xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision 731d06abf2105cc0873fa84e972178f9f37ca760)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * The FreeBSD IP packet firewall, main file
33  */
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipdivert.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error "IPFIREWALL requires INET"
40 #endif /* INET */
41 #include "opt_inet6.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/counter.h>
47 #include <sys/eventhandler.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/jail.h>
53 #include <sys/module.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/rmlock.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/ucred.h>
63 #include <net/ethernet.h> /* for ETHERTYPE_IP */
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/route.h>
67 #include <net/pfil.h>
68 #include <net/vnet.h>
69 
70 #include <netpfil/pf/pf_mtag.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_var.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_icmp.h>
78 #include <netinet/ip_fw.h>
79 #include <netinet/ip_carp.h>
80 #include <netinet/pim.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84 #include <netinet/sctp.h>
85 #include <netinet/sctp_crc32.h>
86 #include <netinet/sctp_header.h>
87 
88 #include <netinet/ip6.h>
89 #include <netinet/icmp6.h>
90 #include <netinet/in_fib.h>
91 #ifdef INET6
92 #include <netinet6/in6_fib.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/scope6_var.h>
95 #include <netinet6/ip6_var.h>
96 #endif
97 
98 #include <net/if_gre.h> /* for struct grehdr */
99 
100 #include <netpfil/ipfw/ip_fw_private.h>
101 
102 #include <machine/in_cksum.h>	/* XXX for in_cksum */
103 
104 #ifdef MAC
105 #include <security/mac/mac_framework.h>
106 #endif
107 
108 /*
109  * static variables followed by global ones.
110  * All ipfw global variables are here.
111  */
112 
113 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
114 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
115 
116 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
117 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
118 
119 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
120 static int default_to_accept = 1;
121 #else
122 static int default_to_accept;
123 #endif
124 
125 VNET_DEFINE(int, autoinc_step);
126 VNET_DEFINE(int, fw_one_pass) = 1;
127 
128 VNET_DEFINE(unsigned int, fw_tables_max);
129 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
130 /* Use 128 tables by default */
131 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
132 
133 #ifndef LINEAR_SKIPTO
134 static int jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
135     int tablearg, int jump_backwards);
136 #define	JUMP(ch, f, num, targ, back)	jump_fast(ch, f, num, targ, back)
137 #else
138 static int jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
139     int tablearg, int jump_backwards);
140 #define	JUMP(ch, f, num, targ, back)	jump_linear(ch, f, num, targ, back)
141 #endif
142 
143 /*
144  * Each rule belongs to one of 32 different sets (0..31).
145  * The variable set_disable contains one bit per set.
146  * If the bit is set, all rules in the corresponding set
147  * are disabled. Set RESVD_SET(31) is reserved for the default rule
148  * and rules that are not deleted by the flush command,
149  * and CANNOT be disabled.
150  * Rules in set RESVD_SET can only be deleted individually.
151  */
152 VNET_DEFINE(u_int32_t, set_disable);
153 #define	V_set_disable			VNET(set_disable)
154 
155 VNET_DEFINE(int, fw_verbose);
156 /* counter for ipfw_log(NULL...) */
157 VNET_DEFINE(u_int64_t, norule_counter);
158 VNET_DEFINE(int, verbose_limit);
159 
160 /* layer3_chain contains the list of rules for layer 3 */
161 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
162 
163 /* ipfw_vnet_ready controls when we are open for business */
164 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
165 
166 VNET_DEFINE(int, ipfw_nat_ready) = 0;
167 
168 ipfw_nat_t *ipfw_nat_ptr = NULL;
169 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
170 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
171 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
172 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
173 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
174 
175 #ifdef SYSCTL_NODE
176 uint32_t dummy_def = IPFW_DEFAULT_RULE;
177 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
178 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
179 
180 SYSBEGIN(f3)
181 
182 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
183 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
184     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
185     "Only do a single pass through ipfw when using dummynet(4)");
186 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
187     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
188     "Rule number auto-increment step");
189 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
190     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
191     "Log matches to ipfw rules");
192 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
193     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
194     "Set upper limit of matches of ipfw rules logged");
195 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
196     &dummy_def, 0,
197     "The default/max possible rule number.");
198 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
199     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
200     "Maximum number of concurrently used tables");
201 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
202     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
203     0, 0, sysctl_ipfw_tables_sets, "IU",
204     "Use per-set namespace for tables");
205 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
206     &default_to_accept, 0,
207     "Make the default rule accept all packets.");
208 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
209 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
210     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
211     "Number of static rules");
212 
213 #ifdef INET6
214 SYSCTL_DECL(_net_inet6_ip6);
215 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
216 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
217     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
218     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
219     "Deny packets with unknown IPv6 Extension Headers");
220 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
221     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
222     &VNET_NAME(fw_permit_single_frag6), 0,
223     "Permit single packet IPv6 fragments");
224 #endif /* INET6 */
225 
226 SYSEND
227 
228 #endif /* SYSCTL_NODE */
229 
230 
231 /*
232  * Some macros used in the various matching options.
233  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
234  * Other macros just cast void * into the appropriate type
235  */
236 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
237 #define	TCP(p)		((struct tcphdr *)(p))
238 #define	SCTP(p)		((struct sctphdr *)(p))
239 #define	UDP(p)		((struct udphdr *)(p))
240 #define	ICMP(p)		((struct icmphdr *)(p))
241 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
242 
243 static __inline int
244 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
245 {
246 	int type = icmp->icmp_type;
247 
248 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
249 }
250 
251 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
252     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
253 
254 static int
255 is_icmp_query(struct icmphdr *icmp)
256 {
257 	int type = icmp->icmp_type;
258 
259 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
260 }
261 #undef TT
262 
263 /*
264  * The following checks use two arrays of 8 or 16 bits to store the
265  * bits that we want set or clear, respectively. They are in the
266  * low and high half of cmd->arg1 or cmd->d[0].
267  *
268  * We scan options and store the bits we find set. We succeed if
269  *
270  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
271  *
272  * The code is sometimes optimized not to store additional variables.
273  */
274 
275 static int
276 flags_match(ipfw_insn *cmd, u_int8_t bits)
277 {
278 	u_char want_clear;
279 	bits = ~bits;
280 
281 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
282 		return 0; /* some bits we want set were clear */
283 	want_clear = (cmd->arg1 >> 8) & 0xff;
284 	if ( (want_clear & bits) != want_clear)
285 		return 0; /* some bits we want clear were set */
286 	return 1;
287 }
288 
289 static int
290 ipopts_match(struct ip *ip, ipfw_insn *cmd)
291 {
292 	int optlen, bits = 0;
293 	u_char *cp = (u_char *)(ip + 1);
294 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
295 
296 	for (; x > 0; x -= optlen, cp += optlen) {
297 		int opt = cp[IPOPT_OPTVAL];
298 
299 		if (opt == IPOPT_EOL)
300 			break;
301 		if (opt == IPOPT_NOP)
302 			optlen = 1;
303 		else {
304 			optlen = cp[IPOPT_OLEN];
305 			if (optlen <= 0 || optlen > x)
306 				return 0; /* invalid or truncated */
307 		}
308 		switch (opt) {
309 
310 		default:
311 			break;
312 
313 		case IPOPT_LSRR:
314 			bits |= IP_FW_IPOPT_LSRR;
315 			break;
316 
317 		case IPOPT_SSRR:
318 			bits |= IP_FW_IPOPT_SSRR;
319 			break;
320 
321 		case IPOPT_RR:
322 			bits |= IP_FW_IPOPT_RR;
323 			break;
324 
325 		case IPOPT_TS:
326 			bits |= IP_FW_IPOPT_TS;
327 			break;
328 		}
329 	}
330 	return (flags_match(cmd, bits));
331 }
332 
333 static int
334 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
335 {
336 	int optlen, bits = 0;
337 	u_char *cp = (u_char *)(tcp + 1);
338 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
339 
340 	for (; x > 0; x -= optlen, cp += optlen) {
341 		int opt = cp[0];
342 		if (opt == TCPOPT_EOL)
343 			break;
344 		if (opt == TCPOPT_NOP)
345 			optlen = 1;
346 		else {
347 			optlen = cp[1];
348 			if (optlen <= 0)
349 				break;
350 		}
351 
352 		switch (opt) {
353 
354 		default:
355 			break;
356 
357 		case TCPOPT_MAXSEG:
358 			bits |= IP_FW_TCPOPT_MSS;
359 			break;
360 
361 		case TCPOPT_WINDOW:
362 			bits |= IP_FW_TCPOPT_WINDOW;
363 			break;
364 
365 		case TCPOPT_SACK_PERMITTED:
366 		case TCPOPT_SACK:
367 			bits |= IP_FW_TCPOPT_SACK;
368 			break;
369 
370 		case TCPOPT_TIMESTAMP:
371 			bits |= IP_FW_TCPOPT_TS;
372 			break;
373 
374 		}
375 	}
376 	return (flags_match(cmd, bits));
377 }
378 
379 static int
380 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
381     uint32_t *tablearg)
382 {
383 
384 	if (ifp == NULL)	/* no iface with this packet, match fails */
385 		return (0);
386 
387 	/* Check by name or by IP address */
388 	if (cmd->name[0] != '\0') { /* match by name */
389 		if (cmd->name[0] == '\1') /* use tablearg to match */
390 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
391 			    &ifp->if_index, tablearg);
392 		/* Check name */
393 		if (cmd->p.glob) {
394 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
395 				return(1);
396 		} else {
397 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
398 				return(1);
399 		}
400 	} else {
401 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
402 		struct ifaddr *ia;
403 
404 		if_addr_rlock(ifp);
405 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
406 			if (ia->ifa_addr->sa_family != AF_INET)
407 				continue;
408 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
409 			    (ia->ifa_addr))->sin_addr.s_addr) {
410 				if_addr_runlock(ifp);
411 				return(1);	/* match */
412 			}
413 		}
414 		if_addr_runlock(ifp);
415 #endif /* __FreeBSD__ */
416 	}
417 	return(0);	/* no match, fail ... */
418 }
419 
420 /*
421  * The verify_path function checks if a route to the src exists and
422  * if it is reachable via ifp (when provided).
423  *
424  * The 'verrevpath' option checks that the interface that an IP packet
425  * arrives on is the same interface that traffic destined for the
426  * packet's source address would be routed out of.
427  * The 'versrcreach' option just checks that the source address is
428  * reachable via any route (except default) in the routing table.
429  * These two are a measure to block forged packets. This is also
430  * commonly known as "anti-spoofing" or Unicast Reverse Path
431  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
432  * is purposely reminiscent of the Cisco IOS command,
433  *
434  *   ip verify unicast reverse-path
435  *   ip verify unicast source reachable-via any
436  *
437  * which implements the same functionality. But note that the syntax
438  * is misleading, and the check may be performed on all IP packets
439  * whether unicast, multicast, or broadcast.
440  */
441 static int
442 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
443 {
444 #if defined(USERSPACE) || !defined(__FreeBSD__)
445 	return 0;
446 #else
447 	struct nhop4_basic nh4;
448 
449 	if (fib4_lookup_nh_basic(fib, src, NHR_IFAIF, 0, &nh4) != 0)
450 		return (0);
451 
452 	/*
453 	 * If ifp is provided, check for equality with rtentry.
454 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
455 	 * in order to pass packets injected back by if_simloop():
456 	 * routing entry (via lo0) for our own address
457 	 * may exist, so we need to handle routing assymetry.
458 	 */
459 	if (ifp != NULL && ifp != nh4.nh_ifp)
460 		return (0);
461 
462 	/* if no ifp provided, check if rtentry is not default route */
463 	if (ifp == NULL && (nh4.nh_flags & NHF_DEFAULT) != 0)
464 		return (0);
465 
466 	/* or if this is a blackhole/reject route */
467 	if (ifp == NULL && (nh4.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
468 		return (0);
469 
470 	/* found valid route */
471 	return 1;
472 #endif /* __FreeBSD__ */
473 }
474 
475 /*
476  * Generate an SCTP packet containing an ABORT chunk. The verification tag
477  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
478  * reflected is not 0.
479  */
480 
481 static struct mbuf *
482 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
483     int reflected)
484 {
485 	struct mbuf *m;
486 	struct ip *ip;
487 #ifdef INET6
488 	struct ip6_hdr *ip6;
489 #endif
490 	struct sctphdr *sctp;
491 	struct sctp_chunkhdr *chunk;
492 	u_int16_t hlen, plen, tlen;
493 
494 	MGETHDR(m, M_NOWAIT, MT_DATA);
495 	if (m == NULL)
496 		return (NULL);
497 
498 	M_SETFIB(m, id->fib);
499 #ifdef MAC
500 	if (replyto != NULL)
501 		mac_netinet_firewall_reply(replyto, m);
502 	else
503 		mac_netinet_firewall_send(m);
504 #else
505 	(void)replyto;		/* don't warn about unused arg */
506 #endif
507 
508 	switch (id->addr_type) {
509 	case 4:
510 		hlen = sizeof(struct ip);
511 		break;
512 #ifdef INET6
513 	case 6:
514 		hlen = sizeof(struct ip6_hdr);
515 		break;
516 #endif
517 	default:
518 		/* XXX: log me?!? */
519 		FREE_PKT(m);
520 		return (NULL);
521 	}
522 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
523 	tlen = hlen + plen;
524 	m->m_data += max_linkhdr;
525 	m->m_flags |= M_SKIP_FIREWALL;
526 	m->m_pkthdr.len = m->m_len = tlen;
527 	m->m_pkthdr.rcvif = NULL;
528 	bzero(m->m_data, tlen);
529 
530 	switch (id->addr_type) {
531 	case 4:
532 		ip = mtod(m, struct ip *);
533 
534 		ip->ip_v = 4;
535 		ip->ip_hl = sizeof(struct ip) >> 2;
536 		ip->ip_tos = IPTOS_LOWDELAY;
537 		ip->ip_len = htons(tlen);
538 		ip->ip_id = htons(0);
539 		ip->ip_off = htons(0);
540 		ip->ip_ttl = V_ip_defttl;
541 		ip->ip_p = IPPROTO_SCTP;
542 		ip->ip_sum = 0;
543 		ip->ip_src.s_addr = htonl(id->dst_ip);
544 		ip->ip_dst.s_addr = htonl(id->src_ip);
545 
546 		sctp = (struct sctphdr *)(ip + 1);
547 		break;
548 #ifdef INET6
549 	case 6:
550 		ip6 = mtod(m, struct ip6_hdr *);
551 
552 		ip6->ip6_vfc = IPV6_VERSION;
553 		ip6->ip6_plen = htons(plen);
554 		ip6->ip6_nxt = IPPROTO_SCTP;
555 		ip6->ip6_hlim = IPV6_DEFHLIM;
556 		ip6->ip6_src = id->dst_ip6;
557 		ip6->ip6_dst = id->src_ip6;
558 
559 		sctp = (struct sctphdr *)(ip6 + 1);
560 		break;
561 #endif
562 	}
563 
564 	sctp->src_port = htons(id->dst_port);
565 	sctp->dest_port = htons(id->src_port);
566 	sctp->v_tag = htonl(vtag);
567 	sctp->checksum = htonl(0);
568 
569 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
570 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
571 	chunk->chunk_flags = 0;
572 	if (reflected != 0) {
573 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
574 	}
575 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
576 
577 	sctp->checksum = sctp_calculate_cksum(m, hlen);
578 
579 	return (m);
580 }
581 
582 /*
583  * Generate a TCP packet, containing either a RST or a keepalive.
