xref: /freebsd/sys/netpfil/ipfw/ip_fw_dynamic.c (revision a6578a04e440f79f3b913660221caa9cde3e722c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017-2018 Yandex LLC
5  * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipfw.h"
36 #ifndef INET
37 #error IPFIREWALL requires INET.
38 #endif /* INET */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/pcpu.h>
47 #include <sys/queue.h>
48 #include <sys/rmlock.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/pfil.h>
57 #include <net/vnet.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/ip_fw.h>
63 #include <netinet/tcp_var.h>
64 #include <netinet/udp.h>
65 
66 #include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
67 #ifdef INET6
68 #include <netinet6/in6_var.h>
69 #include <netinet6/ip6_var.h>
70 #include <netinet6/scope6_var.h>
71 #endif
72 
73 #include <netpfil/ipfw/ip_fw_private.h>
74 
75 #include <machine/in_cksum.h>	/* XXX for in_cksum */
76 
77 #ifdef MAC
78 #include <security/mac/mac_framework.h>
79 #endif
80 
81 /*
82  * Description of dynamic states.
83  *
84  * Dynamic states are stored in lists accessed through a hash tables
85  * whose size is curr_dyn_buckets. This value can be modified through
86  * the sysctl variable dyn_buckets.
87  *
88  * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
89  * and dyn_ipv6_parent.
90  *
91  * When a packet is received, its address fields hashed, then matched
92  * against the entries in the corresponding list by addr_type.
93  * Dynamic states can be used for different purposes:
94  *  + stateful rules;
95  *  + enforcing limits on the number of sessions;
96  *  + in-kernel NAT (not implemented yet)
97  *
98  * The lifetime of dynamic states is regulated by dyn_*_lifetime,
99  * measured in seconds and depending on the flags.
100  *
101  * The total number of dynamic states is equal to UMA zone items count.
102  * The max number of dynamic states is dyn_max. When we reach
103  * the maximum number of rules we do not create anymore. This is
104  * done to avoid consuming too much memory, but also too much
105  * time when searching on each packet (ideally, we should try instead
106  * to put a limit on the length of the list on each bucket...).
107  *
108  * Each state holds a pointer to the parent ipfw rule so we know what
109  * action to perform. Dynamic rules are removed when the parent rule is
110  * deleted.
111  *
112  * There are some limitations with dynamic rules -- we do not
113  * obey the 'randomized match', and we do not do multiple
114  * passes through the firewall. XXX check the latter!!!
115  */
116 
117 /* By default use jenkins hash function */
118 #define	IPFIREWALL_JENKINSHASH
119 
120 #define	DYN_COUNTER_INC(d, dir, pktlen)	do {	\
121 	(d)->pcnt_ ## dir++;			\
122 	(d)->bcnt_ ## dir += pktlen;		\
123 	} while (0)
124 
125 #define	DYN_REFERENCED		0x01
126 /*
127  * DYN_REFERENCED flag is used to show that state keeps reference to named
128  * object, and this reference should be released when state becomes expired.
129  */
130 
131 struct dyn_data {
132 	void		*parent;	/* pointer to parent rule */
133 	uint32_t	chain_id;	/* cached ruleset id */
134 	uint32_t	f_pos;		/* cached rule index */
135 
136 	uint32_t	hashval;	/* hash value used for hash resize */
137 	uint16_t	fibnum;		/* fib used to send keepalives */
138 	uint8_t		_pad[2];
139 	uint8_t		flags;		/* internal flags */
140 	uint8_t		set;		/* parent rule set number */
141 	uint16_t	rulenum;	/* parent rule number */
142 	uint32_t	ruleid;		/* parent rule id */
143 
144 	uint32_t	state;		/* TCP session state and flags */
145 	uint32_t	ack_fwd;	/* most recent ACKs in forward */
146 	uint32_t	ack_rev;	/* and reverse direction (used */
147 					/* to generate keepalives) */
148 	uint32_t	sync;		/* synchronization time */
149 	uint32_t	expire;		/* expire time */
150 
151 	uint64_t	pcnt_fwd;	/* bytes counter in forward */
152 	uint64_t	bcnt_fwd;	/* packets counter in forward */
153 	uint64_t	pcnt_rev;	/* bytes counter in reverse */
154 	uint64_t	bcnt_rev;	/* packets counter in reverse */
155 };
156 
157 #define	DPARENT_COUNT_DEC(p)	do {			\
158 	MPASS(p->count > 0);				\
159 	ck_pr_dec_32(&(p)->count);			\
160 } while (0)
161 #define	DPARENT_COUNT_INC(p)	ck_pr_inc_32(&(p)->count)
162 #define	DPARENT_COUNT(p)	ck_pr_load_32(&(p)->count)
163 struct dyn_parent {
164 	void		*parent;	/* pointer to parent rule */
165 	uint32_t	count;		/* number of linked states */
166 	uint8_t		_pad;
167 	uint8_t		set;		/* parent rule set number */
168 	uint16_t	rulenum;	/* parent rule number */
169 	uint32_t	ruleid;		/* parent rule id */
170 	uint32_t	hashval;	/* hash value used for hash resize */
171 	uint32_t	expire;		/* expire time */
172 };
173 
174 struct dyn_ipv4_state {
175 	uint8_t		type;		/* State type */
176 	uint8_t		proto;		/* UL Protocol */
177 	uint16_t	kidx;		/* named object index */
178 	uint16_t	sport, dport;	/* ULP source and destination ports */
179 	in_addr_t	src, dst;	/* IPv4 source and destination */
180 
181 	union {
182 		struct dyn_data	*data;
183 		struct dyn_parent *limit;
184 	};
185 	CK_SLIST_ENTRY(dyn_ipv4_state)	entry;
186 	SLIST_ENTRY(dyn_ipv4_state)	expired;
187 };
188 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
189 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
190 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
191 
192 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
193 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
194 #define	V_dyn_ipv4			VNET(dyn_ipv4)
195 #define	V_dyn_ipv4_parent		VNET(dyn_ipv4_parent)
196 #define	V_dyn_expired_ipv4		VNET(dyn_expired_ipv4)
197 
198 #ifdef INET6
199 struct dyn_ipv6_state {
200 	uint8_t		type;		/* State type */
201 	uint8_t		proto;		/* UL Protocol */
202 	uint16_t	kidx;		/* named object index */
203 	uint16_t	sport, dport;	/* ULP source and destination ports */
204 	struct in6_addr	src, dst;	/* IPv6 source and destination */
205 	uint32_t	zoneid;		/* IPv6 scope zone id */
206 	union {
207 		struct dyn_data	*data;
208 		struct dyn_parent *limit;
209 	};
210 	CK_SLIST_ENTRY(dyn_ipv6_state)	entry;
211 	SLIST_ENTRY(dyn_ipv6_state)	expired;
212 };
213 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
214 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
215 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
216 
217 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
218 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
219 #define	V_dyn_ipv6			VNET(dyn_ipv6)
220 #define	V_dyn_ipv6_parent		VNET(dyn_ipv6_parent)
221 #define	V_dyn_expired_ipv6		VNET(dyn_expired_ipv6)
222 #endif /* INET6 */
223 
224 /*
225  * Per-CPU pointer indicates that specified state is currently in use
226  * and must not be reclaimed by expiration callout.
227  */
228 static void **dyn_hp_cache;
229 DPCPU_DEFINE_STATIC(void *, dyn_hp);
230 #define	DYNSTATE_GET(cpu)	ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
231 #define	DYNSTATE_PROTECT(v)	ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
232 #define	DYNSTATE_RELEASE()	DYNSTATE_PROTECT(NULL)
233 #define	DYNSTATE_CRITICAL_ENTER()	critical_enter()
234 #define	DYNSTATE_CRITICAL_EXIT()	do {	\
235 	DYNSTATE_RELEASE();			\
236 	critical_exit();			\
237 } while (0);
238 
239 /*
240  * We keep two version numbers, one is updated when new entry added to
241  * the list. Second is updated when an entry deleted from the list.
242  * Versions are updated under bucket lock.
243  *
244  * Bucket "add" version number is used to know, that in the time between
245  * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
246  * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
247  * not install some state in this bucket. Using this info we can avoid
248  * additional state lookup, because we are sure that we will not install
249  * the state twice.
250  *
251  * Also doing the tracking of bucket "del" version during lookup we can
252  * be sure, that state entry was not unlinked and freed in time between
253  * we read the state pointer and protect it with hazard pointer.
254  *
255  * An entry unlinked from CK list keeps unchanged until it is freed.
256  * Unlinked entries are linked into expired lists using "expired" field.
257  */
258 
259 /*
260  * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
261  * dyn_bucket_lock is used to get write access to lists in specific bucket.
262  * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
263  * and ipv6_parent lists.
264  */
265 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
266 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
267 #define	V_dyn_expire_lock		VNET(dyn_expire_lock)
268 #define	V_dyn_bucket_lock		VNET(dyn_bucket_lock)
269 
270 /*
271  * Bucket's add/delete generation versions.
272  */
273 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
274 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
275 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
276 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
277 #define	V_dyn_ipv4_add			VNET(dyn_ipv4_add)
278 #define	V_dyn_ipv4_del			VNET(dyn_ipv4_del)
279 #define	V_dyn_ipv4_parent_add		VNET(dyn_ipv4_parent_add)
280 #define	V_dyn_ipv4_parent_del		VNET(dyn_ipv4_parent_del)
281 
282 #ifdef INET6
283 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
284 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
285 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
286 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
287 #define	V_dyn_ipv6_add			VNET(dyn_ipv6_add)
288 #define	V_dyn_ipv6_del			VNET(dyn_ipv6_del)
289 #define	V_dyn_ipv6_parent_add		VNET(dyn_ipv6_parent_add)
290 #define	V_dyn_ipv6_parent_del		VNET(dyn_ipv6_parent_del)
291 #endif /* INET6 */
292 
293 #define	DYN_BUCKET(h, b)		((h) & (b - 1))
294 #define	DYN_BUCKET_VERSION(b, v)	ck_pr_load_32(&V_dyn_ ## v[(b)])
295 #define	DYN_BUCKET_VERSION_BUMP(b, v)	ck_pr_inc_32(&V_dyn_ ## v[(b)])
296 
297 #define	DYN_BUCKET_LOCK_INIT(lock, b)		\
298     mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
299 #define	DYN_BUCKET_LOCK_DESTROY(lock, b)	mtx_destroy(&lock[(b)])
300 #define	DYN_BUCKET_LOCK(b)	mtx_lock(&V_dyn_bucket_lock[(b)])
301 #define	DYN_BUCKET_UNLOCK(b)	mtx_unlock(&V_dyn_bucket_lock[(b)])
302 #define	DYN_BUCKET_ASSERT(b)	mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
303 
304 #define	DYN_EXPIRED_LOCK_INIT()		\
305     mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
306 #define	DYN_EXPIRED_LOCK_DESTROY()	mtx_destroy(&V_dyn_expire_lock)
307 #define	DYN_EXPIRED_LOCK()		mtx_lock(&V_dyn_expire_lock)
308 #define	DYN_EXPIRED_UNLOCK()		mtx_unlock(&V_dyn_expire_lock)
309 
310 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
311 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
312 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
313 #define	V_dyn_buckets_max		VNET(dyn_buckets_max)
314 #define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
315 #define	V_dyn_timeout			VNET(dyn_timeout)
316 
317 /* Maximum length of states chain in a bucket */
318 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
319 #define	V_curr_max_length		VNET(curr_max_length)
320 
321 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
322 #define	V_dyn_keep_states		VNET(dyn_keep_states)
323 
324 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
325 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
326 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
327 #ifdef INET6
328 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
329 #define	V_dyn_ipv6_zone			VNET(dyn_ipv6_zone)
330 #endif /* INET6 */
331 #define	V_dyn_data_zone			VNET(dyn_data_zone)
332 #define	V_dyn_parent_zone		VNET(dyn_parent_zone)
333 #define	V_dyn_ipv4_zone			VNET(dyn_ipv4_zone)
334 
335 /*
336  * Timeouts for various events in handing dynamic rules.
337  */
338 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
339 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
340 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
341 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
342 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
343 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
344 
345 #define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
346 #define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
347 #define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
348 #define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
349 #define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
350 #define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
351 
352 /*
353  * Keepalives are sent if dyn_keepalive is set. They are sent every
354  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
355  * seconds of lifetime of a rule.
356  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
357  * than dyn_keepalive_period.
358  */
359 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
360 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
361 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
362 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
363 
364 #define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
365 #define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
366 #define	V_dyn_keepalive			VNET(dyn_keepalive)
367 #define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
368 
369 VNET_DEFINE_STATIC(uint32_t, dyn_max);		/* max # of dynamic states */
370 VNET_DEFINE_STATIC(uint32_t, dyn_count);	/* number of states */
371 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max);	/* max # of parent states */
372 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count);	/* number of parent states */
373 
374 #define	V_dyn_max			VNET(dyn_max)
375 #define	V_dyn_count			VNET(dyn_count)
376 #define	V_dyn_parent_max		VNET(dyn_parent_max)
377 #define	V_dyn_parent_count		VNET(dyn_parent_count)
378 
379 #define	DYN_COUNT_DEC(name)	do {			\
380 	MPASS((V_ ## name) > 0);			\
381 	ck_pr_dec_32(&(V_ ## name));			\
382 } while (0)
383 #define	DYN_COUNT_INC(name)	ck_pr_inc_32(&(V_ ## name))
384 #define	DYN_COUNT(name)		ck_pr_load_32(&(V_ ## name))
385 
386 static time_t last_log;	/* Log ratelimiting */
387 
388 /*
389  * Get/set maximum number of dynamic states in given VNET instance.
