xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision adc56f5a383771f594829b7db9c263b6f0dcf1bd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * The FreeBSD IP packet firewall, main file
33  */
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipdivert.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error "IPFIREWALL requires INET"
40 #endif /* INET */
41 #include "opt_inet6.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/counter.h>
47 #include <sys/eventhandler.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/jail.h>
53 #include <sys/module.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/rmlock.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/ucred.h>
63 #include <net/ethernet.h> /* for ETHERTYPE_IP */
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/route.h>
67 #include <net/pfil.h>
68 #include <net/vnet.h>
69 
70 #include <netpfil/pf/pf_mtag.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_var.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_icmp.h>
78 #include <netinet/ip_fw.h>
79 #include <netinet/ip_carp.h>
80 #include <netinet/pim.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84 #include <netinet/sctp.h>
85 #include <netinet/sctp_crc32.h>
86 #include <netinet/sctp_header.h>
87 
88 #include <netinet/ip6.h>
89 #include <netinet/icmp6.h>
90 #include <netinet/in_fib.h>
91 #ifdef INET6
92 #include <netinet6/in6_fib.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/scope6_var.h>
95 #include <netinet6/ip6_var.h>
96 #endif
97 
98 #include <net/if_gre.h> /* for struct grehdr */
99 
100 #include <netpfil/ipfw/ip_fw_private.h>
101 
102 #include <machine/in_cksum.h>	/* XXX for in_cksum */
103 
104 #ifdef MAC
105 #include <security/mac/mac_framework.h>
106 #endif
107 
108 /*
109  * static variables followed by global ones.
110  * All ipfw global variables are here.
111  */
112 
113 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
114 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
115 
116 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
117 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
118 
119 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
120 static int default_to_accept = 1;
121 #else
122 static int default_to_accept;
123 #endif
124 
125 VNET_DEFINE(int, autoinc_step);
126 VNET_DEFINE(int, fw_one_pass) = 1;
127 
128 VNET_DEFINE(unsigned int, fw_tables_max);
129 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
130 /* Use 128 tables by default */
131 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
132 
133 #ifndef LINEAR_SKIPTO
134 static int jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
135     int tablearg, int jump_backwards);
136 #define	JUMP(ch, f, num, targ, back)	jump_fast(ch, f, num, targ, back)
137 #else
138 static int jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
139     int tablearg, int jump_backwards);
140 #define	JUMP(ch, f, num, targ, back)	jump_linear(ch, f, num, targ, back)
141 #endif
142 
143 /*
144  * Each rule belongs to one of 32 different sets (0..31).
145  * The variable set_disable contains one bit per set.
146  * If the bit is set, all rules in the corresponding set
147  * are disabled. Set RESVD_SET(31) is reserved for the default rule
148  * and rules that are not deleted by the flush command,
149  * and CANNOT be disabled.
150  * Rules in set RESVD_SET can only be deleted individually.
151  */
152 VNET_DEFINE(u_int32_t, set_disable);
153 #define	V_set_disable			VNET(set_disable)
154 
155 VNET_DEFINE(int, fw_verbose);
156 /* counter for ipfw_log(NULL...) */
157 VNET_DEFINE(u_int64_t, norule_counter);
158 VNET_DEFINE(int, verbose_limit);
159 
160 /* layer3_chain contains the list of rules for layer 3 */
161 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
162 
163 /* ipfw_vnet_ready controls when we are open for business */
164 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
165 
166 VNET_DEFINE(int, ipfw_nat_ready) = 0;
167 
168 ipfw_nat_t *ipfw_nat_ptr = NULL;
169 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
170 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
171 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
172 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
173 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
174 
175 #ifdef SYSCTL_NODE
176 uint32_t dummy_def = IPFW_DEFAULT_RULE;
177 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
178 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
179 
180 SYSBEGIN(f3)
181 
182 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
183 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
184     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
185     "Only do a single pass through ipfw when using dummynet(4)");
186 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
187     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
188     "Rule number auto-increment step");
189 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
190     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
191     "Log matches to ipfw rules");
192 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
193     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
194     "Set upper limit of matches of ipfw rules logged");
195 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
196     &dummy_def, 0,
197     "The default/max possible rule number.");
198 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
199     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
200     "Maximum number of concurrently used tables");
201 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
202     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
203     0, 0, sysctl_ipfw_tables_sets, "IU",
204     "Use per-set namespace for tables");
205 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
206     &default_to_accept, 0,
207     "Make the default rule accept all packets.");
208 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
209 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
210     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
211     "Number of static rules");
212 
213 #ifdef INET6
214 SYSCTL_DECL(_net_inet6_ip6);
215 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
216 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
217     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
218     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
219     "Deny packets with unknown IPv6 Extension Headers");
220 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
221     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
222     &VNET_NAME(fw_permit_single_frag6), 0,
223     "Permit single packet IPv6 fragments");
224 #endif /* INET6 */
225 
226 SYSEND
227 
228 #endif /* SYSCTL_NODE */
229 
230 
231 /*
232  * Some macros used in the various matching options.
233  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
234  * Other macros just cast void * into the appropriate type
235  */
236 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
237 #define	TCP(p)		((struct tcphdr *)(p))
238 #define	SCTP(p)		((struct sctphdr *)(p))
239 #define	UDP(p)		((struct udphdr *)(p))
240 #define	ICMP(p)		((struct icmphdr *)(p))
241 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
242 
243 static __inline int
244 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
245 {
246 	int type = icmp->icmp_type;
247 
248 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
249 }
250 
251 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
252     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
253 
254 static int
255 is_icmp_query(struct icmphdr *icmp)
256 {
257 	int type = icmp->icmp_type;
258 
259 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
260 }
261 #undef TT
262 
263 /*
264  * The following checks use two arrays of 8 or 16 bits to store the
265  * bits that we want set or clear, respectively. They are in the
266  * low and high half of cmd->arg1 or cmd->d[0].
267  *
268  * We scan options and store the bits we find set. We succeed if
269  *
270  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
271  *
272  * The code is sometimes optimized not to store additional variables.
273  */
274 
275 static int
276 flags_match(ipfw_insn *cmd, u_int8_t bits)
277 {
278 	u_char want_clear;
279 	bits = ~bits;
280 
281 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
282 		return 0; /* some bits we want set were clear */
283 	want_clear = (cmd->arg1 >> 8) & 0xff;
284 	if ( (want_clear & bits) != want_clear)
285 		return 0; /* some bits we want clear were set */
286 	return 1;
287 }
288 
289 static int
290 ipopts_match(struct ip *ip, ipfw_insn *cmd)
291 {
292 	int optlen, bits = 0;
293 	u_char *cp = (u_char *)(ip + 1);
294 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
295 
296 	for (; x > 0; x -= optlen, cp += optlen) {
297 		int opt = cp[IPOPT_OPTVAL];
298 
299 		if (opt == IPOPT_EOL)
300 			break;
301 		if (opt == IPOPT_NOP)
302 			optlen = 1;
303 		else {
304 			optlen = cp[IPOPT_OLEN];
305 			if (optlen <= 0 || optlen > x)
306 				return 0; /* invalid or truncated */
307 		}
308 		switch (opt) {
309 
310 		default:
311 			break;
312 
313 		case IPOPT_LSRR:
314 			bits |= IP_FW_IPOPT_LSRR;
315 			break;
316 
317 		case IPOPT_SSRR:
318 			bits |= IP_FW_IPOPT_SSRR;
319 			break;
320 
321 		case IPOPT_RR:
322 			bits |= IP_FW_IPOPT_RR;
323 			break;
324 
325 		case IPOPT_TS:
326 			bits |= IP_FW_IPOPT_TS;
327 			break;
328 		}
329 	}
330 	return (flags_match(cmd, bits));
331 }
332 
333 static int
334 tcpopts_parse(struct tcphdr *tcp, uint16_t *mss)
335 {
336 	u_char *cp = (u_char *)(tcp + 1);
337 	int optlen, bits = 0;
338 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
339 
340 	for (; x > 0; x -= optlen, cp += optlen) {
341 		int opt = cp[0];
342 		if (opt == TCPOPT_EOL)
343 			break;
344 		if (opt == TCPOPT_NOP)
345 			optlen = 1;
346 		else {
347 			optlen = cp[1];
348 			if (optlen <= 0)
349 				break;
350 		}
351 
352 		switch (opt) {
353 		default:
354 			break;
355 
356 		case TCPOPT_MAXSEG:
357 			bits |= IP_FW_TCPOPT_MSS;
358 			if (mss != NULL)
359 				*mss = be16dec(cp + 2);
360 			break;
361 
362 		case TCPOPT_WINDOW:
363 			bits |= IP_FW_TCPOPT_WINDOW;
364 			break;
365 
366 		case TCPOPT_SACK_PERMITTED:
367 		case TCPOPT_SACK:
368 			bits |= IP_FW_TCPOPT_SACK;
369 			break;
370 
371 		case TCPOPT_TIMESTAMP:
372 			bits |= IP_FW_TCPOPT_TS;
373 			break;
374 		}
375 	}
376 	return (bits);
377 }
378 
379 static int
380 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
381 {
382 
383 	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
384 }
385 
386 static int
387 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
388     uint32_t *tablearg)
389 {
390 
391 	if (ifp == NULL)	/* no iface with this packet, match fails */
392 		return (0);
393 
394 	/* Check by name or by IP address */
395 	if (cmd->name[0] != '\0') { /* match by name */
396 		if (cmd->name[0] == '\1') /* use tablearg to match */
397 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
398 			    &ifp->if_index, tablearg);
399 		/* Check name */
400 		if (cmd->p.glob) {
401 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
402 				return(1);
403 		} else {
404 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
405 				return(1);
406 		}
407 	} else {
408 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
409 		struct ifaddr *ia;
410 
411 		NET_EPOCH_ASSERT();
412 
413 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
414 			if (ia->ifa_addr->sa_family != AF_INET)
415 				continue;
416 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
417 			    (ia->ifa_addr))->sin_addr.s_addr)
418 				return (1);	/* match */
419 		}
420 #endif /* __FreeBSD__ */
421 	}
422 	return(0);	/* no match, fail ... */
423 }
424 
425 /*
426  * The verify_path function checks if a route to the src exists and
427  * if it is reachable via ifp (when provided).
428  *
429  * The 'verrevpath' option checks that the interface that an IP packet
430  * arrives on is the same interface that traffic destined for the
431  * packet's source address would be routed out of.
432  * The 'versrcreach' option just checks that the source address is
433  * reachable via any route (except default) in the routing table.
434  * These two are a measure to block forged packets. This is also
435  * commonly known as "anti-spoofing" or Unicast Reverse Path
436  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
437  * is purposely reminiscent of the Cisco IOS command,
438  *
439  *   ip verify unicast reverse-path
440  *   ip verify unicast source reachable-via any
441  *
442  * which implements the same functionality. But note that the syntax
443  * is misleading, and the check may be performed on all IP packets
444  * whether unicast, multicast, or broadcast.
445  */
446 static int
447 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
448 {
449 #if defined(USERSPACE) || !defined(__FreeBSD__)
450 	return 0;
451 #else
452 	struct nhop4_basic nh4;
453 
454 	if (fib4_lookup_nh_basic(fib, src, NHR_IFAIF, 0, &nh4) != 0)
455 		return (0);
456 
457 	/*
458 	 * If ifp is provided, check for equality with rtentry.
459 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
460 	 * in order to pass packets injected back by if_simloop():
461 	 * routing entry (via lo0) for our own address
462 	 * may exist, so we need to handle routing assymetry.
463 	 */
464 	if (ifp != NULL && ifp != nh4.nh_ifp)
465 		return (0);
466 
467 	/* if no ifp provided, check if rtentry is not default route */
468 	if (ifp == NULL && (nh4.nh_flags & NHF_DEFAULT) != 0)
469 		return (0);
470 
471 	/* or if this is a blackhole/reject route */
472 	if (ifp == NULL && (nh4.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
473 		return (0);
474 
475 	/* found valid route */
476 	return 1;
477 #endif /* __FreeBSD__ */
478 }
479 
480 /*
481  * Generate an SCTP packet containing an ABORT chunk. The verification tag
482  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
483  * reflected is not 0.
484  */
485 
486 static struct mbuf *
487 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
488     int reflected)
489 {
490 	struct mbuf *m;
491 	struct ip *ip;
492 #ifdef INET6
493 	struct ip6_hdr *ip6;
494 #endif
495 	struct sctphdr *sctp;
496 	struct sctp_chunkhdr *chunk;
497 	u_int16_t hlen, plen, tlen;
498 
499 	MGETHDR(m, M_NOWAIT, MT_DATA);
500 	if (m == NULL)
501 		return (NULL);
502 
503 	M_SETFIB(m, id->fib);
504 #ifdef MAC
505 	if (replyto != NULL)
506 		mac_netinet_firewall_reply(replyto, m);
507 	else
508 		mac_netinet_firewall_send(m);
509 #else
510 	(void)replyto;		/* don't warn about unused arg */
511 #endif
512 
513 	switch (id->addr_type) {
514 	case 4:
515 		hlen = sizeof(struct ip);
516 		break;
517 #ifdef INET6
518 	case 6:
519 		hlen = sizeof(struct ip6_hdr);
520 		break;
521 #endif
522 	default:
523 		/* XXX: log me?!? */
524 		FREE_PKT(m);
525 		return (NULL);
526 	}
527 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
528 	tlen = hlen + plen;
529 	m->m_data += max_linkhdr;
530 	m->m_flags |= M_SKIP_FIREWALL;
531 	m->m_pkthdr.len = m->m_len = tlen;
532 	m->m_pkthdr.rcvif = NULL;
533 	bzero(m->m_data, tlen);
534 
535 	switch (id->addr_type) {
536 	case 4:
537 		ip = mtod(m, struct ip *);
538 
539 		ip->ip_v = 4;
540 		ip->ip_hl = sizeof(struct ip) >> 2;
541 		ip->ip_tos = IPTOS_LOWDELAY;
542 		ip->ip_len = htons(tlen);
543 		ip->ip_id = htons(0);
544 		ip->ip_off = htons(0);
545 		ip->ip_ttl = V_ip_defttl;
546 		ip->ip_p = IPPROTO_SCTP;
547 		ip->ip_sum = 0;
548 		ip->ip_src.s_addr = htonl(id->dst_ip);
549 		ip->ip_dst.s_addr = htonl(id->src_ip);
550 
551 		sctp = (struct sctphdr *)(ip + 1);
552 		break;
553 #ifdef INET6
554 	case 6:
555 		ip6 = mtod(m, struct ip6_hdr *);
556 
557 		ip6->ip6_vfc = IPV6_VERSION;
558 		ip6->ip6_plen = htons(plen);
559 		ip6->ip6_nxt = IPPROTO_SCTP;
560 		ip6->ip6_hlim = IPV6_DEFHLIM;
561 		ip6->ip6_src = id->dst_ip6;
562 		ip6->ip6_dst = id->src_ip6;
563 
564 		sctp = (struct sctphdr *)(ip6 + 1);
565 		break;
566 #endif
567 	}
568 
569 	sctp->src_port = htons(id->dst_port);
570 	sctp->dest_port = htons(id->src_port);
571 	sctp->v_tag = htonl(vtag);
572 	sctp->checksum = htonl(0);
573 
574 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
575 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
576 	chunk->chunk_flags = 0;
577 	if (reflected != 0) {
578 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
579 	}
580 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
581 
582 	sctp->checksum = sctp_calculate_cksum(m, hlen);
583 
584 	return (m);
585 }
586 
587 /*
588  * Generate a TCP packet, containing either a RST or a keepalive.
