
336 static VNET_DEFINE(uint32_t, dyn_short_lifetime);
337 
338 #define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
339 #define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
340 #define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
341 #define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
342 #define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
343 #define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
344 
345 /*
346  * Keepalives are sent if dyn_keepalive is set. They are sent every
347  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
348  * seconds of lifetime of a rule.
349  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
350  * than dyn_keepalive_period.
351  */
352 #define	DYN_KEEPALIVE_MAXQ		512
353 static VNET_DEFINE(uint32_t, dyn_keepalive_interval);
354 static VNET_DEFINE(uint32_t, dyn_keepalive_period);
355 static VNET_DEFINE(uint32_t, dyn_keepalive);
356 static VNET_DEFINE(time_t, dyn_keepalive_last);
357 
358 #define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
359 #define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
360 #define	V_dyn_keepalive			VNET(dyn_keepalive)
361 #define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
362 
363 static VNET_DEFINE(uint32_t, dyn_max);		/* max # of dynamic states */
364 static VNET_DEFINE(uint32_t, dyn_count);	/* number of states */
365 static VNET_DEFINE(uint32_t, dyn_parent_max);	/* max # of parent states */
366 static VNET_DEFINE(uint32_t, dyn_parent_count);	/* number of parent states */
367 
368 #define	V_dyn_max			VNET(dyn_max)
369 #define	V_dyn_count			VNET(dyn_count)
370 #define	V_dyn_parent_max		VNET(dyn_parent_max)
371 #define	V_dyn_parent_count		VNET(dyn_parent_count)
372 
373 #define	DYN_COUNT_DEC(name)	do {			\
374 	MPASS((V_ ## name) > 0);			\
375 	ck_pr_dec_32(&(V_ ## name));			\
376 } while (0)
377 #define	DYN_COUNT_INC(name)	ck_pr_inc_32(&(V_ ## name))
378 #define	DYN_COUNT(name)		ck_pr_load_32(&(V_ ## name))
379 
380 static time_t last_log;	/* Log ratelimiting */
381 
382 /*
383  * Get/set maximum number of dynamic states in given VNET instance.
384  */
385 static int
386 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
387 {
388 	uint32_t nstates;
389 	int error;
390 
391 	nstates = V_dyn_max;
392 	error = sysctl_handle_32(oidp, &nstates, 0, req);
393 	/* Read operation or some error */
394 	if ((error != 0) || (req->newptr == NULL))
395 		return (error);
396 
397 	V_dyn_max = nstates;
398 	uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
399 	return (0);
400 }
401 
402 static int
403 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
404 {
405 	uint32_t nstates;
406 	int error;
407 
408 	nstates = V_dyn_parent_max;
409 	error = sysctl_handle_32(oidp, &nstates, 0, req);
410 	/* Read operation or some error */
411 	if ((error != 0) || (req->newptr == NULL))
412 		return (error);
413 
414 	V_dyn_parent_max = nstates;
415 	uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
416 	return (0);
417 }
418 
419 static int
420 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
421 {
422 	uint32_t nbuckets;
423 	int error;
424 
425 	nbuckets = V_dyn_buckets_max;
426 	error = sysctl_handle_32(oidp, &nbuckets, 0, req);
427 	/* Read operation or some error */
428 	if ((error != 0) || (req->newptr == NULL))
429 		return (error);
430 
431 	if (nbuckets > 256)
432 		V_dyn_buckets_max = 1 << fls(nbuckets - 1);
433 	else
434 		return (EINVAL);
435 	return (0);
436 }
437 
438 SYSCTL_DECL(_net_inet_ip_fw);
439 
440 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
441     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
442     "Current number of dynamic states.");
443 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
444     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
445     "Current number of parent states. ");
446 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
447     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
448     "Current number of buckets for states hash table.");
449 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
450     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
451     "Current maximum length of states chains in hash buckets.");
452 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
453     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_buckets,
454     "IU", "Max number of buckets for dynamic states hash table.");
455 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
456     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_max,
457     "IU", "Max number of dynamic states.");
458 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
459     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_parent_max,
460     "IU", "Max number of parent dynamic states.");
461 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
462     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
463     "Lifetime of dynamic states for TCP ACK.");
464 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
465     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
466     "Lifetime of dynamic states for TCP SYN.");
467 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
468     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
469     "Lifetime of dynamic states for TCP FIN.");
470 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
471     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
472     "Lifetime of dynamic states for TCP RST.");
473 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
474     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
475     "Lifetime of dynamic states for UDP.");
476 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
477     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
478     "Lifetime of dynamic states for other situations.");
479 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
480     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
481     "Enable keepalives for dynamic states.");
482 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
483     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
484     "Do not flush dynamic states on rule deletion");
485 
486 
487 #ifdef IPFIREWALL_DYNDEBUG
488 #define	DYN_DEBUG(fmt, ...)	do {			\
489 	printf("%s: " fmt "\n", __func__, __VA_ARGS__);	\
490 } while (0)
491 #else
492 #define	DYN_DEBUG(fmt, ...)
493 #endif /* !IPFIREWALL_DYNDEBUG */
494 
495 #ifdef INET6
496 /* Functions to work with IPv6 states */
497 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
498     const struct ipfw_flow_id *, uint32_t, const void *,
499     struct ipfw_dyn_info *, int);
500 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
501     uint32_t, const void *, int, uint32_t, uint16_t);
502 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
503     const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
504 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t, uint8_t,
505     const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
506     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
507 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
508     ipfw_dyn_rule *);
509 
510 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
511 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
512     const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
513     uint16_t);
514 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
515     const struct dyn_ipv6_state *);
516 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
517 
518 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
519     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
520     uint32_t);
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
522     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
523     uint32_t);
524 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
525     uint8_t, const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t,
526     uint16_t);
527 #endif /* INET6 */
528 
529 /* Functions to work with limit states */
530 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
531     struct ip_fw *, uint32_t, uint32_t, uint16_t);
532 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
533     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
535     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
536 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
537     uint8_t, uint32_t);
538 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
539     uint8_t, const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
540 
541 static void dyn_tick(void *);
542 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
543 static void dyn_free_states(struct ip_fw_chain *);
544 static void dyn_export_parent(const struct dyn_parent *, uint16_t,
545     ipfw_dyn_rule *);
546 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
547     ipfw_dyn_rule *);
548 static uint32_t dyn_update_tcp_state(struct dyn_data *,
549     const struct ipfw_flow_id *, const struct tcphdr *, int);
550 static void dyn_update_proto_state(struct dyn_data *,
551     const struct ipfw_flow_id *, const void *, int, int);
552 
553 /* Functions to work with IPv4 states */
554 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
555     const void *, struct ipfw_dyn_info *, int);
556 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
557     const void *, int, uint32_t, uint16_t);
558 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
559     const struct ipfw_flow_id *, uint16_t, uint8_t);
560 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t, uint8_t,
561     const struct ipfw_flow_id *, const void *, int, uint32_t,
562     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
563 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
564     ipfw_dyn_rule *);
565 
566 /*
567  * Named states support.
568  */
569 static char *default_state_name = "default";
570 struct dyn_state_obj {
571 	struct named_object	no;
572 	char			name[64];
573 };
574 
575 #define	DYN_STATE_OBJ(ch, cmd)	\
576     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
577 /*
578  * Classifier callback.
579  * Return 0 if opcode contains object that should be referenced
580  * or rewritten.
581  */
582 static int
583 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
584 {
585 
586 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
587 	/* Don't rewrite "check-state any" */
588 	if (cmd->arg1 == 0 &&
589 	    cmd->opcode == O_CHECK_STATE)
590 		return (1);
591 
592 	*puidx = cmd->arg1;
593 	*ptype = 0;
594 	return (0);
595 }
596 
597 static void
598 dyn_update(ipfw_insn *cmd, uint16_t idx)
599 {
600 
601 	cmd->arg1 = idx;
602 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
603 }
604 
605 static int
606 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
607     struct named_object **pno)
608 {
609 	ipfw_obj_ntlv *ntlv;
610 	const char *name;
611 
612 	DYN_DEBUG("uidx %d", ti->uidx);
613 	if (ti->uidx != 0) {
614 		if (ti->tlvs == NULL)
615 			return (EINVAL);
616 		/* Search ntlv in the buffer provided by user */
617 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
618 		    IPFW_TLV_STATE_NAME);
619 		if (ntlv == NULL)
620 			return (EINVAL);
621 		name = ntlv->name;
622 	} else
623 		name = default_state_name;
624 	/*
625 	 * Search named object with corresponding name.
626 	 * Since states objects are global - ignore the set value
627 	 * and use zero instead.
628 	 */
629 	*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
630 	    IPFW_TLV_STATE_NAME, name);
631 	/*
632 	 * We always return success here.
633 	 * The caller will check *pno and mark object as unresolved,
634 	 * then it will automatically create "default" object.
635 	 */
636 	return (0);
637 }
638 
639 static struct named_object *
640 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
641 {
642 
643 	DYN_DEBUG("kidx %d", idx);
644 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
645 }
646 
647 static int
648 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
649     uint16_t *pkidx)
650 {
651 	struct namedobj_instance *ni;
652 	struct dyn_state_obj *obj;
653 	struct named_object *no;
654 	ipfw_obj_ntlv *ntlv;
655 	char *name;
656 
657 	DYN_DEBUG("uidx %d", ti->uidx);
658 	if (ti->uidx != 0) {
659 		if (ti->tlvs == NULL)
660 			return (EINVAL);
661 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
662 		    IPFW_TLV_STATE_NAME);
663 		if (ntlv == NULL)
664 			return (EINVAL);
665 		name = ntlv->name;
666 	} else
667 		name = default_state_name;
668 
669 	ni = CHAIN_TO_SRV(ch);
670 	obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
671 	obj->no.name = obj->name;
672 	obj->no.etlv = IPFW_TLV_STATE_NAME;
673 	strlcpy(obj->name, name, sizeof(obj->name));
674 
675 	IPFW_UH_WLOCK(ch);
676 	no = ipfw_objhash_lookup_name_type(ni, 0,
677 	    IPFW_TLV_STATE_NAME, name);
678 	if (no != NULL) {
679 		/*
680 		 * Object is already created.
681 		 * Just return its kidx and bump refcount.
682 		 */
683 		*pkidx = no->kidx;
684 		no->refcnt++;
685 		IPFW_UH_WUNLOCK(ch);
686 		free(obj, M_IPFW);
687 		DYN_DEBUG("\tfound kidx %d", *pkidx);
688 		return (0);
689 	}
690 	if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
691 		DYN_DEBUG("\talloc_idx failed for %s", name);
692 		IPFW_UH_WUNLOCK(ch);
693 		free(obj, M_IPFW);
694 		return (ENOSPC);
695 	}
696 	ipfw_objhash_add(ni, &obj->no);
697 	SRV_OBJECT(ch, obj->no.kidx) = obj;
698 	obj->no.refcnt++;
699 	*pkidx = obj->no.kidx;
700 	IPFW_UH_WUNLOCK(ch);
701 	DYN_DEBUG("\tcreated kidx %d", *pkidx);
702 	return (0);
703 }
704 
705 static void
706 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
707 {
708 	struct dyn_state_obj *obj;
709 
710 	IPFW_UH_WLOCK_ASSERT(ch);
711 
712 	KASSERT(no->refcnt == 1,
713 	    ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
714 	    no->name, no->etlv, no->kidx, no->refcnt));
715 	DYN_DEBUG("kidx %d", no->kidx);
716 	obj = SRV_OBJECT(ch, no->kidx);
717 	SRV_OBJECT(ch, no->kidx) = NULL;
718 	ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
719 	ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
720 
721 	free(obj, M_IPFW);
722 }
723 
724 static struct opcode_obj_rewrite dyn_opcodes[] = {
725 	{
726 		O_KEEP_STATE, IPFW_TLV_STATE_NAME,
727 		dyn_classify, dyn_update,
728 		dyn_findbyname, dyn_findbykidx,
729 		dyn_create, dyn_destroy
730 	},
731 	{
732 		O_CHECK_STATE, IPFW_TLV_STATE_NAME,
733 		dyn_classify, dyn_update,
734 		dyn_findbyname, dyn_findbykidx,
735 		dyn_create, dyn_destroy
736 	},
737 	{
738 		O_PROBE_STATE, IPFW_TLV_STATE_NAME,
739 		dyn_classify, dyn_update,
740 		dyn_findbyname, dyn_findbykidx,
741 		dyn_create, dyn_destroy
742 	},
743 	{
744 		O_LIMIT, IPFW_TLV_STATE_NAME,
745 		dyn_classify, dyn_update,
746 		dyn_findbyname, dyn_findbykidx,
747 		dyn_create, dyn_destroy
748 	},
749 };
750 
751 /*
752  * IMPORTANT: the hash function for dynamic rules must be commutative
753  * in source and destination (ip,port), because rules are bidirectional
754  * and we want to find both in the same bucket.