390  */
391 static int
392 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
393 {
394 	uint32_t nstates;
395 	int error;
396 
397 	nstates = V_dyn_max;
398 	error = sysctl_handle_32(oidp, &nstates, 0, req);
399 	/* Read operation or some error */
400 	if ((error != 0) || (req->newptr == NULL))
401 		return (error);
402 
403 	V_dyn_max = nstates;
404 	uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
405 	return (0);
406 }
407 
408 static int
409 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
410 {
411 	uint32_t nstates;
412 	int error;
413 
414 	nstates = V_dyn_parent_max;
415 	error = sysctl_handle_32(oidp, &nstates, 0, req);
416 	/* Read operation or some error */
417 	if ((error != 0) || (req->newptr == NULL))
418 		return (error);
419 
420 	V_dyn_parent_max = nstates;
421 	uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
422 	return (0);
423 }
424 
425 static int
426 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
427 {
428 	uint32_t nbuckets;
429 	int error;
430 
431 	nbuckets = V_dyn_buckets_max;
432 	error = sysctl_handle_32(oidp, &nbuckets, 0, req);
433 	/* Read operation or some error */
434 	if ((error != 0) || (req->newptr == NULL))
435 		return (error);
436 
437 	if (nbuckets > 256)
438 		V_dyn_buckets_max = 1 << fls(nbuckets - 1);
439 	else
440 		return (EINVAL);
441 	return (0);
442 }
443 
444 SYSCTL_DECL(_net_inet_ip_fw);
445 
446 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
447     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
448     "Current number of dynamic states.");
449 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
450     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
451     "Current number of parent states. ");
452 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
453     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
454     "Current number of buckets for states hash table.");
455 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
456     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
457     "Current maximum length of states chains in hash buckets.");
458 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
459     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_buckets,
460     "IU", "Max number of buckets for dynamic states hash table.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
462     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_max,
463     "IU", "Max number of dynamic states.");
464 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
465     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_parent_max,
466     "IU", "Max number of parent dynamic states.");
467 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
468     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
469     "Lifetime of dynamic states for TCP ACK.");
470 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
471     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
472     "Lifetime of dynamic states for TCP SYN.");
473 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
474     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
475     "Lifetime of dynamic states for TCP FIN.");
476 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
477     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
478     "Lifetime of dynamic states for TCP RST.");
479 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
480     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
481     "Lifetime of dynamic states for UDP.");
482 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
483     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
484     "Lifetime of dynamic states for other situations.");
485 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
486     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
487     "Enable keepalives for dynamic states.");
488 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
489     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
490     "Do not flush dynamic states on rule deletion");
491 
492 
493 #ifdef IPFIREWALL_DYNDEBUG
494 #define	DYN_DEBUG(fmt, ...)	do {			\
495 	printf("%s: " fmt "\n", __func__, __VA_ARGS__);	\
496 } while (0)
497 #else
498 #define	DYN_DEBUG(fmt, ...)
499 #endif /* !IPFIREWALL_DYNDEBUG */
500 
501 #ifdef INET6
502 /* Functions to work with IPv6 states */
503 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
504     const struct ipfw_flow_id *, uint32_t, const void *,
505     struct ipfw_dyn_info *, int);
506 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
507     uint32_t, const void *, int, uint32_t, uint16_t);
508 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
509     const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
510 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t, uint8_t,
511     const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
512     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
513 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
514     ipfw_dyn_rule *);
515 
516 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
517 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
518     const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
519     uint16_t);
520 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
521     const struct dyn_ipv6_state *);
522 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
523 
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
525     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
526     uint32_t);
527 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
528     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
529     uint32_t);
530 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
531     uint8_t, const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t,
532     uint16_t);
533 #endif /* INET6 */
534 
535 /* Functions to work with limit states */
536 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
537     struct ip_fw *, uint32_t, uint32_t, uint16_t);
538 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
539     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
540 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
541     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
542 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
543     uint8_t, uint32_t);
544 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
545     uint8_t, const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
546 
547 static void dyn_tick(void *);
548 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
549 static void dyn_free_states(struct ip_fw_chain *);
550 static void dyn_export_parent(const struct dyn_parent *, uint16_t,
551     ipfw_dyn_rule *);
552 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
553     ipfw_dyn_rule *);
554 static uint32_t dyn_update_tcp_state(struct dyn_data *,
555     const struct ipfw_flow_id *, const struct tcphdr *, int);
556 static void dyn_update_proto_state(struct dyn_data *,
557     const struct ipfw_flow_id *, const void *, int, int);
558 
559 /* Functions to work with IPv4 states */
560 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
561     const void *, struct ipfw_dyn_info *, int);
562 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
563     const void *, int, uint32_t, uint16_t);
564 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
565     const struct ipfw_flow_id *, uint16_t, uint8_t);
566 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t, uint8_t,
567     const struct ipfw_flow_id *, const void *, int, uint32_t,
568     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
569 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
570     ipfw_dyn_rule *);
571 
572 /*
573  * Named states support.
574  */
575 static char *default_state_name = "default";
576 struct dyn_state_obj {
577 	struct named_object	no;
578 	char			name[64];
579 };
580 
581 #define	DYN_STATE_OBJ(ch, cmd)	\
582     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
583 /*
584  * Classifier callback.
585  * Return 0 if opcode contains object that should be referenced
586  * or rewritten.
587  */
588 static int
589 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
590 {
591 
592 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
593 	/* Don't rewrite "check-state any" */
594 	if (cmd->arg1 == 0 &&
595 	    cmd->opcode == O_CHECK_STATE)
596 		return (1);
597 
598 	*puidx = cmd->arg1;
599 	*ptype = 0;
600 	return (0);
601 }
602 
603 static void
604 dyn_update(ipfw_insn *cmd, uint16_t idx)
605 {
606 
607 	cmd->arg1 = idx;
608 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
609 }
610 
611 static int
612 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
613     struct named_object **pno)
614 {
615 	ipfw_obj_ntlv *ntlv;
616 	const char *name;
617 
618 	DYN_DEBUG("uidx %d", ti->uidx);
619 	if (ti->uidx != 0) {
620 		if (ti->tlvs == NULL)
621 			return (EINVAL);
622 		/* Search ntlv in the buffer provided by user */
623 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
624 		    IPFW_TLV_STATE_NAME);
625 		if (ntlv == NULL)
626 			return (EINVAL);
627 		name = ntlv->name;
628 	} else
629 		name = default_state_name;
630 	/*
631 	 * Search named object with corresponding name.
632 	 * Since states objects are global - ignore the set value
633 	 * and use zero instead.
634 	 */
635 	*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
636 	    IPFW_TLV_STATE_NAME, name);
637 	/*
638 	 * We always return success here.
639 	 * The caller will check *pno and mark object as unresolved,
640 	 * then it will automatically create "default" object.
641 	 */
642 	return (0);
643 }
644 
645 static struct named_object *
646 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
647 {
648 
649 	DYN_DEBUG("kidx %d", idx);
650 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
651 }
652 
653 static int
654 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
655     uint16_t *pkidx)
656 {
657 	struct namedobj_instance *ni;
658 	struct dyn_state_obj *obj;
659 	struct named_object *no;
660 	ipfw_obj_ntlv *ntlv;
661 	char *name;
662 
663 	DYN_DEBUG("uidx %d", ti->uidx);
664 	if (ti->uidx != 0) {
665 		if (ti->tlvs == NULL)
666 			return (EINVAL);
667 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
668 		    IPFW_TLV_STATE_NAME);
669 		if (ntlv == NULL)
670 			return (EINVAL);
671 		name = ntlv->name;
672 	} else
673 		name = default_state_name;
674 
675 	ni = CHAIN_TO_SRV(ch);
676 	obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
677 	obj->no.name = obj->name;
678 	obj->no.etlv = IPFW_TLV_STATE_NAME;
679 	strlcpy(obj->name, name, sizeof(obj->name));
680 
681 	IPFW_UH_WLOCK(ch);
682 	no = ipfw_objhash_lookup_name_type(ni, 0,
683 	    IPFW_TLV_STATE_NAME, name);
684 	if (no != NULL) {
685 		/*
686 		 * Object is already created.
687 		 * Just return its kidx and bump refcount.
688 		 */
689 		*pkidx = no->kidx;
690 		no->refcnt++;
691 		IPFW_UH_WUNLOCK(ch);
692 		free(obj, M_IPFW);
693 		DYN_DEBUG("\tfound kidx %d", *pkidx);
694 		return (0);
695 	}
696 	if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
697 		DYN_DEBUG("\talloc_idx failed for %s", name);
698 		IPFW_UH_WUNLOCK(ch);
699 		free(obj, M_IPFW);
700 		return (ENOSPC);
701 	}
702 	ipfw_objhash_add(ni, &obj->no);
703 	SRV_OBJECT(ch, obj->no.kidx) = obj;
704 	obj->no.refcnt++;
705 	*pkidx = obj->no.kidx;
706 	IPFW_UH_WUNLOCK(ch);
707 	DYN_DEBUG("\tcreated kidx %d", *pkidx);
708 	return (0);
709 }
710 
711 static void
712 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
713 {
714 	struct dyn_state_obj *obj;
715 
716 	IPFW_UH_WLOCK_ASSERT(ch);
717 
718 	KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
719 	    ("%s: wrong object type %u", __func__, no->etlv));
720 	KASSERT(no->refcnt == 1,
721 	    ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
722 	    no->name, no->etlv, no->kidx, no->refcnt));
723 	DYN_DEBUG("kidx %d", no->kidx);
724 	obj = SRV_OBJECT(ch, no->kidx);
725 	SRV_OBJECT(ch, no->kidx) = NULL;
726 	ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
727 	ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
728 
729 	free(obj, M_IPFW);
730 }
731 
732 static struct opcode_obj_rewrite dyn_opcodes[] = {
733 	{
734 		O_KEEP_STATE, IPFW_TLV_STATE_NAME,
735 		dyn_classify, dyn_update,
736 		dyn_findbyname, dyn_findbykidx,
737 		dyn_create, dyn_destroy
738 	},
739 	{
740 		O_CHECK_STATE, IPFW_TLV_STATE_NAME,
741 		dyn_classify, dyn_update,
742 		dyn_findbyname, dyn_findbykidx,
743 		dyn_create, dyn_destroy
744 	},
745 	{
746 		O_PROBE_STATE, IPFW_TLV_STATE_NAME,
747 		dyn_classify, dyn_update,
748 		dyn_findbyname, dyn_findbykidx,
749 		dyn_create, dyn_destroy
750 	},
751 	{
752 		O_LIMIT, IPFW_TLV_STATE_NAME,
753 		dyn_classify, dyn_update,
754 		dyn_findbyname, dyn_findbykidx,
755 		dyn_create, dyn_destroy
756 	},
757 };
758 
759 /*
760  * IMPORTANT: the hash function for dynamic rules must be commutative
761  * in source and destination (ip,port), because rules are bidirectional
762  * and we want to find both in the same bucket.
763  */
764 #ifndef IPFIREWALL_JENKINSHASH
765 static __inline uint32_t
766 hash_packet(const struct ipfw_flow_id *id)
767 {
768 	uint32_t i;
769 
770 #ifdef INET6
771 	if (IS_IP6_FLOW_ID(id))
772 		i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
773 		    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
774 		    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
775 		    (id->src_ip6.__u6_addr.__u6_addr32[3]));
776 	else
777 #endif /* INET6 */
778 	i = (id->dst_ip) ^ (id->src_ip);
779 	i ^= (id->dst_port) ^ (id->src_port);
780 	return (i);
781 }
782 
783 static __inline uint32_t
784 hash_parent(const struct ipfw_flow_id *id, const void *rule)
785 {
786 
787 	return (hash_packet(id) ^ ((uintptr_t)rule));
788 }
789 
790 #else /* IPFIREWALL_JENKINSHASH */
791 
792 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
793 #define	V_dyn_hashseed		VNET(dyn_hashseed)
794 
795 static __inline int
796 addrcmp4(const struct ipfw_flow_id *id)
797 {
798 
799 	if (id->src_ip < id->dst_ip)
800 		return (0);
801 	if (id->src_ip > id->dst_ip)
802 		return (1);
803 	if (id->src_port <= id->dst_port)
804 		return (0);
805 	return (1);
806 }
807 
808 #ifdef INET6
809 static __inline int
810 addrcmp6(const struct ipfw_flow_id *id)
811 {
812 	int ret;
813 
814 	ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
815 	if (ret < 0)
816 		return (0);
817 	if (ret > 0)
818 		return (1);
819 	if (id->src_port <= id->dst_port)
820 		return (0);
821 	return (1);
822 }
823 
824 static __inline uint32_t
825 hash_packet6(const struct ipfw_flow_id *id)
826 {
827 	struct tuple6 {
828 		struct in6_addr	addr[2];
829 		uint16_t	port[2];
830 	} t6;
831 
832 	if (addrcmp6(id) == 0) {
833 		t6.addr[0] = id->src_ip6;
834 		t6.addr[1] = id->dst_ip6;
835 		t6.port[0] = id->src_port;
836 		t6.port[1] = id->dst_port;
837 	} else {
838 		t6.addr[0] = id->dst_ip6;
839 		t6.addr[1] = id->src_ip6;
840 		t6.port[0] = id->dst_port;
841 		t6.port[1] = id->src_port;
842 	}
843 	return (jenkins_hash32((const uint32_t *)&t6,
844 	    sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
845 }
846 #endif
847 
848 static __inline uint32_t
849 hash_packet(const struct ipfw_flow_id *id)
850 {
851 	struct tuple4 {
852 		in_addr_t	addr[2];
853 		uint16_t	port[2];
854 	} t4;
855 
856 	if (IS_IP4_FLOW_ID(id)) {
857 		/* All fields are in host byte order */
858 		if (addrcmp4(id) == 0) {
859 			t4.addr[0] = id->src_ip;
860 			t4.addr[1] = id->dst_ip;
861 			t4.port[0] = id->src_port;
862 			t4.port[1] = id->dst_port;
863 		} else {
864 			t4.addr[0] = id->dst_ip;
865 			t4.addr[1] = id->src_ip;
866 			t4.port[0] = id->dst_port;
867 			t4.port[1] = id->src_port;
868 		}
869 		return (jenkins_hash32((const uint32_t *)&t4,
870 		    sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
871 	} else
872 #ifdef INET6
873 	if (IS_IP6_FLOW_ID(id))
874 		return (hash_packet6(id));
875 #endif
876 	return (0);
877 }
878 
879 static __inline uint32_t
880 hash_parent(const struct ipfw_flow_id *id, const void *rule)
881 {
882 
883 	return (jenkins_hash32((const uint32_t *)&rule,
884 	    sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
885 }
886 #endif /* IPFIREWALL_JENKINSHASH */
887 
888 /*
889  * Print customizable flow id description via log(9) facility.
