xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision 6574b8ed19b093f0af09501d2c9676c28993cb97)
1 /*-
2  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * The FreeBSD IP packet firewall, main file
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipdivert.h"
35 #include "opt_inet.h"
36 #ifndef INET
37 #error "IPFIREWALL requires INET"
38 #endif /* INET */
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/condvar.h>
45 #include <sys/eventhandler.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/jail.h>
51 #include <sys/module.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 #include <net/ethernet.h> /* for ETHERTYPE_IP */
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/route.h>
64 #include <net/pfil.h>
65 #include <net/vnet.h>
66 
67 #include <netpfil/pf/pf_mtag.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_var.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_fw.h>
76 #include <netinet/ip_carp.h>
77 #include <netinet/pim.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #include <netinet/sctp.h>
82 
83 #include <netinet/ip6.h>
84 #include <netinet/icmp6.h>
85 #ifdef INET6
86 #include <netinet6/in6_pcb.h>
87 #include <netinet6/scope6_var.h>
88 #include <netinet6/ip6_var.h>
89 #endif
90 
91 #include <netpfil/ipfw/ip_fw_private.h>
92 
93 #include <machine/in_cksum.h>	/* XXX for in_cksum */
94 
95 #ifdef MAC
96 #include <security/mac/mac_framework.h>
97 #endif
98 
99 /*
100  * static variables followed by global ones.
101  * All ipfw global variables are here.
102  */
103 
104 /* ipfw_vnet_ready controls when we are open for business */
105 static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
106 #define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
107 
108 static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
109 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
110 
111 static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
112 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
113 
114 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
115 static int default_to_accept = 1;
116 #else
117 static int default_to_accept;
118 #endif
119 
120 VNET_DEFINE(int, autoinc_step);
121 VNET_DEFINE(int, fw_one_pass) = 1;
122 
123 VNET_DEFINE(unsigned int, fw_tables_max);
124 /* Use 128 tables by default */
125 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
126 
127 /*
128  * Each rule belongs to one of 32 different sets (0..31).
129  * The variable set_disable contains one bit per set.
130  * If the bit is set, all rules in the corresponding set
131  * are disabled. Set RESVD_SET(31) is reserved for the default rule
132  * and rules that are not deleted by the flush command,
133  * and CANNOT be disabled.
134  * Rules in set RESVD_SET can only be deleted individually.
135  */
136 VNET_DEFINE(u_int32_t, set_disable);
137 #define	V_set_disable			VNET(set_disable)
138 
139 VNET_DEFINE(int, fw_verbose);
140 /* counter for ipfw_log(NULL...) */
141 VNET_DEFINE(u_int64_t, norule_counter);
142 VNET_DEFINE(int, verbose_limit);
143 
144 /* layer3_chain contains the list of rules for layer 3 */
145 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
146 
147 VNET_DEFINE(int, ipfw_nat_ready) = 0;
148 
149 ipfw_nat_t *ipfw_nat_ptr = NULL;
150 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
151 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
152 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
153 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
154 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
155 
156 #ifdef SYSCTL_NODE
157 uint32_t dummy_def = IPFW_DEFAULT_RULE;
158 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
159 
160 SYSBEGIN(f3)
161 
162 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
163 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
164     CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
165     "Only do a single pass through ipfw when using dummynet(4)");
166 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
167     CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
168     "Rule number auto-increment step");
169 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
170     CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
171     "Log matches to ipfw rules");
172 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
173     CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
174     "Set upper limit of matches of ipfw rules logged");
175 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
176     &dummy_def, 0,
177     "The default/max possible rule number.");
178 SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
179     CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
180     "Maximum number of tables");
181 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
182     &default_to_accept, 0,
183     "Make the default rule accept all packets.");
184 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
185 SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
186     CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
187     "Number of static rules");
188 
189 #ifdef INET6
190 SYSCTL_DECL(_net_inet6_ip6);
191 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
192 SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
193     CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
194     "Deny packets with unknown IPv6 Extension Headers");
195 SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
196     CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0,
197     "Permit single packet IPv6 fragments");
198 #endif /* INET6 */
199 
200 SYSEND
201 
202 #endif /* SYSCTL_NODE */
203 
204 
205 /*
206  * Some macros used in the various matching options.
207  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
208  * Other macros just cast void * into the appropriate type
209  */
210 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
211 #define	TCP(p)		((struct tcphdr *)(p))
212 #define	SCTP(p)		((struct sctphdr *)(p))
213 #define	UDP(p)		((struct udphdr *)(p))
214 #define	ICMP(p)		((struct icmphdr *)(p))
215 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
216 
217 static __inline int
218 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
219 {
220 	int type = icmp->icmp_type;
221 
222 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
223 }
224 
225 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
226     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
227 
228 static int
229 is_icmp_query(struct icmphdr *icmp)
230 {
231 	int type = icmp->icmp_type;
232 
233 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
234 }
235 #undef TT
236 
237 /*
238  * The following checks use two arrays of 8 or 16 bits to store the
239  * bits that we want set or clear, respectively. They are in the
240  * low and high half of cmd->arg1 or cmd->d[0].
241  *
242  * We scan options and store the bits we find set. We succeed if
243  *
244  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
245  *
246  * The code is sometimes optimized not to store additional variables.
247  */
248 
249 static int
250 flags_match(ipfw_insn *cmd, u_int8_t bits)
251 {
252 	u_char want_clear;
253 	bits = ~bits;
254 
255 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
256 		return 0; /* some bits we want set were clear */
257 	want_clear = (cmd->arg1 >> 8) & 0xff;
258 	if ( (want_clear & bits) != want_clear)
259 		return 0; /* some bits we want clear were set */
260 	return 1;
261 }
262 
263 static int
264 ipopts_match(struct ip *ip, ipfw_insn *cmd)
265 {
266 	int optlen, bits = 0;
267 	u_char *cp = (u_char *)(ip + 1);
268 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
269 
270 	for (; x > 0; x -= optlen, cp += optlen) {
271 		int opt = cp[IPOPT_OPTVAL];
272 
273 		if (opt == IPOPT_EOL)
274 			break;
275 		if (opt == IPOPT_NOP)
276 			optlen = 1;
277 		else {
278 			optlen = cp[IPOPT_OLEN];
279 			if (optlen <= 0 || optlen > x)
280 				return 0; /* invalid or truncated */
281 		}
282 		switch (opt) {
283 
284 		default:
285 			break;
286 
287 		case IPOPT_LSRR:
288 			bits |= IP_FW_IPOPT_LSRR;
289 			break;
290 
291 		case IPOPT_SSRR:
292 			bits |= IP_FW_IPOPT_SSRR;
293 			break;
294 
295 		case IPOPT_RR:
296 			bits |= IP_FW_IPOPT_RR;
297 			break;
298 
299 		case IPOPT_TS:
300 			bits |= IP_FW_IPOPT_TS;
301 			break;
302 		}
303 	}
304 	return (flags_match(cmd, bits));
305 }
306 
307 static int
308 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
309 {
310 	int optlen, bits = 0;
311 	u_char *cp = (u_char *)(tcp + 1);
312 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
313 
314 	for (; x > 0; x -= optlen, cp += optlen) {
315 		int opt = cp[0];
316 		if (opt == TCPOPT_EOL)
317 			break;
318 		if (opt == TCPOPT_NOP)
319 			optlen = 1;
320 		else {
321 			optlen = cp[1];
322 			if (optlen <= 0)
323 				break;
324 		}
325 
326 		switch (opt) {
327 
328 		default:
329 			break;
330 
331 		case TCPOPT_MAXSEG:
332 			bits |= IP_FW_TCPOPT_MSS;
333 			break;
334 
335 		case TCPOPT_WINDOW:
336 			bits |= IP_FW_TCPOPT_WINDOW;
337 			break;
338 
339 		case TCPOPT_SACK_PERMITTED:
340 		case TCPOPT_SACK:
341 			bits |= IP_FW_TCPOPT_SACK;
342 			break;
343 
344 		case TCPOPT_TIMESTAMP:
345 			bits |= IP_FW_TCPOPT_TS;
346 			break;
347 
348 		}
349 	}
350 	return (flags_match(cmd, bits));
351 }
352 
353 static int
354 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
355     uint32_t *tablearg)
356 {
357 
358 	if (ifp == NULL)	/* no iface with this packet, match fails */
359 		return (0);
360 
361 	/* Check by name or by IP address */
362 	if (cmd->name[0] != '\0') { /* match by name */
363 		if (cmd->name[0] == '\1') /* use tablearg to match */
364 			return ipfw_lookup_table_extended(chain, cmd->p.glob,
365 				ifp->if_xname, tablearg, IPFW_TABLE_INTERFACE);
366 		/* Check name */
367 		if (cmd->p.glob) {
368 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
369 				return(1);
370 		} else {
371 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
372 				return(1);
373 		}
374 	} else {
375 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
376 		struct ifaddr *ia;
377 
378 		if_addr_rlock(ifp);
379 		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
380 			if (ia->ifa_addr->sa_family != AF_INET)
381 				continue;
382 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
383 			    (ia->ifa_addr))->sin_addr.s_addr) {
384 				if_addr_runlock(ifp);
385 				return(1);	/* match */
386 			}
387 		}
388 		if_addr_runlock(ifp);
389 #endif /* __FreeBSD__ */
390 	}
391 	return(0);	/* no match, fail ... */
392 }
393 
394 /*
395  * The verify_path function checks if a route to the src exists and
396  * if it is reachable via ifp (when provided).
397  *
398  * The 'verrevpath' option checks that the interface that an IP packet
399  * arrives on is the same interface that traffic destined for the
400  * packet's source address would be routed out of.
401  * The 'versrcreach' option just checks that the source address is
402  * reachable via any route (except default) in the routing table.
403  * These two are a measure to block forged packets. This is also
404  * commonly known as "anti-spoofing" or Unicast Reverse Path
405  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
406  * is purposely reminiscent of the Cisco IOS command,
407  *
408  *   ip verify unicast reverse-path
409  *   ip verify unicast source reachable-via any
410  *
411  * which implements the same functionality. But note that the syntax
412  * is misleading, and the check may be performed on all IP packets
413  * whether unicast, multicast, or broadcast.
414  */
415 static int
416 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
417 {
418 #if defined(USERSPACE) || !defined(__FreeBSD__)
419 	return 0;
420 #else
421 	struct route ro;
422 	struct sockaddr_in *dst;
423 
424 	bzero(&ro, sizeof(ro));
425 
426 	dst = (struct sockaddr_in *)&(ro.ro_dst);
427 	dst->sin_family = AF_INET;
428 	dst->sin_len = sizeof(*dst);
429 	dst->sin_addr = src;
430 	in_rtalloc_ign(&ro, 0, fib);
431 
432 	if (ro.ro_rt == NULL)
433 		return 0;
434 
435 	/*
436 	 * If ifp is provided, check for equality with rtentry.
437 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
438 	 * in order to pass packets injected back by if_simloop():
439 	 * routing entry (via lo0) for our own address
440 	 * may exist, so we need to handle routing assymetry.
441 	 */
442 	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
443 		RTFREE(ro.ro_rt);
444 		return 0;
445 	}
446 
447 	/* if no ifp provided, check if rtentry is not default route */
448 	if (ifp == NULL &&
449 	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
450 		RTFREE(ro.ro_rt);
451 		return 0;
452 	}
453 
454 	/* or if this is a blackhole/reject route */
455 	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
456 		RTFREE(ro.ro_rt);
457 		return 0;
458 	}
459 
460 	/* found valid route */
461 	RTFREE(ro.ro_rt);
462 	return 1;
463 #endif /* __FreeBSD__ */
464 }
465 
466 #ifdef INET6
467 /*
468  * ipv6 specific rules here...