755  */
756 #ifndef IPFIREWALL_JENKINSHASH
757 static __inline uint32_t
758 hash_packet(const struct ipfw_flow_id *id)
759 {
760 	uint32_t i;
761 
762 #ifdef INET6
763 	if (IS_IP6_FLOW_ID(id))
764 		i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
765 		    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
766 		    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
767 		    (id->src_ip6.__u6_addr.__u6_addr32[3]));
768 	else
769 #endif /* INET6 */
770 	i = (id->dst_ip) ^ (id->src_ip);
771 	i ^= (id->dst_port) ^ (id->src_port);
772 	return (i);
773 }
774 
775 static __inline uint32_t
776 hash_parent(const struct ipfw_flow_id *id, const void *rule)
777 {
778 
779 	return (hash_packet(id) ^ ((uintptr_t)rule));
780 }
781 
782 #else /* IPFIREWALL_JENKINSHASH */
783 
784 static VNET_DEFINE(uint32_t, dyn_hashseed);
785 #define	V_dyn_hashseed		VNET(dyn_hashseed)
786 
787 static __inline int
788 addrcmp4(const struct ipfw_flow_id *id)
789 {
790 
791 	if (id->src_ip < id->dst_ip)
792 		return (0);
793 	if (id->src_ip > id->dst_ip)
794 		return (1);
795 	if (id->src_port <= id->dst_port)
796 		return (0);
797 	return (1);
798 }
799 
800 #ifdef INET6
801 static __inline int
802 addrcmp6(const struct ipfw_flow_id *id)
803 {
804 	int ret;
805 
806 	ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
807 	if (ret < 0)
808 		return (0);
809 	if (ret > 0)
810 		return (1);
811 	if (id->src_port <= id->dst_port)
812 		return (0);
813 	return (1);
814 }
815 
816 static __inline uint32_t
817 hash_packet6(const struct ipfw_flow_id *id)
818 {
819 	struct tuple6 {
820 		struct in6_addr	addr[2];
821 		uint16_t	port[2];
822 	} t6;
823 
824 	if (addrcmp6(id) == 0) {
825 		t6.addr[0] = id->src_ip6;
826 		t6.addr[1] = id->dst_ip6;
827 		t6.port[0] = id->src_port;
828 		t6.port[1] = id->dst_port;
829 	} else {
830 		t6.addr[0] = id->dst_ip6;
831 		t6.addr[1] = id->src_ip6;
832 		t6.port[0] = id->dst_port;
833 		t6.port[1] = id->src_port;
834 	}
835 	return (jenkins_hash32((const uint32_t *)&t6,
836 	    sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
837 }
838 #endif
839 
840 static __inline uint32_t
841 hash_packet(const struct ipfw_flow_id *id)
842 {
843 	struct tuple4 {
844 		in_addr_t	addr[2];
845 		uint16_t	port[2];
846 	} t4;
847 
848 	if (IS_IP4_FLOW_ID(id)) {
849 		/* All fields are in host byte order */
850 		if (addrcmp4(id) == 0) {
851 			t4.addr[0] = id->src_ip;
852 			t4.addr[1] = id->dst_ip;
853 			t4.port[0] = id->src_port;
854 			t4.port[1] = id->dst_port;
855 		} else {
856 			t4.addr[0] = id->dst_ip;
857 			t4.addr[1] = id->src_ip;
858 			t4.port[0] = id->dst_port;
859 			t4.port[1] = id->src_port;
860 		}
861 		return (jenkins_hash32((const uint32_t *)&t4,
862 		    sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
863 	} else
864 #ifdef INET6
865 	if (IS_IP6_FLOW_ID(id))
866 		return (hash_packet6(id));
867 #endif
868 	return (0);
869 }
870 
871 static __inline uint32_t
872 hash_parent(const struct ipfw_flow_id *id, const void *rule)
873 {
874 
875 	return (jenkins_hash32((const uint32_t *)&rule,
876 	    sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
877 }
878 #endif /* IPFIREWALL_JENKINSHASH */
879 
880 /*
881  * Print customizable flow id description via log(9) facility.
882  */
883 static void
884 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
885     int log_flags, char *prefix, char *postfix)
886 {
887 	struct in_addr da;
888 #ifdef INET6
889 	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
890 #else
891 	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
892 #endif
893 
894 #ifdef INET6
895 	if (IS_IP6_FLOW_ID(id)) {
896 		ip6_sprintf(src, &id->src_ip6);
897 		ip6_sprintf(dst, &id->dst_ip6);
898 	} else
899 #endif
900 	{
901 		da.s_addr = htonl(id->src_ip);
902 		inet_ntop(AF_INET, &da, src, sizeof(src));
903 		da.s_addr = htonl(id->dst_ip);
904 		inet_ntop(AF_INET, &da, dst, sizeof(dst));
905 	}
906 	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
907 	    prefix, dyn_type, src, id->src_port, dst,
908 	    id->dst_port, V_dyn_count, postfix);
909 }
910 
911 #define	print_dyn_rule(id, dtype, prefix, postfix)	\
912 	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
913 
914 #define	TIME_LEQ(a,b)	((int)((a)-(b)) <= 0)
915 #define	TIME_LE(a,b)	((int)((a)-(b)) < 0)
916 #define	_SEQ_GE(a,b)	((int)((a)-(b)) >= 0)
917 #define	BOTH_SYN	(TH_SYN | (TH_SYN << 8))
918 #define	BOTH_FIN	(TH_FIN | (TH_FIN << 8))
919 #define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
920 #define	ACK_FWD		0x00010000	/* fwd ack seen */
921 #define	ACK_REV		0x00020000	/* rev ack seen */
922 #define	ACK_BOTH	(ACK_FWD | ACK_REV)
923 
924 static uint32_t
925 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
926     const struct tcphdr *tcp, int dir)
927 {
928 	uint32_t ack, expire;
929 	uint32_t state, old;
930 	uint8_t th_flags;
931 
932 	expire = data->expire;
933 	old = state = data->state;
934 	th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
935 	state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
936 	switch (state & TCP_FLAGS) {
937 	case TH_SYN:			/* opening */
938 		expire = time_uptime + V_dyn_syn_lifetime;
939 		break;
940 
941 	case BOTH_SYN:			/* move to established */
942 	case BOTH_SYN | TH_FIN:		/* one side tries to close */
943 	case BOTH_SYN | (TH_FIN << 8):
944 		if (tcp == NULL)
945 			break;
946 		ack = ntohl(tcp->th_ack);
947 		if (dir == MATCH_FORWARD) {
948 			if (data->ack_fwd == 0 ||
949 			    _SEQ_GE(ack, data->ack_fwd)) {
950 				state |= ACK_FWD;
951 				if (data->ack_fwd != ack)
952 					ck_pr_store_32(&data->ack_fwd, ack);
953 			}
954 		} else {
955 			if (data->ack_rev == 0 ||
956 			    _SEQ_GE(ack, data->ack_rev)) {
957 				state |= ACK_REV;
958 				if (data->ack_rev != ack)
959 					ck_pr_store_32(&data->ack_rev, ack);
960 			}
961 		}
962 		if ((state & ACK_BOTH) == ACK_BOTH) {
963 			/*
964 			 * Set expire time to V_dyn_ack_lifetime only if
965 			 * we got ACKs for both directions.
966 			 * We use XOR here to avoid possible state
967 			 * overwriting in concurrent thread.
968 			 */
969 			expire = time_uptime + V_dyn_ack_lifetime;
970 			ck_pr_xor_32(&data->state, ACK_BOTH);
971 		} else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
972 			ck_pr_or_32(&data->state, state & ACK_BOTH);
973 		break;
974 
975 	case BOTH_SYN | BOTH_FIN:	/* both sides closed */
976 		if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
977 			V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
978 		expire = time_uptime + V_dyn_fin_lifetime;
979 		break;
980 
981 	default:
982 		if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
983 			V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
984 		expire = time_uptime + V_dyn_rst_lifetime;
985 	}
986 	/* Save TCP state if it was changed */
987 	if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
988 		ck_pr_or_32(&data->state, state & TCP_FLAGS);
989 	return (expire);
990 }
991 
992 /*
993  * Update ULP specific state.
994  * For TCP we keep sequence numbers and flags. For other protocols
995  * currently we update only expire time. Packets and bytes counters
996  * are also updated here.
997  */
998 static void
999 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1000     const void *ulp, int pktlen, int dir)
1001 {
1002 	uint32_t expire;
1003 
1004 	/* NOTE: we are in critical section here. */
1005 	switch (pkt->proto) {
1006 	case IPPROTO_UDP:
1007 	case IPPROTO_UDPLITE:
1008 		expire = time_uptime + V_dyn_udp_lifetime;
1009 		break;
1010 	case IPPROTO_TCP:
1011 		expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1012 		break;
1013 	default:
1014 		expire = time_uptime + V_dyn_short_lifetime;
1015 	}
1016 	/*
1017 	 * Expiration timer has the per-second granularity, no need to update
1018 	 * it every time when state is matched.
1019 	 */
1020 	if (data->expire != expire)
1021 		ck_pr_store_32(&data->expire, expire);
1022 
1023 	if (dir == MATCH_FORWARD)
1024 		DYN_COUNTER_INC(data, fwd, pktlen);
1025 	else
1026 		DYN_COUNTER_INC(data, rev, pktlen);
1027 }
1028 
1029 /*
1030  * Lookup IPv4 state.
1031  * Must be called in critical section.
1032  */
1033 struct dyn_ipv4_state *
1034 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1035     struct ipfw_dyn_info *info, int pktlen)
1036 {
1037 	struct dyn_ipv4_state *s;
1038 	uint32_t version, bucket;
1039 
1040 	bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1041 	info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1042 restart:
1043 	version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1044 	CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1045 		DYNSTATE_PROTECT(s);
1046 		if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1047 			goto restart;
1048 		if (s->proto != pkt->proto)
1049 			continue;
1050 		if (info->kidx != 0 && s->kidx != info->kidx)
1051 			continue;
1052 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1053 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1054 			info->direction = MATCH_FORWARD;
1055 			break;
1056 		}
1057 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1058 		    s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1059 			info->direction = MATCH_REVERSE;
1060 			break;
1061 		}
1062 	}
1063 
1064 	if (s != NULL)
1065 		dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1066 		    info->direction);
1067 	return (s);
1068 }
1069 
1070 /*
1071  * Lookup IPv4 state.
