xref: /freebsd/sys/netpfil/ipfw/ip_fw_dynamic.c (revision 97cb52fa9aefd90fad38790fded50905aeeb9b9e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #define        DEB(x)
32 #define        DDB(x) x
33 
34 /*
35  * Dynamic rule support for ipfw
36  */
37 
38 #include "opt_ipfw.h"
39 #include "opt_inet.h"
40 #ifndef INET
41 #error IPFIREWALL requires INET.
42 #endif /* INET */
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/rmlock.h>
53 #include <sys/socket.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <net/ethernet.h> /* for ETHERTYPE_IP */
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/pfil.h>
60 #include <net/vnet.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/ip.h>
64 #include <netinet/ip_var.h>	/* ip_defttl */
65 #include <netinet/ip_fw.h>
66 #include <netinet/tcp_var.h>
67 #include <netinet/udp.h>
68 
69 #include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
70 #ifdef INET6
71 #include <netinet6/in6_var.h>
72 #include <netinet6/ip6_var.h>
73 #endif
74 
75 #include <netpfil/ipfw/ip_fw_private.h>
76 
77 #include <machine/in_cksum.h>	/* XXX for in_cksum */
78 
79 #ifdef MAC
80 #include <security/mac/mac_framework.h>
81 #endif
82 
83 /*
84  * Description of dynamic rules.
85  *
86  * Dynamic rules are stored in lists accessed through a hash table
87  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
88  * be modified through the sysctl variable dyn_buckets which is
89  * updated when the table becomes empty.
90  *
91  * XXX currently there is only one list, ipfw_dyn.
92  *
93  * When a packet is received, its address fields are first masked
94  * with the mask defined for the rule, then hashed, then matched
95  * against the entries in the corresponding list.
96  * Dynamic rules can be used for different purposes:
97  *  + stateful rules;
98  *  + enforcing limits on the number of sessions;
99  *  + in-kernel NAT (not implemented yet)
100  *
101  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
102  * measured in seconds and depending on the flags.
103  *
104  * The total number of dynamic rules is equal to UMA zone items count.
105  * The max number of dynamic rules is dyn_max. When we reach
106  * the maximum number of rules we do not create anymore. This is
107  * done to avoid consuming too much memory, but also too much
108  * time when searching on each packet (ideally, we should try instead
109  * to put a limit on the length of the list on each bucket...).
110  *
111  * Each dynamic rule holds a pointer to the parent ipfw rule so
112  * we know what action to perform. Dynamic rules are removed when
113  * the parent rule is deleted. This can be changed by dyn_keep_states
114  * sysctl.
115  *
116  * There are some limitations with dynamic rules -- we do not
117  * obey the 'randomized match', and we do not do multiple
118  * passes through the firewall. XXX check the latter!!!
119  */
120 
121 struct ipfw_dyn_bucket {
122 	struct mtx	mtx;		/* Bucket protecting lock */
123 	ipfw_dyn_rule	*head;		/* Pointer to first rule */
124 };
125 
126 /*
127  * Static variables followed by global ones
128  */
129 static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
130 static VNET_DEFINE(u_int32_t, dyn_buckets_max);
131 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
132 static VNET_DEFINE(struct callout, ipfw_timeout);
133 #define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
134 #define	V_dyn_buckets_max		VNET(dyn_buckets_max)
135 #define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
136 #define V_ipfw_timeout                  VNET(ipfw_timeout)
137 
138 static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
139 #define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
140 
141 #define	IPFW_BUCK_LOCK_INIT(b)	\
142 	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
143 #define	IPFW_BUCK_LOCK_DESTROY(b)	\
144 	mtx_destroy(&(b)->mtx)
145 #define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
146 #define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
147 #define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
148 
149 
150 static VNET_DEFINE(int, dyn_keep_states);
151 #define	V_dyn_keep_states		VNET(dyn_keep_states)
152 
153 /*
154  * Timeouts for various events in handing dynamic rules.
155  */
156 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
157 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
158 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
159 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
160 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
161 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
162 
163 #define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
164 #define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
165 #define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
166 #define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
167 #define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
168 #define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
169 
170 /*
171  * Keepalives are sent if dyn_keepalive is set. They are sent every
172  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
173  * seconds of lifetime of a rule.
174  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
175  * than dyn_keepalive_period.
176  */
177 
178 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
179 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
180 static VNET_DEFINE(u_int32_t, dyn_keepalive);
181 static VNET_DEFINE(time_t, dyn_keepalive_last);
182 
183 #define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
184 #define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
185 #define	V_dyn_keepalive			VNET(dyn_keepalive)
186 #define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
187 
188 static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
189 
190 #define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
191 #define	V_dyn_max			VNET(dyn_max)
192 
193 /* for userspace, we emulate the uma_zone_counter with ipfw_dyn_count */
194 static int ipfw_dyn_count;	/* number of objects */
195 
196 #ifdef USERSPACE /* emulation of UMA object counters for userspace */
197 #define uma_zone_get_cur(x)	ipfw_dyn_count
198 #endif /* USERSPACE */
199 
200 static int last_log;	/* Log ratelimiting */
201 
202 static void ipfw_dyn_tick(void *vnetx);
203 static void check_dyn_rules(struct ip_fw_chain *, ipfw_range_tlv *, int, int);
204 #ifdef SYSCTL_NODE
205 
206 static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
207 static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
208 
209 SYSBEGIN(f2)
210 
211 SYSCTL_DECL(_net_inet_ip_fw);
212 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
213     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
214     "Max number of dyn. buckets");
215 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
216     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
217     "Current Number of dyn. buckets");
218 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
219     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
220     "Number of dyn. rules");
221 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
222     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
223     "Max number of dyn. rules");
224 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
225     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
226     "Lifetime of dyn. rules for acks");
227 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
228     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
229     "Lifetime of dyn. rules for syn");
230 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
231     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
232     "Lifetime of dyn. rules for fin");
233 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
234     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
235     "Lifetime of dyn. rules for rst");
236 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
237     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
238     "Lifetime of dyn. rules for UDP");
239 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
240     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
241     "Lifetime of dyn. rules for other situations");
242 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
243     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
244     "Enable keepalives for dyn. rules");
245 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
246     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
247     "Do not flush dynamic states on rule deletion");
248 
249 SYSEND
250 
251 #endif /* SYSCTL_NODE */
252 
253 
254 #ifdef INET6
255 static __inline int
256 hash_packet6(const struct ipfw_flow_id *id)
257 {
258 	u_int32_t i;
259 	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
260 	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
261 	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
262 	    (id->src_ip6.__u6_addr.__u6_addr32[3]);
263 	return ntohl(i);
264 }
265 #endif
266 
267 /*
268  * IMPORTANT: the hash function for dynamic rules must be commutative
269  * in source and destination (ip,port), because rules are bidirectional
270  * and we want to find both in the same bucket.