469  */
470 static __inline int
471 icmp6type_match (int type, ipfw_insn_u32 *cmd)
472 {
473 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
474 }
475 
476 static int
477 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
478 {
479 	int i;
480 	for (i=0; i <= cmd->o.arg1; ++i )
481 		if (curr_flow == cmd->d[i] )
482 			return 1;
483 	return 0;
484 }
485 
486 /* support for IP6_*_ME opcodes */
487 static int
488 search_ip6_addr_net (struct in6_addr * ip6_addr)
489 {
490 	struct ifnet *mdc;
491 	struct ifaddr *mdc2;
492 	struct in6_ifaddr *fdm;
493 	struct in6_addr copia;
494 
495 	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
496 		if_addr_rlock(mdc);
497 		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
498 			if (mdc2->ifa_addr->sa_family == AF_INET6) {
499 				fdm = (struct in6_ifaddr *)mdc2;
500 				copia = fdm->ia_addr.sin6_addr;
501 				/* need for leaving scope_id in the sock_addr */
502 				in6_clearscope(&copia);
503 				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
504 					if_addr_runlock(mdc);
505 					return 1;
506 				}
507 			}
508 		}
509 		if_addr_runlock(mdc);
510 	}
511 	return 0;
512 }
513 
514 static int
515 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
516 {
517 	struct route_in6 ro;
518 	struct sockaddr_in6 *dst;
519 
520 	bzero(&ro, sizeof(ro));
521 
522 	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
523 	dst->sin6_family = AF_INET6;
524 	dst->sin6_len = sizeof(*dst);
525 	dst->sin6_addr = *src;
526 
527 	in6_rtalloc_ign(&ro, 0, fib);
528 	if (ro.ro_rt == NULL)
529 		return 0;
530 
531 	/*
532 	 * if ifp is provided, check for equality with rtentry
533 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
534 	 * to support the case of sending packets to an address of our own.
535 	 * (where the former interface is the first argument of if_simloop()
536 	 *  (=ifp), the latter is lo0)
537 	 */
538 	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
539 		RTFREE(ro.ro_rt);
540 		return 0;
541 	}
542 
543 	/* if no ifp provided, check if rtentry is not default route */
544 	if (ifp == NULL &&
545 	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
546 		RTFREE(ro.ro_rt);
547 		return 0;
548 	}
549 
550 	/* or if this is a blackhole/reject route */
551 	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
552 		RTFREE(ro.ro_rt);
553 		return 0;
554 	}
555 
556 	/* found valid route */
557 	RTFREE(ro.ro_rt);
558 	return 1;
559 
560 }
561 
562 static int
563 is_icmp6_query(int icmp6_type)
564 {
565 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
566 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
567 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
568 	    icmp6_type == ICMP6_WRUREQUEST ||
569 	    icmp6_type == ICMP6_FQDN_QUERY ||
570 	    icmp6_type == ICMP6_NI_QUERY))
571 		return (1);
572 
573 	return (0);
574 }
575 
576 static void
577 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
578 {
579 	struct mbuf *m;
580 
581 	m = args->m;
582 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
583 		struct tcphdr *tcp;
584 		tcp = (struct tcphdr *)((char *)ip6 + hlen);
585 
586 		if ((tcp->th_flags & TH_RST) == 0) {
587 			struct mbuf *m0;
588 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
589 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
590 			    tcp->th_flags | TH_RST);
591 			if (m0 != NULL)
592 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
593 				    NULL);
594 		}
595 		FREE_PKT(m);
596 	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
597 #if 0
598 		/*
599 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
600 		 * as the contents are read. We need to m_adj() the
601 		 * needed amount.
602 		 * The mbuf will however be thrown away so we can adjust it.
603 		 * Remember we did an m_pullup on it already so we
604 		 * can make some assumptions about contiguousness.
605 		 */
606 		if (args->L3offset)
607 			m_adj(m, args->L3offset);
608 #endif
609 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
610 	} else
611 		FREE_PKT(m);
612 
613 	args->m = NULL;
614 }
615 
616 #endif /* INET6 */
617 
618 
619 /*
620  * sends a reject message, consuming the mbuf passed as an argument.
621  */
622 static void
623 send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
624 {
625 
626 #if 0
627 	/* XXX When ip is not guaranteed to be at mtod() we will
628 	 * need to account for this */
629 	 * The mbuf will however be thrown away so we can adjust it.
630 	 * Remember we did an m_pullup on it already so we
631 	 * can make some assumptions about contiguousness.
632 	 */
633 	if (args->L3offset)
634 		m_adj(m, args->L3offset);
635 #endif
636 	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
637 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
638 	} else if (args->f_id.proto == IPPROTO_TCP) {
639 		struct tcphdr *const tcp =
640 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
641 		if ( (tcp->th_flags & TH_RST) == 0) {
642 			struct mbuf *m;
643 			m = ipfw_send_pkt(args->m, &(args->f_id),
644 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
645 				tcp->th_flags | TH_RST);
646 			if (m != NULL)
647 				ip_output(m, NULL, NULL, 0, NULL, NULL);
648 		}
649 		FREE_PKT(args->m);
650 	} else
651 		FREE_PKT(args->m);
652 	args->m = NULL;
653 }
654 
655 /*
656  * Support for uid/gid/jail lookup. These tests are expensive
657  * (because we may need to look into the list of active sockets)
658  * so we cache the results. ugid_lookupp is 0 if we have not
659  * yet done a lookup, 1 if we succeeded, and -1 if we tried
660  * and failed. The function always returns the match value.
661  * We could actually spare the variable and use *uc, setting
662  * it to '(void *)check_uidgid if we have no info, NULL if
663  * we tried and failed, or any other value if successful.
664  */
665 static int
666 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
667     struct ucred **uc)
668 {
669 #if defined(USERSPACE)
670 	return 0;	// not supported in userspace
671 #else
672 #ifndef __FreeBSD__
673 	/* XXX */
674 	return cred_check(insn, proto, oif,
675 	    dst_ip, dst_port, src_ip, src_port,
676 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
677 #else  /* FreeBSD */
678 	struct in_addr src_ip, dst_ip;
679 	struct inpcbinfo *pi;
680 	struct ipfw_flow_id *id;
681 	struct inpcb *pcb, *inp;
682 	struct ifnet *oif;
683 	int lookupflags;
684 	int match;
685 
686 	id = &args->f_id;
687 	inp = args->inp;
688 	oif = args->oif;
689 
690 	/*
691 	 * Check to see if the UDP or TCP stack supplied us with
692 	 * the PCB. If so, rather then holding a lock and looking
693 	 * up the PCB, we can use the one that was supplied.
694 	 */
695 	if (inp && *ugid_lookupp == 0) {
696 		INP_LOCK_ASSERT(inp);
697 		if (inp->inp_socket != NULL) {
698 			*uc = crhold(inp->inp_cred);
699 			*ugid_lookupp = 1;
700 		} else
701 			*ugid_lookupp = -1;
702 	}
703 	/*
704 	 * If we have already been here and the packet has no
705 	 * PCB entry associated with it, then we can safely
706 	 * assume that this is a no match.
707 	 */
708 	if (*ugid_lookupp == -1)
709 		return (0);
710 	if (id->proto == IPPROTO_TCP) {
711 		lookupflags = 0;
712 		pi = &V_tcbinfo;
713 	} else if (id->proto == IPPROTO_UDP) {
714 		lookupflags = INPLOOKUP_WILDCARD;
715 		pi = &V_udbinfo;
716 	} else
717 		return 0;
718 	lookupflags |= INPLOOKUP_RLOCKPCB;
719 	match = 0;
720 	if (*ugid_lookupp == 0) {
721 		if (id->addr_type == 6) {
722 #ifdef INET6
723 			if (oif == NULL)
724 				pcb = in6_pcblookup_mbuf(pi,
725 				    &id->src_ip6, htons(id->src_port),
726 				    &id->dst_ip6, htons(id->dst_port),
727 				    lookupflags, oif, args->m);
728 			else
729 				pcb = in6_pcblookup_mbuf(pi,
730 				    &id->dst_ip6, htons(id->dst_port),
731 				    &id->src_ip6, htons(id->src_port),
732 				    lookupflags, oif, args->m);
733 #else
734 			*ugid_lookupp = -1;
735 			return (0);
736 #endif
737 		} else {
738 			src_ip.s_addr = htonl(id->src_ip);
739 			dst_ip.s_addr = htonl(id->dst_ip);
740 			if (oif == NULL)
741 				pcb = in_pcblookup_mbuf(pi,
742 				    src_ip, htons(id->src_port),
743 				    dst_ip, htons(id->dst_port),
744 				    lookupflags, oif, args->m);
745 			else
746 				pcb = in_pcblookup_mbuf(pi,
747 				    dst_ip, htons(id->dst_port),
748 				    src_ip, htons(id->src_port),
749 				    lookupflags, oif, args->m);
750 		}
751 		if (pcb != NULL) {
752 			INP_RLOCK_ASSERT(pcb);
753 			*uc = crhold(pcb->inp_cred);
754 			*ugid_lookupp = 1;
755 			INP_RUNLOCK(pcb);
756 		}
757 		if (*ugid_lookupp == 0) {
758 			/*
759 			 * We tried and failed, set the variable to -1
760 			 * so we will not try again on this packet.
761 			 */
762 			*ugid_lookupp = -1;
763 			return (0);
764 		}
765 	}
766 	if (insn->o.opcode == O_UID)
767 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
768 	else if (insn->o.opcode == O_GID)
769 		match = groupmember((gid_t)insn->d[0], *uc);
770 	else if (insn->o.opcode == O_JAIL)
771 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
772 	return (match);
773 #endif /* __FreeBSD__ */
774 #endif /* not supported in userspace */
775 }
776 
777 /*
778  * Helper function to set args with info on the rule after the matching
779  * one. slot is precise, whereas we guess rule_id as they are
780  * assigned sequentially.
781  */
782 static inline void
783 set_match(struct ip_fw_args *args, int slot,
784 	struct ip_fw_chain *chain)
785 {
786 	args->rule.chain_id = chain->id;
787 	args->rule.slot = slot + 1; /* we use 0 as a marker */
788 	args->rule.rule_id = 1 + chain->map[slot]->id;
789 	args->rule.rulenum = chain->map[slot]->rulenum;
790 }
791 
792 /*
793  * Helper function to enable cached rule lookups using
794  * x_next and next_rule fields in ipfw rule.
795  */
796 static int
797 jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
798     int tablearg, int jump_backwards)
799 {
800 	int f_pos;
801 
802 	/* If possible use cached f_pos (in f->next_rule),
803 	 * whose version is written in f->next_rule
804 	 * (horrible hacks to avoid changing the ABI).
805 	 */
806 	if (num != IP_FW_TABLEARG && (uintptr_t)f->x_next == chain->id)
807 		f_pos = (uintptr_t)f->next_rule;
808 	else {
809 		int i = IP_FW_ARG_TABLEARG(num);
810 		/* make sure we do not jump backward */
811 		if (jump_backwards == 0 && i <= f->rulenum)
812 			i = f->rulenum + 1;
813 		f_pos = ipfw_find_rule(chain, i, 0);
814 		/* update the cache */
815 		if (num != IP_FW_TABLEARG) {
816 			f->next_rule = (void *)(uintptr_t)f_pos;
817 			f->x_next = (void *)(uintptr_t)chain->id;
818 		}
819 	}
820 
821 	return (f_pos);
822 }
823 
824 /*
825  * The main check routine for the firewall.
826  *
827  * All arguments are in args so we can modify them and return them
828  * back to the caller.
829  *
830  * Parameters:
831  *
832  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
833  *		Starts with the IP header.
834  *	args->eh (in)	Mac header if present, NULL for layer3 packet.
