xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * The FreeBSD IP packet firewall, main file
33  */
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipdivert.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error "IPFIREWALL requires INET"
40 #endif /* INET */
41 #include "opt_inet6.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/counter.h>
47 #include <sys/eventhandler.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/jail.h>
53 #include <sys/module.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/rmlock.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/syslog.h>
63 #include <sys/ucred.h>
64 #include <net/ethernet.h> /* for ETHERTYPE_IP */
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/route.h>
68 #include <net/route/nhop.h>
69 #include <net/pfil.h>
70 #include <net/vnet.h>
71 
72 #include <netpfil/pf/pf_mtag.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/ip_icmp.h>
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_carp.h>
82 #include <netinet/pim.h>
83 #include <netinet/tcp_var.h>
84 #include <netinet/udp.h>
85 #include <netinet/udp_var.h>
86 #include <netinet/sctp.h>
87 #include <netinet/sctp_crc32.h>
88 #include <netinet/sctp_header.h>
89 
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet/in_fib.h>
93 #ifdef INET6
94 #include <netinet6/in6_fib.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/scope6_var.h>
97 #include <netinet6/ip6_var.h>
98 #endif
99 
100 #include <net/if_gre.h> /* for struct grehdr */
101 
102 #include <netpfil/ipfw/ip_fw_private.h>
103 
104 #include <machine/in_cksum.h>	/* XXX for in_cksum */
105 
106 #ifdef MAC
107 #include <security/mac/mac_framework.h>
108 #endif
109 
110 #define	IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5)		\
111     SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
112 
113 SDT_PROVIDER_DEFINE(ipfw);
114 SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
115     "int",			/* retval */
116     "int",			/* af */
117     "void *",			/* src addr */
118     "void *",			/* dst addr */
119     "struct ip_fw_args *",	/* args */
120     "struct ip_fw *"		/* rule */);
121 
122 /*
123  * static variables followed by global ones.
124  * All ipfw global variables are here.
125  */
126 
127 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
128 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
129 
130 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
131 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
132 
133 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
134 static int default_to_accept = 1;
135 #else
136 static int default_to_accept;
137 #endif
138 
139 VNET_DEFINE(int, autoinc_step);
140 VNET_DEFINE(int, fw_one_pass) = 1;
141 
142 VNET_DEFINE(unsigned int, fw_tables_max);
143 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
144 /* Use 128 tables by default */
145 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
146 
147 static int jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num,
148     int tablearg, int jump_backwards);
149 #ifndef LINEAR_SKIPTO
150 static int jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num,
151     int tablearg, int jump_backwards);
152 #define	JUMP(ch, f, num, targ, back)	jump_cached(ch, f, num, targ, back)
153 #else
154 #define	JUMP(ch, f, num, targ, back)	jump_lookup_pos(ch, f, num, targ, back)
155 #endif
156 
157 /*
158  * Each rule belongs to one of 32 different sets (0..31).
159  * The variable set_disable contains one bit per set.
160  * If the bit is set, all rules in the corresponding set
161  * are disabled. Set RESVD_SET(31) is reserved for the default rule
162  * and rules that are not deleted by the flush command,
163  * and CANNOT be disabled.
164  * Rules in set RESVD_SET can only be deleted individually.
165  */
166 VNET_DEFINE(u_int32_t, set_disable);
167 #define	V_set_disable			VNET(set_disable)
168 
169 VNET_DEFINE(int, fw_verbose);
170 /* counter for ipfw_log(NULL...) */
171 VNET_DEFINE(u_int64_t, norule_counter);
172 VNET_DEFINE(int, verbose_limit);
173 
174 /* layer3_chain contains the list of rules for layer 3 */
175 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
176 
177 /* ipfw_vnet_ready controls when we are open for business */
178 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
179 
180 VNET_DEFINE(int, ipfw_nat_ready) = 0;
181 
182 ipfw_nat_t *ipfw_nat_ptr = NULL;
183 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
184 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
185 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
186 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
187 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
188 
189 #ifdef SYSCTL_NODE
190 uint32_t dummy_def = IPFW_DEFAULT_RULE;
191 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
192 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
193 
194 SYSBEGIN(f3)
195 
196 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
197     "Firewall");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
199     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
200     "Only do a single pass through ipfw when using dummynet(4)");
201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
202     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
203     "Rule number auto-increment step");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
205     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
206     "Log matches to ipfw rules");
207 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
208     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
209     "Set upper limit of matches of ipfw rules logged");
210 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
211     &dummy_def, 0,
212     "The default/max possible rule number.");
213 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
214     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
215     0, 0, sysctl_ipfw_table_num, "IU",
216     "Maximum number of concurrently used tables");
217 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
218     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
219     0, 0, sysctl_ipfw_tables_sets, "IU",
220     "Use per-set namespace for tables");
221 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
222     &default_to_accept, 0,
223     "Make the default rule accept all packets.");
224 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
225 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
226     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
227     "Number of static rules");
228 
229 #ifdef INET6
230 SYSCTL_DECL(_net_inet6_ip6);
231 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
232     "Firewall");
233 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
234     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
235     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
236     "Deny packets with unknown IPv6 Extension Headers");
237 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
238     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
239     &VNET_NAME(fw_permit_single_frag6), 0,
240     "Permit single packet IPv6 fragments");
241 #endif /* INET6 */
242 
243 SYSEND
244 
245 #endif /* SYSCTL_NODE */
246 
247 /*
248  * Some macros used in the various matching options.
249  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
250  * Other macros just cast void * into the appropriate type
251  */
252 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
253 #define	TCP(p)		((struct tcphdr *)(p))
254 #define	SCTP(p)		((struct sctphdr *)(p))
255 #define	UDP(p)		((struct udphdr *)(p))
256 #define	ICMP(p)		((struct icmphdr *)(p))
257 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
258 
259 static __inline int
260 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
261 {
262 	int type = icmp->icmp_type;
263 
264 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
265 }
266 
267 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
268     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
269 
270 static int
271 is_icmp_query(struct icmphdr *icmp)
272 {
273 	int type = icmp->icmp_type;
274 
275 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
276 }
277 #undef TT
278 
279 /*
280  * The following checks use two arrays of 8 or 16 bits to store the
281  * bits that we want set or clear, respectively. They are in the
282  * low and high half of cmd->arg1 or cmd->d[0].
283  *
284  * We scan options and store the bits we find set. We succeed if
285  *
286  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
287  *
288  * The code is sometimes optimized not to store additional variables.
289  */
290 
291 static int
292 flags_match(ipfw_insn *cmd, u_int8_t bits)
293 {
294 	u_char want_clear;
295 	bits = ~bits;
296 
297 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
298 		return 0; /* some bits we want set were clear */
299 	want_clear = (cmd->arg1 >> 8) & 0xff;
300 	if ( (want_clear & bits) != want_clear)
301 		return 0; /* some bits we want clear were set */
302 	return 1;
303 }
304 
305 static int
306 ipopts_match(struct ip *ip, ipfw_insn *cmd)
307 {
308 	int optlen, bits = 0;
309 	u_char *cp = (u_char *)(ip + 1);
310 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
311 
312 	for (; x > 0; x -= optlen, cp += optlen) {
313 		int opt = cp[IPOPT_OPTVAL];
314 
315 		if (opt == IPOPT_EOL)
316 			break;
317 		if (opt == IPOPT_NOP)
318 			optlen = 1;
319 		else {
320 			optlen = cp[IPOPT_OLEN];
321 			if (optlen <= 0 || optlen > x)
322 				return 0; /* invalid or truncated */
323 		}
324 		switch (opt) {
325 		default:
326 			break;
327 
328 		case IPOPT_LSRR:
329 			bits |= IP_FW_IPOPT_LSRR;
330 			break;
331 
332 		case IPOPT_SSRR:
333 			bits |= IP_FW_IPOPT_SSRR;
334 			break;
335 
336 		case IPOPT_RR:
337 			bits |= IP_FW_IPOPT_RR;
338 			break;
339 
340 		case IPOPT_TS:
341 			bits |= IP_FW_IPOPT_TS;
342 			break;
343 		}
344 	}
345 	return (flags_match(cmd, bits));
346 }
347 
348 /*
349  * Parse TCP options. The logic copied from tcp_dooptions().
350  */
351 static int
352 tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
353 {
354 	const u_char *cp = (const u_char *)(tcp + 1);
355 	int optlen, bits = 0;
356 	int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
357 
358 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
359 		int opt = cp[0];
360 		if (opt == TCPOPT_EOL)
361 			break;
362 		if (opt == TCPOPT_NOP)
363 			optlen = 1;
364 		else {
365 			if (cnt < 2)
366 				break;
367 			optlen = cp[1];
368 			if (optlen < 2 || optlen > cnt)
369 				break;
370 		}
371 
372 		switch (opt) {
373 		default:
374 			break;
375 
376 		case TCPOPT_MAXSEG:
377 			if (optlen != TCPOLEN_MAXSEG)
378 				break;
379 			bits |= IP_FW_TCPOPT_MSS;
380 			if (mss != NULL)
381 				*mss = be16dec(cp + 2);
382 			break;
383 
384 		case TCPOPT_WINDOW:
385 			if (optlen == TCPOLEN_WINDOW)
386 				bits |= IP_FW_TCPOPT_WINDOW;
387 			break;
388 
389 		case TCPOPT_SACK_PERMITTED:
390 			if (optlen == TCPOLEN_SACK_PERMITTED)
391 				bits |= IP_FW_TCPOPT_SACK;
392 			break;
393 
394 		case TCPOPT_SACK:
395 			if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
396 				bits |= IP_FW_TCPOPT_SACK;
397 			break;
398 
399 		case TCPOPT_TIMESTAMP:
400 			if (optlen == TCPOLEN_TIMESTAMP)
401 				bits |= IP_FW_TCPOPT_TS;
402 			break;
403 		}
404 	}
405 	return (bits);
406 }
407 
408 static int
409 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
410 {
411 
412 	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
413 }
414 
415 static int
416 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
417     uint32_t *tablearg)
418 {
419 
420 	if (ifp == NULL)	/* no iface with this packet, match fails */
421 		return (0);
422 
423 	/* Check by name or by IP address */
424 	if (cmd->name[0] != '\0') { /* match by name */
425 		if (cmd->name[0] == '\1') /* use tablearg to match */
426 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
427 			    &ifp->if_index, tablearg);
428 		/* Check name */
429 		if (cmd->p.glob) {
430 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
431 				return(1);
432 		} else {
433 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
434 				return(1);
435 		}
436 	} else {
437 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
438 		struct ifaddr *ia;
439 
440 		NET_EPOCH_ASSERT();
441 
442 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
443 			if (ia->ifa_addr->sa_family != AF_INET)
444 				continue;
445 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
446 			    (ia->ifa_addr))->sin_addr.s_addr)
447 				return (1);	/* match */
448 		}
449 #endif /* __FreeBSD__ */
450 	}
451 	return(0);	/* no match, fail ... */
452 }
453 
454 /*
455  * The verify_path function checks if a route to the src exists and
456  * if it is reachable via ifp (when provided).
457  *
458  * The 'verrevpath' option checks that the interface that an IP packet
459  * arrives on is the same interface that traffic destined for the
460  * packet's source address would be routed out of.
461  * The 'versrcreach' option just checks that the source address is
462  * reachable via any route (except default) in the routing table.
463  * These two are a measure to block forged packets. This is also
464  * commonly known as "anti-spoofing" or Unicast Reverse Path
465  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
466  * is purposely reminiscent of the Cisco IOS command,
467  *
468  *   ip verify unicast reverse-path
469  *   ip verify unicast source reachable-via any
470  *
471  * which implements the same functionality. But note that the syntax
472  * is misleading, and the check may be performed on all IP packets
473  * whether unicast, multicast, or broadcast.
474  */
475 static int
476 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
477 {
478 #if defined(USERSPACE) || !defined(__FreeBSD__)
479 	return 0;
480 #else
481 	struct nhop_object *nh;
482 
483 	nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
484 	if (nh == NULL)
485 		return (0);
486 
487 	/*
488 	 * If ifp is provided, check for equality with rtentry.
489 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
490 	 * in order to pass packets injected back by if_simloop():
491 	 * routing entry (via lo0) for our own address
492 	 * may exist, so we need to handle routing assymetry.
493 	 */
494 	if (ifp != NULL && ifp != nh->nh_aifp)
495 		return (0);
496 
497 	/* if no ifp provided, check if rtentry is not default route */
498 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
499 		return (0);
500 
501 	/* or if this is a blackhole/reject route */
502 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
503 		return (0);
504 
505 	/* found valid route */
506 	return 1;
507 #endif /* __FreeBSD__ */
508 }
509 
510 /*
511  * Generate an SCTP packet containing an ABORT chunk. The verification tag
512  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
513  * reflected is not 0.
514  */
515 
516 static struct mbuf *
517 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
518     int reflected)
519 {
520 	struct mbuf *m;
521 	struct ip *ip;
522 #ifdef INET6
523 	struct ip6_hdr *ip6;
524 #endif
525 	struct sctphdr *sctp;
526 	struct sctp_chunkhdr *chunk;
527 	u_int16_t hlen, plen, tlen;
528 
529 	MGETHDR(m, M_NOWAIT, MT_DATA);
530 	if (m == NULL)
531 		return (NULL);
532 
533 	M_SETFIB(m, id->fib);
534 #ifdef MAC
535 	if (replyto != NULL)
536 		mac_netinet_firewall_reply(replyto, m);
537 	else
538 		mac_netinet_firewall_send(m);
539 #else
540 	(void)replyto;		/* don't warn about unused arg */
541 #endif
542 
543 	switch (id->addr_type) {
544 	case 4:
545 		hlen = sizeof(struct ip);
546 		break;
547 #ifdef INET6
548 	case 6:
549 		hlen = sizeof(struct ip6_hdr);
550 		break;
551 #endif
552 	default:
553 		/* XXX: log me?!? */
554 		FREE_PKT(m);
555 		return (NULL);
556 	}
557 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
558 	tlen = hlen + plen;
559 	m->m_data += max_linkhdr;
560 	m->m_flags |= M_SKIP_FIREWALL;
561 	m->m_pkthdr.len = m->m_len = tlen;
562 	m->m_pkthdr.rcvif = NULL;
563 	bzero(m->m_data, tlen);
564 
565 	switch (id->addr_type) {
566 	case 4:
567 		ip = mtod(m, struct ip *);
568 
569 		ip->ip_v = 4;
570 		ip->ip_hl = sizeof(struct ip) >> 2;
571 		ip->ip_tos = IPTOS_LOWDELAY;
572 		ip->ip_len = htons(tlen);
573 		ip->ip_id = htons(0);
574 		ip->ip_off = htons(0);
575 		ip->ip_ttl = V_ip_defttl;
576 		ip->ip_p = IPPROTO_SCTP;
577 		ip->ip_sum = 0;
578 		ip->ip_src.s_addr = htonl(id->dst_ip);
579 		ip->ip_dst.s_addr = htonl(id->src_ip);
580 
581 		sctp = (struct sctphdr *)(ip + 1);
582 		break;
583 #ifdef INET6
584 	case 6:
585 		ip6 = mtod(m, struct ip6_hdr *);
586 
587 		ip6->ip6_vfc = IPV6_VERSION;
588 		ip6->ip6_plen = htons(plen);
589 		ip6->ip6_nxt = IPPROTO_SCTP;
590 		ip6->ip6_hlim = IPV6_DEFHLIM;
591 		ip6->ip6_src = id->dst_ip6;
592 		ip6->ip6_dst = id->src_ip6;
593 
594 		sctp = (struct sctphdr *)(ip6 + 1);
595 		break;
596 #endif
597 	}
598 
599 	sctp->src_port = htons(id->dst_port);
600 	sctp->dest_port = htons(id->src_port);
601 	sctp->v_tag = htonl(vtag);
602 	sctp->checksum = htonl(0);
603 
604 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
605 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
606 	chunk->chunk_flags = 0;
607 	if (reflected != 0) {
608 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
609 	}
610 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
611 
612 	sctp->checksum = sctp_calculate_cksum(m, hlen);
613 
614 	return (m);
615 }
616 
617 /*
618  * Generate a TCP packet, containing either a RST or a keepalive.