1072  * Simplifed version is used to check that matching state doesn't exist.
1073  */
1074 static int
1075 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1076     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1077 {
1078 	struct dyn_ipv4_state *s;
1079 	int dir;
1080 
1081 	dir = MATCH_NONE;
1082 	DYN_BUCKET_ASSERT(bucket);
1083 	CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1084 		if (s->proto != pkt->proto ||
1085 		    s->kidx != kidx)
1086 			continue;
1087 		if (s->sport == pkt->src_port &&
1088 		    s->dport == pkt->dst_port &&
1089 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1090 			dir = MATCH_FORWARD;
1091 			break;
1092 		}
1093 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1094 		    s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1095 			dir = MATCH_REVERSE;
1096 			break;
1097 		}
1098 	}
1099 	if (s != NULL)
1100 		dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1101 	return (s != NULL);
1102 }
1103 
1104 struct dyn_ipv4_state *
1105 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1106     uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1107 {
1108 	struct dyn_ipv4_state *s;
1109 	uint32_t version, bucket;
1110 
1111 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1112 restart:
1113 	version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1114 	CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1115 		DYNSTATE_PROTECT(s);
1116 		if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1117 			goto restart;
1118 		/*
1119 		 * NOTE: we do not need to check kidx, because parent rule
1120 		 * can not create states with different kidx.
1121 		 * And parent rule always created for forward direction.
1122 		 */
1123 		if (s->limit->parent == rule &&
1124 		    s->limit->ruleid == ruleid &&
1125 		    s->limit->rulenum == rulenum &&
1126 		    s->proto == pkt->proto &&
1127 		    s->sport == pkt->src_port &&
1128 		    s->dport == pkt->dst_port &&
1129 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1130 			if (s->limit->expire != time_uptime +
1131 			    V_dyn_short_lifetime)
1132 				ck_pr_store_32(&s->limit->expire,
1133 				    time_uptime + V_dyn_short_lifetime);
1134 			break;
1135 		}
1136 	}
1137 	return (s);
1138 }
1139 
1140 static struct dyn_ipv4_state *
1141 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1142     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1143 {
1144 	struct dyn_ipv4_state *s;
1145 
1146 	DYN_BUCKET_ASSERT(bucket);
1147 	CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1148 		if (s->limit->parent == rule &&
1149 		    s->limit->ruleid == ruleid &&
1150 		    s->limit->rulenum == rulenum &&
1151 		    s->proto == pkt->proto &&
1152 		    s->sport == pkt->src_port &&
1153 		    s->dport == pkt->dst_port &&
1154 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1155 			break;
1156 	}
1157 	return (s);
1158 }
1159 
1160 
1161 #ifdef INET6
1162 static uint32_t
1163 dyn_getscopeid(const struct ip_fw_args *args)
1164 {
1165 
1166 	/*
1167 	 * If source or destination address is an scopeid address, we need
1168 	 * determine the scope zone id to resolve address scope ambiguity.
1169 	 */
1170 	if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1171 	    IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6)) {
1172 		MPASS(args->oif != NULL ||
1173 		    args->m->m_pkthdr.rcvif != NULL);
1174 		return (in6_getscopezone(args->oif != NULL ? args->oif:
1175 		    args->m->m_pkthdr.rcvif, IPV6_ADDR_SCOPE_LINKLOCAL));
1176 	}
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Lookup IPv6 state.
1182  * Must be called in critical section.
1183  */
1184 static struct dyn_ipv6_state *
1185 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1186     const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1187 {
1188 	struct dyn_ipv6_state *s;
1189 	uint32_t version, bucket;
1190 
1191 	bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1192 	info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1193 restart:
1194 	version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1195 	CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1196 		DYNSTATE_PROTECT(s);
1197 		if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1198 			goto restart;
1199 		if (s->proto != pkt->proto || s->zoneid != zoneid)
1200 			continue;
1201 		if (info->kidx != 0 && s->kidx != info->kidx)
1202 			continue;
1203 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1204 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1205 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1206 			info->direction = MATCH_FORWARD;
1207 			break;
1208 		}
1209 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1210 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1211 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1212 			info->direction = MATCH_REVERSE;
1213 			break;
1214 		}
1215 	}
1216 	if (s != NULL)
1217 		dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1218 		    info->direction);
1219 	return (s);
1220 }
1221 
1222 /*
1223  * Lookup IPv6 state.
1224  * Simplifed version is used to check that matching state doesn't exist.
1225  */
1226 static int
1227 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1228     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1229 {
1230 	struct dyn_ipv6_state *s;
1231 	int dir;
1232 
1233 	dir = MATCH_NONE;
1234 	DYN_BUCKET_ASSERT(bucket);
1235 	CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1236 		if (s->proto != pkt->proto || s->kidx != kidx ||
1237 		    s->zoneid != zoneid)
1238 			continue;
1239 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1240 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1241 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1242 			dir = MATCH_FORWARD;
1243 			break;
1244 		}
1245 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1246 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1247 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1248 			dir = MATCH_REVERSE;
1249 			break;
1250 		}
1251 	}
1252 	if (s != NULL)
1253 		dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1254 	return (s != NULL);
1255 }
1256 
1257 static struct dyn_ipv6_state *
1258 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1259     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1260 {
1261 	struct dyn_ipv6_state *s;
1262 	uint32_t version, bucket;
1263 
1264 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1265 restart:
1266 	version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1267 	CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1268 		DYNSTATE_PROTECT(s);
1269 		if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1270 			goto restart;
1271 		/*
1272 		 * NOTE: we do not need to check kidx, because parent rule
1273 		 * can not create states with different kidx.
1274 		 * Also parent rule always created for forward direction.
1275 		 */
1276 		if (s->limit->parent == rule &&
1277 		    s->limit->ruleid == ruleid &&
1278 		    s->limit->rulenum == rulenum &&
1279 		    s->proto == pkt->proto &&
1280 		    s->sport == pkt->src_port &&
1281 		    s->dport == pkt->dst_port && s->zoneid == zoneid &&
1282 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1283 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1284 			if (s->limit->expire != time_uptime +
1285 			    V_dyn_short_lifetime)
1286 				ck_pr_store_32(&s->limit->expire,
1287 				    time_uptime + V_dyn_short_lifetime);
1288 			break;
1289 		}
1290 	}
1291 	return (s);
1292 }
1293 
1294 static struct dyn_ipv6_state *
1295 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1296     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1297 {
1298 	struct dyn_ipv6_state *s;
1299 
1300 	DYN_BUCKET_ASSERT(bucket);
1301 	CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1302 		if (s->limit->parent == rule &&
1303 		    s->limit->ruleid == ruleid &&
1304 		    s->limit->rulenum == rulenum &&
1305 		    s->proto == pkt->proto &&
1306 		    s->sport == pkt->src_port &&
1307 		    s->dport == pkt->dst_port && s->zoneid == zoneid &&
1308 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1309 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1310 			break;
1311 	}
1312 	return (s);
1313 }
1314 
1315 #endif /* INET6 */
1316 
1317 /*
1318  * Lookup dynamic state.
1319  *  pkt - filled by ipfw_chk() ipfw_flow_id;
1320  *  ulp - determined by ipfw_chk() upper level protocol header;
1321  *  dyn_info - info about matched state to return back;
1322  * Returns pointer to state's parent rule and dyn_info. If there is
1323  * no state, NULL is returned.
1324  * On match ipfw_dyn_lookup() updates state's counters.
1325  */
1326 struct ip_fw *
1327 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1328     int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1329 {
1330 	struct dyn_data *data;
1331 	struct ip_fw *rule;
1332 
1333 	IPFW_RLOCK_ASSERT(&V_layer3_chain);
1334 
1335 	data = NULL;
1336 	rule = NULL;
1337 	info->kidx = cmd->arg1;
1338 	info->direction = MATCH_NONE;
1339 	info->hashval = hash_packet(&args->f_id);
1340 
1341 	DYNSTATE_CRITICAL_ENTER();
1342 	if (IS_IP4_FLOW_ID(&args->f_id)) {
1343 		struct dyn_ipv4_state *s;
1344 
1345 		s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1346 		if (s != NULL) {
1347 			/*
1348 			 * Dynamic states are created using the same 5-tuple,
1349 			 * so it is assumed, that parent rule for O_LIMIT
1350 			 * state has the same address family.
1351 			 */
1352 			data = s->data;
1353 			if (s->type == O_LIMIT) {
1354 				s = data->parent;
1355 				rule = s->limit->parent;
1356 			} else
1357 				rule = data->parent;
1358 		}
1359 	}
1360 #ifdef INET6
1361 	else if (IS_IP6_FLOW_ID(&args->f_id)) {
1362 		struct dyn_ipv6_state *s;
1363 
1364 		s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1365 		    ulp, info, pktlen);
1366 		if (s != NULL) {
1367 			data = s->data;
1368 			if (s->type == O_LIMIT) {
1369 				s = data->parent;
1370 				rule = s->limit->parent;
1371 			} else
1372 				rule = data->parent;
1373 		}
1374 	}
1375 #endif
1376 	if (data != NULL) {
1377 		/*
1378 		 * If cached chain id is the same, we can avoid rule index
1379 		 * lookup. Otherwise do lookup and update chain_id and f_pos.
1380 		 * It is safe even if there is concurrent thread that want
1381 		 * update the same state, because chain->id can be changed
1382 		 * only under IPFW_WLOCK().
1383 		 */
1384 		if (data->chain_id != V_layer3_chain.id) {
1385 			data->f_pos = ipfw_find_rule(&V_layer3_chain,
1386 			    data->rulenum, data->ruleid);
1387 			/*
1388 			 * Check that found state has not orphaned.
1389 			 * When chain->id being changed the parent
1390 			 * rule can be deleted. If found rule doesn't
1391 			 * match the parent pointer, consider this
1392 			 * result as MATCH_NONE and return NULL.
1393 			 *
1394 			 * This will lead to creation of new similar state
1395 			 * that will be added into head of this bucket.
1396 			 * And the state that we currently have matched
1397 			 * should be deleted by dyn_expire_states().
1398 			 *
1399 			 * In case when dyn_keep_states is enabled, return
1400 			 * pointer to default rule and corresponding f_pos
1401 			 * value.
1402 			 * XXX: In this case we lose the cache efficiency,
1403 			 *      since f_pos is not cached, because it seems
1404 			 *      there is no easy way to atomically switch
1405 			 *      all fields related to parent rule of given
1406 			 *      state.
1407 			 */
1408 			if (V_layer3_chain.map[data->f_pos] == rule) {
1409 				data->chain_id = V_layer3_chain.id;
1410 				info->f_pos = data->f_pos;
1411 			} else if (V_dyn_keep_states != 0) {
1412 				rule = V_layer3_chain.default_rule;
1413 				info->f_pos = V_layer3_chain.n_rules - 1;
1414 			} else {
1415 				rule = NULL;
1416 				info->direction = MATCH_NONE;
1417 				DYN_DEBUG("rule %p  [%u, %u] is considered "
1418 				    "invalid in data %p", rule, data->ruleid,
1419 				    data->rulenum, data);
1420 				/* info->f_pos doesn't matter here. */
1421 			}
1422 		} else
1423 			info->f_pos = data->f_pos;
1424 	}
1425 	DYNSTATE_CRITICAL_EXIT();
1426 #if 0
1427 	/*
1428 	 * Return MATCH_NONE if parent rule is in disabled set.
1429 	 * This will lead to creation of new similar state that
1430 	 * will be added into head of this bucket.
1431 	 *
1432 	 * XXXAE: we need to be able update state's set when parent
1433 	 *	  rule set is changed.