835  *	args->L3offset	Number of bytes bypassed if we came from L2.
836  *			e.g. often sizeof(eh)  ** NOTYET **
837  *	args->oif	Outgoing interface, NULL if packet is incoming.
838  *		The incoming interface is in the mbuf. (in)
839  *	args->divert_rule (in/out)
840  *		Skip up to the first rule past this rule number;
841  *		upon return, non-zero port number for divert or tee.
842  *
843  *	args->rule	Pointer to the last matching rule (in/out)
844  *	args->next_hop	Socket we are forwarding to (out).
845  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
846  *	args->f_id	Addresses grabbed from the packet (out)
847  * 	args->rule.info	a cookie depending on rule action
848  *
849  * Return value:
850  *
851  *	IP_FW_PASS	the packet must be accepted
852  *	IP_FW_DENY	the packet must be dropped
853  *	IP_FW_DIVERT	divert packet, port in m_tag
854  *	IP_FW_TEE	tee packet, port in m_tag
855  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
856  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
857  *		args->rule contains the matching rule,
858  *		args->rule.info has additional information.
859  *
860  */
861 int
862 ipfw_chk(struct ip_fw_args *args)
863 {
864 
865 	/*
866 	 * Local variables holding state while processing a packet:
867 	 *
868 	 * IMPORTANT NOTE: to speed up the processing of rules, there
869 	 * are some assumption on the values of the variables, which
870 	 * are documented here. Should you change them, please check
871 	 * the implementation of the various instructions to make sure
872 	 * that they still work.
873 	 *
874 	 * args->eh	The MAC header. It is non-null for a layer2
875 	 *	packet, it is NULL for a layer-3 packet.
876 	 * **notyet**
877 	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
878 	 *
879 	 * m | args->m	Pointer to the mbuf, as received from the caller.
880 	 *	It may change if ipfw_chk() does an m_pullup, or if it
881 	 *	consumes the packet because it calls send_reject().
882 	 *	XXX This has to change, so that ipfw_chk() never modifies
883 	 *	or consumes the buffer.
884 	 * ip	is the beginning of the ip(4 or 6) header.
885 	 *	Calculated by adding the L3offset to the start of data.
886 	 *	(Until we start using L3offset, the packet is
887 	 *	supposed to start with the ip header).
888 	 */
889 	struct mbuf *m = args->m;
890 	struct ip *ip = mtod(m, struct ip *);
891 
892 	/*
893 	 * For rules which contain uid/gid or jail constraints, cache
894 	 * a copy of the users credentials after the pcb lookup has been
895 	 * executed. This will speed up the processing of rules with
896 	 * these types of constraints, as well as decrease contention
897 	 * on pcb related locks.
898 	 */
899 #ifndef __FreeBSD__
900 	struct bsd_ucred ucred_cache;
901 #else
902 	struct ucred *ucred_cache = NULL;
903 #endif
904 	int ucred_lookup = 0;
905 
906 	/*
907 	 * oif | args->oif	If NULL, ipfw_chk has been called on the
908 	 *	inbound path (ether_input, ip_input).
909 	 *	If non-NULL, ipfw_chk has been called on the outbound path
910 	 *	(ether_output, ip_output).
911 	 */
912 	struct ifnet *oif = args->oif;
913 
914 	int f_pos = 0;		/* index of current rule in the array */
915 	int retval = 0;
916 
917 	/*
918 	 * hlen	The length of the IP header.
919 	 */
920 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
921 
922 	/*
923 	 * offset	The offset of a fragment. offset != 0 means that
924 	 *	we have a fragment at this offset of an IPv4 packet.
925 	 *	offset == 0 means that (if this is an IPv4 packet)
926 	 *	this is the first or only fragment.
927 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
928 	 *	or there is a single packet fragement (fragement header added
929 	 *	without needed).  We will treat a single packet fragment as if
930 	 *	there was no fragment header (or log/block depending on the
931 	 *	V_fw_permit_single_frag6 sysctl setting).
932 	 */
933 	u_short offset = 0;
934 	u_short ip6f_mf = 0;
935 
936 	/*
937 	 * Local copies of addresses. They are only valid if we have
938 	 * an IP packet.
939 	 *
940 	 * proto	The protocol. Set to 0 for non-ip packets,
941 	 *	or to the protocol read from the packet otherwise.
942 	 *	proto != 0 means that we have an IPv4 packet.
943 	 *
944 	 * src_port, dst_port	port numbers, in HOST format. Only
945 	 *	valid for TCP and UDP packets.
946 	 *
947 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
948 	 *	Only valid for IPv4 packets.
949 	 */
950 	uint8_t proto;
951 	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
952 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
953 	uint16_t iplen=0;
954 	int pktlen;
955 	uint16_t	etype = 0;	/* Host order stored ether type */
956 
957 	/*
958 	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
959 	 * 	MATCH_NONE when checked and not matched (q = NULL),
960 	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
961 	 */
962 	int dyn_dir = MATCH_UNKNOWN;
963 	ipfw_dyn_rule *q = NULL;
964 	struct ip_fw_chain *chain = &V_layer3_chain;
965 
966 	/*
967 	 * We store in ulp a pointer to the upper layer protocol header.
968 	 * In the ipv4 case this is easy to determine from the header,
969 	 * but for ipv6 we might have some additional headers in the middle.
970 	 * ulp is NULL if not found.
971 	 */
972 	void *ulp = NULL;		/* upper layer protocol pointer. */
973 
974 	/* XXX ipv6 variables */
975 	int is_ipv6 = 0;
976 	uint8_t	icmp6_type = 0;
977 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
978 	/* end of ipv6 variables */
979 
980 	int is_ipv4 = 0;
981 
982 	int done = 0;		/* flag to exit the outer loop */
983 
984 	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
985 		return (IP_FW_PASS);	/* accept */
986 
987 	dst_ip.s_addr = 0;		/* make sure it is initialized */
988 	src_ip.s_addr = 0;		/* make sure it is initialized */
989 	pktlen = m->m_pkthdr.len;
990 	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
991 	proto = args->f_id.proto = 0;	/* mark f_id invalid */
992 		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
993 
994 /*
995  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
996  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
997  * pointer might become stale after other pullups (but we never use it
998  * this way).
999  */
1000 #define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1001 #define PULLUP_LEN(_len, p, T)					\
1002 do {								\
1003 	int x = (_len) + T;					\
1004 	if ((m)->m_len < x) {					\
1005 		args->m = m = m_pullup(m, x);			\
1006 		if (m == NULL)					\
1007 			goto pullup_failed;			\
1008 	}							\
1009 	p = (mtod(m, char *) + (_len));				\
1010 } while (0)
1011 
1012 	/*
1013 	 * if we have an ether header,
1014 	 */
1015 	if (args->eh)
1016 		etype = ntohs(args->eh->ether_type);
1017 
1018 	/* Identify IP packets and fill up variables. */
1019 	if (pktlen >= sizeof(struct ip6_hdr) &&
1020 	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
1021 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1022 		is_ipv6 = 1;
1023 		args->f_id.addr_type = 6;
1024 		hlen = sizeof(struct ip6_hdr);
1025 		proto = ip6->ip6_nxt;
1026 
1027 		/* Search extension headers to find upper layer protocols */
1028 		while (ulp == NULL && offset == 0) {
1029 			switch (proto) {
1030 			case IPPROTO_ICMPV6:
1031 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1032 				icmp6_type = ICMP6(ulp)->icmp6_type;
1033 				break;
1034 
1035 			case IPPROTO_TCP:
1036 				PULLUP_TO(hlen, ulp, struct tcphdr);
1037 				dst_port = TCP(ulp)->th_dport;
1038 				src_port = TCP(ulp)->th_sport;
1039 				/* save flags for dynamic rules */
1040 				args->f_id._flags = TCP(ulp)->th_flags;
1041 				break;
1042 
1043 			case IPPROTO_SCTP:
1044 				PULLUP_TO(hlen, ulp, struct sctphdr);
1045 				src_port = SCTP(ulp)->src_port;
1046 				dst_port = SCTP(ulp)->dest_port;
1047 				break;
1048 
1049 			case IPPROTO_UDP:
1050 				PULLUP_TO(hlen, ulp, struct udphdr);
1051 				dst_port = UDP(ulp)->uh_dport;
1052 				src_port = UDP(ulp)->uh_sport;
1053 				break;
1054 
1055 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1056 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1057 				ext_hd |= EXT_HOPOPTS;
1058 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1059 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1060 				ulp = NULL;
1061 				break;
1062 
1063 			case IPPROTO_ROUTING:	/* RFC 2460 */
1064 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1065 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1066 				case 0:
1067 					ext_hd |= EXT_RTHDR0;
1068 					break;
1069 				case 2:
1070 					ext_hd |= EXT_RTHDR2;
1071 					break;
1072 				default:
1073 					if (V_fw_verbose)
1074 						printf("IPFW2: IPV6 - Unknown "
1075 						    "Routing Header type(%d)\n",
1076 						    ((struct ip6_rthdr *)
1077 						    ulp)->ip6r_type);
1078 					if (V_fw_deny_unknown_exthdrs)
1079 					    return (IP_FW_DENY);
1080 					break;
1081 				}
1082 				ext_hd |= EXT_ROUTING;
1083 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1084 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1085 				ulp = NULL;
1086 				break;
1087 
1088 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1089 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1090 				ext_hd |= EXT_FRAGMENT;
1091 				hlen += sizeof (struct ip6_frag);
1092 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1093 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1094 					IP6F_OFF_MASK;
1095 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1096 					IP6F_MORE_FRAG;
1097 				if (V_fw_permit_single_frag6 == 0 &&
1098 				    offset == 0 && ip6f_mf == 0) {
1099 					if (V_fw_verbose)
1100 						printf("IPFW2: IPV6 - Invalid "
1101 						    "Fragment Header\n");
1102 					if (V_fw_deny_unknown_exthdrs)
1103 					    return (IP_FW_DENY);
1104 					break;
1105 				}
1106 				args->f_id.extra =
1107 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1108 				ulp = NULL;
1109 				break;
1110 
1111 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1112 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1113 				ext_hd |= EXT_DSTOPTS;
1114 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1115 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1116 				ulp = NULL;
1117 				break;
1118 
1119 			case IPPROTO_AH:	/* RFC 2402 */
1120 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1121 				ext_hd |= EXT_AH;
1122 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1123 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1124 				ulp = NULL;
1125 				break;
1126 
1127 			case IPPROTO_ESP:	/* RFC 2406 */
1128 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1129 				/* Anything past Seq# is variable length and
1130 				 * data past this ext. header is encrypted. */
1131 				ext_hd |= EXT_ESP;
1132 				break;
1133 
1134 			case IPPROTO_NONE:	/* RFC 2460 */
1135 				/*
1136 				 * Packet ends here, and IPv6 header has
1137 				 * already been pulled up. If ip6e_len!=0
1138 				 * then octets must be ignored.
