1 /*- 2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #define DEB(x) 30 #define DDB(x) x 31 32 /* 33 * Dynamic rule support for ipfw 34 */ 35 36 #include "opt_ipfw.h" 37 #include "opt_inet.h" 38 #ifndef INET 39 #error IPFIREWALL requires INET. 40 #endif /* INET */ 41 #include "opt_inet6.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/kernel.h> 48 #include <sys/ktr.h> 49 #include <sys/lock.h> 50 #include <sys/socket.h> 51 #include <sys/sysctl.h> 52 #include <sys/syslog.h> 53 #include <net/ethernet.h> /* for ETHERTYPE_IP */ 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/vnet.h> 57 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 #include <netinet/ip_var.h> /* ip_defttl */ 61 #include <netinet/ip_fw.h> 62 #include <netinet/tcp_var.h> 63 #include <netinet/udp.h> 64 65 #include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */ 66 #ifdef INET6 67 #include <netinet6/in6_var.h> 68 #include <netinet6/ip6_var.h> 69 #endif 70 71 #include <netpfil/ipfw/ip_fw_private.h> 72 73 #include <machine/in_cksum.h> /* XXX for in_cksum */ 74 75 #ifdef MAC 76 #include <security/mac/mac_framework.h> 77 #endif 78 79 /* 80 * Description of dynamic rules. 81 * 82 * Dynamic rules are stored in lists accessed through a hash table 83 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can 84 * be modified through the sysctl variable dyn_buckets which is 85 * updated when the table becomes empty. 86 * 87 * XXX currently there is only one list, ipfw_dyn. 88 * 89 * When a packet is received, its address fields are first masked 90 * with the mask defined for the rule, then hashed, then matched 91 * against the entries in the corresponding list. 92 * Dynamic rules can be used for different purposes: 93 * + stateful rules; 94 * + enforcing limits on the number of sessions; 95 * + in-kernel NAT (not implemented yet) 96 * 97 * The lifetime of dynamic rules is regulated by dyn_*_lifetime, 98 * measured in seconds and depending on the flags. 99 * 100 * The total number of dynamic rules is equal to UMA zone items count. 101 * The max number of dynamic rules is dyn_max. When we reach 102 * the maximum number of rules we do not create anymore. This is 103 * done to avoid consuming too much memory, but also too much 104 * time when searching on each packet (ideally, we should try instead 105 * to put a limit on the length of the list on each bucket...). 106 * 107 * Each dynamic rule holds a pointer to the parent ipfw rule so 108 * we know what action to perform. Dynamic rules are removed when 109 * the parent rule is deleted. XXX we should make them survive. 110 * 111 * There are some limitations with dynamic rules -- we do not 112 * obey the 'randomized match', and we do not do multiple 113 * passes through the firewall. XXX check the latter!!! 114 */ 115 116 struct ipfw_dyn_bucket { 117 struct mtx mtx; /* Bucket protecting lock */ 118 ipfw_dyn_rule *head; /* Pointer to first rule */ 119 }; 120 121 /* 122 * Static variables followed by global ones 123 */ 124 static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v); 125 static VNET_DEFINE(u_int32_t, dyn_buckets_max); 126 static VNET_DEFINE(u_int32_t, curr_dyn_buckets); 127 static VNET_DEFINE(struct callout, ipfw_timeout); 128 #define V_ipfw_dyn_v VNET(ipfw_dyn_v) 129 #define V_dyn_buckets_max VNET(dyn_buckets_max) 130 #define V_curr_dyn_buckets VNET(curr_dyn_buckets) 131 #define V_ipfw_timeout VNET(ipfw_timeout) 132 133 static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone); 134 #define V_ipfw_dyn_rule_zone VNET(ipfw_dyn_rule_zone) 135 136 #define IPFW_BUCK_LOCK_INIT(b) \ 137 mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF) 138 #define IPFW_BUCK_LOCK_DESTROY(b) \ 139 mtx_destroy(&(b)->mtx) 140 #define IPFW_BUCK_LOCK(i) mtx_lock(&V_ipfw_dyn_v[(i)].mtx) 141 #define IPFW_BUCK_UNLOCK(i) mtx_unlock(&V_ipfw_dyn_v[(i)].mtx) 142 #define IPFW_BUCK_ASSERT(i) mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED) 143 144 /* 145 * Timeouts for various events in handing dynamic rules. 146 */ 147 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime); 148 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime); 149 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime); 150 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime); 151 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime); 152 static VNET_DEFINE(u_int32_t, dyn_short_lifetime); 153 154 #define V_dyn_ack_lifetime VNET(dyn_ack_lifetime) 155 #define V_dyn_syn_lifetime VNET(dyn_syn_lifetime) 156 #define V_dyn_fin_lifetime VNET(dyn_fin_lifetime) 157 #define V_dyn_rst_lifetime VNET(dyn_rst_lifetime) 158 #define V_dyn_udp_lifetime VNET(dyn_udp_lifetime) 159 #define V_dyn_short_lifetime VNET(dyn_short_lifetime) 160 161 /* 162 * Keepalives are sent if dyn_keepalive is set. They are sent every 163 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval 164 * seconds of lifetime of a rule. 165 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower 166 * than dyn_keepalive_period. 