584  * When flags & TH_RST, we are sending a RST packet, because of a
585  * "reset" action matched the packet.
586  * Otherwise we are sending a keepalive, and flags & TH_
587  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
588  * so that MAC can label the reply appropriately.
589  */
590 struct mbuf *
591 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
592     u_int32_t ack, int flags)
593 {
594 	struct mbuf *m = NULL;		/* stupid compiler */
595 	struct ip *h = NULL;		/* stupid compiler */
596 #ifdef INET6
597 	struct ip6_hdr *h6 = NULL;
598 #endif
599 	struct tcphdr *th = NULL;
600 	int len, dir;
601 
602 	MGETHDR(m, M_NOWAIT, MT_DATA);
603 	if (m == NULL)
604 		return (NULL);
605 
606 	M_SETFIB(m, id->fib);
607 #ifdef MAC
608 	if (replyto != NULL)
609 		mac_netinet_firewall_reply(replyto, m);
610 	else
611 		mac_netinet_firewall_send(m);
612 #else
613 	(void)replyto;		/* don't warn about unused arg */
614 #endif
615 
616 	switch (id->addr_type) {
617 	case 4:
618 		len = sizeof(struct ip) + sizeof(struct tcphdr);
619 		break;
620 #ifdef INET6
621 	case 6:
622 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
623 		break;
624 #endif
625 	default:
626 		/* XXX: log me?!? */
627 		FREE_PKT(m);
628 		return (NULL);
629 	}
630 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
631 
632 	m->m_data += max_linkhdr;
633 	m->m_flags |= M_SKIP_FIREWALL;
634 	m->m_pkthdr.len = m->m_len = len;
635 	m->m_pkthdr.rcvif = NULL;
636 	bzero(m->m_data, len);
637 
638 	switch (id->addr_type) {
639 	case 4:
640 		h = mtod(m, struct ip *);
641 
642 		/* prepare for checksum */
643 		h->ip_p = IPPROTO_TCP;
644 		h->ip_len = htons(sizeof(struct tcphdr));
645 		if (dir) {
646 			h->ip_src.s_addr = htonl(id->src_ip);
647 			h->ip_dst.s_addr = htonl(id->dst_ip);
648 		} else {
649 			h->ip_src.s_addr = htonl(id->dst_ip);
650 			h->ip_dst.s_addr = htonl(id->src_ip);
651 		}
652 
653 		th = (struct tcphdr *)(h + 1);
654 		break;
655 #ifdef INET6
656 	case 6:
657 		h6 = mtod(m, struct ip6_hdr *);
658 
659 		/* prepare for checksum */
660 		h6->ip6_nxt = IPPROTO_TCP;
661 		h6->ip6_plen = htons(sizeof(struct tcphdr));
662 		if (dir) {
663 			h6->ip6_src = id->src_ip6;
664 			h6->ip6_dst = id->dst_ip6;
665 		} else {
666 			h6->ip6_src = id->dst_ip6;
667 			h6->ip6_dst = id->src_ip6;
668 		}
669 
670 		th = (struct tcphdr *)(h6 + 1);
671 		break;
672 #endif
673 	}
674 
675 	if (dir) {
676 		th->th_sport = htons(id->src_port);
677 		th->th_dport = htons(id->dst_port);
678 	} else {
679 		th->th_sport = htons(id->dst_port);
680 		th->th_dport = htons(id->src_port);
681 	}
682 	th->th_off = sizeof(struct tcphdr) >> 2;
683 
684 	if (flags & TH_RST) {
685 		if (flags & TH_ACK) {
686 			th->th_seq = htonl(ack);
687 			th->th_flags = TH_RST;
688 		} else {
689 			if (flags & TH_SYN)
690 				seq++;
691 			th->th_ack = htonl(seq);
692 			th->th_flags = TH_RST | TH_ACK;
693 		}
694 	} else {
695 		/*
696 		 * Keepalive - use caller provided sequence numbers
697 		 */
698 		th->th_seq = htonl(seq);
699 		th->th_ack = htonl(ack);
700 		th->th_flags = TH_ACK;
701 	}
702 
703 	switch (id->addr_type) {
704 	case 4:
705 		th->th_sum = in_cksum(m, len);
706 
707 		/* finish the ip header */
708 		h->ip_v = 4;
709 		h->ip_hl = sizeof(*h) >> 2;
710 		h->ip_tos = IPTOS_LOWDELAY;
711 		h->ip_off = htons(0);
712 		h->ip_len = htons(len);
713 		h->ip_ttl = V_ip_defttl;
714 		h->ip_sum = 0;
715 		break;
716 #ifdef INET6
717 	case 6:
718 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
719 		    sizeof(struct tcphdr));
720 
721 		/* finish the ip6 header */
722 		h6->ip6_vfc |= IPV6_VERSION;
723 		h6->ip6_hlim = IPV6_DEFHLIM;
724 		break;
725 #endif
726 	}
727 
728 	return (m);
729 }
730 
731 #ifdef INET6
732 /*
733  * ipv6 specific rules here...
734  */
735 static __inline int
736 icmp6type_match (int type, ipfw_insn_u32 *cmd)
737 {
738 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
739 }
740 
741 static int
742 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
743 {
744 	int i;
745 	for (i=0; i <= cmd->o.arg1; ++i )
746 		if (curr_flow == cmd->d[i] )
747 			return 1;
748 	return 0;
749 }
750 
751 /* support for IP6_*_ME opcodes */
752 static const struct in6_addr lla_mask = {{{
753 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
754 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
755 }}};
756 
757 static int
758 ipfw_localip6(struct in6_addr *in6)
759 {
760 	struct rm_priotracker in6_ifa_tracker;
761 	struct in6_ifaddr *ia;
762 
763 	if (IN6_IS_ADDR_MULTICAST(in6))
764 		return (0);
765 
766 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
767 		return (in6_localip(in6));
768 
769 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
770 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
771 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
772 			continue;
773 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
774 		    in6, &lla_mask)) {
775 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
776 			return (1);
777 		}
778 	}
779 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
780 	return (0);
781 }
782 
783 static int
784 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
785 {
786 	struct nhop6_basic nh6;
787 
788 	if (IN6_IS_SCOPE_LINKLOCAL(src))
789 		return (1);
790 
791 	if (fib6_lookup_nh_basic(fib, src, 0, NHR_IFAIF, 0, &nh6) != 0)
792 		return (0);
793 
794 	/* If ifp is provided, check for equality with route table. */
795 	if (ifp != NULL && ifp != nh6.nh_ifp)
796 		return (0);
797 
798 	/* if no ifp provided, check if rtentry is not default route */
799 	if (ifp == NULL && (nh6.nh_flags & NHF_DEFAULT) != 0)
800 		return (0);
801 
802 	/* or if this is a blackhole/reject route */
803 	if (ifp == NULL && (nh6.nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
804 		return (0);
805 
806 	/* found valid route */
807 	return 1;
808 }
809 
810 static int
811 is_icmp6_query(int icmp6_type)
812 {
813 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
814 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
815 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
816 	    icmp6_type == ICMP6_WRUREQUEST ||
817 	    icmp6_type == ICMP6_FQDN_QUERY ||
818 	    icmp6_type == ICMP6_NI_QUERY))
819 		return (1);
820 
821 	return (0);
822 }
823 
824 static int
825 map_icmp_unreach(int code)
826 {
827 
828 	/* RFC 7915 p4.2 */
829 	switch (code) {
830 	case ICMP_UNREACH_NET:
831 	case ICMP_UNREACH_HOST:
832 	case ICMP_UNREACH_SRCFAIL:
833 	case ICMP_UNREACH_NET_UNKNOWN:
834 	case ICMP_UNREACH_HOST_UNKNOWN:
835 	case ICMP_UNREACH_TOSNET:
836 	case ICMP_UNREACH_TOSHOST:
837 		return (ICMP6_DST_UNREACH_NOROUTE);
838 	case ICMP_UNREACH_PORT:
839 		return (ICMP6_DST_UNREACH_NOPORT);
840 	default:
841 		/*
842 		 * Map the rest of codes into admit prohibited.
843 		 * XXX: unreach proto should be mapped into ICMPv6
844 		 * parameter problem, but we use only unreach type.
845 		 */
846 		return (ICMP6_DST_UNREACH_ADMIN);
847 	}
848 }
849 
850 static void
851 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
852 {
853 	struct mbuf *m;
854 
855 	m = args->m;
856 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
857 		struct tcphdr *tcp;
858 		tcp = (struct tcphdr *)((char *)ip6 + hlen);
859 
860 		if ((tcp->th_flags & TH_RST) == 0) {
861 			struct mbuf *m0;
862 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
863 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
864 			    tcp->th_flags | TH_RST);
865 			if (m0 != NULL)
866 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
867 				    NULL);
868 		}
869 		FREE_PKT(m);
870 	} else if (code == ICMP6_UNREACH_ABORT &&
871 	    args->f_id.proto == IPPROTO_SCTP) {
872 		struct mbuf *m0;
873 		struct sctphdr *sctp;
874 		u_int32_t v_tag;
875 		int reflected;
876 
877 		sctp = (struct sctphdr *)((char *)ip6 + hlen);
878 		reflected = 1;
879 		v_tag = ntohl(sctp->v_tag);
880 		/* Investigate the first chunk header if available */
881 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
882 		    sizeof(struct sctp_chunkhdr)) {
883 			struct sctp_chunkhdr *chunk;
884 
885 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
886 			switch (chunk->chunk_type) {
887 			case SCTP_INITIATION:
888 				/*
889 				 * Packets containing an INIT chunk MUST have
890 				 * a zero v-tag.
891 				 */
892 				if (v_tag != 0) {
893 					v_tag = 0;
894 					break;
895 				}
896 				/* INIT chunk MUST NOT be bundled */
897 				if (m->m_pkthdr.len >
898 				    hlen + sizeof(struct sctphdr) +
899 				    ntohs(chunk->chunk_length) + 3) {
900 					break;
901 				}
902 				/* Use the initiate tag if available */
903 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
904 				    sizeof(struct sctp_chunkhdr) +
905 				    offsetof(struct sctp_init, a_rwnd))) {
906 					struct sctp_init *init;
907 
908 					init = (struct sctp_init *)(chunk + 1);
909 					v_tag = ntohl(init->initiate_tag);
910 					reflected = 0;
911 				}
912 				break;
913 			case SCTP_ABORT_ASSOCIATION:
914 				/*
915 				 * If the packet contains an ABORT chunk, don't
916 				 * reply.
917 				 * XXX: We should search through all chunks,
918 				 *      but don't do to avoid attacks.
919 				 */
920 				v_tag = 0;
921 				break;
922 			}
923 		}
924 		if (v_tag == 0) {
925 			m0 = NULL;
926 		} else {
927 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
928 			    reflected);
929 		}
930 		if (m0 != NULL)
931 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
932 		FREE_PKT(m);
933 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
934 		/* Send an ICMPv6 unreach. */
935 #if 0
936 		/*
937 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
938 		 * as the contents are read. We need to m_adj() the
939 		 * needed amount.
940 		 * The mbuf will however be thrown away so we can adjust it.
941 		 * Remember we did an m_pullup on it already so we
942 		 * can make some assumptions about contiguousness.
943 		 */
944 		if (args->L3offset)
945 			m_adj(m, args->L3offset);
946 #endif
947 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
948 	} else
949 		FREE_PKT(m);
950 
951 	args->m = NULL;
952 }
953 
954 #endif /* INET6 */
955 
956 
957 /*
958  * sends a reject message, consuming the mbuf passed as an argument.
959  */
960 static void
961 send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
962 {
963 
964 #if 0
965 	/* XXX When ip is not guaranteed to be at mtod() we will
966 	 * need to account for this */
967 	 * The mbuf will however be thrown away so we can adjust it.
968 	 * Remember we did an m_pullup on it already so we
969 	 * can make some assumptions about contiguousness.
970 	 */
971 	if (args->L3offset)
972 		m_adj(m, args->L3offset);
973 #endif
974 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
975 		/* Send an ICMP unreach */
976 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
977 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
978 		struct tcphdr *const tcp =
979 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
980 		if ( (tcp->th_flags & TH_RST) == 0) {
981 			struct mbuf *m;
982 			m = ipfw_send_pkt(args->m, &(args->f_id),
983 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
984 				tcp->th_flags | TH_RST);
985 			if (m != NULL)
986 				ip_output(m, NULL, NULL, 0, NULL, NULL);
987 		}
988 		FREE_PKT(args->m);
989 	} else if (code == ICMP_REJECT_ABORT &&
990 	    args->f_id.proto == IPPROTO_SCTP) {
991 		struct mbuf *m;
992 		struct sctphdr *sctp;
993 		struct sctp_chunkhdr *chunk;
994 		struct sctp_init *init;
995 		u_int32_t v_tag;
996 		int reflected;
997 
998 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
999 		reflected = 1;
1000 		v_tag = ntohl(sctp->v_tag);
1001 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1002 		    sizeof(struct sctp_chunkhdr)) {
1003 			/* Look at the first chunk header if available */
1004 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1005 			switch (chunk->chunk_type) {
1006 			case SCTP_INITIATION:
1007 				/*
1008 				 * Packets containing an INIT chunk MUST have
1009 				 * a zero v-tag.