1139 				 */
1140 				ulp = ip; /* non-NULL to get out of loop. */
1141 				break;
1142 
1143 			case IPPROTO_OSPFIGP:
1144 				/* XXX OSPF header check? */
1145 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1146 				break;
1147 
1148 			case IPPROTO_PIM:
1149 				/* XXX PIM header check? */
1150 				PULLUP_TO(hlen, ulp, struct pim);
1151 				break;
1152 
1153 			case IPPROTO_CARP:
1154 				PULLUP_TO(hlen, ulp, struct carp_header);
1155 				if (((struct carp_header *)ulp)->carp_version !=
1156 				    CARP_VERSION)
1157 					return (IP_FW_DENY);
1158 				if (((struct carp_header *)ulp)->carp_type !=
1159 				    CARP_ADVERTISEMENT)
1160 					return (IP_FW_DENY);
1161 				break;
1162 
1163 			case IPPROTO_IPV6:	/* RFC 2893 */
1164 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1165 				break;
1166 
1167 			case IPPROTO_IPV4:	/* RFC 2893 */
1168 				PULLUP_TO(hlen, ulp, struct ip);
1169 				break;
1170 
1171 			default:
1172 				if (V_fw_verbose)
1173 					printf("IPFW2: IPV6 - Unknown "
1174 					    "Extension Header(%d), ext_hd=%x\n",
1175 					     proto, ext_hd);
1176 				if (V_fw_deny_unknown_exthdrs)
1177 				    return (IP_FW_DENY);
1178 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1179 				break;
1180 			} /*switch */
1181 		}
1182 		ip = mtod(m, struct ip *);
1183 		ip6 = (struct ip6_hdr *)ip;
1184 		args->f_id.src_ip6 = ip6->ip6_src;
1185 		args->f_id.dst_ip6 = ip6->ip6_dst;
1186 		args->f_id.src_ip = 0;
1187 		args->f_id.dst_ip = 0;
1188 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1189 	} else if (pktlen >= sizeof(struct ip) &&
1190 	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1191 	    	is_ipv4 = 1;
1192 		hlen = ip->ip_hl << 2;
1193 		args->f_id.addr_type = 4;
1194 
1195 		/*
1196 		 * Collect parameters into local variables for faster matching.
1197 		 */
1198 		proto = ip->ip_p;
1199 		src_ip = ip->ip_src;
1200 		dst_ip = ip->ip_dst;
1201 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1202 		iplen = ntohs(ip->ip_len);
1203 		pktlen = iplen < pktlen ? iplen : pktlen;
1204 
1205 		if (offset == 0) {
1206 			switch (proto) {
1207 			case IPPROTO_TCP:
1208 				PULLUP_TO(hlen, ulp, struct tcphdr);
1209 				dst_port = TCP(ulp)->th_dport;
1210 				src_port = TCP(ulp)->th_sport;
1211 				/* save flags for dynamic rules */
1212 				args->f_id._flags = TCP(ulp)->th_flags;
1213 				break;
1214 
1215 			case IPPROTO_SCTP:
1216 				PULLUP_TO(hlen, ulp, struct sctphdr);
1217 				src_port = SCTP(ulp)->src_port;
1218 				dst_port = SCTP(ulp)->dest_port;
1219 				break;
1220 
1221 			case IPPROTO_UDP:
1222 				PULLUP_TO(hlen, ulp, struct udphdr);
1223 				dst_port = UDP(ulp)->uh_dport;
1224 				src_port = UDP(ulp)->uh_sport;
1225 				break;
1226 
1227 			case IPPROTO_ICMP:
1228 				PULLUP_TO(hlen, ulp, struct icmphdr);
1229 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1230 				break;
1231 
1232 			default:
1233 				break;
1234 			}
1235 		}
1236 
1237 		ip = mtod(m, struct ip *);
1238 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1239 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1240 	}
1241 #undef PULLUP_TO
1242 	if (proto) { /* we may have port numbers, store them */
1243 		args->f_id.proto = proto;
1244 		args->f_id.src_port = src_port = ntohs(src_port);
1245 		args->f_id.dst_port = dst_port = ntohs(dst_port);
1246 	}
1247 
1248 	IPFW_PF_RLOCK(chain);
1249 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1250 		IPFW_PF_RUNLOCK(chain);
1251 		return (IP_FW_PASS);	/* accept */
1252 	}
1253 	if (args->rule.slot) {
1254 		/*
1255 		 * Packet has already been tagged as a result of a previous
1256 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1257 		 * REASS, NETGRAPH, DIVERT/TEE...)
1258 		 * Validate the slot and continue from the next one
1259 		 * if still present, otherwise do a lookup.
1260 		 */
1261 		f_pos = (args->rule.chain_id == chain->id) ?
1262 		    args->rule.slot :
1263 		    ipfw_find_rule(chain, args->rule.rulenum,
1264 			args->rule.rule_id);
1265 	} else {
1266 		f_pos = 0;
1267 	}
1268 
1269 	/*
1270 	 * Now scan the rules, and parse microinstructions for each rule.
1271 	 * We have two nested loops and an inner switch. Sometimes we
1272 	 * need to break out of one or both loops, or re-enter one of
1273 	 * the loops with updated variables. Loop variables are:
1274 	 *
1275 	 *	f_pos (outer loop) points to the current rule.
1276 	 *		On output it points to the matching rule.
1277 	 *	done (outer loop) is used as a flag to break the loop.
1278 	 *	l (inner loop)	residual length of current rule.
1279 	 *		cmd points to the current microinstruction.
1280 	 *
1281 	 * We break the inner loop by setting l=0 and possibly
1282 	 * cmdlen=0 if we don't want to advance cmd.
1283 	 * We break the outer loop by setting done=1
1284 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1285 	 * as needed.
1286 	 */
1287 	for (; f_pos < chain->n_rules; f_pos++) {
1288 		ipfw_insn *cmd;
1289 		uint32_t tablearg = 0;
1290 		int l, cmdlen, skip_or; /* skip rest of OR block */
1291 		struct ip_fw *f;
1292 
1293 		f = chain->map[f_pos];
1294 		if (V_set_disable & (1 << f->set) )
1295 			continue;
1296 
1297 		skip_or = 0;
1298 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1299 		    l -= cmdlen, cmd += cmdlen) {
1300 			int match;
1301 
1302 			/*
1303 			 * check_body is a jump target used when we find a
1304 			 * CHECK_STATE, and need to jump to the body of
1305 			 * the target rule.
1306 			 */
1307 
1308 /* check_body: */
1309 			cmdlen = F_LEN(cmd);
1310 			/*
1311 			 * An OR block (insn_1 || .. || insn_n) has the
1312 			 * F_OR bit set in all but the last instruction.
1313 			 * The first match will set "skip_or", and cause
1314 			 * the following instructions to be skipped until
1315 			 * past the one with the F_OR bit clear.
1316 			 */
1317 			if (skip_or) {		/* skip this instruction */
1318 				if ((cmd->len & F_OR) == 0)
1319 					skip_or = 0;	/* next one is good */
1320 				continue;
1321 			}
1322 			match = 0; /* set to 1 if we succeed */
1323 
1324 			switch (cmd->opcode) {
1325 			/*
1326 			 * The first set of opcodes compares the packet's
1327 			 * fields with some pattern, setting 'match' if a
1328 			 * match is found. At the end of the loop there is
1329 			 * logic to deal with F_NOT and F_OR flags associated
1330 			 * with the opcode.
1331 			 */
1332 			case O_NOP:
1333 				match = 1;
1334 				break;
1335 
1336 			case O_FORWARD_MAC:
1337 				printf("ipfw: opcode %d unimplemented\n",
1338 				    cmd->opcode);
1339 				break;
1340 
1341 			case O_GID:
1342 			case O_UID:
1343 			case O_JAIL:
1344 				/*
1345 				 * We only check offset == 0 && proto != 0,
1346 				 * as this ensures that we have a
1347 				 * packet with the ports info.
1348 				 */
1349 				if (offset != 0)
1350 					break;
1351 				if (proto == IPPROTO_TCP ||
1352 				    proto == IPPROTO_UDP)
1353 					match = check_uidgid(
1354 						    (ipfw_insn_u32 *)cmd,
1355 						    args, &ucred_lookup,
1356 #ifdef __FreeBSD__
1357 						    &ucred_cache);
1358 #else
1359 						    (void *)&ucred_cache);
1360 #endif
1361 				break;
1362 
1363 			case O_RECV:
1364 				match = iface_match(m->m_pkthdr.rcvif,
1365 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1366 				break;
1367 
1368 			case O_XMIT:
1369 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1370 				    chain, &tablearg);
1371 				break;
1372 
1373 			case O_VIA:
1374 				match = iface_match(oif ? oif :
1375 				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1376 				    chain, &tablearg);
1377 				break;
1378 
1379 			case O_MACADDR2:
1380 				if (args->eh != NULL) {	/* have MAC header */
1381 					u_int32_t *want = (u_int32_t *)
1382 						((ipfw_insn_mac *)cmd)->addr;
1383 					u_int32_t *mask = (u_int32_t *)
1384 						((ipfw_insn_mac *)cmd)->mask;
1385 					u_int32_t *hdr = (u_int32_t *)args->eh;
1386 
1387 					match =
1388 					    ( want[0] == (hdr[0] & mask[0]) &&
1389 					      want[1] == (hdr[1] & mask[1]) &&
1390 					      want[2] == (hdr[2] & mask[2]) );
1391 				}
1392 				break;
1393 
1394 			case O_MAC_TYPE:
1395 				if (args->eh != NULL) {
1396 					u_int16_t *p =
1397 					    ((ipfw_insn_u16 *)cmd)->ports;
1398 					int i;
1399 
1400 					for (i = cmdlen - 1; !match && i>0;
1401 					    i--, p += 2)
1402 						match = (etype >= p[0] &&
1403 						    etype <= p[1]);
1404 				}
1405 				break;
1406 
1407 			case O_FRAG:
1408 				match = (offset != 0);
1409 				break;
1410 
1411 			case O_IN:	/* "out" is "not in" */
1412 				match = (oif == NULL);
1413 				break;
1414 
1415 			case O_LAYER2:
1416 				match = (args->eh != NULL);
1417 				break;
1418 
1419 			case O_DIVERTED:
1420 			    {
1421 				/* For diverted packets, args->rule.info
1422 				 * contains the divert port (in host format)
1423 				 * reason and direction.
1424 				 */
1425 				uint32_t i = args->rule.info;
1426 				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1427 				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1428 			    }
1429 				break;
1430 
1431 			case O_PROTO:
1432 				/*
1433 				 * We do not allow an arg of 0 so the
1434 				 * check of "proto" only suffices.
1435 				 */
1436 				match = (proto == cmd->arg1);
1437 				break;
1438 
1439 			case O_IP_SRC:
1440 				match = is_ipv4 &&
1441 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1442 				    src_ip.s_addr);
1443 				break;
1444 
1445 			case O_IP_SRC_LOOKUP:
1446 			case O_IP_DST_LOOKUP:
1447 				if (is_ipv4) {
1448 				    uint32_t key =
1449 					(cmd->opcode == O_IP_DST_LOOKUP) ?
1450 					    dst_ip.s_addr : src_ip.s_addr;
1451 				    uint32_t v = 0;
1452 
1453 				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1454 					/* generic lookup. The key must be
1455 					 * in 32bit big-endian format.
1456 					 */
1457 					v = ((ipfw_insn_u32 *)cmd)->d[1];
1458 					if (v == 0)
1459 					    key = dst_ip.s_addr;
1460 					else if (v == 1)
1461 					    key = src_ip.s_addr;
1462 					else if (v == 6) /* dscp */
1463 					    key = (ip->ip_tos >> 2) & 0x3f;
1464 					else if (offset != 0)
1465 					    break;
1466 					else if (proto != IPPROTO_TCP &&
1467 						proto != IPPROTO_UDP)
1468 					    break;
1469 					else if (v == 2)
1470 					    key = htonl(dst_port);
1471 					else if (v == 3)
1472 					    key = htonl(src_port);
1473 #ifndef USERSPACE
1474 					else if (v == 4 || v == 5) {
1475 					    check_uidgid(
1476 						(ipfw_insn_u32 *)cmd,
1477 						args, &ucred_lookup,
1478 #ifdef __FreeBSD__
1479 						&ucred_cache);
1480 					    if (v == 4 /* O_UID */)
1481 						key = ucred_cache->cr_uid;
1482 					    else if (v == 5 /* O_JAIL */)
1483 						key = ucred_cache->cr_prison->pr_id;
1484 #else /* !__FreeBSD__ */
1485 						(void *)&ucred_cache);
1486 					    if (v ==4 /* O_UID */)
1487 						key = ucred_cache.uid;
1488 					    else if (v == 5 /* O_JAIL */)
1489 						key = ucred_cache.xid;
1490 #endif /* !__FreeBSD__ */
1491 					    key = htonl(key);
1492 					} else
1493 #endif /* !USERSPACE */
1494 					    break;
1495 				    }
1496 				    match = ipfw_lookup_table(chain,
1497 					cmd->arg1, key, &v);
1498 				    if (!match)
1499 					break;
1500 				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1501 					match =
1502 					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1503 				    else
1504 					tablearg = v;
1505 				} else if (is_ipv6) {
1506 					uint32_t v = 0;
1507 					void *pkey = (cmd->opcode == O_IP_DST_LOOKUP) ?