167 */ 168 169 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval); 170 static VNET_DEFINE(u_int32_t, dyn_keepalive_period); 171 static VNET_DEFINE(u_int32_t, dyn_keepalive); 172 static VNET_DEFINE(time_t, dyn_keepalive_last); 173 174 #define V_dyn_keepalive_interval VNET(dyn_keepalive_interval) 175 #define V_dyn_keepalive_period VNET(dyn_keepalive_period) 176 #define V_dyn_keepalive VNET(dyn_keepalive) 177 #define V_dyn_keepalive_last VNET(dyn_keepalive_last) 178 179 static VNET_DEFINE(u_int32_t, dyn_max); /* max # of dynamic rules */ 180 181 #define DYN_COUNT uma_zone_get_cur(V_ipfw_dyn_rule_zone) 182 #define V_dyn_max VNET(dyn_max) 183 184 static int last_log; /* Log ratelimiting */ 185 186 static void ipfw_dyn_tick(void *vnetx); 187 static void check_dyn_rules(struct ip_fw_chain *, struct ip_fw *, 188 int, int, int); 189 #ifdef SYSCTL_NODE 190 191 static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS); 192 static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS); 193 194 SYSBEGIN(f2) 195 196 SYSCTL_DECL(_net_inet_ip_fw); 197 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, 198 CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0, 199 "Max number of dyn. buckets"); 200 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, 201 CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0, 202 "Current Number of dyn. buckets"); 203 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count, 204 CTLTYPE_UINT|CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU", 205 "Number of dyn. rules"); 206 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max, 207 CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU", 208 "Max number of dyn. rules"); 209 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, 210 CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0, 211 "Lifetime of dyn. rules for acks"); 212 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, 213 CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0, 214 "Lifetime of dyn. rules for syn"); 215 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, 216 CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0, 217 "Lifetime of dyn. rules for fin"); 218 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, 219 CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0, 220 "Lifetime of dyn. rules for rst"); 221 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, 222 CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0, 223 "Lifetime of dyn. rules for UDP"); 224 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, 225 CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0, 226 "Lifetime of dyn. rules for other situations"); 227 SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, 228 CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0, 229 "Enable keepalives for dyn. rules"); 230 231 SYSEND 232 233 #endif /* SYSCTL_NODE */ 234 235 236 static __inline int 237 hash_packet6(struct ipfw_flow_id *id) 238 { 239 u_int32_t i; 240 i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^ 241 (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^ 242 (id->src_ip6.__u6_addr.__u6_addr32[2]) ^ 243 (id->src_ip6.__u6_addr.__u6_addr32[3]) ^ 244 (id->dst_port) ^ (id->src_port); 245 return i; 246 } 247 248 /* 249 * IMPORTANT: the hash function for dynamic rules must be commutative 250 * in source and destination (ip,port), because rules are bidirectional 251 * and we want to find both in the same bucket. 252 */ 253 static __inline int 254 hash_packet(struct ipfw_flow_id *id, int buckets) 255 { 256 u_int32_t i; 257 258 #ifdef INET6 259 if (IS_IP6_FLOW_ID(id)) 260 i = hash_packet6(id); 261 else 262 #endif /* INET6 */ 263 i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port); 264 i &= (buckets - 1); 265 return i; 266 } 267 268 /** 269 * Print customizable flow id description via log(9) facility. 270 */ 271 static void 272 print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags, 273 char *prefix, char *postfix) 274 { 275 struct in_addr da; 276 #ifdef INET6 277 char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN]; 278 #else 279 char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN]; 280 #endif 281 282 #ifdef INET6 283 if (IS_IP6_FLOW_ID(id)) { 284 ip6_sprintf(src, &id->src_ip6); 285 ip6_sprintf(dst, &id->dst_ip6); 286 } else 287 #endif 288 { 289 da.s_addr = htonl(id->src_ip); 290 inet_ntop(AF_INET, &da, src, sizeof(src)); 291 da.s_addr = htonl(id->dst_ip); 292 inet_ntop(AF_INET, &da, dst, sizeof(dst)); 293 } 294 log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n", 295 prefix, dyn_type, src, id->src_port, dst, 296 id->dst_port, DYN_COUNT, postfix); 297 } 298 299 #define print_dyn_rule(id, dtype, prefix, postfix) \ 300 print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix) 301 302 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0) 303 304 /* 305 * Lookup a dynamic rule, locked version. 306 */ 307 static ipfw_dyn_rule * 308 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction, 309 struct tcphdr *tcp) 310 { 311 /* 312 * Stateful ipfw extensions. 313 * Lookup into dynamic session queue. 