271  */
272 static __inline int
273 hash_packet(const struct ipfw_flow_id *id, int buckets)
274 {
275 	u_int32_t i;
276 
277 #ifdef INET6
278 	if (IS_IP6_FLOW_ID(id))
279 		i = hash_packet6(id);
280 	else
281 #endif /* INET6 */
282 	i = (id->dst_ip) ^ (id->src_ip);
283 	i ^= (id->dst_port) ^ (id->src_port);
284 	return (i & (buckets - 1));
285 }
286 
287 #if 0
288 #define	DYN_DEBUG(fmt, ...)	do {			\
289 	printf("%s: " fmt "\n", __func__, __VA_ARGS__);	\
290 } while (0)
291 #else
292 #define	DYN_DEBUG(fmt, ...)
293 #endif
294 
295 static char *default_state_name = "default";
296 struct dyn_state_obj {
297 	struct named_object	no;
298 	char			name[64];
299 };
300 
301 #define	DYN_STATE_OBJ(ch, cmd)	\
302     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
303 /*
304  * Classifier callback.
305  * Return 0 if opcode contains object that should be referenced
306  * or rewritten.
307  */
308 static int
309 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
310 {
311 
312 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
313 	/* Don't rewrite "check-state any" */
314 	if (cmd->arg1 == 0 &&
315 	    cmd->opcode == O_CHECK_STATE)
316 		return (1);
317 
318 	*puidx = cmd->arg1;
319 	*ptype = 0;
320 	return (0);
321 }
322 
323 static void
324 dyn_update(ipfw_insn *cmd, uint16_t idx)
325 {
326 
327 	cmd->arg1 = idx;
328 	DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
329 }
330 
331 static int
332 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
333     struct named_object **pno)
334 {
335 	ipfw_obj_ntlv *ntlv;
336 	const char *name;
337 
338 	DYN_DEBUG("uidx %d", ti->uidx);
339 	if (ti->uidx != 0) {
340 		if (ti->tlvs == NULL)
341 			return (EINVAL);
342 		/* Search ntlv in the buffer provided by user */
343 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
344 		    IPFW_TLV_STATE_NAME);
345 		if (ntlv == NULL)
346 			return (EINVAL);
347 		name = ntlv->name;
348 	} else
349 		name = default_state_name;
350 	/*
351 	 * Search named object with corresponding name.
352 	 * Since states objects are global - ignore the set value
353 	 * and use zero instead.
354 	 */
355 	*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
356 	    IPFW_TLV_STATE_NAME, name);
357 	/*
358 	 * We always return success here.
359 	 * The caller will check *pno and mark object as unresolved,
360 	 * then it will automatically create "default" object.
361 	 */
362 	return (0);
363 }
364 
365 static struct named_object *
366 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
367 {
368 
369 	DYN_DEBUG("kidx %d", idx);
370 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
371 }
372 
373 static int
374 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
375     uint16_t *pkidx)
376 {
377 	struct namedobj_instance *ni;
378 	struct dyn_state_obj *obj;
379 	struct named_object *no;
380 	ipfw_obj_ntlv *ntlv;
381 	char *name;
382 
383 	DYN_DEBUG("uidx %d", ti->uidx);
384 	if (ti->uidx != 0) {
385 		if (ti->tlvs == NULL)
386 			return (EINVAL);
387 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
388 		    IPFW_TLV_STATE_NAME);
389 		if (ntlv == NULL)
390 			return (EINVAL);
391 		name = ntlv->name;
392 	} else
393 		name = default_state_name;
394 
395 	ni = CHAIN_TO_SRV(ch);
396 	obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
397 	obj->no.name = obj->name;
398 	obj->no.etlv = IPFW_TLV_STATE_NAME;
399 	strlcpy(obj->name, name, sizeof(obj->name));
400 
401 	IPFW_UH_WLOCK(ch);
402 	no = ipfw_objhash_lookup_name_type(ni, 0,
403 	    IPFW_TLV_STATE_NAME, name);
404 	if (no != NULL) {
405 		/*
406 		 * Object is already created.
407 		 * Just return its kidx and bump refcount.
408 		 */
409 		*pkidx = no->kidx;
410 		no->refcnt++;
411 		IPFW_UH_WUNLOCK(ch);
412 		free(obj, M_IPFW);
413 		DYN_DEBUG("\tfound kidx %d", *pkidx);
414 		return (0);
415 	}
416 	if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
417 		DYN_DEBUG("\talloc_idx failed for %s", name);
418 		IPFW_UH_WUNLOCK(ch);
419 		free(obj, M_IPFW);
420 		return (ENOSPC);
421 	}
422 	ipfw_objhash_add(ni, &obj->no);
423 	SRV_OBJECT(ch, obj->no.kidx) = obj;
424 	obj->no.refcnt++;
425 	*pkidx = obj->no.kidx;
426 	IPFW_UH_WUNLOCK(ch);
427 	DYN_DEBUG("\tcreated kidx %d", *pkidx);
428 	return (0);
429 }
430 
431 static void
432 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
433 {
434 	struct dyn_state_obj *obj;
435 
436 	IPFW_UH_WLOCK_ASSERT(ch);
437 
438 	KASSERT(no->refcnt == 1,
439 	    ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
440 	    no->name, no->etlv, no->kidx, no->refcnt));
441 
442 	DYN_DEBUG("kidx %d", no->kidx);
443 	obj = SRV_OBJECT(ch, no->kidx);
444 	SRV_OBJECT(ch, no->kidx) = NULL;
445 	ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
446 	ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
447 
448 	free(obj, M_IPFW);
449 }
450 
451 static struct opcode_obj_rewrite dyn_opcodes[] = {
452 	{
453 		O_KEEP_STATE, IPFW_TLV_STATE_NAME,
454 		dyn_classify, dyn_update,
455 		dyn_findbyname, dyn_findbykidx,
456 		dyn_create, dyn_destroy
457 	},
458 	{
459 		O_CHECK_STATE, IPFW_TLV_STATE_NAME,
460 		dyn_classify, dyn_update,
461 		dyn_findbyname, dyn_findbykidx,
462 		dyn_create, dyn_destroy
463 	},
464 	{
465 		O_PROBE_STATE, IPFW_TLV_STATE_NAME,
466 		dyn_classify, dyn_update,
467 		dyn_findbyname, dyn_findbykidx,
468 		dyn_create, dyn_destroy
469 	},
470 	{
471 		O_LIMIT, IPFW_TLV_STATE_NAME,
472 		dyn_classify, dyn_update,
473 		dyn_findbyname, dyn_findbykidx,
474 		dyn_create, dyn_destroy
475 	},
476 };
477 /**
478  * Print customizable flow id description via log(9) facility.