1508 						&args->f_id.dst_ip6: &args->f_id.src_ip6;
1509 					match = ipfw_lookup_table_extended(chain,
1510 							cmd->arg1, pkey, &v,
1511 							IPFW_TABLE_CIDR);
1512 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1513 						match = ((ipfw_insn_u32 *)cmd)->d[0] == v;
1514 					if (match)
1515 						tablearg = v;
1516 				}
1517 				break;
1518 
1519 			case O_IP_SRC_MASK:
1520 			case O_IP_DST_MASK:
1521 				if (is_ipv4) {
1522 				    uint32_t a =
1523 					(cmd->opcode == O_IP_DST_MASK) ?
1524 					    dst_ip.s_addr : src_ip.s_addr;
1525 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1526 				    int i = cmdlen-1;
1527 
1528 				    for (; !match && i>0; i-= 2, p+= 2)
1529 					match = (p[0] == (a & p[1]));
1530 				}
1531 				break;
1532 
1533 			case O_IP_SRC_ME:
1534 				if (is_ipv4) {
1535 					struct ifnet *tif;
1536 
1537 					INADDR_TO_IFP(src_ip, tif);
1538 					match = (tif != NULL);
1539 					break;
1540 				}
1541 #ifdef INET6
1542 				/* FALLTHROUGH */
1543 			case O_IP6_SRC_ME:
1544 				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1545 #endif
1546 				break;
1547 
1548 			case O_IP_DST_SET:
1549 			case O_IP_SRC_SET:
1550 				if (is_ipv4) {
1551 					u_int32_t *d = (u_int32_t *)(cmd+1);
1552 					u_int32_t addr =
1553 					    cmd->opcode == O_IP_DST_SET ?
1554 						args->f_id.dst_ip :
1555 						args->f_id.src_ip;
1556 
1557 					    if (addr < d[0])
1558 						    break;
1559 					    addr -= d[0]; /* subtract base */
1560 					    match = (addr < cmd->arg1) &&
1561 						( d[ 1 + (addr>>5)] &
1562 						  (1<<(addr & 0x1f)) );
1563 				}
1564 				break;
1565 
1566 			case O_IP_DST:
1567 				match = is_ipv4 &&
1568 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1569 				    dst_ip.s_addr);
1570 				break;
1571 
1572 			case O_IP_DST_ME:
1573 				if (is_ipv4) {
1574 					struct ifnet *tif;
1575 
1576 					INADDR_TO_IFP(dst_ip, tif);
1577 					match = (tif != NULL);
1578 					break;
1579 				}
1580 #ifdef INET6
1581 				/* FALLTHROUGH */
1582 			case O_IP6_DST_ME:
1583 				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1584 #endif
1585 				break;
1586 
1587 
1588 			case O_IP_SRCPORT:
1589 			case O_IP_DSTPORT:
1590 				/*
1591 				 * offset == 0 && proto != 0 is enough
1592 				 * to guarantee that we have a
1593 				 * packet with port info.
1594 				 */
1595 				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1596 				    && offset == 0) {
1597 					u_int16_t x =
1598 					    (cmd->opcode == O_IP_SRCPORT) ?
1599 						src_port : dst_port ;
1600 					u_int16_t *p =
1601 					    ((ipfw_insn_u16 *)cmd)->ports;
1602 					int i;
1603 
1604 					for (i = cmdlen - 1; !match && i>0;
1605 					    i--, p += 2)
1606 						match = (x>=p[0] && x<=p[1]);
1607 				}
1608 				break;
1609 
1610 			case O_ICMPTYPE:
1611 				match = (offset == 0 && proto==IPPROTO_ICMP &&
1612 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1613 				break;
1614 
1615 #ifdef INET6
1616 			case O_ICMP6TYPE:
1617 				match = is_ipv6 && offset == 0 &&
1618 				    proto==IPPROTO_ICMPV6 &&
1619 				    icmp6type_match(
1620 					ICMP6(ulp)->icmp6_type,
1621 					(ipfw_insn_u32 *)cmd);
1622 				break;
1623 #endif /* INET6 */
1624 
1625 			case O_IPOPT:
1626 				match = (is_ipv4 &&
1627 				    ipopts_match(ip, cmd) );
1628 				break;
1629 
1630 			case O_IPVER:
1631 				match = (is_ipv4 &&
1632 				    cmd->arg1 == ip->ip_v);
1633 				break;
1634 
1635 			case O_IPID:
1636 			case O_IPLEN:
1637 			case O_IPTTL:
1638 				if (is_ipv4) {	/* only for IP packets */
1639 				    uint16_t x;
1640 				    uint16_t *p;
1641 				    int i;
1642 
1643 				    if (cmd->opcode == O_IPLEN)
1644 					x = iplen;
1645 				    else if (cmd->opcode == O_IPTTL)
1646 					x = ip->ip_ttl;
1647 				    else /* must be IPID */
1648 					x = ntohs(ip->ip_id);
1649 				    if (cmdlen == 1) {
1650 					match = (cmd->arg1 == x);
1651 					break;
1652 				    }
1653 				    /* otherwise we have ranges */
1654 				    p = ((ipfw_insn_u16 *)cmd)->ports;
1655 				    i = cmdlen - 1;
1656 				    for (; !match && i>0; i--, p += 2)
1657 					match = (x >= p[0] && x <= p[1]);
1658 				}
1659 				break;
1660 
1661 			case O_IPPRECEDENCE:
1662 				match = (is_ipv4 &&
1663 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1664 				break;
1665 
1666 			case O_IPTOS:
1667 				match = (is_ipv4 &&
1668 				    flags_match(cmd, ip->ip_tos));
1669 				break;
1670 
1671 			case O_DSCP:
1672 			    {
1673 				uint32_t *p;
1674 				uint16_t x;
1675 
1676 				p = ((ipfw_insn_u32 *)cmd)->d;
1677 
1678 				if (is_ipv4)
1679 					x = ip->ip_tos >> 2;
1680 				else if (is_ipv6) {
1681 					uint8_t *v;
1682 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
1683 					x = (*v & 0x0F) << 2;
1684 					v++;
1685 					x |= *v >> 6;
1686 				} else
1687 					break;
1688 
1689 				/* DSCP bitmask is stored as low_u32 high_u32 */
1690 				if (x > 32)
1691 					match = *(p + 1) & (1 << (x - 32));
1692 				else
1693 					match = *p & (1 << x);
1694 			    }
1695 				break;
1696 
1697 			case O_TCPDATALEN:
1698 				if (proto == IPPROTO_TCP && offset == 0) {
1699 				    struct tcphdr *tcp;
1700 				    uint16_t x;
1701 				    uint16_t *p;
1702 				    int i;
1703 
1704 				    tcp = TCP(ulp);
1705 				    x = iplen -
1706 					((ip->ip_hl + tcp->th_off) << 2);
1707 				    if (cmdlen == 1) {
1708 					match = (cmd->arg1 == x);
1709 					break;
1710 				    }
1711 				    /* otherwise we have ranges */
1712 				    p = ((ipfw_insn_u16 *)cmd)->ports;
1713 				    i = cmdlen - 1;
1714 				    for (; !match && i>0; i--, p += 2)
1715 					match = (x >= p[0] && x <= p[1]);
1716 				}
1717 				break;
1718 
1719 			case O_TCPFLAGS:
1720 				match = (proto == IPPROTO_TCP && offset == 0 &&
1721 				    flags_match(cmd, TCP(ulp)->th_flags));
1722 				break;
1723 
1724 			case O_TCPOPTS:
1725 				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1726 				match = (proto == IPPROTO_TCP && offset == 0 &&
1727 				    tcpopts_match(TCP(ulp), cmd));
1728 				break;
1729 
1730 			case O_TCPSEQ:
1731 				match = (proto == IPPROTO_TCP && offset == 0 &&
1732 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1733 					TCP(ulp)->th_seq);
1734 				break;
1735 
1736 			case O_TCPACK:
1737 				match = (proto == IPPROTO_TCP && offset == 0 &&
1738 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1739 					TCP(ulp)->th_ack);
1740 				break;
1741 
1742 			case O_TCPWIN:
1743 				if (proto == IPPROTO_TCP && offset == 0) {
1744 				    uint16_t x;
1745 				    uint16_t *p;
1746 				    int i;
1747 
1748 				    x = ntohs(TCP(ulp)->th_win);
1749 				    if (cmdlen == 1) {
1750 					match = (cmd->arg1 == x);
1751 					break;
1752 				    }
1753 				    /* Otherwise we have ranges. */
1754 				    p = ((ipfw_insn_u16 *)cmd)->ports;
1755 				    i = cmdlen - 1;
1756 				    for (; !match && i > 0; i--, p += 2)
1757 					match = (x >= p[0] && x <= p[1]);
1758 				}
1759 				break;
1760 
1761 			case O_ESTAB:
1762 				/* reject packets which have SYN only */
1763 				/* XXX should i also check for TH_ACK ? */
1764 				match = (proto == IPPROTO_TCP && offset == 0 &&
1765 				    (TCP(ulp)->th_flags &
1766 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1767 				break;
1768 
1769 			case O_ALTQ: {
1770 				struct pf_mtag *at;
1771 				struct m_tag *mtag;
1772 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1773 
1774 				/*
1775 				 * ALTQ uses mbuf tags from another
1776 				 * packet filtering system - pf(4).
1777 				 * We allocate a tag in its format
1778 				 * and fill it in, pretending to be pf(4).
1779 				 */
1780 				match = 1;
1781 				at = pf_find_mtag(m);
1782 				if (at != NULL && at->qid != 0)
1783 					break;
1784 				mtag = m_tag_get(PACKET_TAG_PF,
1785 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
1786 				if (mtag == NULL) {
1787 					/*
1788 					 * Let the packet fall back to the
1789 					 * default ALTQ.
1790 					 */
1791 					break;
1792 				}
1793 				m_tag_prepend(m, mtag);
1794 				at = (struct pf_mtag *)(mtag + 1);
1795 				at->qid = altq->qid;
1796 				at->hdr = ip;
1797 				break;
1798 			}
1799 
1800 			case O_LOG:
1801 				ipfw_log(f, hlen, args, m,
1802 				    oif, offset | ip6f_mf, tablearg, ip);
1803 				match = 1;
1804 				break;
1805 
1806 			case O_PROB:
1807 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1808 				break;
1809 
1810 			case O_VERREVPATH:
1811 				/* Outgoing packets automatically pass/match */
1812 				match = ((oif != NULL) ||
1813 				    (m->m_pkthdr.rcvif == NULL) ||
1814 				    (
1815 #ifdef INET6
1816 				    is_ipv6 ?