314 */ 315 #define MATCH_REVERSE 0 316 #define MATCH_FORWARD 1 317 #define MATCH_NONE 2 318 #define MATCH_UNKNOWN 3 319 int dir = MATCH_NONE; 320 ipfw_dyn_rule *prev, *q = NULL; 321 322 IPFW_BUCK_ASSERT(i); 323 324 for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) { 325 if (q->dyn_type == O_LIMIT_PARENT && q->count) 326 continue; 327 328 if (pkt->proto != q->id.proto || q->dyn_type == O_LIMIT_PARENT) 329 continue; 330 331 if (IS_IP6_FLOW_ID(pkt)) { 332 if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) && 333 IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) && 334 pkt->src_port == q->id.src_port && 335 pkt->dst_port == q->id.dst_port) { 336 dir = MATCH_FORWARD; 337 break; 338 } 339 if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) && 340 IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) && 341 pkt->src_port == q->id.dst_port && 342 pkt->dst_port == q->id.src_port) { 343 dir = MATCH_REVERSE; 344 break; 345 } 346 } else { 347 if (pkt->src_ip == q->id.src_ip && 348 pkt->dst_ip == q->id.dst_ip && 349 pkt->src_port == q->id.src_port && 350 pkt->dst_port == q->id.dst_port) { 351 dir = MATCH_FORWARD; 352 break; 353 } 354 if (pkt->src_ip == q->id.dst_ip && 355 pkt->dst_ip == q->id.src_ip && 356 pkt->src_port == q->id.dst_port && 357 pkt->dst_port == q->id.src_port) { 358 dir = MATCH_REVERSE; 359 break; 360 } 361 } 362 } 363 if (q == NULL) 364 goto done; /* q = NULL, not found */ 365 366 if (prev != NULL) { /* found and not in front */ 367 prev->next = q->next; 368 q->next = V_ipfw_dyn_v[i].head; 369 V_ipfw_dyn_v[i].head = q; 370 } 371 if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */ 372 uint32_t ack; 373 u_char flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST); 374 375 #define BOTH_SYN (TH_SYN | (TH_SYN << 8)) 376 #define BOTH_FIN (TH_FIN | (TH_FIN << 8)) 377 #define TCP_FLAGS (TH_FLAGS | (TH_FLAGS << 8)) 378 #define ACK_FWD 0x10000 /* fwd ack seen */ 379 #define ACK_REV 0x20000 /* rev ack seen */ 380 381 q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8); 382 switch (q->state & TCP_FLAGS) { 383 case TH_SYN: /* opening */ 384 q->expire = time_uptime + V_dyn_syn_lifetime; 385 break; 386 387 case BOTH_SYN: /* move to established */ 388 case BOTH_SYN | TH_FIN: /* one side tries to close */ 389 case BOTH_SYN | (TH_FIN << 8): 390 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0) 391 if (tcp == NULL) 392 break; 393 394 ack = ntohl(tcp->th_ack); 395 if (dir == MATCH_FORWARD) { 396 if (q->ack_fwd == 0 || 397 _SEQ_GE(ack, q->ack_fwd)) { 398 q->ack_fwd = ack; 399 q->state |= ACK_FWD; 400 } 401 } else { 402 if (q->ack_rev == 0 || 403 _SEQ_GE(ack, q->ack_rev)) { 404 q->ack_rev = ack; 405 q->state |= ACK_REV; 406 } 407 } 408 if ((q->state & (ACK_FWD | ACK_REV)) == 409 (ACK_FWD | ACK_REV)) { 410 q->expire = time_uptime + V_dyn_ack_lifetime; 411 q->state &= ~(ACK_FWD | ACK_REV); 412 } 413 break; 414 415 case BOTH_SYN | BOTH_FIN: /* both sides closed */ 416 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period) 417 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1; 418 q->expire = time_uptime + V_dyn_fin_lifetime; 419 break; 420 421 default: 422 #if 0 423 /* 424 * reset or some invalid combination, but can also 425 * occur if we use keep-state the wrong way. 426 */ 427 if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0) 428 printf("invalid state: 0x%x\n", q->state); 429 #endif 430 if (V_dyn_rst_lifetime >= V_dyn_keepalive_period) 431 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1; 432 q->expire = time_uptime + V_dyn_rst_lifetime; 433 break; 434 } 435 } else if (pkt->proto == IPPROTO_UDP) { 436 q->expire = time_uptime + V_dyn_udp_lifetime; 437 } else { 438 /* other protocols */ 439 q->expire = time_uptime + V_dyn_short_lifetime; 440 } 441 done: 442 if (match_direction != NULL) 443 *match_direction = dir; 444 return (q); 445 } 446 447 ipfw_dyn_rule * 448 ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction, 449 struct tcphdr *tcp) 450 { 451 ipfw_dyn_rule *q; 452 int i; 453 454 i = hash_packet(pkt, V_curr_dyn_buckets); 455 456 IPFW_BUCK_LOCK(i); 457 q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp); 458 if (q == NULL) 459 IPFW_BUCK_UNLOCK(i); 460 /* NB: return table locked when q is not NULL */ 461 return q; 462 } 463 464 /* 465 * Unlock bucket mtx 466 * @p - pointer to dynamic rule 467 */ 468 void 469 ipfw_dyn_unlock(ipfw_dyn_rule *q) 470 { 471 472 IPFW_BUCK_UNLOCK(q->bucket); 473 } 474 475 static int 476 resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets) 477 { 478 int i, k, nbuckets_old; 479 ipfw_dyn_rule *q; 480 struct ipfw_dyn_bucket *dyn_v, *dyn_v_old; 481 482 /* Check if given number is power of 2 and less than 64k */ 483 if ((nbuckets > 65536) || (!powerof2(nbuckets))) 484 return 1; 485 486 CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__, 487 V_curr_dyn_buckets, nbuckets); 488 489 /* Allocate and initialize new hash */ 490 dyn_v = malloc(nbuckets * sizeof(ipfw_dyn_rule), M_IPFW, 491 M_WAITOK | M_ZERO); 492 493 for (i = 0 ; i < nbuckets; i++) 494 IPFW_BUCK_LOCK_INIT(&dyn_v[i]); 495 496 /* 497 * Call upper half lock, as get_map() do to ease 498 * read-only access to dynamic rules hash from sysctl 499 */ 500 IPFW_UH_WLOCK(chain); 501 502 /* 503 * Acquire chain write lock to permit hash access 504 * for main traffic path without additional locks 505 */ 506 IPFW_WLOCK(chain); 507 508 /* Save old