xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision 95d45410b5100e07f6f98450bcd841a8945d4726)
1 /*-
2  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * The FreeBSD IP packet firewall, main file
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipdivert.h"
35 #include "opt_inet.h"
36 #ifndef INET
37 #error "IPFIREWALL requires INET"
38 #endif /* INET */
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/condvar.h>
45 #include <sys/eventhandler.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/jail.h>
51 #include <sys/module.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 #include <net/ethernet.h> /* for ETHERTYPE_IP */
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/route.h>
64 #include <net/pfil.h>
65 #include <net/vnet.h>
66 
67 #include <netpfil/pf/pf_mtag.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_var.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_fw.h>
76 #include <netinet/ip_carp.h>
77 #include <netinet/pim.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #include <netinet/sctp.h>
82 
83 #include <netinet/ip6.h>
84 #include <netinet/icmp6.h>
85 #ifdef INET6
86 #include <netinet6/in6_pcb.h>
87 #include <netinet6/scope6_var.h>
88 #include <netinet6/ip6_var.h>
89 #endif
90 
91 #include <netpfil/ipfw/ip_fw_private.h>
92 
93 #include <machine/in_cksum.h>	/* XXX for in_cksum */
94 
95 #ifdef MAC
96 #include <security/mac/mac_framework.h>
97 #endif
98 
99 /*
100  * static variables followed by global ones.
101  * All ipfw global variables are here.
102  */
103 
104 /* ipfw_vnet_ready controls when we are open for business */
105 static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
106 #define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
107 
108 static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
109 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
110 
111 static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
112 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
113 
114 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
115 static int default_to_accept = 1;
116 #else
117 static int default_to_accept;
118 #endif
119 
120 VNET_DEFINE(int, autoinc_step);
121 VNET_DEFINE(int, fw_one_pass) = 1;
122 
123 VNET_DEFINE(unsigned int, fw_tables_max);
124 /* Use 128 tables by default */
125 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
126 
127 /*
128  * Each rule belongs to one of 32 different sets (0..31).
129  * The variable set_disable contains one bit per set.
130  * If the bit is set, all rules in the corresponding set
131  * are disabled. Set RESVD_SET(31) is reserved for the default rule
132  * and rules that are not deleted by the flush command,
133  * and CANNOT be disabled.
134  * Rules in set RESVD_SET can only be deleted individually.
135  */
136 VNET_DEFINE(u_int32_t, set_disable);
137 #define	V_set_disable			VNET(set_disable)
138 
139 VNET_DEFINE(int, fw_verbose);
140 /* counter for ipfw_log(NULL...) */
141 VNET_DEFINE(u_int64_t, norule_counter);
142 VNET_DEFINE(int, verbose_limit);
143 
144 /* layer3_chain contains the list of rules for layer 3 */
145 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
146 
147 VNET_DEFINE(int, ipfw_nat_ready) = 0;
148 
149 ipfw_nat_t *ipfw_nat_ptr = NULL;
150 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
151 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
152 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
153 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
154 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
155 
156 #ifdef SYSCTL_NODE
157 uint32_t dummy_def = IPFW_DEFAULT_RULE;
158 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
159 
160 SYSBEGIN(f3)
161 
162 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
163 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
164     CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
165     "Only do a single pass through ipfw when using dummynet(4)");
166 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
167     CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
168     "Rule number auto-increment step");
169 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
170     CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
171     "Log matches to ipfw rules");
172 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
173     CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
174     "Set upper limit of matches of ipfw rules logged");
175 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
176     &dummy_def, 0,
177     "The default/max possible rule number.");
178 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
179     CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
180     "Maximum number of tables");
181 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
182     &default_to_accept, 0,
183     "Make the default rule accept all packets.");
184 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
185 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
186     CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
187     "Number of static rules");
188 
189 #ifdef INET6
190 SYSCTL_DECL(_net_inet6_ip6);
191 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
192 SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
193     CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
194     "Deny packets with unknown IPv6 Extension Headers");
195 SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
196     CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0,
197     "Permit single packet IPv6 fragments");
198 #endif /* INET6 */
199 
200 SYSEND
201 
202 #endif /* SYSCTL_NODE */
203 
204 
205 /*
206  * Some macros used in the various matching options.
207  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
208  * Other macros just cast void * into the appropriate type
209  */
210 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
211 #define	TCP(p)		((struct tcphdr *)(p))
212 #define	SCTP(p)		((struct sctphdr *)(p))
213 #define	UDP(p)		((struct udphdr *)(p))
214 #define	ICMP(p)		((struct icmphdr *)(p))
215 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
216 
217 static __inline int
218 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
219 {
220 	int type = icmp->icmp_type;
221 
222 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
223 }
224 
225 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
226     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
227 
228 static int
229 is_icmp_query(struct icmphdr *icmp)
230 {
231 	int type = icmp->icmp_type;
232 
233 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
234 }
235 #undef TT
236 
237 /*
238  * The following checks use two arrays of 8 or 16 bits to store the
239  * bits that we want set or clear, respectively. They are in the
240  * low and high half of cmd->arg1 or cmd->d[0].
241  *
242  * We scan options and store the bits we find set. We succeed if
243  *
244  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
245  *
246  * The code is sometimes optimized not to store additional variables.
247  */
248 
249 static int
250 flags_match(ipfw_insn *cmd, u_int8_t bits)
251 {
252 	u_char want_clear;
253 	bits = ~bits;
254 
255 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
256 		return 0; /* some bits we want set were clear */
257 	want_clear = (cmd->arg1 >> 8) & 0xff;
258 	if ( (want_clear & bits) != want_clear)
259 		return 0; /* some bits we want clear were set */
260 	return 1;
261 }
262 
263 static int
264 ipopts_match(struct ip *ip, ipfw_insn *cmd)
265 {
266 	int optlen, bits = 0;
267 	u_char *cp = (u_char *)(ip + 1);
268 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
269 
270 	for (; x > 0; x -= optlen, cp += optlen) {
271 		int opt = cp[IPOPT_OPTVAL];
272 
273 		if (opt == IPOPT_EOL)
274 			break;
275 		if (opt == IPOPT_NOP)
276 			optlen = 1;
277 		else {
278 			optlen = cp[IPOPT_OLEN];
279 			if (optlen <= 0 || optlen > x)
280 				return 0; /* invalid or truncated */
281 		}
282 		switch (opt) {
283 
284 		default:
285 			break;
286 
287 		case IPOPT_LSRR:
288 			bits |= IP_FW_IPOPT_LSRR;
289 			break;
290 
291 		case IPOPT_SSRR:
292 			bits |= IP_FW_IPOPT_SSRR;
293 			break;
294 
295 		case IPOPT_RR:
296 			bits |= IP_FW_IPOPT_RR;
297 			break;
298 
299 		case IPOPT_TS:
300 			bits |= IP_FW_IPOPT_TS;
301 			break;
302 		}
303 	}
304 	return (flags_match(cmd, bits));
305 }
306 
307 static int
308 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
309 {
310 	int optlen, bits = 0;
311 	u_char *cp = (u_char *)(tcp + 1);
312 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
313 
314 	for (; x > 0; x -= optlen, cp += optlen) {
315 		int opt = cp[0];
316 		if (opt == TCPOPT_EOL)
317 			break;
318 		if (opt == TCPOPT_NOP)
319 			optlen = 1;
320 		else {
321 			optlen = cp[1];
322 			if (optlen <= 0)
323 				break;
324 		}
325 
326 		switch (opt) {
327 
328 		default:
329 			break;
330 
331 		case TCPOPT_MAXSEG:
332 			bits |= IP_FW_TCPOPT_MSS;
333 			break;
334 
335 		case TCPOPT_WINDOW:
336 			bits |= IP_FW_TCPOPT_WINDOW;
337 			break;
338 
339 		case TCPOPT_SACK_PERMITTED:
340 		case TCPOPT_SACK:
341 			bits |= IP_FW_TCPOPT_SACK;
342 			break;
343 
344 		case TCPOPT_TIMESTAMP:
345 			bits |= IP_FW_TCPOPT_TS;
346 			break;
347 
348 		}
349 	}
350 	return (flags_match(cmd, bits));
351 }
352 
353 static int
354 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain, uint32_t *tablearg)
355 {
356 	if (ifp == NULL)	/* no iface with this packet, match fails */
357 		return 0;
358 	/* Check by name or by IP address */
359 	if (cmd->name[0] != '\0') { /* match by name */
360 		if (cmd->name[0] == '\1') /* use tablearg to match */
361 			return ipfw_lookup_table_extended(chain, cmd->p.glob,
362 				ifp->if_xname, tablearg, IPFW_TABLE_INTERFACE);
363 		/* Check name */
364 		if (cmd->p.glob) {
365 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
366 				return(1);
367 		} else {
368 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
369 				return(1);
370 		}
371 	} else {
372 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
373 		struct ifaddr *ia;
374 
375 		if_addr_rlock(ifp);
376 		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
377 			if (ia->ifa_addr->sa_family != AF_INET)
378 				continue;
379 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
380 			    (ia->ifa_addr))->sin_addr.s_addr) {
381 				if_addr_runlock(ifp);
382 				return(1);	/* match */
383 			}
384 		}
385 		if_addr_runlock(ifp);
386 #endif /* __FreeBSD__ */
387 	}
388 	return(0);	/* no match, fail ... */
389 }
390 
391 /*
392  * The verify_path function checks if a route to the src exists and
393  * if it is reachable via ifp (when provided).
394  *
395  * The 'verrevpath' option checks that the interface that an IP packet
396  * arrives on is the same interface that traffic destined for the
397  * packet's source address would be routed out of.
398  * The 'versrcreach' option just checks that the source address is
399  * reachable via any route (except default) in the routing table.
400  * These two are a measure to block forged packets. This is also
401  * commonly known as "anti-spoofing" or Unicast Reverse Path
402  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
403  * is purposely reminiscent of the Cisco IOS command,
404  *
405  *   ip verify unicast reverse-path
406  *   ip verify unicast source reachable-via any
407  *
408  * which implements the same functionality. But note that the syntax
409  * is misleading, and the check may be performed on all IP packets
410  * whether unicast, multicast, or broadcast.
411  */
412 static int
413 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
414 {
415 #if defined(USERSPACE) || !defined(__FreeBSD__)
416 	return 0;
417 #else
418 	struct route ro;
419 	struct sockaddr_in *dst;
420 
421 	bzero(&ro, sizeof(ro));
422 
423 	dst = (struct sockaddr_in *)&(ro.ro_dst);
424 	dst->sin_family = AF_INET;
425 	dst->sin_len = sizeof(*dst);
426 	dst->sin_addr = src;
427 	in_rtalloc_ign(&ro, 0, fib);
428 
429 	if (ro.ro_rt == NULL)
430 		return 0;
431 
432 	/*
433 	 * If ifp is provided, check for equality with rtentry.
434 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
435 	 * in order to pass packets injected back by if_simloop():
436 	 * routing entry (via lo0) for our own address
437 	 * may exist, so we need to handle routing assymetry.
438 	 */
439 	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
440 		RTFREE(ro.ro_rt);
441 		return 0;
442 	}
443 
444 	/* if no ifp provided, check if rtentry is not default route */
445 	if (ifp == NULL &&
446 	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
447 		RTFREE(ro.ro_rt);
448 		return 0;
449 	}
450 
451 	/* or if this is a blackhole/reject route */
452 	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
453 		RTFREE(ro.ro_rt);
454 		return 0;
455 	}
456 
457 	/* found valid route */
458 	RTFREE(ro.ro_rt);
459 	return 1;
460 #endif /* __FreeBSD__ */
461 }
462 
463 #ifdef INET6
464 /*
465  * ipv6 specific rules here...