589  * When flags & TH_RST, we are sending a RST packet, because of a
590  * "reset" action matched the packet.
591  * Otherwise we are sending a keepalive, and flags & TH_
592  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
593  * so that MAC can label the reply appropriately.
594  */
595 struct mbuf *
596 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
597     u_int32_t ack, int flags)
598 {
599 	struct mbuf *m = NULL;		/* stupid compiler */
600 	struct ip *h = NULL;		/* stupid compiler */
601 #ifdef INET6
602 	struct ip6_hdr *h6 = NULL;
603 #endif
604 	struct tcphdr *th = NULL;
605 	int len, dir;
606 
607 	MGETHDR(m, M_NOWAIT, MT_DATA);
608 	if (m == NULL)
609 		return (NULL);
610 
611 	M_SETFIB(m, id->fib);
612 #ifdef MAC
613 	if (replyto != NULL)
614 		mac_netinet_firewall_reply(replyto, m);
615 	else
616 		mac_netinet_firewall_send(m);
617 #else
618 	(void)replyto;		/* don't warn about unused arg */
619 #endif
620 
621 	switch (id->addr_type) {
622 	case 4:
623 		len = sizeof(struct ip) + sizeof(struct tcphdr);
624 		break;
625 #ifdef INET6
626 	case 6:
627 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
628 		break;
629 #endif
630 	default:
631 		/* XXX: log me?!? */
632 		FREE_PKT(m);
633 		return (NULL);
634 	}
635 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
636 
637 	m->m_data += max_linkhdr;
638 	m->m_flags |= M_SKIP_FIREWALL;
639 	m->m_pkthdr.len = m->m_len = len;
640 	m->m_pkthdr.rcvif = NULL;
641 	bzero(m->m_data, len);
642 
643 	switch (id->addr_type) {
644 	case 4:
645 		h = mtod(m, struct ip *);
646 
647 		/* prepare for checksum */
648 		h->ip_p = IPPROTO_TCP;
649 		h->ip_len = htons(sizeof(struct tcphdr));
650 		if (dir) {
651 			h->ip_src.s_addr = htonl(id->src_ip);
652 			h->ip_dst.s_addr = htonl(id->dst_ip);
653 		} else {
654 			h->ip_src.s_addr = htonl(id->dst_ip);
655 			h->ip_dst.s_addr = htonl(id->src_ip);
656 		}
657 
658 		th = (struct tcphdr *)(h + 1);
659 		break;
660 #ifdef INET6
661 	case 6:
662 		h6 = mtod(m, struct ip6_hdr *);
663 
664 		/* prepare for checksum */
665 		h6->ip6_nxt = IPPROTO_TCP;
666 		h6->ip6_plen = htons(sizeof(struct tcphdr));
667 		if (dir) {
668 			h6->ip6_src = id->src_ip6;
669 			h6->ip6_dst = id->dst_ip6;
670 		} else {
671 			h6->ip6_src = id->dst_ip6;
672 			h6->ip6_dst = id->src_ip6;
673 		}
674 
675 		th = (struct tcphdr *)(h6 + 1);
676 		break;
677 #endif
678 	}
679 
680 	if (dir) {
681 		th->th_sport = htons(id->src_port);
682 		th->th_dport = htons(id->dst_port);
683 	} else {
684 		th->th_sport = htons(id->dst_port);
685 		th->th_dport = htons(id->src_port);
686 	}
687 	th->th_off = sizeof(struct tcphdr) >> 2;
688 
689 	if (flags & TH_RST) {
690 		if (flags & TH_ACK) {
691 			th->th_seq = htonl(ack);
692 			th->th_flags = TH_RST;
693 		} else {
694 			if (flags & TH_SYN)
695 				seq++;
696 			th->th_ack = htonl(seq);
697 			th->th_flags = TH_RST | TH_ACK;
698 		}
699 	} else {
700 		/*
701 		 * Keepalive - use caller provided sequence numbers
702 		 */
703 		th->th_seq = htonl(seq);
704 		th->th_ack = htonl(ack);
705 		th->th_flags = TH_ACK;
706 	}
707 
708 	switch (id->addr_type) {
709 	case 4:
710 		th->th_sum = in_cksum(m, len);
711 
712 		/* finish the ip header */
713 		h->ip_v = 4;
714 		h->ip_hl = sizeof(*h) >> 2;
715 		h->ip_tos = IPTOS_LOWDELAY;
716 		h->ip_off = htons(0);
717 		h->ip_len = htons(len);
718 		h->ip_ttl = V_ip_defttl;
719 		h->ip_sum = 0;
720 		break;
721 #ifdef INET6
722 	case 6:
723 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
724 		    sizeof(struct tcphdr));
725 
726 		/* finish the ip6 header */
727 		h6->ip6_vfc |= IPV6_VERSION;
728 		h6->ip6_hlim = IPV6_DEFHLIM;
729 		break;
730 #endif
731 	}
732 
733 	return (m);
734 }
735 
736 #ifdef INET6
737 /*
738  * ipv6 specific rules here...
739  */
740 static __inline int
741 icmp6type_match (int type, ipfw_insn_u32 *cmd)
742 {
743 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
744 }
745 
746 static int
747 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
748 {
749 	int i;
750 	for (i=0; i <= cmd->o.arg1; ++i )
751 		if (curr_flow == cmd->d[i] )
752 			return 1;
753 	return 0;
754 }
755 
756 /* support for IP6_*_ME opcodes */
757 static const struct in6_addr lla_mask = {{{
758 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
759 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
760 }}};
761 
762 static int
763 ipfw_localip6(struct in6_addr *in6)
764 {
765 	struct rm_priotracker in6_ifa_tracker;
766 	struct in6_ifaddr *ia;
767 
768 	if (IN6_IS_ADDR_MULTICAST(in6))
769 		return (0);
770 
771 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
772 		return (in6_localip(in6));
773 
774 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
775 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
776 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
777 			continue;
778 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
779 		    in6, &lla_mask)) {
780 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
781 			return (1);
782 		}
783 	}
784 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
785 	return (0);
786 }
787 
788 static int
789 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
790 {
791 	struct nhop6_basic nh6;
792 
793 	if (IN6_IS_SCOPE_LINKLOCAL(src))
794 		return (1);
795 
796 	if (fib6_lookup_nh_basic(fib, src, 0, NHR_IFAIF, 0, &nh6) != 0)
797 		return (0);
798 
799 	/* If ifp is provided, check for equality with route table. */
800 	if (ifp != NULL && ifp != nh6.nh_ifp)
801 		return (0);
802 
803 	/* if no ifp provided, check if rtentry is not default route */
804 	if (ifp == NULL && (nh6.nh_flags & NHF_DEFAULT) != 0)
805 		return (0);
806 
807 	/* or if this is a blackhole/reject route */
808 	if (ifp == NULL && (nh6.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
809 		return (0);
810 
811 	/* found valid route */
812 	return 1;
813 }
814 
815 static int
816 is_icmp6_query(int icmp6_type)
817 {
818 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
819 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
820 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
821 	    icmp6_type == ICMP6_WRUREQUEST ||
822 	    icmp6_type == ICMP6_FQDN_QUERY ||
823 	    icmp6_type == ICMP6_NI_QUERY))
824 		return (1);
825 
826 	return (0);
827 }
828 
829 static int
830 map_icmp_unreach(int code)
831 {
832 
833 	/* RFC 7915 p4.2 */
834 	switch (code) {
835 	case ICMP_UNREACH_NET:
836 	case ICMP_UNREACH_HOST:
837 	case ICMP_UNREACH_SRCFAIL:
838 	case ICMP_UNREACH_NET_UNKNOWN:
839 	case ICMP_UNREACH_HOST_UNKNOWN:
840 	case ICMP_UNREACH_TOSNET:
841 	case ICMP_UNREACH_TOSHOST:
842 		return (ICMP6_DST_UNREACH_NOROUTE);
843 	case ICMP_UNREACH_PORT:
844 		return (ICMP6_DST_UNREACH_NOPORT);
845 	default:
846 		/*
847 		 * Map the rest of codes into admit prohibited.
848 		 * XXX: unreach proto should be mapped into ICMPv6
849 		 * parameter problem, but we use only unreach type.
850 		 */
851 		return (ICMP6_DST_UNREACH_ADMIN);
852 	}
853 }
854 
855 static void
856 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
857 {
858 	struct mbuf *m;
859 
860 	m = args->m;
861 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
862 		struct tcphdr *tcp;
863 		tcp = (struct tcphdr *)((char *)ip6 + hlen);
864 
865 		if ((tcp->th_flags & TH_RST) == 0) {
866 			struct mbuf *m0;
867 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
868 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
869 			    tcp->th_flags | TH_RST);
870 			if (m0 != NULL)
871 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
872 				    NULL);
873 		}
874 		FREE_PKT(m);
875 	} else if (code == ICMP6_UNREACH_ABORT &&
876 	    args->f_id.proto == IPPROTO_SCTP) {
877 		struct mbuf *m0;
878 		struct sctphdr *sctp;
879 		u_int32_t v_tag;
880 		int reflected;
881 
882 		sctp = (struct sctphdr *)((char *)ip6 + hlen);
883 		reflected = 1;
884 		v_tag = ntohl(sctp->v_tag);
885 		/* Investigate the first chunk header if available */
886 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
887 		    sizeof(struct sctp_chunkhdr)) {
888 			struct sctp_chunkhdr *chunk;
889 
890 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
891 			switch (chunk->chunk_type) {
892 			case SCTP_INITIATION:
893 				/*
894 				 * Packets containing an INIT chunk MUST have
895 				 * a zero v-tag.
896 				 */
897 				if (v_tag != 0) {
898 					v_tag = 0;
899 					break;
900 				}
901 				/* INIT chunk MUST NOT be bundled */
902 				if (m->m_pkthdr.len >
903 				    hlen + sizeof(struct sctphdr) +
904 				    ntohs(chunk->chunk_length) + 3) {
905 					break;
906 				}
907 				/* Use the initiate tag if available */
908 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
909 				    sizeof(struct sctp_chunkhdr) +
910 				    offsetof(struct sctp_init, a_rwnd))) {
911 					struct sctp_init *init;
912 
913 					init = (struct sctp_init *)(chunk + 1);
914 					v_tag = ntohl(init->initiate_tag);
915 					reflected = 0;
916 				}
917 				break;
918 			case SCTP_ABORT_ASSOCIATION:
919 				/*
920 				 * If the packet contains an ABORT chunk, don't
921 				 * reply.
922 				 * XXX: We should search through all chunks,
923 				 *      but don't do to avoid attacks.
924 				 */
925 				v_tag = 0;
926 				break;
927 			}
928 		}
929 		if (v_tag == 0) {
930 			m0 = NULL;
931 		} else {
932 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
933 			    reflected);
934 		}
935 		if (m0 != NULL)
936 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
937 		FREE_PKT(m);
938 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
939 		/* Send an ICMPv6 unreach. */
940 #if 0
941 		/*
942 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
943 		 * as the contents are read. We need to m_adj() the
944 		 * needed amount.
945 		 * The mbuf will however be thrown away so we can adjust it.
946 		 * Remember we did an m_pullup on it already so we
947 		 * can make some assumptions about contiguousness.
948 		 */
949 		if (args->L3offset)
950 			m_adj(m, args->L3offset);
951 #endif
952 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
953 	} else
954 		FREE_PKT(m);
955 
956 	args->m = NULL;
957 }
958 
959 #endif /* INET6 */
960 
961 
962 /*
963  * sends a reject message, consuming the mbuf passed as an argument.
964  */
965 static void
966 send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
967 {
968 
969 #if 0
970 	/* XXX When ip is not guaranteed to be at mtod() we will
971 	 * need to account for this */
972 	 * The mbuf will however be thrown away so we can adjust it.
973 	 * Remember we did an m_pullup on it already so we
974 	 * can make some assumptions about contiguousness.
975 	 */
976 	if (args->L3offset)
977 		m_adj(m, args->L3offset);
978 #endif
979 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
980 		/* Send an ICMP unreach */
981 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
982 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
983 		struct tcphdr *const tcp =
984 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
985 		if ( (tcp->th_flags & TH_RST) == 0) {
986 			struct mbuf *m;
987 			m = ipfw_send_pkt(args->m, &(args->f_id),
988 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
989 				tcp->th_flags | TH_RST);
990 			if (m != NULL)
991 				ip_output(m, NULL, NULL, 0, NULL, NULL);
992 		}
993 		FREE_PKT(args->m);
994 	} else if (code == ICMP_REJECT_ABORT &&
995 	    args->f_id.proto == IPPROTO_SCTP) {
996 		struct mbuf *m;
997 		struct sctphdr *sctp;
998 		struct sctp_chunkhdr *chunk;
999 		struct sctp_init *init;
1000 		u_int32_t v_tag;
1001 		int reflected;
1002 
1003 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1004 		reflected = 1;
1005 		v_tag = ntohl(sctp->v_tag);
1006 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1007 		    sizeof(struct sctp_chunkhdr)) {
1008 			/* Look at the first chunk header if available */
1009 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1010 			switch (chunk->chunk_type) {
1011 			case SCTP_INITIATION:
1012 				/*
1013 				 * Packets containing an INIT chunk MUST have
1014 				 * a zero v-tag.
1015 				 */
1016 				if (v_tag != 0) {
1017 					v_tag = 0;
1018 					break;
1019 				}
1020 				/* INIT chunk MUST NOT be bundled */
1021 				if (iplen >
1022 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1023 				    ntohs(chunk->chunk_length) + 3) {
1024 					break;
1025 				}
1026 				/* Use the initiate tag if available */
1027 				if ((iplen >= (ip->ip_hl << 2) +
1028 				    sizeof(struct sctphdr) +
1029 				    sizeof(struct sctp_chunkhdr) +
1030 				    offsetof(struct sctp_init, a_rwnd))) {
1031 					init = (struct sctp_init *)(chunk + 1);
1032 					v_tag = ntohl(init->initiate_tag);
1033 					reflected = 0;
1034 				}
1035 				break;
1036 			case SCTP_ABORT_ASSOCIATION:
1037 				/*
1038 				 * If the packet contains an ABORT chunk, don't
1039 				 * reply.