1817 					verify_path6(&(args->f_id.src_ip6),
1818 					    m->m_pkthdr.rcvif, args->f_id.fib) :
1819 #endif
1820 				    verify_path(src_ip, m->m_pkthdr.rcvif,
1821 				        args->f_id.fib)));
1822 				break;
1823 
1824 			case O_VERSRCREACH:
1825 				/* Outgoing packets automatically pass/match */
1826 				match = (hlen > 0 && ((oif != NULL) ||
1827 #ifdef INET6
1828 				    is_ipv6 ?
1829 				        verify_path6(&(args->f_id.src_ip6),
1830 				            NULL, args->f_id.fib) :
1831 #endif
1832 				    verify_path(src_ip, NULL, args->f_id.fib)));
1833 				break;
1834 
1835 			case O_ANTISPOOF:
1836 				/* Outgoing packets automatically pass/match */
1837 				if (oif == NULL && hlen > 0 &&
1838 				    (  (is_ipv4 && in_localaddr(src_ip))
1839 #ifdef INET6
1840 				    || (is_ipv6 &&
1841 				        in6_localaddr(&(args->f_id.src_ip6)))
1842 #endif
1843 				    ))
1844 					match =
1845 #ifdef INET6
1846 					    is_ipv6 ? verify_path6(
1847 					        &(args->f_id.src_ip6),
1848 					        m->m_pkthdr.rcvif,
1849 						args->f_id.fib) :
1850 #endif
1851 					    verify_path(src_ip,
1852 					    	m->m_pkthdr.rcvif,
1853 					        args->f_id.fib);
1854 				else
1855 					match = 1;
1856 				break;
1857 
1858 			case O_IPSEC:
1859 #ifdef IPSEC
1860 				match = (m_tag_find(m,
1861 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1862 #endif
1863 				/* otherwise no match */
1864 				break;
1865 
1866 #ifdef INET6
1867 			case O_IP6_SRC:
1868 				match = is_ipv6 &&
1869 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1870 				    &((ipfw_insn_ip6 *)cmd)->addr6);
1871 				break;
1872 
1873 			case O_IP6_DST:
1874 				match = is_ipv6 &&
1875 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1876 				    &((ipfw_insn_ip6 *)cmd)->addr6);
1877 				break;
1878 			case O_IP6_SRC_MASK:
1879 			case O_IP6_DST_MASK:
1880 				if (is_ipv6) {
1881 					int i = cmdlen - 1;
1882 					struct in6_addr p;
1883 					struct in6_addr *d =
1884 					    &((ipfw_insn_ip6 *)cmd)->addr6;
1885 
1886 					for (; !match && i > 0; d += 2,
1887 					    i -= F_INSN_SIZE(struct in6_addr)
1888 					    * 2) {
1889 						p = (cmd->opcode ==
1890 						    O_IP6_SRC_MASK) ?
1891 						    args->f_id.src_ip6:
1892 						    args->f_id.dst_ip6;
1893 						APPLY_MASK(&p, &d[1]);
1894 						match =
1895 						    IN6_ARE_ADDR_EQUAL(&d[0],
1896 						    &p);
1897 					}
1898 				}
1899 				break;
1900 
1901 			case O_FLOW6ID:
1902 				match = is_ipv6 &&
1903 				    flow6id_match(args->f_id.flow_id6,
1904 				    (ipfw_insn_u32 *) cmd);
1905 				break;
1906 
1907 			case O_EXT_HDR:
1908 				match = is_ipv6 &&
1909 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1910 				break;
1911 
1912 			case O_IP6:
1913 				match = is_ipv6;
1914 				break;
1915 #endif
1916 
1917 			case O_IP4:
1918 				match = is_ipv4;
1919 				break;
1920 
1921 			case O_TAG: {
1922 				struct m_tag *mtag;
1923 				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
1924 
1925 				/* Packet is already tagged with this tag? */
1926 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1927 
1928 				/* We have `untag' action when F_NOT flag is
1929 				 * present. And we must remove this mtag from
1930 				 * mbuf and reset `match' to zero (`match' will
1931 				 * be inversed later).
1932 				 * Otherwise we should allocate new mtag and
1933 				 * push it into mbuf.
1934 				 */
1935 				if (cmd->len & F_NOT) { /* `untag' action */
1936 					if (mtag != NULL)
1937 						m_tag_delete(m, mtag);
1938 					match = 0;
1939 				} else {
1940 					if (mtag == NULL) {
1941 						mtag = m_tag_alloc( MTAG_IPFW,
1942 						    tag, 0, M_NOWAIT);
1943 						if (mtag != NULL)
1944 							m_tag_prepend(m, mtag);
1945 					}
1946 					match = 1;
1947 				}
1948 				break;
1949 			}
1950 
1951 			case O_FIB: /* try match the specified fib */
1952 				if (args->f_id.fib == cmd->arg1)
1953 					match = 1;
1954 				break;
1955 
1956 			case O_SOCKARG:	{
1957 #ifndef USERSPACE	/* not supported in userspace */
1958 				struct inpcb *inp = args->inp;
1959 				struct inpcbinfo *pi;
1960 
1961 				if (is_ipv6) /* XXX can we remove this ? */
1962 					break;
1963 
1964 				if (proto == IPPROTO_TCP)
1965 					pi = &V_tcbinfo;
1966 				else if (proto == IPPROTO_UDP)
1967 					pi = &V_udbinfo;
1968 				else
1969 					break;
1970 
1971 				/*
1972 				 * XXXRW: so_user_cookie should almost
1973 				 * certainly be inp_user_cookie?
1974 				 */
1975 
1976 				/* For incomming packet, lookup up the
1977 				inpcb using the src/dest ip/port tuple */
1978 				if (inp == NULL) {
1979 					inp = in_pcblookup(pi,
1980 						src_ip, htons(src_port),
1981 						dst_ip, htons(dst_port),
1982 						INPLOOKUP_RLOCKPCB, NULL);
1983 					if (inp != NULL) {
1984 						tablearg =
1985 						    inp->inp_socket->so_user_cookie;
1986 						if (tablearg)
1987 							match = 1;
1988 						INP_RUNLOCK(inp);
1989 					}
1990 				} else {
1991 					if (inp->inp_socket) {
1992 						tablearg =
1993 						    inp->inp_socket->so_user_cookie;
1994 						if (tablearg)
1995 							match = 1;
1996 					}
1997 				}
1998 #endif /* !USERSPACE */
1999 				break;
2000 			}
2001 
2002 			case O_TAGGED: {
2003 				struct m_tag *mtag;
2004 				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
2005 
2006 				if (cmdlen == 1) {
2007 					match = m_tag_locate(m, MTAG_IPFW,
2008 					    tag, NULL) != NULL;
2009 					break;
2010 				}
2011 
2012 				/* we have ranges */
2013 				for (mtag = m_tag_first(m);
2014 				    mtag != NULL && !match;
2015 				    mtag = m_tag_next(m, mtag)) {
2016 					uint16_t *p;
2017 					int i;
2018 
2019 					if (mtag->m_tag_cookie != MTAG_IPFW)
2020 						continue;
2021 
2022 					p = ((ipfw_insn_u16 *)cmd)->ports;
2023 					i = cmdlen - 1;
2024 					for(; !match && i > 0; i--, p += 2)
2025 						match =
2026 						    mtag->m_tag_id >= p[0] &&
2027 						    mtag->m_tag_id <= p[1];
2028 				}
2029 				break;
2030 			}
2031 
2032 			/*
2033 			 * The second set of opcodes represents 'actions',
2034 			 * i.e. the terminal part of a rule once the packet
2035 			 * matches all previous patterns.
2036 			 * Typically there is only one action for each rule,
2037 			 * and the opcode is stored at the end of the rule
2038 			 * (but there are exceptions -- see below).
2039 			 *
2040 			 * In general, here we set retval and terminate the
2041 			 * outer loop (would be a 'break 3' in some language,
2042 			 * but we need to set l=0, done=1)
2043 			 *
2044 			 * Exceptions:
2045 			 * O_COUNT and O_SKIPTO actions:
2046 			 *   instead of terminating, we jump to the next rule
2047 			 *   (setting l=0), or to the SKIPTO target (setting
2048 			 *   f/f_len, cmd and l as needed), respectively.
2049 			 *
2050 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2051 			 *   perform some action and set match = 1;
2052 			 *
2053 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2054 			 *   not real 'actions', and are stored right
2055 			 *   before the 'action' part of the rule.
2056 			 *   These opcodes try to install an entry in the
2057 			 *   state tables; if successful, we continue with
2058 			 *   the next opcode (match=1; break;), otherwise
2059 			 *   the packet must be dropped (set retval,
2060 			 *   break loops with l=0, done=1)
2061 			 *
2062 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2063 			 *   cause a lookup of the state table, and a jump
2064 			 *   to the 'action' part of the parent rule
2065 			 *   if an entry is found, or
2066 			 *   (CHECK_STATE only) a jump to the next rule if
2067 			 *   the entry is not found.
2068 			 *   The result of the lookup is cached so that
2069 			 *   further instances of these opcodes become NOPs.
2070 			 *   The jump to the next rule is done by setting
2071 			 *   l=0, cmdlen=0.
2072 			 */
2073 			case O_LIMIT:
2074 			case O_KEEP_STATE:
2075 				if (ipfw_install_state(f,
2076 				    (ipfw_insn_limit *)cmd, args, tablearg)) {
2077 					/* error or limit violation */
2078 					retval = IP_FW_DENY;
2079 					l = 0;	/* exit inner loop */
2080 					done = 1; /* exit outer loop */
2081 				}
2082 				match = 1;
2083 				break;
2084 
2085 			case O_PROBE_STATE:
2086 			case O_CHECK_STATE:
2087 				/*
2088 				 * dynamic rules are checked at the first
2089 				 * keep-state or check-state occurrence,
2090 				 * with the result being stored in dyn_dir.
2091 				 * The compiler introduces a PROBE_STATE
2092 				 * instruction for us when we have a
2093 				 * KEEP_STATE (because PROBE_STATE needs
2094 				 * to be run first).
2095 				 */
2096 				if (dyn_dir == MATCH_UNKNOWN &&
2097 				    (q = ipfw_lookup_dyn_rule(&args->f_id,
2098 				     &dyn_dir, proto == IPPROTO_TCP ?
2099 					TCP(ulp) : NULL))
2100 					!= NULL) {
2101 					/*
2102 					 * Found dynamic entry, update stats
2103 					 * and jump to the 'action' part of
2104 					 * the parent rule by setting
2105 					 * f, cmd, l and clearing cmdlen.
2106 					 */
2107 					IPFW_INC_DYN_COUNTER(q, pktlen);
2108 					/* XXX we would like to have f_pos
2109 					 * readily accessible in the dynamic
2110 				         * rule, instead of having to
2111 					 * lookup q->rule.
2112 					 */
2113 					f = q->rule;
2114 					f_pos = ipfw_find_rule(chain,
2115 						f->rulenum, f->id);
2116 					cmd = ACTION_PTR(f);
2117 					l = f->cmd_len - f->act_ofs;
2118 					ipfw_dyn_unlock(q);
2119 					cmdlen = 0;
2120 					match = 1;
2121 					break;
2122 				}
2123 				/*
2124 				 * Dynamic entry not found. If CHECK_STATE,
2125 				 * skip to next rule, if PROBE_STATE just
2126 				 * ignore and continue with next opcode.