1010 				 */
1011 				if (v_tag != 0) {
1012 					v_tag = 0;
1013 					break;
1014 				}
1015 				/* INIT chunk MUST NOT be bundled */
1016 				if (iplen >
1017 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1018 				    ntohs(chunk->chunk_length) + 3) {
1019 					break;
1020 				}
1021 				/* Use the initiate tag if available */
1022 				if ((iplen >= (ip->ip_hl << 2) +
1023 				    sizeof(struct sctphdr) +
1024 				    sizeof(struct sctp_chunkhdr) +
1025 				    offsetof(struct sctp_init, a_rwnd))) {
1026 					init = (struct sctp_init *)(chunk + 1);
1027 					v_tag = ntohl(init->initiate_tag);
1028 					reflected = 0;
1029 				}
1030 				break;
1031 			case SCTP_ABORT_ASSOCIATION:
1032 				/*
1033 				 * If the packet contains an ABORT chunk, don't
1034 				 * reply.
1035 				 * XXX: We should search through all chunks,
1036 				 * but don't do to avoid attacks.
1037 				 */
1038 				v_tag = 0;
1039 				break;
1040 			}
1041 		}
1042 		if (v_tag == 0) {
1043 			m = NULL;
1044 		} else {
1045 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1046 			    reflected);
1047 		}
1048 		if (m != NULL)
1049 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1050 		FREE_PKT(args->m);
1051 	} else
1052 		FREE_PKT(args->m);
1053 	args->m = NULL;
1054 }
1055 
1056 /*
1057  * Support for uid/gid/jail lookup. These tests are expensive
1058  * (because we may need to look into the list of active sockets)
1059  * so we cache the results. ugid_lookupp is 0 if we have not
1060  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1061  * and failed. The function always returns the match value.
1062  * We could actually spare the variable and use *uc, setting
1063  * it to '(void *)check_uidgid if we have no info, NULL if
1064  * we tried and failed, or any other value if successful.
1065  */
1066 static int
1067 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1068     struct ucred **uc)
1069 {
1070 #if defined(USERSPACE)
1071 	return 0;	// not supported in userspace
1072 #else
1073 #ifndef __FreeBSD__
1074 	/* XXX */
1075 	return cred_check(insn, proto, oif,
1076 	    dst_ip, dst_port, src_ip, src_port,
1077 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1078 #else  /* FreeBSD */
1079 	struct in_addr src_ip, dst_ip;
1080 	struct inpcbinfo *pi;
1081 	struct ipfw_flow_id *id;
1082 	struct inpcb *pcb, *inp;
1083 	int lookupflags;
1084 	int match;
1085 
1086 	id = &args->f_id;
1087 	inp = args->inp;
1088 
1089 	/*
1090 	 * Check to see if the UDP or TCP stack supplied us with
1091 	 * the PCB. If so, rather then holding a lock and looking
1092 	 * up the PCB, we can use the one that was supplied.
1093 	 */
1094 	if (inp && *ugid_lookupp == 0) {
1095 		INP_LOCK_ASSERT(inp);
1096 		if (inp->inp_socket != NULL) {
1097 			*uc = crhold(inp->inp_cred);
1098 			*ugid_lookupp = 1;
1099 		} else
1100 			*ugid_lookupp = -1;
1101 	}
1102 	/*
1103 	 * If we have already been here and the packet has no
1104 	 * PCB entry associated with it, then we can safely
1105 	 * assume that this is a no match.
1106 	 */
1107 	if (*ugid_lookupp == -1)
1108 		return (0);
1109 	if (id->proto == IPPROTO_TCP) {
1110 		lookupflags = 0;
1111 		pi = &V_tcbinfo;
1112 	} else if (id->proto == IPPROTO_UDP) {
1113 		lookupflags = INPLOOKUP_WILDCARD;
1114 		pi = &V_udbinfo;
1115 	} else if (id->proto == IPPROTO_UDPLITE) {
1116 		lookupflags = INPLOOKUP_WILDCARD;
1117 		pi = &V_ulitecbinfo;
1118 	} else
1119 		return 0;
1120 	lookupflags |= INPLOOKUP_RLOCKPCB;
1121 	match = 0;
1122 	if (*ugid_lookupp == 0) {
1123 		if (id->addr_type == 6) {
1124 #ifdef INET6
1125 			if (args->flags & IPFW_ARGS_IN)
1126 				pcb = in6_pcblookup_mbuf(pi,
1127 				    &id->src_ip6, htons(id->src_port),
1128 				    &id->dst_ip6, htons(id->dst_port),
1129 				    lookupflags, NULL, args->m);
1130 			else
1131 				pcb = in6_pcblookup_mbuf(pi,
1132 				    &id->dst_ip6, htons(id->dst_port),
1133 				    &id->src_ip6, htons(id->src_port),
1134 				    lookupflags, args->ifp, args->m);
1135 #else
1136 			*ugid_lookupp = -1;
1137 			return (0);
1138 #endif
1139 		} else {
1140 			src_ip.s_addr = htonl(id->src_ip);
1141 			dst_ip.s_addr = htonl(id->dst_ip);
1142 			if (args->flags & IPFW_ARGS_IN)
1143 				pcb = in_pcblookup_mbuf(pi,
1144 				    src_ip, htons(id->src_port),
1145 				    dst_ip, htons(id->dst_port),
1146 				    lookupflags, NULL, args->m);
1147 			else
1148 				pcb = in_pcblookup_mbuf(pi,
1149 				    dst_ip, htons(id->dst_port),
1150 				    src_ip, htons(id->src_port),
1151 				    lookupflags, args->ifp, args->m);
1152 		}
1153 		if (pcb != NULL) {
1154 			INP_RLOCK_ASSERT(pcb);
1155 			*uc = crhold(pcb->inp_cred);
1156 			*ugid_lookupp = 1;
1157 			INP_RUNLOCK(pcb);
1158 		}
1159 		if (*ugid_lookupp == 0) {
1160 			/*
1161 			 * We tried and failed, set the variable to -1
1162 			 * so we will not try again on this packet.
1163 			 */
1164 			*ugid_lookupp = -1;
1165 			return (0);
1166 		}
1167 	}
1168 	if (insn->o.opcode == O_UID)
1169 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1170 	else if (insn->o.opcode == O_GID)
1171 		match = groupmember((gid_t)insn->d[0], *uc);
1172 	else if (insn->o.opcode == O_JAIL)
1173 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1174 	return (match);
1175 #endif /* __FreeBSD__ */
1176 #endif /* not supported in userspace */
1177 }
1178 
1179 /*
1180  * Helper function to set args with info on the rule after the matching
1181  * one. slot is precise, whereas we guess rule_id as they are
1182  * assigned sequentially.
1183  */
1184 static inline void
1185 set_match(struct ip_fw_args *args, int slot,
1186 	struct ip_fw_chain *chain)
1187 {
1188 	args->rule.chain_id = chain->id;
1189 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1190 	args->rule.rule_id = 1 + chain->map[slot]->id;
1191 	args->rule.rulenum = chain->map[slot]->rulenum;
1192 	args->flags |= IPFW_ARGS_REF;
1193 }
1194 
1195 #ifndef LINEAR_SKIPTO
1196 /*
1197  * Helper function to enable cached rule lookups using
1198  * cached_id and cached_pos fields in ipfw rule.
1199  */
1200 static int
1201 jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1202     int tablearg, int jump_backwards)
1203 {
1204 	int f_pos;
1205 
1206 	/* If possible use cached f_pos (in f->cached_pos),
1207 	 * whose version is written in f->cached_id
1208 	 * (horrible hacks to avoid changing the ABI).
1209 	 */
1210 	if (num != IP_FW_TARG && f->cached_id == chain->id)
1211 		f_pos = f->cached_pos;
1212 	else {
1213 		int i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1214 		/* make sure we do not jump backward */
1215 		if (jump_backwards == 0 && i <= f->rulenum)
1216 			i = f->rulenum + 1;
1217 		if (chain->idxmap != NULL)
1218 			f_pos = chain->idxmap[i];
1219 		else
1220 			f_pos = ipfw_find_rule(chain, i, 0);
1221 		/* update the cache */
1222 		if (num != IP_FW_TARG) {
1223 			f->cached_id = chain->id;
1224 			f->cached_pos = f_pos;
1225 		}
1226 	}
1227 
1228 	return (f_pos);
1229 }
1230 #else
1231 /*
1232  * Helper function to enable real fast rule lookups.
1233  */
1234 static int
1235 jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1236     int tablearg, int jump_backwards)
1237 {
1238 	int f_pos;
1239 
1240 	num = IP_FW_ARG_TABLEARG(chain, num, skipto);
1241 	/* make sure we do not jump backward */
1242 	if (jump_backwards == 0 && num <= f->rulenum)
1243 		num = f->rulenum + 1;
1244 	f_pos = chain->idxmap[num];
1245 
1246 	return (f_pos);
1247 }
1248 #endif
1249 
1250 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1251 /*
1252  * The main check routine for the firewall.
1253  *
1254  * All arguments are in args so we can modify them and return them
1255  * back to the caller.
1256  *
1257  * Parameters:
1258  *
1259  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1260  *		Starts with the IP header.
1261  *	args->L3offset	Number of bytes bypassed if we came from L2.
1262  *			e.g. often sizeof(eh)  ** NOTYET **
1263  *	args->ifp	Incoming or outgoing interface.
1264  *	args->divert_rule (in/out)
1265  *		Skip up to the first rule past this rule number;
1266  *		upon return, non-zero port number for divert or tee.
1267  *
1268  *	args->rule	Pointer to the last matching rule (in/out)
1269  *	args->next_hop	Socket we are forwarding to (out).
1270  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1271  *	args->f_id	Addresses grabbed from the packet (out)
1272  * 	args->rule.info	a cookie depending on rule action
1273  *
1274  * Return value:
1275  *
1276  *	IP_FW_PASS	the packet must be accepted
1277  *	IP_FW_DENY	the packet must be dropped
1278  *	IP_FW_DIVERT	divert packet, port in m_tag
1279  *	IP_FW_TEE	tee packet, port in m_tag
1280  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1281  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1282  *		args->rule contains the matching rule,
1283  *		args->rule.info has additional information.
1284  *
1285  */
1286 int
1287 ipfw_chk(struct ip_fw_args *args)
1288 {
1289 
1290 	/*
1291 	 * Local variables holding state while processing a packet:
1292 	 *
1293 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1294 	 * are some assumption on the values of the variables, which
1295 	 * are documented here. Should you change them, please check
1296 	 * the implementation of the various instructions to make sure
1297 	 * that they still work.
1298 	 *
1299 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1300 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1301 	 *	consumes the packet because it calls send_reject().
1302 	 *	XXX This has to change, so that ipfw_chk() never modifies
1303 	 *	or consumes the buffer.
1304 	 *	OR
1305 	 * args->mem	Pointer to contigous memory chunk.
1306 	 * ip	Is the beginning of the ip(4 or 6) header.
1307 	 * eh	Ethernet header in case if input is Layer2.
1308 	 */
1309 	struct mbuf *m;
1310 	struct ip *ip;
1311 	struct ether_header *eh;
1312 
1313 	/*
1314 	 * For rules which contain uid/gid or jail constraints, cache
1315 	 * a copy of the users credentials after the pcb lookup has been
1316 	 * executed. This will speed up the processing of rules with
1317 	 * these types of constraints, as well as decrease contention
1318 	 * on pcb related locks.
1319 	 */
1320 #ifndef __FreeBSD__
1321 	struct bsd_ucred ucred_cache;
1322 #else
1323 	struct ucred *ucred_cache = NULL;
1324 #endif
1325 	int ucred_lookup = 0;
1326 	int f_pos = 0;		/* index of current rule in the array */
1327 	int retval = 0;
1328 	struct ifnet *oif, *iif;
1329 
1330 	/*
1331 	 * hlen	The length of the IP header.
1332 	 */
1333 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1334 
1335 	/*
1336 	 * offset	The offset of a fragment. offset != 0 means that
1337 	 *	we have a fragment at this offset of an IPv4 packet.
1338 	 *	offset == 0 means that (if this is an IPv4 packet)
1339 	 *	this is the first or only fragment.
1340 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1341 	 *	or there is a single packet fragment (fragment header added
1342 	 *	without needed).  We will treat a single packet fragment as if
1343 	 *	there was no fragment header (or log/block depending on the
1344 	 *	V_fw_permit_single_frag6 sysctl setting).
1345 	 */
1346 	u_short offset = 0;
1347 	u_short ip6f_mf = 0;
1348 
1349 	/*
1350 	 * Local copies of addresses. They are only valid if we have
1351 	 * an IP packet.
1352 	 *
1353 	 * proto	The protocol. Set to 0 for non-ip packets,
1354 	 *	or to the protocol read from the packet otherwise.
1355 	 *	proto != 0 means that we have an IPv4 packet.
1356 	 *
1357 	 * src_port, dst_port	port numbers, in HOST format. Only
1358 	 *	valid for TCP and UDP packets.
1359 	 *
1360 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1361 	 *	Only valid for IPv4 packets.
1362 	 */
1363 	uint8_t proto;
1364 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1365 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1366 	int iplen = 0;
1367 	int pktlen;
1368 
1369 	struct ipfw_dyn_info dyn_info;
1370 	struct ip_fw *q = NULL;
1371 	struct ip_fw_chain *chain = &V_layer3_chain;
1372 
1373 	/*
1374 	 * We store in ulp a pointer to the upper layer protocol header.
1375 	 * In the ipv4 case this is easy to determine from the header,
1376 	 * but for ipv6 we might have some additional headers in the middle.
1377 	 * ulp is NULL if not found.
1378 	 */
1379 	void *ulp = NULL;		/* upper layer protocol pointer. */
1380 
1381 	/* XXX ipv6 variables */
1382 	int is_ipv6 = 0;
1383 	uint8_t	icmp6_type = 0;
1384 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1385 	/* end of ipv6 variables */
1386 
1387 	int is_ipv4 = 0;
1388 
1389 	int done = 0;		/* flag to exit the outer loop */
1390 	IPFW_RLOCK_TRACKER;
1391 	bool mem;
1392 
1393 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1394 		if (args->flags & IPFW_ARGS_ETHER) {
1395 			eh = (struct ether_header *)args->mem;
1396 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1397 				ip = (struct ip *)
1398 				    ((struct ether_vlan_header *)eh + 1);
1399 			else
1400 				ip = (struct ip *)(eh + 1);
1401 		} else {
1402 			eh = NULL;
1403 			ip = (struct ip *)args->mem;
1404 		}
1405 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1406 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1407 	} else {
1408 		m = args->m;
1409 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1410 			return (IP_FW_PASS);	/* accept */
1411 		if (args->flags & IPFW_ARGS_ETHER) {
1412 	                /* We need some amount of data to be contiguous. */
1413 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1414 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1415 			    max_protohdr))) == NULL)
1416 				goto pullup_failed;
1417 			eh = mtod(m, struct ether_header *);
1418 			ip = (struct ip *)(eh + 1);
1419 		} else {
1420 			eh = NULL;
1421 			ip = mtod(m, struct ip *);
1422 		}
1423 		pktlen = m->m_pkthdr.len;
1424 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1425 	}
1426 
1427 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1428 	src_ip.s_addr = 0;		/* make sure it is initialized */
1429 	src_port = dst_port = 0;
1430 
1431 	DYN_INFO_INIT(&dyn_info);
1432 /*
1433  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1434  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1435  * pointer might become stale after other pullups (but we never use it
1436  * this way).