890  */
891 static void
892 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
893     int log_flags, char *prefix, char *postfix)
894 {
895 	struct in_addr da;
896 #ifdef INET6
897 	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
898 #else
899 	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
900 #endif
901 
902 #ifdef INET6
903 	if (IS_IP6_FLOW_ID(id)) {
904 		ip6_sprintf(src, &id->src_ip6);
905 		ip6_sprintf(dst, &id->dst_ip6);
906 	} else
907 #endif
908 	{
909 		da.s_addr = htonl(id->src_ip);
910 		inet_ntop(AF_INET, &da, src, sizeof(src));
911 		da.s_addr = htonl(id->dst_ip);
912 		inet_ntop(AF_INET, &da, dst, sizeof(dst));
913 	}
914 	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
915 	    prefix, dyn_type, src, id->src_port, dst,
916 	    id->dst_port, V_dyn_count, postfix);
917 }
918 
919 #define	print_dyn_rule(id, dtype, prefix, postfix)	\
920 	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
921 
922 #define	TIME_LEQ(a,b)	((int)((a)-(b)) <= 0)
923 #define	TIME_LE(a,b)	((int)((a)-(b)) < 0)
924 #define	_SEQ_GE(a,b)	((int)((a)-(b)) >= 0)
925 #define	BOTH_SYN	(TH_SYN | (TH_SYN << 8))
926 #define	BOTH_FIN	(TH_FIN | (TH_FIN << 8))
927 #define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
928 #define	ACK_FWD		0x00010000	/* fwd ack seen */
929 #define	ACK_REV		0x00020000	/* rev ack seen */
930 #define	ACK_BOTH	(ACK_FWD | ACK_REV)
931 
932 static uint32_t
933 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
934     const struct tcphdr *tcp, int dir)
935 {
936 	uint32_t ack, expire;
937 	uint32_t state, old;
938 	uint8_t th_flags;
939 
940 	expire = data->expire;
941 	old = state = data->state;
942 	th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
943 	state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
944 	switch (state & TCP_FLAGS) {
945 	case TH_SYN:			/* opening */
946 		expire = time_uptime + V_dyn_syn_lifetime;
947 		break;
948 
949 	case BOTH_SYN:			/* move to established */
950 	case BOTH_SYN | TH_FIN:		/* one side tries to close */
951 	case BOTH_SYN | (TH_FIN << 8):
952 		if (tcp == NULL)
953 			break;
954 		ack = ntohl(tcp->th_ack);
955 		if (dir == MATCH_FORWARD) {
956 			if (data->ack_fwd == 0 ||
957 			    _SEQ_GE(ack, data->ack_fwd)) {
958 				state |= ACK_FWD;
959 				if (data->ack_fwd != ack)
960 					ck_pr_store_32(&data->ack_fwd, ack);
961 			}
962 		} else {
963 			if (data->ack_rev == 0 ||
964 			    _SEQ_GE(ack, data->ack_rev)) {
965 				state |= ACK_REV;
966 				if (data->ack_rev != ack)
967 					ck_pr_store_32(&data->ack_rev, ack);
968 			}
969 		}
970 		if ((state & ACK_BOTH) == ACK_BOTH) {
971 			/*
972 			 * Set expire time to V_dyn_ack_lifetime only if
973 			 * we got ACKs for both directions.
974 			 * We use XOR here to avoid possible state
975 			 * overwriting in concurrent thread.
976 			 */
977 			expire = time_uptime + V_dyn_ack_lifetime;
978 			ck_pr_xor_32(&data->state, ACK_BOTH);
979 		} else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
980 			ck_pr_or_32(&data->state, state & ACK_BOTH);
981 		break;
982 
983 	case BOTH_SYN | BOTH_FIN:	/* both sides closed */
984 		if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
985 			V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
986 		expire = time_uptime + V_dyn_fin_lifetime;
987 		break;
988 
989 	default:
990 		if (V_dyn_keepalive != 0 &&
991 		    V_dyn_rst_lifetime >= V_dyn_keepalive_period)
992 			V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
993 		expire = time_uptime + V_dyn_rst_lifetime;
994 	}
995 	/* Save TCP state if it was changed */
996 	if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
997 		ck_pr_or_32(&data->state, state & TCP_FLAGS);
998 	return (expire);
999 }
1000 
1001 /*
1002  * Update ULP specific state.
1003  * For TCP we keep sequence numbers and flags. For other protocols
1004  * currently we update only expire time. Packets and bytes counters
1005  * are also updated here.
1006  */
1007 static void
1008 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1009     const void *ulp, int pktlen, int dir)
1010 {
1011 	uint32_t expire;
1012 
1013 	/* NOTE: we are in critical section here. */
1014 	switch (pkt->proto) {
1015 	case IPPROTO_UDP:
1016 	case IPPROTO_UDPLITE:
1017 		expire = time_uptime + V_dyn_udp_lifetime;
1018 		break;
1019 	case IPPROTO_TCP:
1020 		expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1021 		break;
1022 	default:
1023 		expire = time_uptime + V_dyn_short_lifetime;
1024 	}
1025 	/*
1026 	 * Expiration timer has the per-second granularity, no need to update
1027 	 * it every time when state is matched.
1028 	 */
1029 	if (data->expire != expire)
1030 		ck_pr_store_32(&data->expire, expire);
1031 
1032 	if (dir == MATCH_FORWARD)
1033 		DYN_COUNTER_INC(data, fwd, pktlen);
1034 	else
1035 		DYN_COUNTER_INC(data, rev, pktlen);
1036 }
1037 
1038 /*
1039  * Lookup IPv4 state.
1040  * Must be called in critical section.
1041  */
1042 struct dyn_ipv4_state *
1043 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1044     struct ipfw_dyn_info *info, int pktlen)
1045 {
1046 	struct dyn_ipv4_state *s;
1047 	uint32_t version, bucket;
1048 
1049 	bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1050 	info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1051 restart:
1052 	version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1053 	CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1054 		DYNSTATE_PROTECT(s);
1055 		if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1056 			goto restart;
1057 		if (s->proto != pkt->proto)
1058 			continue;
1059 		if (info->kidx != 0 && s->kidx != info->kidx)
1060 			continue;
1061 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1062 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1063 			info->direction = MATCH_FORWARD;
1064 			break;
1065 		}
1066 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1067 		    s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1068 			info->direction = MATCH_REVERSE;
1069 			break;
1070 		}
1071 	}
1072 
1073 	if (s != NULL)
1074 		dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1075 		    info->direction);
1076 	return (s);
1077 }
1078 
1079 /*
1080  * Lookup IPv4 state.
1081  * Simplifed version is used to check that matching state doesn't exist.
1082  */
1083 static int
1084 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1085     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1086 {
1087 	struct dyn_ipv4_state *s;
1088 	int dir;
1089 
1090 	dir = MATCH_NONE;
1091 	DYN_BUCKET_ASSERT(bucket);
1092 	CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1093 		if (s->proto != pkt->proto ||
1094 		    s->kidx != kidx)
1095 			continue;
1096 		if (s->sport == pkt->src_port &&
1097 		    s->dport == pkt->dst_port &&
1098 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1099 			dir = MATCH_FORWARD;
1100 			break;
1101 		}
1102 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1103 		    s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1104 			dir = MATCH_REVERSE;
1105 			break;
1106 		}
1107 	}
1108 	if (s != NULL)
1109 		dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1110 	return (s != NULL);
1111 }
1112 
1113 struct dyn_ipv4_state *
1114 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1115     uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1116 {
1117 	struct dyn_ipv4_state *s;
1118 	uint32_t version, bucket;
1119 
1120 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1121 restart:
1122 	version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1123 	CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1124 		DYNSTATE_PROTECT(s);
1125 		if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1126 			goto restart;
1127 		/*
1128 		 * NOTE: we do not need to check kidx, because parent rule
1129 		 * can not create states with different kidx.
1130 		 * And parent rule always created for forward direction.
1131 		 */
1132 		if (s->limit->parent == rule &&
1133 		    s->limit->ruleid == ruleid &&
1134 		    s->limit->rulenum == rulenum &&
1135 		    s->proto == pkt->proto &&
1136 		    s->sport == pkt->src_port &&
1137 		    s->dport == pkt->dst_port &&
1138 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1139 			if (s->limit->expire != time_uptime +
1140 			    V_dyn_short_lifetime)
1141 				ck_pr_store_32(&s->limit->expire,
1142 				    time_uptime + V_dyn_short_lifetime);
1143 			break;
1144 		}
1145 	}
1146 	return (s);
1147 }
1148 
1149 static struct dyn_ipv4_state *
1150 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1151     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1152 {
1153 	struct dyn_ipv4_state *s;
1154 
1155 	DYN_BUCKET_ASSERT(bucket);
1156 	CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1157 		if (s->limit->parent == rule &&
1158 		    s->limit->ruleid == ruleid &&
1159 		    s->limit->rulenum == rulenum &&
1160 		    s->proto == pkt->proto &&
1161 		    s->sport == pkt->src_port &&
1162 		    s->dport == pkt->dst_port &&
1163 		    s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1164 			break;
1165 	}
1166 	return (s);
1167 }
1168 
1169 
1170 #ifdef INET6
1171 static uint32_t
1172 dyn_getscopeid(const struct ip_fw_args *args)
1173 {
1174 
1175 	/*
1176 	 * If source or destination address is an scopeid address, we need
1177 	 * determine the scope zone id to resolve address scope ambiguity.
1178 	 */
1179 	if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1180 	    IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6)) {
1181 		MPASS(args->oif != NULL ||
1182 		    args->m->m_pkthdr.rcvif != NULL);
1183 		return (in6_getscopezone(args->oif != NULL ? args->oif:
1184 		    args->m->m_pkthdr.rcvif, IPV6_ADDR_SCOPE_LINKLOCAL));
1185 	}
1186 	return (0);
1187 }
1188 
1189 /*
1190  * Lookup IPv6 state.
1191  * Must be called in critical section.
1192  */
1193 static struct dyn_ipv6_state *
1194 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1195     const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1196 {
1197 	struct dyn_ipv6_state *s;
1198 	uint32_t version, bucket;
1199 
1200 	bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1201 	info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1202 restart:
1203 	version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1204 	CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1205 		DYNSTATE_PROTECT(s);
1206 		if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1207 			goto restart;
1208 		if (s->proto != pkt->proto || s->zoneid != zoneid)
1209 			continue;
1210 		if (info->kidx != 0 && s->kidx != info->kidx)
1211 			continue;
1212 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1213 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1214 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1215 			info->direction = MATCH_FORWARD;
1216 			break;
1217 		}
1218 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1219 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1220 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1221 			info->direction = MATCH_REVERSE;
1222 			break;
1223 		}
1224 	}
1225 	if (s != NULL)
1226 		dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1227 		    info->direction);
1228 	return (s);
1229 }
1230 
1231 /*
1232  * Lookup IPv6 state.
1233  * Simplifed version is used to check that matching state doesn't exist.
1234  */
1235 static int
1236 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1237     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1238 {
1239 	struct dyn_ipv6_state *s;
1240 	int dir;
1241 
1242 	dir = MATCH_NONE;
1243 	DYN_BUCKET_ASSERT(bucket);
1244 	CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1245 		if (s->proto != pkt->proto || s->kidx != kidx ||
1246 		    s->zoneid != zoneid)
1247 			continue;
1248 		if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1249 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1250 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1251 			dir = MATCH_FORWARD;
1252 			break;
1253 		}
1254 		if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1255 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1256 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1257 			dir = MATCH_REVERSE;
1258 			break;
1259 		}
1260 	}
1261 	if (s != NULL)
1262 		dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1263 	return (s != NULL);
1264 }
1265 
1266 static struct dyn_ipv6_state *
1267 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1268     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1269 {
1270 	struct dyn_ipv6_state *s;
1271 	uint32_t version, bucket;
1272 
1273 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1274 restart:
1275 	version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1276 	CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1277 		DYNSTATE_PROTECT(s);
1278 		if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1279 			goto restart;
1280 		/*
1281 		 * NOTE: we do not need to check kidx, because parent rule
1282 		 * can not create states with different kidx.
1283 		 * Also parent rule always created for forward direction.