1434 	 */
1435 	if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1436 		rule = NULL;
1437 		info->direction = MATCH_NONE;
1438 	}
1439 #endif
1440 	return (rule);
1441 }
1442 
1443 static struct dyn_parent *
1444 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1445     uint8_t set, uint32_t hashval)
1446 {
1447 	struct dyn_parent *limit;
1448 
1449 	limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1450 	if (limit == NULL) {
1451 		if (last_log != time_uptime) {
1452 			last_log = time_uptime;
1453 			log(LOG_DEBUG,
1454 			    "ipfw: Cannot allocate parent dynamic state, "
1455 			    "consider increasing "
1456 			    "net.inet.ip.fw.dyn_parent_max\n");
1457 		}
1458 		return (NULL);
1459 	}
1460 
1461 	limit->parent = parent;
1462 	limit->ruleid = ruleid;
1463 	limit->rulenum = rulenum;
1464 	limit->set = set;
1465 	limit->hashval = hashval;
1466 	limit->expire = time_uptime + V_dyn_short_lifetime;
1467 	return (limit);
1468 }
1469 
1470 static struct dyn_data *
1471 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1472     uint8_t set, const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1473     uint32_t hashval, uint16_t fibnum)
1474 {
1475 	struct dyn_data *data;
1476 
1477 	data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1478 	if (data == NULL) {
1479 		if (last_log != time_uptime) {
1480 			last_log = time_uptime;
1481 			log(LOG_DEBUG,
1482 			    "ipfw: Cannot allocate dynamic state, "
1483 			    "consider increasing net.inet.ip.fw.dyn_max\n");
1484 		}
1485 		return (NULL);
1486 	}
1487 
1488 	data->parent = parent;
1489 	data->ruleid = ruleid;
1490 	data->rulenum = rulenum;
1491 	data->set = set;
1492 	data->fibnum = fibnum;
1493 	data->hashval = hashval;
1494 	data->expire = time_uptime + V_dyn_syn_lifetime;
1495 	dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1496 	return (data);
1497 }
1498 
1499 static struct dyn_ipv4_state *
1500 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1501     uint8_t type)
1502 {
1503 	struct dyn_ipv4_state *s;
1504 
1505 	s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1506 	if (s == NULL)
1507 		return (NULL);
1508 
1509 	s->type = type;
1510 	s->kidx = kidx;
1511 	s->proto = pkt->proto;
1512 	s->sport = pkt->src_port;
1513 	s->dport = pkt->dst_port;
1514 	s->src = pkt->src_ip;
1515 	s->dst = pkt->dst_ip;
1516 	return (s);
1517 }
1518 
1519 /*
1520  * Add IPv4 parent state.
1521  * Returns pointer to parent state. When it is not NULL we are in
1522  * critical section and pointer protected by hazard pointer.
1523  * When some error occurs, it returns NULL and exit from critical section
1524  * is not needed.
1525  */
1526 static struct dyn_ipv4_state *
1527 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1528     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t hashval,
1529     uint32_t version, uint16_t kidx)
1530 {
1531 	struct dyn_ipv4_state *s;
1532 	struct dyn_parent *limit;
1533 	uint32_t bucket;
1534 
1535 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1536 	DYN_BUCKET_LOCK(bucket);
1537 	if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1538 		/*
1539 		 * Bucket version has been changed since last lookup,
1540 		 * do lookup again to be sure that state does not exist.
1541 		 */
1542 		s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1543 		    rulenum, bucket);
1544 		if (s != NULL) {
1545 			/*
1546 			 * Simultaneous thread has already created this
1547 			 * state. Just return it.
1548 			 */
1549 			DYNSTATE_CRITICAL_ENTER();
1550 			DYNSTATE_PROTECT(s);
1551 			DYN_BUCKET_UNLOCK(bucket);
1552 			return (s);
1553 		}
1554 	}
1555 
1556 	limit = dyn_alloc_parent(rule, ruleid, rulenum, set, hashval);
1557 	if (limit == NULL) {
1558 		DYN_BUCKET_UNLOCK(bucket);
1559 		return (NULL);
1560 	}
1561 
1562 	s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1563 	if (s == NULL) {
1564 		DYN_BUCKET_UNLOCK(bucket);
1565 		uma_zfree(V_dyn_parent_zone, limit);
1566 		return (NULL);
1567 	}
1568 
1569 	s->limit = limit;
1570 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1571 	DYN_COUNT_INC(dyn_parent_count);
1572 	DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1573 	DYNSTATE_CRITICAL_ENTER();
1574 	DYNSTATE_PROTECT(s);
1575 	DYN_BUCKET_UNLOCK(bucket);
1576 	return (s);
1577 }
1578 
1579 static int
1580 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1581     uint8_t set, const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1582     uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1583     uint16_t kidx, uint8_t type)
1584 {
1585 	struct dyn_ipv4_state *s;
1586 	void *data;
1587 	uint32_t bucket;
1588 
1589 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1590 	DYN_BUCKET_LOCK(bucket);
1591 	if (info->direction == MATCH_UNKNOWN ||
1592 	    info->kidx != kidx ||
1593 	    info->hashval != hashval ||
1594 	    info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1595 		/*
1596 		 * Bucket version has been changed since last lookup,
1597 		 * do lookup again to be sure that state does not exist.
1598 		 */
1599 		if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1600 		    bucket, kidx) != 0) {
1601 			DYN_BUCKET_UNLOCK(bucket);
1602 			return (EEXIST);
1603 		}
1604 	}
1605 
1606 	data = dyn_alloc_dyndata(parent, ruleid, rulenum, set, pkt, ulp,
1607 	    pktlen, hashval, fibnum);
1608 	if (data == NULL) {
1609 		DYN_BUCKET_UNLOCK(bucket);
1610 		return (ENOMEM);
1611 	}
1612 
1613 	s = dyn_alloc_ipv4_state(pkt, kidx, type);
1614 	if (s == NULL) {
1615 		DYN_BUCKET_UNLOCK(bucket);
1616 		uma_zfree(V_dyn_data_zone, data);
1617 		return (ENOMEM);
1618 	}
1619 
1620 	s->data = data;
1621 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1622 	DYN_COUNT_INC(dyn_count);
1623 	DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1624 	DYN_BUCKET_UNLOCK(bucket);
1625 	return (0);
1626 }
1627 
1628 #ifdef INET6
1629 static struct dyn_ipv6_state *
1630 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1631     uint16_t kidx, uint8_t type)
1632 {
1633 	struct dyn_ipv6_state *s;
1634 
1635 	s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1636 	if (s == NULL)
1637 		return (NULL);
1638 
1639 	s->type = type;
1640 	s->kidx = kidx;
1641 	s->zoneid = zoneid;
1642 	s->proto = pkt->proto;
1643 	s->sport = pkt->src_port;
1644 	s->dport = pkt->dst_port;
1645 	s->src = pkt->src_ip6;
1646 	s->dst = pkt->dst_ip6;
1647 	return (s);
1648 }
1649 
1650 /*
1651  * Add IPv6 parent state.
1652  * Returns pointer to parent state. When it is not NULL we are in
1653  * critical section and pointer protected by hazard pointer.
1654  * When some error occurs, it return NULL and exit from critical section
1655  * is not needed.
1656  */
1657 static struct dyn_ipv6_state *
1658 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1659     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t zoneid,
1660     uint32_t hashval, uint32_t version, uint16_t kidx)
1661 {
1662 	struct dyn_ipv6_state *s;
1663 	struct dyn_parent *limit;
1664 	uint32_t bucket;
1665 
1666 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1667 	DYN_BUCKET_LOCK(bucket);
1668 	if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1669 		/*
1670 		 * Bucket version has been changed since last lookup,
1671 		 * do lookup again to be sure that state does not exist.
1672 		 */
1673 		s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1674 		    rulenum, bucket);
1675 		if (s != NULL) {
1676 			/*
1677 			 * Simultaneous thread has already created this
1678 			 * state. Just return it.
1679 			 */
1680 			DYNSTATE_CRITICAL_ENTER();
1681 			DYNSTATE_PROTECT(s);
1682 			DYN_BUCKET_UNLOCK(bucket);
1683 			return (s);
1684 		}
1685 	}
1686 
1687 	limit = dyn_alloc_parent(rule, ruleid, rulenum, set, hashval);
1688 	if (limit == NULL) {
1689 		DYN_BUCKET_UNLOCK(bucket);
1690 		return (NULL);
1691 	}
1692 
1693 	s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1694 	if (s == NULL) {
1695 		DYN_BUCKET_UNLOCK(bucket);
1696 		uma_zfree(V_dyn_parent_zone, limit);
1697 		return (NULL);
1698 	}
1699 
1700 	s->limit = limit;
1701 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1702 	DYN_COUNT_INC(dyn_parent_count);
1703 	DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1704 	DYNSTATE_CRITICAL_ENTER();
1705 	DYNSTATE_PROTECT(s);
1706 	DYN_BUCKET_UNLOCK(bucket);
1707 	return (s);
1708 }
1709 
1710 static int
1711 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1712     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t zoneid,
1713     const void *ulp, int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1714     uint16_t fibnum, uint16_t kidx, uint8_t type)
1715 {
1716 	struct dyn_ipv6_state *s;
1717 	struct dyn_data *data;
1718 	uint32_t bucket;
1719 
1720 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1721 	DYN_BUCKET_LOCK(bucket);
1722 	if (info->direction == MATCH_UNKNOWN ||
1723 	    info->kidx != kidx ||
1724 	    info->hashval != hashval ||
1725 	    info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1726 		/*
1727 		 * Bucket version has been changed since last lookup,
1728 		 * do lookup again to be sure that state does not exist.
1729 		 */
1730 		if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1731 		    bucket, kidx) != 0) {
1732 			DYN_BUCKET_UNLOCK(bucket);
1733 			return (EEXIST);
1734 		}
1735 	}
1736 
1737 	data = dyn_alloc_dyndata(parent, ruleid, rulenum, set, pkt, ulp,
1738 	    pktlen, hashval, fibnum);
1739 	if (data == NULL) {
1740 		DYN_BUCKET_UNLOCK(bucket);
1741 		return (ENOMEM);
1742 	}
1743 
1744 	s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1745 	if (s == NULL) {
1746 		DYN_BUCKET_UNLOCK(bucket);
1747 		uma_zfree(V_dyn_data_zone, data);
1748 		return (ENOMEM);
1749 	}
1750 
1751 	s->data = data;
1752 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1753 	DYN_COUNT_INC(dyn_count);
1754 	DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1755 	DYN_BUCKET_UNLOCK(bucket);
1756 	return (0);
1757 }
1758 #endif /* INET6 */
1759 
1760 static void *
1761 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1762     struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1763 {
1764 	char sbuf[24];
1765 	struct dyn_parent *p;
1766 	void *ret;
1767 	uint32_t bucket, version;
1768 
1769 	p = NULL;
1770 	ret = NULL;
1771 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1772 	DYNSTATE_CRITICAL_ENTER();
1773 	if (IS_IP4_FLOW_ID(pkt)) {
1774 		struct dyn_ipv4_state *s;
1775 
1776 		version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1777 		s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1778 		    rule->rulenum, bucket);
1779 		if (s == NULL) {
1780 			/*
1781 			 * Exit from critical section because dyn_add_parent()
1782 			 * will acquire bucket lock.