1040 				 * XXX: We should search through all chunks,
1041 				 * but don't do to avoid attacks.
1042 				 */
1043 				v_tag = 0;
1044 				break;
1045 			}
1046 		}
1047 		if (v_tag == 0) {
1048 			m = NULL;
1049 		} else {
1050 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1051 			    reflected);
1052 		}
1053 		if (m != NULL)
1054 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1055 		FREE_PKT(args->m);
1056 	} else
1057 		FREE_PKT(args->m);
1058 	args->m = NULL;
1059 }
1060 
1061 /*
1062  * Support for uid/gid/jail lookup. These tests are expensive
1063  * (because we may need to look into the list of active sockets)
1064  * so we cache the results. ugid_lookupp is 0 if we have not
1065  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1066  * and failed. The function always returns the match value.
1067  * We could actually spare the variable and use *uc, setting
1068  * it to '(void *)check_uidgid if we have no info, NULL if
1069  * we tried and failed, or any other value if successful.
1070  */
1071 static int
1072 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1073     struct ucred **uc)
1074 {
1075 #if defined(USERSPACE)
1076 	return 0;	// not supported in userspace
1077 #else
1078 #ifndef __FreeBSD__
1079 	/* XXX */
1080 	return cred_check(insn, proto, oif,
1081 	    dst_ip, dst_port, src_ip, src_port,
1082 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1083 #else  /* FreeBSD */
1084 	struct in_addr src_ip, dst_ip;
1085 	struct inpcbinfo *pi;
1086 	struct ipfw_flow_id *id;
1087 	struct inpcb *pcb, *inp;
1088 	int lookupflags;
1089 	int match;
1090 
1091 	id = &args->f_id;
1092 	inp = args->inp;
1093 
1094 	/*
1095 	 * Check to see if the UDP or TCP stack supplied us with
1096 	 * the PCB. If so, rather then holding a lock and looking
1097 	 * up the PCB, we can use the one that was supplied.
1098 	 */
1099 	if (inp && *ugid_lookupp == 0) {
1100 		INP_LOCK_ASSERT(inp);
1101 		if (inp->inp_socket != NULL) {
1102 			*uc = crhold(inp->inp_cred);
1103 			*ugid_lookupp = 1;
1104 		} else
1105 			*ugid_lookupp = -1;
1106 	}
1107 	/*
1108 	 * If we have already been here and the packet has no
1109 	 * PCB entry associated with it, then we can safely
1110 	 * assume that this is a no match.
1111 	 */
1112 	if (*ugid_lookupp == -1)
1113 		return (0);
1114 	if (id->proto == IPPROTO_TCP) {
1115 		lookupflags = 0;
1116 		pi = &V_tcbinfo;
1117 	} else if (id->proto == IPPROTO_UDP) {
1118 		lookupflags = INPLOOKUP_WILDCARD;
1119 		pi = &V_udbinfo;
1120 	} else if (id->proto == IPPROTO_UDPLITE) {
1121 		lookupflags = INPLOOKUP_WILDCARD;
1122 		pi = &V_ulitecbinfo;
1123 	} else
1124 		return 0;
1125 	lookupflags |= INPLOOKUP_RLOCKPCB;
1126 	match = 0;
1127 	if (*ugid_lookupp == 0) {
1128 		if (id->addr_type == 6) {
1129 #ifdef INET6
1130 			if (args->flags & IPFW_ARGS_IN)
1131 				pcb = in6_pcblookup_mbuf(pi,
1132 				    &id->src_ip6, htons(id->src_port),
1133 				    &id->dst_ip6, htons(id->dst_port),
1134 				    lookupflags, NULL, args->m);
1135 			else
1136 				pcb = in6_pcblookup_mbuf(pi,
1137 				    &id->dst_ip6, htons(id->dst_port),
1138 				    &id->src_ip6, htons(id->src_port),
1139 				    lookupflags, args->ifp, args->m);
1140 #else
1141 			*ugid_lookupp = -1;
1142 			return (0);
1143 #endif
1144 		} else {
1145 			src_ip.s_addr = htonl(id->src_ip);
1146 			dst_ip.s_addr = htonl(id->dst_ip);
1147 			if (args->flags & IPFW_ARGS_IN)
1148 				pcb = in_pcblookup_mbuf(pi,
1149 				    src_ip, htons(id->src_port),
1150 				    dst_ip, htons(id->dst_port),
1151 				    lookupflags, NULL, args->m);
1152 			else
1153 				pcb = in_pcblookup_mbuf(pi,
1154 				    dst_ip, htons(id->dst_port),
1155 				    src_ip, htons(id->src_port),
1156 				    lookupflags, args->ifp, args->m);
1157 		}
1158 		if (pcb != NULL) {
1159 			INP_RLOCK_ASSERT(pcb);
1160 			*uc = crhold(pcb->inp_cred);
1161 			*ugid_lookupp = 1;
1162 			INP_RUNLOCK(pcb);
1163 		}
1164 		if (*ugid_lookupp == 0) {
1165 			/*
1166 			 * We tried and failed, set the variable to -1
1167 			 * so we will not try again on this packet.
1168 			 */
1169 			*ugid_lookupp = -1;
1170 			return (0);
1171 		}
1172 	}
1173 	if (insn->o.opcode == O_UID)
1174 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1175 	else if (insn->o.opcode == O_GID)
1176 		match = groupmember((gid_t)insn->d[0], *uc);
1177 	else if (insn->o.opcode == O_JAIL)
1178 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1179 	return (match);
1180 #endif /* __FreeBSD__ */
1181 #endif /* not supported in userspace */
1182 }
1183 
1184 /*
1185  * Helper function to set args with info on the rule after the matching
1186  * one. slot is precise, whereas we guess rule_id as they are
1187  * assigned sequentially.
1188  */
1189 static inline void
1190 set_match(struct ip_fw_args *args, int slot,
1191 	struct ip_fw_chain *chain)
1192 {
1193 	args->rule.chain_id = chain->id;
1194 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1195 	args->rule.rule_id = 1 + chain->map[slot]->id;
1196 	args->rule.rulenum = chain->map[slot]->rulenum;
1197 	args->flags |= IPFW_ARGS_REF;
1198 }
1199 
1200 #ifndef LINEAR_SKIPTO
1201 /*
1202  * Helper function to enable cached rule lookups using
1203  * cached_id and cached_pos fields in ipfw rule.
1204  */
1205 static int
1206 jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1207     int tablearg, int jump_backwards)
1208 {
1209 	int f_pos;
1210 
1211 	/* If possible use cached f_pos (in f->cached_pos),
1212 	 * whose version is written in f->cached_id
1213 	 * (horrible hacks to avoid changing the ABI).
1214 	 */
1215 	if (num != IP_FW_TARG && f->cached_id == chain->id)
1216 		f_pos = f->cached_pos;
1217 	else {
1218 		int i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1219 		/* make sure we do not jump backward */
1220 		if (jump_backwards == 0 && i <= f->rulenum)
1221 			i = f->rulenum + 1;
1222 		if (chain->idxmap != NULL)
1223 			f_pos = chain->idxmap[i];
1224 		else
1225 			f_pos = ipfw_find_rule(chain, i, 0);
1226 		/* update the cache */
1227 		if (num != IP_FW_TARG) {
1228 			f->cached_id = chain->id;
1229 			f->cached_pos = f_pos;
1230 		}
1231 	}
1232 
1233 	return (f_pos);
1234 }
1235 #else
1236 /*
1237  * Helper function to enable real fast rule lookups.
1238  */
1239 static int
1240 jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1241     int tablearg, int jump_backwards)
1242 {
1243 	int f_pos;
1244 
1245 	num = IP_FW_ARG_TABLEARG(chain, num, skipto);
1246 	/* make sure we do not jump backward */
1247 	if (jump_backwards == 0 && num <= f->rulenum)
1248 		num = f->rulenum + 1;
1249 	f_pos = chain->idxmap[num];
1250 
1251 	return (f_pos);
1252 }
1253 #endif
1254 
1255 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1256 /*
1257  * The main check routine for the firewall.
1258  *
1259  * All arguments are in args so we can modify them and return them
1260  * back to the caller.
1261  *
1262  * Parameters:
1263  *
1264  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1265  *		Starts with the IP header.
1266  *	args->L3offset	Number of bytes bypassed if we came from L2.
1267  *			e.g. often sizeof(eh)  ** NOTYET **
1268  *	args->ifp	Incoming or outgoing interface.
1269  *	args->divert_rule (in/out)
1270  *		Skip up to the first rule past this rule number;
1271  *		upon return, non-zero port number for divert or tee.
1272  *
1273  *	args->rule	Pointer to the last matching rule (in/out)
1274  *	args->next_hop	Socket we are forwarding to (out).
1275  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1276  *	args->f_id	Addresses grabbed from the packet (out)
1277  * 	args->rule.info	a cookie depending on rule action
1278  *
1279  * Return value:
1280  *
1281  *	IP_FW_PASS	the packet must be accepted
1282  *	IP_FW_DENY	the packet must be dropped
1283  *	IP_FW_DIVERT	divert packet, port in m_tag
1284  *	IP_FW_TEE	tee packet, port in m_tag
1285  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1286  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1287  *		args->rule contains the matching rule,
1288  *		args->rule.info has additional information.
1289  *
1290  */
1291 int
1292 ipfw_chk(struct ip_fw_args *args)
1293 {
1294 
1295 	/*
1296 	 * Local variables holding state while processing a packet:
1297 	 *
1298 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1299 	 * are some assumption on the values of the variables, which
1300 	 * are documented here. Should you change them, please check
1301 	 * the implementation of the various instructions to make sure
1302 	 * that they still work.
1303 	 *
1304 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1305 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1306 	 *	consumes the packet because it calls send_reject().
1307 	 *	XXX This has to change, so that ipfw_chk() never modifies
1308 	 *	or consumes the buffer.
1309 	 *	OR
1310 	 * args->mem	Pointer to contigous memory chunk.
1311 	 * ip	Is the beginning of the ip(4 or 6) header.
1312 	 * eh	Ethernet header in case if input is Layer2.
1313 	 */
1314 	struct mbuf *m;
1315 	struct ip *ip;
1316 	struct ether_header *eh;
1317 
1318 	/*
1319 	 * For rules which contain uid/gid or jail constraints, cache
1320 	 * a copy of the users credentials after the pcb lookup has been
1321 	 * executed. This will speed up the processing of rules with
1322 	 * these types of constraints, as well as decrease contention
1323 	 * on pcb related locks.
1324 	 */
1325 #ifndef __FreeBSD__
1326 	struct bsd_ucred ucred_cache;
1327 #else
1328 	struct ucred *ucred_cache = NULL;
1329 #endif
1330 	int ucred_lookup = 0;
1331 	int f_pos = 0;		/* index of current rule in the array */
1332 	int retval = 0;
1333 	struct ifnet *oif, *iif;
1334 
1335 	/*
1336 	 * hlen	The length of the IP header.
1337 	 */
1338 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1339 
1340 	/*
1341 	 * offset	The offset of a fragment. offset != 0 means that
1342 	 *	we have a fragment at this offset of an IPv4 packet.
1343 	 *	offset == 0 means that (if this is an IPv4 packet)
1344 	 *	this is the first or only fragment.
1345 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1346 	 *	or there is a single packet fragment (fragment header added
1347 	 *	without needed).  We will treat a single packet fragment as if
1348 	 *	there was no fragment header (or log/block depending on the
1349 	 *	V_fw_permit_single_frag6 sysctl setting).
1350 	 */
1351 	u_short offset = 0;
1352 	u_short ip6f_mf = 0;
1353 
1354 	/*
1355 	 * Local copies of addresses. They are only valid if we have
1356 	 * an IP packet.
1357 	 *
1358 	 * proto	The protocol. Set to 0 for non-ip packets,
1359 	 *	or to the protocol read from the packet otherwise.
1360 	 *	proto != 0 means that we have an IPv4 packet.
1361 	 *
1362 	 * src_port, dst_port	port numbers, in HOST format. Only
1363 	 *	valid for TCP and UDP packets.
1364 	 *
1365 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1366 	 *	Only valid for IPv4 packets.
1367 	 */
1368 	uint8_t proto;
1369 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1370 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1371 	int iplen = 0;
1372 	int pktlen;
1373 
1374 	struct ipfw_dyn_info dyn_info;
1375 	struct ip_fw *q = NULL;
1376 	struct ip_fw_chain *chain = &V_layer3_chain;
1377 
1378 	/*
1379 	 * We store in ulp a pointer to the upper layer protocol header.
1380 	 * In the ipv4 case this is easy to determine from the header,
1381 	 * but for ipv6 we might have some additional headers in the middle.
1382 	 * ulp is NULL if not found.
1383 	 */
1384 	void *ulp = NULL;		/* upper layer protocol pointer. */
1385 
1386 	/* XXX ipv6 variables */
1387 	int is_ipv6 = 0;
1388 	uint8_t	icmp6_type = 0;
1389 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1390 	/* end of ipv6 variables */
1391 
1392 	int is_ipv4 = 0;
1393 
1394 	int done = 0;		/* flag to exit the outer loop */
1395 	IPFW_RLOCK_TRACKER;
1396 	bool mem;
1397 
1398 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1399 		if (args->flags & IPFW_ARGS_ETHER) {
1400 			eh = (struct ether_header *)args->mem;
1401 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1402 				ip = (struct ip *)
1403 				    ((struct ether_vlan_header *)eh + 1);
1404 			else
1405 				ip = (struct ip *)(eh + 1);
1406 		} else {
1407 			eh = NULL;
1408 			ip = (struct ip *)args->mem;
1409 		}
1410 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1411 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1412 	} else {
1413 		m = args->m;
1414 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1415 			return (IP_FW_PASS);	/* accept */
1416 		if (args->flags & IPFW_ARGS_ETHER) {
1417 	                /* We need some amount of data to be contiguous. */
1418 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1419 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1420 			    max_protohdr))) == NULL)
1421 				goto pullup_failed;
1422 			eh = mtod(m, struct ether_header *);
1423 			ip = (struct ip *)(eh + 1);
1424 		} else {
1425 			eh = NULL;
1426 			ip = mtod(m, struct ip *);
1427 		}
1428 		pktlen = m->m_pkthdr.len;
1429 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1430 	}
1431 
1432 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1433 	src_ip.s_addr = 0;		/* make sure it is initialized */
1434 	src_port = dst_port = 0;
1435 
1436 	DYN_INFO_INIT(&dyn_info);
1437 /*
1438  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1439  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1440  * pointer might become stale after other pullups (but we never use it
1441  * this way).