619  * When flags & TH_RST, we are sending a RST packet, because of a
620  * "reset" action matched the packet.
621  * Otherwise we are sending a keepalive, and flags & TH_
622  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
623  * so that MAC can label the reply appropriately.
624  */
625 struct mbuf *
626 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
627     u_int32_t ack, int flags)
628 {
629 	struct mbuf *m = NULL;		/* stupid compiler */
630 	struct ip *h = NULL;		/* stupid compiler */
631 #ifdef INET6
632 	struct ip6_hdr *h6 = NULL;
633 #endif
634 	struct tcphdr *th = NULL;
635 	int len, dir;
636 
637 	MGETHDR(m, M_NOWAIT, MT_DATA);
638 	if (m == NULL)
639 		return (NULL);
640 
641 	M_SETFIB(m, id->fib);
642 #ifdef MAC
643 	if (replyto != NULL)
644 		mac_netinet_firewall_reply(replyto, m);
645 	else
646 		mac_netinet_firewall_send(m);
647 #else
648 	(void)replyto;		/* don't warn about unused arg */
649 #endif
650 
651 	switch (id->addr_type) {
652 	case 4:
653 		len = sizeof(struct ip) + sizeof(struct tcphdr);
654 		break;
655 #ifdef INET6
656 	case 6:
657 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
658 		break;
659 #endif
660 	default:
661 		/* XXX: log me?!? */
662 		FREE_PKT(m);
663 		return (NULL);
664 	}
665 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
666 
667 	m->m_data += max_linkhdr;
668 	m->m_flags |= M_SKIP_FIREWALL;
669 	m->m_pkthdr.len = m->m_len = len;
670 	m->m_pkthdr.rcvif = NULL;
671 	bzero(m->m_data, len);
672 
673 	switch (id->addr_type) {
674 	case 4:
675 		h = mtod(m, struct ip *);
676 
677 		/* prepare for checksum */
678 		h->ip_p = IPPROTO_TCP;
679 		h->ip_len = htons(sizeof(struct tcphdr));
680 		if (dir) {
681 			h->ip_src.s_addr = htonl(id->src_ip);
682 			h->ip_dst.s_addr = htonl(id->dst_ip);
683 		} else {
684 			h->ip_src.s_addr = htonl(id->dst_ip);
685 			h->ip_dst.s_addr = htonl(id->src_ip);
686 		}
687 
688 		th = (struct tcphdr *)(h + 1);
689 		break;
690 #ifdef INET6
691 	case 6:
692 		h6 = mtod(m, struct ip6_hdr *);
693 
694 		/* prepare for checksum */
695 		h6->ip6_nxt = IPPROTO_TCP;
696 		h6->ip6_plen = htons(sizeof(struct tcphdr));
697 		if (dir) {
698 			h6->ip6_src = id->src_ip6;
699 			h6->ip6_dst = id->dst_ip6;
700 		} else {
701 			h6->ip6_src = id->dst_ip6;
702 			h6->ip6_dst = id->src_ip6;
703 		}
704 
705 		th = (struct tcphdr *)(h6 + 1);
706 		break;
707 #endif
708 	}
709 
710 	if (dir) {
711 		th->th_sport = htons(id->src_port);
712 		th->th_dport = htons(id->dst_port);
713 	} else {
714 		th->th_sport = htons(id->dst_port);
715 		th->th_dport = htons(id->src_port);
716 	}
717 	th->th_off = sizeof(struct tcphdr) >> 2;
718 
719 	if (flags & TH_RST) {
720 		if (flags & TH_ACK) {
721 			th->th_seq = htonl(ack);
722 			th->th_flags = TH_RST;
723 		} else {
724 			if (flags & TH_SYN)
725 				seq++;
726 			th->th_ack = htonl(seq);
727 			th->th_flags = TH_RST | TH_ACK;
728 		}
729 	} else {
730 		/*
731 		 * Keepalive - use caller provided sequence numbers
732 		 */
733 		th->th_seq = htonl(seq);
734 		th->th_ack = htonl(ack);
735 		th->th_flags = TH_ACK;
736 	}
737 
738 	switch (id->addr_type) {
739 	case 4:
740 		th->th_sum = in_cksum(m, len);
741 
742 		/* finish the ip header */
743 		h->ip_v = 4;
744 		h->ip_hl = sizeof(*h) >> 2;
745 		h->ip_tos = IPTOS_LOWDELAY;
746 		h->ip_off = htons(0);
747 		h->ip_len = htons(len);
748 		h->ip_ttl = V_ip_defttl;
749 		h->ip_sum = 0;
750 		break;
751 #ifdef INET6
752 	case 6:
753 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
754 		    sizeof(struct tcphdr));
755 
756 		/* finish the ip6 header */
757 		h6->ip6_vfc |= IPV6_VERSION;
758 		h6->ip6_hlim = IPV6_DEFHLIM;
759 		break;
760 #endif
761 	}
762 
763 	return (m);
764 }
765 
766 #ifdef INET6
767 /*
768  * ipv6 specific rules here...
769  */
770 static __inline int
771 icmp6type_match(int type, ipfw_insn_u32 *cmd)
772 {
773 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
774 }
775 
776 static int
777 flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
778 {
779 	int i;
780 	for (i=0; i <= cmd->o.arg1; ++i)
781 		if (curr_flow == cmd->d[i])
782 			return 1;
783 	return 0;
784 }
785 
786 /* support for IP6_*_ME opcodes */
787 static const struct in6_addr lla_mask = {{{
788 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
789 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
790 }}};
791 
792 static int
793 ipfw_localip6(struct in6_addr *in6)
794 {
795 	struct rm_priotracker in6_ifa_tracker;
796 	struct in6_ifaddr *ia;
797 
798 	if (IN6_IS_ADDR_MULTICAST(in6))
799 		return (0);
800 
801 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
802 		return (in6_localip(in6));
803 
804 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
805 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
806 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
807 			continue;
808 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
809 		    in6, &lla_mask)) {
810 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
811 			return (1);
812 		}
813 	}
814 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
815 	return (0);
816 }
817 
818 static int
819 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
820 {
821 	struct nhop_object *nh;
822 
823 	if (IN6_IS_SCOPE_LINKLOCAL(src))
824 		return (1);
825 
826 	nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
827 	if (nh == NULL)
828 		return (0);
829 
830 	/* If ifp is provided, check for equality with route table. */
831 	if (ifp != NULL && ifp != nh->nh_aifp)
832 		return (0);
833 
834 	/* if no ifp provided, check if rtentry is not default route */
835 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
836 		return (0);
837 
838 	/* or if this is a blackhole/reject route */
839 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
840 		return (0);
841 
842 	/* found valid route */
843 	return 1;
844 }
845 
846 static int
847 is_icmp6_query(int icmp6_type)
848 {
849 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
850 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
851 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
852 	    icmp6_type == ICMP6_WRUREQUEST ||
853 	    icmp6_type == ICMP6_FQDN_QUERY ||
854 	    icmp6_type == ICMP6_NI_QUERY))
855 		return (1);
856 
857 	return (0);
858 }
859 
860 static int
861 map_icmp_unreach(int code)
862 {
863 
864 	/* RFC 7915 p4.2 */
865 	switch (code) {
866 	case ICMP_UNREACH_NET:
867 	case ICMP_UNREACH_HOST:
868 	case ICMP_UNREACH_SRCFAIL:
869 	case ICMP_UNREACH_NET_UNKNOWN:
870 	case ICMP_UNREACH_HOST_UNKNOWN:
871 	case ICMP_UNREACH_TOSNET:
872 	case ICMP_UNREACH_TOSHOST:
873 		return (ICMP6_DST_UNREACH_NOROUTE);
874 	case ICMP_UNREACH_PORT:
875 		return (ICMP6_DST_UNREACH_NOPORT);
876 	default:
877 		/*
878 		 * Map the rest of codes into admit prohibited.
879 		 * XXX: unreach proto should be mapped into ICMPv6
880 		 * parameter problem, but we use only unreach type.
881 		 */
882 		return (ICMP6_DST_UNREACH_ADMIN);
883 	}
884 }
885 
886 static void
887 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
888 {
889 	struct mbuf *m;
890 
891 	m = args->m;
892 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
893 		struct tcphdr *tcp;
894 		tcp = (struct tcphdr *)((char *)ip6 + hlen);
895 
896 		if ((tcp->th_flags & TH_RST) == 0) {
897 			struct mbuf *m0;
898 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
899 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
900 			    tcp->th_flags | TH_RST);
901 			if (m0 != NULL)
902 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
903 				    NULL);
904 		}
905 		FREE_PKT(m);
906 	} else if (code == ICMP6_UNREACH_ABORT &&
907 	    args->f_id.proto == IPPROTO_SCTP) {
908 		struct mbuf *m0;
909 		struct sctphdr *sctp;
910 		u_int32_t v_tag;
911 		int reflected;
912 
913 		sctp = (struct sctphdr *)((char *)ip6 + hlen);
914 		reflected = 1;
915 		v_tag = ntohl(sctp->v_tag);
916 		/* Investigate the first chunk header if available */
917 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
918 		    sizeof(struct sctp_chunkhdr)) {
919 			struct sctp_chunkhdr *chunk;
920 
921 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
922 			switch (chunk->chunk_type) {
923 			case SCTP_INITIATION:
924 				/*
925 				 * Packets containing an INIT chunk MUST have
926 				 * a zero v-tag.
927 				 */
928 				if (v_tag != 0) {
929 					v_tag = 0;
930 					break;
931 				}
932 				/* INIT chunk MUST NOT be bundled */
933 				if (m->m_pkthdr.len >
934 				    hlen + sizeof(struct sctphdr) +
935 				    ntohs(chunk->chunk_length) + 3) {
936 					break;
937 				}
938 				/* Use the initiate tag if available */
939 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
940 				    sizeof(struct sctp_chunkhdr) +
941 				    offsetof(struct sctp_init, a_rwnd))) {
942 					struct sctp_init *init;
943 
944 					init = (struct sctp_init *)(chunk + 1);
945 					v_tag = ntohl(init->initiate_tag);
946 					reflected = 0;
947 				}
948 				break;
949 			case SCTP_ABORT_ASSOCIATION:
950 				/*
951 				 * If the packet contains an ABORT chunk, don't
952 				 * reply.
953 				 * XXX: We should search through all chunks,
954 				 * but do not do that to avoid attacks.
955 				 */
956 				v_tag = 0;
957 				break;
958 			}
959 		}
960 		if (v_tag == 0) {
961 			m0 = NULL;
962 		} else {
963 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
964 			    reflected);
965 		}
966 		if (m0 != NULL)
967 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
968 		FREE_PKT(m);
969 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
970 		/* Send an ICMPv6 unreach. */
971 #if 0
972 		/*
973 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
974 		 * as the contents are read. We need to m_adj() the
975 		 * needed amount.
976 		 * The mbuf will however be thrown away so we can adjust it.
977 		 * Remember we did an m_pullup on it already so we
978 		 * can make some assumptions about contiguousness.
979 		 */
980 		if (args->L3offset)
981 			m_adj(m, args->L3offset);
982 #endif
983 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
984 	} else
985 		FREE_PKT(m);
986 
987 	args->m = NULL;
988 }
989 
990 #endif /* INET6 */
991 
992 /*
993  * sends a reject message, consuming the mbuf passed as an argument.
994  */
995 static void
996 send_reject(struct ip_fw_args *args, const ipfw_insn *cmd, int iplen,
997     struct ip *ip)
998 {
999 	int code, mtu;
1000 
1001 	code = cmd->arg1;
1002 	if (code == ICMP_UNREACH_NEEDFRAG &&
1003 	    cmd->len == F_INSN_SIZE(ipfw_insn_u16))
1004 		mtu = ((const ipfw_insn_u16 *)cmd)->ports[0];
1005 	else
1006 		mtu = 0;
1007 
1008 #if 0
1009 	/* XXX When ip is not guaranteed to be at mtod() we will
1010 	 * need to account for this */
1011 	 * The mbuf will however be thrown away so we can adjust it.
1012 	 * Remember we did an m_pullup on it already so we
1013 	 * can make some assumptions about contiguousness.
1014 	 */
1015 	if (args->L3offset)
1016 		m_adj(m, args->L3offset);
1017 #endif
1018 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1019 		/* Send an ICMP unreach */
1020 		icmp_error(args->m, ICMP_UNREACH, code, 0L, mtu);
1021 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1022 		struct tcphdr *const tcp =
1023 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1024 		if ( (tcp->th_flags & TH_RST) == 0) {
1025 			struct mbuf *m;
1026 			m = ipfw_send_pkt(args->m, &(args->f_id),
1027 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1028 				tcp->th_flags | TH_RST);
1029 			if (m != NULL)
1030 				ip_output(m, NULL, NULL, 0, NULL, NULL);
1031 		}
1032 		FREE_PKT(args->m);
1033 	} else if (code == ICMP_REJECT_ABORT &&
1034 	    args->f_id.proto == IPPROTO_SCTP) {
1035 		struct mbuf *m;
1036 		struct sctphdr *sctp;
1037 		struct sctp_chunkhdr *chunk;
1038 		struct sctp_init *init;
1039 		u_int32_t v_tag;
1040 		int reflected;
1041 
1042 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1043 		reflected = 1;
1044 		v_tag = ntohl(sctp->v_tag);
1045 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1046 		    sizeof(struct sctp_chunkhdr)) {
1047 			/* Look at the first chunk header if available */
1048 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1049 			switch (chunk->chunk_type) {
1050 			case SCTP_INITIATION:
1051 				/*
1052 				 * Packets containing an INIT chunk MUST have
1053 				 * a zero v-tag.
1054 				 */
1055 				if (v_tag != 0) {
1056 					v_tag = 0;
1057 					break;
1058 				}
1059 				/* INIT chunk MUST NOT be bundled */
1060 				if (iplen >
1061 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1062 				    ntohs(chunk->chunk_length) + 3) {
1063 					break;
1064 				}
1065 				/* Use the initiate tag if available */
1066 				if ((iplen >= (ip->ip_hl << 2) +
1067 				    sizeof(struct sctphdr) +
1068 				    sizeof(struct sctp_chunkhdr) +
1069 				    offsetof(struct sctp_init, a_rwnd))) {
1070 					init = (struct sctp_init *)(chunk + 1);
1071 					v_tag = ntohl(init->initiate_tag);
1072 					reflected = 0;
1073 				}
1074 				break;
1075 			case SCTP_ABORT_ASSOCIATION:
1076 				/*
1077 				 * If the packet contains an ABORT chunk, don't
1078 				 * reply.
