xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 /*
30  * The FreeBSD IP packet firewall, main file
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipdivert.h"
35 #include "opt_inet.h"
36 #ifndef INET
37 #error "IPFIREWALL requires INET"
38 #endif /* INET */
39 #include "opt_inet6.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/condvar.h>
44 #include <sys/counter.h>
45 #include <sys/eventhandler.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/jail.h>
51 #include <sys/module.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/rmlock.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/ethernet.h> /* for ETHERTYPE_IP */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_private.h>
66 #include <net/route.h>
67 #include <net/route/nhop.h>
68 #include <net/pfil.h>
69 #include <net/vnet.h>
70 #include <net/if_pfsync.h>
71 
72 #include <netpfil/pf/pf_mtag.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/ip_icmp.h>
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_carp.h>
82 #include <netinet/pim.h>
83 #include <netinet/tcp_var.h>
84 #include <netinet/udp.h>
85 #include <netinet/udp_var.h>
86 #include <netinet/sctp.h>
87 #include <netinet/sctp_crc32.h>
88 #include <netinet/sctp_header.h>
89 
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet/in_fib.h>
93 #ifdef INET6
94 #include <netinet6/in6_fib.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/scope6_var.h>
97 #include <netinet6/ip6_var.h>
98 #endif
99 
100 #include <net/if_gre.h> /* for struct grehdr */
101 
102 #include <netpfil/ipfw/ip_fw_private.h>
103 
104 #include <machine/in_cksum.h>	/* XXX for in_cksum */
105 
106 #ifdef MAC
107 #include <security/mac/mac_framework.h>
108 #endif
109 
110 #define	IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5)		\
111     SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
112 
113 SDT_PROVIDER_DEFINE(ipfw);
114 SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
115     "int",			/* retval */
116     "int",			/* af */
117     "void *",			/* src addr */
118     "void *",			/* dst addr */
119     "struct ip_fw_args *",	/* args */
120     "struct ip_fw *"		/* rule */);
121 
122 /*
123  * static variables followed by global ones.
124  * All ipfw global variables are here.
125  */
126 
127 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
128 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
129 
130 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
131 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
132 
133 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
134 static int default_to_accept = 1;
135 #else
136 static int default_to_accept;
137 #endif
138 
139 VNET_DEFINE(int, autoinc_step);
140 VNET_DEFINE(int, fw_one_pass) = 1;
141 
142 VNET_DEFINE(unsigned int, fw_tables_max);
143 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
144 /* Use 128 tables by default */
145 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
146 
147 static int jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num,
148     int tablearg, int jump_backwards);
149 #ifndef LINEAR_SKIPTO
150 static int jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num,
151     int tablearg, int jump_backwards);
152 #define	JUMP(ch, f, num, targ, back)	jump_cached(ch, f, num, targ, back)
153 #else
154 #define	JUMP(ch, f, num, targ, back)	jump_lookup_pos(ch, f, num, targ, back)
155 #endif
156 
157 /*
158  * Each rule belongs to one of 32 different sets (0..31).
159  * The variable set_disable contains one bit per set.
160  * If the bit is set, all rules in the corresponding set
161  * are disabled. Set RESVD_SET(31) is reserved for the default rule
162  * and rules that are not deleted by the flush command,
163  * and CANNOT be disabled.
164  * Rules in set RESVD_SET can only be deleted individually.
165  */
166 VNET_DEFINE(u_int32_t, set_disable);
167 #define	V_set_disable			VNET(set_disable)
168 
169 VNET_DEFINE(int, fw_verbose);
170 /* counter for ipfw_log(NULL...) */
171 VNET_DEFINE(u_int64_t, norule_counter);
172 VNET_DEFINE(int, verbose_limit);
173 
174 /* layer3_chain contains the list of rules for layer 3 */
175 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
176 
177 /* ipfw_vnet_ready controls when we are open for business */
178 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
179 
180 VNET_DEFINE(int, ipfw_nat_ready) = 0;
181 
182 ipfw_nat_t *ipfw_nat_ptr = NULL;
183 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
184 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
185 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
186 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
187 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
188 
189 #ifdef SYSCTL_NODE
190 uint32_t dummy_def = IPFW_DEFAULT_RULE;
191 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
192 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
193 
194 SYSBEGIN(f3)
195 
196 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
197     "Firewall");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
199     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
200     "Only do a single pass through ipfw when using dummynet(4)");
201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
202     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
203     "Rule number auto-increment step");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
205     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
206     "Log matches to ipfw rules");
207 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
208     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
209     "Set upper limit of matches of ipfw rules logged");
210 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
211     &dummy_def, 0,
212     "The default/max possible rule number.");
213 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
214     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
215     0, 0, sysctl_ipfw_table_num, "IU",
216     "Maximum number of concurrently used tables");
217 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
218     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
219     0, 0, sysctl_ipfw_tables_sets, "IU",
220     "Use per-set namespace for tables");
221 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
222     &default_to_accept, 0,
223     "Make the default rule accept all packets.");
224 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
225 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
226     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
227     "Number of static rules");
228 
229 #ifdef INET6
230 SYSCTL_DECL(_net_inet6_ip6);
231 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
232     "Firewall");
233 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
234     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
235     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
236     "Deny packets with unknown IPv6 Extension Headers");
237 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
238     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
239     &VNET_NAME(fw_permit_single_frag6), 0,
240     "Permit single packet IPv6 fragments");
241 #endif /* INET6 */
242 
243 SYSEND
244 
245 #endif /* SYSCTL_NODE */
246 
247 /*
248  * Some macros used in the various matching options.
249  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
250  * Other macros just cast void * into the appropriate type
251  */
252 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
253 #define	TCP(p)		((struct tcphdr *)(p))
254 #define	SCTP(p)		((struct sctphdr *)(p))
255 #define	UDP(p)		((struct udphdr *)(p))
256 #define	ICMP(p)		((struct icmphdr *)(p))
257 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
258 
259 static __inline int
260 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
261 {
262 	int type = icmp->icmp_type;
263 
264 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
265 }
266 
267 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
268     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
269 
270 static int
271 is_icmp_query(struct icmphdr *icmp)
272 {
273 	int type = icmp->icmp_type;
274 
275 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
276 }
277 #undef TT
278 
279 /*
280  * The following checks use two arrays of 8 or 16 bits to store the
281  * bits that we want set or clear, respectively. They are in the
282  * low and high half of cmd->arg1 or cmd->d[0].
283  *
284  * We scan options and store the bits we find set. We succeed if
285  *
286  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
287  *
288  * The code is sometimes optimized not to store additional variables.
289  */
290 
291 static int
292 flags_match(ipfw_insn *cmd, u_int8_t bits)
293 {
294 	u_char want_clear;
295 	bits = ~bits;
296 
297 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
298 		return 0; /* some bits we want set were clear */
299 	want_clear = (cmd->arg1 >> 8) & 0xff;
300 	if ( (want_clear & bits) != want_clear)
301 		return 0; /* some bits we want clear were set */
302 	return 1;
303 }
304 
305 static int
306 ipopts_match(struct ip *ip, ipfw_insn *cmd)
307 {
308 	int optlen, bits = 0;
309 	u_char *cp = (u_char *)(ip + 1);
310 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
311 
312 	for (; x > 0; x -= optlen, cp += optlen) {
313 		int opt = cp[IPOPT_OPTVAL];
314 
315 		if (opt == IPOPT_EOL)
316 			break;
317 		if (opt == IPOPT_NOP)
318 			optlen = 1;
319 		else {
320 			optlen = cp[IPOPT_OLEN];
321 			if (optlen <= 0 || optlen > x)
322 				return 0; /* invalid or truncated */
323 		}
324 		switch (opt) {
325 		default:
326 			break;
327 
328 		case IPOPT_LSRR:
329 			bits |= IP_FW_IPOPT_LSRR;
330 			break;
331 
332 		case IPOPT_SSRR:
333 			bits |= IP_FW_IPOPT_SSRR;
334 			break;
335 
336 		case IPOPT_RR:
337 			bits |= IP_FW_IPOPT_RR;
338 			break;
339 
340 		case IPOPT_TS:
341 			bits |= IP_FW_IPOPT_TS;
342 			break;
343 		}
344 	}
345 	return (flags_match(cmd, bits));
346 }
347 
348 /*
349  * Parse TCP options. The logic copied from tcp_dooptions().
350  */
351 static int
352 tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
353 {
354 	const u_char *cp = (const u_char *)(tcp + 1);
355 	int optlen, bits = 0;
356 	int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
357 
358 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
359 		int opt = cp[0];
360 		if (opt == TCPOPT_EOL)
361 			break;
362 		if (opt == TCPOPT_NOP)
363 			optlen = 1;
364 		else {
365 			if (cnt < 2)
366 				break;
367 			optlen = cp[1];
368 			if (optlen < 2 || optlen > cnt)
369 				break;
370 		}
371 
372 		switch (opt) {
373 		default:
374 			break;
375 
376 		case TCPOPT_MAXSEG:
377 			if (optlen != TCPOLEN_MAXSEG)
378 				break;
379 			bits |= IP_FW_TCPOPT_MSS;
380 			if (mss != NULL)
381 				*mss = be16dec(cp + 2);
382 			break;
383 
384 		case TCPOPT_WINDOW:
385 			if (optlen == TCPOLEN_WINDOW)
386 				bits |= IP_FW_TCPOPT_WINDOW;
387 			break;
388 
389 		case TCPOPT_SACK_PERMITTED:
390 			if (optlen == TCPOLEN_SACK_PERMITTED)
391 				bits |= IP_FW_TCPOPT_SACK;
392 			break;
393 
394 		case TCPOPT_SACK:
395 			if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
396 				bits |= IP_FW_TCPOPT_SACK;
397 			break;
398 
399 		case TCPOPT_TIMESTAMP:
400 			if (optlen == TCPOLEN_TIMESTAMP)
401 				bits |= IP_FW_TCPOPT_TS;
402 			break;
403 		}
404 	}
405 	return (bits);
406 }
407 
408 static int
409 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
410 {
411 
412 	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
413 }
414 
415 static int
416 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
417     uint32_t *tablearg)
418 {
419 
420 	if (ifp == NULL)	/* no iface with this packet, match fails */
421 		return (0);
422 
423 	/* Check by name or by IP address */
424 	if (cmd->name[0] != '\0') { /* match by name */
425 		if (cmd->name[0] == '\1') /* use tablearg to match */
426 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
427 			    &ifp->if_index, tablearg);
428 		/* Check name */
429 		if (cmd->p.glob) {
430 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
431 				return(1);
432 		} else {
433 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
434 				return(1);
435 		}
436 	} else {
437 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
438 		struct ifaddr *ia;
439 
440 		NET_EPOCH_ASSERT();
441 
442 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
443 			if (ia->ifa_addr->sa_family != AF_INET)
444 				continue;
445 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
446 			    (ia->ifa_addr))->sin_addr.s_addr)
447 				return (1);	/* match */
448 		}
449 #endif /* __FreeBSD__ */
450 	}
451 	return(0);	/* no match, fail ... */
452 }
453 
454 /*
455  * The verify_path function checks if a route to the src exists and
456  * if it is reachable via ifp (when provided).
457  *
458  * The 'verrevpath' option checks that the interface that an IP packet
459  * arrives on is the same interface that traffic destined for the
460  * packet's source address would be routed out of.
461  * The 'versrcreach' option just checks that the source address is
462  * reachable via any route (except default) in the routing table.
463  * These two are a measure to block forged packets. This is also
464  * commonly known as "anti-spoofing" or Unicast Reverse Path
465  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
466  * is purposely reminiscent of the Cisco IOS command,
467  *
468  *   ip verify unicast reverse-path
469  *   ip verify unicast source reachable-via any
470  *
471  * which implements the same functionality. But note that the syntax
472  * is misleading, and the check may be performed on all IP packets
473  * whether unicast, multicast, or broadcast.
474  */
475 static int
476 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
477 {
478 #if defined(USERSPACE) || !defined(__FreeBSD__)
479 	return 0;
480 #else
481 	struct nhop_object *nh;
482 
483 	nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
484 	if (nh == NULL)
485 		return (0);
486 
487 	/*
488 	 * If ifp is provided, check for equality with rtentry.
489 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
490 	 * in order to pass packets injected back by if_simloop():
491 	 * routing entry (via lo0) for our own address
492 	 * may exist, so we need to handle routing assymetry.
493 	 */
494 	if (ifp != NULL && ifp != nh->nh_aifp)
495 		return (0);
496 
497 	/* if no ifp provided, check if rtentry is not default route */
498 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
499 		return (0);
500 
501 	/* or if this is a blackhole/reject route */
502 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
503 		return (0);
504 
505 	/* found valid route */
506 	return 1;
507 #endif /* __FreeBSD__ */
508 }
509 
510 /*
511  * Generate an SCTP packet containing an ABORT chunk. The verification tag
512  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
513  * reflected is not 0.
514  */
515 
516 static struct mbuf *
517 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
518     int reflected)
519 {
520 	struct mbuf *m;
521 	struct ip *ip;
522 #ifdef INET6
523 	struct ip6_hdr *ip6;
524 #endif
525 	struct sctphdr *sctp;
526 	struct sctp_chunkhdr *chunk;
527 	u_int16_t hlen, plen, tlen;
528 
529 	MGETHDR(m, M_NOWAIT, MT_DATA);
530 	if (m == NULL)
531 		return (NULL);
532 
533 	M_SETFIB(m, id->fib);
534 #ifdef MAC
535 	if (replyto != NULL)
536 		mac_netinet_firewall_reply(replyto, m);
537 	else
538 		mac_netinet_firewall_send(m);
539 #else
540 	(void)replyto;		/* don't warn about unused arg */
541 #endif
542 
543 	switch (id->addr_type) {
544 	case 4:
545 		hlen = sizeof(struct ip);
546 		break;
547 #ifdef INET6
548 	case 6:
549 		hlen = sizeof(struct ip6_hdr);
550 		break;
551 #endif
552 	default:
553 		/* XXX: log me?!? */
554 		FREE_PKT(m);
555 		return (NULL);
556 	}
557 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
558 	tlen = hlen + plen;
559 	m->m_data += max_linkhdr;
560 	m->m_flags |= M_SKIP_FIREWALL;
561 	m->m_pkthdr.len = m->m_len = tlen;
562 	m->m_pkthdr.rcvif = NULL;
563 	bzero(m->m_data, tlen);
564 
565 	switch (id->addr_type) {
566 	case 4:
567 		ip = mtod(m, struct ip *);
568 
569 		ip->ip_v = 4;
570 		ip->ip_hl = sizeof(struct ip) >> 2;
571 		ip->ip_tos = IPTOS_LOWDELAY;
572 		ip->ip_len = htons(tlen);
573 		ip->ip_id = htons(0);
574 		ip->ip_off = htons(0);
575 		ip->ip_ttl = V_ip_defttl;
576 		ip->ip_p = IPPROTO_SCTP;
577 		ip->ip_sum = 0;
578 		ip->ip_src.s_addr = htonl(id->dst_ip);
579 		ip->ip_dst.s_addr = htonl(id->src_ip);
580 
581 		sctp = (struct sctphdr *)(ip + 1);
582 		break;
583 #ifdef INET6
584 	case 6:
585 		ip6 = mtod(m, struct ip6_hdr *);
586 
587 		ip6->ip6_vfc = IPV6_VERSION;
588 		ip6->ip6_plen = htons(plen);
589 		ip6->ip6_nxt = IPPROTO_SCTP;
590 		ip6->ip6_hlim = IPV6_DEFHLIM;
591 		ip6->ip6_src = id->dst_ip6;
592 		ip6->ip6_dst = id->src_ip6;
593 
594 		sctp = (struct sctphdr *)(ip6 + 1);
595 		break;
596 #endif
597 	}
598 
599 	sctp->src_port = htons(id->dst_port);
600 	sctp->dest_port = htons(id->src_port);
601 	sctp->v_tag = htonl(vtag);
602 	sctp->checksum = htonl(0);
603 
604 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
605 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
606 	chunk->chunk_flags = 0;
607 	if (reflected != 0) {
608 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
609 	}
610 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
611 
612 	sctp->checksum = sctp_calculate_cksum(m, hlen);
613 
614 	return (m);
615 }
616 
617 /*
618  * Generate a TCP packet, containing either a RST or a keepalive.
