xref: /freebsd/sys/netpfil/ipfw/ip_fw_dynamic.c (revision 87c1627502a5dde91e5284118eec8682b60f27a2)
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #define        DEB(x)
30 #define        DDB(x) x
31 
32 /*
33  * Dynamic rule support for ipfw
34  */
35 
36 #include "opt_ipfw.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error IPFIREWALL requires INET.
40 #endif /* INET */
41 #include "opt_inet6.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/socket.h>
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <net/ethernet.h> /* for ETHERTYPE_IP */
53 #include <net/if.h>
54 #include <net/vnet.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/ip_var.h>	/* ip_defttl */
59 #include <netinet/ip_fw.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/udp.h>
62 
63 #include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
64 #ifdef INET6
65 #include <netinet6/in6_var.h>
66 #include <netinet6/ip6_var.h>
67 #endif
68 
69 #include <netpfil/ipfw/ip_fw_private.h>
70 
71 #include <machine/in_cksum.h>	/* XXX for in_cksum */
72 
73 #ifdef MAC
74 #include <security/mac/mac_framework.h>
75 #endif
76 
77 /*
78  * Description of dynamic rules.
79  *
80  * Dynamic rules are stored in lists accessed through a hash table
81  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
82  * be modified through the sysctl variable dyn_buckets which is
83  * updated when the table becomes empty.
84  *
85  * XXX currently there is only one list, ipfw_dyn.
86  *
87  * When a packet is received, its address fields are first masked
88  * with the mask defined for the rule, then hashed, then matched
89  * against the entries in the corresponding list.
90  * Dynamic rules can be used for different purposes:
91  *  + stateful rules;
92  *  + enforcing limits on the number of sessions;
93  *  + in-kernel NAT (not implemented yet)
94  *
95  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
96  * measured in seconds and depending on the flags.
97  *
98  * The total number of dynamic rules is equal to UMA zone items count.
99  * The max number of dynamic rules is dyn_max. When we reach
100  * the maximum number of rules we do not create anymore. This is
101  * done to avoid consuming too much memory, but also too much
102  * time when searching on each packet (ideally, we should try instead
103  * to put a limit on the length of the list on each bucket...).
104  *
105  * Each dynamic rule holds a pointer to the parent ipfw rule so
106  * we know what action to perform. Dynamic rules are removed when
107  * the parent rule is deleted. XXX we should make them survive.
108  *
109  * There are some limitations with dynamic rules -- we do not
110  * obey the 'randomized match', and we do not do multiple
111  * passes through the firewall. XXX check the latter!!!
112  */
113 
114 struct ipfw_dyn_bucket {
115 	struct mtx	mtx;		/* Bucket protecting lock */
116 	ipfw_dyn_rule	*head;		/* Pointer to first rule */
117 };
118 
119 /*
120  * Static variables followed by global ones
121  */
122 static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
123 static VNET_DEFINE(u_int32_t, dyn_buckets_max);
124 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
125 static VNET_DEFINE(struct callout, ipfw_timeout);
126 #define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
127 #define	V_dyn_buckets_max		VNET(dyn_buckets_max)
128 #define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
129 #define V_ipfw_timeout                  VNET(ipfw_timeout)
130 
131 static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
132 #define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
133 
134 #define	IPFW_BUCK_LOCK_INIT(b)	\
135 	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
136 #define	IPFW_BUCK_LOCK_DESTROY(b)	\
137 	mtx_destroy(&(b)->mtx)
138 #define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
139 #define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
140 #define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
141 
142 /*
143  * Timeouts for various events in handing dynamic rules.
144  */
145 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
146 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
147 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
148 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
149 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
150 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
151 
152 #define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
153 #define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
154 #define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
155 #define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
156 #define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
157 #define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
158 
159 /*
160  * Keepalives are sent if dyn_keepalive is set. They are sent every
161  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
162  * seconds of lifetime of a rule.
163  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
164  * than dyn_keepalive_period.
165  */
166 
167 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
168 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
169 static VNET_DEFINE(u_int32_t, dyn_keepalive);
170 static VNET_DEFINE(time_t, dyn_keepalive_last);
171 
172 #define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
173 #define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
174 #define	V_dyn_keepalive			VNET(dyn_keepalive)
175 #define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
176 
177 static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
178 
179 #define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
180 #define	V_dyn_max			VNET(dyn_max)
181 
182 static int last_log;	/* Log ratelimiting */
183 
184 static void ipfw_dyn_tick(void *vnetx);
185 static void check_dyn_rules(struct ip_fw_chain *, struct ip_fw *,
186     int, int, int);
187 #ifdef SYSCTL_NODE
188 
189 static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
190 static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
191 
192 SYSBEGIN(f2)
193 
194 SYSCTL_DECL(_net_inet_ip_fw);
195 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
196     CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
197     "Max number of dyn. buckets");
198 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
199     CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
200     "Current Number of dyn. buckets");
201 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
202     CTLTYPE_UINT|CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
203     "Number of dyn. rules");
204 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
205     CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
206     "Max number of dyn. rules");
207 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
208     CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
209     "Lifetime of dyn. rules for acks");
210 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
211     CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
212     "Lifetime of dyn. rules for syn");
213 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
214     CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
215     "Lifetime of dyn. rules for fin");
216 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
217     CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
218     "Lifetime of dyn. rules for rst");
219 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
220     CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
221     "Lifetime of dyn. rules for UDP");
222 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
223     CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
224     "Lifetime of dyn. rules for other situations");
225 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
226     CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
227     "Enable keepalives for dyn. rules");
228 
229 SYSEND
230 
231 #endif /* SYSCTL_NODE */
232 
233 
234 static __inline int
235 hash_packet6(struct ipfw_flow_id *id)
236 {
237 	u_int32_t i;
238 	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
239 	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
240 	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
241 	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
242 	    (id->dst_port) ^ (id->src_port);
243 	return i;
244 }
245 
246 /*
247  * IMPORTANT: the hash function for dynamic rules must be commutative
248  * in source and destination (ip,port), because rules are bidirectional
249  * and we want to find both in the same bucket.