1284 		 */
1285 		if (s->limit->parent == rule &&
1286 		    s->limit->ruleid == ruleid &&
1287 		    s->limit->rulenum == rulenum &&
1288 		    s->proto == pkt->proto &&
1289 		    s->sport == pkt->src_port &&
1290 		    s->dport == pkt->dst_port && s->zoneid == zoneid &&
1291 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1292 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1293 			if (s->limit->expire != time_uptime +
1294 			    V_dyn_short_lifetime)
1295 				ck_pr_store_32(&s->limit->expire,
1296 				    time_uptime + V_dyn_short_lifetime);
1297 			break;
1298 		}
1299 	}
1300 	return (s);
1301 }
1302 
1303 static struct dyn_ipv6_state *
1304 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1305     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1306 {
1307 	struct dyn_ipv6_state *s;
1308 
1309 	DYN_BUCKET_ASSERT(bucket);
1310 	CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1311 		if (s->limit->parent == rule &&
1312 		    s->limit->ruleid == ruleid &&
1313 		    s->limit->rulenum == rulenum &&
1314 		    s->proto == pkt->proto &&
1315 		    s->sport == pkt->src_port &&
1316 		    s->dport == pkt->dst_port && s->zoneid == zoneid &&
1317 		    IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1318 		    IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1319 			break;
1320 	}
1321 	return (s);
1322 }
1323 
1324 #endif /* INET6 */
1325 
1326 /*
1327  * Lookup dynamic state.
1328  *  pkt - filled by ipfw_chk() ipfw_flow_id;
1329  *  ulp - determined by ipfw_chk() upper level protocol header;
1330  *  dyn_info - info about matched state to return back;
1331  * Returns pointer to state's parent rule and dyn_info. If there is
1332  * no state, NULL is returned.
1333  * On match ipfw_dyn_lookup() updates state's counters.
1334  */
1335 struct ip_fw *
1336 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1337     int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1338 {
1339 	struct dyn_data *data;
1340 	struct ip_fw *rule;
1341 
1342 	IPFW_RLOCK_ASSERT(&V_layer3_chain);
1343 
1344 	data = NULL;
1345 	rule = NULL;
1346 	info->kidx = cmd->arg1;
1347 	info->direction = MATCH_NONE;
1348 	info->hashval = hash_packet(&args->f_id);
1349 
1350 	DYNSTATE_CRITICAL_ENTER();
1351 	if (IS_IP4_FLOW_ID(&args->f_id)) {
1352 		struct dyn_ipv4_state *s;
1353 
1354 		s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1355 		if (s != NULL) {
1356 			/*
1357 			 * Dynamic states are created using the same 5-tuple,
1358 			 * so it is assumed, that parent rule for O_LIMIT
1359 			 * state has the same address family.
1360 			 */
1361 			data = s->data;
1362 			if (s->type == O_LIMIT) {
1363 				s = data->parent;
1364 				rule = s->limit->parent;
1365 			} else
1366 				rule = data->parent;
1367 		}
1368 	}
1369 #ifdef INET6
1370 	else if (IS_IP6_FLOW_ID(&args->f_id)) {
1371 		struct dyn_ipv6_state *s;
1372 
1373 		s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1374 		    ulp, info, pktlen);
1375 		if (s != NULL) {
1376 			data = s->data;
1377 			if (s->type == O_LIMIT) {
1378 				s = data->parent;
1379 				rule = s->limit->parent;
1380 			} else
1381 				rule = data->parent;
1382 		}
1383 	}
1384 #endif
1385 	if (data != NULL) {
1386 		/*
1387 		 * If cached chain id is the same, we can avoid rule index
1388 		 * lookup. Otherwise do lookup and update chain_id and f_pos.
1389 		 * It is safe even if there is concurrent thread that want
1390 		 * update the same state, because chain->id can be changed
1391 		 * only under IPFW_WLOCK().
1392 		 */
1393 		if (data->chain_id != V_layer3_chain.id) {
1394 			data->f_pos = ipfw_find_rule(&V_layer3_chain,
1395 			    data->rulenum, data->ruleid);
1396 			/*
1397 			 * Check that found state has not orphaned.
1398 			 * When chain->id being changed the parent
1399 			 * rule can be deleted. If found rule doesn't
1400 			 * match the parent pointer, consider this
1401 			 * result as MATCH_NONE and return NULL.
1402 			 *
1403 			 * This will lead to creation of new similar state
1404 			 * that will be added into head of this bucket.
1405 			 * And the state that we currently have matched
1406 			 * should be deleted by dyn_expire_states().
1407 			 *
1408 			 * In case when dyn_keep_states is enabled, return
1409 			 * pointer to deleted rule and f_pos value
1410 			 * corresponding to penultimate rule.
1411 			 * When we have enabled V_dyn_keep_states, states
1412 			 * that become orphaned will get the DYN_REFERENCED
1413 			 * flag and rule will keep around. So we can return
1414 			 * it. But since it is not in the rules map, we need
1415 			 * return such f_pos value, so after the state
1416 			 * handling if the search will continue, the next rule
1417 			 * will be the last one - the default rule.
1418 			 */
1419 			if (V_layer3_chain.map[data->f_pos] == rule) {
1420 				data->chain_id = V_layer3_chain.id;
1421 				info->f_pos = data->f_pos;
1422 			} else if (V_dyn_keep_states != 0) {
1423 				/*
1424 				 * The original rule pointer is still usable.
1425 				 * So, we return it, but f_pos need to be
1426 				 * changed to point to the penultimate rule.
1427 				 */
1428 				MPASS(V_layer3_chain.n_rules > 1);
1429 				data->chain_id = V_layer3_chain.id;
1430 				data->f_pos = V_layer3_chain.n_rules - 2;
1431 				info->f_pos = data->f_pos;
1432 			} else {
1433 				rule = NULL;
1434 				info->direction = MATCH_NONE;
1435 				DYN_DEBUG("rule %p  [%u, %u] is considered "
1436 				    "invalid in data %p", rule, data->ruleid,
1437 				    data->rulenum, data);
1438 				/* info->f_pos doesn't matter here. */
1439 			}
1440 		} else
1441 			info->f_pos = data->f_pos;
1442 	}
1443 	DYNSTATE_CRITICAL_EXIT();
1444 #if 0
1445 	/*
1446 	 * Return MATCH_NONE if parent rule is in disabled set.
1447 	 * This will lead to creation of new similar state that
1448 	 * will be added into head of this bucket.
1449 	 *
1450 	 * XXXAE: we need to be able update state's set when parent
1451 	 *	  rule set is changed.
1452 	 */
1453 	if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1454 		rule = NULL;
1455 		info->direction = MATCH_NONE;
1456 	}
1457 #endif
1458 	return (rule);
1459 }
1460 
1461 static struct dyn_parent *
1462 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1463     uint8_t set, uint32_t hashval)
1464 {
1465 	struct dyn_parent *limit;
1466 
1467 	limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1468 	if (limit == NULL) {
1469 		if (last_log != time_uptime) {
1470 			last_log = time_uptime;
1471 			log(LOG_DEBUG,
1472 			    "ipfw: Cannot allocate parent dynamic state, "
1473 			    "consider increasing "
1474 			    "net.inet.ip.fw.dyn_parent_max\n");
1475 		}
1476 		return (NULL);
1477 	}
1478 
1479 	limit->parent = parent;
1480 	limit->ruleid = ruleid;
1481 	limit->rulenum = rulenum;
1482 	limit->set = set;
1483 	limit->hashval = hashval;
1484 	limit->expire = time_uptime + V_dyn_short_lifetime;
1485 	return (limit);
1486 }
1487 
1488 static struct dyn_data *
1489 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1490     uint8_t set, const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1491     uint32_t hashval, uint16_t fibnum)
1492 {
1493 	struct dyn_data *data;
1494 
1495 	data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1496 	if (data == NULL) {
1497 		if (last_log != time_uptime) {
1498 			last_log = time_uptime;
1499 			log(LOG_DEBUG,
1500 			    "ipfw: Cannot allocate dynamic state, "
1501 			    "consider increasing net.inet.ip.fw.dyn_max\n");
1502 		}
1503 		return (NULL);
1504 	}
1505 
1506 	data->parent = parent;
1507 	data->ruleid = ruleid;
1508 	data->rulenum = rulenum;
1509 	data->set = set;
1510 	data->fibnum = fibnum;
1511 	data->hashval = hashval;
1512 	data->expire = time_uptime + V_dyn_syn_lifetime;
1513 	dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1514 	return (data);
1515 }
1516 
1517 static struct dyn_ipv4_state *
1518 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1519     uint8_t type)
1520 {
1521 	struct dyn_ipv4_state *s;
1522 
1523 	s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1524 	if (s == NULL)
1525 		return (NULL);
1526 
1527 	s->type = type;
1528 	s->kidx = kidx;
1529 	s->proto = pkt->proto;
1530 	s->sport = pkt->src_port;
1531 	s->dport = pkt->dst_port;
1532 	s->src = pkt->src_ip;
1533 	s->dst = pkt->dst_ip;
1534 	return (s);
1535 }
1536 
1537 /*
1538  * Add IPv4 parent state.
1539  * Returns pointer to parent state. When it is not NULL we are in
1540  * critical section and pointer protected by hazard pointer.
1541  * When some error occurs, it returns NULL and exit from critical section
1542  * is not needed.
1543  */
1544 static struct dyn_ipv4_state *
1545 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1546     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t hashval,
1547     uint32_t version, uint16_t kidx)
1548 {
1549 	struct dyn_ipv4_state *s;
1550 	struct dyn_parent *limit;
1551 	uint32_t bucket;
1552 
1553 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1554 	DYN_BUCKET_LOCK(bucket);
1555 	if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1556 		/*
1557 		 * Bucket version has been changed since last lookup,
1558 		 * do lookup again to be sure that state does not exist.
1559 		 */
1560 		s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1561 		    rulenum, bucket);
1562 		if (s != NULL) {
1563 			/*
1564 			 * Simultaneous thread has already created this
1565 			 * state. Just return it.
1566 			 */
1567 			DYNSTATE_CRITICAL_ENTER();
1568 			DYNSTATE_PROTECT(s);
1569 			DYN_BUCKET_UNLOCK(bucket);
1570 			return (s);
1571 		}
1572 	}
1573 
1574 	limit = dyn_alloc_parent(rule, ruleid, rulenum, set, hashval);
1575 	if (limit == NULL) {
1576 		DYN_BUCKET_UNLOCK(bucket);
1577 		return (NULL);
1578 	}
1579 
1580 	s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1581 	if (s == NULL) {
1582 		DYN_BUCKET_UNLOCK(bucket);
1583 		uma_zfree(V_dyn_parent_zone, limit);
1584 		return (NULL);
1585 	}
1586 
1587 	s->limit = limit;
1588 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1589 	DYN_COUNT_INC(dyn_parent_count);
1590 	DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1591 	DYNSTATE_CRITICAL_ENTER();
1592 	DYNSTATE_PROTECT(s);
1593 	DYN_BUCKET_UNLOCK(bucket);
1594 	return (s);
1595 }
1596 
1597 static int
1598 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1599     uint8_t set, const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1600     uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1601     uint16_t kidx, uint8_t type)
1602 {
1603 	struct dyn_ipv4_state *s;
1604 	void *data;
1605 	uint32_t bucket;
1606 
1607 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1608 	DYN_BUCKET_LOCK(bucket);
1609 	if (info->direction == MATCH_UNKNOWN ||
1610 	    info->kidx != kidx ||
1611 	    info->hashval != hashval ||
1612 	    info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1613 		/*
1614 		 * Bucket version has been changed since last lookup,
1615 		 * do lookup again to be sure that state does not exist.
1616 		 */
1617 		if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1618 		    bucket, kidx) != 0) {
1619 			DYN_BUCKET_UNLOCK(bucket);
1620 			return (EEXIST);
1621 		}
1622 	}
1623 
1624 	data = dyn_alloc_dyndata(parent, ruleid, rulenum, set, pkt, ulp,
1625 	    pktlen, hashval, fibnum);
1626 	if (data == NULL) {
1627 		DYN_BUCKET_UNLOCK(bucket);
1628 		return (ENOMEM);
1629 	}
1630 
1631 	s = dyn_alloc_ipv4_state(pkt, kidx, type);
1632 	if (s == NULL) {
1633 		DYN_BUCKET_UNLOCK(bucket);
1634 		uma_zfree(V_dyn_data_zone, data);
1635 		return (ENOMEM);
1636 	}
1637 
1638 	s->data = data;
1639 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1640 	DYN_COUNT_INC(dyn_count);
1641 	DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1642 	DYN_BUCKET_UNLOCK(bucket);
1643 	return (0);
1644 }
1645 
1646 #ifdef INET6
1647 static struct dyn_ipv6_state *
1648 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1649     uint16_t kidx, uint8_t type)
1650 {
1651 	struct dyn_ipv6_state *s;
1652 
1653 	s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1654 	if (s == NULL)
1655 		return (NULL);
1656 
1657 	s->type = type;
1658 	s->kidx = kidx;
1659 	s->zoneid = zoneid;
1660 	s->proto = pkt->proto;
1661 	s->sport = pkt->src_port;
1662 	s->dport = pkt->dst_port;
1663 	s->src = pkt->src_ip6;
1664 	s->dst = pkt->dst_ip6;
1665 	return (s);
1666 }
1667 
1668 /*
1669  * Add IPv6 parent state.
1670  * Returns pointer to parent state. When it is not NULL we are in
1671  * critical section and pointer protected by hazard pointer.
1672  * When some error occurs, it return NULL and exit from critical section
1673  * is not needed.
1674  */
1675 static struct dyn_ipv6_state *
1676 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1677     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t zoneid,
1678     uint32_t hashval, uint32_t version, uint16_t kidx)
1679 {
1680 	struct dyn_ipv6_state *s;
1681 	struct dyn_parent *limit;
1682 	uint32_t bucket;
1683 
1684 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1685 	DYN_BUCKET_LOCK(bucket);
1686 	if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1687 		/*
1688 		 * Bucket version has been changed since last lookup,
1689 		 * do lookup again to be sure that state does not exist.