values */ 509 nbuckets_old = V_curr_dyn_buckets; 510 dyn_v_old = V_ipfw_dyn_v; 511 512 /* Skip relinking if array is not set up */ 513 if (V_ipfw_dyn_v == NULL) 514 V_curr_dyn_buckets = 0; 515 516 /* Re-link all dynamic states */ 517 for (i = 0 ; i < V_curr_dyn_buckets ; i++) { 518 while (V_ipfw_dyn_v[i].head != NULL) { 519 /* Remove from current chain */ 520 q = V_ipfw_dyn_v[i].head; 521 V_ipfw_dyn_v[i].head = q->next; 522 523 /* Get new hash value */ 524 k = hash_packet(&q->id, nbuckets); 525 q->bucket = k; 526 /* Add to the new head */ 527 q->next = dyn_v[k].head; 528 dyn_v[k].head = q; 529 } 530 } 531 532 /* Update current pointers/buckets values */ 533 V_curr_dyn_buckets = nbuckets; 534 V_ipfw_dyn_v = dyn_v; 535 536 IPFW_WUNLOCK(chain); 537 538 IPFW_UH_WUNLOCK(chain); 539 540 /* Start periodic callout on initial creation */ 541 if (dyn_v_old == NULL) { 542 callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0); 543 return (0); 544 } 545 546 /* Destroy all mutexes */ 547 for (i = 0 ; i < nbuckets_old ; i++) 548 IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]); 549 550 /* Free old hash */ 551 free(dyn_v_old, M_IPFW); 552 553 return 0; 554 } 555 556 /** 557 * Install state of type 'type' for a dynamic session. 558 * The hash table contains two type of rules: 559 * - regular rules (O_KEEP_STATE) 560 * - rules for sessions with limited number of sess per user 561 * (O_LIMIT). When they are created, the parent is 562 * increased by 1, and decreased on delete. In this case, 563 * the third parameter is the parent rule and not the chain. 564 * - "parent" rules for the above (O_LIMIT_PARENT). 565 */ 566 static ipfw_dyn_rule * 567 add_dyn_rule(struct ipfw_flow_id *id, int i, u_int8_t dyn_type, struct ip_fw *rule) 568 { 569 ipfw_dyn_rule *r; 570 571 IPFW_BUCK_ASSERT(i); 572 573 r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO); 574 if (r == NULL) { 575 if (last_log != time_uptime) { 576 last_log = time_uptime; 577 log(LOG_DEBUG, "ipfw: %s: Cannot allocate rule\n", 578 __func__); 579 } 580 return NULL; 581 } 582 583 /* 584 * refcount on parent is already incremented, so 585 * it is safe to use parent unlocked. 586 */ 587 if (dyn_type == O_LIMIT) { 588 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule; 589 if ( parent->dyn_type != O_LIMIT_PARENT) 590 panic("invalid parent"); 591 r->parent = parent; 592 rule = parent->rule; 593 } 594 595 r->id = *id; 596 r->expire = time_uptime + V_dyn_syn_lifetime; 597 r->rule = rule; 598 r->dyn_type = dyn_type; 599 IPFW_ZERO_DYN_COUNTER(r); 600 r->count = 0; 601 602 r->bucket = i; 603 r->next = V_ipfw_dyn_v[i].head; 604 V_ipfw_dyn_v[i].head = r; 605 DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");) 606 return r; 607 } 608 609 /** 610 * lookup dynamic parent rule using pkt and rule as search keys. 611 * If the lookup fails, then install one. 612 */ 613 static ipfw_dyn_rule * 614 lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule) 615 { 616 ipfw_dyn_rule *q; 617 int i, is_v6; 618 619 is_v6 = IS_IP6_FLOW_ID(pkt); 620 i = hash_packet( pkt, V_curr_dyn_buckets ); 621 *pindex = i; 622 IPFW_BUCK_LOCK(i); 623 for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next) 624 if (q->dyn_type == O_LIMIT_PARENT && 625 rule== q->rule && 626 pkt->proto == q->id.proto && 627 pkt->src_port == q->id.src_port && 628 pkt->dst_port == q->id.dst_port && 629 ( 630 (is_v6 && 631 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6), 632 &(q->id.src_ip6)) && 633 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6), 634 &(q->id.dst_ip6))) || 635 (!is_v6 && 636 pkt->src_ip == q->id.src_ip && 637 pkt->dst_ip == q->id.dst_ip) 638 ) 639 ) { 640 q->expire = time_uptime + V_dyn_short_lifetime; 641 DEB(print_dyn_rule(pkt, q->dyn_type, 642 "lookup_dyn_parent found", "");) 643 return q; 644 } 645 646 /* Add virtual limiting rule */ 647 return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule); 648 } 649 650 /** 651 * Install dynamic state for rule type cmd->o.opcode 652 * 653 * Returns 1 (failure) if state is not installed because of errors or because 654 * session limitations are enforced. 655 */ 656 int 657 ipfw_install_state(struct ip_fw *rule, ipfw_insn_limit *cmd, 658 struct ip_fw_args *args, uint32_t tablearg) 659 { 660 ipfw_dyn_rule *q; 661 int i; 662 663 DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state", "");) 664 665 i = hash_packet(&args->f_id, V_curr_dyn_buckets); 666 667 IPFW_BUCK_LOCK(i); 668 669 q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL); 670 671 if (q != NULL) { /* should never occur */ 672 DEB( 673 if (last_log != time_uptime) { 674 last_log = time_uptime; 675 printf("ipfw: %s: entry already present, done\n", 676 __func__); 677 }) 678 IPFW_BUCK_UNLOCK(i); 679 return (0); 680 } 681 682 /* 683 * State limiting is done via uma(9) zone limiting. 