1783 			 */
1784 			DYNSTATE_CRITICAL_EXIT();
1785 
1786 			s = dyn_add_ipv4_parent(rule, rule->id,
1787 			    rule->rulenum, rule->set, pkt, hashval,
1788 			    version, kidx);
1789 			if (s == NULL)
1790 				return (NULL);
1791 			/* Now we are in critical section again. */
1792 		}
1793 		ret = s;
1794 		p = s->limit;
1795 	}
1796 #ifdef INET6
1797 	else if (IS_IP6_FLOW_ID(pkt)) {
1798 		struct dyn_ipv6_state *s;
1799 
1800 		version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1801 		s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1802 		    rule->rulenum, bucket);
1803 		if (s == NULL) {
1804 			/*
1805 			 * Exit from critical section because dyn_add_parent()
1806 			 * can acquire bucket mutex.
1807 			 */
1808 			DYNSTATE_CRITICAL_EXIT();
1809 
1810 			s = dyn_add_ipv6_parent(rule, rule->id,
1811 			    rule->rulenum, rule->set, pkt, zoneid, hashval,
1812 			    version, kidx);
1813 			if (s == NULL)
1814 				return (NULL);
1815 			/* Now we are in critical section again. */
1816 		}
1817 		ret = s;
1818 		p = s->limit;
1819 	}
1820 #endif
1821 	else {
1822 		DYNSTATE_CRITICAL_EXIT();
1823 		return (NULL);
1824 	}
1825 
1826 	/* Check the limit */
1827 	if (DPARENT_COUNT(p) >= limit) {
1828 		DYNSTATE_CRITICAL_EXIT();
1829 		if (V_fw_verbose && last_log != time_uptime) {
1830 			last_log = time_uptime;
1831 			snprintf(sbuf, sizeof(sbuf), "%u drop session",
1832 			    rule->rulenum);
1833 			print_dyn_rule_flags(pkt, O_LIMIT,
1834 			    LOG_SECURITY | LOG_DEBUG, sbuf,
1835 			    "too many entries");
1836 		}
1837 		return (NULL);
1838 	}
1839 
1840 	/* Take new session into account. */
1841 	DPARENT_COUNT_INC(p);
1842 	/*
1843 	 * We must exit from critical section because the following code
1844 	 * can acquire bucket mutex.
1845 	 * We rely on the the 'count' field. The state will not expire
1846 	 * until it has some child states, i.e. 'count' field is not zero.
1847 	 * Return state pointer, it will be used by child states as parent.
1848 	 */
1849 	DYNSTATE_CRITICAL_EXIT();
1850 	return (ret);
1851 }
1852 
1853 static int
1854 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1855     uint16_t fibnum, const void *ulp, int pktlen, void *rule,
1856     uint32_t ruleid, uint16_t rulenum, uint8_t set,
1857     struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1858     uint16_t kidx, uint8_t type)
1859 {
1860 	struct ipfw_flow_id id;
1861 	uint32_t hashval, parent_hashval;
1862 	int ret;
1863 
1864 	MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1865 
1866 	if (type == O_LIMIT) {
1867 		/* Create masked flow id and calculate bucket */
1868 		id.addr_type = pkt->addr_type;
1869 		id.proto = pkt->proto;
1870 		id.fib = fibnum; /* unused */
1871 		id.src_port = (limit_mask & DYN_SRC_PORT) ?
1872 		    pkt->src_port: 0;
1873 		id.dst_port = (limit_mask & DYN_DST_PORT) ?
1874 		    pkt->dst_port: 0;
1875 		if (IS_IP4_FLOW_ID(pkt)) {
1876 			id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1877 			    pkt->src_ip: 0;
1878 			id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1879 			    pkt->dst_ip: 0;
1880 		}
1881 #ifdef INET6
1882 		else if (IS_IP6_FLOW_ID(pkt)) {
1883 			if (limit_mask & DYN_SRC_ADDR)
1884 				id.src_ip6 = pkt->src_ip6;
1885 			else
1886 				memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1887 			if (limit_mask & DYN_DST_ADDR)
1888 				id.dst_ip6 = pkt->dst_ip6;
1889 			else
1890 				memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1891 		}
1892 #endif
1893 		else
1894 			return (EAFNOSUPPORT);
1895 
1896 		parent_hashval = hash_parent(&id, rule);
1897 		rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1898 		    limit, kidx);
1899 		if (rule == NULL) {
1900 #if 0
1901 			if (V_fw_verbose && last_log != time_uptime) {
1902 				last_log = time_uptime;
1903 				snprintf(sbuf, sizeof(sbuf),
1904 				    "%u drop session", rule->rulenum);
1905 			print_dyn_rule_flags(pkt, O_LIMIT,
1906 			    LOG_SECURITY | LOG_DEBUG, sbuf,
1907 			    "too many entries");
1908 			}
1909 #endif
1910 			return (EACCES);
1911 		}
1912 		/*
1913 		 * Limit is not reached, create new state.
1914 		 * Now rule points to parent state.
1915 		 */
1916 	}
1917 
1918 	hashval = hash_packet(pkt);
1919 	if (IS_IP4_FLOW_ID(pkt))
1920 		ret = dyn_add_ipv4_state(rule, ruleid, rulenum, set, pkt,
1921 		    ulp, pktlen, hashval, info, fibnum, kidx, type);
1922 #ifdef INET6
1923 	else if (IS_IP6_FLOW_ID(pkt))
1924 		ret = dyn_add_ipv6_state(rule, ruleid, rulenum, set, pkt,
1925 		    zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1926 #endif /* INET6 */
1927 	else
1928 		ret = EAFNOSUPPORT;
1929 
1930 	if (type == O_LIMIT) {
1931 		if (ret != 0) {
1932 			/*
1933 			 * We failed to create child state for O_LIMIT
1934 			 * opcode. Since we already counted it in the parent,
1935 			 * we must revert counter back. The 'rule' points to
1936 			 * parent state, use it to get dyn_parent.
1937 			 *
1938 			 * XXXAE: it should be safe to use 'rule' pointer
1939 			 * without extra lookup, parent state is referenced
1940 			 * and should not be freed.
1941 			 */
1942 			if (IS_IP4_FLOW_ID(&id))
1943 				DPARENT_COUNT_DEC(
1944 				    ((struct dyn_ipv4_state *)rule)->limit);
1945 #ifdef INET6
1946 			else if (IS_IP6_FLOW_ID(&id))
1947 				DPARENT_COUNT_DEC(
1948 				    ((struct dyn_ipv6_state *)rule)->limit);
1949 #endif
1950 		}
1951 	}
1952 	/*
1953 	 * EEXIST means that simultaneous thread has created this
1954 	 * state. Consider this as success.
1955 	 *
1956 	 * XXXAE: should we invalidate 'info' content here?
1957 	 */
1958 	if (ret == EEXIST)
1959 		return (0);
1960 	return (ret);
1961 }
1962 
1963 /*
1964  * Install dynamic state.
1965  *  chain - ipfw's instance;
1966  *  rule - the parent rule that installs the state;
1967  *  cmd - opcode that installs the state;
1968  *  args - ipfw arguments;
1969  *  ulp - upper level protocol header;
1970  *  pktlen - packet length;
1971  *  info - dynamic state lookup info;
1972  *  tablearg - tablearg id.
1973  *
1974  * Returns non-zero value (failure) if state is not installed because
1975  * of errors or because session limitations are enforced.
1976  */
1977 int
1978 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1979     const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1980     const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1981     uint32_t tablearg)
1982 {
1983 	uint32_t limit;
1984 	uint16_t limit_mask;
1985 
1986 	if (cmd->o.opcode == O_LIMIT) {
1987 		limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
1988 		limit_mask = cmd->limit_mask;
1989 	} else {
1990 		limit = 0;
1991 		limit_mask = 0;
1992 	}
1993 	return (dyn_install_state(&args->f_id,
1994 #ifdef INET6
1995 	    IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
1996 #endif
1997 	    0, M_GETFIB(args->m), ulp, pktlen, rule, rule->id, rule->rulenum,
1998 	    rule->set, info, limit, limit_mask, cmd->o.arg1, cmd->o.opcode));
1999 }
2000 
2001 /*
2002  * Free safe to remove state entries from expired lists.
2003  */
2004 static void
2005 dyn_free_states(struct ip_fw_chain *chain)
2006 {
2007 	struct dyn_ipv4_state *s4, *s4n;
2008 #ifdef INET6
2009 	struct dyn_ipv6_state *s6, *s6n;
2010 #endif
2011 	int cached_count, i;
2012 
2013 	/*
2014 	 * We keep pointers to objects that are in use on each CPU
2015 	 * in the per-cpu dyn_hp pointer. When object is going to be
2016 	 * removed, first of it is unlinked from the corresponding
2017 	 * list. This leads to changing of dyn_bucket_xxx_delver version.
2018 	 * Unlinked objects is placed into corresponding dyn_expired_xxx
2019 	 * list. Reader that is going to dereference object pointer checks
2020 	 * dyn_bucket_xxx_delver version before and after storing pointer
2021 	 * into dyn_hp. If version is the same, the object is protected
2022 	 * from freeing and it is safe to dereference. Othervise reader
2023 	 * tries to iterate list again from the beginning, but this object
2024 	 * now unlinked and thus will not be accessible.
2025 	 *
2026 	 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2027 	 * It does not matter that some pointer can be changed in
2028 	 * time while we are copying. We need to check, that objects
2029 	 * removed in the previous pass are not in use. And if dyn_hp
2030 	 * pointer does not contain it in the time when we are copying,
2031 	 * it will not appear there, because it is already unlinked.
2032 	 * And for new pointers we will not free objects that will be
2033 	 * unlinked in this pass.
2034 	 */
2035 	cached_count = 0;
2036 	CPU_FOREACH(i) {
2037 		dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2038 		if (dyn_hp_cache[cached_count] != NULL)
2039 			cached_count++;
2040 	}
2041 
2042 	/*
2043 	 * Free expired states that are safe to free.
2044 	 * Check each entry from previous pass in the dyn_expired_xxx
2045 	 * list, if pointer to the object is in the dyn_hp_cache array,
2046 	 * keep it until next pass. Otherwise it is safe to free the
2047 	 * object.
2048 	 *
2049 	 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2050 	 */
2051 #define	DYN_FREE_STATES(s, next, name)		do {			\
2052 	s = SLIST_FIRST(&V_dyn_expired_ ## name);			\
2053 	while (s != NULL) {						\
2054 		next = SLIST_NEXT(s, expired);				\
2055 		for (i = 0; i < cached_count; i++)			\
2056 			if (dyn_hp_cache[i] == s)			\
2057 				break;					\
2058 		if (i == cached_count) {				\
2059 			if (s->type == O_LIMIT_PARENT &&		\
2060 			    s->limit->count != 0) {			\
2061 				s = next;				\
2062 				continue;				\
2063 			}						\
2064 			SLIST_REMOVE(&V_dyn_expired_ ## name,		\
2065 			    s, dyn_ ## name ## _state, expired);	\
2066 			if (s->type == O_LIMIT_PARENT)			\
2067 				uma_zfree(V_dyn_parent_zone, s->limit);	\
2068 			else						\
2069 				uma_zfree(V_dyn_data_zone, s->data);	\
2070 			uma_zfree(V_dyn_ ## name ## _zone, s);		\
2071 		}							\
2072 		s = next;						\
2073 	}								\
2074 } while (0)
2075 
2076 	/*
2077 	 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2078 	 * Userland can invoke ipfw_expire_dyn_states() to delete
2079 	 * specific states, this will lead to modification of expired
2080 	 * lists.
2081 	 *
2082 	 * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2083 	 *	  IPFW_UH_WLOCK to protect access to these lists.