1079 				 * XXX: We should search through all chunks,
1080 				 * but do not do that to avoid attacks.
1081 				 */
1082 				v_tag = 0;
1083 				break;
1084 			}
1085 		}
1086 		if (v_tag == 0) {
1087 			m = NULL;
1088 		} else {
1089 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1090 			    reflected);
1091 		}
1092 		if (m != NULL)
1093 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1094 		FREE_PKT(args->m);
1095 	} else
1096 		FREE_PKT(args->m);
1097 	args->m = NULL;
1098 }
1099 
1100 /*
1101  * Support for uid/gid/jail lookup. These tests are expensive
1102  * (because we may need to look into the list of active sockets)
1103  * so we cache the results. ugid_lookupp is 0 if we have not
1104  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1105  * and failed. The function always returns the match value.
1106  * We could actually spare the variable and use *uc, setting
1107  * it to '(void *)check_uidgid if we have no info, NULL if
1108  * we tried and failed, or any other value if successful.
1109  */
1110 static int
1111 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1112     struct ucred **uc)
1113 {
1114 #if defined(USERSPACE)
1115 	return 0;	// not supported in userspace
1116 #else
1117 #ifndef __FreeBSD__
1118 	/* XXX */
1119 	return cred_check(insn, proto, oif,
1120 	    dst_ip, dst_port, src_ip, src_port,
1121 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1122 #else  /* FreeBSD */
1123 	struct in_addr src_ip, dst_ip;
1124 	struct inpcbinfo *pi;
1125 	struct ipfw_flow_id *id;
1126 	struct inpcb *pcb, *inp;
1127 	int lookupflags;
1128 	int match;
1129 
1130 	id = &args->f_id;
1131 	inp = args->inp;
1132 
1133 	/*
1134 	 * Check to see if the UDP or TCP stack supplied us with
1135 	 * the PCB. If so, rather then holding a lock and looking
1136 	 * up the PCB, we can use the one that was supplied.
1137 	 */
1138 	if (inp && *ugid_lookupp == 0) {
1139 		INP_LOCK_ASSERT(inp);
1140 		if (inp->inp_socket != NULL) {
1141 			*uc = crhold(inp->inp_cred);
1142 			*ugid_lookupp = 1;
1143 		} else
1144 			*ugid_lookupp = -1;
1145 	}
1146 	/*
1147 	 * If we have already been here and the packet has no
1148 	 * PCB entry associated with it, then we can safely
1149 	 * assume that this is a no match.
1150 	 */
1151 	if (*ugid_lookupp == -1)
1152 		return (0);
1153 	if (id->proto == IPPROTO_TCP) {
1154 		lookupflags = 0;
1155 		pi = &V_tcbinfo;
1156 	} else if (id->proto == IPPROTO_UDP) {
1157 		lookupflags = INPLOOKUP_WILDCARD;
1158 		pi = &V_udbinfo;
1159 	} else if (id->proto == IPPROTO_UDPLITE) {
1160 		lookupflags = INPLOOKUP_WILDCARD;
1161 		pi = &V_ulitecbinfo;
1162 	} else
1163 		return 0;
1164 	lookupflags |= INPLOOKUP_RLOCKPCB;
1165 	match = 0;
1166 	if (*ugid_lookupp == 0) {
1167 		if (id->addr_type == 6) {
1168 #ifdef INET6
1169 			if (args->flags & IPFW_ARGS_IN)
1170 				pcb = in6_pcblookup_mbuf(pi,
1171 				    &id->src_ip6, htons(id->src_port),
1172 				    &id->dst_ip6, htons(id->dst_port),
1173 				    lookupflags, NULL, args->m);
1174 			else
1175 				pcb = in6_pcblookup_mbuf(pi,
1176 				    &id->dst_ip6, htons(id->dst_port),
1177 				    &id->src_ip6, htons(id->src_port),
1178 				    lookupflags, args->ifp, args->m);
1179 #else
1180 			*ugid_lookupp = -1;
1181 			return (0);
1182 #endif
1183 		} else {
1184 			src_ip.s_addr = htonl(id->src_ip);
1185 			dst_ip.s_addr = htonl(id->dst_ip);
1186 			if (args->flags & IPFW_ARGS_IN)
1187 				pcb = in_pcblookup_mbuf(pi,
1188 				    src_ip, htons(id->src_port),
1189 				    dst_ip, htons(id->dst_port),
1190 				    lookupflags, NULL, args->m);
1191 			else
1192 				pcb = in_pcblookup_mbuf(pi,
1193 				    dst_ip, htons(id->dst_port),
1194 				    src_ip, htons(id->src_port),
1195 				    lookupflags, args->ifp, args->m);
1196 		}
1197 		if (pcb != NULL) {
1198 			INP_RLOCK_ASSERT(pcb);
1199 			*uc = crhold(pcb->inp_cred);
1200 			*ugid_lookupp = 1;
1201 			INP_RUNLOCK(pcb);
1202 		}
1203 		if (*ugid_lookupp == 0) {
1204 			/*
1205 			 * We tried and failed, set the variable to -1
1206 			 * so we will not try again on this packet.
1207 			 */
1208 			*ugid_lookupp = -1;
1209 			return (0);
1210 		}
1211 	}
1212 	if (insn->o.opcode == O_UID)
1213 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1214 	else if (insn->o.opcode == O_GID)
1215 		match = groupmember((gid_t)insn->d[0], *uc);
1216 	else if (insn->o.opcode == O_JAIL)
1217 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1218 	return (match);
1219 #endif /* __FreeBSD__ */
1220 #endif /* not supported in userspace */
1221 }
1222 
1223 /*
1224  * Helper function to set args with info on the rule after the matching
1225  * one. slot is precise, whereas we guess rule_id as they are
1226  * assigned sequentially.
1227  */
1228 static inline void
1229 set_match(struct ip_fw_args *args, int slot,
1230 	struct ip_fw_chain *chain)
1231 {
1232 	args->rule.chain_id = chain->id;
1233 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1234 	args->rule.rule_id = 1 + chain->map[slot]->id;
1235 	args->rule.rulenum = chain->map[slot]->rulenum;
1236 	args->flags |= IPFW_ARGS_REF;
1237 }
1238 
1239 static int
1240 jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1241     int tablearg, int jump_backwards)
1242 {
1243 	int f_pos, i;
1244 
1245 	i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1246 	/* make sure we do not jump backward */
1247 	if (jump_backwards == 0 && i <= f->rulenum)
1248 		i = f->rulenum + 1;
1249 
1250 #ifndef LINEAR_SKIPTO
1251 	if (chain->idxmap != NULL)
1252 		f_pos = chain->idxmap[i];
1253 	else
1254 		f_pos = ipfw_find_rule(chain, i, 0);
1255 #else
1256 	f_pos = chain->idxmap[i];
1257 #endif /* LINEAR_SKIPTO */
1258 
1259 	return (f_pos);
1260 }
1261 
1262 
1263 #ifndef LINEAR_SKIPTO
1264 /*
1265  * Helper function to enable cached rule lookups using
1266  * cache.id and cache.pos fields in ipfw rule.
1267  */
1268 static int
1269 jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1270     int tablearg, int jump_backwards)
1271 {
1272 	int f_pos;
1273 
1274 	/* Can't use cache with IP_FW_TARG */
1275 	if (num == IP_FW_TARG)
1276 		return jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1277 
1278 	/*
1279 	 * If possible use cached f_pos (in f->cache.pos),
1280 	 * whose version is written in f->cache.id (horrible hacks
1281 	 * to avoid changing the ABI).
1282 	 *
1283 	 * Multiple threads can execute the same rule simultaneously,
1284 	 * we need to ensure that cache.pos is updated before cache.id.
1285 	 */
1286 
1287 #ifdef __LP64__
1288 	struct ip_fw_jump_cache cache;
1289 
1290 	cache.raw_value = f->cache.raw_value;
1291 	if (cache.id == chain->id)
1292 		return (cache.pos);
1293 
1294 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1295 
1296 	cache.pos = f_pos;
1297 	cache.id = chain->id;
1298 	f->cache.raw_value = cache.raw_value;
1299 #else
1300 	if (f->cache.id == chain->id) {
1301 		/* Load pos after id */
1302 		atomic_thread_fence_acq();
1303 		return (f->cache.pos);
1304 	}
1305 
1306 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1307 
1308 	f->cache.pos = f_pos;
1309 	/* Store id after pos */
1310 	atomic_thread_fence_rel();
1311 	f->cache.id = chain->id;
1312 #endif /* !__LP64__ */
1313 	return (f_pos);
1314 }
1315 #endif /* !LINEAR_SKIPTO */
1316 
1317 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1318 /*
1319  * The main check routine for the firewall.
1320  *
1321  * All arguments are in args so we can modify them and return them
1322  * back to the caller.
1323  *
1324  * Parameters:
1325  *
1326  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1327  *		Starts with the IP header.
1328  *	args->L3offset	Number of bytes bypassed if we came from L2.
1329  *			e.g. often sizeof(eh)  ** NOTYET **
1330  *	args->ifp	Incoming or outgoing interface.
1331  *	args->divert_rule (in/out)
1332  *		Skip up to the first rule past this rule number;
1333  *		upon return, non-zero port number for divert or tee.
1334  *
1335  *	args->rule	Pointer to the last matching rule (in/out)
1336  *	args->next_hop	Socket we are forwarding to (out).
1337  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1338  *	args->f_id	Addresses grabbed from the packet (out)
1339  * 	args->rule.info	a cookie depending on rule action
1340  *
1341  * Return value:
1342  *
1343  *	IP_FW_PASS	the packet must be accepted
1344  *	IP_FW_DENY	the packet must be dropped
1345  *	IP_FW_DIVERT	divert packet, port in m_tag
1346  *	IP_FW_TEE	tee packet, port in m_tag
1347  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1348  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1349  *		args->rule contains the matching rule,
1350  *		args->rule.info has additional information.
1351  *
1352  */
1353 int
1354 ipfw_chk(struct ip_fw_args *args)
1355 {
1356 
1357 	/*
1358 	 * Local variables holding state while processing a packet:
1359 	 *
1360 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1361 	 * are some assumption on the values of the variables, which
1362 	 * are documented here. Should you change them, please check
1363 	 * the implementation of the various instructions to make sure
1364 	 * that they still work.
1365 	 *
1366 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1367 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1368 	 *	consumes the packet because it calls send_reject().
1369 	 *	XXX This has to change, so that ipfw_chk() never modifies
1370 	 *	or consumes the buffer.
1371 	 *	OR
1372 	 * args->mem	Pointer to contigous memory chunk.
1373 	 * ip	Is the beginning of the ip(4 or 6) header.
1374 	 * eh	Ethernet header in case if input is Layer2.
1375 	 */
1376 	struct mbuf *m;
1377 	struct ip *ip;
1378 	struct ether_header *eh;
1379 
1380 	/*
1381 	 * For rules which contain uid/gid or jail constraints, cache
1382 	 * a copy of the users credentials after the pcb lookup has been
1383 	 * executed. This will speed up the processing of rules with
1384 	 * these types of constraints, as well as decrease contention
1385 	 * on pcb related locks.
1386 	 */
1387 #ifndef __FreeBSD__
1388 	struct bsd_ucred ucred_cache;
1389 #else
1390 	struct ucred *ucred_cache = NULL;
1391 #endif
1392 	int ucred_lookup = 0;
1393 	int f_pos = 0;		/* index of current rule in the array */
1394 	int retval = 0;
1395 	struct ifnet *oif, *iif;
1396 
1397 	/*
1398 	 * hlen	The length of the IP header.
1399 	 */
1400 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1401 
1402 	/*
1403 	 * offset	The offset of a fragment. offset != 0 means that
1404 	 *	we have a fragment at this offset of an IPv4 packet.
1405 	 *	offset == 0 means that (if this is an IPv4 packet)
1406 	 *	this is the first or only fragment.
1407 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1408 	 *	or there is a single packet fragment (fragment header added
1409 	 *	without needed).  We will treat a single packet fragment as if
1410 	 *	there was no fragment header (or log/block depending on the
1411 	 *	V_fw_permit_single_frag6 sysctl setting).
1412 	 */
1413 	u_short offset = 0;
1414 	u_short ip6f_mf = 0;
1415 
1416 	/*
1417 	 * Local copies of addresses. They are only valid if we have
1418 	 * an IP packet.
1419 	 *
1420 	 * proto	The protocol. Set to 0 for non-ip packets,
1421 	 *	or to the protocol read from the packet otherwise.
1422 	 *	proto != 0 means that we have an IPv4 packet.
1423 	 *
1424 	 * src_port, dst_port	port numbers, in HOST format. Only
1425 	 *	valid for TCP and UDP packets.
1426 	 *
1427 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1428 	 *	Only valid for IPv4 packets.
1429 	 */
1430 	uint8_t proto;
1431 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1432 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1433 	int iplen = 0;
1434 	int pktlen;
1435 
1436 	struct ipfw_dyn_info dyn_info;
1437 	struct ip_fw *q = NULL;
1438 	struct ip_fw_chain *chain = &V_layer3_chain;
1439 
1440 	/*
1441 	 * We store in ulp a pointer to the upper layer protocol header.
1442 	 * In the ipv4 case this is easy to determine from the header,
1443 	 * but for ipv6 we might have some additional headers in the middle.
1444 	 * ulp is NULL if not found.
1445 	 */
1446 	void *ulp = NULL;		/* upper layer protocol pointer. */
1447 
1448 	/* XXX ipv6 variables */
1449 	int is_ipv6 = 0;
1450 #ifdef INET6
1451 	uint8_t	icmp6_type = 0;
1452 #endif
1453 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1454 	/* end of ipv6 variables */
1455 
1456 	int is_ipv4 = 0;
1457 
1458 	int done = 0;		/* flag to exit the outer loop */
1459 	IPFW_RLOCK_TRACKER;
1460 	bool mem;
1461 
1462 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1463 		if (args->flags & IPFW_ARGS_ETHER) {
1464 			eh = (struct ether_header *)args->mem;
1465 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1466 				ip = (struct ip *)
1467 				    ((struct ether_vlan_header *)eh + 1);
1468 			else
1469 				ip = (struct ip *)(eh + 1);
1470 		} else {
1471 			eh = NULL;
1472 			ip = (struct ip *)args->mem;
1473 		}
1474 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1475 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1476 	} else {
1477 		m = args->m;
1478 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1479 			return (IP_FW_PASS);	/* accept */
1480 		if (args->flags & IPFW_ARGS_ETHER) {
1481 	                /* We need some amount of data to be contiguous. */
1482 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1483 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1484 			    max_protohdr))) == NULL)
1485 				goto pullup_failed;
1486 			eh = mtod(m, struct ether_header *);
1487 			ip = (struct ip *)(eh + 1);
1488 		} else {
1489 			eh = NULL;
1490 			ip = mtod(m, struct ip *);
1491 		}
1492 		pktlen = m->m_pkthdr.len;
1493 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1494 	}
1495 
1496 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1497 	src_ip.s_addr = 0;		/* make sure it is initialized */
1498 	src_port = dst_port = 0;
1499 
1500 	DYN_INFO_INIT(&dyn_info);
1501 /*
1502  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1503  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1504  * pointer might become stale after other pullups (but we never use it
1505  * this way).