619  * When flags & TH_RST, we are sending a RST packet, because of a
620  * "reset" action matched the packet.
621  * Otherwise we are sending a keepalive, and flags & TH_
622  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
623  * so that MAC can label the reply appropriately.
624  */
625 struct mbuf *
626 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
627     u_int32_t ack, int flags)
628 {
629 	struct mbuf *m = NULL;		/* stupid compiler */
630 	struct ip *h = NULL;		/* stupid compiler */
631 #ifdef INET6
632 	struct ip6_hdr *h6 = NULL;
633 #endif
634 	struct tcphdr *th = NULL;
635 	int len, dir;
636 
637 	MGETHDR(m, M_NOWAIT, MT_DATA);
638 	if (m == NULL)
639 		return (NULL);
640 
641 	M_SETFIB(m, id->fib);
642 #ifdef MAC
643 	if (replyto != NULL)
644 		mac_netinet_firewall_reply(replyto, m);
645 	else
646 		mac_netinet_firewall_send(m);
647 #else
648 	(void)replyto;		/* don't warn about unused arg */
649 #endif
650 
651 	switch (id->addr_type) {
652 	case 4:
653 		len = sizeof(struct ip) + sizeof(struct tcphdr);
654 		break;
655 #ifdef INET6
656 	case 6:
657 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
658 		break;
659 #endif
660 	default:
661 		/* XXX: log me?!? */
662 		FREE_PKT(m);
663 		return (NULL);
664 	}
665 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
666 
667 	m->m_data += max_linkhdr;
668 	m->m_flags |= M_SKIP_FIREWALL;
669 	m->m_pkthdr.len = m->m_len = len;
670 	m->m_pkthdr.rcvif = NULL;
671 	bzero(m->m_data, len);
672 
673 	switch (id->addr_type) {
674 	case 4:
675 		h = mtod(m, struct ip *);
676 
677 		/* prepare for checksum */
678 		h->ip_p = IPPROTO_TCP;
679 		h->ip_len = htons(sizeof(struct tcphdr));
680 		if (dir) {
681 			h->ip_src.s_addr = htonl(id->src_ip);
682 			h->ip_dst.s_addr = htonl(id->dst_ip);
683 		} else {
684 			h->ip_src.s_addr = htonl(id->dst_ip);
685 			h->ip_dst.s_addr = htonl(id->src_ip);
686 		}
687 
688 		th = (struct tcphdr *)(h + 1);
689 		break;
690 #ifdef INET6
691 	case 6:
692 		h6 = mtod(m, struct ip6_hdr *);
693 
694 		/* prepare for checksum */
695 		h6->ip6_nxt = IPPROTO_TCP;
696 		h6->ip6_plen = htons(sizeof(struct tcphdr));
697 		if (dir) {
698 			h6->ip6_src = id->src_ip6;
699 			h6->ip6_dst = id->dst_ip6;
700 		} else {
701 			h6->ip6_src = id->dst_ip6;
702 			h6->ip6_dst = id->src_ip6;
703 		}
704 
705 		th = (struct tcphdr *)(h6 + 1);
706 		break;
707 #endif
708 	}
709 
710 	if (dir) {
711 		th->th_sport = htons(id->src_port);
712 		th->th_dport = htons(id->dst_port);
713 	} else {
714 		th->th_sport = htons(id->dst_port);
715 		th->th_dport = htons(id->src_port);
716 	}
717 	th->th_off = sizeof(struct tcphdr) >> 2;
718 
719 	if (flags & TH_RST) {
720 		if (flags & TH_ACK) {
721 			th->th_seq = htonl(ack);
722 			tcp_set_flags(th, TH_RST);
723 		} else {
724 			if (flags & TH_SYN)
725 				seq++;
726 			th->th_ack = htonl(seq);
727 			tcp_set_flags(th, TH_RST | TH_ACK);
728 		}
729 	} else {
730 		/*
731 		 * Keepalive - use caller provided sequence numbers
732 		 */
733 		th->th_seq = htonl(seq);
734 		th->th_ack = htonl(ack);
735 		tcp_set_flags(th, TH_ACK);
736 	}
737 
738 	switch (id->addr_type) {
739 	case 4:
740 		th->th_sum = in_cksum(m, len);
741 
742 		/* finish the ip header */
743 		h->ip_v = 4;
744 		h->ip_hl = sizeof(*h) >> 2;
745 		h->ip_tos = IPTOS_LOWDELAY;
746 		h->ip_off = htons(0);
747 		h->ip_len = htons(len);
748 		h->ip_ttl = V_ip_defttl;
749 		h->ip_sum = 0;
750 		break;
751 #ifdef INET6
752 	case 6:
753 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
754 		    sizeof(struct tcphdr));
755 
756 		/* finish the ip6 header */
757 		h6->ip6_vfc |= IPV6_VERSION;
758 		h6->ip6_hlim = IPV6_DEFHLIM;
759 		break;
760 #endif
761 	}
762 
763 	return (m);
764 }
765 
766 #ifdef INET6
767 /*
768  * ipv6 specific rules here...
769  */
770 static __inline int
771 icmp6type_match(int type, ipfw_insn_u32 *cmd)
772 {
773 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
774 }
775 
776 static int
777 flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
778 {
779 	int i;
780 	for (i=0; i <= cmd->o.arg1; ++i)
781 		if (curr_flow == cmd->d[i])
782 			return 1;
783 	return 0;
784 }
785 
786 /* support for IP6_*_ME opcodes */
787 static const struct in6_addr lla_mask = {{{
788 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
789 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
790 }}};
791 
792 static int
793 ipfw_localip6(struct in6_addr *in6)
794 {
795 	struct rm_priotracker in6_ifa_tracker;
796 	struct in6_ifaddr *ia;
797 
798 	if (IN6_IS_ADDR_MULTICAST(in6))
799 		return (0);
800 
801 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
802 		return (in6_localip(in6));
803 
804 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
805 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
806 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
807 			continue;
808 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
809 		    in6, &lla_mask)) {
810 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
811 			return (1);
812 		}
813 	}
814 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
815 	return (0);
816 }
817 
818 static int
819 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
820 {
821 	struct nhop_object *nh;
822 
823 	if (IN6_IS_SCOPE_LINKLOCAL(src))
824 		return (1);
825 
826 	nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
827 	if (nh == NULL)
828 		return (0);
829 
830 	/* If ifp is provided, check for equality with route table. */
831 	if (ifp != NULL && ifp != nh->nh_aifp)
832 		return (0);
833 
834 	/* if no ifp provided, check if rtentry is not default route */
835 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
836 		return (0);
837 
838 	/* or if this is a blackhole/reject route */
839 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
840 		return (0);
841 
842 	/* found valid route */
843 	return 1;
844 }
845 
846 static int
847 is_icmp6_query(int icmp6_type)
848 {
849 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
850 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
851 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
852 	    icmp6_type == ICMP6_WRUREQUEST ||
853 	    icmp6_type == ICMP6_FQDN_QUERY ||
854 	    icmp6_type == ICMP6_NI_QUERY))
855 		return (1);
856 
857 	return (0);
858 }
859 
860 static int
861 map_icmp_unreach(int code)
862 {
863 
864 	/* RFC 7915 p4.2 */
865 	switch (code) {
866 	case ICMP_UNREACH_NET:
867 	case ICMP_UNREACH_HOST:
868 	case ICMP_UNREACH_SRCFAIL:
869 	case ICMP_UNREACH_NET_UNKNOWN:
870 	case ICMP_UNREACH_HOST_UNKNOWN:
871 	case ICMP_UNREACH_TOSNET:
872 	case ICMP_UNREACH_TOSHOST:
873 		return (ICMP6_DST_UNREACH_NOROUTE);
874 	case ICMP_UNREACH_PORT:
875 		return (ICMP6_DST_UNREACH_NOPORT);
876 	default:
877 		/*
878 		 * Map the rest of codes into admit prohibited.
879 		 * XXX: unreach proto should be mapped into ICMPv6
880 		 * parameter problem, but we use only unreach type.
881 		 */
882 		return (ICMP6_DST_UNREACH_ADMIN);
883 	}
884 }
885 
886 static void
887 send_reject6(struct ip_fw_args *args, int code, u_int hlen,
888     const struct ip6_hdr *ip6)
889 {
890 	struct mbuf *m;
891 
892 	m = args->m;
893 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
894 		const struct tcphdr * tcp;
895 		tcp = (const struct tcphdr *)((const char *)ip6 + hlen);
896 
897 		if ((tcp_get_flags(tcp) & TH_RST) == 0) {
898 			struct mbuf *m0;
899 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
900 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
901 			    tcp_get_flags(tcp) | TH_RST);
902 			if (m0 != NULL)
903 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
904 				    NULL);
905 		}
906 		FREE_PKT(m);
907 	} else if (code == ICMP6_UNREACH_ABORT &&
908 	    args->f_id.proto == IPPROTO_SCTP) {
909 		struct mbuf *m0;
910 		const struct sctphdr *sctp;
911 		u_int32_t v_tag;
912 		int reflected;
913 
914 		sctp = (const struct sctphdr *)((const char *)ip6 + hlen);
915 		reflected = 1;
916 		v_tag = ntohl(sctp->v_tag);
917 		/* Investigate the first chunk header if available */
918 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
919 		    sizeof(struct sctp_chunkhdr)) {
920 			const struct sctp_chunkhdr *chunk;
921 
922 			chunk = (const struct sctp_chunkhdr *)(sctp + 1);
923 			switch (chunk->chunk_type) {
924 			case SCTP_INITIATION:
925 				/*
926 				 * Packets containing an INIT chunk MUST have
927 				 * a zero v-tag.
928 				 */
929 				if (v_tag != 0) {
930 					v_tag = 0;
931 					break;
932 				}
933 				/* INIT chunk MUST NOT be bundled */
934 				if (m->m_pkthdr.len >
935 				    hlen + sizeof(struct sctphdr) +
936 				    ntohs(chunk->chunk_length) + 3) {
937 					break;
938 				}
939 				/* Use the initiate tag if available */
940 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
941 				    sizeof(struct sctp_chunkhdr) +
942 				    offsetof(struct sctp_init, a_rwnd))) {
943 					const struct sctp_init *init;
944 
945 					init = (const struct sctp_init *)(chunk + 1);
946 					v_tag = ntohl(init->initiate_tag);
947 					reflected = 0;
948 				}
949 				break;
950 			case SCTP_ABORT_ASSOCIATION:
951 				/*
952 				 * If the packet contains an ABORT chunk, don't
953 				 * reply.
954 				 * XXX: We should search through all chunks,
955 				 * but do not do that to avoid attacks.
956 				 */
957 				v_tag = 0;
958 				break;
959 			}
960 		}
961 		if (v_tag == 0) {
962 			m0 = NULL;
963 		} else {
964 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
965 			    reflected);
966 		}
967 		if (m0 != NULL)
968 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
969 		FREE_PKT(m);
970 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
971 		/* Send an ICMPv6 unreach. */
972 #if 0
973 		/*
974 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
975 		 * as the contents are read. We need to m_adj() the
976 		 * needed amount.
977 		 * The mbuf will however be thrown away so we can adjust it.
978 		 * Remember we did an m_pullup on it already so we
979 		 * can make some assumptions about contiguousness.
980 		 */
981 		if (args->L3offset)
982 			m_adj(m, args->L3offset);
983 #endif
984 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
985 	} else
986 		FREE_PKT(m);
987 
988 	args->m = NULL;
989 }
990 
991 #endif /* INET6 */
992 
993 /*
994  * sends a reject message, consuming the mbuf passed as an argument.
995  */
996 static void
997 send_reject(struct ip_fw_args *args, int code, uint16_t mtu, int iplen,
998     const struct ip *ip)
999 {
1000 #if 0
1001 	/* XXX When ip is not guaranteed to be at mtod() we will
1002 	 * need to account for this */
1003 	 * The mbuf will however be thrown away so we can adjust it.
1004 	 * Remember we did an m_pullup on it already so we
1005 	 * can make some assumptions about contiguousness.
1006 	 */
1007 	if (args->L3offset)
1008 		m_adj(m, args->L3offset);
1009 #endif
1010 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1011 		/* Send an ICMP unreach */
1012 		icmp_error(args->m, ICMP_UNREACH, code, 0L, mtu);
1013 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1014 		struct tcphdr *const tcp =
1015 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1016 		if ( (tcp_get_flags(tcp) & TH_RST) == 0) {
1017 			struct mbuf *m;
1018 			m = ipfw_send_pkt(args->m, &(args->f_id),
1019 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1020 				tcp_get_flags(tcp) | TH_RST);
1021 			if (m != NULL)
1022 				ip_output(m, NULL, NULL, 0, NULL, NULL);
1023 		}
1024 		FREE_PKT(args->m);
1025 	} else if (code == ICMP_REJECT_ABORT &&
1026 	    args->f_id.proto == IPPROTO_SCTP) {
1027 		struct mbuf *m;
1028 		struct sctphdr *sctp;
1029 		struct sctp_chunkhdr *chunk;
1030 		struct sctp_init *init;
1031 		u_int32_t v_tag;
1032 		int reflected;
1033 
1034 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1035 		reflected = 1;
1036 		v_tag = ntohl(sctp->v_tag);
1037 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1038 		    sizeof(struct sctp_chunkhdr)) {
1039 			/* Look at the first chunk header if available */
1040 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1041 			switch (chunk->chunk_type) {
1042 			case SCTP_INITIATION:
1043 				/*
1044 				 * Packets containing an INIT chunk MUST have
1045 				 * a zero v-tag.
1046 				 */
1047 				if (v_tag != 0) {
1048 					v_tag = 0;
1049 					break;
1050 				}
1051 				/* INIT chunk MUST NOT be bundled */
1052 				if (iplen >
1053 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1054 				    ntohs(chunk->chunk_length) + 3) {
1055 					break;
1056 				}
1057 				/* Use the initiate tag if available */
1058 				if ((iplen >= (ip->ip_hl << 2) +
1059 				    sizeof(struct sctphdr) +
1060 				    sizeof(struct sctp_chunkhdr) +
1061 				    offsetof(struct sctp_init, a_rwnd))) {
1062 					init = (struct sctp_init *)(chunk + 1);
1063 					v_tag = ntohl(init->initiate_tag);
1064 					reflected = 0;
1065 				}
1066 				break;
1067 			case SCTP_ABORT_ASSOCIATION:
1068 				/*
1069 				 * If the packet contains an ABORT chunk, don't
1070 				 * reply.
1071 				 * XXX: We should search through all chunks,
1072 				 * but do not do that to avoid attacks.