2127 				 */
2128 				if (cmd->opcode == O_CHECK_STATE)
2129 					l = 0;	/* exit inner loop */
2130 				match = 1;
2131 				break;
2132 
2133 			case O_ACCEPT:
2134 				retval = 0;	/* accept */
2135 				l = 0;		/* exit inner loop */
2136 				done = 1;	/* exit outer loop */
2137 				break;
2138 
2139 			case O_PIPE:
2140 			case O_QUEUE:
2141 				set_match(args, f_pos, chain);
2142 				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2143 				if (cmd->opcode == O_PIPE)
2144 					args->rule.info |= IPFW_IS_PIPE;
2145 				if (V_fw_one_pass)
2146 					args->rule.info |= IPFW_ONEPASS;
2147 				retval = IP_FW_DUMMYNET;
2148 				l = 0;          /* exit inner loop */
2149 				done = 1;       /* exit outer loop */
2150 				break;
2151 
2152 			case O_DIVERT:
2153 			case O_TEE:
2154 				if (args->eh) /* not on layer 2 */
2155 				    break;
2156 				/* otherwise this is terminal */
2157 				l = 0;		/* exit inner loop */
2158 				done = 1;	/* exit outer loop */
2159 				retval = (cmd->opcode == O_DIVERT) ?
2160 					IP_FW_DIVERT : IP_FW_TEE;
2161 				set_match(args, f_pos, chain);
2162 				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2163 				break;
2164 
2165 			case O_COUNT:
2166 				IPFW_INC_RULE_COUNTER(f, pktlen);
2167 				l = 0;		/* exit inner loop */
2168 				break;
2169 
2170 			case O_SKIPTO:
2171 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2172 			    f_pos = jump_fast(chain, f, cmd->arg1, tablearg, 0);
2173 			    /*
2174 			     * Skip disabled rules, and re-enter
2175 			     * the inner loop with the correct
2176 			     * f_pos, f, l and cmd.
2177 			     * Also clear cmdlen and skip_or
2178 			     */
2179 			    for (; f_pos < chain->n_rules - 1 &&
2180 				    (V_set_disable &
2181 				     (1 << chain->map[f_pos]->set));
2182 				    f_pos++)
2183 				;
2184 			    /* Re-enter the inner loop at the skipto rule. */
2185 			    f = chain->map[f_pos];
2186 			    l = f->cmd_len;
2187 			    cmd = f->cmd;
2188 			    match = 1;
2189 			    cmdlen = 0;
2190 			    skip_or = 0;
2191 			    continue;
2192 			    break;	/* not reached */
2193 
2194 			case O_CALLRETURN: {
2195 				/*
2196 				 * Implementation of `subroutine' call/return,
2197 				 * in the stack carried in an mbuf tag. This
2198 				 * is different from `skipto' in that any call
2199 				 * address is possible (`skipto' must prevent
2200 				 * backward jumps to avoid endless loops).
2201 				 * We have `return' action when F_NOT flag is
2202 				 * present. The `m_tag_id' field is used as
2203 				 * stack pointer.
2204 				 */
2205 				struct m_tag *mtag;
2206 				uint16_t jmpto, *stack;
2207 
2208 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2209 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2210 				/*
2211 				 * Hand-rolled version of m_tag_locate() with
2212 				 * wildcard `type'.
2213 				 * If not already tagged, allocate new tag.
2214 				 */
2215 				mtag = m_tag_first(m);
2216 				while (mtag != NULL) {
2217 					if (mtag->m_tag_cookie ==
2218 					    MTAG_IPFW_CALL)
2219 						break;
2220 					mtag = m_tag_next(m, mtag);
2221 				}
2222 				if (mtag == NULL && IS_CALL) {
2223 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2224 					    IPFW_CALLSTACK_SIZE *
2225 					    sizeof(uint16_t), M_NOWAIT);
2226 					if (mtag != NULL)
2227 						m_tag_prepend(m, mtag);
2228 				}
2229 
2230 				/*
2231 				 * On error both `call' and `return' just
2232 				 * continue with next rule.
2233 				 */
2234 				if (IS_RETURN && (mtag == NULL ||
2235 				    mtag->m_tag_id == 0)) {
2236 					l = 0;		/* exit inner loop */
2237 					break;
2238 				}
2239 				if (IS_CALL && (mtag == NULL ||
2240 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2241 					printf("ipfw: call stack error, "
2242 					    "go to next rule\n");
2243 					l = 0;		/* exit inner loop */
2244 					break;
2245 				}
2246 
2247 				IPFW_INC_RULE_COUNTER(f, pktlen);
2248 				stack = (uint16_t *)(mtag + 1);
2249 
2250 				/*
2251 				 * The `call' action may use cached f_pos
2252 				 * (in f->next_rule), whose version is written
2253 				 * in f->next_rule.
2254 				 * The `return' action, however, doesn't have
2255 				 * fixed jump address in cmd->arg1 and can't use
2256 				 * cache.
2257 				 */
2258 				if (IS_CALL) {
2259 					stack[mtag->m_tag_id] = f->rulenum;
2260 					mtag->m_tag_id++;
2261 			    		f_pos = jump_fast(chain, f, cmd->arg1,
2262 					    tablearg, 1);
2263 				} else {	/* `return' action */
2264 					mtag->m_tag_id--;
2265 					jmpto = stack[mtag->m_tag_id] + 1;
2266 					f_pos = ipfw_find_rule(chain, jmpto, 0);
2267 				}
2268 
2269 				/*
2270 				 * Skip disabled rules, and re-enter
2271 				 * the inner loop with the correct
2272 				 * f_pos, f, l and cmd.
2273 				 * Also clear cmdlen and skip_or
2274 				 */
2275 				for (; f_pos < chain->n_rules - 1 &&
2276 				    (V_set_disable &
2277 				    (1 << chain->map[f_pos]->set)); f_pos++)
2278 					;
2279 				/* Re-enter the inner loop at the dest rule. */
2280 				f = chain->map[f_pos];
2281 				l = f->cmd_len;
2282 				cmd = f->cmd;
2283 				cmdlen = 0;
2284 				skip_or = 0;
2285 				continue;
2286 				break;	/* NOTREACHED */
2287 			}
2288 #undef IS_CALL
2289 #undef IS_RETURN
2290 
2291 			case O_REJECT:
2292 				/*
2293 				 * Drop the packet and send a reject notice
2294 				 * if the packet is not ICMP (or is an ICMP
2295 				 * query), and it is not multicast/broadcast.
2296 				 */
2297 				if (hlen > 0 && is_ipv4 && offset == 0 &&
2298 				    (proto != IPPROTO_ICMP ||
2299 				     is_icmp_query(ICMP(ulp))) &&
2300 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2301 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2302 					send_reject(args, cmd->arg1, iplen, ip);
2303 					m = args->m;
2304 				}
2305 				/* FALLTHROUGH */
2306 #ifdef INET6
2307 			case O_UNREACH6:
2308 				if (hlen > 0 && is_ipv6 &&
2309 				    ((offset & IP6F_OFF_MASK) == 0) &&
2310 				    (proto != IPPROTO_ICMPV6 ||
2311 				     (is_icmp6_query(icmp6_type) == 1)) &&
2312 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2313 				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2314 					send_reject6(
2315 					    args, cmd->arg1, hlen,
2316 					    (struct ip6_hdr *)ip);
2317 					m = args->m;
2318 				}
2319 				/* FALLTHROUGH */
2320 #endif
2321 			case O_DENY:
2322 				retval = IP_FW_DENY;
2323 				l = 0;		/* exit inner loop */
2324 				done = 1;	/* exit outer loop */
2325 				break;
2326 
2327 			case O_FORWARD_IP:
2328 				if (args->eh)	/* not valid on layer2 pkts */
2329 					break;
2330 				if (q == NULL || q->rule != f ||
2331 				    dyn_dir == MATCH_FORWARD) {
2332 				    struct sockaddr_in *sa;
2333 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2334 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2335 					bcopy(sa, &args->hopstore,
2336 							sizeof(*sa));
2337 					args->hopstore.sin_addr.s_addr =
2338 						    htonl(tablearg);
2339 					args->next_hop = &args->hopstore;
2340 				    } else {
2341 					args->next_hop = sa;
2342 				    }
2343 				}
2344 				retval = IP_FW_PASS;
2345 				l = 0;          /* exit inner loop */
2346 				done = 1;       /* exit outer loop */
2347 				break;
2348 
2349 #ifdef INET6
2350 			case O_FORWARD_IP6:
2351 				if (args->eh)	/* not valid on layer2 pkts */
2352 					break;
2353 				if (q == NULL || q->rule != f ||
2354 				    dyn_dir == MATCH_FORWARD) {
2355 					struct sockaddr_in6 *sin6;
2356 
2357 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2358 					args->next_hop6 = sin6;
2359 				}
2360 				retval = IP_FW_PASS;
2361 				l = 0;		/* exit inner loop */
2362 				done = 1;	/* exit outer loop */
2363 				break;
2364 #endif
2365 
2366 			case O_NETGRAPH:
2367 			case O_NGTEE:
2368 				set_match(args, f_pos, chain);
2369 				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2370 				if (V_fw_one_pass)
2371 					args->rule.info |= IPFW_ONEPASS;
2372 				retval = (cmd->opcode == O_NETGRAPH) ?
2373 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2374 				l = 0;          /* exit inner loop */
2375 				done = 1;       /* exit outer loop */
2376 				break;
2377 
2378 			case O_SETFIB: {
2379 				uint32_t fib;
2380 
2381 				IPFW_INC_RULE_COUNTER(f, pktlen);
2382 				fib = IP_FW_ARG_TABLEARG(cmd->arg1);
2383 				if (fib >= rt_numfibs)
2384 					fib = 0;
2385 				M_SETFIB(m, fib);
2386 				args->f_id.fib = fib;
2387 				l = 0;		/* exit inner loop */
2388 				break;
2389 		        }
2390 
2391 			case O_SETDSCP: {
2392 				uint16_t code;
2393 
2394 				code = IP_FW_ARG_TABLEARG(cmd->arg1) & 0x3F;
2395 				l = 0;		/* exit inner loop */
2396 				if (is_ipv4) {
2397 					uint16_t a;
2398 
2399 					a = ip->ip_tos;
2400 					ip->ip_tos = (code << 2) | (ip->ip_tos & 0x03);
2401 					a += ntohs(ip->ip_sum) - ip->ip_tos;
2402 					ip->ip_sum = htons(a);
2403 				} else if (is_ipv6) {
2404 					uint8_t *v;
2405 
2406 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2407 					*v = (*v & 0xF0) | (code >> 2);
2408 					v++;
2409 					*v = (*v & 0x3F) | ((code & 0x03) << 6);
2410 				} else
2411 					break;
2412 
2413 				IPFW_INC_RULE_COUNTER(f, pktlen);
2414 				break;
2415 			}
2416 
2417 			case O_NAT:
2418 				l = 0;          /* exit inner loop */
2419 				done = 1;       /* exit outer loop */
2420  				if (!IPFW_NAT_LOADED) {
2421 				    retval = IP_FW_DENY;
2422 				    break;
2423 				}
2424 
2425 				struct cfg_nat *t;
2426 				int nat_id;
2427 
2428 				set_match(args, f_pos, chain);
2429 				/* Check if this is 'global' nat rule */
2430 				if (cmd->arg1 == 0) {
2431 					retval = ipfw_nat_ptr(args, NULL, m);
2432 					break;
2433 				}
2434 				t = ((ipfw_insn_nat *)cmd)->nat;
2435 				if (t == NULL) {
2436 					nat_id = IP_FW_ARG_TABLEARG(cmd->arg1);
2437 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2438 
2439 					if (t == NULL) {
2440 					    retval = IP_FW_DENY;
2441 					    break;
2442 					}
2443 					if (cmd->arg1 != IP_FW_TABLEARG)
2444 					    ((ipfw_insn_nat *)cmd)->nat = t;
2445 				}
2446 				retval = ipfw_nat_ptr(args, t, m);
2447 				break;
2448 
2449 			case O_REASS: {
2450 				int ip_off;
2451 
2452 				IPFW_INC_RULE_COUNTER(f, pktlen);
2453 				l = 0;	/* in any case exit inner loop */
2454 				ip_off = ntohs(ip->ip_off);
2455 
2456 				/* if not fragmented, go to next rule */
2457 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2458 				    break;
2459 
2460 				args->m = m = ip_reass(m);
2461 
2462 				/*
2463 				 * do IP header checksum fixup.