479  */
480 static void
481 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
482     int log_flags, char *prefix, char *postfix)
483 {
484 	struct in_addr da;
485 #ifdef INET6
486 	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
487 #else
488 	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
489 #endif
490 
491 #ifdef INET6
492 	if (IS_IP6_FLOW_ID(id)) {
493 		ip6_sprintf(src, &id->src_ip6);
494 		ip6_sprintf(dst, &id->dst_ip6);
495 	} else
496 #endif
497 	{
498 		da.s_addr = htonl(id->src_ip);
499 		inet_ntop(AF_INET, &da, src, sizeof(src));
500 		da.s_addr = htonl(id->dst_ip);
501 		inet_ntop(AF_INET, &da, dst, sizeof(dst));
502 	}
503 	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
504 	    prefix, dyn_type, src, id->src_port, dst,
505 	    id->dst_port, DYN_COUNT, postfix);
506 }
507 
508 #define	print_dyn_rule(id, dtype, prefix, postfix)	\
509 	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
510 
511 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
512 #define TIME_LE(a,b)       ((int)((a)-(b)) < 0)
513 
514 static void
515 dyn_update_proto_state(ipfw_dyn_rule *q, const struct ipfw_flow_id *id,
516     const void *ulp, int dir)
517 {
518 	const struct tcphdr *tcp;
519 	uint32_t ack;
520 	u_char flags;
521 
522 	if (id->proto == IPPROTO_TCP) {
523 		tcp = (const struct tcphdr *)ulp;
524 		flags = id->_flags & (TH_FIN | TH_SYN | TH_RST);
525 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
526 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
527 #define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
528 #define	ACK_FWD		0x10000			/* fwd ack seen */
529 #define	ACK_REV		0x20000			/* rev ack seen */
530 
531 		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
532 		switch (q->state & TCP_FLAGS) {
533 		case TH_SYN:			/* opening */
534 			q->expire = time_uptime + V_dyn_syn_lifetime;
535 			break;
536 
537 		case BOTH_SYN:			/* move to established */
538 		case BOTH_SYN | TH_FIN:		/* one side tries to close */
539 		case BOTH_SYN | (TH_FIN << 8):
540 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
541 			if (tcp == NULL)
542 				break;
543 
544 			ack = ntohl(tcp->th_ack);
545 			if (dir == MATCH_FORWARD) {
546 				if (q->ack_fwd == 0 ||
547 				    _SEQ_GE(ack, q->ack_fwd)) {
548 					q->ack_fwd = ack;
549 					q->state |= ACK_FWD;
550 				}
551 			} else {
552 				if (q->ack_rev == 0 ||
553 				    _SEQ_GE(ack, q->ack_rev)) {
554 					q->ack_rev = ack;
555 					q->state |= ACK_REV;
556 				}
557 			}
558 			if ((q->state & (ACK_FWD | ACK_REV)) ==
559 			    (ACK_FWD | ACK_REV)) {
560 				q->expire = time_uptime + V_dyn_ack_lifetime;
561 				q->state &= ~(ACK_FWD | ACK_REV);
562 			}
563 			break;
564 
565 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
566 			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
567 				V_dyn_fin_lifetime =
568 				    V_dyn_keepalive_period - 1;
569 			q->expire = time_uptime + V_dyn_fin_lifetime;
570 			break;
571 
572 		default:
573 #if 0
574 			/*
575 			 * reset or some invalid combination, but can also
576 			 * occur if we use keep-state the wrong way.
577 			 */
578 			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
579 				printf("invalid state: 0x%x\n", q->state);
580 #endif
581 			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
582 				V_dyn_rst_lifetime =
583 				    V_dyn_keepalive_period - 1;
584 			q->expire = time_uptime + V_dyn_rst_lifetime;
585 			break;
586 		}
587 	} else if (id->proto == IPPROTO_UDP) {
588 		q->expire = time_uptime + V_dyn_udp_lifetime;
589 	} else {
590 		/* other protocols */
591 		q->expire = time_uptime + V_dyn_short_lifetime;
592 	}
593 }
594 
595 /*
596  * Lookup a dynamic rule, locked version.
597  */
598 static ipfw_dyn_rule *
599 lookup_dyn_rule_locked(const struct ipfw_flow_id *pkt, const void *ulp,
600     int i, int *match_direction, uint16_t kidx)
601 {
602 	/*
603 	 * Stateful ipfw extensions.
604 	 * Lookup into dynamic session queue.
605 	 */
606 	ipfw_dyn_rule *prev, *q = NULL;
607 	int dir;
608 
609 	IPFW_BUCK_ASSERT(i);
610 
611 	dir = MATCH_NONE;
612 	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
613 		if (q->dyn_type == O_LIMIT_PARENT)
614 			continue;
615 
616 		if (pkt->addr_type != q->id.addr_type)
617 			continue;
618 
619 		if (pkt->proto != q->id.proto)
620 			continue;
621 
622 		if (kidx != 0 && kidx != q->kidx)
623 			continue;
624 
625 		if (IS_IP6_FLOW_ID(pkt)) {
626 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
627 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
628 			    pkt->src_port == q->id.src_port &&
629 			    pkt->dst_port == q->id.dst_port) {
630 				dir = MATCH_FORWARD;
631 				break;
632 			}
633 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
634 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
635 			    pkt->src_port == q->id.dst_port &&
636 			    pkt->dst_port == q->id.src_port) {
637 				dir = MATCH_REVERSE;
638 				break;
639 			}
640 		} else {
641 			if (pkt->src_ip == q->id.src_ip &&
642 			    pkt->dst_ip == q->id.dst_ip &&
643 			    pkt->src_port == q->id.src_port &&
644 			    pkt->dst_port == q->id.dst_port) {
645 				dir = MATCH_FORWARD;
646 				break;
647 			}
648 			if (pkt->src_ip == q->id.dst_ip &&
649 			    pkt->dst_ip == q->id.src_ip &&
650 			    pkt->src_port == q->id.dst_port &&
651 			    pkt->dst_port == q->id.src_port) {
652 				dir = MATCH_REVERSE;
653 				break;
654 			}
655 		}
656 	}
657 	if (q == NULL)
658 		goto done;	/* q = NULL, not found */
659 
660 	if (prev != NULL) {	/* found and not in front */
661 		prev->next = q->next;
662 		q->next = V_ipfw_dyn_v[i].head;
663 		V_ipfw_dyn_v[i].head = q;
664 	}
665 
666 	/* update state according to flags */
667 	dyn_update_proto_state(q, pkt, ulp, dir);
668 done:
669 	if (match_direction != NULL)
670 		*match_direction = dir;
671 	return (q);
672 }
673 
674 struct ip_fw *
675 ipfw_dyn_lookup_state(const struct ipfw_flow_id *pkt, const void *ulp,