1073 				 */
1074 				v_tag = 0;
1075 				break;
1076 			}
1077 		}
1078 		if (v_tag == 0) {
1079 			m = NULL;
1080 		} else {
1081 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1082 			    reflected);
1083 		}
1084 		if (m != NULL)
1085 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1086 		FREE_PKT(args->m);
1087 	} else
1088 		FREE_PKT(args->m);
1089 	args->m = NULL;
1090 }
1091 
1092 /*
1093  * Support for uid/gid/jail lookup. These tests are expensive
1094  * (because we may need to look into the list of active sockets)
1095  * so we cache the results. ugid_lookupp is 0 if we have not
1096  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1097  * and failed. The function always returns the match value.
1098  * We could actually spare the variable and use *uc, setting
1099  * it to '(void *)check_uidgid if we have no info, NULL if
1100  * we tried and failed, or any other value if successful.
1101  */
1102 static int
1103 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1104     struct ucred **uc)
1105 {
1106 #if defined(USERSPACE)
1107 	return 0;	// not supported in userspace
1108 #else
1109 #ifndef __FreeBSD__
1110 	/* XXX */
1111 	return cred_check(insn, proto, oif,
1112 	    dst_ip, dst_port, src_ip, src_port,
1113 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1114 #else  /* FreeBSD */
1115 	struct in_addr src_ip, dst_ip;
1116 	struct inpcbinfo *pi;
1117 	struct ipfw_flow_id *id;
1118 	struct inpcb *pcb, *inp;
1119 	int lookupflags;
1120 	int match;
1121 
1122 	id = &args->f_id;
1123 	inp = args->inp;
1124 
1125 	/*
1126 	 * Check to see if the UDP or TCP stack supplied us with
1127 	 * the PCB. If so, rather then holding a lock and looking
1128 	 * up the PCB, we can use the one that was supplied.
1129 	 */
1130 	if (inp && *ugid_lookupp == 0) {
1131 		INP_LOCK_ASSERT(inp);
1132 		if (inp->inp_socket != NULL) {
1133 			*uc = crhold(inp->inp_cred);
1134 			*ugid_lookupp = 1;
1135 		} else
1136 			*ugid_lookupp = -1;
1137 	}
1138 	/*
1139 	 * If we have already been here and the packet has no
1140 	 * PCB entry associated with it, then we can safely
1141 	 * assume that this is a no match.
1142 	 */
1143 	if (*ugid_lookupp == -1)
1144 		return (0);
1145 	if (id->proto == IPPROTO_TCP) {
1146 		lookupflags = 0;
1147 		pi = &V_tcbinfo;
1148 	} else if (id->proto == IPPROTO_UDP) {
1149 		lookupflags = INPLOOKUP_WILDCARD;
1150 		pi = &V_udbinfo;
1151 	} else if (id->proto == IPPROTO_UDPLITE) {
1152 		lookupflags = INPLOOKUP_WILDCARD;
1153 		pi = &V_ulitecbinfo;
1154 	} else
1155 		return 0;
1156 	lookupflags |= INPLOOKUP_RLOCKPCB;
1157 	match = 0;
1158 	if (*ugid_lookupp == 0) {
1159 		if (id->addr_type == 6) {
1160 #ifdef INET6
1161 			if (args->flags & IPFW_ARGS_IN)
1162 				pcb = in6_pcblookup_mbuf(pi,
1163 				    &id->src_ip6, htons(id->src_port),
1164 				    &id->dst_ip6, htons(id->dst_port),
1165 				    lookupflags, NULL, args->m);
1166 			else
1167 				pcb = in6_pcblookup_mbuf(pi,
1168 				    &id->dst_ip6, htons(id->dst_port),
1169 				    &id->src_ip6, htons(id->src_port),
1170 				    lookupflags, args->ifp, args->m);
1171 #else
1172 			*ugid_lookupp = -1;
1173 			return (0);
1174 #endif
1175 		} else {
1176 			src_ip.s_addr = htonl(id->src_ip);
1177 			dst_ip.s_addr = htonl(id->dst_ip);
1178 			if (args->flags & IPFW_ARGS_IN)
1179 				pcb = in_pcblookup_mbuf(pi,
1180 				    src_ip, htons(id->src_port),
1181 				    dst_ip, htons(id->dst_port),
1182 				    lookupflags, NULL, args->m);
1183 			else
1184 				pcb = in_pcblookup_mbuf(pi,
1185 				    dst_ip, htons(id->dst_port),
1186 				    src_ip, htons(id->src_port),
1187 				    lookupflags, args->ifp, args->m);
1188 		}
1189 		if (pcb != NULL) {
1190 			INP_RLOCK_ASSERT(pcb);
1191 			*uc = crhold(pcb->inp_cred);
1192 			*ugid_lookupp = 1;
1193 			INP_RUNLOCK(pcb);
1194 		}
1195 		if (*ugid_lookupp == 0) {
1196 			/*
1197 			 * We tried and failed, set the variable to -1
1198 			 * so we will not try again on this packet.
1199 			 */
1200 			*ugid_lookupp = -1;
1201 			return (0);
1202 		}
1203 	}
1204 	if (insn->o.opcode == O_UID)
1205 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1206 	else if (insn->o.opcode == O_GID)
1207 		match = groupmember((gid_t)insn->d[0], *uc);
1208 	else if (insn->o.opcode == O_JAIL)
1209 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1210 	return (match);
1211 #endif /* __FreeBSD__ */
1212 #endif /* not supported in userspace */
1213 }
1214 
1215 /*
1216  * Helper function to set args with info on the rule after the matching
1217  * one. slot is precise, whereas we guess rule_id as they are
1218  * assigned sequentially.
1219  */
1220 static inline void
1221 set_match(struct ip_fw_args *args, int slot,
1222 	struct ip_fw_chain *chain)
1223 {
1224 	args->rule.chain_id = chain->id;
1225 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1226 	args->rule.rule_id = 1 + chain->map[slot]->id;
1227 	args->rule.rulenum = chain->map[slot]->rulenum;
1228 	args->flags |= IPFW_ARGS_REF;
1229 }
1230 
1231 static int
1232 jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1233     int tablearg, int jump_backwards)
1234 {
1235 	int f_pos, i;
1236 
1237 	i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1238 	/* make sure we do not jump backward */
1239 	if (jump_backwards == 0 && i <= f->rulenum)
1240 		i = f->rulenum + 1;
1241 
1242 #ifndef LINEAR_SKIPTO
1243 	if (chain->idxmap != NULL)
1244 		f_pos = chain->idxmap[i];
1245 	else
1246 		f_pos = ipfw_find_rule(chain, i, 0);
1247 #else
1248 	f_pos = chain->idxmap[i];
1249 #endif /* LINEAR_SKIPTO */
1250 
1251 	return (f_pos);
1252 }
1253 
1254 
1255 #ifndef LINEAR_SKIPTO
1256 /*
1257  * Helper function to enable cached rule lookups using
1258  * cache.id and cache.pos fields in ipfw rule.
1259  */
1260 static int
1261 jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1262     int tablearg, int jump_backwards)
1263 {
1264 	int f_pos;
1265 
1266 	/* Can't use cache with IP_FW_TARG */
1267 	if (num == IP_FW_TARG)
1268 		return jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1269 
1270 	/*
1271 	 * If possible use cached f_pos (in f->cache.pos),
1272 	 * whose version is written in f->cache.id (horrible hacks
1273 	 * to avoid changing the ABI).
1274 	 *
1275 	 * Multiple threads can execute the same rule simultaneously,
1276 	 * we need to ensure that cache.pos is updated before cache.id.
1277 	 */
1278 
1279 #ifdef __LP64__
1280 	struct ip_fw_jump_cache cache;
1281 
1282 	cache.raw_value = f->cache.raw_value;
1283 	if (cache.id == chain->id)
1284 		return (cache.pos);
1285 
1286 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1287 
1288 	cache.pos = f_pos;
1289 	cache.id = chain->id;
1290 	f->cache.raw_value = cache.raw_value;
1291 #else
1292 	if (f->cache.id == chain->id) {
1293 		/* Load pos after id */
1294 		atomic_thread_fence_acq();
1295 		return (f->cache.pos);
1296 	}
1297 
1298 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1299 
1300 	f->cache.pos = f_pos;
1301 	/* Store id after pos */
1302 	atomic_thread_fence_rel();
1303 	f->cache.id = chain->id;
1304 #endif /* !__LP64__ */
1305 	return (f_pos);
1306 }
1307 #endif /* !LINEAR_SKIPTO */
1308 
1309 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1310 /*
1311  * The main check routine for the firewall.
1312  *
1313  * All arguments are in args so we can modify them and return them
1314  * back to the caller.
1315  *
1316  * Parameters:
1317  *
1318  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1319  *		Starts with the IP header.
1320  *	args->L3offset	Number of bytes bypassed if we came from L2.
1321  *			e.g. often sizeof(eh)  ** NOTYET **
1322  *	args->ifp	Incoming or outgoing interface.
1323  *	args->divert_rule (in/out)
1324  *		Skip up to the first rule past this rule number;
1325  *		upon return, non-zero port number for divert or tee.
1326  *
1327  *	args->rule	Pointer to the last matching rule (in/out)
1328  *	args->next_hop	Socket we are forwarding to (out).
1329  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1330  *	args->f_id	Addresses grabbed from the packet (out)
1331  * 	args->rule.info	a cookie depending on rule action
1332  *
1333  * Return value:
1334  *
1335  *	IP_FW_PASS	the packet must be accepted
1336  *	IP_FW_DENY	the packet must be dropped
1337  *	IP_FW_DIVERT	divert packet, port in m_tag
1338  *	IP_FW_TEE	tee packet, port in m_tag
1339  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1340  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1341  *		args->rule contains the matching rule,
1342  *		args->rule.info has additional information.
1343  *
1344  */
1345 int
1346 ipfw_chk(struct ip_fw_args *args)
1347 {
1348 
1349 	/*
1350 	 * Local variables holding state while processing a packet:
1351 	 *
1352 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1353 	 * are some assumption on the values of the variables, which
1354 	 * are documented here. Should you change them, please check
1355 	 * the implementation of the various instructions to make sure
1356 	 * that they still work.
1357 	 *
1358 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1359 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1360 	 *	consumes the packet because it calls send_reject().
1361 	 *	XXX This has to change, so that ipfw_chk() never modifies
1362 	 *	or consumes the buffer.
1363 	 *	OR
1364 	 * args->mem	Pointer to contigous memory chunk.
1365 	 * ip	Is the beginning of the ip(4 or 6) header.
1366 	 * eh	Ethernet header in case if input is Layer2.
1367 	 */
1368 	struct mbuf *m;
1369 	struct ip *ip;
1370 	struct ether_header *eh;
1371 
1372 	/*
1373 	 * For rules which contain uid/gid or jail constraints, cache
1374 	 * a copy of the users credentials after the pcb lookup has been
1375 	 * executed. This will speed up the processing of rules with
1376 	 * these types of constraints, as well as decrease contention
1377 	 * on pcb related locks.
1378 	 */
1379 #ifndef __FreeBSD__
1380 	struct bsd_ucred ucred_cache;
1381 #else
1382 	struct ucred *ucred_cache = NULL;
1383 #endif
1384 	int ucred_lookup = 0;
1385 	int f_pos = 0;		/* index of current rule in the array */
1386 	int retval = 0;
1387 	struct ifnet *oif, *iif;
1388 
1389 	/*
1390 	 * hlen	The length of the IP header.
1391 	 */
1392 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1393 
1394 	/*
1395 	 * offset	The offset of a fragment. offset != 0 means that
1396 	 *	we have a fragment at this offset of an IPv4 packet.
1397 	 *	offset == 0 means that (if this is an IPv4 packet)
1398 	 *	this is the first or only fragment.
1399 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1400 	 *	or there is a single packet fragment (fragment header added
1401 	 *	without needed).  We will treat a single packet fragment as if
1402 	 *	there was no fragment header (or log/block depending on the
1403 	 *	V_fw_permit_single_frag6 sysctl setting).
1404 	 */
1405 	u_short offset = 0;
1406 	u_short ip6f_mf = 0;
1407 
1408 	/*
1409 	 * Local copies of addresses. They are only valid if we have
1410 	 * an IP packet.
1411 	 *
1412 	 * proto	The protocol. Set to 0 for non-ip packets,
1413 	 *	or to the protocol read from the packet otherwise.
1414 	 *	proto != 0 means that we have an IPv4 packet.
1415 	 *
1416 	 * src_port, dst_port	port numbers, in HOST format. Only
1417 	 *	valid for TCP and UDP packets.
1418 	 *
1419 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1420 	 *	Only valid for IPv4 packets.
1421 	 */
1422 	uint8_t proto;
1423 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1424 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1425 	int iplen = 0;
1426 	int pktlen;
1427 
1428 	struct ipfw_dyn_info dyn_info;
1429 	struct ip_fw *q = NULL;
1430 	struct ip_fw_chain *chain = &V_layer3_chain;
1431 
1432 	/*
1433 	 * We store in ulp a pointer to the upper layer protocol header.
1434 	 * In the ipv4 case this is easy to determine from the header,
1435 	 * but for ipv6 we might have some additional headers in the middle.
1436 	 * ulp is NULL if not found.
1437 	 */
1438 	void *ulp = NULL;		/* upper layer protocol pointer. */
1439 
1440 	/* XXX ipv6 variables */
1441 	int is_ipv6 = 0;
1442 #ifdef INET6
1443 	uint8_t	icmp6_type = 0;
1444 #endif
1445 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1446 	/* end of ipv6 variables */
1447 
1448 	int is_ipv4 = 0;
1449 
1450 	int done = 0;		/* flag to exit the outer loop */
1451 	IPFW_RLOCK_TRACKER;
1452 	bool mem;
1453 	bool need_send_reject = false;
1454 	int reject_code;
1455 	uint16_t reject_mtu;
1456 
1457 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1458 		if (args->flags & IPFW_ARGS_ETHER) {
1459 			eh = (struct ether_header *)args->mem;
1460 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1461 				ip = (struct ip *)
1462 				    ((struct ether_vlan_header *)eh + 1);
1463 			else
1464 				ip = (struct ip *)(eh + 1);
1465 		} else {
1466 			eh = NULL;
1467 			ip = (struct ip *)args->mem;
1468 		}
1469 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1470 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1471 	} else {
1472 		m = args->m;
1473 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1474 			return (IP_FW_PASS);	/* accept */
1475 		if (args->flags & IPFW_ARGS_ETHER) {
1476 	                /* We need some amount of data to be contiguous. */
1477 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1478 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1479 			    max_protohdr))) == NULL)
1480 				goto pullup_failed;
1481 			eh = mtod(m, struct ether_header *);
1482 			ip = (struct ip *)(eh + 1);
1483 		} else {
1484 			eh = NULL;
1485 			ip = mtod(m, struct ip *);
1486 		}
1487 		pktlen = m->m_pkthdr.len;
1488 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1489 	}
1490 
1491 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1492 	src_ip.s_addr = 0;		/* make sure it is initialized */
1493 	src_port = dst_port = 0;
1494 
1495 	DYN_INFO_INIT(&dyn_info);
1496 /*
1497  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1498  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1499  * pointer might become stale after other pullups (but we never use it
1500  * this way).
1501  */
1502 #define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1503 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1504 #define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1505 do {								\
1506 	int x = (_len) + T + EHLEN;				\
1507 	if (mem) {						\
1508 		if (__predict_false(pktlen < x)) {		\
1509 			unlock;					\
1510 			goto pullup_failed;			\
1511 		}						\
1512 		p = (char *)args->mem + (_len) + EHLEN;		\
1513 	} else {						\
1514 		if (__predict_false((m)->m_len < x)) {		\
1515 			args->m = m = m_pullup(m, x);		\
1516 			if (m == NULL) {			\
1517 				unlock;				\
1518 				goto pullup_failed;		\
1519 			}					\
1520 		}						\
1521 		p = mtod(m, char *) + (_len) + EHLEN;		\
1522 	}							\
1523 } while (0)
1524 
1525 #define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1526 #define	PULLUP_LEN_LOCKED(_len, p, T)	\
1527     _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain));	\
1528     UPDATE_POINTERS()
1529 /*
1530  * In case pointers got stale after pullups, update them.