2464 				 */
2465 				if (m == NULL) { /* fragment got swallowed */
2466 				    retval = IP_FW_DENY;
2467 				} else { /* good, packet complete */
2468 				    int hlen;
2469 
2470 				    ip = mtod(m, struct ip *);
2471 				    hlen = ip->ip_hl << 2;
2472 				    ip->ip_sum = 0;
2473 				    if (hlen == sizeof(struct ip))
2474 					ip->ip_sum = in_cksum_hdr(ip);
2475 				    else
2476 					ip->ip_sum = in_cksum(m, hlen);
2477 				    retval = IP_FW_REASS;
2478 				    set_match(args, f_pos, chain);
2479 				}
2480 				done = 1;	/* exit outer loop */
2481 				break;
2482 			}
2483 
2484 			default:
2485 				panic("-- unknown opcode %d\n", cmd->opcode);
2486 			} /* end of switch() on opcodes */
2487 			/*
2488 			 * if we get here with l=0, then match is irrelevant.
2489 			 */
2490 
2491 			if (cmd->len & F_NOT)
2492 				match = !match;
2493 
2494 			if (match) {
2495 				if (cmd->len & F_OR)
2496 					skip_or = 1;
2497 			} else {
2498 				if (!(cmd->len & F_OR)) /* not an OR block, */
2499 					break;		/* try next rule    */
2500 			}
2501 
2502 		}	/* end of inner loop, scan opcodes */
2503 #undef PULLUP_LEN
2504 
2505 		if (done)
2506 			break;
2507 
2508 /* next_rule:; */	/* try next rule		*/
2509 
2510 	}		/* end of outer for, scan rules */
2511 
2512 	if (done) {
2513 		struct ip_fw *rule = chain->map[f_pos];
2514 		/* Update statistics */
2515 		IPFW_INC_RULE_COUNTER(rule, pktlen);
2516 	} else {
2517 		retval = IP_FW_DENY;
2518 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2519 	}
2520 	IPFW_PF_RUNLOCK(chain);
2521 #ifdef __FreeBSD__
2522 	if (ucred_cache != NULL)
2523 		crfree(ucred_cache);
2524 #endif
2525 	return (retval);
2526 
2527 pullup_failed:
2528 	if (V_fw_verbose)
2529 		printf("ipfw: pullup failed\n");
2530 	return (IP_FW_DENY);
2531 }
2532 
2533 /*
2534  * Set maximum number of tables that can be used in given VNET ipfw instance.
2535  */
2536 #ifdef SYSCTL_NODE
2537 static int
2538 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
2539 {
2540 	int error;
2541 	unsigned int ntables;
2542 
2543 	ntables = V_fw_tables_max;
2544 
2545 	error = sysctl_handle_int(oidp, &ntables, 0, req);
2546 	/* Read operation or some error */
2547 	if ((error != 0) || (req->newptr == NULL))
2548 		return (error);
2549 
2550 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
2551 }
2552 #endif
2553 
2554 /*
2555  * Module and VNET glue
2556  */
2557 
2558 /*
2559  * Stuff that must be initialised only on boot or module load
2560  */
2561 static int
2562 ipfw_init(void)
2563 {
2564 	int error = 0;
2565 
2566 	/*
2567  	 * Only print out this stuff the first time around,
2568 	 * when called from the sysinit code.
2569 	 */
2570 	printf("ipfw2 "
2571 #ifdef INET6
2572 		"(+ipv6) "
2573 #endif
2574 		"initialized, divert %s, nat %s, "
2575 		"default to %s, logging ",
2576 #ifdef IPDIVERT
2577 		"enabled",
2578 #else
2579 		"loadable",
2580 #endif
2581 #ifdef IPFIREWALL_NAT
2582 		"enabled",
2583 #else
2584 		"loadable",
2585 #endif
2586 		default_to_accept ? "accept" : "deny");
2587 
2588 	/*
2589 	 * Note: V_xxx variables can be accessed here but the vnet specific
2590 	 * initializer may not have been called yet for the VIMAGE case.
2591 	 * Tuneables will have been processed. We will print out values for
2592 	 * the default vnet.
2593 	 * XXX This should all be rationalized AFTER 8.0
2594 	 */
2595 	if (V_fw_verbose == 0)
2596 		printf("disabled\n");
2597 	else if (V_verbose_limit == 0)
2598 		printf("unlimited\n");
2599 	else
2600 		printf("limited to %d packets/entry by default\n",
2601 		    V_verbose_limit);
2602 
2603 	/* Check user-supplied table count for validness */
2604 	if (default_fw_tables > IPFW_TABLES_MAX)
2605 	  default_fw_tables = IPFW_TABLES_MAX;
2606 
2607 	ipfw_log_bpf(1); /* init */
2608 	return (error);
2609 }
2610 
2611 /*
2612  * Called for the removal of the last instance only on module unload.
2613  */
2614 static void
2615 ipfw_destroy(void)
2616 {
2617 
2618 	ipfw_log_bpf(0); /* uninit */
2619 	printf("IP firewall unloaded\n");
2620 }
2621 
2622 /*
2623  * Stuff that must be initialized for every instance
2624  * (including the first of course).
2625  */
2626 static int
2627 vnet_ipfw_init(const void *unused)
2628 {
2629 	int error;
2630 	struct ip_fw *rule = NULL;
2631 	struct ip_fw_chain *chain;
2632 
2633 	chain = &V_layer3_chain;
2634 
2635 	/* First set up some values that are compile time options */
2636 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2637 	V_fw_deny_unknown_exthdrs = 1;
2638 #ifdef IPFIREWALL_VERBOSE
2639 	V_fw_verbose = 1;
2640 #endif
2641 #ifdef IPFIREWALL_VERBOSE_LIMIT
2642 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2643 #endif
2644 #ifdef IPFIREWALL_NAT
2645 	LIST_INIT(&chain->nat);
2646 #endif
2647 
2648 	/* insert the default rule and create the initial map */
2649 	chain->n_rules = 1;
2650 	chain->static_len = sizeof(struct ip_fw);
2651 	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_WAITOK | M_ZERO);
2652 	if (chain->map)
2653 		rule = malloc(chain->static_len, M_IPFW, M_WAITOK | M_ZERO);
2654 
2655 	/* Set initial number of tables */
2656 	V_fw_tables_max = default_fw_tables;
2657 	error = ipfw_init_tables(chain);
2658 	if (error) {
2659 		printf("ipfw2: setting up tables failed\n");
2660 		free(chain->map, M_IPFW);
2661 		free(rule, M_IPFW);
2662 		return (ENOSPC);
2663 	}
2664 
2665 	/* fill and insert the default rule */
2666 	rule->act_ofs = 0;
2667 	rule->rulenum = IPFW_DEFAULT_RULE;
2668 	rule->cmd_len = 1;
2669 	rule->set = RESVD_SET;
2670 	rule->cmd[0].len = 1;
2671 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2672 	chain->default_rule = chain->map[0] = rule;
2673 	chain->id = rule->id = 1;
2674 
2675 	IPFW_LOCK_INIT(chain);
2676 	ipfw_dyn_init(chain);
2677 
2678 	/* First set up some values that are compile time options */
2679 	V_ipfw_vnet_ready = 1;		/* Open for business */
2680 
2681 	/*
2682 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
2683 	 * Even if the latter two fail we still keep the module alive
2684 	 * because the sockopt and layer2 paths are still useful.
2685 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2686 	 * so we can ignore the exact return value and just set a flag.
2687 	 *
2688 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2689 	 * changes in the underlying (per-vnet) variables trigger
2690 	 * immediate hook()/unhook() calls.
2691 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2692 	 * is checked on each packet because there are no pfil hooks.
2693 	 */
2694 	V_ip_fw_ctl_ptr = ipfw_ctl;
2695 	error = ipfw_attach_hooks(1);
2696 	return (error);
2697 }
2698 
2699 /*
2700  * Called for the removal of each instance.
2701  */
2702 static int
2703 vnet_ipfw_uninit(const void *unused)
2704 {
2705 	struct ip_fw *reap, *rule;
2706 	struct ip_fw_chain *chain = &V_layer3_chain;
2707 	int i;
2708 
2709 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2710 	/*
2711 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2712 	 * Then grab, release and grab again the WLOCK so we make
2713 	 * sure the update is propagated and nobody will be in.
2714 	 */
2715 	(void)ipfw_attach_hooks(0 /* detach */);
2716 	V_ip_fw_ctl_ptr = NULL;
2717 	IPFW_UH_WLOCK(chain);
2718 	IPFW_UH_WUNLOCK(chain);
2719 	IPFW_UH_WLOCK(chain);
2720 
2721 	IPFW_WLOCK(chain);
2722 	ipfw_dyn_uninit(0);	/* run the callout_drain */
2723 	IPFW_WUNLOCK(chain);
2724 
2725 	ipfw_destroy_tables(chain);
2726 	reap = NULL;
2727 	IPFW_WLOCK(chain);
2728 	for (i = 0; i < chain->n_rules; i++) {
2729 		rule = chain->map[i];
2730 		rule->x_next = reap;
2731 		reap = rule;
2732 	}
2733 	if (chain->map)
2734 		free(chain->map, M_IPFW);
2735 	IPFW_WUNLOCK(chain);
2736 	IPFW_UH_WUNLOCK(chain);
2737 	if (reap != NULL)
2738 		ipfw_reap_rules(reap);
2739 	IPFW_LOCK_DESTROY(chain);
2740 	ipfw_dyn_uninit(1);	/* free the remaining parts */
2741 	return (0);
2742 }
2743 
2744 /*
2745  * Module event handler.
2746  * In general we have the choice of handling most of these events by the
2747  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2748  * use the SYSINIT handlers as they are more capable of expressing the
2749  * flow of control during module and vnet operations, so this is just
2750  * a skeleton. Note there is no SYSINIT equivalent of the module
2751  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2752  */
2753 static int
2754 ipfw_modevent(module_t mod, int type, void *unused)
2755 {
2756 	int err = 0;
2757 
2758 	switch (type) {
2759 	case MOD_LOAD:
2760 		/* Called once at module load or
2761 	 	 * system boot if compiled in. */
2762 		break;
2763 	case MOD_QUIESCE:
2764 		/* Called before unload. May veto unloading. */
2765 		break;
2766 	case MOD_UNLOAD:
2767 		/* Called during unload. */
2768 		break;
2769 	case MOD_SHUTDOWN:
2770 		/* Called during system shutdown. */
2771 		break;
2772 	default:
2773 		err = EOPNOTSUPP;
2774 		break;
2775 	}
2776 	return err;
2777 }
2778 
2779 static moduledata_t ipfwmod = {
2780 	"ipfw",
2781 	ipfw_modevent,
2782 	0
2783 };
2784 
2785 /* Define startup order. */
2786 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2787 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2788 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2789 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2790 
2791 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2792 MODULE_VERSION(ipfw, 2);
2793 /* should declare some dependencies here */
2794 
2795 /*
2796  * Starting up. Done in order after ipfwmod() has been called.
2797  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2798  */
2799 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2800 	    ipfw_init, NULL);
2801 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2802 	    vnet_ipfw_init, NULL);
2803 
2804 /*
2805  * Closing up shop. These are done in REVERSE ORDER, but still
2806  * after ipfwmod() has been called. Not called on reboot.
2807  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2808  * or when the module is unloaded.
2809  */
2810 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2811 	    ipfw_destroy, NULL);
2812 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2813 	    vnet_ipfw_uninit, NULL);
2814 /* end of file */
2815