1442  */
1443 #define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1444 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1445 #define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1446 do {								\
1447 	int x = (_len) + T + EHLEN;				\
1448 	if (mem) {						\
1449 		if (__predict_false(pktlen < x)) {		\
1450 			unlock;					\
1451 			goto pullup_failed;			\
1452 		}						\
1453 		p = (char *)args->mem + (_len) + EHLEN;		\
1454 	} else {						\
1455 		if (__predict_false((m)->m_len < x)) {		\
1456 			args->m = m = m_pullup(m, x);		\
1457 			if (m == NULL) {			\
1458 				unlock;				\
1459 				goto pullup_failed;		\
1460 			}					\
1461 		}						\
1462 		p = mtod(m, char *) + (_len) + EHLEN;		\
1463 	}							\
1464 } while (0)
1465 
1466 #define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1467 #define	PULLUP_LEN_LOCKED(_len, p, T)	\
1468     _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain))
1469 /*
1470  * In case pointers got stale after pullups, update them.
1471  */
1472 #define	UPDATE_POINTERS()					\
1473 do {								\
1474 	if (!mem) {						\
1475 		if (eh != NULL) {				\
1476 			eh = mtod(m, struct ether_header *);	\
1477 			ip = (struct ip *)(eh + 1);		\
1478 		} else						\
1479 			ip = mtod(m, struct ip *);		\
1480 		args->m = m;					\
1481 	}							\
1482 } while (0)
1483 
1484 	/* Identify IP packets and fill up variables. */
1485 	if (pktlen >= sizeof(struct ip6_hdr) &&
1486 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1487 	    ip->ip_v == 6) {
1488 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1489 
1490 		is_ipv6 = 1;
1491 		args->flags |= IPFW_ARGS_IP6;
1492 		hlen = sizeof(struct ip6_hdr);
1493 		proto = ip6->ip6_nxt;
1494 		/* Search extension headers to find upper layer protocols */
1495 		while (ulp == NULL && offset == 0) {
1496 			switch (proto) {
1497 			case IPPROTO_ICMPV6:
1498 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1499 				icmp6_type = ICMP6(ulp)->icmp6_type;
1500 				break;
1501 
1502 			case IPPROTO_TCP:
1503 				PULLUP_TO(hlen, ulp, struct tcphdr);
1504 				dst_port = TCP(ulp)->th_dport;
1505 				src_port = TCP(ulp)->th_sport;
1506 				/* save flags for dynamic rules */
1507 				args->f_id._flags = TCP(ulp)->th_flags;
1508 				break;
1509 
1510 			case IPPROTO_SCTP:
1511 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1512 				    sizeof(struct sctp_chunkhdr) +
1513 				    offsetof(struct sctp_init, a_rwnd))
1514 					PULLUP_LEN(hlen, ulp,
1515 					    sizeof(struct sctphdr) +
1516 					    sizeof(struct sctp_chunkhdr) +
1517 					    offsetof(struct sctp_init, a_rwnd));
1518 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1519 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1520 				else
1521 					PULLUP_LEN(hlen, ulp,
1522 					    sizeof(struct sctphdr));
1523 				src_port = SCTP(ulp)->src_port;
1524 				dst_port = SCTP(ulp)->dest_port;
1525 				break;
1526 
1527 			case IPPROTO_UDP:
1528 			case IPPROTO_UDPLITE:
1529 				PULLUP_TO(hlen, ulp, struct udphdr);
1530 				dst_port = UDP(ulp)->uh_dport;
1531 				src_port = UDP(ulp)->uh_sport;
1532 				break;
1533 
1534 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1535 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1536 				ext_hd |= EXT_HOPOPTS;
1537 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1538 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1539 				ulp = NULL;
1540 				break;
1541 
1542 			case IPPROTO_ROUTING:	/* RFC 2460 */
1543 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1544 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1545 				case 0:
1546 					ext_hd |= EXT_RTHDR0;
1547 					break;
1548 				case 2:
1549 					ext_hd |= EXT_RTHDR2;
1550 					break;
1551 				default:
1552 					if (V_fw_verbose)
1553 						printf("IPFW2: IPV6 - Unknown "
1554 						    "Routing Header type(%d)\n",
1555 						    ((struct ip6_rthdr *)
1556 						    ulp)->ip6r_type);
1557 					if (V_fw_deny_unknown_exthdrs)
1558 					    return (IP_FW_DENY);
1559 					break;
1560 				}
1561 				ext_hd |= EXT_ROUTING;
1562 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1563 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1564 				ulp = NULL;
1565 				break;
1566 
1567 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1568 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1569 				ext_hd |= EXT_FRAGMENT;
1570 				hlen += sizeof (struct ip6_frag);
1571 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1572 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1573 					IP6F_OFF_MASK;
1574 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1575 					IP6F_MORE_FRAG;
1576 				if (V_fw_permit_single_frag6 == 0 &&
1577 				    offset == 0 && ip6f_mf == 0) {
1578 					if (V_fw_verbose)
1579 						printf("IPFW2: IPV6 - Invalid "
1580 						    "Fragment Header\n");
1581 					if (V_fw_deny_unknown_exthdrs)
1582 					    return (IP_FW_DENY);
1583 					break;
1584 				}
1585 				args->f_id.extra =
1586 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1587 				ulp = NULL;
1588 				break;
1589 
1590 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1591 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1592 				ext_hd |= EXT_DSTOPTS;
1593 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1594 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1595 				ulp = NULL;
1596 				break;
1597 
1598 			case IPPROTO_AH:	/* RFC 2402 */
1599 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1600 				ext_hd |= EXT_AH;
1601 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1602 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1603 				ulp = NULL;
1604 				break;
1605 
1606 			case IPPROTO_ESP:	/* RFC 2406 */
1607 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1608 				/* Anything past Seq# is variable length and
1609 				 * data past this ext. header is encrypted. */
1610 				ext_hd |= EXT_ESP;
1611 				break;
1612 
1613 			case IPPROTO_NONE:	/* RFC 2460 */
1614 				/*
1615 				 * Packet ends here, and IPv6 header has
1616 				 * already been pulled up. If ip6e_len!=0
1617 				 * then octets must be ignored.
1618 				 */
1619 				ulp = ip; /* non-NULL to get out of loop. */
1620 				break;
1621 
1622 			case IPPROTO_OSPFIGP:
1623 				/* XXX OSPF header check? */
1624 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1625 				break;
1626 
1627 			case IPPROTO_PIM:
1628 				/* XXX PIM header check? */
1629 				PULLUP_TO(hlen, ulp, struct pim);
1630 				break;
1631 
1632 			case IPPROTO_GRE:	/* RFC 1701 */
1633 				/* XXX GRE header check? */
1634 				PULLUP_TO(hlen, ulp, struct grehdr);
1635 				break;
1636 
1637 			case IPPROTO_CARP:
1638 				PULLUP_TO(hlen, ulp, offsetof(
1639 				    struct carp_header, carp_counter));
1640 				if (CARP_ADVERTISEMENT !=
1641 				    ((struct carp_header *)ulp)->carp_type)
1642 					return (IP_FW_DENY);
1643 				break;
1644 
1645 			case IPPROTO_IPV6:	/* RFC 2893 */
1646 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1647 				break;
1648 
1649 			case IPPROTO_IPV4:	/* RFC 2893 */
1650 				PULLUP_TO(hlen, ulp, struct ip);
1651 				break;
1652 
1653 			default:
1654 				if (V_fw_verbose)
1655 					printf("IPFW2: IPV6 - Unknown "
1656 					    "Extension Header(%d), ext_hd=%x\n",
1657 					     proto, ext_hd);
1658 				if (V_fw_deny_unknown_exthdrs)
1659 				    return (IP_FW_DENY);
1660 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1661 				break;
1662 			} /*switch */
1663 		}
1664 		UPDATE_POINTERS();
1665 		ip6 = (struct ip6_hdr *)ip;
1666 		args->f_id.addr_type = 6;
1667 		args->f_id.src_ip6 = ip6->ip6_src;
1668 		args->f_id.dst_ip6 = ip6->ip6_dst;
1669 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1670 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1671 	} else if (pktlen >= sizeof(struct ip) &&
1672 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1673 	    ip->ip_v == 4) {
1674 		is_ipv4 = 1;
1675 		args->flags |= IPFW_ARGS_IP4;
1676 		hlen = ip->ip_hl << 2;
1677 		/*
1678 		 * Collect parameters into local variables for faster
1679 		 * matching.
1680 		 */
1681 		proto = ip->ip_p;
1682 		src_ip = ip->ip_src;
1683 		dst_ip = ip->ip_dst;
1684 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1685 		iplen = ntohs(ip->ip_len);
1686 
1687 		if (offset == 0) {
1688 			switch (proto) {
1689 			case IPPROTO_TCP:
1690 				PULLUP_TO(hlen, ulp, struct tcphdr);
1691 				dst_port = TCP(ulp)->th_dport;
1692 				src_port = TCP(ulp)->th_sport;
1693 				/* save flags for dynamic rules */
1694 				args->f_id._flags = TCP(ulp)->th_flags;
1695 				break;
1696 
1697 			case IPPROTO_SCTP:
1698 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1699 				    sizeof(struct sctp_chunkhdr) +
1700 				    offsetof(struct sctp_init, a_rwnd))
1701 					PULLUP_LEN(hlen, ulp,
1702 					    sizeof(struct sctphdr) +
1703 					    sizeof(struct sctp_chunkhdr) +
1704 					    offsetof(struct sctp_init, a_rwnd));
1705 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1706 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1707 				else
1708 					PULLUP_LEN(hlen, ulp,
1709 					    sizeof(struct sctphdr));
1710 				src_port = SCTP(ulp)->src_port;
1711 				dst_port = SCTP(ulp)->dest_port;
1712 				break;
1713 
1714 			case IPPROTO_UDP:
1715 			case IPPROTO_UDPLITE:
1716 				PULLUP_TO(hlen, ulp, struct udphdr);
1717 				dst_port = UDP(ulp)->uh_dport;
1718 				src_port = UDP(ulp)->uh_sport;
1719 				break;
1720 
1721 			case IPPROTO_ICMP:
1722 				PULLUP_TO(hlen, ulp, struct icmphdr);
1723 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1724 				break;
1725 
1726 			default:
1727 				break;
1728 			}
1729 		} else {
1730 			if (offset == 1 && proto == IPPROTO_TCP) {
1731 				/* RFC 3128 */
1732 				goto pullup_failed;
1733 			}
1734 		}
1735 
1736 		UPDATE_POINTERS();
1737 		args->f_id.addr_type = 4;
1738 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1739 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1740 	} else {
1741 		proto = 0;
1742 		dst_ip.s_addr = src_ip.s_addr = 0;
1743 
1744 		args->f_id.addr_type = 1; /* XXX */
1745 	}
1746 #undef PULLUP_TO
1747 	pktlen = iplen < pktlen ? iplen: pktlen;
1748 
1749 	/* Properly initialize the rest of f_id */
1750 	args->f_id.proto = proto;
1751 	args->f_id.src_port = src_port = ntohs(src_port);
1752 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1753 
1754 	IPFW_PF_RLOCK(chain);
1755 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1756 		IPFW_PF_RUNLOCK(chain);
1757 		return (IP_FW_PASS);	/* accept */
1758 	}
1759 	if (args->flags & IPFW_ARGS_REF) {
1760 		/*
1761 		 * Packet has already been tagged as a result of a previous
1762 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1763 		 * REASS, NETGRAPH, DIVERT/TEE...)
1764 		 * Validate the slot and continue from the next one
1765 		 * if still present, otherwise do a lookup.
1766 		 */
1767 		f_pos = (args->rule.chain_id == chain->id) ?
1768 		    args->rule.slot :
1769 		    ipfw_find_rule(chain, args->rule.rulenum,
1770 			args->rule.rule_id);
1771 	} else {
1772 		f_pos = 0;
1773 	}
1774 
1775 	if (args->flags & IPFW_ARGS_IN) {
1776 		iif = args->ifp;
1777 		oif = NULL;
1778 	} else {
1779 		MPASS(args->flags & IPFW_ARGS_OUT);
1780 		iif = mem ? NULL : m_rcvif(m);
1781 		oif = args->ifp;
1782 	}
1783 
1784 	/*
1785 	 * Now scan the rules, and parse microinstructions for each rule.
1786 	 * We have two nested loops and an inner switch. Sometimes we
1787 	 * need to break out of one or both loops, or re-enter one of
1788 	 * the loops with updated variables. Loop variables are:
1789 	 *
1790 	 *	f_pos (outer loop) points to the current rule.
1791 	 *		On output it points to the matching rule.
1792 	 *	done (outer loop) is used as a flag to break the loop.
1793 	 *	l (inner loop)	residual length of current rule.
1794 	 *		cmd points to the current microinstruction.
1795 	 *
1796 	 * We break the inner loop by setting l=0 and possibly
1797 	 * cmdlen=0 if we don't want to advance cmd.
1798 	 * We break the outer loop by setting done=1
1799 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1800 	 * as needed.
1801 	 */
1802 	for (; f_pos < chain->n_rules; f_pos++) {
1803 		ipfw_insn *cmd;
1804 		uint32_t tablearg = 0;
1805 		int l, cmdlen, skip_or; /* skip rest of OR block */
1806 		struct ip_fw *f;
1807 
1808 		f = chain->map[f_pos];
1809 		if (V_set_disable & (1 << f->set) )
1810 			continue;
1811 
1812 		skip_or = 0;
1813 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1814 		    l -= cmdlen, cmd += cmdlen) {
1815 			int match;
1816 
1817 			/*
1818 			 * check_body is a jump target used when we find a
1819 			 * CHECK_STATE, and need to jump to the body of
1820 			 * the target rule.
1821 			 */
1822 
1823 /* check_body: */
1824 			cmdlen = F_LEN(cmd);
1825 			/*
1826 			 * An OR block (insn_1 || .. || insn_n) has the
1827 			 * F_OR bit set in all but the last instruction.
1828 			 * The first match will set "skip_or", and cause
1829 			 * the following instructions to be skipped until
1830 			 * past the one with the F_OR bit clear.
1831 			 */
1832 			if (skip_or) {		/* skip this instruction */
1833 				if ((cmd->len & F_OR) == 0)
1834 					skip_or = 0;	/* next one is good */
1835 				continue;
1836 			}
1837 			match = 0; /* set to 1 if we succeed */
1838 
1839 			switch (cmd->opcode) {
1840 			/*
1841 			 * The first set of opcodes compares the packet's
1842 			 * fields with some pattern, setting 'match' if a
1843 			 * match is found. At the end of the loop there is
1844 			 * logic to deal with F_NOT and F_OR flags associated
1845 			 * with the opcode.