250  */
251 static __inline int
252 hash_packet(struct ipfw_flow_id *id, int buckets)
253 {
254 	u_int32_t i;
255 
256 #ifdef INET6
257 	if (IS_IP6_FLOW_ID(id))
258 		i = hash_packet6(id);
259 	else
260 #endif /* INET6 */
261 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
262 	i &= (buckets - 1);
263 	return i;
264 }
265 
266 /**
267  * Print customizable flow id description via log(9) facility.
268  */
269 static void
270 print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
271     char *prefix, char *postfix)
272 {
273 	struct in_addr da;
274 #ifdef INET6
275 	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
276 #else
277 	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
278 #endif
279 
280 #ifdef INET6
281 	if (IS_IP6_FLOW_ID(id)) {
282 		ip6_sprintf(src, &id->src_ip6);
283 		ip6_sprintf(dst, &id->dst_ip6);
284 	} else
285 #endif
286 	{
287 		da.s_addr = htonl(id->src_ip);
288 		inet_ntop(AF_INET, &da, src, sizeof(src));
289 		da.s_addr = htonl(id->dst_ip);
290 		inet_ntop(AF_INET, &da, dst, sizeof(dst));
291 	}
292 	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
293 	    prefix, dyn_type, src, id->src_port, dst,
294 	    id->dst_port, DYN_COUNT, postfix);
295 }
296 
297 #define	print_dyn_rule(id, dtype, prefix, postfix)	\
298 	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
299 
300 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
301 
302 /*
303  * Lookup a dynamic rule, locked version.
304  */
305 static ipfw_dyn_rule *
306 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
307     struct tcphdr *tcp)
308 {
309 	/*
310 	 * Stateful ipfw extensions.
311 	 * Lookup into dynamic session queue.
312 	 */
313 #define MATCH_REVERSE	0
314 #define MATCH_FORWARD	1
315 #define MATCH_NONE	2
316 #define MATCH_UNKNOWN	3
317 	int dir = MATCH_NONE;
318 	ipfw_dyn_rule *prev, *q = NULL;
319 
320 	IPFW_BUCK_ASSERT(i);
321 
322 	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
323 		if (q->dyn_type == O_LIMIT_PARENT && q->count)
324 			continue;
325 
326 		if (pkt->proto != q->id.proto || q->dyn_type == O_LIMIT_PARENT)
327 			continue;
328 
329 		if (IS_IP6_FLOW_ID(pkt)) {
330 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
331 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
332 			    pkt->src_port == q->id.src_port &&
333 			    pkt->dst_port == q->id.dst_port) {
334 				dir = MATCH_FORWARD;
335 				break;
336 			}
337 			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
338 			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
339 			    pkt->src_port == q->id.dst_port &&
340 			    pkt->dst_port == q->id.src_port) {
341 				dir = MATCH_REVERSE;
342 				break;
343 			}
344 		} else {
345 			if (pkt->src_ip == q->id.src_ip &&
346 			    pkt->dst_ip == q->id.dst_ip &&
347 			    pkt->src_port == q->id.src_port &&
348 			    pkt->dst_port == q->id.dst_port) {
349 				dir = MATCH_FORWARD;
350 				break;
351 			}
352 			if (pkt->src_ip == q->id.dst_ip &&
353 			    pkt->dst_ip == q->id.src_ip &&
354 			    pkt->src_port == q->id.dst_port &&
355 			    pkt->dst_port == q->id.src_port) {
356 				dir = MATCH_REVERSE;
357 				break;
358 			}
359 		}
360 	}
361 	if (q == NULL)
362 		goto done;	/* q = NULL, not found */
363 
364 	if (prev != NULL) {	/* found and not in front */
365 		prev->next = q->next;
366 		q->next = V_ipfw_dyn_v[i].head;
367 		V_ipfw_dyn_v[i].head = q;
368 	}
369 	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
370 		uint32_t ack;
371 		u_char flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
372 
373 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
374 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
375 #define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
376 #define	ACK_FWD		0x10000			/* fwd ack seen */
377 #define	ACK_REV		0x20000			/* rev ack seen */
378 
379 		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
380 		switch (q->state & TCP_FLAGS) {
381 		case TH_SYN:			/* opening */
382 			q->expire = time_uptime + V_dyn_syn_lifetime;
383 			break;
384 
385 		case BOTH_SYN:			/* move to established */
386 		case BOTH_SYN | TH_FIN:		/* one side tries to close */
387 		case BOTH_SYN | (TH_FIN << 8):
388 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
389 			if (tcp == NULL)
390 				break;
391 
392 			ack = ntohl(tcp->th_ack);
393 			if (dir == MATCH_FORWARD) {
394 				if (q->ack_fwd == 0 ||
395 				    _SEQ_GE(ack, q->ack_fwd)) {
396 					q->ack_fwd = ack;
397 					q->state |= ACK_FWD;
398 				}
399 			} else {
400 				if (q->ack_rev == 0 ||
401 				    _SEQ_GE(ack, q->ack_rev)) {
402 					q->ack_rev = ack;
403 					q->state |= ACK_REV;
404 				}
405 			}
406 			if ((q->state & (ACK_FWD | ACK_REV)) ==
407 			    (ACK_FWD | ACK_REV)) {
408 				q->expire = time_uptime + V_dyn_ack_lifetime;
409 				q->state &= ~(ACK_FWD | ACK_REV);
410 			}
411 			break;
412 
413 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
414 			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
415 				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
416 			q->expire = time_uptime + V_dyn_fin_lifetime;
417 			break;
418 
419 		default:
420 #if 0
421 			/*
422 			 * reset or some invalid combination, but can also
423 			 * occur if we use keep-state the wrong way.