676     int pktlen, int *match_direction, uint16_t kidx)
677 {
678 	struct ip_fw *rule;
679 	ipfw_dyn_rule *q;
680 	int i;
681 
682 	i = hash_packet(pkt, V_curr_dyn_buckets);
683 
684 	IPFW_BUCK_LOCK(i);
685 	q = lookup_dyn_rule_locked(pkt, ulp, i, match_direction, kidx);
686 	if (q == NULL)
687 		rule = NULL;
688 	else {
689 		rule = q->rule;
690 		IPFW_INC_DYN_COUNTER(q, pktlen);
691 	}
692 	IPFW_BUCK_UNLOCK(i);
693 	return (rule);
694 }
695 
696 static int
697 resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
698 {
699 	int i, k, nbuckets_old;
700 	ipfw_dyn_rule *q;
701 	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
702 
703 	/* Check if given number is power of 2 and less than 64k */
704 	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
705 		return 1;
706 
707 	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
708 	    V_curr_dyn_buckets, nbuckets);
709 
710 	/* Allocate and initialize new hash */
711 	dyn_v = malloc(nbuckets * sizeof(*dyn_v), M_IPFW,
712 	    M_WAITOK | M_ZERO);
713 
714 	for (i = 0 ; i < nbuckets; i++)
715 		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
716 
717 	/*
718 	 * Call upper half lock, as get_map() do to ease
719 	 * read-only access to dynamic rules hash from sysctl
720 	 */
721 	IPFW_UH_WLOCK(chain);
722 
723 	/*
724 	 * Acquire chain write lock to permit hash access
725 	 * for main traffic path without additional locks
726 	 */
727 	IPFW_WLOCK(chain);
728 
729 	/* Save old values */
730 	nbuckets_old = V_curr_dyn_buckets;
731 	dyn_v_old = V_ipfw_dyn_v;
732 
733 	/* Skip relinking if array is not set up */
734 	if (V_ipfw_dyn_v == NULL)
735 		V_curr_dyn_buckets = 0;
736 
737 	/* Re-link all dynamic states */
738 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
739 		while (V_ipfw_dyn_v[i].head != NULL) {
740 			/* Remove from current chain */
741 			q = V_ipfw_dyn_v[i].head;
742 			V_ipfw_dyn_v[i].head = q->next;
743 
744 			/* Get new hash value */
745 			k = hash_packet(&q->id, nbuckets);
746 			q->bucket = k;
747 			/* Add to the new head */
748 			q->next = dyn_v[k].head;
749 			dyn_v[k].head = q;
750              }
751 	}
752 
753 	/* Update current pointers/buckets values */
754 	V_curr_dyn_buckets = nbuckets;
755 	V_ipfw_dyn_v = dyn_v;
756 
757 	IPFW_WUNLOCK(chain);
758 
759 	IPFW_UH_WUNLOCK(chain);
760 
761 	/* Start periodic callout on initial creation */
762 	if (dyn_v_old == NULL) {
763         	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
764 		return (0);
765 	}
766 
767 	/* Destroy all mutexes */
768 	for (i = 0 ; i < nbuckets_old ; i++)
769 		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
770 
771 	/* Free old hash */
772 	free(dyn_v_old, M_IPFW);
773 
774 	return 0;
775 }
776 
777 /**
778  * Install state of type 'type' for a dynamic session.
779  * The hash table contains two type of rules:
780  * - regular rules (O_KEEP_STATE)
781  * - rules for sessions with limited number of sess per user
782  *   (O_LIMIT). When they are created, the parent is
783  *   increased by 1, and decreased on delete. In this case,
784  *   the third parameter is the parent rule and not the chain.
785  * - "parent" rules for the above (O_LIMIT_PARENT).
786  */
787 static ipfw_dyn_rule *
788 add_dyn_rule(const struct ipfw_flow_id *id, int i, uint8_t dyn_type,
789     struct ip_fw *rule, uint16_t kidx)
790 {
791 	ipfw_dyn_rule *r;
792 
793 	IPFW_BUCK_ASSERT(i);
794 
795 	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
796 	if (r == NULL) {
797 		if (last_log != time_uptime) {
798 			last_log = time_uptime;
799 			log(LOG_DEBUG,
800 			    "ipfw: Cannot allocate dynamic state, "
801 			    "consider increasing net.inet.ip.fw.dyn_max\n");
802 		}
803 		return NULL;
804 	}
805 	ipfw_dyn_count++;
806 
807 	/*
808 	 * refcount on parent is already incremented, so
809 	 * it is safe to use parent unlocked.
810 	 */
811 	if (dyn_type == O_LIMIT) {
812 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
813 		if ( parent->dyn_type != O_LIMIT_PARENT)
814 			panic("invalid parent");
815 		r->parent = parent;
816 		rule = parent->rule;
817 	}
818 
819 	r->id = *id;
820 	r->expire = time_uptime + V_dyn_syn_lifetime;
821 	r->rule = rule;
822 	r->dyn_type = dyn_type;
823 	IPFW_ZERO_DYN_COUNTER(r);
824 	r->count = 0;
825 	r->kidx = kidx;
826 	r->bucket = i;
827 	r->next = V_ipfw_dyn_v[i].head;
828 	V_ipfw_dyn_v[i].head = r;
829 	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
830 	return r;
831 }
832 
833 /**
834  * lookup dynamic parent rule using pkt and rule as search keys.
835  * If the lookup fails, then install one.
836  */
837 static ipfw_dyn_rule *
838 lookup_dyn_parent(const struct ipfw_flow_id *pkt, int *pindex,
839     struct ip_fw *rule, uint16_t kidx)
840 {
841 	ipfw_dyn_rule *q;
842 	int i, is_v6;
843 
844 	is_v6 = IS_IP6_FLOW_ID(pkt);
845 	i = hash_packet( pkt, V_curr_dyn_buckets );
846 	*pindex = i;
847 	IPFW_BUCK_LOCK(i);
848 	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
849 		if (q->dyn_type == O_LIMIT_PARENT &&
850 		    kidx == q->kidx &&
851 		    rule == q->rule &&
852 		    pkt->proto == q->id.proto &&
853 		    pkt->src_port == q->id.src_port &&
854 		    pkt->dst_port == q->id.dst_port &&
855 		    (
856 			(is_v6 &&
857 			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
858 				&(q->id.src_ip6)) &&
859 			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
860 				&(q->id.dst_ip6))) ||
861 			(!is_v6 &&
862 			 pkt->src_ip == q->id.src_ip &&
863 			 pkt->dst_ip == q->id.dst_ip)
864 		    )
865 		) {
866 			q->expire = time_uptime + V_dyn_short_lifetime;
867 			DEB(print_dyn_rule(pkt, q->dyn_type,
868 			    "lookup_dyn_parent found", "");)
869 			return q;
870 		}
871 
872 	/* Add virtual limiting rule */
873 	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule, kidx);
874 }
875 
876 /**
877  * Install dynamic state for rule type cmd->o.opcode
878  *
879  * Returns 1 (failure) if state is not installed because of errors or because
880  * session limitations are enforced.