1846 			 */
1847 			case O_NOP:
1848 				match = 1;
1849 				break;
1850 
1851 			case O_FORWARD_MAC:
1852 				printf("ipfw: opcode %d unimplemented\n",
1853 				    cmd->opcode);
1854 				break;
1855 
1856 			case O_GID:
1857 			case O_UID:
1858 			case O_JAIL:
1859 				/*
1860 				 * We only check offset == 0 && proto != 0,
1861 				 * as this ensures that we have a
1862 				 * packet with the ports info.
1863 				 */
1864 				if (offset != 0)
1865 					break;
1866 				if (proto == IPPROTO_TCP ||
1867 				    proto == IPPROTO_UDP ||
1868 				    proto == IPPROTO_UDPLITE)
1869 					match = check_uidgid(
1870 						    (ipfw_insn_u32 *)cmd,
1871 						    args, &ucred_lookup,
1872 #ifdef __FreeBSD__
1873 						    &ucred_cache);
1874 #else
1875 						    (void *)&ucred_cache);
1876 #endif
1877 				break;
1878 
1879 			case O_RECV:
1880 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1881 				    chain, &tablearg);
1882 				break;
1883 
1884 			case O_XMIT:
1885 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1886 				    chain, &tablearg);
1887 				break;
1888 
1889 			case O_VIA:
1890 				match = iface_match(args->ifp,
1891 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1892 				break;
1893 
1894 			case O_MACADDR2:
1895 				if (args->flags & IPFW_ARGS_ETHER) {
1896 					u_int32_t *want = (u_int32_t *)
1897 						((ipfw_insn_mac *)cmd)->addr;
1898 					u_int32_t *mask = (u_int32_t *)
1899 						((ipfw_insn_mac *)cmd)->mask;
1900 					u_int32_t *hdr = (u_int32_t *)eh;
1901 
1902 					match =
1903 					    ( want[0] == (hdr[0] & mask[0]) &&
1904 					      want[1] == (hdr[1] & mask[1]) &&
1905 					      want[2] == (hdr[2] & mask[2]) );
1906 				}
1907 				break;
1908 
1909 			case O_MAC_TYPE:
1910 				if (args->flags & IPFW_ARGS_ETHER) {
1911 					u_int16_t *p =
1912 					    ((ipfw_insn_u16 *)cmd)->ports;
1913 					int i;
1914 
1915 					for (i = cmdlen - 1; !match && i>0;
1916 					    i--, p += 2)
1917 						match =
1918 						    (ntohs(eh->ether_type) >=
1919 						    p[0] &&
1920 						    ntohs(eh->ether_type) <=
1921 						    p[1]);
1922 				}
1923 				break;
1924 
1925 			case O_FRAG:
1926 				match = (offset != 0);
1927 				break;
1928 
1929 			case O_IN:	/* "out" is "not in" */
1930 				match = (oif == NULL);
1931 				break;
1932 
1933 			case O_LAYER2:
1934 				match = (args->flags & IPFW_ARGS_ETHER);
1935 				break;
1936 
1937 			case O_DIVERTED:
1938 				if ((args->flags & IPFW_ARGS_REF) == 0)
1939 					break;
1940 				/*
1941 				 * For diverted packets, args->rule.info
1942 				 * contains the divert port (in host format)
1943 				 * reason and direction.
1944 				 */
1945 				match = ((args->rule.info & IPFW_IS_MASK) ==
1946 				    IPFW_IS_DIVERT) && (
1947 				    ((args->rule.info & IPFW_INFO_IN) ?
1948 					1: 2) & cmd->arg1);
1949 				break;
1950 
1951 			case O_PROTO:
1952 				/*
1953 				 * We do not allow an arg of 0 so the
1954 				 * check of "proto" only suffices.
1955 				 */
1956 				match = (proto == cmd->arg1);
1957 				break;
1958 
1959 			case O_IP_SRC:
1960 				match = is_ipv4 &&
1961 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1962 				    src_ip.s_addr);
1963 				break;
1964 
1965 			case O_IP_DST_LOOKUP:
1966 			{
1967 				void *pkey;
1968 				uint32_t vidx, key;
1969 				uint16_t keylen;
1970 
1971 				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1972 					/* Determine lookup key type */
1973 					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
1974 					if (vidx != 4 /* uid */ &&
1975 					    vidx != 5 /* jail */ &&
1976 					    is_ipv6 == 0 && is_ipv4 == 0)
1977 						break;
1978 					/* Determine key length */
1979 					if (vidx == 0 /* dst-ip */ ||
1980 					    vidx == 1 /* src-ip */)
1981 						keylen = is_ipv6 ?
1982 						    sizeof(struct in6_addr):
1983 						    sizeof(in_addr_t);
1984 					else {
1985 						keylen = sizeof(key);
1986 						pkey = &key;
1987 					}
1988 					if (vidx == 0 /* dst-ip */)
1989 						pkey = is_ipv4 ? (void *)&dst_ip:
1990 						    (void *)&args->f_id.dst_ip6;
1991 					else if (vidx == 1 /* src-ip */)
1992 						pkey = is_ipv4 ? (void *)&src_ip:
1993 						    (void *)&args->f_id.src_ip6;
1994 					else if (vidx == 6 /* dscp */) {
1995 						if (is_ipv4)
1996 							key = ip->ip_tos >> 2;
1997 						else {
1998 							key = args->f_id.flow_id6;
1999 							key = (key & 0x0f) << 2 |
2000 							    (key & 0xf000) >> 14;
2001 						}
2002 						key &= 0x3f;
2003 					} else if (vidx == 2 /* dst-port */ ||
2004 					    vidx == 3 /* src-port */) {
2005 						/* Skip fragments */
2006 						if (offset != 0)
2007 							break;
2008 						/* Skip proto without ports */
2009 						if (proto != IPPROTO_TCP &&
2010 						    proto != IPPROTO_UDP &&
2011 						    proto != IPPROTO_UDPLITE &&
2012 						    proto != IPPROTO_SCTP)
2013 							break;
2014 						if (vidx == 2 /* dst-port */)
2015 							key = dst_port;
2016 						else
2017 							key = src_port;
2018 					}
2019 #ifndef USERSPACE
2020 					else if (vidx == 4 /* uid */ ||
2021 					    vidx == 5 /* jail */) {
2022 						check_uidgid(
2023 						    (ipfw_insn_u32 *)cmd,
2024 						    args, &ucred_lookup,
2025 #ifdef __FreeBSD__
2026 						    &ucred_cache);
2027 						if (vidx == 4 /* uid */)
2028 							key = ucred_cache->cr_uid;
2029 						else if (vidx == 5 /* jail */)
2030 							key = ucred_cache->cr_prison->pr_id;
2031 #else /* !__FreeBSD__ */
2032 						    (void *)&ucred_cache);
2033 						if (vidx == 4 /* uid */)
2034 							key = ucred_cache.uid;
2035 						else if (vidx == 5 /* jail */)
2036 							key = ucred_cache.xid;
2037 #endif /* !__FreeBSD__ */
2038 					}
2039 #endif /* !USERSPACE */
2040 					else
2041 						break;
2042 					match = ipfw_lookup_table(chain,
2043 					    cmd->arg1, keylen, pkey, &vidx);
2044 					if (!match)
2045 						break;
2046 					tablearg = vidx;
2047 					break;
2048 				}
2049 				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
2050 				/* FALLTHROUGH */
2051 			}
2052 			case O_IP_SRC_LOOKUP:
2053 			{
2054 				void *pkey;
2055 				uint32_t vidx;
2056 				uint16_t keylen;
2057 
2058 				if (is_ipv4) {
2059 					keylen = sizeof(in_addr_t);
2060 					if (cmd->opcode == O_IP_DST_LOOKUP)
2061 						pkey = &dst_ip;
2062 					else
2063 						pkey = &src_ip;
2064 				} else if (is_ipv6) {
2065 					keylen = sizeof(struct in6_addr);
2066 					if (cmd->opcode == O_IP_DST_LOOKUP)
2067 						pkey = &args->f_id.dst_ip6;
2068 					else
2069 						pkey = &args->f_id.src_ip6;
2070 				} else
2071 					break;
2072 				match = ipfw_lookup_table(chain, cmd->arg1,
2073 				    keylen, pkey, &vidx);
2074 				if (!match)
2075 					break;
2076 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2077 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2078 					    TARG_VAL(chain, vidx, tag);
2079 					if (!match)
2080 						break;
2081 				}
2082 				tablearg = vidx;
2083 				break;
2084 			}
2085 
2086 			case O_IP_FLOW_LOOKUP:
2087 				{
2088 					uint32_t v = 0;
2089 					match = ipfw_lookup_table(chain,
2090 					    cmd->arg1, 0, &args->f_id, &v);
2091 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2092 						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2093 						    TARG_VAL(chain, v, tag);
2094 					if (match)
2095 						tablearg = v;
2096 				}
2097 				break;
2098 			case O_IP_SRC_MASK:
2099 			case O_IP_DST_MASK:
2100 				if (is_ipv4) {
2101 				    uint32_t a =
2102 					(cmd->opcode == O_IP_DST_MASK) ?
2103 					    dst_ip.s_addr : src_ip.s_addr;
2104 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2105 				    int i = cmdlen-1;
2106 
2107 				    for (; !match && i>0; i-= 2, p+= 2)
2108 					match = (p[0] == (a & p[1]));
2109 				}
2110 				break;
2111 
2112 			case O_IP_SRC_ME:
2113 				if (is_ipv4) {
2114 					match = in_localip(src_ip);
2115 					break;
2116 				}
2117 #ifdef INET6
2118 				/* FALLTHROUGH */
2119 			case O_IP6_SRC_ME:
2120 				match = is_ipv6 &&
2121 				    ipfw_localip6(&args->f_id.src_ip6);
2122 #endif
2123 				break;
2124 
2125 			case O_IP_DST_SET:
2126 			case O_IP_SRC_SET:
2127 				if (is_ipv4) {
2128 					u_int32_t *d = (u_int32_t *)(cmd+1);
2129 					u_int32_t addr =
2130 					    cmd->opcode == O_IP_DST_SET ?
2131 						args->f_id.dst_ip :
2132 						args->f_id.src_ip;
2133 
2134 					    if (addr < d[0])
2135 						    break;
2136 					    addr -= d[0]; /* subtract base */
2137 					    match = (addr < cmd->arg1) &&
2138 						( d[ 1 + (addr>>5)] &
2139 						  (1<<(addr & 0x1f)) );
2140 				}
2141 				break;
2142 
2143 			case O_IP_DST:
2144 				match = is_ipv4 &&
2145 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2146 				    dst_ip.s_addr);
2147 				break;
2148 
2149 			case O_IP_DST_ME:
2150 				if (is_ipv4) {
2151 					match = in_localip(dst_ip);
2152 					break;
2153 				}
2154 #ifdef INET6
2155 				/* FALLTHROUGH */
2156 			case O_IP6_DST_ME:
2157 				match = is_ipv6 &&
2158 				    ipfw_localip6(&args->f_id.dst_ip6);
2159 #endif
2160 				break;
2161 
2162 
2163 			case O_IP_SRCPORT:
2164 			case O_IP_DSTPORT:
2165 				/*
2166 				 * offset == 0 && proto != 0 is enough
2167 				 * to guarantee that we have a
2168 				 * packet with port info.
2169 				 */
2170 				if ((proto == IPPROTO_UDP ||
2171 				    proto == IPPROTO_UDPLITE ||
2172 				    proto == IPPROTO_TCP ||
2173 				    proto == IPPROTO_SCTP) && offset == 0) {
2174 					u_int16_t x =
2175 					    (cmd->opcode == O_IP_SRCPORT) ?
2176 						src_port : dst_port ;
2177 					u_int16_t *p =
2178 					    ((ipfw_insn_u16 *)cmd)->ports;
2179 					int i;
2180 
2181 					for (i = cmdlen - 1; !match && i>0;
2182 					    i--, p += 2)
2183 						match = (x>=p[0] && x<=p[1]);
2184 				}
2185 				break;
2186 
2187 			case O_ICMPTYPE:
2188 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2189 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2190 				break;
2191 
2192 #ifdef INET6
2193 			case O_ICMP6TYPE:
2194 				match = is_ipv6 && offset == 0 &&
2195 				    proto==IPPROTO_ICMPV6 &&
2196 				    icmp6type_match(
2197 					ICMP6(ulp)->icmp6_type,
2198 					(ipfw_insn_u32 *)cmd);
2199 				break;
2200 #endif /* INET6 */
2201 
2202 			case O_IPOPT:
2203 				match = (is_ipv4 &&
2204 				    ipopts_match(ip, cmd) );
2205 				break;
2206 
2207 			case O_IPVER:
2208 				match = (is_ipv4 &&
2209 				    cmd->arg1 == ip->ip_v);
2210 				break;
2211 
2212 			case O_IPID:
2213 			case O_IPTTL:
2214 				if (!is_ipv4)
2215 					break;
2216 			case O_IPLEN:
2217 				{	/* only for IP packets */
2218 				    uint16_t x;
2219 				    uint16_t *p;
2220 				    int i;
2221 
2222 				    if (cmd->opcode == O_IPLEN)
2223 					x = iplen;
2224 				    else if (cmd->opcode == O_IPTTL)
2225 					x = ip->ip_ttl;
2226 				    else /* must be IPID */
2227 					x = ntohs(ip->ip_id);
2228 				    if (cmdlen == 1) {
2229 					match = (cmd->arg1 == x);
2230 					break;
2231 				    }
2232 				    /* otherwise we have ranges */
2233 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2234 				    i = cmdlen - 1;
2235 				    for (; !match && i>0; i--, p += 2)
2236 					match = (x >= p[0] && x <= p[1]);
2237 				}
2238 				break;
2239 
2240 			case O_IPPRECEDENCE:
2241 				match = (is_ipv4 &&
2242 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2243 				break;
2244 
2245 			case O_IPTOS:
2246 				match = (is_ipv4 &&
2247 				    flags_match(cmd, ip->ip_tos));
2248 				break;
2249 
2250 			case O_DSCP:
2251 			    {
2252 				uint32_t *p;
2253 				uint16_t x;
2254 
2255 				p = ((ipfw_insn_u32 *)cmd)->d;
2256 
2257 				if (is_ipv4)
2258 					x = ip->ip_tos >> 2;
2259 				else if (is_ipv6) {
2260 					uint8_t *v;
2261 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2262 					x = (*v & 0x0F) << 2;
2263 					v++;
2264 					x |= *v >> 6;
2265 				} else
2266 					break;
2267 
2268 				/* DSCP bitmask is stored as low_u32 high_u32 */
2269 				if (x >= 32)
2270 					match = *(p + 1) & (1 << (x - 32));
2271 				else
2272 					match = *p & (1 << x);
2273 			    }
2274 				break;
2275 
2276 			case O_TCPDATALEN:
2277 				if (proto == IPPROTO_TCP && offset == 0) {
2278 				    struct tcphdr *tcp;
2279 				    uint16_t x;
2280 				    uint16_t *p;
2281 				    int i;
2282 #ifdef INET6
2283 				    if (is_ipv6) {
2284 					    struct ip6_hdr *ip6;
2285 
2286 					    ip6 = (struct ip6_hdr *)ip;
2287 					    if (ip6->ip6_plen == 0) {
2288 						    /*
2289 						     * Jumbo payload is not
2290 						     * supported by this
2291 						     * opcode.