424 			 */
425 			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
426 				printf("invalid state: 0x%x\n", q->state);
427 #endif
428 			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
429 				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
430 			q->expire = time_uptime + V_dyn_rst_lifetime;
431 			break;
432 		}
433 	} else if (pkt->proto == IPPROTO_UDP) {
434 		q->expire = time_uptime + V_dyn_udp_lifetime;
435 	} else {
436 		/* other protocols */
437 		q->expire = time_uptime + V_dyn_short_lifetime;
438 	}
439 done:
440 	if (match_direction != NULL)
441 		*match_direction = dir;
442 	return (q);
443 }
444 
445 ipfw_dyn_rule *
446 ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
447     struct tcphdr *tcp)
448 {
449 	ipfw_dyn_rule *q;
450 	int i;
451 
452 	i = hash_packet(pkt, V_curr_dyn_buckets);
453 
454 	IPFW_BUCK_LOCK(i);
455 	q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp);
456 	if (q == NULL)
457 		IPFW_BUCK_UNLOCK(i);
458 	/* NB: return table locked when q is not NULL */
459 	return q;
460 }
461 
462 /*
463  * Unlock bucket mtx
464  * @p - pointer to dynamic rule
465  */
466 void
467 ipfw_dyn_unlock(ipfw_dyn_rule *q)
468 {
469 
470 	IPFW_BUCK_UNLOCK(q->bucket);
471 }
472 
473 static int
474 resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
475 {
476 	int i, k, nbuckets_old;
477 	ipfw_dyn_rule *q;
478 	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
479 
480 	/* Check if given number is power of 2 and less than 64k */
481 	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
482 		return 1;
483 
484 	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
485 	    V_curr_dyn_buckets, nbuckets);
486 
487 	/* Allocate and initialize new hash */
488 	dyn_v = malloc(nbuckets * sizeof(ipfw_dyn_rule), M_IPFW,
489 	    M_WAITOK | M_ZERO);
490 
491 	for (i = 0 ; i < nbuckets; i++)
492 		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
493 
494 	/*
495 	 * Call upper half lock, as get_map() do to ease
496 	 * read-only access to dynamic rules hash from sysctl
497 	 */
498 	IPFW_UH_WLOCK(chain);
499 
500 	/*
501 	 * Acquire chain write lock to permit hash access
502 	 * for main traffic path without additional locks
503 	 */
504 	IPFW_WLOCK(chain);
505 
506 	/* Save old values */
507 	nbuckets_old = V_curr_dyn_buckets;
508 	dyn_v_old = V_ipfw_dyn_v;
509 
510 	/* Skip relinking if array is not set up */
511 	if (V_ipfw_dyn_v == NULL)
512 		V_curr_dyn_buckets = 0;
513 
514 	/* Re-link all dynamic states */
515 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
516 		while (V_ipfw_dyn_v[i].head != NULL) {
517 			/* Remove from current chain */
518 			q = V_ipfw_dyn_v[i].head;
519 			V_ipfw_dyn_v[i].head = q->next;
520 
521 			/* Get new hash value */
522 			k = hash_packet(&q->id, nbuckets);
523 			q->bucket = k;
524 			/* Add to the new head */
525 			q->next = dyn_v[k].head;
526 			dyn_v[k].head = q;
527              }
528 	}
529 
530 	/* Update current pointers/buckets values */
531 	V_curr_dyn_buckets = nbuckets;
532 	V_ipfw_dyn_v = dyn_v;
533 
534 	IPFW_WUNLOCK(chain);
535 
536 	IPFW_UH_WUNLOCK(chain);
537 
538 	/* Start periodic callout on initial creation */
539 	if (dyn_v_old == NULL) {
540         	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
541 		return (0);
542 	}
543 
544 	/* Destroy all mutexes */
545 	for (i = 0 ; i < nbuckets_old ; i++)
546 		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
547 
548 	/* Free old hash */
549 	free(dyn_v_old, M_IPFW);
550 
551 	return 0;
552 }
553 
554 /**
555  * Install state of type 'type' for a dynamic session.
556  * The hash table contains two type of rules:
557  * - regular rules (O_KEEP_STATE)
558  * - rules for sessions with limited number of sess per user
559  *   (O_LIMIT). When they are created, the parent is
560  *   increased by 1, and decreased on delete. In this case,
561  *   the third parameter is the parent rule and not the chain.
562  * - "parent" rules for the above (O_LIMIT_PARENT).
563  */
564 static ipfw_dyn_rule *
565 add_dyn_rule(struct ipfw_flow_id *id, int i, u_int8_t dyn_type, struct ip_fw *rule)
566 {
567 	ipfw_dyn_rule *r;
568 
569 	IPFW_BUCK_ASSERT(i);
570 
571 	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
572 	if (r == NULL) {
573 		if (last_log != time_uptime) {
574 			last_log = time_uptime;
575 			log(LOG_DEBUG, "ipfw: %s: Cannot allocate rule\n",
576 			    __func__);
577 		}
578 		return NULL;
579 	}
580 
581 	/*
582 	 * refcount on parent is already incremented, so
583 	 * it is safe to use parent unlocked.
584 	 */
585 	if (dyn_type == O_LIMIT) {
586 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
587 		if ( parent->dyn_type != O_LIMIT_PARENT)
588 			panic("invalid parent");
589 		r->parent = parent;
590 		rule = parent->rule;
591 	}
592 
593 	r->id = *id;
594 	r->expire = time_uptime + V_dyn_syn_lifetime;
595 	r->rule = rule;
596 	r->dyn_type = dyn_type;
597 	IPFW_ZERO_DYN_COUNTER(r);
598 	r->count = 0;
599 
600 	r->bucket = i;
601 	r->next = V_ipfw_dyn_v[i].head;
602 	V_ipfw_dyn_v[i].head = r;
603 	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
604 	return r;
605 }
606 
607 /**
608  * lookup dynamic parent rule using pkt and rule as search keys.