881  */
882 int
883 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
884     ipfw_insn_limit *cmd, struct ip_fw_args *args, uint32_t tablearg)
885 {
886 	ipfw_dyn_rule *q;
887 	int i;
888 
889 	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state",
890 	    (cmd->o.arg1 == 0 ? "": DYN_STATE_OBJ(chain, &cmd->o)->name));)
891 
892 	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
893 
894 	IPFW_BUCK_LOCK(i);
895 
896 	q = lookup_dyn_rule_locked(&args->f_id, NULL, i, NULL, cmd->o.arg1);
897 	if (q != NULL) {	/* should never occur */
898 		DEB(
899 		if (last_log != time_uptime) {
900 			last_log = time_uptime;
901 			printf("ipfw: %s: entry already present, done\n",
902 			    __func__);
903 		})
904 		IPFW_BUCK_UNLOCK(i);
905 		return (0);
906 	}
907 
908 	/*
909 	 * State limiting is done via uma(9) zone limiting.
910 	 * Save pointer to newly-installed rule and reject
911 	 * packet if add_dyn_rule() returned NULL.
912 	 * Note q is currently set to NULL.
913 	 */
914 
915 	switch (cmd->o.opcode) {
916 	case O_KEEP_STATE:	/* bidir rule */
917 		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule,
918 		    cmd->o.arg1);
919 		break;
920 
921 	case O_LIMIT: {		/* limit number of sessions */
922 		struct ipfw_flow_id id;
923 		ipfw_dyn_rule *parent;
924 		uint32_t conn_limit;
925 		uint16_t limit_mask = cmd->limit_mask;
926 		int pindex;
927 
928 		conn_limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
929 
930 		DEB(
931 		if (cmd->conn_limit == IP_FW_TARG)
932 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
933 			    "(tablearg)\n", __func__, conn_limit);
934 		else
935 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
936 			    __func__, conn_limit);
937 		)
938 
939 		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
940 		id.proto = args->f_id.proto;
941 		id.addr_type = args->f_id.addr_type;
942 		id.fib = M_GETFIB(args->m);
943 
944 		if (IS_IP6_FLOW_ID (&(args->f_id))) {
945 			bzero(&id.src_ip6, sizeof(id.src_ip6));
946 			bzero(&id.dst_ip6, sizeof(id.dst_ip6));
947 
948 			if (limit_mask & DYN_SRC_ADDR)
949 				id.src_ip6 = args->f_id.src_ip6;
950 			if (limit_mask & DYN_DST_ADDR)
951 				id.dst_ip6 = args->f_id.dst_ip6;
952 		} else {
953 			if (limit_mask & DYN_SRC_ADDR)
954 				id.src_ip = args->f_id.src_ip;
955 			if (limit_mask & DYN_DST_ADDR)
956 				id.dst_ip = args->f_id.dst_ip;
957 		}
958 		if (limit_mask & DYN_SRC_PORT)
959 			id.src_port = args->f_id.src_port;
960 		if (limit_mask & DYN_DST_PORT)
961 			id.dst_port = args->f_id.dst_port;
962 
963 		/*
964 		 * We have to release lock for previous bucket to
965 		 * avoid possible deadlock
966 		 */
967 		IPFW_BUCK_UNLOCK(i);
968 
969 		parent = lookup_dyn_parent(&id, &pindex, rule, cmd->o.arg1);
970 		if (parent == NULL) {
971 			printf("ipfw: %s: add parent failed\n", __func__);
972 			IPFW_BUCK_UNLOCK(pindex);
973 			return (1);
974 		}
975 
976 		if (parent->count >= conn_limit) {
977 			if (V_fw_verbose && last_log != time_uptime) {
978 				char sbuf[24];
979 				last_log = time_uptime;
980 				snprintf(sbuf, sizeof(sbuf),
981 				    "%d drop session",
982 				    parent->rule->rulenum);
983 				print_dyn_rule_flags(&args->f_id,
984 				    cmd->o.opcode,
985 				    LOG_SECURITY | LOG_DEBUG,
986 				    sbuf, "too many entries");
987 			}
988 			IPFW_BUCK_UNLOCK(pindex);
989 			return (1);
990 		}
991 		/* Increment counter on parent */
992 		parent->count++;
993 		IPFW_BUCK_UNLOCK(pindex);
994 
995 		IPFW_BUCK_LOCK(i);
996 		q = add_dyn_rule(&args->f_id, i, O_LIMIT,
997 		    (struct ip_fw *)parent, cmd->o.arg1);
998 		if (q == NULL) {
999 			/* Decrement index and notify caller */
1000 			IPFW_BUCK_UNLOCK(i);
1001 			IPFW_BUCK_LOCK(pindex);
1002 			parent->count--;
1003 			IPFW_BUCK_UNLOCK(pindex);
1004 			return (1);
1005 		}
1006 		break;
1007 	}
1008 	default:
1009 		printf("ipfw: %s: unknown dynamic rule type %u\n",
1010 		    __func__, cmd->o.opcode);
1011 	}
1012 
1013 	if (q == NULL) {
1014 		IPFW_BUCK_UNLOCK(i);
1015 		return (1);	/* Notify caller about failure */
1016 	}
1017 
1018 	dyn_update_proto_state(q, &args->f_id, NULL, MATCH_FORWARD);
1019 	IPFW_BUCK_UNLOCK(i);
1020 	return (0);
1021 }
1022 
1023 /*
1024  * Queue keepalive packets for given dynamic rule
1025  */
1026 static struct mbuf **
1027 ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
1028 {
1029 	struct mbuf *m_rev, *m_fwd;
1030 
1031 	m_rev = (q->state & ACK_REV) ? NULL :
1032 	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
1033 	m_fwd = (q->state & ACK_FWD) ? NULL :
1034 	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
1035 
1036 	if (m_rev != NULL) {
1037 		*mtailp = m_rev;
1038 		mtailp = &(*mtailp)->m_nextpkt;
1039 	}
1040 	if (m_fwd != NULL) {
1041 		*mtailp = m_fwd;
1042 		mtailp = &(*mtailp)->m_nextpkt;
1043 	}
1044 
1045 	return (mtailp);
1046 }
1047 
1048 /*
1049  * This procedure is used to perform various maintenance
1050  * on dynamic hash list. Currently it is called every second.