1437  */
1438 #define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1439 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1440 #define PULLUP_LEN(_len, p, T)					\
1441 do {								\
1442 	int x = (_len) + T + EHLEN;				\
1443 	if (mem) {						\
1444 		MPASS(pktlen >= x);				\
1445 		p = (char *)args->mem + (_len) + EHLEN;		\
1446 	} else {						\
1447 		if (__predict_false((m)->m_len < x)) {		\
1448 			args->m = m = m_pullup(m, x);		\
1449 			if (m == NULL)				\
1450 				goto pullup_failed;		\
1451 		}						\
1452 		p = mtod(m, char *) + (_len) + EHLEN;		\
1453 	}							\
1454 } while (0)
1455 /*
1456  * In case pointers got stale after pullups, update them.
1457  */
1458 #define	UPDATE_POINTERS()					\
1459 do {								\
1460 	if (!mem) {						\
1461 		if (eh != NULL) {				\
1462 			eh = mtod(m, struct ether_header *);	\
1463 			ip = (struct ip *)(eh + 1);		\
1464 		} else						\
1465 			ip = mtod(m, struct ip *);		\
1466 		args->m = m;					\
1467 	}							\
1468 } while (0)
1469 
1470 	/* Identify IP packets and fill up variables. */
1471 	if (pktlen >= sizeof(struct ip6_hdr) &&
1472 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1473 	    ip->ip_v == 6) {
1474 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1475 
1476 		is_ipv6 = 1;
1477 		args->flags |= IPFW_ARGS_IP6;
1478 		hlen = sizeof(struct ip6_hdr);
1479 		proto = ip6->ip6_nxt;
1480 		/* Search extension headers to find upper layer protocols */
1481 		while (ulp == NULL && offset == 0) {
1482 			switch (proto) {
1483 			case IPPROTO_ICMPV6:
1484 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1485 				icmp6_type = ICMP6(ulp)->icmp6_type;
1486 				break;
1487 
1488 			case IPPROTO_TCP:
1489 				PULLUP_TO(hlen, ulp, struct tcphdr);
1490 				dst_port = TCP(ulp)->th_dport;
1491 				src_port = TCP(ulp)->th_sport;
1492 				/* save flags for dynamic rules */
1493 				args->f_id._flags = TCP(ulp)->th_flags;
1494 				break;
1495 
1496 			case IPPROTO_SCTP:
1497 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1498 				    sizeof(struct sctp_chunkhdr) +
1499 				    offsetof(struct sctp_init, a_rwnd))
1500 					PULLUP_LEN(hlen, ulp,
1501 					    sizeof(struct sctphdr) +
1502 					    sizeof(struct sctp_chunkhdr) +
1503 					    offsetof(struct sctp_init, a_rwnd));
1504 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1505 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1506 				else
1507 					PULLUP_LEN(hlen, ulp,
1508 					    sizeof(struct sctphdr));
1509 				src_port = SCTP(ulp)->src_port;
1510 				dst_port = SCTP(ulp)->dest_port;
1511 				break;
1512 
1513 			case IPPROTO_UDP:
1514 			case IPPROTO_UDPLITE:
1515 				PULLUP_TO(hlen, ulp, struct udphdr);
1516 				dst_port = UDP(ulp)->uh_dport;
1517 				src_port = UDP(ulp)->uh_sport;
1518 				break;
1519 
1520 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1521 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1522 				ext_hd |= EXT_HOPOPTS;
1523 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1524 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1525 				ulp = NULL;
1526 				break;
1527 
1528 			case IPPROTO_ROUTING:	/* RFC 2460 */
1529 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1530 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1531 				case 0:
1532 					ext_hd |= EXT_RTHDR0;
1533 					break;
1534 				case 2:
1535 					ext_hd |= EXT_RTHDR2;
1536 					break;
1537 				default:
1538 					if (V_fw_verbose)
1539 						printf("IPFW2: IPV6 - Unknown "
1540 						    "Routing Header type(%d)\n",
1541 						    ((struct ip6_rthdr *)
1542 						    ulp)->ip6r_type);
1543 					if (V_fw_deny_unknown_exthdrs)
1544 					    return (IP_FW_DENY);
1545 					break;
1546 				}
1547 				ext_hd |= EXT_ROUTING;
1548 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1549 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1550 				ulp = NULL;
1551 				break;
1552 
1553 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1554 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1555 				ext_hd |= EXT_FRAGMENT;
1556 				hlen += sizeof (struct ip6_frag);
1557 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1558 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1559 					IP6F_OFF_MASK;
1560 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1561 					IP6F_MORE_FRAG;
1562 				if (V_fw_permit_single_frag6 == 0 &&
1563 				    offset == 0 && ip6f_mf == 0) {
1564 					if (V_fw_verbose)
1565 						printf("IPFW2: IPV6 - Invalid "
1566 						    "Fragment Header\n");
1567 					if (V_fw_deny_unknown_exthdrs)
1568 					    return (IP_FW_DENY);
1569 					break;
1570 				}
1571 				args->f_id.extra =
1572 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1573 				ulp = NULL;
1574 				break;
1575 
1576 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1577 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1578 				ext_hd |= EXT_DSTOPTS;
1579 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1580 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1581 				ulp = NULL;
1582 				break;
1583 
1584 			case IPPROTO_AH:	/* RFC 2402 */
1585 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1586 				ext_hd |= EXT_AH;
1587 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1588 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1589 				ulp = NULL;
1590 				break;
1591 
1592 			case IPPROTO_ESP:	/* RFC 2406 */
1593 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1594 				/* Anything past Seq# is variable length and
1595 				 * data past this ext. header is encrypted. */
1596 				ext_hd |= EXT_ESP;
1597 				break;
1598 
1599 			case IPPROTO_NONE:	/* RFC 2460 */
1600 				/*
1601 				 * Packet ends here, and IPv6 header has
1602 				 * already been pulled up. If ip6e_len!=0
1603 				 * then octets must be ignored.
1604 				 */
1605 				ulp = ip; /* non-NULL to get out of loop. */
1606 				break;
1607 
1608 			case IPPROTO_OSPFIGP:
1609 				/* XXX OSPF header check? */
1610 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1611 				break;
1612 
1613 			case IPPROTO_PIM:
1614 				/* XXX PIM header check? */
1615 				PULLUP_TO(hlen, ulp, struct pim);
1616 				break;
1617 
1618 			case IPPROTO_GRE:	/* RFC 1701 */
1619 				/* XXX GRE header check? */
1620 				PULLUP_TO(hlen, ulp, struct grehdr);
1621 				break;
1622 
1623 			case IPPROTO_CARP:
1624 				PULLUP_TO(hlen, ulp, offsetof(
1625 				    struct carp_header, carp_counter));
1626 				if (CARP_ADVERTISEMENT !=
1627 				    ((struct carp_header *)ulp)->carp_type)
1628 					return (IP_FW_DENY);
1629 				break;
1630 
1631 			case IPPROTO_IPV6:	/* RFC 2893 */
1632 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1633 				break;
1634 
1635 			case IPPROTO_IPV4:	/* RFC 2893 */
1636 				PULLUP_TO(hlen, ulp, struct ip);
1637 				break;
1638 
1639 			default:
1640 				if (V_fw_verbose)
1641 					printf("IPFW2: IPV6 - Unknown "
1642 					    "Extension Header(%d), ext_hd=%x\n",
1643 					     proto, ext_hd);
1644 				if (V_fw_deny_unknown_exthdrs)
1645 				    return (IP_FW_DENY);
1646 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1647 				break;
1648 			} /*switch */
1649 		}
1650 		UPDATE_POINTERS();
1651 		ip6 = (struct ip6_hdr *)ip;
1652 		args->f_id.addr_type = 6;
1653 		args->f_id.src_ip6 = ip6->ip6_src;
1654 		args->f_id.dst_ip6 = ip6->ip6_dst;
1655 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1656 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1657 	} else if (pktlen >= sizeof(struct ip) &&
1658 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1659 	    ip->ip_v == 4) {
1660 		is_ipv4 = 1;
1661 		args->flags |= IPFW_ARGS_IP4;
1662 		hlen = ip->ip_hl << 2;
1663 		/*
1664 		 * Collect parameters into local variables for faster
1665 		 * matching.
1666 		 */
1667 		proto = ip->ip_p;
1668 		src_ip = ip->ip_src;
1669 		dst_ip = ip->ip_dst;
1670 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1671 		iplen = ntohs(ip->ip_len);
1672 
1673 		if (offset == 0) {
1674 			switch (proto) {
1675 			case IPPROTO_TCP:
1676 				PULLUP_TO(hlen, ulp, struct tcphdr);
1677 				dst_port = TCP(ulp)->th_dport;
1678 				src_port = TCP(ulp)->th_sport;
1679 				/* save flags for dynamic rules */
1680 				args->f_id._flags = TCP(ulp)->th_flags;
1681 				break;
1682 
1683 			case IPPROTO_SCTP:
1684 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1685 				    sizeof(struct sctp_chunkhdr) +
1686 				    offsetof(struct sctp_init, a_rwnd))
1687 					PULLUP_LEN(hlen, ulp,
1688 					    sizeof(struct sctphdr) +
1689 					    sizeof(struct sctp_chunkhdr) +
1690 					    offsetof(struct sctp_init, a_rwnd));
1691 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1692 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1693 				else
1694 					PULLUP_LEN(hlen, ulp,
1695 					    sizeof(struct sctphdr));
1696 				src_port = SCTP(ulp)->src_port;
1697 				dst_port = SCTP(ulp)->dest_port;
1698 				break;
1699 
1700 			case IPPROTO_UDP:
1701 			case IPPROTO_UDPLITE:
1702 				PULLUP_TO(hlen, ulp, struct udphdr);
1703 				dst_port = UDP(ulp)->uh_dport;
1704 				src_port = UDP(ulp)->uh_sport;
1705 				break;
1706 
1707 			case IPPROTO_ICMP:
1708 				PULLUP_TO(hlen, ulp, struct icmphdr);
1709 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1710 				break;
1711 
1712 			default:
1713 				break;
1714 			}
1715 		}
1716 
1717 		UPDATE_POINTERS();
1718 		args->f_id.addr_type = 4;
1719 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1720 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1721 	} else {
1722 		proto = 0;
1723 		dst_ip.s_addr = src_ip.s_addr = 0;
1724 
1725 		args->f_id.addr_type = 1; /* XXX */
1726 	}
1727 #undef PULLUP_TO
1728 	pktlen = iplen < pktlen ? iplen: pktlen;
1729 
1730 	/* Properly initialize the rest of f_id */
1731 	args->f_id.proto = proto;
1732 	args->f_id.src_port = src_port = ntohs(src_port);
1733 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1734 
1735 	IPFW_PF_RLOCK(chain);
1736 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1737 		IPFW_PF_RUNLOCK(chain);
1738 		return (IP_FW_PASS);	/* accept */
1739 	}
1740 	if (args->flags & IPFW_ARGS_REF) {
1741 		/*
1742 		 * Packet has already been tagged as a result of a previous
1743 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1744 		 * REASS, NETGRAPH, DIVERT/TEE...)
1745 		 * Validate the slot and continue from the next one
1746 		 * if still present, otherwise do a lookup.
1747 		 */
1748 		f_pos = (args->rule.chain_id == chain->id) ?
1749 		    args->rule.slot :
1750 		    ipfw_find_rule(chain, args->rule.rulenum,
1751 			args->rule.rule_id);
1752 	} else {
1753 		f_pos = 0;
1754 	}
1755 
1756 	if (args->flags & IPFW_ARGS_IN) {
1757 		iif = args->ifp;
1758 		oif = NULL;
1759 	} else {
1760 		MPASS(args->flags & IPFW_ARGS_OUT);
1761 		iif = mem ? NULL : m->m_pkthdr.rcvif;
1762 		oif = args->ifp;
1763 	}
1764 
1765 	/*
1766 	 * Now scan the rules, and parse microinstructions for each rule.
1767 	 * We have two nested loops and an inner switch. Sometimes we
1768 	 * need to break out of one or both loops, or re-enter one of
1769 	 * the loops with updated variables. Loop variables are:
1770 	 *
1771 	 *	f_pos (outer loop) points to the current rule.
1772 	 *		On output it points to the matching rule.
1773 	 *	done (outer loop) is used as a flag to break the loop.
1774 	 *	l (inner loop)	residual length of current rule.
1775 	 *		cmd points to the current microinstruction.
1776 	 *
1777 	 * We break the inner loop by setting l=0 and possibly
1778 	 * cmdlen=0 if we don't want to advance cmd.
1779 	 * We break the outer loop by setting done=1
1780 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1781 	 * as needed.
1782 	 */
1783 	for (; f_pos < chain->n_rules; f_pos++) {
1784 		ipfw_insn *cmd;
1785 		uint32_t tablearg = 0;
1786 		int l, cmdlen, skip_or; /* skip rest of OR block */
1787 		struct ip_fw *f;
1788 
1789 		f = chain->map[f_pos];
1790 		if (V_set_disable & (1 << f->set) )
1791 			continue;
1792 
1793 		skip_or = 0;
1794 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1795 		    l -= cmdlen, cmd += cmdlen) {
1796 			int match;
1797 
1798 			/*
1799 			 * check_body is a jump target used when we find a
1800 			 * CHECK_STATE, and need to jump to the body of
1801 			 * the target rule.
1802 			 */
1803 
1804 /* check_body: */
1805 			cmdlen = F_LEN(cmd);
1806 			/*
1807 			 * An OR block (insn_1 || .. || insn_n) has the
1808 			 * F_OR bit set in all but the last instruction.
1809 			 * The first match will set "skip_or", and cause
1810 			 * the following instructions to be skipped until
1811 			 * past the one with the F_OR bit clear.