466  */
467 static __inline int
468 icmp6type_match (int type, ipfw_insn_u32 *cmd)
469 {
470 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
471 }
472 
473 static int
474 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
475 {
476 	int i;
477 	for (i=0; i <= cmd->o.arg1; ++i )
478 		if (curr_flow == cmd->d[i] )
479 			return 1;
480 	return 0;
481 }
482 
483 /* support for IP6_*_ME opcodes */
484 static int
485 search_ip6_addr_net (struct in6_addr * ip6_addr)
486 {
487 	struct ifnet *mdc;
488 	struct ifaddr *mdc2;
489 	struct in6_ifaddr *fdm;
490 	struct in6_addr copia;
491 
492 	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
493 		if_addr_rlock(mdc);
494 		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
495 			if (mdc2->ifa_addr->sa_family == AF_INET6) {
496 				fdm = (struct in6_ifaddr *)mdc2;
497 				copia = fdm->ia_addr.sin6_addr;
498 				/* need for leaving scope_id in the sock_addr */
499 				in6_clearscope(&copia);
500 				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
501 					if_addr_runlock(mdc);
502 					return 1;
503 				}
504 			}
505 		}
506 		if_addr_runlock(mdc);
507 	}
508 	return 0;
509 }
510 
511 static int
512 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
513 {
514 	struct route_in6 ro;
515 	struct sockaddr_in6 *dst;
516 
517 	bzero(&ro, sizeof(ro));
518 
519 	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
520 	dst->sin6_family = AF_INET6;
521 	dst->sin6_len = sizeof(*dst);
522 	dst->sin6_addr = *src;
523 
524 	in6_rtalloc_ign(&ro, 0, fib);
525 	if (ro.ro_rt == NULL)
526 		return 0;
527 
528 	/*
529 	 * if ifp is provided, check for equality with rtentry
530 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
531 	 * to support the case of sending packets to an address of our own.
532 	 * (where the former interface is the first argument of if_simloop()
533 	 *  (=ifp), the latter is lo0)
534 	 */
535 	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
536 		RTFREE(ro.ro_rt);
537 		return 0;
538 	}
539 
540 	/* if no ifp provided, check if rtentry is not default route */
541 	if (ifp == NULL &&
542 	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
543 		RTFREE(ro.ro_rt);
544 		return 0;
545 	}
546 
547 	/* or if this is a blackhole/reject route */
548 	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
549 		RTFREE(ro.ro_rt);
550 		return 0;
551 	}
552 
553 	/* found valid route */
554 	RTFREE(ro.ro_rt);
555 	return 1;
556 
557 }
558 
559 static int
560 is_icmp6_query(int icmp6_type)
561 {
562 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
563 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
564 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
565 	    icmp6_type == ICMP6_WRUREQUEST ||
566 	    icmp6_type == ICMP6_FQDN_QUERY ||
567 	    icmp6_type == ICMP6_NI_QUERY))
568 		return (1);
569 
570 	return (0);
571 }
572 
573 static void
574 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
575 {
576 	struct mbuf *m;
577 
578 	m = args->m;
579 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
580 		struct tcphdr *tcp;
581 		tcp = (struct tcphdr *)((char *)ip6 + hlen);
582 
583 		if ((tcp->th_flags & TH_RST) == 0) {
584 			struct mbuf *m0;
585 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
586 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
587 			    tcp->th_flags | TH_RST);
588 			if (m0 != NULL)
589 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
590 				    NULL);
591 		}
592 		FREE_PKT(m);
593 	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
594 #if 0
595 		/*
596 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
597 		 * as the contents are read. We need to m_adj() the
598 		 * needed amount.
599 		 * The mbuf will however be thrown away so we can adjust it.
600 		 * Remember we did an m_pullup on it already so we
601 		 * can make some assumptions about contiguousness.
602 		 */
603 		if (args->L3offset)
604 			m_adj(m, args->L3offset);
605 #endif
606 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
607 	} else
608 		FREE_PKT(m);
609 
610 	args->m = NULL;
611 }
612 
613 #endif /* INET6 */
614 
615 
616 /*
617  * sends a reject message, consuming the mbuf passed as an argument.
618  */
619 static void
620 send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
621 {
622 
623 #if 0
624 	/* XXX When ip is not guaranteed to be at mtod() we will
625 	 * need to account for this */
626 	 * The mbuf will however be thrown away so we can adjust it.
627 	 * Remember we did an m_pullup on it already so we
628 	 * can make some assumptions about contiguousness.
629 	 */
630 	if (args->L3offset)
631 		m_adj(m, args->L3offset);
632 #endif
633 	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
634 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
635 	} else if (args->f_id.proto == IPPROTO_TCP) {
636 		struct tcphdr *const tcp =
637 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
638 		if ( (tcp->th_flags & TH_RST) == 0) {
639 			struct mbuf *m;
640 			m = ipfw_send_pkt(args->m, &(args->f_id),
641 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
642 				tcp->th_flags | TH_RST);
643 			if (m != NULL)
644 				ip_output(m, NULL, NULL, 0, NULL, NULL);
645 		}
646 		FREE_PKT(args->m);
647 	} else
648 		FREE_PKT(args->m);
649 	args->m = NULL;
650 }
651 
652 /*
653  * Support for uid/gid/jail lookup. These tests are expensive
654  * (because we may need to look into the list of active sockets)
655  * so we cache the results. ugid_lookupp is 0 if we have not
656  * yet done a lookup, 1 if we succeeded, and -1 if we tried
657  * and failed. The function always returns the match value.
658  * We could actually spare the variable and use *uc, setting
659  * it to '(void *)check_uidgid if we have no info, NULL if
660  * we tried and failed, or any other value if successful.
661  */
662 static int
663 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
664     struct ucred **uc)
665 {
666 #if defined(USERSPACE)
667 	return 0;	// not supported in userspace
668 #else
669 #ifndef __FreeBSD__
670 	/* XXX */
671 	return cred_check(insn, proto, oif,
672 	    dst_ip, dst_port, src_ip, src_port,
673 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
674 #else  /* FreeBSD */
675 	struct in_addr src_ip, dst_ip;
676 	struct inpcbinfo *pi;
677 	struct ipfw_flow_id *id;
678 	struct inpcb *pcb, *inp;
679 	struct ifnet *oif;
680 	int lookupflags;
681 	int match;
682 
683 	id = &args->f_id;
684 	inp = args->inp;
685 	oif = args->oif;
686 
687 	/*
688 	 * Check to see if the UDP or TCP stack supplied us with
689 	 * the PCB. If so, rather then holding a lock and looking
690 	 * up the PCB, we can use the one that was supplied.
691 	 */
692 	if (inp && *ugid_lookupp == 0) {
693 		INP_LOCK_ASSERT(inp);
694 		if (inp->inp_socket != NULL) {
695 			*uc = crhold(inp->inp_cred);
696 			*ugid_lookupp = 1;
697 		} else
698 			*ugid_lookupp = -1;
699 	}
700 	/*
701 	 * If we have already been here and the packet has no
702 	 * PCB entry associated with it, then we can safely
703 	 * assume that this is a no match.
704 	 */
705 	if (*ugid_lookupp == -1)
706 		return (0);
707 	if (id->proto == IPPROTO_TCP) {
708 		lookupflags = 0;
709 		pi = &V_tcbinfo;
710 	} else if (id->proto == IPPROTO_UDP) {
711 		lookupflags = INPLOOKUP_WILDCARD;
712 		pi = &V_udbinfo;
713 	} else
714 		return 0;
715 	lookupflags |= INPLOOKUP_RLOCKPCB;
716 	match = 0;
717 	if (*ugid_lookupp == 0) {
718 		if (id->addr_type == 6) {
719 #ifdef INET6
720 			if (oif == NULL)
721 				pcb = in6_pcblookup_mbuf(pi,
722 				    &id->src_ip6, htons(id->src_port),
723 				    &id->dst_ip6, htons(id->dst_port),
724 				    lookupflags, oif, args->m);
725 			else
726 				pcb = in6_pcblookup_mbuf(pi,
727 				    &id->dst_ip6, htons(id->dst_port),
728 				    &id->src_ip6, htons(id->src_port),
729 				    lookupflags, oif, args->m);
730 #else
731 			*ugid_lookupp = -1;
732 			return (0);
733 #endif
734 		} else {
735 			src_ip.s_addr = htonl(id->src_ip);
736 			dst_ip.s_addr = htonl(id->dst_ip);
737 			if (oif == NULL)
738 				pcb = in_pcblookup_mbuf(pi,
739 				    src_ip, htons(id->src_port),
740 				    dst_ip, htons(id->dst_port),
741 				    lookupflags, oif, args->m);
742 			else
743 				pcb = in_pcblookup_mbuf(pi,
744 				    dst_ip, htons(id->dst_port),
745 				    src_ip, htons(id->src_port),
746 				    lookupflags, oif, args->m);
747 		}
748 		if (pcb != NULL) {
749 			INP_RLOCK_ASSERT(pcb);
750 			*uc = crhold(pcb->inp_cred);
751 			*ugid_lookupp = 1;
752 			INP_RUNLOCK(pcb);
753 		}
754 		if (*ugid_lookupp == 0) {
755 			/*
756 			 * We tried and failed, set the variable to -1
757 			 * so we will not try again on this packet.
758 			 */
759 			*ugid_lookupp = -1;
760 			return (0);
761 		}
762 	}
763 	if (insn->o.opcode == O_UID)
764 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
765 	else if (insn->o.opcode == O_GID)
766 		match = groupmember((gid_t)insn->d[0], *uc);
767 	else if (insn->o.opcode == O_JAIL)
768 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
769 	return (match);
770 #endif /* __FreeBSD__ */
771 #endif /* not supported in userspace */
772 }
773 
774 /*
775  * Helper function to set args with info on the rule after the matching
776  * one. slot is precise, whereas we guess rule_id as they are
777  * assigned sequentially.
778  */
779 static inline void
780 set_match(struct ip_fw_args *args, int slot,
781 	struct ip_fw_chain *chain)
782 {
783 	args->rule.chain_id = chain->id;
784 	args->rule.slot = slot + 1; /* we use 0 as a marker */
785 	args->rule.rule_id = 1 + chain->map[slot]->id;
786 	args->rule.rulenum = chain->map[slot]->rulenum;
787 }
788 
789 /*
790  * Helper function to enable cached rule lookups using
791  * x_next and next_rule fields in ipfw rule.
792  */
793 static int
794 jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
795     int tablearg, int jump_backwards)
796 {
797 	int f_pos;
798 
799 	/* If possible use cached f_pos (in f->next_rule),
800 	 * whose version is written in f->next_rule
801 	 * (horrible hacks to avoid changing the ABI).
802 	 */
803 	if (num != IP_FW_TABLEARG && (uintptr_t)f->x_next == chain->id)
804 		f_pos = (uintptr_t)f->next_rule;
805 	else {
806 		int i = IP_FW_ARG_TABLEARG(num);
807 		/* make sure we do not jump backward */
808 		if (jump_backwards == 0 && i <= f->rulenum)
809 			i = f->rulenum + 1;
810 		f_pos = ipfw_find_rule(chain, i, 0);
811 		/* update the cache */
812 		if (num != IP_FW_TABLEARG) {
813 			f->next_rule = (void *)(uintptr_t)f_pos;
814 			f->x_next = (void *)(uintptr_t)chain->id;
815 		}
816 	}
817 
818 	return (f_pos);
819 }
820 
821 /*
822  * The main check routine for the firewall.
823  *
824  * All arguments are in args so we can modify them and return them
825  * back to the caller.
826  *
827  * Parameters:
828  *
829  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
830  *		Starts with the IP header.
831  *	args->eh (in)	Mac header if present, NULL for layer3 packet.