609  * If the lookup fails, then install one.
610  */
611 static ipfw_dyn_rule *
612 lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule)
613 {
614 	ipfw_dyn_rule *q;
615 	int i, is_v6;
616 
617 	is_v6 = IS_IP6_FLOW_ID(pkt);
618 	i = hash_packet( pkt, V_curr_dyn_buckets );
619 	*pindex = i;
620 	IPFW_BUCK_LOCK(i);
621 	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
622 		if (q->dyn_type == O_LIMIT_PARENT &&
623 		    rule== q->rule &&
624 		    pkt->proto == q->id.proto &&
625 		    pkt->src_port == q->id.src_port &&
626 		    pkt->dst_port == q->id.dst_port &&
627 		    (
628 			(is_v6 &&
629 			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
630 				&(q->id.src_ip6)) &&
631 			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
632 				&(q->id.dst_ip6))) ||
633 			(!is_v6 &&
634 			 pkt->src_ip == q->id.src_ip &&
635 			 pkt->dst_ip == q->id.dst_ip)
636 		    )
637 		) {
638 			q->expire = time_uptime + V_dyn_short_lifetime;
639 			DEB(print_dyn_rule(pkt, q->dyn_type,
640 			    "lookup_dyn_parent found", "");)
641 			return q;
642 		}
643 
644 	/* Add virtual limiting rule */
645 	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule);
646 }
647 
648 /**
649  * Install dynamic state for rule type cmd->o.opcode
650  *
651  * Returns 1 (failure) if state is not installed because of errors or because
652  * session limitations are enforced.
653  */
654 int
655 ipfw_install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
656     struct ip_fw_args *args, uint32_t tablearg)
657 {
658 	ipfw_dyn_rule *q;
659 	int i;
660 
661 	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state", "");)
662 
663 	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
664 
665 	IPFW_BUCK_LOCK(i);
666 
667 	q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
668 
669 	if (q != NULL) {	/* should never occur */
670 		DEB(
671 		if (last_log != time_uptime) {
672 			last_log = time_uptime;
673 			printf("ipfw: %s: entry already present, done\n",
674 			    __func__);
675 		})
676 		IPFW_BUCK_UNLOCK(i);
677 		return (0);
678 	}
679 
680 	/*
681 	 * State limiting is done via uma(9) zone limiting.
682 	 * Save pointer to newly-installed rule and reject
683 	 * packet if add_dyn_rule() returned NULL.
684 	 * Note q is currently set to NULL.
685 	 */
686 
687 	switch (cmd->o.opcode) {
688 	case O_KEEP_STATE:	/* bidir rule */
689 		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule);
690 		break;
691 
692 	case O_LIMIT: {		/* limit number of sessions */
693 		struct ipfw_flow_id id;
694 		ipfw_dyn_rule *parent;
695 		uint32_t conn_limit;
696 		uint16_t limit_mask = cmd->limit_mask;
697 		int pindex;
698 
699 		conn_limit = IP_FW_ARG_TABLEARG(cmd->conn_limit);
700 
701 		DEB(
702 		if (cmd->conn_limit == IP_FW_TABLEARG)
703 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
704 			    "(tablearg)\n", __func__, conn_limit);
705 		else
706 			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
707 			    __func__, conn_limit);
708 		)
709 
710 		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
711 		id.proto = args->f_id.proto;
712 		id.addr_type = args->f_id.addr_type;
713 		id.fib = M_GETFIB(args->m);
714 
715 		if (IS_IP6_FLOW_ID (&(args->f_id))) {
716 			if (limit_mask & DYN_SRC_ADDR)
717 				id.src_ip6 = args->f_id.src_ip6;
718 			if (limit_mask & DYN_DST_ADDR)
719 				id.dst_ip6 = args->f_id.dst_ip6;
720 		} else {
721 			if (limit_mask & DYN_SRC_ADDR)
722 				id.src_ip = args->f_id.src_ip;
723 			if (limit_mask & DYN_DST_ADDR)
724 				id.dst_ip = args->f_id.dst_ip;
725 		}
726 		if (limit_mask & DYN_SRC_PORT)
727 			id.src_port = args->f_id.src_port;
728 		if (limit_mask & DYN_DST_PORT)
729 			id.dst_port = args->f_id.dst_port;
730 
731 		/*
732 		 * We have to release lock for previous bucket to
733 		 * avoid possible deadlock
734 		 */
735 		IPFW_BUCK_UNLOCK(i);
736 
737 		if ((parent = lookup_dyn_parent(&id, &pindex, rule)) == NULL) {
738 			printf("ipfw: %s: add parent failed\n", __func__);
739 			IPFW_BUCK_UNLOCK(pindex);
740 			return (1);
741 		}
742 
743 		if (parent->count >= conn_limit) {
744 			if (V_fw_verbose && last_log != time_uptime) {
745 				last_log = time_uptime;
746 				char sbuf[24];
747 				last_log = time_uptime;
748 				snprintf(sbuf, sizeof(sbuf),
749 				    "%d drop session",
750 				    parent->rule->rulenum);
751 				print_dyn_rule_flags(&args->f_id,
752 				    cmd->o.opcode,
753 				    LOG_SECURITY | LOG_DEBUG,
754 				    sbuf, "too many entries");
755 			}
756 			IPFW_BUCK_UNLOCK(pindex);
757 			return (1);
758 		}
759 		/* Increment counter on parent */
760 		parent->count++;
761 		IPFW_BUCK_UNLOCK(pindex);
762 
763 		IPFW_BUCK_LOCK(i);
764 		q = add_dyn_rule(&args->f_id, i, O_LIMIT, (struct ip_fw *)parent);
765 		if (q == NULL) {
766 			/* Decrement index and notify caller */
767 			IPFW_BUCK_UNLOCK(i);
768 			IPFW_BUCK_LOCK(pindex);
769 			parent->count--;
770 			IPFW_BUCK_UNLOCK(pindex);
771 			return (1);
772 		}
773 		break;
774 	}
775 	default:
776 		printf("ipfw: %s: unknown dynamic rule type %u\n",
777 		    __func__, cmd->o.opcode);
778 	}
779 
780 	if (q == NULL) {
781 		IPFW_BUCK_UNLOCK(i);
782 		return (1);	/* Notify caller about failure */
783 	}
784 
785 	/* XXX just set lifetime */
786 	lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
787 
788 	IPFW_BUCK_UNLOCK(i);
789 	return (0);
790 }
791 
792 /*
793  * Generate a TCP packet, containing either a RST or a keepalive.