2084 	 */
2085 	DYN_EXPIRED_LOCK();
2086 	DYN_FREE_STATES(s4, s4n, ipv4);
2087 #ifdef INET6
2088 	DYN_FREE_STATES(s6, s6n, ipv6);
2089 #endif
2090 	DYN_EXPIRED_UNLOCK();
2091 #undef DYN_FREE_STATES
2092 }
2093 
2094 /*
2095  * Returns 1 when state is matched by specified range, otherwise returns 0.
2096  */
2097 static int
2098 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2099 {
2100 
2101 	MPASS(rt != NULL);
2102 	/* flush all states */
2103 	if (rt->flags & IPFW_RCFLAG_ALL)
2104 		return (1);
2105 	if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2106 		return (0);
2107 	if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2108 	    (rulenum < rt->start_rule || rulenum > rt->end_rule))
2109 		return (0);
2110 	return (1);
2111 }
2112 
2113 static int
2114 dyn_match_ipv4_state(struct dyn_ipv4_state *s, const ipfw_range_tlv *rt)
2115 {
2116 
2117 	if (s->type == O_LIMIT_PARENT)
2118 		return (dyn_match_range(s->limit->rulenum,
2119 		    s->limit->set, rt));
2120 
2121 	if (s->type == O_LIMIT)
2122 		return (dyn_match_range(s->data->rulenum, s->data->set, rt));
2123 
2124 	if (V_dyn_keep_states == 0 &&
2125 	    dyn_match_range(s->data->rulenum, s->data->set, rt))
2126 		return (1);
2127 
2128 	return (0);
2129 }
2130 
2131 #ifdef INET6
2132 static int
2133 dyn_match_ipv6_state(struct dyn_ipv6_state *s, const ipfw_range_tlv *rt)
2134 {
2135 
2136 	if (s->type == O_LIMIT_PARENT)
2137 		return (dyn_match_range(s->limit->rulenum,
2138 		    s->limit->set, rt));
2139 
2140 	if (s->type == O_LIMIT)
2141 		return (dyn_match_range(s->data->rulenum, s->data->set, rt));
2142 
2143 	if (V_dyn_keep_states == 0 &&
2144 	    dyn_match_range(s->data->rulenum, s->data->set, rt))
2145 		return (1);
2146 
2147 	return (0);
2148 }
2149 #endif
2150 
2151 /*
2152  * Unlink expired entries from states lists.
2153  * @rt can be used to specify the range of states for deletion.
2154  */
2155 static void
2156 dyn_expire_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2157 {
2158 	struct dyn_ipv4_slist expired_ipv4;
2159 #ifdef INET6
2160 	struct dyn_ipv6_slist expired_ipv6;
2161 	struct dyn_ipv6_state *s6, *s6n, *s6p;
2162 #endif
2163 	struct dyn_ipv4_state *s4, *s4n, *s4p;
2164 	int bucket, removed, length, max_length;
2165 
2166 	/*
2167 	 * Unlink expired states from each bucket.
2168 	 * With acquired bucket lock iterate entries of each lists:
2169 	 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2170 	 * and unlink entry from the list, link entry into temporary
2171 	 * expired_xxx lists then bump "del" bucket version.
2172 	 *
2173 	 * When an entry is removed, corresponding states counter is
2174 	 * decremented. If entry has O_LIMIT type, parent's reference
2175 	 * counter is decremented.
2176 	 *
2177 	 * NOTE: this function can be called from userspace context
2178 	 * when user deletes rules. In this case all matched states
2179 	 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2180 	 * in the expired lists until reference counter become zero.
2181 	 */
2182 #define	DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra)	do {	\
2183 	length = 0;							\
2184 	removed = 0;							\
2185 	prev = NULL;							\
2186 	s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]);			\
2187 	while (s != NULL) {						\
2188 		next = CK_SLIST_NEXT(s, entry);				\
2189 		if ((TIME_LEQ((s)->exp, time_uptime) && extra) ||	\
2190 		    (rt != NULL && dyn_match_ ## af ## _state(s, rt))) {\
2191 			if (prev != NULL)				\
2192 				CK_SLIST_REMOVE_AFTER(prev, entry);	\
2193 			else						\
2194 				CK_SLIST_REMOVE_HEAD(			\
2195 				    &V_dyn_ ## name [bucket], entry);	\
2196 			removed++;					\
2197 			SLIST_INSERT_HEAD(&expired_ ## af, s, expired);	\
2198 			if (s->type == O_LIMIT_PARENT)			\
2199 				DYN_COUNT_DEC(dyn_parent_count);	\
2200 			else {						\
2201 				DYN_COUNT_DEC(dyn_count);		\
2202 				if (s->type == O_LIMIT)	{		\
2203 					s = s->data->parent;		\
2204 					DPARENT_COUNT_DEC(s->limit);	\
2205 				}					\
2206 			}						\
2207 		} else {						\
2208 			prev = s;					\
2209 			length++;					\
2210 		}							\
2211 		s = next;						\
2212 	}								\
2213 	if (removed != 0)						\
2214 		DYN_BUCKET_VERSION_BUMP(bucket, name ## _del);		\
2215 	if (length > max_length)				\
2216 		max_length = length;				\
2217 } while (0)
2218 
2219 	SLIST_INIT(&expired_ipv4);
2220 #ifdef INET6
2221 	SLIST_INIT(&expired_ipv6);
2222 #endif
2223 	max_length = 0;
2224 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2225 		DYN_BUCKET_LOCK(bucket);
2226 		DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2227 		DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2228 		    ipv4_parent, (s4->limit->count == 0));
2229 #ifdef INET6
2230 		DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2231 		DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2232 		    ipv6_parent, (s6->limit->count == 0));
2233 #endif
2234 		DYN_BUCKET_UNLOCK(bucket);
2235 	}
2236 	/* Update curr_max_length for statistics. */
2237 	V_curr_max_length = max_length;
2238 	/*
2239 	 * Concatenate temporary lists with global expired lists.
2240 	 */
2241 	DYN_EXPIRED_LOCK();
2242 	SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2243 	    dyn_ipv4_state, expired);
2244 #ifdef INET6
2245 	SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2246 	    dyn_ipv6_state, expired);
2247 #endif
2248 	DYN_EXPIRED_UNLOCK();
2249 #undef DYN_UNLINK_STATES
2250 #undef DYN_UNREF_STATES
2251 }
2252 
2253 static struct mbuf *
2254 dyn_mgethdr(int len, uint16_t fibnum)
2255 {
2256 	struct mbuf *m;
2257 
2258 	m = m_gethdr(M_NOWAIT, MT_DATA);
2259 	if (m == NULL)
2260 		return (NULL);
2261 #ifdef MAC
2262 	mac_netinet_firewall_send(m);
2263 #endif
2264 	M_SETFIB(m, fibnum);
2265 	m->m_data += max_linkhdr;
2266 	m->m_flags |= M_SKIP_FIREWALL;
2267 	m->m_len = m->m_pkthdr.len = len;
2268 	bzero(m->m_data, len);
2269 	return (m);
2270 }
2271 
2272 static void
2273 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2274     uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2275 {
2276 	struct tcphdr *tcp;
2277 	struct ip *ip;
2278 
2279 	ip = mtod(m, struct ip *);
2280 	ip->ip_v = 4;
2281 	ip->ip_hl = sizeof(*ip) >> 2;
2282 	ip->ip_tos = IPTOS_LOWDELAY;
2283 	ip->ip_len = htons(m->m_len);
2284 	ip->ip_off |= htons(IP_DF);
2285 	ip->ip_ttl = V_ip_defttl;
2286 	ip->ip_p = IPPROTO_TCP;
2287 	ip->ip_src.s_addr = htonl(src);
2288 	ip->ip_dst.s_addr = htonl(dst);
2289 
2290 	tcp = mtodo(m, sizeof(struct ip));
2291 	tcp->th_sport = htons(sport);
2292 	tcp->th_dport = htons(dport);
2293 	tcp->th_off = sizeof(struct tcphdr) >> 2;
2294 	tcp->th_seq = htonl(seq);
2295 	tcp->th_ack = htonl(ack);
2296 	tcp->th_flags = TH_ACK;
2297 	tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2298 	    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2299 
2300 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2301 	m->m_pkthdr.csum_flags = CSUM_TCP;
2302 }
2303 
2304 static void
2305 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2306 {
2307 	struct mbuf *m;
2308 
2309 	if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2310 		m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2311 		    s->data->fibnum);
2312 		if (m != NULL) {
2313 			dyn_make_keepalive_ipv4(m, s->dst, s->src,
2314 			    s->data->ack_fwd - 1, s->data->ack_rev,
2315 			    s->dport, s->sport);
2316 			if (mbufq_enqueue(q, m)) {
2317 				m_freem(m);
2318 				log(LOG_DEBUG, "ipfw: limit for IPv4 "
2319 				    "keepalive queue is reached.\n");
2320 				return;
2321 			}
2322 		}
2323 	}
2324 
2325 	if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2326 		m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2327 		    s->data->fibnum);
2328 		if (m != NULL) {
2329 			dyn_make_keepalive_ipv4(m, s->src, s->dst,
2330 			    s->data->ack_rev - 1, s->data->ack_fwd,
2331 			    s->sport, s->dport);
2332 			if (mbufq_enqueue(q, m)) {
2333 				m_freem(m);
2334 				log(LOG_DEBUG, "ipfw: limit for IPv4 "
2335 				    "keepalive queue is reached.\n");
2336 				return;
2337 			}
2338 		}
2339 	}
2340 }
2341 
2342 /*
2343  * Prepare and send keep-alive packets.
2344  */
2345 static void
2346 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2347 {
2348 	struct mbufq q;
2349 	struct mbuf *m;
2350 	struct dyn_ipv4_state *s;
2351 	uint32_t bucket;
2352 
2353 	mbufq_init(&q, DYN_KEEPALIVE_MAXQ);
2354 	IPFW_UH_RLOCK(chain);
2355 	/*
2356 	 * It is safe to not use hazard pointer and just do lockless
2357 	 * access to the lists, because states entries can not be deleted
2358 	 * while we hold IPFW_UH_RLOCK.
2359 	 */
2360 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2361 		CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2362 			/*
2363 			 * Only established TCP connections that will
2364 			 * become expired withing dyn_keepalive_interval.