1531  */
1532 #define	UPDATE_POINTERS()					\
1533 do {								\
1534 	if (!mem) {						\
1535 		if (eh != NULL) {				\
1536 			eh = mtod(m, struct ether_header *);	\
1537 			ip = (struct ip *)(eh + 1);		\
1538 		} else						\
1539 			ip = mtod(m, struct ip *);		\
1540 		args->m = m;					\
1541 	}							\
1542 } while (0)
1543 
1544 	/* Identify IP packets and fill up variables. */
1545 	if (pktlen >= sizeof(struct ip6_hdr) &&
1546 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1547 	    ip->ip_v == 6) {
1548 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1549 
1550 		is_ipv6 = 1;
1551 		args->flags |= IPFW_ARGS_IP6;
1552 		hlen = sizeof(struct ip6_hdr);
1553 		proto = ip6->ip6_nxt;
1554 		/* Search extension headers to find upper layer protocols */
1555 		while (ulp == NULL && offset == 0) {
1556 			switch (proto) {
1557 			case IPPROTO_ICMPV6:
1558 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1559 #ifdef INET6
1560 				icmp6_type = ICMP6(ulp)->icmp6_type;
1561 #endif
1562 				break;
1563 
1564 			case IPPROTO_TCP:
1565 				PULLUP_TO(hlen, ulp, struct tcphdr);
1566 				dst_port = TCP(ulp)->th_dport;
1567 				src_port = TCP(ulp)->th_sport;
1568 				/* save flags for dynamic rules */
1569 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1570 				break;
1571 
1572 			case IPPROTO_SCTP:
1573 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1574 				    sizeof(struct sctp_chunkhdr) +
1575 				    offsetof(struct sctp_init, a_rwnd))
1576 					PULLUP_LEN(hlen, ulp,
1577 					    sizeof(struct sctphdr) +
1578 					    sizeof(struct sctp_chunkhdr) +
1579 					    offsetof(struct sctp_init, a_rwnd));
1580 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1581 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1582 				else
1583 					PULLUP_LEN(hlen, ulp,
1584 					    sizeof(struct sctphdr));
1585 				src_port = SCTP(ulp)->src_port;
1586 				dst_port = SCTP(ulp)->dest_port;
1587 				break;
1588 
1589 			case IPPROTO_UDP:
1590 			case IPPROTO_UDPLITE:
1591 				PULLUP_TO(hlen, ulp, struct udphdr);
1592 				dst_port = UDP(ulp)->uh_dport;
1593 				src_port = UDP(ulp)->uh_sport;
1594 				break;
1595 
1596 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1597 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1598 				ext_hd |= EXT_HOPOPTS;
1599 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1600 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1601 				ulp = NULL;
1602 				break;
1603 
1604 			case IPPROTO_ROUTING:	/* RFC 2460 */
1605 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1606 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1607 				case 0:
1608 					ext_hd |= EXT_RTHDR0;
1609 					break;
1610 				case 2:
1611 					ext_hd |= EXT_RTHDR2;
1612 					break;
1613 				default:
1614 					if (V_fw_verbose)
1615 						printf("IPFW2: IPV6 - Unknown "
1616 						    "Routing Header type(%d)\n",
1617 						    ((struct ip6_rthdr *)
1618 						    ulp)->ip6r_type);
1619 					if (V_fw_deny_unknown_exthdrs)
1620 					    return (IP_FW_DENY);
1621 					break;
1622 				}
1623 				ext_hd |= EXT_ROUTING;
1624 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1625 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1626 				ulp = NULL;
1627 				break;
1628 
1629 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1630 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1631 				ext_hd |= EXT_FRAGMENT;
1632 				hlen += sizeof (struct ip6_frag);
1633 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1634 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1635 					IP6F_OFF_MASK;
1636 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1637 					IP6F_MORE_FRAG;
1638 				if (V_fw_permit_single_frag6 == 0 &&
1639 				    offset == 0 && ip6f_mf == 0) {
1640 					if (V_fw_verbose)
1641 						printf("IPFW2: IPV6 - Invalid "
1642 						    "Fragment Header\n");
1643 					if (V_fw_deny_unknown_exthdrs)
1644 					    return (IP_FW_DENY);
1645 					break;
1646 				}
1647 				args->f_id.extra =
1648 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1649 				ulp = NULL;
1650 				break;
1651 
1652 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1653 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1654 				ext_hd |= EXT_DSTOPTS;
1655 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1656 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1657 				ulp = NULL;
1658 				break;
1659 
1660 			case IPPROTO_AH:	/* RFC 2402 */
1661 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1662 				ext_hd |= EXT_AH;
1663 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1664 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1665 				ulp = NULL;
1666 				break;
1667 
1668 			case IPPROTO_ESP:	/* RFC 2406 */
1669 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1670 				/* Anything past Seq# is variable length and
1671 				 * data past this ext. header is encrypted. */
1672 				ext_hd |= EXT_ESP;
1673 				break;
1674 
1675 			case IPPROTO_NONE:	/* RFC 2460 */
1676 				/*
1677 				 * Packet ends here, and IPv6 header has
1678 				 * already been pulled up. If ip6e_len!=0
1679 				 * then octets must be ignored.
1680 				 */
1681 				ulp = ip; /* non-NULL to get out of loop. */
1682 				break;
1683 
1684 			case IPPROTO_OSPFIGP:
1685 				/* XXX OSPF header check? */
1686 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1687 				break;
1688 
1689 			case IPPROTO_PIM:
1690 				/* XXX PIM header check? */
1691 				PULLUP_TO(hlen, ulp, struct pim);
1692 				break;
1693 
1694 			case IPPROTO_GRE:	/* RFC 1701 */
1695 				/* XXX GRE header check? */
1696 				PULLUP_TO(hlen, ulp, struct grehdr);
1697 				break;
1698 
1699 			case IPPROTO_CARP:
1700 				PULLUP_TO(hlen, ulp, offsetof(
1701 				    struct carp_header, carp_counter));
1702 				if (CARP_ADVERTISEMENT !=
1703 				    ((struct carp_header *)ulp)->carp_type)
1704 					return (IP_FW_DENY);
1705 				break;
1706 
1707 			case IPPROTO_IPV6:	/* RFC 2893 */
1708 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1709 				break;
1710 
1711 			case IPPROTO_IPV4:	/* RFC 2893 */
1712 				PULLUP_TO(hlen, ulp, struct ip);
1713 				break;
1714 
1715 			case IPPROTO_PFSYNC:
1716 				PULLUP_TO(hlen, ulp, struct pfsync_header);
1717 				break;
1718 
1719 			default:
1720 				if (V_fw_verbose)
1721 					printf("IPFW2: IPV6 - Unknown "
1722 					    "Extension Header(%d), ext_hd=%x\n",
1723 					     proto, ext_hd);
1724 				if (V_fw_deny_unknown_exthdrs)
1725 				    return (IP_FW_DENY);
1726 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1727 				break;
1728 			} /*switch */
1729 		}
1730 		UPDATE_POINTERS();
1731 		ip6 = (struct ip6_hdr *)ip;
1732 		args->f_id.addr_type = 6;
1733 		args->f_id.src_ip6 = ip6->ip6_src;
1734 		args->f_id.dst_ip6 = ip6->ip6_dst;
1735 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1736 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1737 	} else if (pktlen >= sizeof(struct ip) &&
1738 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1739 	    ip->ip_v == 4) {
1740 		is_ipv4 = 1;
1741 		args->flags |= IPFW_ARGS_IP4;
1742 		hlen = ip->ip_hl << 2;
1743 		/*
1744 		 * Collect parameters into local variables for faster
1745 		 * matching.
1746 		 */
1747 		proto = ip->ip_p;
1748 		src_ip = ip->ip_src;
1749 		dst_ip = ip->ip_dst;
1750 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1751 		iplen = ntohs(ip->ip_len);
1752 
1753 		if (offset == 0) {
1754 			switch (proto) {
1755 			case IPPROTO_TCP:
1756 				PULLUP_TO(hlen, ulp, struct tcphdr);
1757 				dst_port = TCP(ulp)->th_dport;
1758 				src_port = TCP(ulp)->th_sport;
1759 				/* save flags for dynamic rules */
1760 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1761 				break;
1762 
1763 			case IPPROTO_SCTP:
1764 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1765 				    sizeof(struct sctp_chunkhdr) +
1766 				    offsetof(struct sctp_init, a_rwnd))
1767 					PULLUP_LEN(hlen, ulp,
1768 					    sizeof(struct sctphdr) +
1769 					    sizeof(struct sctp_chunkhdr) +
1770 					    offsetof(struct sctp_init, a_rwnd));
1771 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1772 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1773 				else
1774 					PULLUP_LEN(hlen, ulp,
1775 					    sizeof(struct sctphdr));
1776 				src_port = SCTP(ulp)->src_port;
1777 				dst_port = SCTP(ulp)->dest_port;
1778 				break;
1779 
1780 			case IPPROTO_UDP:
1781 			case IPPROTO_UDPLITE:
1782 				PULLUP_TO(hlen, ulp, struct udphdr);
1783 				dst_port = UDP(ulp)->uh_dport;
1784 				src_port = UDP(ulp)->uh_sport;
1785 				break;
1786 
1787 			case IPPROTO_ICMP:
1788 				PULLUP_TO(hlen, ulp, struct icmphdr);
1789 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1790 				break;
1791 
1792 			default:
1793 				break;
1794 			}
1795 		} else {
1796 			if (offset == 1 && proto == IPPROTO_TCP) {
1797 				/* RFC 3128 */
1798 				goto pullup_failed;
1799 			}
1800 		}
1801 
1802 		UPDATE_POINTERS();
1803 		args->f_id.addr_type = 4;
1804 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1805 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1806 	} else {
1807 		proto = 0;
1808 		dst_ip.s_addr = src_ip.s_addr = 0;
1809 
1810 		args->f_id.addr_type = 1; /* XXX */
1811 	}
1812 #undef PULLUP_TO
1813 	pktlen = iplen < pktlen ? iplen: pktlen;
1814 
1815 	/* Properly initialize the rest of f_id */
1816 	args->f_id.proto = proto;
1817 	args->f_id.src_port = src_port = ntohs(src_port);
1818 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1819 
1820 	IPFW_PF_RLOCK(chain);
1821 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1822 		IPFW_PF_RUNLOCK(chain);
1823 		return (IP_FW_PASS);	/* accept */
1824 	}
1825 	if (args->flags & IPFW_ARGS_REF) {
1826 		/*
1827 		 * Packet has already been tagged as a result of a previous
1828 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1829 		 * REASS, NETGRAPH, DIVERT/TEE...)
1830 		 * Validate the slot and continue from the next one
1831 		 * if still present, otherwise do a lookup.
1832 		 */
1833 		f_pos = (args->rule.chain_id == chain->id) ?
1834 		    args->rule.slot :
1835 		    ipfw_find_rule(chain, args->rule.rulenum,
1836 			args->rule.rule_id);
1837 	} else {
1838 		f_pos = 0;
1839 	}
1840 
1841 	if (args->flags & IPFW_ARGS_IN) {
1842 		iif = args->ifp;
1843 		oif = NULL;
1844 	} else {
1845 		MPASS(args->flags & IPFW_ARGS_OUT);
1846 		iif = mem ? NULL : m_rcvif(m);
1847 		oif = args->ifp;
1848 	}
1849 
1850 	/*
1851 	 * Now scan the rules, and parse microinstructions for each rule.
1852 	 * We have two nested loops and an inner switch. Sometimes we
1853 	 * need to break out of one or both loops, or re-enter one of
1854 	 * the loops with updated variables. Loop variables are:
1855 	 *
1856 	 *	f_pos (outer loop) points to the current rule.
1857 	 *		On output it points to the matching rule.
1858 	 *	done (outer loop) is used as a flag to break the loop.
1859 	 *	l (inner loop)	residual length of current rule.
1860 	 *		cmd points to the current microinstruction.
1861 	 *
1862 	 * We break the inner loop by setting l=0 and possibly
1863 	 * cmdlen=0 if we don't want to advance cmd.
1864 	 * We break the outer loop by setting done=1
1865 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1866 	 * as needed.
1867 	 */
1868 	for (; f_pos < chain->n_rules; f_pos++) {
1869 		ipfw_insn *cmd;
1870 		uint32_t tablearg = 0;
1871 		int l, cmdlen, skip_or; /* skip rest of OR block */
1872 		struct ip_fw *f;
1873 
1874 		f = chain->map[f_pos];
1875 		if (V_set_disable & (1 << f->set) )
1876 			continue;
1877 
1878 		skip_or = 0;
1879 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1880 		    l -= cmdlen, cmd += cmdlen) {
1881 			int match;
1882 
1883 			/*
1884 			 * check_body is a jump target used when we find a
1885 			 * CHECK_STATE, and need to jump to the body of
1886 			 * the target rule.
1887 			 */
1888 
1889 /* check_body: */
1890 			cmdlen = F_LEN(cmd);
1891 			/*
1892 			 * An OR block (insn_1 || .. || insn_n) has the
1893 			 * F_OR bit set in all but the last instruction.
1894 			 * The first match will set "skip_or", and cause
1895 			 * the following instructions to be skipped until
1896 			 * past the one with the F_OR bit clear.
1897 			 */
1898 			if (skip_or) {		/* skip this instruction */
1899 				if ((cmd->len & F_OR) == 0)
1900 					skip_or = 0;	/* next one is good */
1901 				continue;
1902 			}
1903 			match = 0; /* set to 1 if we succeed */
1904 
1905 			switch (cmd->opcode) {
1906 			/*
1907 			 * The first set of opcodes compares the packet's
1908 			 * fields with some pattern, setting 'match' if a
1909 			 * match is found. At the end of the loop there is
1910 			 * logic to deal with F_NOT and F_OR flags associated
1911 			 * with the opcode.
1912 			 */
1913 			case O_NOP:
1914 				match = 1;
1915 				break;
1916 
1917 			case O_FORWARD_MAC:
1918 				printf("ipfw: opcode %d unimplemented\n",
1919 				    cmd->opcode);
1920 				break;
1921 
1922 			case O_GID:
1923 			case O_UID:
1924 			case O_JAIL:
1925 				/*
1926 				 * We only check offset == 0 && proto != 0,
1927 				 * as this ensures that we have a
1928 				 * packet with the ports info.