1690 		 */
1691 		s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1692 		    rulenum, bucket);
1693 		if (s != NULL) {
1694 			/*
1695 			 * Simultaneous thread has already created this
1696 			 * state. Just return it.
1697 			 */
1698 			DYNSTATE_CRITICAL_ENTER();
1699 			DYNSTATE_PROTECT(s);
1700 			DYN_BUCKET_UNLOCK(bucket);
1701 			return (s);
1702 		}
1703 	}
1704 
1705 	limit = dyn_alloc_parent(rule, ruleid, rulenum, set, hashval);
1706 	if (limit == NULL) {
1707 		DYN_BUCKET_UNLOCK(bucket);
1708 		return (NULL);
1709 	}
1710 
1711 	s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1712 	if (s == NULL) {
1713 		DYN_BUCKET_UNLOCK(bucket);
1714 		uma_zfree(V_dyn_parent_zone, limit);
1715 		return (NULL);
1716 	}
1717 
1718 	s->limit = limit;
1719 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1720 	DYN_COUNT_INC(dyn_parent_count);
1721 	DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1722 	DYNSTATE_CRITICAL_ENTER();
1723 	DYNSTATE_PROTECT(s);
1724 	DYN_BUCKET_UNLOCK(bucket);
1725 	return (s);
1726 }
1727 
1728 static int
1729 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1730     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t zoneid,
1731     const void *ulp, int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1732     uint16_t fibnum, uint16_t kidx, uint8_t type)
1733 {
1734 	struct dyn_ipv6_state *s;
1735 	struct dyn_data *data;
1736 	uint32_t bucket;
1737 
1738 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1739 	DYN_BUCKET_LOCK(bucket);
1740 	if (info->direction == MATCH_UNKNOWN ||
1741 	    info->kidx != kidx ||
1742 	    info->hashval != hashval ||
1743 	    info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1744 		/*
1745 		 * Bucket version has been changed since last lookup,
1746 		 * do lookup again to be sure that state does not exist.
1747 		 */
1748 		if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1749 		    bucket, kidx) != 0) {
1750 			DYN_BUCKET_UNLOCK(bucket);
1751 			return (EEXIST);
1752 		}
1753 	}
1754 
1755 	data = dyn_alloc_dyndata(parent, ruleid, rulenum, set, pkt, ulp,
1756 	    pktlen, hashval, fibnum);
1757 	if (data == NULL) {
1758 		DYN_BUCKET_UNLOCK(bucket);
1759 		return (ENOMEM);
1760 	}
1761 
1762 	s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1763 	if (s == NULL) {
1764 		DYN_BUCKET_UNLOCK(bucket);
1765 		uma_zfree(V_dyn_data_zone, data);
1766 		return (ENOMEM);
1767 	}
1768 
1769 	s->data = data;
1770 	CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1771 	DYN_COUNT_INC(dyn_count);
1772 	DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1773 	DYN_BUCKET_UNLOCK(bucket);
1774 	return (0);
1775 }
1776 #endif /* INET6 */
1777 
1778 static void *
1779 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1780     struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1781 {
1782 	char sbuf[24];
1783 	struct dyn_parent *p;
1784 	void *ret;
1785 	uint32_t bucket, version;
1786 
1787 	p = NULL;
1788 	ret = NULL;
1789 	bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1790 	DYNSTATE_CRITICAL_ENTER();
1791 	if (IS_IP4_FLOW_ID(pkt)) {
1792 		struct dyn_ipv4_state *s;
1793 
1794 		version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1795 		s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1796 		    rule->rulenum, bucket);
1797 		if (s == NULL) {
1798 			/*
1799 			 * Exit from critical section because dyn_add_parent()
1800 			 * will acquire bucket lock.
1801 			 */
1802 			DYNSTATE_CRITICAL_EXIT();
1803 
1804 			s = dyn_add_ipv4_parent(rule, rule->id,
1805 			    rule->rulenum, rule->set, pkt, hashval,
1806 			    version, kidx);
1807 			if (s == NULL)
1808 				return (NULL);
1809 			/* Now we are in critical section again. */
1810 		}
1811 		ret = s;
1812 		p = s->limit;
1813 	}
1814 #ifdef INET6
1815 	else if (IS_IP6_FLOW_ID(pkt)) {
1816 		struct dyn_ipv6_state *s;
1817 
1818 		version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1819 		s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1820 		    rule->rulenum, bucket);
1821 		if (s == NULL) {
1822 			/*
1823 			 * Exit from critical section because dyn_add_parent()
1824 			 * can acquire bucket mutex.
1825 			 */
1826 			DYNSTATE_CRITICAL_EXIT();
1827 
1828 			s = dyn_add_ipv6_parent(rule, rule->id,
1829 			    rule->rulenum, rule->set, pkt, zoneid, hashval,
1830 			    version, kidx);
1831 			if (s == NULL)
1832 				return (NULL);
1833 			/* Now we are in critical section again. */
1834 		}
1835 		ret = s;
1836 		p = s->limit;
1837 	}
1838 #endif
1839 	else {
1840 		DYNSTATE_CRITICAL_EXIT();
1841 		return (NULL);
1842 	}
1843 
1844 	/* Check the limit */
1845 	if (DPARENT_COUNT(p) >= limit) {
1846 		DYNSTATE_CRITICAL_EXIT();
1847 		if (V_fw_verbose && last_log != time_uptime) {
1848 			last_log = time_uptime;
1849 			snprintf(sbuf, sizeof(sbuf), "%u drop session",
1850 			    rule->rulenum);
1851 			print_dyn_rule_flags(pkt, O_LIMIT,
1852 			    LOG_SECURITY | LOG_DEBUG, sbuf,
1853 			    "too many entries");
1854 		}
1855 		return (NULL);
1856 	}
1857 
1858 	/* Take new session into account. */
1859 	DPARENT_COUNT_INC(p);
1860 	/*
1861 	 * We must exit from critical section because the following code
1862 	 * can acquire bucket mutex.
1863 	 * We rely on the the 'count' field. The state will not expire
1864 	 * until it has some child states, i.e. 'count' field is not zero.
1865 	 * Return state pointer, it will be used by child states as parent.
1866 	 */
1867 	DYNSTATE_CRITICAL_EXIT();
1868 	return (ret);
1869 }
1870 
1871 static int
1872 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1873     uint16_t fibnum, const void *ulp, int pktlen, void *rule,
1874     uint32_t ruleid, uint16_t rulenum, uint8_t set,
1875     struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1876     uint16_t kidx, uint8_t type)
1877 {
1878 	struct ipfw_flow_id id;
1879 	uint32_t hashval, parent_hashval;
1880 	int ret;
1881 
1882 	MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1883 
1884 	if (type == O_LIMIT) {
1885 		/* Create masked flow id and calculate bucket */
1886 		id.addr_type = pkt->addr_type;
1887 		id.proto = pkt->proto;
1888 		id.fib = fibnum; /* unused */
1889 		id.src_port = (limit_mask & DYN_SRC_PORT) ?
1890 		    pkt->src_port: 0;
1891 		id.dst_port = (limit_mask & DYN_DST_PORT) ?
1892 		    pkt->dst_port: 0;
1893 		if (IS_IP4_FLOW_ID(pkt)) {
1894 			id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1895 			    pkt->src_ip: 0;
1896 			id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1897 			    pkt->dst_ip: 0;
1898 		}
1899 #ifdef INET6
1900 		else if (IS_IP6_FLOW_ID(pkt)) {
1901 			if (limit_mask & DYN_SRC_ADDR)
1902 				id.src_ip6 = pkt->src_ip6;
1903 			else
1904 				memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1905 			if (limit_mask & DYN_DST_ADDR)
1906 				id.dst_ip6 = pkt->dst_ip6;
1907 			else
1908 				memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1909 		}
1910 #endif
1911 		else
1912 			return (EAFNOSUPPORT);
1913 
1914 		parent_hashval = hash_parent(&id, rule);
1915 		rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1916 		    limit, kidx);
1917 		if (rule == NULL) {
1918 #if 0
1919 			if (V_fw_verbose && last_log != time_uptime) {
1920 				last_log = time_uptime;
1921 				snprintf(sbuf, sizeof(sbuf),
1922 				    "%u drop session", rule->rulenum);
1923 			print_dyn_rule_flags(pkt, O_LIMIT,
1924 			    LOG_SECURITY | LOG_DEBUG, sbuf,
1925 			    "too many entries");
1926 			}
1927 #endif
1928 			return (EACCES);
1929 		}
1930 		/*
1931 		 * Limit is not reached, create new state.
1932 		 * Now rule points to parent state.
1933 		 */
1934 	}
1935 
1936 	hashval = hash_packet(pkt);
1937 	if (IS_IP4_FLOW_ID(pkt))
1938 		ret = dyn_add_ipv4_state(rule, ruleid, rulenum, set, pkt,
1939 		    ulp, pktlen, hashval, info, fibnum, kidx, type);
1940 #ifdef INET6
1941 	else if (IS_IP6_FLOW_ID(pkt))
1942 		ret = dyn_add_ipv6_state(rule, ruleid, rulenum, set, pkt,
1943 		    zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1944 #endif /* INET6 */
1945 	else
1946 		ret = EAFNOSUPPORT;
1947 
1948 	if (type == O_LIMIT) {
1949 		if (ret != 0) {
1950 			/*
1951 			 * We failed to create child state for O_LIMIT
1952 			 * opcode. Since we already counted it in the parent,
1953 			 * we must revert counter back. The 'rule' points to
1954 			 * parent state, use it to get dyn_parent.
1955 			 *
1956 			 * XXXAE: it should be safe to use 'rule' pointer
1957 			 * without extra lookup, parent state is referenced
1958 			 * and should not be freed.
1959 			 */
1960 			if (IS_IP4_FLOW_ID(&id))
1961 				DPARENT_COUNT_DEC(
1962 				    ((struct dyn_ipv4_state *)rule)->limit);
1963 #ifdef INET6
1964 			else if (IS_IP6_FLOW_ID(&id))
1965 				DPARENT_COUNT_DEC(
1966 				    ((struct dyn_ipv6_state *)rule)->limit);
1967 #endif
1968 		}
1969 	}
1970 	/*
1971 	 * EEXIST means that simultaneous thread has created this
1972 	 * state. Consider this as success.
1973 	 *
1974 	 * XXXAE: should we invalidate 'info' content here?
1975 	 */
1976 	if (ret == EEXIST)
1977 		return (0);
1978 	return (ret);
1979 }
1980 
1981 /*
1982  * Install dynamic state.
1983  *  chain - ipfw's instance;
1984  *  rule - the parent rule that installs the state;
1985  *  cmd - opcode that installs the state;
1986  *  args - ipfw arguments;
1987  *  ulp - upper level protocol header;
1988  *  pktlen - packet length;
1989  *  info - dynamic state lookup info;
1990  *  tablearg - tablearg id.
1991  *
1992  * Returns non-zero value (failure) if state is not installed because
1993  * of errors or because session limitations are enforced.
1994  */
1995 int
1996 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1997     const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1998     const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1999     uint32_t tablearg)
2000 {
2001 	uint32_t limit;
2002 	uint16_t limit_mask;
2003 
2004 	if (cmd->o.opcode == O_LIMIT) {
2005 		limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
2006 		limit_mask = cmd->limit_mask;
2007 	} else {
2008 		limit = 0;
2009 		limit_mask = 0;
2010 	}
2011 	return (dyn_install_state(&args->f_id,
2012 #ifdef INET6
2013 	    IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2014 #endif
2015 	    0, M_GETFIB(args->m), ulp, pktlen, rule, rule->id, rule->rulenum,
2016 	    rule->set, info, limit, limit_mask, cmd->o.arg1, cmd->o.opcode));
2017 }
2018 
2019 /*
2020  * Free safe to remove state entries from expired lists.
2021  */
2022 static void
2023 dyn_free_states(struct ip_fw_chain *chain)
2024 {
2025 	struct dyn_ipv4_state *s4, *s4n;
2026 #ifdef INET6
2027 	struct dyn_ipv6_state *s6, *s6n;
2028 #endif
2029 	int cached_count, i;
2030 
2031 	/*
2032 	 * We keep pointers to objects that are in use on each CPU
2033 	 * in the per-cpu dyn_hp pointer. When object is going to be
2034 	 * removed, first of it is unlinked from the corresponding
2035 	 * list. This leads to changing of dyn_bucket_xxx_delver version.
2036 	 * Unlinked objects is placed into corresponding dyn_expired_xxx
2037 	 * list. Reader that is going to dereference object pointer checks
2038 	 * dyn_bucket_xxx_delver version before and after storing pointer
2039 	 * into dyn_hp. If version is the same, the object is protected
2040 	 * from freeing and it is safe to dereference. Othervise reader
2041 	 * tries to iterate list again from the beginning, but this object
2042 	 * now unlinked and thus will not be accessible.
2043 	 *
2044 	 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2045 	 * It does not matter that some pointer can be changed in
2046 	 * time while we are copying. We need to check, that objects
2047 	 * removed in the previous pass are not in use. And if dyn_hp
2048 	 * pointer does not contain it in the time when we are copying,
2049 	 * it will not appear there, because it is already unlinked.
2050 	 * And for new pointers we will not free objects that will be
2051 	 * unlinked in this pass.
2052 	 */
2053 	cached_count = 0;
2054 	CPU_FOREACH(i) {
2055 		dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2056 		if (dyn_hp_cache[cached_count] != NULL)
2057 			cached_count++;
2058 	}
2059 
2060 	/*
2061 	 * Free expired states that are safe to free.
2062 	 * Check each entry from previous pass in the dyn_expired_xxx
2063 	 * list, if pointer to the object is in the dyn_hp_cache array,
2064 	 * keep it until next pass. Otherwise it is safe to free the
2065 	 * object.