832  *	args->L3offset	Number of bytes bypassed if we came from L2.
833  *			e.g. often sizeof(eh)  ** NOTYET **
834  *	args->oif	Outgoing interface, NULL if packet is incoming.
835  *		The incoming interface is in the mbuf. (in)
836  *	args->divert_rule (in/out)
837  *		Skip up to the first rule past this rule number;
838  *		upon return, non-zero port number for divert or tee.
839  *
840  *	args->rule	Pointer to the last matching rule (in/out)
841  *	args->next_hop	Socket we are forwarding to (out).
842  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
843  *	args->f_id	Addresses grabbed from the packet (out)
844  * 	args->rule.info	a cookie depending on rule action
845  *
846  * Return value:
847  *
848  *	IP_FW_PASS	the packet must be accepted
849  *	IP_FW_DENY	the packet must be dropped
850  *	IP_FW_DIVERT	divert packet, port in m_tag
851  *	IP_FW_TEE	tee packet, port in m_tag
852  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
853  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
854  *		args->rule contains the matching rule,
855  *		args->rule.info has additional information.
856  *
857  */
858 int
859 ipfw_chk(struct ip_fw_args *args)
860 {
861 
862 	/*
863 	 * Local variables holding state while processing a packet:
864 	 *
865 	 * IMPORTANT NOTE: to speed up the processing of rules, there
866 	 * are some assumption on the values of the variables, which
867 	 * are documented here. Should you change them, please check
868 	 * the implementation of the various instructions to make sure
869 	 * that they still work.
870 	 *
871 	 * args->eh	The MAC header. It is non-null for a layer2
872 	 *	packet, it is NULL for a layer-3 packet.
873 	 * **notyet**
874 	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
875 	 *
876 	 * m | args->m	Pointer to the mbuf, as received from the caller.
877 	 *	It may change if ipfw_chk() does an m_pullup, or if it
878 	 *	consumes the packet because it calls send_reject().
879 	 *	XXX This has to change, so that ipfw_chk() never modifies
880 	 *	or consumes the buffer.
881 	 * ip	is the beginning of the ip(4 or 6) header.
882 	 *	Calculated by adding the L3offset to the start of data.
883 	 *	(Until we start using L3offset, the packet is
884 	 *	supposed to start with the ip header).
885 	 */
886 	struct mbuf *m = args->m;
887 	struct ip *ip = mtod(m, struct ip *);
888 
889 	/*
890 	 * For rules which contain uid/gid or jail constraints, cache
891 	 * a copy of the users credentials after the pcb lookup has been
892 	 * executed. This will speed up the processing of rules with
893 	 * these types of constraints, as well as decrease contention
894 	 * on pcb related locks.
895 	 */
896 #ifndef __FreeBSD__
897 	struct bsd_ucred ucred_cache;
898 #else
899 	struct ucred *ucred_cache = NULL;
900 #endif
901 	int ucred_lookup = 0;
902 
903 	/*
904 	 * oif | args->oif	If NULL, ipfw_chk has been called on the
905 	 *	inbound path (ether_input, ip_input).
906 	 *	If non-NULL, ipfw_chk has been called on the outbound path
907 	 *	(ether_output, ip_output).
908 	 */
909 	struct ifnet *oif = args->oif;
910 
911 	int f_pos = 0;		/* index of current rule in the array */
912 	int retval = 0;
913 
914 	/*
915 	 * hlen	The length of the IP header.
916 	 */
917 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
918 
919 	/*
920 	 * offset	The offset of a fragment. offset != 0 means that
921 	 *	we have a fragment at this offset of an IPv4 packet.
922 	 *	offset == 0 means that (if this is an IPv4 packet)
923 	 *	this is the first or only fragment.
924 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
925 	 *	or there is a single packet fragement (fragement header added
926 	 *	without needed).  We will treat a single packet fragment as if
927 	 *	there was no fragment header (or log/block depending on the
928 	 *	V_fw_permit_single_frag6 sysctl setting).
929 	 */
930 	u_short offset = 0;
931 	u_short ip6f_mf = 0;
932 
933 	/*
934 	 * Local copies of addresses. They are only valid if we have
935 	 * an IP packet.
936 	 *
937 	 * proto	The protocol. Set to 0 for non-ip packets,
938 	 *	or to the protocol read from the packet otherwise.
939 	 *	proto != 0 means that we have an IPv4 packet.
940 	 *
941 	 * src_port, dst_port	port numbers, in HOST format. Only
942 	 *	valid for TCP and UDP packets.
943 	 *
944 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
945 	 *	Only valid for IPv4 packets.
946 	 */
947 	uint8_t proto;
948 	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
949 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
950 	uint16_t iplen=0;
951 	int pktlen;
952 	uint16_t	etype = 0;	/* Host order stored ether type */
953 
954 	/*
955 	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
956 	 * 	MATCH_NONE when checked and not matched (q = NULL),
957 	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
958 	 */
959 	int dyn_dir = MATCH_UNKNOWN;
960 	ipfw_dyn_rule *q = NULL;
961 	struct ip_fw_chain *chain = &V_layer3_chain;
962 
963 	/*
964 	 * We store in ulp a pointer to the upper layer protocol header.
965 	 * In the ipv4 case this is easy to determine from the header,
966 	 * but for ipv6 we might have some additional headers in the middle.
967 	 * ulp is NULL if not found.
968 	 */
969 	void *ulp = NULL;		/* upper layer protocol pointer. */
970 
971 	/* XXX ipv6 variables */
972 	int is_ipv6 = 0;
973 	uint8_t	icmp6_type = 0;
974 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
975 	/* end of ipv6 variables */
976 
977 	int is_ipv4 = 0;
978 
979 	int done = 0;		/* flag to exit the outer loop */
980 
981 	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
982 		return (IP_FW_PASS);	/* accept */
983 
984 	dst_ip.s_addr = 0;		/* make sure it is initialized */
985 	src_ip.s_addr = 0;		/* make sure it is initialized */
986 	pktlen = m->m_pkthdr.len;
987 	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
988 	proto = args->f_id.proto = 0;	/* mark f_id invalid */
989 		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
990 
991 /*
992  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
993  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
994  * pointer might become stale after other pullups (but we never use it
995  * this way).
996  */
997 #define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
998 #define PULLUP_LEN(_len, p, T)					\
999 do {								\
1000 	int x = (_len) + T;					\
1001 	if ((m)->m_len < x) {					\
1002 		args->m = m = m_pullup(m, x);			\
1003 		if (m == NULL)					\
1004 			goto pullup_failed;			\
1005 	}							\
1006 	p = (mtod(m, char *) + (_len));				\
1007 } while (0)
1008 
1009 	/*
1010 	 * if we have an ether header,
1011 	 */
1012 	if (args->eh)
1013 		etype = ntohs(args->eh->ether_type);
1014 
1015 	/* Identify IP packets and fill up variables. */
1016 	if (pktlen >= sizeof(struct ip6_hdr) &&
1017 	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
1018 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1019 		is_ipv6 = 1;
1020 		args->f_id.addr_type = 6;
1021 		hlen = sizeof(struct ip6_hdr);
1022 		proto = ip6->ip6_nxt;
1023 
1024 		/* Search extension headers to find upper layer protocols */
1025 		while (ulp == NULL && offset == 0) {
1026 			switch (proto) {
1027 			case IPPROTO_ICMPV6:
1028 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1029 				icmp6_type = ICMP6(ulp)->icmp6_type;
1030 				break;
1031 
1032 			case IPPROTO_TCP:
1033 				PULLUP_TO(hlen, ulp, struct tcphdr);
1034 				dst_port = TCP(ulp)->th_dport;
1035 				src_port = TCP(ulp)->th_sport;
1036 				/* save flags for dynamic rules */
1037 				args->f_id._flags = TCP(ulp)->th_flags;
1038 				break;
1039 
1040 			case IPPROTO_SCTP:
1041 				PULLUP_TO(hlen, ulp, struct sctphdr);
1042 				src_port = SCTP(ulp)->src_port;
1043 				dst_port = SCTP(ulp)->dest_port;
1044 				break;
1045 
1046 			case IPPROTO_UDP:
1047 				PULLUP_TO(hlen, ulp, struct udphdr);
1048 				dst_port = UDP(ulp)->uh_dport;
1049 				src_port = UDP(ulp)->uh_sport;
1050 				break;
1051 
1052 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1053 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1054 				ext_hd |= EXT_HOPOPTS;
1055 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1056 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1057 				ulp = NULL;
1058 				break;
1059 
1060 			case IPPROTO_ROUTING:	/* RFC 2460 */
1061 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1062 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1063 				case 0:
1064 					ext_hd |= EXT_RTHDR0;
1065 					break;
1066 				case 2:
1067 					ext_hd |= EXT_RTHDR2;
1068 					break;
1069 				default:
1070 					if (V_fw_verbose)
1071 						printf("IPFW2: IPV6 - Unknown "
1072 						    "Routing Header type(%d)\n",
1073 						    ((struct ip6_rthdr *)
1074 						    ulp)->ip6r_type);
1075 					if (V_fw_deny_unknown_exthdrs)
1076 					    return (IP_FW_DENY);
1077 					break;
1078 				}
1079 				ext_hd |= EXT_ROUTING;
1080 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1081 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1082 				ulp = NULL;
1083 				break;
1084 
1085 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1086 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1087 				ext_hd |= EXT_FRAGMENT;
1088 				hlen += sizeof (struct ip6_frag);
1089 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1090 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1091 					IP6F_OFF_MASK;
1092 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1093 					IP6F_MORE_FRAG;
1094 				if (V_fw_permit_single_frag6 == 0 &&
1095 				    offset == 0 && ip6f_mf == 0) {
1096 					if (V_fw_verbose)
1097 						printf("IPFW2: IPV6 - Invalid "
1098 						    "Fragment Header\n");
1099 					if (V_fw_deny_unknown_exthdrs)
1100 					    return (IP_FW_DENY);
1101 					break;
1102 				}
1103 				args->f_id.extra =
1104 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1105 				ulp = NULL;
1106 				break;
1107 
1108 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1109 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1110 				ext_hd |= EXT_DSTOPTS;
1111 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1112 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1113 				ulp = NULL;
1114 				break;
1115 
1116 			case IPPROTO_AH:	/* RFC 2402 */
1117 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1118 				ext_hd |= EXT_AH;
1119 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1120 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1121 				ulp = NULL;
1122 				break;
1123 
1124 			case IPPROTO_ESP:	/* RFC 2406 */
1125 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1126 				/* Anything past Seq# is variable length and
1127 				 * data past this ext. header is encrypted. */
1128 				ext_hd |= EXT_ESP;
1129 				break;
1130 
1131 			case IPPROTO_NONE:	/* RFC 2460 */
1132 				/*
1133 				 * Packet ends here, and IPv6 header has
1134 				 * already been pulled up. If ip6e_len!=0
1135 				 * then octets must be ignored.