1506  */
1507 #define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1508 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1509 #define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1510 do {								\
1511 	int x = (_len) + T + EHLEN;				\
1512 	if (mem) {						\
1513 		if (__predict_false(pktlen < x)) {		\
1514 			unlock;					\
1515 			goto pullup_failed;			\
1516 		}						\
1517 		p = (char *)args->mem + (_len) + EHLEN;		\
1518 	} else {						\
1519 		if (__predict_false((m)->m_len < x)) {		\
1520 			args->m = m = m_pullup(m, x);		\
1521 			if (m == NULL) {			\
1522 				unlock;				\
1523 				goto pullup_failed;		\
1524 			}					\
1525 		}						\
1526 		p = mtod(m, char *) + (_len) + EHLEN;		\
1527 	}							\
1528 } while (0)
1529 
1530 #define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1531 #define	PULLUP_LEN_LOCKED(_len, p, T)	\
1532     _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain));	\
1533     UPDATE_POINTERS()
1534 /*
1535  * In case pointers got stale after pullups, update them.
1536  */
1537 #define	UPDATE_POINTERS()					\
1538 do {								\
1539 	if (!mem) {						\
1540 		if (eh != NULL) {				\
1541 			eh = mtod(m, struct ether_header *);	\
1542 			ip = (struct ip *)(eh + 1);		\
1543 		} else						\
1544 			ip = mtod(m, struct ip *);		\
1545 		args->m = m;					\
1546 	}							\
1547 } while (0)
1548 
1549 	/* Identify IP packets and fill up variables. */
1550 	if (pktlen >= sizeof(struct ip6_hdr) &&
1551 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1552 	    ip->ip_v == 6) {
1553 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1554 
1555 		is_ipv6 = 1;
1556 		args->flags |= IPFW_ARGS_IP6;
1557 		hlen = sizeof(struct ip6_hdr);
1558 		proto = ip6->ip6_nxt;
1559 		/* Search extension headers to find upper layer protocols */
1560 		while (ulp == NULL && offset == 0) {
1561 			switch (proto) {
1562 			case IPPROTO_ICMPV6:
1563 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1564 #ifdef INET6
1565 				icmp6_type = ICMP6(ulp)->icmp6_type;
1566 #endif
1567 				break;
1568 
1569 			case IPPROTO_TCP:
1570 				PULLUP_TO(hlen, ulp, struct tcphdr);
1571 				dst_port = TCP(ulp)->th_dport;
1572 				src_port = TCP(ulp)->th_sport;
1573 				/* save flags for dynamic rules */
1574 				args->f_id._flags = TCP(ulp)->th_flags;
1575 				break;
1576 
1577 			case IPPROTO_SCTP:
1578 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1579 				    sizeof(struct sctp_chunkhdr) +
1580 				    offsetof(struct sctp_init, a_rwnd))
1581 					PULLUP_LEN(hlen, ulp,
1582 					    sizeof(struct sctphdr) +
1583 					    sizeof(struct sctp_chunkhdr) +
1584 					    offsetof(struct sctp_init, a_rwnd));
1585 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1586 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1587 				else
1588 					PULLUP_LEN(hlen, ulp,
1589 					    sizeof(struct sctphdr));
1590 				src_port = SCTP(ulp)->src_port;
1591 				dst_port = SCTP(ulp)->dest_port;
1592 				break;
1593 
1594 			case IPPROTO_UDP:
1595 			case IPPROTO_UDPLITE:
1596 				PULLUP_TO(hlen, ulp, struct udphdr);
1597 				dst_port = UDP(ulp)->uh_dport;
1598 				src_port = UDP(ulp)->uh_sport;
1599 				break;
1600 
1601 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1602 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1603 				ext_hd |= EXT_HOPOPTS;
1604 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1605 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1606 				ulp = NULL;
1607 				break;
1608 
1609 			case IPPROTO_ROUTING:	/* RFC 2460 */
1610 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1611 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1612 				case 0:
1613 					ext_hd |= EXT_RTHDR0;
1614 					break;
1615 				case 2:
1616 					ext_hd |= EXT_RTHDR2;
1617 					break;
1618 				default:
1619 					if (V_fw_verbose)
1620 						printf("IPFW2: IPV6 - Unknown "
1621 						    "Routing Header type(%d)\n",
1622 						    ((struct ip6_rthdr *)
1623 						    ulp)->ip6r_type);
1624 					if (V_fw_deny_unknown_exthdrs)
1625 					    return (IP_FW_DENY);
1626 					break;
1627 				}
1628 				ext_hd |= EXT_ROUTING;
1629 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1630 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1631 				ulp = NULL;
1632 				break;
1633 
1634 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1635 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1636 				ext_hd |= EXT_FRAGMENT;
1637 				hlen += sizeof (struct ip6_frag);
1638 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1639 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1640 					IP6F_OFF_MASK;
1641 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1642 					IP6F_MORE_FRAG;
1643 				if (V_fw_permit_single_frag6 == 0 &&
1644 				    offset == 0 && ip6f_mf == 0) {
1645 					if (V_fw_verbose)
1646 						printf("IPFW2: IPV6 - Invalid "
1647 						    "Fragment Header\n");
1648 					if (V_fw_deny_unknown_exthdrs)
1649 					    return (IP_FW_DENY);
1650 					break;
1651 				}
1652 				args->f_id.extra =
1653 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1654 				ulp = NULL;
1655 				break;
1656 
1657 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1658 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1659 				ext_hd |= EXT_DSTOPTS;
1660 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1661 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1662 				ulp = NULL;
1663 				break;
1664 
1665 			case IPPROTO_AH:	/* RFC 2402 */
1666 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1667 				ext_hd |= EXT_AH;
1668 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1669 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1670 				ulp = NULL;
1671 				break;
1672 
1673 			case IPPROTO_ESP:	/* RFC 2406 */
1674 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1675 				/* Anything past Seq# is variable length and
1676 				 * data past this ext. header is encrypted. */
1677 				ext_hd |= EXT_ESP;
1678 				break;
1679 
1680 			case IPPROTO_NONE:	/* RFC 2460 */
1681 				/*
1682 				 * Packet ends here, and IPv6 header has
1683 				 * already been pulled up. If ip6e_len!=0
1684 				 * then octets must be ignored.
1685 				 */
1686 				ulp = ip; /* non-NULL to get out of loop. */
1687 				break;
1688 
1689 			case IPPROTO_OSPFIGP:
1690 				/* XXX OSPF header check? */
1691 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1692 				break;
1693 
1694 			case IPPROTO_PIM:
1695 				/* XXX PIM header check? */
1696 				PULLUP_TO(hlen, ulp, struct pim);
1697 				break;
1698 
1699 			case IPPROTO_GRE:	/* RFC 1701 */
1700 				/* XXX GRE header check? */
1701 				PULLUP_TO(hlen, ulp, struct grehdr);
1702 				break;
1703 
1704 			case IPPROTO_CARP:
1705 				PULLUP_TO(hlen, ulp, offsetof(
1706 				    struct carp_header, carp_counter));
1707 				if (CARP_ADVERTISEMENT !=
1708 				    ((struct carp_header *)ulp)->carp_type)
1709 					return (IP_FW_DENY);
1710 				break;
1711 
1712 			case IPPROTO_IPV6:	/* RFC 2893 */
1713 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1714 				break;
1715 
1716 			case IPPROTO_IPV4:	/* RFC 2893 */
1717 				PULLUP_TO(hlen, ulp, struct ip);
1718 				break;
1719 
1720 			default:
1721 				if (V_fw_verbose)
1722 					printf("IPFW2: IPV6 - Unknown "
1723 					    "Extension Header(%d), ext_hd=%x\n",
1724 					     proto, ext_hd);
1725 				if (V_fw_deny_unknown_exthdrs)
1726 				    return (IP_FW_DENY);
1727 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1728 				break;
1729 			} /*switch */
1730 		}
1731 		UPDATE_POINTERS();
1732 		ip6 = (struct ip6_hdr *)ip;
1733 		args->f_id.addr_type = 6;
1734 		args->f_id.src_ip6 = ip6->ip6_src;
1735 		args->f_id.dst_ip6 = ip6->ip6_dst;
1736 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1737 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1738 	} else if (pktlen >= sizeof(struct ip) &&
1739 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1740 	    ip->ip_v == 4) {
1741 		is_ipv4 = 1;
1742 		args->flags |= IPFW_ARGS_IP4;
1743 		hlen = ip->ip_hl << 2;
1744 		/*
1745 		 * Collect parameters into local variables for faster
1746 		 * matching.
1747 		 */
1748 		proto = ip->ip_p;
1749 		src_ip = ip->ip_src;
1750 		dst_ip = ip->ip_dst;
1751 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1752 		iplen = ntohs(ip->ip_len);
1753 
1754 		if (offset == 0) {
1755 			switch (proto) {
1756 			case IPPROTO_TCP:
1757 				PULLUP_TO(hlen, ulp, struct tcphdr);
1758 				dst_port = TCP(ulp)->th_dport;
1759 				src_port = TCP(ulp)->th_sport;
1760 				/* save flags for dynamic rules */
1761 				args->f_id._flags = TCP(ulp)->th_flags;
1762 				break;
1763 
1764 			case IPPROTO_SCTP:
1765 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1766 				    sizeof(struct sctp_chunkhdr) +
1767 				    offsetof(struct sctp_init, a_rwnd))
1768 					PULLUP_LEN(hlen, ulp,
1769 					    sizeof(struct sctphdr) +
1770 					    sizeof(struct sctp_chunkhdr) +
1771 					    offsetof(struct sctp_init, a_rwnd));
1772 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1773 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1774 				else
1775 					PULLUP_LEN(hlen, ulp,
1776 					    sizeof(struct sctphdr));
1777 				src_port = SCTP(ulp)->src_port;
1778 				dst_port = SCTP(ulp)->dest_port;
1779 				break;
1780 
1781 			case IPPROTO_UDP:
1782 			case IPPROTO_UDPLITE:
1783 				PULLUP_TO(hlen, ulp, struct udphdr);
1784 				dst_port = UDP(ulp)->uh_dport;
1785 				src_port = UDP(ulp)->uh_sport;
1786 				break;
1787 
1788 			case IPPROTO_ICMP:
1789 				PULLUP_TO(hlen, ulp, struct icmphdr);
1790 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1791 				break;
1792 
1793 			default:
1794 				break;
1795 			}
1796 		} else {
1797 			if (offset == 1 && proto == IPPROTO_TCP) {
1798 				/* RFC 3128 */
1799 				goto pullup_failed;
1800 			}
1801 		}
1802 
1803 		UPDATE_POINTERS();
1804 		args->f_id.addr_type = 4;
1805 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1806 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1807 	} else {
1808 		proto = 0;
1809 		dst_ip.s_addr = src_ip.s_addr = 0;
1810 
1811 		args->f_id.addr_type = 1; /* XXX */
1812 	}
1813 #undef PULLUP_TO
1814 	pktlen = iplen < pktlen ? iplen: pktlen;
1815 
1816 	/* Properly initialize the rest of f_id */
1817 	args->f_id.proto = proto;
1818 	args->f_id.src_port = src_port = ntohs(src_port);
1819 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1820 
1821 	IPFW_PF_RLOCK(chain);
1822 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1823 		IPFW_PF_RUNLOCK(chain);
1824 		return (IP_FW_PASS);	/* accept */
1825 	}
1826 	if (args->flags & IPFW_ARGS_REF) {
1827 		/*
1828 		 * Packet has already been tagged as a result of a previous
1829 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1830 		 * REASS, NETGRAPH, DIVERT/TEE...)
1831 		 * Validate the slot and continue from the next one
1832 		 * if still present, otherwise do a lookup.
1833 		 */
1834 		f_pos = (args->rule.chain_id == chain->id) ?
1835 		    args->rule.slot :
1836 		    ipfw_find_rule(chain, args->rule.rulenum,
1837 			args->rule.rule_id);
1838 	} else {
1839 		f_pos = 0;
1840 	}
1841 
1842 	if (args->flags & IPFW_ARGS_IN) {
1843 		iif = args->ifp;
1844 		oif = NULL;
1845 	} else {
1846 		MPASS(args->flags & IPFW_ARGS_OUT);
1847 		iif = mem ? NULL : m_rcvif(m);
1848 		oif = args->ifp;
1849 	}
1850 
1851 	/*
1852 	 * Now scan the rules, and parse microinstructions for each rule.
1853 	 * We have two nested loops and an inner switch. Sometimes we
1854 	 * need to break out of one or both loops, or re-enter one of
1855 	 * the loops with updated variables. Loop variables are:
1856 	 *
1857 	 *	f_pos (outer loop) points to the current rule.
1858 	 *		On output it points to the matching rule.
1859 	 *	done (outer loop) is used as a flag to break the loop.
1860 	 *	l (inner loop)	residual length of current rule.
1861 	 *		cmd points to the current microinstruction.
1862 	 *
1863 	 * We break the inner loop by setting l=0 and possibly
1864 	 * cmdlen=0 if we don't want to advance cmd.
1865 	 * We break the outer loop by setting done=1
1866 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1867 	 * as needed.
1868 	 */
1869 	for (; f_pos < chain->n_rules; f_pos++) {
1870 		ipfw_insn *cmd;
1871 		uint32_t tablearg = 0;
1872 		int l, cmdlen, skip_or; /* skip rest of OR block */
1873 		struct ip_fw *f;
1874 
1875 		f = chain->map[f_pos];
1876 		if (V_set_disable & (1 << f->set) )
1877 			continue;
1878 
1879 		skip_or = 0;
1880 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1881 		    l -= cmdlen, cmd += cmdlen) {
1882 			int match;
1883 
1884 			/*
1885 			 * check_body is a jump target used when we find a
1886 			 * CHECK_STATE, and need to jump to the body of
1887 			 * the target rule.
1888 			 */
1889 
1890 /* check_body: */
1891 			cmdlen = F_LEN(cmd);
1892 			/*
1893 			 * An OR block (insn_1 || .. || insn_n) has the
1894 			 * F_OR bit set in all but the last instruction.
1895 			 * The first match will set "skip_or", and cause
1896 			 * the following instructions to be skipped until
1897 			 * past the one with the F_OR bit clear.
1898 			 */
1899 			if (skip_or) {		/* skip this instruction */
1900 				if ((cmd->len & F_OR) == 0)
1901 					skip_or = 0;	/* next one is good */
1902 				continue;
1903 			}
1904 			match = 0; /* set to 1 if we succeed */
1905 
1906 			switch (cmd->opcode) {
1907 			/*
1908 			 * The first set of opcodes compares the packet's
1909 			 * fields with some pattern, setting 'match' if a
1910 			 * match is found. At the end of the loop there is
1911 			 * logic to deal with F_NOT and F_OR flags associated
1912 			 * with the opcode.
1913 			 */
1914 			case O_NOP:
1915 				match = 1;
1916 				break;
1917 
1918 			case O_FORWARD_MAC:
1919 				printf("ipfw: opcode %d unimplemented\n",
1920 				    cmd->opcode);
1921 				break;
1922 
1923 			case O_GID:
1924 			case O_UID:
1925 			case O_JAIL:
1926 				/*
1927 				 * We only check offset == 0 && proto != 0,
1928 				 * as this ensures that we have a
1929 				 * packet with the ports info.