684 * Save pointer to newly-installed rule and reject 685 * packet if add_dyn_rule() returned NULL. 686 * Note q is currently set to NULL. 687 */ 688 689 switch (cmd->o.opcode) { 690 case O_KEEP_STATE: /* bidir rule */ 691 q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule); 692 break; 693 694 case O_LIMIT: { /* limit number of sessions */ 695 struct ipfw_flow_id id; 696 ipfw_dyn_rule *parent; 697 uint32_t conn_limit; 698 uint16_t limit_mask = cmd->limit_mask; 699 int pindex; 700 701 conn_limit = IP_FW_ARG_TABLEARG(cmd->conn_limit); 702 703 DEB( 704 if (cmd->conn_limit == IP_FW_TABLEARG) 705 printf("ipfw: %s: O_LIMIT rule, conn_limit: %u " 706 "(tablearg)\n", __func__, conn_limit); 707 else 708 printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n", 709 __func__, conn_limit); 710 ) 711 712 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0; 713 id.proto = args->f_id.proto; 714 id.addr_type = args->f_id.addr_type; 715 id.fib = M_GETFIB(args->m); 716 717 if (IS_IP6_FLOW_ID (&(args->f_id))) { 718 if (limit_mask & DYN_SRC_ADDR) 719 id.src_ip6 = args->f_id.src_ip6; 720 if (limit_mask & DYN_DST_ADDR) 721 id.dst_ip6 = args->f_id.dst_ip6; 722 } else { 723 if (limit_mask & DYN_SRC_ADDR) 724 id.src_ip = args->f_id.src_ip; 725 if (limit_mask & DYN_DST_ADDR) 726 id.dst_ip = args->f_id.dst_ip; 727 } 728 if (limit_mask & DYN_SRC_PORT) 729 id.src_port = args->f_id.src_port; 730 if (limit_mask & DYN_DST_PORT) 731 id.dst_port = args->f_id.dst_port; 732 733 /* 734 * We have to release lock for previous bucket to 735 * avoid possible deadlock 736 */ 737 IPFW_BUCK_UNLOCK(i); 738 739 if ((parent = lookup_dyn_parent(&id, &pindex, rule)) == NULL) { 740 printf("ipfw: %s: add parent failed\n", __func__); 741 IPFW_BUCK_UNLOCK(pindex); 742 return (1); 743 } 744 745 if (parent->count >= conn_limit) { 746 if (V_fw_verbose && last_log != time_uptime) { 747 last_log = time_uptime; 748 char sbuf[24]; 749 last_log = time_uptime; 750 snprintf(sbuf, sizeof(sbuf), 751 "%d drop session", 752 parent->rule->rulenum); 753 print_dyn_rule_flags(&args->f_id, 754 cmd->o.opcode, 755 LOG_SECURITY | LOG_DEBUG, 756 sbuf, "too many entries"); 757 } 758 IPFW_BUCK_UNLOCK(pindex); 759 return (1); 760 } 761 /* Increment counter on parent */ 762 parent->count++; 763 IPFW_BUCK_UNLOCK(pindex); 764 765 IPFW_BUCK_LOCK(i); 766 q = add_dyn_rule(&args->f_id, i, O_LIMIT, (struct ip_fw *)parent); 767 if (q == NULL) { 768 /* Decrement index and notify caller */ 769 IPFW_BUCK_UNLOCK(i); 770 IPFW_BUCK_LOCK(pindex); 771 parent->count--; 772 IPFW_BUCK_UNLOCK(pindex); 773 return (1); 774 } 775 break; 776 } 777 default: 778 printf("ipfw: %s: unknown dynamic rule type %u\n", 779 __func__, cmd->o.opcode); 780 } 781 782 if (q == NULL) { 783 IPFW_BUCK_UNLOCK(i); 784 return (1); /* Notify caller about failure */ 785 } 786 787 /* XXX just set lifetime */ 788 lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL); 789 790 IPFW_BUCK_UNLOCK(i); 791 return (0); 792 } 793 794 /* 795 * Generate a TCP packet, containing either a RST or a keepalive. 796 * When flags & TH_RST, we are sending a RST packet, because of a 797 * "reset" action matched the packet. 798 * Otherwise we are sending a keepalive, and flags & TH_ 799 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required 800 * so that MAC can label the reply appropriately. 801 */ 802 struct mbuf * 803 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq, 804 u_int32_t ack, int flags) 805 { 806 struct mbuf *m = NULL; /* stupid compiler */ 807 int len, dir; 808 struct ip *h = NULL; /* stupid compiler */ 809 #ifdef INET6 810 struct ip6_hdr *h6 = NULL; 811 #endif 812 struct tcphdr *th = NULL; 813 814 MGETHDR(m, M_NOWAIT, MT_DATA); 815 if (m == NULL) 816 return (NULL); 817 818 M_SETFIB(m, id->fib); 819 #ifdef MAC 820 if (replyto != NULL) 821 mac_netinet_firewall_reply(replyto, m); 822 else 823 mac_netinet_firewall_send(m); 824 #else 825 (void)replyto; /* don't warn about unused arg */ 826 #endif 827 828 switch (id->addr_type) { 829 case 4: 830 len = sizeof(struct ip) + sizeof(struct tcphdr); 831 break; 832 #ifdef INET6 833 case 6: 834 len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 835 break; 836 #endif 837 default: 838 /* XXX: log me?!? */ 839 FREE_PKT(m); 840 return (NULL); 841 } 842 dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN); 843 844 m->m_data += max_linkhdr; 845 m->m_flags |= M_SKIP_FIREWALL; 846 m->m_pkthdr.len = m->m_len = len; 847 m->m_pkthdr.rcvif = NULL; 848 bzero(m->m_data, len); 849 850 switch (id->addr_type) { 851 case 4: 852 h = mtod(m, struct ip *); 853 854 /* prepare for checksum */ 855 h->ip_p = IPPROTO_TCP; 856 h->ip_len = htons(sizeof(struct tcphdr)); 857 if (dir) { 858 h->ip_src.s_addr = htonl(id->src_ip); 859 h->ip_dst.s_addr = htonl(id->dst_ip); 860 } else { 861 h->ip_src.s_addr = htonl(id->dst_ip); 862 h->ip_dst.s_addr = htonl(id->src_ip); 863 } 864 865 th = (struct tcphdr *)(h + 1); 866 break; 867 #ifdef INET6 868 case 6: 869 h6 = mtod(m, struct ip6_hdr *); 870 871 /* prepare for checksum */ 872 h6->ip6_nxt = IPPROTO_TCP; 873 h6->ip6_plen = htons(sizeof(struct tcphdr)); 874 if (dir) { 875 h6->ip6_src = id->src_ip6; 876 h6->ip6_dst = id->dst_ip6; 877 } else { 878 h6->ip6_src = id->dst_ip6; 879 h6->ip6_dst = id->src_ip6; 880 } 881 882 th = (struct tcphdr *)(h6 + 1); 883 break; 884 #endif 885 } 886 887 if (dir) { 888 th->th_sport = htons(id->src_port); 889 th->th_dport = htons(id->dst_port); 890 } else { 891 th->th_sport = htons(id->dst_port); 892 th->th_dport = htons(id->src_port); 893 } 894 th->th_off = sizeof(struct tcphdr) >> 2; 895 896 if (flags & TH_RST) { 897 if (flags & TH_ACK) { 898 th->th_seq = htonl(ack); 899 th->th_flags = TH_RST; 900 } else { 901 if (flags & TH_SYN) 902 seq++; 903 th->th_ack = htonl(seq); 904 th->th_flags = TH_RST | TH_ACK; 905 } 906 } else { 907 /* 908 * Keepalive - use caller provided sequence numbers 909 */ 910 th->th_seq = htonl(seq); 911 th->th_ack = htonl(ack); 912 th->th_flags = TH_ACK; 913 } 914 915 switch (id->addr_type) { 916 case 4: 917 th->th_sum = in_cksum(m, len); 918 919 /* finish the ip header */ 920 h->ip_v = 4; 921 h->ip_hl = sizeof(*h) >> 2; 922 h->ip_tos = IPTOS_LOWDELAY; 923 h->ip_off = htons(0); 924 h->ip_len = htons(len); 925 h->ip_ttl = V_ip_defttl; 926 h->ip_sum = 0; 927 break; 928 #ifdef INET6 929 case 6: 930 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6), 931 sizeof(struct tcphdr)); 932 933 /* finish the ip6 header */ 934 h6->ip6_vfc |= IPV6_VERSION; 935 h6->ip6_hlim = IPV6_DEFHLIM; 936 break; 937 #endif 938 } 939 940 return (m); 941 } 942 943 /* 944 * Queue keepalive packets for given dynamic rule 945 */ 946 static struct mbuf ** 947 ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q) 948 { 949 struct mbuf *m_rev, *m_fwd; 950 951 m_rev = (q->state & ACK_REV) ? NULL : 952 ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN); 953 m_fwd = (q->state & ACK_FWD) ? NULL : 954 ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0); 955 956 if (m_rev != NULL) { 957 *mtailp = m_rev; 958 mtailp = &(*mtailp)->m_nextpkt; 959 } 960 if (m_fwd != NULL) { 961 *mtailp = m_fwd; 962 mtailp = &(*mtailp)->m_nextpkt; 963 } 964 965 return (mtailp); 966 } 967 968 /* 969 * This procedure is used to perform various maintance 970 * on dynamic hash list. Currently it is called every second. 971 */ 972 static void 973 ipfw_dyn_tick(void * vnetx) 974 { 975 struct ip_fw_chain *chain; 976 int check_ka = 0; 977 #ifdef VIMAGE 978 struct vnet *vp = vnetx; 979 #endif 980 981 CURVNET_SET(vp); 982 983 chain = &V_layer3_chain; 984 985 /* Run keepalive checks every keepalive_period iff ka is enabled */ 986 if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) && 987 (V_dyn_keepalive != 0)) { 988 V_dyn_keepalive_last = time_uptime; 989 check_ka = 1; 990 } 991 992 check_dyn_rules(chain, NULL, RESVD_SET, check_ka, 1); 993 994 callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0); 995 996 CURVNET_RESTORE(); 997 } 998 999 1000 /* 1001 * Walk thru all dynamic states doing generic maintance: 1002 * 1) free expired states 1003 * 2) free all states based on deleted rule / set 1004 * 3) send keepalives for states if needed 1005 * 1006 * @chain - pointer to current ipfw rules chain 1007 * @rule - delete all states originated by given rule if != NULL 1008 * @set - delete all states originated by any rule in set @set if != RESVD_SET 1009 * @check_ka - perform checking/sending keepalives 1010 * @timer - indicate call from timer routine. 1011 * 1012 * Timer routine must call this function unlocked to permit 1013 * sending keepalives/resizing table. 1014 * 1015 * Others has to call function with IPFW_UH_WLOCK held. 1016 * Additionally, function assume that dynamic rule/set is 1017 * ALREADY deleted so no new states can be generated by 1018 * 'deleted' rules. 1019 * 1020 * Write lock is needed to ensure that unused parent rules 1021 * are not freed by other instance (see stage 2, 3) 1022 */ 1023 static void 1024 check_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule, 1025 int set, int check_ka, int timer) 1026 { 1027 struct mbuf *m0, *m, *mnext, **mtailp; 1028 struct ip *h; 1029 int i, dyn_count, new_buckets = 0, max_buckets; 1030 int expired = 0, expired_limits = 0, parents = 0, total = 0; 1031 ipfw_dyn_rule *q, *q_prev, *q_next; 1032 ipfw_dyn_rule *exp_head, **exptailp; 1033 ipfw_dyn_rule *exp_lhead, **expltailp; 1034 1035 KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated", 1036 __func__)); 1037 1038 /* Avoid possible LOR */ 1039 KASSERT(!check_ka || timer, ("%s: keepalive check with lock held", 1040 __func__)); 1041 1042 /* 1043 * Do not perform any checks if we currently have no dynamic states 1044 */ 1045 if (DYN_COUNT == 0) 1046 return; 1047 1048 /* Expired states */ 1049 exp_head = NULL; 1050 exptailp = &exp_head; 1051 1052 /* Expired limit states */ 1053 exp_lhead = NULL; 1054 expltailp = &exp_lhead; 1055 1056 /* 1057 * We make a chain of packets to go out here -- not deferring 1058 * until after we drop the IPFW dynamic rule lock would result 1059 * in a lock order reversal with the normal packet input -> ipfw 1060 * call stack. 