1136 				 */
1137 				ulp = ip; /* non-NULL to get out of loop. */
1138 				break;
1139 
1140 			case IPPROTO_OSPFIGP:
1141 				/* XXX OSPF header check? */
1142 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1143 				break;
1144 
1145 			case IPPROTO_PIM:
1146 				/* XXX PIM header check? */
1147 				PULLUP_TO(hlen, ulp, struct pim);
1148 				break;
1149 
1150 			case IPPROTO_CARP:
1151 				PULLUP_TO(hlen, ulp, struct carp_header);
1152 				if (((struct carp_header *)ulp)->carp_version !=
1153 				    CARP_VERSION)
1154 					return (IP_FW_DENY);
1155 				if (((struct carp_header *)ulp)->carp_type !=
1156 				    CARP_ADVERTISEMENT)
1157 					return (IP_FW_DENY);
1158 				break;
1159 
1160 			case IPPROTO_IPV6:	/* RFC 2893 */
1161 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1162 				break;
1163 
1164 			case IPPROTO_IPV4:	/* RFC 2893 */
1165 				PULLUP_TO(hlen, ulp, struct ip);
1166 				break;
1167 
1168 			default:
1169 				if (V_fw_verbose)
1170 					printf("IPFW2: IPV6 - Unknown "
1171 					    "Extension Header(%d), ext_hd=%x\n",
1172 					     proto, ext_hd);
1173 				if (V_fw_deny_unknown_exthdrs)
1174 				    return (IP_FW_DENY);
1175 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1176 				break;
1177 			} /*switch */
1178 		}
1179 		ip = mtod(m, struct ip *);
1180 		ip6 = (struct ip6_hdr *)ip;
1181 		args->f_id.src_ip6 = ip6->ip6_src;
1182 		args->f_id.dst_ip6 = ip6->ip6_dst;
1183 		args->f_id.src_ip = 0;
1184 		args->f_id.dst_ip = 0;
1185 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1186 	} else if (pktlen >= sizeof(struct ip) &&
1187 	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1188 	    	is_ipv4 = 1;
1189 		hlen = ip->ip_hl << 2;
1190 		args->f_id.addr_type = 4;
1191 
1192 		/*
1193 		 * Collect parameters into local variables for faster matching.
1194 		 */
1195 		proto = ip->ip_p;
1196 		src_ip = ip->ip_src;
1197 		dst_ip = ip->ip_dst;
1198 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1199 		iplen = ntohs(ip->ip_len);
1200 		pktlen = iplen < pktlen ? iplen : pktlen;
1201 
1202 		if (offset == 0) {
1203 			switch (proto) {
1204 			case IPPROTO_TCP:
1205 				PULLUP_TO(hlen, ulp, struct tcphdr);
1206 				dst_port = TCP(ulp)->th_dport;
1207 				src_port = TCP(ulp)->th_sport;
1208 				/* save flags for dynamic rules */
1209 				args->f_id._flags = TCP(ulp)->th_flags;
1210 				break;
1211 
1212 			case IPPROTO_SCTP:
1213 				PULLUP_TO(hlen, ulp, struct sctphdr);
1214 				src_port = SCTP(ulp)->src_port;
1215 				dst_port = SCTP(ulp)->dest_port;
1216 				break;
1217 
1218 			case IPPROTO_UDP:
1219 				PULLUP_TO(hlen, ulp, struct udphdr);
1220 				dst_port = UDP(ulp)->uh_dport;
1221 				src_port = UDP(ulp)->uh_sport;
1222 				break;
1223 
1224 			case IPPROTO_ICMP:
1225 				PULLUP_TO(hlen, ulp, struct icmphdr);
1226 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1227 				break;
1228 
1229 			default:
1230 				break;
1231 			}
1232 		}
1233 
1234 		ip = mtod(m, struct ip *);
1235 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1236 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1237 	}
1238 #undef PULLUP_TO
1239 	if (proto) { /* we may have port numbers, store them */
1240 		args->f_id.proto = proto;
1241 		args->f_id.src_port = src_port = ntohs(src_port);
1242 		args->f_id.dst_port = dst_port = ntohs(dst_port);
1243 	}
1244 
1245 	IPFW_PF_RLOCK(chain);
1246 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1247 		IPFW_PF_RUNLOCK(chain);
1248 		return (IP_FW_PASS);	/* accept */
1249 	}
1250 	if (args->rule.slot) {
1251 		/*
1252 		 * Packet has already been tagged as a result of a previous
1253 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1254 		 * REASS, NETGRAPH, DIVERT/TEE...)
1255 		 * Validate the slot and continue from the next one
1256 		 * if still present, otherwise do a lookup.
1257 		 */
1258 		f_pos = (args->rule.chain_id == chain->id) ?
1259 		    args->rule.slot :
1260 		    ipfw_find_rule(chain, args->rule.rulenum,
1261 			args->rule.rule_id);
1262 	} else {
1263 		f_pos = 0;
1264 	}
1265 
1266 	/*
1267 	 * Now scan the rules, and parse microinstructions for each rule.
1268 	 * We have two nested loops and an inner switch. Sometimes we
1269 	 * need to break out of one or both loops, or re-enter one of
1270 	 * the loops with updated variables. Loop variables are:
1271 	 *
1272 	 *	f_pos (outer loop) points to the current rule.
1273 	 *		On output it points to the matching rule.
1274 	 *	done (outer loop) is used as a flag to break the loop.
1275 	 *	l (inner loop)	residual length of current rule.
1276 	 *		cmd points to the current microinstruction.
1277 	 *
1278 	 * We break the inner loop by setting l=0 and possibly
1279 	 * cmdlen=0 if we don't want to advance cmd.
1280 	 * We break the outer loop by setting done=1
1281 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1282 	 * as needed.
1283 	 */
1284 	for (; f_pos < chain->n_rules; f_pos++) {
1285 		ipfw_insn *cmd;
1286 		uint32_t tablearg = 0;
1287 		int l, cmdlen, skip_or; /* skip rest of OR block */
1288 		struct ip_fw *f;
1289 
1290 		f = chain->map[f_pos];
1291 		if (V_set_disable & (1 << f->set) )
1292 			continue;
1293 
1294 		skip_or = 0;
1295 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1296 		    l -= cmdlen, cmd += cmdlen) {
1297 			int match;
1298 
1299 			/*
1300 			 * check_body is a jump target used when we find a
1301 			 * CHECK_STATE, and need to jump to the body of
1302 			 * the target rule.
1303 			 */
1304 
1305 /* check_body: */
1306 			cmdlen = F_LEN(cmd);
1307 			/*
1308 			 * An OR block (insn_1 || .. || insn_n) has the
1309 			 * F_OR bit set in all but the last instruction.
1310 			 * The first match will set "skip_or", and cause
1311 			 * the following instructions to be skipped until
1312 			 * past the one with the F_OR bit clear.
1313 			 */
1314 			if (skip_or) {		/* skip this instruction */
1315 				if ((cmd->len & F_OR) == 0)
1316 					skip_or = 0;	/* next one is good */
1317 				continue;
1318 			}
1319 			match = 0; /* set to 1 if we succeed */
1320 
1321 			switch (cmd->opcode) {
1322 			/*
1323 			 * The first set of opcodes compares the packet's
1324 			 * fields with some pattern, setting 'match' if a
1325 			 * match is found. At the end of the loop there is
1326 			 * logic to deal with F_NOT and F_OR flags associated
1327 			 * with the opcode.
1328 			 */
1329 			case O_NOP:
1330 				match = 1;
1331 				break;
1332 
1333 			case O_FORWARD_MAC:
1334 				printf("ipfw: opcode %d unimplemented\n",
1335 				    cmd->opcode);
1336 				break;
1337 
1338 			case O_GID:
1339 			case O_UID:
1340 			case O_JAIL:
1341 				/*
1342 				 * We only check offset == 0 && proto != 0,
1343 				 * as this ensures that we have a
1344 				 * packet with the ports info.
1345 				 */
1346 				if (offset != 0)
1347 					break;
1348 				if (proto == IPPROTO_TCP ||
1349 				    proto == IPPROTO_UDP)
1350 					match = check_uidgid(
1351 						    (ipfw_insn_u32 *)cmd,
1352 						    args, &ucred_lookup,
1353 #ifdef __FreeBSD__
1354 						    &ucred_cache);
1355 #else
1356 						    (void *)&ucred_cache);
1357 #endif
1358 				break;
1359 
1360 			case O_RECV:
1361 				match = iface_match(m->m_pkthdr.rcvif,
1362 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1363 				break;
1364 
1365 			case O_XMIT:
1366 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1367 				    chain, &tablearg);
1368 				break;
1369 
1370 			case O_VIA:
1371 				match = iface_match(oif ? oif :
1372 				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1373 				    chain, &tablearg);
1374 				break;
1375 
1376 			case O_MACADDR2:
1377 				if (args->eh != NULL) {	/* have MAC header */
1378 					u_int32_t *want = (u_int32_t *)
1379 						((ipfw_insn_mac *)cmd)->addr;
1380 					u_int32_t *mask = (u_int32_t *)
1381 						((ipfw_insn_mac *)cmd)->mask;
1382 					u_int32_t *hdr = (u_int32_t *)args->eh;
1383 
1384 					match =
1385 					    ( want[0] == (hdr[0] & mask[0]) &&
1386 					      want[1] == (hdr[1] & mask[1]) &&
1387 					      want[2] == (hdr[2] & mask[2]) );
1388 				}
1389 				break;
1390 
1391 			case O_MAC_TYPE:
1392 				if (args->eh != NULL) {
1393 					u_int16_t *p =
1394 					    ((ipfw_insn_u16 *)cmd)->ports;
1395 					int i;
1396 
1397 					for (i = cmdlen - 1; !match && i>0;
1398 					    i--, p += 2)
1399 						match = (etype >= p[0] &&
1400 						    etype <= p[1]);
1401 				}
1402 				break;
1403 
1404 			case O_FRAG:
1405 				match = (offset != 0);
1406 				break;
1407 
1408 			case O_IN:	/* "out" is "not in" */
1409 				match = (oif == NULL);
1410 				break;
1411 
1412 			case O_LAYER2:
1413 				match = (args->eh != NULL);
1414 				break;
1415 
1416 			case O_DIVERTED:
1417 			    {
1418 				/* For diverted packets, args->rule.info
1419 				 * contains the divert port (in host format)
1420 				 * reason and direction.
1421 				 */
1422 				uint32_t i = args->rule.info;
1423 				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1424 				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1425 			    }
1426 				break;
1427 
1428 			case O_PROTO:
1429 				/*
1430 				 * We do not allow an arg of 0 so the
1431 				 * check of "proto" only suffices.
1432 				 */
1433 				match = (proto == cmd->arg1);
1434 				break;
1435 
1436 			case O_IP_SRC:
1437 				match = is_ipv4 &&
1438 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1439 				    src_ip.s_addr);
1440 				break;
1441 
1442 			case O_IP_SRC_LOOKUP:
1443 			case O_IP_DST_LOOKUP:
1444 				if (is_ipv4) {
1445 				    uint32_t key =
1446 					(cmd->opcode == O_IP_DST_LOOKUP) ?
1447 					    dst_ip.s_addr : src_ip.s_addr;
1448 				    uint32_t v = 0;
1449 
1450 				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1451 					/* generic lookup. The key must be
1452 					 * in 32bit big-endian format.
1453 					 */
1454 					v = ((ipfw_insn_u32 *)cmd)->d[1];
1455 					if (v == 0)
1456 					    key = dst_ip.s_addr;
1457 					else if (v == 1)
1458 					    key = src_ip.s_addr;
1459 					else if (v == 6) /* dscp */
1460 					    key = (ip->ip_tos >> 2) & 0x3f;
1461 					else if (offset != 0)
1462 					    break;
1463 					else if (proto != IPPROTO_TCP &&
1464 						proto != IPPROTO_UDP)
1465 					    break;
1466 					else if (v == 2)
1467 					    key = htonl(dst_port);
1468 					else if (v == 3)
1469 					    key = htonl(src_port);
1470 #ifndef USERSPACE
1471 					else if (v == 4 || v == 5) {
1472 					    check_uidgid(
1473 						(ipfw_insn_u32 *)cmd,
1474 						args, &ucred_lookup,
1475 #ifdef __FreeBSD__
1476 						&ucred_cache);
1477 					    if (v == 4 /* O_UID */)
1478 						key = ucred_cache->cr_uid;
1479 					    else if (v == 5 /* O_JAIL */)
1480 						key = ucred_cache->cr_prison->pr_id;
1481 #else /* !__FreeBSD__ */
1482 						(void *)&ucred_cache);
1483 					    if (v ==4 /* O_UID */)
1484 						key = ucred_cache.uid;
1485 					    else if (v == 5 /* O_JAIL */)
1486 						key = ucred_cache.xid;
1487 #endif /* !__FreeBSD__ */
1488 					    key = htonl(key);
1489 					} else
1490 #endif /* !USERSPACE */
1491 					    break;
1492 				    }
1493 				    match = ipfw_lookup_table(chain,
1494 					cmd->arg1, key, &v);
1495 				    if (!match)
1496 					break;
1497 				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1498 					match =
1499 					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1500 				    else
1501 					tablearg = v;
1502 				} else if (is_ipv6) {
1503 					uint32_t v = 0;
1504 					void *pkey = (cmd->opcode == O_IP_DST_LOOKUP) ?