1812 			 */
1813 			if (skip_or) {		/* skip this instruction */
1814 				if ((cmd->len & F_OR) == 0)
1815 					skip_or = 0;	/* next one is good */
1816 				continue;
1817 			}
1818 			match = 0; /* set to 1 if we succeed */
1819 
1820 			switch (cmd->opcode) {
1821 			/*
1822 			 * The first set of opcodes compares the packet's
1823 			 * fields with some pattern, setting 'match' if a
1824 			 * match is found. At the end of the loop there is
1825 			 * logic to deal with F_NOT and F_OR flags associated
1826 			 * with the opcode.
1827 			 */
1828 			case O_NOP:
1829 				match = 1;
1830 				break;
1831 
1832 			case O_FORWARD_MAC:
1833 				printf("ipfw: opcode %d unimplemented\n",
1834 				    cmd->opcode);
1835 				break;
1836 
1837 			case O_GID:
1838 			case O_UID:
1839 			case O_JAIL:
1840 				/*
1841 				 * We only check offset == 0 && proto != 0,
1842 				 * as this ensures that we have a
1843 				 * packet with the ports info.
1844 				 */
1845 				if (offset != 0)
1846 					break;
1847 				if (proto == IPPROTO_TCP ||
1848 				    proto == IPPROTO_UDP ||
1849 				    proto == IPPROTO_UDPLITE)
1850 					match = check_uidgid(
1851 						    (ipfw_insn_u32 *)cmd,
1852 						    args, &ucred_lookup,
1853 #ifdef __FreeBSD__
1854 						    &ucred_cache);
1855 #else
1856 						    (void *)&ucred_cache);
1857 #endif
1858 				break;
1859 
1860 			case O_RECV:
1861 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1862 				    chain, &tablearg);
1863 				break;
1864 
1865 			case O_XMIT:
1866 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1867 				    chain, &tablearg);
1868 				break;
1869 
1870 			case O_VIA:
1871 				match = iface_match(args->ifp,
1872 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1873 				break;
1874 
1875 			case O_MACADDR2:
1876 				if (args->flags & IPFW_ARGS_ETHER) {
1877 					u_int32_t *want = (u_int32_t *)
1878 						((ipfw_insn_mac *)cmd)->addr;
1879 					u_int32_t *mask = (u_int32_t *)
1880 						((ipfw_insn_mac *)cmd)->mask;
1881 					u_int32_t *hdr = (u_int32_t *)eh;
1882 
1883 					match =
1884 					    ( want[0] == (hdr[0] & mask[0]) &&
1885 					      want[1] == (hdr[1] & mask[1]) &&
1886 					      want[2] == (hdr[2] & mask[2]) );
1887 				}
1888 				break;
1889 
1890 			case O_MAC_TYPE:
1891 				if (args->flags & IPFW_ARGS_ETHER) {
1892 					u_int16_t *p =
1893 					    ((ipfw_insn_u16 *)cmd)->ports;
1894 					int i;
1895 
1896 					for (i = cmdlen - 1; !match && i>0;
1897 					    i--, p += 2)
1898 						match =
1899 						    (ntohs(eh->ether_type) >=
1900 						    p[0] &&
1901 						    ntohs(eh->ether_type) <=
1902 						    p[1]);
1903 				}
1904 				break;
1905 
1906 			case O_FRAG:
1907 				match = (offset != 0);
1908 				break;
1909 
1910 			case O_IN:	/* "out" is "not in" */
1911 				match = (oif == NULL);
1912 				break;
1913 
1914 			case O_LAYER2:
1915 				match = (args->flags & IPFW_ARGS_ETHER);
1916 				break;
1917 
1918 			case O_DIVERTED:
1919 				if ((args->flags & IPFW_ARGS_REF) == 0)
1920 					break;
1921 				/*
1922 				 * For diverted packets, args->rule.info
1923 				 * contains the divert port (in host format)
1924 				 * reason and direction.
1925 				 */
1926 				match = ((args->rule.info & IPFW_IS_MASK) ==
1927 				    IPFW_IS_DIVERT) && (
1928 				    ((args->rule.info & IPFW_INFO_IN) ?
1929 					1: 2) & cmd->arg1);
1930 				break;
1931 
1932 			case O_PROTO:
1933 				/*
1934 				 * We do not allow an arg of 0 so the
1935 				 * check of "proto" only suffices.
1936 				 */
1937 				match = (proto == cmd->arg1);
1938 				break;
1939 
1940 			case O_IP_SRC:
1941 				match = is_ipv4 &&
1942 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1943 				    src_ip.s_addr);
1944 				break;
1945 
1946 			case O_IP_DST_LOOKUP:
1947 			{
1948 				void *pkey;
1949 				uint32_t vidx, key;
1950 				uint16_t keylen;
1951 
1952 				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1953 					/* Determine lookup key type */
1954 					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
1955 					if (vidx != 4 /* uid */ &&
1956 					    vidx != 5 /* jail */ &&
1957 					    is_ipv6 == 0 && is_ipv4 == 0)
1958 						break;
1959 					/* Determine key length */
1960 					if (vidx == 0 /* dst-ip */ ||
1961 					    vidx == 1 /* src-ip */)
1962 						keylen = is_ipv6 ?
1963 						    sizeof(struct in6_addr):
1964 						    sizeof(in_addr_t);
1965 					else {
1966 						keylen = sizeof(key);
1967 						pkey = &key;
1968 					}
1969 					if (vidx == 0 /* dst-ip */)
1970 						pkey = is_ipv4 ? (void *)&dst_ip:
1971 						    (void *)&args->f_id.dst_ip6;
1972 					else if (vidx == 1 /* src-ip */)
1973 						pkey = is_ipv4 ? (void *)&src_ip:
1974 						    (void *)&args->f_id.src_ip6;
1975 					else if (vidx == 6 /* dscp */) {
1976 						if (is_ipv4)
1977 							key = ip->ip_tos >> 2;
1978 						else {
1979 							key = args->f_id.flow_id6;
1980 							key = (key & 0x0f) << 2 |
1981 							    (key & 0xf000) >> 14;
1982 						}
1983 						key &= 0x3f;
1984 					} else if (vidx == 2 /* dst-port */ ||
1985 					    vidx == 3 /* src-port */) {
1986 						/* Skip fragments */
1987 						if (offset != 0)
1988 							break;
1989 						/* Skip proto without ports */
1990 						if (proto != IPPROTO_TCP &&
1991 						    proto != IPPROTO_UDP &&
1992 						    proto != IPPROTO_UDPLITE &&
1993 						    proto != IPPROTO_SCTP)
1994 							break;
1995 						if (vidx == 2 /* dst-port */)
1996 							key = dst_port;
1997 						else
1998 							key = src_port;
1999 					}
2000 #ifndef USERSPACE
2001 					else if (vidx == 4 /* uid */ ||
2002 					    vidx == 5 /* jail */) {
2003 						check_uidgid(
2004 						    (ipfw_insn_u32 *)cmd,
2005 						    args, &ucred_lookup,
2006 #ifdef __FreeBSD__
2007 						    &ucred_cache);
2008 						if (vidx == 4 /* uid */)
2009 							key = ucred_cache->cr_uid;
2010 						else if (vidx == 5 /* jail */)
2011 							key = ucred_cache->cr_prison->pr_id;
2012 #else /* !__FreeBSD__ */
2013 						    (void *)&ucred_cache);
2014 						if (vidx == 4 /* uid */)
2015 							key = ucred_cache.uid;
2016 						else if (vidx == 5 /* jail */)
2017 							key = ucred_cache.xid;
2018 #endif /* !__FreeBSD__ */
2019 					}
2020 #endif /* !USERSPACE */
2021 					else
2022 						break;
2023 					match = ipfw_lookup_table(chain,
2024 					    cmd->arg1, keylen, pkey, &vidx);
2025 					if (!match)
2026 						break;
2027 					tablearg = vidx;
2028 					break;
2029 				}
2030 				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
2031 				/* FALLTHROUGH */
2032 			}
2033 			case O_IP_SRC_LOOKUP:
2034 			{
2035 				void *pkey;
2036 				uint32_t vidx;
2037 				uint16_t keylen;
2038 
2039 				if (is_ipv4) {
2040 					keylen = sizeof(in_addr_t);
2041 					if (cmd->opcode == O_IP_DST_LOOKUP)
2042 						pkey = &dst_ip;
2043 					else
2044 						pkey = &src_ip;
2045 				} else if (is_ipv6) {
2046 					keylen = sizeof(struct in6_addr);
2047 					if (cmd->opcode == O_IP_DST_LOOKUP)
2048 						pkey = &args->f_id.dst_ip6;
2049 					else
2050 						pkey = &args->f_id.src_ip6;
2051 				} else
2052 					break;
2053 				match = ipfw_lookup_table(chain, cmd->arg1,
2054 				    keylen, pkey, &vidx);
2055 				if (!match)
2056 					break;
2057 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2058 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2059 					    TARG_VAL(chain, vidx, tag);
2060 					if (!match)
2061 						break;
2062 				}
2063 				tablearg = vidx;
2064 				break;
2065 			}
2066 
2067 			case O_IP_FLOW_LOOKUP:
2068 				{
2069 					uint32_t v = 0;
2070 					match = ipfw_lookup_table(chain,
2071 					    cmd->arg1, 0, &args->f_id, &v);
2072 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2073 						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2074 						    TARG_VAL(chain, v, tag);
2075 					if (match)
2076 						tablearg = v;
2077 				}
2078 				break;
2079 			case O_IP_SRC_MASK:
2080 			case O_IP_DST_MASK:
2081 				if (is_ipv4) {
2082 				    uint32_t a =
2083 					(cmd->opcode == O_IP_DST_MASK) ?
2084 					    dst_ip.s_addr : src_ip.s_addr;
2085 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2086 				    int i = cmdlen-1;
2087 
2088 				    for (; !match && i>0; i-= 2, p+= 2)
2089 					match = (p[0] == (a & p[1]));
2090 				}
2091 				break;
2092 
2093 			case O_IP_SRC_ME:
2094 				if (is_ipv4) {
2095 					match = in_localip(src_ip);
2096 					break;
2097 				}
2098 #ifdef INET6
2099 				/* FALLTHROUGH */
2100 			case O_IP6_SRC_ME:
2101 				match = is_ipv6 &&
2102 				    ipfw_localip6(&args->f_id.src_ip6);
2103 #endif
2104 				break;
2105 
2106 			case O_IP_DST_SET:
2107 			case O_IP_SRC_SET:
2108 				if (is_ipv4) {
2109 					u_int32_t *d = (u_int32_t *)(cmd+1);
2110 					u_int32_t addr =
2111 					    cmd->opcode == O_IP_DST_SET ?
2112 						args->f_id.dst_ip :
2113 						args->f_id.src_ip;
2114 
2115 					    if (addr < d[0])
2116 						    break;
2117 					    addr -= d[0]; /* subtract base */
2118 					    match = (addr < cmd->arg1) &&
2119 						( d[ 1 + (addr>>5)] &
2120 						  (1<<(addr & 0x1f)) );
2121 				}
2122 				break;
2123 
2124 			case O_IP_DST:
2125 				match = is_ipv4 &&
2126 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2127 				    dst_ip.s_addr);
2128 				break;
2129 
2130 			case O_IP_DST_ME:
2131 				if (is_ipv4) {
2132 					match = in_localip(dst_ip);
2133 					break;
2134 				}
2135 #ifdef INET6
2136 				/* FALLTHROUGH */
2137 			case O_IP6_DST_ME:
2138 				match = is_ipv6 &&
2139 				    ipfw_localip6(&args->f_id.dst_ip6);
2140 #endif
2141 				break;
2142 
2143 
2144 			case O_IP_SRCPORT:
2145 			case O_IP_DSTPORT:
2146 				/*
2147 				 * offset == 0 && proto != 0 is enough
2148 				 * to guarantee that we have a
2149 				 * packet with port info.
2150 				 */
2151 				if ((proto == IPPROTO_UDP ||
2152 				    proto == IPPROTO_UDPLITE ||
2153 				    proto == IPPROTO_TCP ||
2154 				    proto == IPPROTO_SCTP) && offset == 0) {
2155 					u_int16_t x =
2156 					    (cmd->opcode == O_IP_SRCPORT) ?
2157 						src_port : dst_port ;
2158 					u_int16_t *p =
2159 					    ((ipfw_insn_u16 *)cmd)->ports;
2160 					int i;
2161 
2162 					for (i = cmdlen - 1; !match && i>0;
2163 					    i--, p += 2)
2164 						match = (x>=p[0] && x<=p[1]);
2165 				}
2166 				break;
2167 
2168 			case O_ICMPTYPE:
2169 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2170 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2171 				break;
2172 
2173 #ifdef INET6
2174 			case O_ICMP6TYPE:
2175 				match = is_ipv6 && offset == 0 &&
2176 				    proto==IPPROTO_ICMPV6 &&
2177 				    icmp6type_match(
2178 					ICMP6(ulp)->icmp6_type,
2179 					(ipfw_insn_u32 *)cmd);
2180 				break;
2181 #endif /* INET6 */
2182 
2183 			case O_IPOPT:
2184 				match = (is_ipv4 &&
2185 				    ipopts_match(ip, cmd) );
2186 				break;
2187 
2188 			case O_IPVER:
2189 				match = (is_ipv4 &&
2190 				    cmd->arg1 == ip->ip_v);
2191 				break;
2192 
2193 			case O_IPID:
2194 			case O_IPLEN:
2195 			case O_IPTTL:
2196 				if (is_ipv4) {	/* only for IP packets */
2197 				    uint16_t x;
2198 				    uint16_t *p;
2199 				    int i;
2200 
2201 				    if (cmd->opcode == O_IPLEN)
2202 					x = iplen;
2203 				    else if (cmd->opcode == O_IPTTL)
2204 					x = ip->ip_ttl;
2205 				    else /* must be IPID */
2206 					x = ntohs(ip->ip_id);
2207 				    if (cmdlen == 1) {
2208 					match = (cmd->arg1 == x);
2209 					break;
2210 				    }
2211 				    /* otherwise we have ranges */
2212 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2213 				    i = cmdlen - 1;
2214 				    for (; !match && i>0; i--, p += 2)
2215 					match = (x >= p[0] && x <= p[1]);
2216 				}
2217 				break;
2218 
2219 			case O_IPPRECEDENCE:
2220 				match = (is_ipv4 &&
2221 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2222 				break;
2223 
2224 			case O_IPTOS:
2225 				match = (is_ipv4 &&
2226 				    flags_match(cmd, ip->ip_tos));
2227 				break;
2228 
2229 			case O_DSCP:
2230 			    {
2231 				uint32_t *p;
2232 				uint16_t x;
2233 
2234 				p = ((ipfw_insn_u32 *)cmd)->d;
2235 
2236 				if (is_ipv4)
2237 					x = ip->ip_tos >> 2;
2238 				else if (is_ipv6) {
2239 					uint8_t *v;
2240 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2241 					x = (*v & 0x0F) << 2;
2242 					v++;
2243 					x |= *v >> 6;
2244 				} else
2245 					break;
2246 
2247 				/* DSCP bitmask is stored as low_u32 high_u32 */
2248 				if (x >= 32)
2249 					match = *(p + 1) & (1 << (x - 32));
2250 				else
2251 					match = *p & (1 << x);
2252 			    }
2253 				break;
2254 
2255 			case O_TCPDATALEN:
2256 				if (proto == IPPROTO_TCP && offset == 0) {
2257 				    struct tcphdr *tcp;
2258 				    uint16_t x;
2259 				    uint16_t *p;
2260 				    int i;
2261 #ifdef INET6
2262 				    if (is_ipv6) {
2263 					    struct ip6_hdr *ip6;
2264 
2265 					    ip6 = (struct ip6_hdr *)ip;
2266 					    if (ip6->ip6_plen == 0) {
2267 						    /*
2268 						     * Jumbo payload is not
2269 						     * supported by this
2270 						     * opcode.