1061 */ 1062 m0 = NULL; 1063 mtailp = &m0; 1064 1065 /* Protect from hash resizing */ 1066 if (timer != 0) 1067 IPFW_UH_WLOCK(chain); 1068 else 1069 IPFW_UH_WLOCK_ASSERT(chain); 1070 1071 #define NEXT_RULE() { q_prev = q; q = q->next ; continue; } 1072 1073 /* Stage 1: perform requested deletion */ 1074 for (i = 0 ; i < V_curr_dyn_buckets ; i++) { 1075 IPFW_BUCK_LOCK(i); 1076 for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) { 1077 /* account every rule */ 1078 total++; 1079 1080 /* Skip parent rules at all */ 1081 if (q->dyn_type == O_LIMIT_PARENT) { 1082 parents++; 1083 NEXT_RULE(); 1084 } 1085 1086 /* 1087 * Remove rules which are: 1088 * 1) expired 1089 * 2) created by given rule 1090 * 3) created by any rule in given set 1091 */ 1092 if ((TIME_LEQ(q->expire, time_uptime)) || 1093 ((rule != NULL) && (q->rule == rule)) || 1094 ((set != RESVD_SET) && (q->rule->set == set))) { 1095 /* Unlink q from current list */ 1096 q_next = q->next; 1097 if (q == V_ipfw_dyn_v[i].head) 1098 V_ipfw_dyn_v[i].head = q_next; 1099 else 1100 q_prev->next = q_next; 1101 1102 q->next = NULL; 1103 1104 /* queue q to expire list */ 1105 if (q->dyn_type != O_LIMIT) { 1106 *exptailp = q; 1107 exptailp = &(*exptailp)->next; 1108 DEB(print_dyn_rule(&q->id, q->dyn_type, 1109 "unlink entry", "left"); 1110 ) 1111 } else { 1112 /* Separate list for limit rules */ 1113 *expltailp = q; 1114 expltailp = &(*expltailp)->next; 1115 expired_limits++; 1116 DEB(print_dyn_rule(&q->id, q->dyn_type, 1117 "unlink limit entry", "left"); 1118 ) 1119 } 1120 1121 q = q_next; 1122 expired++; 1123 continue; 1124 } 1125 1126 /* 1127 * Check if we need to send keepalive: 1128 * we need to ensure if is time to do KA, 1129 * this is established TCP session, and 1130 * expire time is within keepalive interval 1131 */ 1132 if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) && 1133 ((q->state & BOTH_SYN) == BOTH_SYN) && 1134 (TIME_LEQ(q->expire, time_uptime + 1135 V_dyn_keepalive_interval))) 1136 mtailp = ipfw_dyn_send_ka(mtailp, q); 1137 1138 NEXT_RULE(); 1139 } 1140 IPFW_BUCK_UNLOCK(i); 1141 } 1142 1143 /* Stage 2: decrement counters from O_LIMIT parents */ 1144 if (expired_limits != 0) { 1145 /* 1146 * XXX: Note that deleting set with more than one 1147 * heavily-used LIMIT rules can result in overwhelming 1148 * locking due to lack of per-hash value sorting 1149 * 1150 * We should probably think about: 1151 * 1) pre-allocating hash of size, say, 1152 * MAX(16, V_curr_dyn_buckets / 1024) 1153 * 2) checking if expired_limits is large enough 1154 * 3) If yes, init hash (or its part), re-link 1155 * current list and start decrementing procedure in 1156 * each bucket separately 1157 */ 1158 1159 /* 1160 * Small optimization: do not unlock bucket until 1161 * we see the next item resides in different bucket 1162 */ 1163 if (exp_lhead != NULL) { 1164 i = exp_lhead->parent->bucket; 1165 IPFW_BUCK_LOCK(i); 1166 } 1167 for (q = exp_lhead; q != NULL; q = q->next) { 1168 if (i != q->parent->bucket) { 1169 IPFW_BUCK_UNLOCK(i); 1170 i = q->parent->bucket; 1171 IPFW_BUCK_LOCK(i); 1172 } 1173 1174 /* Decrease parent refcount */ 1175 q->parent->count--; 1176 } 1177 if (exp_lhead != NULL) 1178 IPFW_BUCK_UNLOCK(i); 1179 } 1180 1181 /* 1182 * We protectet ourselves from unused parent deletion 1183 * (from the timer function) by holding UH write lock. 1184 */ 1185 1186 /* Stage 3: remove unused parent rules */ 1187 if ((parents != 0) && (expired != 0)) { 1188 for (i = 0 ; i < V_curr_dyn_buckets ; i++) { 1189 IPFW_BUCK_LOCK(i); 1190 for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) { 1191 if (q->dyn_type != O_LIMIT_PARENT) 1192 NEXT_RULE(); 1193 1194 if (q->count != 0) 1195 NEXT_RULE(); 1196 1197 /* Parent rule without consumers */ 1198 1199 /* Unlink q from current list */ 1200 q_next = q->next; 1201 if (q == V_ipfw_dyn_v[i].head) 1202 V_ipfw_dyn_v[i].head = q_next; 1203 else 1204 q_prev->next = q_next; 1205 1206 q->next = NULL; 1207 1208 /* Add to expired list */ 1209 *exptailp = q; 1210 exptailp = &(*exptailp)->next; 1211 1212 DEB(print_dyn_rule(&q->id, q->dyn_type, 1213 "unlink parent entry", "left"); 1214 ) 1215 1216 expired++; 1217 1218 q = q_next; 1219 } 1220 IPFW_BUCK_UNLOCK(i); 1221 } 1222 } 1223 1224 #undef NEXT_RULE 1225 1226 if (timer != 0) { 1227 /* 1228 * Check if we need to resize hash: 1229 * if current number of states exceeds number of buckes in hash, 1230 * grow hash size to the minimum power of 2 which is bigger than 1231 * current states count. Limit hash size by 64k. 1232 */ 1233 max_buckets = (V_dyn_buckets_max > 65536) ? 1234 65536 : V_dyn_buckets_max; 1235 1236 dyn_count = DYN_COUNT; 1237 1238 if ((dyn_count > V_curr_dyn_buckets * 2) && 1239 (dyn_count < max_buckets)) { 1240 new_buckets = V_curr_dyn_buckets; 1241 while (new_buckets < dyn_count) { 1242 new_buckets *= 2; 1243 1244 if (new_buckets >= max_buckets) 1245 break; 1246 } 1247 } 1248 1249 IPFW_UH_WUNLOCK(chain); 1250 } 1251 1252 /* Finally delete old states ad limits if any */ 1253 for (q = exp_head; q != NULL; q = q_next) { 1254 q_next = q->next; 1255 uma_zfree(V_ipfw_dyn_rule_zone, q); 1256 } 1257 1258 for (q = exp_lhead; q != NULL; q = q_next) { 1259 q_next = q->next; 1260 uma_zfree(V_ipfw_dyn_rule_zone, q); 1261 } 1262 1263 /* 1264 * The rest code MUST be called from timer routine only 1265 * without holding any locks 1266 */ 1267 if (timer == 0) 1268 return; 1269 1270 /* Send keepalive packets if any */ 1271 for (m = m0; m != NULL; m = mnext) { 1272 mnext = m->m_nextpkt; 1273 m->m_nextpkt = NULL; 1274 h = mtod(m, struct ip *); 1275 if (h->ip_v == 4) 1276 ip_output(m, NULL, NULL, 0, NULL, NULL); 1277 #ifdef INET6 1278 else 1279 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL); 1280 #endif 1281 } 1282 1283 /* Run table resize without holding any locks */ 1284 if (new_buckets != 0) 1285 resize_dynamic_table(chain, new_buckets); 1286 } 1287 1288 /* 1289 * Deletes all dynamic rules originated by given rule or all rules in 1290 * given set. Specify RESVD_SET to indicate set should not be used. 1291 * @chain - pointer to current ipfw rules chain 1292 * @rule - delete all states originated by given rule if != NULL 1293 * @set - delete all states originated by any rule in set @set if != RESVD_SET 1294 * 1295 * Function has to be called with IPFW_UH_WLOCK held. 1296 * Additionally, function assume that dynamic rule/set is 1297 * ALREADY deleted so no new states can be generated by 1298 * 'deleted' rules. 