2066 	 *
2067 	 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2068 	 */
2069 #define	DYN_FREE_STATES(s, next, name)		do {			\
2070 	s = SLIST_FIRST(&V_dyn_expired_ ## name);			\
2071 	while (s != NULL) {						\
2072 		next = SLIST_NEXT(s, expired);				\
2073 		for (i = 0; i < cached_count; i++)			\
2074 			if (dyn_hp_cache[i] == s)			\
2075 				break;					\
2076 		if (i == cached_count) {				\
2077 			if (s->type == O_LIMIT_PARENT &&		\
2078 			    s->limit->count != 0) {			\
2079 				s = next;				\
2080 				continue;				\
2081 			}						\
2082 			SLIST_REMOVE(&V_dyn_expired_ ## name,		\
2083 			    s, dyn_ ## name ## _state, expired);	\
2084 			if (s->type == O_LIMIT_PARENT)			\
2085 				uma_zfree(V_dyn_parent_zone, s->limit);	\
2086 			else						\
2087 				uma_zfree(V_dyn_data_zone, s->data);	\
2088 			uma_zfree(V_dyn_ ## name ## _zone, s);		\
2089 		}							\
2090 		s = next;						\
2091 	}								\
2092 } while (0)
2093 
2094 	/*
2095 	 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2096 	 * Userland can invoke ipfw_expire_dyn_states() to delete
2097 	 * specific states, this will lead to modification of expired
2098 	 * lists.
2099 	 *
2100 	 * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2101 	 *	  IPFW_UH_WLOCK to protect access to these lists.
2102 	 */
2103 	DYN_EXPIRED_LOCK();
2104 	DYN_FREE_STATES(s4, s4n, ipv4);
2105 #ifdef INET6
2106 	DYN_FREE_STATES(s6, s6n, ipv6);
2107 #endif
2108 	DYN_EXPIRED_UNLOCK();
2109 #undef DYN_FREE_STATES
2110 }
2111 
2112 /*
2113  * Returns:
2114  * 0 when state is not matched by specified range;
2115  * 1 when state is matched by specified range;
2116  * 2 when state is matched by specified range and requested deletion of
2117  *   dynamic states.
2118  */
2119 static int
2120 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2121 {
2122 
2123 	MPASS(rt != NULL);
2124 	/* flush all states */
2125 	if (rt->flags & IPFW_RCFLAG_ALL) {
2126 		if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2127 			return (2); /* forced */
2128 		return (1);
2129 	}
2130 	if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2131 		return (0);
2132 	if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2133 	    (rulenum < rt->start_rule || rulenum > rt->end_rule))
2134 		return (0);
2135 	if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2136 		return (2);
2137 	return (1);
2138 }
2139 
2140 static void
2141 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2142     struct ip_fw *rule, uint16_t kidx)
2143 {
2144 	struct dyn_state_obj *obj;
2145 
2146 	/*
2147 	 * Do not acquire reference twice.
2148 	 * This can happen when rule deletion executed for
2149 	 * the same range, but different ruleset id.
2150 	 */
2151 	if (data->flags & DYN_REFERENCED)
2152 		return;
2153 
2154 	IPFW_UH_WLOCK_ASSERT(ch);
2155 	MPASS(kidx != 0);
2156 
2157 	data->flags |= DYN_REFERENCED;
2158 	/* Reference the named object */
2159 	obj = SRV_OBJECT(ch, kidx);
2160 	obj->no.refcnt++;
2161 	MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2162 
2163 	/* Reference the parent rule */
2164 	rule->refcnt++;
2165 }
2166 
2167 static void
2168 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2169     struct ip_fw *rule, uint16_t kidx)
2170 {
2171 	struct dyn_state_obj *obj;
2172 
2173 	IPFW_UH_WLOCK_ASSERT(ch);
2174 	MPASS(kidx != 0);
2175 
2176 	obj = SRV_OBJECT(ch, kidx);
2177 	if (obj->no.refcnt == 1)
2178 		dyn_destroy(ch, &obj->no);
2179 	else
2180 		obj->no.refcnt--;
2181 
2182 	if (--rule->refcnt == 1)
2183 		ipfw_free_rule(rule);
2184 }
2185 
2186 /*
2187  * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2188  * O_LIMIT state is created when new connection is going to be established
2189  * and there is no matching state. So, since the old parent rule was deleted
2190  * we can't create new states with old parent, and thus we can not account
2191  * new connections with already established connections, and can not do
2192  * proper limiting.
2193  */
2194 static int
2195 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2196     const ipfw_range_tlv *rt)
2197 {
2198 	struct ip_fw *rule;
2199 	int ret;
2200 
2201 	if (s->type == O_LIMIT_PARENT)
2202 		return (dyn_match_range(s->limit->rulenum,
2203 		    s->limit->set, rt));
2204 
2205 	ret = dyn_match_range(s->data->rulenum, s->data->set, rt);
2206 	if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2207 		return (ret);
2208 
2209 	rule = s->data->parent;
2210 	if (s->type == O_LIMIT)
2211 		rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2212 	dyn_acquire_rule(ch, s->data, rule, s->kidx);
2213 	return (0);
2214 }
2215 
2216 #ifdef INET6
2217 static int
2218 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2219     const ipfw_range_tlv *rt)
2220 {
2221 	struct ip_fw *rule;
2222 	int ret;
2223 
2224 	if (s->type == O_LIMIT_PARENT)
2225 		return (dyn_match_range(s->limit->rulenum,
2226 		    s->limit->set, rt));
2227 
2228 	ret = dyn_match_range(s->data->rulenum, s->data->set, rt);
2229 	if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2230 		return (ret);
2231 
2232 	rule = s->data->parent;
2233 	if (s->type == O_LIMIT)
2234 		rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2235 	dyn_acquire_rule(ch, s->data, rule, s->kidx);
2236 	return (0);
2237 }
2238 #endif
2239 
2240 /*
2241  * Unlink expired entries from states lists.
2242  * @rt can be used to specify the range of states for deletion.
2243  */
2244 static void
2245 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2246 {
2247 	struct dyn_ipv4_slist expired_ipv4;
2248 #ifdef INET6
2249 	struct dyn_ipv6_slist expired_ipv6;
2250 	struct dyn_ipv6_state *s6, *s6n, *s6p;
2251 #endif
2252 	struct dyn_ipv4_state *s4, *s4n, *s4p;
2253 	void *rule;
2254 	int bucket, removed, length, max_length;
2255 
2256 	IPFW_UH_WLOCK_ASSERT(ch);
2257 
2258 	/*
2259 	 * Unlink expired states from each bucket.
2260 	 * With acquired bucket lock iterate entries of each lists:
2261 	 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2262 	 * and unlink entry from the list, link entry into temporary
2263 	 * expired_xxx lists then bump "del" bucket version.
2264 	 *
2265 	 * When an entry is removed, corresponding states counter is
2266 	 * decremented. If entry has O_LIMIT type, parent's reference
2267 	 * counter is decremented.
2268 	 *
2269 	 * NOTE: this function can be called from userspace context
2270 	 * when user deletes rules. In this case all matched states
2271 	 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2272 	 * in the expired lists until reference counter become zero.
2273 	 */
2274 #define	DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra)	do {	\
2275 	length = 0;							\
2276 	removed = 0;							\
2277 	prev = NULL;							\
2278 	s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]);			\
2279 	while (s != NULL) {						\
2280 		next = CK_SLIST_NEXT(s, entry);				\
2281 		if ((TIME_LEQ((s)->exp, time_uptime) && extra) ||	\
2282 		    (rt != NULL &&					\
2283 		     dyn_match_ ## af ## _state(ch, s, rt))) {		\
2284 			if (prev != NULL)				\
2285 				CK_SLIST_REMOVE_AFTER(prev, entry);	\
2286 			else						\
2287 				CK_SLIST_REMOVE_HEAD(			\
2288 				    &V_dyn_ ## name [bucket], entry);	\
2289 			removed++;					\
2290 			SLIST_INSERT_HEAD(&expired_ ## af, s, expired);	\
2291 			if (s->type == O_LIMIT_PARENT)			\
2292 				DYN_COUNT_DEC(dyn_parent_count);	\
2293 			else {						\
2294 				DYN_COUNT_DEC(dyn_count);		\
2295 				if (s->data->flags & DYN_REFERENCED) {	\
2296 					rule = s->data->parent;		\
2297 					if (s->type == O_LIMIT)		\
2298 						rule = ((__typeof(s))	\
2299 						    rule)->limit->parent;\
2300 					dyn_release_rule(ch, s->data,	\
2301 					    rule, s->kidx);		\
2302 				}					\
2303 				if (s->type == O_LIMIT)	{		\
2304 					s = s->data->parent;		\
2305 					DPARENT_COUNT_DEC(s->limit);	\
2306 				}					\
2307 			}						\
2308 		} else {						\
2309 			prev = s;					\
2310 			length++;					\
2311 		}							\
2312 		s = next;						\
2313 	}								\
2314 	if (removed != 0)						\
2315 		DYN_BUCKET_VERSION_BUMP(bucket, name ## _del);		\
2316 	if (length > max_length)				\
2317 		max_length = length;				\
2318 } while (0)
2319 
2320 	SLIST_INIT(&expired_ipv4);
2321 #ifdef INET6
2322 	SLIST_INIT(&expired_ipv6);
2323 #endif
2324 	max_length = 0;
2325 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2326 		DYN_BUCKET_LOCK(bucket);
2327 		DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2328 		DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2329 		    ipv4_parent, (s4->limit->count == 0));
2330 #ifdef INET6
2331 		DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2332 		DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2333 		    ipv6_parent, (s6->limit->count == 0));
2334 #endif
2335 		DYN_BUCKET_UNLOCK(bucket);
2336 	}
2337 	/* Update curr_max_length for statistics. */
2338 	V_curr_max_length = max_length;
2339 	/*
2340 	 * Concatenate temporary lists with global expired lists.
2341 	 */
2342 	DYN_EXPIRED_LOCK();
2343 	SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2344 	    dyn_ipv4_state, expired);
2345 #ifdef INET6
2346 	SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2347 	    dyn_ipv6_state, expired);
2348 #endif
2349 	DYN_EXPIRED_UNLOCK();
2350 #undef DYN_UNLINK_STATES
2351 #undef DYN_UNREF_STATES
2352 }
2353 
2354 static struct mbuf *
2355 dyn_mgethdr(int len, uint16_t fibnum)
2356 {
2357 	struct mbuf *m;
2358 
2359 	m = m_gethdr(M_NOWAIT, MT_DATA);
2360 	if (m == NULL)
2361 		return (NULL);
2362 #ifdef MAC
2363 	mac_netinet_firewall_send(m);
2364 #endif
2365 	M_SETFIB(m, fibnum);
2366 	m->m_data += max_linkhdr;
2367 	m->m_flags |= M_SKIP_FIREWALL;
2368 	m->m_len = m->m_pkthdr.len = len;
2369 	bzero(m->m_data, len);
2370 	return (m);
2371 }
2372 
2373 static void
2374 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2375     uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2376 {
2377 	struct tcphdr *tcp;
2378 	struct ip *ip;
2379 
2380 	ip = mtod(m, struct ip *);
2381 	ip->ip_v = 4;
2382 	ip->ip_hl = sizeof(*ip) >> 2;
2383 	ip->ip_tos = IPTOS_LOWDELAY;
2384 	ip->ip_len = htons(m->m_len);
2385 	ip->ip_off |= htons(IP_DF);
2386 	ip->ip_ttl = V_ip_defttl;
2387 	ip->ip_p = IPPROTO_TCP;
2388 	ip->ip_src.s_addr = htonl(src);
2389 	ip->ip_dst.s_addr = htonl(dst);
2390 
2391 	tcp = mtodo(m, sizeof(struct ip));
2392 	tcp->th_sport = htons(sport);
2393 	tcp->th_dport = htons(dport);
2394 	tcp->th_off = sizeof(struct tcphdr) >> 2;
2395 	tcp->th_seq = htonl(seq);
2396 	tcp->th_ack = htonl(ack);
2397 	tcp->th_flags = TH_ACK;
2398 	tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2399 	    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2400 
2401 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2402 	m->m_pkthdr.csum_flags = CSUM_TCP;
2403 }
2404 
2405 static void
2406 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2407 {
2408 	struct mbuf *m;
2409 
2410 	if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2411 		m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2412 		    s->data->fibnum);
2413 		if (m != NULL) {
2414 			dyn_make_keepalive_ipv4(m, s->dst, s->src,
2415 			    s->data->ack_fwd - 1, s->data->ack_rev,
2416 			    s->dport, s->sport);
2417 			if (mbufq_enqueue(q, m)) {
2418 				m_freem(m);
2419 				log(LOG_DEBUG, "ipfw: limit for IPv4 "
2420 				    "keepalive queue is reached.\n");
2421 				return;
2422 			}
2423 		}
2424 	}
2425 
2426 	if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2427 		m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2428 		    s->data->fibnum);
2429 		if (m != NULL) {
2430 			dyn_make_keepalive_ipv4(m, s->src, s->dst,
2431 			    s->data->ack_rev - 1, s->data->ack_fwd,
2432 			    s->sport, s->dport);
2433 			if (mbufq_enqueue(q, m)) {
2434 				m_freem(m);
2435 				log(LOG_DEBUG, "ipfw: limit for IPv4 "
2436 				    "keepalive queue is reached.\n");
2437 				return;
2438 			}
2439 		}
2440 	}
2441 }
2442 
2443 /*
2444  * Prepare and send keep-alive packets.