2292 						     */
2293 						    break;
2294 					    }
2295 					    x = iplen - hlen;
2296 				    } else
2297 #endif /* INET6 */
2298 					    x = iplen - (ip->ip_hl << 2);
2299 				    tcp = TCP(ulp);
2300 				    x -= tcp->th_off << 2;
2301 				    if (cmdlen == 1) {
2302 					match = (cmd->arg1 == x);
2303 					break;
2304 				    }
2305 				    /* otherwise we have ranges */
2306 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2307 				    i = cmdlen - 1;
2308 				    for (; !match && i>0; i--, p += 2)
2309 					match = (x >= p[0] && x <= p[1]);
2310 				}
2311 				break;
2312 
2313 			case O_TCPFLAGS:
2314 				match = (proto == IPPROTO_TCP && offset == 0 &&
2315 				    flags_match(cmd, TCP(ulp)->th_flags));
2316 				break;
2317 
2318 			case O_TCPOPTS:
2319 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2320 					PULLUP_LEN_LOCKED(hlen, ulp,
2321 					    (TCP(ulp)->th_off << 2));
2322 					match = tcpopts_match(TCP(ulp), cmd);
2323 				}
2324 				break;
2325 
2326 			case O_TCPSEQ:
2327 				match = (proto == IPPROTO_TCP && offset == 0 &&
2328 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2329 					TCP(ulp)->th_seq);
2330 				break;
2331 
2332 			case O_TCPACK:
2333 				match = (proto == IPPROTO_TCP && offset == 0 &&
2334 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2335 					TCP(ulp)->th_ack);
2336 				break;
2337 
2338 			case O_TCPMSS:
2339 				if (proto == IPPROTO_TCP &&
2340 				    (args->f_id._flags & TH_SYN) != 0 &&
2341 				    ulp != NULL) {
2342 					uint16_t mss, *p;
2343 					int i;
2344 
2345 					PULLUP_LEN_LOCKED(hlen, ulp,
2346 					    (TCP(ulp)->th_off << 2));
2347 					if ((tcpopts_parse(TCP(ulp), &mss) &
2348 					    IP_FW_TCPOPT_MSS) == 0)
2349 						break;
2350 					if (cmdlen == 1) {
2351 						match = (cmd->arg1 == mss);
2352 						break;
2353 					}
2354 					/* Otherwise we have ranges. */
2355 					p = ((ipfw_insn_u16 *)cmd)->ports;
2356 					i = cmdlen - 1;
2357 					for (; !match && i > 0; i--, p += 2)
2358 						match = (mss >= p[0] &&
2359 						    mss <= p[1]);
2360 				}
2361 				break;
2362 
2363 			case O_TCPWIN:
2364 				if (proto == IPPROTO_TCP && offset == 0) {
2365 				    uint16_t x;
2366 				    uint16_t *p;
2367 				    int i;
2368 
2369 				    x = ntohs(TCP(ulp)->th_win);
2370 				    if (cmdlen == 1) {
2371 					match = (cmd->arg1 == x);
2372 					break;
2373 				    }
2374 				    /* Otherwise we have ranges. */
2375 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2376 				    i = cmdlen - 1;
2377 				    for (; !match && i > 0; i--, p += 2)
2378 					match = (x >= p[0] && x <= p[1]);
2379 				}
2380 				break;
2381 
2382 			case O_ESTAB:
2383 				/* reject packets which have SYN only */
2384 				/* XXX should i also check for TH_ACK ? */
2385 				match = (proto == IPPROTO_TCP && offset == 0 &&
2386 				    (TCP(ulp)->th_flags &
2387 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2388 				break;
2389 
2390 			case O_ALTQ: {
2391 				struct pf_mtag *at;
2392 				struct m_tag *mtag;
2393 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2394 
2395 				/*
2396 				 * ALTQ uses mbuf tags from another
2397 				 * packet filtering system - pf(4).
2398 				 * We allocate a tag in its format
2399 				 * and fill it in, pretending to be pf(4).
2400 				 */
2401 				match = 1;
2402 				at = pf_find_mtag(m);
2403 				if (at != NULL && at->qid != 0)
2404 					break;
2405 				mtag = m_tag_get(PACKET_TAG_PF,
2406 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2407 				if (mtag == NULL) {
2408 					/*
2409 					 * Let the packet fall back to the
2410 					 * default ALTQ.
2411 					 */
2412 					break;
2413 				}
2414 				m_tag_prepend(m, mtag);
2415 				at = (struct pf_mtag *)(mtag + 1);
2416 				at->qid = altq->qid;
2417 				at->hdr = ip;
2418 				break;
2419 			}
2420 
2421 			case O_LOG:
2422 				ipfw_log(chain, f, hlen, args,
2423 				    offset | ip6f_mf, tablearg, ip);
2424 				match = 1;
2425 				break;
2426 
2427 			case O_PROB:
2428 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2429 				break;
2430 
2431 			case O_VERREVPATH:
2432 				/* Outgoing packets automatically pass/match */
2433 				match = (args->flags & IPFW_ARGS_OUT ||
2434 				    (
2435 #ifdef INET6
2436 				    is_ipv6 ?
2437 					verify_path6(&(args->f_id.src_ip6),
2438 					    iif, args->f_id.fib) :
2439 #endif
2440 				    verify_path(src_ip, iif, args->f_id.fib)));
2441 				break;
2442 
2443 			case O_VERSRCREACH:
2444 				/* Outgoing packets automatically pass/match */
2445 				match = (hlen > 0 && ((oif != NULL) || (
2446 #ifdef INET6
2447 				    is_ipv6 ?
2448 				        verify_path6(&(args->f_id.src_ip6),
2449 				            NULL, args->f_id.fib) :
2450 #endif
2451 				    verify_path(src_ip, NULL, args->f_id.fib))));
2452 				break;
2453 
2454 			case O_ANTISPOOF:
2455 				/* Outgoing packets automatically pass/match */
2456 				if (oif == NULL && hlen > 0 &&
2457 				    (  (is_ipv4 && in_localaddr(src_ip))
2458 #ifdef INET6
2459 				    || (is_ipv6 &&
2460 				        in6_localaddr(&(args->f_id.src_ip6)))
2461 #endif
2462 				    ))
2463 					match =
2464 #ifdef INET6
2465 					    is_ipv6 ? verify_path6(
2466 					        &(args->f_id.src_ip6), iif,
2467 						args->f_id.fib) :
2468 #endif
2469 					    verify_path(src_ip, iif,
2470 					        args->f_id.fib);
2471 				else
2472 					match = 1;
2473 				break;
2474 
2475 			case O_IPSEC:
2476 				match = (m_tag_find(m,
2477 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2478 				/* otherwise no match */
2479 				break;
2480 
2481 #ifdef INET6
2482 			case O_IP6_SRC:
2483 				match = is_ipv6 &&
2484 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2485 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2486 				break;
2487 
2488 			case O_IP6_DST:
2489 				match = is_ipv6 &&
2490 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2491 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2492 				break;
2493 			case O_IP6_SRC_MASK:
2494 			case O_IP6_DST_MASK:
2495 				if (is_ipv6) {
2496 					int i = cmdlen - 1;
2497 					struct in6_addr p;
2498 					struct in6_addr *d =
2499 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2500 
2501 					for (; !match && i > 0; d += 2,
2502 					    i -= F_INSN_SIZE(struct in6_addr)
2503 					    * 2) {
2504 						p = (cmd->opcode ==
2505 						    O_IP6_SRC_MASK) ?
2506 						    args->f_id.src_ip6:
2507 						    args->f_id.dst_ip6;
2508 						APPLY_MASK(&p, &d[1]);
2509 						match =
2510 						    IN6_ARE_ADDR_EQUAL(&d[0],
2511 						    &p);
2512 					}
2513 				}
2514 				break;
2515 
2516 			case O_FLOW6ID:
2517 				match = is_ipv6 &&
2518 				    flow6id_match(args->f_id.flow_id6,
2519 				    (ipfw_insn_u32 *) cmd);
2520 				break;
2521 
2522 			case O_EXT_HDR:
2523 				match = is_ipv6 &&
2524 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2525 				break;
2526 
2527 			case O_IP6:
2528 				match = is_ipv6;
2529 				break;
2530 #endif
2531 
2532 			case O_IP4:
2533 				match = is_ipv4;
2534 				break;
2535 
2536 			case O_TAG: {
2537 				struct m_tag *mtag;
2538 				uint32_t tag = TARG(cmd->arg1, tag);
2539 
2540 				/* Packet is already tagged with this tag? */
2541 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2542 
2543 				/* We have `untag' action when F_NOT flag is
2544 				 * present. And we must remove this mtag from
2545 				 * mbuf and reset `match' to zero (`match' will
2546 				 * be inversed later).
2547 				 * Otherwise we should allocate new mtag and
2548 				 * push it into mbuf.
2549 				 */
2550 				if (cmd->len & F_NOT) { /* `untag' action */
2551 					if (mtag != NULL)
2552 						m_tag_delete(m, mtag);
2553 					match = 0;
2554 				} else {
2555 					if (mtag == NULL) {
2556 						mtag = m_tag_alloc( MTAG_IPFW,
2557 						    tag, 0, M_NOWAIT);
2558 						if (mtag != NULL)
2559 							m_tag_prepend(m, mtag);
2560 					}
2561 					match = 1;
2562 				}
2563 				break;
2564 			}
2565 
2566 			case O_FIB: /* try match the specified fib */
2567 				if (args->f_id.fib == cmd->arg1)
2568 					match = 1;
2569 				break;
2570 
2571 			case O_SOCKARG:	{
2572 #ifndef USERSPACE	/* not supported in userspace */
2573 				struct inpcb *inp = args->inp;
2574 				struct inpcbinfo *pi;
2575 
2576 				if (is_ipv6) /* XXX can we remove this ? */
2577 					break;
2578 
2579 				if (proto == IPPROTO_TCP)
2580 					pi = &V_tcbinfo;
2581 				else if (proto == IPPROTO_UDP)
2582 					pi = &V_udbinfo;
2583 				else if (proto == IPPROTO_UDPLITE)
2584 					pi = &V_ulitecbinfo;
2585 				else
2586 					break;
2587 
2588 				/*
2589 				 * XXXRW: so_user_cookie should almost
2590 				 * certainly be inp_user_cookie?
2591 				 */
2592 
2593 				/* For incoming packet, lookup up the
2594 				inpcb using the src/dest ip/port tuple */
2595 				if (inp == NULL) {
2596 					inp = in_pcblookup(pi,
2597 						src_ip, htons(src_port),
2598 						dst_ip, htons(dst_port),
2599 						INPLOOKUP_RLOCKPCB, NULL);
2600 					if (inp != NULL) {
2601 						tablearg =
2602 						    inp->inp_socket->so_user_cookie;
2603 						if (tablearg)
2604 							match = 1;
2605 						INP_RUNLOCK(inp);
2606 					}
2607 				} else {
2608 					if (inp->inp_socket) {
2609 						tablearg =
2610 						    inp->inp_socket->so_user_cookie;
2611 						if (tablearg)
2612 							match = 1;
2613 					}
2614 				}
2615 #endif /* !USERSPACE */
2616 				break;
2617 			}
2618 
2619 			case O_TAGGED: {
2620 				struct m_tag *mtag;
2621 				uint32_t tag = TARG(cmd->arg1, tag);
2622 
2623 				if (cmdlen == 1) {
2624 					match = m_tag_locate(m, MTAG_IPFW,
2625 					    tag, NULL) != NULL;
2626 					break;
2627 				}
2628 
2629 				/* we have ranges */
2630 				for (mtag = m_tag_first(m);
2631 				    mtag != NULL && !match;
2632 				    mtag = m_tag_next(m, mtag)) {
2633 					uint16_t *p;
2634 					int i;
2635 
2636 					if (mtag->m_tag_cookie != MTAG_IPFW)
2637 						continue;
2638 
2639 					p = ((ipfw_insn_u16 *)cmd)->ports;
2640 					i = cmdlen - 1;
2641 					for(; !match && i > 0; i--, p += 2)
2642 						match =
2643 						    mtag->m_tag_id >= p[0] &&
2644 						    mtag->m_tag_id <= p[1];
2645 				}
2646 				break;
2647 			}
2648 
2649 			/*
2650 			 * The second set of opcodes represents 'actions',
2651 			 * i.e. the terminal part of a rule once the packet
2652 			 * matches all previous patterns.
2653 			 * Typically there is only one action for each rule,
2654 			 * and the opcode is stored at the end of the rule
2655 			 * (but there are exceptions -- see below).
2656 			 *
2657 			 * In general, here we set retval and terminate the
2658 			 * outer loop (would be a 'break 3' in some language,
2659 			 * but we need to set l=0, done=1)
2660 			 *
2661 			 * Exceptions:
2662 			 * O_COUNT and O_SKIPTO actions:
2663 			 *   instead of terminating, we jump to the next rule
2664 			 *   (setting l=0), or to the SKIPTO target (setting
2665 			 *   f/f_len, cmd and l as needed), respectively.
2666 			 *
2667 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2668 			 *   perform some action and set match = 1;
2669 			 *
2670 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2671 			 *   not real 'actions', and are stored right
2672 			 *   before the 'action' part of the rule (one
2673 			 *   exception is O_SKIP_ACTION which could be
2674 			 *   between these opcodes and 'action' one).
2675 			 *   These opcodes try to install an entry in the
2676 			 *   state tables; if successful, we continue with
2677 			 *   the next opcode (match=1; break;), otherwise
2678 			 *   the packet must be dropped (set retval,
2679 			 *   break loops with l=0, done=1)
2680 			 *
2681 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2682 			 *   cause a lookup of the state table, and a jump
2683 			 *   to the 'action' part of the parent rule
2684 			 *   if an entry is found, or
2685 			 *   (CHECK_STATE only) a jump to the next rule if
2686 			 *   the entry is not found.