1299 */ 1300 void 1301 ipfw_expire_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule, int set) 1302 { 1303 1304 check_dyn_rules(chain, rule, set, 0, 0); 1305 } 1306 1307 void 1308 ipfw_dyn_init(struct ip_fw_chain *chain) 1309 { 1310 1311 V_ipfw_dyn_v = NULL; 1312 V_dyn_buckets_max = 256; /* must be power of 2 */ 1313 V_curr_dyn_buckets = 256; /* must be power of 2 */ 1314 1315 V_dyn_ack_lifetime = 300; 1316 V_dyn_syn_lifetime = 20; 1317 V_dyn_fin_lifetime = 1; 1318 V_dyn_rst_lifetime = 1; 1319 V_dyn_udp_lifetime = 10; 1320 V_dyn_short_lifetime = 5; 1321 1322 V_dyn_keepalive_interval = 20; 1323 V_dyn_keepalive_period = 5; 1324 V_dyn_keepalive = 1; /* do send keepalives */ 1325 V_dyn_keepalive_last = time_uptime; 1326 1327 V_dyn_max = 4096; /* max # of dynamic rules */ 1328 1329 V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule", 1330 sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL, 1331 UMA_ALIGN_PTR, 0); 1332 1333 /* Enforce limit on dynamic rules */ 1334 uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max); 1335 1336 callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE); 1337 1338 /* 1339 * This can potentially be done on first dynamic rule 1340 * being added to chain. 1341 */ 1342 resize_dynamic_table(chain, V_curr_dyn_buckets); 1343 } 1344 1345 void 1346 ipfw_dyn_uninit(int pass) 1347 { 1348 int i; 1349 1350 if (pass == 0) { 1351 callout_drain(&V_ipfw_timeout); 1352 return; 1353 } 1354 1355 if (V_ipfw_dyn_v != NULL) { 1356 /* 1357 * Skip deleting all dynamic states - 1358 * uma_zdestroy() does this more efficiently; 1359 */ 1360 1361 /* Destroy all mutexes */ 1362 for (i = 0 ; i < V_curr_dyn_buckets ; i++) 1363 IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]); 1364 free(V_ipfw_dyn_v, M_IPFW); 1365 V_ipfw_dyn_v = NULL; 1366 } 1367 1368 uma_zdestroy(V_ipfw_dyn_rule_zone); 1369 } 1370 1371 #ifdef SYSCTL_NODE 1372 /* 1373 * Get/set maximum number of dynamic states in given VNET instance. 1374 */ 1375 static int 1376 sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS) 1377 { 1378 int error; 1379 unsigned int nstates; 1380 1381 nstates = V_dyn_max; 1382 1383 error = sysctl_handle_int(oidp, &nstates, 0, req); 1384 /* Read operation or some error */ 1385 if ((error != 0) || (req->newptr == NULL)) 1386 return (error); 1387 1388 V_dyn_max = nstates; 1389 uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max); 1390 1391 return (0); 1392 } 1393 1394 /* 1395 * Get current number of dynamic states in given VNET instance. 1396 */ 1397 static int 1398 sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS) 1399 { 1400 int error; 1401 unsigned int nstates; 1402 1403 nstates = DYN_COUNT; 1404 1405 error = sysctl_handle_int(oidp, &nstates, 0, req); 1406 1407 return (error); 1408 } 1409 #endif 1410 1411 /* 1412 * Returns number of dynamic rules. 1413 */ 1414 int 1415 ipfw_dyn_len(void) 1416 { 1417 1418 return (V_ipfw_dyn_v == NULL) ? 0 : 1419 (DYN_COUNT * sizeof(ipfw_dyn_rule)); 1420 } 1421 1422 /* 1423 * Fill given buffer with dynamic states. 1424 * IPFW_UH_RLOCK has to be held while calling. 1425 */ 1426 void 1427 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep) 1428 { 1429 ipfw_dyn_rule *p, *last = NULL; 1430 char *bp; 1431 int i; 1432 1433 if (V_ipfw_dyn_v == NULL) 1434 return; 1435 bp = *pbp; 1436 1437 IPFW_UH_RLOCK_ASSERT(chain); 1438 1439 for (i = 0 ; i < V_curr_dyn_buckets; i++) { 1440 IPFW_BUCK_LOCK(i); 1441 for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) { 1442 if (bp + sizeof *p <= ep) { 1443 ipfw_dyn_rule *dst = 1444 (ipfw_dyn_rule *)bp; 1445 bcopy(p, dst, sizeof *p); 1446 bcopy(&(p->rule->rulenum), &(dst->rule), 1447 sizeof(p->rule->rulenum)); 1448 /* 1449 * store set number into high word of 1450 * dst->rule pointer. 1451 */ 1452 bcopy(&(p->rule->set), 1453 (char *)&dst->rule + 1454 sizeof(p->rule->rulenum), 1455 sizeof(p->rule->set)); 1456 /* 1457 * store a non-null value in "next". 1458 * The userland code will interpret a 1459 * NULL here as a marker 1460 * for the last dynamic rule. 1461 */ 1462 bcopy(&dst, &dst->next, sizeof(dst)); 1463 last = dst; 1464 dst->expire = 1465 TIME_LEQ(dst->expire, time_uptime) ? 1466 0 : dst->expire - time_uptime ; 1467 bp += sizeof(ipfw_dyn_rule); 1468 } 1469 } 1470 IPFW_BUCK_UNLOCK(i); 1471 } 1472 1473 if (last != NULL) /* mark last dynamic rule */ 1474 bzero(&last->next, sizeof(last)); 1475 *pbp = bp; 1476 } 1477 /* end of file */ 1478