1051  */
1052 static void
1053 ipfw_dyn_tick(void * vnetx)
1054 {
1055 	struct ip_fw_chain *chain;
1056 	int check_ka = 0;
1057 #ifdef VIMAGE
1058 	struct vnet *vp = vnetx;
1059 #endif
1060 
1061 	CURVNET_SET(vp);
1062 
1063 	chain = &V_layer3_chain;
1064 
1065 	/* Run keepalive checks every keepalive_period iff ka is enabled */
1066 	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
1067 	    (V_dyn_keepalive != 0)) {
1068 		V_dyn_keepalive_last = time_uptime;
1069 		check_ka = 1;
1070 	}
1071 
1072 	check_dyn_rules(chain, NULL, check_ka, 1);
1073 
1074 	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
1075 
1076 	CURVNET_RESTORE();
1077 }
1078 
1079 
1080 /*
1081  * Walk through all dynamic states doing generic maintenance:
1082  * 1) free expired states
1083  * 2) free all states based on deleted rule / set
1084  * 3) send keepalives for states if needed
1085  *
1086  * @chain - pointer to current ipfw rules chain
1087  * @rule - delete all states originated by given rule if != NULL
1088  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1089  * @check_ka - perform checking/sending keepalives
1090  * @timer - indicate call from timer routine.
1091  *
1092  * Timer routine must call this function unlocked to permit
1093  * sending keepalives/resizing table.
1094  *
1095  * Others has to call function with IPFW_UH_WLOCK held.
1096  * Additionally, function assume that dynamic rule/set is
1097  * ALREADY deleted so no new states can be generated by
1098  * 'deleted' rules.
1099  *
1100  * Write lock is needed to ensure that unused parent rules
1101  * are not freed by other instance (see stage 2, 3)
1102  */
1103 static void
1104 check_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt,
1105     int check_ka, int timer)
1106 {
1107 	struct mbuf *m0, *m, *mnext, **mtailp;
1108 	struct ip *h;
1109 	int i, dyn_count, new_buckets = 0, max_buckets;
1110 	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1111 	ipfw_dyn_rule *q, *q_prev, *q_next;
1112 	ipfw_dyn_rule *exp_head, **exptailp;
1113 	ipfw_dyn_rule *exp_lhead, **expltailp;
1114 
1115 	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1116 	    __func__));
1117 
1118 	/* Avoid possible LOR */
1119 	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1120 	    __func__));
1121 
1122 	/*
1123 	 * Do not perform any checks if we currently have no dynamic states
1124 	 */
1125 	if (DYN_COUNT == 0)
1126 		return;
1127 
1128 	/* Expired states */
1129 	exp_head = NULL;
1130 	exptailp = &exp_head;
1131 
1132 	/* Expired limit states */
1133 	exp_lhead = NULL;
1134 	expltailp = &exp_lhead;
1135 
1136 	/*
1137 	 * We make a chain of packets to go out here -- not deferring
1138 	 * until after we drop the IPFW dynamic rule lock would result
1139 	 * in a lock order reversal with the normal packet input -> ipfw
1140 	 * call stack.
1141 	 */
1142 	m0 = NULL;
1143 	mtailp = &m0;
1144 
1145 	/* Protect from hash resizing */
1146 	if (timer != 0)
1147 		IPFW_UH_WLOCK(chain);
1148 	else
1149 		IPFW_UH_WLOCK_ASSERT(chain);
1150 
1151 #define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1152 
1153 	/* Stage 1: perform requested deletion */
1154 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1155 		IPFW_BUCK_LOCK(i);
1156 		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1157 			/* account every rule */
1158 			total++;
1159 
1160 			/* Skip parent rules at all */
1161 			if (q->dyn_type == O_LIMIT_PARENT) {
1162 				parents++;
1163 				NEXT_RULE();
1164 			}
1165 
1166 			/*
1167 			 * Remove rules which are:
1168 			 * 1) expired
1169 			 * 2) matches deletion range
1170 			 */
1171 			if ((TIME_LEQ(q->expire, time_uptime)) ||
1172 			    (rt != NULL && ipfw_match_range(q->rule, rt))) {
1173 				if (TIME_LE(time_uptime, q->expire) &&
1174 				    q->dyn_type == O_KEEP_STATE &&
1175 				    V_dyn_keep_states != 0) {
1176 					/*
1177 					 * Do not delete state if
1178 					 * it is not expired and
1179 					 * dyn_keep_states is ON.
1180 					 * However we need to re-link it
1181 					 * to any other stable rule
1182 					 */
1183 					q->rule = chain->default_rule;
1184 					NEXT_RULE();
1185 				}
1186 
1187 				/* Unlink q from current list */
1188 				q_next = q->next;
1189 				if (q == V_ipfw_dyn_v[i].head)
1190 					V_ipfw_dyn_v[i].head = q_next;
1191 				else
1192 					q_prev->next = q_next;
1193 
1194 				q->next = NULL;
1195 
1196 				/* queue q to expire list */
1197 				if (q->dyn_type != O_LIMIT) {
1198 					*exptailp = q;
1199 					exptailp = &(*exptailp)->next;
1200 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1201 					    "unlink entry", "left");
1202 					)
1203 				} else {
1204 					/* Separate list for limit rules */
1205 					*expltailp = q;
1206 					expltailp = &(*expltailp)->next;
1207 					expired_limits++;
1208 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1209 					    "unlink limit entry", "left");
1210 					)
1211 				}
1212 
1213 				q = q_next;
1214 				expired++;
1215 				continue;
1216 			}
1217 
1218 			/*
1219 			 * Check if we need to send keepalive:
1220 			 * we need to ensure if is time to do KA,
1221 			 * this is established TCP session, and
1222 			 * expire time is within keepalive interval
1223 			 */
1224 			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1225 			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1226 			    (TIME_LEQ(q->expire, time_uptime +
1227 			      V_dyn_keepalive_interval)))
1228 				mtailp = ipfw_dyn_send_ka(mtailp, q);
1229 
1230 			NEXT_RULE();
1231 		}
1232 		IPFW_BUCK_UNLOCK(i);
1233 	}
1234 
1235 	/* Stage 2: decrement counters from O_LIMIT parents */
1236 	if (expired_limits != 0) {
1237 		/*
1238 		 * XXX: Note that deleting set with more than one
1239 		 * heavily-used LIMIT rules can result in overwhelming
1240 		 * locking due to lack of per-hash value sorting
1241 		 *
1242 		 * We should probably think about:
1243 		 * 1) pre-allocating hash of size, say,
1244 		 * MAX(16, V_curr_dyn_buckets / 1024)
1245 		 * 2) checking if expired_limits is large enough
1246 		 * 3) If yes, init hash (or its part), re-link
1247 		 * current list and start decrementing procedure in
1248 		 * each bucket separately
1249 		 */
1250 
1251 		/*
1252 		 * Small optimization: do not unlock bucket until
1253 		 * we see the next item resides in different bucket
1254 		 */
1255 		if (exp_lhead != NULL) {
1256 			i = exp_lhead->parent->bucket;
1257 			IPFW_BUCK_LOCK(i);
1258 		}
1259 		for (q = exp_lhead; q != NULL; q = q->next) {
1260 			if (i != q->parent->bucket) {
1261 				IPFW_BUCK_UNLOCK(i);
1262 				i = q->parent->bucket;
1263 				IPFW_BUCK_LOCK(i);
1264 			}
1265 
1266 			/* Decrease parent refcount */
1267 			q->parent->count--;
1268 		}
1269 		if (exp_lhead != NULL)
1270 			IPFW_BUCK_UNLOCK(i);
1271 	}
1272 
1273 	/*
1274 	 * We protectet ourselves from unused parent deletion
1275 	 * (from the timer function) by holding UH write lock.