794  * When flags & TH_RST, we are sending a RST packet, because of a
795  * "reset" action matched the packet.
796  * Otherwise we are sending a keepalive, and flags & TH_
797  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
798  * so that MAC can label the reply appropriately.
799  */
800 struct mbuf *
801 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
802     u_int32_t ack, int flags)
803 {
804 	struct mbuf *m = NULL;		/* stupid compiler */
805 	int len, dir;
806 	struct ip *h = NULL;		/* stupid compiler */
807 #ifdef INET6
808 	struct ip6_hdr *h6 = NULL;
809 #endif
810 	struct tcphdr *th = NULL;
811 
812 	MGETHDR(m, M_NOWAIT, MT_DATA);
813 	if (m == NULL)
814 		return (NULL);
815 
816 	M_SETFIB(m, id->fib);
817 #ifdef MAC
818 	if (replyto != NULL)
819 		mac_netinet_firewall_reply(replyto, m);
820 	else
821 		mac_netinet_firewall_send(m);
822 #else
823 	(void)replyto;		/* don't warn about unused arg */
824 #endif
825 
826 	switch (id->addr_type) {
827 	case 4:
828 		len = sizeof(struct ip) + sizeof(struct tcphdr);
829 		break;
830 #ifdef INET6
831 	case 6:
832 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
833 		break;
834 #endif
835 	default:
836 		/* XXX: log me?!? */
837 		FREE_PKT(m);
838 		return (NULL);
839 	}
840 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
841 
842 	m->m_data += max_linkhdr;
843 	m->m_flags |= M_SKIP_FIREWALL;
844 	m->m_pkthdr.len = m->m_len = len;
845 	m->m_pkthdr.rcvif = NULL;
846 	bzero(m->m_data, len);
847 
848 	switch (id->addr_type) {
849 	case 4:
850 		h = mtod(m, struct ip *);
851 
852 		/* prepare for checksum */
853 		h->ip_p = IPPROTO_TCP;
854 		h->ip_len = htons(sizeof(struct tcphdr));
855 		if (dir) {
856 			h->ip_src.s_addr = htonl(id->src_ip);
857 			h->ip_dst.s_addr = htonl(id->dst_ip);
858 		} else {
859 			h->ip_src.s_addr = htonl(id->dst_ip);
860 			h->ip_dst.s_addr = htonl(id->src_ip);
861 		}
862 
863 		th = (struct tcphdr *)(h + 1);
864 		break;
865 #ifdef INET6
866 	case 6:
867 		h6 = mtod(m, struct ip6_hdr *);
868 
869 		/* prepare for checksum */
870 		h6->ip6_nxt = IPPROTO_TCP;
871 		h6->ip6_plen = htons(sizeof(struct tcphdr));
872 		if (dir) {
873 			h6->ip6_src = id->src_ip6;
874 			h6->ip6_dst = id->dst_ip6;
875 		} else {
876 			h6->ip6_src = id->dst_ip6;
877 			h6->ip6_dst = id->src_ip6;
878 		}
879 
880 		th = (struct tcphdr *)(h6 + 1);
881 		break;
882 #endif
883 	}
884 
885 	if (dir) {
886 		th->th_sport = htons(id->src_port);
887 		th->th_dport = htons(id->dst_port);
888 	} else {
889 		th->th_sport = htons(id->dst_port);
890 		th->th_dport = htons(id->src_port);
891 	}
892 	th->th_off = sizeof(struct tcphdr) >> 2;
893 
894 	if (flags & TH_RST) {
895 		if (flags & TH_ACK) {
896 			th->th_seq = htonl(ack);
897 			th->th_flags = TH_RST;
898 		} else {
899 			if (flags & TH_SYN)
900 				seq++;
901 			th->th_ack = htonl(seq);
902 			th->th_flags = TH_RST | TH_ACK;
903 		}
904 	} else {
905 		/*
906 		 * Keepalive - use caller provided sequence numbers
907 		 */
908 		th->th_seq = htonl(seq);
909 		th->th_ack = htonl(ack);
910 		th->th_flags = TH_ACK;
911 	}
912 
913 	switch (id->addr_type) {
914 	case 4:
915 		th->th_sum = in_cksum(m, len);
916 
917 		/* finish the ip header */
918 		h->ip_v = 4;
919 		h->ip_hl = sizeof(*h) >> 2;
920 		h->ip_tos = IPTOS_LOWDELAY;
921 		h->ip_off = htons(0);
922 		h->ip_len = htons(len);
923 		h->ip_ttl = V_ip_defttl;
924 		h->ip_sum = 0;
925 		break;
926 #ifdef INET6
927 	case 6:
928 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
929 		    sizeof(struct tcphdr));
930 
931 		/* finish the ip6 header */
932 		h6->ip6_vfc |= IPV6_VERSION;
933 		h6->ip6_hlim = IPV6_DEFHLIM;
934 		break;
935 #endif
936 	}
937 
938 	return (m);
939 }
940 
941 /*
942  * Queue keepalive packets for given dynamic rule
943  */
944 static struct mbuf **
945 ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
946 {
947 	struct mbuf *m_rev, *m_fwd;
948 
949 	m_rev = (q->state & ACK_REV) ? NULL :
950 	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
951 	m_fwd = (q->state & ACK_FWD) ? NULL :
952 	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
953 
954 	if (m_rev != NULL) {
955 		*mtailp = m_rev;
956 		mtailp = &(*mtailp)->m_nextpkt;
957 	}
958 	if (m_fwd != NULL) {
959 		*mtailp = m_fwd;
960 		mtailp = &(*mtailp)->m_nextpkt;
961 	}
962 
963 	return (mtailp);
964 }
965 
966 /*
967  * This procedure is used to perform various maintance
968  * on dynamic hash list. Currently it is called every second.