1929 				 */
1930 				if (offset != 0)
1931 					break;
1932 				if (proto == IPPROTO_TCP ||
1933 				    proto == IPPROTO_UDP ||
1934 				    proto == IPPROTO_UDPLITE)
1935 					match = check_uidgid(
1936 						    (ipfw_insn_u32 *)cmd,
1937 						    args, &ucred_lookup,
1938 #ifdef __FreeBSD__
1939 						    &ucred_cache);
1940 #else
1941 						    (void *)&ucred_cache);
1942 #endif
1943 				break;
1944 
1945 			case O_RECV:
1946 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1947 				    chain, &tablearg);
1948 				break;
1949 
1950 			case O_XMIT:
1951 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1952 				    chain, &tablearg);
1953 				break;
1954 
1955 			case O_VIA:
1956 				match = iface_match(args->ifp,
1957 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1958 				break;
1959 
1960 			case O_MACADDR2:
1961 				if (args->flags & IPFW_ARGS_ETHER) {
1962 					u_int32_t *want = (u_int32_t *)
1963 						((ipfw_insn_mac *)cmd)->addr;
1964 					u_int32_t *mask = (u_int32_t *)
1965 						((ipfw_insn_mac *)cmd)->mask;
1966 					u_int32_t *hdr = (u_int32_t *)eh;
1967 
1968 					match =
1969 					    ( want[0] == (hdr[0] & mask[0]) &&
1970 					      want[1] == (hdr[1] & mask[1]) &&
1971 					      want[2] == (hdr[2] & mask[2]) );
1972 				}
1973 				break;
1974 
1975 			case O_MAC_TYPE:
1976 				if (args->flags & IPFW_ARGS_ETHER) {
1977 					u_int16_t *p =
1978 					    ((ipfw_insn_u16 *)cmd)->ports;
1979 					int i;
1980 
1981 					for (i = cmdlen - 1; !match && i>0;
1982 					    i--, p += 2)
1983 						match =
1984 						    (ntohs(eh->ether_type) >=
1985 						    p[0] &&
1986 						    ntohs(eh->ether_type) <=
1987 						    p[1]);
1988 				}
1989 				break;
1990 
1991 			case O_FRAG:
1992 				if (is_ipv4) {
1993 					/*
1994 					 * Since flags_match() works with
1995 					 * uint8_t we pack ip_off into 8 bits.
1996 					 * For this match offset is a boolean.
1997 					 */
1998 					match = flags_match(cmd,
1999 					    ((ntohs(ip->ip_off) & ~IP_OFFMASK)
2000 					    >> 8) | (offset != 0));
2001 				} else {
2002 					/*
2003 					 * Compatibility: historically bare
2004 					 * "frag" would match IPv6 fragments.
2005 					 */
2006 					match = (cmd->arg1 == 0x1 &&
2007 					    (offset != 0));
2008 				}
2009 				break;
2010 
2011 			case O_IN:	/* "out" is "not in" */
2012 				match = (oif == NULL);
2013 				break;
2014 
2015 			case O_LAYER2:
2016 				match = (args->flags & IPFW_ARGS_ETHER);
2017 				break;
2018 
2019 			case O_DIVERTED:
2020 				if ((args->flags & IPFW_ARGS_REF) == 0)
2021 					break;
2022 				/*
2023 				 * For diverted packets, args->rule.info
2024 				 * contains the divert port (in host format)
2025 				 * reason and direction.
2026 				 */
2027 				match = ((args->rule.info & IPFW_IS_MASK) ==
2028 				    IPFW_IS_DIVERT) && (
2029 				    ((args->rule.info & IPFW_INFO_IN) ?
2030 					1: 2) & cmd->arg1);
2031 				break;
2032 
2033 			case O_PROTO:
2034 				/*
2035 				 * We do not allow an arg of 0 so the
2036 				 * check of "proto" only suffices.
2037 				 */
2038 				match = (proto == cmd->arg1);
2039 				break;
2040 
2041 			case O_IP_SRC:
2042 				match = is_ipv4 &&
2043 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2044 				    src_ip.s_addr);
2045 				break;
2046 
2047 			case O_IP_DST_LOOKUP:
2048 			{
2049 				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
2050 					void *pkey;
2051 					uint32_t vidx, key;
2052 					uint16_t keylen = 0; /* zero if can't match the packet */
2053 
2054 					/* Determine lookup key type */
2055 					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
2056 					switch (vidx) {
2057 					case LOOKUP_DST_IP:
2058 					case LOOKUP_SRC_IP:
2059 						/* Need IP frame */
2060 						if (is_ipv6 == 0 && is_ipv4 == 0)
2061 							break;
2062 						if (vidx == LOOKUP_DST_IP)
2063 							pkey = is_ipv6 ?
2064 								(void *)&args->f_id.dst_ip6:
2065 								(void *)&dst_ip;
2066 						else
2067 							pkey = is_ipv6 ?
2068 								(void *)&args->f_id.src_ip6:
2069 								(void *)&src_ip;
2070 						keylen = is_ipv6 ?
2071 							sizeof(struct in6_addr):
2072 							sizeof(in_addr_t);
2073 						break;
2074 					case LOOKUP_DST_PORT:
2075 					case LOOKUP_SRC_PORT:
2076 						/* Need IP frame */
2077 						if (is_ipv6 == 0 && is_ipv4 == 0)
2078 							break;
2079 						/* Skip fragments */
2080 						if (offset != 0)
2081 							break;
2082 						/* Skip proto without ports */
2083 						if (proto != IPPROTO_TCP &&
2084 							proto != IPPROTO_UDP &&
2085 							proto != IPPROTO_UDPLITE &&
2086 							proto != IPPROTO_SCTP)
2087 							break;
2088 						key = vidx == LOOKUP_DST_PORT ?
2089 							dst_port:
2090 							src_port;
2091 						pkey = &key;
2092 						keylen = sizeof(key);
2093 						break;
2094 					case LOOKUP_UID:
2095 					case LOOKUP_JAIL:
2096 						check_uidgid(
2097 						    (ipfw_insn_u32 *)cmd,
2098 						    args, &ucred_lookup,
2099 						    &ucred_cache);
2100 						key = vidx == LOOKUP_UID ?
2101 							ucred_cache->cr_uid:
2102 							ucred_cache->cr_prison->pr_id;
2103 						pkey = &key;
2104 						keylen = sizeof(key);
2105 						break;
2106 					case LOOKUP_DSCP:
2107 						/* Need IP frame */
2108 						if (is_ipv6 == 0 && is_ipv4 == 0)
2109 							break;
2110 						if (is_ipv6)
2111 							key = IPV6_DSCP(
2112 							    (struct ip6_hdr *)ip) >> 2;
2113 						else
2114 							key = ip->ip_tos >> 2;
2115 						pkey = &key;
2116 						keylen = sizeof(key);
2117 						break;
2118 					case LOOKUP_DST_MAC:
2119 					case LOOKUP_SRC_MAC:
2120 						/* Need ether frame */
2121 						if ((args->flags & IPFW_ARGS_ETHER) == 0)
2122 							break;
2123 						pkey = vidx == LOOKUP_DST_MAC ?
2124 							eh->ether_dhost:
2125 							eh->ether_shost;
2126 						keylen = ETHER_ADDR_LEN;
2127 						break;
2128 					case LOOKUP_MARK:
2129 						key = args->rule.pkt_mark;
2130 						pkey = &key;
2131 						keylen = sizeof(key);
2132 						break;
2133 					}
2134 					if (keylen == 0)
2135 						break;
2136 					match = ipfw_lookup_table(chain,
2137 					    cmd->arg1, keylen, pkey, &vidx);
2138 					if (!match)
2139 						break;
2140 					tablearg = vidx;
2141 					break;
2142 				}
2143 				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
2144 				/* FALLTHROUGH */
2145 			}
2146 			case O_IP_SRC_LOOKUP:
2147 			{
2148 				void *pkey;
2149 				uint32_t vidx;
2150 				uint16_t keylen;
2151 
2152 				if (is_ipv4) {
2153 					keylen = sizeof(in_addr_t);
2154 					if (cmd->opcode == O_IP_DST_LOOKUP)
2155 						pkey = &dst_ip;
2156 					else
2157 						pkey = &src_ip;
2158 				} else if (is_ipv6) {
2159 					keylen = sizeof(struct in6_addr);
2160 					if (cmd->opcode == O_IP_DST_LOOKUP)
2161 						pkey = &args->f_id.dst_ip6;
2162 					else
2163 						pkey = &args->f_id.src_ip6;
2164 				} else
2165 					break;
2166 				match = ipfw_lookup_table(chain, cmd->arg1,
2167 				    keylen, pkey, &vidx);
2168 				if (!match)
2169 					break;
2170 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2171 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2172 					    TARG_VAL(chain, vidx, tag);
2173 					if (!match)
2174 						break;
2175 				}
2176 				tablearg = vidx;
2177 				break;
2178 			}
2179 
2180 			case O_MAC_SRC_LOOKUP:
2181 			case O_MAC_DST_LOOKUP:
2182 			{
2183 				void *pkey;
2184 				uint32_t vidx;
2185 				uint16_t keylen = ETHER_ADDR_LEN;
2186 
2187 				/* Need ether frame */
2188 				if ((args->flags & IPFW_ARGS_ETHER) == 0)
2189 					break;
2190 
2191 				if (cmd->opcode == O_MAC_DST_LOOKUP)
2192 					pkey = eh->ether_dhost;
2193 				else
2194 					pkey = eh->ether_shost;
2195 
2196 				match = ipfw_lookup_table(chain, cmd->arg1,
2197 				    keylen, pkey, &vidx);
2198 				if (!match)
2199 					break;
2200 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2201 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2202 					    TARG_VAL(chain, vidx, tag);
2203 					if (!match)
2204 						break;
2205 				}
2206 				tablearg = vidx;
2207 				break;
2208 			}
2209 
2210 			case O_IP_FLOW_LOOKUP:
2211 				{
2212 					uint32_t v = 0;
2213 					match = ipfw_lookup_table(chain,
2214 					    cmd->arg1, 0, &args->f_id, &v);
2215 					if (!match)
2216 						break;
2217 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2218 						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2219 						    TARG_VAL(chain, v, tag);
2220 					if (match)
2221 						tablearg = v;
2222 				}
2223 				break;
2224 			case O_IP_SRC_MASK:
2225 			case O_IP_DST_MASK:
2226 				if (is_ipv4) {
2227 				    uint32_t a =
2228 					(cmd->opcode == O_IP_DST_MASK) ?
2229 					    dst_ip.s_addr : src_ip.s_addr;
2230 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2231 				    int i = cmdlen-1;
2232 
2233 				    for (; !match && i>0; i-= 2, p+= 2)
2234 					match = (p[0] == (a & p[1]));
2235 				}
2236 				break;
2237 
2238 			case O_IP_SRC_ME:
2239 				if (is_ipv4) {
2240 					match = in_localip(src_ip);
2241 					break;
2242 				}
2243 #ifdef INET6
2244 				/* FALLTHROUGH */
2245 			case O_IP6_SRC_ME:
2246 				match = is_ipv6 &&
2247 				    ipfw_localip6(&args->f_id.src_ip6);
2248 #endif
2249 				break;
2250 
2251 			case O_IP_DST_SET:
2252 			case O_IP_SRC_SET:
2253 				if (is_ipv4) {
2254 					u_int32_t *d = (u_int32_t *)(cmd+1);
2255 					u_int32_t addr =
2256 					    cmd->opcode == O_IP_DST_SET ?
2257 						args->f_id.dst_ip :
2258 						args->f_id.src_ip;
2259 
2260 					    if (addr < d[0])
2261 						    break;
2262 					    addr -= d[0]; /* subtract base */
2263 					    match = (addr < cmd->arg1) &&
2264 						( d[ 1 + (addr>>5)] &
2265 						  (1<<(addr & 0x1f)) );
2266 				}
2267 				break;
2268 
2269 			case O_IP_DST:
2270 				match = is_ipv4 &&
2271 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2272 				    dst_ip.s_addr);
2273 				break;
2274 
2275 			case O_IP_DST_ME:
2276 				if (is_ipv4) {
2277 					match = in_localip(dst_ip);
2278 					break;
2279 				}
2280 #ifdef INET6
2281 				/* FALLTHROUGH */
2282 			case O_IP6_DST_ME:
2283 				match = is_ipv6 &&
2284 				    ipfw_localip6(&args->f_id.dst_ip6);
2285 #endif
2286 				break;
2287 
2288 			case O_IP_SRCPORT:
2289 			case O_IP_DSTPORT:
2290 				/*
2291 				 * offset == 0 && proto != 0 is enough
2292 				 * to guarantee that we have a
2293 				 * packet with port info.
2294 				 */
2295 				if ((proto == IPPROTO_UDP ||
2296 				    proto == IPPROTO_UDPLITE ||
2297 				    proto == IPPROTO_TCP ||
2298 				    proto == IPPROTO_SCTP) && offset == 0) {
2299 					u_int16_t x =
2300 					    (cmd->opcode == O_IP_SRCPORT) ?
2301 						src_port : dst_port ;
2302 					u_int16_t *p =
2303 					    ((ipfw_insn_u16 *)cmd)->ports;
2304 					int i;
2305 
2306 					for (i = cmdlen - 1; !match && i>0;
2307 					    i--, p += 2)
2308 						match = (x>=p[0] && x<=p[1]);
2309 				}
2310 				break;
2311 
2312 			case O_ICMPTYPE:
2313 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2314 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2315 				break;
2316 
2317 #ifdef INET6
2318 			case O_ICMP6TYPE:
2319 				match = is_ipv6 && offset == 0 &&
2320 				    proto==IPPROTO_ICMPV6 &&
2321 				    icmp6type_match(
2322 					ICMP6(ulp)->icmp6_type,
2323 					(ipfw_insn_u32 *)cmd);
2324 				break;
2325 #endif /* INET6 */
2326 
2327 			case O_IPOPT:
2328 				match = (is_ipv4 &&
2329 				    ipopts_match(ip, cmd) );
2330 				break;
2331 
2332 			case O_IPVER:
2333 				match = ((is_ipv4 || is_ipv6) &&
2334 				    cmd->arg1 == ip->ip_v);
2335 				break;
2336 
2337 			case O_IPID:
2338 			case O_IPTTL:
2339 				if (!is_ipv4)
2340 					break;
2341 			case O_IPLEN:
2342 				{	/* only for IP packets */
2343 				    uint16_t x;
2344 				    uint16_t *p;
2345 				    int i;
2346 
2347 				    if (cmd->opcode == O_IPLEN)
2348 					x = iplen;
2349 				    else if (cmd->opcode == O_IPTTL)
2350 					x = ip->ip_ttl;
2351 				    else /* must be IPID */
2352 					x = ntohs(ip->ip_id);
2353 				    if (cmdlen == 1) {
2354 					match = (cmd->arg1 == x);
2355 					break;
2356 				    }
2357 				    /* otherwise we have ranges */
2358 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2359 				    i = cmdlen - 1;
2360 				    for (; !match && i>0; i--, p += 2)
2361 					match = (x >= p[0] && x <= p[1]);
2362 				}
2363 				break;
2364 
2365 			case O_IPPRECEDENCE:
2366 				match = (is_ipv4 &&
2367 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2368 				break;
2369 
2370 			case O_IPTOS:
2371 				match = (is_ipv4 &&
2372 				    flags_match(cmd, ip->ip_tos));
2373 				break;
2374 
2375 			case O_DSCP:
2376 			    {
2377 				uint32_t *p;
2378 				uint16_t x;
2379 
2380 				p = ((ipfw_insn_u32 *)cmd)->d;
2381 
2382 				if (is_ipv4)
2383 					x = ip->ip_tos >> 2;
2384 				else if (is_ipv6) {
2385 					x = IPV6_DSCP(
2386 					    (struct ip6_hdr *)ip) >> 2;
2387 					x &= 0x3f;
2388 				} else
2389 					break;
2390 
2391 				/* DSCP bitmask is stored as low_u32 high_u32 */
2392 				if (x >= 32)
2393 					match = *(p + 1) & (1 << (x - 32));
2394 				else
2395 					match = *p & (1 << x);
2396 			    }
2397 				break;
2398 
2399 			case O_TCPDATALEN:
2400 				if (proto == IPPROTO_TCP && offset == 0) {
2401 				    struct tcphdr *tcp;
2402 				    uint16_t x;
2403 				    uint16_t *p;
2404 				    int i;
2405 #ifdef INET6
2406 				    if (is_ipv6) {
2407 					    struct ip6_hdr *ip6;
2408 
2409 					    ip6 = (struct ip6_hdr *)ip;
2410 					    if (ip6->ip6_plen == 0) {
2411 						    /*
2412 						     * Jumbo payload is not
2413 						     * supported by this
2414 						     * opcode.