2271 						     */
2272 						    break;
2273 					    }
2274 					    x = iplen - hlen;
2275 				    } else
2276 #endif /* INET6 */
2277 					    x = iplen - (ip->ip_hl << 2);
2278 				    tcp = TCP(ulp);
2279 				    x -= tcp->th_off << 2;
2280 				    if (cmdlen == 1) {
2281 					match = (cmd->arg1 == x);
2282 					break;
2283 				    }
2284 				    /* otherwise we have ranges */
2285 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2286 				    i = cmdlen - 1;
2287 				    for (; !match && i>0; i--, p += 2)
2288 					match = (x >= p[0] && x <= p[1]);
2289 				}
2290 				break;
2291 
2292 			case O_TCPFLAGS:
2293 				match = (proto == IPPROTO_TCP && offset == 0 &&
2294 				    flags_match(cmd, TCP(ulp)->th_flags));
2295 				break;
2296 
2297 			case O_TCPOPTS:
2298 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2299 					PULLUP_LEN(hlen, ulp,
2300 					    (TCP(ulp)->th_off << 2));
2301 					match = tcpopts_match(TCP(ulp), cmd);
2302 				}
2303 				break;
2304 
2305 			case O_TCPSEQ:
2306 				match = (proto == IPPROTO_TCP && offset == 0 &&
2307 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2308 					TCP(ulp)->th_seq);
2309 				break;
2310 
2311 			case O_TCPACK:
2312 				match = (proto == IPPROTO_TCP && offset == 0 &&
2313 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2314 					TCP(ulp)->th_ack);
2315 				break;
2316 
2317 			case O_TCPWIN:
2318 				if (proto == IPPROTO_TCP && offset == 0) {
2319 				    uint16_t x;
2320 				    uint16_t *p;
2321 				    int i;
2322 
2323 				    x = ntohs(TCP(ulp)->th_win);
2324 				    if (cmdlen == 1) {
2325 					match = (cmd->arg1 == x);
2326 					break;
2327 				    }
2328 				    /* Otherwise we have ranges. */
2329 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2330 				    i = cmdlen - 1;
2331 				    for (; !match && i > 0; i--, p += 2)
2332 					match = (x >= p[0] && x <= p[1]);
2333 				}
2334 				break;
2335 
2336 			case O_ESTAB:
2337 				/* reject packets which have SYN only */
2338 				/* XXX should i also check for TH_ACK ? */
2339 				match = (proto == IPPROTO_TCP && offset == 0 &&
2340 				    (TCP(ulp)->th_flags &
2341 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2342 				break;
2343 
2344 			case O_ALTQ: {
2345 				struct pf_mtag *at;
2346 				struct m_tag *mtag;
2347 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2348 
2349 				/*
2350 				 * ALTQ uses mbuf tags from another
2351 				 * packet filtering system - pf(4).
2352 				 * We allocate a tag in its format
2353 				 * and fill it in, pretending to be pf(4).
2354 				 */
2355 				match = 1;
2356 				at = pf_find_mtag(m);
2357 				if (at != NULL && at->qid != 0)
2358 					break;
2359 				mtag = m_tag_get(PACKET_TAG_PF,
2360 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2361 				if (mtag == NULL) {
2362 					/*
2363 					 * Let the packet fall back to the
2364 					 * default ALTQ.
2365 					 */
2366 					break;
2367 				}
2368 				m_tag_prepend(m, mtag);
2369 				at = (struct pf_mtag *)(mtag + 1);
2370 				at->qid = altq->qid;
2371 				at->hdr = ip;
2372 				break;
2373 			}
2374 
2375 			case O_LOG:
2376 				ipfw_log(chain, f, hlen, args,
2377 				    offset | ip6f_mf, tablearg, ip);
2378 				match = 1;
2379 				break;
2380 
2381 			case O_PROB:
2382 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2383 				break;
2384 
2385 			case O_VERREVPATH:
2386 				/* Outgoing packets automatically pass/match */
2387 				match = (args->flags & IPFW_ARGS_OUT ||
2388 				    (
2389 #ifdef INET6
2390 				    is_ipv6 ?
2391 					verify_path6(&(args->f_id.src_ip6),
2392 					    iif, args->f_id.fib) :
2393 #endif
2394 				    verify_path(src_ip, iif, args->f_id.fib)));
2395 				break;
2396 
2397 			case O_VERSRCREACH:
2398 				/* Outgoing packets automatically pass/match */
2399 				match = (hlen > 0 && ((oif != NULL) || (
2400 #ifdef INET6
2401 				    is_ipv6 ?
2402 				        verify_path6(&(args->f_id.src_ip6),
2403 				            NULL, args->f_id.fib) :
2404 #endif
2405 				    verify_path(src_ip, NULL, args->f_id.fib))));
2406 				break;
2407 
2408 			case O_ANTISPOOF:
2409 				/* Outgoing packets automatically pass/match */
2410 				if (oif == NULL && hlen > 0 &&
2411 				    (  (is_ipv4 && in_localaddr(src_ip))
2412 #ifdef INET6
2413 				    || (is_ipv6 &&
2414 				        in6_localaddr(&(args->f_id.src_ip6)))
2415 #endif
2416 				    ))
2417 					match =
2418 #ifdef INET6
2419 					    is_ipv6 ? verify_path6(
2420 					        &(args->f_id.src_ip6), iif,
2421 						args->f_id.fib) :
2422 #endif
2423 					    verify_path(src_ip, iif,
2424 					        args->f_id.fib);
2425 				else
2426 					match = 1;
2427 				break;
2428 
2429 			case O_IPSEC:
2430 				match = (m_tag_find(m,
2431 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2432 				/* otherwise no match */
2433 				break;
2434 
2435 #ifdef INET6
2436 			case O_IP6_SRC:
2437 				match = is_ipv6 &&
2438 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2439 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2440 				break;
2441 
2442 			case O_IP6_DST:
2443 				match = is_ipv6 &&
2444 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2445 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2446 				break;
2447 			case O_IP6_SRC_MASK:
2448 			case O_IP6_DST_MASK:
2449 				if (is_ipv6) {
2450 					int i = cmdlen - 1;
2451 					struct in6_addr p;
2452 					struct in6_addr *d =
2453 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2454 
2455 					for (; !match && i > 0; d += 2,
2456 					    i -= F_INSN_SIZE(struct in6_addr)
2457 					    * 2) {
2458 						p = (cmd->opcode ==
2459 						    O_IP6_SRC_MASK) ?
2460 						    args->f_id.src_ip6:
2461 						    args->f_id.dst_ip6;
2462 						APPLY_MASK(&p, &d[1]);
2463 						match =
2464 						    IN6_ARE_ADDR_EQUAL(&d[0],
2465 						    &p);
2466 					}
2467 				}
2468 				break;
2469 
2470 			case O_FLOW6ID:
2471 				match = is_ipv6 &&
2472 				    flow6id_match(args->f_id.flow_id6,
2473 				    (ipfw_insn_u32 *) cmd);
2474 				break;
2475 
2476 			case O_EXT_HDR:
2477 				match = is_ipv6 &&
2478 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2479 				break;
2480 
2481 			case O_IP6:
2482 				match = is_ipv6;
2483 				break;
2484 #endif
2485 
2486 			case O_IP4:
2487 				match = is_ipv4;
2488 				break;
2489 
2490 			case O_TAG: {
2491 				struct m_tag *mtag;
2492 				uint32_t tag = TARG(cmd->arg1, tag);
2493 
2494 				/* Packet is already tagged with this tag? */
2495 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2496 
2497 				/* We have `untag' action when F_NOT flag is
2498 				 * present. And we must remove this mtag from
2499 				 * mbuf and reset `match' to zero (`match' will
2500 				 * be inversed later).
2501 				 * Otherwise we should allocate new mtag and
2502 				 * push it into mbuf.
2503 				 */
2504 				if (cmd->len & F_NOT) { /* `untag' action */
2505 					if (mtag != NULL)
2506 						m_tag_delete(m, mtag);
2507 					match = 0;
2508 				} else {
2509 					if (mtag == NULL) {
2510 						mtag = m_tag_alloc( MTAG_IPFW,
2511 						    tag, 0, M_NOWAIT);
2512 						if (mtag != NULL)
2513 							m_tag_prepend(m, mtag);
2514 					}
2515 					match = 1;
2516 				}
2517 				break;
2518 			}
2519 
2520 			case O_FIB: /* try match the specified fib */
2521 				if (args->f_id.fib == cmd->arg1)
2522 					match = 1;
2523 				break;
2524 
2525 			case O_SOCKARG:	{
2526 #ifndef USERSPACE	/* not supported in userspace */
2527 				struct inpcb *inp = args->inp;
2528 				struct inpcbinfo *pi;
2529 
2530 				if (is_ipv6) /* XXX can we remove this ? */
2531 					break;
2532 
2533 				if (proto == IPPROTO_TCP)
2534 					pi = &V_tcbinfo;
2535 				else if (proto == IPPROTO_UDP)
2536 					pi = &V_udbinfo;
2537 				else if (proto == IPPROTO_UDPLITE)
2538 					pi = &V_ulitecbinfo;
2539 				else
2540 					break;
2541 
2542 				/*
2543 				 * XXXRW: so_user_cookie should almost
2544 				 * certainly be inp_user_cookie?
2545 				 */
2546 
2547 				/* For incoming packet, lookup up the
2548 				inpcb using the src/dest ip/port tuple */
2549 				if (inp == NULL) {
2550 					inp = in_pcblookup(pi,
2551 						src_ip, htons(src_port),
2552 						dst_ip, htons(dst_port),
2553 						INPLOOKUP_RLOCKPCB, NULL);
2554 					if (inp != NULL) {
2555 						tablearg =
2556 						    inp->inp_socket->so_user_cookie;
2557 						if (tablearg)
2558 							match = 1;
2559 						INP_RUNLOCK(inp);
2560 					}
2561 				} else {
2562 					if (inp->inp_socket) {
2563 						tablearg =
2564 						    inp->inp_socket->so_user_cookie;
2565 						if (tablearg)
2566 							match = 1;
2567 					}
2568 				}
2569 #endif /* !USERSPACE */
2570 				break;
2571 			}
2572 
2573 			case O_TAGGED: {
2574 				struct m_tag *mtag;
2575 				uint32_t tag = TARG(cmd->arg1, tag);
2576 
2577 				if (cmdlen == 1) {
2578 					match = m_tag_locate(m, MTAG_IPFW,
2579 					    tag, NULL) != NULL;
2580 					break;
2581 				}
2582 
2583 				/* we have ranges */
2584 				for (mtag = m_tag_first(m);
2585 				    mtag != NULL && !match;
2586 				    mtag = m_tag_next(m, mtag)) {
2587 					uint16_t *p;
2588 					int i;
2589 
2590 					if (mtag->m_tag_cookie != MTAG_IPFW)
2591 						continue;
2592 
2593 					p = ((ipfw_insn_u16 *)cmd)->ports;
2594 					i = cmdlen - 1;
2595 					for(; !match && i > 0; i--, p += 2)
2596 						match =
2597 						    mtag->m_tag_id >= p[0] &&
2598 						    mtag->m_tag_id <= p[1];
2599 				}
2600 				break;
2601 			}
2602 
2603 			/*
2604 			 * The second set of opcodes represents 'actions',
2605 			 * i.e. the terminal part of a rule once the packet
2606 			 * matches all previous patterns.
2607 			 * Typically there is only one action for each rule,
2608 			 * and the opcode is stored at the end of the rule
2609 			 * (but there are exceptions -- see below).
2610 			 *
2611 			 * In general, here we set retval and terminate the
2612 			 * outer loop (would be a 'break 3' in some language,
2613 			 * but we need to set l=0, done=1)
2614 			 *
2615 			 * Exceptions:
2616 			 * O_COUNT and O_SKIPTO actions:
2617 			 *   instead of terminating, we jump to the next rule
2618 			 *   (setting l=0), or to the SKIPTO target (setting
2619 			 *   f/f_len, cmd and l as needed), respectively.
2620 			 *
2621 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2622 			 *   perform some action and set match = 1;
2623 			 *
2624 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2625 			 *   not real 'actions', and are stored right
2626 			 *   before the 'action' part of the rule (one
2627 			 *   exception is O_SKIP_ACTION which could be
2628 			 *   between these opcodes and 'action' one).
2629 			 *   These opcodes try to install an entry in the
2630 			 *   state tables; if successful, we continue with
2631 			 *   the next opcode (match=1; break;), otherwise
2632 			 *   the packet must be dropped (set retval,
2633 			 *   break loops with l=0, done=1)
2634 			 *
2635 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2636 			 *   cause a lookup of the state table, and a jump
2637 			 *   to the 'action' part of the parent rule
2638 			 *   if an entry is found, or
2639 			 *   (CHECK_STATE only) a jump to the next rule if
2640 			 *   the entry is not found.
2641 			 *   The result of the lookup is cached so that
2642 			 *   further instances of these opcodes become NOPs.
2643 			 *   The jump to the next rule is done by setting
2644 			 *   l=0, cmdlen=0.