969  */
970 static void
971 ipfw_dyn_tick(void * vnetx)
972 {
973 	struct ip_fw_chain *chain;
974 	int check_ka = 0;
975 #ifdef VIMAGE
976 	struct vnet *vp = vnetx;
977 #endif
978 
979 	CURVNET_SET(vp);
980 
981 	chain = &V_layer3_chain;
982 
983 	/* Run keepalive checks every keepalive_period iff ka is enabled */
984 	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
985 	    (V_dyn_keepalive != 0)) {
986 		V_dyn_keepalive_last = time_uptime;
987 		check_ka = 1;
988 	}
989 
990 	check_dyn_rules(chain, NULL, RESVD_SET, check_ka, 1);
991 
992 	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
993 
994 	CURVNET_RESTORE();
995 }
996 
997 
998 /*
999  * Walk thru all dynamic states doing generic maintance:
1000  * 1) free expired states
1001  * 2) free all states based on deleted rule / set
1002  * 3) send keepalives for states if needed
1003  *
1004  * @chain - pointer to current ipfw rules chain
1005  * @rule - delete all states originated by given rule if != NULL
1006  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1007  * @check_ka - perform checking/sending keepalives
1008  * @timer - indicate call from timer routine.
1009  *
1010  * Timer routine must call this function unlocked to permit
1011  * sending keepalives/resizing table.
1012  *
1013  * Others has to call function with IPFW_UH_WLOCK held.
1014  * Additionally, function assume that dynamic rule/set is
1015  * ALREADY deleted so no new states can be generated by
1016  * 'deleted' rules.
1017  *
1018  * Write lock is needed to ensure that unused parent rules
1019  * are not freed by other instance (see stage 2, 3)
1020  */
1021 static void
1022 check_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule,
1023     int set, int check_ka, int timer)
1024 {
1025 	struct mbuf *m0, *m, *mnext, **mtailp;
1026 	struct ip *h;
1027 	int i, dyn_count, new_buckets = 0, max_buckets;
1028 	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1029 	ipfw_dyn_rule *q, *q_prev, *q_next;
1030 	ipfw_dyn_rule *exp_head, **exptailp;
1031 	ipfw_dyn_rule *exp_lhead, **expltailp;
1032 
1033 	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1034 	    __func__));
1035 
1036 	/* Avoid possible LOR */
1037 	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1038 	    __func__));
1039 
1040 	/*
1041 	 * Do not perform any checks if we currently have no dynamic states
1042 	 */
1043 	if (DYN_COUNT == 0)
1044 		return;
1045 
1046 	/* Expired states */
1047 	exp_head = NULL;
1048 	exptailp = &exp_head;
1049 
1050 	/* Expired limit states */
1051 	exp_lhead = NULL;
1052 	expltailp = &exp_lhead;
1053 
1054 	/*
1055 	 * We make a chain of packets to go out here -- not deferring
1056 	 * until after we drop the IPFW dynamic rule lock would result
1057 	 * in a lock order reversal with the normal packet input -> ipfw
1058 	 * call stack.
1059 	 */
1060 	m0 = NULL;
1061 	mtailp = &m0;
1062 
1063 	/* Protect from hash resizing */
1064 	if (timer != 0)
1065 		IPFW_UH_WLOCK(chain);
1066 	else
1067 		IPFW_UH_WLOCK_ASSERT(chain);
1068 
1069 #define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1070 
1071 	/* Stage 1: perform requested deletion */
1072 	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1073 		IPFW_BUCK_LOCK(i);
1074 		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1075 			/* account every rule */
1076 			total++;
1077 
1078 			/* Skip parent rules at all */
1079 			if (q->dyn_type == O_LIMIT_PARENT) {
1080 				parents++;
1081 				NEXT_RULE();
1082 			}
1083 
1084 			/*
1085 			 * Remove rules which are:
1086 			 * 1) expired
1087 			 * 2) created by given rule
1088 			 * 3) created by any rule in given set
1089 			 */
1090 			if ((TIME_LEQ(q->expire, time_uptime)) ||
1091 			    ((rule != NULL) && (q->rule == rule)) ||
1092 			    ((set != RESVD_SET) && (q->rule->set == set))) {
1093 				/* Unlink q from current list */
1094 				q_next = q->next;
1095 				if (q == V_ipfw_dyn_v[i].head)
1096 					V_ipfw_dyn_v[i].head = q_next;
1097 				else
1098 					q_prev->next = q_next;
1099 
1100 				q->next = NULL;
1101 
1102 				/* queue q to expire list */
1103 				if (q->dyn_type != O_LIMIT) {
1104 					*exptailp = q;
1105 					exptailp = &(*exptailp)->next;
1106 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1107 					    "unlink entry", "left");
1108 					)
1109 				} else {
1110 					/* Separate list for limit rules */
1111 					*expltailp = q;
1112 					expltailp = &(*expltailp)->next;
1113 					expired_limits++;
1114 					DEB(print_dyn_rule(&q->id, q->dyn_type,
1115 					    "unlink limit entry", "left");
1116 					)
1117 				}
1118 
1119 				q = q_next;
1120 				expired++;
1121 				continue;
1122 			}
1123 
1124 			/*
1125 			 * Check if we need to send keepalive:
1126 			 * we need to ensure if is time to do KA,