2687 			 *   The result of the lookup is cached so that
2688 			 *   further instances of these opcodes become NOPs.
2689 			 *   The jump to the next rule is done by setting
2690 			 *   l=0, cmdlen=0.
2691 			 *
2692 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2693 			 *  either, and is stored right before the 'action'
2694 			 *  part of the rule, right after the O_KEEP_STATE
2695 			 *  opcode. It causes match failure so the real
2696 			 *  'action' could be executed only if the rule
2697 			 *  is checked via dynamic rule from the state
2698 			 *  table, as in such case execution starts
2699 			 *  from the true 'action' opcode directly.
2700 			 *
2701 			 */
2702 			case O_LIMIT:
2703 			case O_KEEP_STATE:
2704 				if (ipfw_dyn_install_state(chain, f,
2705 				    (ipfw_insn_limit *)cmd, args, ulp,
2706 				    pktlen, &dyn_info, tablearg)) {
2707 					/* error or limit violation */
2708 					retval = IP_FW_DENY;
2709 					l = 0;	/* exit inner loop */
2710 					done = 1; /* exit outer loop */
2711 				}
2712 				match = 1;
2713 				break;
2714 
2715 			case O_PROBE_STATE:
2716 			case O_CHECK_STATE:
2717 				/*
2718 				 * dynamic rules are checked at the first
2719 				 * keep-state or check-state occurrence,
2720 				 * with the result being stored in dyn_info.
2721 				 * The compiler introduces a PROBE_STATE
2722 				 * instruction for us when we have a
2723 				 * KEEP_STATE (because PROBE_STATE needs
2724 				 * to be run first).
2725 				 */
2726 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2727 				    (q = ipfw_dyn_lookup_state(args, ulp,
2728 				    pktlen, cmd, &dyn_info)) != NULL) {
2729 					/*
2730 					 * Found dynamic entry, jump to the
2731 					 * 'action' part of the parent rule
2732 					 * by setting f, cmd, l and clearing
2733 					 * cmdlen.
2734 					 */
2735 					f = q;
2736 					f_pos = dyn_info.f_pos;
2737 					cmd = ACTION_PTR(f);
2738 					l = f->cmd_len - f->act_ofs;
2739 					cmdlen = 0;
2740 					match = 1;
2741 					break;
2742 				}
2743 				/*
2744 				 * Dynamic entry not found. If CHECK_STATE,
2745 				 * skip to next rule, if PROBE_STATE just
2746 				 * ignore and continue with next opcode.
2747 				 */
2748 				if (cmd->opcode == O_CHECK_STATE)
2749 					l = 0;	/* exit inner loop */
2750 				match = 1;
2751 				break;
2752 
2753 			case O_SKIP_ACTION:
2754 				match = 0;	/* skip to the next rule */
2755 				l = 0;		/* exit inner loop */
2756 				break;
2757 
2758 			case O_ACCEPT:
2759 				retval = 0;	/* accept */
2760 				l = 0;		/* exit inner loop */
2761 				done = 1;	/* exit outer loop */
2762 				break;
2763 
2764 			case O_PIPE:
2765 			case O_QUEUE:
2766 				set_match(args, f_pos, chain);
2767 				args->rule.info = TARG(cmd->arg1, pipe);
2768 				if (cmd->opcode == O_PIPE)
2769 					args->rule.info |= IPFW_IS_PIPE;
2770 				if (V_fw_one_pass)
2771 					args->rule.info |= IPFW_ONEPASS;
2772 				retval = IP_FW_DUMMYNET;
2773 				l = 0;          /* exit inner loop */
2774 				done = 1;       /* exit outer loop */
2775 				break;
2776 
2777 			case O_DIVERT:
2778 			case O_TEE:
2779 				if (args->flags & IPFW_ARGS_ETHER)
2780 					break;	/* not on layer 2 */
2781 				/* otherwise this is terminal */
2782 				l = 0;		/* exit inner loop */
2783 				done = 1;	/* exit outer loop */
2784 				retval = (cmd->opcode == O_DIVERT) ?
2785 					IP_FW_DIVERT : IP_FW_TEE;
2786 				set_match(args, f_pos, chain);
2787 				args->rule.info = TARG(cmd->arg1, divert);
2788 				break;
2789 
2790 			case O_COUNT:
2791 				IPFW_INC_RULE_COUNTER(f, pktlen);
2792 				l = 0;		/* exit inner loop */
2793 				break;
2794 
2795 			case O_SKIPTO:
2796 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2797 			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2798 			    /*
2799 			     * Skip disabled rules, and re-enter
2800 			     * the inner loop with the correct
2801 			     * f_pos, f, l and cmd.
2802 			     * Also clear cmdlen and skip_or
2803 			     */
2804 			    for (; f_pos < chain->n_rules - 1 &&
2805 				    (V_set_disable &
2806 				     (1 << chain->map[f_pos]->set));
2807 				    f_pos++)
2808 				;
2809 			    /* Re-enter the inner loop at the skipto rule. */
2810 			    f = chain->map[f_pos];
2811 			    l = f->cmd_len;
2812 			    cmd = f->cmd;
2813 			    match = 1;
2814 			    cmdlen = 0;
2815 			    skip_or = 0;
2816 			    continue;
2817 			    break;	/* not reached */
2818 
2819 			case O_CALLRETURN: {
2820 				/*
2821 				 * Implementation of `subroutine' call/return,
2822 				 * in the stack carried in an mbuf tag. This
2823 				 * is different from `skipto' in that any call
2824 				 * address is possible (`skipto' must prevent
2825 				 * backward jumps to avoid endless loops).
2826 				 * We have `return' action when F_NOT flag is
2827 				 * present. The `m_tag_id' field is used as
2828 				 * stack pointer.
2829 				 */
2830 				struct m_tag *mtag;
2831 				uint16_t jmpto, *stack;
2832 
2833 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2834 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2835 				/*
2836 				 * Hand-rolled version of m_tag_locate() with
2837 				 * wildcard `type'.
2838 				 * If not already tagged, allocate new tag.
2839 				 */
2840 				mtag = m_tag_first(m);
2841 				while (mtag != NULL) {
2842 					if (mtag->m_tag_cookie ==
2843 					    MTAG_IPFW_CALL)
2844 						break;
2845 					mtag = m_tag_next(m, mtag);
2846 				}
2847 				if (mtag == NULL && IS_CALL) {
2848 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2849 					    IPFW_CALLSTACK_SIZE *
2850 					    sizeof(uint16_t), M_NOWAIT);
2851 					if (mtag != NULL)
2852 						m_tag_prepend(m, mtag);
2853 				}
2854 
2855 				/*
2856 				 * On error both `call' and `return' just
2857 				 * continue with next rule.
2858 				 */
2859 				if (IS_RETURN && (mtag == NULL ||
2860 				    mtag->m_tag_id == 0)) {
2861 					l = 0;		/* exit inner loop */
2862 					break;
2863 				}
2864 				if (IS_CALL && (mtag == NULL ||
2865 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2866 					printf("ipfw: call stack error, "
2867 					    "go to next rule\n");
2868 					l = 0;		/* exit inner loop */
2869 					break;
2870 				}
2871 
2872 				IPFW_INC_RULE_COUNTER(f, pktlen);
2873 				stack = (uint16_t *)(mtag + 1);
2874 
2875 				/*
2876 				 * The `call' action may use cached f_pos
2877 				 * (in f->next_rule), whose version is written
2878 				 * in f->next_rule.
2879 				 * The `return' action, however, doesn't have
2880 				 * fixed jump address in cmd->arg1 and can't use
2881 				 * cache.
2882 				 */
2883 				if (IS_CALL) {
2884 					stack[mtag->m_tag_id] = f->rulenum;
2885 					mtag->m_tag_id++;
2886 			    		f_pos = JUMP(chain, f, cmd->arg1,
2887 					    tablearg, 1);
2888 				} else {	/* `return' action */
2889 					mtag->m_tag_id--;
2890 					jmpto = stack[mtag->m_tag_id] + 1;
2891 					f_pos = ipfw_find_rule(chain, jmpto, 0);
2892 				}
2893 
2894 				/*
2895 				 * Skip disabled rules, and re-enter
2896 				 * the inner loop with the correct
2897 				 * f_pos, f, l and cmd.
2898 				 * Also clear cmdlen and skip_or
2899 				 */
2900 				for (; f_pos < chain->n_rules - 1 &&
2901 				    (V_set_disable &
2902 				    (1 << chain->map[f_pos]->set)); f_pos++)
2903 					;
2904 				/* Re-enter the inner loop at the dest rule. */
2905 				f = chain->map[f_pos];
2906 				l = f->cmd_len;
2907 				cmd = f->cmd;
2908 				cmdlen = 0;
2909 				skip_or = 0;
2910 				continue;
2911 				break;	/* NOTREACHED */
2912 			}
2913 #undef IS_CALL
2914 #undef IS_RETURN
2915 
2916 			case O_REJECT:
2917 				/*
2918 				 * Drop the packet and send a reject notice
2919 				 * if the packet is not ICMP (or is an ICMP
2920 				 * query), and it is not multicast/broadcast.
2921 				 */
2922 				if (hlen > 0 && is_ipv4 && offset == 0 &&
2923 				    (proto != IPPROTO_ICMP ||
2924 				     is_icmp_query(ICMP(ulp))) &&
2925 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2926 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2927 					send_reject(args, cmd->arg1, iplen, ip);
2928 					m = args->m;
2929 				}
2930 				/* FALLTHROUGH */
2931 #ifdef INET6
2932 			case O_UNREACH6:
2933 				if (hlen > 0 && is_ipv6 &&
2934 				    ((offset & IP6F_OFF_MASK) == 0) &&
2935 				    (proto != IPPROTO_ICMPV6 ||
2936 				     (is_icmp6_query(icmp6_type) == 1)) &&
2937 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2938 				    !IN6_IS_ADDR_MULTICAST(
2939 					&args->f_id.dst_ip6)) {
2940 					send_reject6(args,
2941 					    cmd->opcode == O_REJECT ?
2942 					    map_icmp_unreach(cmd->arg1):
2943 					    cmd->arg1, hlen,
2944 					    (struct ip6_hdr *)ip);
2945 					m = args->m;
2946 				}
2947 				/* FALLTHROUGH */
2948 #endif
2949 			case O_DENY:
2950 				retval = IP_FW_DENY;
2951 				l = 0;		/* exit inner loop */
2952 				done = 1;	/* exit outer loop */
2953 				break;
2954 
2955 			case O_FORWARD_IP:
2956 				if (args->flags & IPFW_ARGS_ETHER)
2957 					break;	/* not valid on layer2 pkts */
2958 				if (q != f ||
2959 				    dyn_info.direction == MATCH_FORWARD) {
2960 				    struct sockaddr_in *sa;
2961 
2962 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2963 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2964 #ifdef INET6
2965 					/*
2966 					 * We use O_FORWARD_IP opcode for
2967 					 * fwd rule with tablearg, but tables
2968 					 * now support IPv6 addresses. And
2969 					 * when we are inspecting IPv6 packet,
2970 					 * we can use nh6 field from
2971 					 * table_value as next_hop6 address.
2972 					 */
2973 					if (is_ipv6) {
2974 						struct ip_fw_nh6 *nh6;
2975 
2976 						args->flags |= IPFW_ARGS_NH6;
2977 						nh6 = &args->hopstore6;
2978 						nh6->sin6_addr = TARG_VAL(
2979 						    chain, tablearg, nh6);
2980 						nh6->sin6_port = sa->sin_port;
2981 						nh6->sin6_scope_id = TARG_VAL(
2982 						    chain, tablearg, zoneid);
2983 					} else
2984 #endif
2985 					{
2986 						args->flags |= IPFW_ARGS_NH4;
2987 						args->hopstore.sin_port =
2988 						    sa->sin_port;
2989 						sa = &args->hopstore;
2990 						sa->sin_family = AF_INET;
2991 						sa->sin_len = sizeof(*sa);
2992 						sa->sin_addr.s_addr = htonl(
2993 						    TARG_VAL(chain, tablearg,
2994 						    nh4));
2995 					}
2996 				    } else {
2997 					    args->flags |= IPFW_ARGS_NH4PTR;
2998 					    args->next_hop = sa;
2999 				    }
3000 				}
3001 				retval = IP_FW_PASS;
3002 				l = 0;          /* exit inner loop */
3003 				done = 1;       /* exit outer loop */
3004 				break;
3005 
3006 #ifdef INET6
3007 			case O_FORWARD_IP6:
3008 				if (args->flags & IPFW_ARGS_ETHER)
3009 					break;	/* not valid on layer2 pkts */
3010 				if (q != f ||
3011 				    dyn_info.direction == MATCH_FORWARD) {
3012 					struct sockaddr_in6 *sin6;
3013 
3014 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3015 					args->flags |= IPFW_ARGS_NH6PTR;
3016 					args->next_hop6 = sin6;
3017 				}
3018 				retval = IP_FW_PASS;
3019 				l = 0;		/* exit inner loop */
3020 				done = 1;	/* exit outer loop */
3021 				break;
3022 #endif
3023 
3024 			case O_NETGRAPH:
3025 			case O_NGTEE:
3026 				set_match(args, f_pos, chain);
3027 				args->rule.info = TARG(cmd->arg1, netgraph);
3028 				if (V_fw_one_pass)
3029 					args->rule.info |= IPFW_ONEPASS;
3030 				retval = (cmd->opcode == O_NETGRAPH) ?
3031 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3032 				l = 0;          /* exit inner loop */
3033 				done = 1;       /* exit outer loop */
3034 				break;
3035 
3036 			case O_SETFIB: {
3037 				uint32_t fib;
3038 
3039 				IPFW_INC_RULE_COUNTER(f, pktlen);
3040 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3041 				if (fib >= rt_numfibs)
3042 					fib = 0;
3043 				M_SETFIB(m, fib);
3044 				args->f_id.fib = fib; /* XXX */
3045 				l = 0;		/* exit inner loop */
3046 				break;
3047 		        }
3048 
3049 			case O_SETDSCP: {
3050 				uint16_t code;
3051 
3052 				code = TARG(cmd->arg1, dscp) & 0x3F;
3053 				l = 0;		/* exit inner loop */
3054 				if (is_ipv4) {
3055 					uint16_t old;
3056 
3057 					old = *(uint16_t *)ip;
3058 					ip->ip_tos = (code << 2) |
3059 					    (ip->ip_tos & 0x03);
3060 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3061 					    old, *(uint16_t *)ip);
3062 				} else if (is_ipv6) {
3063 					uint8_t *v;
3064 
3065 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
3066 					*v = (*v & 0xF0) | (code >> 2);
3067 					v++;
3068 					*v = (*v & 0x3F) | ((code & 0x03) << 6);
3069 				} else
3070 					break;
3071 
3072 				IPFW_INC_RULE_COUNTER(f, pktlen);
3073 				break;
3074 			}
3075 
3076 			case O_NAT:
3077 				l = 0;          /* exit inner loop */
3078 				done = 1;       /* exit outer loop */
3079 				/*
3080 				 * Ensure that we do not invoke NAT handler for
3081 				 * non IPv4 packets. Libalias expects only IPv4.