2445  */
2446 static void
2447 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2448 {
2449 	struct mbufq q;
2450 	struct mbuf *m;
2451 	struct dyn_ipv4_state *s;
2452 	uint32_t bucket;
2453 
2454 	mbufq_init(&q, INT_MAX);
2455 	IPFW_UH_RLOCK(chain);
2456 	/*
2457 	 * It is safe to not use hazard pointer and just do lockless
2458 	 * access to the lists, because states entries can not be deleted
2459 	 * while we hold IPFW_UH_RLOCK.
2460 	 */
2461 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2462 		CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2463 			/*
2464 			 * Only established TCP connections that will
2465 			 * become expired withing dyn_keepalive_interval.
2466 			 */
2467 			if (s->proto != IPPROTO_TCP ||
2468 			    (s->data->state & BOTH_SYN) != BOTH_SYN ||
2469 			    TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2470 				s->data->expire))
2471 				continue;
2472 			dyn_enqueue_keepalive_ipv4(&q, s);
2473 		}
2474 	}
2475 	IPFW_UH_RUNLOCK(chain);
2476 	while ((m = mbufq_dequeue(&q)) != NULL)
2477 		ip_output(m, NULL, NULL, 0, NULL, NULL);
2478 }
2479 
2480 #ifdef INET6
2481 static void
2482 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2483     const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2484     uint16_t sport, uint16_t dport)
2485 {
2486 	struct tcphdr *tcp;
2487 	struct ip6_hdr *ip6;
2488 
2489 	ip6 = mtod(m, struct ip6_hdr *);
2490 	ip6->ip6_vfc |= IPV6_VERSION;
2491 	ip6->ip6_plen = htons(sizeof(struct tcphdr));
2492 	ip6->ip6_nxt = IPPROTO_TCP;
2493 	ip6->ip6_hlim = IPV6_DEFHLIM;
2494 	ip6->ip6_src = *src;
2495 	if (IN6_IS_ADDR_LINKLOCAL(src))
2496 		ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2497 	ip6->ip6_dst = *dst;
2498 	if (IN6_IS_ADDR_LINKLOCAL(dst))
2499 		ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2500 
2501 	tcp = mtodo(m, sizeof(struct ip6_hdr));
2502 	tcp->th_sport = htons(sport);
2503 	tcp->th_dport = htons(dport);
2504 	tcp->th_off = sizeof(struct tcphdr) >> 2;
2505 	tcp->th_seq = htonl(seq);
2506 	tcp->th_ack = htonl(ack);
2507 	tcp->th_flags = TH_ACK;
2508 	tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2509 	    IPPROTO_TCP, 0);
2510 
2511 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2512 	m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2513 }
2514 
2515 static void
2516 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2517 {
2518 	struct mbuf *m;
2519 
2520 	if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2521 		m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2522 		    sizeof(struct tcphdr), s->data->fibnum);
2523 		if (m != NULL) {
2524 			dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2525 			    s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2526 			    s->dport, s->sport);
2527 			if (mbufq_enqueue(q, m)) {
2528 				m_freem(m);
2529 				log(LOG_DEBUG, "ipfw: limit for IPv6 "
2530 				    "keepalive queue is reached.\n");
2531 				return;
2532 			}
2533 		}
2534 	}
2535 
2536 	if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2537 		m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2538 		    sizeof(struct tcphdr), s->data->fibnum);
2539 		if (m != NULL) {
2540 			dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2541 			    s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2542 			    s->sport, s->dport);
2543 			if (mbufq_enqueue(q, m)) {
2544 				m_freem(m);
2545 				log(LOG_DEBUG, "ipfw: limit for IPv6 "
2546 				    "keepalive queue is reached.\n");
2547 				return;
2548 			}
2549 		}
2550 	}
2551 }
2552 
2553 static void
2554 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2555 {
2556 	struct mbufq q;
2557 	struct mbuf *m;
2558 	struct dyn_ipv6_state *s;
2559 	uint32_t bucket;
2560 
2561 	mbufq_init(&q, INT_MAX);
2562 	IPFW_UH_RLOCK(chain);
2563 	/*
2564 	 * It is safe to not use hazard pointer and just do lockless
2565 	 * access to the lists, because states entries can not be deleted
2566 	 * while we hold IPFW_UH_RLOCK.
2567 	 */
2568 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2569 		CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2570 			/*
2571 			 * Only established TCP connections that will
2572 			 * become expired withing dyn_keepalive_interval.
2573 			 */
2574 			if (s->proto != IPPROTO_TCP ||
2575 			    (s->data->state & BOTH_SYN) != BOTH_SYN ||
2576 			    TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2577 				s->data->expire))
2578 				continue;
2579 			dyn_enqueue_keepalive_ipv6(&q, s);
2580 		}
2581 	}
2582 	IPFW_UH_RUNLOCK(chain);
2583 	while ((m = mbufq_dequeue(&q)) != NULL)
2584 		ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2585 }
2586 #endif /* INET6 */
2587 
2588 static void
2589 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new)
2590 {
2591 #ifdef INET6
2592 	struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2593 	uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2594 	struct dyn_ipv6_state *s6;
2595 #endif
2596 	struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2597 	uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2598 	struct dyn_ipv4_state *s4;
2599 	struct mtx *bucket_lock;
2600 	void *tmp;
2601 	uint32_t bucket;
2602 
2603 	MPASS(powerof2(new));
2604 	DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2605 	/*
2606 	 * Allocate and initialize new lists.
2607 	 * XXXAE: on memory pressure this can disable callout timer.
2608 	 */
2609 	bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2610 	    M_WAITOK | M_ZERO);
2611 	ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2612 	    M_WAITOK | M_ZERO);
2613 	ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2614 	    M_WAITOK | M_ZERO);
2615 	ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2616 	ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2617 	ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2618 	    M_WAITOK | M_ZERO);
2619 	ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2620 	    M_WAITOK | M_ZERO);
2621 #ifdef INET6
2622 	ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2623 	    M_WAITOK | M_ZERO);
2624 	ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2625 	    M_WAITOK | M_ZERO);
2626 	ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2627 	ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2628 	ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2629 	    M_WAITOK | M_ZERO);
2630 	ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2631 	    M_WAITOK | M_ZERO);
2632 #endif
2633 	for (bucket = 0; bucket < new; bucket++) {
2634 		DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2635 		CK_SLIST_INIT(&ipv4[bucket]);
2636 		CK_SLIST_INIT(&ipv4_parent[bucket]);
2637 #ifdef INET6
2638 		CK_SLIST_INIT(&ipv6[bucket]);
2639 		CK_SLIST_INIT(&ipv6_parent[bucket]);
2640 #endif
2641 	}
2642 
2643 #define DYN_RELINK_STATES(s, hval, i, head, ohead)	do {		\
2644 	while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) {	\
2645 		CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry);	\
2646 		CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)],	\
2647 		    s, entry);						\
2648 	}								\
2649 } while (0)
2650 	/*
2651 	 * Prevent rules changing from userland.
2652 	 */
2653 	IPFW_UH_WLOCK(chain);
2654 	/*
2655 	 * Hold traffic processing until we finish resize to
2656 	 * prevent access to states lists.
2657 	 */
2658 	IPFW_WLOCK(chain);
2659 	/* Re-link all dynamic states */
2660 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2661 		DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2662 		DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2663 		    ipv4_parent);
2664 #ifdef INET6
2665 		DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2666 		DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2667 		    ipv6_parent);
2668 #endif
2669 	}
2670 
2671 #define	DYN_SWAP_PTR(old, new, tmp)	do {		\
2672 	tmp = old;					\
2673 	old = new;					\
2674 	new = tmp;					\
2675 } while (0)
2676 	/* Swap pointers */
2677 	DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2678 	DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2679 	DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2680 	DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2681 	DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2682 	DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2683 	DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2684 
2685 #ifdef INET6
2686 	DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2687 	DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2688 	DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2689 	DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2690 	DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2691 	DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2692 #endif
2693 	bucket = V_curr_dyn_buckets;
2694 	V_curr_dyn_buckets = new;
2695 
2696 	IPFW_WUNLOCK(chain);
2697 	IPFW_UH_WUNLOCK(chain);
2698 
2699 	/* Release old resources */
2700 	while (bucket-- != 0)
2701 		DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2702 	free(bucket_lock, M_IPFW);
2703 	free(ipv4, M_IPFW);
2704 	free(ipv4_parent, M_IPFW);
2705 	free(ipv4_add, M_IPFW);
2706 	free(ipv4_parent_add, M_IPFW);
2707 	free(ipv4_del, M_IPFW);
2708 	free(ipv4_parent_del, M_IPFW);
2709 #ifdef INET6
2710 	free(ipv6, M_IPFW);
2711 	free(ipv6_parent, M_IPFW);
2712 	free(ipv6_add, M_IPFW);
2713 	free(ipv6_parent_add, M_IPFW);
2714 	free(ipv6_del, M_IPFW);
2715 	free(ipv6_parent_del, M_IPFW);
2716 #endif
2717 }
2718 
2719 /*
2720  * This function is used to perform various maintenance
2721  * on dynamic hash lists. Currently it is called every second.
2722  */
2723 static void
2724 dyn_tick(void *vnetx)
2725 {
2726 	uint32_t buckets;
2727 
2728 	CURVNET_SET((struct vnet *)vnetx);
2729 	/*
2730 	 * First free states unlinked in previous passes.
2731 	 */
2732 	dyn_free_states(&V_layer3_chain);
2733 	/*
2734 	 * Now unlink others expired states.
2735 	 * We use IPFW_UH_WLOCK to avoid concurrent call of
2736 	 * dyn_expire_states(). It is the only function that does
2737 	 * deletion of state entries from states lists.
2738 	 */
2739 	IPFW_UH_WLOCK(&V_layer3_chain);
2740 	dyn_expire_states(&V_layer3_chain, NULL);
2741 	IPFW_UH_WUNLOCK(&V_layer3_chain);
2742 	/*
2743 	 * Send keepalives if they are enabled and the time has come.
2744 	 */
2745 	if (V_dyn_keepalive != 0 &&
2746 	    V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2747 		V_dyn_keepalive_last = time_uptime;
2748 		dyn_send_keepalive_ipv4(&V_layer3_chain);
2749 #ifdef INET6
2750 		dyn_send_keepalive_ipv6(&V_layer3_chain);
2751 #endif
2752 	}
2753 	/*
2754 	 * Check if we need to resize the hash:
2755 	 * if current number of states exceeds number of buckets in hash,
2756 	 * and dyn_buckets_max permits to grow the number of buckets, then
2757 	 * do it. Grow hash size to the minimum power of 2 which is bigger
2758 	 * than current states count.
2759 	 */
2760 	if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2761 	    (V_curr_dyn_buckets < V_dyn_count / 2 || (
2762 	    V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2763 		buckets = 1 << fls(V_dyn_count);
2764 		if (buckets > V_dyn_buckets_max)
2765 			buckets = V_dyn_buckets_max;
2766 		dyn_grow_hashtable(&V_layer3_chain, buckets);
2767 	}
2768 
2769 	callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2770 	CURVNET_RESTORE();
2771 }
2772 
2773 void
2774 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2775 {
2776 	/*
2777 	 * Do not perform any checks if we currently have no dynamic states
2778 	 */
2779 	if (V_dyn_count == 0)
2780 		return;
2781 
2782 	IPFW_UH_WLOCK_ASSERT(chain);
2783 	dyn_expire_states(chain, rt);
2784 }
2785 
2786 /*
2787  * Pass through all states and reset eaction for orphaned rules.
2788  */
2789 void
2790 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id,
2791     uint16_t default_id, uint16_t instance_id)
2792 {
2793 #ifdef INET6
2794 	struct dyn_ipv6_state *s6;
2795 #endif
2796 	struct dyn_ipv4_state *s4;
2797 	struct ip_fw *rule;
2798 	uint32_t bucket;
2799 
2800 #define	DYN_RESET_EACTION(s, h, b)					\
2801 	CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {			\
2802 		if ((s->data->flags & DYN_REFERENCED) == 0)		\
2803 			continue;					\
2804 		rule = s->data->parent;					\
2805 		if (s->type == O_LIMIT)					\
2806 			rule = ((__typeof(s))rule)->limit->parent;	\
2807 		ipfw_reset_eaction(ch, rule, eaction_id,		\
2808 		    default_id, instance_id);				\
2809 	}
2810 
2811 	IPFW_UH_WLOCK_ASSERT(ch);
2812 	if (V_dyn_count == 0)
2813 		return;
2814 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2815 		DYN_RESET_EACTION(s4, ipv4, bucket);
2816 #ifdef INET6
2817 		DYN_RESET_EACTION(s6, ipv6, bucket);
2818 #endif
2819 	}
2820 }
2821 
2822 /*
2823  * Returns size of dynamic states in legacy format
2824  */
2825 int
2826 ipfw_dyn_len(void)
2827 {
2828 
2829 	return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2830 }
2831 
2832 /*
2833  * Returns number of dynamic states.
2834  * Marks every named object index used by dynamic states with bit in @bmask.
2835  * Returns number of named objects accounted in bmask via @nocnt.
2836  * Used by dump format v1 (current).
2837  */
2838 uint32_t
2839 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2840 {
2841 #ifdef INET6
2842 	struct dyn_ipv6_state *s6;
2843 #endif
2844 	struct dyn_ipv4_state *s4;
2845 	uint32_t bucket;
2846 
2847 #define	DYN_COUNT_OBJECTS(s, h, b)					\
2848 	CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {			\
2849 		MPASS(s->kidx != 0);					\
2850 		if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME,	\
2851 		    s->kidx) != 0)					\
2852 			(*nocnt)++;					\
2853 	}
2854 
2855 	IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2856 
2857 	/* No need to pass through all the buckets. */
2858 	*nocnt = 0;
2859 	if (V_dyn_count + V_dyn_parent_count == 0)
2860 		return (0);
2861 
2862 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2863 		DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2864 #ifdef INET6
2865 		DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2866 #endif
2867 	}
2868 
2869 	return (V_dyn_count + V_dyn_parent_count);
2870 }
2871 
2872 /*
2873  * Check if rule contains at least one dynamic opcode.