1505 						&args->f_id.dst_ip6: &args->f_id.src_ip6;
1506 					match = ipfw_lookup_table_extended(chain,
1507 							cmd->arg1, pkey, &v,
1508 							IPFW_TABLE_CIDR);
1509 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1510 						match = ((ipfw_insn_u32 *)cmd)->d[0] == v;
1511 					if (match)
1512 						tablearg = v;
1513 				}
1514 				break;
1515 
1516 			case O_IP_SRC_MASK:
1517 			case O_IP_DST_MASK:
1518 				if (is_ipv4) {
1519 				    uint32_t a =
1520 					(cmd->opcode == O_IP_DST_MASK) ?
1521 					    dst_ip.s_addr : src_ip.s_addr;
1522 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1523 				    int i = cmdlen-1;
1524 
1525 				    for (; !match && i>0; i-= 2, p+= 2)
1526 					match = (p[0] == (a & p[1]));
1527 				}
1528 				break;
1529 
1530 			case O_IP_SRC_ME:
1531 				if (is_ipv4) {
1532 					struct ifnet *tif;
1533 
1534 					INADDR_TO_IFP(src_ip, tif);
1535 					match = (tif != NULL);
1536 					break;
1537 				}
1538 #ifdef INET6
1539 				/* FALLTHROUGH */
1540 			case O_IP6_SRC_ME:
1541 				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1542 #endif
1543 				break;
1544 
1545 			case O_IP_DST_SET:
1546 			case O_IP_SRC_SET:
1547 				if (is_ipv4) {
1548 					u_int32_t *d = (u_int32_t *)(cmd+1);
1549 					u_int32_t addr =
1550 					    cmd->opcode == O_IP_DST_SET ?
1551 						args->f_id.dst_ip :
1552 						args->f_id.src_ip;
1553 
1554 					    if (addr < d[0])
1555 						    break;
1556 					    addr -= d[0]; /* subtract base */
1557 					    match = (addr < cmd->arg1) &&
1558 						( d[ 1 + (addr>>5)] &
1559 						  (1<<(addr & 0x1f)) );
1560 				}
1561 				break;
1562 
1563 			case O_IP_DST:
1564 				match = is_ipv4 &&
1565 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1566 				    dst_ip.s_addr);
1567 				break;
1568 
1569 			case O_IP_DST_ME:
1570 				if (is_ipv4) {
1571 					struct ifnet *tif;
1572 
1573 					INADDR_TO_IFP(dst_ip, tif);
1574 					match = (tif != NULL);
1575 					break;
1576 				}
1577 #ifdef INET6
1578 				/* FALLTHROUGH */
1579 			case O_IP6_DST_ME:
1580 				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1581 #endif
1582 				break;
1583 
1584 
1585 			case O_IP_SRCPORT:
1586 			case O_IP_DSTPORT:
1587 				/*
1588 				 * offset == 0 && proto != 0 is enough
1589 				 * to guarantee that we have a
1590 				 * packet with port info.
1591 				 */
1592 				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1593 				    && offset == 0) {
1594 					u_int16_t x =
1595 					    (cmd->opcode == O_IP_SRCPORT) ?
1596 						src_port : dst_port ;
1597 					u_int16_t *p =
1598 					    ((ipfw_insn_u16 *)cmd)->ports;
1599 					int i;
1600 
1601 					for (i = cmdlen - 1; !match && i>0;
1602 					    i--, p += 2)
1603 						match = (x>=p[0] && x<=p[1]);
1604 				}
1605 				break;
1606 
1607 			case O_ICMPTYPE:
1608 				match = (offset == 0 && proto==IPPROTO_ICMP &&
1609 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1610 				break;
1611 
1612 #ifdef INET6
1613 			case O_ICMP6TYPE:
1614 				match = is_ipv6 && offset == 0 &&
1615 				    proto==IPPROTO_ICMPV6 &&
1616 				    icmp6type_match(
1617 					ICMP6(ulp)->icmp6_type,
1618 					(ipfw_insn_u32 *)cmd);
1619 				break;
1620 #endif /* INET6 */
1621 
1622 			case O_IPOPT:
1623 				match = (is_ipv4 &&
1624 				    ipopts_match(ip, cmd) );
1625 				break;
1626 
1627 			case O_IPVER:
1628 				match = (is_ipv4 &&
1629 				    cmd->arg1 == ip->ip_v);
1630 				break;
1631 
1632 			case O_IPID:
1633 			case O_IPLEN:
1634 			case O_IPTTL:
1635 				if (is_ipv4) {	/* only for IP packets */
1636 				    uint16_t x;
1637 				    uint16_t *p;
1638 				    int i;
1639 
1640 				    if (cmd->opcode == O_IPLEN)
1641 					x = iplen;
1642 				    else if (cmd->opcode == O_IPTTL)
1643 					x = ip->ip_ttl;
1644 				    else /* must be IPID */
1645 					x = ntohs(ip->ip_id);
1646 				    if (cmdlen == 1) {
1647 					match = (cmd->arg1 == x);
1648 					break;
1649 				    }
1650 				    /* otherwise we have ranges */
1651 				    p = ((ipfw_insn_u16 *)cmd)->ports;
1652 				    i = cmdlen - 1;
1653 				    for (; !match && i>0; i--, p += 2)
1654 					match = (x >= p[0] && x <= p[1]);
1655 				}
1656 				break;
1657 
1658 			case O_IPPRECEDENCE:
1659 				match = (is_ipv4 &&
1660 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1661 				break;
1662 
1663 			case O_IPTOS:
1664 				match = (is_ipv4 &&
1665 				    flags_match(cmd, ip->ip_tos));
1666 				break;
1667 
1668 			case O_DSCP:
1669 			    {
1670 				uint32_t *p;
1671 				uint16_t x;
1672 
1673 				p = ((ipfw_insn_u32 *)cmd)->d;
1674 
1675 				if (is_ipv4)
1676 					x = ip->ip_tos >> 2;
1677 				else if (is_ipv6) {
1678 					uint8_t *v;
1679 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
1680 					x = (*v & 0x0F) << 2;
1681 					v++;
1682 					x |= *v >> 6;
1683 				} else
1684 					break;
1685 
1686 				/* DSCP bitmask is stored as low_u32 high_u32 */
1687 				if (x > 32)
1688 					match = *(p + 1) & (1 << (x - 32));
1689 				else
1690 					match = *p & (1 << x);
1691 			    }
1692 				break;
1693 
1694 			case O_TCPDATALEN:
1695 				if (proto == IPPROTO_TCP && offset == 0) {
1696 				    struct tcphdr *tcp;
1697 				    uint16_t x;
1698 				    uint16_t *p;
1699 				    int i;
1700 
1701 				    tcp = TCP(ulp);
1702 				    x = iplen -
1703 					((ip->ip_hl + tcp->th_off) << 2);
1704 				    if (cmdlen == 1) {
1705 					match = (cmd->arg1 == x);
1706 					break;
1707 				    }
1708 				    /* otherwise we have ranges */
1709 				    p = ((ipfw_insn_u16 *)cmd)->ports;
1710 				    i = cmdlen - 1;
1711 				    for (; !match && i>0; i--, p += 2)
1712 					match = (x >= p[0] && x <= p[1]);
1713 				}
1714 				break;
1715 
1716 			case O_TCPFLAGS:
1717 				match = (proto == IPPROTO_TCP && offset == 0 &&
1718 				    flags_match(cmd, TCP(ulp)->th_flags));
1719 				break;
1720 
1721 			case O_TCPOPTS:
1722 				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1723 				match = (proto == IPPROTO_TCP && offset == 0 &&
1724 				    tcpopts_match(TCP(ulp), cmd));
1725 				break;
1726 
1727 			case O_TCPSEQ:
1728 				match = (proto == IPPROTO_TCP && offset == 0 &&
1729 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1730 					TCP(ulp)->th_seq);
1731 				break;
1732 
1733 			case O_TCPACK:
1734 				match = (proto == IPPROTO_TCP && offset == 0 &&
1735 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1736 					TCP(ulp)->th_ack);
1737 				break;
1738 
1739 			case O_TCPWIN:
1740 				if (proto == IPPROTO_TCP && offset == 0) {
1741 				    uint16_t x;
1742 				    uint16_t *p;
1743 				    int i;
1744 
1745 				    x = ntohs(TCP(ulp)->th_win);
1746 				    if (cmdlen == 1) {
1747 					match = (cmd->arg1 == x);
1748 					break;
1749 				    }
1750 				    /* Otherwise we have ranges. */
1751 				    p = ((ipfw_insn_u16 *)cmd)->ports;
1752 				    i = cmdlen - 1;
1753 				    for (; !match && i > 0; i--, p += 2)
1754 					match = (x >= p[0] && x <= p[1]);
1755 				}
1756 				break;
1757 
1758 			case O_ESTAB:
1759 				/* reject packets which have SYN only */
1760 				/* XXX should i also check for TH_ACK ? */
1761 				match = (proto == IPPROTO_TCP && offset == 0 &&
1762 				    (TCP(ulp)->th_flags &
1763 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1764 				break;
1765 
1766 			case O_ALTQ: {
1767 				struct pf_mtag *at;
1768 				struct m_tag *mtag;
1769 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1770 
1771 				/*
1772 				 * ALTQ uses mbuf tags from another
1773 				 * packet filtering system - pf(4).
1774 				 * We allocate a tag in its format
1775 				 * and fill it in, pretending to be pf(4).
1776 				 */
1777 				match = 1;
1778 				at = pf_find_mtag(m);
1779 				if (at != NULL && at->qid != 0)
1780 					break;
1781 				mtag = m_tag_get(PACKET_TAG_PF,
1782 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
1783 				if (mtag == NULL) {
1784 					/*
1785 					 * Let the packet fall back to the
1786 					 * default ALTQ.
1787 					 */
1788 					break;
1789 				}
1790 				m_tag_prepend(m, mtag);
1791 				at = (struct pf_mtag *)(mtag + 1);
1792 				at->qid = altq->qid;
1793 				at->hdr = ip;
1794 				break;
1795 			}
1796 
1797 			case O_LOG:
1798 				ipfw_log(f, hlen, args, m,
1799 				    oif, offset | ip6f_mf, tablearg, ip);
1800 				match = 1;
1801 				break;
1802 
1803 			case O_PROB:
1804 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1805 				break;
1806 
1807 			case O_VERREVPATH:
1808 				/* Outgoing packets automatically pass/match */
1809 				match = ((oif != NULL) ||
1810 				    (m->m_pkthdr.rcvif == NULL) ||
1811 				    (
1812 #ifdef INET6
1813 				    is_ipv6 ?