2645 			 *
2646 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2647 			 *  either, and is stored right before the 'action'
2648 			 *  part of the rule, right after the O_KEEP_STATE
2649 			 *  opcode. It causes match failure so the real
2650 			 *  'action' could be executed only if the rule
2651 			 *  is checked via dynamic rule from the state
2652 			 *  table, as in such case execution starts
2653 			 *  from the true 'action' opcode directly.
2654 			 *
2655 			 */
2656 			case O_LIMIT:
2657 			case O_KEEP_STATE:
2658 				if (ipfw_dyn_install_state(chain, f,
2659 				    (ipfw_insn_limit *)cmd, args, ulp,
2660 				    pktlen, &dyn_info, tablearg)) {
2661 					/* error or limit violation */
2662 					retval = IP_FW_DENY;
2663 					l = 0;	/* exit inner loop */
2664 					done = 1; /* exit outer loop */
2665 				}
2666 				match = 1;
2667 				break;
2668 
2669 			case O_PROBE_STATE:
2670 			case O_CHECK_STATE:
2671 				/*
2672 				 * dynamic rules are checked at the first
2673 				 * keep-state or check-state occurrence,
2674 				 * with the result being stored in dyn_info.
2675 				 * The compiler introduces a PROBE_STATE
2676 				 * instruction for us when we have a
2677 				 * KEEP_STATE (because PROBE_STATE needs
2678 				 * to be run first).
2679 				 */
2680 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2681 				    (q = ipfw_dyn_lookup_state(args, ulp,
2682 				    pktlen, cmd, &dyn_info)) != NULL) {
2683 					/*
2684 					 * Found dynamic entry, jump to the
2685 					 * 'action' part of the parent rule
2686 					 * by setting f, cmd, l and clearing
2687 					 * cmdlen.
2688 					 */
2689 					f = q;
2690 					f_pos = dyn_info.f_pos;
2691 					cmd = ACTION_PTR(f);
2692 					l = f->cmd_len - f->act_ofs;
2693 					cmdlen = 0;
2694 					match = 1;
2695 					break;
2696 				}
2697 				/*
2698 				 * Dynamic entry not found. If CHECK_STATE,
2699 				 * skip to next rule, if PROBE_STATE just
2700 				 * ignore and continue with next opcode.
2701 				 */
2702 				if (cmd->opcode == O_CHECK_STATE)
2703 					l = 0;	/* exit inner loop */
2704 				match = 1;
2705 				break;
2706 
2707 			case O_SKIP_ACTION:
2708 				match = 0;	/* skip to the next rule */
2709 				l = 0;		/* exit inner loop */
2710 				break;
2711 
2712 			case O_ACCEPT:
2713 				retval = 0;	/* accept */
2714 				l = 0;		/* exit inner loop */
2715 				done = 1;	/* exit outer loop */
2716 				break;
2717 
2718 			case O_PIPE:
2719 			case O_QUEUE:
2720 				set_match(args, f_pos, chain);
2721 				args->rule.info = TARG(cmd->arg1, pipe);
2722 				if (cmd->opcode == O_PIPE)
2723 					args->rule.info |= IPFW_IS_PIPE;
2724 				if (V_fw_one_pass)
2725 					args->rule.info |= IPFW_ONEPASS;
2726 				retval = IP_FW_DUMMYNET;
2727 				l = 0;          /* exit inner loop */
2728 				done = 1;       /* exit outer loop */
2729 				break;
2730 
2731 			case O_DIVERT:
2732 			case O_TEE:
2733 				if (args->flags & IPFW_ARGS_ETHER)
2734 					break;	/* not on layer 2 */
2735 				/* otherwise this is terminal */
2736 				l = 0;		/* exit inner loop */
2737 				done = 1;	/* exit outer loop */
2738 				retval = (cmd->opcode == O_DIVERT) ?
2739 					IP_FW_DIVERT : IP_FW_TEE;
2740 				set_match(args, f_pos, chain);
2741 				args->rule.info = TARG(cmd->arg1, divert);
2742 				break;
2743 
2744 			case O_COUNT:
2745 				IPFW_INC_RULE_COUNTER(f, pktlen);
2746 				l = 0;		/* exit inner loop */
2747 				break;
2748 
2749 			case O_SKIPTO:
2750 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2751 			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2752 			    /*
2753 			     * Skip disabled rules, and re-enter
2754 			     * the inner loop with the correct
2755 			     * f_pos, f, l and cmd.
2756 			     * Also clear cmdlen and skip_or
2757 			     */
2758 			    for (; f_pos < chain->n_rules - 1 &&
2759 				    (V_set_disable &
2760 				     (1 << chain->map[f_pos]->set));
2761 				    f_pos++)
2762 				;
2763 			    /* Re-enter the inner loop at the skipto rule. */
2764 			    f = chain->map[f_pos];
2765 			    l = f->cmd_len;
2766 			    cmd = f->cmd;
2767 			    match = 1;
2768 			    cmdlen = 0;
2769 			    skip_or = 0;
2770 			    continue;
2771 			    break;	/* not reached */
2772 
2773 			case O_CALLRETURN: {
2774 				/*
2775 				 * Implementation of `subroutine' call/return,
2776 				 * in the stack carried in an mbuf tag. This
2777 				 * is different from `skipto' in that any call
2778 				 * address is possible (`skipto' must prevent
2779 				 * backward jumps to avoid endless loops).
2780 				 * We have `return' action when F_NOT flag is
2781 				 * present. The `m_tag_id' field is used as
2782 				 * stack pointer.
2783 				 */
2784 				struct m_tag *mtag;
2785 				uint16_t jmpto, *stack;
2786 
2787 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2788 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2789 				/*
2790 				 * Hand-rolled version of m_tag_locate() with
2791 				 * wildcard `type'.
2792 				 * If not already tagged, allocate new tag.
2793 				 */
2794 				mtag = m_tag_first(m);
2795 				while (mtag != NULL) {
2796 					if (mtag->m_tag_cookie ==
2797 					    MTAG_IPFW_CALL)
2798 						break;
2799 					mtag = m_tag_next(m, mtag);
2800 				}
2801 				if (mtag == NULL && IS_CALL) {
2802 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2803 					    IPFW_CALLSTACK_SIZE *
2804 					    sizeof(uint16_t), M_NOWAIT);
2805 					if (mtag != NULL)
2806 						m_tag_prepend(m, mtag);
2807 				}
2808 
2809 				/*
2810 				 * On error both `call' and `return' just
2811 				 * continue with next rule.
2812 				 */
2813 				if (IS_RETURN && (mtag == NULL ||
2814 				    mtag->m_tag_id == 0)) {
2815 					l = 0;		/* exit inner loop */
2816 					break;
2817 				}
2818 				if (IS_CALL && (mtag == NULL ||
2819 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2820 					printf("ipfw: call stack error, "
2821 					    "go to next rule\n");
2822 					l = 0;		/* exit inner loop */
2823 					break;
2824 				}
2825 
2826 				IPFW_INC_RULE_COUNTER(f, pktlen);
2827 				stack = (uint16_t *)(mtag + 1);
2828 
2829 				/*
2830 				 * The `call' action may use cached f_pos
2831 				 * (in f->next_rule), whose version is written
2832 				 * in f->next_rule.
2833 				 * The `return' action, however, doesn't have
2834 				 * fixed jump address in cmd->arg1 and can't use
2835 				 * cache.
2836 				 */
2837 				if (IS_CALL) {
2838 					stack[mtag->m_tag_id] = f->rulenum;
2839 					mtag->m_tag_id++;
2840 			    		f_pos = JUMP(chain, f, cmd->arg1,
2841 					    tablearg, 1);
2842 				} else {	/* `return' action */
2843 					mtag->m_tag_id--;
2844 					jmpto = stack[mtag->m_tag_id] + 1;
2845 					f_pos = ipfw_find_rule(chain, jmpto, 0);
2846 				}
2847 
2848 				/*
2849 				 * Skip disabled rules, and re-enter
2850 				 * the inner loop with the correct
2851 				 * f_pos, f, l and cmd.
2852 				 * Also clear cmdlen and skip_or
2853 				 */
2854 				for (; f_pos < chain->n_rules - 1 &&
2855 				    (V_set_disable &
2856 				    (1 << chain->map[f_pos]->set)); f_pos++)
2857 					;
2858 				/* Re-enter the inner loop at the dest rule. */
2859 				f = chain->map[f_pos];
2860 				l = f->cmd_len;
2861 				cmd = f->cmd;
2862 				cmdlen = 0;
2863 				skip_or = 0;
2864 				continue;
2865 				break;	/* NOTREACHED */
2866 			}
2867 #undef IS_CALL
2868 #undef IS_RETURN
2869 
2870 			case O_REJECT:
2871 				/*
2872 				 * Drop the packet and send a reject notice
2873 				 * if the packet is not ICMP (or is an ICMP
2874 				 * query), and it is not multicast/broadcast.
2875 				 */
2876 				if (hlen > 0 && is_ipv4 && offset == 0 &&
2877 				    (proto != IPPROTO_ICMP ||
2878 				     is_icmp_query(ICMP(ulp))) &&
2879 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2880 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2881 					send_reject(args, cmd->arg1, iplen, ip);
2882 					m = args->m;
2883 				}
2884 				/* FALLTHROUGH */
2885 #ifdef INET6
2886 			case O_UNREACH6:
2887 				if (hlen > 0 && is_ipv6 &&
2888 				    ((offset & IP6F_OFF_MASK) == 0) &&
2889 				    (proto != IPPROTO_ICMPV6 ||
2890 				     (is_icmp6_query(icmp6_type) == 1)) &&
2891 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2892 				    !IN6_IS_ADDR_MULTICAST(
2893 					&args->f_id.dst_ip6)) {
2894 					send_reject6(args,
2895 					    cmd->opcode == O_REJECT ?
2896 					    map_icmp_unreach(cmd->arg1):
2897 					    cmd->arg1, hlen,
2898 					    (struct ip6_hdr *)ip);
2899 					m = args->m;
2900 				}
2901 				/* FALLTHROUGH */
2902 #endif
2903 			case O_DENY:
2904 				retval = IP_FW_DENY;
2905 				l = 0;		/* exit inner loop */
2906 				done = 1;	/* exit outer loop */
2907 				break;
2908 
2909 			case O_FORWARD_IP:
2910 				if (args->flags & IPFW_ARGS_ETHER)
2911 					break;	/* not valid on layer2 pkts */
2912 				if (q != f ||
2913 				    dyn_info.direction == MATCH_FORWARD) {
2914 				    struct sockaddr_in *sa;
2915 
2916 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2917 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2918 #ifdef INET6
2919 					/*
2920 					 * We use O_FORWARD_IP opcode for
2921 					 * fwd rule with tablearg, but tables
2922 					 * now support IPv6 addresses. And
2923 					 * when we are inspecting IPv6 packet,
2924 					 * we can use nh6 field from
2925 					 * table_value as next_hop6 address.
2926 					 */
2927 					if (is_ipv6) {
2928 						struct ip_fw_nh6 *nh6;
2929 
2930 						args->flags |= IPFW_ARGS_NH6;
2931 						nh6 = &args->hopstore6;
2932 						nh6->sin6_addr = TARG_VAL(
2933 						    chain, tablearg, nh6);
2934 						nh6->sin6_port = sa->sin_port;
2935 						nh6->sin6_scope_id = TARG_VAL(
2936 						    chain, tablearg, zoneid);
2937 					} else
2938 #endif
2939 					{
2940 						args->flags |= IPFW_ARGS_NH4;
2941 						args->hopstore.sin_port =
2942 						    sa->sin_port;
2943 						sa = &args->hopstore;
2944 						sa->sin_family = AF_INET;
2945 						sa->sin_len = sizeof(*sa);
2946 						sa->sin_addr.s_addr = htonl(
2947 						    TARG_VAL(chain, tablearg,
2948 						    nh4));
2949 					}
2950 				    } else {
2951 					    args->flags |= IPFW_ARGS_NH4PTR;
2952 					    args->next_hop = sa;
2953 				    }
2954 				}
2955 				retval = IP_FW_PASS;
2956 				l = 0;          /* exit inner loop */
2957 				done = 1;       /* exit outer loop */
2958 				break;
2959 
2960 #ifdef INET6
2961 			case O_FORWARD_IP6:
2962 				if (args->flags & IPFW_ARGS_ETHER)
2963 					break;	/* not valid on layer2 pkts */
2964 				if (q != f ||
2965 				    dyn_info.direction == MATCH_FORWARD) {
2966 					struct sockaddr_in6 *sin6;
2967 
2968 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2969 					args->flags |= IPFW_ARGS_NH6PTR;
2970 					args->next_hop6 = sin6;
2971 				}
2972 				retval = IP_FW_PASS;
2973 				l = 0;		/* exit inner loop */
2974 				done = 1;	/* exit outer loop */
2975 				break;
2976 #endif
2977 
2978 			case O_NETGRAPH:
2979 			case O_NGTEE:
2980 				set_match(args, f_pos, chain);
2981 				args->rule.info = TARG(cmd->arg1, netgraph);
2982 				if (V_fw_one_pass)
2983 					args->rule.info |= IPFW_ONEPASS;
2984 				retval = (cmd->opcode == O_NETGRAPH) ?
2985 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2986 				l = 0;          /* exit inner loop */
2987 				done = 1;       /* exit outer loop */
2988 				break;
2989 
2990 			case O_SETFIB: {
2991 				uint32_t fib;
2992 
2993 				IPFW_INC_RULE_COUNTER(f, pktlen);
2994 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
2995 				if (fib >= rt_numfibs)
2996 					fib = 0;
2997 				M_SETFIB(m, fib);
2998 				args->f_id.fib = fib; /* XXX */
2999 				l = 0;		/* exit inner loop */
3000 				break;
3001 		        }
3002 
3003 			case O_SETDSCP: {
3004 				uint16_t code;
3005 
3006 				code = TARG(cmd->arg1, dscp) & 0x3F;
3007 				l = 0;		/* exit inner loop */
3008 				if (is_ipv4) {
3009 					uint16_t old;
3010 
3011 					old = *(uint16_t *)ip;
3012 					ip->ip_tos = (code << 2) |
3013 					    (ip->ip_tos & 0x03);
3014 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3015 					    old, *(uint16_t *)ip);
3016 				} else if (is_ipv6) {
3017 					uint8_t *v;
3018 
3019 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
3020 					*v = (*v & 0xF0) | (code >> 2);
3021 					v++;
3022 					*v = (*v & 0x3F) | ((code & 0x03) << 6);
3023 				} else
3024 					break;
3025 
3026 				IPFW_INC_RULE_COUNTER(f, pktlen);
3027 				break;
3028 			}
3029 
3030 			case O_NAT:
3031 				l = 0;          /* exit inner loop */
3032 				done = 1;       /* exit outer loop */
3033 				/*
3034 				 * Ensure that we do not invoke NAT handler for
3035 				 * non IPv4 packets. Libalias expects only IPv4.