2415 						     */
2416 						    break;
2417 					    }
2418 					    x = iplen - hlen;
2419 				    } else
2420 #endif /* INET6 */
2421 					    x = iplen - (ip->ip_hl << 2);
2422 				    tcp = TCP(ulp);
2423 				    x -= tcp->th_off << 2;
2424 				    if (cmdlen == 1) {
2425 					match = (cmd->arg1 == x);
2426 					break;
2427 				    }
2428 				    /* otherwise we have ranges */
2429 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2430 				    i = cmdlen - 1;
2431 				    for (; !match && i>0; i--, p += 2)
2432 					match = (x >= p[0] && x <= p[1]);
2433 				}
2434 				break;
2435 
2436 			case O_TCPFLAGS:
2437 				/*
2438 				 * Note that this is currently only set up to
2439 				 * match the lower 8 TCP header flag bits, not
2440 				 * the full compliment of all 12 flags.
2441 				 */
2442 				match = (proto == IPPROTO_TCP && offset == 0 &&
2443 				    flags_match(cmd, tcp_get_flags(TCP(ulp))));
2444 				break;
2445 
2446 			case O_TCPOPTS:
2447 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2448 					PULLUP_LEN_LOCKED(hlen, ulp,
2449 					    (TCP(ulp)->th_off << 2));
2450 					match = tcpopts_match(TCP(ulp), cmd);
2451 				}
2452 				break;
2453 
2454 			case O_TCPSEQ:
2455 				match = (proto == IPPROTO_TCP && offset == 0 &&
2456 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2457 					TCP(ulp)->th_seq);
2458 				break;
2459 
2460 			case O_TCPACK:
2461 				match = (proto == IPPROTO_TCP && offset == 0 &&
2462 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2463 					TCP(ulp)->th_ack);
2464 				break;
2465 
2466 			case O_TCPMSS:
2467 				if (proto == IPPROTO_TCP &&
2468 				    (args->f_id._flags & TH_SYN) != 0 &&
2469 				    ulp != NULL) {
2470 					uint16_t mss, *p;
2471 					int i;
2472 
2473 					PULLUP_LEN_LOCKED(hlen, ulp,
2474 					    (TCP(ulp)->th_off << 2));
2475 					if ((tcpopts_parse(TCP(ulp), &mss) &
2476 					    IP_FW_TCPOPT_MSS) == 0)
2477 						break;
2478 					if (cmdlen == 1) {
2479 						match = (cmd->arg1 == mss);
2480 						break;
2481 					}
2482 					/* Otherwise we have ranges. */
2483 					p = ((ipfw_insn_u16 *)cmd)->ports;
2484 					i = cmdlen - 1;
2485 					for (; !match && i > 0; i--, p += 2)
2486 						match = (mss >= p[0] &&
2487 						    mss <= p[1]);
2488 				}
2489 				break;
2490 
2491 			case O_TCPWIN:
2492 				if (proto == IPPROTO_TCP && offset == 0) {
2493 				    uint16_t x;
2494 				    uint16_t *p;
2495 				    int i;
2496 
2497 				    x = ntohs(TCP(ulp)->th_win);
2498 				    if (cmdlen == 1) {
2499 					match = (cmd->arg1 == x);
2500 					break;
2501 				    }
2502 				    /* Otherwise we have ranges. */
2503 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2504 				    i = cmdlen - 1;
2505 				    for (; !match && i > 0; i--, p += 2)
2506 					match = (x >= p[0] && x <= p[1]);
2507 				}
2508 				break;
2509 
2510 			case O_ESTAB:
2511 				/* reject packets which have SYN only */
2512 				/* XXX should i also check for TH_ACK ? */
2513 				match = (proto == IPPROTO_TCP && offset == 0 &&
2514 				    (tcp_get_flags(TCP(ulp)) &
2515 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2516 				break;
2517 
2518 			case O_ALTQ: {
2519 				struct pf_mtag *at;
2520 				struct m_tag *mtag;
2521 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2522 
2523 				/*
2524 				 * ALTQ uses mbuf tags from another
2525 				 * packet filtering system - pf(4).
2526 				 * We allocate a tag in its format
2527 				 * and fill it in, pretending to be pf(4).
2528 				 */
2529 				match = 1;
2530 				at = pf_find_mtag(m);
2531 				if (at != NULL && at->qid != 0)
2532 					break;
2533 				mtag = m_tag_get(PACKET_TAG_PF,
2534 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2535 				if (mtag == NULL) {
2536 					/*
2537 					 * Let the packet fall back to the
2538 					 * default ALTQ.
2539 					 */
2540 					break;
2541 				}
2542 				m_tag_prepend(m, mtag);
2543 				at = (struct pf_mtag *)(mtag + 1);
2544 				at->qid = altq->qid;
2545 				at->hdr = ip;
2546 				break;
2547 			}
2548 
2549 			case O_LOG:
2550 				ipfw_log(chain, f, hlen, args,
2551 				    offset | ip6f_mf, tablearg, ip);
2552 				match = 1;
2553 				break;
2554 
2555 			case O_PROB:
2556 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2557 				break;
2558 
2559 			case O_VERREVPATH:
2560 				/* Outgoing packets automatically pass/match */
2561 				match = (args->flags & IPFW_ARGS_OUT ||
2562 				    (
2563 #ifdef INET6
2564 				    is_ipv6 ?
2565 					verify_path6(&(args->f_id.src_ip6),
2566 					    iif, args->f_id.fib) :
2567 #endif
2568 				    verify_path(src_ip, iif, args->f_id.fib)));
2569 				break;
2570 
2571 			case O_VERSRCREACH:
2572 				/* Outgoing packets automatically pass/match */
2573 				match = (hlen > 0 && ((oif != NULL) || (
2574 #ifdef INET6
2575 				    is_ipv6 ?
2576 				        verify_path6(&(args->f_id.src_ip6),
2577 				            NULL, args->f_id.fib) :
2578 #endif
2579 				    verify_path(src_ip, NULL, args->f_id.fib))));
2580 				break;
2581 
2582 			case O_ANTISPOOF:
2583 				/* Outgoing packets automatically pass/match */
2584 				if (oif == NULL && hlen > 0 &&
2585 				    (  (is_ipv4 && in_localaddr(src_ip))
2586 #ifdef INET6
2587 				    || (is_ipv6 &&
2588 				        in6_localaddr(&(args->f_id.src_ip6)))
2589 #endif
2590 				    ))
2591 					match =
2592 #ifdef INET6
2593 					    is_ipv6 ? verify_path6(
2594 					        &(args->f_id.src_ip6), iif,
2595 						args->f_id.fib) :
2596 #endif
2597 					    verify_path(src_ip, iif,
2598 					        args->f_id.fib);
2599 				else
2600 					match = 1;
2601 				break;
2602 
2603 			case O_IPSEC:
2604 				match = (m_tag_find(m,
2605 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2606 				/* otherwise no match */
2607 				break;
2608 
2609 #ifdef INET6
2610 			case O_IP6_SRC:
2611 				match = is_ipv6 &&
2612 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2613 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2614 				break;
2615 
2616 			case O_IP6_DST:
2617 				match = is_ipv6 &&
2618 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2619 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2620 				break;
2621 			case O_IP6_SRC_MASK:
2622 			case O_IP6_DST_MASK:
2623 				if (is_ipv6) {
2624 					int i = cmdlen - 1;
2625 					struct in6_addr p;
2626 					struct in6_addr *d =
2627 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2628 
2629 					for (; !match && i > 0; d += 2,
2630 					    i -= F_INSN_SIZE(struct in6_addr)
2631 					    * 2) {
2632 						p = (cmd->opcode ==
2633 						    O_IP6_SRC_MASK) ?
2634 						    args->f_id.src_ip6:
2635 						    args->f_id.dst_ip6;
2636 						APPLY_MASK(&p, &d[1]);
2637 						match =
2638 						    IN6_ARE_ADDR_EQUAL(&d[0],
2639 						    &p);
2640 					}
2641 				}
2642 				break;
2643 
2644 			case O_FLOW6ID:
2645 				match = is_ipv6 &&
2646 				    flow6id_match(args->f_id.flow_id6,
2647 				    (ipfw_insn_u32 *) cmd);
2648 				break;
2649 
2650 			case O_EXT_HDR:
2651 				match = is_ipv6 &&
2652 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2653 				break;
2654 
2655 			case O_IP6:
2656 				match = is_ipv6;
2657 				break;
2658 #endif
2659 
2660 			case O_IP4:
2661 				match = is_ipv4;
2662 				break;
2663 
2664 			case O_TAG: {
2665 				struct m_tag *mtag;
2666 				uint32_t tag = TARG(cmd->arg1, tag);
2667 
2668 				/* Packet is already tagged with this tag? */
2669 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2670 
2671 				/* We have `untag' action when F_NOT flag is
2672 				 * present. And we must remove this mtag from
2673 				 * mbuf and reset `match' to zero (`match' will
2674 				 * be inversed later).
2675 				 * Otherwise we should allocate new mtag and
2676 				 * push it into mbuf.
2677 				 */
2678 				if (cmd->len & F_NOT) { /* `untag' action */
2679 					if (mtag != NULL)
2680 						m_tag_delete(m, mtag);
2681 					match = 0;
2682 				} else {
2683 					if (mtag == NULL) {
2684 						mtag = m_tag_alloc( MTAG_IPFW,
2685 						    tag, 0, M_NOWAIT);
2686 						if (mtag != NULL)
2687 							m_tag_prepend(m, mtag);
2688 					}
2689 					match = 1;
2690 				}
2691 				break;
2692 			}
2693 
2694 			case O_FIB: /* try match the specified fib */
2695 				if (args->f_id.fib == cmd->arg1)
2696 					match = 1;
2697 				break;
2698 
2699 			case O_SOCKARG:	{
2700 #ifndef USERSPACE	/* not supported in userspace */
2701 				struct inpcb *inp = args->inp;
2702 				struct inpcbinfo *pi;
2703 				bool inp_locked = false;
2704 
2705 				if (proto == IPPROTO_TCP)
2706 					pi = &V_tcbinfo;
2707 				else if (proto == IPPROTO_UDP)
2708 					pi = &V_udbinfo;
2709 				else if (proto == IPPROTO_UDPLITE)
2710 					pi = &V_ulitecbinfo;
2711 				else
2712 					break;
2713 
2714 				/*
2715 				 * XXXRW: so_user_cookie should almost
2716 				 * certainly be inp_user_cookie?
2717 				 */
2718 
2719 				/*
2720 				 * For incoming packet lookup the inpcb
2721 				 * using the src/dest ip/port tuple.
2722 				 */
2723 				if (is_ipv4 && inp == NULL) {
2724 					inp = in_pcblookup(pi,
2725 					    src_ip, htons(src_port),
2726 					    dst_ip, htons(dst_port),
2727 					    INPLOOKUP_RLOCKPCB, NULL);
2728 					inp_locked = true;
2729 				}
2730 #ifdef INET6
2731 				if (is_ipv6 && inp == NULL) {
2732 					inp = in6_pcblookup(pi,
2733 					    &args->f_id.src_ip6,
2734 					    htons(src_port),
2735 					    &args->f_id.dst_ip6,
2736 					    htons(dst_port),
2737 					    INPLOOKUP_RLOCKPCB, NULL);
2738 					inp_locked = true;
2739 				}
2740 #endif /* INET6 */
2741 				if (inp != NULL) {
2742 					if (inp->inp_socket) {
2743 						tablearg =
2744 						    inp->inp_socket->so_user_cookie;
2745 						if (tablearg)
2746 							match = 1;
2747 					}
2748 					if (inp_locked)
2749 						INP_RUNLOCK(inp);
2750 				}
2751 #endif /* !USERSPACE */
2752 				break;
2753 			}
2754 
2755 			case O_TAGGED: {
2756 				struct m_tag *mtag;
2757 				uint32_t tag = TARG(cmd->arg1, tag);
2758 
2759 				if (cmdlen == 1) {
2760 					match = m_tag_locate(m, MTAG_IPFW,
2761 					    tag, NULL) != NULL;
2762 					break;
2763 				}
2764 
2765 				/* we have ranges */
2766 				for (mtag = m_tag_first(m);
2767 				    mtag != NULL && !match;
2768 				    mtag = m_tag_next(m, mtag)) {
2769 					uint16_t *p;
2770 					int i;
2771 
2772 					if (mtag->m_tag_cookie != MTAG_IPFW)
2773 						continue;
2774 
2775 					p = ((ipfw_insn_u16 *)cmd)->ports;
2776 					i = cmdlen - 1;
2777 					for(; !match && i > 0; i--, p += 2)
2778 						match =
2779 						    mtag->m_tag_id >= p[0] &&
2780 						    mtag->m_tag_id <= p[1];
2781 				}
2782 				break;
2783 			}
2784 
2785 			case O_MARK: {
2786 				uint32_t mark;
2787 				if (cmd->arg1 == IP_FW_TARG)
2788 					mark = TARG_VAL(chain, tablearg, mark);
2789 				else
2790 					mark = ((ipfw_insn_u32 *)cmd)->d[0];
2791 				match =
2792 				    (args->rule.pkt_mark &
2793 				    ((ipfw_insn_u32 *)cmd)->d[1]) ==
2794 				    (mark & ((ipfw_insn_u32 *)cmd)->d[1]);
2795 				break;
2796 			}
2797 
2798 			/*
2799 			 * The second set of opcodes represents 'actions',
2800 			 * i.e. the terminal part of a rule once the packet
2801 			 * matches all previous patterns.
2802 			 * Typically there is only one action for each rule,
2803 			 * and the opcode is stored at the end of the rule
2804 			 * (but there are exceptions -- see below).
2805 			 *
2806 			 * In general, here we set retval and terminate the
2807 			 * outer loop (would be a 'break 3' in some language,
2808 			 * but we need to set l=0, done=1)
2809 			 *
2810 			 * Exceptions:
2811 			 * O_COUNT and O_SKIPTO actions:
2812 			 *   instead of terminating, we jump to the next rule
2813 			 *   (setting l=0), or to the SKIPTO target (setting
2814 			 *   f/f_len, cmd and l as needed), respectively.
2815 			 *
2816 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2817 			 *   perform some action and set match = 1;
2818 			 *
2819 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2820 			 *   not real 'actions', and are stored right
2821 			 *   before the 'action' part of the rule (one
2822 			 *   exception is O_SKIP_ACTION which could be
2823 			 *   between these opcodes and 'action' one).
2824 			 *   These opcodes try to install an entry in the
2825 			 *   state tables; if successful, we continue with
2826 			 *   the next opcode (match=1; break;), otherwise
2827 			 *   the packet must be dropped (set retval,
2828 			 *   break loops with l=0, done=1)
2829 			 *
2830 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2831 			 *   cause a lookup of the state table, and a jump
2832 			 *   to the 'action' part of the parent rule
2833 			 *   if an entry is found, or
2834 			 *   (CHECK_STATE only) a jump to the next rule if
2835 			 *   the entry is not found.
2836 			 *   The result of the lookup is cached so that
2837 			 *   further instances of these opcodes become NOPs.
2838 			 *   The jump to the next rule is done by setting
2839 			 *   l=0, cmdlen=0.