2874  *
2875  * Returns 1 if such opcode is found, 0 otherwise.
2876  */
2877 int
2878 ipfw_is_dyn_rule(struct ip_fw *rule)
2879 {
2880 	int cmdlen, l;
2881 	ipfw_insn *cmd;
2882 
2883 	l = rule->cmd_len;
2884 	cmd = rule->cmd;
2885 	cmdlen = 0;
2886 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
2887 		cmdlen = F_LEN(cmd);
2888 
2889 		switch (cmd->opcode) {
2890 		case O_LIMIT:
2891 		case O_KEEP_STATE:
2892 		case O_PROBE_STATE:
2893 		case O_CHECK_STATE:
2894 			return (1);
2895 		}
2896 	}
2897 
2898 	return (0);
2899 }
2900 
2901 static void
2902 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx,
2903     ipfw_dyn_rule *dst)
2904 {
2905 
2906 	dst->dyn_type = O_LIMIT_PARENT;
2907 	dst->kidx = kidx;
2908 	dst->count = (uint16_t)DPARENT_COUNT(p);
2909 	dst->expire = TIME_LEQ(p->expire, time_uptime) ?  0:
2910 	    p->expire - time_uptime;
2911 
2912 	/* 'rule' is used to pass up the rule number and set */
2913 	memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2914 	/* store set number into high word of dst->rule pointer. */
2915 	memcpy((char *)&dst->rule + sizeof(p->rulenum), &p->set,
2916 	    sizeof(p->set));
2917 
2918 	/* unused fields */
2919 	dst->pcnt = 0;
2920 	dst->bcnt = 0;
2921 	dst->parent = NULL;
2922 	dst->state = 0;
2923 	dst->ack_fwd = 0;
2924 	dst->ack_rev = 0;
2925 	dst->bucket = p->hashval;
2926 	/*
2927 	 * The legacy userland code will interpret a NULL here as a marker
2928 	 * for the last dynamic rule.
2929 	 */
2930 	dst->next = (ipfw_dyn_rule *)1;
2931 }
2932 
2933 static void
2934 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2935     ipfw_dyn_rule *dst)
2936 {
2937 
2938 	dst->dyn_type = type;
2939 	dst->kidx = kidx;
2940 	dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2941 	dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2942 	dst->expire = TIME_LEQ(data->expire, time_uptime) ?  0:
2943 	    data->expire - time_uptime;
2944 
2945 	/* 'rule' is used to pass up the rule number and set */
2946 	memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2947 	/* store set number into high word of dst->rule pointer. */
2948 	memcpy((char *)&dst->rule + sizeof(data->rulenum), &data->set,
2949 	    sizeof(data->set));
2950 
2951 	dst->state = data->state;
2952 	if (data->flags & DYN_REFERENCED)
2953 		dst->state |= IPFW_DYN_ORPHANED;
2954 
2955 	/* unused fields */
2956 	dst->parent = NULL;
2957 	dst->ack_fwd = data->ack_fwd;
2958 	dst->ack_rev = data->ack_rev;
2959 	dst->count = 0;
2960 	dst->bucket = data->hashval;
2961 	/*
2962 	 * The legacy userland code will interpret a NULL here as a marker
2963 	 * for the last dynamic rule.
2964 	 */
2965 	dst->next = (ipfw_dyn_rule *)1;
2966 }
2967 
2968 static void
2969 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2970 {
2971 
2972 	switch (s->type) {
2973 	case O_LIMIT_PARENT:
2974 		dyn_export_parent(s->limit, s->kidx, dst);
2975 		break;
2976 	default:
2977 		dyn_export_data(s->data, s->kidx, s->type, dst);
2978 	}
2979 
2980 	dst->id.dst_ip = s->dst;
2981 	dst->id.src_ip = s->src;
2982 	dst->id.dst_port = s->dport;
2983 	dst->id.src_port = s->sport;
2984 	dst->id.fib = s->data->fibnum;
2985 	dst->id.proto = s->proto;
2986 	dst->id._flags = 0;
2987 	dst->id.addr_type = 4;
2988 
2989 	memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
2990 	memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
2991 	dst->id.flow_id6 = dst->id.extra = 0;
2992 }
2993 
2994 #ifdef INET6
2995 static void
2996 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
2997 {
2998 
2999 	switch (s->type) {
3000 	case O_LIMIT_PARENT:
3001 		dyn_export_parent(s->limit, s->kidx, dst);
3002 		break;
3003 	default:
3004 		dyn_export_data(s->data, s->kidx, s->type, dst);
3005 	}
3006 
3007 	dst->id.src_ip6 = s->src;
3008 	dst->id.dst_ip6 = s->dst;
3009 	dst->id.dst_port = s->dport;
3010 	dst->id.src_port = s->sport;
3011 	dst->id.fib = s->data->fibnum;
3012 	dst->id.proto = s->proto;
3013 	dst->id._flags = 0;
3014 	dst->id.addr_type = 6;
3015 
3016 	dst->id.dst_ip = dst->id.src_ip = 0;
3017 	dst->id.flow_id6 = dst->id.extra = 0;
3018 }
3019 #endif /* INET6 */
3020 
3021 /*
3022  * Fills the buffer given by @sd with dynamic states.
3023  * Used by dump format v1 (current).
3024  *
3025  * Returns 0 on success.
3026  */
3027 int
3028 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3029 {
3030 #ifdef INET6
3031 	struct dyn_ipv6_state *s6;
3032 #endif
3033 	struct dyn_ipv4_state *s4;
3034 	ipfw_obj_dyntlv *dst, *last;
3035 	ipfw_obj_ctlv *ctlv;
3036 	uint32_t bucket;
3037 
3038 	if (V_dyn_count == 0)
3039 		return (0);
3040 
3041 	/*
3042 	 * IPFW_UH_RLOCK garantees that another userland request
3043 	 * and callout thread will not delete entries from states
3044 	 * lists.
3045 	 */
3046 	IPFW_UH_RLOCK_ASSERT(chain);
3047 
3048 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3049 	if (ctlv == NULL)
3050 		return (ENOMEM);
3051 	ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3052 	ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3053 	last = NULL;
3054 
3055 #define	DYN_EXPORT_STATES(s, af, h, b)				\
3056 	CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {			\
3057 		dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd,	\
3058 		    sizeof(ipfw_obj_dyntlv));				\
3059 		if (dst == NULL)					\
3060 			return (ENOMEM);				\
3061 		dyn_export_ ## af ## _state(s, &dst->state);		\
3062 		dst->head.length = sizeof(ipfw_obj_dyntlv);		\
3063 		dst->head.type = IPFW_TLV_DYN_ENT;			\
3064 		last = dst;						\
3065 	}
3066 
3067 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3068 		DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3069 		DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3070 #ifdef INET6
3071 		DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3072 		DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3073 #endif /* INET6 */
3074 	}
3075 
3076 	/* mark last dynamic rule */
3077 	if (last != NULL)
3078 		last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3079 	return (0);
3080 #undef DYN_EXPORT_STATES
3081 }
3082 
3083 /*
3084  * Fill given buffer with dynamic states (legacy format).
3085  * IPFW_UH_RLOCK has to be held while calling.
3086  */
3087 void
3088 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
3089 {
3090 #ifdef INET6
3091 	struct dyn_ipv6_state *s6;
3092 #endif
3093 	struct dyn_ipv4_state *s4;
3094 	ipfw_dyn_rule *p, *last = NULL;
3095 	char *bp;
3096 	uint32_t bucket;
3097 
3098 	if (V_dyn_count == 0)
3099 		return;
3100 	bp = *pbp;
3101 
3102 	IPFW_UH_RLOCK_ASSERT(chain);
3103 
3104 #define	DYN_EXPORT_STATES(s, af, head, b)				\
3105 	CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) {		\
3106 		if (bp + sizeof(*p) > ep)				\
3107 			break;						\
3108 		p = (ipfw_dyn_rule *)bp;				\
3109 		dyn_export_ ## af ## _state(s, p);			\
3110 		last = p;						\
3111 		bp += sizeof(*p);					\
3112 	}
3113 
3114 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3115 		DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3116 		DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3117 #ifdef INET6
3118 		DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3119 		DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3120 #endif /* INET6 */
3121 	}
3122 
3123 	if (last != NULL) /* mark last dynamic rule */
3124 		last->next = NULL;
3125 	*pbp = bp;
3126 #undef DYN_EXPORT_STATES
3127 }
3128 
3129 void
3130 ipfw_dyn_init(struct ip_fw_chain *chain)
3131 {
3132 
3133 #ifdef IPFIREWALL_JENKINSHASH
3134 	V_dyn_hashseed = arc4random();
3135 #endif
3136 	V_dyn_max = 16384;		/* max # of states */
3137 	V_dyn_parent_max = 4096;	/* max # of parent states */
3138 	V_dyn_buckets_max = 8192;	/* must be power of 2 */
3139 
3140 	V_dyn_ack_lifetime = 300;
3141 	V_dyn_syn_lifetime = 20;
3142 	V_dyn_fin_lifetime = 1;
3143 	V_dyn_rst_lifetime = 1;
3144 	V_dyn_udp_lifetime = 10;
3145 	V_dyn_short_lifetime = 5;
3146 
3147 	V_dyn_keepalive_interval = 20;
3148 	V_dyn_keepalive_period = 5;
3149 	V_dyn_keepalive = 1;		/* send keepalives */
3150 	V_dyn_keepalive_last = time_uptime;
3151 
3152 	V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3153 	    sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3154 	    UMA_ALIGN_PTR, 0);
3155 	uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3156 
3157 	V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3158 	    sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3159 	    UMA_ALIGN_PTR, 0);
3160 	uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3161 
3162 	SLIST_INIT(&V_dyn_expired_ipv4);
3163 	V_dyn_ipv4 = NULL;
3164 	V_dyn_ipv4_parent = NULL;
3165 	V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3166 	    sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3167 	    UMA_ALIGN_PTR, 0);
3168 
3169 #ifdef INET6
3170 	SLIST_INIT(&V_dyn_expired_ipv6);
3171 	V_dyn_ipv6 = NULL;
3172 	V_dyn_ipv6_parent = NULL;
3173 	V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3174 	    sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3175 	    UMA_ALIGN_PTR, 0);
3176 #endif
3177 
3178 	/* Initialize buckets. */
3179 	V_curr_dyn_buckets = 0;
3180 	V_dyn_bucket_lock = NULL;
3181 	dyn_grow_hashtable(chain, 256);
3182 
3183 	if (IS_DEFAULT_VNET(curvnet))
3184 		dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3185 		    M_WAITOK | M_ZERO);
3186 
3187 	DYN_EXPIRED_LOCK_INIT();
3188 	callout_init(&V_dyn_timeout, 1);
3189 	callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3190 	IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3191 }
3192 
3193 void
3194 ipfw_dyn_uninit(int pass)
3195 {
3196 #ifdef INET6
3197 	struct dyn_ipv6_state *s6;
3198 #endif
3199 	struct dyn_ipv4_state *s4;
3200 	int bucket;
3201 
3202 	if (pass == 0) {
3203 		callout_drain(&V_dyn_timeout);
3204 		return;
3205 	}
3206 	IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3207 	DYN_EXPIRED_LOCK_DESTROY();
3208 
3209 #define	DYN_FREE_STATES_FORCED(CK, s, af, name, en)	do {		\
3210 	while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) {	\
3211 		CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en);	\
3212 		if (s->type == O_LIMIT_PARENT)				\
3213 			uma_zfree(V_dyn_parent_zone, s->limit);		\
3214 		else							\
3215 			uma_zfree(V_dyn_data_zone, s->data);		\
3216 		uma_zfree(V_dyn_ ## af ## _zone, s);			\
3217 	}								\
3218 } while (0)
3219 	for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3220 		DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3221 
3222 		DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3223 		DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3224 		    entry);
3225 #ifdef INET6
3226 		DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3227 		DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3228 		    entry);
3229 #endif /* INET6 */
3230 	}
3231 	DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3232 #ifdef INET6
3233 	DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3234 #endif
3235 #undef DYN_FREE_STATES_FORCED
3236 
3237 	uma_zdestroy(V_dyn_ipv4_zone);
3238 	uma_zdestroy(V_dyn_data_zone);
3239 	uma_zdestroy(V_dyn_parent_zone);
3240 #ifdef INET6
3241 	uma_zdestroy(V_dyn_ipv6_zone);
3242 	free(V_dyn_ipv6, M_IPFW);
3243 	free(V_dyn_ipv6_parent, M_IPFW);
3244 	free(V_dyn_ipv6_add, M_IPFW);
3245 	free(V_dyn_ipv6_parent_add, M_IPFW);
3246 	free(V_dyn_ipv6_del, M_IPFW);
3247 	free(V_dyn_ipv6_parent_del, M_IPFW);
3248 #endif
3249 	free(V_dyn_bucket_lock, M_IPFW);
3250 	free(V_dyn_ipv4, M_IPFW);
3251 	free(V_dyn_ipv4_parent, M_IPFW);
3252 	free(V_dyn_ipv4_add, M_IPFW);
3253 	free(V_dyn_ipv4_parent_add, M_IPFW);
3254 	free(V_dyn_ipv4_del, M_IPFW);
3255 	free(V_dyn_ipv4_parent_del, M_IPFW);
3256 	if (IS_DEFAULT_VNET(curvnet))
3257 		free(dyn_hp_cache, M_IPFW);
3258 }
3259 
3260 
3261