1276 	 */
1277 
1278 	/* Stage 3: remove unused parent rules */
1279 	if ((parents != 0) && (expired != 0)) {
1280 		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1281 			IPFW_BUCK_LOCK(i);
1282 			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1283 				if (q->dyn_type != O_LIMIT_PARENT)
1284 					NEXT_RULE();
1285 
1286 				if (q->count != 0)
1287 					NEXT_RULE();
1288 
1289 				/* Parent rule without consumers */
1290 
1291 				/* Unlink q from current list */
1292 				q_next = q->next;
1293 				if (q == V_ipfw_dyn_v[i].head)
1294 					V_ipfw_dyn_v[i].head = q_next;
1295 				else
1296 					q_prev->next = q_next;
1297 
1298 				q->next = NULL;
1299 
1300 				/* Add to expired list */
1301 				*exptailp = q;
1302 				exptailp = &(*exptailp)->next;
1303 
1304 				DEB(print_dyn_rule(&q->id, q->dyn_type,
1305 				    "unlink parent entry", "left");
1306 				)
1307 
1308 				expired++;
1309 
1310 				q = q_next;
1311 			}
1312 			IPFW_BUCK_UNLOCK(i);
1313 		}
1314 	}
1315 
1316 #undef NEXT_RULE
1317 
1318 	if (timer != 0) {
1319 		/*
1320 		 * Check if we need to resize hash:
1321 		 * if current number of states exceeds number of buckes in hash,
1322 		 * grow hash size to the minimum power of 2 which is bigger than
1323 		 * current states count. Limit hash size by 64k.
1324 		 */
1325 		max_buckets = (V_dyn_buckets_max > 65536) ?
1326 		    65536 : V_dyn_buckets_max;
1327 
1328 		dyn_count = DYN_COUNT;
1329 
1330 		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1331 		    (dyn_count < max_buckets)) {
1332 			new_buckets = V_curr_dyn_buckets;
1333 			while (new_buckets < dyn_count) {
1334 				new_buckets *= 2;
1335 
1336 				if (new_buckets >= max_buckets)
1337 					break;
1338 			}
1339 		}
1340 
1341 		IPFW_UH_WUNLOCK(chain);
1342 	}
1343 
1344 	/* Finally delete old states ad limits if any */
1345 	for (q = exp_head; q != NULL; q = q_next) {
1346 		q_next = q->next;
1347 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1348 		ipfw_dyn_count--;
1349 	}
1350 
1351 	for (q = exp_lhead; q != NULL; q = q_next) {
1352 		q_next = q->next;
1353 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1354 		ipfw_dyn_count--;
1355 	}
1356 
1357 	/*
1358 	 * The rest code MUST be called from timer routine only
1359 	 * without holding any locks
1360 	 */
1361 	if (timer == 0)
1362 		return;
1363 
1364 	/* Send keepalive packets if any */
1365 	for (m = m0; m != NULL; m = mnext) {
1366 		mnext = m->m_nextpkt;
1367 		m->m_nextpkt = NULL;
1368 		h = mtod(m, struct ip *);
1369 		if (h->ip_v == 4)
1370 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1371 #ifdef INET6
1372 		else
1373 			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1374 #endif
1375 	}
1376 
1377 	/* Run table resize without holding any locks */
1378 	if (new_buckets != 0)
1379 		resize_dynamic_table(chain, new_buckets);
1380 }
1381 
1382 /*
1383  * Deletes all dynamic rules originated by given rule or all rules in
1384  * given set. Specify RESVD_SET to indicate set should not be used.
1385  * @chain - pointer to current ipfw rules chain
1386  * @rr - delete all states originated by rules in matched range.
1387  *
1388  * Function has to be called with IPFW_UH_WLOCK held.
1389  * Additionally, function assume that dynamic rule/set is
1390  * ALREADY deleted so no new states can be generated by
1391  * 'deleted' rules.
1392  */
1393 void
1394 ipfw_expire_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1395 {
1396 
1397 	check_dyn_rules(chain, rt, 0, 0);
1398 }
1399 
1400 /*
1401  * Check if rule contains at least one dynamic opcode.
1402  *
1403  * Returns 1 if such opcode is found, 0 otherwise.
1404  */
1405 int
1406 ipfw_is_dyn_rule(struct ip_fw *rule)
1407 {
1408 	int cmdlen, l;
1409 	ipfw_insn *cmd;
1410 
1411 	l = rule->cmd_len;
1412 	cmd = rule->cmd;
1413 	cmdlen = 0;
1414 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
1415 		cmdlen = F_LEN(cmd);
1416 
1417 		switch (cmd->opcode) {
1418 		case O_LIMIT:
1419 		case O_KEEP_STATE:
1420 		case O_PROBE_STATE:
1421 		case O_CHECK_STATE:
1422 			return (1);
1423 		}
1424 	}
1425 
1426 	return (0);
1427 }
1428 
1429 void
1430 ipfw_dyn_init(struct ip_fw_chain *chain)
1431 {
1432 
1433         V_ipfw_dyn_v = NULL;
1434         V_dyn_buckets_max = 256; /* must be power of 2 */
1435         V_curr_dyn_buckets = 256; /* must be power of 2 */
1436 
1437         V_dyn_ack_lifetime = 300;
1438         V_dyn_syn_lifetime = 20;
1439         V_dyn_fin_lifetime = 1;
1440         V_dyn_rst_lifetime = 1;
1441         V_dyn_udp_lifetime = 10;
1442         V_dyn_short_lifetime = 5;
1443 
1444         V_dyn_keepalive_interval = 20;
1445         V_dyn_keepalive_period = 5;
1446         V_dyn_keepalive = 1;    /* do send keepalives */
1447 	V_dyn_keepalive_last = time_uptime;
1448 
1449         V_dyn_max = 16384; /* max # of dynamic rules */
1450 
1451 	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1452 	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1453 	    UMA_ALIGN_PTR, 0);
1454 
1455 	/* Enforce limit on dynamic rules */
1456 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1457 
1458         callout_init(&V_ipfw_timeout, 1);
1459 
1460 	/*
1461 	 * This can potentially be done on first dynamic rule
1462 	 * being added to chain.