1127 			 * this is established TCP session, and
1128 			 * expire time is within keepalive interval
1129 			 */
1130 			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1131 			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1132 			    (TIME_LEQ(q->expire, time_uptime +
1133 			      V_dyn_keepalive_interval)))
1134 				mtailp = ipfw_dyn_send_ka(mtailp, q);
1135 
1136 			NEXT_RULE();
1137 		}
1138 		IPFW_BUCK_UNLOCK(i);
1139 	}
1140 
1141 	/* Stage 2: decrement counters from O_LIMIT parents */
1142 	if (expired_limits != 0) {
1143 		/*
1144 		 * XXX: Note that deleting set with more than one
1145 		 * heavily-used LIMIT rules can result in overwhelming
1146 		 * locking due to lack of per-hash value sorting
1147 		 *
1148 		 * We should probably think about:
1149 		 * 1) pre-allocating hash of size, say,
1150 		 * MAX(16, V_curr_dyn_buckets / 1024)
1151 		 * 2) checking if expired_limits is large enough
1152 		 * 3) If yes, init hash (or its part), re-link
1153 		 * current list and start decrementing procedure in
1154 		 * each bucket separately
1155 		 */
1156 
1157 		/*
1158 		 * Small optimization: do not unlock bucket until
1159 		 * we see the next item resides in different bucket
1160 		 */
1161 		if (exp_lhead != NULL) {
1162 			i = exp_lhead->parent->bucket;
1163 			IPFW_BUCK_LOCK(i);
1164 		}
1165 		for (q = exp_lhead; q != NULL; q = q->next) {
1166 			if (i != q->parent->bucket) {
1167 				IPFW_BUCK_UNLOCK(i);
1168 				i = q->parent->bucket;
1169 				IPFW_BUCK_LOCK(i);
1170 			}
1171 
1172 			/* Decrease parent refcount */
1173 			q->parent->count--;
1174 		}
1175 		if (exp_lhead != NULL)
1176 			IPFW_BUCK_UNLOCK(i);
1177 	}
1178 
1179 	/*
1180 	 * We protectet ourselves from unused parent deletion
1181 	 * (from the timer function) by holding UH write lock.
1182 	 */
1183 
1184 	/* Stage 3: remove unused parent rules */
1185 	if ((parents != 0) && (expired != 0)) {
1186 		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1187 			IPFW_BUCK_LOCK(i);
1188 			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1189 				if (q->dyn_type != O_LIMIT_PARENT)
1190 					NEXT_RULE();
1191 
1192 				if (q->count != 0)
1193 					NEXT_RULE();
1194 
1195 				/* Parent rule without consumers */
1196 
1197 				/* Unlink q from current list */
1198 				q_next = q->next;
1199 				if (q == V_ipfw_dyn_v[i].head)
1200 					V_ipfw_dyn_v[i].head = q_next;
1201 				else
1202 					q_prev->next = q_next;
1203 
1204 				q->next = NULL;
1205 
1206 				/* Add to expired list */
1207 				*exptailp = q;
1208 				exptailp = &(*exptailp)->next;
1209 
1210 				DEB(print_dyn_rule(&q->id, q->dyn_type,
1211 				    "unlink parent entry", "left");
1212 				)
1213 
1214 				expired++;
1215 
1216 				q = q_next;
1217 			}
1218 			IPFW_BUCK_UNLOCK(i);
1219 		}
1220 	}
1221 
1222 #undef NEXT_RULE
1223 
1224 	if (timer != 0) {
1225 		/*
1226 		 * Check if we need to resize hash:
1227 		 * if current number of states exceeds number of buckes in hash,
1228 		 * grow hash size to the minimum power of 2 which is bigger than
1229 		 * current states count. Limit hash size by 64k.
1230 		 */
1231 		max_buckets = (V_dyn_buckets_max > 65536) ?
1232 		    65536 : V_dyn_buckets_max;
1233 
1234 		dyn_count = DYN_COUNT;
1235 
1236 		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1237 		    (dyn_count < max_buckets)) {
1238 			new_buckets = V_curr_dyn_buckets;
1239 			while (new_buckets < dyn_count) {
1240 				new_buckets *= 2;
1241 
1242 				if (new_buckets >= max_buckets)
1243 					break;
1244 			}
1245 		}
1246 
1247 		IPFW_UH_WUNLOCK(chain);
1248 	}
1249 
1250 	/* Finally delete old states ad limits if any */
1251 	for (q = exp_head; q != NULL; q = q_next) {
1252 		q_next = q->next;
1253 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1254 	}
1255 
1256 	for (q = exp_lhead; q != NULL; q = q_next) {
1257 		q_next = q->next;
1258 		uma_zfree(V_ipfw_dyn_rule_zone, q);
1259 	}
1260 
1261 	/*
1262 	 * The rest code MUST be called from timer routine only
1263 	 * without holding any locks
1264 	 */
1265 	if (timer == 0)
1266 		return;
1267 
1268 	/* Send keepalive packets if any */
1269 	for (m = m0; m != NULL; m = mnext) {
1270 		mnext = m->m_nextpkt;
1271 		m->m_nextpkt = NULL;
1272 		h = mtod(m, struct ip *);
1273 		if (h->ip_v == 4)
1274 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1275 #ifdef INET6
1276 		else
1277 			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1278 #endif
1279 	}
1280 
1281 	/* Run table resize without holding any locks */
1282 	if (new_buckets != 0)
1283 		resize_dynamic_table(chain, new_buckets);
1284 }
1285 
1286 /*
1287  * Deletes all dynamic rules originated by given rule or all rules in
1288  * given set. Specify RESVD_SET to indicate set should not be used.