1814 					verify_path6(&(args->f_id.src_ip6),
1815 					    m->m_pkthdr.rcvif, args->f_id.fib) :
1816 #endif
1817 				    verify_path(src_ip, m->m_pkthdr.rcvif,
1818 				        args->f_id.fib)));
1819 				break;
1820 
1821 			case O_VERSRCREACH:
1822 				/* Outgoing packets automatically pass/match */
1823 				match = (hlen > 0 && ((oif != NULL) ||
1824 #ifdef INET6
1825 				    is_ipv6 ?
1826 				        verify_path6(&(args->f_id.src_ip6),
1827 				            NULL, args->f_id.fib) :
1828 #endif
1829 				    verify_path(src_ip, NULL, args->f_id.fib)));
1830 				break;
1831 
1832 			case O_ANTISPOOF:
1833 				/* Outgoing packets automatically pass/match */
1834 				if (oif == NULL && hlen > 0 &&
1835 				    (  (is_ipv4 && in_localaddr(src_ip))
1836 #ifdef INET6
1837 				    || (is_ipv6 &&
1838 				        in6_localaddr(&(args->f_id.src_ip6)))
1839 #endif
1840 				    ))
1841 					match =
1842 #ifdef INET6
1843 					    is_ipv6 ? verify_path6(
1844 					        &(args->f_id.src_ip6),
1845 					        m->m_pkthdr.rcvif,
1846 						args->f_id.fib) :
1847 #endif
1848 					    verify_path(src_ip,
1849 					    	m->m_pkthdr.rcvif,
1850 					        args->f_id.fib);
1851 				else
1852 					match = 1;
1853 				break;
1854 
1855 			case O_IPSEC:
1856 #ifdef IPSEC
1857 				match = (m_tag_find(m,
1858 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1859 #endif
1860 				/* otherwise no match */
1861 				break;
1862 
1863 #ifdef INET6
1864 			case O_IP6_SRC:
1865 				match = is_ipv6 &&
1866 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1867 				    &((ipfw_insn_ip6 *)cmd)->addr6);
1868 				break;
1869 
1870 			case O_IP6_DST:
1871 				match = is_ipv6 &&
1872 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1873 				    &((ipfw_insn_ip6 *)cmd)->addr6);
1874 				break;
1875 			case O_IP6_SRC_MASK:
1876 			case O_IP6_DST_MASK:
1877 				if (is_ipv6) {
1878 					int i = cmdlen - 1;
1879 					struct in6_addr p;
1880 					struct in6_addr *d =
1881 					    &((ipfw_insn_ip6 *)cmd)->addr6;
1882 
1883 					for (; !match && i > 0; d += 2,
1884 					    i -= F_INSN_SIZE(struct in6_addr)
1885 					    * 2) {
1886 						p = (cmd->opcode ==
1887 						    O_IP6_SRC_MASK) ?
1888 						    args->f_id.src_ip6:
1889 						    args->f_id.dst_ip6;
1890 						APPLY_MASK(&p, &d[1]);
1891 						match =
1892 						    IN6_ARE_ADDR_EQUAL(&d[0],
1893 						    &p);
1894 					}
1895 				}
1896 				break;
1897 
1898 			case O_FLOW6ID:
1899 				match = is_ipv6 &&
1900 				    flow6id_match(args->f_id.flow_id6,
1901 				    (ipfw_insn_u32 *) cmd);
1902 				break;
1903 
1904 			case O_EXT_HDR:
1905 				match = is_ipv6 &&
1906 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1907 				break;
1908 
1909 			case O_IP6:
1910 				match = is_ipv6;
1911 				break;
1912 #endif
1913 
1914 			case O_IP4:
1915 				match = is_ipv4;
1916 				break;
1917 
1918 			case O_TAG: {
1919 				struct m_tag *mtag;
1920 				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
1921 
1922 				/* Packet is already tagged with this tag? */
1923 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1924 
1925 				/* We have `untag' action when F_NOT flag is
1926 				 * present. And we must remove this mtag from
1927 				 * mbuf and reset `match' to zero (`match' will
1928 				 * be inversed later).
1929 				 * Otherwise we should allocate new mtag and
1930 				 * push it into mbuf.
1931 				 */
1932 				if (cmd->len & F_NOT) { /* `untag' action */
1933 					if (mtag != NULL)
1934 						m_tag_delete(m, mtag);
1935 					match = 0;
1936 				} else {
1937 					if (mtag == NULL) {
1938 						mtag = m_tag_alloc( MTAG_IPFW,
1939 						    tag, 0, M_NOWAIT);
1940 						if (mtag != NULL)
1941 							m_tag_prepend(m, mtag);
1942 					}
1943 					match = 1;
1944 				}
1945 				break;
1946 			}
1947 
1948 			case O_FIB: /* try match the specified fib */
1949 				if (args->f_id.fib == cmd->arg1)
1950 					match = 1;
1951 				break;
1952 
1953 			case O_SOCKARG:	{
1954 #ifndef USERSPACE	/* not supported in userspace */
1955 				struct inpcb *inp = args->inp;
1956 				struct inpcbinfo *pi;
1957 
1958 				if (is_ipv6) /* XXX can we remove this ? */
1959 					break;
1960 
1961 				if (proto == IPPROTO_TCP)
1962 					pi = &V_tcbinfo;
1963 				else if (proto == IPPROTO_UDP)
1964 					pi = &V_udbinfo;
1965 				else
1966 					break;
1967 
1968 				/*
1969 				 * XXXRW: so_user_cookie should almost
1970 				 * certainly be inp_user_cookie?
1971 				 */
1972 
1973 				/* For incomming packet, lookup up the
1974 				inpcb using the src/dest ip/port tuple */
1975 				if (inp == NULL) {
1976 					inp = in_pcblookup(pi,
1977 						src_ip, htons(src_port),
1978 						dst_ip, htons(dst_port),
1979 						INPLOOKUP_RLOCKPCB, NULL);
1980 					if (inp != NULL) {
1981 						tablearg =
1982 						    inp->inp_socket->so_user_cookie;
1983 						if (tablearg)
1984 							match = 1;
1985 						INP_RUNLOCK(inp);
1986 					}
1987 				} else {
1988 					if (inp->inp_socket) {
1989 						tablearg =
1990 						    inp->inp_socket->so_user_cookie;
1991 						if (tablearg)
1992 							match = 1;
1993 					}
1994 				}
1995 #endif /* !USERSPACE */
1996 				break;
1997 			}
1998 
1999 			case O_TAGGED: {
2000 				struct m_tag *mtag;
2001 				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
2002 
2003 				if (cmdlen == 1) {
2004 					match = m_tag_locate(m, MTAG_IPFW,
2005 					    tag, NULL) != NULL;
2006 					break;
2007 				}
2008 
2009 				/* we have ranges */
2010 				for (mtag = m_tag_first(m);
2011 				    mtag != NULL && !match;
2012 				    mtag = m_tag_next(m, mtag)) {
2013 					uint16_t *p;
2014 					int i;
2015 
2016 					if (mtag->m_tag_cookie != MTAG_IPFW)
2017 						continue;
2018 
2019 					p = ((ipfw_insn_u16 *)cmd)->ports;
2020 					i = cmdlen - 1;
2021 					for(; !match && i > 0; i--, p += 2)
2022 						match =
2023 						    mtag->m_tag_id >= p[0] &&
2024 						    mtag->m_tag_id <= p[1];
2025 				}
2026 				break;
2027 			}
2028 
2029 			/*
2030 			 * The second set of opcodes represents 'actions',
2031 			 * i.e. the terminal part of a rule once the packet
2032 			 * matches all previous patterns.
2033 			 * Typically there is only one action for each rule,
2034 			 * and the opcode is stored at the end of the rule
2035 			 * (but there are exceptions -- see below).
2036 			 *
2037 			 * In general, here we set retval and terminate the
2038 			 * outer loop (would be a 'break 3' in some language,
2039 			 * but we need to set l=0, done=1)
2040 			 *
2041 			 * Exceptions:
2042 			 * O_COUNT and O_SKIPTO actions:
2043 			 *   instead of terminating, we jump to the next rule
2044 			 *   (setting l=0), or to the SKIPTO target (setting
2045 			 *   f/f_len, cmd and l as needed), respectively.
2046 			 *
2047 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2048 			 *   perform some action and set match = 1;
2049 			 *
2050 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2051 			 *   not real 'actions', and are stored right
2052 			 *   before the 'action' part of the rule.
2053 			 *   These opcodes try to install an entry in the
2054 			 *   state tables; if successful, we continue with
2055 			 *   the next opcode (match=1; break;), otherwise
2056 			 *   the packet must be dropped (set retval,
2057 			 *   break loops with l=0, done=1)
2058 			 *
2059 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2060 			 *   cause a lookup of the state table, and a jump
2061 			 *   to the 'action' part of the parent rule
2062 			 *   if an entry is found, or
2063 			 *   (CHECK_STATE only) a jump to the next rule if
2064 			 *   the entry is not found.
2065 			 *   The result of the lookup is cached so that
2066 			 *   further instances of these opcodes become NOPs.
2067 			 *   The jump to the next rule is done by setting
2068 			 *   l=0, cmdlen=0.
2069 			 */
2070 			case O_LIMIT:
2071 			case O_KEEP_STATE:
2072 				if (ipfw_install_state(f,
2073 				    (ipfw_insn_limit *)cmd, args, tablearg)) {
2074 					/* error or limit violation */
2075 					retval = IP_FW_DENY;
2076 					l = 0;	/* exit inner loop */
2077 					done = 1; /* exit outer loop */
2078 				}
2079 				match = 1;
2080 				break;
2081 
2082 			case O_PROBE_STATE:
2083 			case O_CHECK_STATE:
2084 				/*
2085 				 * dynamic rules are checked at the first
2086 				 * keep-state or check-state occurrence,
2087 				 * with the result being stored in dyn_dir.
2088 				 * The compiler introduces a PROBE_STATE
2089 				 * instruction for us when we have a
2090 				 * KEEP_STATE (because PROBE_STATE needs
2091 				 * to be run first).
2092 				 */
2093 				if (dyn_dir == MATCH_UNKNOWN &&
2094 				    (q = ipfw_lookup_dyn_rule(&args->f_id,
2095 				     &dyn_dir, proto == IPPROTO_TCP ?
2096 					TCP(ulp) : NULL))
2097 					!= NULL) {
2098 					/*
2099 					 * Found dynamic entry, update stats
2100 					 * and jump to the 'action' part of
2101 					 * the parent rule by setting
2102 					 * f, cmd, l and clearing cmdlen.
2103 					 */
2104 					IPFW_INC_DYN_COUNTER(q, pktlen);
2105 					/* XXX we would like to have f_pos
2106 					 * readily accessible in the dynamic
2107 				         * rule, instead of having to
2108 					 * lookup q->rule.
2109 					 */
2110 					f = q->rule;
2111 					f_pos = ipfw_find_rule(chain,
2112 						f->rulenum, f->id);
2113 					cmd = ACTION_PTR(f);
2114 					l = f->cmd_len - f->act_ofs;
2115 					ipfw_dyn_unlock(q);
2116 					cmdlen = 0;
2117 					match = 1;
2118 					break;
2119 				}
2120 				/*
2121 				 * Dynamic entry not found. If CHECK_STATE,
2122 				 * skip to next rule, if PROBE_STATE just
2123 				 * ignore and continue with next opcode.