3036 				 */
3037 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3038 				    retval = IP_FW_DENY;
3039 				    break;
3040 				}
3041 
3042 				struct cfg_nat *t;
3043 				int nat_id;
3044 
3045 				args->rule.info = 0;
3046 				set_match(args, f_pos, chain);
3047 				/* Check if this is 'global' nat rule */
3048 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3049 					retval = ipfw_nat_ptr(args, NULL, m);
3050 					break;
3051 				}
3052 				t = ((ipfw_insn_nat *)cmd)->nat;
3053 				if (t == NULL) {
3054 					nat_id = TARG(cmd->arg1, nat);
3055 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3056 
3057 					if (t == NULL) {
3058 					    retval = IP_FW_DENY;
3059 					    break;
3060 					}
3061 					if (cmd->arg1 != IP_FW_TARG)
3062 					    ((ipfw_insn_nat *)cmd)->nat = t;
3063 				}
3064 				retval = ipfw_nat_ptr(args, t, m);
3065 				break;
3066 
3067 			case O_REASS: {
3068 				int ip_off;
3069 
3070 				l = 0;	/* in any case exit inner loop */
3071 				if (is_ipv6) /* IPv6 is not supported yet */
3072 					break;
3073 				IPFW_INC_RULE_COUNTER(f, pktlen);
3074 				ip_off = ntohs(ip->ip_off);
3075 
3076 				/* if not fragmented, go to next rule */
3077 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3078 				    break;
3079 
3080 				args->m = m = ip_reass(m);
3081 
3082 				/*
3083 				 * do IP header checksum fixup.
3084 				 */
3085 				if (m == NULL) { /* fragment got swallowed */
3086 				    retval = IP_FW_DENY;
3087 				} else { /* good, packet complete */
3088 				    int hlen;
3089 
3090 				    ip = mtod(m, struct ip *);
3091 				    hlen = ip->ip_hl << 2;
3092 				    ip->ip_sum = 0;
3093 				    if (hlen == sizeof(struct ip))
3094 					ip->ip_sum = in_cksum_hdr(ip);
3095 				    else
3096 					ip->ip_sum = in_cksum(m, hlen);
3097 				    retval = IP_FW_REASS;
3098 				    args->rule.info = 0;
3099 				    set_match(args, f_pos, chain);
3100 				}
3101 				done = 1;	/* exit outer loop */
3102 				break;
3103 			}
3104 			case O_EXTERNAL_ACTION:
3105 				l = 0; /* in any case exit inner loop */
3106 				retval = ipfw_run_eaction(chain, args,
3107 				    cmd, &done);
3108 				/*
3109 				 * If both @retval and @done are zero,
3110 				 * consider this as rule matching and
3111 				 * update counters.
3112 				 */
3113 				if (retval == 0 && done == 0) {
3114 					IPFW_INC_RULE_COUNTER(f, pktlen);
3115 					/*
3116 					 * Reset the result of the last
3117 					 * dynamic state lookup.
3118 					 * External action can change
3119 					 * @args content, and it may be
3120 					 * used for new state lookup later.
3121 					 */
3122 					DYN_INFO_INIT(&dyn_info);
3123 				}
3124 				break;
3125 
3126 			default:
3127 				panic("-- unknown opcode %d\n", cmd->opcode);
3128 			} /* end of switch() on opcodes */
3129 			/*
3130 			 * if we get here with l=0, then match is irrelevant.
3131 			 */
3132 
3133 			if (cmd->len & F_NOT)
3134 				match = !match;
3135 
3136 			if (match) {
3137 				if (cmd->len & F_OR)
3138 					skip_or = 1;
3139 			} else {
3140 				if (!(cmd->len & F_OR)) /* not an OR block, */
3141 					break;		/* try next rule    */
3142 			}
3143 
3144 		}	/* end of inner loop, scan opcodes */
3145 #undef PULLUP_LEN
3146 
3147 		if (done)
3148 			break;
3149 
3150 /* next_rule:; */	/* try next rule		*/
3151 
3152 	}		/* end of outer for, scan rules */
3153 
3154 	if (done) {
3155 		struct ip_fw *rule = chain->map[f_pos];
3156 		/* Update statistics */
3157 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3158 	} else {
3159 		retval = IP_FW_DENY;
3160 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3161 	}
3162 	IPFW_PF_RUNLOCK(chain);
3163 #ifdef __FreeBSD__
3164 	if (ucred_cache != NULL)
3165 		crfree(ucred_cache);
3166 #endif
3167 	return (retval);
3168 
3169 pullup_failed:
3170 	if (V_fw_verbose)
3171 		printf("ipfw: pullup failed\n");
3172 	return (IP_FW_DENY);
3173 }
3174 
3175 /*
3176  * Set maximum number of tables that can be used in given VNET ipfw instance.
3177  */
3178 #ifdef SYSCTL_NODE
3179 static int
3180 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3181 {
3182 	int error;
3183 	unsigned int ntables;
3184 
3185 	ntables = V_fw_tables_max;
3186 
3187 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3188 	/* Read operation or some error */
3189 	if ((error != 0) || (req->newptr == NULL))
3190 		return (error);
3191 
3192 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3193 }
3194 
3195 /*
3196  * Switches table namespace between global and per-set.
3197  */
3198 static int
3199 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3200 {
3201 	int error;
3202 	unsigned int sets;
3203 
3204 	sets = V_fw_tables_sets;
3205 
3206 	error = sysctl_handle_int(oidp, &sets, 0, req);
3207 	/* Read operation or some error */
3208 	if ((error != 0) || (req->newptr == NULL))
3209 		return (error);
3210 
3211 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3212 }
3213 #endif
3214 
3215 /*
3216  * Module and VNET glue
3217  */
3218 
3219 /*
3220  * Stuff that must be initialised only on boot or module load
3221  */
3222 static int
3223 ipfw_init(void)
3224 {
3225 	int error = 0;
3226 
3227 	/*
3228  	 * Only print out this stuff the first time around,
3229 	 * when called from the sysinit code.
3230 	 */
3231 	printf("ipfw2 "
3232 #ifdef INET6
3233 		"(+ipv6) "
3234 #endif
3235 		"initialized, divert %s, nat %s, "
3236 		"default to %s, logging ",
3237 #ifdef IPDIVERT
3238 		"enabled",
3239 #else
3240 		"loadable",
3241 #endif
3242 #ifdef IPFIREWALL_NAT
3243 		"enabled",
3244 #else
3245 		"loadable",
3246 #endif
3247 		default_to_accept ? "accept" : "deny");
3248 
3249 	/*
3250 	 * Note: V_xxx variables can be accessed here but the vnet specific
3251 	 * initializer may not have been called yet for the VIMAGE case.
3252 	 * Tuneables will have been processed. We will print out values for
3253 	 * the default vnet.
3254 	 * XXX This should all be rationalized AFTER 8.0
3255 	 */
3256 	if (V_fw_verbose == 0)
3257 		printf("disabled\n");
3258 	else if (V_verbose_limit == 0)
3259 		printf("unlimited\n");
3260 	else
3261 		printf("limited to %d packets/entry by default\n",
3262 		    V_verbose_limit);
3263 
3264 	/* Check user-supplied table count for validness */
3265 	if (default_fw_tables > IPFW_TABLES_MAX)
3266 	  default_fw_tables = IPFW_TABLES_MAX;
3267 
3268 	ipfw_init_sopt_handler();
3269 	ipfw_init_obj_rewriter();
3270 	ipfw_iface_init();
3271 	return (error);
3272 }
3273 
3274 /*
3275  * Called for the removal of the last instance only on module unload.
3276  */
3277 static void
3278 ipfw_destroy(void)
3279 {
3280 
3281 	ipfw_iface_destroy();
3282 	ipfw_destroy_sopt_handler();
3283 	ipfw_destroy_obj_rewriter();
3284 	printf("IP firewall unloaded\n");
3285 }
3286 
3287 /*
3288  * Stuff that must be initialized for every instance
3289  * (including the first of course).
3290  */
3291 static int
3292 vnet_ipfw_init(const void *unused)
3293 {
3294 	int error, first;
3295 	struct ip_fw *rule = NULL;
3296 	struct ip_fw_chain *chain;
3297 
3298 	chain = &V_layer3_chain;
3299 
3300 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3301 
3302 	/* First set up some values that are compile time options */
3303 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3304 	V_fw_deny_unknown_exthdrs = 1;
3305 #ifdef IPFIREWALL_VERBOSE
3306 	V_fw_verbose = 1;
3307 #endif
3308 #ifdef IPFIREWALL_VERBOSE_LIMIT
3309 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3310 #endif
3311 #ifdef IPFIREWALL_NAT
3312 	LIST_INIT(&chain->nat);
3313 #endif
3314 
3315 	/* Init shared services hash table */
3316 	ipfw_init_srv(chain);
3317 
3318 	ipfw_init_counters();
3319 	/* Set initial number of tables */
3320 	V_fw_tables_max = default_fw_tables;
3321 	error = ipfw_init_tables(chain, first);
3322 	if (error) {
3323 		printf("ipfw2: setting up tables failed\n");
3324 		free(chain->map, M_IPFW);
3325 		free(rule, M_IPFW);
3326 		return (ENOSPC);
3327 	}
3328 
3329 	IPFW_LOCK_INIT(chain);
3330 
3331 	/* fill and insert the default rule */
3332 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3333 	rule->cmd_len = 1;
3334 	rule->cmd[0].len = 1;
3335 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3336 	chain->default_rule = rule;
3337 	ipfw_add_protected_rule(chain, rule, 0);
3338 
3339 	ipfw_dyn_init(chain);
3340 	ipfw_eaction_init(chain, first);
3341 #ifdef LINEAR_SKIPTO
3342 	ipfw_init_skipto_cache(chain);
3343 #endif
3344 	ipfw_bpf_init(first);
3345 
3346 	/* First set up some values that are compile time options */
3347 	V_ipfw_vnet_ready = 1;		/* Open for business */
3348 
3349 	/*
3350 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3351 	 * Even if the latter two fail we still keep the module alive
3352 	 * because the sockopt and layer2 paths are still useful.
3353 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3354 	 * so we can ignore the exact return value and just set a flag.
3355 	 *
3356 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3357 	 * changes in the underlying (per-vnet) variables trigger
3358 	 * immediate hook()/unhook() calls.
3359 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3360 	 * is checked on each packet because there are no pfil hooks.
3361 	 */
3362 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3363 	error = ipfw_attach_hooks();
3364 	return (error);
3365 }
3366 
3367 /*
3368  * Called for the removal of each instance.
3369  */
3370 static int
3371 vnet_ipfw_uninit(const void *unused)
3372 {
3373 	struct ip_fw *reap;
3374 	struct ip_fw_chain *chain = &V_layer3_chain;
3375 	int i, last;
3376 
3377 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3378 	/*
3379 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3380 	 * Then grab, release and grab again the WLOCK so we make
3381 	 * sure the update is propagated and nobody will be in.
3382 	 */
3383 	ipfw_detach_hooks();
3384 	V_ip_fw_ctl_ptr = NULL;
3385 
3386 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3387 
3388 	IPFW_UH_WLOCK(chain);
3389 	IPFW_UH_WUNLOCK(chain);
3390 
3391 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3392 
3393 	IPFW_UH_WLOCK(chain);
3394 
3395 	reap = NULL;
3396 	IPFW_WLOCK(chain);
3397 	for (i = 0; i < chain->n_rules; i++)
3398 		ipfw_reap_add(chain, &reap, chain->map[i]);
3399 	free(chain->map, M_IPFW);
3400 #ifdef LINEAR_SKIPTO
3401 	ipfw_destroy_skipto_cache(chain);
3402 #endif
3403 	IPFW_WUNLOCK(chain);
3404 	IPFW_UH_WUNLOCK(chain);
3405 	ipfw_destroy_tables(chain, last);
3406 	ipfw_eaction_uninit(chain, last);
3407 	if (reap != NULL)
3408 		ipfw_reap_rules(reap);
3409 	vnet_ipfw_iface_destroy(chain);
3410 	ipfw_destroy_srv(chain);
3411 	IPFW_LOCK_DESTROY(chain);
3412 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3413 	ipfw_destroy_counters();
3414 	ipfw_bpf_uninit(last);
3415 	return (0);
3416 }
3417 
3418 /*
3419  * Module event handler.
3420  * In general we have the choice of handling most of these events by the
3421  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3422  * use the SYSINIT handlers as they are more capable of expressing the
3423  * flow of control during module and vnet operations, so this is just
3424  * a skeleton. Note there is no SYSINIT equivalent of the module
3425  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3426  */
3427 static int
3428 ipfw_modevent(module_t mod, int type, void *unused)
3429 {
3430 	int err = 0;
3431 
3432 	switch (type) {
3433 	case MOD_LOAD:
3434 		/* Called once at module load or
3435 	 	 * system boot if compiled in. */
3436 		break;
3437 	case MOD_QUIESCE:
3438 		/* Called before unload. May veto unloading. */
3439 		break;
3440 	case MOD_UNLOAD:
3441 		/* Called during unload. */
3442 		break;
3443 	case MOD_SHUTDOWN:
3444 		/* Called during system shutdown. */
3445 		break;
3446 	default:
3447 		err = EOPNOTSUPP;
3448 		break;
3449 	}
3450 	return err;
3451 }
3452 
3453 static moduledata_t ipfwmod = {
3454 	"ipfw",
3455 	ipfw_modevent,
3456 	0
3457 };
3458 
3459 /* Define startup order. */
3460 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3461 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3462 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3463 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3464 
3465 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3466 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3467 MODULE_VERSION(ipfw, 3);
3468 /* should declare some dependencies here */
3469 
3470 /*
3471  * Starting up. Done in order after ipfwmod() has been called.
3472  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3473  */
3474 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3475 	    ipfw_init, NULL);
3476 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3477 	    vnet_ipfw_init, NULL);
3478 
3479 /*
3480  * Closing up shop. These are done in REVERSE ORDER, but still
3481  * after ipfwmod() has been called. Not called on reboot.
3482  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3483  * or when the module is unloaded.
3484  */
3485 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3486 	    ipfw_destroy, NULL);
3487 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3488 	    vnet_ipfw_uninit, NULL);
3489 /* end of file */
3490