2840 			 *
2841 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2842 			 *  either, and is stored right before the 'action'
2843 			 *  part of the rule, right after the O_KEEP_STATE
2844 			 *  opcode. It causes match failure so the real
2845 			 *  'action' could be executed only if the rule
2846 			 *  is checked via dynamic rule from the state
2847 			 *  table, as in such case execution starts
2848 			 *  from the true 'action' opcode directly.
2849 			 *
2850 			 */
2851 			case O_LIMIT:
2852 			case O_KEEP_STATE:
2853 				if (ipfw_dyn_install_state(chain, f,
2854 				    (ipfw_insn_limit *)cmd, args, ulp,
2855 				    pktlen, &dyn_info, tablearg)) {
2856 					/* error or limit violation */
2857 					retval = IP_FW_DENY;
2858 					l = 0;	/* exit inner loop */
2859 					done = 1; /* exit outer loop */
2860 				}
2861 				match = 1;
2862 				break;
2863 
2864 			case O_PROBE_STATE:
2865 			case O_CHECK_STATE:
2866 				/*
2867 				 * dynamic rules are checked at the first
2868 				 * keep-state or check-state occurrence,
2869 				 * with the result being stored in dyn_info.
2870 				 * The compiler introduces a PROBE_STATE
2871 				 * instruction for us when we have a
2872 				 * KEEP_STATE (because PROBE_STATE needs
2873 				 * to be run first).
2874 				 */
2875 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2876 				    (q = ipfw_dyn_lookup_state(args, ulp,
2877 				    pktlen, cmd, &dyn_info)) != NULL) {
2878 					/*
2879 					 * Found dynamic entry, jump to the
2880 					 * 'action' part of the parent rule
2881 					 * by setting f, cmd, l and clearing
2882 					 * cmdlen.
2883 					 */
2884 					f = q;
2885 					f_pos = dyn_info.f_pos;
2886 					cmd = ACTION_PTR(f);
2887 					l = f->cmd_len - f->act_ofs;
2888 					cmdlen = 0;
2889 					continue;
2890 				}
2891 				/*
2892 				 * Dynamic entry not found. If CHECK_STATE,
2893 				 * skip to next rule, if PROBE_STATE just
2894 				 * ignore and continue with next opcode.
2895 				 */
2896 				if (cmd->opcode == O_CHECK_STATE)
2897 					l = 0;	/* exit inner loop */
2898 				match = 1;
2899 				break;
2900 
2901 			case O_SKIP_ACTION:
2902 				match = 0;	/* skip to the next rule */
2903 				l = 0;		/* exit inner loop */
2904 				break;
2905 
2906 			case O_ACCEPT:
2907 				retval = 0;	/* accept */
2908 				l = 0;		/* exit inner loop */
2909 				done = 1;	/* exit outer loop */
2910 				break;
2911 
2912 			case O_PIPE:
2913 			case O_QUEUE:
2914 				set_match(args, f_pos, chain);
2915 				args->rule.info = TARG(cmd->arg1, pipe);
2916 				if (cmd->opcode == O_PIPE)
2917 					args->rule.info |= IPFW_IS_PIPE;
2918 				if (V_fw_one_pass)
2919 					args->rule.info |= IPFW_ONEPASS;
2920 				retval = IP_FW_DUMMYNET;
2921 				l = 0;          /* exit inner loop */
2922 				done = 1;       /* exit outer loop */
2923 				break;
2924 
2925 			case O_DIVERT:
2926 			case O_TEE:
2927 				if (args->flags & IPFW_ARGS_ETHER)
2928 					break;	/* not on layer 2 */
2929 				/* otherwise this is terminal */
2930 				l = 0;		/* exit inner loop */
2931 				done = 1;	/* exit outer loop */
2932 				retval = (cmd->opcode == O_DIVERT) ?
2933 					IP_FW_DIVERT : IP_FW_TEE;
2934 				set_match(args, f_pos, chain);
2935 				args->rule.info = TARG(cmd->arg1, divert);
2936 				break;
2937 
2938 			case O_COUNT:
2939 				IPFW_INC_RULE_COUNTER(f, pktlen);
2940 				l = 0;		/* exit inner loop */
2941 				break;
2942 
2943 			case O_SKIPTO:
2944 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2945 			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2946 			    /*
2947 			     * Skip disabled rules, and re-enter
2948 			     * the inner loop with the correct
2949 			     * f_pos, f, l and cmd.
2950 			     * Also clear cmdlen and skip_or
2951 			     */
2952 			    for (; f_pos < chain->n_rules - 1 &&
2953 				    (V_set_disable &
2954 				     (1 << chain->map[f_pos]->set));
2955 				    f_pos++)
2956 				;
2957 			    /* Re-enter the inner loop at the skipto rule. */
2958 			    f = chain->map[f_pos];
2959 			    l = f->cmd_len;
2960 			    cmd = f->cmd;
2961 			    match = 1;
2962 			    cmdlen = 0;
2963 			    skip_or = 0;
2964 			    continue;
2965 			    break;	/* not reached */
2966 
2967 			case O_CALLRETURN: {
2968 				/*
2969 				 * Implementation of `subroutine' call/return,
2970 				 * in the stack carried in an mbuf tag. This
2971 				 * is different from `skipto' in that any call
2972 				 * address is possible (`skipto' must prevent
2973 				 * backward jumps to avoid endless loops).
2974 				 * We have `return' action when F_NOT flag is
2975 				 * present. The `m_tag_id' field is used as
2976 				 * stack pointer.
2977 				 */
2978 				struct m_tag *mtag;
2979 				uint16_t jmpto, *stack;
2980 
2981 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2982 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2983 				/*
2984 				 * Hand-rolled version of m_tag_locate() with
2985 				 * wildcard `type'.
2986 				 * If not already tagged, allocate new tag.
2987 				 */
2988 				mtag = m_tag_first(m);
2989 				while (mtag != NULL) {
2990 					if (mtag->m_tag_cookie ==
2991 					    MTAG_IPFW_CALL)
2992 						break;
2993 					mtag = m_tag_next(m, mtag);
2994 				}
2995 				if (mtag == NULL && IS_CALL) {
2996 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2997 					    IPFW_CALLSTACK_SIZE *
2998 					    sizeof(uint16_t), M_NOWAIT);
2999 					if (mtag != NULL)
3000 						m_tag_prepend(m, mtag);
3001 				}
3002 
3003 				/*
3004 				 * On error both `call' and `return' just
3005 				 * continue with next rule.
3006 				 */
3007 				if (IS_RETURN && (mtag == NULL ||
3008 				    mtag->m_tag_id == 0)) {
3009 					l = 0;		/* exit inner loop */
3010 					break;
3011 				}
3012 				if (IS_CALL && (mtag == NULL ||
3013 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
3014 					printf("ipfw: call stack error, "
3015 					    "go to next rule\n");
3016 					l = 0;		/* exit inner loop */
3017 					break;
3018 				}
3019 
3020 				IPFW_INC_RULE_COUNTER(f, pktlen);
3021 				stack = (uint16_t *)(mtag + 1);
3022 
3023 				/*
3024 				 * The `call' action may use cached f_pos
3025 				 * (in f->next_rule), whose version is written
3026 				 * in f->next_rule.
3027 				 * The `return' action, however, doesn't have
3028 				 * fixed jump address in cmd->arg1 and can't use
3029 				 * cache.
3030 				 */
3031 				if (IS_CALL) {
3032 					stack[mtag->m_tag_id] = f->rulenum;
3033 					mtag->m_tag_id++;
3034 			    		f_pos = JUMP(chain, f, cmd->arg1,
3035 					    tablearg, 1);
3036 				} else {	/* `return' action */
3037 					mtag->m_tag_id--;
3038 					jmpto = stack[mtag->m_tag_id] + 1;
3039 					f_pos = ipfw_find_rule(chain, jmpto, 0);
3040 				}
3041 
3042 				/*
3043 				 * Skip disabled rules, and re-enter
3044 				 * the inner loop with the correct
3045 				 * f_pos, f, l and cmd.
3046 				 * Also clear cmdlen and skip_or
3047 				 */
3048 				for (; f_pos < chain->n_rules - 1 &&
3049 				    (V_set_disable &
3050 				    (1 << chain->map[f_pos]->set)); f_pos++)
3051 					;
3052 				/* Re-enter the inner loop at the dest rule. */
3053 				f = chain->map[f_pos];
3054 				l = f->cmd_len;
3055 				cmd = f->cmd;
3056 				cmdlen = 0;
3057 				skip_or = 0;
3058 				continue;
3059 				break;	/* NOTREACHED */
3060 			}
3061 #undef IS_CALL
3062 #undef IS_RETURN
3063 
3064 			case O_REJECT:
3065 				/*
3066 				 * Drop the packet and send a reject notice
3067 				 * if the packet is not ICMP (or is an ICMP
3068 				 * query), and it is not multicast/broadcast.
3069 				 */
3070 				if (hlen > 0 && is_ipv4 && offset == 0 &&
3071 				    (proto != IPPROTO_ICMP ||
3072 				     is_icmp_query(ICMP(ulp))) &&
3073 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3074 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3075 					KASSERT(!need_send_reject,
3076 					    ("o_reject - need_send_reject was set previously"));
3077 					if ((reject_code = cmd->arg1) == ICMP_UNREACH_NEEDFRAG &&
3078 					    cmd->len == F_INSN_SIZE(ipfw_insn_u16)) {
3079 						reject_mtu =
3080 						    ((ipfw_insn_u16 *)cmd)->ports[0];
3081 					} else {
3082 						reject_mtu = 0;
3083 					}
3084 					need_send_reject = true;
3085 				}
3086 				/* FALLTHROUGH */
3087 #ifdef INET6
3088 			case O_UNREACH6:
3089 				if (hlen > 0 && is_ipv6 &&
3090 				    ((offset & IP6F_OFF_MASK) == 0) &&
3091 				    (proto != IPPROTO_ICMPV6 ||
3092 				     (is_icmp6_query(icmp6_type) == 1)) &&
3093 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3094 				    !IN6_IS_ADDR_MULTICAST(
3095 					&args->f_id.dst_ip6)) {
3096 					KASSERT(!need_send_reject,
3097 					    ("o_unreach6 - need_send_reject was set previously"));
3098 					reject_code = cmd->arg1;
3099 					if (cmd->opcode == O_REJECT) {
3100 						reject_code =
3101 						    map_icmp_unreach(reject_code);
3102 					}
3103 					need_send_reject = true;
3104 				}
3105 				/* FALLTHROUGH */
3106 #endif
3107 			case O_DENY:
3108 				retval = IP_FW_DENY;
3109 				l = 0;		/* exit inner loop */
3110 				done = 1;	/* exit outer loop */
3111 				break;
3112 
3113 			case O_FORWARD_IP:
3114 				if (args->flags & IPFW_ARGS_ETHER)
3115 					break;	/* not valid on layer2 pkts */
3116 				if (q != f ||
3117 				    dyn_info.direction == MATCH_FORWARD) {
3118 				    struct sockaddr_in *sa;
3119 
3120 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
3121 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
3122 #ifdef INET6
3123 					/*
3124 					 * We use O_FORWARD_IP opcode for
3125 					 * fwd rule with tablearg, but tables
3126 					 * now support IPv6 addresses. And
3127 					 * when we are inspecting IPv6 packet,
3128 					 * we can use nh6 field from
3129 					 * table_value as next_hop6 address.
3130 					 */
3131 					if (is_ipv6) {
3132 						struct ip_fw_nh6 *nh6;
3133 
3134 						args->flags |= IPFW_ARGS_NH6;
3135 						nh6 = &args->hopstore6;
3136 						nh6->sin6_addr = TARG_VAL(
3137 						    chain, tablearg, nh6);
3138 						nh6->sin6_port = sa->sin_port;
3139 						nh6->sin6_scope_id = TARG_VAL(
3140 						    chain, tablearg, zoneid);
3141 					} else
3142 #endif
3143 					{
3144 						args->flags |= IPFW_ARGS_NH4;
3145 						args->hopstore.sin_port =
3146 						    sa->sin_port;
3147 						sa = &args->hopstore;
3148 						sa->sin_family = AF_INET;
3149 						sa->sin_len = sizeof(*sa);
3150 						sa->sin_addr.s_addr = htonl(
3151 						    TARG_VAL(chain, tablearg,
3152 						    nh4));
3153 					}
3154 				    } else {
3155 					    args->flags |= IPFW_ARGS_NH4PTR;
3156 					    args->next_hop = sa;
3157 				    }
3158 				}
3159 				retval = IP_FW_PASS;
3160 				l = 0;          /* exit inner loop */
3161 				done = 1;       /* exit outer loop */
3162 				break;
3163 
3164 #ifdef INET6
3165 			case O_FORWARD_IP6:
3166 				if (args->flags & IPFW_ARGS_ETHER)
3167 					break;	/* not valid on layer2 pkts */
3168 				if (q != f ||
3169 				    dyn_info.direction == MATCH_FORWARD) {
3170 					struct sockaddr_in6 *sin6;
3171 
3172 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3173 					args->flags |= IPFW_ARGS_NH6PTR;
3174 					args->next_hop6 = sin6;
3175 				}
3176 				retval = IP_FW_PASS;
3177 				l = 0;		/* exit inner loop */
3178 				done = 1;	/* exit outer loop */
3179 				break;
3180 #endif
3181 
3182 			case O_NETGRAPH:
3183 			case O_NGTEE:
3184 				set_match(args, f_pos, chain);
3185 				args->rule.info = TARG(cmd->arg1, netgraph);
3186 				if (V_fw_one_pass)
3187 					args->rule.info |= IPFW_ONEPASS;
3188 				retval = (cmd->opcode == O_NETGRAPH) ?
3189 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3190 				l = 0;          /* exit inner loop */
3191 				done = 1;       /* exit outer loop */
3192 				break;
3193 
3194 			case O_SETFIB: {
3195 				uint32_t fib;
3196 
3197 				IPFW_INC_RULE_COUNTER(f, pktlen);
3198 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3199 				if (fib >= rt_numfibs)
3200 					fib = 0;
3201 				M_SETFIB(m, fib);
3202 				args->f_id.fib = fib; /* XXX */
3203 				l = 0;		/* exit inner loop */
3204 				break;
3205 		        }
3206 
3207 			case O_SETDSCP: {
3208 				uint16_t code;
3209 
3210 				code = TARG(cmd->arg1, dscp) & 0x3F;
3211 				l = 0;		/* exit inner loop */
3212 				if (is_ipv4) {
3213 					uint16_t old;
3214 
3215 					old = *(uint16_t *)ip;
3216 					ip->ip_tos = (code << 2) |
3217 					    (ip->ip_tos & 0x03);
3218 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3219 					    old, *(uint16_t *)ip);
3220 				} else if (is_ipv6) {
3221 					/* update cached value */
3222 					args->f_id.flow_id6 =
3223 					    ntohl(*(uint32_t *)ip) & ~0x0FC00000;
3224 					args->f_id.flow_id6 |= code << 22;
3225 
3226 					*((uint32_t *)ip) =
3227 					    htonl(args->f_id.flow_id6);
3228 				} else
3229 					break;
3230 
3231 				IPFW_INC_RULE_COUNTER(f, pktlen);
3232 				break;
3233 			}
3234 
3235 			case O_NAT:
3236 				l = 0;          /* exit inner loop */
3237 				done = 1;       /* exit outer loop */
3238 				/*
3239 				 * Ensure that we do not invoke NAT handler for
3240 				 * non IPv4 packets. Libalias expects only IPv4.