1930 				 */
1931 				if (offset != 0)
1932 					break;
1933 				if (proto == IPPROTO_TCP ||
1934 				    proto == IPPROTO_UDP ||
1935 				    proto == IPPROTO_UDPLITE)
1936 					match = check_uidgid(
1937 						    (ipfw_insn_u32 *)cmd,
1938 						    args, &ucred_lookup,
1939 #ifdef __FreeBSD__
1940 						    &ucred_cache);
1941 #else
1942 						    (void *)&ucred_cache);
1943 #endif
1944 				break;
1945 
1946 			case O_RECV:
1947 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1948 				    chain, &tablearg);
1949 				break;
1950 
1951 			case O_XMIT:
1952 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1953 				    chain, &tablearg);
1954 				break;
1955 
1956 			case O_VIA:
1957 				match = iface_match(args->ifp,
1958 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1959 				break;
1960 
1961 			case O_MACADDR2:
1962 				if (args->flags & IPFW_ARGS_ETHER) {
1963 					u_int32_t *want = (u_int32_t *)
1964 						((ipfw_insn_mac *)cmd)->addr;
1965 					u_int32_t *mask = (u_int32_t *)
1966 						((ipfw_insn_mac *)cmd)->mask;
1967 					u_int32_t *hdr = (u_int32_t *)eh;
1968 
1969 					match =
1970 					    ( want[0] == (hdr[0] & mask[0]) &&
1971 					      want[1] == (hdr[1] & mask[1]) &&
1972 					      want[2] == (hdr[2] & mask[2]) );
1973 				}
1974 				break;
1975 
1976 			case O_MAC_TYPE:
1977 				if (args->flags & IPFW_ARGS_ETHER) {
1978 					u_int16_t *p =
1979 					    ((ipfw_insn_u16 *)cmd)->ports;
1980 					int i;
1981 
1982 					for (i = cmdlen - 1; !match && i>0;
1983 					    i--, p += 2)
1984 						match =
1985 						    (ntohs(eh->ether_type) >=
1986 						    p[0] &&
1987 						    ntohs(eh->ether_type) <=
1988 						    p[1]);
1989 				}
1990 				break;
1991 
1992 			case O_FRAG:
1993 				if (is_ipv4) {
1994 					/*
1995 					 * Since flags_match() works with
1996 					 * uint8_t we pack ip_off into 8 bits.
1997 					 * For this match offset is a boolean.
1998 					 */
1999 					match = flags_match(cmd,
2000 					    ((ntohs(ip->ip_off) & ~IP_OFFMASK)
2001 					    >> 8) | (offset != 0));
2002 				} else {
2003 					/*
2004 					 * Compatiblity: historically bare
2005 					 * "frag" would match IPv6 fragments.
2006 					 */
2007 					match = (cmd->arg1 == 0x1 &&
2008 					    (offset != 0));
2009 				}
2010 				break;
2011 
2012 			case O_IN:	/* "out" is "not in" */
2013 				match = (oif == NULL);
2014 				break;
2015 
2016 			case O_LAYER2:
2017 				match = (args->flags & IPFW_ARGS_ETHER);
2018 				break;
2019 
2020 			case O_DIVERTED:
2021 				if ((args->flags & IPFW_ARGS_REF) == 0)
2022 					break;
2023 				/*
2024 				 * For diverted packets, args->rule.info
2025 				 * contains the divert port (in host format)
2026 				 * reason and direction.
2027 				 */
2028 				match = ((args->rule.info & IPFW_IS_MASK) ==
2029 				    IPFW_IS_DIVERT) && (
2030 				    ((args->rule.info & IPFW_INFO_IN) ?
2031 					1: 2) & cmd->arg1);
2032 				break;
2033 
2034 			case O_PROTO:
2035 				/*
2036 				 * We do not allow an arg of 0 so the
2037 				 * check of "proto" only suffices.
2038 				 */
2039 				match = (proto == cmd->arg1);
2040 				break;
2041 
2042 			case O_IP_SRC:
2043 				match = is_ipv4 &&
2044 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2045 				    src_ip.s_addr);
2046 				break;
2047 
2048 			case O_IP_DST_LOOKUP:
2049 			{
2050 				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
2051 					void *pkey;
2052 					uint32_t vidx, key;
2053 					uint16_t keylen = 0; /* zero if can't match the packet */
2054 
2055 					/* Determine lookup key type */
2056 					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
2057 					switch (vidx) {
2058 					case LOOKUP_DST_IP:
2059 					case LOOKUP_SRC_IP:
2060 						/* Need IP frame */
2061 						if (is_ipv6 == 0 && is_ipv4 == 0)
2062 							break;
2063 						if (vidx == LOOKUP_DST_IP)
2064 							pkey = is_ipv6 ?
2065 								(void *)&args->f_id.dst_ip6:
2066 								(void *)&dst_ip;
2067 						else
2068 							pkey = is_ipv6 ?
2069 								(void *)&args->f_id.src_ip6:
2070 								(void *)&src_ip;
2071 						keylen = is_ipv6 ?
2072 							sizeof(struct in6_addr):
2073 							sizeof(in_addr_t);
2074 						break;
2075 					case LOOKUP_DST_PORT:
2076 					case LOOKUP_SRC_PORT:
2077 						/* Need IP frame */
2078 						if (is_ipv6 == 0 && is_ipv4 == 0)
2079 							break;
2080 						/* Skip fragments */
2081 						if (offset != 0)
2082 							break;
2083 						/* Skip proto without ports */
2084 						if (proto != IPPROTO_TCP &&
2085 							proto != IPPROTO_UDP &&
2086 							proto != IPPROTO_UDPLITE &&
2087 							proto != IPPROTO_SCTP)
2088 							break;
2089 						key = vidx == LOOKUP_DST_PORT ?
2090 							dst_port:
2091 							src_port;
2092 						pkey = &key;
2093 						keylen = sizeof(key);
2094 						break;
2095 					case LOOKUP_UID:
2096 					case LOOKUP_JAIL:
2097 						check_uidgid(
2098 						    (ipfw_insn_u32 *)cmd,
2099 						    args, &ucred_lookup,
2100 						    &ucred_cache);
2101 						key = vidx == LOOKUP_UID ?
2102 							ucred_cache->cr_uid:
2103 							ucred_cache->cr_prison->pr_id;
2104 						pkey = &key;
2105 						keylen = sizeof(key);
2106 						break;
2107 					case LOOKUP_DSCP:
2108 						/* Need IP frame */
2109 						if (is_ipv6 == 0 && is_ipv4 == 0)
2110 							break;
2111 						if (is_ipv6)
2112 							key = IPV6_DSCP(
2113 							    (struct ip6_hdr *)ip) >> 2;
2114 						else
2115 							key = ip->ip_tos >> 2;
2116 						pkey = &key;
2117 						keylen = sizeof(key);
2118 						break;
2119 					case LOOKUP_DST_MAC:
2120 					case LOOKUP_SRC_MAC:
2121 						/* Need ether frame */
2122 						if ((args->flags & IPFW_ARGS_ETHER) == 0)
2123 							break;
2124 						pkey = vidx == LOOKUP_DST_MAC ?
2125 							eh->ether_dhost:
2126 							eh->ether_shost;
2127 						keylen = ETHER_ADDR_LEN;
2128 						break;
2129 					}
2130 					if (keylen == 0)
2131 						break;
2132 					match = ipfw_lookup_table(chain,
2133 					    cmd->arg1, keylen, pkey, &vidx);
2134 					if (!match)
2135 						break;
2136 					tablearg = vidx;
2137 					break;
2138 				}
2139 				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
2140 				/* FALLTHROUGH */
2141 			}
2142 			case O_IP_SRC_LOOKUP:
2143 			{
2144 				void *pkey;
2145 				uint32_t vidx;
2146 				uint16_t keylen;
2147 
2148 				if (is_ipv4) {
2149 					keylen = sizeof(in_addr_t);
2150 					if (cmd->opcode == O_IP_DST_LOOKUP)
2151 						pkey = &dst_ip;
2152 					else
2153 						pkey = &src_ip;
2154 				} else if (is_ipv6) {
2155 					keylen = sizeof(struct in6_addr);
2156 					if (cmd->opcode == O_IP_DST_LOOKUP)
2157 						pkey = &args->f_id.dst_ip6;
2158 					else
2159 						pkey = &args->f_id.src_ip6;
2160 				} else
2161 					break;
2162 				match = ipfw_lookup_table(chain, cmd->arg1,
2163 				    keylen, pkey, &vidx);
2164 				if (!match)
2165 					break;
2166 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2167 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2168 					    TARG_VAL(chain, vidx, tag);
2169 					if (!match)
2170 						break;
2171 				}
2172 				tablearg = vidx;
2173 				break;
2174 			}
2175 
2176 			case O_MAC_SRC_LOOKUP:
2177 			case O_MAC_DST_LOOKUP:
2178 			{
2179 				void *pkey;
2180 				uint32_t vidx;
2181 				uint16_t keylen = ETHER_ADDR_LEN;
2182 
2183 				/* Need ether frame */
2184 				if ((args->flags & IPFW_ARGS_ETHER) == 0)
2185 					break;
2186 
2187 				if (cmd->opcode == O_MAC_DST_LOOKUP)
2188 					pkey = eh->ether_dhost;
2189 				else
2190 					pkey = eh->ether_shost;
2191 
2192 				match = ipfw_lookup_table(chain, cmd->arg1,
2193 				    keylen, pkey, &vidx);
2194 				if (!match)
2195 					break;
2196 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2197 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2198 					    TARG_VAL(chain, vidx, tag);
2199 					if (!match)
2200 						break;
2201 				}
2202 				tablearg = vidx;
2203 				break;
2204 			}
2205 
2206 			case O_IP_FLOW_LOOKUP:
2207 				{
2208 					uint32_t v = 0;
2209 					match = ipfw_lookup_table(chain,
2210 					    cmd->arg1, 0, &args->f_id, &v);
2211 					if (!match)
2212 						break;
2213 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2214 						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2215 						    TARG_VAL(chain, v, tag);
2216 					if (match)
2217 						tablearg = v;
2218 				}
2219 				break;
2220 			case O_IP_SRC_MASK:
2221 			case O_IP_DST_MASK:
2222 				if (is_ipv4) {
2223 				    uint32_t a =
2224 					(cmd->opcode == O_IP_DST_MASK) ?
2225 					    dst_ip.s_addr : src_ip.s_addr;
2226 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2227 				    int i = cmdlen-1;
2228 
2229 				    for (; !match && i>0; i-= 2, p+= 2)
2230 					match = (p[0] == (a & p[1]));
2231 				}
2232 				break;
2233 
2234 			case O_IP_SRC_ME:
2235 				if (is_ipv4) {
2236 					match = in_localip(src_ip);
2237 					break;
2238 				}
2239 #ifdef INET6
2240 				/* FALLTHROUGH */
2241 			case O_IP6_SRC_ME:
2242 				match = is_ipv6 &&
2243 				    ipfw_localip6(&args->f_id.src_ip6);
2244 #endif
2245 				break;
2246 
2247 			case O_IP_DST_SET:
2248 			case O_IP_SRC_SET:
2249 				if (is_ipv4) {
2250 					u_int32_t *d = (u_int32_t *)(cmd+1);
2251 					u_int32_t addr =
2252 					    cmd->opcode == O_IP_DST_SET ?
2253 						args->f_id.dst_ip :
2254 						args->f_id.src_ip;
2255 
2256 					    if (addr < d[0])
2257 						    break;
2258 					    addr -= d[0]; /* subtract base */
2259 					    match = (addr < cmd->arg1) &&
2260 						( d[ 1 + (addr>>5)] &
2261 						  (1<<(addr & 0x1f)) );
2262 				}
2263 				break;
2264 
2265 			case O_IP_DST:
2266 				match = is_ipv4 &&
2267 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2268 				    dst_ip.s_addr);
2269 				break;
2270 
2271 			case O_IP_DST_ME:
2272 				if (is_ipv4) {
2273 					match = in_localip(dst_ip);
2274 					break;
2275 				}
2276 #ifdef INET6
2277 				/* FALLTHROUGH */
2278 			case O_IP6_DST_ME:
2279 				match = is_ipv6 &&
2280 				    ipfw_localip6(&args->f_id.dst_ip6);
2281 #endif
2282 				break;
2283 
2284 			case O_IP_SRCPORT:
2285 			case O_IP_DSTPORT:
2286 				/*
2287 				 * offset == 0 && proto != 0 is enough
2288 				 * to guarantee that we have a
2289 				 * packet with port info.
2290 				 */
2291 				if ((proto == IPPROTO_UDP ||
2292 				    proto == IPPROTO_UDPLITE ||
2293 				    proto == IPPROTO_TCP ||
2294 				    proto == IPPROTO_SCTP) && offset == 0) {
2295 					u_int16_t x =
2296 					    (cmd->opcode == O_IP_SRCPORT) ?
2297 						src_port : dst_port ;
2298 					u_int16_t *p =
2299 					    ((ipfw_insn_u16 *)cmd)->ports;
2300 					int i;
2301 
2302 					for (i = cmdlen - 1; !match && i>0;
2303 					    i--, p += 2)
2304 						match = (x>=p[0] && x<=p[1]);
2305 				}
2306 				break;
2307 
2308 			case O_ICMPTYPE:
2309 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2310 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2311 				break;
2312 
2313 #ifdef INET6
2314 			case O_ICMP6TYPE:
2315 				match = is_ipv6 && offset == 0 &&
2316 				    proto==IPPROTO_ICMPV6 &&
2317 				    icmp6type_match(
2318 					ICMP6(ulp)->icmp6_type,
2319 					(ipfw_insn_u32 *)cmd);
2320 				break;
2321 #endif /* INET6 */
2322 
2323 			case O_IPOPT:
2324 				match = (is_ipv4 &&
2325 				    ipopts_match(ip, cmd) );
2326 				break;
2327 
2328 			case O_IPVER:
2329 				match = ((is_ipv4 || is_ipv6) &&
2330 				    cmd->arg1 == ip->ip_v);
2331 				break;
2332 
2333 			case O_IPID:
2334 			case O_IPTTL:
2335 				if (!is_ipv4)
2336 					break;
2337 			case O_IPLEN:
2338 				{	/* only for IP packets */
2339 				    uint16_t x;
2340 				    uint16_t *p;
2341 				    int i;
2342 
2343 				    if (cmd->opcode == O_IPLEN)
2344 					x = iplen;
2345 				    else if (cmd->opcode == O_IPTTL)
2346 					x = ip->ip_ttl;
2347 				    else /* must be IPID */
2348 					x = ntohs(ip->ip_id);
2349 				    if (cmdlen == 1) {
2350 					match = (cmd->arg1 == x);
2351 					break;
2352 				    }
2353 				    /* otherwise we have ranges */
2354 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2355 				    i = cmdlen - 1;
2356 				    for (; !match && i>0; i--, p += 2)
2357 					match = (x >= p[0] && x <= p[1]);
2358 				}
2359 				break;
2360 
2361 			case O_IPPRECEDENCE:
2362 				match = (is_ipv4 &&
2363 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2364 				break;
2365 
2366 			case O_IPTOS:
2367 				match = (is_ipv4 &&
2368 				    flags_match(cmd, ip->ip_tos));
2369 				break;
2370 
2371 			case O_DSCP:
2372 			    {
2373 				uint32_t *p;
2374 				uint16_t x;
2375 
2376 				p = ((ipfw_insn_u32 *)cmd)->d;
2377 
2378 				if (is_ipv4)
2379 					x = ip->ip_tos >> 2;
2380 				else if (is_ipv6) {
2381 					x = IPV6_DSCP(
2382 					    (struct ip6_hdr *)ip) >> 2;
2383 					x &= 0x3f;
2384 				} else
2385 					break;
2386 
2387 				/* DSCP bitmask is stored as low_u32 high_u32 */
2388 				if (x >= 32)
2389 					match = *(p + 1) & (1 << (x - 32));
2390 				else
2391 					match = *p & (1 << x);
2392 			    }
2393 				break;
2394 
2395 			case O_TCPDATALEN:
2396 				if (proto == IPPROTO_TCP && offset == 0) {
2397 				    struct tcphdr *tcp;
2398 				    uint16_t x;
2399 				    uint16_t *p;
2400 				    int i;
2401 #ifdef INET6
2402 				    if (is_ipv6) {
2403 					    struct ip6_hdr *ip6;
2404 
2405 					    ip6 = (struct ip6_hdr *)ip;
2406 					    if (ip6->ip6_plen == 0) {
2407 						    /*
2408 						     * Jumbo payload is not
2409 						     * supported by this
2410 						     * opcode.