1289  * @chain - pointer to current ipfw rules chain
1290  * @rule - delete all states originated by given rule if != NULL
1291  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1292  *
1293  * Function has to be called with IPFW_UH_WLOCK held.
1294  * Additionally, function assume that dynamic rule/set is
1295  * ALREADY deleted so no new states can be generated by
1296  * 'deleted' rules.
1297  */
1298 void
1299 ipfw_expire_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule, int set)
1300 {
1301 
1302 	check_dyn_rules(chain, rule, set, 0, 0);
1303 }
1304 
1305 void
1306 ipfw_dyn_init(struct ip_fw_chain *chain)
1307 {
1308 
1309         V_ipfw_dyn_v = NULL;
1310         V_dyn_buckets_max = 256; /* must be power of 2 */
1311         V_curr_dyn_buckets = 256; /* must be power of 2 */
1312 
1313         V_dyn_ack_lifetime = 300;
1314         V_dyn_syn_lifetime = 20;
1315         V_dyn_fin_lifetime = 1;
1316         V_dyn_rst_lifetime = 1;
1317         V_dyn_udp_lifetime = 10;
1318         V_dyn_short_lifetime = 5;
1319 
1320         V_dyn_keepalive_interval = 20;
1321         V_dyn_keepalive_period = 5;
1322         V_dyn_keepalive = 1;    /* do send keepalives */
1323 	V_dyn_keepalive_last = time_uptime;
1324 
1325         V_dyn_max = 4096;       /* max # of dynamic rules */
1326 
1327 	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1328 	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1329 	    UMA_ALIGN_PTR, 0);
1330 
1331 	/* Enforce limit on dynamic rules */
1332 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1333 
1334         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
1335 
1336 	/*
1337 	 * This can potentially be done on first dynamic rule
1338 	 * being added to chain.
1339 	 */
1340 	resize_dynamic_table(chain, V_curr_dyn_buckets);
1341 }
1342 
1343 void
1344 ipfw_dyn_uninit(int pass)
1345 {
1346 	int i;
1347 
1348 	if (pass == 0) {
1349 		callout_drain(&V_ipfw_timeout);
1350 		return;
1351 	}
1352 
1353 	if (V_ipfw_dyn_v != NULL) {
1354 		/*
1355 		 * Skip deleting all dynamic states -
1356 		 * uma_zdestroy() does this more efficiently;
1357 		 */
1358 
1359 		/* Destroy all mutexes */
1360 		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1361 			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1362 		free(V_ipfw_dyn_v, M_IPFW);
1363 		V_ipfw_dyn_v = NULL;
1364 	}
1365 
1366         uma_zdestroy(V_ipfw_dyn_rule_zone);
1367 }
1368 
1369 #ifdef SYSCTL_NODE
1370 /*
1371  * Get/set maximum number of dynamic states in given VNET instance.
1372  */
1373 static int
1374 sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1375 {
1376 	int error;
1377 	unsigned int nstates;
1378 
1379 	nstates = V_dyn_max;
1380 
1381 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1382 	/* Read operation or some error */
1383 	if ((error != 0) || (req->newptr == NULL))
1384 		return (error);
1385 
1386 	V_dyn_max = nstates;
1387 	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1388 
1389 	return (0);
1390 }
1391 
1392 /*
1393  * Get current number of dynamic states in given VNET instance.
1394  */
1395 static int
1396 sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1397 {
1398 	int error;
1399 	unsigned int nstates;
1400 
1401 	nstates = DYN_COUNT;
1402 
1403 	error = sysctl_handle_int(oidp, &nstates, 0, req);
1404 
1405 	return (error);
1406 }
1407 #endif
1408 
1409 /*
1410  * Returns number of dynamic rules.
1411  */
1412 int
1413 ipfw_dyn_len(void)
1414 {
1415 
1416 	return (V_ipfw_dyn_v == NULL) ? 0 :
1417 		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1418 }
1419 
1420 /*
1421  * Fill given buffer with dynamic states.
1422  * IPFW_UH_RLOCK has to be held while calling.
1423  */
1424 void
1425 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1426 {
1427 	ipfw_dyn_rule *p, *last = NULL;
1428 	char *bp;
1429 	int i;
1430 
1431 	if (V_ipfw_dyn_v == NULL)
1432 		return;
1433 	bp = *pbp;
1434 
1435 	IPFW_UH_RLOCK_ASSERT(chain);
1436 
1437 	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1438 		IPFW_BUCK_LOCK(i);
1439 		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1440 			if (bp + sizeof *p <= ep) {
1441 				ipfw_dyn_rule *dst =
1442 					(ipfw_dyn_rule *)bp;
1443 				bcopy(p, dst, sizeof *p);
1444 				bcopy(&(p->rule->rulenum), &(dst->rule),
1445 				    sizeof(p->rule->rulenum));
1446 				/*
1447 				 * store set number into high word of
1448 				 * dst->rule pointer.
1449 				 */
1450 				bcopy(&(p->rule->set),
1451 				    (char *)&dst->rule +
1452 				    sizeof(p->rule->rulenum),
1453 				    sizeof(p->rule->set));
1454 				/*
1455 				 * store a non-null value in "next".
1456 				 * The userland code will interpret a
1457 				 * NULL here as a marker
1458 				 * for the last dynamic rule.
1459 				 */
1460 				bcopy(&dst, &dst->next, sizeof(dst));
1461 				last = dst;
1462 				dst->expire =
1463 				    TIME_LEQ(dst->expire, time_uptime) ?
1464 					0 : dst->expire - time_uptime ;
1465 				bp += sizeof(ipfw_dyn_rule);
1466 			}
1467 		}
1468 		IPFW_BUCK_UNLOCK(i);
1469 	}
1470 
1471 	if (last != NULL) /* mark last dynamic rule */
1472 		bzero(&last->next, sizeof(last));
1473 	*pbp = bp;
1474 }
1475 /* end of file */
1476