3241 				 */
3242 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3243 				    retval = IP_FW_DENY;
3244 				    break;
3245 				}
3246 
3247 				struct cfg_nat *t;
3248 				int nat_id;
3249 
3250 				args->rule.info = 0;
3251 				set_match(args, f_pos, chain);
3252 				/* Check if this is 'global' nat rule */
3253 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3254 					retval = ipfw_nat_ptr(args, NULL, m);
3255 					break;
3256 				}
3257 				t = ((ipfw_insn_nat *)cmd)->nat;
3258 				if (t == NULL) {
3259 					nat_id = TARG(cmd->arg1, nat);
3260 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3261 
3262 					if (t == NULL) {
3263 					    retval = IP_FW_DENY;
3264 					    break;
3265 					}
3266 					if (cmd->arg1 != IP_FW_TARG)
3267 					    ((ipfw_insn_nat *)cmd)->nat = t;
3268 				}
3269 				retval = ipfw_nat_ptr(args, t, m);
3270 				break;
3271 
3272 			case O_REASS: {
3273 				int ip_off;
3274 
3275 				l = 0;	/* in any case exit inner loop */
3276 				if (is_ipv6) /* IPv6 is not supported yet */
3277 					break;
3278 				IPFW_INC_RULE_COUNTER(f, pktlen);
3279 				ip_off = ntohs(ip->ip_off);
3280 
3281 				/* if not fragmented, go to next rule */
3282 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3283 				    break;
3284 
3285 				args->m = m = ip_reass(m);
3286 
3287 				/*
3288 				 * do IP header checksum fixup.
3289 				 */
3290 				if (m == NULL) { /* fragment got swallowed */
3291 				    retval = IP_FW_DENY;
3292 				} else { /* good, packet complete */
3293 				    int hlen;
3294 
3295 				    ip = mtod(m, struct ip *);
3296 				    hlen = ip->ip_hl << 2;
3297 				    ip->ip_sum = 0;
3298 				    if (hlen == sizeof(struct ip))
3299 					ip->ip_sum = in_cksum_hdr(ip);
3300 				    else
3301 					ip->ip_sum = in_cksum(m, hlen);
3302 				    retval = IP_FW_REASS;
3303 				    args->rule.info = 0;
3304 				    set_match(args, f_pos, chain);
3305 				}
3306 				done = 1;	/* exit outer loop */
3307 				break;
3308 			}
3309 
3310 			case O_SETMARK: {
3311 				l = 0;		/* exit inner loop */
3312 				args->rule.pkt_mark = (
3313 				    (cmd->arg1 == IP_FW_TARG) ?
3314 				    TARG_VAL(chain, tablearg, mark) :
3315 				    ((ipfw_insn_u32 *)cmd)->d[0]);
3316 
3317 				IPFW_INC_RULE_COUNTER(f, pktlen);
3318 				break;
3319 			}
3320 
3321 			case O_EXTERNAL_ACTION:
3322 				l = 0; /* in any case exit inner loop */
3323 				retval = ipfw_run_eaction(chain, args,
3324 				    cmd, &done);
3325 				/*
3326 				 * If both @retval and @done are zero,
3327 				 * consider this as rule matching and
3328 				 * update counters.
3329 				 */
3330 				if (retval == 0 && done == 0) {
3331 					IPFW_INC_RULE_COUNTER(f, pktlen);
3332 					/*
3333 					 * Reset the result of the last
3334 					 * dynamic state lookup.
3335 					 * External action can change
3336 					 * @args content, and it may be
3337 					 * used for new state lookup later.
3338 					 */
3339 					DYN_INFO_INIT(&dyn_info);
3340 				}
3341 				break;
3342 
3343 			default:
3344 				panic("-- unknown opcode %d\n", cmd->opcode);
3345 			} /* end of switch() on opcodes */
3346 			/*
3347 			 * if we get here with l=0, then match is irrelevant.
3348 			 */
3349 
3350 			if (cmd->len & F_NOT)
3351 				match = !match;
3352 
3353 			if (match) {
3354 				if (cmd->len & F_OR)
3355 					skip_or = 1;
3356 			} else {
3357 				if (!(cmd->len & F_OR)) /* not an OR block, */
3358 					break;		/* try next rule    */
3359 			}
3360 
3361 		}	/* end of inner loop, scan opcodes */
3362 #undef PULLUP_LEN
3363 #undef PULLUP_LEN_LOCKED
3364 
3365 		if (done)
3366 			break;
3367 
3368 /* next_rule:; */	/* try next rule		*/
3369 
3370 	}		/* end of outer for, scan rules */
3371 
3372 	if (done) {
3373 		struct ip_fw *rule = chain->map[f_pos];
3374 		/* Update statistics */
3375 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3376 		IPFW_PROBE(rule__matched, retval,
3377 		    is_ipv4 ? AF_INET : AF_INET6,
3378 		    is_ipv4 ? (uintptr_t)&src_ip :
3379 		        (uintptr_t)&args->f_id.src_ip6,
3380 		    is_ipv4 ? (uintptr_t)&dst_ip :
3381 		        (uintptr_t)&args->f_id.dst_ip6,
3382 		    args, rule);
3383 	} else {
3384 		retval = IP_FW_DENY;
3385 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3386 	}
3387 	IPFW_PF_RUNLOCK(chain);
3388 	if (need_send_reject) {
3389 #ifdef INET6
3390 		if (is_ipv6)
3391 			send_reject6(args, reject_code, hlen,
3392 				     (struct ip6_hdr *)ip);
3393 		else
3394 #endif
3395 			send_reject(args, reject_code, reject_mtu,
3396 				    iplen, ip);
3397 	}
3398 #ifdef __FreeBSD__
3399 	if (ucred_cache != NULL)
3400 		crfree(ucred_cache);
3401 #endif
3402 	return (retval);
3403 
3404 pullup_failed:
3405 	if (V_fw_verbose)
3406 		printf("ipfw: pullup failed\n");
3407 	return (IP_FW_DENY);
3408 }
3409 
3410 /*
3411  * Set maximum number of tables that can be used in given VNET ipfw instance.
3412  */
3413 #ifdef SYSCTL_NODE
3414 static int
3415 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3416 {
3417 	int error;
3418 	unsigned int ntables;
3419 
3420 	ntables = V_fw_tables_max;
3421 
3422 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3423 	/* Read operation or some error */
3424 	if ((error != 0) || (req->newptr == NULL))
3425 		return (error);
3426 
3427 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3428 }
3429 
3430 /*
3431  * Switches table namespace between global and per-set.
3432  */
3433 static int
3434 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3435 {
3436 	int error;
3437 	unsigned int sets;
3438 
3439 	sets = V_fw_tables_sets;
3440 
3441 	error = sysctl_handle_int(oidp, &sets, 0, req);
3442 	/* Read operation or some error */
3443 	if ((error != 0) || (req->newptr == NULL))
3444 		return (error);
3445 
3446 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3447 }
3448 #endif
3449 
3450 /*
3451  * Module and VNET glue
3452  */
3453 
3454 /*
3455  * Stuff that must be initialised only on boot or module load
3456  */
3457 static int
3458 ipfw_init(void)
3459 {
3460 	int error = 0;
3461 
3462 	/*
3463  	 * Only print out this stuff the first time around,
3464 	 * when called from the sysinit code.
3465 	 */
3466 	printf("ipfw2 "
3467 #ifdef INET6
3468 		"(+ipv6) "
3469 #endif
3470 		"initialized, divert %s, nat %s, "
3471 		"default to %s, logging ",
3472 #ifdef IPDIVERT
3473 		"enabled",
3474 #else
3475 		"loadable",
3476 #endif
3477 #ifdef IPFIREWALL_NAT
3478 		"enabled",
3479 #else
3480 		"loadable",
3481 #endif
3482 		default_to_accept ? "accept" : "deny");
3483 
3484 	/*
3485 	 * Note: V_xxx variables can be accessed here but the vnet specific
3486 	 * initializer may not have been called yet for the VIMAGE case.
3487 	 * Tuneables will have been processed. We will print out values for
3488 	 * the default vnet.
3489 	 * XXX This should all be rationalized AFTER 8.0
3490 	 */
3491 	if (V_fw_verbose == 0)
3492 		printf("disabled\n");
3493 	else if (V_verbose_limit == 0)
3494 		printf("unlimited\n");
3495 	else
3496 		printf("limited to %d packets/entry by default\n",
3497 		    V_verbose_limit);
3498 
3499 	/* Check user-supplied table count for validness */
3500 	if (default_fw_tables > IPFW_TABLES_MAX)
3501 	  default_fw_tables = IPFW_TABLES_MAX;
3502 
3503 	ipfw_init_sopt_handler();
3504 	ipfw_init_obj_rewriter();
3505 	ipfw_iface_init();
3506 	return (error);
3507 }
3508 
3509 /*
3510  * Called for the removal of the last instance only on module unload.
3511  */
3512 static void
3513 ipfw_destroy(void)
3514 {
3515 
3516 	ipfw_iface_destroy();
3517 	ipfw_destroy_sopt_handler();
3518 	ipfw_destroy_obj_rewriter();
3519 	printf("IP firewall unloaded\n");
3520 }
3521 
3522 /*
3523  * Stuff that must be initialized for every instance
3524  * (including the first of course).
3525  */
3526 static int
3527 vnet_ipfw_init(const void *unused)
3528 {
3529 	int error, first;
3530 	struct ip_fw *rule = NULL;
3531 	struct ip_fw_chain *chain;
3532 
3533 	chain = &V_layer3_chain;
3534 
3535 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3536 
3537 	/* First set up some values that are compile time options */
3538 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3539 	V_fw_deny_unknown_exthdrs = 1;
3540 #ifdef IPFIREWALL_VERBOSE
3541 	V_fw_verbose = 1;
3542 #endif
3543 #ifdef IPFIREWALL_VERBOSE_LIMIT
3544 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3545 #endif
3546 #ifdef IPFIREWALL_NAT
3547 	LIST_INIT(&chain->nat);
3548 #endif
3549 
3550 	/* Init shared services hash table */
3551 	ipfw_init_srv(chain);
3552 
3553 	ipfw_init_counters();
3554 	/* Set initial number of tables */
3555 	V_fw_tables_max = default_fw_tables;
3556 	error = ipfw_init_tables(chain, first);
3557 	if (error) {
3558 		printf("ipfw2: setting up tables failed\n");
3559 		free(chain->map, M_IPFW);
3560 		free(rule, M_IPFW);
3561 		return (ENOSPC);
3562 	}
3563 
3564 	IPFW_LOCK_INIT(chain);
3565 
3566 	/* fill and insert the default rule */
3567 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3568 	rule->flags |= IPFW_RULE_NOOPT;
3569 	rule->cmd_len = 1;
3570 	rule->cmd[0].len = 1;
3571 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3572 	chain->default_rule = rule;
3573 	ipfw_add_protected_rule(chain, rule, 0);
3574 
3575 	ipfw_dyn_init(chain);
3576 	ipfw_eaction_init(chain, first);
3577 #ifdef LINEAR_SKIPTO
3578 	ipfw_init_skipto_cache(chain);
3579 #endif
3580 	ipfw_bpf_init(first);
3581 
3582 	/* First set up some values that are compile time options */
3583 	V_ipfw_vnet_ready = 1;		/* Open for business */
3584 
3585 	/*
3586 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3587 	 * Even if the latter two fail we still keep the module alive
3588 	 * because the sockopt and layer2 paths are still useful.
3589 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3590 	 * so we can ignore the exact return value and just set a flag.
3591 	 *
3592 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3593 	 * changes in the underlying (per-vnet) variables trigger
3594 	 * immediate hook()/unhook() calls.
3595 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3596 	 * is checked on each packet because there are no pfil hooks.
3597 	 */
3598 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3599 	error = ipfw_attach_hooks();
3600 	return (error);
3601 }
3602 
3603 /*
3604  * Called for the removal of each instance.
3605  */
3606 static int
3607 vnet_ipfw_uninit(const void *unused)
3608 {
3609 	struct ip_fw *reap;
3610 	struct ip_fw_chain *chain = &V_layer3_chain;
3611 	int i, last;
3612 
3613 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3614 	/*
3615 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3616 	 * Then grab, release and grab again the WLOCK so we make
3617 	 * sure the update is propagated and nobody will be in.
3618 	 */
3619 	ipfw_detach_hooks();
3620 	V_ip_fw_ctl_ptr = NULL;
3621 
3622 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3623 
3624 	IPFW_UH_WLOCK(chain);
3625 	IPFW_UH_WUNLOCK(chain);
3626 
3627 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3628 
3629 	IPFW_UH_WLOCK(chain);
3630 
3631 	reap = NULL;
3632 	IPFW_WLOCK(chain);
3633 	for (i = 0; i < chain->n_rules; i++)
3634 		ipfw_reap_add(chain, &reap, chain->map[i]);
3635 	free(chain->map, M_IPFW);
3636 #ifdef LINEAR_SKIPTO
3637 	ipfw_destroy_skipto_cache(chain);
3638 #endif
3639 	IPFW_WUNLOCK(chain);
3640 	IPFW_UH_WUNLOCK(chain);
3641 	ipfw_destroy_tables(chain, last);
3642 	ipfw_eaction_uninit(chain, last);
3643 	if (reap != NULL)
3644 		ipfw_reap_rules(reap);
3645 	vnet_ipfw_iface_destroy(chain);
3646 	ipfw_destroy_srv(chain);
3647 	IPFW_LOCK_DESTROY(chain);
3648 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3649 	ipfw_destroy_counters();
3650 	ipfw_bpf_uninit(last);
3651 	return (0);
3652 }
3653 
3654 /*
3655  * Module event handler.
3656  * In general we have the choice of handling most of these events by the
3657  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3658  * use the SYSINIT handlers as they are more capable of expressing the
3659  * flow of control during module and vnet operations, so this is just
3660  * a skeleton. Note there is no SYSINIT equivalent of the module
3661  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3662  */
3663 static int
3664 ipfw_modevent(module_t mod, int type, void *unused)
3665 {
3666 	int err = 0;
3667 
3668 	switch (type) {
3669 	case MOD_LOAD:
3670 		/* Called once at module load or
3671 	 	 * system boot if compiled in. */
3672 		break;
3673 	case MOD_QUIESCE:
3674 		/* Called before unload. May veto unloading. */
3675 		break;
3676 	case MOD_UNLOAD:
3677 		/* Called during unload. */
3678 		break;
3679 	case MOD_SHUTDOWN:
3680 		/* Called during system shutdown. */
3681 		break;
3682 	default:
3683 		err = EOPNOTSUPP;
3684 		break;
3685 	}
3686 	return err;
3687 }
3688 
3689 static moduledata_t ipfwmod = {
3690 	"ipfw",
3691 	ipfw_modevent,
3692 	0
3693 };
3694 
3695 /* Define startup order. */
3696 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3697 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3698 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3699 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3700 
3701 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3702 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3703 MODULE_VERSION(ipfw, 3);
3704 /* should declare some dependencies here */
3705 
3706 /*
3707  * Starting up. Done in order after ipfwmod() has been called.
3708  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3709  */
3710 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3711 	    ipfw_init, NULL);
3712 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3713 	    vnet_ipfw_init, NULL);
3714 
3715 /*
3716  * Closing up shop. These are done in REVERSE ORDER, but still
3717  * after ipfwmod() has been called. Not called on reboot.
3718  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3719  * or when the module is unloaded.
3720  */
3721 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3722 	    ipfw_destroy, NULL);
3723 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3724 	    vnet_ipfw_uninit, NULL);
3725 /* end of file */
3726