3082 				 */
3083 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3084 				    retval = IP_FW_DENY;
3085 				    break;
3086 				}
3087 
3088 				struct cfg_nat *t;
3089 				int nat_id;
3090 
3091 				args->rule.info = 0;
3092 				set_match(args, f_pos, chain);
3093 				/* Check if this is 'global' nat rule */
3094 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3095 					retval = ipfw_nat_ptr(args, NULL, m);
3096 					break;
3097 				}
3098 				t = ((ipfw_insn_nat *)cmd)->nat;
3099 				if (t == NULL) {
3100 					nat_id = TARG(cmd->arg1, nat);
3101 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3102 
3103 					if (t == NULL) {
3104 					    retval = IP_FW_DENY;
3105 					    break;
3106 					}
3107 					if (cmd->arg1 != IP_FW_TARG)
3108 					    ((ipfw_insn_nat *)cmd)->nat = t;
3109 				}
3110 				retval = ipfw_nat_ptr(args, t, m);
3111 				break;
3112 
3113 			case O_REASS: {
3114 				int ip_off;
3115 
3116 				l = 0;	/* in any case exit inner loop */
3117 				if (is_ipv6) /* IPv6 is not supported yet */
3118 					break;
3119 				IPFW_INC_RULE_COUNTER(f, pktlen);
3120 				ip_off = ntohs(ip->ip_off);
3121 
3122 				/* if not fragmented, go to next rule */
3123 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3124 				    break;
3125 
3126 				args->m = m = ip_reass(m);
3127 
3128 				/*
3129 				 * do IP header checksum fixup.
3130 				 */
3131 				if (m == NULL) { /* fragment got swallowed */
3132 				    retval = IP_FW_DENY;
3133 				} else { /* good, packet complete */
3134 				    int hlen;
3135 
3136 				    ip = mtod(m, struct ip *);
3137 				    hlen = ip->ip_hl << 2;
3138 				    ip->ip_sum = 0;
3139 				    if (hlen == sizeof(struct ip))
3140 					ip->ip_sum = in_cksum_hdr(ip);
3141 				    else
3142 					ip->ip_sum = in_cksum(m, hlen);
3143 				    retval = IP_FW_REASS;
3144 				    args->rule.info = 0;
3145 				    set_match(args, f_pos, chain);
3146 				}
3147 				done = 1;	/* exit outer loop */
3148 				break;
3149 			}
3150 			case O_EXTERNAL_ACTION:
3151 				l = 0; /* in any case exit inner loop */
3152 				retval = ipfw_run_eaction(chain, args,
3153 				    cmd, &done);
3154 				/*
3155 				 * If both @retval and @done are zero,
3156 				 * consider this as rule matching and
3157 				 * update counters.
3158 				 */
3159 				if (retval == 0 && done == 0) {
3160 					IPFW_INC_RULE_COUNTER(f, pktlen);
3161 					/*
3162 					 * Reset the result of the last
3163 					 * dynamic state lookup.
3164 					 * External action can change
3165 					 * @args content, and it may be
3166 					 * used for new state lookup later.
3167 					 */
3168 					DYN_INFO_INIT(&dyn_info);
3169 				}
3170 				break;
3171 
3172 			default:
3173 				panic("-- unknown opcode %d\n", cmd->opcode);
3174 			} /* end of switch() on opcodes */
3175 			/*
3176 			 * if we get here with l=0, then match is irrelevant.
3177 			 */
3178 
3179 			if (cmd->len & F_NOT)
3180 				match = !match;
3181 
3182 			if (match) {
3183 				if (cmd->len & F_OR)
3184 					skip_or = 1;
3185 			} else {
3186 				if (!(cmd->len & F_OR)) /* not an OR block, */
3187 					break;		/* try next rule    */
3188 			}
3189 
3190 		}	/* end of inner loop, scan opcodes */
3191 #undef PULLUP_LEN
3192 #undef PULLUP_LEN_LOCKED
3193 
3194 		if (done)
3195 			break;
3196 
3197 /* next_rule:; */	/* try next rule		*/
3198 
3199 	}		/* end of outer for, scan rules */
3200 
3201 	if (done) {
3202 		struct ip_fw *rule = chain->map[f_pos];
3203 		/* Update statistics */
3204 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3205 	} else {
3206 		retval = IP_FW_DENY;
3207 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3208 	}
3209 	IPFW_PF_RUNLOCK(chain);
3210 #ifdef __FreeBSD__
3211 	if (ucred_cache != NULL)
3212 		crfree(ucred_cache);
3213 #endif
3214 	return (retval);
3215 
3216 pullup_failed:
3217 	if (V_fw_verbose)
3218 		printf("ipfw: pullup failed\n");
3219 	return (IP_FW_DENY);
3220 }
3221 
3222 /*
3223  * Set maximum number of tables that can be used in given VNET ipfw instance.
3224  */
3225 #ifdef SYSCTL_NODE
3226 static int
3227 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3228 {
3229 	int error;
3230 	unsigned int ntables;
3231 
3232 	ntables = V_fw_tables_max;
3233 
3234 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3235 	/* Read operation or some error */
3236 	if ((error != 0) || (req->newptr == NULL))
3237 		return (error);
3238 
3239 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3240 }
3241 
3242 /*
3243  * Switches table namespace between global and per-set.
3244  */
3245 static int
3246 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3247 {
3248 	int error;
3249 	unsigned int sets;
3250 
3251 	sets = V_fw_tables_sets;
3252 
3253 	error = sysctl_handle_int(oidp, &sets, 0, req);
3254 	/* Read operation or some error */
3255 	if ((error != 0) || (req->newptr == NULL))
3256 		return (error);
3257 
3258 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3259 }
3260 #endif
3261 
3262 /*
3263  * Module and VNET glue
3264  */
3265 
3266 /*
3267  * Stuff that must be initialised only on boot or module load
3268  */
3269 static int
3270 ipfw_init(void)
3271 {
3272 	int error = 0;
3273 
3274 	/*
3275  	 * Only print out this stuff the first time around,
3276 	 * when called from the sysinit code.
3277 	 */
3278 	printf("ipfw2 "
3279 #ifdef INET6
3280 		"(+ipv6) "
3281 #endif
3282 		"initialized, divert %s, nat %s, "
3283 		"default to %s, logging ",
3284 #ifdef IPDIVERT
3285 		"enabled",
3286 #else
3287 		"loadable",
3288 #endif
3289 #ifdef IPFIREWALL_NAT
3290 		"enabled",
3291 #else
3292 		"loadable",
3293 #endif
3294 		default_to_accept ? "accept" : "deny");
3295 
3296 	/*
3297 	 * Note: V_xxx variables can be accessed here but the vnet specific
3298 	 * initializer may not have been called yet for the VIMAGE case.
3299 	 * Tuneables will have been processed. We will print out values for
3300 	 * the default vnet.
3301 	 * XXX This should all be rationalized AFTER 8.0
3302 	 */
3303 	if (V_fw_verbose == 0)
3304 		printf("disabled\n");
3305 	else if (V_verbose_limit == 0)
3306 		printf("unlimited\n");
3307 	else
3308 		printf("limited to %d packets/entry by default\n",
3309 		    V_verbose_limit);
3310 
3311 	/* Check user-supplied table count for validness */
3312 	if (default_fw_tables > IPFW_TABLES_MAX)
3313 	  default_fw_tables = IPFW_TABLES_MAX;
3314 
3315 	ipfw_init_sopt_handler();
3316 	ipfw_init_obj_rewriter();
3317 	ipfw_iface_init();
3318 	return (error);
3319 }
3320 
3321 /*
3322  * Called for the removal of the last instance only on module unload.
3323  */
3324 static void
3325 ipfw_destroy(void)
3326 {
3327 
3328 	ipfw_iface_destroy();
3329 	ipfw_destroy_sopt_handler();
3330 	ipfw_destroy_obj_rewriter();
3331 	printf("IP firewall unloaded\n");
3332 }
3333 
3334 /*
3335  * Stuff that must be initialized for every instance
3336  * (including the first of course).
3337  */
3338 static int
3339 vnet_ipfw_init(const void *unused)
3340 {
3341 	int error, first;
3342 	struct ip_fw *rule = NULL;
3343 	struct ip_fw_chain *chain;
3344 
3345 	chain = &V_layer3_chain;
3346 
3347 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3348 
3349 	/* First set up some values that are compile time options */
3350 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3351 	V_fw_deny_unknown_exthdrs = 1;
3352 #ifdef IPFIREWALL_VERBOSE
3353 	V_fw_verbose = 1;
3354 #endif
3355 #ifdef IPFIREWALL_VERBOSE_LIMIT
3356 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3357 #endif
3358 #ifdef IPFIREWALL_NAT
3359 	LIST_INIT(&chain->nat);
3360 #endif
3361 
3362 	/* Init shared services hash table */
3363 	ipfw_init_srv(chain);
3364 
3365 	ipfw_init_counters();
3366 	/* Set initial number of tables */
3367 	V_fw_tables_max = default_fw_tables;
3368 	error = ipfw_init_tables(chain, first);
3369 	if (error) {
3370 		printf("ipfw2: setting up tables failed\n");
3371 		free(chain->map, M_IPFW);
3372 		free(rule, M_IPFW);
3373 		return (ENOSPC);
3374 	}
3375 
3376 	IPFW_LOCK_INIT(chain);
3377 
3378 	/* fill and insert the default rule */
3379 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3380 	rule->flags |= IPFW_RULE_NOOPT;
3381 	rule->cmd_len = 1;
3382 	rule->cmd[0].len = 1;
3383 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3384 	chain->default_rule = rule;
3385 	ipfw_add_protected_rule(chain, rule, 0);
3386 
3387 	ipfw_dyn_init(chain);
3388 	ipfw_eaction_init(chain, first);
3389 #ifdef LINEAR_SKIPTO
3390 	ipfw_init_skipto_cache(chain);
3391 #endif
3392 	ipfw_bpf_init(first);
3393 
3394 	/* First set up some values that are compile time options */
3395 	V_ipfw_vnet_ready = 1;		/* Open for business */
3396 
3397 	/*
3398 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3399 	 * Even if the latter two fail we still keep the module alive
3400 	 * because the sockopt and layer2 paths are still useful.
3401 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3402 	 * so we can ignore the exact return value and just set a flag.
3403 	 *
3404 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3405 	 * changes in the underlying (per-vnet) variables trigger
3406 	 * immediate hook()/unhook() calls.
3407 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3408 	 * is checked on each packet because there are no pfil hooks.
3409 	 */
3410 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3411 	error = ipfw_attach_hooks();
3412 	return (error);
3413 }
3414 
3415 /*
3416  * Called for the removal of each instance.
3417  */
3418 static int
3419 vnet_ipfw_uninit(const void *unused)
3420 {
3421 	struct ip_fw *reap;
3422 	struct ip_fw_chain *chain = &V_layer3_chain;
3423 	int i, last;
3424 
3425 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3426 	/*
3427 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3428 	 * Then grab, release and grab again the WLOCK so we make
3429 	 * sure the update is propagated and nobody will be in.
3430 	 */
3431 	ipfw_detach_hooks();
3432 	V_ip_fw_ctl_ptr = NULL;
3433 
3434 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3435 
3436 	IPFW_UH_WLOCK(chain);
3437 	IPFW_UH_WUNLOCK(chain);
3438 
3439 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3440 
3441 	IPFW_UH_WLOCK(chain);
3442 
3443 	reap = NULL;
3444 	IPFW_WLOCK(chain);
3445 	for (i = 0; i < chain->n_rules; i++)
3446 		ipfw_reap_add(chain, &reap, chain->map[i]);
3447 	free(chain->map, M_IPFW);
3448 #ifdef LINEAR_SKIPTO
3449 	ipfw_destroy_skipto_cache(chain);
3450 #endif
3451 	IPFW_WUNLOCK(chain);
3452 	IPFW_UH_WUNLOCK(chain);
3453 	ipfw_destroy_tables(chain, last);
3454 	ipfw_eaction_uninit(chain, last);
3455 	if (reap != NULL)
3456 		ipfw_reap_rules(reap);
3457 	vnet_ipfw_iface_destroy(chain);
3458 	ipfw_destroy_srv(chain);
3459 	IPFW_LOCK_DESTROY(chain);
3460 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3461 	ipfw_destroy_counters();
3462 	ipfw_bpf_uninit(last);
3463 	return (0);
3464 }
3465 
3466 /*
3467  * Module event handler.
3468  * In general we have the choice of handling most of these events by the
3469  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3470  * use the SYSINIT handlers as they are more capable of expressing the
3471  * flow of control during module and vnet operations, so this is just
3472  * a skeleton. Note there is no SYSINIT equivalent of the module
3473  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3474  */
3475 static int
3476 ipfw_modevent(module_t mod, int type, void *unused)
3477 {
3478 	int err = 0;
3479 
3480 	switch (type) {
3481 	case MOD_LOAD:
3482 		/* Called once at module load or
3483 	 	 * system boot if compiled in. */
3484 		break;
3485 	case MOD_QUIESCE:
3486 		/* Called before unload. May veto unloading. */
3487 		break;
3488 	case MOD_UNLOAD:
3489 		/* Called during unload. */
3490 		break;
3491 	case MOD_SHUTDOWN:
3492 		/* Called during system shutdown. */
3493 		break;
3494 	default:
3495 		err = EOPNOTSUPP;
3496 		break;
3497 	}
3498 	return err;
3499 }
3500 
3501 static moduledata_t ipfwmod = {
3502 	"ipfw",
3503 	ipfw_modevent,
3504 	0
3505 };
3506 
3507 /* Define startup order. */
3508 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3509 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3510 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3511 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3512 
3513 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3514 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3515 MODULE_VERSION(ipfw, 3);
3516 /* should declare some dependencies here */
3517 
3518 /*
3519  * Starting up. Done in order after ipfwmod() has been called.
3520  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3521  */
3522 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3523 	    ipfw_init, NULL);
3524 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3525 	    vnet_ipfw_init, NULL);
3526 
3527 /*
3528  * Closing up shop. These are done in REVERSE ORDER, but still
3529  * after ipfwmod() has been called. Not called on reboot.
3530  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3531  * or when the module is unloaded.
3532  */
3533 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3534 	    ipfw_destroy, NULL);
3535 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3536 	    vnet_ipfw_uninit, NULL);
3537 /* end of file */
3538