2124 				 */
2125 				if (cmd->opcode == O_CHECK_STATE)
2126 					l = 0;	/* exit inner loop */
2127 				match = 1;
2128 				break;
2129 
2130 			case O_ACCEPT:
2131 				retval = 0;	/* accept */
2132 				l = 0;		/* exit inner loop */
2133 				done = 1;	/* exit outer loop */
2134 				break;
2135 
2136 			case O_PIPE:
2137 			case O_QUEUE:
2138 				set_match(args, f_pos, chain);
2139 				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2140 				if (cmd->opcode == O_PIPE)
2141 					args->rule.info |= IPFW_IS_PIPE;
2142 				if (V_fw_one_pass)
2143 					args->rule.info |= IPFW_ONEPASS;
2144 				retval = IP_FW_DUMMYNET;
2145 				l = 0;          /* exit inner loop */
2146 				done = 1;       /* exit outer loop */
2147 				break;
2148 
2149 			case O_DIVERT:
2150 			case O_TEE:
2151 				if (args->eh) /* not on layer 2 */
2152 				    break;
2153 				/* otherwise this is terminal */
2154 				l = 0;		/* exit inner loop */
2155 				done = 1;	/* exit outer loop */
2156 				retval = (cmd->opcode == O_DIVERT) ?
2157 					IP_FW_DIVERT : IP_FW_TEE;
2158 				set_match(args, f_pos, chain);
2159 				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2160 				break;
2161 
2162 			case O_COUNT:
2163 				IPFW_INC_RULE_COUNTER(f, pktlen);
2164 				l = 0;		/* exit inner loop */
2165 				break;
2166 
2167 			case O_SKIPTO:
2168 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2169 			    f_pos = jump_fast(chain, f, cmd->arg1, tablearg, 0);
2170 			    /*
2171 			     * Skip disabled rules, and re-enter
2172 			     * the inner loop with the correct
2173 			     * f_pos, f, l and cmd.
2174 			     * Also clear cmdlen and skip_or
2175 			     */
2176 			    for (; f_pos < chain->n_rules - 1 &&
2177 				    (V_set_disable &
2178 				     (1 << chain->map[f_pos]->set));
2179 				    f_pos++)
2180 				;
2181 			    /* Re-enter the inner loop at the skipto rule. */
2182 			    f = chain->map[f_pos];
2183 			    l = f->cmd_len;
2184 			    cmd = f->cmd;
2185 			    match = 1;
2186 			    cmdlen = 0;
2187 			    skip_or = 0;
2188 			    continue;
2189 			    break;	/* not reached */
2190 
2191 			case O_CALLRETURN: {
2192 				/*
2193 				 * Implementation of `subroutine' call/return,
2194 				 * in the stack carried in an mbuf tag. This
2195 				 * is different from `skipto' in that any call
2196 				 * address is possible (`skipto' must prevent
2197 				 * backward jumps to avoid endless loops).
2198 				 * We have `return' action when F_NOT flag is
2199 				 * present. The `m_tag_id' field is used as
2200 				 * stack pointer.
2201 				 */
2202 				struct m_tag *mtag;
2203 				uint16_t jmpto, *stack;
2204 
2205 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2206 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2207 				/*
2208 				 * Hand-rolled version of m_tag_locate() with
2209 				 * wildcard `type'.
2210 				 * If not already tagged, allocate new tag.
2211 				 */
2212 				mtag = m_tag_first(m);
2213 				while (mtag != NULL) {
2214 					if (mtag->m_tag_cookie ==
2215 					    MTAG_IPFW_CALL)
2216 						break;
2217 					mtag = m_tag_next(m, mtag);
2218 				}
2219 				if (mtag == NULL && IS_CALL) {
2220 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2221 					    IPFW_CALLSTACK_SIZE *
2222 					    sizeof(uint16_t), M_NOWAIT);
2223 					if (mtag != NULL)
2224 						m_tag_prepend(m, mtag);
2225 				}
2226 
2227 				/*
2228 				 * On error both `call' and `return' just
2229 				 * continue with next rule.
2230 				 */
2231 				if (IS_RETURN && (mtag == NULL ||
2232 				    mtag->m_tag_id == 0)) {
2233 					l = 0;		/* exit inner loop */
2234 					break;
2235 				}
2236 				if (IS_CALL && (mtag == NULL ||
2237 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2238 					printf("ipfw: call stack error, "
2239 					    "go to next rule\n");
2240 					l = 0;		/* exit inner loop */
2241 					break;
2242 				}
2243 
2244 				IPFW_INC_RULE_COUNTER(f, pktlen);
2245 				stack = (uint16_t *)(mtag + 1);
2246 
2247 				/*
2248 				 * The `call' action may use cached f_pos
2249 				 * (in f->next_rule), whose version is written
2250 				 * in f->next_rule.
2251 				 * The `return' action, however, doesn't have
2252 				 * fixed jump address in cmd->arg1 and can't use
2253 				 * cache.
2254 				 */
2255 				if (IS_CALL) {
2256 					stack[mtag->m_tag_id] = f->rulenum;
2257 					mtag->m_tag_id++;
2258 			    		f_pos = jump_fast(chain, f, cmd->arg1,
2259 					    tablearg, 1);
2260 				} else {	/* `return' action */
2261 					mtag->m_tag_id--;
2262 					jmpto = stack[mtag->m_tag_id] + 1;
2263 					f_pos = ipfw_find_rule(chain, jmpto, 0);
2264 				}
2265 
2266 				/*
2267 				 * Skip disabled rules, and re-enter
2268 				 * the inner loop with the correct
2269 				 * f_pos, f, l and cmd.
2270 				 * Also clear cmdlen and skip_or
2271 				 */
2272 				for (; f_pos < chain->n_rules - 1 &&
2273 				    (V_set_disable &
2274 				    (1 << chain->map[f_pos]->set)); f_pos++)
2275 					;
2276 				/* Re-enter the inner loop at the dest rule. */
2277 				f = chain->map[f_pos];
2278 				l = f->cmd_len;
2279 				cmd = f->cmd;
2280 				cmdlen = 0;
2281 				skip_or = 0;
2282 				continue;
2283 				break;	/* NOTREACHED */
2284 			}
2285 #undef IS_CALL
2286 #undef IS_RETURN
2287 
2288 			case O_REJECT:
2289 				/*
2290 				 * Drop the packet and send a reject notice
2291 				 * if the packet is not ICMP (or is an ICMP
2292 				 * query), and it is not multicast/broadcast.
2293 				 */
2294 				if (hlen > 0 && is_ipv4 && offset == 0 &&
2295 				    (proto != IPPROTO_ICMP ||
2296 				     is_icmp_query(ICMP(ulp))) &&
2297 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2298 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2299 					send_reject(args, cmd->arg1, iplen, ip);
2300 					m = args->m;
2301 				}
2302 				/* FALLTHROUGH */
2303 #ifdef INET6
2304 			case O_UNREACH6:
2305 				if (hlen > 0 && is_ipv6 &&
2306 				    ((offset & IP6F_OFF_MASK) == 0) &&
2307 				    (proto != IPPROTO_ICMPV6 ||
2308 				     (is_icmp6_query(icmp6_type) == 1)) &&
2309 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2310 				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2311 					send_reject6(
2312 					    args, cmd->arg1, hlen,
2313 					    (struct ip6_hdr *)ip);
2314 					m = args->m;
2315 				}
2316 				/* FALLTHROUGH */
2317 #endif
2318 			case O_DENY:
2319 				retval = IP_FW_DENY;
2320 				l = 0;		/* exit inner loop */
2321 				done = 1;	/* exit outer loop */
2322 				break;
2323 
2324 			case O_FORWARD_IP:
2325 				if (args->eh)	/* not valid on layer2 pkts */
2326 					break;
2327 				if (q == NULL || q->rule != f ||
2328 				    dyn_dir == MATCH_FORWARD) {
2329 				    struct sockaddr_in *sa;
2330 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2331 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2332 					bcopy(sa, &args->hopstore,
2333 							sizeof(*sa));
2334 					args->hopstore.sin_addr.s_addr =
2335 						    htonl(tablearg);
2336 					args->next_hop = &args->hopstore;
2337 				    } else {
2338 					args->next_hop = sa;
2339 				    }
2340 				}
2341 				retval = IP_FW_PASS;
2342 				l = 0;          /* exit inner loop */
2343 				done = 1;       /* exit outer loop */
2344 				break;
2345 
2346 #ifdef INET6
2347 			case O_FORWARD_IP6:
2348 				if (args->eh)	/* not valid on layer2 pkts */
2349 					break;
2350 				if (q == NULL || q->rule != f ||
2351 				    dyn_dir == MATCH_FORWARD) {
2352 					struct sockaddr_in6 *sin6;
2353 
2354 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2355 					args->next_hop6 = sin6;
2356 				}
2357 				retval = IP_FW_PASS;
2358 				l = 0;		/* exit inner loop */
2359 				done = 1;	/* exit outer loop */
2360 				break;
2361 #endif
2362 
2363 			case O_NETGRAPH:
2364 			case O_NGTEE:
2365 				set_match(args, f_pos, chain);
2366 				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2367 				if (V_fw_one_pass)
2368 					args->rule.info |= IPFW_ONEPASS;
2369 				retval = (cmd->opcode == O_NETGRAPH) ?
2370 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2371 				l = 0;          /* exit inner loop */
2372 				done = 1;       /* exit outer loop */
2373 				break;
2374 
2375 			case O_SETFIB: {
2376 				uint32_t fib;
2377 
2378 				IPFW_INC_RULE_COUNTER(f, pktlen);
2379 				fib = IP_FW_ARG_TABLEARG(cmd->arg1);
2380 				if (fib >= rt_numfibs)
2381 					fib = 0;
2382 				M_SETFIB(m, fib);
2383 				args->f_id.fib = fib;
2384 				l = 0;		/* exit inner loop */
2385 				break;
2386 		        }
2387 
2388 			case O_SETDSCP: {
2389 				uint16_t code;
2390 
2391 				code = IP_FW_ARG_TABLEARG(cmd->arg1) & 0x3F;
2392 				l = 0;		/* exit inner loop */
2393 				if (is_ipv4) {
2394 					uint16_t a;
2395 
2396 					a = ip->ip_tos;
2397 					ip->ip_tos = (code << 2) | (ip->ip_tos & 0x03);
2398 					a += ntohs(ip->ip_sum) - ip->ip_tos;
2399 					ip->ip_sum = htons(a);
2400 				} else if (is_ipv6) {
2401 					uint8_t *v;
2402 
2403 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2404 					*v = (*v & 0xF0) | (code >> 2);
2405 					v++;
2406 					*v = (*v & 0x3F) | ((code & 0x03) << 6);
2407 				} else
2408 					break;
2409 
2410 				IPFW_INC_RULE_COUNTER(f, pktlen);
2411 				break;
2412 			}
2413 
2414 			case O_NAT:
2415 				l = 0;          /* exit inner loop */
2416 				done = 1;       /* exit outer loop */
2417  				if (!IPFW_NAT_LOADED) {
2418 				    retval = IP_FW_DENY;
2419 				    break;
2420 				}
2421 
2422 				struct cfg_nat *t;
2423 				int nat_id;
2424 
2425 				set_match(args, f_pos, chain);
2426 				/* Check if this is 'global' nat rule */
2427 				if (cmd->arg1 == 0) {
2428 					retval = ipfw_nat_ptr(args, NULL, m);
2429 					break;
2430 				}
2431 				t = ((ipfw_insn_nat *)cmd)->nat;
2432 				if (t == NULL) {
2433 					nat_id = IP_FW_ARG_TABLEARG(cmd->arg1);
2434 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2435 
2436 					if (t == NULL) {
2437 					    retval = IP_FW_DENY;
2438 					    break;
2439 					}
2440 					if (cmd->arg1 != IP_FW_TABLEARG)
2441 					    ((ipfw_insn_nat *)cmd)->nat = t;
2442 				}
2443 				retval = ipfw_nat_ptr(args, t, m);
2444 				break;
2445 
2446 			case O_REASS: {
2447 				int ip_off;
2448 
2449 				IPFW_INC_RULE_COUNTER(f, pktlen);
2450 				l = 0;	/* in any case exit inner loop */
2451 				ip_off = ntohs(ip->ip_off);
2452 
2453 				/* if not fragmented, go to next rule */
2454 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2455 				    break;
2456 
2457 				args->m = m = ip_reass(m);
2458 
2459 				/*
2460 				 * do IP header checksum fixup.