2365 			 */
2366 			if (s->proto != IPPROTO_TCP ||
2367 			    (s->data->state & BOTH_SYN) != BOTH_SYN ||
2368 			    TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2369 				s->data->expire))
2370 				continue;
2371 			dyn_enqueue_keepalive_ipv4(&q, s);
2372 		}
2373 	}
2374 	IPFW_UH_RUNLOCK(chain);
2375 	while ((m = mbufq_dequeue(&q)) != NULL)
2376 		ip_output(m, NULL, NULL, 0, NULL, NULL);
2377 }
2378 
2379 #ifdef INET6
2380 static void
2381 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2382     const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2383     uint16_t sport, uint16_t dport)
2384 {
2385 	struct tcphdr *tcp;
2386 	struct ip6_hdr *ip6;
2387 
2388 	ip6 = mtod(m, struct ip6_hdr *);
2389 	ip6->ip6_vfc |= IPV6_VERSION;
2390 	ip6->ip6_plen = htons(sizeof(struct tcphdr));
2391 	ip6->ip6_nxt = IPPROTO_TCP;
2392 	ip6->ip6_hlim = IPV6_DEFHLIM;
2393 	ip6->ip6_src = *src;
2394 	if (IN6_IS_ADDR_LINKLOCAL(src))
2395 		ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2396 	ip6->ip6_dst = *dst;
2397 	if (IN6_IS_ADDR_LINKLOCAL(dst))
2398 		ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2399 
2400 	tcp = mtodo(m, sizeof(struct ip6_hdr));
2401 	tcp->th_sport = htons(sport);
2402 	tcp->th_dport = htons(dport);
2403 	tcp->th_off = sizeof(struct tcphdr) >> 2;
2404 	tcp->th_seq = htonl(seq);
2405 	tcp->th_ack = htonl(ack);
2406 	tcp->th_flags = TH_ACK;
2407 	tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2408 	    IPPROTO_TCP, 0);
2409 
2410 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2411 	m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2412 }
2413 
2414 static void
2415 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2416 {
2417 	struct mbuf *m;
2418 
2419 	if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2420 		m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2421 		    sizeof(struct tcphdr), s->data->fibnum);
2422 		if (m != NULL) {
2423 			dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2424 			    s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2425 			    s->dport, s->sport);
2426 			if (mbufq_enqueue(q, m)) {
2427 				m_freem(m);
2428 				log(LOG_DEBUG, "ipfw: limit for IPv6 "
2429 				    "keepalive queue is reached.\n");
2430 				return;
2431 			}
2432 		}
2433 	}
2434 
2435 	if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2436 		m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2437 		    sizeof(struct tcphdr), s->data->fibnum);
2438 		if (m != NULL) {
2439 			dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2440 			    s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2441 			    s->sport, s->dport);
2442 			if (mbufq_enqueue(q, m)) {
2443 				m_freem(m);
2444 				log(LOG_DEBUG, "ipfw: limit for IPv6 "
2445 				    "keepalive queue is reached.\n");
2446 				return;
2447 			}
2448 		}
2449 	}
2450 }
2451 
2452 static void
2453 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2454 {
2455 	struct mbufq q;
2456 	struct mbuf *m;
2457 	struct dyn_ipv6_state *s;
2458 	uint32_t bucket;
2459 
2460 	mbufq_init(&q, DYN_KEEPALIVE_MAXQ);
2461 	IPFW_UH_RLOCK(chain);
2462 	/*
2463 	 * It is safe to not use hazard pointer and just do lockless
2464 	 * access to the lists, because states entries can not be deleted
2465 	 * while we hold IPFW_UH_RLOCK.
2466 	 */
2467 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2468 		CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2469 			/*
2470 			 * Only established TCP connections that will
2471 			 * become expired withing dyn_keepalive_interval.
2472 			 */
2473 			if (s->proto != IPPROTO_TCP ||
2474 			    (s->data->state & BOTH_SYN) != BOTH_SYN ||
2475 			    TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2476 				s->data->expire))
2477 				continue;
2478 			dyn_enqueue_keepalive_ipv6(&q, s);
2479 		}
2480 	}
2481 	IPFW_UH_RUNLOCK(chain);
2482 	while ((m = mbufq_dequeue(&q)) != NULL)
2483 		ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2484 }
2485 #endif /* INET6 */
2486 
2487 static void
2488 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new)
2489 {
2490 #ifdef INET6
2491 	struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2492 	uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2493 	struct dyn_ipv6_state *s6;
2494 #endif
2495 	struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2496 	uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2497 	struct dyn_ipv4_state *s4;
2498 	struct mtx *bucket_lock;
2499 	void *tmp;
2500 	uint32_t bucket;
2501 
2502 	MPASS(powerof2(new));
2503 	DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2504 	/*
2505 	 * Allocate and initialize new lists.
2506 	 * XXXAE: on memory pressure this can disable callout timer.
2507 	 */
2508 	bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2509 	    M_WAITOK | M_ZERO);
2510 	ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2511 	    M_WAITOK | M_ZERO);
2512 	ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2513 	    M_WAITOK | M_ZERO);
2514 	ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2515 	ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2516 	ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2517 	    M_WAITOK | M_ZERO);
2518 	ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2519 	    M_WAITOK | M_ZERO);
2520 #ifdef INET6
2521 	ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2522 	    M_WAITOK | M_ZERO);
2523 	ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2524 	    M_WAITOK | M_ZERO);
2525 	ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2526 	ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2527 	ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2528 	    M_WAITOK | M_ZERO);
2529 	ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2530 	    M_WAITOK | M_ZERO);
2531 #endif
2532 	for (bucket = 0; bucket < new; bucket++) {
2533 		DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2534 		CK_SLIST_INIT(&ipv4[bucket]);
2535 		CK_SLIST_INIT(&ipv4_parent[bucket]);
2536 #ifdef INET6
2537 		CK_SLIST_INIT(&ipv6[bucket]);
2538 		CK_SLIST_INIT(&ipv6_parent[bucket]);
2539 #endif
2540 	}
2541 
2542 #define DYN_RELINK_STATES(s, hval, i, head, ohead)	do {		\
2543 	while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) {	\
2544 		CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry);	\
2545 		CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)],	\
2546 		    s, entry);						\
2547 	}								\
2548 } while (0)
2549 	/*
2550 	 * Prevent rules changing from userland.
2551 	 */
2552 	IPFW_UH_WLOCK(chain);
2553 	/*
2554 	 * Hold traffic processing until we finish resize to
2555 	 * prevent access to states lists.
2556 	 */
2557 	IPFW_WLOCK(chain);
2558 	/* Re-link all dynamic states */
2559 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2560 		DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2561 		DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2562 		    ipv4_parent);
2563 #ifdef INET6
2564 		DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2565 		DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2566 		    ipv6_parent);
2567 #endif
2568 	}
2569 
2570 #define	DYN_SWAP_PTR(old, new, tmp)	do {		\
2571 	tmp = old;					\
2572 	old = new;					\
2573 	new = tmp;					\
2574 } while (0)
2575 	/* Swap pointers */
2576 	DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2577 	DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2578 	DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2579 	DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2580 	DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2581 	DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2582 	DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2583 
2584 #ifdef INET6
2585 	DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2586 	DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2587 	DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2588 	DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2589 	DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2590 	DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2591 #endif
2592 	bucket = V_curr_dyn_buckets;
2593 	V_curr_dyn_buckets = new;
2594 
2595 	IPFW_WUNLOCK(chain);
2596 	IPFW_UH_WUNLOCK(chain);
2597 
2598 	/* Release old resources */
2599 	while (bucket-- != 0)
2600 		DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2601 	free(bucket_lock, M_IPFW);
2602 	free(ipv4, M_IPFW);
2603 	free(ipv4_parent, M_IPFW);
2604 	free(ipv4_add, M_IPFW);
2605 	free(ipv4_parent_add, M_IPFW);
2606 	free(ipv4_del, M_IPFW);
2607 	free(ipv4_parent_del, M_IPFW);
2608 #ifdef INET6
2609 	free(ipv6, M_IPFW);
2610 	free(ipv6_parent, M_IPFW);
2611 	free(ipv6_add, M_IPFW);
2612 	free(ipv6_parent_add, M_IPFW);
2613 	free(ipv6_del, M_IPFW);
2614 	free(ipv6_parent_del, M_IPFW);
2615 #endif
2616 }
2617 
2618 /*
2619  * This function is used to perform various maintenance
2620  * on dynamic hash lists. Currently it is called every second.
2621  */
2622 static void
2623 dyn_tick(void *vnetx)
2624 {
2625 	uint32_t buckets;
2626 
2627 	CURVNET_SET((struct vnet *)vnetx);
2628 	/*
2629 	 * First free states unlinked in previous passes.
2630 	 */
2631 	dyn_free_states(&V_layer3_chain);
2632 	/*
2633 	 * Now unlink others expired states.
2634 	 * We use IPFW_UH_WLOCK to avoid concurrent call of
2635 	 * dyn_expire_states(). It is the only function that does
2636 	 * deletion of state entries from states lists.
2637 	 */
2638 	IPFW_UH_WLOCK(&V_layer3_chain);
2639 	dyn_expire_states(&V_layer3_chain, NULL);
2640 	IPFW_UH_WUNLOCK(&V_layer3_chain);
2641 	/*
2642 	 * Send keepalives if they are enabled and the time has come.
2643 	 */
2644 	if (V_dyn_keepalive != 0 &&
2645 	    V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2646 		V_dyn_keepalive_last = time_uptime;
2647 		dyn_send_keepalive_ipv4(&V_layer3_chain);
2648 #ifdef INET6
2649 		dyn_send_keepalive_ipv6(&V_layer3_chain);
2650 #endif
2651 	}
2652 	/*
2653 	 * Check if we need to resize the hash:
2654 	 * if current number of states exceeds number of buckets in hash,
2655 	 * and dyn_buckets_max permits to grow the number of buckets, then
2656 	 * do it. Grow hash size to the minimum power of 2 which is bigger
2657 	 * than current states count.
2658 	 */
2659 	if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2660 	    (V_curr_dyn_buckets < V_dyn_count / 2 || (
2661 	    V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2662 		buckets = 1 << fls(V_dyn_count);
2663 		if (buckets > V_dyn_buckets_max)
2664 			buckets = V_dyn_buckets_max;
2665 		dyn_grow_hashtable(&V_layer3_chain, buckets);
2666 	}
2667 
2668 	callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2669 	CURVNET_RESTORE();
2670 }
2671 
2672 void
2673 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2674 {
2675 	/*
2676 	 * Do not perform any checks if we currently have no dynamic states
2677 	 */
2678 	if (V_dyn_count == 0)
2679 		return;
2680 
2681 	IPFW_UH_WLOCK_ASSERT(chain);
2682 	dyn_expire_states(chain, rt);
2683 }
2684 
2685 /*
2686  * Returns size of dynamic states in legacy format
2687  */
2688 int
2689 ipfw_dyn_len(void)
2690 {
2691 
2692 	return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2693 }
2694 
2695 /*
2696  * Returns number of dynamic states.
2697  * Used by dump format v1 (current).
2698  */
2699 uint32_t
2700 ipfw_dyn_get_count(void)
2701 {
2702 
2703 	return (V_dyn_count + V_dyn_parent_count);
2704 }
2705 
2706 /*
2707  * Check if rule contains at least one dynamic opcode.
2708  *
2709  * Returns 1 if such opcode is found, 0 otherwise.
2710  */
2711 int
2712 ipfw_is_dyn_rule(struct ip_fw *rule)
2713 {
2714 	int cmdlen, l;
2715 	ipfw_insn *cmd;
2716 
2717 	l = rule->cmd_len;
2718 	cmd = rule->cmd;
2719 	cmdlen = 0;
2720 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
2721 		cmdlen = F_LEN(cmd);
2722 
2723 		switch (cmd->opcode) {
2724 		case O_LIMIT:
2725 		case O_KEEP_STATE:
2726 		case O_PROBE_STATE:
2727 		case O_CHECK_STATE:
2728 			return (1);
2729 		}
2730 	}
2731 
2732 	return (0);
2733 }
2734 
2735 static void
2736 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx,
2737     ipfw_dyn_rule *dst)
2738 {
2739 
2740 	dst->dyn_type = O_LIMIT_PARENT;
2741 	dst->kidx = kidx;
2742 	dst->count = (uint16_t)DPARENT_COUNT(p);
2743 	dst->expire = TIME_LEQ(p->expire, time_uptime) ?  0:
2744 	    p->expire - time_uptime;
2745 
2746 	/* 'rule' is used to pass up the rule number and set */
2747 	memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2748 	/* store set number into high word of dst->rule pointer. */
2749 	memcpy((char *)&dst->rule + sizeof(p->rulenum), &p->set,
2750 	    sizeof(p->set));
2751 
2752 	/* unused fields */
2753 	dst->pcnt = 0;
2754 	dst->bcnt = 0;
2755 	dst->parent = NULL;
2756 	dst->state = 0;
2757 	dst->ack_fwd = 0;
2758 	dst->ack_rev = 0;
2759 	dst->bucket = p->hashval;
2760 	/*
2761 	 * The legacy userland code will interpret a NULL here as a marker
2762 	 * for the last dynamic rule.