2411 						     */
2412 						    break;
2413 					    }
2414 					    x = iplen - hlen;
2415 				    } else
2416 #endif /* INET6 */
2417 					    x = iplen - (ip->ip_hl << 2);
2418 				    tcp = TCP(ulp);
2419 				    x -= tcp->th_off << 2;
2420 				    if (cmdlen == 1) {
2421 					match = (cmd->arg1 == x);
2422 					break;
2423 				    }
2424 				    /* otherwise we have ranges */
2425 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2426 				    i = cmdlen - 1;
2427 				    for (; !match && i>0; i--, p += 2)
2428 					match = (x >= p[0] && x <= p[1]);
2429 				}
2430 				break;
2431 
2432 			case O_TCPFLAGS:
2433 				match = (proto == IPPROTO_TCP && offset == 0 &&
2434 				    flags_match(cmd, TCP(ulp)->th_flags));
2435 				break;
2436 
2437 			case O_TCPOPTS:
2438 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2439 					PULLUP_LEN_LOCKED(hlen, ulp,
2440 					    (TCP(ulp)->th_off << 2));
2441 					match = tcpopts_match(TCP(ulp), cmd);
2442 				}
2443 				break;
2444 
2445 			case O_TCPSEQ:
2446 				match = (proto == IPPROTO_TCP && offset == 0 &&
2447 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2448 					TCP(ulp)->th_seq);
2449 				break;
2450 
2451 			case O_TCPACK:
2452 				match = (proto == IPPROTO_TCP && offset == 0 &&
2453 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2454 					TCP(ulp)->th_ack);
2455 				break;
2456 
2457 			case O_TCPMSS:
2458 				if (proto == IPPROTO_TCP &&
2459 				    (args->f_id._flags & TH_SYN) != 0 &&
2460 				    ulp != NULL) {
2461 					uint16_t mss, *p;
2462 					int i;
2463 
2464 					PULLUP_LEN_LOCKED(hlen, ulp,
2465 					    (TCP(ulp)->th_off << 2));
2466 					if ((tcpopts_parse(TCP(ulp), &mss) &
2467 					    IP_FW_TCPOPT_MSS) == 0)
2468 						break;
2469 					if (cmdlen == 1) {
2470 						match = (cmd->arg1 == mss);
2471 						break;
2472 					}
2473 					/* Otherwise we have ranges. */
2474 					p = ((ipfw_insn_u16 *)cmd)->ports;
2475 					i = cmdlen - 1;
2476 					for (; !match && i > 0; i--, p += 2)
2477 						match = (mss >= p[0] &&
2478 						    mss <= p[1]);
2479 				}
2480 				break;
2481 
2482 			case O_TCPWIN:
2483 				if (proto == IPPROTO_TCP && offset == 0) {
2484 				    uint16_t x;
2485 				    uint16_t *p;
2486 				    int i;
2487 
2488 				    x = ntohs(TCP(ulp)->th_win);
2489 				    if (cmdlen == 1) {
2490 					match = (cmd->arg1 == x);
2491 					break;
2492 				    }
2493 				    /* Otherwise we have ranges. */
2494 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2495 				    i = cmdlen - 1;
2496 				    for (; !match && i > 0; i--, p += 2)
2497 					match = (x >= p[0] && x <= p[1]);
2498 				}
2499 				break;
2500 
2501 			case O_ESTAB:
2502 				/* reject packets which have SYN only */
2503 				/* XXX should i also check for TH_ACK ? */
2504 				match = (proto == IPPROTO_TCP && offset == 0 &&
2505 				    (TCP(ulp)->th_flags &
2506 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2507 				break;
2508 
2509 			case O_ALTQ: {
2510 				struct pf_mtag *at;
2511 				struct m_tag *mtag;
2512 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2513 
2514 				/*
2515 				 * ALTQ uses mbuf tags from another
2516 				 * packet filtering system - pf(4).
2517 				 * We allocate a tag in its format
2518 				 * and fill it in, pretending to be pf(4).
2519 				 */
2520 				match = 1;
2521 				at = pf_find_mtag(m);
2522 				if (at != NULL && at->qid != 0)
2523 					break;
2524 				mtag = m_tag_get(PACKET_TAG_PF,
2525 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2526 				if (mtag == NULL) {
2527 					/*
2528 					 * Let the packet fall back to the
2529 					 * default ALTQ.
2530 					 */
2531 					break;
2532 				}
2533 				m_tag_prepend(m, mtag);
2534 				at = (struct pf_mtag *)(mtag + 1);
2535 				at->qid = altq->qid;
2536 				at->hdr = ip;
2537 				break;
2538 			}
2539 
2540 			case O_LOG:
2541 				ipfw_log(chain, f, hlen, args,
2542 				    offset | ip6f_mf, tablearg, ip);
2543 				match = 1;
2544 				break;
2545 
2546 			case O_PROB:
2547 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2548 				break;
2549 
2550 			case O_VERREVPATH:
2551 				/* Outgoing packets automatically pass/match */
2552 				match = (args->flags & IPFW_ARGS_OUT ||
2553 				    (
2554 #ifdef INET6
2555 				    is_ipv6 ?
2556 					verify_path6(&(args->f_id.src_ip6),
2557 					    iif, args->f_id.fib) :
2558 #endif
2559 				    verify_path(src_ip, iif, args->f_id.fib)));
2560 				break;
2561 
2562 			case O_VERSRCREACH:
2563 				/* Outgoing packets automatically pass/match */
2564 				match = (hlen > 0 && ((oif != NULL) || (
2565 #ifdef INET6
2566 				    is_ipv6 ?
2567 				        verify_path6(&(args->f_id.src_ip6),
2568 				            NULL, args->f_id.fib) :
2569 #endif
2570 				    verify_path(src_ip, NULL, args->f_id.fib))));
2571 				break;
2572 
2573 			case O_ANTISPOOF:
2574 				/* Outgoing packets automatically pass/match */
2575 				if (oif == NULL && hlen > 0 &&
2576 				    (  (is_ipv4 && in_localaddr(src_ip))
2577 #ifdef INET6
2578 				    || (is_ipv6 &&
2579 				        in6_localaddr(&(args->f_id.src_ip6)))
2580 #endif
2581 				    ))
2582 					match =
2583 #ifdef INET6
2584 					    is_ipv6 ? verify_path6(
2585 					        &(args->f_id.src_ip6), iif,
2586 						args->f_id.fib) :
2587 #endif
2588 					    verify_path(src_ip, iif,
2589 					        args->f_id.fib);
2590 				else
2591 					match = 1;
2592 				break;
2593 
2594 			case O_IPSEC:
2595 				match = (m_tag_find(m,
2596 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2597 				/* otherwise no match */
2598 				break;
2599 
2600 #ifdef INET6
2601 			case O_IP6_SRC:
2602 				match = is_ipv6 &&
2603 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2604 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2605 				break;
2606 
2607 			case O_IP6_DST:
2608 				match = is_ipv6 &&
2609 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2610 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2611 				break;
2612 			case O_IP6_SRC_MASK:
2613 			case O_IP6_DST_MASK:
2614 				if (is_ipv6) {
2615 					int i = cmdlen - 1;
2616 					struct in6_addr p;
2617 					struct in6_addr *d =
2618 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2619 
2620 					for (; !match && i > 0; d += 2,
2621 					    i -= F_INSN_SIZE(struct in6_addr)
2622 					    * 2) {
2623 						p = (cmd->opcode ==
2624 						    O_IP6_SRC_MASK) ?
2625 						    args->f_id.src_ip6:
2626 						    args->f_id.dst_ip6;
2627 						APPLY_MASK(&p, &d[1]);
2628 						match =
2629 						    IN6_ARE_ADDR_EQUAL(&d[0],
2630 						    &p);
2631 					}
2632 				}
2633 				break;
2634 
2635 			case O_FLOW6ID:
2636 				match = is_ipv6 &&
2637 				    flow6id_match(args->f_id.flow_id6,
2638 				    (ipfw_insn_u32 *) cmd);
2639 				break;
2640 
2641 			case O_EXT_HDR:
2642 				match = is_ipv6 &&
2643 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2644 				break;
2645 
2646 			case O_IP6:
2647 				match = is_ipv6;
2648 				break;
2649 #endif
2650 
2651 			case O_IP4:
2652 				match = is_ipv4;
2653 				break;
2654 
2655 			case O_TAG: {
2656 				struct m_tag *mtag;
2657 				uint32_t tag = TARG(cmd->arg1, tag);
2658 
2659 				/* Packet is already tagged with this tag? */
2660 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2661 
2662 				/* We have `untag' action when F_NOT flag is
2663 				 * present. And we must remove this mtag from
2664 				 * mbuf and reset `match' to zero (`match' will
2665 				 * be inversed later).
2666 				 * Otherwise we should allocate new mtag and
2667 				 * push it into mbuf.
2668 				 */
2669 				if (cmd->len & F_NOT) { /* `untag' action */
2670 					if (mtag != NULL)
2671 						m_tag_delete(m, mtag);
2672 					match = 0;
2673 				} else {
2674 					if (mtag == NULL) {
2675 						mtag = m_tag_alloc( MTAG_IPFW,
2676 						    tag, 0, M_NOWAIT);
2677 						if (mtag != NULL)
2678 							m_tag_prepend(m, mtag);
2679 					}
2680 					match = 1;
2681 				}
2682 				break;
2683 			}
2684 
2685 			case O_FIB: /* try match the specified fib */
2686 				if (args->f_id.fib == cmd->arg1)
2687 					match = 1;
2688 				break;
2689 
2690 			case O_SOCKARG:	{
2691 #ifndef USERSPACE	/* not supported in userspace */
2692 				struct inpcb *inp = args->inp;
2693 				struct inpcbinfo *pi;
2694 				bool inp_locked = false;
2695 
2696 				if (proto == IPPROTO_TCP)
2697 					pi = &V_tcbinfo;
2698 				else if (proto == IPPROTO_UDP)
2699 					pi = &V_udbinfo;
2700 				else if (proto == IPPROTO_UDPLITE)
2701 					pi = &V_ulitecbinfo;
2702 				else
2703 					break;
2704 
2705 				/*
2706 				 * XXXRW: so_user_cookie should almost
2707 				 * certainly be inp_user_cookie?
2708 				 */
2709 
2710 				/*
2711 				 * For incoming packet lookup the inpcb
2712 				 * using the src/dest ip/port tuple.
2713 				 */
2714 				if (is_ipv4 && inp == NULL) {
2715 					inp = in_pcblookup(pi,
2716 					    src_ip, htons(src_port),
2717 					    dst_ip, htons(dst_port),
2718 					    INPLOOKUP_RLOCKPCB, NULL);
2719 					inp_locked = true;
2720 				}
2721 #ifdef INET6
2722 				if (is_ipv6 && inp == NULL) {
2723 					inp = in6_pcblookup(pi,
2724 					    &args->f_id.src_ip6,
2725 					    htons(src_port),
2726 					    &args->f_id.dst_ip6,
2727 					    htons(dst_port),
2728 					    INPLOOKUP_RLOCKPCB, NULL);
2729 					inp_locked = true;
2730 				}
2731 #endif /* INET6 */
2732 				if (inp != NULL) {
2733 					if (inp->inp_socket) {
2734 						tablearg =
2735 						    inp->inp_socket->so_user_cookie;
2736 						if (tablearg)
2737 							match = 1;
2738 					}
2739 					if (inp_locked)
2740 						INP_RUNLOCK(inp);
2741 				}
2742 #endif /* !USERSPACE */
2743 				break;
2744 			}
2745 
2746 			case O_TAGGED: {
2747 				struct m_tag *mtag;
2748 				uint32_t tag = TARG(cmd->arg1, tag);
2749 
2750 				if (cmdlen == 1) {
2751 					match = m_tag_locate(m, MTAG_IPFW,
2752 					    tag, NULL) != NULL;
2753 					break;
2754 				}
2755 
2756 				/* we have ranges */
2757 				for (mtag = m_tag_first(m);
2758 				    mtag != NULL && !match;
2759 				    mtag = m_tag_next(m, mtag)) {
2760 					uint16_t *p;
2761 					int i;
2762 
2763 					if (mtag->m_tag_cookie != MTAG_IPFW)
2764 						continue;
2765 
2766 					p = ((ipfw_insn_u16 *)cmd)->ports;
2767 					i = cmdlen - 1;
2768 					for(; !match && i > 0; i--, p += 2)
2769 						match =
2770 						    mtag->m_tag_id >= p[0] &&
2771 						    mtag->m_tag_id <= p[1];
2772 				}
2773 				break;
2774 			}
2775 
2776 			/*
2777 			 * The second set of opcodes represents 'actions',
2778 			 * i.e. the terminal part of a rule once the packet
2779 			 * matches all previous patterns.
2780 			 * Typically there is only one action for each rule,
2781 			 * and the opcode is stored at the end of the rule
2782 			 * (but there are exceptions -- see below).
2783 			 *
2784 			 * In general, here we set retval and terminate the
2785 			 * outer loop (would be a 'break 3' in some language,
2786 			 * but we need to set l=0, done=1)
2787 			 *
2788 			 * Exceptions:
2789 			 * O_COUNT and O_SKIPTO actions:
2790 			 *   instead of terminating, we jump to the next rule
2791 			 *   (setting l=0), or to the SKIPTO target (setting
2792 			 *   f/f_len, cmd and l as needed), respectively.
2793 			 *
2794 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2795 			 *   perform some action and set match = 1;
2796 			 *
2797 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2798 			 *   not real 'actions', and are stored right
2799 			 *   before the 'action' part of the rule (one
2800 			 *   exception is O_SKIP_ACTION which could be
2801 			 *   between these opcodes and 'action' one).