2461 				 */
2462 				if (m == NULL) { /* fragment got swallowed */
2463 				    retval = IP_FW_DENY;
2464 				} else { /* good, packet complete */
2465 				    int hlen;
2466 
2467 				    ip = mtod(m, struct ip *);
2468 				    hlen = ip->ip_hl << 2;
2469 				    ip->ip_sum = 0;
2470 				    if (hlen == sizeof(struct ip))
2471 					ip->ip_sum = in_cksum_hdr(ip);
2472 				    else
2473 					ip->ip_sum = in_cksum(m, hlen);
2474 				    retval = IP_FW_REASS;
2475 				    set_match(args, f_pos, chain);
2476 				}
2477 				done = 1;	/* exit outer loop */
2478 				break;
2479 			}
2480 
2481 			default:
2482 				panic("-- unknown opcode %d\n", cmd->opcode);
2483 			} /* end of switch() on opcodes */
2484 			/*
2485 			 * if we get here with l=0, then match is irrelevant.
2486 			 */
2487 
2488 			if (cmd->len & F_NOT)
2489 				match = !match;
2490 
2491 			if (match) {
2492 				if (cmd->len & F_OR)
2493 					skip_or = 1;
2494 			} else {
2495 				if (!(cmd->len & F_OR)) /* not an OR block, */
2496 					break;		/* try next rule    */
2497 			}
2498 
2499 		}	/* end of inner loop, scan opcodes */
2500 #undef PULLUP_LEN
2501 
2502 		if (done)
2503 			break;
2504 
2505 /* next_rule:; */	/* try next rule		*/
2506 
2507 	}		/* end of outer for, scan rules */
2508 
2509 	if (done) {
2510 		struct ip_fw *rule = chain->map[f_pos];
2511 		/* Update statistics */
2512 		IPFW_INC_RULE_COUNTER(rule, pktlen);
2513 	} else {
2514 		retval = IP_FW_DENY;
2515 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2516 	}
2517 	IPFW_PF_RUNLOCK(chain);
2518 #ifdef __FreeBSD__
2519 	if (ucred_cache != NULL)
2520 		crfree(ucred_cache);
2521 #endif
2522 	return (retval);
2523 
2524 pullup_failed:
2525 	if (V_fw_verbose)
2526 		printf("ipfw: pullup failed\n");
2527 	return (IP_FW_DENY);
2528 }
2529 
2530 /*
2531  * Set maximum number of tables that can be used in given VNET ipfw instance.
2532  */
2533 #ifdef SYSCTL_NODE
2534 static int
2535 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
2536 {
2537 	int error;
2538 	unsigned int ntables;
2539 
2540 	ntables = V_fw_tables_max;
2541 
2542 	error = sysctl_handle_int(oidp, &ntables, 0, req);
2543 	/* Read operation or some error */
2544 	if ((error != 0) || (req->newptr == NULL))
2545 		return (error);
2546 
2547 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
2548 }
2549 #endif
2550 /*
2551  * Module and VNET glue
2552  */
2553 
2554 /*
2555  * Stuff that must be initialised only on boot or module load
2556  */
2557 static int
2558 ipfw_init(void)
2559 {
2560 	int error = 0;
2561 
2562 	/*
2563  	 * Only print out this stuff the first time around,
2564 	 * when called from the sysinit code.
2565 	 */
2566 	printf("ipfw2 "
2567 #ifdef INET6
2568 		"(+ipv6) "
2569 #endif
2570 		"initialized, divert %s, nat %s, "
2571 		"default to %s, logging ",
2572 #ifdef IPDIVERT
2573 		"enabled",
2574 #else
2575 		"loadable",
2576 #endif
2577 #ifdef IPFIREWALL_NAT
2578 		"enabled",
2579 #else
2580 		"loadable",
2581 #endif
2582 		default_to_accept ? "accept" : "deny");
2583 
2584 	/*
2585 	 * Note: V_xxx variables can be accessed here but the vnet specific
2586 	 * initializer may not have been called yet for the VIMAGE case.
2587 	 * Tuneables will have been processed. We will print out values for
2588 	 * the default vnet.
2589 	 * XXX This should all be rationalized AFTER 8.0
2590 	 */
2591 	if (V_fw_verbose == 0)
2592 		printf("disabled\n");
2593 	else if (V_verbose_limit == 0)
2594 		printf("unlimited\n");
2595 	else
2596 		printf("limited to %d packets/entry by default\n",
2597 		    V_verbose_limit);
2598 
2599 	/* Check user-supplied table count for validness */
2600 	if (default_fw_tables > IPFW_TABLES_MAX)
2601 	  default_fw_tables = IPFW_TABLES_MAX;
2602 
2603 	ipfw_log_bpf(1); /* init */
2604 	return (error);
2605 }
2606 
2607 /*
2608  * Called for the removal of the last instance only on module unload.
2609  */
2610 static void
2611 ipfw_destroy(void)
2612 {
2613 
2614 	ipfw_log_bpf(0); /* uninit */
2615 	printf("IP firewall unloaded\n");
2616 }
2617 
2618 /*
2619  * Stuff that must be initialized for every instance
2620  * (including the first of course).
2621  */
2622 static int
2623 vnet_ipfw_init(const void *unused)
2624 {
2625 	int error;
2626 	struct ip_fw *rule = NULL;
2627 	struct ip_fw_chain *chain;
2628 
2629 	chain = &V_layer3_chain;
2630 
2631 	/* First set up some values that are compile time options */
2632 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2633 	V_fw_deny_unknown_exthdrs = 1;
2634 #ifdef IPFIREWALL_VERBOSE
2635 	V_fw_verbose = 1;
2636 #endif
2637 #ifdef IPFIREWALL_VERBOSE_LIMIT
2638 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2639 #endif
2640 #ifdef IPFIREWALL_NAT
2641 	LIST_INIT(&chain->nat);
2642 #endif
2643 
2644 	/* insert the default rule and create the initial map */
2645 	chain->n_rules = 1;
2646 	chain->static_len = sizeof(struct ip_fw);
2647 	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_WAITOK | M_ZERO);
2648 	if (chain->map)
2649 		rule = malloc(chain->static_len, M_IPFW, M_WAITOK | M_ZERO);
2650 
2651 	/* Set initial number of tables */
2652 	V_fw_tables_max = default_fw_tables;
2653 	error = ipfw_init_tables(chain);
2654 	if (error) {
2655 		printf("ipfw2: setting up tables failed\n");
2656 		free(chain->map, M_IPFW);
2657 		free(rule, M_IPFW);
2658 		return (ENOSPC);
2659 	}
2660 
2661 	/* fill and insert the default rule */
2662 	rule->act_ofs = 0;
2663 	rule->rulenum = IPFW_DEFAULT_RULE;
2664 	rule->cmd_len = 1;
2665 	rule->set = RESVD_SET;
2666 	rule->cmd[0].len = 1;
2667 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2668 	chain->default_rule = chain->map[0] = rule;
2669 	chain->id = rule->id = 1;
2670 
2671 	IPFW_LOCK_INIT(chain);
2672 	ipfw_dyn_init(chain);
2673 
2674 	/* First set up some values that are compile time options */
2675 	V_ipfw_vnet_ready = 1;		/* Open for business */
2676 
2677 	/*
2678 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
2679 	 * Even if the latter two fail we still keep the module alive
2680 	 * because the sockopt and layer2 paths are still useful.
2681 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2682 	 * so we can ignore the exact return value and just set a flag.
2683 	 *
2684 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2685 	 * changes in the underlying (per-vnet) variables trigger
2686 	 * immediate hook()/unhook() calls.
2687 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2688 	 * is checked on each packet because there are no pfil hooks.
2689 	 */
2690 	V_ip_fw_ctl_ptr = ipfw_ctl;
2691 	error = ipfw_attach_hooks(1);
2692 	return (error);
2693 }
2694 
2695 /*
2696  * Called for the removal of each instance.
2697  */
2698 static int
2699 vnet_ipfw_uninit(const void *unused)
2700 {
2701 	struct ip_fw *reap, *rule;
2702 	struct ip_fw_chain *chain = &V_layer3_chain;
2703 	int i;
2704 
2705 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2706 	/*
2707 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2708 	 * Then grab, release and grab again the WLOCK so we make
2709 	 * sure the update is propagated and nobody will be in.
2710 	 */
2711 	(void)ipfw_attach_hooks(0 /* detach */);
2712 	V_ip_fw_ctl_ptr = NULL;
2713 	IPFW_UH_WLOCK(chain);
2714 	IPFW_UH_WUNLOCK(chain);
2715 	IPFW_UH_WLOCK(chain);
2716 
2717 	IPFW_WLOCK(chain);
2718 	ipfw_dyn_uninit(0);	/* run the callout_drain */
2719 	IPFW_WUNLOCK(chain);
2720 
2721 	ipfw_destroy_tables(chain);
2722 	reap = NULL;
2723 	IPFW_WLOCK(chain);
2724 	for (i = 0; i < chain->n_rules; i++) {
2725 		rule = chain->map[i];
2726 		rule->x_next = reap;
2727 		reap = rule;
2728 	}
2729 	if (chain->map)
2730 		free(chain->map, M_IPFW);
2731 	IPFW_WUNLOCK(chain);
2732 	IPFW_UH_WUNLOCK(chain);
2733 	if (reap != NULL)
2734 		ipfw_reap_rules(reap);
2735 	IPFW_LOCK_DESTROY(chain);
2736 	ipfw_dyn_uninit(1);	/* free the remaining parts */
2737 	return 0;
2738 }
2739 
2740 /*
2741  * Module event handler.
2742  * In general we have the choice of handling most of these events by the
2743  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2744  * use the SYSINIT handlers as they are more capable of expressing the
2745  * flow of control during module and vnet operations, so this is just
2746  * a skeleton. Note there is no SYSINIT equivalent of the module
2747  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2748  */
2749 static int
2750 ipfw_modevent(module_t mod, int type, void *unused)
2751 {
2752 	int err = 0;
2753 
2754 	switch (type) {
2755 	case MOD_LOAD:
2756 		/* Called once at module load or
2757 	 	 * system boot if compiled in. */
2758 		break;
2759 	case MOD_QUIESCE:
2760 		/* Called before unload. May veto unloading. */
2761 		break;
2762 	case MOD_UNLOAD:
2763 		/* Called during unload. */
2764 		break;
2765 	case MOD_SHUTDOWN:
2766 		/* Called during system shutdown. */
2767 		break;
2768 	default:
2769 		err = EOPNOTSUPP;
2770 		break;
2771 	}
2772 	return err;
2773 }
2774 
2775 static moduledata_t ipfwmod = {
2776 	"ipfw",
2777 	ipfw_modevent,
2778 	0
2779 };
2780 
2781 /* Define startup order. */
2782 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2783 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2784 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2785 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2786 
2787 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2788 MODULE_VERSION(ipfw, 2);
2789 /* should declare some dependencies here */
2790 
2791 /*
2792  * Starting up. Done in order after ipfwmod() has been called.
2793  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2794  */
2795 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2796 	    ipfw_init, NULL);
2797 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2798 	    vnet_ipfw_init, NULL);
2799 
2800 /*
2801  * Closing up shop. These are done in REVERSE ORDER, but still
2802  * after ipfwmod() has been called. Not called on reboot.
2803  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2804  * or when the module is unloaded.
2805  */
2806 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2807 	    ipfw_destroy, NULL);
2808 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2809 	    vnet_ipfw_uninit, NULL);
2810 /* end of file */
2811