2763 	 */
2764 	dst->next = (ipfw_dyn_rule *)1;
2765 }
2766 
2767 static void
2768 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2769     ipfw_dyn_rule *dst)
2770 {
2771 
2772 	dst->dyn_type = type;
2773 	dst->kidx = kidx;
2774 	dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2775 	dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2776 	dst->expire = TIME_LEQ(data->expire, time_uptime) ?  0:
2777 	    data->expire - time_uptime;
2778 
2779 	/* 'rule' is used to pass up the rule number and set */
2780 	memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2781 	/* store set number into high word of dst->rule pointer. */
2782 	memcpy((char *)&dst->rule + sizeof(data->rulenum), &data->set,
2783 	    sizeof(data->set));
2784 
2785 	/* unused fields */
2786 	dst->parent = NULL;
2787 	dst->state = data->state;
2788 	dst->ack_fwd = data->ack_fwd;
2789 	dst->ack_rev = data->ack_rev;
2790 	dst->count = 0;
2791 	dst->bucket = data->hashval;
2792 	/*
2793 	 * The legacy userland code will interpret a NULL here as a marker
2794 	 * for the last dynamic rule.
2795 	 */
2796 	dst->next = (ipfw_dyn_rule *)1;
2797 }
2798 
2799 static void
2800 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2801 {
2802 
2803 	switch (s->type) {
2804 	case O_LIMIT_PARENT:
2805 		dyn_export_parent(s->limit, s->kidx, dst);
2806 		break;
2807 	default:
2808 		dyn_export_data(s->data, s->kidx, s->type, dst);
2809 	}
2810 
2811 	dst->id.dst_ip = s->dst;
2812 	dst->id.src_ip = s->src;
2813 	dst->id.dst_port = s->dport;
2814 	dst->id.src_port = s->sport;
2815 	dst->id.fib = s->data->fibnum;
2816 	dst->id.proto = s->proto;
2817 	dst->id._flags = 0;
2818 	dst->id.addr_type = 4;
2819 
2820 	memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
2821 	memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
2822 	dst->id.flow_id6 = dst->id.extra = 0;
2823 }
2824 
2825 #ifdef INET6
2826 static void
2827 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
2828 {
2829 
2830 	switch (s->type) {
2831 	case O_LIMIT_PARENT:
2832 		dyn_export_parent(s->limit, s->kidx, dst);
2833 		break;
2834 	default:
2835 		dyn_export_data(s->data, s->kidx, s->type, dst);
2836 	}
2837 
2838 	dst->id.src_ip6 = s->src;
2839 	dst->id.dst_ip6 = s->dst;
2840 	dst->id.dst_port = s->dport;
2841 	dst->id.src_port = s->sport;
2842 	dst->id.fib = s->data->fibnum;
2843 	dst->id.proto = s->proto;
2844 	dst->id._flags = 0;
2845 	dst->id.addr_type = 6;
2846 
2847 	dst->id.dst_ip = dst->id.src_ip = 0;
2848 	dst->id.flow_id6 = dst->id.extra = 0;
2849 }
2850 #endif /* INET6 */
2851 
2852 /*
2853  * Fills the buffer given by @sd with dynamic states.
2854  * Used by dump format v1 (current).
2855  *
2856  * Returns 0 on success.
2857  */
2858 int
2859 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
2860 {
2861 #ifdef INET6
2862 	struct dyn_ipv6_state *s6;
2863 #endif
2864 	struct dyn_ipv4_state *s4;
2865 	ipfw_obj_dyntlv *dst, *last;
2866 	ipfw_obj_ctlv *ctlv;
2867 	uint32_t bucket;
2868 
2869 	if (V_dyn_count == 0)
2870 		return (0);
2871 
2872 	/*
2873 	 * IPFW_UH_RLOCK garantees that another userland request
2874 	 * and callout thread will not delete entries from states
2875 	 * lists.
2876 	 */
2877 	IPFW_UH_RLOCK_ASSERT(chain);
2878 
2879 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
2880 	if (ctlv == NULL)
2881 		return (ENOMEM);
2882 	ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
2883 	ctlv->objsize = sizeof(ipfw_obj_dyntlv);
2884 	last = NULL;
2885 
2886 #define	DYN_EXPORT_STATES(s, af, h, b)				\
2887 	CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {			\
2888 		dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd,	\
2889 		    sizeof(ipfw_obj_dyntlv));				\
2890 		if (dst == NULL)					\
2891 			return (ENOMEM);				\
2892 		dyn_export_ ## af ## _state(s, &dst->state);		\
2893 		dst->head.length = sizeof(ipfw_obj_dyntlv);		\
2894 		dst->head.type = IPFW_TLV_DYN_ENT;			\
2895 		last = dst;						\
2896 	}
2897 
2898 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2899 		DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
2900 		DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
2901 #ifdef INET6
2902 		DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
2903 		DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
2904 #endif /* INET6 */
2905 	}
2906 
2907 	/* mark last dynamic rule */
2908 	if (last != NULL)
2909 		last->head.flags = IPFW_DF_LAST; /* XXX: unused */
2910 	return (0);
2911 #undef DYN_EXPORT_STATES
2912 }
2913 
2914 /*
2915  * Fill given buffer with dynamic states (legacy format).
2916  * IPFW_UH_RLOCK has to be held while calling.
2917  */
2918 void
2919 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
2920 {
2921 #ifdef INET6
2922 	struct dyn_ipv6_state *s6;
2923 #endif
2924 	struct dyn_ipv4_state *s4;
2925 	ipfw_dyn_rule *p, *last = NULL;
2926 	char *bp;
2927 	uint32_t bucket;
2928 
2929 	if (V_dyn_count == 0)
2930 		return;
2931 	bp = *pbp;
2932 
2933 	IPFW_UH_RLOCK_ASSERT(chain);
2934 
2935 #define	DYN_EXPORT_STATES(s, af, head, b)				\
2936 	CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) {		\
2937 		if (bp + sizeof(*p) > ep)				\
2938 			break;						\
2939 		p = (ipfw_dyn_rule *)bp;				\
2940 		dyn_export_ ## af ## _state(s, p);			\
2941 		last = p;						\
2942 		bp += sizeof(*p);					\
2943 	}
2944 
2945 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2946 		DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
2947 		DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
2948 #ifdef INET6
2949 		DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
2950 		DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
2951 #endif /* INET6 */
2952 	}
2953 
2954 	if (last != NULL) /* mark last dynamic rule */
2955 		last->next = NULL;
2956 	*pbp = bp;
2957 #undef DYN_EXPORT_STATES
2958 }
2959 
2960 void
2961 ipfw_dyn_init(struct ip_fw_chain *chain)
2962 {
2963 
2964 #ifdef IPFIREWALL_JENKINSHASH
2965 	V_dyn_hashseed = arc4random();
2966 #endif
2967 	V_dyn_max = 16384;		/* max # of states */
2968 	V_dyn_parent_max = 4096;	/* max # of parent states */
2969 	V_dyn_buckets_max = 8192;	/* must be power of 2 */
2970 
2971 	V_dyn_ack_lifetime = 300;
2972 	V_dyn_syn_lifetime = 20;
2973 	V_dyn_fin_lifetime = 1;
2974 	V_dyn_rst_lifetime = 1;
2975 	V_dyn_udp_lifetime = 10;
2976 	V_dyn_short_lifetime = 5;
2977 
2978 	V_dyn_keepalive_interval = 20;
2979 	V_dyn_keepalive_period = 5;
2980 	V_dyn_keepalive = 1;		/* send keepalives */
2981 	V_dyn_keepalive_last = time_uptime;
2982 
2983 	V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
2984 	    sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
2985 	    UMA_ALIGN_PTR, 0);
2986 	uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
2987 
2988 	V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
2989 	    sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
2990 	    UMA_ALIGN_PTR, 0);
2991 	uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
2992 
2993 	SLIST_INIT(&V_dyn_expired_ipv4);
2994 	V_dyn_ipv4 = NULL;
2995 	V_dyn_ipv4_parent = NULL;
2996 	V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
2997 	    sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
2998 	    UMA_ALIGN_PTR, 0);
2999 
3000 #ifdef INET6
3001 	SLIST_INIT(&V_dyn_expired_ipv6);
3002 	V_dyn_ipv6 = NULL;
3003 	V_dyn_ipv6_parent = NULL;
3004 	V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3005 	    sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3006 	    UMA_ALIGN_PTR, 0);
3007 #endif
3008 
3009 	/* Initialize buckets. */
3010 	V_curr_dyn_buckets = 0;
3011 	V_dyn_bucket_lock = NULL;
3012 	dyn_grow_hashtable(chain, 256);
3013 
3014 	if (IS_DEFAULT_VNET(curvnet))
3015 		dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3016 		    M_WAITOK | M_ZERO);
3017 
3018 	DYN_EXPIRED_LOCK_INIT();
3019 	callout_init(&V_dyn_timeout, 1);
3020 	callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3021 	IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3022 }
3023 
3024 void
3025 ipfw_dyn_uninit(int pass)
3026 {
3027 #ifdef INET6
3028 	struct dyn_ipv6_state *s6;
3029 #endif
3030 	struct dyn_ipv4_state *s4;
3031 	int bucket;
3032 
3033 	if (pass == 0) {
3034 		callout_drain(&V_dyn_timeout);
3035 		return;
3036 	}
3037 	IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3038 	DYN_EXPIRED_LOCK_DESTROY();
3039 
3040 #define	DYN_FREE_STATES_FORCED(CK, s, af, name, en)	do {		\
3041 	while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) {	\
3042 		CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en);	\
3043 		if (s->type == O_LIMIT_PARENT)				\
3044 			uma_zfree(V_dyn_parent_zone, s->limit);		\
3045 		else							\
3046 			uma_zfree(V_dyn_data_zone, s->data);		\
3047 		uma_zfree(V_dyn_ ## af ## _zone, s);			\
3048 	}								\
3049 } while (0)
3050 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3051 		DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3052 
3053 		DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3054 		DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3055 		    entry);
3056 #ifdef INET6
3057 		DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3058 		DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3059 		    entry);
3060 #endif /* INET6 */
3061 	}
3062 	DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3063 #ifdef INET6
3064 	DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3065 #endif
3066 #undef DYN_FREE_STATES_FORCED
3067 
3068 	uma_zdestroy(V_dyn_ipv4_zone);
3069 	uma_zdestroy(V_dyn_data_zone);
3070 	uma_zdestroy(V_dyn_parent_zone);
3071 #ifdef INET6
3072 	uma_zdestroy(V_dyn_ipv6_zone);
3073 	free(V_dyn_ipv6, M_IPFW);
3074 	free(V_dyn_ipv6_parent, M_IPFW);
3075 	free(V_dyn_ipv6_add, M_IPFW);
3076 	free(V_dyn_ipv6_parent_add, M_IPFW);
3077 	free(V_dyn_ipv6_del, M_IPFW);
3078 	free(V_dyn_ipv6_parent_del, M_IPFW);
3079 #endif
3080 	free(V_dyn_bucket_lock, M_IPFW);
3081 	free(V_dyn_ipv4, M_IPFW);
3082 	free(V_dyn_ipv4_parent, M_IPFW);
3083 	free(V_dyn_ipv4_add, M_IPFW);
3084 	free(V_dyn_ipv4_parent_add, M_IPFW);
3085 	free(V_dyn_ipv4_del, M_IPFW);
3086 	free(V_dyn_ipv4_parent_del, M_IPFW);
3087 	if (IS_DEFAULT_VNET(curvnet))
3088 		free(dyn_hp_cache, M_IPFW);
3089 }
3090 
3091 
3092