2802 			 *   These opcodes try to install an entry in the
2803 			 *   state tables; if successful, we continue with
2804 			 *   the next opcode (match=1; break;), otherwise
2805 			 *   the packet must be dropped (set retval,
2806 			 *   break loops with l=0, done=1)
2807 			 *
2808 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2809 			 *   cause a lookup of the state table, and a jump
2810 			 *   to the 'action' part of the parent rule
2811 			 *   if an entry is found, or
2812 			 *   (CHECK_STATE only) a jump to the next rule if
2813 			 *   the entry is not found.
2814 			 *   The result of the lookup is cached so that
2815 			 *   further instances of these opcodes become NOPs.
2816 			 *   The jump to the next rule is done by setting
2817 			 *   l=0, cmdlen=0.
2818 			 *
2819 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2820 			 *  either, and is stored right before the 'action'
2821 			 *  part of the rule, right after the O_KEEP_STATE
2822 			 *  opcode. It causes match failure so the real
2823 			 *  'action' could be executed only if the rule
2824 			 *  is checked via dynamic rule from the state
2825 			 *  table, as in such case execution starts
2826 			 *  from the true 'action' opcode directly.
2827 			 *
2828 			 */
2829 			case O_LIMIT:
2830 			case O_KEEP_STATE:
2831 				if (ipfw_dyn_install_state(chain, f,
2832 				    (ipfw_insn_limit *)cmd, args, ulp,
2833 				    pktlen, &dyn_info, tablearg)) {
2834 					/* error or limit violation */
2835 					retval = IP_FW_DENY;
2836 					l = 0;	/* exit inner loop */
2837 					done = 1; /* exit outer loop */
2838 				}
2839 				match = 1;
2840 				break;
2841 
2842 			case O_PROBE_STATE:
2843 			case O_CHECK_STATE:
2844 				/*
2845 				 * dynamic rules are checked at the first
2846 				 * keep-state or check-state occurrence,
2847 				 * with the result being stored in dyn_info.
2848 				 * The compiler introduces a PROBE_STATE
2849 				 * instruction for us when we have a
2850 				 * KEEP_STATE (because PROBE_STATE needs
2851 				 * to be run first).
2852 				 */
2853 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2854 				    (q = ipfw_dyn_lookup_state(args, ulp,
2855 				    pktlen, cmd, &dyn_info)) != NULL) {
2856 					/*
2857 					 * Found dynamic entry, jump to the
2858 					 * 'action' part of the parent rule
2859 					 * by setting f, cmd, l and clearing
2860 					 * cmdlen.
2861 					 */
2862 					f = q;
2863 					f_pos = dyn_info.f_pos;
2864 					cmd = ACTION_PTR(f);
2865 					l = f->cmd_len - f->act_ofs;
2866 					cmdlen = 0;
2867 					match = 1;
2868 					break;
2869 				}
2870 				/*
2871 				 * Dynamic entry not found. If CHECK_STATE,
2872 				 * skip to next rule, if PROBE_STATE just
2873 				 * ignore and continue with next opcode.
2874 				 */
2875 				if (cmd->opcode == O_CHECK_STATE)
2876 					l = 0;	/* exit inner loop */
2877 				match = 1;
2878 				break;
2879 
2880 			case O_SKIP_ACTION:
2881 				match = 0;	/* skip to the next rule */
2882 				l = 0;		/* exit inner loop */
2883 				break;
2884 
2885 			case O_ACCEPT:
2886 				retval = 0;	/* accept */
2887 				l = 0;		/* exit inner loop */
2888 				done = 1;	/* exit outer loop */
2889 				break;
2890 
2891 			case O_PIPE:
2892 			case O_QUEUE:
2893 				set_match(args, f_pos, chain);
2894 				args->rule.info = TARG(cmd->arg1, pipe);
2895 				if (cmd->opcode == O_PIPE)
2896 					args->rule.info |= IPFW_IS_PIPE;
2897 				if (V_fw_one_pass)
2898 					args->rule.info |= IPFW_ONEPASS;
2899 				retval = IP_FW_DUMMYNET;
2900 				l = 0;          /* exit inner loop */
2901 				done = 1;       /* exit outer loop */
2902 				break;
2903 
2904 			case O_DIVERT:
2905 			case O_TEE:
2906 				if (args->flags & IPFW_ARGS_ETHER)
2907 					break;	/* not on layer 2 */
2908 				/* otherwise this is terminal */
2909 				l = 0;		/* exit inner loop */
2910 				done = 1;	/* exit outer loop */
2911 				retval = (cmd->opcode == O_DIVERT) ?
2912 					IP_FW_DIVERT : IP_FW_TEE;
2913 				set_match(args, f_pos, chain);
2914 				args->rule.info = TARG(cmd->arg1, divert);
2915 				break;
2916 
2917 			case O_COUNT:
2918 				IPFW_INC_RULE_COUNTER(f, pktlen);
2919 				l = 0;		/* exit inner loop */
2920 				break;
2921 
2922 			case O_SKIPTO:
2923 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2924 			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2925 			    /*
2926 			     * Skip disabled rules, and re-enter
2927 			     * the inner loop with the correct
2928 			     * f_pos, f, l and cmd.
2929 			     * Also clear cmdlen and skip_or
2930 			     */
2931 			    for (; f_pos < chain->n_rules - 1 &&
2932 				    (V_set_disable &
2933 				     (1 << chain->map[f_pos]->set));
2934 				    f_pos++)
2935 				;
2936 			    /* Re-enter the inner loop at the skipto rule. */
2937 			    f = chain->map[f_pos];
2938 			    l = f->cmd_len;
2939 			    cmd = f->cmd;
2940 			    match = 1;
2941 			    cmdlen = 0;
2942 			    skip_or = 0;
2943 			    continue;
2944 			    break;	/* not reached */
2945 
2946 			case O_CALLRETURN: {
2947 				/*
2948 				 * Implementation of `subroutine' call/return,
2949 				 * in the stack carried in an mbuf tag. This
2950 				 * is different from `skipto' in that any call
2951 				 * address is possible (`skipto' must prevent
2952 				 * backward jumps to avoid endless loops).
2953 				 * We have `return' action when F_NOT flag is
2954 				 * present. The `m_tag_id' field is used as
2955 				 * stack pointer.
2956 				 */
2957 				struct m_tag *mtag;
2958 				uint16_t jmpto, *stack;
2959 
2960 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2961 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2962 				/*
2963 				 * Hand-rolled version of m_tag_locate() with
2964 				 * wildcard `type'.
2965 				 * If not already tagged, allocate new tag.
2966 				 */
2967 				mtag = m_tag_first(m);
2968 				while (mtag != NULL) {
2969 					if (mtag->m_tag_cookie ==
2970 					    MTAG_IPFW_CALL)
2971 						break;
2972 					mtag = m_tag_next(m, mtag);
2973 				}
2974 				if (mtag == NULL && IS_CALL) {
2975 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2976 					    IPFW_CALLSTACK_SIZE *
2977 					    sizeof(uint16_t), M_NOWAIT);
2978 					if (mtag != NULL)
2979 						m_tag_prepend(m, mtag);
2980 				}
2981 
2982 				/*
2983 				 * On error both `call' and `return' just
2984 				 * continue with next rule.
2985 				 */
2986 				if (IS_RETURN && (mtag == NULL ||
2987 				    mtag->m_tag_id == 0)) {
2988 					l = 0;		/* exit inner loop */
2989 					break;
2990 				}
2991 				if (IS_CALL && (mtag == NULL ||
2992 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2993 					printf("ipfw: call stack error, "
2994 					    "go to next rule\n");
2995 					l = 0;		/* exit inner loop */
2996 					break;
2997 				}
2998 
2999 				IPFW_INC_RULE_COUNTER(f, pktlen);
3000 				stack = (uint16_t *)(mtag + 1);
3001 
3002 				/*
3003 				 * The `call' action may use cached f_pos
3004 				 * (in f->next_rule), whose version is written
3005 				 * in f->next_rule.
3006 				 * The `return' action, however, doesn't have
3007 				 * fixed jump address in cmd->arg1 and can't use
3008 				 * cache.
3009 				 */
3010 				if (IS_CALL) {
3011 					stack[mtag->m_tag_id] = f->rulenum;
3012 					mtag->m_tag_id++;
3013 			    		f_pos = JUMP(chain, f, cmd->arg1,
3014 					    tablearg, 1);
3015 				} else {	/* `return' action */
3016 					mtag->m_tag_id--;
3017 					jmpto = stack[mtag->m_tag_id] + 1;
3018 					f_pos = ipfw_find_rule(chain, jmpto, 0);
3019 				}
3020 
3021 				/*
3022 				 * Skip disabled rules, and re-enter
3023 				 * the inner loop with the correct
3024 				 * f_pos, f, l and cmd.
3025 				 * Also clear cmdlen and skip_or
3026 				 */
3027 				for (; f_pos < chain->n_rules - 1 &&
3028 				    (V_set_disable &
3029 				    (1 << chain->map[f_pos]->set)); f_pos++)
3030 					;
3031 				/* Re-enter the inner loop at the dest rule. */
3032 				f = chain->map[f_pos];
3033 				l = f->cmd_len;
3034 				cmd = f->cmd;
3035 				cmdlen = 0;
3036 				skip_or = 0;
3037 				continue;
3038 				break;	/* NOTREACHED */
3039 			}
3040 #undef IS_CALL
3041 #undef IS_RETURN
3042 
3043 			case O_REJECT:
3044 				/*
3045 				 * Drop the packet and send a reject notice
3046 				 * if the packet is not ICMP (or is an ICMP
3047 				 * query), and it is not multicast/broadcast.
3048 				 */
3049 				if (hlen > 0 && is_ipv4 && offset == 0 &&
3050 				    (proto != IPPROTO_ICMP ||
3051 				     is_icmp_query(ICMP(ulp))) &&
3052 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3053 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3054 					send_reject(args, cmd, iplen, ip);
3055 					m = args->m;
3056 				}
3057 				/* FALLTHROUGH */
3058 #ifdef INET6
3059 			case O_UNREACH6:
3060 				if (hlen > 0 && is_ipv6 &&
3061 				    ((offset & IP6F_OFF_MASK) == 0) &&
3062 				    (proto != IPPROTO_ICMPV6 ||
3063 				     (is_icmp6_query(icmp6_type) == 1)) &&
3064 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3065 				    !IN6_IS_ADDR_MULTICAST(
3066 					&args->f_id.dst_ip6)) {
3067 					send_reject6(args,
3068 					    cmd->opcode == O_REJECT ?
3069 					    map_icmp_unreach(cmd->arg1):
3070 					    cmd->arg1, hlen,
3071 					    (struct ip6_hdr *)ip);
3072 					m = args->m;
3073 				}
3074 				/* FALLTHROUGH */
3075 #endif
3076 			case O_DENY:
3077 				retval = IP_FW_DENY;
3078 				l = 0;		/* exit inner loop */
3079 				done = 1;	/* exit outer loop */
3080 				break;
3081 
3082 			case O_FORWARD_IP:
3083 				if (args->flags & IPFW_ARGS_ETHER)
3084 					break;	/* not valid on layer2 pkts */
3085 				if (q != f ||
3086 				    dyn_info.direction == MATCH_FORWARD) {
3087 				    struct sockaddr_in *sa;
3088 
3089 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
3090 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
3091 #ifdef INET6
3092 					/*
3093 					 * We use O_FORWARD_IP opcode for
3094 					 * fwd rule with tablearg, but tables
3095 					 * now support IPv6 addresses. And
3096 					 * when we are inspecting IPv6 packet,
3097 					 * we can use nh6 field from
3098 					 * table_value as next_hop6 address.
3099 					 */
3100 					if (is_ipv6) {
3101 						struct ip_fw_nh6 *nh6;
3102 
3103 						args->flags |= IPFW_ARGS_NH6;
3104 						nh6 = &args->hopstore6;
3105 						nh6->sin6_addr = TARG_VAL(
3106 						    chain, tablearg, nh6);
3107 						nh6->sin6_port = sa->sin_port;
3108 						nh6->sin6_scope_id = TARG_VAL(
3109 						    chain, tablearg, zoneid);
3110 					} else
3111 #endif
3112 					{
3113 						args->flags |= IPFW_ARGS_NH4;
3114 						args->hopstore.sin_port =
3115 						    sa->sin_port;
3116 						sa = &args->hopstore;
3117 						sa->sin_family = AF_INET;
3118 						sa->sin_len = sizeof(*sa);
3119 						sa->sin_addr.s_addr = htonl(
3120 						    TARG_VAL(chain, tablearg,
3121 						    nh4));
3122 					}
3123 				    } else {
3124 					    args->flags |= IPFW_ARGS_NH4PTR;
3125 					    args->next_hop = sa;
3126 				    }
3127 				}
3128 				retval = IP_FW_PASS;
3129 				l = 0;          /* exit inner loop */
3130 				done = 1;       /* exit outer loop */
3131 				break;
3132 
3133 #ifdef INET6
3134 			case O_FORWARD_IP6:
3135 				if (args->flags & IPFW_ARGS_ETHER)
3136 					break;	/* not valid on layer2 pkts */
3137 				if (q != f ||
3138 				    dyn_info.direction == MATCH_FORWARD) {
3139 					struct sockaddr_in6 *sin6;
3140 
3141 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3142 					args->flags |= IPFW_ARGS_NH6PTR;
3143 					args->next_hop6 = sin6;
3144 				}
3145 				retval = IP_FW_PASS;
3146 				l = 0;		/* exit inner loop */
3147 				done = 1;	/* exit outer loop */
3148 				break;
3149 #endif
3150 
3151 			case O_NETGRAPH:
3152 			case O_NGTEE:
3153 				set_match(args, f_pos, chain);
3154 				args->rule.info = TARG(cmd->arg1, netgraph);
3155 				if (V_fw_one_pass)
3156 					args->rule.info |= IPFW_ONEPASS;
3157 				retval = (cmd->opcode == O_NETGRAPH) ?
3158 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3159 				l = 0;          /* exit inner loop */
3160 				done = 1;       /* exit outer loop */
3161 				break;
3162 
3163 			case O_SETFIB: {
3164 				uint32_t fib;
3165 
3166 				IPFW_INC_RULE_COUNTER(f, pktlen);
3167 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3168 				if (fib >= rt_numfibs)
3169 					fib = 0;
3170 				M_SETFIB(m, fib);
3171 				args->f_id.fib = fib; /* XXX */
3172 				l = 0;		/* exit inner loop */
3173 				break;
3174 		        }
3175 
3176 			case O_SETDSCP: {
3177 				uint16_t code;
3178 
3179 				code = TARG(cmd->arg1, dscp) & 0x3F;
3180 				l = 0;		/* exit inner loop */
3181 				if (is_ipv4) {
3182 					uint16_t old;
3183 
3184 					old = *(uint16_t *)ip;
3185 					ip->ip_tos = (code << 2) |
3186 					    (ip->ip_tos & 0x03);
3187 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3188 					    old, *(uint16_t *)ip);
3189 				} else if (is_ipv6) {
3190 					/* update cached value */
3191 					args->f_id.flow_id6 =
3192 					    ntohl(*(uint32_t *)ip) & ~0x0FC00000;
3193 					args->f_id.flow_id6 |= code << 22;
3194 
3195 					*((uint32_t *)ip) =
3196 					    htonl(args->f_id.flow_id6);
3197 				} else
3198 					break;
3199 
3200 				IPFW_INC_RULE_COUNTER(f, pktlen);
3201 				break;
3202 			}
3203 
3204 			case O_NAT:
3205 				l = 0;          /* exit inner loop */
3206 				done = 1;       /* exit outer loop */
3207 				/*
3208 				 * Ensure that we do not invoke NAT handler for
3209 				 * non IPv4 packets. Libalias expects only IPv4.