1463 	 */
1464 	resize_dynamic_table(chain, V_curr_dyn_buckets);
1465 	IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1466 }
1467 
1468 void
1469 ipfw_dyn_uninit(int pass)
1470 {
1471 	int i;
1472 
1473 	if (pass == 0) {
1474 		callout_drain(&V_ipfw_timeout);
1475 		return;
1476 	}
1477 	IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
1478 
1479 	if (V_ipfw_dyn_v != NULL) {
1480 		/*
1481 		 * Skip deleting all dynamic states -
1482 		 * uma_zdestroy() does this more efficiently;
1483 		 */
1484 
1485 		/* Destroy all mutexes */
1486 		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1487 			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1488 		free(V_ipfw_dyn_v, M_IPFW);
1489 		V_ipfw_dyn_v = NULL;
1490 	}
1491 
1492         uma_zdestroy(V_ipfw_dyn_rule_zone);
1493 }
1494 
1495 #ifdef SYSCTL_NODE
1496 /*
1497  * Get/set maximum number of dynamic states in given VNET instance.
1498  */
1499 static int
1500 sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1501 {
1502 	int error;
1503 	unsigned int nstates;
1504 
1505 	nstates = V_dyn_max;
1506 
1507 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1508 	/* Read operation or some error */
1509 	if ((error != 0) || (req->newptr == NULL))
1510 		return (error);
1511 
1512 	V_dyn_max = nstates;
1513 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1514 
1515 	return (0);
1516 }
1517 
1518 /*
1519  * Get current number of dynamic states in given VNET instance.
1520  */
1521 static int
1522 sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1523 {
1524 	int error;
1525 	unsigned int nstates;
1526 
1527 	nstates = DYN_COUNT;
1528 
1529 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1530 
1531 	return (error);
1532 }
1533 #endif
1534 
1535 /*
1536  * Returns size of dynamic states in legacy format
1537  */
1538 int
1539 ipfw_dyn_len(void)
1540 {
1541 
1542 	return (V_ipfw_dyn_v == NULL) ? 0 :
1543 		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1544 }
1545 
1546 /*
1547  * Returns number of dynamic states.
1548  * Used by dump format v1 (current).
1549  */
1550 int
1551 ipfw_dyn_get_count(void)
1552 {
1553 
1554 	return (V_ipfw_dyn_v == NULL) ? 0 : DYN_COUNT;
1555 }
1556 
1557 static void
1558 export_dyn_rule(ipfw_dyn_rule *src, ipfw_dyn_rule *dst)
1559 {
1560 	uint16_t rulenum;
1561 
1562 	rulenum = (uint16_t)src->rule->rulenum;
1563 	memcpy(dst, src, sizeof(*src));
1564 	memcpy(&dst->rule, &rulenum, sizeof(rulenum));
1565 	/*
1566 	 * store set number into high word of
1567 	 * dst->rule pointer.
1568 	 */
1569 	memcpy((char *)&dst->rule + sizeof(rulenum), &src->rule->set,
1570 	    sizeof(src->rule->set));
1571 	/*
1572 	 * store a non-null value in "next".
1573 	 * The userland code will interpret a
1574 	 * NULL here as a marker
1575 	 * for the last dynamic rule.
1576 	 */
1577 	memcpy(&dst->next, &dst, sizeof(dst));
1578 	dst->expire = TIME_LEQ(dst->expire, time_uptime) ?  0:
1579 	    dst->expire - time_uptime;
1580 }
1581 
1582 /*
1583  * Fills int buffer given by @sd with dynamic states.
1584  * Used by dump format v1 (current).
1585  *
1586  * Returns 0 on success.
1587  */
1588 int
1589 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
1590 {
1591 	ipfw_dyn_rule *p;
1592 	ipfw_obj_dyntlv *dst, *last;
1593 	ipfw_obj_ctlv *ctlv;
1594 	int i;
1595 	size_t sz;
1596 
1597 	if (V_ipfw_dyn_v == NULL)
1598 		return (0);
1599 
1600 	IPFW_UH_RLOCK_ASSERT(chain);
1601 
1602 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1603 	if (ctlv == NULL)
1604 		return (ENOMEM);
1605 	sz = sizeof(ipfw_obj_dyntlv);
1606 	ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
1607 	ctlv->objsize = sz;
1608 	last = NULL;
1609 
1610 	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1611 		IPFW_BUCK_LOCK(i);
1612 		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1613 			dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, sz);
1614 			if (dst == NULL) {
1615 				IPFW_BUCK_UNLOCK(i);
1616 				return (ENOMEM);
1617 			}
1618 
1619 			export_dyn_rule(p, &dst->state);
1620 			dst->head.length = sz;
1621 			dst->head.type = IPFW_TLV_DYN_ENT;
1622 			last = dst;
1623 		}
1624 		IPFW_BUCK_UNLOCK(i);
1625 	}
1626 
1627 	if (last != NULL) /* mark last dynamic rule */
1628 		last->head.flags = IPFW_DF_LAST;
1629 
1630 	return (0);
1631 }
1632 
1633 /*
1634  * Fill given buffer with dynamic states (legacy format).
1635  * IPFW_UH_RLOCK has to be held while calling.
1636  */
1637 void
1638 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1639 {
1640 	ipfw_dyn_rule *p, *last = NULL;
1641 	char *bp;
1642 	int i;
1643 
1644 	if (V_ipfw_dyn_v == NULL)
1645 		return;
1646 	bp = *pbp;
1647 
1648 	IPFW_UH_RLOCK_ASSERT(chain);
1649 
1650 	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1651 		IPFW_BUCK_LOCK(i);
1652 		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1653 			if (bp + sizeof *p <= ep) {
1654 				ipfw_dyn_rule *dst =
1655 					(ipfw_dyn_rule *)bp;
1656 
1657 				export_dyn_rule(p, dst);
1658 				last = dst;
1659 				bp += sizeof(ipfw_dyn_rule);
1660 			}
1661 		}
1662 		IPFW_BUCK_UNLOCK(i);
1663 	}
1664 
1665 	if (last != NULL) /* mark last dynamic rule */
1666 		bzero(&last->next, sizeof(last));
1667 	*pbp = bp;
1668 }
1669 /* end of file */
1670