3210 				 */
3211 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3212 				    retval = IP_FW_DENY;
3213 				    break;
3214 				}
3215 
3216 				struct cfg_nat *t;
3217 				int nat_id;
3218 
3219 				args->rule.info = 0;
3220 				set_match(args, f_pos, chain);
3221 				/* Check if this is 'global' nat rule */
3222 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3223 					retval = ipfw_nat_ptr(args, NULL, m);
3224 					break;
3225 				}
3226 				t = ((ipfw_insn_nat *)cmd)->nat;
3227 				if (t == NULL) {
3228 					nat_id = TARG(cmd->arg1, nat);
3229 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3230 
3231 					if (t == NULL) {
3232 					    retval = IP_FW_DENY;
3233 					    break;
3234 					}
3235 					if (cmd->arg1 != IP_FW_TARG)
3236 					    ((ipfw_insn_nat *)cmd)->nat = t;
3237 				}
3238 				retval = ipfw_nat_ptr(args, t, m);
3239 				break;
3240 
3241 			case O_REASS: {
3242 				int ip_off;
3243 
3244 				l = 0;	/* in any case exit inner loop */
3245 				if (is_ipv6) /* IPv6 is not supported yet */
3246 					break;
3247 				IPFW_INC_RULE_COUNTER(f, pktlen);
3248 				ip_off = ntohs(ip->ip_off);
3249 
3250 				/* if not fragmented, go to next rule */
3251 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3252 				    break;
3253 
3254 				args->m = m = ip_reass(m);
3255 
3256 				/*
3257 				 * do IP header checksum fixup.
3258 				 */
3259 				if (m == NULL) { /* fragment got swallowed */
3260 				    retval = IP_FW_DENY;
3261 				} else { /* good, packet complete */
3262 				    int hlen;
3263 
3264 				    ip = mtod(m, struct ip *);
3265 				    hlen = ip->ip_hl << 2;
3266 				    ip->ip_sum = 0;
3267 				    if (hlen == sizeof(struct ip))
3268 					ip->ip_sum = in_cksum_hdr(ip);
3269 				    else
3270 					ip->ip_sum = in_cksum(m, hlen);
3271 				    retval = IP_FW_REASS;
3272 				    args->rule.info = 0;
3273 				    set_match(args, f_pos, chain);
3274 				}
3275 				done = 1;	/* exit outer loop */
3276 				break;
3277 			}
3278 			case O_EXTERNAL_ACTION:
3279 				l = 0; /* in any case exit inner loop */
3280 				retval = ipfw_run_eaction(chain, args,
3281 				    cmd, &done);
3282 				/*
3283 				 * If both @retval and @done are zero,
3284 				 * consider this as rule matching and
3285 				 * update counters.
3286 				 */
3287 				if (retval == 0 && done == 0) {
3288 					IPFW_INC_RULE_COUNTER(f, pktlen);
3289 					/*
3290 					 * Reset the result of the last
3291 					 * dynamic state lookup.
3292 					 * External action can change
3293 					 * @args content, and it may be
3294 					 * used for new state lookup later.
3295 					 */
3296 					DYN_INFO_INIT(&dyn_info);
3297 				}
3298 				break;
3299 
3300 			default:
3301 				panic("-- unknown opcode %d\n", cmd->opcode);
3302 			} /* end of switch() on opcodes */
3303 			/*
3304 			 * if we get here with l=0, then match is irrelevant.
3305 			 */
3306 
3307 			if (cmd->len & F_NOT)
3308 				match = !match;
3309 
3310 			if (match) {
3311 				if (cmd->len & F_OR)
3312 					skip_or = 1;
3313 			} else {
3314 				if (!(cmd->len & F_OR)) /* not an OR block, */
3315 					break;		/* try next rule    */
3316 			}
3317 
3318 		}	/* end of inner loop, scan opcodes */
3319 #undef PULLUP_LEN
3320 #undef PULLUP_LEN_LOCKED
3321 
3322 		if (done)
3323 			break;
3324 
3325 /* next_rule:; */	/* try next rule		*/
3326 
3327 	}		/* end of outer for, scan rules */
3328 
3329 	if (done) {
3330 		struct ip_fw *rule = chain->map[f_pos];
3331 		/* Update statistics */
3332 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3333 		IPFW_PROBE(rule__matched, retval,
3334 		    is_ipv4 ? AF_INET : AF_INET6,
3335 		    is_ipv4 ? (uintptr_t)&src_ip :
3336 		        (uintptr_t)&args->f_id.src_ip6,
3337 		    is_ipv4 ? (uintptr_t)&dst_ip :
3338 		        (uintptr_t)&args->f_id.dst_ip6,
3339 		    args, rule);
3340 	} else {
3341 		retval = IP_FW_DENY;
3342 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3343 	}
3344 	IPFW_PF_RUNLOCK(chain);
3345 #ifdef __FreeBSD__
3346 	if (ucred_cache != NULL)
3347 		crfree(ucred_cache);
3348 #endif
3349 	return (retval);
3350 
3351 pullup_failed:
3352 	if (V_fw_verbose)
3353 		printf("ipfw: pullup failed\n");
3354 	return (IP_FW_DENY);
3355 }
3356 
3357 /*
3358  * Set maximum number of tables that can be used in given VNET ipfw instance.
3359  */
3360 #ifdef SYSCTL_NODE
3361 static int
3362 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3363 {
3364 	int error;
3365 	unsigned int ntables;
3366 
3367 	ntables = V_fw_tables_max;
3368 
3369 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3370 	/* Read operation or some error */
3371 	if ((error != 0) || (req->newptr == NULL))
3372 		return (error);
3373 
3374 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3375 }
3376 
3377 /*
3378  * Switches table namespace between global and per-set.
3379  */
3380 static int
3381 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3382 {
3383 	int error;
3384 	unsigned int sets;
3385 
3386 	sets = V_fw_tables_sets;
3387 
3388 	error = sysctl_handle_int(oidp, &sets, 0, req);
3389 	/* Read operation or some error */
3390 	if ((error != 0) || (req->newptr == NULL))
3391 		return (error);
3392 
3393 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3394 }
3395 #endif
3396 
3397 /*
3398  * Module and VNET glue
3399  */
3400 
3401 /*
3402  * Stuff that must be initialised only on boot or module load
3403  */
3404 static int
3405 ipfw_init(void)
3406 {
3407 	int error = 0;
3408 
3409 	/*
3410  	 * Only print out this stuff the first time around,
3411 	 * when called from the sysinit code.
3412 	 */
3413 	printf("ipfw2 "
3414 #ifdef INET6
3415 		"(+ipv6) "
3416 #endif
3417 		"initialized, divert %s, nat %s, "
3418 		"default to %s, logging ",
3419 #ifdef IPDIVERT
3420 		"enabled",
3421 #else
3422 		"loadable",
3423 #endif
3424 #ifdef IPFIREWALL_NAT
3425 		"enabled",
3426 #else
3427 		"loadable",
3428 #endif
3429 		default_to_accept ? "accept" : "deny");
3430 
3431 	/*
3432 	 * Note: V_xxx variables can be accessed here but the vnet specific
3433 	 * initializer may not have been called yet for the VIMAGE case.
3434 	 * Tuneables will have been processed. We will print out values for
3435 	 * the default vnet.
3436 	 * XXX This should all be rationalized AFTER 8.0
3437 	 */
3438 	if (V_fw_verbose == 0)
3439 		printf("disabled\n");
3440 	else if (V_verbose_limit == 0)
3441 		printf("unlimited\n");
3442 	else
3443 		printf("limited to %d packets/entry by default\n",
3444 		    V_verbose_limit);
3445 
3446 	/* Check user-supplied table count for validness */
3447 	if (default_fw_tables > IPFW_TABLES_MAX)
3448 	  default_fw_tables = IPFW_TABLES_MAX;
3449 
3450 	ipfw_init_sopt_handler();
3451 	ipfw_init_obj_rewriter();
3452 	ipfw_iface_init();
3453 	return (error);
3454 }
3455 
3456 /*
3457  * Called for the removal of the last instance only on module unload.
3458  */
3459 static void
3460 ipfw_destroy(void)
3461 {
3462 
3463 	ipfw_iface_destroy();
3464 	ipfw_destroy_sopt_handler();
3465 	ipfw_destroy_obj_rewriter();
3466 	printf("IP firewall unloaded\n");
3467 }
3468 
3469 /*
3470  * Stuff that must be initialized for every instance
3471  * (including the first of course).
3472  */
3473 static int
3474 vnet_ipfw_init(const void *unused)
3475 {
3476 	int error, first;
3477 	struct ip_fw *rule = NULL;
3478 	struct ip_fw_chain *chain;
3479 
3480 	chain = &V_layer3_chain;
3481 
3482 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3483 
3484 	/* First set up some values that are compile time options */
3485 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3486 	V_fw_deny_unknown_exthdrs = 1;
3487 #ifdef IPFIREWALL_VERBOSE
3488 	V_fw_verbose = 1;
3489 #endif
3490 #ifdef IPFIREWALL_VERBOSE_LIMIT
3491 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3492 #endif
3493 #ifdef IPFIREWALL_NAT
3494 	LIST_INIT(&chain->nat);
3495 #endif
3496 
3497 	/* Init shared services hash table */
3498 	ipfw_init_srv(chain);
3499 
3500 	ipfw_init_counters();
3501 	/* Set initial number of tables */
3502 	V_fw_tables_max = default_fw_tables;
3503 	error = ipfw_init_tables(chain, first);
3504 	if (error) {
3505 		printf("ipfw2: setting up tables failed\n");
3506 		free(chain->map, M_IPFW);
3507 		free(rule, M_IPFW);
3508 		return (ENOSPC);
3509 	}
3510 
3511 	IPFW_LOCK_INIT(chain);
3512 
3513 	/* fill and insert the default rule */
3514 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3515 	rule->flags |= IPFW_RULE_NOOPT;
3516 	rule->cmd_len = 1;
3517 	rule->cmd[0].len = 1;
3518 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3519 	chain->default_rule = rule;
3520 	ipfw_add_protected_rule(chain, rule, 0);
3521 
3522 	ipfw_dyn_init(chain);
3523 	ipfw_eaction_init(chain, first);
3524 #ifdef LINEAR_SKIPTO
3525 	ipfw_init_skipto_cache(chain);
3526 #endif
3527 	ipfw_bpf_init(first);
3528 
3529 	/* First set up some values that are compile time options */
3530 	V_ipfw_vnet_ready = 1;		/* Open for business */
3531 
3532 	/*
3533 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3534 	 * Even if the latter two fail we still keep the module alive
3535 	 * because the sockopt and layer2 paths are still useful.
3536 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3537 	 * so we can ignore the exact return value and just set a flag.
3538 	 *
3539 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3540 	 * changes in the underlying (per-vnet) variables trigger
3541 	 * immediate hook()/unhook() calls.
3542 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3543 	 * is checked on each packet because there are no pfil hooks.
3544 	 */
3545 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3546 	error = ipfw_attach_hooks();
3547 	return (error);
3548 }
3549 
3550 /*
3551  * Called for the removal of each instance.
3552  */
3553 static int
3554 vnet_ipfw_uninit(const void *unused)
3555 {
3556 	struct ip_fw *reap;
3557 	struct ip_fw_chain *chain = &V_layer3_chain;
3558 	int i, last;
3559 
3560 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3561 	/*
3562 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3563 	 * Then grab, release and grab again the WLOCK so we make
3564 	 * sure the update is propagated and nobody will be in.
3565 	 */
3566 	ipfw_detach_hooks();
3567 	V_ip_fw_ctl_ptr = NULL;
3568 
3569 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3570 
3571 	IPFW_UH_WLOCK(chain);
3572 	IPFW_UH_WUNLOCK(chain);
3573 
3574 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3575 
3576 	IPFW_UH_WLOCK(chain);
3577 
3578 	reap = NULL;
3579 	IPFW_WLOCK(chain);
3580 	for (i = 0; i < chain->n_rules; i++)
3581 		ipfw_reap_add(chain, &reap, chain->map[i]);
3582 	free(chain->map, M_IPFW);
3583 #ifdef LINEAR_SKIPTO
3584 	ipfw_destroy_skipto_cache(chain);
3585 #endif
3586 	IPFW_WUNLOCK(chain);
3587 	IPFW_UH_WUNLOCK(chain);
3588 	ipfw_destroy_tables(chain, last);
3589 	ipfw_eaction_uninit(chain, last);
3590 	if (reap != NULL)
3591 		ipfw_reap_rules(reap);
3592 	vnet_ipfw_iface_destroy(chain);
3593 	ipfw_destroy_srv(chain);
3594 	IPFW_LOCK_DESTROY(chain);
3595 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3596 	ipfw_destroy_counters();
3597 	ipfw_bpf_uninit(last);
3598 	return (0);
3599 }
3600 
3601 /*
3602  * Module event handler.
3603  * In general we have the choice of handling most of these events by the
3604  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3605  * use the SYSINIT handlers as they are more capable of expressing the
3606  * flow of control during module and vnet operations, so this is just
3607  * a skeleton. Note there is no SYSINIT equivalent of the module
3608  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3609  */
3610 static int
3611 ipfw_modevent(module_t mod, int type, void *unused)
3612 {
3613 	int err = 0;
3614 
3615 	switch (type) {
3616 	case MOD_LOAD:
3617 		/* Called once at module load or
3618 	 	 * system boot if compiled in. */
3619 		break;
3620 	case MOD_QUIESCE:
3621 		/* Called before unload. May veto unloading. */
3622 		break;
3623 	case MOD_UNLOAD:
3624 		/* Called during unload. */
3625 		break;
3626 	case MOD_SHUTDOWN:
3627 		/* Called during system shutdown. */
3628 		break;
3629 	default:
3630 		err = EOPNOTSUPP;
3631 		break;
3632 	}
3633 	return err;
3634 }
3635 
3636 static moduledata_t ipfwmod = {
3637 	"ipfw",
3638 	ipfw_modevent,
3639 	0
3640 };
3641 
3642 /* Define startup order. */
3643 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3644 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3645 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3646 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3647 
3648 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3649 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3650 MODULE_VERSION(ipfw, 3);
3651 /* should declare some dependencies here */
3652 
3653 /*
3654  * Starting up. Done in order after ipfwmod() has been called.
3655  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3656  */
3657 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3658 	    ipfw_init, NULL);
3659 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3660 	    vnet_ipfw_init, NULL);
3661 
3662 /*
3663  * Closing up shop. These are done in REVERSE ORDER, but still
3664  * after ipfwmod() has been called. Not called on reboot.
3665  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3666  * or when the module is unloaded.
3667  */
3668 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3669 	    ipfw_destroy, NULL);
3670 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3671 	    vnet_ipfw_uninit, NULL);
3672 /* end of file */
3673